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1. INTRODUCTION 

 

 

The role of calcium channels in intercellular communication 

 

Calcium dependent exocytosis underlies intercellular communication 
 
Chemical synaptic transmission is fundamental for intercellular communication within 

the mammalian central and peripheral nervous systems. Voltage-gated calcium (Ca
2+

) 

channels play pivotal roles in this process by coupling excitation (i.e. action potential 

firing) to secretion of neurotransmitters and hormones through entry of the ubiquitous 

second messenger Ca
2+

. In this manner, Ca
2+ 

ions facilitate cognition, endocrine 

homeostasis, muscle contraction, ion channel excitability, enzymatic activity, gene 

expression and cellular differentiation (Currie, 2010a). Accordingly, regulation of 

voltage-gated Ca
2+ 

channels, and by extension the intensity / timing of neurosecretion is 

critical. Multiple protein-protein interactions and second messenger pathways converge 

on the channels to control the amount, location, and timing of Ca
2+

entry, including: direct 

interaction with the exocytotic fusion machinery including the SNARE proteins syntaxin 

and SNAP25; phosphorylation by PKC, CaMKII, and other kinases; and complex 

feedback by Ca
2+

 itself mediated through calmodulin and other related calcium sensing 

proteins (for recent review see (Catterall and Few, 2008)). Another prominent control 

mechanism was first demonstrated ~ 30 years ago in chick sensory neurons (Dunlap and 

Fischbach, 1978; Dunlap and Fischbach, 1981), and involves inhibition of the Ca
2+ 
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channels by G protein coupled receptors (GPCRs) (Currie, 2010a; Ikeda and Dunlap, 

1999; Tedford and Zamponi, 2006) (Zamponi and Currie, 2013).    

 
 

Calcium channel physiology 
 

In mammals ten genes are known that encode pore forming α1 subunits of voltage-gated 

Ca
2+

 channels. These are subdivided into three families based on sequence homology: 

four CaV1 members (CaV1.1 - CaV1.4; all L-type channels), three CaV2 members (CaV2.1, 

P/Q-type; CaV2.2, N-type; CaV2.3, R-type channels) and three CaV3 members (CaV3.1 - 

CaV3.3, all T-type channels) (Catterall et al., 2005; Ertel et al., 2000). Of these, the 

CaV2.1 and CaV2.2 channels are most closely coupled to neurotransmitter release, and as 

such are densely localized to brain regions rich in synaptic structures (Trimmer and 

Rhodes, 2004; Westenbroek et al., 1992; Westenbroek et al., 1995). CaV α1 subunits are 

large (~175-225 kDa) proteins consisting of four homologous domains, each domain 

containing six transmembrane α-helical segments (S1-S6) (Figure 1) (Catterall, 2000). 

The channel adopts a tetrameric architecture, with the pore formed by the S5-S6 and 

intervening P-loop from each domain, while the S1-S4 segments comprise the voltage 

sensing regions (Figure 1). The intracellular N- and C-termini and the cytoplasmic loops 

connecting domains I-IV are all important regulatory regions targeted by a variety of 

proteins, including the CaVβ subunit, G proteins, SNARE proteins, calmodulin and 

protein kinases (Figure 1). 
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Figure 1: Topology, domain structure and subunit composition of voltage-gated Ca
2+

 channels. (A) 
Topology of the channel α1 subunit. This pore forming subunit consists of four homologous repeats 

(domain I through domain IV), which fold to impart an overall tetrameric architecture to the channel. Each 

domain (see inset) has six transmembrane spanning α-helices (S1-S6) (blue or orange cylinders). S5, S6 

and the P-loop connecting them comprise the ‘pore domain’ of the channel (colored orange), while S1-S4 

(in particular S4 that has multiple charged residues) comprises the ‘voltage sensor’ (colored blue). The 

intracellular N- and C-termini and the cytoplasmic loops that connect domains I-IV are important for 

interaction with other proteins that modulate channel trafficking, stability and function including, the 

auxiliary β subunit, synaptic proteins, kinases, Gβγ, GPCRs, calmodulin and other Ca
2+

 binding proteins.  

(B) Cartoon depiction of the α1 subunit along with auxiliary β and α2δ subunits. The α1 subunit adopts a 

tetrameric architecture with the pore-forming region of each domain lining the aqueous pore, flanked by 

the four voltage-sensing domains. The β subunit is cytoplasmic and interacts through its guanylate kinase-

like domain (GK) with the I-II linker of the α1 subunit (at the α-interaction domain or AID). The α2δ 

subunit is largely extracellular and likely GPI-anchored to the plasma membrane. 
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The CaV1 and CaV2 families are high-voltage-activated (HVA) channels that require 

stronger membrane depolarization to activate relative to the low-voltage-activated CaV3 

channels. These HVA channels are heteromultimeric complexes that, in addition to the 

pore forming α1 subunit, contain auxiliary β and α2δ subunits (Catterall, 2000; Dolphin, 

2012). The cytoplasmic CaVβ subunit binds to the Alpha Interaction Domain (or AID) on 

the I-II linker (Figure 1) (Opatowsky et al., 2004; Pragnell et al., 1994; Van Petegem et 

al., 2004). Four genes are known that encode CaVβ subunits (for reviews see (Buraei and 

Yang, 2010; Dolphin, 2003)). α2δ subunits are the product of a single gene that 

subsequently undergoes posttranslational cleavage into the α2 and δ portions which are  

then reconnected by a disulfide bond (Klugbauer et al., 2003). The α2 portion is 

extracellular while the δ portion is linked to the plasma membrane, potentially through a 

glycosylphosphatidylinositol (GPI) anchor (Davies et al., 2010). Four genes encode α2δ 

subunits. Both the β and α2δ subunits control trafficking / stability and modulate the 

biophysical properties of the channels (for reviews see (Arikkath and Campbell, 2003; 

Bauer et al., 2010; Buraei and Yang, 2010; Dolphin, 2012)). CaVβ also contributes to 

regulation of the channels by second messengers (Abiria and Colbran, 2010; Heneghan et 

al., 2009; Hermosilla et al., 2011; Suh et al., 2012) and, as detailed below, G proteins 

(Canti et al., 2000; Dresviannikov et al., 2009; Feng et al., 2001; Leroy et al., 2005; 

Zhang et al., 2008). An additional auxiliary subunit, the γ1 subunit, has also been found to 

associate with CaV1.1 channels in skeletal muscle, and several neuronal isoforms 

including γ2 (also called stargazin) have been identified in neurons (Chen et al., 2007).  

However, it remains unclear if these proteins constitute bona fide Ca
2+

 channel subunits  

 



5 

 

in neurons, where they have been shown to associate with and modulate glutamatergic 

AMPA receptors (Diaz, 2010).   

 

Neuroendocrine Ca2+ channels: adrenal chromaffin cells 

Adrenal glands comprise an outer cortex and an inner medulla; the former produces and 

secretes glucocorticoids and mineralocorticoids while the latter, primarily made up of 

chromaffin cells, secretes catecholamines. Chromaffin cells are derived from the neural 

crest (Huber et al., 2009), and act essentially as postganglionic sympathetic neurons but, 

rather than innervating a specific postsynaptic target, release catecholamines and a 

variety of other neuropeptides and hormones into the bloodstream. These transmitters 

then exert powerful control over the cardiovascular, endocrine, immune, and nervous 

systems, for example coordinating the “fight-or-flight” response to acute stress. 

 

Chromaffin cells express CaV2.1, CaV2.2, and CaV1 channel subtypes (Fox et al., 2008; 

Garcia et al., 2006; Marcantoni et al., 2008). In the intact gland, chromaffin cells are 

directly innervated by splanchnic nerve terminals that release ACh (acetylcholine) and 

neuropeptide co-transmitters such as PACAP. This sympathetic drive depolarizes the 

chromaffin cells promoting Ca
2+

 influx through voltage-gated Ca
2+

 channels, 

subsequently triggering fusion of large dense core granules with the plasma membrane 

(Boarder et al., 1987; Douglas, 1968). Like neurons, target membrane SNARES (t-

SNARES) syntaxin 1A and SNAP25 facilitate vesicle/membrane association by direct 

interaction with the vesicular SNARE (v-SNARE) synaptobrevin. Synaptotagmin, 
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through an N-terminal vesicular association and C-terminal Ca
2+

 binding C2 domains 

(C2A and C2B), “clamps” t-SNARES and prevents spontaneous exocytosis.   

Ca
2+

 binding the synaptotagmin C2 domain induces a trans to cis conformational change 

in the SNARE complex, and subsequent fusion of opposed vesicular and target 

membranes (Bai et al., 2004; Tang et al., 2006). As at presynaptic terminals, Ca
2+

 

channels play a pivotal role in stimulus-secretion coupling in chromaffin cells and are an 

important target for regulation by GPCRs. 

