
SECURITY FOR THE PROCESSOR-TO-MEMORY INTERFACE USING

FIELD PROGRAMMABLE GATE ARRAYS

By

George E. Sewell

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

Master of Science

In

Electrical Engineering

August 2007

Nashville, Tennessee

Approved:

Professor William H. Robinson

Professor Gabor Karsai

 ii

ACKNOWLEDGEMENTS

This work was supported in part by TRUST (The Team for

Research in Ubiquitous Secure Technology), which receives support from

the National Science Foundation (NSF award number CCF-0424422) and

the following organizations: AFOSR (#FA9550-06-1-0244) Cisco, British

Telecom, ESCHER, HP, IBM, iCAST, Intel, Microsoft, ORNL, Pirelli,

Qualcomm, Sun, Symantec, Telecom Italia and United Technologies.

 iii

TABLE OF CONTENTS

Chapter Page

ACKNOWLEDGEMENTS.. ii

TABLE OF FIGURES ... iv

TABLE OF TABLES ... iv

I: INTRODUCTION ... 1

II: SECURITY APPLICATIONS IN FPGAS .. 4

1) Security .. 4
2) Field Programmable Gate Array Platform ... 5

A) Logic Implementation on an FPGA.. 6
B) Capabilities of an FPGA .. 8
C) FPGA vs. ASIC... 9

3) Security and FPGAs... 11
III: DES IMPLEMENTATION ON THE FPGA... 13

1) Structure of a basic DES algorithm.. 13
2) Structure of the algorithm on the FPGA .. 15

IV: IMPLEMENTATION OF THE TEST SYSTEM.. 19

1) Processor Design.. 22
2) Memory Controller .. 25
3) Encryption Interface .. 26
4) Test System.. 29
5) Test Setup .. 30

V: ANALYSIS METHODOLOGY.. 31

1) Baseline Performance Experiments ... 32
2) Complete System Setup ... 34

VI: RESULTS AND ANALYSIS/DISCUSSION.. 36

VII: CONCLUSION ... 39

REFERENCES.. 42

APPENDIX OF FIGURES AND VHDL CODE .. 45

 iv

TABLE OF FIGURES

Figure 1 - Logic Block Array.. 6

Figure 2 - Basic Logic Block .. 6

Figure 3 - Part Cost vs. Quantity .. 10

Figure 4 - Sample DES Design... 13

Figure 5 - Feistel Block... 15

Figure 6 - Feistel Function.. 16

Figure 7 - Key Generator .. 17

Figure 8 - Altera Cyclone II Logic Block... 20

Figure 9 - Sample Processor Cycle... 22

Figure 10 - SRAM Latency Table and Sample Read Cycle ... 26

Figure 11 - Processor Test Setup .. 32

Figure 12 - Encryption Test Setup.. 34

Figure 13 - Final Assembled System.. 35

Figure 14 - Settle Time vs. Instruction Type .. 36

Figure 15 - Sampled Stabilization Time ... 37

TABLE OF TABLES

Table 1 – Instruction List for the RISC processor ... 24

 1

CHAPTER I

INTRODUCTION

The ever-increasing speed and reliability of Field Programmable Gate Arrays

(FPGAs) make them attractive platforms for security applications. Security is a very

processor-intensive process, so having a secondary chip in the form of a co-processor or

other circuit dedicated to the task can reduce the computational burden on the main

processor and allow it to execute other tasks. Furthermore, some security applications

require a fast response time which can only be achieved with dedicated hardware circuits.

FPGAs provide the flexibility and resources to implement these specialized tasks.

Security exists not only on the software level but on the hardware level. Various

types of attacks include downloading physical memory to access data, monitoring

communication channels to eavesdrop on messages, or reverse-engineering integrated

circuits to discover their function. One vulnerable location in a computer system is the

interface between a microprocessor and its external memory. An attacker could monitor

the exchanges between the microprocessor and external memory by listening on the

interconnect bus. Also, the contents of the external memory could be downloaded for

analysis [1]. Encrypting memory utilized by the processor can provide some protection

against this form of access, but inserting an encryption module between the processor and

memory has its challenges. Memory accesses are often the performance bottleneck, so

extra processing time for encryption can degrade the application performance [2]. The

 2

encryption module will also require transparency to avoid redesign of the processor-to-

memory interface.

This work utilizes an FPGA in order to design hardware-level encryption [3] that

provides a transparent interface for memory accesses with minimal impact on the normal

operation of the processor. To demonstrate this functionality, the Data Encryption

Standard (DES) algorithm [4] has been implemented in hardware using an FPGA. This

module was used as an encryption/decryption device between a test processor and

memory. Results from the simulation show that the encryption operates within the

theoretical bounds of the cycle time for memory access. The hardware implementation of

the test system validates the simulation results. The timing and the resource utilization of

the hardware implementation have been analyzed for the processor, memory, and the

encryption both separately and as a full system.

This thesis is broken down into several chapters:

• Chapter Two motivates the usage of FPGAs in security applications.

• Chapter Three discusses the DES algorithm and how the algorithm is translated into

an FPGA implementation.

• Chapter Four describes the processor and memory components implemented in the

test system.

• Chapter Five describes the analysis methodology to evaluate the processor, memory

and encryption in the test system.

• Chapter Six presents the results of this project.

 3

• Chapter Seven concludes the discussion on securing the interface between a processor

and memory and describes the implications for a full-scale computing system.

 4

CHAPTER II

SECURITY APPLICATIONS IN FPGAs

1) Security

Security, by definition, is the safeguarding of an individual’s or organization’s

assets against danger (e.g., theft, destruction, or unwarranted modification). Security,

from a computer standpoint, becomes necessary in any case where we want to protect

data from others who are not authorized to see, obtain, or manipulate it. Basic digital

security consists of managing three aspects: (1) confidentiality, (2) integrity, and (3)

availability [5]. Maintaining confidentiality ensures that the data is unable to be read by

someone without authorization. This is the most basic of security concerns; while data

may be easily accessible, you do not want an attacker to read it or utilize it. The integrity

property differs from confidentiality in that it involves making sure that the data remains

unchanged from its original form. There are two forms of integrity: (1) data integrity and

(2) source integrity. Data integrity must verify that the data transmitted has not been

falsified or altered. Source integrity must confirm that the origin of the data is legitimate.

Simple integrity methods, such as a parity checker, can verify the data and detect if

corruption occurs, while more complex methods, such as error correction, enable the

recovery of corrupted data. Finally, availability involves maintaining the ability for

authorized viewers to access secured data. While availability is one of the more difficult

of the security priorities, it generally refers more to preventing attackers from

 5

intercepting data requests and keeping services from being brought down, as is the case

in a Denial of Service Attack [6]. The work presented in this thesis focuses upon

maintaining confidentiality within an individual computer system.

2) Field Programmable Gate Array Platform

Field Programmable Gate Arrays (FPGAs) occupy an interesting and useful niche

in computer engineering because of their programmability. This capability makes it a

suitable platform to prototype integrated circuit designs. FPGAs can consist of several

hundred to several thousand functional logic blocks arranged in a grid with

communication channels lying in between the blocks. While designs can vary, Figure 1

shows the typical island-style architecture [7] where each logic block is surrounded by

programmable interconnects and channels. Each logic block contains some basic logical

elements, memory, and a look-up table (LUT), which can be configured to perform a

small function or task. Individually, each logic block can only perform simple tasks, but

when chained together, more complicated objectives become possible. To implement

more complex designs, logic blocks communicate with each other via channels, i.e., the

programmable interconnect that lies in the grid spaces between the blocks. Where

channels cross, there are control switch blocks with additional logic that determine signal

routing. For reprogrammable FPGAs, the configuration settings for logic blocks and

channels are maintained by an SRAM, Electrically Erasable Programmable Read-Only

Memory (EEPROM) or Flash ROM.

 6

Figure 1 - Logic Block Array [8]

A) Logic Implementation on an FPGA

A basic logic block, or logic element, consists of three parts: a look up table, a

storage element, and a multiplexer to select internal signals (Figure 2). A sample lookup

table may contain four input pins and one output pin which enables it to perform a simple

4-bit function such as a 4-input AND gate. The storage element consists of a simple

clocked D flip-flop that, when enabled, will store the output of the lookup table. The final

output of the logic block is determined by a switching block which chooses a line for the

output channel.

Figure 2 - Basic Logic Block [9]

 7

The basic logic block can be expanded in many ways to add versatility [9]. The

first, and easiest, is stacking the logic blocks and creating “arrays” of varying sizes. A

typical size may be 8 or 16, which can handle a byte of data collectively. Another method

to increase performance is to increase the number of inputs into the look-up table. This

enables more complex look-up tables, but also increases the size of the table

exponentially. Larger LUTs may not be utilized as efficiently as the typical 4-input LUT.

