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CHAPTER 1 

Introduction and Significance 

Subarachnoid hemorrhage (SAH) affects approximately 30,000 people each year and 

accounts for 1-7% of all strokes. Most cases of SAH are from trauma, but spontaneous SAH is 

due to the rupture of a cerebral aneurysm 85% of the time.  SAH is characterized primarily by 

loss of cerebral autoregulation, development of cerebral vasospasm and subsequent ischemia.  

Neurological deficits that are direct sequelae of vasospastic events are the most common cause 

for morbidity and mortality in patients with SAH 2. Cerebral vasospasm is initiated as the body’s 

response to preserve blood volume. 

Young adults account for a large portion of the patient population that suffer from SAH.  

Mortality rates for patients who suffer from a subarachnoid hemorrhage are roughly 45% 3. 

Patients who survive the event have a 25% chance of having significant lifestyle limitations.  

These limitations are many, and include frequent headaches, depression, fatigue, poor physical 

health, post-traumatic stress disorder, anxiety, and cognitive impairment4, all of which beget 

difficulty in maintaining employment and independence.     

There is still much to be understood about vasospasm that occurs after a subarachnoid 

hemorrhage and how to properly treat this phenomenon.  When a patient is suffering from 

cerebral vasospasm their cerebral blood flow is decreased from a normal range of 50-70 mL/min 

per 100mg to a level of less than 20 mL/min per 100mg5-7.  Current treatment modalities for 

subarachnoid hemorrhages include “Triple-H therapy”, vasoactive pharmaceutical intervention, 

and balloon angioplasty of the spastic vessels. “Triple-H therapy” refers to the technique of 

maintaining permissive hypertension, hypervolemia, and hemodilution to optimize cerebral 

blood flow. Cerebral perfusion pressure (CPP) is a measurement used to guide physicians in 
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determining cerebral blood flow of a patient8,9. CPP is defined as the mean arterial blood 

pressure (MAP) minus the intracranial pressure (ICP) 9. Decreased CPP in SAH patients is the 

primary pathophysiologic mechanism that leads to acute cerebral ischemia 8. “Triple-H therapy” 

increases CPP by promoting increased cerebral blood flow, while also ensuring adequate 

systemic blood pressure (MAP) 9.  The cranium is understood to be a fixed space occupied by the 

brain, blood, and cerebral spinal fluid, thus by increasing the blood volume of an individual one 

may increase the amount of blood in the cranium.  Unfortunately, there are many complications 

associated with “Triple-H therapy,” including pulmonary edema, dilutional hyponatremia, and 

infection due to invasive monitoring techniques 2.   

Pharmacotherapy for cerebral vasospasm has utilized a variety of mechanisms to improve 

cerebral blood flow. The most successful therapeutic has been nimodipine, a calcium channel 

antagonist, that while not shown to be vasodilatory to the constricted arteries, appears to decrease 

mortality among patients.  Another studied therapeutic, papaverine, is a phosphodiesterase 

inhibitor that has been shown to vasodilate the constricted vessels. Unfortunately it does not 

consistently improve patient outcome.  There are many other pharmacologic agents used to 

promote cerebral vasodilation, however, they are often contra-indicated due to their ability to 

critically lower mean arterial pressure.   This occurs due to the vasodilation that occurrs 

throughout the body when they are given. 

Angioplasty is the process of mechanically dilating a spastic artery by inflating a balloon 

of air within the vessel lumen. The objective of this is to increase blood flow through this artery 

by widening the artery. Unfortunately, when compared to Triple-H therapy, balloon angioplasty 

does not improve patient outcomes10.  Thus, there remains a largely unmet need for the treatment 

of SAH-induced cerebral vasospasm to prevent the development of cerebral ischemia.  
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Approach 

Vasospasm is sustained contraction of blood vessels that may be due to enhanced 

contraction or impaired relaxation.  This proposal will focus on the molecular mechanisms 

underlying the processes of contraction and relaxation of blood vessels.  The two major filaments 

of smooth muscle, the thick and thin filaments, are the structural components that modulate tone. 

Thick filaments are composed of myosin.  Smooth muscle myosin is also known as myosin II, 

and has two heavy chains.  Myosin also contains two types of light chains, MLC20 and MLC17 

with MLC20 being the regulatory chain that is active in contraction.  Thin filaments are 

composed of actin and actin binding proteins (HSP20, VASP, cofilin, and paxillin).  Actin can be 

present in either filamentous or globular form.  Filamentous actin is the polymerized form of 

actin that enables myosin to attach to its filaments in order to initiate contraction.  Globular actin 

is the monomeric building block that forms filamentous actin. 

Increases in intracellular calcium concentrations ([Ca2+]i) lead to the activation of myosin 

light chain kinase (MLCK) and promotion of myosin light chain phosphorylation (p-MLC).  

These modifications lead to cross-bridge cycling and initiation of smooth muscle contraction.  

Thus, intracellular calcium is essential for the initiation of actomyosin interactions.   Cross 

bridges constitute interaction of the globular heads of the myosin filaments (thick filaments) with 

actin and actin binding proteins (thin filaments).  On the other hand, increases in intracellular 

cyclic nucleotide content (cAMP and cGMP) lead to activation of cyclic nucleotide-dependent 

protein kinases (PKA and PKG) resulting in relaxation of either agonist pre-contracted smooth 

muscle, or inhibition of agonist-induced contraction.  Downstream from the activation of PKA 

and PKG is a protein associated with the disruption of actin polymerization, heat shock protein 

20 (HSP20). HSP20 can be phosphorylated by either cGMP or cAMP, and its phosphorylation 
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has been associated with smooth muscle relaxation in various tissues from multiple species.  

While HSP20 is also downstream of PKG, there are other downstream proteins including 

phospholamban and the IP3 receptor that too modulate [Ca2+]i leading to smooth muscle 

relaxation 

Dogma states that contraction and relaxation are mediated by the thick filaments in 

vascular smooth muscle11,12. Unlike striated and cardiac smooth muscle, non-cardiac smooth 

muscle does not contain troponin to regulate the binding actin to myosin.  Instead, smooth 

muscle contains the messenger protein calmodulin to bind with calcium and initiate myosin light 

chain kinase (MLCK) 13. Another unique property of non-cardiac smooth muscle is its ability to 

sustain a contraction after the [Ca2+]i levels have returned to basal or near basal levels. This 

sustained phase of contraction is also known as the tonic stage of contraction (Figure 2.1). The 

ability to have a tonic phase of contraction is important in maintenance of force for blood vessels 

and other smooth muscle tissue. The latch mechanism hypothesis has been developed to explain 

this phenomenon where intracellular calcium concentrations decrease under circumstances in 

which vascular tone remains elevated14.  The latch bridge hypothesis implies that myosin is 

responsible for contraction and relaxation of vascular tissue, but does not allow a role for actin 

and actin associated proteins.  In smooth muscle, myosin attaches to actin and through a power 

stroke that creates force. While myosin plays a major role, actin may indeed also have a 

significant role in contraction and relaxation that has not been extensively considered.   

Through activation of the cyclic nucleotide-mediated thin filament pathway, it may be 

possible to create conditions where contraction is mitigated while cross-bridge cycling is still 

occurring. Under these conditions force would be inhibited but [Ca2+]I and myosin light chain 

phosphorylation would in fact be potentiated suggesting that calcium signaling and force 
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generation could be “uncoupled.”  The overall goal of this project is to develop model systems to 

uncouple the thin and thick filament pathways to better understand the roles of thick and thin 

filaments and their associated proteins in the regulation of smooth muscle contraction and 

relaxation. 

Innovation 

The current challenge in treating SAH is that any agent that lowers the tone of the spastic 

cerebral vessels necessarily promotes systemic vasorelaxation, leading to hypotension, and 

decreased intracranial perfusion pressure.  We hypothesized that uncoupling force and 

intracellular calcium concentrations might lead to treatment of vasospastic vessels without 

impacting normal vessels.  To determine the physiologic changes that occur to vasculature 

during cerebral vasospasm, a model was created that mimicked some of the biochemical changes 

that occur in vasospastic tissue. Using siRNA, and a diblock copolymer to enhance its delivery, 

HSP20 was knocked down, while physiologic function and calcium measurements were 

concurrently determined. Cell-permeant peptide sequences were used to produce proteins and 

peptides that modulated vasomotor tone. 

A phosphomimetic peptide of HSP20 was used to cause relaxation of blood vessels by 

calcium-independent mechanisms that are downstream of PKA.  A simple and translational 

method is demonstrated for formulation of endosomolytic, electrostatically-complexed 

nanoparticles (i.e. nano-polyplexes, or NPs) that efficiently deliver pHSP20 into vascular tissues, 

enhancing peptide bioactivity. pHSP20-NPs have potential for clinical translation to ameliorate 

cerebral vasospasm without causing systemic hypotension. The NP approach also represents a 

novel pharmaceutical technology poised for generalized use as a delivery vector for bioactive 

peptides.  
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Specific Aims 

The hypothesis of this investigation is that inhibition of agonist-induced contraction is not 

simply due to a reversal of the processes that initiate contraction ([Ca2+]i/p-MLC) but rather 

involves phosphorylation of specific actin regulatory proteins and hence, is dependent on the thin 

filament mechanism.  The specific aims of this work are the following: 

Specific Aim 1: Develop a model system that inhibits force without inhibiting increases 

in Ca2+ to uncouple force production from thick filament regulation. Dogma states that a rise in 

intracellular calcium leads to the production of force due to cross-bridge cycling.  The goal of 

this aim is to create conditions that completely block force transduction but do not completely 

block calcium transients using the adenylate cyclase activator forskolin. To ensure that this is not 

due to a decrease in calcium sensitivity by increased cAMP, myosin light chain phosphorylation 

will be concurrently measured. 

Specific Aim 2: Use the dose of forskolin identified in Aim 1 to investigate biochemical 

events including calcium and actin regulatory processes. Porcine coronary arteries will be used 

for analysis of biochemical events at basal, contracted, relaxed, and inhibited contraction 

conditions.  Understanding the role of increased cAMP levels with and without contractile 

agonist histamine pre-treatment was used to determine how contraction is inhibited. 

Specific Aim 3: Demonstrate that PKG activation inhibits force without uncoupling 

intracellular calcium. Activation of the PKG pathway should inhibit force production through 

inhibition of increases in intracellular calcium concentrations in addition to thin filament 

regulatory processes. Nitric oxide donors and phosphodiesterase inhibitors will be used to 

activate PKG, and to determine if force can be uncoupled from changes in intracellular calcium 

and MLC phorphorylation after activation of the PKG pathway. 
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Specific Aim 4: Modulate HSP20 to uncouple force and calcium. Phosphorylation of 

HSP 20 has been shown to correlate inversely with smooth muscle tissue-generated stress. A 

HSP20 phospho-peptidomimetic to inhibit force production will be used to uncouple the force 

transduction from a rise in intracellular calcium.  

These studies will aid in discerning the role that thin and thick filaments play in 

contraction and relaxation in vascular smooth muscle. Besides analyzing traditional myosin and 

calcium changes that occur during relaxation, actin polymerization will be studied in depth to 

emphasize thin filament effects.  By activating cAMP and cGMP pathways, the role of actin 

filaments in cyclic nucleotide-induced relaxation of smooth muscle will become better 

understood. These aims will lead to new approaches to locally treat SAH-induced vasospasm. 
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CHAPTER 2 

Vasodilation for Cerebral Vasospasm 

Introduction 

Cerebral vasospasm occurs after subarachnoid hemorrhage in patients and is one of the 

leading causes of death for these patients. Early brain injury that occurs with subarachnoid 

hemorrhage is associated with the inflammatory pathway, ionic changes, and physiologic 

changes.  These three categories create prolonged vasospasm in patients and propagate the 

constriction of the tissue.  Vasospasm can be detected in patients by angiography, and is present 

in 40 – 70% of patients following SAH15.  The prolonged vasospasm often leads to delayed 

cerebral ischemia occurring 3-4 days after the bleed16, and 20-30% of these patients will exhibit 

neurological deficits17. 

Cerebral vasospasm occurs as a result of oxyhemoglobin, Endothelin-1, platelet derived 

growth factor (PDGF), and inflammatory cytokines that are elevated after blood interacts with 

the surface of the brain. Pathogenesis of spasm is not clearly defined although contraction, 

inflammation, and histological changes to the artery have been observed. 

Oxyhemoglobin leads to the release of free radicals, lipid peroxidation, metabolism of 

oxyhemoglobin to bilirubin, release of endothelin, and inhibition of endothelial-dependent 

relaxation18. Oxyhemoglobin autoxidizes into methemoglobin, and releases superoxide into the 

subarachnoid space18,19. Free radicals have been shown to decrease smooth muscle relaxation by 

depleting nitric oxide stores by converting it to peroxynitrite18,20. Metabolism of oxyhemoglobin 

leads to the production of bilirubin which has been shown to cause spasm in cerebral arteries at 

concentrations of 10-30 µM21. Oxyhemoglobin and other iron based hemoproteins are known to 

cause the inhibition of endothelial dependent relaxation22. Since oxyhemoglobin is able to inhibit 
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endothelial dependent relaxation, it suggests that the prolonged contraction of the cerebral 

vessels may be due to this decrease in the arteries’ ability to relax18. As well as having 

vasoconstrictive properties alone, oxyhemoglobin accentuates the contractile effects of hypoxia, 

serotonin, potassium, and fibrin degradation products18.  Taken together, oxyhemoglobin 

propagates the constriction of vascular smooth muscle; leading to spasm of the vessel and poor 

perfusion of the brain. 

 

Figure 2.1 Mechanisms of early brain injury and persistent spasm after subarachnoid hemorrhage 
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Endothelin-1 is a vasoactive peptide that leads to the constriction of vascular tissue. ET-1 

receptor activation results in the stimulation of several signaling pathways associated with 

cellular growth, hypertrophy, and proliferation. These pathways include MAPK, IP3, and protein 

kinase B. PDGF is a growth factor that is present in blood and is important for normal growth 

and development, inflammatory reactions, and atherosclerosis23. PDGF has direct mitogen 

activity on smooth muscle cells, and has been shown to induce intimal lesions and vasospastic 

responses in porcine coronary arteries24. Inflammatory cytokines genes have been shown to be 

upregulated in response to subarachnoid hemorrhage leading to cerebral vasospasm25. 

Inflammation due to the cytokine increase is thought to have a role in the development of 

cerebral vasospasm; further elucidation of the precise roles of inflammatory events in cerebral 

vasospasm is needed26. 

Along with these inflammatory changes in the cerebral artery there are ionic changes that 

are occurring after subarachnoid hemorrhage. Among these are calcium influx, potassium efflux, 

and low magnesium. The influx of calcium is expected due to the large role calcium plays in the 

contraction of vascular smooth muscle. Calcium plays an important role in cellular 

communication and in regulating vascular tone.  The initial spike in calcium is potentially toxic 

to the surrounding tissue leading to cell death and initiating cerebral vasospasm.  Potassium 

efflux occurs during the onset of vasospasm by oxyhemoglobin interfering with the voltage 

dependent potassium channel current and leads to increased contraction of the vascular tissue.  

Magnesium is a known vasodilator and has shown to have neuroprotective properties in tissue, 

but treatment of cerebral vasospasm with magnesium sulfate has not shown promising 

outcomes27. 
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Ischemia often occurs after SAH and is marked by a decrease in the cerebral blood flow, 

usually measured by Doppler ultrasound.  With this onset ischemia HIF-1alpha, VEGF, and p53 

are increased in response.  HIF-1alpha is a mediator of ischemic response in tissue and interacts 

with important cellular proteins CREB binding protein and STAT3. HIF-1 alpha has also been 

shown to increase VEGF and activate p53 as a response to hypoxia28.  VEGF is elevated after 

focal cerebral ischemia and is shown to be neuroprotective29, but has been speculated to 

contribute to brain injury by increasing the permeability of the blood brain barrier30.  It is still not 

understood if elevation of VEGF during ischemia is beneficial to the patient or increases the 

damage caused by the brain bleed.  p53 is potentially involved in the apoptosis of endothelial 

cells noticed during cerebral vasospasm, and potentially leading to increased intimal thickening 

and wall stiffness28. 

A decrease in cerebral blood flow occurs after subarachnoid hemorrhage, and if perfusion 

reduces to below 40% of baseline for 60 minutes 24 hour mortality was predicted to be 100% 31. 

During this time intracranial pressure (ICP) becomes elevated and cerebral perfusion pressure 

drops initially and slowly rises. With the great increase in ICP the perfusion to the cerebral 

portion of the brain remains low.  Constriction of the cerebral vessels may be in response to the 

decreased CPP in the individual despite having normal mean arterial blood pressure. The 

perfusion to the cerebral portion of the brain that the patient has correlates with the neurological 

status of the patient. Patients that have vasospasm generally have worse cerebral blood flow and 

lowered neurologic status. 

Current treatments   

Triple H therapy includes the use of hypertension, hypervolemia, and hemodilution to 

prevent and treat cerebral vasospasm. Cerebral perfusion pressure (CPP) is used to guide 
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physicians in determining cerebral blood flow of a patient 8,9. CPP is related to the mean arterial 

blood pressure minus the intracranial pressure of the patient 9. Decreased CPP has been observed 

from patients who have subarachnoid hemorrhage and leads to acute ischemia of the brain 8. 

Triple H therapy is designed to increase CPP by increasing the patient’s blood volume so that the 

brain remains adequately perfused 9.  The purpose of using hypervolemia instead of vasodilators 

is to maintain normotensive systemic blood pressure.  Some of the complications associated with 

Triple-H therapy are: pulmonary edema, dilutional hyponatremia, and complications due to the 

additional invasive monitoring used 2. 

Vasoactive pharmaceuticals are not commonly used for treatment of subarachnoid 

hemorrhages because of the change in systemic blood pressure that comes along with them. 

Antihypertensive medications are avoided when systolic blood pressure is below 140 mmHg and 

diastolic blood pressure is below 90 mmHg 2.  Documented use of intra-arterial infusion of 

papaverine, a phosphodiesterases inhibitor, improved vessel diameter in a large portion of 

patients after treatment 32-34.  Papaverine has shown to be one of the most effective 

pharmaceutical interventions of subarachnoid hemorrhage 32.  Although this reversal of 

vasospasm seems promising, it did not always correlate with improved clinical outcomes of 

patients 34.  

The most successful treatment of cerebral vasospasm to date is the use of nimodipine, a 

calcium channel antagonist; although it does not show angiographic evidence that vasodilation is 

occurring27. This could mean that nimodipine is potentially blocking calcium from having 

detrimental effects on neurologic tissue and is not affecting the vascular tissue. Also other 

calcium channel antagonists have been used without promising results.  
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Angioplasty of spastic vessels is a technique where a balloon is used to widen the vessel 

diameter by inflating a balloon. Usually inserted into the femoral artery and threaded up into the 

site of vasospasm, a flexible guide wire and catheter are used to place the balloon in the correct 

location.  Balloon angioplasty has been shown to offer patients improvement to ischemic deficits 

after cerebral vasospasm 35.  When compared with traditional Triple-H therapy balloon 

angioplasty did not show any additional benefit to patient outcome 36.  Balloon angioplasty 

comes with its own set of morbidity, and patients must be carefully selected based on vital sign 

status and the vessels response to conventional treatment 37.    

The problem with current treatments of subarachnoid hemorrhage is that vasospasm is 

not successfully reversed or prevented because the cellular mechanisms are not completely 

understood. The previously described initiators of cerebral vasospasm all have a role in 

increasing intracellular calcium and phosphorylation of the myosin light chain, but this 

phosphorylation of the myosin light chain and elevated calcium are transient while constriction 

of the vessel remains suggesting that other mechanisms are also occuring.  

Preventing SAH induced vasospasm would prevent costly and devastating neurologic 

compromise in young patients.  This represents a large unmet need in that there are no current 

treatment modalities that are proven to be effective at preventing or reversing cerebral 

vasospasm after SAH.  The cyclic nucleotide pathway will be further researched to elucidate 

force inhibition uncoupled from calcium signaling.  This proposal focuses on a new approach to 

modulate cerebrovascular tone, namely thin filament regulation. 

Recent findings have shown that there are biochemical changes in the vascular tissue that 

undergoes vasospasm. Among them are the down regulation of heat shock protein 20 (HSP20) 

and increased phosphorylation of heat shock protein 27 (HSP27).  There is a marked decrease in 
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HSP20 associated with a decrease in perfusion in a rat model system for cerebral vasospasm 38,39.  

It has been shown that restoration of HSP20 can be used to treat and prevent vasospasm from 

occurring39.  The evidence suggests that heat shock protein changes are responsible for 

vasospasm occurring in these vessels. Restoration to physiologic levels of these heat shock 

proteins could potentially result in normal function of the cerebral vessels. 

Mitogen-activated protein kinases are thought to have a causative role in cerebral 

vasospasm, and may explain increased phosphorylation of HSP27.  Phosphorylated HSP27 

promotes actin remodeling and competitively inhibits the phosphorylation of HSP20 by PKA and 

PKG. MAPK may be activated by oxyhemoglobin, ET-1, PDGF, and inflammatory cytokines all 

leading to sustained calcium independent smooth muscle contraction and vascular remodeling40.  

Cyclic Nucleotide Signaling 

Smooth muscle 

activation of the H1 receptor via 

histamine is linked to the 

intracellular G protein (Gαq) 

and Gαq-coupled receptors that 

activate phospholipase C (PLC) 

and RhoA (reviewed in 41).  

Activation of PLC induces 

inositol 1, 4, 5-trisphosphate 

(IP3) production, causing 

calcium to be released from the sarcoplasmic reticulum (SR).  This increase in intracellular 

calcium activates calmodulin-dependent myosin light chain kinase (MLCK), leading to increases 

 

Figure 2.2 depicts the relationship between force and 
calcium over time after agonist induced contraction 
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in the phosphorylation of 20 KDa myosin light chains (MLC).  Crossbridge phosphorylation of 

the actomyosin apparatus results in the generation of force in vascular smooth muscle 11,42,43.  

While Ca2+ and MLC phosphorylation are important for the initiation of contraction, the tonic 

phase, or force maintenance, of smooth muscle contraction can occur where [Ca2+]i levels and 

MLC phosphorylation are near basal levels, suggesting other pathways are engaged during force 

maintenance in smooth muscle 12,42,44-50.  During the sustained phase of contraction, stiffness and 

force are maintained at high levels while intracellular calcium concentrations [Ca2+]i,
 cross-

bridge phosphorylation, and shortening velocity fall to intermediate values 12,45,51-53 (Figure 1).  

Maintenance of force despite intermediate levels of cross-bridge phosphorylation and velocity 

has been explained using a model referred to as the latch phenomenon 53,54.  However, reversal of 

these three two processes alone does not account for the force inhibition that occurs during 

relaxation or inhibition of contraction, implicating that other mechanisms, such as actin 

cytoskeletal rearrangement, play a role in the suppression of force. 

Vascular smooth muscle relaxation, or inhibition of force, can be mediated by 

vasodilators that activate guanylyl cyclase (e.g. nitric oxide) or adenylyl cyclase (e.g. 

prostacyclin, β-agonists, and forskolin), leading to increases in cGMP and cAMP, respectively.  

The cyclic nucleotides, in turn, activate cGMP-dependent protein kinase (PKG) and cAMP-

dependent protein kinase (PKA) 55,56, leading to several phosphorylation events resulting in 

relaxation or inhibition of force.  Cyclic nucleotide-induced relaxation or inhibition of force in 

smooth muscle involves at least three major pathways: decreases in intracellular free calcium 

concentrations, calcium sensitivity and actin cytoskeletal regulation (reviewed in 56-58).  While 

the role of a decrease in [Ca2+]i  and Ca2+ sensitivity in the regulation of smooth muscle cell 

contraction has been established, the role of actin cytoskeleton and actin-associated proteins is 
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still unclear. Although several investigations have suggested the regulation of actin and actin-

associated proteins in smooth muscle contraction, (reviewed in59) very few reports have 

addressed the role of second messenger regulation of actin-associated proteins during inhibition 

of force.  Actin-associated proteins that are implicated in the regulation of smooth muscle 

contraction include the small heat shock-related protein 20 (HSP20), cofilin, and vasodilator-

stimulated phosphoprotein (VASP) 60. 

HSP20 is a 160 amino acid protein that contains an alpha crystallin domain and two 

phosphorylation sites61.  HSP20 is also an actin binding protein that is phosphorylated by PKG 

and PKA on serine 16, inducing relaxation and inhibition of contraction through the modulation 

of actin cytoskeletal dynamics55,62-64.    Activation of cyclic nucleotide-dependent signaling 

pathways in vascular smooth muscles prevents vein graft spasm and intimal hyperplasia, two 

processes that lead to short and long term failure of aortocoronary and peripheral vascular 

reconstructions. It has been demonstrated that the cyclic nucleotide signaling pathways converge 

at the phosphorylation of a small heat shock-related protein, HSP20 63.  HSP20 has a prominent 

amino acid sequence from 111 to 123 that is similar to the inhibitory sequence of troponin I in 

striated muscle65, and this region is believed to have part of the vasodilatory effect in smooth 

muscle66.  There is also a serine phosphorylation site at 157 that has not been correlated with 

contraction and relaxation of smooth muscle61.   
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HSP27 is a 205 amino acid long protein which also includes an alpha crystallin domain.  

HSP27 has direct links to MAPKAP kinase (MK2) through a hydrophobic domain containing a 

WDPF motif, which is essential for chaperone activity in this heat shock protein61.  Just as 

HSP20 phosphorylation is directly linked to cyclic nucleotide signaling so is HSP27 

 

Figure 2.3: Signaling pathway of cAMP and cGMP mediated relaxation through thin and thick 
filaments 
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phosphorylation related to MK2 signaling. The phosphorylation of HSP27 inhibits 

phosphorylation of HSP20 by PKA67.   

Cyclic nucleotide-dependent relaxation is associated with decreases in the 

phosphorylation of the actin depolymerizing protein cofilin in vascular, as well as, airway 

smooth muscle cells64,68. Cofilin binds to actin filaments and causes depolmerization at the minus 

end of filaments when dephosphorylated. Cofilin as well as actin depolymerizing factor (ADF) 

can sever actin filaments, and cofilin shows a pH dependence on actin polymerization. The 

afiinity to actin when coiflin is phosphorylated decreases 10-20 fold in vitro, thus inactivating 

the cofilin 69. 

VASP is an actin binding protein that is localized to focal adhesions and cell-to-cell 

contacts 60.  VASP is known to be a PKA and PKG substrate that links cellular signaling to 

cytoskeletal organization and movement. VASP contains three possible phosphorylation sites: 

serine 157, serine 239, and threonine 278, all of which may be phosphorylated by either PKA or 

PKG. Serine 239 is known to be preferentially phosphorylated by PKG while the other two are 

show no preference.  Forskolin treatment leads to phosphorylation of VASP and regulates the 

actin cytoskeleton in rat aortic smooth muscle cells 70 and1 human airway smooth muscle cells 68. 

Actin filament elongation has been shown to be necessary for contraction in vascular smooth 

muscle, and VASP phosphorylation is known to inhibit actin polymerization71. VASP is known 

to interact with target proteins such as vinculin, zyxin, and palladin72 which are responsible for 

the interactions with actin. Dephosphorylation of VASP allows for actin polymerization at the 

barbed end of the filament73.  Vinculin is associated with membrane adhesion junctions in 

smooth muscle tissue, linking actin filaments to the extracellular matrix allowing contraction to 
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occur74. Zyxin is also involved in the mechano-transduction of smooth muscle as a focal 

adhesion protein that is associated with the actin cytoskeleton75.  

Measurement of Intracellular Calcium 

To develop a fully integrated system combining a muscle bath apparatus for force 

transduction measurements and a fluorescence detection system for Ca2+ flux with multiple 

chambers.  A custom designed ADInstruments data acquisition system allowed us to integrate 

the musclebath apparatus system, which measures force transduction, with a Fluoroplex 

controller to determine absolute  [Ca2+]i using the ratiometric dye Fura-2.  

 Fura 2 is a fluorescently labeled dye that permeates the tissue. The AM tail allows the 

Fura 2 to permeate the cell membrane. Once inside the cell, esterases cleave the AM ester off of 

the Fura 2 trapping it inside of the cells (Figure 3). Inside the cells intracellular calcium binds to 

 

Figure 2.4: Diagram that shows the method of Fura 2-AM entering smooth muscle cells and 
cleaving off the AM ester tail. 
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the Fura 2 compound creating a fura 2-Ca2+ complex that emits light at 510 nm light when 

excited with 340 or 380 nm light. The ratio between the amount of light emitted when excited 

with either 340 or 380 nm of light gives the 340/380 ratio which is related to the intracellular 

calcium concentration.  When Fura 2 binds with calcium the excitation spectrum for Fura 2 shifts 

to shorter wavelengths (Figure 4). This shift in spectrum is why a ratiometric calculation is used. 

The 340 nm excitation light reflects calcium that is bound to the Fura 2 and the 380 excitation 

light is unbound Fura 2. An increase in this ratio correlates with an increase in bound Fura 2 to 

calcium. 

In order 

to increase the 

delivery of Fura-

2 AM into 

vascular tissue 

Pluronic F-127 

was used. 

Pluroinc F-127 is a nonionic, surfactant polyol used to facilitate the solubilization of water 

insoluble dyes into physiologic media. The surfactant polyol is in a solution that contains 

DMSO, a colorless liquid that acts as a polar solvent that is able to create a homogenous solution 

for dyes such as Fura 2-AM. The final physiologic solution contained 0.01% DMSO in the 

bicarbonate buffer. 

Ratiometric dyes are useful for situations where photobleaching, uneven dye loading, 

motion artifacts, or variable tissue thickness is present. In the case of rings of vascular tissue 

where constant 95% O2 and 5% CO2 are being added the necessity for a dye that will 

 

Figure 2.5: Emission and excitation wavelengths of Fura-2 AM. 
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compensate for motion artifacts and variable tissue thickness becomes very important. Although 

the measurements are not taken over a very long period of time, it is important to always keep in 

mind that photobleaching of the tissue occurs with Fura 2-AM.  The Fluoroplex system uses 

optical fibers running from the multiplexer to the tissue baths where the tissue is excited with 

either 340 nm or 380 nm light and then the emission light is passed back to the multiplexer.  The 

use of filters and dichroic mirrors (described further in Chapter 3,Figure5). Fura-2 poses 

advantages over other calcium indicators, such as aequorin, in that it emits more light, avoiding 

problems like calcium buffering or the damping of a calcium transient.  

Transmembrane Delivery of Small Molecules 

siRNA 

Small interfering RNA (siRNA) is used for its role in the RNA interference pathway to 

silence the expression of a specific gene. siRNA’s are double stranded RNA molecules that vary 

in length between 20 and 25 base pairs.  siRNA has great clinical potential because of the 

specificity of a target mRNA that one wishes to silence. One of the major challenges in creating 

a clinical solution with siRNA is the delivery into the cytoplasm.  siRNA alone is not permeable 

to cell membranes and is quickly degraded by nucleases present in the body 

 Current delivery strategies to improve the delivery of siRNA involve incorporating a 

carrier. Typically a carrier for siRNA will be cationic in order to electrostatically complex the 

negatively charged siRNA. Lipofecatime is an example of a cationic lipid used to deliver siRNA, 

but in addition to lipids, liposomes, nanoparticles, and polymers may be used.  Lipofectamine is 

a known reagent for transfecting siRNA into cells, but does not yield the same transfection rates 

in tissue.  Delivery of siRNA into tissue poses extra obstacles to traditional cellular transfection.   
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Transfection into intact tissue requires a more robust approach and polymers and 

nanoparticles were developed for siRNA delivery. A benefit of using cationic polymers is that 

they condense the siRNA and protect it against nuclease degradation. To approach the issue of 

transfecting siRNA in an ex vivo model, an endosomolytic diblock copolymer was used that had 

been previously developed (Duvall, Stayton et al)76.  This pH responsive carrier of siRNA was 

designed to mediate endosomal release of the siRNA, lowering the degradation from nucleases. 

This diblock copolymer is made of N,N-Dimethylaminoethyl methacrylate (DMAEMA), 

polypropyl acrylic acid (PAA), and butyl methacrylate, synthesized using a reversible addition 

fragmentation chain transfer polymerization.  

The first block of the materials is DMAEMA, and is used to condense the siRNA at a 

physiologic pH. The second block of this copolymer is ampholytic and contains DMAEMA, 

PAA, and BMA which undergoes a conformational change at low pH’s.  At physiologic pH 

ranges this block is ampholytic; however once this block reaches a lower pH the PAA 

carboxylate becomes protonated allowing it to enter the endosome’s membrane. This delivery 

mechanism is based on the change in pH that occurs from outside of the cell to the endosomes 

which have a pH of  6.2-6.5.  

Peptides    

The use of peptides as therapeutics is a growing field. Peptides have many advantages 

over small molecules in terms of specificity and affinity for targets, and have a size advantage 

over antibodies77.  A large problem for peptide therapeutics is addressing proteolytic 

degradation.  Methods such as pegylation, antibody attachment, and the binding to serum 

albumin protect peptides from proteases77.  In 2012 six peptides received marketing approval in 

the USA78, and one of these peptides has been removed for safety reasons. The six peptides 
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approved had different indications such as: RDS, anemia, cushing’s disease, multiple myeloma, 

constipation, short bowel syndrome. Among these peptides four are receptor agonists, one is a 

surfactant, and the last is a protease inhibitor.  Signifor, a peptide therapeutic for Cushing’s 

disease, was voluntarily withdrawn after approval when three deaths occurred although there 

were no issues in the 2300 person clinical trial.  Novartis is an EPO receptor agonist, and it may 

be brought back to a clinical setting in the future78. 

