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CHAPTER I  

 

INTRODUCTION 

 

1.1 Overview 

The growth properties of cracks that affect the reliability of mechanical structures 

are usually random. The randomness in crack growth properties result from variability in 

many factors such as external loading, geometry and material properties. For structures 

with complicated geometry, finite element analysis is needed for fatigue analysis. The 

combination of finite element method and structural reliability technique is necessary for 

probabilistic analysis of crack growth [1-3].  However, since the required many runs of 

finite element analysis can be expensive, a response surface can be used to approximate 

the finite element results and save the computational effort [4]. With this response 

surface, structural reliability can be easily evaluated with numerical methods such as 

Monte Carlo simulation.  

Faravelli introduced stochastic finite element analysis coupled with the response 

surface method [5, 6] for the analysis of structural and mechanical systems whose 

geometrical and material properties have spatial random variability.  This method used a 

polynomial expansion of the numerical nonlinear structural response, of which the actual 

analytical form is unknown. Newman and Raju built polynomial expansions of the stress 

intensity factors of cracks in three dimensional bodies based on finite element analysis [7, 

8].   Many other research studies have used response surfaces based on polynomial 

expansion. However, although it is easy to implement, polynomial expansion may fail to 
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capture highly nonlinear structural response. Furthermore, the formulas of polynomial 

expansions such as the empirical equations proposed by Newman and Raju [7, 8] 

obtained from regression analysis may work for specific cases and may not be applicable 

to general cases. More accurate and efficient methods, thus, need to be developed.   

A considerable amount of scatter is also found in fatigue data and happens even 

under the same loading condition. The reason for the phenomenon is due to the 

inhomogeneous material properties. To capture the statistical nature of fatigue crack 

growth data and save fatigue testing effort, many probabilistic models have been 

developed in recent years. Generally, these can be divided into two categories. The first 

one is to randomize the coefficients of an established deterministic model to represent 

material inhomogeneity [9]. The other is to generate the stochastic information by 

multiplying the deterministic dynamics of fatigue crack growth with a non-negative 

random process [10-13]. Fatigue crack growth is modeled by stochastic differential 

equations that require solutions of nonlinear partial differential equations [10-13]. These 

nonlinear partial differential equations known as the Kolmogorov’s forward and 

backward equations can be solved numerically. Although these models are combined 

with crack growth laws and consider the physical mechanism, they are still based on data 

fitting to some extent. Furthermore, the computational effort is very intensive and the 

constraints in the models make them less accurate and robust.   

This study proposes the application of a different type of response surface method 

– Gaussian process (GP) modeling – to fatigue crack growth analysis. Compared to the 

traditional response surface method such as polynomial expansion, this new method has 

been shown to be more accurate and efficient [12, 13], especially for highly nonlinear 
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relationships between multi-input and output variables. In this study, the computational 

effort of finite element analysis is shown to be significantly reduced in the fatigue crack 

analysis by using the GP model. The GP model can be also applied to fatigue growth data. 

The uncertainty in fatigue crack growth rate is captured by GP model. The powerful 

feature of GP model can reduce the fatigue test effort. 

 

1.2 Research Objective and advantages of the proposed methodology  

This study attempts to use an efficient method to capture the complicated 

relationship between input and output variables in fatigue crack growth analysis. Since 

traditional methods like polynomial expansions lack accuracy and are inefficient, a 

powerful statistical tool is needed.  The application of GP modeling has the following 

advantages: 

1. Accuracy: As mentioned above, the structural response may be highly 

nonlinear and multi-variate.  GP modeling is able to capture the complex 

relationship between input and output variables and is particularly efficient in 

dealing with multi-variate problems (up to 30 or less).  

2. Efficiency:  To construct a response surface, several runs of finite element 

method are necessary, each run giving a training point for response surface 

fitting. For complicated structures, the finite element analysis to obtain each 

training point can be very time consuming. Further, the number of runs 

needed might be large. For example, if there are four input variables and one 

output variable, we shall take at least three values of input variables say 

maximum, minimum, and mean value to investigate the relationship between 
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inputs and output. Then 81 finite element runs are needed with one set, 

sometimes, taking a few hours. The reduction in finite element analysis may 

lead to the increasing error in the response surface. GP modeling can construct 

accurate response surfaces with significantly fewer training points than in 

traditional methods. 

3. Versatility: In polynomial expansions, the forms and coefficients may work 

for a few specific cases and may not be applicable to all kinds of problems. 

Since GP modeling is non-parametric, no specific form is assumed, which 

make it more versatile and applicable to any kind of problem.            

 

1.3 Organization of the thesis  

The thesis is organized as follows: Chapter 2 introduces GP modeling. A basic 

idea of the method is first introduced. The procedure of parameter estimation is then 

described. 

Chapter 3 compares GP modeling with polynomial-based response surfaces 

proposed by Newman and Raju [7, 8] for determining stress intensity factors of cracks in 

three dimensional finite bodies.  

Chapter 4 extends the application of GP modeling to fatigue crack growth 

analysis in railroad wheels. In addition, other response surface models are compared with 

the GP model.  

Chapter 5 applies the GP model to capture the statistics of fatigue data. 

Experimental data sets with two types of aluminum alloys are used for validation.  An 
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adaptive sample selection procedure is implemented to improve the accuracy of the GP 

model. 
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CHAPTER II 

 

GAUSSIAN PROCESS MODELING  

 

2.1 Introduction 

Gaussian process modeling is a statistical technique for interpolating data. Given 

its ability to fit any function form, the Gaussian process model is a good method to be 

used as a surrogate model to save expensive computational effort.  

 There are several features of Gaussian process model that make it attractive for 

use as the response surface model. First, it is a non-parametric model, which means that 

no specific form is assumed.  Secondly, it is able to deal with multiple input variables and 

the number of input variables can go up to 30 [14]. Finally, the Gaussian process model 

can give not only the estimated values but also the uncertainty associated with these 

values of the unknown function at untested location. The estimated value is given as the 

mean value and the uncertainty is given as variance.  

The basic idea of the Gaussian process model is that the values of the interpolated 

quantity at various coordinates are represented by a collection of random variables that 

have a joint normal distribution [14]. A Gaussian process is characterized by its mean 

function m(x) and covariance function k(x). Thus, a Gaussian process, Y, can be denoted 

in terms of mean and covariance as 

),(~ kmNY                                                            (1) 

The mean function of the GP may capture systematic variations of the output Y. 