Additional components can include dedicated logic gates for AND, OR, and XOR, as

well as registers, bit-shifting components for arrays, and carry chains for faster addition.

Finally, certain components can be specialized by inserting dedicated hardware for

commonly used functions, such as a multiply-accumulate operation or memory.

Channels are the means through which data can be transmitted between logic

blocks [10]. Channels lie in the row and column space between the logic blocks in the

architecture. Furthermore, if the logic blocks are stacked, then the channels will be

likewise stacked. Each channel generally has multiple parallel lines for communication so

that several signals can utilize the same channel, which in turn reduces the complexity for

routing. A switch block is position where row and column channels meet. Switch blocks

contain all the necessary connections that allow signals to transfer from row channels to

column channels, and vice versa. As such, it does not matter where a logic block is

located relative to the next one in a function chain as long as it is possible to route a

signal from the prior output to the input of the next. The process of routing signals

between logic blocks, while complex, is the basis for the flexibility in an FPGA.

 8

B) Capabilities of an FPGA

FPGAs at their basic level could be used to implement simple logic circuits by

assigning the input pins to a logic function programmed into the device. However, this

does not utilize some of the more important features. The key to getting the most out of

the FPGA is by using the advanced features a typical FPGA may provide: language

abstraction and reprogrammability.

The basis for abstraction comes from the hardware description languages. Using

schematics and block diagrams to describe the dataflow, while possible, is impractical for

larger systems. Thus programming languages are used. The two most common languages

are VHDL (VHSIC hardware Description Language) [11] and Verilog [12], both of

which provide structure for defining logical blocks and behavior of FPGA devices.

Electronic Design Automation (EDA) tools first convert the code and/or schematic

diagrams into formal logic functions. The EDA tool will then organize the functions into

logic blocks, followed by placing and routing the design within the actual chip. The final

step in the process is the generation of a configuration file which can be used to program

the FPGA.

VHDL was used for this project. Basic VHDL design utilizes blocks or ‘entities.’

Entities have their behavior controlled by the architecture that defines how signals will

flow from the inputs to the outputs of the entity. In order for an entity to accomplish a

task, it must have an output, but not necessarily an input. Within the architecture, signals

are manipulated by functions which range from simple logic gates to mathematical

operations and sub-architectures. Programmers are able to define their own functional

architectures and use them just like any high-level language. Signals themselves can have

 9

complex values [13]. Signals represent data lines on the bit-level. Beyond the simple 1

and 0 values, they can possess other electrical values such as weak, strong, unknown, or

high-impedance. VHDL is used to define specifically the behavior of an electrical device,

so it is important for the programmer to understand the operation of signals on the data

lines and either utilize or make allowances for them.

The final key advantage to FPGAs as development platforms comes from their

ability to be reprogrammed. Instead of manufacturing an entire chip to test a design, the

FPGA can be programmed, tested, and reprogrammed should the current design fail to

function as desired. This final aspect is the most important feature when considering a

platform for system prototyping.

C) FPGA vs. ASIC

Application Specific Integrated-Circuits, or ASICs, is the umbrella definition that

applies to any chip that can be designed to be configurable to a particular task [8]. While

FPGAs can fall under this definition, convention keeps them separate. Fundamentally,

most ASIC chips are structurally similar to FPGAs, the primary difference being that

ASICs are typically one-time programmable. Instead of memory cells to program an

ASIC device, they are manufactured with anti-fuses [14] to allow users to configure the

desired function into the chip or are manufactured with metal interconnect according to

the specified design.

 10

Figure 3 - Part Cost vs. Quantity [7]

The reprogramming aspect of an FPGA comes at a cost with respect to ASIC

designs. While the chips are fundamentally similar, FPGAs sacrifice speed and cost for

versatility. Per-part, FPGAs are more expensive, however they require a lower initial

design cost since you do not need to replace the FPGA with each failed design. Figure 3

shows the volume-to-cost analysis for FPGAs and two kinds of ASICs: Masked Gate

Array (MGA) and Custom Cell-Based ASIC (CBIC). The initial fixed cost for FPGAs is

considerably lower than the MGAs and CBICs. However, as the volume of parts

increases, ASIC implementations become more competitive. One final aspect of note is

that an ASIC can also operate faster than an equivalent FPGA. Since the ASIC is

hardwired with metal lines, there are no additional routing delays that result from the

channel switching. Furthermore, designers can perform additional optimizations to the

ASIC design prior to manufacturing since they have greater control of the layout of the

integrated circuit.

 11

3) Security and FPGAs

FPGAs are an attractive option for security applications because of their

reprogrammability [15]. This enables operators to manage security algorithms in one

contained package as well as to change security methods and algorithms without having

to replace their hardware. Common security applications for FPGAs include secure co-

processors and network security algorithm implementations [16][17]. While it is useful to

know the uses of FPGAs in security applications, it must also be noted that FPGAs are

vulnerable to a variety of attacks themselves [3]. The three prominent means of attacking

an FPGA are through black box, read back, and side channel [18].

Black Box attacks on FPGAs are an extremely basic method for attempting to

discover the functionality encoded on the chip. The basis of this attack is to feed every

possible input combination into the FPGA input pins and monitor the resulting outputs.

The inner workings of an FPGA may be determined through the use of maps and truth

tables. This method is time consuming and becomes exponentially difficult as the

quantity of inputs and outputs increases on the FPGA. Additionally, if an FPGA contains

one or more state machines, the entire technique can be rendered invalid.

The next viable attack is to read back the configuration data. Reading back the

data from the FPGA is useful for programmers who need to debug their projects as the

implementation may be different from what they realized. Read-back is also useful to

check for software errors resulting from prolonged use, such as accidental bit flips or

even hard errors when used in radiation environments. As this is a common and logical

method for attacking an FPGA, most developers include debug mode flags that enable or

disable read-back for the contents of memory.

 12

Higher up on the security schemes are the side-channel attacks. A side-channel

attack is defined as any method that does not use a standard input/output scheme to

monitor the activity of an FPGA. Common side channels can be as simple as watching

non-output pins for leaked signals while the more difficult ones include power demand

analysis and monitoring electromagnetic radiation. Power-demand analysis is the

procedure of taking an FPGA under-test and watching the consumption of power by the

chip over time [19][20]. Certain logic operations and functions require a differing amount

of power to run and as a general rule, the more logic elements activated by a process the

more power the FPGA will consume. By watching the transient power consumption of

the chip, it is possible to gain an understanding of its current state. While this does not

directly provide any real information about the content of the FPGA, coupled with I/O

monitoring, this can be useful to understanding the operation of an FPGA and can signify

which outputs to monitor. The monitoring of electromagnetic (EM) radiation from an

FPGA works in a similar fashion by understanding how much EM radiation is being

emitted by the chip. By mapping the EM radiation to different areas of the chip, the

operational state of the FPGA can be deduced.

 13

CHAPTER III

DES IMPLEMENTATION ON THE FPGA

1) Structure of a basic DES algorithm

The Data Encryption Standard (DES) algorithm is fundamentally a cryptographic

block cipher [4]. Therefore, for each block input, you receive another unique block with

essentially a one-to-one mapping. Furthermore, DES does not involve block chaining and

can be used for random access, which is essential to a cryptographic bridge between

processor and memory. More advanced methods of the DES algorithm are available for

use since the cryptographic strength of normal DES is under scrutiny [21]. While there

are more complex forms of DES [22][23], for this implementation the normal structure of

DES is used.

Figure 4 - Sample DES Design

 14

A sample DES block is constructed of four parts: (1) Initial Permutation, (2) the

Feistel Chain, (3) the Key Schedule, and (4) the Final Permutation (Figure 4). The

strength of the DES algorithm lies not in the permutations, but the process through which

it generates keys for the Feistel function and its repeated application. The Feistel chain

contains 16 individual Feistel Blocks, and for each block the key schedule provides a

unique key.

Following the initial permutation, the data block is split in half, requiring that the

inputs possess an even number of bits. Within the Feistel chain, the block halves get

placed on either an XOR function or the Feistel Function. The Feistel function takes the

unique key for that block and performs a series of combinations and permutations on the

data block. This is discussed in more detail later. The output of the Feistel function is

then fed to the XOR to be combined with the first half of the data block. For each

following Feistel block, the halves are alternated. After the sixteenth block, the resulting

data is then fed through the output permutation, and the encryption process is completed.

The decryption process for DES utilizes the exact same structure as encryption;

however the operation occurs in reverse order. First the data is fed into the output

permutation. Then, starting at the last Feistel block, the data moves to each previous

block up to the first, and finally passes through the input permutation. The primary

advantage of this operation is that both the encryption and decryption processes can

utilize similar hardware circuitry.

