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CHAPTER I 

 

INTRODUCTION 

 

The ever-increasing speed and reliability of Field Programmable Gate Arrays 

(FPGAs) make them attractive platforms for security applications. Security is a very 

processor-intensive process, so having a secondary chip in the form of a co-processor or 

other circuit dedicated to the task can reduce the computational burden on the main 

processor and allow it to execute other tasks. Furthermore, some security applications 

require a fast response time which can only be achieved with dedicated hardware circuits. 

FPGAs provide the flexibility and resources to implement these specialized tasks. 

Security exists not only on the software level but on the hardware level. Various 

types of attacks include downloading physical memory to access data, monitoring 

communication channels to eavesdrop on messages, or reverse-engineering integrated 

circuits to discover their function. One vulnerable location in a computer system is the 

interface between a microprocessor and its external memory. An attacker could monitor 

the exchanges between the microprocessor and external memory by listening on the 

interconnect bus. Also, the contents of the external memory could be downloaded for 

analysis [1]. Encrypting memory utilized by the processor can provide some protection 

against this form of access, but inserting an encryption module between the processor and 

memory has its challenges. Memory accesses are often the performance bottleneck, so 

extra processing time for encryption can degrade the application performance [2]. The 
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encryption module will also require transparency to avoid redesign of the processor-to-

memory interface. 

This work utilizes an FPGA in order to design hardware-level encryption [3] that 

provides a transparent interface for memory accesses with minimal impact on the normal 

operation of the processor. To demonstrate this functionality, the Data Encryption 

Standard (DES) algorithm [4] has been implemented in hardware using an FPGA. This 

module was used as an encryption/decryption device between a test processor and 

memory. Results from the simulation show that the encryption operates within the 

theoretical bounds of the cycle time for memory access. The hardware implementation of 

the test system validates the simulation results. The timing and the resource utilization of 

the hardware implementation have been analyzed for the processor, memory, and the 

encryption both separately and as a full system. 

 

This thesis is broken down into several chapters: 

• Chapter Two motivates the usage of FPGAs in security applications. 

• Chapter Three discusses the DES algorithm and how the algorithm is translated into 

an FPGA implementation. 

• Chapter Four describes the processor and memory components implemented in the 

test system. 

• Chapter Five describes the analysis methodology to evaluate the processor, memory 

and encryption in the test system. 

• Chapter Six presents the results of this project. 
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• Chapter Seven concludes the discussion on securing the interface between a processor 

and memory and describes the implications for a full-scale computing system. 
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CHAPTER II 

 

SECURITY APPLICATIONS IN FPGAs 

 

1) Security 

Security, by definition, is the safeguarding of an individual’s or organization’s 

assets against danger (e.g., theft, destruction, or unwarranted modification). Security, 

from a computer standpoint, becomes necessary in any case where we want to protect 

data from others who are not authorized to see, obtain, or manipulate it. Basic digital 

security consists of managing three aspects: (1) confidentiality, (2) integrity, and (3) 

availability [5]. Maintaining confidentiality ensures that the data is unable to be read by 

someone without authorization. This is the most basic of security concerns; while data 

may be easily accessible, you do not want an attacker to read it or utilize it. The integrity 

property differs from confidentiality in that it involves making sure that the data remains 

unchanged from its original form. There are two forms of integrity: (1) data integrity and 

(2) source integrity. Data integrity must verify that the data transmitted has not been 

falsified or altered. Source integrity must confirm that the origin of the data is legitimate. 

Simple integrity methods, such as a parity checker, can verify the data and detect if 

corruption occurs, while more complex methods, such as error correction, enable the 

recovery of corrupted data. Finally, availability involves maintaining the ability for 

authorized viewers to access secured data. While availability is one of the more difficult 

of the security priorities, it generally refers more to preventing attackers from 
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intercepting data requests and keeping services from being brought down, as is the case 

in a Denial of Service Attack [6]. The work presented in this thesis focuses upon 

maintaining confidentiality within an individual computer system. 

 

2) Field Programmable Gate Array Platform 

Field Programmable Gate Arrays (FPGAs) occupy an interesting and useful niche 

in computer engineering because of their programmability. This capability makes it a 

suitable platform to prototype integrated circuit designs. FPGAs can consist of several 

hundred to several thousand functional logic blocks arranged in a grid with 

communication channels lying in between the blocks. While designs can vary, Figure 1 

shows the typical island-style architecture [7] where each logic block is surrounded by 

programmable interconnects and channels. Each logic block contains some basic logical 

elements, memory, and a look-up table (LUT), which can be configured to perform a 

small function or task. Individually, each logic block can only perform simple tasks, but 

when chained together, more complicated objectives become possible. To implement 

more complex designs, logic blocks communicate with each other via channels, i.e., the 

programmable interconnect that lies in the grid spaces between the blocks. Where 

channels cross, there are control switch blocks with additional logic that determine signal 

routing. For reprogrammable FPGAs, the configuration settings for logic blocks and 

channels are maintained by an SRAM, Electrically Erasable Programmable Read-Only 

Memory (EEPROM) or Flash ROM. 
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Figure 1 - Logic Block Array [8] 

 

A) Logic Implementation on an FPGA 

A basic logic block, or logic element, consists of three parts: a look up table, a 

storage element, and a multiplexer to select internal signals (Figure 2). A sample lookup 

table may contain four input pins and one output pin which enables it to perform a simple 

4-bit function such as a 4-input AND gate. The storage element consists of a simple 

clocked D flip-flop that, when enabled, will store the output of the lookup table. The final 

output of the logic block is determined by a switching block which chooses a line for the 

output channel. 

 

 

Figure 2 - Basic Logic Block [9] 
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The basic logic block can be expanded in many ways to add versatility [9]. The 

first, and easiest, is stacking the logic blocks and creating “arrays” of varying sizes. A 

typical size may be 8 or 16, which can handle a byte of data collectively. Another method 

to increase performance is to increase the number of inputs into the look-up table. This 

enables more complex look-up tables, but also increases the size of the table 

exponentially. Larger LUTs may not be utilized as efficiently as the typical 4-input LUT. 

Additional components can include dedicated logic gates for AND, OR, and XOR, as 

well as registers, bit-shifting components for arrays, and carry chains for faster addition. 

Finally, certain components can be specialized by inserting dedicated hardware for 

commonly used functions, such as a multiply-accumulate operation or memory. 

Channels are the means through which data can be transmitted between logic 

blocks [10]. Channels lie in the row and column space between the logic blocks in the 

architecture. Furthermore, if the logic blocks are stacked, then the channels will be 

likewise stacked. Each channel generally has multiple parallel lines for communication so 

that several signals can utilize the same channel, which in turn reduces the complexity for 

routing. A switch block is position where row and column channels meet. Switch blocks 

contain all the necessary connections that allow signals to transfer from row channels to 

column channels, and vice versa. As such, it does not matter where a logic block is 

located relative to the next one in a function chain as long as it is possible to route a 

signal from the prior output to the input of the next. The process of routing signals 

between logic blocks, while complex, is the basis for the flexibility in an FPGA. 
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B) Capabilities of an FPGA 

FPGAs at their basic level could be used to implement simple logic circuits by 

assigning the input pins to a logic function programmed into the device. However, this 

does not utilize some of the more important features. The key to getting the most out of 

the FPGA is by using the advanced features a typical FPGA may provide: language 

abstraction and reprogrammability. 

The basis for abstraction comes from the hardware description languages. Using 

schematics and block diagrams to describe the dataflow, while possible, is impractical for 

larger systems. Thus programming languages are used. The two most common languages 

are VHDL (VHSIC hardware Description Language) [11] and Verilog [12], both of 

which provide structure for defining logical blocks and behavior of FPGA devices. 

Electronic Design Automation (EDA) tools first convert the code and/or schematic 

diagrams into formal logic functions. The EDA tool will then organize the functions into 

logic blocks, followed by placing and routing the design within the actual chip. The final 

step in the process is the generation of a configuration file which can be used to program 

the FPGA. 

VHDL was used for this project. Basic VHDL design utilizes blocks or ‘entities.’ 