But the effect of the mean function for interpolating the training data is small. In this 
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study, we use a constant mean function. The covariance function is constructed as a 

function of the inputs, X. The basic idea of the covariance function is that when the 

inputs are close, the correlation between the corresponding outputs is high. So the mean 

function and covariance function can be expressed by: 

           β=)]([ xYE                                                            (2) 

and 

)*,(*)](),(cov[ 1 φλ xxcxYxY −=                                         (3) 

where )*,( φxxc  is the correlation between x and x*, φ  is the vector of parameters 

governing the correlation function, and λ  is the process precision. So a Gaussian process 

is denoted by: 

),(~ 1RINY −λβ                                                   (4) 

where R is the matrix of correlations among the training points. If the parameters in the 

mean and covariance function are known, the expected value and variance at any location 

x are calculated as 

)()()]([ 1 IYRxrxYE T ββ −+= −                                     (5) 

and 

)1()]([ 11 rRrxYVar T −− −= λ                                        (6) 

where r is the vector of correlations between x and each training point. Further, the 

covariance function at any location x are calculated as 

)*),((*)](),(cov[ *
11 rRrxxcxYxY T −− −= λ                          (7) 

where  is the vector of correlations between  and each training point. *r *x
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There are a variety of possible parameterizations of the correlation function. The 

squared-exponential formulation has been commonly used as the correlation function 

[15], and is given by: 

])(exp[*)](),(cov[
1

2*∑
=

−−=
P

i
iii xxxYxY φ                              (8) 

where p is the dimension of x, and the parameters iφ  must be non-negative. 

 

2.2 Parameter Estimation 

The parametersλ , φ , and β   in Eqs (5) through (8) need to be calibrated from the 

training points before applying Gaussian process modeling. Maximum likelihood 

estimation is the most common method to evaluate the values of the parameters. 

As known, maximum likelihood estimation involves finding the likelihood 

function including parameters to evaluate. The likelihood function is based on the 

multivariate normal distribution at the training points. If the function is transformed into 

negative log of the likelihood function, the problem is to minimize the function by getting 

the optimal values of the parameters. The negative log of the likelihood function is given 

by: 

)()(loglog),,(log 1 IYRIYRml T ββλλλβφ −−++−=− −                     (9) 

The numerical minimization of Eq. (8) can be expensive. The gradients are 

available in analytic form [14, 15]. The optimal values of the process mean and variance, 

conditional on the correlation parameters φ  can be computed exactly. The optimal value 

of β  is equivalent to the generalized least squares estimator: 

YRIIRI TT 111 )(ˆ −−−=β                                                 (10) 
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However, Eq. (9) is highly susceptible to round off error, particularly when R is 

ill-conditioned. Better results have been obtained by using the ordinary least squares 

estimator, which in this case is simply the mean of Y. The conditional optimum for the 

process precision is given by 

11 )]()[(ˆ −− −−= IYRIYm T ββλ                                        (11) 

 

2.3 Summary 

This chapter introduced the basic ideas of the GP model and the procedure for 

parameter estimation in the model. In the next chapters, we will apply it to approximate 

the necessary quantities in crack growth modeling. Since it is too costly to get these 

quantities in both computational methods and fatigue tests, the idea is to model them as 

the output variables of the GP model to achieve savings in required efforts in 

computation and fatigue tests.   
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CHAPTER III 

 

COMPARISON STUDY 

 

3.1 Introduction 

In linear fracture mechanics approach to crack growth modeling, the stress 

intensity factor (SIF) is a very significant quantity. The value of SIF is influenced by 

factors such as geometry, material properties, and loading. There is no explicit expression 

of SIF for some realistic problems and the calculation relies on finite element analysis. 

The change of crack size in each cycle leads to the change in SIF during each cycle of the 

fatigue life. However, it is computationally expensive to execute finite element analysis 

cycle by cycle. A response surface approximation is needed to approximately capture the 

relationship between the input variables and the output variable (SIF) using a few training 

points, by which the expensive computational effort in finite element analysis can be 

reduced. Then the calculation of SIF can be done by the surrogate model without using 

finite element analysis, and crack growth analysis can be done quickly. 

Newman and Raju [7, 8] developed empirical stress intensity factor equations for 

5 types of cracks subjected to remote uniaxial loading: embedded elliptical cracks, 

semielliptical surface cracks, quarter-elliptical corner cracks, semielliptical surface cracks 

at a hole, and quarter-elliptical corner cracks at a hole in finite plates. These equations 

consider SIF as a nonlinear function of loading, parametric angle, crack depth, crack 

length and plate thickness. For each case, the authors obtained the finite element results at 

many training points, using which empirical equations are built. Although the empirical 
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equations are within 5% of finite element results, it requires much effort to perform finite 

element analysis for all the training points and get accurate expressions for the response 

surface.  

In this chapter, we compare GP modeling with the empirical equations developed 

by Newman and Raju [7, 8] and investigate the advantage of GP modeling. To avoid the 

error due to different implementations of finite element analysis, a part of the data 

obtained by Newman and Raju using finite element analysis [7, 8] is taken as the training 

points to construct GP modeling. The rest of the data is used for checking the accuracy of 

the prediction values. Then the results obtained from GP modeling are also compared 

with that from the empirical equations. Since Newman and Raju [7, 8] only gave the 

finite element results for the first four cases, the comparison between the two methods is 

done for the four cases. 

 

3.2 Numerical examples 

Figures 1 and 2 show the configuration of the 5 types of cracks in a three 

dimensional body.  
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Figure 1 A finite plate with a center crack 

 

       

(a) Surface crack                                            (b) Surface crack 

      

(c) Corner crack                                        (d) Surface crack at a hole 

 

               (d) Corner crack at a hole 
 

Figure 2 Configuration of various cracks in three dimensional bodies 

 

3.2.1 Empirical equations of stress intensity factor  

The stress intensity factor, , at the crack tip was expressed: IK

 12



                         ),,,( φπ
b
c

t
a

c
aF

Q
aSK SI =                                            (12) 

where Q is the shape factor for an ellipse. a is the crack depth, c is the crack length, t is 

the plate thickness and S is the external loading. The width b and the length h are large 

enough to be neglected. Parametric angle φ  is the parameter to illustrate the different 

positions along the crack surface. is the geometry factor. Figure 3 shows the 

coordinate system used to define it. 

SF

 

Figure 3 Coordinate system used to define the parametric angle 

Empirical expressions for Q have been developed as 

                         1
c
afor   )(464.11 65.1 ≤+=

c
aQ                                            (13a) 

1
c
afor   )

a
c(464.11 65.1 >+=Q                                            (13b) 

Newman and Raju [7, 8] covered a wide range of configuration parameters. The 

ratio of crack depth to plate thickness (a/t) ranged from 0 to 1, the ratio of crack depth to 

crack length ranged from 0.2 to 2, the parametric angle ranged from 0 to
2
π .  Three-

dimensional finite element analyses using singularity element were used to calculate the 

Mode I SIF for semi-elliptical surface cracks.  
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3.2.2 Semi-Elliptical surface crack 

The geometry factors, , obtained from the finite element results for the semi-

elliptical surface crack in a finite plate subjected to tension are given in Table 1.   