 

G protein coupled receptors and heterotrimeric G protein signaling 

 

G protein coupled receptors 

Eukaryotic life is sustained by highly organized response and adaptation to a chaotic 

array of chemical signals across phospholipid bilayers, often over long distances and on a 

millisecond time scale. In humans, physiological responses to sensory stimuli, (i.e. 

various odorants, tastes, pheromones and photons of light) and endogenous ligands (e.g. 

chemokines, calcium ion, neurotransmitters, various hormones) are mediated by modular 

signaling complexes with a common format: receptor, transducer, and effector (Gilman, 

1987; Pierce et al., 2002). A massive family of cell surface receptors with seven 

transmembrane  helical domains, oriented with a large exofacial N-terminal ligand 

binding domain, intracellular C-terminal regulatory domain, three extracellular and three 

intracellular loops, provides the molecular framework for receiving these diverse signals.  
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Often cited as having over 800 distinct members, these receptors in humans can be 

classified into five main families based on phylogenetic analysis: rhodopsin, secretin, 

glutamate, adhesion, and frizzled/taste2. A majority are of these (> 700 total, >300 non-

olfactory) are in the well-studied class A or group 1 rhodopsin family, with further 

segmentation into groups -, each containing clusters (e.g. prostaglandin cluster, amine 

cluster, melatonin cluster etc.) (Fredriksson et al., 2003; Jassal et al., 2010; Oldham and 

Hamm, 2008).  

 

Many, but not all (Sun et al., 2007), of the 7 transmembrane receptors are associated with 

an intracellular heterotrimeric protein complex regulated by a GTP-dependent 

intermediary (Rodbell et al., 1971). An activated receptor transduces signals through 

nucleotide binding cycle: dissociation of GDP, association with GTP, hydrolysis of GTP. 

Hence the name: G protein coupled receptors (Gilman, 1987). Heterotrimeric G proteins 

are named for their respective  subunit with four subfamilies recognized: Gs coupled 

receptors contain Gs and activate adenylyl cyclase; Gq contain Gq and activate 

phospholipase Cß, Gi contain Gi and inhibit adenylyl cyclase while corresponding Gβγ 

subunits activate G protein coupled inwardly rectifying potassium channels (GIRK), and 

G12 couple to the activation of Rho guanine nucleotide exchange factors (Oldham and 

Hamm, 2006; Pierce et al., 2002) 

 

All receptors across each of the five families present the canonical seven transmembrane 

architecture described above, however they possess little sequence identity in the 

transmembrane regions (<20% SI (Fredriksson et al., 2003; Katritch et al., 2013), and 
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vastly different N-terminal domains that, in combination with the three extracellular 

loops, form the ligand binding pocket. Rhodopsin, secretin, and taste/2 families of 

receptors generally have the shortest N-termini; adhesion family the longest: some up to 

2800 amino acids with several EGF- and mucin-like domains likely involved in cell 

adhesion (Harmar, 2001; Hayflick, 2000; Stacey et al., 2000). Both glutamate and 

frizzled family receptors are intermediate in length. The ~200 amino acid frizzled family 

N-termini bind the secreted glycoprotein Wnt through a number of conserved cysteine 

residues (Fredriksson et al., 2003). Glutamate family N-termini form two lobes around a 

central cavity that closes around a ligand, earning the apt “venus fly trap” moniker 

(Kunishima et al., 2000) . 

 

As previously mentioned, the Class A/rhodopsin family of receptors is the most 

extensively studied. Following the first three-dimensional crystal structure of rhodopsin 

in 2000 (Palczewski et al., 2000), the structural field has seen a relative explosion of 

progress, with 16 total structures as of 2012 (Katritch et al., 2013) Along with rhodopsin 

(Deupi et al., 2012; Nakamichi and Okada, 2006; Okada et al., 2004; Palczewski et al., 

2000; Park et al., 2008; Scheerer et al., 2008), there is good structural coverage of α2A-

adrenergic (Dore et al., 2011; Hino et al., 2012; Jaakola et al., 2008; Lebon et al., 2011; 

Xu et al., 2011), and ß2-adrenergic (Cherezov et al., 2007; Hanson et al., 2008; 

Rasmussen et al., 2011a; Wacker et al., 2010), among several others, and complete 

coverage of the four classes of opioid receptor (-, -, -, and NOP) (Granier et al., 2012; 

Manglik et al., 2012; Thompson et al., 2012; Wu et al., 2012). Analysis of structural 

variations within rhodopsin subgroups reveals remarkable diversity in the extracellular 



9 

 

loop (ECL) regions, reflecting the diverse array of cognate ligands. For example, the 

opioid receptors share a -hairpin in the ECL 2, a common peptide-binding motif, while 

the N-terminus and ECL 2 the lipid binding S1P1 receptor form a lid and occlude the 

binding pocket (Rosen et al., 2013) Crystal structures of GPCRs in all four activation 

states: R (inactive), R’(inactive, agonist bound), R” (active), R* (active w/ G mimic) 

(Katritch et al., 2013), and additionally the structure of 2A with G (Rasmussen et al., 

2011b) are providing insights not only on microdomain movements but also large scale 

conformational diversity where receptors can activate multiple signaling pathways in a 

ligand dependent manner. Early observations suggest movements of TM helix V and VI 

are important for G protein binding and activation, whereas movements of helix III, VII 

and VIII may signal independent of G proteins, possible through -arrestin (Granier and 

Kobilka, 2012; Katritch et al., 2013). These studies could give rise to biased ligands that 

may stabilize or ‘prefer’ one pathway over another, although rational design of biased 

agonists is still in its infancy (Granier and Kobilka, 2012). 

 

G protein coupled receptors are important drug targets 
 
In humans, GPCRs are involved in the basic functioning of every tissue and organ 

system. Using evidence based gene finding approaches, it can be inferred from sequence 

similarities to known receptors that 1265 GPCRs are expressed in the human genome, a 

majority cognate for chemosensory ligands, while roughly 300-400 bind endogenous 

ligands (Insel et al., 2012). A reasonable consequence of finding receptors in a gene 

sequence is the occurrence of receptor ‘orphans’, receptors without an identified 

endogenous ligand, and the need for reverse pharmacological techniques to identify them. 
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There are over 100 “orphan” GPCRs that may bind endogenous ligands signaling 

possible unmet need in human pathophysiology, thus an opportunity for drug discovery 

(Chung et al., 2008).  

 

Another point of relevance comes from examination of tissue specific expression of non-

odorant GPCRs. The most comprehensive study to date by Regard et al. (Regard et al., 

2008) quantified transcripts for 353 non-odorant GPCRs in 41 mouse tissues. A majority 

of receptors (238/353) were expressed in less than half of tested tissues, and high level 

expression was limited to tissues where each GPCR has a crucial physiological function 

(e.g. gamma-aminobutyric acid (GABA) in CNS, glucagon-like peptide receptor 1 (GLP-

1) in pancreatic islets, angiotensin type 1A (Agtr1) in heart and blood vessels). This 

tissue specific, largely non-ubiquitous receptor expression/function not only helps predict 

roles for orphan receptors, but allows for selective, rational drug designs that target 

specific processes without bleeding over into off target organ systems, both features that 

make GPCRs attractive drug targets.  

 

Drugs targeting GPCRs represent the largest class of pharmaceuticals 

Over 50 years ago, before GPCRs were fully understood as distinct entities from their 

associated cellular transducers and enzymes, Sir James Black developed propranolol, an 

inhibitor of  adrenergic receptors (ARs). Subsequently, GPCRs have emerged as the 

single the most important drug target. A 2006 analysis by Overington (Overington et al., 

2006) and colleagues rigorously distilled a list of over 21,000 marketed drug products 

into 1,357 unique drugs against 324 unique targets for all classes of approved drugs, a 
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vast majority of which are protein targets (1,065/1,357) on the surface of cells (60%). Of 

these, class I GPCRs constituted the largest targeted gene family (26.8% of marketed 

drugs). Of course, estimating druggable targets from the completed human genome has 

several complicating factors such as multimeric signaling complexes, clinically relevant 

drug promiscuity, conserved druggable domains, and heterodimerization of receptors; a 

conservative estimate suggests ~300 druggable Class 1 GPCRs (Russ and Lampel, 2005).  

While efficiencies in small molecular screening and the rise of monoclonal antibody 

therapeutics since 2006 has undoubtedly expanded the overall number of drug targets 

(and made it harder to define), as of 2012 40-50% of marketed drugs targeted GPCRs 

(Chen et al., 2012), and drugs targeting GPCRs occupied four of the top 15 best-selling 

pharmaceuticals in 2012. Interestingly, it is estimated only about 10% of the population 

of GPCRs are targeted (Jassal et al., 2010). Taken together, there is significant potential 

for growth targeting GPCRs. 