Cell penetrating 

peptides (CPPs), are generally 

cationic and interact with the 

negative charge of cell 

membranes.  They are often 

conjugated to biologic 

therapeutics such as peptides, DNA, and siRNA to increase cell uptake of these “cargo” 

compounds. Thus cell penetrating peptides are composed of two parts, the transduction domain 

(PTD) and the cargo that is to be delivered. The most famous of transduction domains is a 

component of  HIV-1, TAT. PTD’s enter cells in a rapid, receptor-independent fashion79. TAT 

has been optimized to create synthetic PTD’s80.  PTDs were created to attempt at strengthening 

the existing structure of YGRKKRRQRRR.  The peptide, “YARAAARQARA” yielded the 

highest transduction potential relative to the TAT peptide.  This was determined by fluorescent 

confocal microscopy of treated cells having the PRD within the cytoplasm and nucleus of the 

cell80.  This PTD was used to create a cell permeant phosphorylated HSP20 mimetic. 

Even with the benefits that PTDs offer in the delivery of the cargo inside of cells, 

substantial synthetic and functional limitations still exist in terms of multi-functional drug 

 

Figure 2.6 HSP20 phospho peptidomimetic transduction 
domain and carrier peptide 
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carriers that simultaneously address the key delivery barriers of stability, cellular uptake, escape 

from the endo-lysosomal pathway, and an effective means to ‘un-package’ or release the desired 

therapeutic into the proper intracellular micro-environment.  The CPPs often do not escape the 

endo-lysosomal trafficking pathway, and to combat this issue, polymers that have 

conformational changes increasing the unpackaging of the cargo inside of the cell to maximize 

delivery were created. 

Conclusions 

SAH induced cerebral vasospasm has shown to create biochemical changes in the tissue 

with proteins such as HSP20, HSP27, and MAPK.  With the aid of tools able to transfect siRNA 

ex vivo and CPP’s capable of penetrating cells, the manipulation of these targets presents itself 

as a viable option for mimicking the changes that occur in cerebral vasospasm. Creation of this 

vasospastic model system in intact tissue allows for the testing of treatment options and would 

allow determining the potential effects on vasospasm. 
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CHAPTER 3 

Calcium Independent Force Inhibition 

Aim 1 Develop a model system that inhibits force without inhibiting increases in Ca2+ to 

uncouple force production from thick filament regulation 

Aim 2 Use the dose of forskolin identified in aim 1 to investigate biochemical events 

including calcium and actin regulatory processes 

Text partially adapted from: 

Hocking KM, Baudenbacher FJ, Putumbaka G, Venkatraman S, Cheung-Flynn J, Brophy 

CM, Komalavilas P. Role of Cyclic Nucleotide-Dependent Actin Cytoskeletal Dynamics: 

[Ca2+]i and Force Suppression in Forskolin-Pretreated Porcine Coronary Arteries. PLOS One 

 

Introduction 

Smooth muscle activation of the H1 receptor via histamine is linked to the intracellular G 

protein (Gαq) and Gαq-coupled receptors that activate phospholipase C (PLC) and RhoA 

(reviewed in 41).  Activation of PLC induces inositol 1, 4, 5-trisphosphate (IP3) production, 

causing calcium to be released from the sarcoplasmic reticulum (SR).  This increase in 

intracellular calcium activates calmodulin-dependent myosin light chain kinase (MLCK), leading 

to increases in the phosphorylation of 20 KDa myosin light chains (MLC).  Crossbridge 

phosphorylation of the actomyosin apparatus results in the generation of force in vascular 

smooth muscle 11,42,43.  While Ca2+ and MLC phosphorylation are important for the initiation of 

contraction, the tonic phase, or force maintenance, of smooth muscle contraction can occur 

where [Ca2+]i levels and MLC phosphorylation are near basal levels, suggesting other pathways 

are engaged during force maintenance in smooth muscle 42,44-48.  During the sustained phase of 
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contraction, stiffness and force are maintained at high levels while Ca2+
,
 crossbridge 

phosphorylation, and shortening velocity fall to intermediate values 45,51,52,81.  Maintenance of 

high force despite intermediate levels of crossbridge phosphorylation and velocity was explained 

to be due to the latch phenomenon 53,54.  Other investigators have suggested that force 

maintenance is due to the regulation of ADP association with muscle fibers 82.  More recently, 

actin cytoskeletal dynamics have been implicated in the modulation of vascular smooth muscle 

tone 59,83.  Similarly, sustained phase of swine carotid artery contraction was associated with 

increased paxillin (Y118) phosphorylation and actin polymerization 84. 

Vascular smooth muscle relaxation, or inhibition of force, can be mediated by 

vasodilators that activate guanylyl cyclase (e.g. nitric oxide) or adenylyl cyclase (e.g. 

prostacyclin, β-agonists, and forskolin), leading to increases in cGMP and cAMP, respectively.  

The cyclic nucleotides, in turn, activate cGMP-dependent protein kinase (PKG) and cAMP-

dependent protein kinase (PKA) 56, leading to several phosphorylation events resulting in 

relaxation or inhibition of force.  Cyclic nucleotide-induced relaxation or inhibition of force in 

smooth muscle involves at least three major pathways: decreases in intracellular free calcium 

concentrations, calcium sensitivity and actin cytoskeletal regulation (reviewed in 56,57).  While 

the role of a decrease in [Ca2+]i  and Ca2+ sensitivity in the regulation of smooth muscle cell 

contraction has been established, the role of actin cytoskeleton and actin-associated proteins is 

still unclear.  Although several investigations have suggested the regulation of actin and actin-

associated proteins in smooth muscle contraction (reviewed in 59), very few reports have 

addressed the role of second messenger regulation of actin-associated proteins during inhibition 

of force.  Actin-associated proteins that are implicated in the regulation of smooth muscle 

contraction include the small heat shock-related protein 20 (HSP20 or HSPB6), cofilin, 
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vasodilator-stimulated phosphoprotein (VASP) and paxillin.  HSP20 is an actin binding protein 

that is phosphorylated by PKG and PKA on serine 16, inducing relaxation and inhibition of 

contraction through the modulation of actin cytoskeletal dynamics 55,62-64.  Cyclic nucleotide-

dependent relaxation is associated with decreases in the phosphorylation of the actin 

depolymerizing protein cofilin in vascular, as well as, airway smooth muscle cells 64,68.  VASP is 

an actin binding protein that is localized to focal adhesions and cell-to-cell contacts 60.  Forskolin 

treatment leads to phosphorylation of VASP and regulates the actin cytoskeleton in rat aortic 

smooth muscle cells 70 and human airway smooth muscle cells 68.  Paxillin is a scaffolding 

protein that serves as a multi-domain adaptor at the interface between the plasma membrane and 

the actin cytoskeleton (reviewed in 85).  Paxillin undergoes phosphorylation and activation in 

response to contractile stimulation in many smooth muscle tissue types and is involved in the 

regulation of actin polymerization during contraction 84,86.  

In this study, we hypothesized that cyclic nucleotide-induced force suppression is 

dependent upon changes in actin cytoskeletal dynamics.  We developed a physiological model in 

which histamine-induced force was completely suppressed by forskolin pretreatment in PCA 

smooth muscle.  In this novel approach, force and [Ca2+]i were measured concurrently using a 

FluoroPlex Tissue Bath Fluorometry System, and polymerization of actin, phosphorylation of 

actomyosin and actin-associated proteins were determined. Our results indicate that forskolin-

induced suppression of force does not completely abolish Ca2+ transients or MLC 

phosphorylation but causes depolymerization of actin dose-dependently, and changes in the 

phosphorylation of proteins such as HSP20, cofilin, VASP and paxillin that regulate actin 

polymerization.  Since force can be completely suppressed without abolishing [Ca2+]i, this model 
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system can be employed to elucidate as yet unidentified Ca2+-independent molecular 

determinants of force inhibition in vascular smooth muscle.  

Methods 

Materials 

All chemicals were purchased from Sigma Chemical Co. (St. Louis, MO) unless 

specified otherwise.  Pre-cast acrylamide gels, Sodium dodecyl sulfate (SDS), Tris-glycine-SDS 

buffer (TGS), Tris-glycine (TG) and prestained Precision Blue Protein Standards were purchased 

from Bio-Rad (Hercules, CA).  Urea and CHAPS (3-[(3-Cholamidopropyl) dimethylammonio]-

1-propanesulfonate) were from Research Organics Inc. (Cleveland, OH).  F/G Actin assay kit 

was from Cytoskeleton Inc., (Denver, CO).  Fura 2-AM and Pluronic F-127 was purchased from 

Invitrogen (Carlsbad, CA).  

Procurement of porcine coronary artery smooth muscle tissue and physiologic 

measurements  

Fresh cadaveric hearts were isolated immediately from euthanized, discarded animals 

from Vanderbilt University Medical Center.  All procedures for collection of cadaveric tissue 

were reviewed and approved by the Vanderbilt University Animal Care and Use Committee.  

Porcine hearts were also collected from the local slaughter house (C&F Meats, Triune, TN) after 

obtaining permission from the slaughter house to use the tissue for research.  The heart was  

procured and placed directly in HEPES buffer (140 mM NaCl, 4.7 mM KCl, 1.0 mM MgSO4, 

1.0 mM NaH2PO4, 1.5 mM CaCl2, 10 mM glucose, and 10 mM HEPES, pH 7.4), and the 

coronary arteries were dissected and tested immediately or after overnight storage at 4°C in 

University of Wisconsin solution.  Subcutaneous fat and adventitial tissues were removed  and 

the vessel was cut into transverse rings of 3.0 mm in width.  To focus on the smooth muscle-
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derived changes during inhibition of force, endothelium was denuded by gently rolling the 

luminal surface of each ring at the tip of a fine forceps.  Rings were suspended in a muscle bath 

containing a bicarbonate buffer (120 mM NaCl, 4.7 mM KCl, 1.0 mM MgSO4, 1.0 mM 

NaH2PO4, 10 mM glucose, 1.5 mM CaCl2, and 25 mM Na2HCO3, pH 7.4), equilibrated with 

95% O2 / 5% CO2, at 37oC.  Force measurements were obtained with either a Kent Scientific 

(Litchfield, CT) force transducer (TRN001) or a Radnoti force transducer (Radnoti Glass 

Technology Inc., Monrovia, CA) interfaced with Power Lab from AD Instruments (Colorado 

Springs, CO).  Data were recorded with Chart software, version 5.1.1 (AD Instruments).  Rings 

were washed every 15 min with 37°C bicarbonate buffer for 1 hr, and each ring was 

progressively stretched to its optimal resting tension (approximately 1 g) that would produce a 

maximal response to contractile agonists as determined previously, then maintained at the resting 

tension and equilibrated for another hour.  Rings were then contracted multiple times with high 

extracellular potassium (110 mM KCl, with equimolar replacement of NaCl in bicarbonate 

buffer) and the force generated was measured.  Measured force was normalized for ring weight 

and length and converted to Stress using the formula: Stress [105Newtons (N)/m2] = force (g) x 

0.0987 / area, where area is equal to the wet weight [mg / length (mm at maximal length)] 

divided by 1.055.  The maximal tension obtained was taken as 100%.  Rings were equilibrated 

for an additional 30 min and dose response curves for histamine contraction and forskolin 

relaxation were determined to select the correct dose of agents for the experiment.  To determine 

the inhibition of contraction, rings were either treated with buffer alone (control), histamine (5 

µM ) for 3 min, forskolin (5 µM) for 10 min, or forskolin (1, 5, or 10 µM) for 10 min followed 

by histamine (5 µM) for 3 min.  At the end of the experiments, all rings were washed and 

contracted with KCl to ensure continued viability of the tissues.  To determine the role of 
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phosphorylation of proteins during inhibition of force, physiologic experiments were conducted 

as described above and the tissues were snap frozen under tension using forceps precooled in 

liquid nitrogen at 3 min and then pulverized.  These pulverized tissues were stored at -80°C for 

later analysis using urea glycerol gel, SDS polyacrylamide gel electrophoresis (PAGE) or 

isoelectric focusing and western blotting.  For actin assay to determine the level of F-actin 

compared to G-actin, the tissues were used immediately after treatment without freezing.   
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Cytosolic [Ca2+]i  measurements 

Fluroplex 

The complete system incorporates a  musclebath apparatus that measures the force 

generated by the arteries, a xenon arc lamp to create light, power source, fluoroplex controller, 

bath multiplexer, PowerLab device, optical fibers, water bath for heating, 95% O2 5% CO2 tank, 

and excitation filters.  All of these elements are displayed in Figure 5, and show how the system 

is integrated together.  

 

Figure  3.1 – Schematics of the Fluroplex apparatus  
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Light from a xenon arc lamp 

source is filtered with a neutral 

density filter block and the light is 

guided to the FluoroPlex multiplexer 

box where it is collimated, focused, 

and then filtered (Figure 3.2). Since 

two excitation wavelengths are 

needed to determine the intracellular 

calcium concentration, a galvo driven 

mirror is used to guide the light down 

one of two paths. The first path for 

340 nm wavelength light is focused 

onto a lens and then shone upon an 

excitation filter and then a dichroic 

mirror that reflects the 340 nm wavelength light down its path filtering out the rest of the light. 

After this light has passed the galvo-driven mirror focuses the next light wave onto a different 

lens that filters the light through excitation filters to 380 nm and passed through a dichroic 

mirror. Both of these light sources are reflected onto the multiplexer that then delivers light to 

the tissue bath apparatus. The timing of the two different wavelengths of light is how the 

FluoroPlex determines ratiometric data from emission light.  

After the fura 2 has been excited by either 340 or 380 nm light it emits 510 nm light 

which is passed through the optical fiber and directed by the multiplexer to the emission filter 

block dichroic mirror which eliminates and auto fluorescent light at a wavelength that is not 510 

 

Figure 3.2: Schematics for the light pathway from 
arc lamp to tissue, through excitation filters and 
dichroic blocks. 1 
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nm. This light is then passed into a photomultiplier tube which converts the emission light 

intensity to an electronic signal that is interpreted by the Fluoroplex.  

In order to concurrently measure force and calcium, loading conditions for Fura 2-AM 

had to be established for intact tissue rings that were under tension.  Fura-2 AM has been used in 

vascular smooth muscle cells, but rarely loaded into intact vascular tissue segments. In order to 

load Fura-2 AM many experimental protocols were used and a unique method for loading was 

developed (Appendix II). The new technique involved the loading of 5µM Fura-2 AM in 0.1% 

Pluronic F-127 and DMSO.  Below describes the optimal loading conditions found for porcine 

coronary arteries for use in the Fluroplex apparatus. 

Rings of PCA were suspended 

on hooks in a Fluroplex (Figure 3.3) 

(Tissue Bath Fluorometry System, 

IonOptix LLC, Milton, MA) which 

enables fluorescence ion recording in 

parallel with force measurement.  Force 

measurements were obtained with a 

Radnoti force transducer (Radnoti Glass 

Technology Inc., Monrovia, CA) 

interfaced with Power Lab from AD Instruments (Colorado Springs, CO).  Rings were loaded at 

room temperature with 5 µM Fura-2 AM ester in the bicarbonate buffer for 4 hrs.  After loading, 

rings were washed every 10 min with 37°C bicarbonate buffer for 1 hr.  Fluorescence was 

measured at both 380 and 340 nm of wavelength simultaneously.  The ratio of the emission of 

the two wavelengths was used to determine intracellular changes in calcium concentration.  

 

Figure 3.3 Fluroplex apparatus 1 Depicted are 
the force transducers and light multiplexer 
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Baseline ratio was set at 1.0 and changes in this ratio in response to stimuli were measured.  

Baseline calcium fluorescence was measured and the background was set to zero as an output of 

1 volt.  To determine the inhibition of contraction, rings were either treated with forskolin (5 µM 

for 10 min) followed by histamine (5 µM) or histamine alone.  To add forskolin or histamine 

while continuously measuring intracellular calcium concentrations, an infusion line filled with 

bicarbonate buffer was used to keep the system in a closed light impenetrable state.  The amount 

of buffer in the infusion line was adjusted to achieve the final concentration of the agonist in the 

bath.  Force and calcium fluorescence were measured continuously for 15 min after the addition 

of histamine. 

Determination of VASP, cofilin and paxillin phosphorylation    

Proteins from frozen muscle rings were extracted in UDC buffer (8 M urea, 10 mM 

dithiothreitol (DTT), 4% CHAPS containing protease inhibitor, Phosphatase I and II inhibitor 

cocktail (Sigma, St. Louis, MO).  The mixtures were vortexed at room temperature overnight, 

and then centrifuged at 14,000 rpm for 15 min at 4°C.  Soluble protein concentrations were 

determined using the Bradford assay (Pierce Chemical, Rockfort, IL).  Equal amounts (20-50 μg) 

of proteins were placed in a Laemmli sample buffer (Bio-Rad laboratories, Inc. Hercules, CA), 

heated for 5 min at 100°C and separated on SDS polyacrylamide gels.  Proteins from the gels 

were transferred onto nitrocellulose membranes (Li-COR Biosciences, Lincoln, NE) and blocked 

prior to incubation overnight at 4°C with the following primary antibodies:  anti-VASP (1:2000, 

ECM Biosciences, Versailles, KY); anti-phospho-cofilin 2 (Ser 3) (1:500), and  anti-cofilin 

(1:500, Cell Signaling Technology, Santa Cruz, CA), anti phospho (Tyr 118)-paxillin (1:250, 

Santa Cruz Biotechnology, Inc.) and anti-paxillin (1:250, BD Transduction Laboratories).  VASP 

phosphorylation by PKA at Ser 157 causes a significant mobility shift on one dimensional SDS-
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PAGE gels 87 enabling to separate phospho(p) and non-phospho(np) VASP on the same gel  and 

was detected by using an antibody that recognizes both phospho and non-phospho forms.  

Membranes were washed three times with TBS containing Tween 20 (0.1%) (TBST), and 

incubated with appropriate infrared-labeled secondary antibodies (Li-Cor, Lincoln, NE) for 1h at 

room temperature.  The membranes were subsequently washed with TBST, and protein-antibody 

complexes were visualized and quantified using the Odyssey direct infrared fluorescence 

imaging system (Li-Cor Biosciences NE).  Phosphorylation was calculated as a ratio of the 

phosphorylated protein to total protein (p- plus np- protein) and was then normalized to the 

unstimulated control with the control value set as 1.0.  

Determination of MLC phosphorylation   

MLC phosphorylation was determined using a modification of  an established urea 

glycerol method that separates p- and np- MLC 88,89.  The frozen tissue was pulverized, placed in 

a frozen slurry of precipitating solution consisting of 90% acetone, 10% trichloroacetic acid, and 

10 mM DTT, and then allowed to melt to room temperature.  The precipitating solution was 

removed, and the tissues were washed three times with 90% acetone and 10 mM DTT.  The 

samples were dried, and the pellets were suspended in UDC buffer as described above and 

vortexed to solubilize the proteins.  Ten micrograms of protein were diluted with 10 µl of urea 

sample buffer (6.7 M urea, 18 mM Tris, 20 mM glycine, 9 mM DTT, 4.6% saturated sucrose, 

and .004% bromophenol blue) and separated on glycerol-urea mini gels (40% glycerol, 10% 

acrylamide, 0.5% bisacrylamide, 20 mM Tris, and 22 mM glycine).  Proteins were transferred 

onto nitrocellulose membranes in a buffer containing 10 mM Na2HPO4 pH 7.6 at 25 V for 1 hr at 

20°C.  The blot was probed with anti MLC antibody ( 1: 7000, gift from Dr. James Stull, 

University of Texas, Galveston TX), and processed as described above.  The p- and np- MLC 
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bands were quantitated by densitometric analysis.  The relative amount of the p-MLC was 

calculated. 

Determination of HSP20 phosphorylation 

Phosphorylation of HSP20 in response to forskolin was examined by isoelectric focusing, 

which separates the p- and np- forms of HSP20 and detected by western blotting.  30 µg of 

extracted proteins from the treated PCA samples were separated on one-dimensional isoelectric 

focusing gel (8.3X7.3 cm) with 5% ampholines (4 parts pI 4-7 and 1 part pI 3-10, GE Healthcare 

Bio-Sciences) using 20 mM sodium hydroxide as a cathode buffer and 10 mM phosphoric acid 

as an anode buffer.  Proteins were focused for 100 V for 1 hr, 250 V for 1 hr and 500 V for 30 

min and transferred to nitrocellulose membrane at 25 V in 0.7% acetic acid with the direction of 

the gel sandwich reversed (acetic acid give proteins a positive charge) for 1 hr at room 

temperature.  The blot was probed with anti-HSP20 antibody (1:3,000 dilution, Advanced 

Immunochemical Inc., Long Beach, CA); and the p- and np- forms of HSP20 were quantitated 

by densitometry and the ratio of p-HSP20 to total HSP20  was calculated.  

Actin Assay 

The amount of F-actin versus G-actin was measured using the G-actin/F-actin In Vivo 

Assay kit (Cytoskeleton, Denver, CO), per manufacturer’s protocol.  Briefly, treated PCA 

samples  were homogenized in 1 ml of lysis buffer (50 mM PIPES pH 6.9, 50 mM NaCl, 5 mM 

MgCl2 5 mM EGTA, 5% (v/v) Glycerol, 0.1 % Nonidet P40, 0.1% Triton X-100, 0.1% Tween 

20, 0.1% 2-mercapto-ethanol, 0.001% Antifoam C, 4 µM Tosyl arginine methyl ester, 15 µM 

Leupeptin, 10 µM Pepstatin A, 10 mM Benzamidine, 1 mM ATP warmed to 37°C) for 1 min 

with a mortar and pestle that fit into the 1.5 ml microfuge tube.  The lysate was centrifuged at 

2000 rpm for 5 min at 37°C to pellet unbroken cells.  The supernatants were centrifuged at 
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100,000 x g for 1 hr at 37°C.  Supernatants (contains the G-actin) were transferred to pre-cooled 

tubes and placed on ice.  The pellets (contain F-actin) were resuspended in 1 ml of ice-cold 10 

µM cytochalasin D in deionized water, and F- actin was depolymerized by incubating for 1 hr on 

ice with mixing every 15 min.  Equal volume of supernatants and pellets along with actin 

standards (2-20 µg) were separated on 12% SDS-polyacrylamide gels and transferred to 

nitrocellulose membrane in 1X TG buffer at 100 volts for 1 hr.  The membrane was probed with 

anti actin antibody and the amount of actin in each fraction was quantified comparing to actin 

standards loaded on the same gel.  

Statistical analysis 

All data are reported as the mean responses ± standard error of the mean (SEM).  

Statistical analysis was performed by unpaired Student’s t test or one-way ANOVA, followed by 

Tukey’s post test (GraphPad Software, Inc. San Diego, CA).  The criterion for significance was p 

< 0.05.   

Results 

The effect of forskolin on inhibition of contraction, Ca2+ transients, and MLC phosphorylationTo 

study the role of actin cytoskeletal dynamics during inhibition of contraction we first developed a 

physiological model system with conditions in which agonist-induced force was completely 

suppressed in the presence of Ca2+ transients with no significant change in the MLC 

phosphorylation.  This allowed the study of putative mechanisms, other than calcium 

desensitization, that regulate the suppression of force.  Initial experiments were conducted using 

rious doses of histamine (0.1 to 10 µM) to contract PCA, and a dose of histamine (5 µM) which 

produced greater than 60% of maximal potassium-induced contraction was selected for our 

experiment (Figure 3.4 A).  Treatment of PCA with histamine (5 µM) alone induced force (62 % 
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of KCl stress, Figure 3.4 A, E) and increased Ca2+ transients (0.35± 0.05 AU, n=9) (Figure 3.4 

A, E).  Changes in Ca2+ transients occurred before the initiation of contraction, and the 

 

Figure 3.4: A-D Representative force and intracellular calcium. E: Comparison of concurrent 
change in flourescent ratio (340/380 nm) to Stress (N/m2) from  histamine-induced 
contraction with various doses of forskolin. F: Reversibility of Forskolin-mediated force 
suppression. n=7, p<0.05 
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fluorescence ratio reached a maximum value while force was still increasing.  The maximum 

fluorescence ratio sustained for 45 seconds and dropped prior to any decrease in force.  To 

develop a physiological model system with force completely suppressed in the presence of Ca2+ 

transients with no significant change in the MLC phosphorylation, we pretreated PCA with 

different doses of forskolin (1, 5, and 10 µM) for 10 min followed by histamine (5 µM) for 3 min 

and force, [Ca2+]i, MLC phosphorylation, F-actin levels and HSP20 phosphorylation were 

measured.  Pretreatment of PCA with forskolin at 1 µM did not abolish histamine-induced force 

(38% of KCl stress, Figure 3.4B, E), [Ca2+]i (0.25 ± 0.05 AU, n=7)   (Figure 3.4 B, E), MLC 

phosphorylation (0.41 ± .03 and 0.41 ± 0.08 p-MLC/total MLC for histamine and 1 µM forskolin 

plus histamine, respectively, Figure 2B) or significantly change the F-actin concentration (84 ± 

4%and 82 ± 2% for histamine and forskolin plus histamine, respectively, Figure 2C).  However, 

pretreatment with 1 µM forskolin increased the phosphorylation of HSP20 (0.06 ± 0.02 and 0.28 

± 0.04 p-HSP20/total HSP20 for histamine and forskolin plus histamine, respectively, Figure 

2D).  Forskolin at 5 µM completely suppressed histamine-induced force (0% of KCl stress, 

Figure 1B, E, Figure 3.5A) but did not abolish [Ca2+]i (0.13 ± 0.03 AU, n=9) (Figure 3.4 C, E).  

The magnitude of the change in fluorescence ratio was significantly greater for tissue contracted 

with histamine (0.35 ± 0.05 AU) when compared to tissue treated with 5 µM forskolin followed 

by histamine (0.13 ± 0.03 AU)(n=7, p<0.01, Figure 3.4E).  The time it took for the [Ca2+]i to rise 

from 10% to 90% of its maximal was significantly shorter (54.40 ± 8.23 seconds) for tissue that 

was treated with histamine alone compared to forskolin followed by histamine treatment (192.8 

± 45.63 seconds n=5, p=0.024, data not shown).  Forskolin at 5 µM did not significantly change 

MLC phosphorylation (0.4.± 0.03 and 0.39 ±.01 p-MLC/total MLC for histamine and forskolin 

plus histamine, respectively, Figure 2B), however it decreased F-actin levels (84 ± 4% and 66 ± 
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8% for histamine and forskolin plus histamine, respectively, Figure 3.5C) and increased the 

phosphorylation of HSP20 (0.06 ±0.02 and 0.50 ±.0.05 p-HSP20/total HSP20 for histamine and 

forskolin plus histamine, respectively, Figure 3.5D).  Forskolin at 10 µM completely suppressed 

histamine-induced force (0 % of KCl stress, Figure 3.4 D, E) as well as [Ca2+]i (0 AU, n=7) 

(Figure 3.4D, E).  Forskolin at 10 µM significantly decreased the MLC phosphorylation (0.4.± 

0.03 and 0.21.± 0.05 p-MLC/total MLC for histamine and forskolin plus histamine, respectively, 

Figure 2B), and F-actin levels (84 ± 4% and 60 ± 9% for histamine and forskolin plus histamine, 

 

Figure 3.5: Cumulative data representing the relative amounts of the p-MLC over the total 
MLC obtained when the phosphorylated and non-phosphorylated bands were quantitated 
densitometrically n=4, p<0.05 
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respectively, Figure 2C) while it increased the phosphorylation of HSP20 (0.06 ±0.02 and 0.50 

±.0.05 p-HSP20/total HSP20 for histamine and forskolin plus histamine, respectively, Figure 

2D).  Hence, 5 µM forskolin was chosen for our model system and using these conditions we 

further performed experiments to characterize the effect of forskolin-induced suppression of 

force on phosphorylation changes of actin associated proteins and compared to basal levels.  

Forskolin-induced suppression of force was reversible as washing the rings repeatedly for 50 min 

allowed the PCA to contract (~40% of original contraction) to 5 µM histamine in a time-

dependent manner (Figure 3.4F), and demonstrated that the doses of histamine and forskolin 

used in this study did not affect the viability of the tissue.  Washing the rings for 2 hr allowed the 

PCA to recover completely and produced 100% of the original contraction to 5 µM histamine.   

Histamine treatment significantly increased the phosphorylation of MLC (0.41 ± 0.04 p-

MLC/ total MLC) when compared to untreated basal (0.09 ± 0.04 p-MLC/ total MLC) (n=4, 

p=0.01).  Forskolin plus histamine treatment also significantly increased (0.34 ± 0.05 p-

MLC/total MLC the phosphorylation of MLC when compared to untreated basal (0.09 ± 0.04 p-

MLC/ total MLC, n=4, p=0.02).  There was no significant difference in the MLC 

phosphorylation between histamine and forskolin plus histamine treated tissues (Figure 3.6), 

which suggests that forskolin treatment did not result in significant dephosphorylation of MLC.   
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Figure 3.6: Panel A: Representative western blot of p-MLC and np-MLC.  Panel B:  Cumulative 
data representing the relative amounts of the p-MLC over the total MLC  n=4, p<0.05 
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Forskolin treatment decreases filamentous actin levels  

 Several investigators have demonstrated that actin is polymerized during 

contraction of smooth 

muscle, and agents that 

inhibit actin 

polymerization result in 

inhibition of contraction 

(reviewed in 59).  To 

examine the effect of 

activation of cyclic 

nucleotide-dependent 

pathways by forskolin on 

actin polymerization, 

actin polymerization was 

measured in PCA 

contracted with 

histamine with or 

without forskolin pretreatment (Figure 3.7).  Treatment with histamine led to increases in F- 

actin by 14 % (75 ± 4 % to 89 ± 1% for basal and histamine, respectively), while treatment with 

forskolin reduced F-actin by 10% (75 ± 4 % to 65 ± 6 % for basal and forskolin, respectively).  

Pretreatment with forskolin before histamine stimulation reduced the F-actin by 17% (75 ± 4 % 

to 58 ± 10 % for basal and forskolin plus histamine, respectively p=0.004, n=7-9). 

 

Figure 3.7: Treated tissues were homogonized and F- and G-actin 
were separated by centrifugation, F-actin was converted to G-actin, 
and measured by western blot, and quantitated compared to the 
standard actin loaded on the same gel n=7-9 p<0.05 
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The effect of forskolin on the phosphorylation of actin regulating proteins, HSP20, 

cofilin, VASP, and paxillin   

Forskolin treatment of smooth muscle increases the phosphorylation of HSP20 and 

induces relaxation 90.  To decipher the role of HSP20 phosphorylation in the regulation of actin 

polymerization 

during force 

suppression, HSP20 

phosphorylation 

was examined by 

isoelectric focusing 

and western blot 

analysis.  As 

expected, forskolin 

led to increases in 

the phosphorylation 

of HSP20 when 

compared to 

untreated or 

histamine treated 

tissues. (0.77 ± 0.09 p-HSP20/total HSP20 vs 0 .07 ± 0.02 and 0.03 ± 0.01 for untreated and 

histamine, respectively, p < 0.05, n=4).  Treatment with histamine after forskolin did not reverse 

HSP20 phosphorylation (0.70 ± 0.03, Figure 3.8). 

 

Figure 3.8: Cumulative data representing the relative amounts of p-
HSP20 over total HSP20, obtained when the phosphorylated and non-
phosphorylated bands were quantitated densitometrically n=6 p<0.05 
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Next, the effects of forskolin on cofilin and VASP phosphorylation, both of which have 

been demonstrated to regulate actin polymerization, were determined.  Histamine increased the 

phosphorylation of cofilin in PCA by 2.9 ± 1.2 fold, while forskolin  pretreatment prevented 

histamine-induced increase in the phosphorylation of cofilin in PCA (4.2 ± 0.8 and 1.5 ± 0.3 p-

 

Figure 3.9: Preincubation with forskolin reduces phosphorylation of cofilin in PCA. Data 
representing the relative amounts of p-cofilin over the  total cofilin and then normalized to 
the basal n=4 p<0.05 
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cofilin/total cofilin for histamine and forskolin plus histamine, respectively (p < 0.05, n=4, 

Figure 3.9).  

 VASP, the vasodilator-stimulated phosphoprotein, is important in actin polymerization 

as well as the 

interface between 

the cytoskeleton 

and the 

extracellular matrix.  

VASP is affected 

by both cAMP and 

cGMP signaling, 

and is present in the 

relaxation of 

smooth muscle.  To 

examine changes in 

VASP tissue was 

challenged with 

histamine and 

changes within the 

phorphorylation of VASP were examined with the treatment of forskolin.  Histamine treatment 

did not increase the phosphorylation of VASP (2.3 ± 1.4 p-VASP/ totalVASP).  VASP was 

phosphorylated in response to forskolin (36.5± 13.5 p-VASP/ totalVASP, compared to the basal 

value p<0.05), and the phosphorylation was not significantly changed by histamine treatment 

 

Figure 3.10: Phosphorylation of VASP causes mobility shift in the 
SDS gel and p- and np- VASP forms were detected by western blotting 
using VASP antibody that recognizes both forms. VASP 
phosphorylatoin was signficantly increased by forskolin treatment. 
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after forskolin (25.8 ± 11.3 p-VASP/ total VASP, for forskolin plus and histamine, respectively, 

p<0.6 n=6, Figure 3.10).  

The 

cytoskeletal protein, 

paxillin, has been 

shown to regulate 

actin polymerization 

during contractile 

activation of smooth 

muscle 84,91.  Hence, 

we studied the 

phosphorylation of 

paxillin during 

forskolin-induced 

suppression of force.  

