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CHAPTER I 

 

INTRODUCTION 

 

Stress, glucocorticoids and grey matter volume  

Early adverse events have been shown to be a significant risk factor for the 

subsequent development of major depressive disorder (MDD) (Agid, Shapira, Zislin, 

Ritsner, Hanin, Murad et al., 1999). One theoretical pathway by which early adverse 

events may increase the risk of developing depression is by increased activation of 

stress hormones. This hypothesis is derived from two areas of research. First, both 

animal and clinical models suggest that depression is associated with poor regulation of 

HPA axis activity, as indicated by elevated cortisol (Thase, Jindal & Howland, 2002), 

disruption of circadian HPA rhythms (Thase, et al., 2002; Aborelius, Owens, Plotsky & 

Nemeroff, 1999), and failure to suppress cortisol levels following administration of the 

synthetic steroid dexamethasone (Aborelius et al., 1999). Secondly, preclinical studies 

have revealed that prolonged exposure to glucocorticoids is associated with atrophy of 

brain regions involved in the regulation of HPA activity, including the hippocampus 

(Sapolsky, 2000) and the medial prefrontal cortex (mPFC) (Diorio, Viau & Meaney, 

1993). Stress-related damage to these regulatory regions may precipitate a cycle of 

diminished resiliency, in which the system is less able to regulate HPA activity in 

response to future stress, resulting in greater exposure to glucocorticoids. 

Prior research has highlighted the role of the hippocampus, given its well-

established role in regulating HPA activity, and high density of glucocorticoid receptors 
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(Sapolsky, 2000). However, more recent work has also emphasized a prominent role of 

the mPFC, including the anterior cingulate cortex (ACC). Findings from preclinical 

studies suggest that the ACC contains high concentrations of glucocorticoid receptors 

(GR) in laminas II, III, and V (Ahima & Harlan, 1990), is vulnerable to the noxious effects 

of glucocorticoids (Radley, Sisti Jao, Rocher, McCall, Hot, et al., 2004; Cerqueira, 

Cantania, Sotiropoulos, Schubert, Kalisch, Almeida et al., 2005), and may exert 

inhibitory control over the HPA axis via GR-mediated negative-feedback (Ahima & 

Harlan, 1990;  Akana, Chu, Soriano & Dallman, 2001). In addition, corticosterone 

implants in rat mPFC, but not in the amygdala, lead to reduced ACTH secretion in 

response to acute restraint stress (Akana et al., 2001).  Finally, exposure to chronic 

stress and elevated corticosteroid levels have been shown to precipitate dendritic 

pruning and volumetric decreases in the rat ACC (Radley et al., 2004; Cerqueira et al., 

2005; Akana et al., 2001).  

Consistent with these preclinical findings, human neuroimaging studies of individuals 

with MDD have reported volumetric reductions in the hippocampus (Sheline, Sanghavi, 

Mintun & Gado, 1999; Sheline, Gado & Kraemer, 2003; Vythilingam, Heim, Newport, 

Miller, Vermetten, Anderson et al., 2002; Hastings, Parsey, Oquendo, Arango & Mann, 

2004; Campbell & MacQueen, 2006) and the ACC (Hastings et al., 2004; Caetano, 

Kaur, Brambilla, Nicoletti, Hatch, Sassi et al., 2006; Botteron, Raichle, Drevets, Heath & 

Todd, 2002). Post-mortem analyses have also found that the ACC in individuals with 

MDD exhibits diminished neuronal size and reduced glial cell density (Cotter, Mackay, 

Landau, Kerwin & Everall, 2001). Decreases in whole-cingulate volume have also been 
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associated with clinically reported early life stress (Cohen, Grieve, Hoth, Paul, Sweet, 

Tate et al., 2006).  

Evidence for stress-related structural damage to the anterior cingulate is particularly 

relevant for understanding the relationship between stress and depression, as 

significant research suggests that cortico-limbic pathways involving the ACC may be 

responsible for impairments of cognition, emotion and motivation in MDD (Mayberg, 

2003). Hypoactivity in the dorsal subdivision (dACC) (Ebert & Ebmeir, 1996), and 

elevated rostral cingulate activity (rACC) (Mayberg, 1997), have been demonstrated in 

MDD, along with impaired ACC-amygdala connectivity (Anand, Yu, Wang, Wu, Gao, 

Bukhari et al., 2005).  