 

G protein cycle/ subunit composition 

At rest, G proteins bind GDP, and exist as a heterotrimer of α- β- and γ- subunits. Ligand 

binding and, simultaneously, receptor activation opens up a binding pocket on the 

intracellular face of the receptor for the Gα C-terminus. This high affinity G protein 

interaction with the activated receptor induces a conformational change in the nucleotide 

binding site on G that catalyzes the release of GDP. GTP rapidly binds Gα in its place, 

subsequently dissociating Gα-GTP and Gβγ from the receptor. Structural changes in Gα 

eliminate the Gβγ binding site allowing each liberated subunit to initiate downstream 

signaling cascades independently, targeting multiple effectors (McIntire, 2009; 
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Rosenbaum et al., 2009). Intrinsic GTPase activity of Gα terminates signaling and 

facilitates the reassociation of Gα-GDP with Gβγ, although RGS (regulator of G protein 

signaling) proteins accelerate GTPase activity (Hollinger and Hepler, 2002). In humans 

16 genes encode Gα subunits, 5 genes encode Gβ, and 12 genes encode Gγ. As 

previously mentioned, heterotrimers are divided into classes based on sequence 

homology of the Gα subunit: Gαs, Gαi, Gαq, Gα12, and Gαt transducin. Each Gα subunit 

contains a GTPase domain and helical domain, and all but transducin are palmitylated to 

facilitate membrane localization (Chen and Manning, 2001) . 

 

The G protein  and  subunits form a constitutive heterodimer whose crystal structure is 

visually dominated by the propeller-like folding of the so-called WD40 sequence repeats 

of Gβ, with four-stranded β-sheets comprising the seven blades of the propeller (Figure 

4B, red ribbon). The N-terminal region upstream of the propeller adopts an α-helical 

domain and serves as the interaction surface with Gγ (Wall et al., 1995) . The most 

relevant function of the Gγ subunit regarding Gβγ signaling may be to locate newly 

assembled Gβγ subunits to the plasma membrane through a Gγ, C-terminal targeted 

farnesyl or geranyl-geranyl group. Although it should be mentioned that Gγ prenylation 

is not necessary for Gβ and Gγ assembly per se, but rather seems to assure a functional 

G subunit and promotes high affinity G-effector interactions (Higgins and Casey, 

1994; Iniguez-Lluhi et al., 1992) 

 

In turn, Gβγ binding is required for targeting G subunits to the membrane. For Gi and 

Gz subunits, the co-translation addition of myristate (C14:0) to the N-terminal Gly
2
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imparts weak association with the plasma membrane, where they can become more 

soundly attached by palmitoylation. Interestingly, Gβγ may have an overlapping role with 

palmitoylation for trapping Gi subunits at the membrane (Chen and Manning, 2001). 

Alternatively, Gs, Gq, and G12 subunits undergo post-translational covalent addition 

of palmitate (C16:0) to a cysteine residue near their respective N-termini, and are not N-

myristolated. Thus, membrane targeting by Gβγ may be equivalent to N-myristolation, 

and a requirement for concentrating Gs, Gq, and G12 subunits at the membrane 

(Evanko et al., 2000). The reason for apparent redundancy in targeting Gi and Gz 

subunits to the membrane by association with Gβγ, N-myristolation, and/or 

palmitoylation is unclear. However, there may be a relative abundance of Gi/o -coupled 

heterotrimers compared with Gs, Gq, and G12 subtype (Clapham and Neer, 1997; 

Logothetis et al., 1987), thus placing stress on the membrane targeting system. 

 

Additionally, Gβγ subunits are necessary for receptor mediated nucleotide exchange in 

the Gα subunit, possibly by presenting Gα in an orientation permissible for receptor 

interaction (Oldham and Hamm, 2006). Thus, Gα and Gβγ interaction is not an arbitrary 

mass action association, but an inter-subunit signaling motif crucial for GPCR function 

and effector selectivity.  

 

G signaling 

In addition to its role targeting G subunits to the membrane and facilitating nucleotide 

exchange, G activates a diverse and continually growing array of targets. G does not 

have a catalytic site, and undergoes no major structural rearrangements when dissociated 
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from G (Wall et al., 1995). As a result G generally activates effectors by bringing 

cytosolic proteins in contact with the membrane (AC, PLD, GRK2) or by causing some 

structural rearrangement (Ca
2+

 channels, GIRK channels) or possibly both (PLC) 

(Smrcka, 2008). Several of these targets can modulate exocytosis indirectly: 

phospholipase C1,2,3, ,  (PLC), phosphoinositide-3 kinase (PI3K), GPCR kinase 2 

(GRK2), RGS proteins, microtubules, AC activation and inhibition, and other kinases and 

small GTPases. Other effectors are more directly involved the exocytotic process, 

including: phospholipase D (PLD), GIRK channels (G protein gated inwardly rectifying 

potassium channels), TRPM1 (transient receptor potential cation channel subfamily M 

member 1) channels, Cav channels, and SNARE proteins (Khan et al., 2013). The roles of 

each in exocytosis, and regulation by Gβγ, are described briefly below. 

 

The production of phosphatidic acid (PA) spontaneously promotes membrane curvature 

in single-layer lipid micelles (Kooijman et al., 2003). PLD1 is activated by the 

secretagogue KCl in PC-12 cells and synthesis of its product, PA, is increased at the 

membrane. Inhibition of PLD1 by primary alcohols inhibits exocytosis, and knockdown 

of PLD1 inhibits membrane associated PA production (Vitale et al., 2001; Zeniou-Meyer 

et al., 2007). These results led to the hypothesis that PLD1 is important for granule fusion 

at a “late stage” of exocytosis. Gβγ (β1γ1 and β1γ2) negatively regulates PLD1 activity in 

vitro by binding to the N-terminal region of the enzyme containing the PX/PH domain 

(phox/pleckstrin homology domain), a common Gβγ binding domain, which presumably 

positions Gβγ for interference with the PLD1 catalytic domain (Preininger et al., 2006). 

The temporal aspects of PLD regulation of exocytosis have not yet been addressed, and 
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we have shown primary alcohols, a commonly used PLD inhibitor, also inhibit calcium 

entry into native chromaffin cells. Furthermore, the activity of endogenous PLD in native 

bovine chromaffin cells is limited (Currie Lab, unpublished data), casting some doubt on 

the hypothesized role of PLD in exocytosis. 

 

In general, Gβγ dimers released from a wide variety of GPCRs can reduce membrane 

excitability by activating G protein gated inwardly rectifying potassium channels (GIRK 

channels) (Logothetis et al., 1987), inhibiting TRPM1 channels (Shen et al., 2012), and 

mediating voltage-dependent inhibition of Cav2 channels (Currie, 2010a), which will be 

detailed in subsequent sections. However Gβγ may regulate neurotransmission through 

direct interactions with the secretory apparatus (Silinsky, 1984). In lamprey reticulospinal 

motor- neurons, microinjection of Gβγ mimicked serotonergic-inhibition of excitatory 

post-synaptic currents (EPSCs) without affecting action-potential induced intracellular 

calcium transients. Cleavage of the C-terminal nine amino acids from SNAP-25 by 

botulinum toxin A (BoNT A) relieves this inhibition, suggesting the relevant Gβγ 

substrate in this system is SNAP-25 (Gerachshenko et al., 2005). Similar results on 

granule exocytosis were observed in permeablized PC-12 cells, where Gβγ (β1γ1 and 

β1γ2)- mediated inhibition was abolished by BoNT A (Blackmer et al., 2005). Indeed, in 

vitro binding assays indicate Gβγ can interact with syntaxin, SNAP-25B, 

VAMP2/synaptobrevin and may compete for synaptotagmin binding to the assembled 

SNARE complex in a calcium-dependent manner (Yoon et al., 2007). Currently, the 

relative inhibitory contribution, and relevant cellular context, of Gβγ binding to Ca
2+ 

channels and SNARE proteins remains unclear, as very few studies have been extended 
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to intact mammalian systems. However, in rat adrenal chromaffin cells, the quantal size 

of individual exocytotic events induced by Ca
2+

 store mobilization is reduced by ATP. 

Notably, activation of PKC through the Gq-coupled muscarinic acetylcholine receptor 

reversed the inhibition, and will be discussed more below (Chen et al., 2005). Similarly, 

in bovine adrenal chromaffin cells, activation of P2Y receptors with ATP, -opioid 

receptors with DAMGO, or exogenous G application reduced the number and quantal 

size of exocytotic events elicited by a Ca
2+

 ionophore or by direct intracellular 

application of Ca
2+ 

(Yoon et al., 2008). Taken together, these studies suggest an acute, 

G-mediated inhibitory effect on granule fusion dynamics subsequent to Ca
2+

 entry 

through Ca
2+

 channels- potentially through interactions with secretory proteins.  

 

With respect to activating effectors, the significance of specific subtype combinations of 

Gβxγx is not well understood (Smrcka, 2008). The exception being Gβγ subtypes 

containing 1, which are less potent at activating AC and PLC (Iniguez-Lluhi et al., 1992; 

Ueda et al., 1994). As previously mentioned, GTP binding to Gα induces structural 

changes that eliminate the Gβγ binding site, exposing the Gβγ effector binding surface.  

The propeller-like tertiary structure of Gβ is relatively flat, large, and topographically 

featureless and yet can selectively bind and activate dozens of effectors. Crystal 

structures of Gβγ in complex with GRK2 (Lodowski et al., 2003) and phosducin (Gaudet 

et al., 1996) suggest overlap with the binding sites for GαGDP. Chemical crosslinking 

studies using synthetic peptides from type II adenylyl cyclase (Chen et al., 1995) or 

PLCβ2 (Sankaran et al., 1998) also mapped interaction sites on Gβ near the Gα switch II 

binding region. An important study by Ford et al. implicates a common interface on G 
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for both G and effector binding. Alanines were substituted for key residues on G in the 

switch II and N-terminal interacting domains and subsequently Gβγ- dependent 

interactions with several effectors were increased, decreased or completely inhibited. 