Entities have their behavior controlled by the architecture that defines how signals will 

flow from the inputs to the outputs of the entity. In order for an entity to accomplish a 

task, it must have an output, but not necessarily an input. Within the architecture, signals 

are manipulated by functions which range from simple logic gates to mathematical 

operations and sub-architectures. Programmers are able to define their own functional 

architectures and use them just like any high-level language. Signals themselves can have 
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complex values [13]. Signals represent data lines on the bit-level. Beyond the simple 1 

and 0 values, they can possess other electrical values such as weak, strong, unknown, or 

high-impedance. VHDL is used to define specifically the behavior of an electrical device, 

so it is important for the programmer to understand the operation of signals on the data 

lines and either utilize or make allowances for them. 

The final key advantage to FPGAs as development platforms comes from their 

ability to be reprogrammed. Instead of manufacturing an entire chip to test a design, the 

FPGA can be programmed, tested, and reprogrammed should the current design fail to 

function as desired. This final aspect is the most important feature when considering a 

platform for system prototyping. 

 

C) FPGA vs. ASIC 

Application Specific Integrated-Circuits, or ASICs, is the umbrella definition that 

applies to any chip that can be designed to be configurable to a particular task [8]. While 

FPGAs can fall under this definition, convention keeps them separate. Fundamentally, 

most ASIC chips are structurally similar to FPGAs, the primary difference being that 

ASICs are typically one-time programmable. Instead of memory cells to program an 

ASIC device, they are manufactured with anti-fuses [14] to allow users to configure the 

desired function into the chip or are manufactured with metal interconnect according to 

the specified design.  
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Figure 3 - Part Cost vs. Quantity [7] 

 

The reprogramming aspect of an FPGA comes at a cost with respect to ASIC 

designs. While the chips are fundamentally similar, FPGAs sacrifice speed and cost for 

versatility. Per-part, FPGAs are more expensive, however they require a lower initial 

design cost since you do not need to replace the FPGA with each failed design. Figure 3 

shows the volume-to-cost analysis for FPGAs and two kinds of ASICs: Masked Gate 

Array (MGA) and Custom Cell-Based ASIC (CBIC). The initial fixed cost for FPGAs is 

considerably lower than the MGAs and CBICs. However, as the volume of parts 

increases, ASIC implementations become more competitive. One final aspect of note is 

that an ASIC can also operate faster than an equivalent FPGA. Since the ASIC is 

hardwired with metal lines, there are no additional routing delays that result from the 

channel switching. Furthermore, designers can perform additional optimizations to the 

ASIC design prior to manufacturing since they have greater control of the layout of the 

integrated circuit. 
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3) Security and FPGAs 

FPGAs are an attractive option for security applications because of their 

reprogrammability [15]. This enables operators to manage security algorithms in one 

contained package as well as to change security methods and algorithms without having 

to replace their hardware. Common security applications for FPGAs include secure co-

processors and network security algorithm implementations [16][17]. While it is useful to 

know the uses of FPGAs in security applications, it must also be noted that FPGAs are 

vulnerable to a variety of attacks themselves [3]. The three prominent means of attacking 

an FPGA are through black box, read back, and side channel [18]. 

Black Box attacks on FPGAs are an extremely basic method for attempting to 

discover the functionality encoded on the chip. The basis of this attack is to feed every 

possible input combination into the FPGA input pins and monitor the resulting outputs. 

The inner workings of an FPGA may be determined through the use of maps and truth 

tables. This method is time consuming and becomes exponentially difficult as the 

quantity of inputs and outputs increases on the FPGA. Additionally, if an FPGA contains 

one or more state machines, the entire technique can be rendered invalid. 

The next viable attack is to read back the configuration data. Reading back the 

data from the FPGA is useful for programmers who need to debug their projects as the 

implementation may be different from what they realized. Read-back is also useful to 

check for software errors resulting from prolonged use, such as accidental bit flips or 

even hard errors when used in radiation environments. As this is a common and logical 

method for attacking an FPGA, most developers include debug mode flags that enable or 

disable read-back for the contents of memory. 
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Higher up on the security schemes are the side-channel attacks. A side-channel 

attack is defined as any method that does not use a standard input/output scheme to 

monitor the activity of an FPGA. Common side channels can be as simple as watching 

non-output pins for leaked signals while the more difficult ones include power demand 

analysis and monitoring electromagnetic radiation. Power-demand analysis is the 

procedure of taking an FPGA under-test and watching the consumption of power by the 

chip over time [19][20]. Certain logic operations and functions require a differing amount 

of power to run and as a general rule, the more logic elements activated by a process the 

more power the FPGA will consume. By watching the transient power consumption of 

the chip, it is possible to gain an understanding of its current state. While this does not 

directly provide any real information about the content of the FPGA, coupled with I/O 

monitoring, this can be useful to understanding the operation of an FPGA and can signify 

which outputs to monitor. The monitoring of electromagnetic (EM) radiation from an 

FPGA works in a similar fashion by understanding how much EM radiation is being 

emitted by the chip. By mapping the EM radiation to different areas of the chip, the 

operational state of the FPGA can be deduced. 
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CHAPTER III 

 

DES IMPLEMENTATION ON THE FPGA 

 

1) Structure of a basic DES algorithm 

The Data Encryption Standard (DES) algorithm is fundamentally a cryptographic 

block cipher [4]. Therefore, for each block input, you receive another unique block with 

essentially a one-to-one mapping. Furthermore, DES does not involve block chaining and 

can be used for random access, which is essential to a cryptographic bridge between 

processor and memory. More advanced methods of the DES algorithm are available for 

use since the cryptographic strength of normal DES is under scrutiny [21]. While there 

are more complex forms of DES [22][23], for this implementation the normal structure of 

DES is used. 

 

 

Figure 4 - Sample DES Design 
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A sample DES block is constructed of four parts: (1) Initial Permutation, (2) the 

Feistel Chain, (3) the Key Schedule, and (4) the Final Permutation (Figure 4). The 

strength of the DES algorithm lies not in the permutations, but the process through which 

it generates keys for the Feistel function and its repeated application. The Feistel chain 

contains 16 individual Feistel Blocks, and for each block the key schedule provides a 

unique key.  

Following the initial permutation, the data block is split in half, requiring that the 

inputs possess an even number of bits. Within the Feistel chain, the block halves get 

placed on either an XOR function or the Feistel Function. The Feistel function takes the 

unique key for that block and performs a series of combinations and permutations on the 

data block. This is discussed in more detail later. The output of the Feistel function is 

then fed to the XOR to be combined with the first half of the data block. For each 

following Feistel block, the halves are alternated. After the sixteenth block, the resulting 

data is then fed through the output permutation, and the encryption process is completed. 

The decryption process for DES utilizes the exact same structure as encryption; 

however the operation occurs in reverse order. First the data is fed into the output 

permutation. Then, starting at the last Feistel block, the data moves to each previous 

block up to the first, and finally passes through the input permutation. The primary 

advantage of this operation is that both the encryption and decryption processes can 

utilize similar hardware circuitry. 
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2) Structure of the algorithm on the FPGA [24] 

Construction of the DES cipher occurred in 3 parts: the Feistel Chain, the Key 

Generator, and the Permutation blocks. The Feistel Chain is composed of sixteen 

repeated individual Feistel blocks that actually perform the cryptographic process. The 

Key Generator, or Key Schedule, constructs each of the sixteen unique keys used in each 

link of the Feistel Chain. The Permutation Blocks, of which there are two, randomize the 

bit order of the data inputs and outputs by an arbitrary, yet consistent, pattern. 

 

 

Figure 5 - Feistel Block 

 

The Feistel Block (Figure 5) contains both the Feistel function and the XOR 

combination. It receives the SubKey from the Key Generator and the input data block 

that is then split into two halves: InputA and InputB. InputB is fed along with the SubKey 

into the Feistel function. The Feistel function outputs a new data block, which is then 

XOR'ed with InputA. The result of the XOR is then fed out as OutputB, while InputB is 

fed to OutputA unchanged. The next Feistel Block will utilize OutputA for its InputA, 
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and OutputB for InputB. By alternating the halves, each instance of the Feistel Block will 

encipher on a separate half of the data. 