 15

2) Structure of the algorithm on the FPGA [24]

Construction of the DES cipher occurred in 3 parts: the Feistel Chain, the Key

Generator, and the Permutation blocks. The Feistel Chain is composed of sixteen

repeated individual Feistel blocks that actually perform the cryptographic process. The

Key Generator, or Key Schedule, constructs each of the sixteen unique keys used in each

link of the Feistel Chain. The Permutation Blocks, of which there are two, randomize the

bit order of the data inputs and outputs by an arbitrary, yet consistent, pattern.

Figure 5 - Feistel Block

The Feistel Block (Figure 5) contains both the Feistel function and the XOR

combination. It receives the SubKey from the Key Generator and the input data block

that is then split into two halves: InputA and InputB. InputB is fed along with the SubKey

into the Feistel function. The Feistel function outputs a new data block, which is then

XOR'ed with InputA. The result of the XOR is then fed out as OutputB, while InputB is

fed to OutputA unchanged. The next Feistel Block will utilize OutputA for its InputA,

 16

and OutputB for InputB. By alternating the halves, each instance of the Feistel Block will

encipher on a separate half of the data.

Figure 6 - Feistel Function

The cornerstone to this, however, is the Feistel Function (Figure 6). The first step

is to XOR the SubKey with InputB. The next step is to break up the result into equal

pieces and feed them into the S-Block. The S-Block is a basic look up table (LUT) that

reduces the number of input bits using an arbitrary rubric. The final part is a permutation

block that shuffles the bits from the S-Block.

The Key Generator (Figure 7), which produces each sub-key, receives two inputs:

(1) the Base Key and (2) the Decrypt signal. The Base Key is the complete DES key from

which the individual keys are constructed. To begin, the Base Key is split in half to create

 17

two parts (PartA, PartB). For each of the sixteen keys, each part is rotated by one bit and

is fed into a permutation function to create the specific SubKey.

Figure 7 - Key Generator

The permutation function itself is a static compilation of an equal number of

individual bits from PartA and PartB. As such, each bit is used at least once to contribute

to the sub keys to provide a unique sub-key for each Feistel block. Finally the Decrypt

signal indicates to the Key Generator when the DES is going through the decrypt cycle.

When Decrypt is active, the keys are constructed in the same method, but are output in

the reverse order, such that SubKey(16) becomes SubKey(1), and so on.

 18

Finally, the Permutation Blocks serve a dual purpose for this implementation of

the DES algorithm. The first purpose is to provide pre- and post-permutations to the data,

the output permutation being the inverse of the input permutation. Simply changing the

order of the bits offers no additional cryptographic strength; however the blocks serve a

more useful purpose. In order to keep the implementation on the FPGA symmetric, and

reduce the number of logic elements on the chip, the permutation block interprets the

Decrypt signal (same as the one fed to the Key Generator) to swap the first and second

halves of the data for the decrypt cycle. This ensures that the block will be decrypted

instead of re-encrypted with the same key.

 19

CHAPTER IV

IMPLEMENTATION OF THE TEST SYSTEM

For this project, the ultimate goal is to test the latency and the transparency of the

encryption module. To determine the latency, cycle times of the test processor will be

sampled to observe how encryption affects the overall performance. Of the utmost

importance to any FPGA project is the idea of propagation delay. It is important to

understand how long it takes for a signal, upon being clocked or receiving new inputs, to

show an output change and to stabilize to a new output level. This end-to-end delay

determines the maximum speed at which the FPGA can operate to ensure that all data

reaches the output before the next cycle tries to use that data. This will be discussed

primarily in the performance experiment section.

The hardware prototype used an Altera DE2 Development and Education Board

[25]. While the board itself contains a large number of peripherals, there are only a few

that concern this project. First and foremost is the FPGA itself, which is an Altera

Cyclone II EP2C35F672C6 FPGA [26]. This design contains 68,416 logic elements with

which to create designs as well as 622 I/O pins to control outputs and other peripherals.

Embedded in the design are 150 pre-configured 18x18 multipliers and 1.1 Mbit of usable

memory. The Cyclone II is optimized to run at a maximum clock speed of 402.5 MHz,

while the embedded devices operate at 250 MHz. The standard Cyclone II logic block

differs from a standard simple logic block in that it provides additional logic for

controlling clock inputs, a global reset, and carry chain additions. Figure 8 shows a

 20

Cyclone II logic block. Among the numerous other items on the DE2 board, this project

utilized a bank of eighteen red LEDs, a bank of eighteen switches, two external clocking

chips rated for 50 MHz and 27.5 MHz, and finally a 256K x 16-bit SRAM chip. The final

important piece of hardware included is the USB Blaster programming interface.

Figure 8 - Altera Cyclone II Logic Block

There are two methods for programming the FPGA on the board: active and

passive. The passive mode serves to one-time program the FPGA for single use running.

When the FPGA loses power again, it will revert to the saved program in memory. The

active mode, in addition to configuring the FPGA for the program, also places the

configuration data into the FPGA’s memory such that when the FPGA is powered on the

 21

next time it will remember this new configuration. For the purposes of this project, the

FPGA was only configured in passive mode as it was unnecessary to fully reprogram the

chip.

This project was designed using Quartus II software, version 6.1 [27], provided

by Altera and utilized ModelSim [28] to perform timing analysis functions. Quartus II is

an EDA tool used for design entry using VHDL or schematics, design synthesis, and

device configuration for Altera-based FPGAs. ModelSim is a logic simulator for the

hardware description language. It uses accurate timing models provided by Altera to

emulate the Cyclone II device. All of the data reported here is obtained from ModelSim

and then reorganized into Excel graphs. ModelSim works by receiving the actual

programming file normally sent to the FPGA and then emulates the FPGA under test.

ModelSim is used because there is no practical way to extract internal timing information

directly from the FPGA.

In this section, we will focus on the transparency of the design. Transparency is

tested by identifying any necessary modifications, if any, to the processor in order to

implement the encryption successfully. This project is constructed with three elements:

(1) processor, (2) encryption, and (3) memory. For each of the three elements, the basic

design will be discussed. Then the section will describe any additional design

considerations that were made in order to make it compatible with the encryption. Full

schematics of the design as well as the corresponding VHDL code are available in the

appendix.

 22

1) Processor Design

The basic structure of this Reduced Instruction Set Computing (RISC) processor

is simple and designed specifically to run basic programs to test the memory interface. It

primarily consists of an ALU, a data register, and a program counter. At the beginning of

each clock cycle, the program counter is incremented (Figure 9). The instruction (OP

code) is then fetched and decoded into instruction information and data. The ALU then

performs the current instruction based on the OP code fetched from memory. At the end

of the cycle, any writes to memory or outputs occur. Finally, the ALU also provides a

data register to store a single data string for use in the mathematical functions.

Figure 9 - Sample Processor Cycle

 23

The addressable memory is 256K words, which maps to an 18-bit wide address.

Therefore, internal memory addresses and the program counter are 18 bits wide. The

word width of the memory is 16 bits wide. During the decode phase of operation, the

processor reads in the 16-bit OP code and splits it into the instruction and data portions.

For this RISC implementation, there are currently nine instructions, which require 4 bits

to code and leave 12 bits for the immediate field. Of the ten instructions available to this

processor, four utilize the immediate field of the OP code. Whenever an instruction does

not need that field, it is set to all zeros.

Each of the different OP codes corresponds to a unique function in one of two

categories: manipulation and mathematical. There are four manipulation functions that

perform the interface and control portions of the processor. The LOAD function pulls the

data portion of the OP code and puts it in the data register, overwriting the current

content. The no-op function skips a processor cycle. An LEDPIO function moves the

current contents of the holder to the light emitting diode processor input/output register.

The LEDPIO controls the content of the LED display on the DE2 Board. The JUMP

instruction operates by resetting the program counter, adding in the immediate field of the

OP code, then finally re-feeding the address line. The four mathematical functions

operate directly on the data register. The ADD instruction sums the immediate field with

the data register and returns the result to the data register. The SUB instruction, likewise,

subtracts the immediate field from the data register and returns it the data register. The

INC and DEC instructions respectively increment and decrement the current contents of

the data register by one. The final two uncategorized functions in the instruction set

perform functions similar to no-op in the ALU. Their primary usages are for the program

 24

counter and decoder. These OP codes, set to all zeros and all ones, signify the

initialization states of the processor. When executed, the data register is reset to zero and

the addresses are zeroed, similar to a reset. Additionally, when the all-zeros instruction is

used, it halts the processor operation, signifying the end of the program code. Table 1

provides a full list of the instructions and their associated OP codes for the processor

developed for this study.