This established a molecular “footprint” specific for each effector tested (Ford et al., 

1998). Thus, a similar contact region on Gβ recognizes a complexity of targets 

 

To specifically dissect the “footprint” on the face of G, and identify a mechanism for 

this unique interaction with structurally distinct effectors, a random phage display peptide 

screen identified multiple peptides that bound the same ‘hot spot’ on Gβγ. One of these 

peptides, SIRK, blocked Gβγ interaction with PLC2 and PI3K but left intact binding to 

AC and N-type Ca
2+

 channels, and a peptide derivative of SIRK, SIGK, binds the G-

switch II region (Davis et al., 2005; Scott et al., 2001). These findings validate Gβγ may 

bind multiple effectors through conserved, energetically favorable residues and has led to 

the investigation of small molecules capable of selective interference with subsets of Gβγ 

effectors (Smrcka, 2013). For example the M119 class, including M119 and gallein, 

inhibited Gβγ interaction with GRK2, preventing AR desensitization in an acute mouse 

model of heart failure (Casey et al., 2010). Similarly M119 and gallein block Gβγ- 

dependent PI3K activation preventing chemoattractant-dependent neutrophil migration, 

and inhibited whole animal inflammation (Lehmann et al., 2008). M119 blocked Gβ1γ2 

activation of PLC2, PLC3, PI3K, and binding to GRK2 whereas M201, another small 

molecule that binds a distinct Gβγ subsurface, potentiated activation of PLC3 and PI3K 

(Bonacci et al., 2006). 
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Gβ and Gγ subtypes can exist in several combinations and regulate the activity of dozens 

of effectors with little selectivity intrinsic to subunit combinations. Yet pertussis toxin 

(PTX), which ADP ribosylates Gαi subunits and prevents receptor interaction, nucleotide 

exchange, and ultimately release of Gβγ subunits, prevents Gβγ regulation of several 

effectors, including N-type calcium channels (Ikeda, 1996). One explanation for the 

specificity of Gβγ subunits associated with Gi heterotrimers (i.e over Gs, or Gq 

heterotrimers), is that Gαi subunits may couple Gβγ subunits to effectors in signaling 

complexes, as is the case for GIRK channels (Huang et al., 1997).  

 

Regulation of Ca2+ channels and exocytosis by G protein coupled receptors 

 

Many neurotransmitters have cognate presynaptic GPCRs including GABA, 

acetylcholine, glutamate and several neuropeptides. Feedback inhibition by 

neurotransmitters was first demonstrated by Dunlap and Fischbach, who reported that 

norepinephrine reduced both duration of action potentials and amplitude of ICa in chick 

sensory neurons (Dunlap and Fischbach, 1978; Dunlap and Fischbach, 1981). This 

reduction in Ca
2+

 entry ultimately reduces neurotransmitter release, and is mediated by 

presynaptic G protein coupled receptors (GPCRs) (Hille, 1994).  

 

GPCRs can recruit several pathways to inhibit CaV2 channels. 

Several distinct signaling pathways recruited by GPCRs can converge on Ca
2+

 channels 

to inhibit their activity. Broadly speaking, these disparate mechanisms can be classified 

as either voltage-dependent or voltage-independent. Voltage-dependent inhibition is 
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widespread in both the central and peripheral nervous systems and is mediated by a single 

well defined mechanism involving direct binding of Gβγ to the α1 subunit of CaV2 

channels (Herlitze et al., 1996; Ikeda, 1996). As detailed below, this shifts the voltage-

dependence of channel activation, and the inhibition can be reversed at depolarized 

membrane potentials. Hence the mechanism is dubbed “voltage-dependent inhibition”.  

In contrast, voltage-independent inhibition lumps together several other mechanisms that 

generally develop more slowly and are mediated by a variety of distinct second 

messenger pathways including phosphorylation, lipid signaling, and channel trafficking 

(Elmslie, 2003; Hille, 1994; Michailidis et al., 2007; Roberts-Crowley et al., 2009). The 

common feature to all these pathways is the inability of strong membrane depolarization 

to overcome the inhibition. The prominence of voltage-independent inhibition is also 

more variable, but it seems particularly relevant for controlling somatic Ca
2+

 channels in 

sensory and sympathetic neurons. 

 

Although there are a few exceptions (Currie and Fox, 2000; Elmslie, 1992; Zhu and 

Ikeda, 1994), Gβγ-mediated, voltage-dependent inhibition is usually elicited by Gi/o-

coupled GPCRs and thus blocked by pertussis toxin. One explanation for this preferential 

involvement of Gi/o-coupled receptors is co-localization with the channels through 

adapter proteins like Homer (Kammermeier et al., 2000) or NHERF2 (Filippov et al., 

2010). Direct interaction between GPCRs and the channels has also been reported, for 

example, metabotropic glutamate receptors with CaV2.1 (Kitano et al., 2003), and 

dopaminergic (D1 /  D2) (Kisilevsky et al., 2008; Kisilevsky and Zamponi, 2008) or 

nociceptin (NOP) receptors (Altier et al., 2006; Beedle et al., 2004)  with CaV2.2. Direct 
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interaction of GPCRs with the channels might also confer additional means of voltage-

independent inhibition, such as agonist-mediated endocytosis of the channel/receptor 

complex (Altier et al., 2006) (but see (Murali et al., 2012)). 

 

Characteristic features of voltage-dependent inhibition: the “willing-reluctant” 

model 

Voltage-dependent inhibition exhibits several characteristic features that provide an 

identifying biophysical signature (Figure 2): the inhibition is diminished at depolarized 

membrane potentials; the voltage-dependence of activation is shifted to more depolarized 

potentials; the activation kinetics are slowed; a conditioning prepulse to depolarized 

potentials relieves most of the inhibition and normalizes channel kinetics (termed 

prepulse relief or prepulse facilitation). Voltage-dependent relief of the inhibition can 

also occur to some extent during more physiologically relevant stimuli such as high 

frequency trains of action potential-like waveforms (Brody et al., 1997; Currie and Fox, 

2002; Park and Dunlap, 1998; Tosetti et al., 1999; Williams et al., 1997; Womack and 

McCleskey, 1995). In this case the magnitude of facilitation increases with stimulation 

frequency, and in turn this might contribute to short term synaptic plasticity at some 

synapses (Brody and Yue, 2000). 

 

As first proposed by Bean (Bean, 1989), these characteristic features have been 

incorporated into models in which the channels exhibit two functional gating states, 

“willing’ and “reluctant” (Bean, 1989; Carabelli et al., 1996; Colecraft et al., 2000; 

Elmslie et al., 1990; Lee and Elmslie, 2000). In the absence of Gβγ, the channels  
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Figure 2: Hallmark features of voltage-dependent inhibition. (A, B) Example of “whole cell” patch 

clamp recording of ICa from an adrenal chromaffin cell. Prostaglandin E2 (PGE2) acts through Gi/o-coupled 

EP3 receptors to inhibit ICa. The inhibition displays hallmarks of voltage-dependent inhibition: peak 

amplitude was reduced, activation kinetics were slowed, and in the continued presence of agonist both of 

these effects were reversed by a conditioning prepulse to +100 mV (green trace) (panel B). (C) Example 

showing voltage-dependent inhibition of single N-type Ca
2+

 channel currents (with permission from 

Colecraft, Brody and Yue (2001) (Colecraft et al., 2001)). Recombinant CaV2.2 channel currents were 

recorded in the “on-cell” patch clamp configuration with GPCR agonist included in the patch-pipette to 

elicit tonic inhibition of the channels in the membrane patch (left panel). A conditioning prepulse (to +130 

mV) was used to reverse this inhibition (right panel). Five representative current sweeps are shown, along 

with an ensemble (pseudo macroscopic) current at the bottom of each panel. Inhibited “reluctant” channels 

display substantially longer latency (time to first channel opening) upon membrane depolarization. The 

conditioning prepulse normalizes channel gating to that seen under control conditions. 
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predominantly populate the “willing” state, whilst binding of Gβγ favors the “reluctant” 

state. Voltage-dependent relief of the inhibition, for example by a depolarizing prepulse, 

is thought to reflect transient dissociation of G from the channels with a concomitant 

shift from “reluctant” to “willing” gating states (Figure 3). Although dissociation of Gβγ 

is not the only mechanism that could underlie facilitation, it is supported by analyses of 

prepulse relief as a function of agonist or Gβγ concentration. When the concentration of 

Gβγ was increased, the rate of relief during the prepulse (i.e. dissociation of Gβγ) was not 

altered. However, the rate of reinhibition following the prepulse was faster, as predicted 

for rebinding of the G (Delmas et al., 1998; Elmslie and Jones, 1994; Golard and 

Siegelbaum, 1993; Zamponi and Snutch, 1998). The concentration-dependence and 

monoexponential kinetics of reinhibition were also consistent with a bimolecular 

interaction of a single Gβγ dimer with the channel (Zamponi and Snutch, 1998). Gβγ 

dissociation also occurs (albeit more slowly) with moderate membrane depolarization, 

manifest as the slowed activation kinetics of whole cell ICa (Figure 2A).   
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Figure 3: Voltage-dependent relief of inhibition reflects transient dissociation of Gβγ from the 

channel. The currents shown were recorded from recombinant CaV2.2 channels expressed with β1b, α2δ in 

HEK293 cells. Gβγ was co-expressed and produced tonic inhibition of ICa that was reversed by a 

conditioning prepulse to +100 mV. As illustrated by the cartoon, prepulse facilitation is thought to reflect 

dissociation of Gβγ from an inhibitory binding site on the channel at the depolarized membrane potential.  