Forskolin 

pretreatment 

prevented the 

phosphorylation of 

paxillin associated with histamine stimulation (3.5 ± 0.7 and 1.1 ± 0.1, p-paxillin/ total paxillin, 

for histamine and forskolin plus histamine, respectively, p<0.05, n=4, Figure 3.11), suggesting 

that inhibition of paxillin phosphorylation interferes with the actin polymerization needed for 

contraction.   

 

Figure 3.11: Preincubation with forskolin abolish histamine induced 
paxillin phosphorylation in PCA.  Panel A:  Representative western blot of p-
paxillin and np-paxillin.  Panel B:  Cumulative data representing the relative 
amounts of p-paxillin over total paxillin and normalized to the basal.  n=4. p 
< 0.05. * significant compared to all other conditions. 
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Discussion 

In this study, a physiologic model system was developed wherein [Ca2+]i was uncoupled 

from force, resulting in the complete suppression of force generation in the presence of a 

contractile agonist.  Our approach is based on the premise that actin cytoskeletal regulation is an 

active component of cyclic nucleotide-dependent relaxation or inhibition of force.  Utilizing 

PCA, we showed that activation of adenylyl cyclase by forskolin prior to histamine exposure 

completely suppressed half maximal force generated by histamine.  This physiologic model 

allowed us to further define the role of actin filaments, in addition to thick filament modulation, 

during cyclic nucleotide-dependent force suppression.  Experiments were conducted using the 

FluoroPlex Tissue Bath Fluorometry System, a unique muscle bath system that enables 

fluorescence ion recording in parallel with force measurement in intact tissues, and we measured 

[Ca2+]i transients, MLC phosphorylation, F/G- actin levels, along with the phosphorylation of 

actin regulatory proteins.   

While histamine-induced force generation was completely suppressed with forskolin 

pretreatment, a transient increase in [Ca2+]i was still present (Figure1) suggesting that additional 

mechanisms to the reversal of activation involving decrease in [Ca2+]i and crossbridge-

dephosphorylation play a role in the suppression of force. However, we observed that the 

magnitude of the change in fluorescence ratio was significantly greater for tissue contracted with 

histamine when compared to tissue treated with forskolin followed by histamine (Figure 1 E).  

The time it took for the [Ca2+]i to increase from 10% to 90% of its maximum response was 

significantly lower for tissue that was treated with histamine alone compared to forskolin 

followed by histamine treatment (data not shown), suggesting that the decoupling between 

[Ca2+]i and force was not complete.  It is possible that these changes may be due to the direct 
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effect of forskolin on the [Ca2+]i..   The effect was dose-dependent as the lower forskolin 

concentrations (1 µM) did not abolish the transient [Ca2+]i or the force, and at a higher 

concentration (10 µM) there was no transient increase in [Ca2+]i and force was completely 

suppressed.  These results suggest that a higher forskolin dose inhibits the agonist-induced Ca2+ 

signaling pathways, possibly due to cross activation of PKG by cAMP, as reported by several 

investigators 92-95.  Activation of PKG can reduce both the concentration of [Ca2+]i and the force 

developed for a given intracellular [Ca2+] (i.e., the Ca2+ sensitivity) 96,97.  Preliminary 

experiments also showed that pretreatment with the nitric oxide donor, sodium nitroprusside, not 

only completely blocked histamine-induced increase in [Ca2+]i and force but also decreased the 

phosphorylation of MLC (Komalavilas et al., unpublished results).   

Pretreatment of PCA with 5 µM forskolin completely suppressed histamine-induced 

contraction without significantly affecting histamine-induced changes in MLC phosphorylation 

(Figure, 2,3).  This is similar to the results obtained in swine carotid artery where forskolin-

induced force suppression in histamine pre-contracted tissue occurs without a reduction in MLC 

phosphorylation through a mechanism that involves regional actin filament inhibition or weak 

inhibition of myosin binding at the thin or thick filament. 98.  However, we observed that 

treatment of PCA with 10 µM forskolin prior to histamine treatment significantly reduced the 

MLC phosphorylation suggesting activation of PKG-regulating Ca2+ regulatory pathways.  PKG 

activates MLC phosphatase, thereby reducing MLC phosphorylation 96.   

Actin polymerization occurs in response to contractile stimuli in many smooth muscle 

tissues, and force development can be significantly reduced by treatment with inhibitors of actin 

polymerization (reviewed in 59,83,99).  Similar to prior reports using dog trachealis 100 and swine 

carotid artery 98, histamine increased F-actin concentration in PCA (Figure 4).  Forskolin 
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pretreatment prevented the histamine-induced increase in F-actin (Figure 4 A, B).  This can be 

explained by the observation that forskolin treatment alone reduced basal F-actin concentration, 

suggesting cyclic-nucleotide-mediated actin depolymerization preceded any histamine-mediated 

cytoskeletal reorganization.  We showed that reduction in F-actin was evident in the higher (5 

and 10 µM) doses of forskolin tested.  However, treatment of PCA with 1 µM forskolin did not 

completely inhibit the force or prevent the histamine induced increase in F-actin (Figure 2C).  

This result is in agreement to the Meeks et al study where no significant change in the F-actin 

levels was observed after forskolin (1 µM) treatment of histamine-contracted tissue 98.  It may be 

that forskolin induced reduced force despite increased MLC phosphorylation require only HSP20 

phosphorylation while complete suppression of force with higher dose of forskolin involve 

HSP20 phosphorylation as well as decrease in F-actin level.  It is also possible that the change in 

F-actin level is only detectable with the assay used when the force is completely suppressed by 

the use of a higher dose of forskolin, and that the subtle changes in F-actin level may not be 

detectable while there is only partial decrease in force using a lower dose of forskolin.  

Forskolin-induced suppression of force was reversible as washing the rings repeatedly allowed 

the PCA to contract to 5 µM histamine in a time-dependent manner (Figure 1F).  Several 

investigators have demonstrated that latrunculin and cytochalasin, agents known to decrease 

actin polymerization, inhibit agonist-induced contraction 101-103.  However, these agents affect 

force by direct alteration of contractile filaments, while this study describes second messenger-

mediated regulation of actin cytoskeletal-associated protein function.  

A number of actin-associated proteins can be phosphorylated upon PKA or PKG 

activation. One such protein is HSP20, which can be phosphorylated on serine (Ser16) upon 

PKA or PKG activation leading to relaxation or  force suppression independent of MLC 
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phosphorylation 47,55,63.  HSP20 phosphorylation mediates relaxation or suppression of force 

through mechanisms that involve actin cytoskeletal regulation.  Forskolin at 1 µM did not 

significantly change the MLC phosphorylation but increased the phosphorylation of HSP20 

suggesting that phosphorylation of HSP20 alone partially reduced the force generated by 

histamine, possibly through mechanisms other than actin depolymerization.  This also suggests 

that complete suppression of force requires higher doses of forskolin which not only increase the 

phosphorylation of HSP20 but also decrease F-actin.  One mechanism involves interaction of p-

HSP20 with scaffolding protein 14-3-3 and the actin depolymerizing factor cofilin, which causes 

depolymerization of actin resulting in deactivation of actin cytoskeleton and relaxation 64.  

Forskolin treatment also decreased the phosphorylation of cofilin in the model described here 

(Figure. 6).  Cofilin in its phosphorylated form binds to the intracellular scaffolding protein, 14-

3-3 104.  When displaced from 14-3-3, cofilin becomes dephosphorylated and acts as an actin 

depolymerizing protein 105,106.  Phosphorylated HSP20 formed a tight complex with 14-3-3 in 

which dimer of 14-3-3- was bound to dimer of HSP20 107.  Moreover, binding of 14-3-3 protein 

to p-HSP20 peptide prevented the association of cofilin with 14-3-3 64.  This suggests that, 

forskolin treatment leads to phosphorylation of HSP20 which then binds to 14-3-3 and displaces 

cofilin.  Consequently, the displaced cofilin is dephosphorylated leading to activation of cofilin 

as an actin depolymerization factor resulting in actin depolymerization 64,68.  HSP20 also has a 

sequence homology with troponin 1 and a peptide containing this homology bound to actin 

filaments, reducing actin–activated myosin ATPase activity.  This mechanism leads to the 

relaxation of skinned smooth muscle by partial or full inhibition of local myosin binding at the 

thin-or thick filament level 55,98.  Phosphorylated HSP20 has been shown to promote airway 

smooth muscle relaxation, possibly through depolymerization of F-actin as well as inhibition of 
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myosin binding to actin 68,108.  In colonic smooth muscle, HSP20 is activated by PKA and 

modulates the association of caldesmon and tropomyosin during the maintenance of tone 109.  

HSP20 may act as the functional switch for contraction and relaxation in the colonic smooth 

muscle 109.  HSP20-mediated force suppression may indeed involve different mechanisms in 

smooth muscle from various types and species.  

In this study, forskolin also increased the phosphorylation of VASP, and the 

phosphorylation was not reversed upon histamine stimulation (Figure 7).  Phosphorylation of 

VASP has been shown to be involved in the regulation of actin polymerization and decreases in 

the affinity of VASP for actin by 40 fold 110,111.  VASP knockdown experiments have 

demonstrated that VASP-mediated elongation of actin filaments are necessary for vascular 

contractility and that VASP phosphorylation is decreased during phenylephrine induced force 

generation 99.  VASP phosphorylation by PKA has a negative effect on actin nucleation, and may 

act as a negative regulator of actin dynamics 112.  Our results are consistent with this model in 

that forskolin-induced phosphorylation of VASP, affecting histamine-induced actin 

polymerization, thus preventing force generation.  

This study demonstrated that histamine-induced paxillin phosphorylation was prevented 

by forskolin pretreatment (Figure 8).  Paxillin is a focal adhesion protein that is proposed to link 

actin filaments to integrin rich cell adhesion sites and may be involved as a cross-linker between 

the thin filaments and the dense bodies 86,113.  Paxillin phosphorylation has been associated with 

the coordinated formation of focal adhesions and stress fibers 114.  Paxillin phosphorylation was 

increased during acetylcholine-induced contraction of intact trachealis smooth muscle and has 

been shown to play an essential role in regulating smooth muscle contraction86.  Gunst et al has 

proposed that contractile agonists activate FAK, inducing tyrosine (118) phosphorylation of 
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paxillin, causing CrkII coupling and formation of the CrkII/Cdc42/N-WASp complex, leading to 

the activation of Cdc42, N-WASp and Arp2/3 complex and actin polymerization 115.  In swine 

carotid artery stimulated with high-K+ or histamine, paxillin phosphorylation (Y118) and actin 

polymerization were increased only after full force development suggesting a role for paxillin 

phosphorylation during the sustained contraction 84,86.  Stimulus-induced tyrosine 

phosphorylation of paxillin is associated with increases in actin polymerization in different 

smooth muscle tissues (reviewed in 116).  Although paxillin is not a substrate of PKA, its 

phosphorylation is affected by the activation of cAMP pathway indirectly, possibly by cross talk 

between the tyrosine and serine/threonine kinase pathways or that an intact actin cytoskeleton is 

necessary for paxillin phosphorylation.  Hence, inhibition of histamine-induced paxillin 

phosphorylation by the activation of the cAMP pathway in PCA may indeed contribute, in part, 

to the decreased actin polymerization observed in our model, thereby inhibiting force.  

Conclusions 

A physiological model was developed in which forskolin pretreatment completely 

suppressed histamine-induced force in PCA by regulating actin polymerization and dynamics 

without abolishing increases in [Ca2+]i or MLC phosphorylation.  Actin depolymerization creates 

conditions in which there is no actin filament structure on which MLC can treadmill.  Thus, 

calcium desensitization is likely not the only mechanism of force modulation during activation of 

cyclic nucleotide-dependent signaling pathways.  Our results further suggest that the actin 

cytoskeletal changes are mediated by the phosphorylation changes of actin modulatory proteins, 

such as HSP20, cofilin, VASP and paxillin.  The force suppression model employed in this study 

can be used to further characterize the role of actin and its associated proteins in the regulation of 

vascular smooth muscle tone.  Future studies may also examine later events (3-30min) of force 
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maintenance.  In addition, cyclic nucleotide analogues can be used to decipher the different 

mechanisms that contribute to these regulatory pathways.   
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CHAPTER 4 

Calcium Dependent Force Inhibition 

Aim 3 Papaverine Prevents Vasospasm by Inhibiting Force via Regulating of Myosin 

Light Chain Dephosphorylation and Actin Polymerization 

Text for Chapter 4 taken from: 

Hocking KM, Putumbaka G, Wise E, Cheung-Flynn J, Brophy CM, Komalavilas P, 

“Papaverine Prevents Vasospasm by Inhibiting Force via Regulating of Myosin Light Chain 

Dephosphorylation and Actin Polymerization” in preparation 

 

Introduction 

Establishing the downstream effects of PKG activation is important for better 

understanding the relationship of thick and thin filaments to contraction and relaxation. PKG 

activation has been shown to decrease calcium sensitivity and reduce a rise in [Ca2+]i 41,58. 

Traditional vasodilators like sodium nitroprusside act through the PKG pathway by increasing 

cGMP by acting as a nitric oxide donor.  Papaverine is a non-selective phosphodiesterase 

inhibitor found in the opium poppy. It has been shown to increase both cGMP and cAMP117 in 

smooth muscle, both of which induce vasorelaxation. Papaverine is often used as a topical 

treatment in the process of autografting the human saphenous vein into arterial circulation. This 

process works well in preventing local vasospasm on exposed vessels, but does not directly 

transfer for treatment of cerebral vessels that are not exposed. Papaverine administered 

systemically may cause hypotension due to systemic effects of the phosphodiesterase inhibitor. 

Sustained contraction or impaired relaxation of vascular smooth muscle results in 

vasospasm.  Vasospasm contributes to “no reflow” phenomenon in coronary interventions, 



56 

 

stroke after subarachnoid hemorrhage, and early vein graft failure.  The human saphenous vein 

(HSV) is still the most commonly used conduit in coronary artery bypass grafting. HSV is 

considered inferior to the internal mammary artery (IMA) because of 50% failure rate within 10 

years compared with 5% failure for the IMA118,119. Damage to the endothelium, during 

vasospasm, leads to a cascade of problems that result from reduced nitric oxide production. 

Integrity of the endothelial layer has been shown to be an important factor in determining the 

failure rate of both saphenous vein grafts and IMA grafts after implantation120.  

 Saphenous vein grafts commonly develop vasospasm during harvest and this 

spasm is typically treated by distension of the conduit with a hand held syringe121 or with 

pharmacologic approaches.  Manual distension can result in very high intraluminal pressures (up 

to 800 mmHg) that injure the fragile endothelial monolayer122 negating the benefit of 

overcoming vasospasm. Effective pharmaceutical approaches to vasospasm in HSV include: 

glyceryl trinitrate, verapamil, and papaverine which have  similar EC50 of relaxation in HSV121.  

Sodium nitroprusside and nicroandil have been shown to be less effective at treating vasospasm 

in HSV27.  For many years, papaverine has been the most commonly used agent for preventing 

vasospasm of HSV. 

The objective of this study is to investigate the molecular mechanism involved in 

treatment of the human saphenous vein with papaverine.  Norepinephrine was used to induce 

vasospasm. We hypothesize that papaverine acts through both thin and thick filament 

mechanisms in order to prevent vasospasm, making it a more effective treatment than sodium 

nitroprusside which acts through only thick filaments.  Papaverine’s dual filament pathway acts 

by reducing actin polymerization, intracellular calcium transients, and myosin light chain 

phosphorylation as well as increase phosphorylation of actin regulatory proteins HSP20 and 
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VASP, both of which have been implicated in relaxation of smooth muscle tissue123 124. 

Reduction in intracellular calcium would demonstrate that PKG mediates inhibition of 

contraction through both changes in [Ca2+]i and thin filament regulatory processes. 

Methods 

Materials 

All chemicals were purchased from Sigma Chemical Co. (St. Louis, MO) unless 

specified otherwise.  Pre-cast acryl amide gels, Sodium dodecyl sulfate (SDS), Tris-glycine-SDS 

buffer (TGS), Tris-glycine (TG) and prestained Precision Blue Protein Standards were purchased 

from Bio-Rad (Hercules, CA).  Urea and CHAPS (write full name) were from Research Organics 

Inc. (Cleveland, OH).  F/G Actin assay kit was from Cytoskeleton Inc., (Denver, CO).  Fura 2-

AM and Pluronic F-127 was purchased from Invitrogen (Carlsbad, CA).  

HSV procurement and Physiological measurement of smooth muscle functional viability 

Human saphenous vein samples were collected after obtaining approval of the 

Institutional Review Boards of the Vanderbilt University Medical Center and the VA Tennessee 

Valley Healthcare System, Nashville, TN.  Remnants of unidentified segments of human 

saphenous veins left behind after the surgery were obtained from patients that underwent 

coronary artery bypass graft surgery. The human saphenous veins were harvested by open or 

minimally invasive endoscopic technique according to surgeon discretion and were stored in 

heparinized Plasmalyte (140 mEq sodium, 5 mEq potassium, 3 mEq magnesium, 98 mEq 

chloride, 27 mEq acetate, and 23 mEq gluconate, [Baxter Healthcare Corporation Deerfield, IL]) 

solution in the operating room.  Segments of grafts that were without damage or branches were 

used for analysis.   
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Human saphenous vein segments were then dissected free of fat and connective tissue for 

determination of smooth muscle function in an organ bath.  One-millimeter rings from the 

human saphenous vein segments were weighed, their lengths recorded.  To focus on the smooth 

muscle-derived changes during inhibition of force, the endothelium was denuded by gently 

rolling the luminal surface of each ring at the tip of a fine forceps.  Rings were suspended in a 

muscle bath containing a bicarbonate buffer (120 mM NaCl, 4.7 mM KCl, 1.0 mM MgSO4, 1.0 

mM NaH2PO4, 10 mM glucose, 1.5 mM CaCl2, and 25 mM Na2HCO3, pH 7.4), equilibrated with 

95% oxygen and 5% carbon dioxide at 37°C. Each ring was progressively stretched to its 

optimal resting tension (approximately 1 g) that would produce a maximal response to 

contractile agonists as determined previously, then maintained at the resting tension and 

equilibrated for a minimum of 2 hours 125.  Force measurements were obtained using a Radnoti 

Glass Technology (Monrovia, CA) force transducer (159901A) interfaced with a Powerlab data 

acquisition system and Chart software (ADInstruments, Colorado Springs, CO).  The rings were 

contracted first with 110 mM KCl (with equimolar replacement of NaCl in bicarbonate buffer) to 

determine functional viability of the smooth muscle.  Any tissue failing to contract with KCl was 

considered non-functional and was not used in further experiments.  Viable tissues were allowed 

to equilibrate in the bicarbonate solution for 30 minutes and were then challenged with a 

physiological contractile agonist norepinephrine (10-7-10-5 M) and relaxed with papaverine ( 10-6-

10-3M).    Concentration of papaverine needed to completely block norepinephrine induced 

contraction (10-5M) was determined and used for the rest of the experiments.  HSV rings were 

pretreated with 10-3M papaverine for 10 min and then challenged with norepinephrine (5X10-6M-

10-5M) and the force generated was recorded.  To determine the role of phosphorylation of 

proteins during inhibition of force, physiologic experiments were conducted as described above 
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and the tissues were snap frozen under tension using forceps precooled in liquid nitrogen at 5 

min and then pulverized. These pulverized tissues were stored at -80°C for later analysis using 

urea glycerol gel, SDS polyacrylamide gel electrophoresis (PAGE) or isoelectric focusing and 

western blotting.  For actin assay to determine the level of F-actin compared to G-actin, the 

tissues were used immediately after treatment without freezing.   

Contractile response was defined as stress ([105 Newtons (N)/m2] = force (g) x 0.0987 / 

area, where area is equal to the wet weight [(mg) / length (mm at maximal length)] divided by 

1.055),126 which was calculated using the force (g) generated by the tissue.  Percent relaxation 

was measured as the change in stress compared to the maximal tension induced by 

norepinephrine as described previously 125.  We have previously demonstrated that the 

production of force of less than 0.025x105 N/m2 in response to KCl correlates with diminished 

cellular viability as measured by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) live/dead assay.125  

Procurement of porcine coronary artery smooth muscle tissue and physiologic 

measurements  

Fresh porcine hearts were obtained either from euthanized animals from the surgical suite 

at Vanderbilt University Medical Center as approved according to the Institutional Animal Care 

and Use Committee protocol or from the local slaughter house (C&F Meats, Triune, TN).  The 

heart was  procured and placed directly in HEPES buffer (140 mM NaCl, 4.7 mM KCl, 1.0 mM 

MgSO4, 1.0 mM NaH2PO4, 1.5 mM CaCl2, 10 mM glucose, and 10 mM HEPES, pH 7.4), and 

the coronary arteries were dissected and tested immediately or after overnight storage at 4°C.  

Subcutaneous fat and adventitial tissues were removed  and the vessel was cut into transverse 

rings of 3.0 mm in width.  The endothelium was denuded by gently rolling the luminal surface of 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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each ring at the tip of a fine forceps to focus on smooth muscle responses. Rings were suspended 

in a muscle bath containing a bicarbonate buffer and the physiological responses were 

determined as described above for HSV.  Rings were equilibrated for an additional 30 min after 

KCL challenge and then dose response curves for histamine (contractile agonist) contraction and 

the vasodilators papaverine and forskolin relaxation were determined to select the correct dose of 

agents for the experiment.  To determine the inhibition of contraction, rings were either treated 

with buffer alone (control), histamine (5 µM ) for 5 min, forskolin (5 µM) for 10 min, papaverine 

(1mM) for 10 min followed by histamine (5 µM) for 5 min or forskolin (5 µM) for 10 min 

followed by histamine (5 µM) for 5 min.  At the end of the experiments, all rings were washed 

and contracted with KCl to ensure continued viability of the tissues.  To determine the role of 

phosphorylation of proteins during inhibition of force, physiologic experiments were conducted 

as described above and the tissues were snap frozen under tension using forceps precooled in 

liquid nitrogen at 5 min and then pulverized and biochemical analysis was performed as 

described for HSV.  

Cytosolic Ca2+measurements    

Cytosolic Ca2+ measurements were performed as described earlier 127.  Briefly, rings of 

HSV were suspended on hooks in a Fluroplex (Tissue Bath Fluorometry System, IonOptix LLC, 

Milton, MA), which enables fluorescence ion recording in parallel with force measurement.  

Force measurements were obtained with a Radnoti force transducer (Radnoti Glass Technology 

Inc., Monrovia, CA) interfaced with Power Lab from AD Instruments (Colorado Springs, CO).  

Rings were loaded at room temperature with 10 µM Fura-2 AM ester and 0.01% Pluronic F-127 

in the bicarbonate buffer for 4 hrs.  After loading, rings were washed every 10 min with 37°C 

bicarbonate buffer for 1 hr.  Calcium flux was measured with optical fibers that were interfaced 
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with Power Lab. Fluorescence was measured at both 380 and 340 nm of wavelength, 

simultaneously.  The ratio of the emission of the two wavelengths was used to determine 

intracellular changes in calcium concentration.  Baseline ratio was set at 1.0 and changes in this 

ratio in response to stimuli were measured.  Baseline calcium fluorescence was measured and the 

background was set to zero as an output of 1 volt.  To determine the calcium response during 

inhibition of contraction, rings were either treated with papaverine (10-3M), sodium nitroprusside 

(10-6M) or (forskolin (5X10-6M) for 10 min, followed by norepinephrine (5 µM) or 

norepinephrine alone.  Force and calcium fluorescence were measured continuously for 15 min 

after the addition of norepinephrine.  

Immunoblotting    

Proteins from frozen muscle rings were extracted in UDC buffer (8 M urea, 10 mM 

dithiothreitol (DTT), 4% CHAPS containing protease inhibitor, Phosphatase I and II inhibitor 

cocktail (Sigma, St. Louis, MO).  The mixtures were vortexed at room temperature overnight, 

and then centrifuged at 14,000 rpm for 15 min at 4°C.  Soluble protein concentrations were 

determined using the Bradford assay (Pierce Chemical, Rockfort, IL).  Equal amounts (20-50 μg) 

of proteins were placed in a Laemmli sample buffer (Bio-Rad laboratories, Inc. Hercules, CA), 

heated for 5 min at 100°C and separated on SDS polyacrylamide gels.  Proteins from the gels 

were transferred onto nitrocellulose membranes (Li-COR Biosciences, Lincoln, NE) and blocked 

prior to incubation overnight at 4°C with the following  primary antibodies:  anti-HSP20 

(1:3,000 dilution, Advanced Immunochemical Inc., Long Beach, CA);  anti-VASP (1:2000, ECM 

Biosciences, Versailles, KY); anti MLC20 ( 1: 7000, gift from Dr. James Stull, University of 

Texas, Galveston TX).  Membranes were washed three times with TBS containing Tween 20 

(0.1%) (TBST), and incubated with appropriate infrared-labeled secondary antibodies (Li-Cor, 
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Lincoln, NE) for 1h at room temperature.  The membranes were subsequently washed with 

TBST, and protein-antibody complexes were visualized and quantified using the Odyssey direct 

infrared fluorescence imaging system (Li-Cor).  Phosphorylation was calculated as a ratio of the 

phosphorylated protein to total protein and was then normalized to the unstimulated control with 

the control value set as 1.0.  

Determination of myosin light chain phosphorylation   

Rings of HSV were equilibrated in the muscle bath as described above and treated with 

norepinephrine (5X10-6M) for 5 min or pretreated with papaverine (10-3M), Sodium 

nitroprusside (10-6M), or forskolin (5x10-6M) for 10 min, followed by norepinephrine for 5 min 

and snap frozen as described above.  Myosin light chain phosphorylation was determined using a 

modification of  an established method  described earlier 88,89.  The frozen tissue was pulverized, 

placed in a frozen slurry of precipitating solution consisting of 90% acetone, 10% trichloroacetic 

acid, and 10 mM DTT, and then allowed to melt to room temperature.  The precipitating solution 

was removed, and the tissues were washed three times with 90% acetone and 10 mM DTT.  The 

samples were dried, and the pellets were suspended in UDC buffer as described above and 

vortexed to solubilize the proteins.  Ten micrograms of protein were diluted with 10 µl of urea 

sample buffer (6.7 M urea, 18 mM Tris, 20 mM glycine, 9 mM DTT, 4.6% saturated sucrose, 

and .004% bromophenol blue) and separated on glycerol-urea mini gels (40% glycerol, 10% 

acrylamide, 0.5% bisacrylamide, 20 mM Tris, and 22 mM glycine).  Proteins were transferred 

onto nitrocellulose membranes in a buffer containing 10 mM Na2HPO4 pH 7.6 at 25 V for 1 hr at 

20°C.  The blot was probed with anti MLC antibodies  and processed as described above.  The 

phosphorylated and non-phosphorylated MLC bands were quantitated by densitometric analysis.  
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The relative amount of the phosphorylated forms of MLC over the total amount of MLC was 

calculated. 

Actin Assay 

The amount of F-actin versus G-actin was measured using the G-actin/F-actin In Vivo 

Assay kit (Cytoskeleton, Denver, CO), per manufacturer’s protocol.  Briefly, treated HSV and 

PCA samples  were homogenized in 0.25 ml of lysis buffer (50 mM PIPES pH 6.9, 50 mM 

NaCl, 5 mM MgCl2 5 mM EGTA, 5% (v/v) Glycerol, 0.1 % Nonidet P40, 0.1% Triton X-100, 

0.1% Tween 20, 0.1% 2-mercapto-ethanol, 0.001% Antifoam C, 4 µM Tosyl arginine methyl 

ester, 15 µM Leupeptin, 10 µM Pepstatin A, 10 mM Benzamidine, 1 mM ATP warmed to 37°C) 

for 1 min with a mortar and pestle that fit into the 1.5 ml microfuge tube. The lysate (100µL) was 

centrifuged at 2000 rpm for 5 min at 37°C to pellet unbroken cells.  The supernatants were 

centrifuged at 100,000 x g for 1 hr at 37°C.  Supernatants (contains the G-actin) were transferred 

to pre-cooled tubes and placed on ice.  The pellets (contain F-actin)  were resuspended in 100µL 

of ice-cold 10 µM cytochalasin D in deionized water, and F- actin was depolymerized by 

incubating for 1 hr on ice with mixing every 15 min.  Equal volume of supernatants and pellets 

along with actin standards (50-100ng) were separated on 12% SDS-polyacrylamide gels and 

transferred to nitrocellulose membrane in 1 X TG buffer at 100 volts for 1 hr.  The membrane 

was probed with anti actin antibody(1:1000 dilution cytoskeleton) and the amount of actin in 

each fraction was quantified comparing to actin standards loaded on the same gel.  

Isoelectric focusing   

Phosphorylation of HSP20 in response to vasodilators was examined by isoelectric 

focusing, which separates the phospho- and non-phospho forms of HSP20 and detected by 

western blotting.  30 µg of extracted proteins from the treated HSV samples were separated on 
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one-dimensional isoelectric focusing gel (8.3X7.3 cm) with 5% ampholines (4 parts pI 4-7 and 1 

part pI 3-10, GE Healthcare Bio-Sciences) using 20 mM sodium hydroxide as a cathode buffer 

and 10 mM phosphoric acid as an anode buffer.  Proteins were focused for 100 V for 1 hr, 250 V 

for 1 hr and 500 V for 30 min and transferred to nitrocellulose membrane at 25 V in 0.7% acetic 

acid with the direction of the gel sandwich reversed (acetic acid give proteins a positive charge) 

for 1 hr at room temperature.  The blot was probed with anti HSP20 antibodies as above and the 

phosphorylated and non-phosphorylated forms of HSP20 were quantitated by densitometry and 

the ratio of phospho HSP20 over total HSP20 was calculated and normalized to the control 

untreated tissue.  

Duration of Action of Papaverine  

To determine the duration of action of the effect of papaverine on human tissue, 

discarded samples of human saphenous vein were obtained from patients after coronary artery 

bypass grafting (CABG), after informed consent was obtained, as approved by the Institutional 

Review Board of Vanderbilt University (Nashville, TN). The veins (n=5) were obtained post-

operatively, dissected free or fat and connective tissue and stored no longer than 24 hours in 

University of Wisconsin preservation solution prior to use. Eight rings ~1-2mm in width were 

cut from each vein and suspended in a muscle bath containing a bicarbonate buffer (120 mM 

NaCl, 4.7 mM KCl, 1.0 mM MgSO4, 1.0 mM NaH2PO4, 10 mM glucose, 1.5 mM CaCl2, and 25 

mM Na2HCO3, pH 7.4), gassed with 95% O2 / 5% CO2 at 37oC.  The rings were equilibrated for 

~1 hr, manually stretched to 4 g of tension, and maintained at a resting tension of 1 g. for an 

additional 1 hr.  Force measurements were obtained using a Radnoti Glass Technology 

(Monrovia, CA) force transducer (159901A) interfaced with a Powerlab data acquisition system 

and Chart software (AD Instruments, Colorado Springs, CO).  The rings were contracted with 
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110 mM KCl (with equimolar replacement of NaCl in bicarbonate buffer) to prime the tissue. 

After re-equilibration, the rings were contracted with 5µM norepinephrine (control contraction). 

After maximum norepinephrine-induced contraction was reached, the rings were copiously 

washed for ~1 hour. Rings were treated, in duplicate, for ten minutes with 1 mM, 10 µM and 100 

µM papaverine, and two rings were left as untreated control. After ten minutes, the rings were 

again challenged with 5µM norepinephrine (time zero contraction). After maximum contraction 

was reached, the rings were washed for thirty minutes, via buffer exchange every five minutes. 

The rings were subsequently treated with 5µM norepinephrine at one, two and four hours after 

the initial treatment. All contractions are expressed as percent of maximal (control) 

norepinephrine-induced contraction. 

Statistical analysis 

 Values are reported as mean + standard error of the mean (SEM).  Statistical analysis 

was performed by unpaired Student’s t test or one-way ANOVA, followed by Tukey’s post test 

(GraphPad Software, Inc. San Diego, CA).  The criterion for significance was P < 0.05.  
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Results 

The effect of papaverine on inhibition of contraction 

Initial experiments were conducted using various doses of norepinephrine (0.1 to 10 µM) 

to contract HSV. The dose of norepinephrine (5-10 µM) which produced greater than 60% of 

maximal potassium-induced contraction was selected for further experiments.  Various doses of 

papaverine (0.1-1mM) were used to block norepinephrine induced contraction and a dose of 1 

mM that completely blocked norepinephrine induced contraction was chosen for further study.  

 

Figure 4.1: Inhibition of force in human saphenous vein is shown above where pretreatment of 
papaverine successfully inhibits contraction when challenged with norepinephrine.  Papaverine 
hydrochloride is also shown to take time to wash off in a dose dependent manner to regain the 
ability to contract to NE. 
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Treatment of HSV with norepinephrine alone induced force (62 % of KCl stress Fig 4.1). 

Pretreatment of HSV with 1 mM papaverine blocked norepinephrine induced force (Figure 4.1).    

Papaverine-induced inhibition of force was reversible as washing the rings repeatedly allowed 

the HSV to contract to 5 µM norepinephrine in a time-dependent manner (Fig.4.1), and 

demonstrated that the doses of norepinephrine and papaverine used in this study did not affect 

the viability of the tissue.  

The effect of papaverine on Ca2+ transients  

Norepinephrine induced contraction in human saphenous veins and gave rise to the 

calcium fluorescence increase shown in (figure 4.2).  Treatment with papaverine completely 

inhibited both the force generated and the calcium fluorescence induced by norepinephrine in 

human saphenous vein tissue. 