Table 1: Instruction List for the RISC processor

Instruction Code Detail

END 0000 Stops processor operation until Initialize

ADD 0001 Addition of DATA to ALU Register

SUB 0010 Subtraction of DATA from ALU Register

Increment 0011 Increment the ALU Register by 1

Decrement 0100 Decrement the ALU Register by 1

NOOP 0101 No Operation, do nothing

LOAD 0110 Set ALU Register equal to DATA

Output 0111 Set output buffer to the contents of the ALU Register

GoTo 1000 Set the Program Counter equal to DATA

Initialize 1111 Initializes the processor, Reset Program Counter & ALU

The single largest limitation to this processor is the JUMP instruction: no program

can be longer than 4095 individual instructions. Another limitation is the lack of

branching instructions. This reduced the amount of advanced logic that can be utilized in

 25

the test program. For this current usage, these limitations are unimportant to the entire

goal of this project. However if this processor were to be used elsewhere, it would require

a modification. More features that should be included would be a status register

containing flags for various ALU conditions, instructions to handle branching conditions,

and double-wide instructions to remove the limitations on the number of OP codes and

instruction data width.

2) Memory Controller

The memory chip used is a generic SRAM chip included on the DE2 development

kit for this project. The SRAM chip is a 256K by 16-bit memory array yielding a 16-bit

data width and 18-bit addressing [29]. The worst case response time for this chip is 15 ns,

resulting from the way in which the memory cell locks the values. The read cycle is

longer than the write cycle. The memory chip cannot be simulated within ModelSim with

respect to the processor and encryption, so it is assumed that the chip is working at worst-

case speed at all times.

The controller for the memory has been implemented as the interface from the

processor to the memory. The memory possesses several inverted control inputs. The

inputs of most concern are the Chip Enable (CE), the Output Enable (OE), and the

Address and Data (Dout) lines. The basic operation states that when the chip enable is

clocked, it locks the value for the address, retrieves the contents of the specified memory

cell, and returns the data to the data line. When the Output Enable is asserted, and the

chip enable is clocked, the memory locks the address and the data lines and stores the

value of the data line into the specified memory address. According to the table in Figure

 26

10 provided from the datasheet, the read cycle incurs the largest amount of delay. This is

important as read operations occur every processor cycle (i.e., the instruction fetch).

Figure 10 also illustrates a typical read cycle for this SRAM chip

Figure 10 - SRAM Latency Table and Sample Read Cycle

3) Encryption Interface

While any encryption could be used theoretically, we are limited to block ciphers

only. Typical communication protocols will use stream ciphers whereby each encrypted

block will have its contents encrypted with relation not only to the key, but also to the

previous block. Stream ciphers cannot be used in the processor-to-memory interface

because memory requires random access. DES was chosen because it provides a

reasonable amount of security strength for a block cipher without being encapsulated into

a stream cipher.

The actual implementation of the DES algorithm occurred with both block

diagrams and VHDL code. As discussed above, there are three main blocks: the Feistel

block, the Key Generator, and the Permutations. Additionally, there is one extra block

 27

which stores the key that is used in the encryption. Currently this key is set statically, but

in theory it can be changed manually or configured with a full set of different keys.

First, the key generator operates by taking the main base key and calculating 16

sub keys for each of the 16 Feistel blocks. The sub keys are generated in a similar manner

to the operation of the DES and begin by breaking the key in half. The base key in this

implementation is 24 bits wide, differing from standard DES of 54, to accommodate the

reduced data size of the data word (16 bits). The base key is broken into equal chunks of

12 and placed in two separate shift registers. A permutation function selects 6 bits from

each shift register and assembles them in a random order to produce the sub key of length

12. At the end of each step, the shift registers rotate left by 1 bit before the process starts

over again for the next sub key. This process repeats 16 times for each sub key.

The Feistel chain in this case operates exactly the same as a normal DES

implementation, differing only from the standard block size of 64 bits. The data width

starts at 16 bits and is split into two equal pieces of 8 bits each. The first half is fed into

the XOR combination. The second half is fed into the Feistel block. The Feistel block

operates by taking the 8 data bits, expanding it to twelve by adding zeros, and then XORs

the new data with the 12-bit sub key from the key generator. Next, this new 12-bit block

is broken into two groups of six bits and fed into the S-blocks. Each S-block is a look up

table that transforms the six bits into four bits based on an arbitrary, and non-linear,

association. Standard DES also uses a six-to-four transformation but increases the

number of S-blocks to eight. The final step of the Feistel block involves putting the final

eight re-combined bits through one final permutation. The resulting 8 bits goes into the

XOR with the first half of the data. The next link in the Feistel chain utilizes the output

 28

from the XOR as the input to the Feistel block, and the previous input is placed on the

current XOR.

At the beginning and the end of the Feistel chain are the two permutation blocks.

For this implementation, the blocks perform two functions. First, the permutation blocks

will apply a symmetric randomization to the bits and break the block into its respective

data halves for entry into the Feistel chain. Secondly the block will watch for the

decoding flag and swap the data halves when in decryption mode. The permutation is

designed to increase obfuscation even though it does not add any additional security

strength to the DES block. Furthermore, the end permutation is designed to mirror the

first one such that it is undone at the end of the Feistel chain.

There are some notable limitations to this implementation of DES. First and

foremost comes from the size of the key and the data block [30][31]. Standard DES uses

a 64-bit data block and a 56-bit key. From the data block alone, this significantly reduces

the strength of the DES operation, making it much easier to brute force [21]. The data

block is 16 bits because it is limited by the size of the memory data channel. Standard

DES encryption strength relies on the sub-key permutation and the S-Blocks. The sub-

key permutation determines the portion of the base key to utilize for a particular Feistel

block. The S-blocks provide an arbitrary, non-deterministic bit alteration to the final key.

Reducing the key size reduces the sub-key variance, which also reduces the cipher

strength. Similarly, reducing the size of the S-Blocks limits their cryptographic

significance. The key size was chosen to be 24 bits from working backwards through the

DES implementation. It was sufficient in this case to maximize the permutation block

while minimizing the resource utilization on the FPGA. Theoretically, the key can be of

 29

any size and the S-blocks are utilized to reduce the size of the Feistel block output to the

data width.

4) Test System

The finished product contains four parts: (1) the processor, (2) the memory

controller, (3) the encryption block, and (4) the pre-program memory. The basic modules

have connections between the processor and encryption, and between encryption and the

memory controller. The pre-program memory, discussed in the next section, serves a

special purpose and is connected directly to the processor.

Several design implementations for the final construction of the

CPU/Encryption/Memory system were created to help accommodate the DES but

maintain the same functionality as discussed above. Keeping in mind the end-to-end

delay, at the beginning of the clock cycle, the data processed from the previous cycle

must be completely stable before it can be used for the next cycle. In the first version of

the system, clocking the processor triggered the program counter to increment followed

by memory fetch, decode, and execution. While simple to program, this implementation

possesses the longest end-to-end delay and is subject to variations in memory delay. It

also varies the processing time for instructions. To improve on this design, two revisions

were devised in order to reduce the delay by removing the time to read memory within

the current processor cycle. The first revision operated by initiating the fetch cycle on

clock high, which increments the program counter and sends signals to memory and

returns the data through the encryption. On clock low, the processor takes the fetched

data, decodes it, and executes the corresponding instruction. The second revision utilized

 30

a form of pipelining by dividing the processor into two sections, fetch and execute. On

clock high, the processor begins by decoding and executing the current instruction

provided by memory. It then finishes by using the program counter to fetch the next

instruction. In this method, the processor is always executing on the previous instruction,

giving sufficient time to run the decryption; however, program length is increased

through the inclusion of a NOOP after jumps, and the processor is initialized to a NOOP.

Splitting up this design, it becomes easier to manage the dataflow for the processor by

forcing all the sequences with the heaviest delay to occur in one half of the clock cycle

and the processor to operate in the other half.

5) Test Setup

 The test setup for this design takes place in two stages: (1) static code encryption

and (2) code execution. In the first stage the processor reads the program data from pre-

program static memory. Each clock cycle, the processor takes an instruction from the pre-

program memory and sends it through the encryption to the memory controller and writes

it to the SRAM chip. This process continues until the program finds the stop code of all-

ones. After this, the processor enters execution mode where it begins by resetting the

program counter and data register, and accesses the first instruction from the SRAM chip.

Once in execution mode, it continues to perform whatever instructions it is doing until it

sees the all-zeros, which signifies end-of-program.

 31

CHAPTER V

ANALYSIS METHODOLOGY

For this experiment there are two goals. First is to gauge the performance hit from

the addition of the encryption. Primarily, this was measured by examining the response

time between the processor and memory, first the baseline without encryption and then

with the encryption. The maximum clock speed and instructions per second can be

calculated with this information. The end result is that the effectiveness of the encryption

scheme can be evaluated. The second goal is to determine the amount of on-chip

resources required to implement this design scheme. The implications which follow stem

from size and cost; smaller and more inexpensive FPGAs can be utilized to perform the

same task.