Upon return to the hyperpolarized membrane potential, Gβγ rebinds to, and re-inhibits, the channel. The 

timecourse of this re-inhibition can be investigated by varying the interval between the prepulse and test 

pulse (). Re-inhibition of ICa is well fit with a single exponential (red line) and the rate is faster as the local 

concentration of Gβγ increases. 
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Single channel investigation of voltage-dependent inhibition 

Using the “cell-attached” (“on-cell”) recording configuration, several studies showed that 

agonist must be included in the patch pipette to elicit inhibition (Bernheim et al., 1991; 

Elmslie and Jones, 1994; Forscher et al., 1986). Thus, only GPCRs localized close to the 

channels (within the membrane patch under the pipette) can couple to and inhibit the 

channels in that patch. When agonist is bath applied (i.e. outside the patch pipette), the 

GPCRs on the rest of the cell membrane are activated but do not inhibit the channels, 

showing that the signaling pathway is “membrane delimited” and does not involve 

diffusible intracellular messengers. Single channel recordings also reveal the 

characteristic gating shifts associated with voltage-dependent inhibition (Figure 2C).  

Upon membrane depolarization, the latency (delay) to first channel opening was 

increased with little effect on other single channel parameters (Carabelli et al., 1996; Patil 

et al., 1996). Thus, the inhibited (“reluctant”) channels appear essentially silenced, unable 

to open until Gβγ dissociated and the channels shift to the “willing” state. Subsequently it 

has been reported that CaV2.2 but not CaV2.1 channels can display very brief channel 

openings from the “reluctant” state (i.e. without G unbinding), although the probability 

of such events was low (Colecraft et al., 2000; Lee and Elmslie, 2000).   

 

Alteration of gating currents by Gβγ 

Gating currents of voltage-gated channels are not due to ionic flux through the channel 

pore, but rather reflect movement of the charged voltage-sensor domain of the channels 

in response to membrane potential changes. Expression of recombinant CaV2.2 in 

HEK293 cells enables recording of these gating currents in isolation as the cells lack 
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other endogenous voltage-gated channels. Using this approach it was found that Gβγ 

reduced the amplitude, and shifted the voltage-dependence of gating currents to more 

depolarized potentials (Jones and Elmslie, 1997), again consistent with the channels 

entering a “reluctant” state. G proteins also produced a significant separation in the 

voltage-dependent activation of gating current and ionic current (Jones and Elmslie, 

1997). Together these data suggest that Gβγ binding slows movement of the voltage-

sensor and uncouples this movement from opening of the channels. Similar modulation 

of gating currents by G proteins has also been reported in rat sympathetic neurons 

(Hernandez-Ochoa et al., 2007; Rebolledo-Antunez et al., 2009).   

 

G modulates channel inactivation 

In addition to these dominant effects on channel activation, evidence shows that Gβγ can 

also modulate inactivation of CaV2.2 channels (McDavid and Currie, 2006; Weiss et al., 

2007). Although the precise molecular correlates remain somewhat unclear, fast voltage-

dependent inactivation might involve a “hinged lid” mechanism in which the pore is 

occluded by the intracellular loop connecting domains I and II of the 1-subunit (Stotz 

and Zamponi, 2001; Tadross et al., 2010) (but see (Findeisen and Minor, 2009)). The I-II 

linker is also important for binding G (De Waard et al., 2005; De Waard et al., 1997; 

Herlitze et al., 1997; Schiff et al., 2000) (Figure 1) (see below for more discussion), so it 

is feasible that this could disrupt movement or interaction of this putative inactivation 

gate with other channel domains. CaV2 channels can also inactivate from intermediate 

closed state(s) favored during trains of brief repetitive stimuli (Patil et al., 1996). G 

could also reduce the cumulative inactivation throughout a stimulus train by reducing the 
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probability that the channels populate the state from which inactivation is preferred. In 

addition to voltage-dependent mechanisms, the channels can also undergo Ca
2+

-

dependent inactivation mediated through calmodulin interaction with the C-terminus of 

the channel (Lee et al., 1999; Lee et al., 2003; Liang et al., 2003; Peterson et al., 1999; 

Zuhlke et al., 1999). The reduction of Ca
2+

-dependent inactivation by Gβγ (McDavid and 

Currie, 2006) might therefore result from fewer channels opening and a diminished 

“global” Ca
2+

 signal, or through more complex interactions perhaps including binding of 

Ca
2+

-calmodulin to Gβγ which has been reported to occur at least in vitro (Liu et al., 

1997).     

 

CaV2.2 channels are more susceptible to Gβγ-mediated inhibition than CaV2.1 

channels. 

Ca
2+

 entry through CaV2.1 and/or CaV2.2 channels triggers neurotransmitter release at 

most synapses, and both of these channels are inhibited by Gβγ. However, the magnitude 

of inhibition is greater for N-type (CaV2.2) than for P/Q-type (CaV2.1) ICa (Bourinet et 

al., 1996; Currie and Fox, 1997; Zhang et al., 1996). Reversal of CaV2.2 inhibition during 

high frequency bursts of action potentials is more sensitive to changes in the action 

potential amplitude and duration, and overall occurs to a lesser extent than for CaV2.1 

(Currie and Fox, 2002). These differences are consistent with higher affinity binding of 

G to CaV2.2. Indeed, although the apparent affinity of Gβγ for the two channel types is 

similar at hyperpolarized or very depolarized potentials, there is a significant divergence 

at moderately depolarized potentials (< +30 mV) (Colecraft et al., 2000). These data all 

suggest that GPCR mediated inhibition of neurotransmission would be more effective at 
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synapses expressing CaV2.2 compared to those expressing CaV2.1 channels. Furthermore, 

although changes in the relative contribution of the two channel types might have little 

effect on transmitter release per se, it could significantly change neuromodulation by 

GPCRs (Brody and Yue, 2000; Cao and Tsien, 2005; Inchauspe et al., 2007).   

 

Regions of the calcium channel that mediate inhibition by Gβγ. 

Cumulative evidence from a variety of approaches (mutagesis, chimeric channels, peptide 

mimetics/blockers) suggests that multiple sites on the α1 subunit of the channel comprise 

a binding pocket for Gβγ. Two distinct binding sites for Gβγ have been reported on the I-

II linker (De Waard et al., 1997; Herlitze et al., 1997; Tedford et al., 2010; Zamponi et 

al., 1997). The first site has a consensus sequence for Gβγ binding found in phopholipase 

C β2 and type 2 adenylyl cyclase (QXXER). This site (containing QQIER in all three 

CaV2 channel members) overlaps with the binding site for the CaVβ subunit (the AID) 

(Pragnell et al., 1994; Van Petegem et al., 2004). A second site further along the I-II 

linker has also been identified (De Waard et al., 2005). In vitro binding assays between 

Gβγ and the I-II linker peptide show high affinity interactions (20 - 60 nM) (Bell et al., 

2001; De Waard et al., 1997; Zamponi et al., 1997), although this is reduced somewhat 

by the presence of a CaVβ subunit (Zhang et al., 2008). Peptides based on both sites 

diminish voltage-dependent inhibition of the channels and point mutations introduced 

into the sites can either reduce or enhance inhibition (Tedford et al., 2010). PKC can 

reduce voltage-dependent inhibition of CaV2.2 channels (N-type) ICa (Barrett and 

Rittenhouse, 2000; Bertaso et al., 2003; Simen et al., 2001; Swartz, 1993; Zamponi et al., 

1997), and this has been linked to phosphorylation of Thr
422

 on the I-II linker (of the rat 



28 

 

CaV2.2), close to the second Gβγ binding site (Hamid et al., 1999; Zamponi et al., 1997).  

Of note, phosphorylation of Thr
422

 disrupts the inhibition of ICa mediated by Gβ1, but not 

other Gβ subunits (Cooper et al., 2000), and two residues on Gβ1 (Asn
35 

and Asn
36

 ) have 

been shown to underlie this difference (Doering et al., 2004). These data also suggest that 

Thr
422

 on the rat CaV2.2 I-II linker and Gβγ come into close proximity with one another 

during inhibition. Evidence implicating the I-II linker has been less clear in some other 

studies. For example, chimeric channels in which the I-II linker of CaV1.2 was introduced 

into the CaV2.2 backbone were still inhibited (Agler et al., 2005; Canti et al., 1999; Zhang 

et al., 1996).    