 

 

Figure 6 - Feistel Function 

 

The cornerstone to this, however, is the Feistel Function (Figure 6). The first step 

is to XOR the SubKey with InputB. The next step is to break up the result into equal 

pieces and feed them into the S-Block. The S-Block is a basic look up table (LUT) that 

reduces the number of input bits using an arbitrary rubric. The final part is a permutation 

block that shuffles the bits from the S-Block.  

The Key Generator (Figure 7), which produces each sub-key, receives two inputs: 

(1) the Base Key and (2) the Decrypt signal. The Base Key is the complete DES key from 

which the individual keys are constructed. To begin, the Base Key is split in half to create 
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two parts (PartA, PartB). For each of the sixteen keys, each part is rotated by one bit and 

is fed into a permutation function to create the specific SubKey. 

 

 

Figure 7 - Key Generator 

 

The permutation function itself is a static compilation of an equal number of 

individual bits from PartA and PartB. As such, each bit is used at least once to contribute 

to the sub keys to provide a unique sub-key for each Feistel block. Finally the Decrypt 

signal indicates to the Key Generator when the DES is going through the decrypt cycle. 

When Decrypt is active, the keys are constructed in the same method, but are output in 

the reverse order, such that SubKey(16) becomes SubKey(1), and so on. 
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Finally, the Permutation Blocks serve a dual purpose for this implementation of 

the DES algorithm. The first purpose is to provide pre- and post-permutations to the data, 

the output permutation being the inverse of the input permutation. Simply changing the 

order of the bits offers no additional cryptographic strength; however the blocks serve a 

more useful purpose. In order to keep the implementation on the FPGA symmetric, and 

reduce the number of logic elements on the chip, the permutation block interprets the 

Decrypt signal (same as the one fed to the Key Generator) to swap the first and second 

halves of the data for the decrypt cycle. This ensures that the block will be decrypted 

instead of re-encrypted with the same key. 



 19

CHAPTER IV 

 

IMPLEMENTATION OF THE TEST SYSTEM 

 

For this project, the ultimate goal is to test the latency and the transparency of the 

encryption module. To determine the latency, cycle times of the test processor will be 

sampled to observe how encryption affects the overall performance. Of the utmost 

importance to any FPGA project is the idea of propagation delay. It is important to 

understand how long it takes for a signal, upon being clocked or receiving new inputs, to 

show an output change and to stabilize to a new output level. This end-to-end delay 

determines the maximum speed at which the FPGA can operate to ensure that all data 

reaches the output before the next cycle tries to use that data. This will be discussed 

primarily in the performance experiment section. 

The hardware prototype used an Altera DE2 Development and Education Board 

[25]. While the board itself contains a large number of peripherals, there are only a few 

that concern this project. First and foremost is the FPGA itself, which is an Altera 

Cyclone II EP2C35F672C6 FPGA [26]. This design contains 68,416 logic elements with 

which to create designs as well as 622 I/O pins to control outputs and other peripherals. 

Embedded in the design are 150 pre-configured 18x18 multipliers and 1.1 Mbit of usable 

memory. The Cyclone II is optimized to run at a maximum clock speed of 402.5 MHz, 

while the embedded devices operate at 250 MHz. The standard Cyclone II logic block 

differs from a standard simple logic block in that it provides additional logic for 

controlling clock inputs, a global reset, and carry chain additions. Figure 8 shows a 
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Cyclone II logic block. Among the numerous other items on the DE2 board, this project 

utilized a bank of eighteen red LEDs, a bank of eighteen switches, two external clocking 

chips rated for 50 MHz and 27.5 MHz, and finally a 256K x 16-bit SRAM chip. The final 

important piece of hardware included is the USB Blaster programming interface. 

 

 

Figure 8 - Altera Cyclone II Logic Block 

 

There are two methods for programming the FPGA on the board: active and 

passive. The passive mode serves to one-time program the FPGA for single use running. 

When the FPGA loses power again, it will revert to the saved program in memory. The 

active mode, in addition to configuring the FPGA for the program, also places the 

configuration data into the FPGA’s memory such that when the FPGA is powered on the 
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next time it will remember this new configuration. For the purposes of this project, the 

FPGA was only configured in passive mode as it was unnecessary to fully reprogram the 

chip. 

This project was designed using Quartus II software, version 6.1 [27], provided 

by Altera and utilized ModelSim [28] to perform timing analysis functions. Quartus II is 

an EDA tool used for design entry using VHDL or schematics, design synthesis, and 

device configuration for Altera-based FPGAs. ModelSim is a logic simulator for the 

hardware description language. It uses accurate timing models provided by Altera to 

emulate the Cyclone II device. All of the data reported here is obtained from ModelSim 

and then reorganized into Excel graphs. ModelSim works by receiving the actual 

programming file normally sent to the FPGA and then emulates the FPGA under test. 

ModelSim is used because there is no practical way to extract internal timing information 

directly from the FPGA. 

In this section, we will focus on the transparency of the design. Transparency is 

tested by identifying any necessary modifications, if any, to the processor in order to 

implement the encryption successfully. This project is constructed with three elements: 

(1) processor, (2) encryption, and (3) memory. For each of the three elements, the basic 

design will be discussed. Then the section will describe any additional design 

considerations that were made in order to make it compatible with the encryption. Full 

schematics of the design as well as the corresponding VHDL code are available in the 

appendix. 
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1) Processor Design 

The basic structure of this Reduced Instruction Set Computing (RISC) processor 

is simple and designed specifically to run basic programs to test the memory interface. It 

primarily consists of an ALU, a data register, and a program counter. At the beginning of 

each clock cycle, the program counter is incremented (Figure 9). The instruction (OP 

code) is then fetched and decoded into instruction information and data. The ALU then 

performs the current instruction based on the OP code fetched from memory. At the end 

of the cycle, any writes to memory or outputs occur. Finally, the ALU also provides a 

data register to store a single data string for use in the mathematical functions. 

 

 

Figure 9 - Sample Processor Cycle 
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The addressable memory is 256K words, which maps to an 18-bit wide address. 

Therefore, internal memory addresses and the program counter are 18 bits wide. The 

word width of the memory is 16 bits wide. During the decode phase of operation, the 

processor reads in the 16-bit OP code and splits it into the instruction and data portions. 

For this RISC implementation, there are currently nine instructions, which require 4 bits 

to code and leave 12 bits for the immediate field. Of the ten instructions available to this 

processor, four utilize the immediate field of the OP code. Whenever an instruction does 

not need that field, it is set to all zeros. 

Each of the different OP codes corresponds to a unique function in one of two 

categories: manipulation and mathematical. There are four manipulation functions that 

perform the interface and control portions of the processor. The LOAD function pulls the 

data portion of the OP code and puts it in the data register, overwriting the current 

content. The no-op function skips a processor cycle. An LEDPIO function moves the 

current contents of the holder to the light emitting diode processor input/output register. 

The LEDPIO controls the content of the LED display on the DE2 Board. The JUMP 

instruction operates by resetting the program counter, adding in the immediate field of the 

OP code, then finally re-feeding the address line. The four mathematical functions 

operate directly on the data register. The ADD instruction sums the immediate field with 

the data register and returns the result to the data register. The SUB instruction, likewise, 

subtracts the immediate field from the data register and returns it the data register. The 

INC and DEC instructions respectively increment and decrement the current contents of 

the data register by one. The final two uncategorized functions in the instruction set 

perform functions similar to no-op in the ALU. Their primary usages are for the program 
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counter and decoder. These OP codes, set to all zeros and all ones, signify the 

initialization states of the processor. When executed, the data register is reset to zero and 

the addresses are zeroed, similar to a reset. Additionally, when the all-zeros instruction is 

used, it halts the processor operation, signifying the end of the program code. Table 1 

provides a full list of the instructions and their associated OP codes for the processor 

developed for this study. 