The effect of papaverine on MLC phosphorylation  

 

Figure 4.2: Norepinephrine induced contraction and an increase in the fluorescence ratio in 
human saphenous vein treated with Fura 2-AM.  Papaverine pretreatment not only inhibited 
the force developed but also the fluorescence indicating there was no rise in intracellular 
calcium. 
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Norepinephrine treatment significantly increased (0.41 ± 0.04 Mol Pi/Mol MLC) the 

phosphorylation of MLC when compared to untreated basal (0.09 ± 0.04 Mol Pi/MolMLC) (n=4, 

p=0.01).   Papaverine + norepinephrine treatment significantly decreased (Mol Pi/Mol MLC) the 

phosphorylation of MLC when compared to norepinephrine ( Mol Pi/MolMLC, n=3, p=0.02) 

which suggests that papaverine treatment result in significant dephosphorylation of MLC.   

Papaverine treatment decreases filamentous actin levels  

 

Figure 4.3: Myosin light chain is phosphorylated by norepinephrine and pretreatment with 
papaverine inhibits myosin light chain phosphorylation 
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Several investigators have demonstrated that actin is polymerized during contraction of 

smooth muscle, and agents that inhibit actin polymerization result in inhibition of contraction 

(review 59).   To examine the effect of activation of cyclic nucleotide-dependent pathways by 

papaverine on actin polymerization, HSV was treated with either buffer alone (basal), 

norepinephrine (5 µM, 3 min), papaverine (1 mM, 10 min) followed by norepinephrine (5 µM, 3 

min), or papaverine (1 mM, 10 min). Actin polymerization was then measured.  Treatment with 

norepinephrine led to increases in F- actin by 15 % (75 ± 4 % to 89 ± 1% for basal and  

norepinephrine, respectively), while treatment with papaverine reduced F actin by 10% (75 ± 4 

% to 65 ± 6 % for basal and papaverine, respectively).   Pretreatment with papaverine for 10 min 

before norepinephrine stimulation reduced the F- actin by 17% (75 ± 4 % to 58 ± 10 % for basal 

 

Figure 4.4: F actin is increased from the addiction of norepinephrine and the increase is 
inhibited by pretreatment with papaverine. 
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and papaverine + norepinephrine, respectively p=0.004, n=7-9, Fig. 4.4), which is consistent 

with depolymerization of actin.   

The effect of papaverine on the phosphorylation of actin regulating proteins, HSP20, and 

VASP   

Treatment of smooth muscle with vasodilators increases the phosphorylation of HSP20 

and induces relaxation 90.  To decipher the role of HSP20 phosphorylation in the regulation of 

actin polymerization during force inhibition, HSV was treated with basal conditions, 

norepinephrine, papaverine followed by norepinephrine, or papaverine, as described above.  

 

Figure 4.5: HSP20 was phosphorylated from addition of the phosphodiesterase inhibitor 
papaverine 
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HSP20 phosphorylation was examined by isoelectric focusing and western blot analysis.  

Papaverine led to increases in the phosphorylation of HSP20 [5.03  ± 0.91 and 31.30 ± 6.96 

phospho-HSP20/total HSP20 for norepinephrine and papaverine + norepinephrine, respectively 

(p < 0.05, n=4)] in HSV, and HSP20 remained phosphorylated even after norepinephrine was 

added to induce contraction (Fig 4.5). 

 

Figure 4.6: VASP was phosphorylated from addition of the phosphodiesterase inhibitor 
papaverine  

 



72 

 

Next, the effects of papaverine on VASP phosphorylation, which have been demonstrated 

to regulate actin polymerization was determined. VASP was phosphorylated in response to 

papaverine, but not norepinephrine treatment, and the phosphorylation was not changed  by 

norepinephrine treatment after papaverine  (32.21 ± 5.74 and 81.03 ± 12.12 p-VASP/VASP for 

norepinephrine and papaverine + norepinephrine, respectively p < 0.05, n=4, Fig. 4.6).  

The effect of sodium nitroprusside on inhibition of force, intracellular calcium, and MLCp 

Norepinephrine treatment significantly increased (0.38 ± 0.05 Mol Pi/Mol MLC) the 

phosphorylation of MLC.   Sodium nitroprusside and norepinephrine treatment significantly 

 

Figure 4.7: Pretreament of porcine coronary arteries with sodium nitroprusside decreased 
phosphorylation of myosin light chain phosphorylation, generation of force, and intracellular 
calcium signalling. 
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decreased (0.16 ± 0.10 Mol Pi/Mol MLC) the phosphorylation of MLC when compared to 

norepinephrine( n=3, p=0.02) which suggests that SNP treatment result in significant 

dephosphorylation of MLC.  This observation is also seen in conjunction with the reduction of 

calcium transients when tissue is pretreated with sodium nitroprusside.  

Initial experiments were conducted using various doses of norepinephrine (0.1 to 10 µM) 

to contract HSV, and a dose of norepinephrine (5-10 µM) which produced greater than 60% of 

maximal potassium-induced contraction was selected for our experiment.  Various doses of 

sodium nitroprusside (0.1-10 µM) were used to block norepinephrine induced contraction and a 

dose of 10µM that completely blocked norepinephrine induced contraction was chosen for this 

study.  Treatment of HSV with norepinephrine alone induced force. Pretreatment of HSV with 

10 µM sodium nitroprusside blocked norepinephrine induced force (Data not shwon).   

 Norepinephrine induced contraction in human saphenous veins and gave rise to 

the calcium fluorescence increase shown in (figure 4.7). Treatment with SNP completely 

inhibited the force generated and calcium fluorescence induced by norepinephrine in human 

saphenous vein tissue. 

Discussion 

In this study, a physiologic system was developed wherein vasospastic properties of 

tissue were induced through norepinephrine. To test methods that combat the induced vasospasm 

papaverine and sodium nitroprusside were used.  The use of these two vasodilators resulted in 

the complete suppression of force generation in the presence of a contractile agonist. This 

physiologic model allowed us to further define the role of actin filaments, in addition to thick 

filament modulation, during cGMP-dependent force suppression. Experiments were conducted 

using the FluoroPlex Tissue Bath Fluorometry System, a muscle bath system that enables 
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fluorescence ion recording in parallel with force measurement in intact tissues, and [Ca2+]i 

transients, MLC phosphorylation, and F/G- actin levels were measured. Previous studies have 

demonstrated that activation of adenyl cyclase through forskolin treatment results in 

depolymerization of F-actin without a reduction in MLC phosphorylation or calcium 

transients128.  

Potency of papaverine may be due to inhibition of both thick and thin filaments in 

vascular smooth muscle. It has been shown that papaverine increases both cAMP and cGMP in 

rat aorta with a dose dependent manner, while forskolin increases cAMP in a dose dependent 

manner and sodium nitroprusside increases cGMP in a dose dependent manner117. This dual 

increase in cGMP and cAMP leads to not only to a reduction in intracellular calcium transients 

and dephosphorylation of the myosin light chain, but also reduction in F – actin filaments 

furthering the vasodilation in smooth muscle. 

Thick filament regulation is demonstrated in the use of sodium nitroprusside as an 

inhibitor of contraction acting as a nitric oxide donor129. Nitric oxide acts through the effects of 

guanylyl cyclase, leading to cyclic GMP and the activation of PKG. This activation of PKG and 

increased intracellular cGMP inhibits calcium entry to the vascular smooth muscle cells and 

leads to a decrease in intracellular calcium129,130. The inhibition of calcium entry into the smooth 

muscle cells occurs by the effects on the IP3 receptor, phospholamban, and the ryanodine 

receptor131. A reduction in this intracellular calcium leads to a reduction in the phosphorylation 

of the myosin light chain in vascular smooth muscle, also that increases in cyclic nucleotides 

have been shown to increase the requirement of calcium for phosphorylation of the MLC, either 

through the inhibition of MLCK or by activating MLC phosphatase131.  
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Thin filament regulation has been studied previously showing a calcium and myosin light 

chain independent relaxation in vascular smooth muscle at low doses of forskolin in porcine 

coronary arteries128. Although there was not a reduction in intracellular calcium transients and 

myosin light chain phosphorylation there were significant decreases in the amount of f actin in 

tissue treated with forskolin128.  This relationship does not hold up at higher doses of forskolin 

potentially due to cross talk between cAMP and PKG that may occur132. At greater amounts of 

forskolin was used to pretreat tissue, intracellular calcium was inhibited in smooth muscle. 

Taken together that papaverine mediates smooth muscle relaxation through both cAMP and 

cGMP it is able to reduce spasm via multiple pathways. 

An issue that may occur with the use of papaverine hydrochloride is the acidity of 

papaverine solution. Previous studies have shown that spasm and endothelial injury may be 

prevented by using Plasmalyte A with papaverine hydrochloride (60 mg/500 mL)133.  Using a 

balanced buffered solution like Plasmalyte A is important in maintaining a normal pH of the 

solution.  Preservation of the endothelial lining is also important because the endothelium 

inhibits platelet adhesion and prevents fibrin deposition on the smooth muscle133.   

Papaverine is a preferred method to dilate vessels in the operating room to manual 

distension. One reason papaverine would be preferred is because of the detrimental effects high 

pressure distension causes physiologic dysfunction and intimal hyperplasia in saphenous 

veins122. Both endothelial dependent and independent relaxation of saphenous veins were 

decreased by manual distension to the tissue.  In an organ culture model, 14 day intimal 

thickness was significantly increased in tissue that was manually distended compared with the 

control tissue122. Additionally to the benefit of avoiding manual distension, PDE inhibitors may 

also enhance vein graft patency134,135. 
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Conclusions 

The activation of cGMP leads to both decreases in intracellular calcium levels and the 

phosphorylation of myosin light chain.  The major difference in increasing cAMP from cGMP is 

that increasing cAMP in tissue results in calcium independent force inhibition. Increases in 

cGMP result in calcium desensitization as a major modulator of force making one unable to 

uncouple force and calcium. PKG activation inhibits force without uncoupling intracellular 

calcium as shown with both a nitric oxide donor and a phosphodiesterase inhibitor. This was 

seen by a decrease in intracellular calcium and a reduction in the phosphorylation of the myosin 

light chain. 
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CHAPTER 5 

Modulation of HSP20 

Aim 4 Modulate HSP20 to uncouple force and calcium 

Text for Chapter 5 taken from: 

Hocking KM, Evans BC, Komalavilas P, Duvall CL, Brophy CM “Heat shock proteins 

role in developing novel therapeutics for vasospastic vessels” in preparation 

 

Introduction 

 Subarachnoid hemorrhages affect 30,000 people each year and accounts for 

between 1-7% of all strokes 75. After the subarachnoid hemorrhage, 30 to 60% of the patients 

will experience cerebral vasospasm71.  Neurological deficit as a result of ischemia, caused by 

delayed vasospasm of cerebral arteries, is the most common cause for morbidity and mortality in 

patients who had subarachnoid hemorrhage 2. Cerebral vasospasm after subarachnoid 

hemorrhage is well documented and has been researched but much of the mechanism of 

pathogenesis is not well understood26. Current treatments have not been highly successful for 

patients with SAH, and a large part of this is due to these patients having normal systemic blood 

pressure while cerebral vessels are spastic thus traditional vasodilators have proven 

ineffective2,27,133. 

The small heat shock proteins HSP20 and HSP27 are involved in the regulation of 

smooth muscle tone19. HSP20 is associated with relaxation of vascular smooth muscle and this 

may be relevant to the treatment of hypertension, vasospasm, asthma, preterm labor, and bladder 

problems136. It is the phosphorylated form of HSP20 that is associated with the relaxation of 

smooth muscle and is one of the most important phosphoproteins of the relaxation process. 
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HSP27 is involved in smooth muscle contraction and the migration of smooth muscle cells137. 

Non-phosphorylated HSP27 caps the plus end of the actin filaments, preventing new actin137 

monomers from attaching, and is a pro cellular survival mechanism136.  HSP20 phosphorylation 

is correlated with an enhanced vasorelaxation response, while HSP27 phosphorylation has been 

associated with impairment in smooth muscle relaxation18,39,71, this occurs by HSP27 promoting 

actin remodeling by enhancing actin polymerization138. Unphosphorylated HSP27 can cap f-actin 

preventing polymerization from occurring14.  

The decrease in HSP20 phosphorylation and the increase in HSP27 phosphorylation have 

been shown in a subarachnoid hemorrhage model19, this change exists concurrently with a 

decrease in cerebral perfusion38,39. We hypothesize that the vasospasm occurring after 

subarachnoid hemorrhage is due to impaired relaxation of the artery, and that this impaired 

relaxation is associated with changes in the phosphorylation and expression levels of HSP20 and 

HSP27. With the rise in intracranial pressure and reduction in cerebral perfusion pressure the 

cerebral blood flow to patients is reduced.  This reduction in blood flow is accompanied by 

cerebral vasospasm. Restoration of perfusion to these areas is necessary to prevent ischemic 

damage from occurring. The purpose of this study is to better understand physiologic changes 

that occur as a result of HSP20 downregulation and HSP27 phosphorylation changes after 

subarachnoid hemorrhage.  
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Methods 

Procurement of rat aorta smooth muscle and physiologic measurements  

Fresh cadaveric aortas were isolated immediately from euthanized, discarded animals 

from Vanderbilt University Medical Center.  All procedures for collection of cadaveric tissue 

were reviewed and approved by the Vanderbilt University Animal Care and Use Committee. 

Subcutaneous fat and adventitial tissues were removed  and the vessel was cut into transverse 

rings of 2.0 mm in width.  Rings were suspended in a muscle bath containing a bicarbonate 

buffer (120 mM NaCl, 4.7 mM KCl, 1.0 mM MgSO4, 1.0 mM NaH2PO4, 10 mM glucose, 1.5 

mM CaCl2, and 25 mM Na2HCO3, pH 7.4), equilibrated with 95% O2 / 5% CO2, at 37oC.  Force 

measurements were obtained with either a Kent Scientific (Litchfield, CT) force transducer 

(TRN001) or a Radnoti force transducer (Radnoti Glass Technology Inc., Monrovia, CA) 

interfaced with Power Lab from AD Instruments (Colorado Springs, CO).  Data were recorded 

with Chart software, version 5.1.1 (AD Instruments).  Rings were washed every 15 min with 

37°C bicarbonate buffer for 1 hr, and each ring was progressively stretched to its optimal resting 

tension (approximately 1 g) that would produce a maximal response to contractile agonists as 

determined previously, then maintained at the resting tension and equilibrated for another hour. 

Rings were then contracted multiple times with high extracellular potassium (110 mM KCl, with 

equimolar replacement of NaCl in bicarbonate buffer) and the force generated was measured.  

Measured force was normalized for ring weight and length and converted to Stress using the 

formula: Stress [105Newtons (N)/m2] = force (g) x 0.0987 / area, where area is equal to the wet 

weight [mg / length (mm at maximal length)] divided by 1.055.  The maximal tension obtained 

was taken as 100%.  Rings were equilibrated for an additional 30 min and dose response curves 

for phenylephrine contraction and sodium nitroprusside relaxations were determined to select the 
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correct dose of agents for the experiment.  To determine the inhibition of contraction, rings were 

either treated with buffer alone (control) or HSP20 phospho peptidomimetic for 30 min. After 

this the tissue was contracted again with phenylephrine, and inhibition of contraction was 

measured as % difference in contraction.   

Preparation of HSP20 siRNA micelle 

Dicer substrate siRNA were obtained from Invitrogen and screened for effectiveness 

against rat aortic smooth muscle cells with PCR. Once two siRNAs had been selected they were 

combined with a diblock copolymer composed of N,N-Dimethylaminoethyl methacrylate 

(DMAEMA), polypropyl acrylic acid (PAA), and butyl methacrylate synthesized using a 

reversible addition fragmentation chain transfer polymerization as described previously139. 

Nanoparticles were created by combing 1 mg of the polymeric diblock copolymer with 0.08 mg 

of siRNA as described previously139. 

Knockdown of HSP20 

The siRNA nanoplexes were added to a HEPES buffered DMEM at a concentration of 50 

nM. Tissue was placed into either control, scrambled siRNA nanoplexes, or HSP20 siRNA 

nanoplexes. After 24 hours of treatment at 37 C tissue samples were taken out of the DMEM 

HEPES buffer and placed on the muscle bath apparatus to determine physiologic function as 

described above where phenylephrine (0.1 µM) was used to contract the tissue with doses of 

sodium nitroprusside (10 pM to 1nM) to relax the tissue. At the end of the experiment tissue 

samples were frozen for quantification of HSP20 in the tissue. 

Construction of cell-permeant HSP27 fusion protein 

The cDNA encoding human HSP27 was polymerase chain reaction amplified from an 

I.M.A.G.E (Integrated Analysis of Gene Expression). Clone (clone ID 6083486; Clontech, Palo 
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Alto, Calif) using a forward primer (5’- ATCGAGCTCATGACCGAGCGCCGCGTC- 3’) and a 

reverse mutagenic primer (5’-gatcggtaccttacttggcggcagtctcatcgg- 3’) then cloned into pCDNA3.1 

(Invitrogen, Carlsbad, Calif), yielding pCDNA3.1-HSP27. Complementary oligonucleotides (5’- 

ATGGGTGGTTATGCTAGAGCTGCTGCTAGACAAGCTAGAGCTGGTACCGAGCTCCTC

GAGG- 3’ and 5’- 

ATCCCTCGAGGAGCTCGGTACCAGCTCTAGCTTGTCTAGCAGCAGCTCTAGCATAAC

CACCCA- 3’) encoding a PTD were annealed, phosphorylated, and ligated into NdeI-BamHI-

digested pET14b140 yielding pET14-bPTD-HSP27. Base sequences for all DNAs were confirmed 

by nucleotide seuquence analysis, and protein was expressed in Escherichia coli. Briefly, single 

colonies of BL21 (DE3; Novagen) containing recombinant pET14b-PTD-HSP27 were used to 

inoculate 3 liters of Luria Broth (LB) containing 50 mg/L of ampicillin. Cultures were induced 

with 2 mMisopropyl-1-thio-_-D-galactopyranoside when the opticaldensity at 600-nm 

wavelength reached 0.6-1. After 5 hours, cells were harvested by centrifugation (6,000 g, 10 

minutes), resuspended in 1_ TNE buffer (50 mM NaCl, 1mM ethylenediaminetetraacetic acid 

[EDTA], and 500mM Tris, pH 8.0), and  onicated on ice. After sonication, the inclusion bodies 

were harvested by centrifugation (19,000 g, 10 minutes) and resuspended in binding buffer (20 

mM Na2HPO4, 0.5 M NaCl, 50 mM imidazole, pH 7.4, and 8 M urea). The sample was then 

added to Ni2+- charged Chelating Sepharose Fast Flow (Pharmacia Biotech, Peapack, NJ) and 

incubated overnight at 4°C. The resin was then loaded into a Poly-Prep column (Bio-Rad, 

Richmond, Calif), and protein was eluted with 2 mL of 500mM Imidazole and dialyzed with 

phosphate buffer (20mM Na2HPO4, 0.5 NaCl)..  Rat aortic tissue was treated for 30 min with 15 

µM rPTD-HSP27 before being placed on the muscle bath. 
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Immunoblotting    

Proteins from frozen muscle rings were extracted in UDC buffer (8 M urea, 10 mM 

dithiothreitol (DTT), 4% CHAPS containing protease inhibitor, phosphatase I and II inhibitor 

cocktail (Sigma, St. Louis, MO).  The mixtures were vortexed at room temperature overnight, 

and then centrifuged at 14,000 rpm for 15 min at 4°C.  Soluble protein concentrations were 

determined using the Bradford assay (Pierce Chemical, Rockfort, IL).  Equal amounts (20-50 μg) 

of proteins were placed in a Laemmli sample buffer (Bio-Rad laboratories, Inc. Hercules, CA), 

heated for 5 min at 100°C and separated on SDS polyacrylamide gels.  Proteins from the gels 

were transferred onto nitrocellulose membranes (Li-COR Biosciences, Lincoln, NE) and blocked 

prior to incubation overnight at 4°C with the following  primary antibodies:  anti-HSP20 

(1:3,000 dilution, Advanced Immunochemical Inc., Long Beach, CA);  and  anti-GAPDH (1:250, 

BD Transduction Laboratories).  Membranes were washed three times with TBS containing 

Tween 20 (0.1%) (TBST), and incubated with appropriate infrared-labeled secondary antibodies 

(Li-Cor, Lincoln, NE) for 1hr at room temperature.  The membranes were subsequently washed 

with TBST, and protein-antibody complexes were visualized and quantified using the Odyssey 

direct infrared fluorescence imaging system (Li-Cor Biosciences NE).  Ratios were calculated as 

the ratio of the HSP20 protein to total GAPDH protein.  

Monomyer and polymer synthesis 

All reagents were purchased from Sigma and were of analytical grade unless otherwise 

stated. 2-propylacrylic acid was synthesized according to the procedure outlined by Ferrito et 

al.141 utilizing diethyl propylmalonate (Alfa Aesar) as a precursor. The 4-cyano-4-

(ethylsulfanylthiocarbonyl) sulfanylvpentanoic acid (ECT) chain transfer agent (CTA) was 

synthesized as previously described142. RAFT polymerization of the PPAA homopolymer was 
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carried out in bulk under a nitrogen atmosphere at 70°C for 48 hours using 2,2’-azo-bis-

isobutyrylnitrile (AIBN) as the free radical initiator. The reaction mix was put through three 

freeze-vacuum-thaw cycles and purged with nitrogen for thirty minutes prior to polymerization. 

The molar ratio of CTA to AIBN was 1 to 1, and the monomer to CTA ratio was set so that a 

degree of polymerization of 190 would be achieved at 100% conversion. Following 

polymerization, the resultant polymer was dissolved in DMF and precipitated into ether 5 times 

before drying overnight in vacuo.  Gel permeation chromatography (GPC, Agilent) was used to 

determine molecular weight and polydispersity (Mw/Mn, PDI) of the PPAA homopolymer using 

HPLC-grade DMF containing 0.1% LiBr at 60°C as the mobile phase. Molecular weight 

calculations were performed with ASTRA V software (Wyatt Technology) and were based on 

experimentally-determined dn/dc values determined through offline injections of the polymer 

through a refractive index detector (calculated PPAA dn/dc = 0.087 mL/g). 

Polyplex 

The HSP20 phosphopeptide was synthesized using solid phase synthesis and purified by 

HPLC as verified through Electrospray-ionization mass spectrometry (ESI-MS) (supplementary 

fig. 1). NPs were formed by simple mixing of the  PPAA homopolymer with the HSP20 phospho 

peptide in PBS at pH 8.0, which is between the pKa values of the primary amines present on the 

HSP20 phospho peptide and the carboxylic acid moieties ensures optimal solubility and net 

charge on both molecules. The PPAA polymer was chosen because of its well defined pH-

dependent membrane disruptive activity that has been shown to facilitate endosomal escape143-145 

and successful use in animal models146,147. 

To determine optimal nanoparticle formulation conditions, a library of pHSP20 nano-

polyplexes (pHSP20-NPs) was prepared at various charge ratios (i.e. CR = ([NH3
+]MK2i/[COO-
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]PPAA) from 10:1 to 1:10 and the size distribution and particle surface charge were characterized 

through dynamic light scattering (DLS) and ζ-potential analysis, respectively. As expected, 

pHSP20-NP ζ-potential was directly proportional to the CR, with an apparent isoelectric CR ~ 

3:1 (fig.1 C). Charge ratio was found to significantly affect pHSP20-NP size and charge, with  a 

CR=3:1 yielding a unimodal size distribution (supplementary table 1). A CR of 1:3 was chosen 

as the optimal formulation as this ratio consistently yielded a unimodal size distribution with 

minimal particle size and polydispersity (dh=240.9 ± 15.51 nm, ζ = -0.91 ± 2.56 mV). It is 

hypothesized that at the lower pH, the PPAA polymer becomes protonated/deionized, and the net 

positive charge on the peptide causes electrostatic repulsion and disassembly of the pHSP20-

NPs. This effect releases the therapeutic payload and ensures that peptide bioactivity is not 

sterically hindered by NP encapsulation. 

Cytosolic Ca2+measurements    

Rings of rat aorta were suspended on hooks in a FluoroPlex Tissue Bath Fluorometry 

System Tissue Bath Fluorometry System (IonOptix LLC, Milton, MA and Radnoti Glass 

Technology Inc., Monrovia, CA), which enables fluorescence ion recording in parallel with force 

measurement.  Force measurements were obtained with a Radnoti force transducer (Radnoti 

Glass Technology Inc., Monrovia, CA) interfaced with Power Lab from AD Instruments 

(Colorado Springs, CO).  Rings were loaded at room temperature with 10 µM Fura-2 AM ester 

and 0.01% Pluronic F-127 in the bicarbonate buffer for 4 hrs.  After loading, rings were washed 

every 10 min with 37°C bicarbonate buffer for 1 hr.  Calcium flux was measured with optical 

fibers that were interfaced with Power Lab. Fluorescence was measured at both 380 and 340 nm 

of wavelength, simultaneously.  The ratio of the emission of the two wavelengths was used to 

determine intracellular changes in calcium concentration.  Baseline ratio was set at 1.0 and 
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changes in this ratio in response to stimuli were measured.  Baseline calcium fluorescence was 

measured and the background was set to zero as an output of 1 volt.  To determine the inhibition 

of contraction, rings were either treated with control or HSP20 phospho 

peptidomimetic(ppHSP20).  The tissue was then challenged with phenylephrine and the % 

inhibition of contraction and calcium concentrations were measured.  To add phenylephrine 

while continuously measuring intracellular calcium concentrations, an infusion line filled with 

bicarbonate buffer was used to keep the system in a closed light impenetrable state.  The amount 

of buffer in the infusion line was adjusted to achieve the final concentration of the agonist in the 

bath.  Force and calcium fluorescence were measured continuously for 15 min after the addition 

of phenylephrine. 

Actin Assay 

The amount of F-actin versus total actin (F-actin /(F-actin + G-actin)) was measured 

using the G-actin/F-actin In Vivo Assay kit (Cytoskeleton, Denver, CO), per manufacturer’s 

protocol.  Briefly, treated rat aortic samples  were homogenized in 1 ml of lysis buffer (50 mM 

PIPES pH 6.9, 50 mM NaCl, 5 mM MgCl2 5 mM EGTA, 5% (v/v) Glycerol, 0.1 % Nonidet P40, 

0.1% Triton X-100, 0.1% Tween 20, 0.1% 2-mercapto-ethanol, 0.001% Antifoam C, 4 µM Tosyl 

arginine methyl ester, 15 µM Leupeptin, 10 µM Pepstatin A, 10 mM Benzamidine, 1 mM ATP 

warmed to 37°C) for 1 min with a mortar and pestle that fit into the 1.5 ml microfuge tube.  The 

lysate was centrifuged at 2000 rpm for 5 min at 37°C to pellet unbroken cells.  The supernatants 

were centrifuged at 100,000 x g for 1 hour at 37°C.  Supernatants (contains the G-actin) were 

transferred to pre-cooled tubes and placed on ice.  The pellets (contain F-actin) were resuspended 

in 1 ml of ice-cold 10 µM cytochalasin D in deionized water, and F- actin was depolymerized by 

incubating for 1 hour on ice with mixing every 15 min.  Equal volume of supernatants and pellets 
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along with actin standards (2-20 µg) were separated on 12% SDS-polyacrylamide gels and 

transferred to nitrocellulose membrane in 1X TG buffer at 100 volts for 1 hr.  The membrane 

was probed with anti actin antibody and the amount of actin in each fraction was quantified 

comparing to actin standards loaded on the same gel.  

Data analysis 

Data were reported as mean responses ± standard error of the mean. Paired t-tests or one-

way ANOVA analyses were conducted in order to determine the significance (p value) of each 

experiment. A p value <0.05 was considered statistically significant.  

Results 

HSP20 knockdown and smooth muscle physiology 

 

Figure 5.1 Knockdown of HSP20 in rat aorta using a diblock copolymer using siRNA was confirmed 
with western blot analysis of HSP20 to GAPDH 
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Rat aorta was incubated in either a self-assembling micelle containing HSP20 siRNA (50 

nM), micelle with scramble siRNA (50 nM), or untreated (control) for 24 hours in HEPES 

buffered DMEM. After the 24 hour incubation the rat aorta was frozen. Knockdown of the 

protein was confirmed using western blot techniques to quantify HSP20 levels and was 

normalized to tissue GAPDH levels. Tissue treated with HSP20 siRNA (0.16 ± 0.02 A.U.) had a 

significantly lower amount of HSP20/GAPDH than control (0.50 ± 0.21 A.U.) or scramble 

groups (0.46 ± 0.16 A.U.) (p<0.05, n=6, Figure 5.1), suggesting that the siRNA in a self-

assembling micelle successfully down modulates HSP20 expression ex vivo. 

 

Figure 5.2: Physiologic changes in rat aorta after the knockdown of HSP20. Contractile response to 
agonist phenylephrine was increased and sodium nitroprusside relaxation was decreased. 
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 With the downregulation of HSP20 confirmed, the effect of HSP20 knockdown on the 

physiologic response of the rat aorta was determined on a muscle bath apparatus. Control (47 ± 

5.7%) and scramble (46 ± 6.6%) treated aorta had a significantly (p<0.01, n=5) lower contraction 

to 10-7 M phenylephrine as a percent of max depolarization contraction from 110mM KCl 

compared with rat aorta that had HSP20 knocked down (59 ± 7.3%) (n=6, p<0.05, Figure5.2). In 

addition to this, relaxation of smooth muscle with knocked down HSP20 (58 ± 4.9%) had 

significantly (p<0.01, n=5, Figure 5.2) lower relaxation to 10-9 M SNP compared with control 

(84 ± 3.5%) and scramble (83 ± 3.0%) treated tissue. Tissue treated with HSP20 siRNA 

generated a greater contractile force when physiologically challenged with phenylephrine and 

did not generate as much relaxation to sodium nitroprusside. This result suggests that vascular 

smooth muscle containing lower amounts of HSP20 had a more contractile phenotype similar to 

that of spastic vessels.  

PTD-HSP27 and its effect on smooth muscle 

HSP27 has been shown to be upregulated in cerebral vasospasm following subarachnoid 

hemorrhage.  To show the effect of elevated levels of HSP27 in arterial tissue, PTD-HSP27 was 

added to rat aorta and physiologic conditions were tested. To ensure HSP27 was increased 

western blot techniques were used to compare HSP27 levels with beta actin. Tissue treated with 

PTD-HSP27 had a significantly greater ratio of HSP27/B-actin than control. Rat aortic tissue 

treated with PTD-HSP27 was also suspended on a muscle bath to determine if there was a 

change in sodium nitroprusside induced relaxation.  Rat aorta treated with PTD-HSP27 (60 ± 7 

%) yielded a significantly lower relaxation to 10-9 M SNP than control tissue 82 ± 11%) (p<0.05, 

n=4, Figure 5.3). Decreased relaxation of rat aorta from increasing the amount of HSP27 in the 

smooth muscle is also consistent with the physiologic actions of a spastic vessel. 
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HSP20 phospho peptidomimetic’s inhibition of contraction 

HSP20 phospho peptidomimetic was delivered to rat aortic smooth muscle before it was 

challenged with phenylephrine to assess the vasoactive effects of the peptidomimetic.  To assess 

the enhancement of delivery the peptide was delivered with and without the incorporation of an 

endosomolytic nanoplex delivery system doses (i.e. 100, 500, 1000 µM of the peptide alone and 

100, 200, 500 µM of the polyplex).  Percent inhibition was the readout used to determine the 

effect the peptide had on the tissue. Control segments (-2.4 ± 1.8 %) displayed significantly less 

% inhibition than all other groups (p<0.0001, n=4-6). Peptide treatment of 100 µM (16.5 ± 1.3 

%) displayed significantly less % inhibition than 100 µM polyplex (36.8 ± 4.9 %), 500 µM 

 

Figure 5.3: CPP-HSP27 increased the amount of HSP27 in rat aorta and decreased the smooth 
muscle response to sodium nitroprusside. 
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peptide (37.1 ± 5.3 %), 1mM peptide (49.7 ± 8.4 %), 200 µM polyplex (49.0 ± 7.7 %), and 500 

µM polyplex (95.7± 1.6 %)(Figure 5.4). Both the peptide and polyplex treatments showed a dose 

dependent increase in inhibition of contraction of the rat aorta. These data further suggest that 

phosphorylation of HSP20 on Ser16 causes relaxation of smooth muscle and that delivery of the 

peptide can be enhanced using the endosomolytic polyplex particles. The increased 

bioavailability of the peptide when the polyplex was used is attributed to enhanced endosomal 

escape.  This endosomal escape occurs when the polyplex is exposed to a lower pH (<6.8) in the 

endosome where the peptide is released from the electrostatic complexation.  Inhibition of 

 

Figure 5.4 Delivery of HSP20 phospho peptidomimetic inhibited contraction to phenylephrine in a 
dose dependent manner and nanoparticle formulation of the peptide had an increased effect. 
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contraction also represents a physiologic state that could mimic prevention of cerebral 

vasospasm. 

Intraceulluar calcium changes during inhibition of contraction 

Calcium modulation is involved in the regulation of smooth muscle tone 148. To 

determine the role of calcium in the inhibition of contraction by ppHSP20, rat aorta was 

suspended on the Fluoroplex apparatus. Control segments displayed a significantly (n=4, p<0.05, 

Figure 5.5) lower inhibition of contraction (-2.4 ± 1.8 %) compared with tissue pretreated with 

500 µM polyplex (95.7± 1.6 %), but there was no difference in the intracellular calcium 

concentration observed once the tissue was challenged with phenylephrine (0.1 µM). This 

indicates that inhibition of contraction through phospho peptidomimetic HSP20 is calcium 

independent and verifies that the pH-responsive poly(propylacrylic acid) polymer does not 

inhibit contraction by acting as a calcium chelator. The greater impact for a result like this is that 

mean arterial blood pressure would not be impacted as greatly if intracellular calcium signaling 

is unchanged. 