 

The N-terminus of CaV2.2 has also been identified as crucial for voltage-dependent 

inhibition (Agler et al., 2005; Canti et al., 1999; Simen and Miller, 1998; Stephens et al., 

1998). Evidence for this emerged from the finding that a short splice variant of CaV2.3 

channels with a truncated N-terminus was not inhibited by Gβγ, whereas a splice variant 

with an intact N-terminus was (Page et al., 1998). The Dolphin lab further demonstrated 

that truncating the N-terminal 55 amino acids of CaV2.2 prevented voltage-dependent 

inhibition, whereas introducing the CaV2.2 N-terminus into the CaV1.2 backbone 

conferred modest inhibition onto these normally resistant channels (Canti et al., 1999; 

Page et al., 1998). An eleven amino acid stretch of the N-terminus (residues 45-55) 

predicted to form an α-helix (Page et al., 2010) seems critical for Gβγ-mediated 

inhibition, especially residues S48, R52 and R54, with I49 involved to a lesser extent 

(Canti et al., 1999). The Yue lab demonstrated that Gβγ interacts directly with the N-

terminus and also showed that the N-terminus (residues 56-95) directly binds to the I-II 
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linker from CaV2.2 but not CaV1.2 (Agler et al., 2005). Thus, the N-terminus may 

contribute to a binding pocket for Gβγ and, through intra-molecular interaction with the I-

II linker, serve as an “inhibitory module” that mediates the functional shift from willing 

to reluctant gating states. A recent study reported that peptides based on the N-terminus 

(residues 45-55 of rat CaV2.2) or AID of the channel (377-393 of rat CaV2.2) suppressed 

ICa and transmitter release from superior cervical ganglion neurons, and diminished Gβγ-

mediated inhibition (Bucci et al., 2011). It was concluded that peptide interaction with the 

channels partially recapitulated and occluded the shifts in channel gating produced by 

Gβγ.  

 

The C-terminus of the channel has also been reported to play an important role in 

modulation of CaV2.3 (Qin et al., 1997). However, large parts of the C-terminus can be 

deleted in CaV2.2 channels with little impact on the extent of voltage-dependent 

inhibition (Furukawa et al., 1998; Hamid et al., 1999). Thus, it might play a modulatory 

role in CaV2.2 channel regulation, perhaps by increasing the affinity of Gβγ binding (Li et 

al., 2004). Of note, the C-terminus does bind a number of other proteins including 

calmodulin, CaMKII, PKC, and Gα subunits (Catterall and Few, 2008; Evans and 

Zamponi, 2006), which could facilitate crosstalk between Gβγ-mediated inhibition and 

other signaling pathways (Bertaso et al., 2003; Simen et al., 2001).  

 

To summarize, it appears that the binding site for Gβγ is comprised from multiple sites on 

the N-terminus, I-II linker, and perhaps the C-terminus of the channel. Upon binding of 

Gβγ, the N-terminus (residues 56-95) interacts with the proximal one-third of the I-II-
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linker (see Figure 4). This (and perhaps other interactions) presumably underlies the shift 

in channel gating from “willing” to “reluctant”.   

 

Regions of Gβγ implicated in the inhibition of CaV2 channels 

Several studies have also used mutagenesis approaches to identify residues on Gβγ 

involved in inhibiting CaV2 channels. High resolution crystal structures are available 

showing that Gβ exhibits a seven blade β-propeller structure with an α-helical N-terminus 

that binds G(Gaudet et al., 1996; Lambright et al., 1996; Lodowski et al., 2003; Sondek 

et al., 1996; Wall et al., 1995) (see Figure 4). In the heterotrimer, binding of Gα to Gβ 

masks a protein interaction “hot spot” that contains overlapping subsets of residues 

involved in many effector protein interactions (Figure 4B) (Smrcka, 2008). Most 

mutagenesis studies that disrupt inhibition of CaV2 channels have identified residues on 

this Gα interacting surface (Agler et al., 2005; Ford et al., 1998; McDavid and Currie, 

2006; Tedford et al., 2006)  (Figure 4B). Three residues on the opposite face of Gβ1 have 

also been implicated (Doering et al., 2004; Mirshahi et al., 2002; Tedford et al., 2006), 

while two (Asn
35 

and Asn
36

) appear to underlie the ability of PKC to antagonize 

inhibition of CaV2.2 by Gβ1 (Doering et al., 2004). Less is known about the role of Gγ, 

although it has been reported that different isoforms of Gγ can influence the extent of 

inhibition (Blake et al., 2001; Zhou et al., 2000) .  
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Figure 4:  Cartoon model depicting the molecular interactions that underlie Gβγ-mediated inhibition 

of CaV2 channels. (A) Depicts a channel, GPCR, and heterotrimeric G protein under basal conditions (no 

agonist; left panel). Upon GPCR stimulation (right panel), Gβγ dissociates and is free to interact with 

effector proteins including CaV2 channels. Mutagenesis and other approaches suggest the Gβγ binding 

pocket is comprised from multiple sites on the N-terminus, I-II linker, and probably C-terminus of the 

channel. Gβγ binding promotes interaction of the N-terminus “inhibitory module” with the initial one-third 

of the I-II-linker. This (and perhaps other interactions) shifts the channels to reluctant gating states and 

results in functional inhibition. Although not required for inhibition per se, binding of a CaVβ subunit to 

the AID on the I-II linker is necessary for voltage-dependent reversal of the inhibition by strong 

depolarizations. (B) Left panel:  Ribbon diagram showing the structure of a heterotrimeric G protein (Gαi - 

green; Gβ1 - red; and Gγ2 blue). Many effectors bind to a protein interaction “hot spot” on the surface of 

Gβ that is masked by Gα in the heterotrimer. Activation by a GPCR results in dissociation of Gα and 

unmasking of this effector interaction face of Gβγ. Right panel:  Molecular surface rendering of the Gα 

interacting face of Gβγ. Mutagenesis of the residues marked in yellow has been reported to disrupt 

inhibition of CaV2 channels. (1 = L55; 2 = K57; 3 = W332; 4 = M101; 5 = L117; 6 = M119; 7 = T143; 8 = 

D186; 9 = D228). Residues marked in green (10 = N35, N36) are involved in crosstalk between Gβ1 and 

PKC phosphorylation of CaV2.2. Images were generated using the UCSF Chimera package (Pettersen et 

al., 2004; Sanner et al., 1996) from the Resource for Biocomputing, Visualization, and Informatics at the 

University of California, San Francisco using data reported by Wall et al (Wall et al., 1995) (PDB ID: 

1GP2). 
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Influence of the calcium channel β subunit on Gβγ-mediated inhibition. 

CaVβ subunits exert a variety of effects on Ca
2+

 channels from trafficking, modulation of 

channel kinetics, and recruitment of signaling complexes (for reviews see (Buraei and 

Yang, 2010; Dolphin, 2012). It has also been shown that the magnitude and kinetics of 

voltage-dependent inhibition depends on the subtype of CaVβ and G protein β subunit 

involved (Canti et al., 2000; Feng et al., 2001). Recent evidence from the Dolphin and 

Yang labs show that binding of CaVβ to the CaVα1 subunit is not required for Gβγ-

mediated inhibition per se, but is required for voltage-dependent reversal of that 

inhibition (Dresviannikov et al., 2009; Leroy et al., 2005; Meir et al., 2000; Zhang et al., 

2008). 

 

The Dolphin lab introduced a mutation (W391A) into the AID on the I-II linker of 

CaV2.2 channels which reduces CaVβ subunit binding affinity by ~1000 fold. (Leroy et 

al., 2005). Altered gating kinetics and reduced current density (due to disrupted 

trafficking) confirmed the channels lacked a CaVβ subunit. The magnitude of inhibition 

evoked by D2 dopamine receptors or exogenous Gβγ was similar to that seen in wild-type 

channels, however prepulse reversal of the inhibition was lost in the W391A mutant.  

Mutation of an additional two residues shown to be essential for Gβγ-mediated inhibition 

(R52A and R54A on the N-terminus) abolished this voltage-independent inhibition in 

W391A channels. When the β2a subunit was expressed with the W391A channels rather 

than the β1b subunit, voltage-dependent relief of the Gβγ mediated inhibition was 

restored. This was attributed to palmitoylation of the β2a subunit at two N-terminal 

cysteine residues, because when these were mutated voltage-dependent relief was lost 
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(i.e. the data resembled β1b). The authors proposed that palmitoylation effectively 

increases the local plasma membrane concentration of β2a and thereby promotes low 

affinity interaction with the α1 subunit. A follow up study demonstrated essentially the 

same findings, intact inhibition but loss of voltage-dependent reversal, in cells transfected 

with wild type CaV2.2 and α2δ (but without CaVβ) (Dresviannikov et al., 2009).   

