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CHAPTER 1

THE CLASSIFICATION OF CLOSED FLAT 4-MANIFOLDS: AN INTRODUCTION

An n-dimensional Fuclidean space-form is the orbit space of the action on R" of a
torsion-free discrete group of Euclidean isometries I'. It is well known that if X =
R"™/T" is an n-dimensional Euclidean space-form, then the fundamental group m (X) =
I An important special case is given by the class of compact Euclidean space-
forms: any n-dimensional compact Euclidean space-form is a closed flat Riemannian
n-manifold, and conversely, any closed flat Riemannian n-manifold is isometric to a

compact Euclidean space-form.

An n-dimensional crystallographic group is a discrete group of Euclidean isometries
" whose orbit space R"/T" is compact. Crystallographic groups in general were first
studied in the 3-dimensional case by physicists and chemists. The 3-dimensional
crystallographic groups were classified independently by Federov in 1885, Schoenflies

in 1891, and Barlow in 1894.

In 1900, David Hilbert proposed a set of famous problems; his eighteenth dealt with
sphere-packings, crystallographic groups, and tilings of n-dimensional space for n >
3. Bieberbach’s Theorems, stated below, provided an answer to part of Hilbert’s
18th problem by showing that there are only finitely many essentially different n-

dimensional crystallographic groups for each n.



Theorem 1.1 (Bieberbach’s Theorems)

(a) If T is an n-dimensional crystallographic group, then the subgroup I'™* of all the
translations in ' is a free abelian normal subgroup of rank n and of finite index

in I'. Moreover, I'* is maximal abelian in I

(b) Two crystallographic groups 'y and Ty are isomorphic if and only if they are

conjugate by an affine transformation.

(c¢) Up to affine equivalence, there are only finitely many n-dimensional crystallo-

graphic groups for each n.

Corollary 1.1 Any two closed flat n-manifolds are homeomorphic if and only if they
are affinely equivalent. Moreover, there are only finitely many parrwise affine inequiv-

alent closed flat n-manifolds for each n.

Remark: In dimensions 1,2,3,4 there are 1,2,10,74 affine equivalence classes of

closed flat manifolds, respectively.

The problem of classifying the 4-dimensional compact Euclidean space-forms was first
studied by Calabi in 1957; Calabi used a recursive approach involving the known 3-
dimensional case. Others who have considered this subject include Charlap and Sah.
The resulting lists were later found to be incomplete and incorrect; in 1970, in his
Berkeley doctoral thesis, Levine [Lev70] published an improved list of computations
and groups. This list was later shown to have a duplication. Other classifications
include those of Brown et al [Bro78| and Hillman [Hil95|; they give complete classifi-

cations of the 4-dimensional crystallographic groups and of the flat 4-manifold groups,



respectively. More historical details can be found in the introduction of Levine’s thesis

and in Schwarzenberger’s book N-Dimensional Crystallography [Sch80)].

The classification of the closed flat 4-manifolds can be found in Levine’s Berkeley
doctoral thesis |Lev70|, Brown et al |Bro78|, and a paper of Hillman |[Hil95|. The
usability and completeness of their lists bear special mention. The tables in Levine’s
thesis seem to be the most useful, because the first homology groups were computed;
however, Levine’s tables contain a duplication. Brown gives a complete classification;
however, this description seems to be of more use to crystallographers than geometers
and algebraists. Moreover, the tables are presented in notation that is very difficult
to decipher. We used Brown’s description mainly to obtain sets of generators for the
groups. However, these generators are described as affine transformations, which are
not ideal from a geometrical viewpoint. One of the tasks to address in that regard is

to present the groups as isometry groups.

The classification in Hillman’s paper is also complete, but emphasizes the algebra
more than the geometry. Beyond a discussion of Betti numbers, geometry is not used.
We used Hillman’s results to reconcile Levine’s classification with other classifications;
through comparisons, we found the duplication in Levine’s thesis. It is worth noting
that the inconsistency only occurrs in the nonorientable case; the classification of the

orientable manifolds appears to be universally agreed upon.

In this paper, we attempt to unify these different classifications of the closed flat 4-
manifold groups. We use the tables of Levine and Brown as a starting point to describe
the isometry groups. We then construct presentations for the groups and cast them
in a form that is as geometrically transparent as possible; then, we realize each group

as either a semidirect product or an amalgamated free product. The nature of these



decompositions gives more insight into the structure of these closed flat 4-manifolds.
In the process, we give a complete description of the fiber-bundle structures of the
manifolds where appropriate. For the nonorientable manifolds, we also determine
their orientable double-covers. Ultimately, we employ the nomenclature of Brown
et al with respect to naming the groups, since Levine’s list was found to contain
75 groups, with one duplicated nonorientable manifold. We also use a comparative
labeling scheme for linking the lists of Levine and Brown wherever possible. Some
of the algebraic ideas and inspirations used came from Hillman’s paper, though his
description was too algebraic in nature and did not explicitly describe the underlying

geometry beyond a discussion of fiberings over the circle.

The main goal of this paper is to illustrate in fuller detail the connections between
the group structure of the flat 4-manifold groups and the internal geometry of the
corresponding closed flat 4-manifolds. In particular, we detail how the group structure
as a semidirect product or amalgamated free product lets us distinguish different
closed flat 4-manifolds with the same fiber and the same (first) homology. Before,
this type of distinction would be very difficult to find. To this end, we give a complete
description of the fiber-bundle structures of the closed flat 4-manifolds as well as the
orientable double covers of the nonorientable manifolds. The latter information, which
gives more insight into the manifold structures, appears to be absent in the current
literature. As for the fiber-bundle descriptions, in the case where the Betti number
equals 1, the fibering is unique; this gives us an invariant of the manifolds for that
situation. Overall, a finer description of the geometry and group structure will let us

more easily identify the manifolds under consideration.

The flat 4-manifold groups studied here are basic objects with applications to hy-



perbolic manifolds and cosmology. For instance, non-compact, finite-volume hyper-
bolic 5-manifolds have cusp cross-sections that are closed, flat 4-manifolds which are
geometric and topological invariants of the hyperbolic manifolds. Applications to
cosmology can be found in the study of constant-curvature gravitational instantons;
the interested reader is referred to a 1998 paper of Ratcliffe and Tschantz |[Rat98| for

more details.

The next sections deal with well-known background material which is necessary in

the exposition and development of this paper.

Covering Spaces

Let X be a path-connected topological space; then a continuous map p : X = Xis
said to be a covering map if, for every point x € X, there is an open neighborhood
U, of v in X with p~*(U,) a disjoint union of open sets (called sheets), each of which
is mapped homeomorphically onto U, via p. Any such neighborhood U, is said to be
evenly covered by p. For each x € X, the set p~*(z) is called the fiber over x; it can
be shown that the cardinality of the fiber is independent of x. Thus, it makes sense
to speak of the number of sheets of the covering p. If this number is finite, we say

that X is finitely covered by X.

Theorem 1.2 Any compact Euclidean space-form of dimension n is finitely covered
by a flat n-torus R™ /T, where T is generated by n linearly independent translations.
In fact, if M = R" /T, then M is finitely covered by R"™ /T, where T is the translation

subgroup of I', which is n-dimensional by Theorem 1.1.



With the setup above, the holonomy of M is the quotient F' = T'/T™; by (a), F'is a
finite group. The point group of M is given as follows; this description can be found

in Ratcliffe’s book Foundations of Hyperbolic Manifolds [Rat2006]:

Any element v € I' can be written uniquely in the form v = a + A, where a € R"
and A € O(n), the group of all orthogonal n x n matrices over R. There is a natural
homomorphism 7 : I' — O(n) sending v = a+ A to A. The point group II of T" is then

the image of 1. Note that ker 7 = I'*; thus, we have a short exact sequence of groups

0 [« r—"’ .1 1.

Note that the short exact sequence implies that F' = T'/T"* = II. If 1T is a subgroup of
SO(n), the group of all orthogonal n x n real matrices with determinant 1, then M
is said to be orientable. If I contains a matrix with determinant -1, then M is said

to be nonorientable.

For the cases where M is nonorientable, there is a unique orientable (compact) Eu-
clidean space-form M which double-covers M. Namely, we obtain a fundamental
domain for M by gluing two copies of a fundamental domain for M along their
boundaries with a twist (to give a consistent orientation for the new space). The
natural map p: M — M identifying the two copies is a 2-sheeted covering map. The
n-manifold M is called the orientable double-cover of M and is found by taking only
the subgroup I'y of orientation-preserving isometries of I'; then M = R"/Ty. One of
the noteworthy features of this paper is the complete classification of the orientable

double-covers of the nonorientable closed flat 4-manifolds.



Fiber Bundles

The notion of fiber bundles is a natural generalization of covering spaces and vector

bundles. Formally, the setup is the following:

Definition 1.1 Let E, B, I’ be topological spaces, and let m : E — B be a continuous

surjective map such that the following local trivialization property holds:

For any point b € B, there exists an open neighborhood U, of b in B such that
7 HUy) is homeomorphic to the product U, x F, with the homeomorphism acting as
7 in the first component; i.e. if ¢y : 7 *(Uy) — U, X F is the homeomorphism and

p1 2 Uy X F' — Uy is the natural projection, then the following diagram commutes:

N U,) U, x F

i p1

Uy
Then E 1s said to be a fiber bundle over B with fiber F'; the map 7 is called the bundle
projection. Note that, for each b € B, the preimage 7 '(b), called the fiber over b, is

homeomorphic to F'.
The prototypical examples of fiber bundles include the following:

e The trivial bundle, with EF = B X F and 7w : E — B given by projection onto

B.
e Any covering space is a fiber bundle with discrete fiber.
e Any (real) vector bundle is a fiber bundle with a (real) vector space as fiber.

e If X is a path-connected space, and h : X — X is a self-homeomorphism,

then the mapping torus Ty(X) is the quotient space of X x I resulting from
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identifying (z,0) with (h(z),1) for all # € X. The map 7 : T,(X) — S' =
I/(0~ 1) given by 7([(x,t)]) = [t] is a bundle projection; therefore, T} (X) is
a fiber bundle over S' with fiber X. The self-homeomorphism A is called the
monodromy of the mapping torus. The canonical examples of mapping tori are
the torus and the Klein bottle, with X = S* and h : (S',1) — (S*,1) given by

the identity and complex conjugation, respectively.

e Suppose X is an n-manifold; an (n + 1)-manifold E is a twisted I-bundle over
X if E is a fiber bundle over X with fiber I such that OF is connected. In
particular, since (X x I) is not connected, any twisted I-bundle is nontrivial.

The canonical example of a twisted I-bundle is the Mébius strip E, with X = S*.

An excellent, detailed resource on fiber bundles is Steenrod’s book The Topology of

Fibre Bundles [Steb1].

To understand the geometry of closed flat 4-manifolds better, we make use of the

following result found in Hillman’s paper [Hil95|:

Theorem 1.3 If M is a closed flat 4-manifold, then either M is a mapping torus
Th(X) for some closed flat 3-manifold X, or M is the union of two twisted I-
bundles over closed flat 3-manifolds, joined together along their (common) closed flat

3-manifold boundaries.

This description is captured by the structure of the isometry groups I'. If M = R*/T’
is a mapping torus, then I' splits as a semidirect product I' = I x Z, where I" is
a flat 3-manifold group. In fact, assume that M = T,(X), where X is a closed flat

3-manifold and where h : (X, xy) — (X, z¢) is basepoint-preserving. Then a standard



argument using Van Kampen’s Theorem yields a presentation of I' = 7y (M):
mi(M) = (m(X),t [ tyt™ = ha(y), v € m(X)),

where 71(X) = I". Here, M fibers over S' with fiber X. In the case where M has
Betti number 1, the fibering of M is unique. In other cases, M may fiber in two
different ways; for those manifolds, we describe two different fiber-bundle structures

in our tables and presentations in Chapters III and V.

If M is a union of twisted I-bundles, then I' can be realized as an amalgamated free
product I' = I'y x¢ 'y, where each I'; is a flat 3-manifold group containing an isomor-
phic copy of another orientable flat 3-manifold group G as a subgroup of index 2. If
M, and M, are the corresponding flat 3-manifolds, then the group G corresponds to
the common flat 3-manifold boundary of M;, M, along which the bundles are joined.
In the case where M has Betti number 0 (i.e. when I has finite abelianization), M
does not fiber over S'; Hillman gives several different amalgamated free product de-
compositions for each such group. These decompositions give rise to several different
I-bundle decompositions for each corresponding manifold. In our tables and presen-
tations, we list a single decomposition for each of the four flat 4-manifold groups with
finite abelianization. It turns out that these are all nonorientable; therefore, it is of

particular interest to examine closely the decompositions listed below.



CHAPTER 11

GEOMETRIC DESCRIPTIONS OF THE FLAT 4-MANIFOLD GROUPS:
CONSTRUCTING THE TABLES

In this chapter, we describe the techniques employed to convert the descriptions
in Brown’s book |Bro78| to ones which reflect the geometry more readily. This is
necessary for those descriptions which use matrices which are not all orthogonal, so

that the corresponding affine maps are not isometries.

For those manifolds with abelian holonomy, all generating matrices commute, and
therefore there exists a basis for R* with respect to which all the matrices are diagonal
with entries +1. In particular, the resulting matrices are orthogonal. Assuming that
the original matrices represent linear maps with respect to the standard ordered lattice
basis (e, es, €3, e4), it is then straighforward to compute the new lattice basis using

the change of basis which simultaneously diagonalizes the matrices.

It is clear that if A, B are simultaneously diagonalizable, then A, B must commute.
The converse is harder, and the proof will give us a constructive method of computing

a change of basis which does the job.

Suppose A and B commute and are diagonalizable. Let P be an invertible matrix
such that P~*AP = D, a diagonal matrix. Without loss of generality, assume that
the eigenvalues of A are ordered so that all repeated eigenvalues are consecutive.
Then if A{,..., Ay are the distinct eigenvalues of A, with multiplicities mq, ..., my,

respectively, we have
ML,
D =
ML,

10



Now let B’ = P~'BP; then D and B’ commute, since A and B commute. Hence
Dy;Bj; = Bj;Dj;

for all 4, j. Thus, Bj;[Dy — Dj;] = 0. Therefore, Bj; = 0 if D;; # D;;. Because of how
D was constructed, if then follows that if D;; and D;; belong to different diagonal
blocks (i.e. if they correspond to distinct eigenvalues), then ng = (0. This means that

B’ is a block diagonal matrix of the form
By
B/ e S,
By

where each B; is an m; X m; matrix. Since B is diagonalizable, so is B’; hence, each

B! is diagonalizable, say by invertible matrices ;. Then the matrix

@1
Q=
Qk

will diagonalize B', yielding

Ey
Q_lB,Q = )
Ey

where each Fj; is diagonal. Notice that applying () in this way to D yields a diagonal

matrix; in fact,

Q1 (Mlm,)@Q Mo,
Q7'DQ = = = D.
Qr (ML, ) Qx Ao,

Thus, the (invertible) matrix PQ will simultaneously diagonalize A and B.
Sometimes, simultaneous diagonalization (over the reals) is impossible; e.g. if the
matrices do not commute, or if at least one has complex eigenvalues. In this case,

we use a standard technique to realize the matrix as a block orthogonal matrix, as

follows:

11



Suppose A is a real n x n matrix with at least one complex eigenvalue A = u + iv.
Let v = u + 7w be a corresponding eigenvector, where u,w are real. First, observe
that A = pu—iv is also an eigenvalue of A, with corresponding eigenvector v = u — iw,
since A is a real matrix, and since any complex roots of a real polynomial (here, the

characteristic polynomial of A) occur in complex conjugate pairs.