In the present study, we sought to examine the relationship between early adverse 

events, HPA activity and grey matter volume among individuals with unipolar 

depression and healthy controls, with a particular emphasis on grey matter volume of 

the hippocampus and rostral anterior cingulate.  While previous studies have identified 

the volumetric decreases in the ACC, (both whole-volume (Caetano et al., 2006) as well 

as left subgenual cingulate (Hastings et al., 2004; Botteron et al., 2002), these 

decreases have not been linked to both early adverse events and circulating cortisol 

levels. By assessing all three variables within a single sample, the present study is able 

to provide a more direct evaluation of the putative neurobiological mechanisms that are 

believed to volumetric decreases of regions involved in HPA regulation in MDD.   

We used voxel-based morphometry (VBM) to evaluate regional differences in grey-

matter volume in a sample of individuals with MDD and a group of never-depressed 

matched healthy controls. Volumetric differences were evaluated using both a whole-
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brain, and region of interest (ROI) approach. A priori ROI included the anterior cingulate 

(dorsal and rostral ACC [BA 24, 32 and 25]) and the hippocampus. These regions were 

selected because both have shown evidence of atrophy in MDD (Sheline, 1999; 

Sheline, 2003; Vythilingam et al., 2002; Hastings et al., 2004), and preclinical findings 

have suggested that both regions are involved in regulating HPA activity (Sapolsky, 

2000; Diorio et al., 1993), and are damaged by elevated exposure from glucocorticoids 

resulting from chronic stress (Sapolsky, 2000; Radley et al., 2004; Cerqueira et al., 

2005; Akana et al., 2001). In addition, we collected self-report data on history of 

childhood trauma, and acquired samples of salivary cortisol. We hypothesized that 

depressed individuals would show decreased volume in the ACC and hippocampus 

when compared to controls, and that these volumetric decreases would correlate with a 

history of reported early adverse events as well as cortisol levels. 
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CHAPTER II 

 

METHODS 

 

Participants 

The experimental protocol was approved by the Vanderbilt University Institutional 

Review Board. A complete description of the study was provided to all participants, and 

all subjects provided written informed consent. Subjects were recruited through the 

Vanderbilt University Medical Center Outpatient Psychiatry Clinic or through television 

advertisements. Participants were between 18 and 55 years of age with no significant 

history of neurological disease or lifetime history of brain injury, psychosis, mania, 

substance dependence or substance abuse in the past six months. All patients were 

diagnosed with unipolar depression and met full criteria for one or more episodes of 

major depressive disorder as determined by a Structured Clinical Interview (SCID) for 

DSM-IV. Patients were excluded if they met criteria for specific comorbid Axis I 

disorders that included alcohol dependence, obsessive-compulsive disorder, 

schizophrenia and other psychotic disorders or bipolar disorder. In addition, a score of 

16 or higher on the Hamilton Depression Rating Scale (HDRS) (Hamilton, 1960) was 

required. Patients were antidepressant-free at the time of scanning.  Never depressed 

control subjects did not meet criteria for any Axis I mood disorders except for one 

subject who was diagnosed with mild agoraphobia without panic disorder as determined 

by the SCID. All never-depressed control subjects had a score of six or less on the 
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HDRS. Subjects who met criteria were then scheduled for a scan session within one 

week of admission to the study. 

 
Table 1.  Means, standard deviations and group comparisons of demographic data and 
HDRS scores.  
 
       
Variable MDD  Healthy Controls 
    N Mean SD   n Mean SD 
         
 Age 18 35.6 10.7  15 28.9 8.5 
 % Female 18 50%   15 60%  
 Estimated IQ (Shipley) 18 105.4 8.0  15 108.1 10.9 
 HRSD** 18 21.7 4.1  15 0.93 1.4 
                  
** p < .001        

 
 

Behavioral Measures 

 

Child trauma questionnaire 

To assess a history of early adverse events, participants completed the Childhood 

Trauma Questionnaire – Short Form (CTQ-SF) (Bernstein, Stein, Newcomb, Walker, 

Pogge, Ahluvialia et al., 2003). The CTQ Short Form was developed as a 28-item 

questionnaire derived from the original 70-item Childhood Trauma Questionnaire. The 

CTQ-SF has 25 clinical questions and three validity items. The measure has five sub-

scales comprised of five questions each that assess childhood maltreatment in the 

areas of emotional, physical, or sexual abuse, emotional neglect and physical neglect. 