SF

Table 1 Geometry factors  for semi-elliptical surface cracks SF

  a/t 

a/c 2Φ/π 0.2 0.4 0.6 0.8 

 0 0.617 0.724 0.899 1.19 

 0.125 0.65 0.775 0.953 1.217 

 0.25 0.754 0.883 1.08 1.345 

 0.375 0.882 1.009 1.237 1.504 

0.2 0.5 0.99 1.122 1.384 1.657 

 0.625 1.072 1.222 1.501 1.759 

 0.75 1.128 1.297 1.581 1.824 

 0.875 1.161 1.344 1.627 1.846 

 1 1.173 1.359 1.642 1.851 

      

 0 0.767 0.896 1.08 1.318 

 0.125 0.781 0.902 1.075 1.285 

 0.25 0.842 0.946 1.113 1.297 

 0.375 0.923 1.01 1.179 1.327 

0.4 0.5 0.998 1.075 1.247 1.374 

 0.625 1.058 1.136 1.302 1.408 

 0.75 1.103 1.184 1.341 1.437 

 0.875 1.129 1.214 1.363 1.446 

 1 1.138 1.225 1.37 1.447 

      

 14



 0 0.916 1.015 1.172 1.353 

 0.125 0.919 1.004 1.149 1.304 

 0.25 0.942 1.009 1.142 1.265 

 0.375 0.982 1.033 1.16 1.24 

0.6 0.5 1.024 1.062 1.182 1.243 

 0.625 1.059 1.093 1.202 1.245 

 0.75 1.087 1.121 1.218 1.26 

 0.875 1.104 1.139 1.227 1.264 

 1 1.11 1.145 1.23 1.264 

      

 0 1.174 1.229 1.355 1.464 

 0.125 1.145 1.206 1.321 1.41 

 0.25 1.105 1.157 1.256 1.314 

 0.375 1.082 1.126 1.214 1.234 

1 0.5 1.067 1.104 1.181 1.193 

 0.625 1.058 1.088 1.153 1.15 

 0.75 1.053 1.075 1.129 1.134 

 0.875 1.05 1.066 1.113 1.118 

 1 1.049 1.062 1.107 1.112 

      

 0 0.821 0.848 0.866 0.876 

 0.125 0.794 0.818 0.833 0.839 

 0.25 0.74 0.759 0.771 0.775 

 0.375 0.692 0.708 0.716 0.717 

2 0.5 0.646 0.659 0.664 0.661 

 0.625 0.599 0.609 0.61 0.607 

 0.75 0.552 0.56 0.56 0.554 

 0.875 0.512 0.519 0.519 0.513 

 15



 1 0.495 0.501 0.501 0.496 

 

Based on Table 1, the empirical equations for geometry factors based on the finite 

element results were developed by Newman and Raju [7] as follows: 

wS fgf
t
aM

t
aMMF φ])()([ 4

3
2

21 ++=                                   (14) 

2/1)]
2

[sec(
t
a

b
cfw
π

=                                                              (15) 

1 a/cFor  ≥  

)04.01(1 a
c

a
cM +=                                                             (16) 

4
2 )(2.0

a
cM =                                                                     (17)      

4
3 )(11.0  

a
cM −=                                                                 (18) 

 22 )sin-](1))((0.35[0.11g φ
t
a

a
c

++=                                  (19) 

4/1222 ]sincos)[( φφφ +=
c
af                                             (20) 

1 a/cFor  ≥  

)(09.013.1 1 c
aM −=                                                        (21) 

)(2.0

89.054.02

c
aM

+
+−=                                                    (22) 

 24
3 )1(14

)(65.0

15.0
c
a

c
aM −+

+
−=                                   (23) 

22 )sin-](1)(0.35[0.11g φ
t
a

++=                                    (24) 

4/1222 ]cossin)[( φφφ +=
a
cf                                            (25)      
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From the above, it is obvious that the empirical equations developed by Newman 

and Raju are complicated and require much computational effort. It is also very time-

consuming to get all the 180 training points by finite element analysis. 

First, 27 points (a/c is 0.2, 0.6, 2.0, a/t is 0.2, 0.4, 0.8, and φ  is 0, 0.5, 1) are 

picked as the training points. The GP model constructed with these 27 points is used to 

predict the SIF values at the other 80 points (a/c is 0.2, 0.4, 0.6, 1.0, 2.0, a/t is 0.2, 0.4, 

0.6, 0.8, and φ  is 0.125, 0.375, 0.625, and 0.875). The prediction values from the 

Newman - Raju empirical equations are also shown for comparison.  Figure 4 shows the 

results in Table 1 and the prediction values from GP modeling and the empirical 

equations. 

 

Figure 4   Comparison for semi-elliptical crack with 27 training points  

The average error of GP modeling is: 
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Error  

The maximum error is 23.85%. The minimum error is 0.02%. The errors at 13 

points are greater than 10%, out of 80 validation points. 

The average error of the empirical equations is: 

%61.2
80
1

=
−

= ∑
FEA

EqFEA

F
FF

Error  

Next, 36 points (a/c is 0.2, 0.6, 1.0, 2.0, a/t is 0.2, 0.4, 0.8, and φ  is 0, 0.5, 1) are 

used as training points. The same 80 points are used for the prediction. Figure 5 shows 

the results in Table 1 and the prediction values from GP modeling. 

 

Figure 5    Comparison for semi-elliptical cracks with 36 training points 

The average error of GP modeling is: 
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%64.1
80
1

=
−

= ∑
FEA

GPFEA

F
FF

Error  

The maximum error is 8.34%. The minimum error is 0.02%. The errors at all 

points are less than 10%, out of 80 validation points. 

Finally, 60 points (a/c is 0.2, 0.4, 0.6, 1.0, 2.0, a/t is 0.2, 0.4, 0.6, 0.8, and φ  is 0, 

0.5, 1) are used as training points. Figure 6 shows the results in Table 1 and the prediction 

values from GP modeling. 

 

Figure 6   Comparison for semi-elliptical cracks with 60 training points 

The average error of GP modeling is: 

%17.1
80
1

=
−

= ∑
FEA

GPFEA

F
FF

Error  

The maximum error is 6.63%. The minimum error is 0%. The errors at all points 

are less than 10%, out of 80 validation points. 
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Figure 7 shows the average GP model error with the various numbers of training 

points. When the number of training points is 75, the average error is 0.4%. With the 

increasing number of training points, the error in the GP model decreases. 
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Figure 7  Average GP model error with various numbers of training points 

 

3.2.3 Embedded Elliptical Crack 

Values of the geometry factor, , obtained from the finite element results for the 

embedded elliptical crack in a finite plate subjected to tension are given in Table 2.   