We now claim that the vectors v and w are linearly independent over R. Indeed,
any two eigenvectors associated to distinct eigenvalues are linearly independent. In
particular, since o = u —iw corresponds to the eigenvalue A = p—iv, and since v # 0,

the vectors v, v are linearly independent over C.

Now suppose that au + bw = 0 for some real scalars a and b, not both zero. Let

¢ = (a —1b)/2. We then have that ¢ # 0; moreover,
cv + ¢v = 2Re(cv);
but
1 , , 1 .
cv = 5(& —ib)(u +iw) = 5[(au + bw) + i(aw — bu)).

Thus,

cv + v = 2Re(cv) = au + bw = 0,

which contradicts the linear independence (over C) of v and v. Hence, a = b = 0 and

u, v are indeed linearly independent.

We now study the action of A on the 2-dimensional subspace spanned by u and v.

To do this, expand the identity Av = Av to obtain
Av = v = Au+iAw = (u+ w)(u +iw) = (pu — vv) + i(vu + pw);
equating real and imaginary parts,

Au = pu — vv

12



and

Aw = vu + pw.

This means that the matrix of the restriction A|<u7w> with respect to the ordered basis

w —v
Ay = (V M).

If we start with a matrix A with all its eigenvalues having norm 1, then p = cos6

{u, w} is:

and v = sin @ for some 6 € [0,27). Hence, the restriction of A to (u,w) is simply a

counterclockwise rotation of 6 about the origin.

Now suppose that A is diagonalizable over the complex numbers; that is, C" has a
basis {v1, ..., v,} of (complex) eigenvectors of A. Without loss of generality, suppose
that vy, ..., v, are real and vy, q,...,v, are complex. As any complex roots of a real
polynomial occur in complex conjugate pairs, it follows that n — k£ must be even, say

n — k = 2[. Write the eigenvectors as

Vly e ooy Uy Vpp1 = Up + W1, Vgg = Uy — LW, « . .y Up—1 = Uy + LW}, Uy, = U — LW,

with corresponding eigenvalues

>\1, c. -7)\k7)\k+1 = U1 +iV1,>\k+2 = U1 — iVl, .. -7)\n—1 = Ly +iVl,>\n = MUy — iVl.

We claim that the vectors vy, ..., vg, uy, wy,...,u;, w; are linearly independent over

R. Indeed, suppose that

(a1v1 + -+ - agpvg) + (rug + sqwy) + -+ -+ (ruy + spwy) =0

for some real scalars a;,7;,s;. Letting ¢; = (r; —is;)/2 as before, we have

(CL1U1 + - CLkUk) + (clvkﬂ + 51Uk+2) + -+ (Cﬂ]n_l + Eﬂ]n) = 0.

13



Since {vy,...,v,} is a basis, we have a; = 0 for i = 1,...,k and ¢; = 0 for j =
1,...,0. In turn, we have r; = 0 and s; = 0 for j = 1,...,[. This shows that
V1, ..., Ug, U, W1, - . ., U, w; are indeed linearly independent over R and therefore form

a basis for R", since there are k + [ + [ = n vectors given here.

By considering the restrictions of A to each subspace (u;, w;), for i =1,... 1, we see
that the matrix of A with respect to the basis {vq,..., v, us, wq,. .., u;,w;} is block
diagonal:
A1
Ak
H1 —1

A<Ul7---7vk7u17w17---7ul7wl> = v

we =
4 223

Again, if we start with a matrix A whose eigenvalues all have norm 1, we have
wr = cosby and v, = sinfj, for some angles 0 € [0,2r), for k = 1,...,l. Denoting

the corresponding rotation matrices by
cosf), —sind,
R,=1{ . ,
sinf;, cos@

we have that

A1

A<v17---7vk7“17w17~~~7“l7wl> = R,

Ry

We employ the ideas of this technique using Mathematica to carry out most of the

computations needed to find a change of basis which makes all matrices orthogonal.

To this end, we use the well-known fact that the full affine (isometry) group of R"

14



can be realized as the matrix group of all (n + 1) x (n + 1) matrices of the form

A a
0 1)’
where A € GL,(R) (A € O(n)) and a is a vector in R". Then all the computations can

be carried out using matrix multiplication, which makes the technique more efficient.

Once we perform a change of basis, say M, which makes every matrix which generates
the holonomy orthogonal, we let A = M~!. Then we construct a linear isomorphism
AN =04 A and put I = A'T(A)"!. Since conjugation is an isomorphism of groups,
and since the new tranformations are all isometries, we obtain a genuine isometry
group which is isomorphic to I'. In addition, we show that I'" has the same represen-

tation, with respect to Brown, as the original group I.

In Brown’s description, the generators for the various crystallographic groups are

notated as follows: the map a + A is written as
A [xy, @9, 23, 24] )7 if @ = (21, 29, T3, 24) /7.

Here, the basis is arbitrary; it will be convenient to begin with the standard basis
{e1,e2,e3,e4}. Then any change of basis M effects a transformation A" = AAA™

which satisfies

A'(Aei)) = AMA(es) = A(Z Ajej) = Z A - Aej);

this shows that the new lattice basis will be {A(e;) : i = 1,2,3,4}. Also, the fixed-
point-free groups are given special notation, so we can easily identify the flat manifold

groups.

For brevity, put a; = A(e;),7 = 1,2,3,4. Suppose a = a + A with respect to the

x‘ .
standard basis; then a = Z —Jej. In the new basis, an easy calculation shows that
— 7
j

15



o = A(a)+ A’. But
Aa) = > ZAle) = > .

J J

So we can follow the notation of Brown and denote the new map o by
A, : [,Tl, X2, T3, I4]/T

with respect to the new basis.

We now proceed to show that the relations for I' are preserved, up to relabeling as
above, by conjugation by A’. First, we deal with translations and powers of affine
maps. As each of the groups we are considering has finite point group, for each
a = a + A there is an integer k£ > 0 with o* = T, where T = t + I is a pure
translation. The next proposition shows that this relationship is preserved under

conjugation by A’:

Proposition II.1  (a) If T =t + [ is a translation, then so is T' = (N )T(A)7'.

(b) If &% = T, where T is a translation, then (o/)* = T, and so (/)* is also a

translation.

Proof This is a simple calculation; for part (a), note that 77 = A(t) + I’ and I’ =
ANI(A)™" = I. For part (b), consider the equality a* = T and conjugate both sides
by A"

A/Oék(A/)_l — T/ = [A/Q(A/)_l]k — T/ = (O/)k — T/.
This proves (b). ¢
Moreover, any relation of the form a3a~! =+ will be preserved under the change of

basis:

16



Proposition 11.2 Suppose a = a+ A and 3 = b+ B are affine maps, where A, B

are tnvertible n X n matrices. If
afat =~
for some affine map v = c+ C (C invertible), then, in the notation above,
a/Ba) =4
Proof This turns out to be another straightforward calculation, based on the identity
(a+A)(b+B)a+A)™ = (a+A)(b+B)(—A(a)+ A7)

= (a+ A)(b— BA'(a) + BA™)

= a+ A(b) — ABA ' (a) + ABA™!

= [(I - ABA™")(a) + A(b)] + ABA™".
Suppose aBa~! = v; then v = ¢+ C, where C = ABA™! and

c=I—-C)a)+ A(b).

Now consider the transformed maps o, 5','. Then

o/ F'(a) " = (Aa) + A)(A() + B)(Aa) + A)

and
¥ = Ae)+C";
thus,
o/ 3(a) 7t = [(I = A'B(A) ) (Aa)) + A(AD))] + A'B'(A) .
But

Ale) = A = C)(a) + A(A(b))
= (A—=AC)(a) + AA(D)
= (A=C"M)(a) + AA(b) = (I = C")(A(a)) — A'(A(D));
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moreover,
C'=ACOA ' = A(ABA DA™ = (AAAHY(ABA ™D (AAA D = 4B A
Therefore,

o/B()T = [(I = A'B(A) ) (Ala)) + A'(AD))] + AB'(A)

= [(I - C)(Ala)) = A(AO)] +C" = Ae) +C' =7/,
which was what we wanted to prove. ¢

In summary, suppose I' is an n-dimensional crystallographic group generated by sev-
eral affine maps a; = a; + A;,5 = 1,...,r and basic translations t;, = e, + I,k =
1,...,n. For each i, j, denote by x;; the translation «;(t;) = A;(e;)+1. Also, suppose

I' is presented by
U= (b | [tit]] =1,1<i<j<n, o) =T;,j=1,...,r,
oot =6, 1<i<j<r atja]t =xg,i=1,...,r7=1,...,n).
In the notation of this chapter, ¢, = A(ey) + I = ax + I; hence, [t;, ;] = 1. Also, each

T} is given by

and so

Moreover, by Propositions I1.1 and IL.2, (o})* = T for all j and oja/j(of) ™" = 3 for
all 7, 7. Also,

= A(Ai(e) + T = AlAeg) + T = Afay) + I

Therefore, I" is presented by

"= {(aj,t, | [ti )] =1,1<i<j<n, ()" =Tj,j=1,...,1

ajoli(af) ™ =B, 1<i<j<r alth(a)) =al,

18



That is, up to a change of indices, the new group I, which is now a true group of
Euclidean isometries (since the matrices A} are orthogonal by construction), can be

described exactly as the old group I' was depicted.

19



CHAPTER 111

TABLES OF FLAT 3- AND 4-MANIFOLD GROUPS: ALGEBRAIC DESCRIPTIONS

In this chapter are presented lists of all 10 (closed) flat 3-manifold groups and all 74
flat 4-manifold groups, with their fiberings (if applicable), homology, holonomy, and
product structures of the groups. Using these tables, along with the notation of this

section, one can reproduce an abstract presentation for each group.

For geometric descriptions of the generators and relations, one can consult [Wol84|

or [Lev70]; the tables for the 4-manifold groups follow loosely the tables in [Lev70].

For ease of presentation, we will label the generators of the flat 3-manifold groups
(except the Hantzsche-Wendt group OF) by x,%, and z, where (x,y) = Z ® Z and

(z) = Z. Thus, we may express O3, for example, as

Og’ =(z,y,z | xy = yx, zezt =27t 2yz7l = y_l).

Also, for semidirect products G X7 Z = (x,y) X (z), we identify the homomorphism
T : 7Z —Aut(G) with its image T(z) as a automorphism of G. Furthermore, if G = Z?,
we will identify T'(z) with its corresponding matrix in GLy(Z). In all cases, we will
describe T' by its action on the generators of G; namely, Z = (z) acts on G via

conjugation. For instance, in the case of O3, T would be described by
) -1 -1
2t Yy Yy,

where ¢, : g — zgz~! denotes conjugation by z.
For the group Og’ , we will use the presentation

1

Of = (z,y | ay’a ™t =y 2, yay ' =a27?%).
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In the case of the flat 4-manifold groups, we follow a similar notation; for semidirect
products

G AT 7 = <l’,y,Z> AT <U)>,

identify the homomorphism 7 : Z —Aut(G) with the image T'(w) € Aut(G). Here,
the group Z = (w) acts on G by conjugation, and 7" is described similarly. We will
describe the corresponding fibering as M x S', where M is the appropriate closed
flat 2- or 3-manifold. By abuse of notation, we will often denote the flat manifold
and its group by the same label. For each group, the automorphism 7' is determined
up to its outer automorphism class in Aut(G): if two automorphisms 7, 75 €Aut(G)
are conjugate in Aut(G) up to inversion, then the groups G xp, Z and G xp, Z are
isomorphic and therefore represent the same flat manifold. For an analysis of the

outer automorphism groups, see [Hil95|.

When the manifold has 8; = 0, it does not possess a decomposition as a fiber bundle
over S'. In this case, I' decomposes as an amalgamated free product I'; ¢ I's by
[Hil95|. This decomposition of " corresponds to a decomposition of the flat manifold
as a union of two twisted /-bundles joined along their common boundaries. The
only such 3-dimensional example is the Hantzsche-Wendt manifold; this manifold is
orientable. In the 4-dimensional case, there are 4 such manifolds, all of which are

nonorientable.
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Notation:

(1) D,, will denote the dihedral group of order 2n.

(2) A will denote the tetrahedral group, the group of symmetries of a regular tetrahe-
dron (which is isomorphic to the alternating group A4 on four letters).

(3) m denotes the fundamental group of the manifold, H; its first homology group,
and [3; its first Betti number.

(4) For the flat 3-manifold groups, K 2 will denote the Klein bottle group, with pre-
sentation

K? = (z,y|ayz ' =y ).

(5) In the tables of the nonorientable flat 3- and 4-manifold groups, we list the ori-

entable double-covers (abbreviated ODC) along with the algebraic presentations.

The Flat 3-Manifold Groups

Manifold | Fibering T H, 01 T:zo ¢, Holonomy
O} T2 x S! z? A 3 ( (1) (1) ) {1}
O3 T*xS* | Z*xr 7 | 2@ (Z9)? | 1 ( _(1) _(1) ) Zs
O | T°xS"|\ZPxrZ| Z®Zs |1 ((1) j) Zs
o3 T?xS'" | ZPxrZ | Z®Zy | 1 (? _(1)) Z4
O3 T?x S | Z* 17 Z Z 1 (? _1) Zg

Table 1: Orientable Flat 3-Manifold Groups with Infinite Abelianization

Manifold m H, | 31| G | Holonomy
O; K?xq K? | (Zy)? | 0 | Z° (Zy)?

Table 2: Flat 3-Manifold Groups with Finite Abelianization
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Manifold | Fibering m H, 0O1 T:z<+ e, Holonomy | ODC
K?x S8t K*xX1Z T 1 0
3 2 ) 3
M xst | z2xpz | P02 2 0 21 22 O1
K*x St | K*xrZ roxy (0 1
3 T 2 y o 3
N T2 x S AR/ z 2 y— y \1 0 L2 O1
—1
N3 K2xS' | K2xr0Z |Z&(Z:)% ] 1 e (Z5)? o3
y—y
—1
N3 K2xS' | K2xr2Z | ZoZs |1 T Y (Z5)? o3
y—y
Table 3: Nonorientable Flat 3-Manifold Groups
Notes:
e O} fibers over S' with fiber the flat 2-torus 7° for i = 1,...,5.

The Hantzsche-Wendt manifold O} is a union of two twisted I-bundles over K

joined along their common boundaries (in this case, the common boundary is

T?).

N} and Nj both fiber over S' in two ways (with fiber either the flat 2-torus 7

or the Klein bottle K?).

N3 and N; fiber uniquely over S' (with fiber K?).
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The Orientable Flat 4-Manifold Groups

Manifold | Fibering T H, 0G1 T:w < cy Holonomy
1 0 0
oh 03 x St z* 7t 4 01 0 {1}
00 1
-1 0 0
03 x S! 03 %7 e
05 ()%xsl Zgiq 7 72 @ (Zo)? | 2 Yy 0 -1 0 Zs
1 T 22z 0 0 1
1 0 0
03xS' | O3xrZ e
04 O?)’Nsl Z%, NTZ 72 @ 7y 2 y—y ;|1 -1 o0 Zs
! T 2y lz Lo 0 -1
10 O
03 x St O3 x 7 v
Oi sl | grang | LOLs |2 y—y ;| 00 —1 Zs
1 T 22 01 -1
10 O
03xS' | O3xrZ v
4 3 3 AT 2 . _
Os 0% x 5 78 xr 7 Z 2 y— y ;1 0 0 -1 Z3
Z—=Y 2 1 1 -1
10 0
03 x 8! 03 x 7 T
Os O?)’mSl Z?,A;q 7 7% & 7y 2 y—y ;| 0 0 —1 Zy
1 T 2z 01 0
3 1 3 r— X 1 0 O
0l 8%2?1 Zg :Té 72 2 yoy | 1 0 -1 74
1 T 2—x s 0 1 0
10 0
03 x St 03x1Z S
O3 st | 2z A 2 y—y ;| 00 -1 Zg
1 T 22 01 1
—T
T—T
03 O3xSY | O3xrZ | Z@(Zy)® | 1 Ty (Zy)?
227t
T
r— T
4 3 1 3 2
010 02 xS 02 NTZ 2@22@24 1 Yy— y (Zg)
=Xz

Table 4: Orientable Flat 4-Manifold Groups
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Manifold

Fibering

YS!