  

The Yang lab investigated inhibition of CaV2.1 channels and chose to mutate CaVβ to 

reduce the affinity for the AID (Zhang et al., 2008). The channels were expressed in 

Xenopus oocytes and macroscopic currents recorded from giant inside-out patches. Due 

to the reduced binding affinity of the mutant CaVβ subunit, washing the cytoplasmic face 

of the patches resulted in loss of binding which was confirmed by the expected shifts in 

channel kinetics compared to wild type. These channels lacking CaVβ were still inhibited 

by application of Gβγ, but prepulse reversal of this inhibition was abolished.   

 

The CaVβ subunit consists of SH3 and GK domains separated by a variable HOOK 

region (Buraei and Yang, 2010; Dolphin, 2003). Expression of the isolated GK domain 

(which binds the AID) was sufficient to confer voltage-dependent reversal of Gβγ-

mediated inhibition (Dresviannikov et al., 2009; Zhang et al., 2008). It has been reported 

that the AID adopts a random coil and that binding of CaVβ induces an α-helical 

conformation that extends back to the interface with domain I (Arias et al., 2005; Chen et 

al., 2004; Opatowsky et al., 2004; Van Petegem et al., 2004). Disruption of this α-helical 

structure by introducing seven glycines between the AID and IS6 did not prevent 

inhibition by Gβγ, but did prevent voltage-dependent reversal in the presence of CaVβ 
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(Zhang et al., 2008). Overall, it appears that Gβγ binds to a pocket formed by the N-

terminus, I-II linker and perhaps C-terminus of the channel. In doing so, it promotes 

interaction of the channel N-terminus and I-II-linker, disrupts voltage-sensor movement 

and coupling to channel activation, thereby shifting the channels from “willing” to 

“reluctant”. With strong depolarization, a rigid α-helix produced by binding of CaVβ to 

the AID might relay movement of the voltage-sensor / activation gate downstream to the 

I-II linker to alter the binding pocket, resulting in unbinding of Gβγ and reversal of the 

inhibition.   

 

 

Influence of SNAREs and other synaptic proteins on Gβγ-mediated 

inhibition 

 

The SNARE proteins syntaxin 1A and SNAP25 can bind directly to CaV2 channels via 

the synaptic protein interaction (synprint) site on the domain II-III linker of the channel 

(Figure 1) (Bezprozvanny et al., 1995; Rettig et al., 1996; Sheng et al., 1994; Sheng et al., 

1997; Wiser et al., 1997; Zhong et al., 1999). This has several consequences, such as 

helping to ensure efficient stimulus-secretion coupling by targeting the channels near to 

vesicle release sites (Mochida et al., 1996). Binding of syntaxin-1 results in a 

hyperpolarizing shift in voltage dependent inactivation of CaV2 channels, which is 

reversed with the further addition of SNAP -25 (Bergsman and Tsien, 2000; 

Bezprozvanny et al., 1995; Davies et al., 2011; Jarvis and Zamponi, 2001) (for review see 

(Davies and Zamponi, 2008)). This might serve to effectively shunt extracellular Ca
2+

 

entry through CaV2 channels associated with a docked vesicle/t-SNARE complex, and 
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inhibit Ca
2+

 entry through incomplete signaling complexes. Gβγ also binds syntaxin 1, 

but at a site distinct from that for CaV2 channels (Davies et al., 2011; Jarvis et al., 2002).  

This promotes tonic inhibition, presumably by colocalizing Gβγ and CaV2.2 channels 

(Davies et al., 2011; Jarvis et al., 2002; Jarvis et al., 2000). In contrast, even though 

syntaxin 1B binds both Gβγ and the channel, it does not promote tonic inhibition (Lu et 

al., 2001), perhaps suggesting a difference in the spatial orientation of the syntaxin/Gβγ 

complex relative to the channel. Botulinum neurotoxin C, which cleaves syntaxin, 

diminished inhibition of Ca
2+

 channels in neuronal preparations supporting the notion 

that this interaction is physiologically important (Silinsky, 2005; Stanley and Mirotznik, 

1997). Cysteine string protein (CSP) also interacts with G proteins and the synprint site to 

promote Gβγ-mediated inhibition. 

 

Interaction with other synaptic proteins might diminish rather than enhance Gβγ-

mediated inhibition of Ca
2+

 channels. For example, RIMs (rab3 interacting molecules) 

have emerged as important organizers of the presynaptic active zone (Sudhof, 2012), and 

can bind Ca
2+

 channels directly, or through interaction with RIM binding proteins or the 

CaVβ subunit (Gandini and Felix, 2012; Han et al., 2011; Hibino et al., 2002; Kaeser et 

al., 2011; Kiyonaka et al., 2007; Uriu et al., 2010). Coexpression of Rim1 with CaV2.2 in 

HEK293 cells has complex effects and promotes “deinhibition” (recovery from inhibition 

during depolarization) perhaps in part through dramatic slowing of channel inactivation 

(Weiss et al., 2011). It has also been reported that stargazin (aka the Ca
2+

 channel γ2 

subunit), although not covalently bound to the channel complex, scavenges G in 

Xenopus oocytes to reduce inhibition of CaV2.2 channels (Tselnicker et al., 2010). And, 
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as already noted PKC can reduce voltage-dependent inhibition of CaV2.2 channels 

(Barrett and Rittenhouse, 2000; Bertaso et al., 2003; Simen et al., 2001; Swartz, 1993; 

Zamponi et al., 1997), likely through phosphorylation of the channel I-II linker (Hamid et 

al., 1999; Zamponi et al., 1997), or perhaps in some cases through phosphorylation of the 

GPCR (Wu et al., 2002).   

 

Exocytosis from adrenal chromaffin cells 

 

Experimental advantages inherent to chromaffin cells 

Different combinations of pore forming and auxiliary channel subunits (Catterall, 2000; 

Ertel et al., 2000; Yokoyama et al., 2005), all of which are subject to alternate mRNA 

splicing (Flucher and Tuluc, 2011; Gray et al., 2007; Liao et al., 2005; Lieb et al., 2012) 

or RNA editing (Huang et al., 2012), result in substantial functional diversity of Ca
2+

 

channels. Recording from recombinant channels in heterologous expression systems is 

one powerful tool to investigate ion channel function, and has proven invaluable for 

assigning specific traits to a particular subunit, or structure-function studies involving 

mutagenesis. However, it can be challenging to precisely reconstitute all aspects of native 

Ca
2+

 currents and recording the downstream physiological consequences (i.e. transmitter 

exocytosis) may not be possible. Recording endogenous channels provides more 

physiological context, but can be complicated by the presence of multiple channel types, 

auxiliary subunits, and so on. Typically, neuronal Ca
2+

 currents are recorded from the cell 

soma, due to the inaccessibility and small size of the presynaptic terminal. For the same 

reason, in most cases presynaptic transmitter release is monitored indirectly, for example 
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by recording post-synaptic electrical responses or by optical approaches that track labeled 

synaptic vesicles. Therefore, directly relating channel function to transmitter release can 

be a challenge. There are a few specialized synapses that are amenable to direct electrical 

recording of presynaptic channels, for example the Calyx of Held in the auditory brain 

stem (Schneggenburger and Forsythe, 2006).   

 

As previously mentioned, CaV2 channels are expressed in chromaffin cells of the adrenal 

medulla (Currie, 2010b; Fox et al., 2008; Garcia et al., 2006). The small (~10-15 μm), 

spherical cells are electrically compact and well suited for patch clamp electrophysiology 

to not only record ion channel currents, but also membrane capacitance which precisely 

reflects the surface area of the cell so one can track exocytosis and endocytosis with 

millisecond time resolution (Fenwick et al., 1982) (Borges et al., 2008; Gillis, 2000; Yao 

et al., 2012) (Figure 5). Direct electrochemical monitoring of catecholamine release is 

also possible using carbon fiber amperometry (Borges et al., 2008; Travis and Wightman, 

1998; Wightman et al., 1991). With suitable stimulation protocols transient amperometric 

current “spikes” can be resolved, each of which can be analyzed to determine the amount 

and kinetics of catecholamine release from individual vesicular fusion events (Machado 

et al., 2008; Mosharov and Sulzer, 2005) (Figure 5). These approaches can also be 

combined with other techniques including electron microscopy, fluorescent imaging, and 

photorelease of “caged” Ca
2+

. The ability to deliver precisely controlled stimuli, and 

simultaneously record ion channel activity and exocytosis / transmitter release from the 

same cellular compartment enables direct cause-and-effect assessment of mechanisms 

that control neurosecretion. It also enables dissection of the various steps in the 
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exocytotic process, and how those are altered in response to neuromodulators. Of course, 

there are differences between chromaffin cells and neurons (as is also the case between 

different types of neurons) (Neher, 2006). For example, catecholamines are stored and 

released from large dense core granules rather than small synaptic like vesicles.  

Nonetheless, chromaffin cells provide both a physiologically important system and 

powerful cellular model to investigate neurosecretion and its modulation by GPCRs 

(Currie, 2010b). 