Subjects rate statements about childhood lifetime experiences on a five-point scale 

("never true" to "very often true"). Items are generally stated in objective terms, (e.g., 

"When I was growing up, someone touched me in a sexual way or made me touch 

them"), whereas some items require subjective evaluation (e.g., "When I was growing 
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up, I believe I was sexually abused") and usually do not specify the perpetrators 

relationship to the subject. Emotional abuse items are general (e.g., "People in my 

family said hurtful or insulting things to me") but do not investigate the specific verbal 

content of the abuse. Reliability and validity of the CTQ, including its stability over time, 

convergent and discriminant validity with structured trauma interviews, and 

corroboration using independent data have been determined. The CTQ-SF has 

demonstrated high internal reliability, with (Cronbach’s alpha from .74 to .90) and good 

test-retest reliability at three months (r = .80). Scores on each subscale were calculated 

by taking the mean value of the five individual items for each subscale. Scores of 

patients and controls subscales were compared using an independent samples t-test, 

assuming unequal variance. A Bonferroni correction was applied to control for multiple 

comparisons (corrected α = .01). 

 

Salivary cortisol  

Samples of saliva were collected using the Salivette saliva collection device 

(Sarstedt, Newton NC). Participants collected three saliva samples per day for two 

consecutive days and a sample immediately prior to their MRI scan session on the third 

day. The first sample was recorded within 0.5 h after awakening. Two additional 

samples were collected at 3:00 PM and 9:00 PM.  Using this method we ensured that 

we could adequately account for diurnal variation. Cortisol levels were determined using 

an enzyme immunoassay (ALPCO Diagnostics, Salem, NH). For all subsequent 

analyses, the average of all seven cortisol samples was used unless otherwise 

specified. 
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Neuroimaging Measures  

 

Image acquisition 

Resting-state MRI scans were acquired on a 3T Philips Intera Achieva scanner (The 

Netherlands) at the Vanderbilt University Institute of Imaging Sciences (VUIIS). High-

resolution structural images were acquired in the axial plane to facilitate spatial 

normalization using a 3D IR Prepped 3DFFE sequence (TR=10.1ms, TE=4.2ms, 

FOV=24x24cm2, matrix size=256x256, slice thickness=l.2mm, no gap).  Due to scanner 

error, 3D data were not available for one subject. For this subject we used a 2D imaging 

sequence (TR=450ms, TE=17ms, FOV=24x24cm2, matrix size=256x256, slice 

thickness=4mm, no gap). Inclusion of this subject did not significantly alter the results. 

 

Voxel-based morphometry  

Data were analyzed on a Dell Vostro 200 (Dell Inc, Round Rock, TX) running a 

Linux-based operating system (Ubuntu 7.1). Voxel-based morphometry (VBM) was 

performed using MATLAB7.4.0 (Mathworks, Natick, MA) and SPM2 (Wellcome 

Department of Imaging Neuroscience, London, UK). All VBM analyses strictly adhered 

to the optimized VBM protocol as described by Good et al (2001) (Good, Johnsrude, 

Ashburner, Henson, Friston & Frackowiak, 2001). All structural images were examined 

for artifacts and then reoriented to a center point located on the anterior commissure. 

Using the control subjects only, a customized anatomical template was created from the 

reoriented structural MRI images. Template creation included spatial normalization of all 
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the images to the same stereotactic space. The customized template was then used as 

the basis for spatial normalization for all subjects.  Spatially normalized images were 

then re-sliced with a final voxel size of approximately 1.5 x 1.5 x 1.5 mm3, which were 

subsequently segmented into grey matter, white matter, and cerebrospinal fluid (CSF). 

After segmentation, the segmented grey-matter images were modulated by 

multiplication of the Jacobian determinant of the spatial normalization function, so as to 

allow for the estimation of volumetric differences between groups (Good et al., 2001). 