SF

Table 2 Geometry factors  for embedded elliptical crack (F 3.0;1/;2.0/ ==≤ vbhbc ) 

 a/t 

a/c 2Φ/π 0.2 0.5 0.8 

 0 0.45 0.473 0.514 

 0.125 0.531 0.556 0.605 

 0.25 0.643 0.678 0.745 

 0.375 0.75 0.794 0.884 

0.2 0.5 0.838 0.893 1.015 

 0.625 0.905 0.978 1.176 

 20



 0.75 0.951 1.042 1.329 

 0.875 0.978 1.083 1.438 

 1 0.987 1.097 1.48 

     

 0 0.632 0.66 0.721 

 0.125 0.656 0.685 0.749 

 0.25 0.715 0.748 0.821 

 0.375 0.789 0.826 0.905 

0.4 0.5 0.857 0.9 0.995 

 0.625 0.914 0.964 1.105 

 0.75 0.954 1.014 1.211 

 0.875 0.978 1.046 1.285 

 1 0.987 1.056 1.312 

     

 0 0.986 1.009 1.06 

 0.125 0.986 1.009 1.058 

 0.25 0.986 1.008 1.05 

 0.375 0.986 1.006 1.035 

1 0.5 0.986 1.006 1.036 

 0.625 0.986 1.008 1.059 

 0.75 0.986 1.01 1.093 

 0.875 0.986 1.012 1.114 

 1 0.986 1.013 1.121 

     

 0 0.709 0.713 0.72 

 0.125 0.703 0.707 0.714 

 0.25 0.686 0.69 0.697 

 0.375 0.658 0.662 0.669 
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2 0.5 0.622 0.625 0.633 

 0.625 0.579 0.582 0.592 

 0.75 0.536 0.539 0.552 

 0.875 0.503 0.506 0.522 

 1 0.49 0.494 0.511 

 

Based on Table 2, the empirical equations for embedded elliptical crack as 

follows: 
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The functions , ,2M 3M g and  are given by Eq 29, 30, 31, and 27, respectively. wf

As a/c approaches zero and φ  equals 2/π , the stress intensity factor equation 

reduces to  

])(261.1)(455.01[ 42

t
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t
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Q
aSK I ++= π                               (35) 

As a/c approaches zero infinity and φ  equals zero, the equations reduce to  
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2

[sec(
t
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b
c

Q
aSK I

ππ=                                             (36) 

First, 27 points (a/c is 0.2, 0.4, 2.0, a/t is 0.2, 0.5, 0.8, and φ  is 0, 0.5, 1) in Table 

1 are picked as the training points to built the GP model. This GP model predicts the SIF 

values at the other 48 points (a/c is 0.2, 0.4, 1.0, 2.0, a/t is 0.2, 0.5, 0.8, and φ  is 0.125, 

0.375, 0.625, and 0.875) in Table 2 and the prediction values are compared with that of 

the empirical equations.  Figure 8 shows the finite element results listed in Table 2 and 

the prediction values from GP modeling and the empirical equations. 
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Figure 8   Comparison for embedded elliptical cracks with 27 training points  

The average error of GP modeling is: 

%72.5
48
1

=
−

= ∑
FEA

GPFEA

K
KK

Error  

The maximum error is 27.96%. The minimum error is 0.06%. The errors at 12 

points are greater than 10%, out of 48 validation points. 

The average error of the empirical equations is: 

%54.2
48
1

=
−

= ∑
FEA

EqFEA

K
KK

Error  

Then, 36 points (a/c is 0.2, 0.4, 1.0, 2.0, a/t is 0.2, 0.5, 0.8, and φ  is 0, 0.5, 1) in 

Table 2 are used as training points. The same 48 points are used for the prediction. Figure 

9 shows the finite element results listed in Table 2 and the prediction values from GP 

modeling and the empirical equations. 
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Figure 9    Comparison for embedded elliptical cracks with 36 training points 

The average error of GP modeling is: 

%02.1
48
1

=
−

= ∑
FEA

GPFEA

K
KK

Error  

The maximum error is 3.51%. The minimum error is 0%.  

 

3.2.4 Quarter-Elliptical Corner Crack 

Values of the geometry factor, , obtained from the finite element results for the 

quarter-elliptic at corner crack in a finite plate subjected to tension are given in Table 3.   

SF

Table 3 Geometry factors  for corner crack (F 3.0;1/;2.0/ ==≤ vbhbc ) 

 a/t 

a/c 2Φ/π 0.2 0.5 0.8 
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 0 0.555 0.761 1.288 

 0.125 0.633 0.84 1.34 

 0.25 0.753 0.988 1.522 

 0.375 0.871 1.141 1.705 

0.2 0.5 0.973 1.277 1.85 

 0.625 1.055 1.397 2.008 

 0.75 1.115 1.495 2.118 

 0.875 1.159 1.58 2.263 

 1 1.156 1.61 2.45 

     

 0 0.791 0.99 1.397 

 0.125 0.774 0.952 1.297 

 0.25 0.824 0.997 1.31 

 0.375 0.893 1.067 1.346 

0.4 0.5 0.964 1.14 1.384 

 0.625 1.026 1.21 1.458 

 0.75 1.075 1.273 1.528 

 0.875 1.117 1.334 1.627 

 1 1.132 1.365 1.788 

     

 0 1.162 1.275 1.487 

 0.125 1.111 1.207 1.378 

 0.25 1.079 1.16 1.29 

 0.375 1.064 1.134 1.219 

1 0.5 1.059 1.121 1.18 

 0.625 1.063 1.123 1.191 

 0.75 1.078 1.14 1.231 

 0.875 1.109 1.176 1.301 
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 1 1.159 1.233 1.416 

     

 0 0.8 0.826 0.862 

 0.125 0.787 0.811 0.837 

 0.25 0.756 0.776 0.793 

 0.375 0.722 0.738 0.75 

2 0.5 0.683 0.697 0.704 

 0.625 0.64 0.653 0.66 

 0.75 0.6 0.612 0.624 

 0.875 0.579 0.59 0.611 

 1 0.586 0.597 0.625 

 

The empirical equations for quarter-elliptical crack are obtained by fitting to the 

finite elements results presented in Table 3. The equations are: 
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and  is given by Eq 34. φf

First, 27 points (a/c is 0.2, 0.4, 2.0, a/t is 0.2, 0.5, 0.8, and φ  is 0, 0.5, 1) in Table 

3 are picked as the training points to built the GP model. This GP model is used to predict 

the SIF values at the other 48 points (a/c is 0.2, 0.4, 1.0, 2.0, a/t is 0.2, 0.5, 0.8, and φ  is 

0.125, 0.375, 0.625, and 0.875) in Table 3 and the prediction values are compared with 

that of the empirical equations.  Figure 10 shows the finite element results listed in Table 

3 and the prediction values from GP modeling and the empirical equations. 
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Figure 10    Comparison for quarter-elliptical corner cracks with 27 training 

points 

The average error of GP modeling is: 
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The maximum error is 12.8%. The minimum error is 0.05%. The errors at 4 points 

are greater than 10%, out of 48 validation points. 

The average error of the empirical equations is: 

%30.1
48
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EqFEA

K
KK

Error  

Next, 36 points (a/c is 0.2, 0.4, 1.0, 2.0, a/t is 0.2, 0.5, 0.8, and φ  is 0, 0.5, 1) in 

Table 3 are used as training points. The same 48 points are used for the prediction. Figure 
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11 shows the finite element results listed in Table 3 and the prediction values from GP 

modeling and the empirical equations. 