H,

b

Holonomy

4
011

03

x St

Og’ XTZ

L@ Ly ® 2y

(Zs)?

4
012

x St

Og NTZ

7@ (Zy)*

4
O3

x St

YASYM

7@ (Z4)*

7@ (Zy)*

7@ (Zy)*

L@ Ly ® 2y

x St

7 & L

x St

YASY:

YASY/:

7@ (Zy)*

Dy

AW

Dy

AW

7 & 7o

YASY:
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The Nonorientable Flat 4-Manifold Groups

Manifold | Fibering T H; 0G1 T :w + ¢y Holonomy | ODC
10 0
N3 x St N3 x 7 T
N{ st | g3z | B8La |3 ymyi( 0010 Zy O}
1 T 2z 0 0 -1
100
N3 x St N3xZ v
Ny 0% e Z32>4 7 73 3| y—y;| 001 Zy o5
1 T 2z 010
=T
N3x St | N3xrZ e e
Ny 0Bt | Obung | L@ (22) | 2 y—y Lt oyt (Zs)? 0,
2 2 T VA e A Z— Z
=
N3 S | N3wpZ v e
N{ OF sl | o 7 ?9Zy | 2 y—y oy oy (Z)? O,
2 2 2= Yz 2=y Tz
—T —T
N3 x S* N3 xr Z x»—m:_ T
Ny O ust | o NTZ oLy | 2 y—y Tl oy y (Zs)* O3
2 2 7T XYz ZTYZ
—1
N3x St | N3xrZ e
Ng 0Bus | Odumz | Bl | 2] yoyy yoay™ (Z5)? O3
2 2 T VA A = Z
N3x St | N3xrZ ey ey
Ny 0ust | O unz A 2| y— oz oyoy! (Zs)? O3
2 2 7T =Yz Z— Xz
N3 x g1 N3 x7Z v e
Ng Mot | Nz 72 ® (Z2)* | 2 Yy 5 Yyt (Z)? O3
1 1 T g sz—l
N3x S | N3xzZ v e
Ny Mgl | Nbwg | POl |2 y—y 5 y—y ! (Zs)? 0,
1 1 2oz Zeyzs
—1.2
N3x S | N3xrZ v e e
N | Miugl | Moung |ZO@P 2] gyt syt | (22 | O
3 3 T yAmnd ya = Z

Table 5: Nonorientable Flat 4-Manifold Groups with Infinite Abelianization
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Manifold | Fibering T H; 01 T:w < ¢y Holonomy | ODC
3 1 3 Ty Tozy
Ny %35:?1 %if :;? oLy | 2| y— Ty y (Z2)® O3
=z = Yz
3 1 3 r—r 2% o
Niy %}jgl %}E :;? Pely | 2| yoy 't yoyt (Z2)* O3
2= Yz 2 Yz
3 1 3 T—x 122 T— Ty
Ni; %}jgl %Ea :;; el | 2| yoy ' yoy ! (Zs)? O3
= z = Z
-1 0 0
N}y O3 xSt | ZPxrZ |Z&®(Zo)® | 1 0 -1 0 Lo o5
0 0 -1
-10 0
N O3 xSY | Z3xrZ |Z&®(Zo)?| 1 00 —1 Z4 03
01 0
-1 1 0
N O3 x St 73 17 7 7Z®74 |1 -1 0 1 7, 03
-1 0 0
r— Yy
N, O3xS' | O3xrZ |Z&(Zo)*| 1 Yz Z4 03
2zt
r— Yy
N O3xS' | O3xrZ | Z@Zy | 1 yr— ! Z4 03
2wz
-1 0 0
Ny 03 x St 73 xr 7 ZdZe | 1 0 -1 -1 Zg o
0 1 0
-1 0 0
Ny 03 x St 73 xr 7 ZdZy | 1 0 11 Zg o
0 —1 0
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Manifold

Fibering

m

H,

A

T:w <« cy

Holonomy

ODC

4
N21

x St

73 xr 7.

VAW

L

4
N22

x St

Og NTZ

Z® (Zy)?

4
N23

x St

Og NTZ

L@ Lo ® 7y

4
N24

x St

N xr Z

7@ (Zy)?

x St

N} xr 7

L@ Ly ® 2y

x St

N23 NTZ

Z® (Zy)?

x St

N13 NTZ

Z® (Zy)?

x St

N} xr Z

7@ (Zy)?

x St

N3 xr 7

7P Lo

x St

N3 xr Z

Z® (Z,y)®

x St

Ng NTZ

Z® (Zy)?

x St

Ng NTZ

Z® (Zy)?

x St

N3 xr 7

7 @ (Zy)*

x St

N} xr 7

7 @ (Zy)*
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Manifold | Fibering ™ H, G| T:w< ¢, | Holonomy | ODC
T—
Nis | N2xSY | N2xpZ | Z@(Zy)? | 1] y— y (Z,)? Oy
Z—=xt 2
T— T
Ny NixS' | NP xr Z | 2@y D7y | 1 Yyt (Zy)? 01y
ZFeyz_l
e
N3, NxSY I N2 xpZ | 270Dy | 1| y— gy (Zy)? oy,
z»—>x2yz_1
Ny | O2xS | OPxrZ | 202, ®Zy | 1 ‘;:yﬂ )y | o,
=)
4 3 1 3 2 = 1Y 3 4
=T
Ty
N | O3xS' | O xrZ | Z&Z 1 o D, Ofs
-1
T— T
N 02 xS | O xpZ | Z&7Zy 1 oy Dy O,
Ty
N}, O3x S| O3 xrZ 7D 7y 1| y—aly™ | ZgxZy | Of
2=z
xHx_ly
N O3 % S' | OF xr Z Z 1 e o A xZy | O
Manifold m H, 06y | G | Holonomy | ODC
Néil4 Og *G Nf ZQ D (Z4)2 0 Zd (Z2)2 Og
]\/215 Og *G N; (ZQ)Z @D Z4 0 Og (ZQ)J Og
Nfﬁ Og *G N;f (Zg)z D Z4 0 Og (Zg)d Oilo
Ny | O3x¢ N3 (Zy)? 0|z D, [

Table 6: Nonorientable Flat 4-Manifold Groups with Finite Abelianization

Notes:

e The two fiberings for the manifold Ny were listed separately in [Lev70]; in

Proposition III.1, we show that the corresponding groups are isomorphic. This

accounts for the extra nonorientable group with 8, = 2 in [Lev70).

e As in the flat 3-manifold case, each of the flat 4-manifold groups with 8; = 0

are unions of twisted /-bundles over flat 3-manifolds, joined together along their
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common boundaries (for Nj, and Nj,, the boundary is the flat 3-torus T°?; for

N and Nj, the boundary is O3).

Proposition III.1 The two fiberings listed for Ny are decompositions of the same

closed flat 4-manifold.

Proof It suffices to prove that the corresponding groups are isomorphic. Put G; =
N} x Z and Gy = N} x Z. From the table entry for Ny, we have the following

presentations for the two groups:

1 -1 -1

Gi=(z,y,z,w | zyx™ =y, zaz" = zly, zyz!

and

1 1 1

Gy = {n,y,z,w | 2y =yz, 20 =22, 292 ' =y}, wr = 2w, wyw ' =y ', wrw"

To show that these groups are isomorphic, we will exhibit a finite sequence of Tietze

transformations which carries the first presentation into the second.

First, we will add the following generators and relations to the presentation for Gy:
Gi={x, 2y, v, 2,7, ww |2 =w, v =y =z, 0 =2z syr ' =y

zxz Tt = x_ly, zyz‘l = y_l, wWr = TW, Wy = Yw, Wz = Zw).

Then delete the generators z,y, z, w, which are now redundant, and rewrite the rela-

tions in terms of the remaining generators:

P =1 =1 1o 1—1 ’ -1 poro—1 =1

Gy =y, 2w | 2yz Y w T =y wyw Yy
2 = Z/I/, x/y/ _ y/x/’ 2w = w’x’).

The presentation now becomes

Gl — <x‘/7y/7 Z/’w/ ‘ x/y/ — y/x/’ z/x/ — x/z/’ Z/ylzl_l — y/—l’ w/x/ — x/w/7

w/y/w/—l — y/—l’ w/z/w/—l — y’z’_l),

30
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which is (with relabeling) the given presentation for G5. This shows that G; and G,

are indeed isomorphic. ¢

Flat 4-Manifold Groups and Their Correspondences

In this section, we give a detailed correspondence among the classifications of all flat
4-manifold groups given in |Lev70]|, |Hil95|, and |[Bro78]. We refer to the groups in

Levine’s table in the numerical order that they appear there.

Brown Lambert | Hillman | Levine Brown Lambert | Hillman | Levine
01/01,/01/001 Of ARY/ 1 08/01,/01/002 O3 O3xZ | 20
03/01/01/002 03 O3 x 7 2 08/01,/02/002 O O3xZ | 19
03/01/02/002 03 O3 xZ 3 09/01/01/002 03 O3 xZ | 21
05/01/02/007 Os O3 X7 5 13/04/01/014 | O3, O} 17 15
05/01/02/008 |  O7 O3 17 6 13/04/01/020 | O3, O} 17 17
05/01/02/009 | O74 Of x 7 4 13/04/01/023 | O3, Y/ 16
05/01/02/010 | Of; O3 xZ 7 13/04/04/011 | O34 OfxZ | 18
05/01/03/006 |  Ofy O3 xZ | 11 14/03/01/004 | O3 O3 xZ | 24
05/01/04/006 | O3 O %7 8 14/03/05/004 |  Ofg O3x7 | 22
05/01/06/006 |  Oig Of x 7 9 14/03/06/004 |  Of O3x7Z | 23
05/01/07/004 | Of Of x 7 10 15/04/01/010 |  Oss O:xZ | 25
05/01/10/004 | Of4 O3 xZ | 12 24/01/02/004 | O3 O3 xZ | 26
07/02/01/002 05 O} xZ | 13 24/01/04/004 | O3 OgxZ | 27
07/02/02/002 07 O3} x7Z 14

Table 7: The Orientable Flat 4-Manifold Groups: Correspondences
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Brown Lambert | Hillman | Levine Brown Lambert | Hillman | Levine
02/01/01/002 N} N} x Z 1 06/01/01/064 |  Ng, N xZ | 31
02/01/02/002 Ny N3 x Z 2 06/01/01/066 | Na, N3xZ | 29
02/02/01/002 | Ny, VARY/ 3 06/01/01/081 | Ngq N xZ | 27
04/01/01/006 Ng N3 x Z 4 06/01/01/082 | N3, NS xZ | 30
04/01/01/007 Ny NixZ | 58 06/01/01/083 |  Ns; NixZ | 28
04/01/01/010 Ny NP xZ 6 06/01/01/092 |  Nsq OsxZ | 25
04/01/01/011 Ny N} % Z 7 06/02/01/027 | Ny | Og«N;| 33
04/01/01/013 N N} % Z 9 06/02/01/050 | Nj5 | Og«N3 | 32
04/01/02/004 Ng N3 x7Z 15 12/01/02/002 N5 VARY/ 34
04/01/03/004 | N§ N3 % 7Z 10 12/01/03/002 |  Ni; O3 X Z 35
04/01/03/011 N N % 7Z 11 12/01/04/002 Nig AR/ 37
04/01/03/012 | Ny, N} % Z 12 12/01/06/002 | N O3 X Z 36
04/01/04/005 | Nis Ny xZ | 13 12/03/04/006 | Ny O3 xZ | 41
04/01/06,/004 N7 N3 % Z 14 12/03/10/005 | Ny, O xZ | 42
04/02/01/008 | N, O3 x 7. 16 12/04/03/011 Ny, O3+ N3 | 43
04/02/01/011 | N3, N} % Z 18 13/01/01/008 |  Ni, N}xz | 38
04/02/01/012 | N N} % Z 19 13/01/01/011 |  Nag N} xzZ | 39
04/02/01/016 |  Nag O3 x 7. 17 13/01/03/008 |  Nag N3 xZ | 40
04/02/03/004 |  Nig N3 xZ 20 14/01/01/002 Ny, AR/ 45
04/03/01/006 N O3+ N7 | 21 14/01/03/002 Nao VAR 46
06/01/01/041 N3, N3 xZ 23 14/02/03/002 NTo VARY/ 44
06/01/01/045 | N3, Ni xZ 24 15/01/01/010 Ny O3 X Z 47
06/01/01/049 | Nig Of % 7 22 25/01/01/010 Nis O X Z 48
06/01/01/063 |  Ns, N3 xZ | 26

Table 8: The Nonorientable Flat 4-Manifold Groups: Correspondences
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CHAPTER [V

THE FLAT 3-MANIFOLD GROUPS: GEOMETRIC DESCRIPTIONS

In this chapter, we give a geometric description of the (closed) flat 3-manifold groups
as a companion to the abstract presentations in Chapter III. Wherever possible,
we will give generators which correspond to the abstract generators given there. In
the cases where the matrices given in [Wol84| are not all orthogonal, we perform a
change of basis which simultaneously diagonalizes them wherever possible (i.e. when
the matrices commute); if this is not possible, we employ complex diagonalization to

obtain a standard orthogonal matrix of the form

(" s)

where B is a 2 x 2 orthogonal matrix. This procedure is outlined in Chapter II. As
a byproduct of this technique, it was shown that the defining relations are preserved,

so that we can continue to use the notation in [Wol84, Bro78| without change.

The notation in these tables is adapted from |[Wol84|: We will list the orthogonal
matrices as generators, and the basic translations will always be included. The other
generating isometries will be listed in the format of |Bro78|; e.g. A : [1,0,0,0]/2
means %al is added to the rotation matrix A, yielding the isometry %al + A. The
orientable groups will be denoted by O3, and the nonorientable groups will be labeled

N}, as in the abstract tables in Chapter I1L.

Other Notation: We shall denote by e; (i = 1,2,3) the standard basis vectors of
R3; i.e. e; is the vector whose jth component is d;;. For each group, we will list the
corresponding lattice basis as an ordered basis; e.g. (aq,aq,a3) = (e, e9,e3) if the

matrices in [Wol84| were already orthogonal. The corresponding translations will be
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denoted by t; = a; + I. In the following presentations, we will take for granted that

the ¢;’s commute rather than repeatedly write the appropriate relations.