 

Figure 5.5 Complete inhibition of phenylephrine induced contraction was uncoupled from the 
calcium transient. 
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Heat Shock Protein’s effect on filamentous actin levels 

Actin polymerization was also analyzed for both the knockdown of HSP20 through 

siRNA transfection and the treatment of the HSP20 phospho peptidomimetic (1 mM). Knocking 

down HSP20 in rat aorta significantly increased F-actin polymerization (p<0.05, n=4, Figure 5.6) 

(41%) compared with control (24%), and treatment with 1 mM peptide significantly reduced the 

amount of F-actin (17%). Treatment with rPTDHSP27 led to a significant increase in F-actin (31 

%) compared to control tissue. The increase in F-actin shown by treatment with siRNA suggests 

that the more contractile phenotype present may be due to increased actin polymerization, and 

 

Figure 5.7 F-actin polymerization was increased in smooth muscle containing less HSP20, decreased 
with the introduction of pHSP20, and increased with CPP-HSP27 
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peptide treatment shows that phospho peptidomimetic of HSP20 are causing relaxation through 

actin pathways and not traditional myosin light chain dephosphorylation.  

Discussion 

During the onset of SAH there is a rise in intracranial pressure and an initial drop in the 

cerebral perfusion pressure. This rise in intracranial pressure reduces the blood flow to the brain 

and the initial drop in CPP causes vasoconstriction in the arteries.  Established vasospasm is 

refractory to traditional vasodilators, especially calcium channel inhibitors17. It has been shown 

that nitric oxide donors and broad scale phosphodiesterase inhibitors may block calcium 

signalling leading to hypotension if administered systemically. In these spastic vessels HSP20 

phosphorylation is decreased and HSP27 phosphorylation is increased149.  The purpose of this 

study is to develop model systems of biochemical events that occur in SAH, including the 

decrease in phosphorylation of HSP20 and the increase in phosphorylation of HSP27 in normal 

vessels to show physiologic changes that also occur in SAH.   

This study used physiologic and biochemical approaches to understand the role of the 

heat shock protein HSP20. HSP20 was manipulated with either the use of a phospho 

peptidomimetic or through siRNA knockdown of the protein. Although several investigations 

have suggested the regulation of actin and actin-associated proteins in smooth muscle contraction 

(reviewed in 59), very few reports have addressed the role of second messenger regulation of thin 

filament proteins during inhibition of force.  By using rat aorta, a tissue that has a relatively large 

amount of HSP20 compared to many other tissues, we were able to knockdown the protein 

effectively. Rat aorta also does not have a relatively large amount of HSP27 so it was possible to 

upregulate HSP27 to mimic the disease state.     



94 

 

Downregulation of HSP20 has been associated with SAH that in a rat model 71. This 

observed downregulation could be related to the constriction of the cerebral vessels. To 

determine if decreases in HSP20 has a direct effect on vasorelaxation, HSP20 was knocked down 

in rat aortic tissue and physiologic function was assessed by agonist induced contraction and 

relaxation to the nitric oxide donor SNP. Knockdown of HSP20 increased the maximal 

phenylephrine induced contraction and decreased the relaxation to SNP in rat aorta.  Additionally 

the percentage of basal F-actin compared to total actin was significantly increased with the 

downregulation of HSP20. It has been shown in a rat subarachnoid hemorrhage model when 

HSP20 is downregulated that relaxation to nitric oxide donors is decreased71.   

SAH also increases the phosphorylation of HSP27 and is believed to be linked to the 

spastic nature of the cerebral vessels149.  Human umbilical arteries also exhibit an increased 

amount of HSP27 compared with normal vessels and also tend to be prone to vasospasm.  In this 

study, upregulation of HSP27 by introducing a transducible recombinant HSP27 protein in rat 

aortic smooth muscle led to reduced relaxation to SNP. Upregulation of HSP27 also showed an 

increase in the percentage of F-actin in smooth muscle tissue. HSP27 is known to stabilize the 

actin cytoskeleton allowing F actin to stay polymerized138. 

Peptide therapy is a new and exciting field that holds promise to have higher specificity 

resulting in less side effects and a lower dose. Because of the advantages peptides have over 

traditional drugs, the market for peptide therapy is expected to reach $25 billion by 2018 (PEG 

SUMMIT).  In this study a phospho mimetic peptide and polypropyl acrylic acid electrostatically 

complexed to a phospho mimetic peptide of HSP20 were used to demonstrate the inhibition of 

contraction when challenged with phenylephrine in rat aortic smooth muscle tissue.  There was a 

dose dependent inhibition of contraction with the phospho mimetic peptide, and almost a 5 fold 
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increase in inhibition of contraction when the peptide was combined with polypropyl acrylic acid 

creating a polyplex. Most importantly ppHSP20 was able to inhibit force generation without 

inhibiting the intracellular calcium concentration, exhibiting a full uncoupling of force 

generation from calcium signalling as demonstrated previously128.   

Peptide based biomacromolecular therapeutics have significant potential for use in a 

variety of clinical applications ranging from cancer treatment to cardiovascular disease. In 

comparison to small-molecule drugs, peptide based therapies are advantageous in terms of 

specificity, potency, and biocompatibility. The significance of using a polyplex as a carrier lies 

in its biocompatibility as a drug delivery platform to enhance intracellular delivery of therapeutic 

peptides by enhancing cellular uptake. 

Conclusions 

The ability to modulate tone of arteries without changing calcium signaling would prove 

to be useful in situations where systemic blood pressure of a patient is normal. Subarachnoid 

hemorrhages are one instance where only perfusion is lowered in one region resulting in 

instances where normal blood pressure medication cannot be used. Preventing SAH induced 

vasospasm would prevent costly and devastating neurologic compromise in young patients.  This 

represents a large unmet need in that there are no current treatment modalities that are proven to 

be effective at preventing or reversing cerebral vasospasm after SAH. 
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Summary 

SAH often leads to cerebral vasospasm, which in turn can lead to neurologic sequelae 

and a higher mortality rate for patients.  Current treatment for vasospastic arteries involves the 

use of therapeutics that decrease intracellular calcium and cause smooth muscle relaxation. In the 

setting of SAH, this course of treatment is not appropriate as it can lead to systemic hypotension 

and decreased cerebral perfusion.  

In Aim 1, a model system was developed in a porcine coronary artery tissue and tested on 

a Fluoroplex device.  Using Fura 2-AM, a calcium binding fluorescent dye, and force 

transducers, calcium signaling and force were concurrently measured. More importantly, 

conditions were created where force was inhibited without completely inhibiting intracellular 

calcium signaling. In this model system, tissue was either contracted with histamine or it was 

pretreated with forskolin and then subsequently challenged with histamine. However, there was a 

decrease in the fluorescence between histamine contracted alone and forskolin pretreated tissue. 

In Aim 2, the biochemistry of the determined model condition was investigated to better 

understand inhibition of contraction through cAMP-mediated mechanisms. With force and 

calcium transients already determined for the model condition, myosin light chain 

phosphorylation was detected to confirm the intracellular calcium increase seen in the previous 

aim.  To understand thin filament dynamics the phosphorylation of VASP, HSP20, cofilin, actin, 

and paxillin was detected.  Importantly, myosin light chain phosphorylation validated the 

intracellular calcium results, while actin depolymerization allowed a better understanding of thin 

filament relaxation. 

Once the cAMP/PKA, actin-mediated, pathway of relaxation through actin was 

understood Aim 3 investigated PKG’s inhibition of contraction.  Using a nitric oxide donor 
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(SNP) that activated the PKG pathway and a phosphodiesterase inhibitor papaverine that 

activated both PKA and PKG pathways, the mechanism behind PKG activation was elucidated. 

PKG mediated inhibition of contraction did not allow intracellular calcium release or MLC 

phosphorylation.   

Aim 4 used the information gathered in the previous aims about vascular smooth muscle 

physiology in order to fully uncouple force transduction from intracellular calcium signaling.  

Knockdown of HSP20 by siRNA was used to mimic a subarachnoid hemorrhage model in rats 

and demonstrated enhanced agonist-induced contractility to phenylephrine and a decrease in 

response to nitric oxide donors. To understand the role of HSP27 in smooth muscle relaxation, a 

PTD-HSP27 was used to reduce the relaxation response to nitric oxide donors.  To determine 

whether an increase in HSP20 phosphorylation would enhance relaxation, a HSP20 phospho 

peptidomimetic was used to treat rat aorta.  The peptidomimetic significantly inhibited force 

transduction in rat aorta without inhibiting release of intracellular calcium following agonist-

induced contraction. 

The purpose of this thesis is to better understand thin and thick filaments that govern 

smooth muscle function in order to develop effective therapeutics for spastic arteries by 

uncoupling calcium signaling and myosin light chain phosphorylation with force generation.  

This novel ability to uncouple the two processes suggests that there are indeed calcium-

independent mechanisms of relaxation. On the other hand, activation of PKG signaling systems 

cannot be uncoupled, and generation of force is proportional to intracellular calcium 

concentrations and the MLC phosphorylation. 

At least one of the mechanisms by which calcium independent signaling modulates 

vasomotor tone is through the small heat shock proteins A HSP20 phospho peptidomimetic or 
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reduction in HSP27 phosphorylation promotes enhanced relaxation of vascular smooth muscle 

tissue.  This approach is direct and specific for the treatment of SAH-induced vasospasm in that 

in the setting of experimental SAH-induced vasospasm there are  decreases in phosphorylated 

HSP20 and increases in phosphorylated HSP27 in vasospastic tissue. Hence targeting 

phosphorylated HSP20 and HSP27 should specifically modulate SAH-induced vasospastic 

vessels without causing ensuing hypotension.  Taken together, this work provides insight into 

novel mechanisms that regulate smooth muscle tone and may provide therapeutic angles to treat 

SAH-induced vasospasm. 
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Appendix 
Additional Manuscript 1 

Brilliant Blue FCF Dye during vein graft preparation abrogates response to injury and 

inhibits intimal hyperplasia 

Kyle M. Hocking, ME1; Michael J. Osgood, MD2; *Igor V. Voskresensky, MD2; Kevin 

W. Sexton, MD2; Jun Song, BA2; Padmini Komalavilas, PhD3,2; Colleen Brophy, MD 3,2; Joyce 

Cheung-Flynn, PhD2  

INTRODUCTION 

 Approximately 1,000,000 aortocoronary and peripheral vascular bypass 

procedures are performed annually using human saphenous vein (HSV). However, outcomes 

from these procedures remain limited by high rates of vein graft failure, approximating 39% and 

45% at one year in the recent PREVENT III trial of infrainguinal bypass150 and the PREVENT 

IV trial of aortocoronary bypass,151 respectively.  The leading cause of vein graft failure is 

intimal hyperplasia,152  a process characterized by pathologic narrowing of the lumen, graft 

stenosis, and ultimately graft failure.153  Intimal hyperplasia remains a significant limitation of 

vascular bypass and results in substantial morbidity, reintervention, limb loss, myocardial 

infarction, and death.  Despite significant efforts to prevent intimal hyperplasia, no therapeutics, 

techniques, or devices, have been demonstrated to prevent this process in humans.   

 HSV undergoes a series of surgical manipulation during the time of explantation 

to prepare for implantation into the arterial circulation.  Commonly employed intraoperative vein 

graft preparation techniques are injurious to the conduits.  Paired comparison between freshly 

isolated, unmanipulated vein graft segments to intraoperatively prepared segments demonstrated 

that current means of vein graft preparation lead to cellular dysfunction, increased oxidative 
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stress, and promotes enhanced development of intimal hyperplasia of HSV.20  Variable warm 

ischemia times in non-buffered non-physiologic storage solutions (e.g. normal saline) reduces 

physiologic function (unpublished data). Mechanical injury, such as stretching and pressure 

distention, reduces vein graft contractility and increases neointima formation. 154,155   Moreover, 

the off-label use of surgical skin markers to prevent twisting and kinking on implantation also 

injures the conduit, impairing smooth muscle and endothelial function in HSV.156  Collectively, 

less injurious means of preparing HSV prior to autologous transplantation may improve 

outcomes of the procedures. 

 Brilliant Blue FCF (FCF) is a non-toxic food dye that is structurally related to 

Brilliant Blue G (BBG) that has been shown to ameliorate stretch induced injury in the spinal 

cord.157 The hypothesis of this investigation was that FCF is a nontoxic alternative to mark SVG 

during harvest and preparation.  During the conduct of these studies it was determined that FCF 

has pharmacologic properties that may be due to purinergic receptor inhibition. In this study, we 

evaluated the influence of topically-applied FCF on physiologic function and on the development 

of intimal hyperplasia in vein grafts.  These studies suggest that FCF may be not only nontoxic 

but also a beneficial component of the vein graft preparation. 

 

METHODS 

Materials 

All chemicals were purchased from Sigma Chemical Co. (St. Louis, MO) unless 

specified otherwise.   

Human saphenous vein (HSV) procurement 
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HSV were obtained after approval from the Institutional Review Boards of Vanderbilt 

University Medical Center and the Tennessee Valley Veterans Affairs Medical Center from 

patients undergoing coronary artery bypass grafting. Method of vein harvest (open or 

endoscopic) and graft preparation, including hydrostatic distention with a hand-held syringe, 

dotted or continuous marking with a surgical skin marker, and placement in heparinized 

Plasmalyte (HP; 10 units heparin/mL Plasmalyte) at room temperature for storage until 

implantation, was at the discretion of the surgical team.  HSV segments were collected just prior 

to arterial implantation and transported to laboratory for experimentation within 30 minutes of 

collection. 

 

Animal procedures 

Animal procedures followed study protocols approved by the Vanderbilt Institutional 

Animal Care and Use Committee and adhered to National Institute of Health guidelines for care 

and use of laboratory animals.   

 

Porcine saphenous vein (PSV) procurement 

Immediately after euthanasia, greater saphenous veins (n=6) were procured from adult 

Yorkshire pigs (Oak Hill Genetics, Ewing, IL) using an open harvest method and stored in 

heparinized Plasmalyte (HP) at room temperature prior to experimentation. Veins were used for 

experimentation within 30 minutes of collection. 

 

 

Rat aorta procurement  
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Immediately after euthanasia, aortae were gently dissected from adult male Sprague-

Dawley rats (n=8). The vessel was stored in HP at room temperature and used for 

experimentation within 30 minutes of collection. 

 

Mechanical stretch injury of PSV 

PSV segments were dissected free of fat and connective tissue and divided into segments. 

Unmanipulated PSV segments were reserved as control vessels and additional segments were 

stretched to 200% the resting length as previously described.155  This amount of stretch is 

equivalent to the extent of passive stretch that PSV segments would tolerate.  PSV segments 

were then either left untreated or painted with a solution of FCF (2.6 mM) and sectioned into 1-

mm rings and incubated in   incubated in HP solution for 30 min.  Endothelium was denuded in 

order to assess smooth muscle function.   

 

Measurement of physiologic responses  

Rings from PSV segments were suspended in a muscle bath containing a bicarbonate 

buffer (120 mM sodium chloride, 4.7 mM potassium chloride, 1.0 mM magnesium sulfate, 1.0 

mM monosodium phosphate, 10 mM glucose, 1.5 mM calcium chloride, and 25 mM sodium 

bicarbonate, pH 7.4) equilibrated with 95% O2 / 5% CO2 at 37ºC, equilibrated for 1 hr at a 

resting tension of 1g, manually stretched to 3-4 times the resting tension, and maintained at 

resting tension for an additional 1 hr.  This produced the maximal force tension relationship as 

previously determined (Voskresensky et al, JAMA Surgery, In Press).  Force measurements 

were obtained using the Radnoti force transducer (model 159901A) interfaced with a PowerLab 

data acquisition system and Chart software (AD Instruments).  After equilibration, the rings were 
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contracted with 110 mM potassium chloride (with equimolar replacement of sodium chloride in 

bicarbonate buffer) to determine smooth muscle functional viability.  Tissues produced <0.025 

x105 N/m2 were considered non-viable and were not used in further studies.155 

To determine contraction in response to the P2X7R agonist, 2′(3′)-O-(4-

Benzoylbenzoyl)adenosine 5′-triphosphate triethylammonium salt (BzATP),  rings from HSV 

segments were suspended in the muscle bath and equilibrated and contracted with 110 mM KCl 

as described above for PSV.  Next, rings were either left untreated or treated with 50 µM FCF 

for 30 min prior to contraction with 100 µM BzATP.  BzATP-induced contraction was expressed 

as the percentage of maximum KCl-induced contraction.  

 

Immunohistochemistry of HSV 

 Antigen retrieval of formalin fixed tissue sections were performed using citrate buffer 

(pH 6) at 95°C for 12 min (HSV).  After pre-incubation with 5% goat serum to block non-

specific sites, sections were incubated with primary antibodies against P2X7R (Alomone, Israel) 

overnight at 4ºC.  The sections were then incubated with Alexa 568-tagged anti-rabbit antibodies 

(Invitrogen, CA) for 1hr.   Controls were performed by pre-absorbing the primary antibody with 

the immunogen peptide.  Immunostaining was analyzed under a fluorescence microscope.  

Measurement of cytosolic calcium ion flux 

Rat aorta was dissected free of fat and connective tissue. The aorta was then sectioned 

into 1-mm rings and suspended in a FluoroPlex Tissue Bath Fluorometry System (IonOptix LLC, 

Milton, MA and Radnoti Glass Technology Inc., Monrovia, CA), which enables fluorescence ion 

recording in parallel with force measurement. Rings were loaded with 10 µM Fura-2 AM ester 

(Invitrogen, Carlsbad, CA) and 0.01% Pluronic F-127 (Invitrogen) in the bicarbonate buffer for 4 
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hrs at room temperature. The rings were subsequently washed every 10 min with bicarbonate 

buffer for 1hr at 37°C.  Next, the rings were either left untreated or treated with FCF (50 µM), or 

P2X7R antagonists periodate oxidized sodium salt (oATP; 50 µM), KN-62 (10 µM), or brilliant 

blue-G (BBG, 50 µM) for 30 min prior to contraction with BzATP (100 µM). Force and calcium 

fluorescence were measured continuously for 15 min after the addition of BzATP. 

Fluorescence was simultaneously measured at 380 and 340 nanometer (nm) wavelengths.  

The ratio of the emission of the two wavelengths was used to determine changes in intracellular 

calcium concentrations ([Ca2+]i) as previously described. 158  

Measurement of vascular smooth muscle cell migration 

Migration of rat aortic smooth muscle cell (A7r5; American Type Culture Collection, 

Manassas, VA) was determined by using a scratch assay.  Cells were cultured in 6-well dishes, 

allowed to grow to 80% confluence in DMEM medium supplemented with 10% fetal bovine 

serum and serum starved for 24 hrs.  A sterile pipet tip was used to scrape a straight line down 

the well and cells were then either left untreated or pretreated with FCF (50 µM) for 2 hrs in the 

serum-deprived medium. Cells were then treated with platelet-derived growth factor (PDGF, 

20ng/mL; Life Technologies, Grand Island, NY) in serum-free medium for 48 hrs.   Three 

pictures taken per well at 0, 24, and 48 hrs on a Zeiss Axiovert 200M epifluorescence 

microscope at a magnification of 40x and the number of cells that invaded the scratch was 

determined. 

Measurement of vascular smooth muscle cell proliferation 

A7r5 cells were cultured in 96-well plates and allowed to grow to 60% confluence.  After 

a 24-hr serum starvation, cells were then either left untreated or pretreated with FCF for 1 hour 
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prior to PDGF treatment (10 ng/ml) for 24 hrs. Each treatment was performed in at least 6 wells. 

Proliferation was measured by the MTT assay.  

HSV organ culture 

Rings (1-2 mm in width) were cut from HSV segments. Two rings were placed in 10% 

neutral buffered formalin to measure basal (pre-culture) intimal thickness.   Additional rings 

were either left untreated or treated with FCF (50 µM) in organ culture medium (RPMI 1640 

medium supplemented with 30% FBS, 1% L-glutamine and 1% penicillin/streptomycin) for 2 

hrs.  The rings were maintained in organ culture medium in the absence of FCF for 14 days at 

37˚C in an atmosphere of 5% CO2 in air.  After 14 days, rings were fixed in 10% formalin, 

paraffin-embedded, sectioned and stained using Verhoeff-Van Gieson (VVG) to allow the 

visualization of the internal elastic lamina.  Measurements of intimal and medial thickness were 

made on transverse sections of each vessel using a Zeiss Axiovert 200M microscope (Carl Zeiss) 

with a computerized image analysis system (Zeiss software and Adobe Photoshop) as described 

previously.154 

In vivo rabbit carotid interposition model 

Vein bypass grafts were constructed and interposed into the common carotid arteries with 

an anastomotic cuff technique as previously described.159  Briefly, external jugular veins (EVJ) 

were harvested (3.0-4.0 cm in length) from male New Zealand White rabbits (3.0–3.5 kg) for 

creation of a reversed interposition graft into the common carotid artery.  EVJ ends were passed 

through polymer cuffs (Terumo Medical, Elkton, MD), everted, and fixed with 6-0 silk. An IV 

heparin bolus (250 U/kg) was administered immediately prior to carotid cross clamp and 

arteriotomy.  Vein graft was inserted and secured with 3-0 silk around the cuff.  After 28 days, 

vein grafts were systemically perfusion fixed in situ with 10% neutral buffered formalin, excised, 
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divided into four segments, paraffin-embedded, sectioned and stained using the VVG stain for 

morphometric analysis as described above. 

Statistical analysis 

Contractile responses were defined by stress, calculated using force generated by tissues 

as follows: Stress (x105 N/m2) = Force (g) x 0.0987 / area, where area = wet weight (mg)/ at 

maximal length (mm)]/1.055. Data were reported as mean responses ± standard error of the 

mean. Paired t-tests were conducted to determine the significance (p value) of each experiment. 

A p value <0.05 was considered statistically significant.  

Results 

 FCF restored functional responses in PSV impaired by mechanical stretch injury  

A model of stretch injury of PSV was used to determine if the effect of stretch and FCF 

on smooth muscle contractile responses.  Compared with control PSV segments, PSV subjected 

to stretch injury generated significantly less contractile force in response to depolarizing KCl 

stimulus (0.61±0.048 x105N/m2 vs 0.48±0.049 x105N/m2, p=0.0085, Figure 1). Pre-treatment 

with a topical application of FCF had no effect on smooth muscle physiologic responses in PSV 

not subjected to stretch injury, (0.66±0.082 x105N/m2, p=0.59, Figure 1) suggesting that FCF 

was not toxic to the smooth muscle.  Pre-treatment with a topical application of FCF restored the 

contractile response of stretch-injured PSV (0.71±0.111x105N/m2 vs 0.48±0.049x105N/m2, 

p=0.0342; Figure 1).  

FCF blocked P2X7 purinergic receptor-induced contraction and cytosolic Ca2+ fluxes 

Since spinal cord stretch injury has been shown to be ameliorated by treatment with an 

analogue of FCF and the mechanism is thought to be via P2X7R antagonism,157  we used 

theP2X7R agonist BzATP to elicit a contraction in HSV.23  Preincubation with FCF significantly 
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reduced contraction to BzATP when compared to the control rings (11.9 ± 1.4% vs 7.7 ± 0.6% of 

maximum KCl-induced contraction, Figure 2A and B) suggesting that FCF inhibits P2X7R 

activation.  Expression of P2X7R in HSV was confirmed by immunohistochemistry (Figure 2C 

and D). 

P2X7R activation leads to increases in intracellular calcium concentrations [Ca2+]i,160 we 

used a FluoroPlex apparatus to measure force generation and  [Ca2+]i concurrently.  Rat aortic 

rings were used as a model system because of the availability of tissue, the thin nature of the 

arterial wall allowing penetration of the fluorochrome and the reproducibility of the results.  

Similar to HSV, pretreatment with FCF blocked BzATP-induced contraction in rat aorta (0.019 

±0.014 105 N/m2 vs 0.005±0.002 105N/m2; Figure 3A).  Additionally, FCF blocked BzATP-

induced calcium ion flux (0.139 ±0.008 A.U. vs 0.050±0.012 A.U.; Figure 3B). FCF inhibition 

of BzATP-induced contraction and Ca2+ fluxes was comparable to those mediated by known  

P2X7R antagonists oATP, KN-62 and BBG (Figure 3A and B), implicating that FCF is an 

antagonist of the P2X7R in vascular tissues.  

FCF inhibited rat vascular smooth muscle cell migration and proliferation 

Migration and proliferation are hallmark cellular events associated with intimal 

hyperplasia.  To determine the mechanism of action of FCF, the effects of FCF on A7r5 cell 

migration and proliferation were examined.  In a scratch assay, FCF significantly reduced 

PDGF-induced migration by 36±11% and 28±8% at 25 µM and 50µM, respectively, compared 

to untreated cells (Figure 4A; p<0.05).  FCF pretreatment also significantly reduced PDGF-

induced proliferation of A7r5 cells in a dose-dependent fashion by 35±21% and 28±14% at 

50µM and 100µM, respectively, as measured using  MTT assay (Figure 4B; p<0.05).  
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FCF reduced intimal thickening in cultured HSV  

Since injury leads to the development of intimal hyperplasia, the effect of a single pre-

treatment with FCF on the development of intimal hyperplasia was determined in an organ 

culture model of HSV. HSV were pretreated with FCF (50 µM, 2hr) prior to organ culture or 

placed in organ culture after HP (control) treatment.   After 14 days of organ culture, intimal 

thickening was significantly reduced in segments of FCF-pretreated HSV with compared to 

untreated tissues (15.8 ± 13.6 % vs 67.1 ± 24.6 %; Figure 5), suggesting that treatment with FCF 

at the time of vein graft explantation may have an inhibitory effect on neointimal thickening ex 

vivo. 

FCF reduced development of intimal hyperplasia in a rabbit carotid interposition model 

Because pretreatment with FCF reduced intimal thickness in organ culture of HSV 

(Figure 5), we hypothesized that treating vein grafts with FCF at the time of explantation would 

reduce intimal hyperplasia in vivo. Bilateral EJV carotid interposition grafts were constructed in 

a rabbit model (Figure 6).  Grafts stored in FCF (50 µM)-containing HP during a 30 min 

explantation period developed significantly reduced intimal thickening compared with control 

grafts (56.66±7.05 µm vs. 119.2±30.25 µm; n=13; Figure 6B).  There was no significant 

difference in the medial thickness between the two groups (96.6±26.4 µm vs. 131.4±60.9 µm). 

The intimal-to-medial ratio was significantly lower in grafts placed in FCF compared with 

control grafts (0.54±0.08 vs 0.79±0.14; Fig. 6C). 

DISCUSSION   

 Intimal hyperplasia is the leading cause of vein graft failure. While the specific 

inciting events remain uncertain, there is general agreement that this process is a ‘response to 

injury’ initiated by vein graft harvest, surgical preparation, implantation, reperfusion, and 
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exposure to arterial hemodynamics.161,162  Surgical dissection of the vein graft from the 

surrounding adipose tissue and ligation of the side branches invariably causes disruption of the 

vasa vasorum and may cause significant mechanical stretch injury. Intraoperative preparation of 

the vein graft, also injure the conduit. 20    After completion of the anastomoses the vein graft is 

subject to ischemia-reperfusion injury caused by reperfusion with arterial blood which 

simultaneously exposes the graft to pulsatile arterial hemodynamics with inherent differences in 

shear, flow, and turbulence, particularly in the perianastomotic regions of the graft.163  

Collectively, common intraoperative preparation routines are deleterious to vein grafts and 

optimization of these techniques may reduce intimal hyperplasia  

FCF improves endothelial and smooth muscle functional responses in HSV suggesting 

that FCF has pharmacologic properties (Voskresensky et al, JAMA Surgery, In Press).  In this 

study, FCF pretreatment restored functional viability after stretch injury in PSV (Figure 1).  

Additionally, FCF inhibits the selective P2X7R agonist BzATP- induced smooth muscle force 

generation (Figure 2A and 3A) and calcium ion flux to levels comparable to other known 

antagonists of the receptor, oATP, KN-62, and BBG (Figure 3B), implying that FCF is an 

antagonist of the P2X7R in HSV. While injury leading to release of ATP activates the P2X7R, the 

increases in intracellular calcium resulting from activation of the P2X7R may result in further 

ATP release thus propagating the injury response.160   

In this investigation, we demonstrated that FCF pretreatment prevents both PDGF-

induced migration and proliferation of A7r5 cells (Figures 5A and B).  This is not surprising as 

P2X7R activation by ATP or other cellular damage enhances migration and proliferation, which 

is inhibited by P2X7R antagonism in other cell types.164,165  These data suggest that the inhibition 
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of smooth muscle cell migration and proliferation may in part account for the mitigation of 

intimal hyperplasia by FCF. FCF blocked P2X7R-induced contraction and cytosolic Ca2+ fluxes. 

A single short-term FCF pretreatment, analogous to the ex vivo treatment conditions in 

the operating room, inhibits intimal hyperplasia of vein grafts (Figures 5 and 6).  The observation 

that FCF treatment during explantation prevents neointimal thickening suggests that there is a 

therapeutic window of opportunity at the time of explant. Moreover, vein graft treatment during 

explantation maximizes exposure of the therapeutic to the conduit and limits systemic exposure.  

Chamberlain et. al showed that P2X7R-deficient mice developed intimal hyperplasia 

similar to wild-type animals in a carotid ligation model.166  In contrast, our results indicated that 

therapeutic targeting of the P2X7R impedes the development of intimal hyperplasia.  It is 

conceivable that overexpression of other purinergic receptors, such as P2X1, may compensate for 

the absence of P2X7R and their activation may cause other deleterious events that promote 

intimal thickening in the P2X7R-deficient mice.  Alternatively, FCF treatment may lead to a 

partial blockade of P2X7R while allowing a subset of P2X7R function that normally exert 

preventive effects on intimal thickening.  FCF treatment may also activate pannexin 1 functions 

(Voskrensensky et al, JAMA Surgery, In Press), a hemichannel that is part of the P2X7R death 

complex, 167 in HSV that may otherwise contribute to neointima formation such as platelet 

activation.168   

We have previously demonstrated that vein graft injury is a sufficient stimulus for the 

development of intimal hyperplasia in HSV ex vivo, suggesting a role of early injury in the 

cellular processes that contribute to the development of intimal hyperplasia.20  The findings of 

the current study offer evidence that effects of harvest induced injury can be ameliorated by 

treatment with FCF.  The mechanism for the pharmacologic properties of FCF may be due to 
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inhibition of the P2X7 purinergic receptor (Figure 7).  These data also suggest that pharmacologic 

intervention at the time of explantation is a clinically relevant approach to preventing intimal 

hyperplasia and vein graft failure.  

 

POTENTIAL LIMITATIONS 

While our stretch injury model of PSV recapitulated the potential injury incur to the vein 

grafts, these tissues came from healthy animals. The model system used for these experiments 

has the advantage of more homogeneity and greater reproducibility compared to HSV.  The 

rabbit interposition graft model did not include distension which is a technique commonly 

performed to HSV.  Moreover, the mechanistic links between P2X7R blockade and restoration of 

smooth muscle injury or reduction in intimal thickening requires further evaluation.  Aside from 

changes in Ca2+ flux, it remains to be determined whether treatment with FCF affects 

downstream events elicited by P2X7R activation that have been characterized in other cell types.   

 

CONCLUSIONS 

We have demonstrated that transient P2X7R blockade during vein graft preparation 

inhibits the injury response in vascular tissues, prevents smooth muscle migration and 

proliferation, and inhibits intimal hyperplasia in vitro and in vivo. To our knowledge, this is the 

first report of the role of P2X7R in early vein graft injury. Further work is needed to better 

characterize the mechanism of action of FCF and to elucidate the potential role of this agent in 

vein graft preparation in human subjects.  Treatment with FCF represents a nontoxic and 

possibly therapeutic clinical alternative to marking with surgical skin markers during preparation 

of vein graft conduits. 
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CLINICAL RELEVANCE 

 Saphenous veins remain the most commonly used conduits for bypass procedures.  

Current surgical harvest and vein graft preparation induces injury to the conduits and promotes 

development of intimal hyperplasia, arguing for less injurious means to preserve vein graft 

function during explanation period.  FCF presents a potential therapeutic to be included as part of 

the vein graft preparation.  
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FIGURES  

 

Figure A.1. FCF restores functional viability after stretch injury in porcine saphenous 

vein. Pig saphenous veins were left untreated (non-stretch; n=6), stretched to twice their resting 

length (stretched; n=6).  A solution of FCF (2.6 mM, in 5% propylene glycol and water) or 

vehicle was then applied with a cotton swab in a longitudinal line to the untreated or the 

stretched vein segments (FCF).  The segments were incubated at room temperature for 15 min in 

Plasmalyte and then cut into rings, suspended in a muscle bath and treated with KCl (110 mM).  

Force generated was converted to stress. Results are presented as mean±SEM. *p< 0.05 
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Figure A.2.  FCF inhibits P2X7R-mediated contraction in human saphenous vein.  A. 

Rings of HSV (n=4) were suspended in the muscle bath, either left untreated (control) or treated 

with 50µM FCF for 30min prior to contraction with BzATP.  B. Representative muscle bath 

force tracings of BzATP-induced contraction in HSV. Results are presented as mean±SEM. 