 

Table 1: Instruction List for the RISC processor 

Instruction Code Detail 

END 0000 Stops processor operation until Initialize 

ADD 0001 Addition of DATA to ALU Register 

SUB 0010 Subtraction of DATA from ALU Register 

Increment 0011 Increment the ALU Register by 1 

Decrement 0100 Decrement the ALU Register by 1 

NOOP 0101 No Operation, do nothing 

LOAD 0110 Set ALU Register equal to DATA 

Output 0111 Set output buffer to the contents of the ALU Register 

GoTo 1000 Set the Program Counter equal to DATA 

Initialize 1111 Initializes the processor, Reset Program Counter & ALU 

 

The single largest limitation to this processor is the JUMP instruction: no program 

can be longer than 4095 individual instructions. Another limitation is the lack of 

branching instructions. This reduced the amount of advanced logic that can be utilized in 
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the test program. For this current usage, these limitations are unimportant to the entire 

goal of this project. However if this processor were to be used elsewhere, it would require 

a modification. More features that should be included would be a status register 

containing flags for various ALU conditions, instructions to handle branching conditions, 

and double-wide instructions to remove the limitations on the number of OP codes and 

instruction data width. 

 

2) Memory Controller 

The memory chip used is a generic SRAM chip included on the DE2 development 

kit for this project. The SRAM chip is a 256K by 16-bit memory array yielding a 16-bit 

data width and 18-bit addressing [29]. The worst case response time for this chip is 15 ns, 

resulting from the way in which the memory cell locks the values. The read cycle is 

longer than the write cycle. The memory chip cannot be simulated within ModelSim with 

respect to the processor and encryption, so it is assumed that the chip is working at worst-

case speed at all times. 

The controller for the memory has been implemented as the interface from the 

processor to the memory. The memory possesses several inverted control inputs. The 

inputs of most concern are the Chip Enable ( CE ), the Output Enable (OE ), and the 

Address and Data (Dout) lines. The basic operation states that when the chip enable is 

clocked, it locks the value for the address, retrieves the contents of the specified memory 

cell, and returns the data to the data line. When the Output Enable is asserted, and the 

chip enable is clocked, the memory locks the address and the data lines and stores the 

value of the data line into the specified memory address. According to the table in Figure 



 26

10 provided from the datasheet, the read cycle incurs the largest amount of delay. This is 

important as read operations occur every processor cycle (i.e., the instruction fetch). 

Figure 10 also illustrates a typical read cycle for this SRAM chip 

 

 

Figure 10 - SRAM Latency Table and Sample Read Cycle 

 

3) Encryption Interface 

While any encryption could be used theoretically, we are limited to block ciphers 

only. Typical communication protocols will use stream ciphers whereby each encrypted 

block will have its contents encrypted with relation not only to the key, but also to the 

previous block. Stream ciphers cannot be used in the processor-to-memory interface 

because memory requires random access. DES was chosen because it provides a 

reasonable amount of security strength for a block cipher without being encapsulated into 

a stream cipher. 

The actual implementation of the DES algorithm occurred with both block 

diagrams and VHDL code. As discussed above, there are three main blocks: the Feistel 

block, the Key Generator, and the Permutations. Additionally, there is one extra block 
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which stores the key that is used in the encryption. Currently this key is set statically, but 

in theory it can be changed manually or configured with a full set of different keys. 

First, the key generator operates by taking the main base key and calculating 16 

sub keys for each of the 16 Feistel blocks. The sub keys are generated in a similar manner 

to the operation of the DES and begin by breaking the key in half. The base key in this 

implementation is 24 bits wide, differing from standard DES of 54, to accommodate the 

reduced data size of the data word (16 bits). The base key is broken into equal chunks of 

12 and placed in two separate shift registers. A permutation function selects 6 bits from 

each shift register and assembles them in a random order to produce the sub key of length 

12. At the end of each step, the shift registers rotate left by 1 bit before the process starts 

over again for the next sub key. This process repeats 16 times for each sub key. 

The Feistel chain in this case operates exactly the same as a normal DES 

implementation, differing only from the standard block size of 64 bits. The data width 

starts at 16 bits and is split into two equal pieces of 8 bits each. The first half is fed into 

the XOR combination. The second half is fed into the Feistel block. The Feistel block 

operates by taking the 8 data bits, expanding it to twelve by adding zeros, and then XORs 

the new data with the 12-bit sub key from the key generator. Next, this new 12-bit block 

is broken into two groups of six bits and fed into the S-blocks. Each S-block is a look up 

table that transforms the six bits into four bits based on an arbitrary, and non-linear, 

association. Standard DES also uses a six-to-four transformation but increases the 

number of S-blocks to eight. The final step of the Feistel block involves putting the final 

eight re-combined bits through one final permutation. The resulting 8 bits goes into the 

XOR with the first half of the data. The next link in the Feistel chain utilizes the output 
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from the XOR as the input to the Feistel block, and the previous input is placed on the 

current XOR. 

At the beginning and the end of the Feistel chain are the two permutation blocks. 

For this implementation, the blocks perform two functions. First, the permutation blocks 

will apply a symmetric randomization to the bits and break the block into its respective 

data halves for entry into the Feistel chain. Secondly the block will watch for the 

decoding flag and swap the data halves when in decryption mode. The permutation is 

designed to increase obfuscation even though it does not add any additional security 

strength to the DES block. Furthermore, the end permutation is designed to mirror the 

first one such that it is undone at the end of the Feistel chain.  

There are some notable limitations to this implementation of DES. First and 

foremost comes from the size of the key and the data block [30][31]. Standard DES uses 

a 64-bit data block and a 56-bit key. From the data block alone, this significantly reduces 

the strength of the DES operation, making it much easier to brute force [21]. The data 

block is 16 bits because it is limited by the size of the memory data channel. Standard 

DES encryption strength relies on the sub-key permutation and the S-Blocks. The sub-

key permutation determines the portion of the base key to utilize for a particular Feistel 

block. The S-blocks provide an arbitrary, non-deterministic bit alteration to the final key. 

Reducing the key size reduces the sub-key variance, which also reduces the cipher 

strength. Similarly, reducing the size of the S-Blocks limits their cryptographic 

significance. The key size was chosen to be 24 bits from working backwards through the 

DES implementation. It was sufficient in this case to maximize the permutation block 

while minimizing the resource utilization on the FPGA. Theoretically, the key can be of 
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any size and the S-blocks are utilized to reduce the size of the Feistel block output to the 

data width. 

 

4) Test System 

The finished product contains four parts: (1) the processor, (2) the memory 

controller, (3) the encryption block, and (4) the pre-program memory. The basic modules 

have connections between the processor and encryption, and between encryption and the 

memory controller. The pre-program memory, discussed in the next section, serves a 

special purpose and is connected directly to the processor. 

Several design implementations for the final construction of the 

CPU/Encryption/Memory system were created to help accommodate the DES but 

maintain the same functionality as discussed above. Keeping in mind the end-to-end 

delay, at the beginning of the clock cycle, the data processed from the previous cycle 

must be completely stable before it can be used for the next cycle. In the first version of 

the system, clocking the processor triggered the program counter to increment followed 

by memory fetch, decode, and execution. While simple to program, this implementation 

possesses the longest end-to-end delay and is subject to variations in memory delay. It 

also varies the processing time for instructions. To improve on this design, two revisions 

were devised in order to reduce the delay by removing the time to read memory within 

the current processor cycle. The first revision operated by initiating the fetch cycle on 

clock high, which increments the program counter and sends signals to memory and 

returns the data through the encryption. On clock low, the processor takes the fetched 

data, decodes it, and executes the corresponding instruction. The second revision utilized 



 30

a form of pipelining by dividing the processor into two sections, fetch and execute. On 

clock high, the processor begins by decoding and executing the current instruction 

provided by memory. It then finishes by using the program counter to fetch the next 

instruction. In this method, the processor is always executing on the previous instruction, 

giving sufficient time to run the decryption; however, program length is increased 

through the inclusion of a NOOP after jumps, and the processor is initialized to a NOOP. 

Splitting up this design, it becomes easier to manage the dataflow for the processor by 

forcing all the sequences with the heaviest delay to occur in one half of the clock cycle 

and the processor to operate in the other half. 

 

5) Test Setup 

 The test setup for this design takes place in two stages: (1) static code encryption 

and (2) code execution. In the first stage the processor reads the program data from pre-

program static memory. Each clock cycle, the processor takes an instruction from the pre-

program memory and sends it through the encryption to the memory controller and writes 

it to the SRAM chip. This process continues until the program finds the stop code of all-

ones. After this, the processor enters execution mode where it begins by resetting the 

program counter and data register, and accesses the first instruction from the SRAM chip. 