The Orientable Flat 3-Manifold Groups

O%: (Flat 3-torus)

1 00
Rotation matrices: Is=| 0 1 0
0 0 1

Holonomy: {1}

First Homology: Z3

Lattice Basis: (a1, a9,a3) = (e1,e2,e3)
[ = (ty,ty,t3) = 23

03
1 0 0
Rotation matrices: A = 0 -1 0
0 0 -1

Holonomy: (A) = Zs

Lattice Basis: (a1, a9,a3) = (e1,e2,e3)

Generators: a = A : [1,0,0]/2

First Homology: Z & Zo @ Zo

T = (t,t2,t3,a | o® =t1, atia™ =170 =2,3) = (ta,t3) x (@) = Z* X Z

03

1 0 0

0 ! V3
Rotation matrices: A = 9 T

o V3 1

2 2
Holonomy: (A) = Zs
3

Lattice Basis: (a1, a9,a3) = (e1,€2, —=e2 + geg)

Generators: o = A : [1,0,0]/3
First Homology: Z ¢ Zs
T = (t,t2,t3,a | o® =t1, atsa™ =t3, atza™ =331 = (ta,t3) x (@) = Z* X Z
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Oi’:

Rotation matrices: A =

S O =
= o O
|
[

Holonomy: (A) = Z4

Lattice Basis: (a1, a2,a3) = (e1,e2,e3)

Generators: a = A : [1,0,0]/4

First Homology: Z & Zs

[ = (ty,to,t3,a | a® =t1, atga™ =t3, atza ™ =1;1) = (ta, t3) x (@) =Z* X Z

03
1 0 0
1 V3
Rotation matrices: A = | Y 2 9
o V3 1
2 2

Holonomy: (A) = Zg

—63)

1
Lattice Basis: (a1, a2,a3) = (eq, €2, 262 + 5

Generators: o = A : [1,0,0]/6
First Homology: Z
T = (ty,to,t3,a | a® =t1, atga™ =t3, atza™ =t;'t3) = (ta, t3) x (@) =Z* x Z

03
1 0 0 -1 0 0
Rotation matrices: A= 0 -1 0 |, B= 01 0
0 0 -1 0 0 —1

Holonomy: (A, B) = Zy X Zo
Lattice Basis: (a1, a9,a3) = (e1,e2,e3)
Generators: o = A :[1,0,0]/2, =B :10,1,1]/2
First Homology: Z4 ® Zy4
T = (t,t2,t3,0,8 | o =t1, 8% =ta, Baf™! =tatza™!, atia™! =t;
Bt =t1i=1,3)
= Qo) (1, 19y (Brt1) = K? Hp2 K?

1i=23,
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The Nonorientable Flat 3-Manifold Groups

N3
1 0 O
Orthogonal matrices: A= 0 1 0
00 -1

Holonomy: (A) = Zs

Lattice Basis: (a1, as2,a3) = (e1,e2,e3)

Generators: a = A : [1,0,0]/2

First Homology: Z & Z & Zo

T = (t1,ta, t3,a | a® = t1, atsa™ =ty, atsa™ =t31) = (o, t3) x (ta) = K2 X Z
[ = (ty,t3) x (@) =Z>* X Z

N3:
10 O
Orthogonal matrices: A=| 0 1 0
0 0 -1

Holonomy: (A) = Zs
1
Lattice Basis: (a1, a2,a3) = (eq, ea, 5(61 +eo + e3))
Generators: a = A : [1,0,0]/2
First Homology: Z & Z
T = (t1,t2,t3,a | ® = t1, atsa™ =ta, atza™ = titats ")
= (o, titat3?) X (titats ') = K2 X Z
T = (t3,t1taty ") x (@) =Z* X Z
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N3:

1 0 10 O
Orthogonal matrices: A=| 0 -1 0 |, B=| 0 1 0
0 -1 0 0 -1

Holonomy: (A, B) = Zg X Zs
Lattice Basis: (a1, a2,a3) = (e1,e2,e3)
Generators: a = A:[1,0,0]/2, 8= B:[0,1,0]/2
First Homology: Z & Zo @ Zo
T = (t,t2,t3,0,8 | a® =t1, % =t2, afa' =71, atija™t =171, = 2,3,
st =t1, Bt =t3")
= (B,t3) x (a) = K? x Z

N3
1 0 0 10 O
Orthogonal matrices: A=| 0 -1 0 |,B=| 0 1 0
0 0 -1 0 0 -1

Holonomy: (A, B) = Zs X Zg
Lattice Basis: (a1, a9,a3) = (e1,e2,e3)
Generators: o = A :[1,0,0]/2, =B :10,1,1]/2
First Homology: Z ¢ Z4
T = (t,t2,t3,0,8 | o =t1, % =t2, afa' = 73, atia™t =171, =2,3,
BB~ =t Bty =31
= (B,t3) x (a) = K* x Z
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CHAPTER V

THE FLAT 4-MANIFOLD GROUPS: GEOMETRIC DESCRIPTIONS

We now give a geometric description of the flat 4-manifold groups as a companion
to the abstract presentations in Chapter III. Wherever possible, we will give gener-
ators which correspond to the abstract generators given there. In the cases where
the matrices given in |Bro78| are not all orthogonal, we perform a change of basis
which simultaneously diagonalizes them wherever possible (i.e. when the matrices
commute); if this is not possible, we employ complex diagonalization to obtain a

standard orthogonal matrix of the form

By
By
B3 ’
B,
where each B; is either £1 or a 2 x 2 orthogonal matrix. This procedure is outlined in

Chapter II. As a byproduct of this technique, it was shown that the defining relations

are preserved, so that we can continue to use Brown’s notation without change.

The notation in these tables is adapted from the tables in [Lev70| and [Bro78|: We will
list the orthogonal matrices as generators, and the basic translations will always be
included. The other generating isometries will be listed in the format of Brown; e.g.
A :[1,0,0,0]/2 means %al is added to the rotation matrix A, yielding the isometry
—a; + A. For reference, we will also list the standard designation of |Bro78| along

2

with our labeling.

Other Notation: We shall denote by ¢; (i = 1,2, 3,4) the standard basis vectors of
R*: i.e. e; is the vector whose jth component is 0;j. Also, t; = a; + I will denote the

basic translations of R*. For each group, we will list the corresponding lattice basis
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as an ordered basis; e.g. (a1, aq, a3, as) = (€1, €2, €3, e4) if the matrices in [Bro78| were
already orthogonal. In the following presentations, we will take for granted that the

t;’s commute rather than repeatedly write the appropriate relations.

The Orientable Flat 4-Manifold Groups

01 :01/01/01/001 (Flat 4-torus)

1 000
Rotation matrices: Iy = 8 (1) (1) 8
0001

Holonomy: 1

First Homology: Z*

Lattice Basis: (a1, as2,as,a4) = (e1,€2,€3,€4)
L = (t1,ty, t3,t4) = Z*

03 : 03/01/01/002

-1 0 00

) . -1 00
Rotation matrices: A = 0 01 0
0 0 01

Holonomy: (A) = Zs

Lattice Basis: (a1, a9, as,a4) = (e1,e2,€e3,€e4)

Generators: o = A:[0,0,0,1]/2

First Homology: Z & Z & Zo & Zo

T = (t,ta, t3,ta,a | @® = tg, atia™t =171 i=1,2, atza™" = t3)
= <t1,t2,a> X <t3> = Og X 7

I'= <t1,t2,t3> X <Oé> = Z3 X 7
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03 : 03/01/02/002

Rotation matrices: A =

oo o+
oo~ o
|
o~ oo
- o oo

Holonomy: (A) = Zs
1
Lattice Basis: (a1, a9, as,a4) = (€1, e, €3, 5(61 +eyq))
Generators: o = A:[0,1,0,0]/2
First Homology: Z & Z & Zo
T = (t1,ta,t3,ta,a | o® =tg, atia™ =t1, atza™ =t3', atga™ =t1t; ")
= (t3,t1t,%,a) % (t)) = O3 x Z
T = (ty, t1t; % t3) x (@) =Z3 X Z

Of : 08/01/02/002

1 0 0 0
01 0 0

Rotation matrices: A= | o 0 _% _g
V3 1

N

Holonomy: (A) = Zs

Lattice Basis: (a1, as2,as,a4) = (e1, €2, €3, %63 + 764)

Generators: o = A :[0,1,0,0]/3

First Homology: Z & Z & Zs

T = (t1,ta, t3,ts, | @® = ta, atia™ =11, atza™' =3y, atga™ =31
= (t;' t3,0) x (1) = 03 x Z

T =(ty,t; 5 t3) x (o) =Z3 % Z

O3 :08/01/01/002

1 0 O 0
01 O 0
Rotation matrices: A= | (¢ 0 _% _§
1
00 V3 _L
2 2
Holonomy: (A) = Zs
2 1
Lattice Basis: (a1, a2,as,a4) = (e, €2, —§e2 + ?63, geg + ?63 + e4)

Generators: a = A :[1,0,0,0]/3

First Homology: Z & Z

T = (t1,ta, t3, ta, | @3 = t1, atga™ = tg, atza™! =ty 5y, atga™ =31
= (tata, ty "t3 g, ) X (t3) = O3 x Z

T = (t3,tata, ty 't5 2ts) ¥ (@) = Z3 X Z
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O3 - 07/02/01/002

1 00 0

. . 010 0
Rotation matrices: A = 00 0 —1
0 0 1 0

Holonomy: (A) = Z4

Lattice Basis: (a1, a9, as,a4) = (e1,e2,€3,€e4)

Generators: a = A :1[0,1,0,0]/4

First Homology: Z & Z & Zo & Zo

T = (t1,ta, t3, ta, | @t = to, atja™ =11, atza™ =tg,atsa™ =131
= <t3,t4,0£> X <t1> = Oi X 7

I'= <t1,t3,t4> A (a> = Z3 X 7

03 : 07/02/02/002

1 00 0

. . 010 0
Rotation matrices: A = 00 0 -1
0 0 1 0

Holonomy: (A) = Z4
. . 1 1 1 1
Lattice Basis: (a1, a2,as,a4) = (€1, €2, 51 + 562 + es, ¢ + 762 + e4)
Generators: a = A:[0,1,0,0]/4
First Homology: Z & Z
T = (t1,ta, t3, ta,a | @t =to, atia™ =11, atza™" = ty,atsa™ = titats )
= (titatz 1t tat o) X (ty) = O3 X Z
T = (ty, titaty 1t taty 1) x (@) =Z2 X Z

03 :09/01/01/002

1 0 0 0
01 0 0
Rotation matrices: A= | o 0 % _§
1
00 V3 1
2 2

Holonomy: (A) = Zg

V3

Lattice Basis: (a1, a9, as,a4) = (e1, e, €3, %63 + 764)

Generators: a = A:[0,1,0,0]/6

First Homology: Z & Z

T = (t1,ta, ta, ta, | a8 = to, atja™ =11, atza™ =tg,atsa™ = t3't,)
= <t3,t4,0£> X <t1> = Og’ X 7

I'= <t1,t3,t4> A (a> = Z3 X 7
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Og : 05/01/02/007

-1 0 00 -1 000

: . 01 00 0 -1 0 0
Rotation matrices: A = 00 -1 0 | B = 0 1 0
00 01 0 001

Holonomy: (A, B) = Zy X Zg
Lattice Basis: (a1, a9, as,a4) = (e1,e2,€3,€e4)
Generators: o = A :[0,1,0,0]/2, 6= B :[0,0,0,1]/2
First Homology: Z & Zo @ Zo & Zo
T = (t1,ta, t3, ta, 0, B | @2 = to, 2 =t4, Baf™ ' =a atia™ =171 i=1,3,
atsa™t =1y, pp7 =17t i = 1,2, BtaB =t3)
= <t1,t3,a> X <ﬂ> = Og X 7

01y : 05/01/02/008

10 00 -1 0 0

: .. 10 -1 00 _ 0 -1 0 O
Rotation matrices: A = o o -1 0 | B = 0 0 1 0
0 0 01 0 0 01

Holonomy: (A, B) = Zg X Zs
Lattice Basis: (a1, as2,as,a4) = (e1,€2,€3,€4)
Generators: a = A:[1,1,0,0]/2, = B :[0,0,0,1]/2
First Homology: Z & Zo & Z4
T = (t,t2,t3,ts, 0,8 | &® = t1, B2 =t4, Baf ' =ty a atia™ =t7
atsa™t =ty, BB =171 i =1,2, B3l =t3)
= (t;t3,a0) ¥ (B) = 03 x Z

1i=23,

01, : 05/01/02/010

-1 0 00 1 0 0 0

) . -1 0 0 0 -1 0 0
Rotation matrices: A = 0 01 0 | B = 0 0 -1 0
0 0 01 0 0 0 1

Holonomy: (A, B) = Zy X Zg
Lattice Basis: (a1, a9, as,a4) = (e1,e2,€e3,€4)
Generators: o = A :[0,0,1,0]/2, 6= B:[1,1,0,1]/2
First Homology: Z & Zo & Z4
T = (t1,to,t3, 14,0, 3 | o = t3, % = t1ty, BaB ™ =titsa™ atia ™t =t7
atsa™t =ty, BB =170 =2,3, Bt = ti,i = 1,4)
= <t2,t1,a> X <ﬂ> = Og X 7

Li=1,2,
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015 : 05/01/03/006

-1 0 00 01 00

) . -1 0 0 10 00
Rotation matrices: A = 0 01 0 |’ B = 00 -1 0
0 0 01 00 01

Holonomy: (A, B) = Zy X Zg
Lattice Basis: (a1, a9, as,a4) = (e1,e2,€3,€e4)
Generators: o = A :[0,0,1,0]/2, 6= B :[0,0,0,1]/2
First Homology: Z & Zao & Zo
T = (t1,ta, t3, ta, 0, 8| @2 =3, 2 =t4, Baf™ =o', atia™ =170 =1,2,
atga™t =ty BB =ty Btaf =1, BB =1571)
= <t1,t2,a> X <ﬂ> = Og X 7

015 : 05/01/10/004

-1 0 00 10 0 0

) . 0 1 00 01 0 0
Rotation matrices: A = 00 -1 0 |’ B = 00 —1 0
0 0 01 00 0 —1

Holonomy: (A, B) = Zg X Zs

First Homology: Z & Z4
[ = (t1,to,t3,t4, 0, B | &® =ty, (% =t3, faf™' = titsa™!, atja™! =ty,
atya”t =ty atsa”t =17 g, BB =to, BtafT =1, BtafT =
= <t1t3,t2t3,04> Dal <ﬁ> = Og X 7

01, : 05/01/02/009

1 0 00 -1 0 0 0

) . 0 -1 00 0 1 0 0
Rotation matrices: A = 0 0o -1 0 |’ B = 00 -1 0
0 0 01 00 0 1

Holonomy: (A, B) = Zy X Zo
Lattice Basis: (a1, a9, as,a4) = (e1,e2,€e3,€e4)
Generators: o = A :[1,1,0,0]/2, 6 =B :[-1,1,—1,0]/2
First Homology: Z & Z4 & Z4
L= (ti,to, t3,ts,0, B | &® = t1, 8% =ta, afa™ = t1t387",
atia”t =110 =23, atsa =g, BT =11 i =1,3, BB =t4)
= {0, B) x (ts) = O x Z
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015 : 05/01/07/004

1 00 0 1 0 0 0

) . 0 -1 0 0 0 -1 0 0
Rotation matrices: A = 0 01 e B = 0 0 -1 0
0 0 0 -1 0 0 0 1

Holonomy: (A, B) = Zy X Zg
1
Lattice Basis: (a1, a9, as,a4) = (€1, e, €3, 5(61 +ex+es+eq))
Generators: o = A :[0,0,1,0]/2, 6= B :[1,0,0,0]/2
First Homology: Z & Zo & Zo
T'=(t1, by, ts,ts,0, 8 | 0® =t3, B =11, Baf ' =a ', atia™ =11, atpa™ =157,
atga™t =ttty BB =170 = 2,3, Btaf! =ty g M)
= (Bt o) x (t38) = OF X Z