Images were then smoothed using a 12-mm FWHM isotropic Gaussian kernel. All 

subsequent statistical analyses were performed on the normalized, segmented, 

modulated and smoothed grey matter images. Group differences between patients and 

controls were assessed using an ANCOVA model as implemented in SPM2, with total 

intracranial volume used as a covariate to control for individual differences in total 

volume. Total intracranial volume was calculated as the sum of segmented gray, white 

and CSF images for each subject. Whole-brain analyses were conducted with a voxel-

wise correction for multiple comparisons using a family-wise error correction of pFWE < 

.05  

 

ROI analysis  

Regions of interest were drawn for the anterior cingulate and hippocampus using the 

Wake Forest University Pickatlas (Maldjian, Laurienti, Kraft & Burdette, 2003). For 

clusters that were identified using the ROI approach, correction for multiple 

comparisons was achieved using a small volume correction (SVC). The diameter 

applied for small-volume correction was equal to twice the length of the smoothing 
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kernel (i.e., 24mm) to ensure appropriate spatial resolution. All reported clusters using 

the SVC were corrected for multiple comparisons using a family-wise error correction of 

pFWE < .05.  

 

Correlations between volume, cortisol and early life stress 

Once statistically significant clusters were identified, signal was extracted from SPM 

and entered into SPSS (SPSS for Windows, Rel. 15.0. 2006. Chicago: SPSS Inc.) for 

further analysis. All SPSS analyses were conducted on a Dell Dimension workstation 

(Dell, Round Rock, TX), running Windows XP (Microsoft, Redmond, WA). Separate 

analyses were used to explore the relationship between decreased volume and the 

CTQ combined physical/sexual abuse scale and total average cortisol for patients and 

controls. Partial correlations were used to control for the effects of age and sex within 

each group.  
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CHAPTER III 

 

RESULTS 

 

CTQ Results 

Four of the 15 control subjects were recruited prior to the inclusion of the CTQ into 

the study protocol and therefore these data were not available. Additionally, one control 

subject was a statistical outlier, and was excluded. All patients with MDD completed the 

questionnaire (Table 2). Patients with unipolar depression had significantly higher 

scores on the CTQ Emotional Abuse scale (t25 = 3.89, p = .001), the Physical Abuse 

scale (t25 = 4.27, p < .000), Emotional Neglect Scale (t25 = 4.31, p < .000 and the 

Physical Neglect Scale (t25 = 3.16, p = .006). The Sexual Abuse Scale was marginally 

significant after correcting for multiple comparisons (t25 = 25, p = .011). We also 

compared subjects on a combined physical and sexual abuse scale (CTQ PS Scale). 

For this combined scale, the patients had significantly higher scores than the controls 

(t25 = 3.67, p = .002). 

 

Salivary Cortisol Results 

Due to insufficient saliva concentrations, accurate cortisol estimates were 

unavailable for two control subjects and three patients. Additionally, one of the control 

subjects was an outlier and was excluded from subsequent analysis. Average cortisol 

levels (the sum of all samples divided by seven) for the patient group were elevated 

when compared to the control group (t25 = - 2.92, p = .007). However, differences in 
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cortisol secretion between the patient and control groups were greatest for average 

morning cortisol (t25 = - 3.09, p = .006) (Table 2) (Figure 1).  

 

Table 2. Scores on the CTQ subscales and salivary cortisol levels for patients with MDD 
and healthy controls  
                  

Variable MDD  
Healthy 
Controls 

    n† Mean SD   n† Mean SD 
         
 CTQ Emotional Abuse Scale* 18 11.4 6.1  10 5.8 0.8 
 CTQ Physical Abuse Scale* 18 9.7 4.2  10 5.3 0.7 
 CTQ Sexual Abuse Scale 18 9.4 6.7  10 5.0 0.0 
 CTQ Emotional Neglect* 18 12.1 4.3  10 6.8 2.1 
 CTQ Physical Neglect* 18 8.6 4.1  10 5.2 0.4 
 CTQ Physical and Sexual Abuse Scale* 18 9.6 5.1  10 5.2 0.3 
         
 Salivary Cortisol (morning samples)* 15 10.8 3.6  12 9.7 7.7 
 Salivary Cortisol (all samples)* 15 7.5 2.1  12 5.6 1.2 
                  
* p < .01         
† outliers and missing data have been excluded  

      
Figure 1. Time course of salivary cortisol (ng/ml) for patients and controls. 
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Voxel-Based Morphometry Results  

 

 Whole brain analysis 

There were no significant differences between patients and controls using a whole 

brain analysis, correcting for multiple comparisons at an alpha set to pFWE < .05.  