 
Figure 11    Comparison for quarter-elliptical corner cracks with 36 training 

points 

The average error of GP modeling is: 

%57.1
48
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Error  

The maximum error is 5.98%. The minimum error is 0%. 

 

3.2.5 Semi-Elliptical Surface Crack at Hole  

Tables 4 gives the geometry factor values for bi-symmetric semi-elliptical surface 

cracks emanating from a circular hole in a finite plate for R/t equals 1. 
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Table 4 Geometry factors  for surface crack at center of hole in a plate F

]1/;3.0;6.1/;2.0/)[( ==>≤+ tRvbhbcR  

 a/t 

a/c 2Φ/π 0.2 0.5 0.8 

 0 0.641 0.607 0.593 

 0.125 0.692 0.662 0.643 

 0.25 0.836 0.775 0.771 

 0.375 1.011 0.905 0.919 

 0.5 1.196 1.032 1.094 

0.2 0.625 1.405 1.178 1.293 

 0.75 1.651 1.362 1.528 

 0.833 1.905 1.583 1.765 

 0.917 2.179 1.885 2.05 

 0.958 2.288 2.121 2.336 

 1 1.834 1.958 2.329 

     

 0 1.03 0.872 0.84 

 0.125 1.076 0.912 0.872 

 0.25 1.202 1.007 0.959 

 0.375 1.376 1.131 1.074 

 0.5 1.578 1.275 1.234 

0.4 0.625 1.804 1.452 1.426 

 0.75 2.04 1.667 1.668 

 0.833 2.238 1.897 1.914 

 0.917 2.396 2.141 2.201 

 0.958 2.376 2.255 2.411 

 1 1.844 1.923 2.224 
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 0 2.267 1.806 1.615 

 0.125 2.276 1.818 1.619 

 0.25 2.301 1.851 1.63 

 0.375 2.343 1.905 1.646 

 0.5 2.404 1.98 1.73 

1 0.625 2.481 2.079 1.852 

 0.75 2.566 2.206 2.049 

 0.833 2.62 2.321 2.25 

 0.917 2.622 2.415 2.452 

 0.958 2.468 2.37 2.512 

 1 1.95 1.957 2.203 

     

 0 1.944 1.606 1.394 

 0.125 1.931 1.6 1.389 

 0.25 1.897 1.582 1.377 

 0.375 1.84 1.553 1.357 

 0.5 1.763 1.514 1.333 

2 0.625 1.669 1.468 1.313 

 0.75 1.58 1.434 1.31 

 0.833 1.498 1.404 1.313 

 0.917 1.426 1.387 1.332 

 0.958 1.313 1.321 1.294 

 1 1.042 1.082 1.077 

 

The empirical stress intensity factor equations for bi-symmetric semielliptical 

surface cracks at the center of a hole are: 
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where n = 1 is for a single crack, n = 2 is for bi-symmetric cracks, and the hole is located 

in the center of the plate.  
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The functions , , , , and 2M 3M 1g 2g 3g λ  are given by Eqs 51 through 55 and the 

functions  is given by Eq 34. φf

First, 45 points (a/c is 0.2, 0.4, 2.0, a/t is 0.2, 0.5, 0.8, and φ  is 0, 0.25, 0.5, 0.75, 

1) in Table 4 are picked as the training points to built the GP model. This GP model is 

used to predict the SIF values at the other 48 points (a/c is 0.2, 0.4, 1.0, 2.0, a/t is 0.2, 0.5, 

0.8, and φ  is 0.125, 0.375, 0.625, and 0.875) in Table 4 and the prediction values are 

compared with that of the empirical equations.  Figure 12 shows the finite element results 

listed in Table 4 and the prediction values from GP modeling and the empirical 

equations. 

 

Figure 12    Comparison for semi-elliptical surface cracks at hole with 45 training 

points 

The average error of GP modeling is: 
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The maximum error is 33.29%. The minimum error is 0.04%. The errors at 11 

points are greater than 10%, out of 48 validation points. 

The average error of the empirical equations is: 

4.64%
48
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EqFEA

K
KK

Error    

Then, 60 points (a/c is 0.2, 0.4, 1.0, 2.0, a/t is 0.2, 0.5, 0.8, and φ  is 0, 0.25, 0.5, 

0.75, 1) in Table 4 are used as training points. The same 48 points are used for the 

prediction. Figure 13 shows the finite element results listed in Table 4 and the prediction 

values from GP modeling and the empirical equations. 
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Figure 13    Comparison for semi-elliptical surface cracks at hole with 60 training 

points 

The average error of GP modeling is: 

%41.2
48
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Error  

The maximum error is 7.95%. The minimum error is 0.002%.  

Table 5 lists the errors for all the cases with different numbers of training points.  

Table 5 The average error of various cracks with different numbers of training points 

GP Empirical equations 
Type # of training 

points Error (%) 
# of training 

points Error (%) 
27 4.36 
36 1.64 

Semi-elliptical surface 
crack 

60 1.17 
180 2.61 

27 5.72 Embedded elliptical 
crack 36 1.02 

108 2.38 

27 3.16 Quarter-elliptical corner 
crack 36 1.57 

108 1.3 

45 7.57 Semi-elliptical surface 
crack at hole 60 2.41 

132 4.64 

 

 

3.2.6 Life prediction of Semi-Elliptical Surface Crack 

GP modeling is applied to life prediction in this section.  The initial crack 

depth , the final crack depth , the initial crack length , the final crack length , the 

width of the plate b and the thickness t are the configuration parameters. The external 

loading is σ and c and m are two fatigue parameters used in crack propagation. Table 6 

presents the values of the parameters. 

0a fa 0c fc
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Table 6 Values of all the parameters 

Parameters Value Parameters Value 

0a  0.2 mm 0c  0.2 mm 

fa  0.8  mm fc  4 mm 

t 1 mm b 8 mm 

H 8 mm σ  25 Mpa 

c 3.667 m 3.11e-10 

 

Paris law is used to calculate the crack growth rate, which is expressed as: 

aaa NN Δ+=+1                                                    (58) 

m
N Fakc

dn
daa )),((Δ==Δ                                         (59) 

Figure 14 shows the results of life prediction using GP modeling and the Newman 

– Raju empirical equations.  
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Figure 14    Life prediction using GP modeling and Newman’s equations 

The number of life cycles to reach the final crack length  using Newman’s 

empirical equations is: 

fc

38032=EqN  

The number of life cycles to reach the final crack length  with using the GP 

model is: 

fc

40506=GPN  

The example demonstrates the use of the GP model in fatigue life prediction 

expressed as the number of life cycles. The result shows that the difference in the number 

of life cycles estimated through the empirical equations and the GP model is about 6%.  

The purpose of the example used here is to develop a proof of concept in relation to life 
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prediction using the GP model. An extension to the present study can include more 

realistic examples.   