The test process was an iterative simulation using ModelSim, which provides a

near-perfect virtualization of the FPGA design under examination. Each design model

was recompiled before simulation. In order to test the maximum speed of this model, four

values need to be known: (1) worst-case response for the ALU, (2) worst-case access

time for memory, (3) worst-case response for the DES, (4) and average-case for DES. By

summing the worst-case delays required to execute one instruction cycle, a general idea

for the maximum clock cycle for this processor can be determined.

 32

1) Baseline Performance Experiments

ALU:

Figure 11 - Processor Test Setup
[Quartus II Block Diagram]

It is important to test to see how long it takes for the CPU to execute one full

cycle and therefore determine its delay time. To do this, it was important to remove the

encryption and memory from the equation and isolate the processor. To do so, the

memory and encryption blocks were removed from the block diagram yielding the design

in Figure 11. Since the instruction delay was the target of this test, each instruction was

placed on the memory input prior to the processor being clocked for the current cycle.

Replacing the memory, an instruction generator was inserted that ignored the addressing

signals for the actual output; instead it used those signals as a clock to generate the next

instruction. Understandably, each instruction will have a different delay time, and

 33

therefore they needed to be tested individually. Each time the instruction generator was

clocked, it would output the current test instruction and a randomized bit-set for the data

portion.

Memory:

The testing of memory to prove that it operated within its ranges proved difficult,

if not impossible. The only thing that could be tested is that it worked and how much

additional overhead the memory controller added to the response time. The memory

controller itself was written to be a simple interface. The majority of the data fed into it

was pass-through, and the rest of the values were static. Testing the memory showed the

memory controller added no additional time to memory operation. Therefore, the default

values provided by the data sheet were assumed.

Encryption:

Testing the DES algorithm was accomplished in a similar manner to the

processor: by isolating it from the other components. In order to determine the average

and worst case response time for this implementation of the DES algorithm, the logic was

fed a set of randomized values. Figure 12 shows the setup for the DES system. Included

in this test was just the encryption routine. DES is a symmetric algorithm and therefore

both the encryption and decryption process will take approximately the same amount of

time to complete. The key used was generated randomly before being programmed into

it. However the value of the key is not essential in calculating overall delay for this

system. This stems from the fact that the key remains constant and the sub-key outputs

 34

from the key generator will remain constant during the entirety of the operation.

Additionally, changing the key will invalidate any data saved in memory and it is

undesirable to change it during operation. Finally, from this data set, the amount of time

it took for the DES output to register and the amount of time it took for the output to

stabilize were recorded.

Figure 12 - Encryption Test Setup
[Quartus II Block-Diagram]

2) Complete System Setup

Re-assembling the parts for the full system test corresponds to Figure 13. The

system was compiled for the Cyclone II FPGA on the DE2 kit then verified in hardware

to show that all the experimental data was correct. If the encryption is working properly,

then the hardware implementation is successful.

 35

Figure 13 - Final Assembled System
[Quartus II Block Diagram]

 36

CHAPTER VI

RESULTS AND ANALYSIS/DISCUSSION

The simulated tests for both the processor and the DES were constructed using the

Quartus II software, version 6.1 [27] and simulated with both the Quartus tool and with

ModelSim [28]. The total utilization of the Cyclone II FPGA chip came to approximately

10% of the total number of logic blocks available.

Figure 14 - Settle Time vs. Instruction Type

The chart in Figure 14 shows the average, minimum, and maximum response

times for each instruction in the processor. Each instruction was sampled five times, and

from the timing analysis the average, minimum and maximum times were calculated.

More samples did not change the deviation. Derived from the data, the quickest

 37

instruction is the NO-OP at 5.862 ns while the worst-case instruction is Subtract at 7.375

ns. The average execution time for this processor is 6.828 ns. The instruction with the

highest variance is the LEDPIO due to it interfacing with the control bank. The end result

shows that the worst possible case for the processor, which equates to Subtract, comes

out to be approximately 7.4 ns.

Figure 15 - Sampled Stabilization Time

The DES testing provided similarly useful results. Prior inspection dictated that

the maximum response time for each item would be approximately 10 ns, therefore the

waveform generator was set to change patterns to a new random value every 20 ns to

prevent any outliers from causing inconsistencies in subsequent data points. Starting at 0

ns up to 400 ns, 21 data points were taken as displayed in Figure 15. Each data point

shows the amount of time taken for the data, after being clocked, to stabilize into a usable

output. As can be seen, there is not much deviation among the data. Average time from

 38

start to stable is 9.204 ns, the deviation is 0.311 ns, and the worst case is 9.558 ns. Using

this data, the worst-case response can be set to no more than 10 ns when coupled with the

other components.

The full-scale system analysis requires summing each of the worst-case times for

the components: 10 ns from the DES, 7.4 ns from the CPU, and 15 ns from the Memory.

This brings the total delay to 32.5 ns for a worst-case cycle. The DE2 development board

used for testing this design provides two hardware clocks: 50 MHz and 27.5 MHz.

Making this equivalent to the cycle time, the 50 MHz allows for a delay up to 20 ns while

the 27.5 MHz clock provides approximately 36.37 ns. With the baseline limitation of

22.5 ns, the 50 MHz clock cannot be used. Adding the encryption increases the cycle

from 22.5 to 33.5 ns which remains within the 36 ns.

Within the scope of this project, the data shows that it is feasible to add

encryption to the processor-to-memory interface while not altering the functionality of

the processor under test. That being said, while it did not alter the functionality, it did

affect the maximum speed at which this processor could operate. Any amount of

additional encryption provided to the memory channel must be given some extra delay

time in order to perform the necessary calculations.

 39

CHAPTER VII

CONCLUSION

Trustworthy computer systems protect the access of sensitive information by an

unauthorized agent (i.e., an attacker). However, security vulnerabilities exist which can

allow a system to be compromised by an attacker. Information can be accessed or altered

by malicious efforts when it leaves the boundary of trust (e.g., the microprocessor). The

purpose of this work was to design an encryption module, using an FPGA, which would

serve as in interface between a processor and its memory. The goal was to determine

whether this could be done at a minimum of interference to the proper operation of a

processor. An FPGA was used as the hardware platform for the prototype of the test

system. The greatest challenges were in creating a working processor and memory

architecture.

This thesis presented a method to add DES encryption to a processor-to-memory

interface. Based on the testing results, there will be a performance penalty due to the

encryption. However, the latency for encryption can be hidden within the normal

operation of the test processor. In order to allow for this encryption, an adjustment of the

clock timing was not required over the performance of the base system. While this

encryption module does not address all the security challenges of the processor-to-

memory interface, it does provide some protection from download attacks to the physical

memory. In addition, the flexibility of the FPGA platform achieves the goal of

 40

transparency by incorporating additional security features into the existing system

without extensive modification.

The test system can be used as a basis to draw some insights into large-scale

systems. The basic RISC processor used in this project can only perform simple

mathematical operations and read data from memory. An extension to this work would

incorporate one of the numerous embedded processor designs into the FPGA to replace

this test processor. Prior to using the current design, a NIOS II processor from Altera [32]

was examined; however, it failed integrate properly into the test system. Since an

advanced processor was not a requirement for this project, the processor was scaled down

to its current form in order to obtain a functional system. This test system also assumed a

single-chip implementation where all components resided on the FPGA.

To extend this to a more modular design, the application would utilize the FPGA

itself as the bridge containing the encryption while processor and memory are

independent devices. With more advanced processors, the timing of the memory access

becomes extremely important because memory access is typically the performance

bottleneck. Ten nanoseconds, which equates to a maximum speed of around 100MHz,

would severely limit the speed of the processor. Should this be utilized on a standard

CPU, placing the encryption module as an interface between cache and main memory

would be a more reasonable choice. However, the encryption module should remain

within the trusted boundary of the processor. This would improve performance by

encrypting an entire cache line instead of individual memory accesses. The DES

algorithm could be used at full strength (i.e., 64 bits) to encrypt an entire cache line.

Another advantage to separating the CPU from the FPGA is the relaxation of the resource

 41

requirements for the encryption. This, in turn, would enable more complexity in the

security module (i.e., stronger encryption). The fundamental point to remember is that

security adds operational latency, and in high speed designs any extra latency reduces the

maximum potential speed at which the processor can operate.