Once in execution mode, it continues to perform whatever instructions it is doing until it 

sees the all-zeros, which signifies end-of-program. 
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CHAPTER V 

 

ANALYSIS METHODOLOGY 

 

For this experiment there are two goals. First is to gauge the performance hit from 

the addition of the encryption. Primarily, this was measured by examining the response 

time between the processor and memory, first the baseline without encryption and then 

with the encryption. The maximum clock speed and instructions per second can be 

calculated with this information. The end result is that the effectiveness of the encryption 

scheme can be evaluated. The second goal is to determine the amount of on-chip 

resources required to implement this design scheme. The implications which follow stem 

from size and cost; smaller and more inexpensive FPGAs can be utilized to perform the 

same task. 

The test process was an iterative simulation using ModelSim, which provides a 

near-perfect virtualization of the FPGA design under examination. Each design model 

was recompiled before simulation. In order to test the maximum speed of this model, four 

values need to be known: (1) worst-case response for the ALU, (2) worst-case access 

time for memory, (3) worst-case response for the DES, (4) and average-case for DES. By 

summing the worst-case delays required to execute one instruction cycle, a general idea 

for the maximum clock cycle for this processor can be determined. 
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1) Baseline Performance Experiments 

 

ALU: 

 

 

Figure 11 - Processor Test Setup 
[Quartus II Block Diagram] 

 

It is important to test to see how long it takes for the CPU to execute one full 

cycle and therefore determine its delay time. To do this, it was important to remove the 

encryption and memory from the equation and isolate the processor. To do so, the 

memory and encryption blocks were removed from the block diagram yielding the design 

in Figure 11. Since the instruction delay was the target of this test, each instruction was 

placed on the memory input prior to the processor being clocked for the current cycle. 

Replacing the memory, an instruction generator was inserted that ignored the addressing 

signals for the actual output; instead it used those signals as a clock to generate the next 

instruction. Understandably, each instruction will have a different delay time, and 
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therefore they needed to be tested individually. Each time the instruction generator was 

clocked, it would output the current test instruction and a randomized bit-set for the data 

portion. 

 

Memory: 

The testing of memory to prove that it operated within its ranges proved difficult, 

if not impossible. The only thing that could be tested is that it worked and how much 

additional overhead the memory controller added to the response time. The memory 

controller itself was written to be a simple interface. The majority of the data fed into it 

was pass-through, and the rest of the values were static. Testing the memory showed the 

memory controller added no additional time to memory operation. Therefore, the default 

values provided by the data sheet were assumed. 

 

Encryption: 

Testing the DES algorithm was accomplished in a similar manner to the 

processor: by isolating it from the other components. In order to determine the average 

and worst case response time for this implementation of the DES algorithm, the logic was 

fed a set of randomized values. Figure 12 shows the setup for the DES system. Included 

in this test was just the encryption routine. DES is a symmetric algorithm and therefore 

both the encryption and decryption process will take approximately the same amount of 

time to complete. The key used was generated randomly before being programmed into 

it. However the value of the key is not essential in calculating overall delay for this 

system. This stems from the fact that the key remains constant and the sub-key outputs 
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from the key generator will remain constant during the entirety of the operation. 

Additionally, changing the key will invalidate any data saved in memory and it is 

undesirable to change it during operation. Finally, from this data set, the amount of time 

it took for the DES output to register and the amount of time it took for the output to 

stabilize were recorded. 

 

 

Figure 12 - Encryption Test Setup 
[Quartus II Block-Diagram] 

 

2) Complete System Setup 

Re-assembling the parts for the full system test corresponds to Figure 13. The 

system was compiled for the Cyclone II FPGA on the DE2 kit then verified in hardware 

to show that all the experimental data was correct. If the encryption is working properly, 

then the hardware implementation is successful.  
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Figure 13 - Final Assembled System 
[Quartus II Block Diagram] 
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CHAPTER VI 

 

RESULTS AND ANALYSIS/DISCUSSION 

 

The simulated tests for both the processor and the DES were constructed using the 

Quartus II software, version 6.1 [27] and simulated with both the Quartus tool and with 

ModelSim [28]. The total utilization of the Cyclone II FPGA chip came to approximately 

10% of the total number of logic blocks available. 

 

 

Figure 14 - Settle Time vs. Instruction Type 

 

The chart in Figure 14 shows the average, minimum, and maximum response 

times for each instruction in the processor. Each instruction was sampled five times, and 

from the timing analysis the average, minimum and maximum times were calculated. 

More samples did not change the deviation. Derived from the data, the quickest 



 37

instruction is the NO-OP at 5.862 ns while the worst-case instruction is Subtract at 7.375 

ns. The average execution time for this processor is 6.828 ns. The instruction with the 

highest variance is the LEDPIO due to it interfacing with the control bank. The end result 

shows that the worst possible case for the processor, which equates to Subtract, comes 

out to be approximately 7.4 ns. 

 

 

Figure 15 - Sampled Stabilization Time 

 

The DES testing provided similarly useful results. Prior inspection dictated that 

the maximum response time for each item would be approximately 10 ns, therefore the 

waveform generator was set to change patterns to a new random value every 20 ns to 

prevent any outliers from causing inconsistencies in subsequent data points. Starting at 0 

ns up to 400 ns, 21 data points were taken as displayed in Figure 15. Each data point 

shows the amount of time taken for the data, after being clocked, to stabilize into a usable 

output. As can be seen, there is not much deviation among the data. Average time from 
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start to stable is 9.204 ns, the deviation is 0.311 ns, and the worst case is 9.558 ns. Using 

this data, the worst-case response can be set to no more than 10 ns when coupled with the 

other components. 

The full-scale system analysis requires summing each of the worst-case times for 

the components: 10 ns from the DES, 7.4 ns from the CPU, and 15 ns from the Memory. 

This brings the total delay to 32.5 ns for a worst-case cycle. The DE2 development board 

used for testing this design provides two hardware clocks: 50 MHz and 27.5 MHz. 

Making this equivalent to the cycle time, the 50 MHz allows for a delay up to 20 ns while 

the 27.5 MHz clock provides approximately 36.37 ns. With the baseline limitation of 

22.5 ns, the 50 MHz clock cannot be used. Adding the encryption increases the cycle 

from 22.5 to 33.5 ns which remains within the 36 ns. 

Within the scope of this project, the data shows that it is feasible to add 

encryption to the processor-to-memory interface while not altering the functionality of 

the processor under test. That being said, while it did not alter the functionality, it did 

affect the maximum speed at which this processor could operate. Any amount of 

additional encryption provided to the memory channel must be given some extra delay 

time in order to perform the necessary calculations. 
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CHAPTER VII 

 

CONCLUSION 

 

Trustworthy computer systems protect the access of sensitive information by an 

unauthorized agent (i.e., an attacker). However, security vulnerabilities exist which can 

allow a system to be compromised by an attacker. Information can be accessed or altered 

by malicious efforts when it leaves the boundary of trust (e.g., the microprocessor). The 

purpose of this work was to design an encryption module, using an FPGA, which would 

serve as in interface between a processor and its memory. The goal was to determine 

whether this could be done at a minimum of interference to the proper operation of a 

processor. An FPGA was used as the hardware platform for the prototype of the test 

system. The greatest challenges were in creating a working processor and memory 

architecture. 

This thesis presented a method to add DES encryption to a processor-to-memory 

interface. Based on the testing results, there will be a performance penalty due to the 

encryption. However, the latency for encryption can be hidden within the normal 

operation of the test processor. In order to allow for this encryption, an adjustment of the 

clock timing was not required over the performance of the base system. While this 

encryption module does not address all the security challenges of the processor-to-

memory interface, it does provide some protection from download attacks to the physical 

memory. In addition, the flexibility of the FPGA platform achieves the goal of 
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transparency by incorporating additional security features into the existing system 

without extensive modification. 