 

ROI analysis  

ROI analysis of volumetric differences between patients and controls revealed an 

area of decreased volume in the MDD group in the right rostral ACC, BA 32; [x = 17 y = 

43 z =2] (t29 = 4.15, pFWE = .023) (Figure 2). No differences between patients and 

controls were found in the hippocampus at uncorrected thresholds of either p =.001, or 

p = .01.   

  

 

 

 

 

 

 

 

Figure 2. Differences in volume of rACC (Talaraich coordinates [x =17, y= 43, z= 2]) 
among controls and patients with MDD. Brain image is masked at an uncorrected 
threshold at p < .01. 
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Correlations between volume, cortisol and early life stress 

Signal was extracted from the maximum voxel value of the right rACC cluster. Within 

the patient group, individual differences in rACC volume were inversely correlated with 

both the combined CTQ physical and sexual abuse scales, and average of all cortisol 

samples. Among the control group, there were no significant correlations between rACC 

and the CTQ subscales or cortisol (Table 3) (Figure 3). 

 

Table 3. Correlations with peak voxel in rACC (x = 17, y = 43, z = 2), CTQ scores and 
Salivary Cortisol.† 
                 
         
      df   r   p   
       
         
MDD Group        

 
CTQ physical and sexual abuse - 
combined*  14  

-
0.51  0.045  

 Cortisol (all samples)*  11  
-

0.60  0.029  

 Cortisol (morning samples only)  11  
-

0.25  0.401  
         
Control Group        

 
CTQ physical and sexual abuse – 
combined  6  0.41  0.312  

 Cortisol (all samples)  8  
-

0.15  0.681  

 Cortisol (morning samples only)  8  
-

0.60  0.065   
                  
* p < .05        
†All partial correlations were conducted while controlling for 
age and sex    
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Figure 3. Correlations between volumetric decrease in rACC and average cortisol levels 
for patients (A) and controls (B) and correlations between volumetric decrease in rACC 
and the combined CTQ scales for physical and sexual abuse for patients (C) and 
controls (D).  
 

Post-hoc ROI analyses within the hippocampus 

Because prior findings have strongly suggested decreased hippocampal volume 

associated with MDD, we ran an additional, unplanned analysis in which the CTQ PS 

subscale used as a covariate in a multiple regression analysis as implemented in 

SPM2. Within the patient group, we found that CTQ_PS sub-scale was inversely 

correlated with volume in the right hippocampus [x = 29 y = -36 z = -2] (t16 = 4.92, pFWE 

< .05). However, when signal was extract and age and gender were added as 

covariates, the correlation was no longer significant (r = -.44, p = .088).  
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CHAPTER IV 

 

DISCUSSION 

 

The present study found that individuals with MDD had a volumetric decrease in the 

right rACC (BA 32) as compared to controls. This finding is supported in part by 

previous studies, where volumes of other sub-regions of the ACC were found to be 

reduced in individuals with MDD (Hastings et al., 2004; Caetano et al., 2006; Botteron et 

al., 2002). The study also demonstrated a relationship between decreased rACC 

volume and both salivary cortisol and a history of early adverse events. These data 

extend findings from preclinical studies suggesting that observed volumetric decreases 

in the ACC may result from prolonged exposure to glucocorticoids resulting from chronic 

stress (Radley et al., 2004; Cerqueira et al., 2005).  