 42

REFERENCES

[1] Samyd, D. et al., “On a new way to read data from memory” First International IEEE
Security in Storage Workshop, 2002

[2] Mahapatra, N. R., Venkatrao, B., ‘The processor-memory bottleneck: problems and

solutions” Crossroads, ACM Press, Vol. 5, Issue 3, 1999

[3] Wollinger, T., Guajardo, J., & Paar, C., “Security on FPGAs: State-of-the-Art

Implementations and Attacks” ACM Transactions on Embedded Computing
Systems, Vol. 3, No. 3, Aug. 2004

[4] Smid, M. E. & Branstad, D. K., “Data Encryption Standard: Past and Future”

Proceedings of the IEEE, Vol. 76, No. 5, May 1988

[5] Stallings, William, “Cryptography and Network Security: Principles and Practice”

Prentice Hall College, 2006

[6] Chang, R. K. C., “Defending against flooding-based distributed denial-of-service

attacks: a tutorial” IEEE Communications Magazine, Oct. 2002

[7] Rose, J., El Gamal, A., and Sangiovanni-Vincentelli, A., "Architecture of field-

programmable gate arrays," Proceedings of the IEEE, vol. 81, pp. 1013-1029,
1993.

[8] Smith, Michael John Sebastian, Application-Specific Integrated Circuits – The Book

Addison-Wesley Publishing Co., June 1997

[9] Maxfield, Clive, The Design Warrior's Guide to FPGAs: Elsevier, 2004.

[10] Betz, V., and Rose, J., "Circuit design, transistor sizing and wire layout of FPGA

interconnect," in 1999 Custom Integrated Circuits Conference, 1999, pp. 171-
174.

[11] Ashenden, Peter J., The Designers Guide to VHDL Morgan Kaufmann Publishers,

1998

[12] Palnitkar, Samir, Verilog HDL (2nd Edition) Prentice Hall, 2003

[13] Standard 1164-1993, IEEE Standard Multivalue Logic System for VHDL Model

Interoperability, IEEE, 1993.

[14] Greene, J., Hamdy, E., and Beal, S., "Antifuse field programmable gate arrays,"

Proceedings of the IEEE, vol. 81, pp. 1042-1056, 1993.

 43

[15] Zambreno, J., Honbo, D., Choudhary, A., Simha, R., and Narahari, B., "High-

performance software protection using reconfigurable architectures," Proceedings
of the IEEE, vol. 94, pp. 419-431, 2006.

[16] Smith, S. W. & Weingart, S., “Building a high-performance, programmable secure

coprocessor” Computer Networks Vol. 31, 1999

[17] Crowe, F., Daly, A., Kerins, T., & Mamane, W., “Single-Chip FPGA

Implementation of a Cryptographic Co-Processor” IEEE International
Conference on Field-Programmable Technology, 2004

[18] Wollinger, T. & Paar, C., “How Secure Are FPGAs in Cryptographic Applications?”

Lecure Notes in Computer Science 2003

[19] Standaert, F.-X., Peeters, E., Rouvroy, G., and Quisquater, J.-J., "An overview of

power analysis attacks against field programmable gate arrays," Proceedings of
the IEEE, vol. 94, pp. 383-394, 2006.

[20] Standaert, F. X., tot Oldenzeel, L. O., Samyde, D., and Quisquater, J. J., “Power

Analysis of FPGAs: How Practical is the Attack?” Lecture Notes in Computer
Science, 2003

[21] Coppersmith, D., “The Data Encryption Standard (DES) and its strength against

attacks” IBM Journal of Research & Development Vol. 38 Issue 3, May 1994

[22] Merkle, R. C. & Hellman, M. E., “On the Security of Multiple Encryption”

Communications of the ACM, Vol. 24, No. 7, July 1981

[23] Coppersmith, D., Johnson, D. B., Matyas, S. M., “A proposed mode for triple-DES

Encryption” IBM Journal of Research and Development, Vol. 40, Issue 2, 1996

[24] Wong, K., Wark, M., & Dawson, E., “A Single-Chip Implementation of the Data

Encryption Standard (DES) Algorithm” IEEE Global Telecommunications
Conference, 1998

[25] Altera’s Development and Education Board (DE2),

http://www.altera.com/education/univ/materials/boards/unv-de2-board.html

[26] Altera Cyclone II Device Handbook,

http://altera.com/literature/hb/cyc2/cyc2_cii5v1.pdf

[27] Quartus II 6.1, http://altera.com/literature/lit-qts.jsp

[28] ModelSim 6.1, http://www.model.com/resources/resources_manuals.asp

 44

[29] ISSI IS61LV25616 Specification Sheet, 256k x 16 High Speed Asynchronous
CMOS Static Ram with 3.3V Supply

[30] Blaze, M., Diffie, W., Rivest, R. L., Schneier, B., Shimomura, T., Thompson, E., &

Wiener, M., “Minimal Key Lengths for Symmetric Ciphers to Provide Adequate
Commercial Security” A Report by an Ad Hoc Group of Cryptographers and
Computer Scientists, Jan. 1996

[31] Lenstra, A. K. & Verheul, E. R., “Selecting Cryptographic Key Sizes” Journal of

Cryptology, Vol. 14, 2001

[32] NIOS II, http://altera.com/literature/lit-nio2.jsp

 45

APPENDIX OF FIGURES AND VHDL CODE

Complete System Block Diagram

Cryptography Interface Block

 46

Feistel Chain (inside the Encrypt and Decrypt blocks)

 47

Permutation Block VHDL Code:

LIBRARY ieee;
USE ieee.std_logic_1164.all;

-- Entity Declaration

ENTITY Permutation IS
 -- {{ALTERA_IO_BEGIN}} DO NOT REMOVE THIS LINE!
 PORT
 (
 Swap : IN STD_LOGIC;
 InP : IN STD_LOGIC_VECTOR(15 downto 0);
 OutP : OUT STD_LOGIC_VECTOR(15 downto 0)
);
 -- {{ALTERA_IO_END}} DO NOT REMOVE THIS LINE!

END Permutation;

-- Architecture Body

ARCHITECTURE Permutation_architecture OF Permutation IS
BEGIN
 PROCESS(Swap, InP)
 BEGIN
 IF Swap='1' THEN
 OutP(15 downto 8) <= InP(7 downto 0);
 OutP(7 downto 0) <= InP(15 downto 8);
 ELSE
 OutP <= InP;
 END IF;
 END PROCESS;
END Permutation_architecture;

 48

Key Generator Block Code:

LIBRARY ieee;
USE ieee.std_logic_1164.all;

-- Entity Declaration

ENTITY Key_Generator IS
 -- {{ALTERA_IO_BEGIN}} DO NOT REMOVE THIS LINE!
 PORT
 (
 BaseKey : IN STD_LOGIC_VECTOR(23 downto 0);
 Decrypt : IN STD_LOGIC;
 Key01 : OUT STD_LOGIC_VECTOR(11 downto 0);
 Key02 : OUT STD_LOGIC_VECTOR(11 downto 0);
 Key03 : OUT STD_LOGIC_VECTOR(11 downto 0);
 Key04 : OUT STD_LOGIC_VECTOR(11 downto 0);
 Key05 : OUT STD_LOGIC_VECTOR(11 downto 0);
 Key06 : OUT STD_LOGIC_VECTOR(11 downto 0);
 Key07 : OUT STD_LOGIC_VECTOR(11 downto 0);
 Key08 : OUT STD_LOGIC_VECTOR(11 downto 0);
 Key09 : OUT STD_LOGIC_VECTOR(11 downto 0);
 Key10 : OUT STD_LOGIC_VECTOR(11 downto 0);
 Key11 : OUT STD_LOGIC_VECTOR(11 downto 0);
 Key12 : OUT STD_LOGIC_VECTOR(11 downto 0);
 Key13 : OUT STD_LOGIC_VECTOR(11 downto 0);
 Key14 : OUT STD_LOGIC_VECTOR(11 downto 0);
 Key15 : OUT STD_LOGIC_VECTOR(11 downto 0);
 Key16 : OUT STD_LOGIC_VECTOR(11 downto 0)
);
 -- {{ALTERA_IO_END}} DO NOT REMOVE THIS LINE!