   

3.3 Conclusion 

From Table 5, it is found that GP modeling can reach the same level of accuracy 

as the Newman-Raju empirical model with much less training points, thus saving 

considerable computational effort. GP modeling successfully captures the highly complex 

relationship between input and output variables with a small number of training points.  

The life prediction using the GP model is also close to the result using the Newman-Raju 

empirical equations. The application of Gaussian process modeling to the examples of 

three dimensional cracks in this chapter demonstrates the accuracy and efficiency of the 

method. Furthermore, given the difficulty of selecting a proper form in traditional 

response surface methods, GP modeling is easily applicable to any problem without 

assuming any explicit form.  
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CHAPTER IV 

 

APPLICATION TO RAILROAD WHEEL FATIGUE CRACK GROWTH 

 

4.1 Introduction 

The fatigue problem of railroad wheels, referred to as rolling contact fatigue [16], 

is caused by repeated contact stress during the rolling motion. An overview of the rolling 

contact fatigue problem is given in [17]. Elliptical cracks of various sizes are considered 

below the tread surface. Since the problem is mixed-mode, the range of equivalent stress 

intensity factor, ΔKeq, at the crack tip is calculated using the uni-modal stress intensity 

factor values obtained from a mixed-mode crack growth model based on critical plane 

concepts [18].  The ΔKeq at the crack tip depends on several parameters such as, the 

detected crack size, crack location, symmetric/unsymmetric crack growth, rail-wheel 

contact location, wheel diameter, and the applied load.  

Obviously, to investigate all the effects of the above mentioned parameters 

through finite element analysis is very time consuming. A response surface method is 

necessary to reduce the computational effort. In this chapter, Gaussian process modeling 

is applied to this problem because of its efficiency and accuracy.  The crack size and 

applied load are the two parameters to be considered. Finite element analysis is used to 

generate the data set for both training and testing points. The comparison of Gaussian 

process modeling and other response surface methods such as polynomial expansion is 

also done. 
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4.2 Wheel Model 

4.2.1 Finite element model  

A three-dimensional finite element model is used in this paper. This finite element 

model considers both material and geometric nonlinearities and predicts the stress 

response in the contact region. A sub-model is cut from the full model focusing on the 

contact region and built using the same type of elements that are used for the full model. 

Figure 1 shows both the full model and sub-model.  

 

 

 

 

 

 

 

 

 

 

 

Rail 
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Cutting Edge 

Contact Element Z 1
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(d)  

Fig.15 Finite element model of railroad wheel: (a) Full model, (b) Sub-model, (c) crack, (d) crack 

4.2.2 Mixed mode crack growth model 

Liu and Mahadevan [18] developed critical plane-based mixed-mode fatigue 

crack growth rate. The general crack propagation equation is expressed as 

2 2 2 232
1

1 ( ) ( ) ( ) ( )
H

eq
kk kK k A

B s s s
ΔΔ Δ

Δ = Δ + + +                       (60) 
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and )( eqkf
dn
da

Δ=  

where eqKΔ  is the equivalent stress intensity factor range under mixed-mode loading. 

 is the crack growth curve (()f
dN
da  vs. kΔ ) obtained under mode I loading. , 1kΔ 2kΔ , 

 and  are the loading parameters with the same unit as the stress intensity factor. 

 is the half length of the crack. The subscripts 1, 2, 3 indicate the directions of the stress 

amplitude as shown in Fig. 16. The superscript H indicates the hydrostatic stress related 

term. s is the ratio of Mode II and Mode I stress intensity factors under a specific crack 

growth rate (da/dN). A and B are material parameters and are listed in Table. 7.  

3kΔ HkΔ

a

 

 Figure 16 Schematic illustration of stress components on the critical plane 

The critical plane is defined as the material plane which has an angle of γ  away 

from the maximum normal stress amplitude plane. α  is the critical plane orientation. It 

can be expressed as 

γβα +=                                                             (61) 
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where β  is the maximum normal stress amplitude plane orientation at the far field. γ  is 

defined in Table 7. For general non-proportional loading, the axial loading and the 

torsional loading may not reach their maxima simultaneously. Numerical search is 

required to find the value of β , , ,  and  [18]. Eqs. (60) and (61) together with 

the material parameters defined in Table 7 are used for fatigue crack growth rate 

prediction under general mixed-mode loading 

1k 2k 3k Hk

Table 7 Material parameters for fatigue crack propagation prediction 

Material 

Property 
1

K
K

s
dN/da,I

dN/da,II <=
 

1
K
K

s
dN/da,I

dN/da,II ≥=
 

γ  )s4s/15(2
)s4s/15)(3s/1(442

)2cos( 22

222

−−
−−−−+−

=γ
 

0=γ  

A  0A =  )1s(9A 2 −=  

B  2
1

222 )]2(sins)2([cosB γγ +=  
sB =  

 

As shown in Liu and Mahadevan [18], the ratio of mode II and mode I fatigue 

crack threshold stress intensity factors 
th,I

th,II

K
K

s =  relates to different material failure 

mechanisms. A larger value of s (s > 1) indicates tensile dominated failure and a smaller 

value of s (
3

1s = ) indicates shear dominated failure. If the value of s is known, the 

proposed model can automatically adapt for different failure mechanisms. 
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The stress intensity factors obtained from finite element analysis and the mixed-

mode crack propagation model are combined together to calculate the equivalent stress 

intensity factor at the crack tip as in Eq. (60).  

 

4.2.3 Finite element results 

As mentioned above, the crack size and applied load are the two parameters to be 

considered here. In this study, both of the two parameters are divided into 5 segments. 

The crack size is 0.3, 0.6, 1, 2, 3 mm, respectively. The applied load is 58.48, 102.34, 

146.2, 175.44, 219.3 KN (the applied load is equal to load factor multiplying146.2KN 

and the load factor is 0.4, 0.7, 1, 1.2, 1.5 respectively). So there are totally 25 points in 

the data set. 9 of 25 points are used as training points to construct GP modeling and other 

response surfaces and the other 16 points are used as testing points.  Table 8 and Table 9 

list the training points and testing points respectively.  

Table 8 Training points for the problem of railroad wheel 

Load factor crack size (mm) SIF (Mpa m ) 

0.4 0.3 0.544769 

0.4 1 0.700043 

0.4 3 1.768284 

1 0.3 1.822575 

1 1 2.609908 

1 3 5.865713 

1.5 0.3 2.700879 

1.5 1 3.894887 

 44



1.5 3 9.047153 

 

Table 9 Testing points for the problem of railroad wheel 

Load factor crack size (mm) SIF (Mpa m ) 

0.4 0.6 0.694926 

0.4 2 1.143716 

0.7 0.3 1.154115 

0.7 0.6 1.455873 

0.7 1 1.699882 

0.7 2 2.813124 

0.7 3 4.142482 

1 0.6 2.275431 

1 2 4.115527 

1.2 0.3 2.159722 

1.2 0.6 2.775047 

1.2 1 3.29081 

1.2 2 4.973068 

1.2 3 6.956697 

1.5 0.6 2.867027 

1.5 2 6.08698 

  

4.2.4 Comparison of response surface methodologies  

Three types of response surfaces are compared here, which are as follows: 
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1) GP modeling 

2) Polynomial expansion 

                                                (62)                              2
43

2
210 FFaay ∗+∗+∗+∗+= βββββ

where a is crack size and F is the load factor. 40 ~ ββ  are the coefficients obtained from 

least square estimation.  