The test system can be used as a basis to draw some insights into large-scale 

systems. The basic RISC processor used in this project can only perform simple 

mathematical operations and read data from memory. An extension to this work would 

incorporate one of the numerous embedded processor designs into the FPGA to replace 

this test processor. Prior to using the current design, a NIOS II processor from Altera [32] 

was examined; however, it failed integrate properly into the test system. Since an 

advanced processor was not a requirement for this project, the processor was scaled down 

to its current form in order to obtain a functional system. This test system also assumed a 

single-chip implementation where all components resided on the FPGA. 

To extend this to a more modular design, the application would utilize the FPGA 

itself as the bridge containing the encryption while processor and memory are 

independent devices. With more advanced processors, the timing of the memory access 

becomes extremely important because memory access is typically the performance 

bottleneck. Ten nanoseconds, which equates to a maximum speed of around 100MHz, 

would severely limit the speed of the processor. Should this be utilized on a standard 

CPU, placing the encryption module as an interface between cache and main memory 

would be a more reasonable choice. However, the encryption module should remain 

within the trusted boundary of the processor. This would improve performance by 

encrypting an entire cache line instead of individual memory accesses. The DES 

algorithm could be used at full strength (i.e., 64 bits) to encrypt an entire cache line. 

Another advantage to separating the CPU from the FPGA is the relaxation of the resource 
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requirements for the encryption. This, in turn, would enable more complexity in the 

security module (i.e., stronger encryption). The fundamental point to remember is that 

security adds operational latency, and in high speed designs any extra latency reduces the 

maximum potential speed at which the processor can operate. 
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APPENDIX OF FIGURES AND VHDL CODE 
 
 

 
 

Complete System Block Diagram 
 
 

 
 

Cryptography Interface Block 
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Feistel Chain (inside the Encrypt and Decrypt blocks) 
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Permutation Block VHDL Code: 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
 
 
--  Entity Declaration 
 
ENTITY Permutation IS 
 -- {{ALTERA_IO_BEGIN}} DO NOT REMOVE THIS LINE! 
 PORT 
 ( 
  Swap : IN  STD_LOGIC; 
  InP  : IN  STD_LOGIC_VECTOR(15 downto 0); 
  OutP : OUT STD_LOGIC_VECTOR(15 downto 0) 
 ); 
 -- {{ALTERA_IO_END}} DO NOT REMOVE THIS LINE! 
  
END Permutation; 
 
 
--  Architecture Body 
 
ARCHITECTURE Permutation_architecture OF Permutation IS 
BEGIN 
 PROCESS(Swap, InP) 
 BEGIN 
  IF Swap='1' THEN 
   OutP(15 downto 8) <= InP( 7 downto 0); 
   OutP( 7 downto 0) <= InP(15 downto 8); 
  ELSE 
   OutP <= InP; 
  END IF; 
 END PROCESS; 
END Permutation_architecture; 
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Key Generator Block Code: 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
 
--  Entity Declaration 
 
ENTITY Key_Generator IS 
 -- {{ALTERA_IO_BEGIN}} DO NOT REMOVE THIS LINE! 
 PORT 
 ( 
  BaseKey : IN  STD_LOGIC_VECTOR(23 downto 0); 
  Decrypt : IN  STD_LOGIC; 
  Key01   : OUT STD_LOGIC_VECTOR(11 downto 0); 
  Key02   : OUT STD_LOGIC_VECTOR(11 downto 0); 
  Key03   : OUT STD_LOGIC_VECTOR(11 downto 0); 
  Key04   : OUT STD_LOGIC_VECTOR(11 downto 0); 
  Key05   : OUT STD_LOGIC_VECTOR(11 downto 0); 
  Key06   : OUT STD_LOGIC_VECTOR(11 downto 0); 
  Key07   : OUT STD_LOGIC_VECTOR(11 downto 0); 
  Key08   : OUT STD_LOGIC_VECTOR(11 downto 0); 
  Key09   : OUT STD_LOGIC_VECTOR(11 downto 0); 
  Key10   : OUT STD_LOGIC_VECTOR(11 downto 0); 
  Key11   : OUT STD_LOGIC_VECTOR(11 downto 0); 
  Key12   : OUT STD_LOGIC_VECTOR(11 downto 0); 
  Key13   : OUT STD_LOGIC_VECTOR(11 downto 0); 
  Key14   : OUT STD_LOGIC_VECTOR(11 downto 0); 
  Key15   : OUT STD_LOGIC_VECTOR(11 downto 0); 
  Key16   : OUT STD_LOGIC_VECTOR(11 downto 0) 
 ); 
 -- {{ALTERA_IO_END}} DO NOT REMOVE THIS LINE! 
  
END Key_Generator; 
 
 
--  Architecture Body 
 
ARCHITECTURE Key_Generator_architecture OF Key_Generator IS 
 SIGNAL ka0, kb0        : STD_LOGIC_VECTOR(11 downto 0); 
 SIGNAL k1,  ka1,  kb1  : STD_LOGIC_VECTOR(11 downto 0); 
 SIGNAL k2,  ka2,  kb2  : STD_LOGIC_VECTOR(11 downto 0); 
 SIGNAL k3,  ka3,  kb3  : STD_LOGIC_VECTOR(11 downto 0); 
 SIGNAL k4,  ka4,  kb4  : STD_LOGIC_VECTOR(11 downto 0); 
 SIGNAL k5,  ka5,  kb5  : STD_LOGIC_VECTOR(11 downto 0); 
 SIGNAL k6,  ka6,  kb6  : STD_LOGIC_VECTOR(11 downto 0); 
 SIGNAL k7,  ka7,  kb7  : STD_LOGIC_VECTOR(11 downto 0); 
 SIGNAL k8,  ka8,  kb8  : STD_LOGIC_VECTOR(11 downto 0); 
 SIGNAL k9,  ka9,  kb9  : STD_LOGIC_VECTOR(11 downto 0); 
 SIGNAL k10, ka10, kb10 : STD_LOGIC_VECTOR(11 downto 0); 
 SIGNAL k11, ka11, kb11 : STD_LOGIC_VECTOR(11 downto 0); 
 SIGNAL k12, ka12, kb12 : STD_LOGIC_VECTOR(11 downto 0); 
 SIGNAL k13, ka13, kb13 : STD_LOGIC_VECTOR(11 downto 0); 
 SIGNAL k14, ka14, kb14 : STD_LOGIC_VECTOR(11 downto 0); 
 SIGNAL k15, ka15, kb15 : STD_LOGIC_VECTOR(11 downto 0); 
 SIGNAL k16, ka16, kb16 : STD_LOGIC_VECTOR(11 downto 0); 
BEGIN 
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 PROCESS (BaseKey, Decrypt) 
 BEGIN 
  -- Generate base-key pair 
  ka0  <= BaseKey(23 downto 12); 
  kb0  <= BaseKey(11 downto  0); 
 -- One 
  -- Rotate to generate first sub-key pair 
  ka1  <= ka0(10 downto 0) & ka0(11); 
  kb1  <= kb0(10 downto 0) & kb0(11); 
  -- Permutate sub-key 
  k1   <= ka1(8) & kb1(10) & ka1(2) & kb1(6) & ka1(4) & kb1(11) 

 & ka1(11) & kb1(0) & ka1(5) & kb1(9) & ka1(10) & kb1(7); 
 -- Two 
  -- Rotate to generate second sub-key pair 
  ka2  <= ka1(10 downto 0) & ka1(11); 
  kb2  <= kb1(10 downto 0) & kb1(11); 
  -- Calculate sub-key 
  k2   <= ka2(8) & kb2(10) & ka2(2) & kb2(6) & ka2(4) & kb2(11) 

 & ka2(11) & kb2(0) & ka2(5) & kb2(9) & ka2(10) & kb2(7); 
 -- Three 
  -- Rotate to generate first sub-key pair 
  ka3  <= ka2(10 downto 0) & ka2(11); 
  kb3  <= kb2(10 downto 0) & kb2(11); 
  -- Calculate sub-key 
  k3   <= ka3(8) & kb3(10) & ka3(2) & kb3(6) & ka3(4) & kb3(11) 