*p=0.04. Expression of P2X7R in HSV as detected by immunohistochemistry using pre-

absorbed (C) or normal P2X7R-specific antibody (D).  P2X7R were stained red.  
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Figure A.3.  FCF inhibits P2X7R-mediated cytosolic Ca2+ fluxes in rat aorta.  Rat aortic 

rings (n=3-8) were suspended in the FluoroPlex muscle bath, either left untreated (control) or 

treated with FCF or other P2X7R antagonists oATP, KN62 or BBG prior to contraction with 

BzATP.  Concurrent force generation (A) and cytosolic Ca2+ flux (B) were measured. Results are 

presented as mean±SEM.  ***p<0.0001. 
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Figure A.4. FCF inhibit PDGF-mediated migration and proliferation in vascular smooth 

muscle cells. A7r5 cells pretreated without (control) or with different concentration of FCF prior 

to stimulation with PDGF.  A. Migration of A7r5 cells were measured in a scratch assay in 6-

well plates.  Cell invading the scratch were counted after 24 and 48hours. Results are reported as 

relative increase in cell number compared to the control wells as mean±SEM. *p<0.05, n≥4.  B. 

Proliferation of A7r5 cells were measured using MTT assay in 96-well plates. Each treatment 

was performed in at least 6 wells and averaged for each assay.  Results are reported as 

mean±SEM. *p<0.05, **p<0.005, n.s., statistically nonsignifcant, n=6. 
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Figure A.5.  FCF pretreatment reduced intimal thickness of HSV in organ culture.  HSV 

rings (n=8) were left untreated (control) or pretreated with FCF (50µM) for 2hr prior to culture 

in RPMI medium supplemented with 30% FBS for 14 days. Veins were stained using Verhoff 

Van Gieson stain and intimal layer thickening was measured. Results are presented as 

mean±SEM. *p=0.016 
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Figure A.6.  FCF treatment during graft explantation reduced intimal hyperplasia in the 

rabbit carotid interposition graft model.  The external jugular veins from rabbits (n=13) were 

either stored in heparinzed PlasmaLyte without (control) or supplemented with 50µM FCF 

(FCF) during a 30-min explantation period prior to implantation into the carotid artery.  Grafts 

were harvested after 28 days and stained to visualized the elastic lamina. Intimal and medial 

thickness were measured.  A, Representative Verhoff Van Gieson stained grafts in control or 

FCF treated animals.  Boxed areas in the 20x magnification indicated areas in the 40x images. 

Scale bar = 50 µm. Intimal thickness are indicated by bars (gray).  L= lumen, M=medial, arrows 

indicate internal elastic laminar. B, Intimal thickness and C, intimal-to-medial thickness ratio 

were determined.  Results are presented as mean±SEM. *p <0.05.  
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Figure A.7.  Model of P2X7R activation during vein graft preparation injury.  Surgical 

harvest and preparation induced vein graft injury (1) leading to release of ATP (2).  ATP 

activates the P2X7 receptor on neighboring cells, propagating the response to injury (3).  FCF 

may mitigate the effect of P2X7R activation (4) by inhibiting membrane pore formation, [Ca2+]I 

flux, and additional release of extracellular ATP.  (Agonists, red; inhibitors, blue) 
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Surgical vein graft preparation promotes cellular dysfunction, oxidative stress, and 

intimal hyperplasia in human saphenous vein 
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Li; Padmini Komalavilas, PhD3,2; Joyce Cheung-Flynn, PhD2; Colleen Brophy, MD 3,2  

INTRODUCTION 

 Approximately 1,000,000 aortocoronary and peripheral vascular reconstructions 

are performed annually using human saphenous vein (HSV). The leading cause of vein graft 

failure is intimal hyperplasia (IH).169 This process leads to pathologic narrowing of the vessel 

lumen, graft stenosis, and ultimately graft failure.170 IH remains the primary factor limiting the 

durability of vein bypass grafts and contributes to significant morbidity, reintervention, limb 

loss, myocardial infarction, and death. While technical errors, poor outflow, thrombosis, and 

vasospasm are the principle etiologies of vein graft failure in the immediate postoperative period 

(<30 days), IH and atherosclerosis are the leading causes of vein graft failure in the short-term 

(30 days-2 years) and long-term (>2 years) time frames, respectively.163 Two recent large phase 

III multicenter, randomized, double-blinded, placebo-controlled clinical trials have examined 

outcomes in coronary artery bypass grafting (CABG) and peripheral vascular bypass grafting 

(PVBG). The Project of Ex-vivo Vein Graft Engineering via Transfection (PREVENT) III trial 

demonstrated a 61% primary patency rate at one year following PVBG.171 The per patient vein 

graft failure rate after CABG was 45% in the PREVENT IV trial at 12 to 18 months.172 These 

trials set a modern standard for benchmark outcomes from these procedures. 

Successive and additive levels of vein graft injury occur during vein conduit harvest and 

preparation. These include mechanical stretch,125 conduit distension using a hand-held syringe 
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for identification of leaks and side branches,173 marking of the conduit using surgical skin 

markers for purposes of orientation,174 and vein conduit storage in acidic solutions.175 The 

surgical literature has focused primarily on the histologic and morphologic changes occurring to 

the vein graft following surgical harvest and preparation, including disruption of the vasa 

vasorum,176 surgical trauma to the endothelium,177 and tunica media.153 However, the degree to 

which these morphologic changes impact the cellular viability and physiology of the HSV graft 

has not been well investigated. Moreover, the standard process of vein graft preparation 

including distension, marking, and warm ischemia in solution has never been validated or 

demonstrated to adequately preserve tissue viability. 

Oxidative stress is a well-known mechanism mediating vascular injury in multiple 

cardiovascular diseases.178 The production of reactive oxygen species becomes magnified and 

dysregulated in pathophysiologic states and serves as a secondary mediator of injury. Oxidative 

stress has been postulated to contribute to vein graft dysfunction,179 but evidence of this is 

lacking in human tissue. Therefore, we investigated the influence of surgical vein graft 

preparation on cellular viability and HSV physiology, the role of surgical vein graft preparation 

in the development of IH in vitro, and the role of oxidative stress as a mechanistic contributor to 

vein graft dysfunction in human saphenous vein. 

 

METHODS 

 

HSV procurement 

HSV samples were obtained after approval from the Institutional Review Boards of 

Vanderbilt University Medical Center and the Tennessee Valley Veterans Affairs Medical 
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Center, Nashville, TN. HSV segments were collected after obtaining informed consent from 

patients undergoing CABG. Method of vein harvest (open or endoscopic) and graft preparation 

was at the discretion of the surgical team. Vein segments were collected immediately following 

surgical harvest (“unmanipulated” vein samples, UM) and were used immediately following 

collection for experiments described below. Additional vein segments were collected again later 

after a series of manipulations, including hydrostatic distention with a hand-held syringe, dotted 

or continuous marking with a surgical skin marker, and placement in heparinized plasmalyte 

(HP, 10 units heparin/mL plasmalyte) at room temperature for storage until implantation (“after 

manipulation” vein samples, AM, see Figure 1), and were used immediately prior to implantation 

for the experiments described below. Veins were used for experimentation within 15 minutes of 

collection. When open harvest was employed, the vein was divided distally, cannulated, and 

crystalloid was intermittently infused to aid in side branch ligation. For all HSV used in this 

study, we obtained paired UM/AM samples, except where specified. All HSV used for the 

experiments described below was stored in HP at room temperature until experimentation. All 

AM-HSV segments procured for this study were small pieces removed from either end of the 

conduits used for revascularization and were collected at the time of arterial implantation. Areas 

of HSV subjected to clamp or crush injury were discarded. Therefore, all segments of AM-HSV 

we obtained were intended for use as part of bypass conduits and were obtained at the time of 

arterial implantation. The particular anatomic portion of HSV which was procured (i.e. proximal 

versus distal) was, again, at the discretion of the surgical team and was not recorded for this 

study. 

 

Collection of clinical demographic variables 
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Along with prospective collection of HSV tissue, demographic variables of the source 

patients were prospectively collected, including age, gender, race, body mass index (BMI), 

medical comorbidities, preoperative laboratory values, preoperative medication regimen, and 

method of HSV harvest. 

 

Physiological measurement of HSV smooth muscle functional viability 

HSV samples were sectioned into 1-mm rings. These were weighed and their diameter 

was measured. HSV rings were suspended in a muscle bath containing a bicarbonate buffer as 

previously described.180 Smooth muscle viability was determined by contracting HSV with 

potassium chloride (KCl), which causes membrane depolarization and contraction of 

functionally viable smooth muscle.181 Rings were then washed to remove KCl and equilibrated in 

bicarbonate buffer for 30 minutes.125 The concentration of the physiologic agonist phenylephrine 

(PE) that induces submaximal contractile responses was determined by treating the tissue with 

increasing doses (0.01, 0.1, and 1 μM) of PE. Contractile response was defined as stress ([105 

Newtons (N)/m2] = force (g) x 0.0987 / area, where area is equal to the wet weight [(mg) / length 

(mm at maximal length)] divided by 1.055),126 which was calculated using the force (g) 

generated by the tissue. We have previously demonstrated that the production of force of less 

than 0.025x105 N/m2 in response to KCl correlates with diminished cellular viability as measured 

by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) live/dead assay.125  

 

Physiological measurement of HSV smooth muscle-dependent vasorelaxation 

 HSV was prepared as described above except that the endothelium was gently 

mechanically denuded. Viable HSV was pre-contracted with PE and treated with escalating 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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doses of sodium nitroprusside (SNP) necessary to achieve measurable vasorelaxation (10-8 to 10-

6 M). 

 

Physiological measurement of HSV endothelial-dependent vasorelaxation 

HSV was prepared and tested as described above except that the endothelium was 

preserved. Viable HSV was pre-contracted with PE and then exposed to carbachol (CCH, 5x10-7 

M), an acetylcholine analog, and the maximal relaxation response was determined.182 

 

HSV immunohistochemical staining for CD31 and eNOS 

HSV segments were fixed in 10% formalin and sent to the Vanderbilt Translational 

Pathology Shared Resource for processing. Tissues were dehydrated with ethanol, embedded in 

paraffin, and immunostained using a Leica Bond Max IHC stainer. Heat induced antigen 

retrieval was performed using their Epitope Retrieval 2 solution for 20 minutes. Slides were 

incubated with CD31 (NCL-CD31-1A10, Leica Microsystems, Buffalo Grove, IL) at 1:100 

dilution or eNOS (ab91205, Abcam, Inc., Cambridge, MA) at 1:600 dilution for one hour. The 

Bond Polymer Refine detection system was used for visualization. Slides were then dehydrated, 

cleared and coverslipped. The degree of endothelial staining for eNOS and CD31 was assessed 

using an Axiovert (Zeiss) at 20x-100x magnification. The intensity of staining was assessed by a 

blinded observer using a qualitative score from (1+) to (4+) based on the proportion of vein 

circumference with visible staining: (1+), <25% vein circumference; (2+), 25-49%; (3+), 50-

74%; and (4+), 75-100%. 

 

HSV physiologic measurements as a function of storage time 
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 In order to investigate whether storage time had any influence on the physiology 

of UM versus AM-HSV, we measured physiology as a function of storage time. UM-HSV was 

procured as described above, sectioned into rings, and placed in HP at room temperature for 30 

minutes, 1 hour, 2 hours, and 3 hours. At the end of incubation, HSV rings were suspended in a 

muscle bath in duplicate for measurement of contractile force, smooth muscle-dependent 

relaxation, and endothelial-dependent relaxation. 

 

HSV organ culture 

Additional UM-HSV and AM-HSV rings (3 mm in length) were cut, placed in eight-well 

chamber slides in duplicate, and maintained in RPMI 1640 medium with 30% FBS, 1% L-

glutamine, and 1% penicillin/streptomycin for 14 days at 37°C/5% CO2 as previously 

described.183 After 14 days, tissue was fixed in formalin, imbedded in paraffin, and histologic 

sections were prepared and stained with Verhoeff-Van Gieson (VVG). Four-quadrant 

measurements were made of intimal and medial thickness of pre-culture and post-culture rings 

by a blinded observer and intimal-to-medial ratio was calculated. 

 

Measurement of reactive oxygen species in HSV 

UM-HSV and AM-HSV were divided into 1-mm rings and immediately processed by the 

Vanderbilt Free Radical in Medicine Core for measurement of reactive oxygen species. Tissues 

were incubated for 30 minutes at 37°C in 1 mL of Krebs/HEPES buffer containing 50 µmol/L of 

dihydroethidium (DHE). Superoxide (O2˙¯) was measured using DHE and a high-performance 

liquid chromatography (HPLC)-based assay.184 The reaction of DHE with O2˙¯ generates 2-
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hydroxyethidium. The 2-hydroxyethidium peak on HPLC reflects the amount of O2˙¯ formed in 

the tissue during the incubation and is expressed per milligram of protein. 

 

Experimental induction of oxidative stress in HSV 

 UM-HSV was cut into 1-mm rings and placed in HP containing hydrogen 

peroxide (H2O2) concentrations of 100 µM, 1 mM, and 10 mM for one hour at room temperature. 

HSV physiological measurements were then performed in the muscle bath as described above. 

 

Data analysis 

Data is reported as mean ± standard error of the mean unless indicated otherwise.  Paired 

two-tailed t-tests were conducted to assess the statistical significance of each experiment using 

GraphPad Prism software (LaJolla, CA). P value of ≤0.05 was considered statistically 

significant. Statistical significance was indicated on figures with the following annotations: (*), 

p<0.05; (**), p<0.01; (***), p<0.001. 

  

RESULTS 

 

HSV collection and patient demographic variables 

The demographic variables for the patients included in this analysis are listed in Table 1.  

The demographics are typical for patients undergoing coronary revascularization. Unless stated 

otherwise, all experiments were performed with paired UM/AM samples from the same patients. 

Over half of the paired UM/AM-HSV samples were harvested endoscopically, and the remainder 

of the paired UM/AM-HSV samples were harvested utilizing conventional open harvest 
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technique. Open versus endoscopic vein graft harvest did not produce any significant differences 

in the physiologic parameters we examined (data not shown). Angioscopy or valvulotomy were 

not utilized on any of the HSV collected for this study. Papaverine was not used during vein graft 

preparation. 

 

HSV smooth muscle functional viability 

UM-HSV generated significantly greater contractile force (0.13±0.009x105 N/m2) 

compared with AM-HSV (0.05±0.006x105, n=47, p<.0001, Figure 2A). All UM-HSV generated 

force of 0.025x105 N/m2 or greater, and therefore, all UM-HSV was functionally viable by our 

pre-established criteria.125 Of AM-HSV, 35 of 47 samples (74%) were viable. UM-HSV 

generated significantly greater contractile force in response to PE (0.08±0.008x105 N/m2) 

compared with AM-HSV (0.04±0.005x105, n=41, p<.0001, Figure 2B). These data suggest that 

surgical vein graft preparation causes injury which compromises smooth muscle viability. 

 

HSV smooth muscle-dependent vasorelaxation 

 UM-HSV generated significantly greater smooth muscle-dependent relaxation 

(62±4%) compared with AM-HSV (31±4%, n=34, p<.0001, Figure 2C). These data further 

suggest that surgical vein graft preparation causes injury which compromises smooth muscle 

viability. 

 

HSV endothelial-dependent vasorelaxation 

  UM-HSV generated significantly greater endothelial-dependent relaxation 

(21±3%) compared with AM-HSV (1±2%, n=36, p<.0001, Figure 2D). These data suggest that 
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surgical vein graft preparation causes injury which compromises endothelial viability. Given that 

that endothelium is the most fragile tissue component in HSV, these findings are not unexpected, 

and argue for less injurious means of surgical vein graft preparation in order to preserve this 

fragile monolayer. 

 

Immunohistochemical staining for eNOS and CD31 

 We observed 3+ or 4+ CD31 staining in UM-HSV (Table 2). Surgical vein graft 

preparation was associated with diminished CD31 staining in 8 of 11 samples of AM-HSV; 

endothelial coverage remained unchanged in the remaining 3 of 11 samples after surgical vein 

graft preparation. We observed more variability in UM-HSV eNOS staining. Among UM-HSV 

samples, 9 of 11 had 3+ or 4+ eNOS staining, and 2 of 11 had 1+ or 2+ eNOS staining. Surgical 

vein graft preparation was associated with diminished eNOS staining in 9 of 11 samples and this 

was more pronounced than loss of CD31 staining: 2 of 11 AM-HSV samples had 3+ staining; 3 

of 11 samples had 2+ staining, and the remaining 6 of 11 had 1+ staining. Representative 

photomicrographs are illustrated in Figure 3. These data suggest that the diminished endothelial 

viability observed following surgical vein graft preparation results in part from endothelial 

denudation, and furthermore from loss of eNOS. 

 

HSV physiologic measurements as a function of storage time 

 We measured physiologic parameters in UM-HSV samples obtained from 6 

patients. Duration of vein graft storage for up to three hours at room temperature in HP did not 

significantly impair or improve the physiologic variables tested (Figure 4). There was no 

significant change in contractile response to KCl (n=6, p=ns, Figure 4A), contractile response to 
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PE (n=6, p=ns, Figure 4B), SNP-induced smooth muscle-dependent relaxation (n=6, p=ns, 

Figure 4C), or CCH-induced endothelial-dependent relaxation (n=6, p=ns, Figure 4D). These 

data suggest that the duration of time in a physiologic storage solution does not cause HSV 

dysfunction. Therefore, it must be the other components of surgical vein graft preparation – 

distension and marking – that contribute to vein graft dysfunction. These data suggest that the 

vein graft dysfunction we observed in AM-HSV was not due to the additional storage time in 

HP. 

 

HSV organ culture 

 After two weeks in organ culture, we observed an increase in intimal thickness of 

22.81±18.77 µm in UM-HSV, and intimal/medial ratio increased by 22±27%. We observed an 

increase in intimal thickness by 38.53±26.48 µm in AM-HSV, and intimal/medial ratio increased 

by 50±37%. Compared with UM-HSV, AM-HSV developed a 69% increase in intimal thickness 

(n=11, p=.043, Figure 5A), and a 122% increase in intimal/medial ratio (n=11, p=.015, Figure 

5B). These observations demonstrate that surgical vein graft preparation causes injury beyond 

that induced by harvest alone and which is sufficient to promote neointimal growth. 

 

Measurement of reactive oxygen species in HSV 

 Levels of 2-hydroxyethidium in UM-HSV were 227.6±40.44 pmol/mg protein 

versus 382.5±43.07 in AM-HSV (n=4, p=.03, Figure 6), indicating increased generation of ROS 

after surgical vein graft preparation. These observations demonstrate that surgical vein graft 

preparation causes additional ROS generation beyond that induced by harvest alone. 
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Experimental induction of oxidative stress in HSV 

 We performed these experiments in UM-HSV samples obtained from 6 patients. 

One-hour treatment of UM-HSV with H2O2 resulted in significant blunting of endothelial-

dependent relaxation at concentrations of 1 mM and 10 mM, but not at 100 µM (Figure 7). 

Endothelial-dependent relaxation in UM-HSV was 27±9% in comparison with 9±5% in UM-

HSV treated with 1 mM H2O2 (n=6, p=.04) and 10±4% in UM-HSV treated with 10 mM H2O2 

(n=5, p=.03). These data demonstrate that ROS can cause endothelial dysfunction in HSV. 

Therefore, the presence of increased ROS, such as that generated secondary to surgical vein graft 

preparation, serves as a secondary mediator of vein graft dysfunction. 

 

DISCUSSION 

 

Human saphenous vein (HSV) is harvested, prepared, stored, and then reimplanted as a 

conduit to bypass arterial stenoses and occlusions. Therefore, HSV is an autotransplanted organ, 

but is not widely considered or treated as such. Surgical vein graft preparation causes successive 

injury at multiple levels prior to arterial implantation (Figure 1). Vein graft harvest is injurious 

secondary to hypoxia, stretch and traction injury.125 After harvest, ex vivo vein graft preparation 

is performed on the “back table.” While methods of vein graft preparation remain surgeon-

dependent, most distend the conduit with a hand-held syringe in order to identify leaks and 

overcome spasm. We have measured intraluminal pressures generated during gentle distension 

and these uniformly exceed 750 mmHg (data not shown), regardless of syringe size or perceived 

force placed on the syringe plunger. Conduit distension causes significant morphologic changes, 

including endothelial denudation and smooth muscle damage.173,185 Additionally, most surgeons 



131 

 

mark the vein graft for orientation using a sterile surgical marking pen intended for use on the 

skin. We have recently demonstrated that this common practice causes smooth muscle and 

endothelial dysfunction secondary to toxic components in the ink, including isopropyl alcohol (a 

solvent).174 Isopropyl alcohol is converted to acetone in vivo,186 which increases oxidative stress 

by causing generation of reactive oxygen species.187 Finally, the conduit is placed in a storage 

solution for a variable duration. Normal saline is a commonly utilized storage solution and is an 

acidic, non-buffered solution with pH <6.0. Despite the non-physiologic properties of this 

storage solution, normal saline was utilized by 40% of centers (JH Alexander, MD, unpublished 

data, 2013) in the PREVENT IV trial.172 Vein preparation techniques have yet to be scientifically 

validated despite their widespread application. 

Our results indicate that surgical vein graft preparation causes significant cellular 

dysfunction of the two principle HSV cell types: smooth muscle and endothelium (Figure 2A-D). 

We have previously demonstrated that the production of force of less than 0.025x105 N/m2 in 

response to KCl correlates with diminished cellular viability as measured by the 3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) live/dead assay.125 AM-HSV 

produced significantly diminished contractile force in response to KCl (Figure 2A), and PE 

(Figure 2B). Smooth muscle-dependent vasorelaxation in response to SNP (Figure 2C) was also 

diminished. Therefore, surgical vein graft preparation causes additional vascular smooth muscle 

injury beyond that incurred during surgical vein graft harvest alone. To our knowledge, smooth 

muscle dysfunction has not been demonstrated to occur in HSV grafts this early ex vivo. These 

findings implicate surgical vein graft preparation as an important mediator of vein graft 

dysfunction. 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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 The injury of potentially greatest consequence to the long-term success of the 

bypass conduit is the loss of endothelial function following surgical vein graft preparation 

(Figure 2D). We observed a contractile response to CCH rather than relaxation in many of the 

AM-HSV samples. Acetylcholine (and its analog, CCH) act on vascular smooth muscle to cause 

vasoconstriction in tissue with endothelial injury or loss.188 These measurements of diminished 

to absent endothelial function correlated with loss of endothelial coverage on 

immunohistochemical staining for CD31, with superimposed and more pronounced loss of eNOS 

staining (Table 2 and Figure 3). These results suggest that, while harvest leads to mild 

endothelial denudation and loss of eNOS, these insults are magnified following ex vivo surgical 

vein graft preparation. A viable and intact endothelium serves multiple protective roles. Nitric 

oxide released by the endothelium promotes vasodilation and prevents platelet adhesion and 

thrombosis. In contrast, dysfunctional endothelium exerts prothrombotic properties189 and allows 

attachment of circulating platelets and leukocytes which secrete growth factors, a critical step in 

the development of the hyperplastic lesion.190 Endothelial denudation therefore increases the risk 

of thrombosis in the immediate postoperative period (<30 days), and may initiate further 

cascades of vascular injury and damage, leading to the development of IH in the short- and long-

term lifespan of the conduit. 

 Surgically harvested HSV (UM-HSV) that does not undergo ex vivo surgical vein 

graft preparation exhibits preservation of physiologic function for up to three hours of storage in 

heparinized plasmalyte at room temperature (HP, 10 U/mL) (Figure 4). We have identified HP as 

a buffered physiologic storage solution which is superior to most other commonly utilized 

storage solutions for preservation of vein graft physiology (data not shown) and this solution has 

been universally adopted at our institution. These data demonstrate that the additional storage 
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time in HP to which the AM-HSV segments were subjected in the course of our experimental 

design did not contribute to physiologic dysfunction. This suggests that the other manipulations 

occurring during this period, such as hydrostatic distention and marking, are the primary factors 

leading to smooth muscle and endothelial dysfunction (Figure 2A-D). 

Injury incurred during surgical vein graft preparation is a sufficient stimulus for the 

promotion of IH in organ culture, a well-validated in vitro model that replicates the smooth 

muscle proliferation, migration, and extracellular matrix deposition occurring in IH.183,191 We 

observed a significant increase in both intimal thickness and intimal/medial ratio in HSV 

subjected to surgical vein graft preparation (Figure 5). These data support the hypothesis that 

early vein graft injury is an important stimulus leading to IH. Importantly, this injury response 

can occur in the absence of the turbulent and pulsatile hemodynamic alterations associated with 

placement of a venous graft in arterial circulation and in the absence of growth factors released 

from circulating leukocytes and platelets, further implicating preexisting tissue injury as an 

inciting agent in this process. 

Our data indicate that cellular vein graft dysfunction is mediated in part by oxidative 

stress. Levels of reactive oxygen species nearly doubled in response to surgical vein graft 

preparation (Figure 6). Moreover, experimentally induced oxidative stress is a secondary 

mediator of endothelial dysfunction in UM-HSV (Figure 7). Therefore, ROS are generated 

during vascular injury and serve as secondary mediators of tissue injury, particularly involving 

the endothelium.178 Even brief exposure to ROS has been demonstrated to stimulate vascular 

smooth muscle cell proliferation in cultured cell lines persisting well beyond the time of 

exposure.192 The NADPH oxidases are the most important source for superoxide production and 

they are activated by vascular injury and hypoxia.193,194 Oxidative stress enhances endothelial 
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permeability and promotes leukocyte attachment.178 Binding and activation of neutrophils causes 

superoxide generation as part of the respiratory burst.195 Superoxide production can initiate a 

cascade of other ROS (H2O2, hydroxyl radicals, and peroxynitrite), which indiscriminately react 

with and oxidize lipids, proteins, and DNA in the vicinity and cause cellular damage and 

death.178,194 ROS further react with and deplete NO, forming peroxynitrite.194 Therefore, 

oxidative stress is a plausible mechanistic contributor to the near-complete loss of measurable 

endothelial function (Figure 2D) in HSV subjected to surgical vein graft preparation. 

While oxidative stress has been implicated in the pathogenesis of multiple cardiovascular 

diseases, it remains to be demonstrated whether this contributes to vein graft dysfunction in 

human tissue. Our data demonstrate increased levels of reactive oxygen species induced very 

early following surgical vein graft preparation; these ROS cause secondary injury to the vein 

graft. ROS have been demonstrated to initiate cellular responses with long-lasting effects 

persisting beyond the time of exposure. For example, it has been shown that very brief exposure 

to reactive oxygen species lasting only 10 minutes is a sufficient stimulus for vascular smooth 

muscle proliferation in cultured cell lines.192 It is not known yet whether avoiding vein graft 

injury alone is sufficient to prevent ROS generation, or whether antioxidant agents have 

therapeutic efficacy. We have demonstrated that University of Wisconsin organ preservation 

solution (which contains the antioxidant glutathione) preserves vascular smooth muscle function 

significantly better than plasmalyte alone (data not shown). Furthermore, preliminary proteomics 

data point to a possible role of vascular smooth muscle apoptosis in vein graft failure. Whether 

this process is related to ROS production is an area of future investigation. 

Based on these data, the following recommendations should be considered. Conduit 

distention must be gentle and pressures must be limited to physiologic levels when possible. A 
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simple but effective method for achieving this is to perform the proximal arterial anastomosis 

first, and then to revascularize and distend the conduit using arterial blood inflow. This method 

has the advantages of limiting conduit pressures to systemic arterial blood pressures, and 

shortening the period of “warm ischemia” during which the vein is otherwise stored at room 

temperature in hypoxic conditions. Marking the vein graft with surgical skin marking pens 

should be avoided. The toxic components in these pens cause significant vein graft dysfunction. 

When it is mandatory to mark the conduit, i.e. during tunneling so as to avoid twisting, we urge 

clinicians to consider interrupted rather than continuous marking. A buffered physiologic storage 

solution such as plasmalyte, University of Wisconsin solution, or heparinized blood should be 

used to store the conduit. Saline should be avoided as a storage solution given its acidic and non-

buffered properties. 

 This study has several limitations. First, collection of human tissue from different 

surgical teams introduced variability in the way the tissue was handled prior to experimentation. 

However, the advantage of this approach is that the AM-HSV segments obtained were sections 

from the actual vein grafts used to revascularize patients and we obtained the tissue for 

experimentation immediately prior to arterial implantation. In addition, our data regarding IH 

was derived from an organ culture model possessing limitations, including the absence of 

hemodynamic alterations occurring in arterial circulation and the absence of circulating 

leukocytes and other circulating blood components that may modulate the development of IH. 

Future areas of investigation include further mechanistic work into the means by which ROS 

induce vein graft failure, and also to investigate whether ROS generation can be avoided using 

antioxidants or inhibitors of the NADPH oxidases. 
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In summary, surgical vein graft preparation causes endothelial and smooth muscle 

dysfunction, diminished smooth muscle viability, production of ROS, and IH. These results 

collectively argue for less injurious means of surgical vein graft preparation. The ex vivo 

component of vein graft preparation provides a unique therapeutic window for delivery of 

compounds, antioxidants, or drugs directly to the vein graft to prevent cellular dysfunction and 

injury. Preservation of cellular viability in transplanted organs is achieved in physiologic 

buffered storage solutions with antioxidants. Since vein grafts are autotransplanted organs, 

improved HSV preservation should be the focus of future practices of surgical vein graft 

preparation in order to enhance vein graft function and patency. 

Figures 

 

Figure 1. Steps in surgical vein graft preparation and sources of tissue used in this 

investigation. Following human saphenous vein (HSV) harvest, vein graft preparation is 

performed. Ex vivo manipulations include hydrostatic distention to identify leaks and overcome 
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spasm, marking with a surgical skin marker for orientation purposes, and repair of leaks. The 

conduit is then placed in a storage solution at room temperature where it undergoes a variable 

period of warm ischemia. These steps all precede eventual surgical implantation in the arterial 

circulation. For this investigation, HSV obtained immediately following harvest 

(“unmanipulated,” UM-HSV) was compared with HSV obtained following surgical vein graft 

preparation (“after manipulation,” AM-HSV). 

 

Figure 2. Physiologic measurements of human saphenous vein (HSV) smooth muscle and 

endothelial function before and after surgical vein graft preparation. Physiologic responses are 

significantly impaired in HSV obtained after manipulation (AM) compared with paired samples 

of unmanipulated (UM)-HSV; these include contractile response to potassium chloride (KCl, 
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n=47, p<.0001, Panel A), contractile response to phenylephrine (PE, n=41, p<.0001, Panel B), 

smooth muscle-dependent relaxation in response to sodium nitroprusside (SNP, n=34, p<.0001, 

Panel C), and HSV endothelial function in response to carbachol (CCH, n=36, p<.0001, Panel 

D). 

 

Figure 3. Immunohistochemical staining of human saphenous vein (HSV) for eNOS and 

CD31.  Unmanipulated HSV (UM-HSV) exhibits continuous (4+) eNOS and CD31 staining. 

HSV obtained after surgical manipulation (AM-HSV) exhibits near absence of eNOS staining 

(1+) and patchy loss of endothelial coverage by CD31 staining (2+). Photomicrographs are 

representative of 11 HSV samples. The scale bar represents 100 µm. 
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Figure 4. Human saphenous vein (HSV) physiological measurements as a function of 

warm ischemia time in heparinized plasmalyte. Duration of warm ischemia for up to 3 h does not 

influence smooth muscle contractile response to potassium chloride (KCl, n=6, p=ns, Panel A), 

smooth muscle contractile response to phenylephrine (PE, n=6, p=ns, Panel B), smooth muscle-

dependent relaxation in response to sodium nitroprusside (SNP, n=6, p=ns, Panel C), or 

endothelial-dependent relaxation in response to carbachol (CCH, n=6, p=ns, Panel D). 
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Figure 5. Surgical vein graft preparation promotes development of intimal hyperplasia in 

organ culture. Panel A. The increase in intimal thickness (µm) is significantly greater in human 

saphenous vein (HSV) obtained after surgical manipulation (AM) compared with HSV obtained 

unmanipulated (UM) after two weeks in organ culture (n=11, p=.043). Panel B. The percent 
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increase in intimal to medial ratio (I/M ratio) is significantly greater in AM-HSV compared with 

UM-HSV (n=11, p=.015). 

 

Figure 6. The generation of reactive oxygen species (ROS) in human saphenous vein 

(HSV) is increased after undergoing surgical vein graft preparation. Levels of ROS were 

assessed by measuring by the conversion of dihydroxyethidium (DHE) to 2-hydroxyethidium. 

Levels of 2-hydroxyethidium were significantly greater in HSV obtained after ex vivo surgical 

vein graft preparation injury compared with HSV immediately following surgical vein graft 

harvest (n=4, p=.03). 
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Figure 7. Experimental induction of oxidative stress causes endothelial dysfunction in 

human saphenous vein (HSV). Compared with unmanipulated (UM)-HSV, one-hour treatment of 

UM-HSV with hydrogen peroxide (H2O2) caused a significant decline in endothelial-dependent 

relaxation when exposed to 1 mM H2O2 (n=6, p=.04) and 10 mM H2O2 (n=5, p=.03). 
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Additional Manuscript 3 

Introduction 

Over one million coronary artery bypass (CABG) and peripheral revascularization 

procedures are performed each year.  Despite the higher patency rate of the internal mammary 

artery when compared with the human saphenous vein (HSV) and increased interest in other 

arterial conduits, HSV remains the most widely used conduit for CABG procedures.  Vein graft 

failure rate remains high, however, approaching 40% at 18 months postoperatively.196 

The predominant histological finding in failed vein grafts is intimal hyperplasia, which is 

thought to be the manifestation of cellular responses to injury.190  Vein graft injury during 

intraoperative graft preparation leads to intimal hyperplasia, accelerated atherosclerosis, and 

subsequent graft failure.190,197 Injurious mechanisms during graft preparation include 

endovascular harvesting techniques, radial distension, and choice of storage solution.196,198,199 

Optimal vein graft preparation prior to surgical anastomosis is hence important for long-term 

graft patency.200 

Vein graft marking is a practice frequently used to properly orient the graft prior to 

implantation.  Originally intended for use in marking the skin area around surgical sites, surgical 

skin markers are sterile, inexpensive, and readily available to surgeons for vein graft marking. 