3) Nonlinear regression 

                                        aFy **10 ββ +=                                             (63) 

where a is crack size and F is the load factor. 0β and 1β are the coefficients obtained from 

least square estimation. The reason for using this regression model is that in linear 

fracture mechanics, SIF can be expressed as: 

SI FaK πσ=                                                   (64) 

where a is the crack depth, σ  is the external loading and  is the geometry factor. SF

aσ is modeled by the variable aF in the regression.  

All the response surfaces are constructed using the same 9 training points. The 

prediction values from the three response surfaces are compared with true values 

obtained from finite element analysis in Table 9 to check the accuracy. The results are 

listed in Table 10.  

Table 10 Comparison of various response surfaces 

RSM  # of training points Average error*(%) R square 

GP modeling 9 5.4 1 

Polynomial Expansion 9 12.73 0.877 
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Nonlinear Regression 9 23.88 0.9735 

                            *Error = ∑
−

FEA

predictionFEA

K
KK

n
1

 and n is the number of testing points. 

The results show that although the R square values of the other response surfaces 

are high, the errors are still much larger than GP modeling. Both are greater than 10% 

while the error of GP modeling is about 5%.  So the polynomial expansion and nonlinear 

regression fail to capture the relationship between the input and output variables. 

 

4.3 Conclusion  

From Table 10, it is found that GP modeling is more accurate than other models 

with the same number of training points. Although the R square values are very high, the 

prediction values from other models are still not satisfactory. It is possible that if the 

relationship between inputs and outputs was complicated by considering more variables, 

the prediction values would be much less accurate. The reason for this problem may be 

the form of response surface methods. With the increasing complexity of problems, more 

proper forms have to be selected if traditional methods are used here. As a non-

parametric method, the GP model can overcome the problem of selecting the form of the 

surrogate model.  
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CHAPTER V 

 

APPLICATION TO FATIGUE CRACK GROWTH DATA 

 

5.1 Introduction 

As pointed out by Virkler [19], metal fatigue is a stochastic phenomenon. The 

scatter in fatigue data is due to the inhomogeneity of the material instead of the 

experiment inaccuracies. Generally, the material is assumed to be homogeneous at the 

macroscopic level. However, it is not homogeneous at the microscopic level. As shown in 

Figure 17, the crack growth rate varies with the stress intensity factor KΔ and the 

statistical variability also changes with KΔ . In order to statistically characterize the 

random crack growth rate, it is helpful to calculate the distribution of the crack growth 

rate from experimental data.  

 

Figure 17 Distribution of da/dn 
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Since GP modeling can give not only the estimated values (mean value) but also 

the uncertainty (variance) at the untested points, we shall apply it to fit the experimental 

data and capture the random behavior in fatigue data. 

 

5.2 Greedy point selection  

 Since GP modeling can provide not only the estimate value (mean value) but also 

the uncertainty (variance) at any prediction location. The location where the uncertainty 

is large implies that there is a lack of training points in that region. So the estimate value 

there may be less accurate.  

The basic idea of greedy point selection is to build the GP model with a few 

training points (2 or 3), calculate the predictions at other locations and then improve the 

model by adding a training point where the variance is highest. The procedure repeats 

until the target level of variance is reached. This assures that each new training point is 

the most necessary one in the model.  

 

5.3 Model validation 

The method is validated by fatigue experimental data of 2024 T3 aluminum alloy 

and 7075 t651 aluminum alloy. In the first numerical example, GP modeling is applied to 

data of 2024 T3 aluminum alloy. There are three R ratios in the fatigue data. The R ratios 

are 0, 0.5, and 0.7 respectively. Figure 18 shows the data of fatigue crack growth rate 

versus stress intensity factor. 
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Figure 18 Fatigue data of 2024 T3 aluminum alloy 

First, GP modeling is applied to the case of R = 0. In this case, GP modeling is 

used to capture the relationship between stress intensity factor and crack growth rate 

(da/dn). The relationship between two random variables can be expressed as follows: 

)( Kf
dn
da

Δ=                                                         (65) 

44 points are selected as training points to build GP modeling. Figure 19 shows 

all the training points and Figure 20 shows the model prediction. The average error 

between the prediction values and experimental data is 2.83%. The maximum error is 

12.8%. The minimum error is 0.5%. The errors at 18 points are greater than 10%, out of 

247 (= 291- 44) validation points. 
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Figure 19 Training points for the fatigue data with R = 0 

 

 

Figure 20 Comparison between fatigue data and model prediction (R = 0) 
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Second, GP modeling is applied to the entire data set including the three R ratios. 

In this case, GP modeling is used to capture the relationship between stress intensity 

factor, R ratio and crack growth rate (da/dn). The relationship can be expressed as 

follows: 

),( RKf
dn
da

Δ=                                                         (66) 

37 points are selected as training points to build GP modeling. Figure 214 shows 

all the training points and Figure 22 shows the model prediction. The average error 

between the prediction values and experimental data is 3.19%. The maximum error is 

19.35%. The minimum error is 0.3%. The errors at 14 points are greater than 10%, out of 

492 (= 529 – 37) validation points. 

 

 

Figure 21 Training points for the whole fatigue data including three R ratios  
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Figure 22 Comparison between fatigue data and model prediction (R = 0, 0.5, 0.7) 

 

In the second example, GP modeling is applied to data of 7075 t651 aluminum 

alloy. The R ratios are 0.01, 0.1, 0.33, and 0.75 respectively. Figure 23 shows the data of 

fatigue crack growth rate versus stress intensity factor. 
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Figure 23 Fatigue data of 7075 T651 aluminum alloy 

First, GP modeling is applied to the case of R = 0.02. 7 points are selected as 

training points to build GP modeling. Figure 24 shows all the training points and Figure 

25 shows the model prediction. The average error between the prediction values and 

experimental data is 3.56%. The maximum error is 23.5%. The minimum error is 0.3%. 

The errors at 9 points are greater than 10%, out of 106 (= 113 – 7) validation points. 
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Figure 24 Training points for the fatigue data with R = 0.02 

 

Figure 25 Comparison between fatigue data and model prediction (R = 0.02) 

 55



Then, GP modeling is applied to the whole data set including the four R ratios. 16 

points are selected as training points to build GP modeling. Figure 26 shows all the 

training points and Figure 27 shows the model prediction. The average error between the 

prediction values and experimental data is 2.27%. The maximum error is 27.36%. The 

minimum error is 0.4%. The errors at 7 points are greater than 10%, out of 295 (= 311 – 

16) validation points. 