O : 05/01/06/006

-1 000 -1 0 0 O

: . 0 -1 0 0 01 0 O
Rotation matrices: A = o o010 | B = 001 0
0 001 0 00 —1

Holonomy: (A, B) = Zg X Zs

Lattice Basis: (a1,a9,a3,a4) = (5(61 + ea — e3), %(—61 + es + e3), %(el — €9 + €3),¢e4)

Generators: a = A:[-2,—-1,-1,1]/2, = B :[1,1,0,0]/2

First Homology: Z & Zo & Zo

T = (t1,ta, t3,ts, 0, B | &® = tg, §% = tite, afa™' =t 51t
atia™t =t MY atsaT! =ty atzaTt =t, BTN = t3 Y, BtaBT = titats,
BB~ =11t Bt =1;")

= (o, B) % {aft3) = Of X Z

01, : 05/01/04/006

Rotation matrices: A =

o O = O
o O O+
O = O O
OO O
o O = O
|
o = O O
= o O O

Holonomy: (A, B) = Zg X Zs
Lattice Basis: (a1, as2,as,a4) = (e1,€2,€3,€4)
Generators: a = A:[1,1,1,0]/2, =B :[-1,—-1,—1,-1]/2
First Homology: Z & Zo & Z4
T = (t1,ta, t3,ts, 0, B | @® = t3, B2 =t 'ty ", aBa™t =t3t4f ", atia™! =1,
atra™t =7t atgaTt =0t BT =t i = 3,4, BB =i =1,2)
= (a,B) x (t;) = O3 X Z
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Ofg : 14/03/05/004

10 0 0 1
0 1 0 0 0
Rotation matrices: A= | (¢ 0 _% ? . B=1| o
3 1
Holonomy: (A,B | A> = B>=1,BAB ' =AY = D;

V3

1
Lattice Basis: (a1, a9, as,as) = (e1,e2,e3, —e3 + 764)
Generators: o = A :[0,1,0,0]/3, 6= B:[3,2,0,0]/6
First Homology: Z & Zg

T = (t1,to,t3,ts, 0,3 | a® =t9, 2 =t1, BaB ' =a™ !, atija™ =t1, atza™

0 0

-1 0
0 —=
0 —

atya”t =tatyt, BBl =151, BB =11t Bt = t3h)

= (t3,t; ', a) x (B) =03 x Z

Oy : 14/03/06,/004

10 0 0 -1
01 0 0 0
Rotation matrices: A = 00 _% ? , B = 0
3 1
Holonomy: (A, B | A =B?=1,BAB™ ! = A_1> = Dy

V3

1
Lattice Basis: (a1, az,as3,a4) = (e1,e2,€3, —€3 + 764)
Generators: o = A : [1,0,0,0]/3, 6= B :[2,3,0,0]/6
First Homology: Z & Zs

[ = (t1,t,t3,tg, 0, B | @® =t1, (% =to, faf™t =a™!, atsa™ =ty, atza™*
atsat =ttt pu BT =1t Bty =ty BtafTt =t

= (t3,t; ", o) x (B) = 0§ x Z

O35 : 14/03/01/004

_ o o

Rotation matrices: A = B =

Y

o O O+
= o o O
o O = O
[an)

OO O =
O O = O
= o O O

Holonomy: (A,B | A*=B*=1 BAB ' =A"')= D3
Lattice Basis: (a1, a9, as,a4) = (e1,e2,€3,€4)
Generators: o = A : [2,3,-3,0]/6, 6 =B :[2,-3,0,6]/6
First Homology: Z & Zs

0O O
1 0
1
0_
2
o V3
2

3)

o= O O

T = (t1,t,t3, ts, 0, B | @ =11, B2 = t5  tsts, Baf =15 307,

oztloz_l = tl, oztgoz_l = t4, Oéthé_l = tg, Oét4Oé_1 = t3, ﬁtlﬁ_l

Btoff~t =to, Bt =ty, ftaB =t3)
= (t; '3, tat ) x (B) = 03 X Z
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O3, : 13/04/01/014

10 00 -1 0 0 0
: . 01 00 0100
Rotation matrices: A = oo o 1| B= 00 0 1
00 -1 0 0010

Holonomy: (A,B | A*'=B*>=1,BAB ' =AY =D,

Lattice Basis: (a1, a9, as,a4) = (e1,e2,€3,€4)
Generators: o = A : [1,0,0,0]/4, 6= B :[0,1,0,0]/2
First Homology: Z & Zo & Zs
T = (t1,to, t3,ts, 0, B | @ = t1, B2 =ty, Baf ' = a7, atya™ =ty, atza™ =11,
atga™t =tg, BB =171, BtaBT =ty, BB = t3)
= <t4,t3,a> X <ﬂ> = Oi X 7

03, : 13/04/01/020

10 00 -1 0 0 0

: . 01 00 0100
Rotation matrices: A = oo o1 | B= 00 0 1
0 0 -1 0 0010

Holonomy: (A,B | A*=B*>=1,BAB ' =AY =D,
Lattice Basis: (a1, a2,as,a4) = (e1,€2,€3,€4)
Generators: a = A:[1,0,2,0]/4, =B :[0,1,0,0]/2
First Homology: Z & Z4
I'= <t1,t2,t3,t4,a,ﬁ ‘ a4 = tl, B2 = t2, 5045_1 = t4a_1, atga_l = t2,
atsa™t =t atgaT! =t3, LB =111, BtsfTN = ty, BtafT! =t3)
= (ty,t3,0) X (B) = O3 X Z

O35 : 13/04/01/023

10 00 -1 0 0 0

: . 01 00 0100
Rotation matrices: A = oo o 1| B= 00 0 1
00 -1 0 0010

Holonomy: (A, B | A*=B*=1 BAB ' =A"') =D,

Lattice Basis: (a1, a9, as,a4) = (e1,e2,€3,€4)

Generators: o = A : [1,2,2,0]/4, =B :[0,1,0,0]/2

First Homology: Z ¢ Z4

[ = (t1,ty, t3,tg, 0, B | ot = 112, 8% =to, fafB™ = tatga™,
atia”t =t = 1,2, atza”t =t atgat =t3, pp =177,
BtsB =tu, BtaB™ =t3)

= (87 a,af™") x (B) = Of 1 Z
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03, : 13/04/04/011

0 -1 0 0 1 00 0

: . 1 000 0 -1 0 O
Rotation matrices: A = o o010 |’ B= 0 01 o
0 001 0 00 -1

Holonomy: (A, B | A* = B*=1BAB ' =A"') =D,
Lattice Basis: (a1, a9, as3,a4) = (%(—el — ez +e3), %(el — ey — e3), %(61 +e2+e3),e4)
Generators: o = A :[0,0,2,1]/4, 6= B :[1,0,1,0]/2
First Homology: Z & Zs
T = (ti,to, t3,ts, 0, B | o* = titsts, 8% =tits, Baf~ ' = titatza ',
atia™t = titats, atea”t =71 atzaT =t atgat =ty, ft7 =157,

BtaB7Y =171, Btaf ! = titats, Btaft =171
= (t3'6,8a2) x (Ba™ )y = Of x Z

Os : 15/04/01/010

10 0 0
01 0 0 1 00 0
: o 1 V3 10 -10 o0
Rotation matrices: A= 1] o 0 5 g , B = 0 01 o
3 1 0 00 -1

00 V3 !

2
Holonomy: (A,B | A% =B*>=1,BAB ' = A™!) = D

Lattice Basis: (a1, a9, as,a4) = (e1, e, €3, %63 + 764)
Generators: o = A :[0,1,0,0]/6, =B :[1,—1,0,0]/2
First Homology: Z & Zs
I'= <t17t27t37t47aaﬁ | a6 = 1g, 62 =1y, ﬁaﬁ_l = Oé_l, oztloz_l =1, oztga_l = 14,
atga”t =15y, Bt =51, Bt =tg, Bt =tsty ")
= (ta,t3 e, ) x (B) = O X Z

Oj6 : 24/01/02/004

1 0 0 0 1 0 0 0 1 0 00

: . 01 0 O 0 -1 00 0 001
Rotation matrices: A = 00 -1 o | B = o o0 -1 0 |’ C= 010 0
0 0 0 —1 0 0 0 1 0010

Holonomy: (A,B,C | A>=B*>=(C%=1,AB=BA,CAC™' = A7'B,
CBC'=4"hH=A
Lattice Basis: (a1, a9, as,a4) = (e1,e2,€3,€4)
Generators: o = A :[0,—1,0,-1]/2, 6=B:[0,0,1,1]/2, v =C:[2,3,0,—3]/6
First Homology: Z
T = (t1,ta, t3, ta, 0, B,y | & =151, B2 =ta, ¥* =11, Baf™" =tatsa™",
yoy b =a718, vy = a7t atia =4, atia”! = ti_l,z' = 3,4,
BB =ty BB =171 i =23, vty =ts, vtay T =ta, vty = 1)
— (@, 8) x (1) = O} x Z
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O3 : 24/01/04/004

1 00 O 1 0 00 10 0 0
. . 0 -1 0 O 0 -1 00 00 -1 0
Rotation matrices: A = 0 01 e B = 0 0 -1 0 |’ C = 0 0 0 -1
0 0 0 -1 0O 0 01 0 1 0 0

Holonomy: (A, B,C | A> =B*>=C3=1,AB=BA,CAC™'=A"1B,

CBC™' =AY =A
Lattice Basis:
1 1 1
(al,ag,ag,a4) = (61, 5(—61 + ey —e3+ 64), 5(—61 +e2 + e3 — 64), 5(61 —e9 +e3+ 64))
Generators: o« = A:[0,1,1,2]/2, 6=B:[-1,0,-1,1]/2, v =C:[1,0,3,3]/6
First Homology: Z
I'=(t1,to, 13,4, 0, B, | 0% = taty, 3% = tots, v* = 15", Baf™! = t7 '3 taa ™",
1 _ -1 -1 —1 _ ,—1,-1 -1 17 1 T 1,-1,-1,-1
Yoy T =BT, By =ty t o, atiar T =ty ataa” T =ttt oty o,
atsa”t =17y, atyaTt = titg, BB =11, BtafTl =t M, BtaBT =17

Btaf™t = tats, vty =t ytay Tt =1, vty = 45 )
= (@, af) x (7) = Of X Z

The Nonorientable Flat 4-Manifold Groups

We now give a geometric description of the nonorientable flat 4-manifold groups as a
companion to the abstract presentations in Chapter III. Wherever possible, we will

give generators which correspond to the abstract generators given there.

In addition to the information given in the section on orientable flat 4-manifold groups,
we will also describe the orientable double covers of each manifold. Recall that, for

every n-dimensional (closed) flat manifold group I', there is a short exact sequence

0 7" r— 1 11 1

giving I' as an extension of Z" = (t; : ¢ = 1,...,n) by a finite group II, called the point
group. In our case, II is isomorphic to the holonomy group of the manifold. Note that
here II is a subgroup of O(n), the group of all n x n real orthogonal matrices. In the

case where I' is nonorientable, IT will contain an orientation-reversing transformation
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A with det A = —1. Let Il < II be the (normal) subgroup of all orientation-
preserving elements of II; i.e. Il consists of all matrices A € Il with det A = 1. Then
the preimage I'y of Il under this extension gives us the orientable double cover of
the manifold to which I' corresponds. As I'y is of index 2 in I', this indeed gives us a

2-sheeted covering of I'.

N :02/01/01/002 (K? x T?)

Orthogonal matrices: A =

OO O =
o O = O
O = O O
= o o o

Holonomy: (A) = Zs

Lattice Basis: (a1, as2,as,a4) = (e1,€2,€3,€4)

Generators: a = A :[1,0,0,0]/2

First Homology: Z®Z ®Z & Zo

T = (t1,ta, ta, ta,a | @® =1, atja™t =t;,i = 2,3, atga™! =t;1)
= (t3,t4, ) X (ta) = Nf’ X 7

I'= <t2,t3,t4> A (a> = Zg X 7

Fo = (tl,tg,tg,t4,042> = <t1,t2,t3,t4> = Z4 = Oil

Ny : 02/01/02/002

Orthogonal matrices: A =

o O O =
o O = O
O = O O
_ o O O

Holonomy: (A) = Zs
1
Lattice Basis: (a1, a9, as,a4) = (e1, e, €3, 5(63 +eyq))
Generators: a = A : [1,0,0,0]/2
First Homology: Z & Z & 7
T = (ti,to,t3, g, | 0® =11, atja™ =t;,i = 2,3, atga™ = tzt; ')
= (ta, 3ty ", > (t2) = N2 X Z
T = (ta, g, t3t; ") » (o) =
F0 = <t17t27t37t47 > = <t17t27t37t4> — Z4 — Oil
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N3 :04/01/01/010 (K? x K?)

Orthogonal matrices: A =

OO O =
o O = O
O = O O
OO O =
o O = O
|
O = O O
_ o o O

Holonomy: (A, B) = Zg X Zs

Lattice Basis: (a1, as2,as,a4) = (e1,€2,€3,€4)

Generators: a = A:[0,1,0,0]/2, =B :[1,1,0,0]/2

First Homology: Z ® Z ® Zo & Zo

[ = (t1,ta,t3,t4, 0, B | &® = to, (% = tity, faf™  =a, atia™ =t;,i=1,3,

atgat =t BT =i = 1,2, BB =710 = 3,4)

= <t3,t4,0£> X <ﬁ> = Nf’ X 7

I'= <t3,t4,ﬂ> X (a> = Og X 7

Do = (t1,ta, t3,t4, B | 8% = tite, Btif~ " =t;,i = 1,2, pt;7  =t;1,i =3,4)
= <t3,t4,ﬁ> X <t1> = O% X L= O%

Ny :04/01/01/011

Orthogonal matrices: A =

o O O =
o O = O
O = O O
o O O =
o O = O
|
O = O O
— o O O

Holonomy: (A, B) = Zg X Zs

Lattice Basis: (a1, as2,as,a4) = (e1,€2,€3,€4)

Generators: a = A:[0,1,0,0]/2, =B :[1,1,0,1]/2

First Homology: Z & Z & Zo

I'= <t1,t2,t3,t4,0¢,ﬁ | 042 = tQ, 62 = t1t2, ﬁaﬁ_l = t40é, Oéti()é_l = ti,’i = 1,3,

atsa™t =7t BT =t,i=1,2,8t67 =t 1 i =3,4)

= (t3,ta,a) x (B) = N} x Z

I'= <t3,t4,ﬂ> X (a> = Og X 7.