 & ka3(11) & kb3(0) & ka3(5) & kb3(9) & ka3(10) & kb3(7); 
 -- Four 
  -- Rotate to generate first sub-key pair 
  ka4  <= ka3(10 downto 0) & ka3(11); 
  kb4  <= kb3(10 downto 0) & kb3(11); 
  -- Calculate sub-key 
  k4   <= ka4(8) & kb4(10) & ka4(2) & kb4(6) & ka4(4) & kb4(11) 

 & ka4(11) & kb4(0) & ka4(5) & kb4(9) & ka4(10) & kb4(7); 
 -- Five 
  -- Rotate to generate first sub-key pair 
  ka5  <= ka4(10 downto 0) & ka4(11); 
  kb5  <= kb4(10 downto 0) & kb4(11); 
  -- Calculate sub-key 
  k5   <= ka5(8) & kb5(10) & ka5(2) & kb5(6) & ka5(4) & kb5(11) 

 & ka5(11) & kb5(0) & ka5(5) & kb5(9) & ka5(10) & kb5(7); 
 -- Six  
  -- Rotate to generate first sub-key pair 
  ka6  <= ka5(10 downto 0) & ka5(11); 
  kb6  <= kb5(10 downto 0) & kb5(11); 
  -- Calculate sub-key 
  k6   <= ka6(8) & kb6(10) & ka6(2) & kb6(6) & ka6(4) & kb6(11) 

 & ka6(11) & kb6(0) & ka6(6) & kb6(9) & ka6(10) & kb6(7); 
 -- Seven 
  -- Rotate to generate first sub-key pair 
  ka7  <= ka6(10 downto 0) & ka6(11); 
  kb7  <= kb6(10 downto 0) & kb6(11); 
  -- Calculate sub-key 
  k7   <= ka7(8) & kb7(10) & ka7(2) & kb7(6) & ka7(4) & kb7(11) 

 & ka7(11) & kb7(0) & ka7(5) & kb7(9) & ka7(10) & kb7(7); 
 -- Eight 
  -- Rotate to generate first sub-key pair 
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  ka8  <= ka7(10 downto 0) & ka7(11); 
  kb8  <= kb7(10 downto 0) & kb7(11); 
  -- Calculate sub-key 
  k8   <= ka8(8) & kb8(10) & ka8(2) & kb8(6) & ka8(4) & kb8(11) 

 & ka8(11) & kb8(0) & ka8(5) & kb8(9) & ka8(10) & kb8(7); 
 -- Nine 
  -- Rotate to generate first sub-key pair 
  ka9  <= ka8(10 downto 0) & ka8(11); 
  kb9  <= kb8(10 downto 0) & kb8(11); 
  -- Calculate sub-key 
  k9   <= ka9(8) & kb9(10) & ka9(2) & kb9(6) & ka9(4) & kb9(11) 

 & ka9(11) & kb9(0) & ka9(5) & kb9(9) & ka9(10) & kb9(7); 
 -- Ten 
  -- Rotate to generate first sub-key pair 
  ka10 <= ka9(10 downto 0) & ka9(11); 
  kb10 <= kb9(10 downto 0) & kb9(11); 
  -- Calculate sub-key 
  k10  <= ka10(8) & kb10(10) & ka10(2) & kb10(6) & ka10(4) & kb10(11) 

 & ka10(11) & kb10(0) & ka10(5) & kb10(9) & ka10(10) & kb10(7); 
 -- Eleven 
  -- Rotate to generate first sub-key pair 
  ka11 <= ka10(10 downto 0) & ka10(11); 
  kb11 <= kb10(10 downto 0) & kb10(11); 
  -- Calculate sub-key 
  k11  <= ka11(8) & kb11(10) & ka11(2) & kb11(6) & ka11(4) & kb11(11) 

 & ka11(11) & kb11(0) & ka11(5) & kb11(9) & ka11(10) & kb11(7); 
 -- Twelve 
  -- Rotate to generate first sub-key pair 
  ka12 <= ka11(10 downto 0) & ka11(11); 
  kb12 <= kb11(10 downto 0) & kb11(11); 
  -- Calculate sub-key 
  k12  <= ka12(8) & kb12(10) & ka12(2) & kb12(6) & ka12(4) & kb12(11) 

 & ka12(11) & kb12(0) & ka12(5) & kb12(9) & ka12(10) & kb12(7); 
 -- Thirteen 
  -- Rotate to generate first sub-key pair 
  ka13 <= ka12(10 downto 0) & ka12(11); 
  kb13 <= kb12(10 downto 0) & kb12(11); 
  -- Calculate sub-key 
  k13  <= ka13(8) & kb13(10) & ka13(2) & kb13(6) & ka13(4) & kb13(11) 

 & ka13(11) & kb13(0) & ka13(5) & kb13(9) & ka13(10) & kb13(7); 
 -- Fourteen 
  -- Rotate to generate first sub-key pair 
  ka14 <= ka13(10 downto 0) & ka13(11); 
  kb14 <= kb13(10 downto 0) & kb13(11); 
  -- Calculate sub-key 
  k14  <= ka14(8) & kb14(10) & ka14(2) & kb14(6) & ka14(4) & kb14(11) 

 & ka14(11) & kb14(0) & ka14(5) & kb14(9) & ka14(10) & kb14(7); 
 -- Fifteen 
  -- Rotate to generate first sub-key pair 
  ka15 <= ka14(10 downto 0) & ka14(11); 
  kb15 <= kb14(10 downto 0) & kb14(11); 
  -- Calculate sub-key 
  k15  <= ka15(8) & kb15(10) & ka15(2) & kb15(6) & ka15(4) & kb15(11) 

 & ka15(11) & kb15(0) & ka15(5) & kb15(9) & ka15(10) & kb15(7); 
 -- Sixteen 
  -- Rotate to generate first sub-key pair 
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  ka16 <= ka15(10 downto 0) & ka15(11); 
  kb16 <= kb15(10 downto 0) & kb15(11); 
  -- Calculate sub-key 
  k16  <= ka16(8) & kb16(10) & ka16(2) & kb16(6) & ka16(4) & kb16(11) 

 & ka16(11) & kb16(0) & ka16(5) & kb16(9) & ka16(10) & kb16(7); 
 -- Output based on Encryption/Decryption selector 
  IF Decrypt='1' THEN 
  -- Decrypt Keys 
   Key01 <= k16; 
   Key02 <= k15; 
   Key03 <= k14; 
   Key04 <= k13; 
   Key05 <= k12; 
   Key06 <= k11; 
   Key07 <= k10; 
   Key08 <= k9; 
   Key09 <= k8; 
   Key10 <= k7; 
   Key11 <= k6; 
   Key12 <= k5; 
   Key13 <= k4; 
   Key14 <= k3; 
   Key15 <= k2; 
   Key16 <= k1; 
  ELSE 
  -- Encrypt Keys 
   Key01 <= k1; 
   Key02 <= k2; 
   Key03 <= k3; 
   Key04 <= k4; 
   Key05 <= k5; 
   Key06 <= k6; 
   Key07 <= k7; 
   Key08 <= k8; 
   Key09 <= k9; 
   Key10 <= k10; 
   Key11 <= k11; 
   Key12 <= k12; 
   Key13 <= k13; 
   Key14 <= k14; 
   Key15 <= k15; 
   Key16 <= k16; 
  END IF; 
 END PROCESS; 
END Key_Generator_architecture; 
 
----------------------- 
-- Sub-Key Permutation 
-- 
-- 11 <= a8 10 <= b10 
-- 09 <= a2 08 <= b6 
-- 07 <= a4 06 <= b11 
-- 05 <= a11 04 <= b0 
-- 03 <= a5 02 <= b9 
-- 01 <= a10 00 <= b7 
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Feistel_Block VHDL Code: 
 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
 
 
--  Entity Declaration 
 
ENTITY feistel_block IS 
 -- {{ALTERA_IO_BEGIN}} DO NOT REMOVE THIS LINE! 
 PORT 
 ( 
  SubKey : IN  STD_LOGIC_VECTOR(11 downto 0); 
  InB    : IN  STD_LOGIC_VECTOR(7  downto 0); 
  InA    : IN  STD_LOGIC_VECTOR(7  downto 0); 
  OutB   : OUT STD_LOGIC_VECTOR(7  downto 0); 
  OutA   : OUT STD_LOGIC_VECTOR(7  downto 0) 
 ); 
 -- {{ALTERA_IO_END}} DO NOT REMOVE THIS LINE! 
  