 

Figure 26 Training points for the whole fatigue data including four R ratios  
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Figure 27 Comparison between fatigue data and model prediction (R = 0.02, 0.1, 

0.33, and 0.75) 

 

5.4 Conclusion 

This chapter presents the use of Gaussian process modeling of stochastic fatigue 

crack growth data. Stress intensity factor and other factors are modeled as input variables 

and fatigue crack growth rate is modeled as the output variable. The results show that the 

model can capture the scatter phenomenon of fatigue data well with a few training points. 

With the greedy point selection method, training points are selected where most 

uncertainty is observed. In general, the number of training points ranges from 10 to about 

40, and the average error is typically about 3% or less. This implies that combining GP 

modeling and greedy point selection with fatigue testing will significantly reduce the cost 

of fatigue testing. 
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CHAPTER VI  

 

CONCLUSION AND FUTURE WORK 

 

6.1 Summary of contribution 

Finite element analysis is used to calculate the values of stress intensity factors in 

linear fracture mechanics analysis of realistic structures. Since it is very time consuming, 

a response surface is needed to approximate the relationship between input and output 

variables and to save the computational effort. This study proposed a Gaussian process 

response surface approach to address the problem with more accuracy and efficiency. 

Gaussian process modeling is powerful in capturing the complex relationship between 

input and output variables. In the present study, stress intensity factor is modeled as 

output variable and other factors including geometry, loading, and material properties are 

modeled as input variables, and the finite element computation of stress intensity factor is 

replaced by a Gaussian process surrogate model. 

The scatter phenomenon in fatigue data is also modeled with this approach. Since 

Gaussian process modeling gives not only the estimated values but also the uncertainty at 

untested points, a greedy point selection method is used to select training points where 

most uncertainty is observed. The results imply that combining GP modeling and greedy 

point selection can significantly reduce the fatigue testing cost in characterizing the 

statistical nature of fatigue crack growth data. 
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6.2 Future work 

 The advantages of GP modeling, which are to save computational effort and 

fatigue test effort, have been demonstrated so far. Next, this method needs to be applied 

to realistic problems. In realistic problems, various aspects including variable amplitude 

loading, complicated geometry, and different types of crack need to be taken into 

consideration. Given many factors to be considered, GP modeling approach has the 

potential to provide a good surrogate model to capture the input – output relationships. In 

building the GP model, design of experiment needs to be implemented carefully and 

accurate finite element models are also necessary. 

 59



REFERENCES 

 

1. W. K. Liu and T. Belytschko, Computational Mechanics of Probabilistic and     
Reliability Analysis. Elme Press International (1989). 

2. W. K. Liu, G. H. Besterfield and T. Belytschko, Variational approach to 
probabilistic finite elements.  J. Engng Mech. ASCE 114, 2115-2133 (1988). 

3. H. H. Harkness, T. Belytschko and W. K. Liu, Finite-element reliability-analysis 
of fatigue life. Nuclear Engng Design 113, 314-320 (1992). 

4.        A. Der Kiureghian and B.-J. Ke, The stochastic finite element method in structural 
           reliability. Probabilistic Engng Mech. 3, 83-91 (1988). 
 
5.         L. Faravelli, Response surface approach for reliability analysis. J. Engng Mech.    
           ASME 115, 2763-2781 (1989). 
 
6. L. Faravelli, A response surface approach for reliability analysis. RILEM Symp.     

Stoch. Meth. Mater. Struct. Engng (1986). 
 
7.      Newman, J. C. and Raju, I. S., “Stress-Intensity Factor Equations for Cracks in  

Three-Dimensional Finite Bodies,” Fracture Mechanics: Fourteen Symposium- 
Volume I: Theory and Analysis, ASTM STP 791, J. C. Lewis and G. Shines, Eds., 
American Society for Testing and Materials, 1983, pp. I-238-I-265  

 
8.         Newman, J. C. and Raju, I. S., “Analyses of Surface Cracks in Finite Plates Under    

      Tension or Bending Loads,” NASA TP-1578, National Aeronautics and Space  
      Administration, Washington, D.C., Dec. 1979. 

 
9. Ditlevsen, O., Olsen, R., 1986. Statistical analysis of the virkler data on fatigue   

      crack growth. Engineering Fracture Mechanics 25 (2), 177-195.  
 
10. Lin YK, Yang JN. On statistical moments of fatigue crack propagation. Engng    

      Fract Mech 1985; 18: 243–56. 
 
11. Yang JN, Manning SD. Stochastic crack growth analysis methodologies for 

metallic structures. Engng Fract Mech 1990; 37: 1105–24. 
 

12. Ishikawa, H., Tsurui, A., Tanaka, A.H., Ishikawa, H., 1993. Reliability 
assessment based upon probabilistic fracture mechanics.  

 

 60



13. Tsurui, A., Tanaka, A.H., 1987. Reliability degradation of structural components 
in the process of fatigue crack propagation under stationary random loading. 
Engng Fract Mech Vol. 27, No. 5, pp. 501-516, 1987 

 
14. C. Rasmussen. Evaluation of Gaussian processes and other methods for non-

linear regression. PhD thesis, University of Toronto, 1996. 
 
15. J. Martin and T. Simpson. Use of kriging models to approximate deterministic 

computer models. AIAA Journal, 43(4):853–863, 2005. 
 
16. Johnson, K, L., The strength of surfaces in rolling contact. Proceedings of the 

Institute of Mechanical Engineering, IMechE, pp. 203:151-63, 1989.  
 
17. Ekberg, A., Kabo, E., Fatigue of railway wheels and rails under rolling contact 

and thermal loading – an overview. Wear, Vol. 258, Issue 7-8, pp. 1288-300, 
2005.  

 
18. Liu, Y., Mahadevan, S., Threshold intensity factor and crack growth rate 

prediction under mixed-mode loading. Engineering Fracture Mechanics, Vol. 74, 
pp. 332-345, 2007. 

 
19. Virkler, D. A., Hillberry, B. M., Goel, P. K., The statistical nature of fatigue crack 

propagation. Technical Report Affdl-TR-78-43 Final Report - June 1976 to May 
1978 

 
 
 

 61


	封面-1-1.doc
	封面-2.doc
	 
	 
	 
	 

	EFFICIENT RESPONSE SURFACE METHOD FOR FATIGUE LIFE PREDICTION.doc
	 
	INTRODUCTION 
	 
	1.1 Overview 
	1.2 Research Objective and advantages of the proposed methodology  
	1.3 Organization of the thesis  
	 
	GAUSSIAN PROCESS MODELING  
	 

	 
	 
	 
	 
	 
	 
	 
	CONCLUSION AND FUTURE WORK 
	 
	6.1 Summary of contribution 

	REFERENCES 
	 