To = (t1,ta,t3,t4,B | 8% = tite, Btif~ " =t;,i=1,2, pt;,7  =t;1,i =3,4)
= (t3,t2,8) x (1) = O3 x L= 0

N2 :04/01/01/013

1 0 0O 10 0 O

: 01 00 01 0 O

Orthogonal matrices: A = 00 -1 0 | B = 00 -1 0
00 01 00 0 -1

Holonomy: (A, B) = Zy X Zg
Lattice Basis: (a1, a9, as,a4) = (e1,e2,€e3,€e4)
Generators: o = A :[1,0,0,1]/2, 6 =B :[1,1,1,—1]/2
First Homology: Z & Z & Zo
T = (t1,to,t3,ts, 0, B3 | ® = tity, B2 = tita, faf™ =tat e, atia™ =t;,i=1,2,4,
atsa™t =3t BB =ti,i=1,2, B3 =t i = 3,4)
= (t; t3,0) @ (B) = NP x Z
D= (t;',ts,8) x (a) =03 x Z
To = (t1,ta,t3,t4,3 | % = t1te, Bt~ =t;,i=1,2, ;7 =t;1 i =3,4)
= (t3,ta,8) x (1) = O3 x L= 0,
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N :04/01/02/004

Orthogonal matrices: A =

o O O
o O = O
o= O O
o O O =
o O = O
|
o= O O
_= o O O

Holonomy: (A, B) = Zy X Zg
1
Lattice Basis: (a1, a2, as,as) = (e1,e2,e3,=(e3 + €4))
Generators: o = A :[0,1,0,0]/2, 6= B :[1,1,0,0]/2
First Homology: Z & Z & Zo
I'= <t1,t2,t3,t4,0¢,ﬁ | Oé2 = to, 62 = t1la, ﬁaﬁ_l = q, Oéti()é_l =t;,1=1,3,
Oét404_1 = t3t4;17 ﬁtiﬁ_l = tlvz = 1727 ﬁtiﬁ_l = ti_17i = 374>
= (ta,tat;a) x (B) = N3 X Z
I'= <t3,t4,ﬁ> X <Oé> = Og X 7
Lo = (t1,ta,t3,t4, B | 8% = tity, BtiB' =t;,i=1,2, Bt;37 ' =t; i =3,4)
= (ts,ta,0) x (t1) = O3 x L= 0,

N7 :04/01/06,/004

1 00 O 10 0 O
. 010 O 0 1 0 O
Orthogonal matrices: A = oo 1 ol B = 00 -1 0
00 0 -1 0 0 0 —1
Holonomy: (A, B) = Zg X Zs
1
Lattice Basis: (a1,a2,as,a4) = (e1,e2, =(e1 +e3), =(e1 +e4))

1
2
Generators: o = A:[0,0,1,0]/2, 6=B:[1,1,-1,1]/2
First Homology: Z & Z
I'= <t1,t2,t3,t4,0¢,ﬁ | 042 = t3, 62 = tltg, ﬁaﬁ_l = t4Oé_1, oztioz_l = ti,i = 1,2,
atsa™t =ttt BT =t = 1,2, Bt3B = titgh, Btafpl = tit) )
= (tit;tg,a) x (B) = N3 x Z
T = (tst; ', 1715, 8) x (o) = 03 X Z
Lo = (t1,ta, 13, ta, B | B° = tata, Bt~ =t;,i = 1,2, Btsf~" =t1t5", Btaf™" =t1t;")
= (st it 2 B) % (ty) = O3 x Z = O3
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Ng : 04/01/01/006

Orthogonal matrices: A =

OO O
o O = O
O = O O
OO O =
o O = O
|
O = O O
_= o o O

Holonomy: (A, B) = Zg X Zs
Lattice Basis: (a1, as2,as,a4) = (e1,€2,€3,€4)
Generators: a = A:[0,0,1,0]/2, =B :[0,1,—1,0]/2
First Homology: Z ® Z ® Zo & Zo
[ = (ty,to, t3,tg, 0, B | a® =t3, B2 =t3, Baf™ =a L atia ™t =t;,i=1,2,
atsa”t =t BT =1, BB =t = 3,4)
= <Oé,t4,ﬂ> X <t1> = Ng’ X 7
T = (t,tg,a) x (B) = N} x Z
To = (t1,ta,t3,t4,B | B2 =ta, Bt187" =t1, Bt =t;1,i =3,4)
= (t3,t4,0) x (t1) = O3 x Z = O3

Ny :04/01/01/007

Orthogonal matrices: A =

o O O =

o O = O

O = O O

oo O =

o O = O
|

Holonomy: (A, B) = Zg X Zs
Lattice Basis: (a1, as2,as,a4) = (e1,€2,€3,€4)
Generators: a = A:[0,0,1,0]/2, =B :[0,1,—1,1]/2
First Homology: Z® Z & Z4
I'= <t1,t2,t3,t4,0¢,ﬁ | 042 = t3, 62 = tg, ﬁaﬁ_l = t4Oé_1, Oéti()é_l = ti,’i = 1,2,
atsa™t =7t BT =ty BT =t i = 3,4)
= <a,t21,ﬁ> x (t1) = N} x Z
I'= <t1,t4,a> X <ﬂ> = N13 X 7
To = (t1,ta,t3,t4,B | B2 = ta, Bt187 " =t1, Bt =t;1,i=3,4)
= (t3,t4,0) x (t1) = O3 x Z = Oy

Ny : 04/01/03/011

Orthogonal matrices: A =

o O O =

o O = O

O = O O

o O O

o O = O
|

Holonomy: (A, B) = Zy X Zg
1

Lattice Basis: (a1, a9, as,as) = (€1, ea, 5(61 +e3),e4)

Generators: o = A : [1,0,0,0]/2, 6= B :[1,1,0,0]/2

First Homology: Z & Z & Zo & Zo

I'= <t1,t2,t3,t4,0¢,ﬁ | Oé2 = 11, 62 = t1la, ﬁaﬁ_l =, Oéti()é_l =1;,1=2,3,

atsa™t =t BB = ti,i = 1,2, Btaf =ty BafTt =11")

= (t3,ta,a) x (B) = N} x Z

T = (a't3,t4,8) % (a) = N§ x Z

Lo = (t1,ta,t3,t4,B | 8% = tite, Bt =t;,i = 1,2, Bt3B~ = tit5!, Btaf 't =t;")
= (ts, 11132, 8) % {ts) = O3 x Z = O3
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N, - 04/01/03/004

1 0 0 0 1 0 0 0

) 0 1 0 0 0 1 0 0

Orthogonal matrices: A = 00 -1 0 |’ B = 00 —1 0
00 0 1 00 0 -1

Holonomy: (A, B) = Zy X Zg
1
Lattice Basis: (a1, a2, as,a4) = (e1,e2, =(e1 + €3),e4)
Generators: o = A :[0,0,0,1]/2, 6= B :[0,1,0,1]/2
First Homology: Z & Z & Zo
r= <t1,t2,t3,t4,0¢,ﬁ | Oé2 = t47 62 = t27 ﬁaﬁ_l = a_la Oéti()é_l = tlaz = 1727
atsa” ! =ity BB =t BB =tz P =1;")
= (t3,tit3 ,a) x (B) = N3 X Z
= <oz,t1_1t§,ﬁ> x (t3) = N3 % Z
Lo = (t1,ta, t3,t0, B | B2 =to, Bt~ =11, Bts67 =tit5 !, praf~t =11
= (ta,t1t3>, B) % (t3) = O3 x Z = O3

Ny, : 04/01/03/012

Orthogonal matrices: A =

o O O =
o O = O
O = O O
o O O =
o O = O
|
O = O O
_ o O O

Holonomy: (A, B) = Zg X Zs
1
Lattice Basis: (a1, a2,as,a4) = (e, €2, 5(61 +e3),eq)
Generators: o = A : [1,0,0,0]/2, 6 =B :[1,1,0,1]/2
First Homology: Z & Z & Zo
I'= <t1,t2,t3,t4,0&,ﬁ | Oé2 = 11, 62 = t1la, ﬁaﬁ_l =ty Oéti()é_l =1;,1=2,3,
atsa™t =t BLBTN = ti,i = 1,2, BtafT =ty BafTt =11")
= (t3,ta,a) x (B) = N} x Z
T = (a 3,1, 0) x (o) = N} x Z
Do = (t1,ta,t3,ta, 8| 07 = tita, Bt:i5" = tii = 1,2, Btz = taty", Btaf™" =t
= (ta,t1t3%,8) % {t3) = O3 x Z = O3
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Ny :04/01/04/005

1 0 0 0 1 0 0 0

) 0 1 0 0 0 1 0 0

Orthogonal matrices: A = 00 -1 0 |’ B = 00 —1 0
00 0 1 00 0 -1

Holonomy: (A, B) = Zy X Zg
1
Lattice Basis: (a1, a9, as,a4) = (e1,e2,e3, =(—e1 + e3 + e4))
Generators: o = A : [-1,0,0,0]/2, =B :[1,1,0,0]/2
First Homology: Z & Z & Zo
I'= <t1,t2,t3,t4,0¢,ﬁ | Oé2 = t1_17 ﬁ2 = 7511(:27 ﬁaﬁ_l = Q, Oétg()é_l = t27 OéthZ_l = t3—17
atia”t =ty BT =i =1,2, B8 =457, s =)
= (ta,t3 tg,0) x (B) = N3 X Z
T = (a ttyt31,8) x (@) = N} x Z
Lo = (t1,ta,t3,t4, B | B = tity, Bt~ =t;,i=1,2, BtzB~ =131, BB~ =174 ")
= (t3,t; 1452, 8) % (ta) = O3 W Z = O3

N, : 02/02/01/002

-1 0 00

: 0 -1 00

Orthogonal matrices: A = 0 0 -1 0
0 0 01

Holonomy: (A) = Zs

Lattice Basis: (a1, a9, as,a4) = (e1,e2,€e3,€e4)

Generators: o = A:[0,0,0,1]/2

First Homology: Z & Zo @ Zo & Zo

T = (t,t2,t3,ts,a | @® =ty, atia™t =t;1i=1,2,3)
= <t1,t2,t3> A (a> = Z3 X 7.

Fo = (tl,tg,tg,t4,042> = <t1,t2,t3,t4> = Z4 = Oil

Nis - 12/01/02/002

Orthogonal matrices: A =

o O O
O O = O
o O O

Holonomy: (A) = Z4

Lattice Basis: (a1, a9, as,a4) = (e1,e2,€3,€e4)

Generators: a = A:[0,1,0,0]/4

First Homology: Z & Zao @ Zo

T = (t1,t2, t3,ts,a | @t = ta, atia ™t =171, atsa™ =y, atga™! =t31)
= <t1,t3,t4> A (a> = Zg X 7

Do = (t1,ta, t3, 14,02 | (@) = to, @t1(a?) ™' =t1, ?t;(a®) ™t =t71i = 3,4)
= (t3,t4,a2> X <t1> = O% X 1= O%
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Nig : 12/01/04/002

01 00

. -1 0 00

Orthogonal matrices: A = 00 -1 0
00 01

Holonomy: (A) = Z4
) ) 1 1 1
Lattice Basis: (a1, a2,as3,a4) = (5(61 + eg + e3), 5(—61 + ey — e3), 5(—61 —ey+e3),eq)
Generators: a = A:[0,0,0,1]/4
First Homology: Z ¢ Z4
[ = (t1,ta, t3, ta, | o = tg, atja™ = 715151 ataa™ =11, atza™ =to)
= <t1,t2,t3> X (a> = Z3 X 7

Do = (t1,ta, t3, 14,02 | (@®)? = t4, @t1(a?) ™ =t3, aPta(a®) ™t =175 M50,

a2t3(a2)_1 = t1>

= (tatz, t1t3 ', a%) x (t3) = O3 x Z = O}

Ni 0 12/01/03/002

010 0 1 0 0 0

) 1 00 0 0 1 0 0

Orthogonal matrices: A = 00 0 -1 |’ B = 00 —1 0
0 0 1 0 00 0 -1

Holonomy: (A, B|JAB = BA, A*> = B) = 74
Lattice Basis: (a1, a9, as,a4) = (e1,e2,€e3,€e4)
Generators: o = A:[0,1,0,0]/2, 6= B:[-1,1,0,0]/2
First Homology: Z & Zo & Zo
T = (t1,ta, t3,ts, 0, B | @t = tity, B =27, afa™ =371, atja™ =t
ataa™t =1y, atza” =y, atgat =31, BT =t,i=1,2,
Bt =t i =3,4)
= <t3,t4,ﬁ> X (a> = Og X 7
Do = (t1,ta, t3, 14,02, B | (@) = t1ta, B = *t71, a?B(a?) ™! = 3,
Pti(@®) =i =1,2, *ti(@®) " =t71i = 3,4,
Bt =t,i=1,2, Bt =t;1,i=34)
= (t3,t1,8) X (t1) = O3 X Z =0,
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Nis : 12/01/06/002

1 0 00 10 0 0

) 0 -1 00 0 1 0 0

Orthogonal matrices: A = 0 0 01 | B = 00 1 0
0 0 10 00 0 -1

Holonomy: (A, B|JAB = BA, A*> = B) = 74

Lattice Basis: (a1, a9, as,as) = (e1,ea, %(61 + e + 2e3), %(el + ey + 2e4))
Generators: o = A :[0,0,1,0]/2, 6= B:[1,2,1,-3]/2
First Homology: Z ¢ Z4
D = (t1,to, t3,ts, 0, B | @t = t1, B =tat;'a? aﬁa =t3',67Y, atpat =151,
atsa™t =ttt atsa! =ty s, Bt B— =t;,i=1,2, Bt3f! = titaty ",
Btaf~ = titaty ")
= (t31ta, t] 5 st B) 1 (a) = O3 X Z
Lo = (t1,ta, t3,t4, 0%, 8| (@®)2 =11, = t2t4 o? oz2ﬁ( 2) =717
o2ty ()7t = to, a2t3(a2)_ = t1t2t3 , t4( 3= _tltgtgl,
Bt =ti,i=1,2, BtsB" = titaty" . Bt = tataty ")
= (tat; ' titat; 2, 0%) X (tg) = O3 X Z = O}

Ny : 14/02/03/002

-1 0 0 0
01 0 0

Orthogonal matrices: A = 0 0 _% _?
V3 1

005 =3

Holonomy: (A) = Zg

1 3
Lattice Basis: (a1, a2,as3,a4) = (€1, e, €3, 563 + 764)
Generators: o = A :[0,1,0,0]/6
First Homology: Z & Zg
_ 6 _ -1 _ -1 —1 _ 41 -1 _ -1
I'= <t1,t2,t3,t4,0£ | o = tg, atia = tl s atsa = t3 t4, atyo = t3 >
= (t1,t3,t4) % (@) = Z*> % Z
o= <t1,t2,t3,g4, o? [ () =ty a®t1(a®) 7! =1, ®ta(0®) 7 =17, @®ta(e?)”
- <t37t4 ) & > < 1> 03 X L= 04
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Ny : 14/01/03/002

-1 0 0 0

01 0 0

Orthogonal matrices: A = 0 0 % ?