END feistel_block; 
 
 
--  Architecture Body 
 
ARCHITECTURE feistel_block_architecture OF feistel_block IS 
 SIGNAL f1     : STD_LOGIC_VECTOR(11 downto 0); 
 SIGNAL f2, f3 : STD_LOGIC_VECTOR(7  downto 0); 
BEGIN 
 PROCESS (InA, InB, SubKey, f1, f2, f3) 
 BEGIN 
  -- First Feistel function step (XOR) 
  f1   <= SubKey XOR InB; 
  -- Second Feistel function step (S-Box LUT, see below) 
  -- S1 
  CASE f1(11 downto 9) IS 
   WHEN "111" => f2(7 downto 6) <= "00"; 
   WHEN "110" => f2(7 downto 6) <= "01"; 
   WHEN "101" => f2(7 downto 6) <= "10"; 
   WHEN "100" => f2(7 downto 6) <= "11"; 
   WHEN "011" => f2(7 downto 6) <= "00"; 
   WHEN "010" => f2(7 downto 6) <= "01"; 
   WHEN "001" => f2(7 downto 6) <= "10"; 
   WHEN "000" => f2(7 downto 6) <= "11"; 
  END CASE; 
  -- S2 
  CASE f1(8  downto 6) IS 
   WHEN "111" => f2(5 downto 4) <= "00"; 
   WHEN "110" => f2(5 downto 4) <= "01"; 
   WHEN "101" => f2(5 downto 4) <= "10"; 
   WHEN "100" => f2(5 downto 4) <= "11"; 
   WHEN "011" => f2(5 downto 4) <= "00"; 
   WHEN "010" => f2(5 downto 4) <= "01"; 
   WHEN "001" => f2(5 downto 4) <= "10"; 
   WHEN "000" => f2(5 downto 4) <= "11"; 
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  END CASE; 
  -- S3 
  CASE f1(5  downto 3) IS 
   WHEN "111" => f2(3 downto 2) <= "00"; 
   WHEN "110" => f2(3 downto 2) <= "01"; 
   WHEN "101" => f2(3 downto 2) <= "10"; 
   WHEN "100" => f2(3 downto 2) <= "11"; 
   WHEN "011" => f2(3 downto 2) <= "00"; 
   WHEN "010" => f2(3 downto 2) <= "01"; 
   WHEN "001" => f2(3 downto 2) <= "10"; 
   WHEN "000" => f2(3 downto 2) <= "11"; 
  END CASE; 
  -- S4 
  CASE f1(2  downto 0) IS 
   WHEN "111" => f2(1 downto 0) <= "00"; 
   WHEN "110" => f2(1 downto 0) <= "01"; 
   WHEN "101" => f2(1 downto 0) <= "10"; 
   WHEN "100" => f2(1 downto 0) <= "11"; 
   WHEN "011" => f2(1 downto 0) <= "00"; 
   WHEN "010" => f2(1 downto 0) <= "01"; 
   WHEN "001" => f2(1 downto 0) <= "10"; 
   WHEN "000" => f2(1 downto 0) <= "11"; 
  END CASE; 
  -- Third Feistel function step (permutation) 
  f3(7)<=f2(6); 
  f3(6)<=f2(4); 
  f3(5)<=f2(2); 
  f3(4)<=f2(0); 
  f3(3)<=f2(7); 
  f3(2)<=f2(5); 
  f3(1)<=f2(3); 
  f3(0)<=f2(1); 
  -- Final step in block, XOR and Output 
  OutA <= InB; 
  OutB <= f3 XOR InA; 
 END PROCESS; 
END feistel_block_architecture; 
 
-- This Feistel function is an adaptation of the DES function 
-- XOR -> S-Block -> Permutation 
-- 
-- use four sets of two for output 
-- Input : 109 876 543 201  (12-bit) 
-- Output:  76  54  32  10   (8-bit) 
--  
-- S-Box LUT: 
-- 111 = 00 110 = 01 
-- 101 = 10 100 = 11 
-- 011 = 00 010 = 01 
-- 001 = 10 000 = 11 
--  IN = OUT IN = OUT 
-- 
-- Permutation 
-- 0 1 2 3 4 5 6 7 
-- 1 3 5 7 0 2 4 6 
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Processor Code: 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_unsigned.all; 
 
--  Entity Declaration 
 
ENTITY RISC_Processor_wMem IS 
 -- {{ALTERA_IO_BEGIN}} DO NOT REMOVE THIS LINE! 
 PORT 
 ( 
  PREIN  : IN    STD_LOGIC_VECTOR(15 downto 0); 
  RESET  : IN    STD_LOGIC; 
  CLOCK  : IN    STD_LOGIC; 
  LEDPIO : OUT   STD_LOGIC_VECTOR(15 downto 0); 
  ADDR   : OUT   STD_LOGIC_VECTOR(17 downto 0); 
  WRITE  : OUT   STD_LOGIC; 
  DATA   : INOUT STD_LOGIC_VECTOR(15 downto 0) 
 ); 
 -- {{ALTERA_IO_END}} DO NOT REMOVE THIS LINE! 
  
END RISC_Processor_wMem; 
 
 
--  Architecture Body 
 
ARCHITECTURE RISC_Processor_wMem_architecture OF RISC_Processor_wMem IS 
 
  
BEGIN 
 -- ALU Process 
 PROCESS (CLOCK) 
  -- Procesor Register(s) 
  VARIABLE holder : STD_LOGIC_VECTOR(11 downto 0) 

 := "000000000000"; 
  -- Program Command 
  VARIABLE opcode : STD_LOGIC_VECTOR( 3 downto 0); 
  -- Program Data 
  VARIABLE opdata : STD_LOGIC_VECTOR(11 downto 0); 
   
  VARIABLE rst    : STD_LOGIC := '1'; 
  VARIABLE prog   : STD_LOGIC := '1'; 
  VARIABLE pcount : STD_LOGIC_VECTOR(17 downto 0)  

:= "000000000000000000"; 
 BEGIN 
  IF (CLOCK'event and CLOCK = '1') THEN 
   ADDR <= pcount; 
   pcount := pcount + '1'; 
    
   IF (prog = '1') THEN 
   -- In programming phase 
    WRITE <= '1'; 
    DATA <= PREIN; 
    IF (PREIN = "1111111111111111") THEN 
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     prog   := '0'; 
     pcount := "000000000000000000"; 
     DATA <= "ZZZZZZZZZZZZZZZZ"; 
    END IF; 
   ELSE 
   -- In processor phase 
    WRITE <= '0'; 
    -- Fetch 
    -- Decode 
    opcode := DATA(15 downto 12); 
    opdata := DATA(11 downto 0); 
    -- Execute 
    CASE opcode IS 
     WHEN "0000" => holder := holder; 
     -- ADD:  Add HOLDER with OPDATA 
     WHEN "0001" => holder := holder + opdata; 
     -- SUB:  Subtract OPDATA from HOLDER 
     WHEN "0010" => holder := holder - opdata; 
     -- INC:  Increment HOLDER 
     WHEN "0011" => holder := 

holder + "000000000001"; 
     -- DEC:  Decrement HOLDER 
     WHEN "0100" => holder := 

holder - "000000000001"; 
     -- NOOP: Do nothing 
     WHEN "0101" => holder := holder; 
     -- LOAD: Set HOLDER equal to OPDATA 
     WHEN "0110" => holder := opdata; 
     -- Out:  Write HOLDER to LEDPIO 
     WHEN "0111" => LEDPIO <= "0000" & holder; 
     -- GoTo: PCOUNT <= OPDATA 
     WHEN "1000" => 
      pcount := "000000" & opdata; 
      ADDR   <= pcount; 
     -- EOP:  LED  <= FF; 
     WHEN "1001" => rst := '1'; 
     -- NOOP if unrecognized OP code 
     WHEN OTHERS => holder := holder; 
    END CASE; 
   END IF; 
  END IF; 
 END PROCESS; 
END RISC_Processor_wMem_architecture; 
 