END Key_Generator;

-- Architecture Body

ARCHITECTURE Key_Generator_architecture OF Key_Generator IS
 SIGNAL ka0, kb0 : STD_LOGIC_VECTOR(11 downto 0);
 SIGNAL k1, ka1, kb1 : STD_LOGIC_VECTOR(11 downto 0);
 SIGNAL k2, ka2, kb2 : STD_LOGIC_VECTOR(11 downto 0);
 SIGNAL k3, ka3, kb3 : STD_LOGIC_VECTOR(11 downto 0);
 SIGNAL k4, ka4, kb4 : STD_LOGIC_VECTOR(11 downto 0);
 SIGNAL k5, ka5, kb5 : STD_LOGIC_VECTOR(11 downto 0);
 SIGNAL k6, ka6, kb6 : STD_LOGIC_VECTOR(11 downto 0);
 SIGNAL k7, ka7, kb7 : STD_LOGIC_VECTOR(11 downto 0);
 SIGNAL k8, ka8, kb8 : STD_LOGIC_VECTOR(11 downto 0);
 SIGNAL k9, ka9, kb9 : STD_LOGIC_VECTOR(11 downto 0);
 SIGNAL k10, ka10, kb10 : STD_LOGIC_VECTOR(11 downto 0);
 SIGNAL k11, ka11, kb11 : STD_LOGIC_VECTOR(11 downto 0);
 SIGNAL k12, ka12, kb12 : STD_LOGIC_VECTOR(11 downto 0);
 SIGNAL k13, ka13, kb13 : STD_LOGIC_VECTOR(11 downto 0);
 SIGNAL k14, ka14, kb14 : STD_LOGIC_VECTOR(11 downto 0);
 SIGNAL k15, ka15, kb15 : STD_LOGIC_VECTOR(11 downto 0);
 SIGNAL k16, ka16, kb16 : STD_LOGIC_VECTOR(11 downto 0);
BEGIN

 49

 PROCESS (BaseKey, Decrypt)
 BEGIN
 -- Generate base-key pair
 ka0 <= BaseKey(23 downto 12);
 kb0 <= BaseKey(11 downto 0);
 -- One
 -- Rotate to generate first sub-key pair
 ka1 <= ka0(10 downto 0) & ka0(11);
 kb1 <= kb0(10 downto 0) & kb0(11);
 -- Permutate sub-key
 k1 <= ka1(8) & kb1(10) & ka1(2) & kb1(6) & ka1(4) & kb1(11)

 & ka1(11) & kb1(0) & ka1(5) & kb1(9) & ka1(10) & kb1(7);
 -- Two
 -- Rotate to generate second sub-key pair
 ka2 <= ka1(10 downto 0) & ka1(11);
 kb2 <= kb1(10 downto 0) & kb1(11);
 -- Calculate sub-key
 k2 <= ka2(8) & kb2(10) & ka2(2) & kb2(6) & ka2(4) & kb2(11)

 & ka2(11) & kb2(0) & ka2(5) & kb2(9) & ka2(10) & kb2(7);
 -- Three
 -- Rotate to generate first sub-key pair
 ka3 <= ka2(10 downto 0) & ka2(11);
 kb3 <= kb2(10 downto 0) & kb2(11);
 -- Calculate sub-key
 k3 <= ka3(8) & kb3(10) & ka3(2) & kb3(6) & ka3(4) & kb3(11)

 & ka3(11) & kb3(0) & ka3(5) & kb3(9) & ka3(10) & kb3(7);
 -- Four
 -- Rotate to generate first sub-key pair
 ka4 <= ka3(10 downto 0) & ka3(11);
 kb4 <= kb3(10 downto 0) & kb3(11);
 -- Calculate sub-key
 k4 <= ka4(8) & kb4(10) & ka4(2) & kb4(6) & ka4(4) & kb4(11)

 & ka4(11) & kb4(0) & ka4(5) & kb4(9) & ka4(10) & kb4(7);
 -- Five
 -- Rotate to generate first sub-key pair
 ka5 <= ka4(10 downto 0) & ka4(11);
 kb5 <= kb4(10 downto 0) & kb4(11);
 -- Calculate sub-key
 k5 <= ka5(8) & kb5(10) & ka5(2) & kb5(6) & ka5(4) & kb5(11)

 & ka5(11) & kb5(0) & ka5(5) & kb5(9) & ka5(10) & kb5(7);
 -- Six
 -- Rotate to generate first sub-key pair
 ka6 <= ka5(10 downto 0) & ka5(11);
 kb6 <= kb5(10 downto 0) & kb5(11);
 -- Calculate sub-key
 k6 <= ka6(8) & kb6(10) & ka6(2) & kb6(6) & ka6(4) & kb6(11)

 & ka6(11) & kb6(0) & ka6(6) & kb6(9) & ka6(10) & kb6(7);
 -- Seven
 -- Rotate to generate first sub-key pair
 ka7 <= ka6(10 downto 0) & ka6(11);
 kb7 <= kb6(10 downto 0) & kb6(11);
 -- Calculate sub-key
 k7 <= ka7(8) & kb7(10) & ka7(2) & kb7(6) & ka7(4) & kb7(11)

 & ka7(11) & kb7(0) & ka7(5) & kb7(9) & ka7(10) & kb7(7);
 -- Eight
 -- Rotate to generate first sub-key pair

 50

 ka8 <= ka7(10 downto 0) & ka7(11);
 kb8 <= kb7(10 downto 0) & kb7(11);
 -- Calculate sub-key
 k8 <= ka8(8) & kb8(10) & ka8(2) & kb8(6) & ka8(4) & kb8(11)

 & ka8(11) & kb8(0) & ka8(5) & kb8(9) & ka8(10) & kb8(7);
 -- Nine
 -- Rotate to generate first sub-key pair
 ka9 <= ka8(10 downto 0) & ka8(11);
 kb9 <= kb8(10 downto 0) & kb8(11);
 -- Calculate sub-key
 k9 <= ka9(8) & kb9(10) & ka9(2) & kb9(6) & ka9(4) & kb9(11)

 & ka9(11) & kb9(0) & ka9(5) & kb9(9) & ka9(10) & kb9(7);
 -- Ten
 -- Rotate to generate first sub-key pair
 ka10 <= ka9(10 downto 0) & ka9(11);
 kb10 <= kb9(10 downto 0) & kb9(11);
 -- Calculate sub-key
 k10 <= ka10(8) & kb10(10) & ka10(2) & kb10(6) & ka10(4) & kb10(11)

 & ka10(11) & kb10(0) & ka10(5) & kb10(9) & ka10(10) & kb10(7);
 -- Eleven
 -- Rotate to generate first sub-key pair
 ka11 <= ka10(10 downto 0) & ka10(11);
 kb11 <= kb10(10 downto 0) & kb10(11);
 -- Calculate sub-key
 k11 <= ka11(8) & kb11(10) & ka11(2) & kb11(6) & ka11(4) & kb11(11)

 & ka11(11) & kb11(0) & ka11(5) & kb11(9) & ka11(10) & kb11(7);
 -- Twelve
 -- Rotate to generate first sub-key pair
 ka12 <= ka11(10 downto 0) & ka11(11);
 kb12 <= kb11(10 downto 0) & kb11(11);
 -- Calculate sub-key
 k12 <= ka12(8) & kb12(10) & ka12(2) & kb12(6) & ka12(4) & kb12(11)

 & ka12(11) & kb12(0) & ka12(5) & kb12(9) & ka12(10) & kb12(7);
 -- Thirteen
 -- Rotate to generate first sub-key pair
 ka13 <= ka12(10 downto 0) & ka12(11);
 kb13 <= kb12(10 downto 0) & kb12(11);
 -- Calculate sub-key
 k13 <= ka13(8) & kb13(10) & ka13(2) & kb13(6) & ka13(4) & kb13(11)

 & ka13(11) & kb13(0) & ka13(5) & kb13(9) & ka13(10) & kb13(7);
 -- Fourteen
 -- Rotate to generate first sub-key pair
 ka14 <= ka13(10 downto 0) & ka13(11);
 kb14 <= kb13(10 downto 0) & kb13(11);
 -- Calculate sub-key
 k14 <= ka14(8) & kb14(10) & ka14(2) & kb14(6) & ka14(4) & kb14(11)

 & ka14(11) & kb14(0) & ka14(5) & kb14(9) & ka14(10) & kb14(7);
 -- Fifteen
 -- Rotate to generate first sub-key pair
 ka15 <= ka14(10 downto 0) & ka14(11);
 kb15 <= kb14(10 downto 0) & kb14(11);
 -- Calculate sub-key
 k15 <= ka15(8) & kb15(10) & ka15(2) & kb15(6) & ka15(4) & kb15(11)

 & ka15(11) & kb15(0) & ka15(5) & kb15(9) & ka15(10) & kb15(7);
 -- Sixteen
 -- Rotate to generate first sub-key pair

 51

 ka16 <= ka15(10 downto 0) & ka15(11);
 kb16 <= kb15(10 downto 0) & kb15(11);
 -- Calculate sub-key
 k16 <= ka16(8) & kb16(10) & ka16(2) & kb16(6) & ka16(4) & kb16(11)

 & ka16(11) & kb16(0) & ka16(5) & kb16(9) & ka16(10) & kb16(7);
 -- Output based on Encryption/Decryption selector
 IF Decrypt='1' THEN
 -- Decrypt Keys
 Key01 <= k16;
 Key02 <= k15;
 Key03 <= k14;
 Key04 <= k13;
 Key05 <= k12;
 Key06 <= k11;
 Key07 <= k10;
 Key08 <= k9;
 Key09 <= k8;
 Key10 <= k7;
 Key11 <= k6;
 Key12 <= k5;
 Key13 <= k4;
 Key14 <= k3;
 Key15 <= k2;
 Key16 <= k1;
 ELSE
 -- Encrypt Keys
 Key01 <= k1;
 Key02 <= k2;
 Key03 <= k3;
 Key04 <= k4;
 Key05 <= k5;
 Key06 <= k6;
 Key07 <= k7;
 Key08 <= k8;
 Key09 <= k9;
 Key10 <= k10;
 Key11 <= k11;
 Key12 <= k12;
 Key13 <= k13;
 Key14 <= k14;
 Key15 <= k15;
 Key16 <= k16;
 END IF;
 END PROCESS;
END Key_Generator_architecture;