The chemical constituents of these markers consist of alcohol-based solvents and the dyes 

methylene blue or gentian violet. Vein marking with methylene blue impairs both endothelium-

dependent and endothelium-independent graft function.201 Similarly, gentian violet leads to a 

decrease in endothelium-independent relaxation to sodium nitroprusside.202 While the deleterious 

effects of gentian violet and methylene blue are well established, the practice of using skin 

markers still remain widely accepted for CABG and peripheral vascular procedures.  Although 
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surgical skin markers are non-toxic in dermatology applications, little is known about the effects 

of applying the marker directly to the vein grafts.  This study examined the effects of surgical 

skin markers on functional viability of HSV used for autologous bypass procedures.     

 

Methods 

Human saphenous vein procurement 

All human saphenous vein graft remnants (HSV) were obtained after the approval of the 

Institutional Review Boards of the Vanderbilt University Medical Center and the VA Tennessee 

Valley Healthcare System, Nashville, TN. De-identified remnant segments of HSV (n=38) were 

collected from patients undergoing coronary artery bypass (CABG) and peripheral vascular 

bypass procedures. The veins were procured according to the surgeon’s discretion in terms of 

surgical and medical interventions, intraoperative graft handling such as distention  and the use 

of surgical skin markers. The veins were stored in heparinized saline solution until the end of the 

surgical procedure at which time they were placed in cold University of Wisconsin transplant 

harvest buffer at 4°C [100 mM potassium lactobionate, 25 mM KH2PO4, 5 mM MgSO4, 30 mM 

raffinose, 5 mM adenosine, 3 mM glutathione, 1 mM allopurinol, 50g/L hydroxyethyl starch, pH 

7.4].  The vessels were tested within 24 hours of harvest.  

For endothelial-dependent relaxation experiments, HSV (n=8) were collected 

immediately after surgical harvest without any further intraoperative manipulations such as the 

use of skin markers or distention and tested within 2 hrs of surgical procurement.   

 

Physiological measurements of functional viability 
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The HSV and dissected free of adipose and connective tissue and 1 mm rings were cut.  

The rings were weighed and their lengths were measured.  In order to focus on smooth muscle 

responses, the endothelium was mechanically denuded by gently rolling the luminal surface of 

each ring at the tip of fine vascular forceps before suspension in a muscle bath containing a 

bicarbonate buffer (120 mM NaCl, 4.7 mM KCl, 1.0 mM MgSO4, 1.0 mM NaH2PO4, 10 mM 

glucose, 1.5 mM CaCl2, and 25 mM Na2HCO3, pH 7.4), equilibrated with 95% O2 and 5% CO2 

at 37oC.  The rings were progressively stretched to the optimal resting tension (approximately 1 

gm) that would produce a maximal response to contractile agonists as described previously, and 

then maintained at the resting tension and equilibrated for a minimum of 2 hrs. 203,204  Force 

measurements were obtained using a Radnoti Glass Technology (Monrovia, CA) force 

transducer (159901A) interfaced with a Powerlab data acquisition system and Chart software 

(AD Instruments, Colorado Springs, CO).  Smooth muscle functional viability was determined 

by contracting the HSV rings repeatedly with 110 mM KCl (with equimolar replacement of NaCl 

in bicarbonate buffer) until the maximal response was generated.  Potassium challenge (110mM) 

causes depolarization of the membrane leading to contraction of functionally viable smooth 

muscle.181   Tissues that failed to respond to KCl (generated a contractile force equivalent to 

stress <0.025x105 N/m2) were not tested further.  Rings that generated stress of ≥0.025x105 N/m2 

were washed to remove the KCl and equilibrated in bicarbonate buffer for 30 minutes.205 

Concentration of physiologic agonists that would induce submaximal contractile responses, was 

pre-determined by treating the tissue with increasing doses (0.01, 0.1, and 1 μM) of 

norepinephrine (NE) or phenylephrine (PE).  Tissues were then washed with bicarbonate buffer 

to remove the agonists and treated with 10-6 M NE or 10-6M PE (submaximal doses) to determine 

contractile responses.   
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Physiological measurements of endothelial-derived vasorelaxation 

Rings from HSV that were not manipulated intraoperatively were prepared and tested 

essentially as described above except that the endothelium was preserved.  Viable tissues were 

pre-contracted with 10-6 M PE and then treated with 5x10-7M carbachol, and the maximal 

relaxation response was determined.182   

 

Effect of surgical skin markers on vascular reactivity 

To study the effect of surgical skin markers and their chemical constituents, three 

commercially-available surgical skin markers were obtained (SSM1, Devon Skin Marker and 

Ruler, Covidien, Mansfield, MA; SSM2, Cardinal Health Corp., Dublin, OH; SSM3, 

MediChoice, Sunrise, FL)..  These marking pens were used at the institutions where HSV were 

collected for this study and all contained 50% isopropyl alcohol and the dye gentian violet. Rings 

from unmarked HSV remnant segments were painted on the surface with either SSMs, or a 

cotton swab saturated with 1% methylene blue (Akorn, Inc., Lake Forest IL), or submerged in 

50% isopropyl alcohol at room temperature for 15 min.  Contraction to 110mM KCl and 

contractile agonists was measured in the muscle bath as described above.   

To assess the effect of surgical skin markers on endothelial-dependent vasorelaxation 

responses, rings from minimally manipulated HSV were painted with surgical skin marking pens 

and incubated in 0.5 ml PlasmaLyte A (Baxter, Deerfield, IL), a pH balanced physiological 

solution used for storing HSV during graft preparation, at room temperature for 15 min.  
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Vascular responses to 110mM KCl and contractile agonists were measured in the muscle bath as 

described above. 

Data analysis 

Contractile response was defined by stress ([105Newtons (N)/m2] = force (g) x 0.0987 / 

area, where area is equal to the wet weight [(mg) / length (mm at maximal length)] divided by 

1.055) , which was calculated using the force generated by the tissues.126  Any tissue that 

generated stress of 0.025x105 N/m2 or greater was considered functionally viable, which 

correlates to 0.5 g of force for a 10 mg, 1mm thick, 4mm diameter ring. Data was reported as 

mean responses ± standard error of the mean. Unpaired t-tests were conducted in order to 

determine the significance (p value) of each experiment using GraphPad Prism software 

(LaJolla, CA). A p value ≤0.05 was considered statistically significant. 

Results 

Contractile response of human saphenous vein grafts  

Thirty-eight HSV surgical remnant segments were obtained and 22 (58%) had visible 

blue marking from surgical skin marker at the time of collection from the operating room.  HSV 

segments that had no visible blue marking generated significantly (p<0.0001) greater contractile 

responses to 110 mM KCl (0.174 ± 0.023 105 N/m2, n=16) than those that were marked (0.047 ± 

0.014 105 N/m2, n=22) (Figure 1A). Viable HSV rings (≥0.025 N/m2, n=30) were then treated 

with a submaximal dose of the contractile agonist, norepinephrine (NE; 10-6M).  HSV without 

blue marking generated significantly (p=0.0004) greater contractile responses to NE (0.1244 ± 

0.02765 N/m2, n=13) than those that had visible blue marking (0.02288 ± 0.006272 N/m2, n=17) 

(Figure 1B).   
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Surgical skin marker chemical constituents decreased HSV smooth muscle contractile 

response  

We next determined whether isopropyl alcohol, a solvent used in surgical skin markers, 

impairs contractile responses of HSV.  Rings were cut from HSV segments that were void of 

blue marking.  These rings were either left untreated, marked with surgical skin marker SSM1, 

treated with 50% isopropyl alcohol, or treated with 1% methylene blue, and exposed to 110mM 

KCl.  HSV rings that were left untreated produced significantly greater contractile response 

(0.110 ± 0.014 105 N/m2, n=12) than the rings that were marked with SSM1 (0.003 ± 0.001 105 

N/m2, n=5, p=0.0002), 50% isopropyl alcohol (0.005 ± 0.003 105 N/m2, n=5, p=0.002), or 

methylene blue (0.014 ± 0.010 105 N/m2, n=10, p<0.0001) (Figure 2).   

 

Surgical skin markers impaired HSV endothelial-dependent relaxation  

 The effect of marking with surgical skin marker on the endothelium-dependent 

vasorelaxation ability of the vein grafts was determined.  Pressure distension during surgical 

harvest can lead to loss of endothelial-dependent functions; therefore, HSV segments were 

collected immediately after harvest and prior to being subjected to any intraoperative 

manipulation.206 Rings from the HSV were either left unmarked or marked with surgical skin 

markers SSM2 or SSM3.  Contractile response to high potassium chloride was significantly 

reduced by 20-30% (Figure 3A; n=4, p<0.03) in segments marked with SSM2 (0.06681 ± 

0.02713) and SSM3 (0.07455 ± 0.02901) when compared to the untreated segments (0.09638 ± 

0.02261).  A similar effect was seen in the agonist-induced contractile response to 

phenylephrine.   Marking with SSM2 (0.04277 ± 0.01956 N/m2) or SSM3 (0.04773 ± 0.01935 

N/m2) significantly reduced contractile force generation by 40-50% (p<0.03) when compared to 
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the unmarked segments (0.07760 ± 0.01586N/m2) following exposure to PE (Figure 3B).  When 

the segments were pre-contracted with PE, endothelium-dependent vasorelaxation to carbachol 

was significantly reduced in HSV (Figure 4; n=3, p<0.02) marked with either SSM2 (3.560 ± 

1.672%) or SSM3 (7.334 ± 2.192%) when compared to the unmarked segments (19.94 ± 

1.529%).  

 

Discussion 

Vein graft failure following coronary artery bypass procedures has been attributed to 

injury to the endothelial and/or medial layers of the saphenous vein and remains an enigmatic, 

morbid, and expensive problem.  Vein graft failure leads to myocardial infarction, heart failure, 

repeat hospitalizations, and repeat surgical or percutaneous interventions.  Injury to veins by 

mechanical damage, including distension and endovascular harvesting techniques, lead to 

thrombosis, intimal hyperplasia, and ultimately vein graft failure.162 We have previously reported 

that vein grafts used in revascularization procedures display variable contractile function and 

viability205.  A (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, or MTT, 

live/dead assay illustrated that the loss of the contractility of smooth muscle directly correlates to 

the loss of cellular viability in HSV suggesting surgical preparation and manipulation lead to cell 

death and hence significant loss of conduit function.  Prior to implantation, HSV is prepared on a 

“back table” where marking vein grafts is routinely employed for graft orientation and 

prevention of graft kinking.  While mechanical damage to HSV grafts has been described in 

detail, there remains a paucity of literature outlining the effects of surgical marking pens on vein 

graft function.  Consequently, the widely accepted technique of vascular marking with a sterile 

surgical skin marker persists, despite unknown effects on vein grafts.  The current study offers 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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evidence that exposure of HSV to surgical skin markers contribute to impaired graft function and 

viability.   

Vein grafts fail in 5 to 10% of patients as early as the first postoperative week and is 

associated with adverse outcomes.207-209 A common theme for early vein graft failure (occurs 

within one month) is vascular endothelial injury.210-212  Manchio et al showed that, at five days 

post coronary artery bypass surgery, thrombosed veins had only 10% of the endothelial layer 

remained intact, compared to 50% intact endothelium in patent vein grafts, implicating 

endothelial damage as a cause of early vein graft failure.212 Additionally, reendothelialization 

attenuates intimal hyperplasia following distension injury.213   Intact endothelium expresses nitric 

oxide synthase, eNOS, which is responsible for the conversion of L-arginine to nitric oxide.  

Nitric oxide inhibits platelet aggregation and vascular smooth muscle proliferation in addition to 

modulating vascular tone.  During graft procurement and preparation, disruption of vascular 

endothelium exposes collagen, a substrate for thrombosis independent of platelet activation or 

presence of a hypercoagulable state.212,214   

By 12 to 18 months post-CABG, vein graft failure is observed in approximately 40% of 

patients.196 While loss of endothelium integrity correlates with early vein graft failure,  the 

primary histologic finding in late vein graft failure (> 1 month post-bypass) is intimal 

hyperplasia (IH).197 Evidence of IH may be seen as early as 3 weeks to 3 months following 

coronary artery bypass surgery.215,216 Characterized by vascular smooth muscle cell proliferation, 

IH is a response to injury and the inciting substrate for accelerated atherogenesis associated with 

late graft failure.197 Phenotypic changes in vascular smooth muscle cells include conversion of a 

contractile, filament-rich structure to a metabolically active, organelle rich phenotype. Synthesis 
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of extracellular matrix proteins, an important component of vein graft failure, is also 

increased.217  

Numerous attempts to ameliorate IH, including E2F decoys, chemotherapeutic, and anti-

platelet agents have failed.172,190,218However, preservation of vein graft integrity does prevent 

morphologic changes associated with IH.  A ‘no-touch’ method of vein graft harvesting appears 

to preserve vein structure and function and slows the rate of atherosclerosis formation following 

coronary artery bypass grafting.219 Long-term evaluation of vein grafts (> 8 years) following 

non-injurious harvesting methods have significantly fewer and smaller atherosclerotic plaques 

and significantly less IH compared to conventional harvesting.219 In addition to mechanical 

injury, chemical damage from storage solutions, such as normal saline, also leads to IH.175 Grohs 

et al demonstrated a marked decrease in receptor-independent depolarization and agonist-

mediated contractility with prolonged storage in various storage media.199 Taken together, a 

protective role of intact endothelium and a functional, viable medial layer in vein graft patency is 

critical. 

Given the crucial association between IH and vein graft failure, we examined the effects 

of surgical marking on function and viability vein graft.  In the remnant human saphenous vein 

grafts examined in this study, almost 60% had been marked intraoperatively.  The marked veins 

demonstrated a 73% reduction in vascular smooth muscle contractility compared to HSV with no 

visible blue marking.  HSV that were not manipulated after harvesting had a ~ 50% decrease in 

smooth muscle contractile function following exposure to SSM.  The difference in functional 

loss seen in those that were marked by the surgeons intraoperatively compared to those marked 

experimentally implicates that marking with surgical skin marker alone did not explain the 
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decrease in smooth muscle function.  Other graft preparation techniques may also account for 

more severe functional impairment observed in veins marked intraoperatively.   

Since cellular viability correlates with functional viability of HSV205,  our results infer 

that vein marking with surgical skin markers is deleterious to the conduit and that the loss of 

HSV contractile response to both receptor-dependent contraction and depolarization can be 

attributed in part by the use of SSM and its chemical composition, particularly ~ 50% isopropyl 

alcohol.  While short-term dermal application is non-toxic, isopropyl alcohol intoxication via 

chronic dermal exposure has been reported.220 In addition, isopropyl alcohol is converted by 

alcohol dehydrogenase (ADH) to acetone, a solvent used to fix tissues.186 ADH is present in 

human vessels with majority of the activity found in the medial layer.221 Treating the vein with 

isopropyl alcohol or direct contact of the vein with a surgical skin marker essentially converts the 

tissue to a decellularized vein, analogous to cryopreserved veins.  When used for peripheral 

vascular reconstructions, cryopreserved veins have dismal 30% and 18% patency rates at 1 and 2 

years, respectively.222  

Because endothelial function is often abolished due surgical harvest and intraoperative 

handling 211, we obtained HSV specimens that were collected immediately after surgical harvest 

and prior to “back table” preparation and subsequently marked with SSM in the laboratory.  Our 

results indicated that marking with surgical skin markers profoundly impaired endothelial-

dependent vasorelaxation to carbachol in minimally manipulated HSV.  Shoemaker et al. 

previously showed that gentian violet did not affect endothelium-dependent response to <10-6M 

acetycholine.202   The reason for the different findings may lie in the presence of isopropyl 

alcohol in the SSM or the surgical procurement and manipulation of the HSV specimens used in 
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the separate studies.  Notwithstanding, our data demonstrated that the endothelium is rendered 

non-functional when exposed to these two surgical skin markers.   

 It is logical that cellular death and graft organ injury may result from exposure to 

SSM in a time and dose-dependent manner.  Saphenous veins are typically marked on the 

conduit surface after initial harvesting and are often stored at room temperature for up to 3 hrs 

before implantation. How much isopropyl alcohol is absorbed into the vein and the time frame 

during which conversion to acetone peaks within the tissue is not known.  However, the fact that 

endothelial and medial damage was observed after a 15 min exposure to the SSM in this study 

suggests that contents of the SSM is readily absorbed through the full thickness of the vein.  

Further, the extent of vein marking varies among surgeons. We observed that non-contiguous 

marking along the length of HSV resulted in greater smooth muscle functional viability of vein 

graft compared to heavily marked veins (data not shown). At the conclusion of the procedure, the 

chest is often thoroughly irrigated with normal saline; leeching of alcohol in and around the graft 

may result in untoward effects on HSV viability.    

 The current study is limited by the use of de-identified tissues and the lack of 

intraoperative data regarding procurement techniques and graft preparation method.  

Additionally, patient demographics were not available which may contribute to the variability of 

vascular responses to injury and experimental conditions.  It is also limited by the lack of long-

term follow-up to infer how marking with surgical skin markers affects HSV graft patency. 

In conclusion, our findings suggest that marking human saphenous veins with a surgical 

skin marker prior to implantation causes a profound decrease in contraction and relaxation 

function of these grafts and interfere with the activation of cellular signaling pathways involved 

in normal physiological responses in endothelial and vascular smooth muscle.  Nevertheless, 
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implications of these findings on development of IH graft patency remain to be determined. Until 

alternatives become available, restricted use of surgical skin markers for vein graft marking is 

advised.   

 

Figure Captions 

 

Figure 1.  Human saphenous vein grafts with blue markings displayed impaired 

contractile responses.  Remnant saphenous vein from patients undergoing coronary artery bypass 

or peripheral vascular revascularization surgery were collected (n=38).  Rings from each vein 

were suspended in a muscle bath, contracted with 110mM KCl (A), 10-6M norepinephrine (B), 

force was measured and converted to stress (105 N/m2).  Unmarked (n=16) – no visible sign of 

markers when collected; marked (n=22) – had visible sign of marking.  The error bars show the 

standard error of the mean.  * p<0.0001.  
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Figure 2.  Surgical skin markers and its chemical constituents reduced contractility of 

remnant human saphenous vein grafts.  Rings cut from remnant human saphenous vein grafts 

were left unmarked (control; n=12), marked with a surgical skin marker (SSM1; n=5), treated 

with 50% isopropyl alcohol, or with 1% methylene blue (n=10).  The rings were then suspended 

in a muscle bath and exposed to 110mM KCl.  Force was measured and converted to stress (105 

N/m2).  The error bars show standard error of the mean.  * p<0.0002.  
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Figure 3.  Surgical skin markers impaired contractile response in minimally manipulated 

human saphenous vein grafts.   Saphenous vein from patients undergoing coronary artery bypass 

or peripheral vascular revascularization surgery were collected prior to any intro-operative 

preparation (n=4).  Rings from each vein were either left untreated (control), or treated with one 

of two different surgical skins markers (SSM2 or SSM3), and suspended in a muscle bath.  Rings 

were contracted with 110mM KCl (A), or 10-6M phenylephrine (B), force was measured and 

converted to stress (105 N/m2).  The error bars show standard error of the mean.  *p<0.003. 
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Figure 4.  Surgical skin markers impaired endothelial-dependent relaxation in minimally 

manipulated human saphenous vein grafts.   Saphenous vein from patients undergoing coronary 

artery bypass or peripheral vascular revascularization surgery were collected prior to any intra-

operative preparation (n=3).  Rings from each vein were either left untreated (control), or treated 

with one of two different surgical skin markers (SSM2 or SSM3), and suspended in a muscle 

bath.  Rings were pre-contracted with 10-6M phenylephrine and then exposed to 5x10-7M 

carbachol. Force was measured and converted to stress (105 N/m2).  The error bars show standard 

error of the mean.  * p<0.002. 
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PRESSURE CONTROL DURING PREPARATION OF SAPHENOUS VEINS 

PREVENTS ENDOTHELIAL INJURY AND REDUCES NEOINTIMA FORMATION 

Fan Dong Li, PhD1; Susan Eagle, MD2; Colleen Brophy, MD3; Kyle M Hocking, MEng3; 

Michael Osgood, MD3; Padmini Komalavilas, PhD3, and Joyce Cheung-Flynn, PhD3¶ 

Abstract  

Background - The human saphenous veins (HSV) remains the most commonly used 

autologous conduits for coronary artery bypass grafting (CABG) procedures.  Despite advances 

in surgical techniques and therapeutic interventions, long-term patency of the conduits remains 

limited due to vein graft failure (VGF).  VGF has been reported to be as high as 45% at 12-18 

months after surgery and leads to redo surgery, myocardial infarction, recurrent angina, and 

death.  Preparation of HSV prior to implantation leads to endothelial injury which may promote 

VGF. 

Objective – To demonstrate that pressure distention during vein graft preparation leads to 

endothelial injury and intimal thickening.  We hypothesized that limiting intraluminal pressure 

during pressure distention by using a pressure release valve preserves endothelial function and 

prevents neointima thickening.    

Methods – HSV were collected from CABG patients immediately after harvest (UM), 

after pressure distension (AD), and after typical intraoperative surgical graft preparation (AM).   

Porcine saphenous veins (PSV) were subjected to manual pressure distension with or without an 

in-line pressure release valve that prevents pressures of ≥140 mmHg.  Endothelial function of the 

HSV and PSV was determined in a muscle bath, and endothelial integrity was assessed by 



159 

 

immunohistological examination of CD31 and eNOS.  Intimal thickening in PSV was evaluated 

histomorphometrically after 14 days in organ culture.  

Results - Pressure distention of HSV led to decreased endothelial-dependent relaxation 

and denudation.  Additional intraoperative manipulation further decreased the function of the 

conduits.  Distention of PSV with the pressure release valve preserved endothelial-dependent 

relaxation, prevented denudation and reduced intimal thickening.  

Conclusion - Use of a pressure release valve during graft preparation limits intraluminal 

pressure generated by manual distension, preserves endothelial integrity and reduces intimal 

hyperplasia.  Integration of this simple device may contribute to improved long term vein graft 

patency.   
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INTRODUCTION 

 Human saphenous vein (HSV) is an autologous transplanted organ most 

commonly used for aortocoronary bypass (CABG) and peripheral vascular (PV) 

revascularization procedures.  Despite advances in surgical techniques and therapeutic 

interventions, long-term patency of the conduits remains limited due to vein graft failure (VGF). 

The per patient VGF rate has recently been reported to be 45% and 39% at 12-18 month post-

procedure in CABG and PV patients, respectively 171,172.  Common causes of vein graft failure 

include loss of endothelial coverage, intimal hyperplasia, and thrombosis 223.   Graft patency 

rates are influenced by patient characteristics, intrinsic quality of the conduit, and surgical 

technique 162.  Despite concerns about graft preparation techniques, beginning with the seminal 

work by LoGoerfo et al in the early 1980s, preservation of endothelial and medial integrity of the 

conduits during graft preparation remains suboptimal and as such, VGF is attributable at least in 

part to tissue handling 170,224.  Common trauma incurred to the vein during ‘back-table’ graft 

preparation includes conduit storage in acidic solutions, conduit marking using toxic surgical 

skin markers, and pressure distension by hand-held syringes to identify branches and overcome 

vasospasm 125,156,225,226.     

Flushing the vessel with uncontrolled pressure results in high intraluminal pressure, 

which often exceeds 600 mmHg, leading to denudation of  the endothelium that  potentiates 

inflammatory responses 227-229.  Distention also induces damage to the medial smooth muscle 

layer  that  results in apoptosis and dedifferentiation of smooth muscle cells 230-232.  Given that 

the primary cause of graft failure is intimal hyperplasia, which represents a “response to injury” 

233,  limiting this “response” may influence the progression of cellular processes that lead to 

neointima formation and facilitate maximum re-adaptation of the conduit after arterialization. 
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 The objective of this study was to demonstrate that pressure distention during vein 

graft preparation leads to endothelial injury and intimal thickening.   We hypothesized that 

limiting pressure during distention reduces neointima thickening and preserves vascular 

functions of the grafts.   We identified a pressure-limiting device that can be readily integrated 

into current distention technique and reduces intraluminal pressure.   

 

METHODS  

Material and reagents 

All chemicals were purchased from Sigma (St. Louis, MO) unless otherwise specified. 

 

Procurement of HSV 

HSV grafts were obtained following approval of the Institutional Review Board of the 

Vanderbilt University Medical Center, Nashville, TN, from patients undergoing coronary artery 

bypass (CABG) bypass procedures.   Segments were collected immediately after surgical harvest 

(unmanipulated, UM) and after manual distension (after distension, AD).  An additional segment 

was collected immediately after further intraoperative manipulation according to the surgeon’s 

discretion - such as use of skin markers and storage in a solution – prior to implantation (after 

manipulation, AM) from the same patients.  Veins were collected in heparinized (10 units/ml) 

Plasmalyte solution and transported to the laboratory for immediate testing.    

 

Collection of clinical demographic variables 
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Demographic variables were retrospectively collected, including age, gender, race, body 

mass index (BMI), medical comorbidities, preoperative laboratory values, preoperative 

medication regimen, and method of HSV harvest. 

 

Procurement of porcine saphenous veins (PSV) 

PSV were collected from euthanized animals from the animal surgical laboratory at 

Vanderbilt University Medical Center.   Animal procedures followed study protocols approved 

by Vanderbilt Institutional Animal Care and Use Committee (IACUC) and were in compliance 

with NIH guidelines for care and use of laboratory animals.  PSV were dissected using an open 

harvest technique immediately after euthanasia, side branches ligated with 3-0 silk sutures, 

placed in heparinized Plasmalyte, and transported to laboratory for testing immediately. 

 

Physiological measurements of vasocontractility and vasorelaxaiton 

Force measurements were obtained using a Radnoti Glass Technology (Monrovia, CA) 

force transducer (159901A) interfaced with a Powerlab data acquisition system and Chart 

software (AD Instruments, Colorado Springs, CO) as described previously 234.   Briefly, 1-mm 

rings were cut from segments of saphenous veins, dissected free of fat and connective tissue, and 

then suspended in a muscle bath containing bicarbonate buffer (120 mM NaCl, 4.7 mM KCl, 1.0 

mM MgSO4, 1.0 mM NaH2PO4, 10 mM glucose, 1.5 mM CaCl2, and 25 mM Na2HCO3, pH 7.4) 

equilibrated with 95% O2 and 5% CO2 at 37oC for 2 hr.    Rings were contracted first with 110 

mM KCl to determine smooth muscle functional viability. Tissues generating 

≥0.025105Newtons(N)/m2 of stress were considered viable and were further evaluated 125.  

Viable tissues were then contracted with increasing doses (10-8-10-6 M) of phenylephrine (PE), a 
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physiologic agonist.  Optimal PE dose was determined as the concentration generating 70-80% 

of maximal 110 mM KCl-induced contraction. PE pre-contracted tissues were then treated with 

5x10-7 M carbachol or increasing doses of sodium nitroprusside (SNP; 10-8-10-5 M) to determine 

maximal endothelial-dependent and –independent relaxation response, respectively 182.   

 

Measurement of intraluminal distension pressure in saphenous veins 

 Additional segments of HSV obtained after typical surgical manipulation (AM) were 

cannulated proximally and distally with an olive tip needle (Medtronic, Minneapolis, MN) and 

secured with 3-0 silk sutures on each end.  A 30-ml hand-held syringe was connected to the 

distal end and the proximal end was connected to a manometer to record actual pressure attained 

during distension.  For distension with limited pressure, a pressure release valve (Vasoprep 

Surgical, LLC, Morristown, NJ) was placed in-line between the distal olive tipped needle and the 

hand held syringe.  Heparinized (10U/ml) Plasmalyte in the syringe was then injected to distend 

the segments and pressure was held for 2 min.  For treatment of PSV, veins were divided into 

segments and randomly assigned to one of the three groups:  non-distended (control), distended 

with unlimited pressure using a hand held syringe (distended), or distended with pressure release 

valve (PRV) as described for HSV.  

 

Histomorphometric Analysis of PSV in an Organ Culture Model 

Rings (1-2 mm in width) were cut from PSV segments before and after distension.  Two 

rings were placed in 10% neutral buffered formalin to measure basal (pre-culture) intimal 

thickness. Two rings were placed in organ culture as described previously235.  This method of 

vein culture has been validated as an ex vivo model system of the changes occurring in vivo and 
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has been used previously in our laboratory 235.  After 14 days, rings were fixed in 10% formalin 

and sent for histological preparation and Verhoeff-Van Gieson (VVG) at the Pathology 

Histochemistry Core at Vanderbilt University.  Measurements of intimal and medial thickness 

were made on transverse sections of each vessel using a Zeiss Axiovert 200M microscope (Carl 

Zeiss, Thornwood, N.Y., USA) with a computerized image analysis system (Zeiss software and 

Adobe Photoshop) as described previously 234.   

 

Immunohistochemistry 

 Tissue sections were stained using the avidin-biotinylated peroxidase complex 

(ABC) method (Vector lab, Burlingame, CA).  Antigen was retrieved using citrate buffer (pH 6) 

at 95°C for 5 min (PSV) or 12 min (HSV).  Endogenous peroxidase was blocked by immersing 

slides in 3% hydrogen peroxide for 15 min.  Non-specific sites were blocked by incubating 

sections in 5% goat serum prior to incubation with primary antibodies  against eNOS (Abcam, 

Cambridge, MA) or CD31 (DAKO, Carpinteria, CA) for 1hr at room temperature.  Biotinylated 

IgG (Vector lab) was used as secondary antibody at 10 ng/ml.  Immunostaining negative controls 

were performed by omitting the primary antibody.   

 

Data analysis 

Contractile response was defined by stress, calculated using force generated by tissues.  

Stress [105 Newtons (N)/m2] = force (g) x0.0987/area, where area is equal to wet weight 

[(mg)/length (mm at maximal length)] divided by 1.055. Any tissue that generated stress of 

0.025x105 N/m2 or greater was considered functionally viable 125. Data were reported as mean 

responses ± standard error of the mean. Paired t-tests or one-way ANOVA analyses were 
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conducted in order to determine the significance (p value) of each experiment. A p value <0.05 

was considered statistically significant. 

 

RESULTS 

Patient demographics 

 The demographics variables for the patients from which saphenous veins were 

collected and are typical for patients undergoing CAGB procedures.   See eTable 1. 

 

Manual distension and physiologic function of HSV 

 Segments of HSV were collected either as unmanipulated (UM) or post-distension 

(AD) segments from the same patients (n=13).  Intraoperative distension of vein grafts 

significantly reduced contraction to PE (1-5 x 10-6 M) in the AD segments (0.035±0.008 N/m2) 

as compared with cognate UM segments (0.081±0.017 N/m2, respectively) (Figure 1A).  

Vascular relaxation was similarly impaired by intraoperative distension.  UM segments produced 

significantly greater endothelial-dependent (Figure 1B; 13.7±2.5%, vs. 5.3±2.3%) and -

independent relaxation (Figure 1C; 61.6±7.5% vs. 41.9±8.3%) than the AD segments.   

Functional integrity of both endothelium and smooth muscle was further reduced in 

segments after additional “back-table” manipulation which included marking with a surgical skin 

marker and storage prior to implantation (AM; n=6). PE-induced contraction was reduced to 

0.011±0.006 N/m2 (Figure 1A) and endothelial-dependent and –independent relaxation further 

decreased to -3.2±3.2% and 12.8±6.3%, respectively, (Figures 1B and 1C).  There is a 

statistically significant difference as determined by one-way ANOVA  for PE contraction 

(F(2,28)=5.372, p=0.01), endothelial-dependent (F(2,29)=8.448, p=0.0013) and independent 
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relaxation (F(2,25)=7.773, p=0.0024) among UM, AD and AM segments from the same patients 

(n=6).  

 

Manual distension and endothelial integrity of HSV 

  Immunohistochemical examination of the UM HSV segments revealed normal 

venous morphology and intact endothelium (Figure 2A & C).  In contrast, intraoperative manual 

distension increased luminal area and damaged the endothelium of AD segments (Figure 2B & 

D).  Strong CD31 staining was seen along the endothelium of the UM segments (Figure 2C), 

whereas distension resulted in patchy staining (Figure 2D), suggesting loss of endothelial 

integrity after manual distention. 

 

Intraluminal pressure in HSV distended using a pressure release valve 

 Intraluminal pressure, as measured by a manometer at the proximal end of 

remnant HSV (n=3), was 883.7±37.1 mmHg when vessels were “gently” distended without the 

pressure release valve using a 30ml syringe. When a pressure release valve (Figure 3 inset) 

calibrated to release at pressures greater than 2.5 psi (or 130 mmHg ± 10% crack tolerance) was 

used, intraluminal pressure was limited to 135.5±1.9 mmHg (Figure 3).    

 

 Physiologic functions of PSV distended with limited intraluminal pressure  

Because the length of UM HSV segments obtained for this study were insufficient for 

distension, porcine saphenous vein (PSV), a conduit of similar caliber to HSV, was used (n=7).  