1

0o V3 1

2 2

Holonomy: (A) = Zg

1 V3

Lattice Basis: (a1, a2,as3,a4) = (€1, €2, €3, 563 + 764)
Generators: a = A:[0,1,0,0]/6
First Homology: Z & Zs
T = (t1,ta, t3, ts, | a8 = to, atja™ =171, atsa™ = t3t;!, atsa™ =t3)
= (t1,t3,ts) ¥ () =Z> X Z
Lo = (t1,t, t3, ta, 0% | (@2) = to, &®t1(a®) ™' = t1, a®t3(a®) ™t =111, a®ta(a®) ™t =5t 1)
= (t3,t;5,0%) x (t1) = O3 x Z = Of

Ny, : 14/01/01/002

1 0 0 0

: 0 0 -1 0

Orthogonal matrices: A = 0 0 0 —1
0 -1 0 0

Holonomy: (A) = Zg

Lattice Basis: (a1, a9, as,a4) = (e1,e2,€3,€4)

Generators: o = A : [1,0,0,0]/6

First Homology: Z & Zs

T = (t,t2,t3,ts,a | ¥ =t1, atsa™ =t;1, atza™ =151, atya™t =131)
= <t2,t3,t4> A (a> = Zg X 7

Fo = (tl,tg,tg,t4,042 (a2)3 = tl, a2t2(a2)_1 = t3, a2t3(a2)_1 = t4, a2t4(a2)_1 = t2>
= (t5 "3, 15 ts,0%) x (t3) = O3 x Z = O}

Ny : 04/02/01/008

-1 0 0O -1 0 0 0

) 0 -1 0 0 0 -1 0 0

Orthogonal matrices: A = 0 01 0 | B = 0 0 -1 0
0 0 0 1 0 0 0 1

Holonomy: (A, B) = Zg X Zs
Lattice Basis: (a1, as2,as,a4) = (e1,€2,€3,€4)
Generators: a = A:[0,0,1,0]/2, =B :[0,0,1,1]/2
First Homology: Z & Zg & Zs & Zs
T = (t1,ta, t3,ts, 0, B | @® =t3, B2 =t4, Baf ' =o', atia™ =t71i=1,2,
atga™ =ty, BB =t i =1,2,3)
= <t1,t2,a> X <ﬂ> = Og X 7
Lo = (t1,ta, 3, ta, 0 | @ = t3, atia™ ' =t;1i = 1,2, atga™' = ty)
= (tl,tg,a> X <t4> = O% X 7 = O%
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Ny : 04/02/01/016

-1 00O -1 0 0 0

) -1 0 0 -1 0 0

Orthogonal matrices: A = 0 01 0 |’ B = 0 0 -1 0
0 0 0 1 0 0 0 1

Holonomy: (A, B) = Zy X Zg
Lattice Basis: (a1, a9, as,a4) = (e1,e2,€3,€e4)
Generators: o = A :[0,—1,1,0]/2, =B :[0,0,1,1]/2
First Homology: Z & Zo & Z4
[ = (t1,to, t3,t4, 0, B | &® = t3, B2 =t4, Baf™' =tea™?, atja™t =t
Oét4Oé_1 = t4, ﬁtiﬁ_l = ti,i = 1,2,3>
= (t1,t2,a) x (B) =03 x Z
Do = (t1,ta, t3, ta, 0 | @® = t3, atia™t =171 i = 1,2, atga™' =ty)
= <t1,t2,0¢> X <t4> = O% X 71 = O%

Ny, : 04/02/01/011

10 00 -1 000

: 01 00 0 -1 00

Orthogonal matrices: A = 00 -1 0 | B = 0 01 0
00 01 0 001

Holonomy: (A, B) = Zg X Zs
Lattice Basis: (a1, as2,as,a4) = (e1,€2,€3,€4)
Generators: a = A:[0,1,0,0]/2, =B :[0,1,0,1]/2
First Homology: Z & Zg & Zs & Zs
[ = (t1,to,t3,tg, 0, B | &® =to, B2 =t4, Baf™ ' =a7!, atija™ =t;,i = 1,4,
atsa”t =131, BT =t i = 1,2, Btsf = t3)
= (t1,t3,0) X (B) = NP x Z
Do = (t1,to,ts,t0, B3| B = t4, Bt~ =171 i=1,2, Btz =t3)
= {t1,12, 8)  (ts) = OF x Z = O}

Ny = 04/02/01/012

10 00 -1 000

: 01 00 0 -1 0 O

Orthogonal matrices: A = 00 -1 0 | B= 0 01 0
00 01 0 0 01

Holonomy: (A, B) = Zg X Zs

Lattice Basis: (a1, a2,as,a4) = (e1,€2,€3,€4)

Generators: o = A:[0,1,0,0]/2, =B :[0,1,—1,1]/2

First Homology: Z & Zo & Z4

T = (t1,ta, t3,ts, 0, B | &% = to, B2 =t3'ty, Baf ' =t3'a™!, atja ™ =t;,i

atsa”t =t3t g =17t i = 1,2, BB = t;,i = 3,4)

= (t1,t3,0) x (B) = NP x Z

Do = (t1,ta,t3,t4,3 | 8% = t3'ts, ;37 =t;1i=1,2, Bt;37  =t;,i=3,4)
= (1,2, 8) X (t3) = O3 x L= 0
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Nyg = 04/02/03/004

1 0 0O -1 000

: 01 00 0 -1 0 O

Orthogonal matrices: A = 00 -1 0 | B= 0 0 1 0
00 01 0 0 01

Holonomy: (A, B) = Zy X Zg
1
Lattice Basis: (a1, a2, as,a4) = (e1,e2, =(e1 + €3),e4)
Generators: o = A :[0,1,0,0]/2, 6= B:[0,1,0,1]/2
First Homology: Z & Zo & Zo
I'= <t1,t2,t3,t4,0¢,ﬁ | Oé2 = t27 62 = t47 ﬁaﬁ_l = a_la Oéti()é_l = tlaz = 1747
atza™t =titgt, BLBT =171 i=1,2, B3B! =17 ')

= (t3,t1t3 ,a) x (B) = N3 X Z
Lo = (t1,ta,t3,ta, B | 2 = ta, Bt~ =t7',i=1,2, Btsf~" =7 't3)

= (to, 17", 8) x (t3) = O3 x Z = O3

Ny, : 13/01/01/008

1 00 O -1 0 0 0

: 010 O 0100

Orthogonal matrices: A = 000 -1 | B = 001 0
001 O 0 001

Holonomy: (A, B) = Z4 X Zo

Lattice Basis: (a1, a9, as,a4) = (e1,e2,€e3,€4)

Generators: a = A:[0,1,-2,-2]/4, 3 =B :]0,0,1,1]/2

First Homology: Z & Zo @ Zo

T = (t1,ta, t3,ts, @, B | @t = to, B2 = tats, afa™ =t318, atia™! =ty

atsa™t =ty, atga”t =131, puBT =1, BT = t,i = 2,3,4)

= <t3,t1,ﬂ> X (a> = N13 X 7

Do = (t1,ta, t3, ta, 0 | o = to, atia™ =11, atza™' =t4, atga™ =t31)
= <t3,t4,0¢> X <t1> = 02 XL = Oé

Nyg = 13/01/01/011

100 O -1 0 0 0

: 010 O 0100

Orthogonal matrices: A = 000 -1 | B = 001 0
001 O 0 001

Holonomy: (A, B) = Z4 X Zs

Lattice Basis: (a1, as2,as,a4) = (e1,€2,€3,€4)

Generators: o = A:[-2,1,2,2]/4, =B :[1,0,1,1]/2

First Homology: Z & Zo & Zo

T = (t1,ta, t3, ts, @, B | @* = t72ty, B2 = tats, afa™' = 71316, atia™" =1y,

atsa™t =ty, atga”t =31, puBT =1 BB = t,i = 2,3,4)

= (t3,t7,8) x(a) = N} x Z

Do = (t1,ta, t3, ta, 0 | @ = 1729, atia™ =11, atza™' = t4, atga™ =t31)
= (tg,t4,a> X <t1> = Og X 7 = Oé

29



Nig : 13/01/03/008

-1 0 0 0 1 0 0 0

) 01 00 0 01 0

Orthogonal matrices: A = 0010 | B = 0 -1 0 0
0 0 0 1 0 0 0 1

Holonomy: (A, B) = Zs X Z4

: : 1 1 1
Lattice Basis: (a1, a2,as3,a4) = (5(61 — ey —e3), 5(—61 + ey — e3), 5(61 +ex+e3),eq)
Generators: o = A :[1,1,0,0]/2, 6= B :[0,0,-2,1]/4
First Homology: Z & Zs
_ 2 _ VI | 1 -1 -1 |
I'= <t1,t2,t3,t4,0¢,ﬁ | «@ _t1t27 ﬁ - tl 753 t47 ﬁaﬁ _t3 a o, atio _t3 )
ataa™t = titats, atzat =71, atgaTt =ty, ffT =151, BtafT = 15,
Btz = titats, Btaf ! = ty)
= (t1, 13", ) @ (B) = N3 X Z
Do = (t1,ta,t3,ta, B | B* =t 15, S5 =51, B! = t37", Btz = tatats,
BtaB" = ta)
= (tita, ty ' t3 1, 3) X (t3) = O} x Z = 03

Njy : 06/01/01/063

-1 0 0 0 -1 0 00 -1 000

. 01 00 01 00 0 -1 0 0

Orthogonal matrices: A = 0010 | B= 00 -1 0 |’ C = 0 01 0
00 01 00 01 0 001

Holonomy: (A, B,C) = Zg X Za X Zy
Lattice Basis: (a1, as2,as,a4) = (e1,€2,€3,€4)
Generators: a = A:[0,0,1,0]/2, =B :[0,1,-1,0]/2, v=C:1[0,0,0,1]/2
First Homology: Z & Zg & Zs & Zs
U= (t1,to,t3,ta, 0, B,7 | o® =t3, B2 =t3, > =tu, BaB ' =a ', yay ' =q,
7ﬁ7_1 = ﬁ_l, oztloz_l = tl_l, oztioz_l =t;,1=2,4, ﬁtiﬁ_l = ti_l,z' =1,3,
Btaf~t =ty vty =t i =1,2, ytgyT! = t3)
= (a,t1,8) x (7) = N§ x Z
Lo = (ti,to,t3,t0, 8,7 | B> =to, ¥* =ta, 18y =71, Bt~ =t 1,i=1,3,
Btaf ™ =ty vty =171 i=1,2, ytay T =ts)
—(t1.t3.0) % (7) = O3 5 2 = O
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N3 = 06/01/01/041

10 00 1 0 00
: 01 00 0 -1 00

Orthogonal matrices: A = 00 -1 0 |’ B = 0o 0 -1 0 |’ =
00 01 0 0 01

Holonomy: (A, B,C) = Zg X Zo X Zs
Lattice Basis: (a1, a9, as,a4) = (e1,e2,€3,€e4)
Generators: o = A:1[0,1,0,0]/2, 6=B:[1,-1,0,0]/2, v =C:[1,0,0,1]/2
First Homology: Z & Zo @ Zo & Zo
U= (t1,to,t3,ta, 0, B,7 | 0® =tg, B2 =t1, 7> =t4, BB~ =7,
7@7_1 = a_l, 7ﬁ7_1 = tgﬁ_l, atia”l = t;,i=1,4, atga_l = tgl,
Btif" =t i =2,3, Btaf = ta, vty =710 = 1,2, ytgy ! = t3)
= (a,t3,08) % (7) = N§ x Z
Lo = (t1,ta,ta,ta, B,y | B2 =t1, ¥ =ta, ¥8y" =127, Btif~" =t;71,i=2,3,
Btaf ™ =ty vty =171 i =1,2, ytay T =ts)
= (t2,t3,0) » () = 03 x Z = Of

Ny, : 06/01/01/064

-1 0 00 -1 0 00
_ 0100 01 00

Orthogonal matrices: A = 0010 | B = 00 -1 0 |’ =
0 0 01 00 01

Holonomy: (A, B,C) = Zg X Za X Zy

Lattice Basis: (a1, as2,as,a4) = (e1,€2,€3,€4)

Generators: a = A:[0,0,1,0]/2, =B :[0,1,-1,0]/2, v=C:[1,0,0,1]/2
First Homology: Z & Zo & Zo

U= (t,to,t5, ta, 0, B,7 | 0® =t3, B2 =ta, v =t4, Baf ' =a!, yay ! =ta,

Byt =087t atiat =7t atiaT = 1,0 = 2,4, B3 =t i = 1,3,

Btaft =ty vty =7V i = 1,2, ytzy Tt = t3)
= (a,t1,8) ¥ (7)) = N3 x Z
Do = (ti o, ta,ta, B,y | B2 =ta, /2 =ty 7By =187, Bif~! =t71i=1,3,
BtaB™ = ty, vty =710 = 1,2, ytzy ! = t3)
— (11,15, 0) % (1) = O3 x 7 = O%
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N3 : 06/01/01/066

Orthogonal matrices: A =

O O O
O = O

0
Holonomy: (A, B,C) = Zg X Zo X Zs

o= O O

= o O O

Lattice Basis: (a1, a9, as,a4) = (e1,e2,€3,€e4)
Generators: o = A :1[0,0,1,0]/2, 6=B:[0,1,-1,0]/2, vy =C:[1,0,1,1]/2

First Homology: Z & Zao & Zo

o O O

O O = O

= o O O

I'= <t17t27t37t47a7/877 ’ 042 = t37 52 = t27 72 = t3t47 /Ba/B_l = a_la ’Yafy_l = tlaa
Byt =tit3B87Y, atiat =Y atiaTt = 1,0 = 2,4, LB =11 i = 1,3,

BtaB ™t =ty, vty =t i = 1,2, iy = ty,0 = 3,4)

= {a,t1,8) x (y) = N x Z

Lo = (t1,ta, t3,t4, 8,7 | B* =ta, 7> =tsta, Y8y =tatsf7", BB~ =t i =
Btaf~t =ty vty =t i =12, yty T =t5,0=3,4)

= (t1,t3,08) @ (y) = 03 x Z = O

N3, : 06/01/01/082

o = O

Orthogonal matrices: A =

o O O =

0
Holonomy: (A, B,C) = Zg X Za X Zy

o = O O

= o o O

Lattice Basis: (a1, as2,as,a4) = (e1,€2,€3,€4)
Generators: a = A:[0,0,1,0]/2, =B :[1,1,1,0]/2, v=C:[1,0,0,1]/2

First Homology: Z & Zo & Zo

o O = O

= o o O

L3,

I'= <t17t27t37t47a7/877 ’ 042 = t37 52 = t27 72 - t47 /Ba/B_l = tla_la ’Yafy_l - tlaa
Wyt =871 atijet = tl_l atia™l =t;,i =24, pt;37 ' = tl._l,z' =1,3,

Btaf~ =ty vty =t = 1,2, ytgy T =t3)

= (o t7",B) x (1) = Ni x Z

Do = (t1,ta, t3,t4, 8,7 | 8% = ta, v* = ta, 7By~ = 671, pt:if~" =1t
Btaf™ =ty vty =t = 1,2, i3yt = )

= (t1,t3,8) x () = 03 x Z = O
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Njs : 06/01/01/083

-1 0 0 O -1 0 00 1 0 0 0
) 0100 0 1 00 0 —1 0 0
Orthogonal matrices: A = 00 1 0 , B = 00 -1 0 ,C = 0 0 -1 0
0 0 01 0 0 01 0 o0 0 1
Holonomy: (A, B,C) = Zg X Zo X Zs
Lattice Basis: (a1, a9, as,a4) = (e1,e2,€3,€e4)
Generators: o = A:[0,0,1,0]/2, 6=B:[1,1,-1,0]/2, y=C:[0,-1,0,1]/2
First Homology: Z & Zao & Zo
I'= <t17t27t37t47a7/877 ’ 042 = t37 52 = t27 72 - t47 /Ba/B_l = tla_la ’Ya’Y_l = a_la
Yoy =367t atie =t atia T =t,i=2,4, ptipT =71 i=1,3,
Btaf~t =ty vty =ty, vty =t;71,i=2,3)
= (o, t7",8) x () = Nj X Z
FO = <t17t27t37t47ﬁ>/7 | ﬁz =12, /72 = 14, 757_1 = t3ﬁ_17 ﬁtiﬁ_l = tj_lvi = 1737
Btaf ' =ta, yt1y =ty vty =t;71,i=2,3)
= (t3,t1,8) x (7) = O3 x Z = O,
Ny = 06/01/01/081
-1 0 0 O -1 0 00 -1 0 0 0
) 01 00 0 1 00 0 -1 0 O
Orthogonal matrices: A = 001 0 , B = 00 -1 0 ,C = 0 01 0
0 0 01 0 0 01 0 0 0 1