-- Sub-Key Permutation
--
-- 11 <= a8 10 <= b10
-- 09 <= a2 08 <= b6
-- 07 <= a4 06 <= b11
-- 05 <= a11 04 <= b0
-- 03 <= a5 02 <= b9
-- 01 <= a10 00 <= b7

 52

Feistel_Block VHDL Code:

LIBRARY ieee;
USE ieee.std_logic_1164.all;

-- Entity Declaration

ENTITY feistel_block IS
 -- {{ALTERA_IO_BEGIN}} DO NOT REMOVE THIS LINE!
 PORT
 (
 SubKey : IN STD_LOGIC_VECTOR(11 downto 0);
 InB : IN STD_LOGIC_VECTOR(7 downto 0);
 InA : IN STD_LOGIC_VECTOR(7 downto 0);
 OutB : OUT STD_LOGIC_VECTOR(7 downto 0);
 OutA : OUT STD_LOGIC_VECTOR(7 downto 0)
);
 -- {{ALTERA_IO_END}} DO NOT REMOVE THIS LINE!

END feistel_block;

-- Architecture Body

ARCHITECTURE feistel_block_architecture OF feistel_block IS
 SIGNAL f1 : STD_LOGIC_VECTOR(11 downto 0);
 SIGNAL f2, f3 : STD_LOGIC_VECTOR(7 downto 0);
BEGIN
 PROCESS (InA, InB, SubKey, f1, f2, f3)
 BEGIN
 -- First Feistel function step (XOR)
 f1 <= SubKey XOR InB;
 -- Second Feistel function step (S-Box LUT, see below)
 -- S1
 CASE f1(11 downto 9) IS
 WHEN "111" => f2(7 downto 6) <= "00";
 WHEN "110" => f2(7 downto 6) <= "01";
 WHEN "101" => f2(7 downto 6) <= "10";
 WHEN "100" => f2(7 downto 6) <= "11";
 WHEN "011" => f2(7 downto 6) <= "00";
 WHEN "010" => f2(7 downto 6) <= "01";
 WHEN "001" => f2(7 downto 6) <= "10";
 WHEN "000" => f2(7 downto 6) <= "11";
 END CASE;
 -- S2
 CASE f1(8 downto 6) IS
 WHEN "111" => f2(5 downto 4) <= "00";
 WHEN "110" => f2(5 downto 4) <= "01";
 WHEN "101" => f2(5 downto 4) <= "10";
 WHEN "100" => f2(5 downto 4) <= "11";
 WHEN "011" => f2(5 downto 4) <= "00";
 WHEN "010" => f2(5 downto 4) <= "01";
 WHEN "001" => f2(5 downto 4) <= "10";
 WHEN "000" => f2(5 downto 4) <= "11";

 53

 END CASE;
 -- S3
 CASE f1(5 downto 3) IS
 WHEN "111" => f2(3 downto 2) <= "00";
 WHEN "110" => f2(3 downto 2) <= "01";
 WHEN "101" => f2(3 downto 2) <= "10";
 WHEN "100" => f2(3 downto 2) <= "11";
 WHEN "011" => f2(3 downto 2) <= "00";
 WHEN "010" => f2(3 downto 2) <= "01";
 WHEN "001" => f2(3 downto 2) <= "10";
 WHEN "000" => f2(3 downto 2) <= "11";
 END CASE;
 -- S4
 CASE f1(2 downto 0) IS
 WHEN "111" => f2(1 downto 0) <= "00";
 WHEN "110" => f2(1 downto 0) <= "01";
 WHEN "101" => f2(1 downto 0) <= "10";
 WHEN "100" => f2(1 downto 0) <= "11";
 WHEN "011" => f2(1 downto 0) <= "00";
 WHEN "010" => f2(1 downto 0) <= "01";
 WHEN "001" => f2(1 downto 0) <= "10";
 WHEN "000" => f2(1 downto 0) <= "11";
 END CASE;
 -- Third Feistel function step (permutation)
 f3(7)<=f2(6);
 f3(6)<=f2(4);
 f3(5)<=f2(2);
 f3(4)<=f2(0);
 f3(3)<=f2(7);
 f3(2)<=f2(5);
 f3(1)<=f2(3);
 f3(0)<=f2(1);
 -- Final step in block, XOR and Output
 OutA <= InB;
 OutB <= f3 XOR InA;
 END PROCESS;
END feistel_block_architecture;

-- This Feistel function is an adaptation of the DES function
-- XOR -> S-Block -> Permutation
--
-- use four sets of two for output
-- Input : 109 876 543 201 (12-bit)
-- Output: 76 54 32 10 (8-bit)
--
-- S-Box LUT:
-- 111 = 00 110 = 01
-- 101 = 10 100 = 11
-- 011 = 00 010 = 01
-- 001 = 10 000 = 11
-- IN = OUT IN = OUT
--
-- Permutation
-- 0 1 2 3 4 5 6 7
-- 1 3 5 7 0 2 4 6

 54

Processor Code:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

-- Entity Declaration

ENTITY RISC_Processor_wMem IS
 -- {{ALTERA_IO_BEGIN}} DO NOT REMOVE THIS LINE!
 PORT
 (
 PREIN : IN STD_LOGIC_VECTOR(15 downto 0);
 RESET : IN STD_LOGIC;
 CLOCK : IN STD_LOGIC;
 LEDPIO : OUT STD_LOGIC_VECTOR(15 downto 0);
 ADDR : OUT STD_LOGIC_VECTOR(17 downto 0);
 WRITE : OUT STD_LOGIC;
 DATA : INOUT STD_LOGIC_VECTOR(15 downto 0)
);
 -- {{ALTERA_IO_END}} DO NOT REMOVE THIS LINE!

END RISC_Processor_wMem;

-- Architecture Body

ARCHITECTURE RISC_Processor_wMem_architecture OF RISC_Processor_wMem IS

BEGIN
 -- ALU Process
 PROCESS (CLOCK)
 -- Procesor Register(s)
 VARIABLE holder : STD_LOGIC_VECTOR(11 downto 0)

 := "000000000000";
 -- Program Command
 VARIABLE opcode : STD_LOGIC_VECTOR(3 downto 0);
 -- Program Data
 VARIABLE opdata : STD_LOGIC_VECTOR(11 downto 0);

 VARIABLE rst : STD_LOGIC := '1';
 VARIABLE prog : STD_LOGIC := '1';
 VARIABLE pcount : STD_LOGIC_VECTOR(17 downto 0)

:= "000000000000000000";
 BEGIN
 IF (CLOCK'event and CLOCK = '1') THEN
 ADDR <= pcount;
 pcount := pcount + '1';

 IF (prog = '1') THEN
 -- In programming phase
 WRITE <= '1';
 DATA <= PREIN;
 IF (PREIN = "1111111111111111") THEN

 55

 prog := '0';
 pcount := "000000000000000000";
 DATA <= "ZZZZZZZZZZZZZZZZ";
 END IF;
 ELSE
 -- In processor phase
 WRITE <= '0';
 -- Fetch
 -- Decode
 opcode := DATA(15 downto 12);
 opdata := DATA(11 downto 0);
 -- Execute
 CASE opcode IS
 WHEN "0000" => holder := holder;
 -- ADD: Add HOLDER with OPDATA
 WHEN "0001" => holder := holder + opdata;
 -- SUB: Subtract OPDATA from HOLDER
 WHEN "0010" => holder := holder - opdata;
 -- INC: Increment HOLDER
 WHEN "0011" => holder :=

holder + "000000000001";
 -- DEC: Decrement HOLDER
 WHEN "0100" => holder :=

holder - "000000000001";
 -- NOOP: Do nothing
 WHEN "0101" => holder := holder;
 -- LOAD: Set HOLDER equal to OPDATA
 WHEN "0110" => holder := opdata;
 -- Out: Write HOLDER to LEDPIO
 WHEN "0111" => LEDPIO <= "0000" & holder;
 -- GoTo: PCOUNT <= OPDATA
 WHEN "1000" =>
 pcount := "000000" & opdata;
 ADDR <= pcount;
 -- EOP: LED <= FF;
 WHEN "1001" => rst := '1';
 -- NOOP if unrecognized OP code
 WHEN OTHERS => holder := holder;
 END CASE;
 END IF;
 END IF;
 END PROCESS;
END RISC_Processor_wMem_architecture;