Manual distension reduced tissue response to PE when compared to the control segment 

(0.155±0.034 N/m2 vs.0.235±0.039 N/m2 Figure 4A).  Contractile responses to PE did not 
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decrease when distension pressure was limited using the pressure release valve (PRV, 

0.193±0.024 N/m2; Figure 4A).  Manual distension reduced endothelial-dependent (7.6±4.4% 

vs.61.9±10.2% in Control; Figure 4B) and -independent relaxation in PSV (42.1 ± 3.4% vs. 

78.0±7.8% in Control; Figure 4C).  Limiting intraluminal pressure to 140mmHg with the 

pressure release valve preserved endothelial-dependent (PRV, 50.3 ± 9.6%; Figure 4B) and –

independent relaxation (87.3±5.8%; Figure 4C).   

 

Endothelial integrity of PSV distended with limited intraluminal pressure 

Undistended PSV segments exhibited continuous intraluminal immunohistological 

staining for endothelial markers eNOS and CD31 (Figure 5A).  PSV segments that were 

distended in the absence of the pressure release valve revealed patchy endothelial disruption 

(arrows; Figure 5A), whereas the endothelium remained intact in segments distended in the 

presence of the pressure release valve (Figure 5A).   

 

Intimal thickening of PSV distended with limited intraluminal pressure  

 Basal intimal thickness of PSV was 31.3 ± 6.2 µm (n=8; Figure 5B).  After 14 

days of organ culture, intimal thickness was significantly greater in distended compared with 

control segments (Figure 5B).    The intima thickness increased by 2.2±0.8 µm and 15.0±1.4 µm 

in control and distended groups, respectively.  The use of the pressure release valve prevented 

significant increases in neointima formation (3.4±0.8µm; Figure 5B). 
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Comments 

 Vein graft failure (VGF) following aortocoronary bypass procedures remains a 

significant problem.  While it has been suggested that certain pre-operative characteristics, such 

as endothelial coverage, wall thickness and vein lumen diameter may predict long-term graft 

patency, conduit damage in the operative arena has been widely implicated in vein graft failure 

236.   Minimizing vein graft manipulation and preserving vascular integrity using a “no-touch” 

technique have reportedly resulted in improved outcomes 224,237.   

 In the current study, HSV segments were collected from CABG patients prior to 

and after intraoperative manual distension and impact on vascular functions were examined.  

Distension under typical operating room conditions reduced contractile responses and impaired 

endothelial-dependent and -independent relaxation of the conduits (Figure 1), suggesting that the 

functional integrity of both the endothelium and medial layer is impacted.  Because cellular 

viability correlates with functional viability of veins in a muscle bath 125, our results further 

implicate that the number of viable cells within the AD and AM segments were diminished by 

graft manipulation.  Intraoperative manual distension resulted in structural damage, yielding a 

flaccid and distended appearance of the lumen (Figure 2B) and denudation of the endothelium of 

HSV grafts (Figure 2D).  

Intra-luminal pressures > 600 mmHg have been recorded with hand held syringe 

distension 238,239  and we routinely detected ≥ 850 mmHg when uncontrolled manual distension 

was performed by different surgeons (Figure 3).   Thus, the pressure generated by manual 

distension, while varied broadly and considered “gentle” by most surgeons, would most likely 

exceed pressures that have been reported to cause conduit damages 173,206,238,240,241.  There was a 

further reduction in contractile response and virtually abolished endothelial-dependent and –
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independent relaxation of HSV collected after completion of graft preparation, suggesting that 

manipulation after manual distension caused additional damage to the vein graft (Figures 1).   

Observations from our previous study suggest that this reduction was not attributable to ischemia 

during storage of the graft in Plasmalyte 225.  Graft preparation techniques such as graft handling, 

storage in heparinized saline solution and marking with toxic surgical skin markers may 

contribute to this increased damage 156,175,211.  Collectively, preparation of the vein graft after 

harvest and prior to implantation significantly injures conduits that are implanted into the CABG 

patients.  

Distension under uncontrolled pressure also reduced both endothelial-dependent and -

independent functions (Figure 4) in the PSV.  Moreover, distention damaged the endothelial 

layer (Figure 5) and led to increased neointima formation in cultured PSV (Figure 5), 

demonstrating a causal relationship between pressure distention, endothelial injury and 

neointima formation.  Distension pressure of 300 mmHg has been shown to result in 50%  and 

200% growth of the intima in HSV in organ culture 242 and in the porcine carotid artery-jugular 

vein interposition bypass graft model 231,  respectively.   

Distension not only results in functional and morphological changes in the vessel wall, 

but also elicits a myriad of signaling cascades that promote neointima formation.  Mechanical 

force induces phosphorylation of p38MAPK.232    The acute loss of endothelial-independent 

function in the saphenous veins may be due to the p38MAPK-mediated degradation of the α-

actin filament in the venous smooth muscle,243  The loss of endothelial integrity also exposes the 

underlying medial layer to platelet aggregation and circulating growth modulators244.  Venous 

smooth muscle cells dedifferentiate, leading to increases matrix metelloproteases activity and 

expression of cytoskeleton associated proteins which enable migration and proliferation of the 
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smooth muscle cells230.  In additional, up-regulation of adhesion molecules, increased neutrophil 

adhesion by damaged endothelium, and the secretion of smooth muscle mitogens by 

inflammatory cells further extends the distention-induced damage to the medial layer227,228,231,232.    

While the ‘no touch’ harvest techniques have shown promise in reducing VGF 237, the 

adoption of this method is limited to a few centers; hence, the conventional harvest techniques 

dominate and manual distention remain common for CABG procedures likely due to , 

familiarity, reliability, and limited alternatives.  Currently, there are two FDA-approved 

pressure-controlling devices: The Saphenous Vein Distension System (DMC Medical, County 

Clare, Ireland; www.dmcmedical.net) which comprises a pressure-limiting balloon connected to 

a syringe which relies on proper balloon inflation, vessel priming, and stopcock manipulation to 

deliver flushing fluid with designated pressure; and  the Vasoshield Pressure Controlling Syringe 

(Maquet, Wayne, NJ; www.maquet.com) which delivers irrigation fluid at a selectable pressure 

that must be secured by a dial on a specialty syringe.  These devices have not been widely 

incorporated into routine graft preparation possibly due to high cost and difficulty of use and the 

effect of these devices on vascular function and intimal hyperplasia prevention has not been 

reported.    

Here, we identified a simple pressure release valve that limits distension pressure to ≤140 

mmHg (Figure 3, inset).  This valve can be placed in line with a standard syringe and vein 

cannula, requiring no special manipulation or change to current distention routines.    When 

distended using the pressure release valve, PSV endothelium remained intact (Figure 5) and both 

endothelial-dependent and –independent function was preserved (Figure 4).    More importantly, 

the use of this pressure release valve significantly reduced intimal thickening of PSV in organ 

culture compared to PSV distended manually (Figure 5).  It is plausible that by protecting the 

http://www.maquet.com/
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endothelial and smooth muscle cells from injury, the initial cell-mediated inciting factors leading 

to intimal hyperplasia, such as the release of mitogenic factors, recruitment of inflammatory 

factors by the endothelium, and the signaling cascades that ensues, were minimized.  This is the 

first demonstration that limiting intraluminal pressure using a pressure release valve prevents 

intimal thickening, a crucial step in the progression of graft occlusion.  

Limitations of this study include the lack of feasibility to test the pressure release valve in 

HSV, since only small segments of human tissue were available.  PSV represents a reasonable 

model system to test vein graft preparation techniques.  The organ culture model lacks in vivo 

elements (pressure, flow and exposure to blood components) that may influence the development 

of IH.    Further work is needed to determine the effect of limiting intraluminal pressure on 

development of intimal hyperplasia in vivo. 

 Taken together, our findings demonstrate a causal association among manual 

pressure distension, endothelial and medial injury, and intimal hyperplasia.   Prevention of 

endothelial denudation - hence dysfunction - and intimal hyperplasia can be achieved in a cost- 

and time-efficient manner using a simple pressure release valve that limits maximum sustained 

pressure during manual distension.  This approach offers an effective mean to mitigate the 

damaging effects of manual distension during bypass procedures while preserving procedural 

efficiency and ability to use techniques that are familiar to surgeons.  Results from this study 

warrant future clinical studies to determine whether this improved vein graft preparation will 

result in better graft patency. 
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Figure legends 

Figure 1.  Intraoperative manual distention and graft preparation impaired contractility 

and vasorelaxation of human saphenous vein grafts.    

HSV were collected as unmanipulated segment (UM), post intraoperative manual 

distention (AD), or after surgical manipulation (AM).  Phenylephrine-induced contraction (A), 

endothelial-dependent (B) and –independent relaxation (C) was determined in the muscle bath.   

*p<0.05 vs UM; # p<0.05 vs AM. 

 

Figure 2.  Intraoperative manual distention distorted luminal area and disrupt endothelial 

integrity of human saphenous veins.     

Unmanipulated (UM) and post-distention (AD) segments were immunostained for CD31.  

Images were obtained at 50X (A, B) and 200X (C, D) magnifications. M=media, L= lumen.   

 

Figure 3. A pressure release valve (PRV) reduced intraluminal pressure during manual 

distention of human saphenous veins.  

Intraluminal pressure was measured by connecting the distal end of the conduits to a 

manometer during manual distention in the absence (Manual) or absence of the PRV.   * p<0.05.  

Inset: pressure release valve.   

 

Figure 4. Use of the PRV during manual distention preserved contractility and 

vasorelaxation of porcine saphenous veins.  PSV were left undistended (control), subjected to 

pressure distention in the absence (Distended) or presence of the PRV. Phenylephrine-induced 
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contraction (A), endothelial-dependent (B) and –independent relaxation (C) was determined in 

the muscle bath.  *p<0.05 vs. Control; # p<0.05 vs. PRV;  n.s., statistically non-significant.  

 

Figure 5. Use of the PRV during manual distention preserved endothelial integrity and 

prevented intimal hyperplasia in vitro in porcine saphenous veins.  Immediately after distention, 

PSV were fixed for eNOS and CD31 immunostaining (A).  Organ cultured PSV were fixed for 

the Verhoeff Van Gieson's stain (VVG) to measure intimal thickness (B).  Arrows indicate areas 

of disruption.  *p<0.05 vs. Control; # p<0.05 vs. PRV.   n.s., statistically non-significant.  Bar = 

100µm. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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eTable 1. Patient demographic variables. 

Age (years, mean±SD) 66.09±8.

83 

Gender (% male) 77% 

Body Mass Index (mean±SD) 26.7±6.6 

Race: Caucasian (%) / African American (%) 92% / 8% 

History of smoking (%) 62% 

Hypertension (%) 92% 

  Number of Antihypertensives (mean±SD) 1.62±0.7

6 

  ACE Inhibitor Use (%) 54% 

  Beta Blocker Use (%) 62% 

Diabetes Mellitus (%) 69% 

  Preoperative Hemoglobin A1c (Mean±SD) 7.5±2.5 

Hyperlipidemia (%) 77% 

  Statin Use (%) 69% 

Left Ventricular Ejection Fraction (Mean) 51%±16 

End Stage Renal Disease, Dialysis Dependent (%) 8% 

Peripheral Vascular Disease (%) 8% 
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Additional Manuscript 5 

Intimal Thickness Associates with Endothelial Dysfunction in Human Vein Grafts 

Fan Dong Li, PhD*,§ ; Kevin W. Sexton, MD*; Kyle M. Hocking, BE*; Michael J. 

Osgood, MD *, Susan Eagle, MD*; Joyce Cheung-Flynn, PhD*; Colleen M. Brophy, MD¶,*, and 

Padmini Komalavilas, PhD¶,*, 

 INTRODUCTION 

Human saphenous vein continues to be the most commonly used conduit for coronary 

artery bypass grafting and peripheral revascularization surgery 245.  Veins implanted into the 

arterial circulation undergo several changes and many develop neointimal hyperplasia within 4 to 

6 weeks, leading to stenosis, thrombosis, and ultimately graft occlusion and graft failure 

120,246,247.  The vein graft failure rate per patient in 1920 patients at 12 to 18 months in the Project 

of Ex-vivo Vein Graft Engineering via Transfection (PREVENT) IV trial was 45% 172.  

Intimal hyperplasia remains the leading cause of vein graft failure 120,246.  Intimal 

hyperplasia is a complex process involving migration, proliferation, and phenotypic modulation 

of the vascular smooth muscle cells from a contractile to a synthetic phenotype, and extracellular 

matrix production 248,249.  Intimal hyperplasia in vein grafts occurs due to a combination of 

factors such as the vessel wall adapting to the higher intraluminal pressure of the arterial 

circulation, and the endothelial dysfunction associated with the harvest and surgical preparation 

of the vein for grafting.   

Vein biopsy, angioscopy, and duplex ultrasonography have been proposed for quality 

assessment of human saphenous vein before implantation 250.  Histological and ultrastructural 

evaluation of the vein graft prior to implantation have demonstrated that morphological changes 

of the graft wall correlate significantly with early postoperative complications 223.  Preexisting 
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conditions such as low endothelial cell coverage, stenotic lesions of the lumen and thickness of 

the intima and media of the graft walls have been considered responsible for the early occlusion 

of grafts 223.  In fact, approximately 20% of human saphenous vein conduits used as vascular 

grafts are angioscopically normal, yet contain histological lesions such as atheromatous plaques, 

fibrous strands, and thickened valve cusps 250,251.  

The endothelium is the primary regulator of vessel wall homeostasis, controlling vascular 

tone, the coagulation cascade, leukocyte recruitment, and angiogenesis.  The term endothelial 

dysfunction has now become synonymous with reduced nitric oxide production 252,253.  Loss of 

endothelial nitric oxide production by denudation predisposes to vasospasm, vascular smooth 

muscle cell proliferation, platelet aggregation, leukocyte migration, and adhesion 254,255.  

Endothelial cells play an important role in regulating intimal growth through a number of tonic 

growth-inhibitory mechanisms and the loss of endothelial layer markedly attenuates these 

growth-modulating effects 248,256.  Impaired brachial artery endothelial function has been 

demonstrated to predict long term cardiovascular events in patients with peripheral arterial 

disease 257.  Thus preservation of the endothelial layer during vein harvesting and preparation is 

of primary importance to reduce intimal hyperplasia.  

To date, few studies have simultaneously evaluated basal thickness of the intima 

histologically and endothelial functional viability of human saphenous vein physiologically.  In 

this study we explored the relationships between pre-existing basal intimal thickness, endothelial 

function, and intimal thickening in organ culture, an in vitro model system of vein graft intimal 

hyperplasia.  We hypothesized that the basal intimal thickness could be used to predict 

endothelial dysfunction of human saphenous vein and the subsequent development of intimal 

hyperplasia.  
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MATERIALS AND METHODS 

Chemicals and reagents  

All chemicals were purchased from Sigma Aldrich (St. Louis, Mo) unless specified 

otherwise. 

Procurement of human saphenous veins  

Human saphenous vein samples were collected after obtaining approval of the 

Institutional Review Boards of the Vanderbilt University Medical Center and the VA Tennessee 

Valley Healthcare System, Nashville, TN.  Forty-one unidentified segments of human saphenous 

veins and 5 Left Internal Mammary Arteries were obtained from patients that underwent 

coronary artery bypass graft surgery. For endothelial-dependent relaxation experiments, human 

saphenous vein segments (n=20) were collected immediately after surgical harvest without any 

further intraoperative manipulation (‘back table’ preparation, such as marking and manual 

distention) and tested within 2 hrs of surgical procurement.  The human saphenous veins were 

harvested by open or minimally invasive endoscopic technique according to surgeon discretion 

and were stored in heparinized Plasmalyte (140 mEq sodium, 5 mEq potassium, 3 mEq 

magnesium, 98 mEq chloride, 27 mEq acetate, and 23 mEq gluconate, [Baxter Healthcare 

Corporation Deerfield, IL]) solution in the operating room.  Upon gross inspection of the 

segments, regions of the grafts that were damaged intraoperatively by forceps or clamps were 

discarded.  Only regions that were without damage or branches were used for physiological 

analysis since complete rings without branches gives consistent responses to contractile agonists 

and relaxants.  All human saphenous vein segments were cut into sequential rings that were fixed 

in 10% buffered formalin immediately for basal intimal thickness.  Additional rings were cut and 

placed into organ culture for 14 days prior to fixation in formalin.  Human saphenous vein 
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segments were then dissected free of fat and connective tissue for determination of endothelial 

function in an organ bath. 

Physiologic measurements of human saphenous veins 

One-millimeter rings from the human saphenous vein segments were weighed and their 

lengths recorded. Rings were suspended in a muscle bath containing a bicarbonate buffer (120 

mM NaCl, 4.7 mM KCl, 1.0 mM MgSO4, 1.0 mM NaH2PO4, 10 mM glucose, 1.5 mM CaCl2, 

and 25 mM Na2HCO3, pH 7.4), equilibrated with 95% oxygen and 5% carbon dioxide at 37°C. 

Each ring was progressively stretched to its optimal resting tension (approximately 1 g) that 

would produce a maximal response to contractile agonists as determined previously, then 

maintained at the resting tension and equilibrated for a minimum of 2 hours 125.  Force 

measurements were obtained using a Radnoti Glass Technology (Monrovia, CA) force 

transducer (159901A) interfaced with a Powerlab data acquisition system and Chart software 

(ADInstruments, Colorado Springs, CO).  The rings were contracted first with 110 mM KCl 

(with equimolar replacement of NaCl in bicarbonate buffer) to determine functional viability of 

the smooth muscle.  Any tissue failing to contract with KCl was considered non-functional and 

was not used in further experiments.  Viable tissues were allowed to equilibrate in the 

bicarbonate solution for 30 minutes and were then exposed to the contractile agonist 

phenylephrine (10-6 M).  Endothelial-dependent relaxation was determined by treating the pre-

contracted veins with 5 x 10-7 M carbachol.  In the absence of a functional endothelial layer 

carbachol will induce contraction instead of relaxation of human saphenous vein.  Force was 

converted to stress using the equation [105Newtons (N)/m2] = force (g) x 0.0987 / area, where 

area is equal to the wet weight [(mg) / length (mm at maximal length] divided by 1.055.  Percent 
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relaxation was measured as the change in stress compared to the maximal tension induced by 

phenylephrine as described previously 125. 

Human saphenous vein organ culture and morphometric analyses  

Two rings of human saphenous vein from each patient were placed in 10% neutral 

buffered formalin to measure the basal intimal thickness.  To measure intima development in 

vitro, two rings were placed in 8-well chamber slides, and maintained in RPMI 1640 medium 

supplemented with 30% FBS (Gibco, Carlsbad, CA), 1% L-glutamine, and 1% 

penicillin/streptomycin for 14 days at 37˚C in an atmosphere of 5% CO2 in air.  The culture 

medium was replaced every 2-3 days.  After 14 days rings were fixed in 10% formalin, and sent 

to the Pathology Histochemistry Core at Vanderbilt University or Wax-it Histology Services Inc. 

(Vancouver, BC, Canada) for histological preparation.  The rings were embedded in paraffin, 

sectioned (5 µm) and multiple sections were stained using Verhoeff-Van Gieson to allow the 

visualization of the internal elastic lamina.  Measurements of intimal and medial thickness were 

made on transverse sections of each vessel using a Zeiss Axiovert 200M microscope (Carl Zeiss, 

Thornwood, N.Y., USA) with a computerized image analysis system (Zeiss software and Adobe 

Photoshop).  Intima was defined as tissue on the luminal side of the internal elastic lamina and 

the medial layer was contained within the intimal layer and the external elastic lamina.  Four 

measurements were made in each image, one from each quadrant, for 3 vein sections for a total 

of 12 measurements made on each vein section.  The mean intimal thickness was the average of 

24 measurements on 6 histological sections from 2 vein rings from a single human saphenous 

vein sample.   

Statistical Analysis  
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Data are reported as mean responses ± standard deviation.  Unpaired t tests and 

correlation of intimal thickness to endothelial-dependent relaxation or post 14 day culture intimal 

thickening analysis were conducted using Graph Pad Prism software and the P values are 

reported (LaJolla, CA).   

RESULTS  

Variability in the pre-existing intimal thickness of human saphenous vein 

Forty-one vein segments were collected in heparinized plasmalyte and were fixed in 

formalin stained using Verhoeff-Van Gieson stain and the pre-existing basal intimal thickness 

was measured.  The basal intimal thickness of veins was highly variable with an average 

thickness of 85.96±53.00 µm and a range of 18.80 to 241.3 µm (n=41, Figure 1 and 2).  When 

compared to human saphenous vein, left internal mammary artery had significantly lower basal 

intimal thickness (average 23.010±14.37 m and a range o         

2). 

Endothelial–dependent relaxation of human saphenous vein is highly variable  

We next examined whether the intimal thickness had an effect on the functional viability 

of the human saphenous vein, particularly the endothelial function.  One of the most reliable 

methods to assess endothelial function is endothelial-dependent relaxation which can be 

determined in a muscle bath; hence, endothelial-dependent relaxation was measured in each 

segment.  Human saphenous vein segments were pre-contracted with phenylephrine (10-6 M) 

then treated with carbachol (5x10-7 M) and maximal relaxation was determined (Figure 3A).  

The majority of the human saphenous vein segments collected as surgical remnants after ‘back 

table’ preparation (surgical preparation of the vein segment after harvest involving marking with 

a surgical marker to orient the vein and distention to locate the branches to prepare for grafting) 
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demonstrated very little to no endothelial-dependent relaxation (-2.12±1.886 % data not shown).  

Thus, 20 human saphenous vein segments were collected immediately after harvest without any 

marking, distention, or other surgical preparation on the ‘back table’ to preserve the endothelial 

function.  These human saphenous vein segments demonstrated various endothelial-dependent 

relaxation to carbachol with an average relaxation of 16.28±8.11 % and a range from 0 to 27.59 

% relaxation, (n=20, Figure 3B).  Endothelial-dependent relaxation of human saphenous vein 

was significantly lower than the left internal mammary artery, with a mean relaxation of 

63.89±12.73% (n=5, Figure 3B).   

Basal intimal thickness inversely correlates with endothelial-dependent relaxation 

Linear regression analysis of basal intimal thickness versus endothelial-dependent 

relaxation had a significantly non-zero slope of -0.07264±0.028 (P=0.02 R2=0.2634, Figure 4A), 

indicating a linear relationship between basal intimal thickness and endothelial-dependent 

relaxation.  There was a sharp decline in endothelial function when basal intimal thickness 

exceeded 120 µm (Figure 4B).  Human saphenous vein with intimal thickness greater than 120 

µm had significantly less endothelial-dependent relaxation (8.90±6.32 % relaxation, n=6) than 

those with intimal thickness less than 120 µm (21.97±10.64 % relaxation n=14, P=0.0119, 

Figure 4B).  

Basal intimal thickness correlates with intimal hyperplasia in organ culture 

Since intimal hyperplasia is a leading cause of vein graft failure, we investigated whether 

the basal intimal thickness of the human saphenous vein segments had an effect on the 

development of intimal hyperplasia in vitro in an organ culture model.  Human saphenous vein 

segments had an average basal intimal thickness of 73.82 µm and this thickness increased to 

111.6 µm after 14 days in culture.  There was a positive correlation with basal intimal thickness 
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and the intimal thickening developed during organ culture (Figure 5A).  A linear regression 

between basal intimal thickness and intimal thickness after organ culture demonstrated a 

significant non-zero slope of 1.127±0.1375 (p<0.0001, n=21 R2=0.7794, Figure 5A).  Greater 

basal I/M ratio also correlated with greater I/M ratio after organ culture, non-zero slope of 

1.109±0.1435 with P<0.0001 (n=21 R2=0.7587, Figure 5B).   

DISCUSSION  

Failure of human saphenous vein bypass conduits due to intimal hyperplasia remains a 

major limitation of aortocoronary and peripheral vascular bypass procedures 172.  Studies have 

demonstrated that 20% of venous grafts occlude during the first year after bypass and 50% of 

venous grafts occlude 10 years later, while the remaining 50% had significant atheromatous 

lesions 258,259.  Several factors are considered responsible for the early occlusion of grafts and 

preoperative quality assessment of human saphenous vein for pre-existing wall changes has been 

proposed to predict later graft failure 251,260.  In this study we examined basal intimal thickness, 

endothelial function, and the effect of basal intimal thickness on intimal thickening in vitro on 

conduits used for coronary artery bypass grafting.  We demonstrated that the pre-existing intimal 

thickness of the conduits used for revascularization was highly variable with a range from 18 

m to 241m (Figure 2) for the 41 vein segments analyzed.  Using histologic assessment, 

Kanellaki-Kyparissi et al, reported that prior to implantation, 91% of vein grafts have varying 

degrees of histological lesions such as local thickening of the vessel wall especially the intima, 

which was accompanied by a decrease of endothelial coverage only in the stenotic part of the 

vessel 250.  By histological and ultrastructural evaluation of saphenous vein grafts before 

implantation Kokkona et al reported that patients with early postoperative complications had a 

mean intimal thickness of 206.56 ± 32.29 m, while patient       
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complications had a mean intimal thickness of 67.44 ± 10.17 m 223.  To evaluate the viability 

and quality of human saphenous vein used in coronary artery bypass operation, a functional 

method was used since the presence of an intact structure of the vessel wall, as obtained by 

morphological studies, does not necessarily imply normal function of the tissue 261.  

Intimal hyperplasia in vein grafts is thought to be a response to injury.  Several factors 

have been shown to cause injury to the vein segments.  Harvest and intraoperative handling of 

vein grafts have been shown to decrease the expression of endothelial nitric oxide synthase and 

nitric oxide production when compared to ‘no-touch’ method of vein harvest [262.  We have 

recently demonstrated that mechanical stretch and the use of surgical skin markers for labeling 

markedly reduce the functional viability of human saphenous vein 125,156.  In this study, we found 

that the majority of the vein segments that were collected after the ‘back table’ preparation had 

little to no detectable endothelial-dependent relaxation.  In contrast, those collected immediately 

after harvest and prior to any further graft preparation displayed a significantly higher 

endothelial-dependent relaxation suggesting that the endothelial dysfunction is further 

exacerbated by the current, commonly employed surgical graft preparation methods.  When the 

histological morphology was compared to the endothelial-dependent relaxation we observed a 

negative correlation, implying that preexisting thickness of the intima can influence the 

functional state of the vein graft.  Human saphenous vein with intimal thickness greater than 120 

µm correlated with impaired endothelial–dependent relaxation (Figure 4).  A link between 

increased basal intimal thickness and postoperative complications has been reported earlier 223.  

Our study demonstrates that increased basal intimal thickness also decreases endothelial-

dependent relaxation suggesting that endothelial dysfunction associated with increased thickness 

may partly be responsible for the postoperative complications affecting their graft patency.  
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However, this needs to be confirmed with long term studies.  Evaluation of vein grafts for basal 

intimal thickness may be useful to identify candidate conduits for coronary artery bypass surgery 

and may reduce postoperative complications.  

Since intimal hyperplasia is associated with vein graft stenosis, we also examined the 

growth of intimal layer in a 14-day organ culture model.  This in vitro model of intimal 

hyperplasia has been reported as a representative model of the changes that occur in vivo after 

vein graft transplantation 263, and had been used previously in our laboratory.  We compared the 

basal intimal thickness to the subsequent increase in intimal thickening to determine the effect of 

basal intimal thickness on intimal hyperplasia formation.  We observed a direct correlation 

between high basal intimal thickness and increased rate of intimal thickening in vitro when the 

vein segments were grown in culture with high serum (Figure 5).  Our results demonstrated that 

higher basal intimal thickness of the vein potentiate the increase of intimal thickness in culture, 

suggesting that higher basal intimal thickness may predispose the graft to develop intimal 

hyperplasia more rapidly compared to vein grafts with lower basal intimal thickness.  These 

results suggest that basal wall thickening of human saphenous vein could be a precursor for the 

formation of intimal hyperplasia in the arterialized graft.   

Preservation of endothelium-dependent relaxation plays an important role in inhibiting 

the development of intimal hyperplasia of vein graft.  There is a direct link between the degree of 

preservation of nitric oxide function in vein grafts and the magnitude of intimal hyperplasia 

formation 264.  Analysis of retrieved vein grafts (ranged from 5-17 years) from patients 

undergoing repeat coronary artery bypass grafting demonstrated that grafts with the most 

pronounced intimal hyperplasia exhibited the least amount of endothelium-dependent relaxation.  

Taken together, it is plausible that the loss of endothelial nitric oxide synthase expression in the 
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grafts is the central contributor to the loss of endothelial-dependent relaxation along with 

increased intimal thickness.  

 The limitations of this study are that tissues were de-identified and the 

demographic information of the patients was not available, hence we were not able to determine 

the effect of basal intimal thickness on graft patency in these patients.  Also, intimal thickness 

could not be correlated to drug use in these patients.  We did not measure endothelial function 

along the entire length of the conduit; therefore we did not determine whether the correlation of 

intimal thickness to endothelial-dependent relaxation was uniform along the conduit or unique to 

the region that we tested.  Since the majority of the veins were harvested by endoscopy we have 

not directly compared the endothelial dependent relaxation and intimal thickness of veins 

harvested conventionally versus endoscopically in this investigation.  Vein grafts harvested 

endoscopically undergo more injury and have inferior patency compared to veins harvested by 

open method [26].  Besides intimal thickening other factors such as harvesting techniques, 

intrinsic vasospasm, degree of heart failure, peripheral vessel disease and patient demographics 

may also account for the variability in endothelial-dependent relaxation.  Even though evaluation 

of the vein grafts may help identify ideal conduits for coronary artery bypass grafting and for 

lower extremity arterial grafts, this study does not provide a "real-time" method of assessing 

conduits.  

In summary these data suggest that basal intimal thickness greater than 120 µm is a 

predictor of human saphenous vein endothelial dysfunction.  Greater basal intimal thickness also 

leads to increased intimal hyperplasia formation in organ culture suggesting that higher basal 

intimal thickness may predispose the vein graft to develop intimal hyperplasia more rapidly 

compared to vein grafts with lower basal intimal thickness.  Further studies are needed to 
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determine optimal methods of preoperative vein assessment.  The mechanism of the reduction of 

endothelial-dependent relaxation due to increased intimal thickening is not known.  Future 

studies are also needed to determine if any correlation exists between basal intimal thickness and 

clinical demographics or clinical outcomes.  
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 Figure legends:

 

FIGURE 1.  Basal intimal thickening in human saphenous veins and left internal 

mammary artery.  Human saphenous vein and left internal mammary artery rings were fixed in 

formalin, sectioned and stained with Verhoeff-Van Gieson stain and examined by microscopy.  

Representative images of two saphenous vein segments with thin (A, 5x image and B, 40x 

image) and thick (C, 5x image and D, 40x image) intima and a left internal mammary artery (E, 

5X image and F, 40X image) stained with Verhoeff-Van Gieson.  In the image: L=lumen, 

IEL=internal elastic lamina (arrow), M=media, white line=thickness of intima.  Scale bar=100 

µm for 5x images and 50 µm for 40X images. 
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FIGURE 2.  Variability of intimal thickening in Human saphenous veins and left internal 

mammary artery: Human saphenous vein (HSV, n=41) and left internal mammary artery (LIMA, 

n=4) rings were fixed in formalin, sectioned and stained with Verhoeff-Van Gieson stain and 

examined by microscopy. Scatter plot demonstrating the variability of basal intimal thickness 

measured as an average from two vein segments from each patient as described in the methods 

section. 
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FIGURE 3.  Variability of endothelial-dependent relaxation in human saphenous veins.  

Human saphenous vein and left internal mammary artery segments were collected immediately 

after harvest and subjected to physiologic measurement in a muscle bath.  Endothelial-dependent 

relaxation was measured by contracting with 10-6 M phenylephrine (PE) and relaxing with 5x10-7 

M carbachol (Cch). A) Representative tracing of pre-contracted HSV relaxed with carbachol to 

24.22%. B) Endothelial-dependent relaxation variability for saphenous veins (HSV) and left 

internal mammary artery (LIMA). 

 

FIGURE 4.  Endothelial-dependent relaxation of human saphenous vein correlates 

negatively with increase in basal intimal thickness. Human saphenous vein segments obtained 

from coronary artery bypass surgery were subjected to physiologic measurement of endothelial-

dependent relaxation to carbachol in a muscle bath. Histological examination using the Verhoeff-

Van Gieson stain was used for the visualization of the internal elastic lamina and the basal 

intimal thickening was measured. A) A linear regression of the percent endothelial-dependent 

relaxation as a function of basal intimal thickness was run yielding R2=0.2634, (P=0.02, n=20). 

B) Vein segments with basal intimal thickening greater than 120 µm had impaired endothelial 

dependent relaxation (P=0.0119, n = 20). 
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FIGURE 5.  Intimal thickening in the basal state predicts degree of thickening in organ 

culture.  Human saphenous vein segments were obtained from coronary artery bypass surgery 

and were cultured in RPMI medium with 30% serum for 14 days (post culture).  Rings were 

fixed, sectioned, stained with Verhoeff-Van Gieson and analyzed by microscopy and intimal 

thickness was measured and compared to the intimal thickness before culture. A) Linear 

Regression of the change in intimal thickness from basal to post 14 day culture R2 = 0.7794 

(P<0.0001, n=21) shows a positive correlation where a higher basal intimal thickening leads to a 

higher intimal thickening in culture.  B) Linear Regression of the change in intimal to medial 

ratio from basal to post 14 day culture R2=0.7587 (P<0.0001, n=21) also showing a positive 

correlation between basal intimal thickening and intimal thickening in culture. 
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