Holonomy: (A, B,C) = Zg X Za X Zy
Lattice Basis: (a1, as2,as,a4) = (e1,€2,€3,€4)
Generators: a = A:[0,0,1,0)/2, s =B :[-1,1,-1,0]/2, v =C : [0,0,0,1]/2
First Homology: Z & Zo & Z4
I'= <t17t27t37t47a7/877 ’ 042 - t37 52 = t27 72 = t47 /Ba/B_l - tl_la_la 7a7_1 = «,
Yy =0B7h atiaTt =1 atiaT =i = 2,4, BLpT =i = 1,3,
Btaf™' =ta, ytiv P =t = 1,2, 3y = t3)
= <Oé,t1,ﬁ> X </7> = Néis X 7
I10 = <t17t27t37t4757’}/ ’ /82 = t27 72 = t47 757_1 - tl/g_lu /Btiﬂ_l = tz'_lai = 1737
Bt =ta, vty =171 =1,2, ytay T = ty)
= (t1,t3,0) » () = 03 x Z = Of
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N3, : 06/01/01/045

10 00 10 00 -1 0

. 01 00 0 -1 00 0 -1

Orthogonal matrices: A = 00 -1 0 |’ B = 0o 0 -1 0 |’ C = 00
00 01 0 0 01 0 O

Holonomy: (A, B,C) = Zg X Zo X Zs
Lattice Basis: (a1, a9, as,a4) = (e1,e2,€3,€e4)
Generators: o = A:[0,1,0,0]/2, 6=B:[1,—-1,-1,0]/2, v =C:[1,0,1,1]/2
First Homology: Z & Zo & Z4
T = (t1,bo,t3,ta, 0, 3,7 | @® = ta, 07 = t1, ¥* = tata, B =t5'a" ",
7@7_1 = tga_l, 767_1 = tgtgﬁ_l, atia”t = ti,i=1,4, atga_l = tgl,
Btif" =t i =2,3, BtafT = ta, vty =710 = 1,2, vty = t3)
= (a,t3,08) % (7) = Nj x Z
Lo = (t1,ta,t3,ts, 3,7 | B =t1, 7* =tsta, vBy ™ =tatsf", Bt =1;",i=2,3,
Btaf ™ =ty vty =171 i =1,2, ytay T =ts)
= (t2,t3,0) x () = O3 x Z = OF

Nis : 06/01/01/049

-1 0 00 1 0 00 -1 0

. 01 00 0 -1 00 0 1

Orthogonal matrices: A = 00 -1 0 | B = o 0 -1 0 | C= 0 0
00 01 0 0 01 00

Holonomy: (A, B,C) = Zg X Za X Zy
Lattice Basis: (a1, as2,as,a4) = (e1,€2,€3,€4)
Generators: a = A:[0,1,0,0}/2, s =B :[-1,1,-1,0]/2, v =C : [0,0,0,1]/2
First Homology: Z & Zo & Z4
T = (t1,ta, t3, ta, 0, B,y | @2 = to, B2 =171 % =t4, Baf™ ! =17 5 0™,
yoy t=a, y8y =871, atjat = ti_l,z' =1,3, atsa ' = ty,
Bt~ =110 =23, Btaf™t = ta, iy =4, vty T = 4,0 =2,3)
= (a, ) @ (y) = 04 X Z
To = (t1,ta, t3, ta, 0, B | % = to, B2 =171, Bap™ =t7 M5 0™, atia™ =t;,i = 1,3,
atya™t =ty, BB =110 =2,3, BBt =t4)
— (o, ) x {ta) = OF x Z = O
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Ny : 06/01/01/092

-1 0 00 -1 0 00 1
. 0 1 0 0 0 -1 0 0 0
Orthogonal matrices: A = 00 -1 0 ,B= 0 o1 0 | C = 0
00 01 0 001 0
Holonomy: (A, B,C) = Zg X Zo X Zs
Lattice Basis: (a1, a9, as,a4) = (e1,e2,€3,€e4)
Generators: a = A :[0,1,-1,0]/2, =B :[1,0,1,0]/2, y=C:[0,1,0,1]/2
First Homology: Z & Zao & Zo
I'= <t17t27t37t47a7/877 ’ 042 = t27 ﬂ2 = t37 72 = t2t47 /Ba/B_l = tltg()é_l,
yoy Tt =tga, vOy T =087, atia”! = ti_l,z' =1,3, atsa ' = ty,
Btib" =t i = 1,2, Btaf = ta, vty = b0 = 1,24, ytay T = t57)
= (@, B8) % (7) = 04 X Z
Lo = (t1,ta, t3,ta, 0, B | o® =to, B2 =t3, Baf~ ! =titza™!, atia™' =t;,i=1,3,
atsa™t = ty, BT =170 =1,2, BtafT! = ta)
= (a, ) x (ta) = Of x Z =014
Ny : 12/03/10/005
1 0 0 0 1 0 0 0 1
. 0 -1 00 0 -1 0 0 0
Orthogonal matrices: A = 0 0 -1 0 ,B = 0 0 1 0 ,C'= 0
0O 0 01 0O 00 -1 0
Holonomy: (A, B,C | B=C?A,A>=C*'=1,ACA™ ' =C™1) =D,
. . 1 1
Lattice Basis: (a1, a9, as,as) = (e1, ez, 5(61 +e2+e3 —eyq), 5(61 +eo+es+eyq))
Generators: a = A:[0,0,-1,1]/2, 6 =B :[1,2,0,-2]/2, v =C :[0,0,1,0]/2

First Homology: Z & Zo
T = (t1,ta, t3, ta, @, B,y | @ = t3'ty, B2 = titatz 't 0, 7% = titat Lo, 41 =1,
afa”! = tz_ltglt4ﬁ_1, yay b =871 Ay =, atiat =ty
ataa™t =51 atzaTt =ttt atgaT! = itz
BB~ =t1, Btoft =1y, BtafT =ty BtafTt =15 'ts,
vy T =t ey T =t ey T =ty ytay T =ty ')
= (@, 8) % (7) =04 X Z
To = (t1,ta, t3, ta, o, B, 7% | @ = t3'ty, B% = titats '), 7% = titat 'a B, (4%)? =,
afa”t =ttt ()a(r) T = a7l (V)80 T =871 ataTl =1,
ataa™t =51 atzaTt =ttt atgat = titzt, LB =1, BB =151
BtaB~ =ty , Btaf™ =135, (V)T =11, Yta(¥?) T = 1o,
Vts(v?) = titaty !, Va(v?) 7 =ttt )
= (a,8) x (¥*) = O x Z = O
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Ny, :12/03/04/006

10 0 0 01 00 01 00
. 0 1 0 0 1 0 0 0 10 0 0
Orthogonal matrices: A = 00 -1 o |’ 00 -1 0 I’ C= 00 o0 1
00 0 -1 00 01 00 -1 0
Holonomy: (A,B,C |A=C%*B*=C*=1,BCB'=C"1 =D,

Lattice Basis: (a1, a9, as,a4) = (e1, e, €3, e4)
Generators: o = A : [-1,1,1,-1]/2, 6 =B :[0,0,0,1]/2, v =C :[0,1,1,0]/2
First Homology: Z ¢ Z4
T = (ti,to, t3, te, 0, B,y | a =727, B =ty, v' =tite, Baf™ = t5 tsa™ ",
yoy b =a7t Ayt =ap7 atiaT =t,0=1,2, atia”! = ti_l,z' = 3,4,
Bt~ =ty, BB~ =t1, Btz =t51, vty = o, vty =1,
BT =1 Aty = t)
= (o, ) % () = O ¥ Z
Lo = (t1, to, ts,ta, 0, 8,77 | 0 = 7°t7 ", 7 = ta, (7 ) =tity, Bapt =t 0!,
(/72)04(/72)_1 = a, (72)ﬁ(72) = t3ﬁ ; oty o = ti,i=1,2,
atia”l =171 i =34, BT = to, BtafT =t1, Btaf7" =15,
72252-(72)_1 =t;,,i=1,2, 72ti(72)_1 = ti_l,z' = 3,4)
= (B,a7") % (ta) = Of x Z = Of;

Ny, : 15/01/01/010

-1 0 0 0

10 0 O 1 0 0

. 1061 0 O B 1 V3

Orthogonal matrices: A = 00 -1 o |’ B= 0 0 -5 5
00 0 -1 1

00 Y3 1

2 2

Holonomy: (A, B) = Zs X Zg

V3

1

Lattice Basis: (a1, a9, as,as) = (e1,e2,e3, —e3 + 764)
Generators: o = A : [1,0,0,0]/2, 6= B :[0,1,0,0]/6
First Homology: Z & Zg
I'= <t17t27t37t47 76 | Oé _tlv ﬁ _t27 ﬁaﬁ l= ) OZtQOZ_l :t27

atia”t =t i =34, Bt =11, Bt 5 = t;l, Btaff! = taty )

— (5" ) % (8) = OF u Z
Lo = (t1,ta, t3,ts, 0, 3% | &® =11, (8%)° =ta, BPa(B*) ' = o, atoa™ =t
atia_l = ti_l)i = 3747 ﬁ2t1(ﬁ2)_1 = t17 ﬁ2t3(ﬁ2) = 2(:3 1t47 ﬁ2t4(ﬁ2) = t3_1>
= (t3,t3t; ', af?) x (tits) = O3 x Z = O}
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N5 :25/01/01/010

10 0 O 10 00 10
: 01 0 O 0 -1 00 0 0
Orthogonal matrices: A = 00 -1 o | B = o o -1 0 |’ C= 01
00 0 -1 0 0 01 0 0
Holonomy: (A,B,C | A>=B*>=C%=1,[A,B]=1,CAC™' = B4,

CBC™'=A"YY=Ax1Z,
Lattice Basis: (a1, as2,as,a4) = (e1,€2,€3,€4)
Generators: o = A:[0,1,1,0]/2, s =B :[0,1,0,-1]/2, v=C : [1,0,0,0]/6
First Homology: Z
T = (t,t2, t3,ts, 0, 3,7 | @® =ta, B2 =11, 1% =t1, Bap™ ' =t3't 0™,
yoy l=a718, 8y =, atia =, atja” ! = ti_l,z' = 3,4,
BB =ty BB =t i =23, ytoy ! =ts, Yty =ty vayT = 157)
= (o, ) % () = O ¥ Z
Lo = (t1,ta, b3, ta, 0, 8,77 | o = o, B =17, (47)* = t1, Baf™' =15t 0™,
(Pa(?) =81 B0 T =a B, atiaT =1, atiaTt =t = 3,4,
Bt~ =ty, Bt =171 i = 2,3, VPta(A) T =t sy =50 vty =151
= (718,87 % (v*) = 0§  Z = Oy

N, : 04/03/01/006

-1 00 10 0 0

) —1 00 01 0 0

Orthogonal matrices: A = 0 0o -1 0 | B = 00 —1 0
0 0 01 00 0 -1

Holonomy: (A, B) = Zg X Zs
Lattice Basis: (a1, a2,as,a4) = (e1,€2,€3,€4)
Generators: a = A:[0,1,0,1]/2, =B :[0,1,—1,-1]/2
First Homology: Zo & Z4 & Z4
T = (t1,ta, t3, ts, 0, B | &% = tg, B2 =to, Baf ™t =totz'a™, atia™ =t;1i=1,2,3,
BBt =t B =t i=34)

= <t1,t2, a> *(tl,tz,t4) (tl,t4,ﬂ> = Og *73 Nf’

Lo = (t1,ta,t3,t4,8 | B> =to, B8~ =11, Bt;37 ' =t;",i=3,4)
= (t3,t4, ) x (t1) = O3 X Z = O;
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N : 06/02/01/050

1 0o 0 o0 -1 0 0O 1 0 00
. 0 -1 0 0 0O -1 0 O 0 -1 0 O
Orthogonal matrices: A = 0 0 1 0 ,B= 0 01 0 ,C = 0 0 -1 0
O 0 0 -1 0O 0 01 0O 0 01
Holonomy: (A, B,C) = Zg X Zo X Zs
Lattice Basis: (a1, a9, as,a4) = (e1,e2,€3,€e4)
Generators: o = A : [-1,—1,0,0]/2, 6 =B :[1,0,0,1]/2, vy =C: [-1,0,—1,0]/2
First Homology: Zo ® Zo & Z4
I'= <t17t27t37t47a7/877 ’ 042 = tl_la 52 - t47 72 = tl_la aﬂa_l - tl_ltg_lﬂ_ly
aya b =ty BYBT =47 atiaTt =t i =234, Bt =i = 1,2,
BtsB~' =t3, ytiy T =171 =2,3, ytayT = ty)
= <O‘7ﬁ> *<a2,t;1,ﬁ) <77t2_17 > = Og *OS Ng)
F0 = <t17t27t37t47ﬁ>/7 | ﬁ2 =14, /72 = t1_17 676_1 = 7_17 ﬁtiﬁ_l = ti_lyi = 1727
BtaB' =ts, vt =171, =2,3, ytay ! =ta)
= (ta,13,7) % (8) = 03 x Z = Oy
Nis : 06/02/01/027
-1 0 0 0 —1 0 0 O -1 0 0 O
) 01 0 0 0 -1 00 01 00
Orthogonal matrices: A = 00 -1 0 ,B= 0 010 ,C = 00 -1 0
00 0 -1 0O 0 01 00 01

Holonomy: (A, B,C) = Zg X Za X Zy

Lattice Basis: (a1, as2,as,a4) = (e1,€2,€3,€4)

Generators: o = A:[0,1,0,0]/2, =B :[1,0,0,1]/2, v=C:[0,1,-1,0]/2

First Homology: Zo & Zo & Zy

I'= <t17t27t37t47a7/877 ’ 042 = t27 52 = t47 72 - t27 /Ba/B_l = t1t404_1, ’Ya’Y_l - t51a7
ﬁ/}/ﬁ_l = t1/7_17 atia_l = tj_lvi = 173747 ﬁtiﬁ_l = ti_lvi = 1727 ﬁt3ﬁ_1 = t37
vty =t i =13, ey =ty)

= <Oé,ﬁ> *<a2,t;1,,3> <77t1_17 > = Og *OS NZE

FO = <t1’t2’t3’t4’ﬁ’/7 | 62 = t47 /72 = t27 ﬁ/}/ﬁ_l = t17_17 ﬁtiﬁ_l = tz’_lvi = 1727
BtsB =ty vty =t i = 1,3, vty =ty)
= <t17t377> X <ﬁ> = O% X7 = 04110
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N, 0 12/04/03/011

-1 0 00 1 0 0 0
) 0 1 00 0 -1 0 0
Orthogonal matrices: A = 00 01 | B = 0 0 0 1
00 -1 0 0 0 -1 0
Holonomy: (A, B | A* = B*=1BAB™'=A"')Y =D,

Lattice Basis: (a1, a9, as3,a4) = (el, €2, €3,€4)
Generators: o = A :[0,1,0,2]/4, 6= B :[1,0,0,0]/2
First Homology: Z4 ® Zy4
[ = (t1,to, ta, ts, o, B | ot = ta, 2 =t1, Baf™ ' =tits'a™, atja™ =t
atsa™t =171 atgaTt =3, BB =151, BafT =, BB =151
= (t1,t;" 07 ) Kt ta,ty ") (ts,t;", ) = O3 xz3 N3

I10 = <t17t27t37t47a275 ’ (042)4 = t27 52 = tla /8052/8_1 - t51t4( ) ( ) - tl?
Pt P =t7i=3,4, o =ty Btsft =1 ﬁmﬁ i =t
= (t3,t;",t5'a?) x (8) = O3 x Z = Of,
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