Localization of the decrease in cingulate volume to rostral subdivision is particularly 

relevant, given its responsiveness to stressors that do not pose an immediate physical 

threat but require higher cortical processing of multiple inputs (e.g., fear, novelty) (Paus, 

2001).  This region has reciprocal connections with dorsal anterior cingulate as well as 

subgenual cingulate and the amygdala, and has also been implicated in the 

neurobiology of depression (Mayberg, 2003). Additionally, two fMRI studies using 

working memory and attention tasks reported that individuals with MDD exhibited 

increased rACC activity in order to match the same level of performance as control 

subjects (Wagner, Sinsel, Sobanski, Kohler, Marinou, Mentzel, et al., 2006; Matuso, 

Glahn, Peluso, Hatch, Monkul, Najt et al., 2007). This suggests that the rACC may be 
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less efficient in MDD as compared to controls, which may result from altered ACC 

morphology. Also consistent with this interpretation is the fact that BOLD fMRI signal 

has been shown to have a negative correlation with volume within a particular region 

(Casanova, Srikanth, Baer, Laurienti, Burdette, Hayasaka et al., 2007).    

The observed relationship between reduced rACC volume and a history of early 

adverse events is consistent with prior findings in animals and non-clinical human 

samples that have revealed a relationship between chronic and repeated stress and 

cingulate structure (Radley et al., 2004; Cerqueira et al., 2005; Cohen et al., 2006). The 

correlation between elevated cortisol levels and reduced rACC volume among 

depressed individuals is also consistent with results from animal studies regarding the 

role of mPFC in HPA axis negative feedback regulation. It is noteworthy that only the 

average of all seven samples was correlated with rACC volume, while the average of 

the morning samples was not. This suggests that volumetric decreases in the rACC are 

not specifically linked to peak cortisol activity; rather, rACC volume appears to be more 

closely related to sustained glucocorticoid exposure as determined by the average of 

the seven samples taken across two and half days.   

Our findings suggest early adverse events may act as repeated stressors and serve 

to initiate glucocorticoid-related injury to the ACC. This may subsequently affect cortico-

limbic circuits involved in emotion regulation, as well as negative feedback regulation of 

HPA activity, potentially playing a role in both the onset of depression and poor 

regulation of stress. Further research will be required to clarify the temporal 

relationships between early adverse events, increased HPA activity and structural 

integrity of the ACC.  
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 We also reported a negative correlation between right hippocampal volume and 

the CTQ PS scale within the patient group, although there was no main effect of group 

within this region. However, when MRI signal was extracted and the analysis was 

conducted while controlling for age and gender, the results were no longer significant (p 

= .088). Therefore, caution should be used in interpreting this result.   

The lack of group differences within the hippocampus may result from heterogeneity 

within our sample of important clinical variables, including the number of episodes, 

duration of illness and severity of early life trauma. Prior studies that have identified 

hippocampal decreases associated with MDD have often reported that the extent of 

hippocampal damage is associated with the duration of illness (Sheline et al., 1999) 

particularly when it is untreated (Sheline et al., 2001) (cf Campbell and MacQueen, 

2006 for a review).  In contrast, the number of previous episodes in our sample ranged 

from none to four or more. Similarly, Vythilingam et al found volumetric decreases in 

individuals with both MDD and a history of severe child abuse, but not MDD alone 

(Vythilingam et al., 2002), while the severity of early adverse events in our sample of 

patients with MDD varied from none to severe.  This may explain why we observed a 

sub-threshold correlation between reported early adverse events and hippocampal 

volume within the patient group, but did not detect any group differences.  

 

Limitations 

Several limitations in the present study warrant mention. First, we did not find any 

significant differences using a whole-brain analysis after correcting for multiple 

comparisons, suggesting that where volumetric differences occurred in our depressed 
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subjects, the effects sizes were only small to moderate. An additional limitation is the 

use of the VBM method, which is susceptible to normalization and segmentation errors. 

Patients with MDD were asked to evaluate their history of traumatic childhood 

experiences while they were in the acute phase of depression, which may have 

influenced their memory for events. However, it is unlikely that this would explain the 

observed relationship between rACC volume and reported early adverse events since 

rACC is not known to serve a functional role in long-term memory. Our study was 

limited by its reliance on salivary cortisol as the only measure of HPA activity, as 

opposed to other forms of assessment of HPA function such as the dexamethasone 

suppression test or the corticotrophin releasing hormone (CRH) test. Finally, the 

complete neurobiological mechanisms by which elevated cortisol precipitates structural 

damage in the ACC are likely to involve additional variables that were not evaluated in 

the present study. 
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