 

“Fight or Flight”/chromaffin cell secretory function 
 

The physiological response to metabolic or emotional stressors involves the coordinated 

activation of the hypothalamic-pituitary-adrenocortical (HPA) axis and the 

sympathoadrenal system (Goldstein, 2010). Functionally, at the level of the splanchnic-

adrenal synapse, this is represented as shift from low-frequency action-potential firing 

(basal sympathetic tone) to higher frequency “burst mode” stress firing, which increases 

the output of acetylcholine (ACh) and the neuropeptide co-transmitter PACAP (Smith 

and Eiden, 2012). This sympathetic drive depolarizes chromaffin cells, promoting Ca
2+

 

influx through voltage-gated Ca
2+

 channels, and subsequently triggers fusion of large 

dense core granules with the plasma membrane, thus releasing catecholamines and other 

peptide transmitters into circulation. PACAP is hypothesized to be a crucial player for the 

prolonged secretory response associated with stress firing, as its application induces 

robust secretion by initiating Ca
2+

 entry through T-type (Hill et al., 2011), 2-APB 

sensitive (Mustafa et al., 2007), N-, P/Q- and L-type Ca
2+

 channels (O'Farrell and Marley, 

1997) while bypassing sodium-channel based action-potentials (Mustafa et al., 2007) 
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associated with nicotinic ACh receptor activation. Furthermore, PACAP upregulates 

mRNA for tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase 

(PNMT), both involved in catecholamine biosynthesis, as well as biosynthetic enzymes 

for neuropeptides co-secreted with catecholamine (Ait-Ali et al., 2010). Chromaffin cells 

contain ~10,000 to 20,000 granules divided into five pools based on kinetics of release, 

physical association with the membrane, and sensitivity to various regulatory co-factors: 

the immediately releasable pool (IRP), readily releasable pool (RRP), docked vesicle 

pool (DRP), unprimed pool (UPP), and reserve pool (RSP). As a result chromaffin cells 

provide a supply of catecholamine that is both rapidly available and physiologically 

inexhaustible. It is unclear the exact number of vesicles in each pool, but the vesicles 

docked and primed at the membrane represent a minority of granules, likely numbering in 

the hundreds, with the rest associated with the cytoskeleton in the reserve pool (Garcia et 

al., 2006). The RRP can be estimated by identifying membrane capacitance (Cm) 

plateaus presumably corresponding to a decline in secretory rate under sustained 

depolarization or caged calcium release. A single granule fusion is known to contribute a 

Cm of about 1.3 fF thus can be correlated to total granule fusion. The maximum size of 

the RRP in bovine chromaffin cells was estimated as ~34 granules by Gillis et al., using a 

novel “paired pulse” methodology. The authors interpret the decline of exocytosis 

triggered by two short (100 ms) depolarizations as an exhaustion of the RRP, assuming 

no pool replenishment occurs with a brief interpulse interval, and calcium entry is 

constant during each pulse (Gillis et al., 1996). Using this methodology, the authors 

demonstrated that activation of PKC with the diacylglycerol mimetic PMA increased the  
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Figure 5: Adrenal chromaffin cells are well suited for investigating stimulus-secretion coupling at 

the cellular level. (A) Photograph and cartoon depiction of a single chromaffin cell with a patch clamp 

pipette and carbon fiber amperometry electrode in position. (B) Vesicle fusion (exocytosis) and recycling 

(endocytosis) can be tracked as changes in membrane capacitance (Cm) using patch clamp 

electrophysiology. The upper trace represent the voltage-command applied to the cell, including a sine 

wave (grey box) superimposed on the holding potential. The step depolarization evoked an inward Ca
2+

 

current (ICa, middle trace), which in turn evoked vesicular exocytosis detected as a jump in membrane 

capacitance (∆Cm, bottom trace). (C) Direct electrochemical detection of catecholamine exocytosis by 

carbon fiber amperometry.The example shows the amperometric current from the carbon fiber electrode 

elicited from a non-voltage-clamped chromaffin cell by 30 mM KCl. Each upward “spike” is due to 

catecholamine release from a single vesicular fusion event. The inset shows a few spikes on an extended 

time scale. (D) An amperometric spike due to oxidation of catecholamines released during a single 

vesicular fusion event is shown. The charge of the spike (integral – grey shading) is directly proportional 

to the number of catecholamine molecules released. Other kinetic features of the spike can also be 

analyzed. Some spikes (~ 1 in 3) display a smaller amplitude plateau or pre-spike “foot” that is thought to 

reflect release of catecholamine through a narrow fusion pore. As illustrated in the cartoon, the fusion pore 

may then expand irreversibly resulting in full collapse of the vesicle into the plasma membrane (solid 

arrows), or may open transiently resulting in partial emptying of the vesicular content and rapid recycling 

of the vesicle 
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size of the RRP to ~130 granules. Using caged calcium release to estimate pool size 

instead of paired step depolarizations predicts a larger RRP, and may in fact be targeting 

both the IRP and RRP (Gillis et al., 1996; Heinemann et al., 1994; Horrigan and 

Bookman, 1994). Replenishment of membrane- associated, release competent pools with 

vesicles from the reserve pool can be measured as recovery from depletion and has been 

shown to rely on [Ca
2+

]i (Smith et al., 1998; von Ruden and Neher, 1993). Taken together 

Ca
2+ 

demonstrates a broad and temporally complex role in regulating the secretory 

process, both in the late stage triggering of exocytosis and maintaining supply of release 

competent vesicles. 

 

Role in disease 

Adrenal chromaffin cells are a major sympathetic output of the peripheral nervous 

system, responsible for most of the circulating epinephrine, and to a lesser extent 

norepinephrine (collectively referred to as catecholamines). By binding to adrenergic 

receptors, catecholamines maintain cardiovascular homeostasis. However in response to 

physiological stress catecholamines are the primary effector in coordinating “fight or 

flight” sympathetic activation. 

 

Chromaffin cell dense core granules contain remarkably high concentrations of 

catecholamine (~600 mM), ATP (~150 mM) and Ca
2+

 (40 mM) (Videen et al., 1992), 

along with neuropeptide Y (NPY) and the endogenous opioid enkephalin. Accordingly, 

transport of catecholamine from the cytosol into granules presents a solubility problem 

(Kim and Loh, 2005). Catecholamine aggregation with the acidic polypeptide 



42 

 

chromogranin A (CHGA) may facilitate granulogenesis by forming a gel-like storage 

complex with catecholamines and ATP that relieves intra-granular osmotic pressure 

(Machado et al., 2008; Mahapatra et al., 2005). Accompanying its role in granulogenesis, 

CMGA is also a prohormone that gives rise to a number of bioactive peptides that 

correlate with disease. For example: pancreastatin  (dysglycemic peptide, elevated in 

diabetes) (Gayen et al., 2009), the nAChR antagonist catestatin (diminished in 

hypertension), and CHGA itself is elevated in essential hypertension (Mahapatra, 2008; 

Mahapatra et al., 2005). Interestingly Aβ peptides are co-released from chromaffin 

granules along with APP and α- β- and γ-secretases, molecules involved in the 

pathogenesis of Alzheimers disease. (Toneff et al., 2013). Understanding the full impact 

of the so called adrenal ‘secretome’ is in its early stages. 

 

Under basal sympathetic electrical input, catecholamines are selectively released from a 

restricted fusion pore. During electrical stimulation that matches acute stress, dense-core 

granules undergo full fusion with the membrane, co-releasing catecholamines along with 

the peptidergic granule core (Fulop et al., 2005). Certainly catecholamines and bioactive 

peptides have divergent physiological effects on cardiovascular, endocrine and nervous 

systems, thus regulation of the fusion pore by second messenger pathways provides both 

regulatory richness and important pathophysiological targets. For example PKC promotes 

fusion pore dilation and full granule collapse (Chen and Levine, 2005; Fulop and Smith, 

2006) whereas GPCR dependent Gβγ activation may shift the mode of exocytosis toward 

smaller fusion events that release less catecholamine, and potentially occlude 

neuropeptide release (Chen et al., 2005; Yoon et al., 2008).  
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The homeostatic role of sympathoadrenal output can be observed by removing 

chromaffin cell granular components. CMGA
-/- 

mice have severe morphological defects 

in chromaffin granules leading to increased circulating catecholamine, NPY and elevated 

blood pressure. Blood pressure can be rescued with exogenous catestatin, a cleavage 

product of CMGA (Mahapatra et al., 2005). CMGA
-/- 

animals also display increased 

insulin sensitivity in liver, owing to the loss of pancreastatin (Gayen et al., 2009). Rats 

lacking a functional adrenal gland had pronounced hypotension when challenged with 

endotoxin, an effect rescued with endogenous NPY(Evequoz et al., 1988). Mice that 

cannot make epinephrine (PNMT 
-/-

) are hypertensive during exercise, and become 

hyperglycemic and insulin resistant on a high fat diet, suggesting an emerging role for 

adrenal output in the development of metabolic syndrome (Ziegler et al., 2012). 

 

Increased catecholamine levels are observed in patients with acute decompensated heart 

failure. While initially compensatory, this sympathetic overdrive leads to cardiac 

remodeling and eventual myocyte death (Feldman et al., 2008; Mudd and Kass, 2008). 

Adrenal GRK2 is upregulated in rodent models of heart failure, leading to 

downregulation of auto-inhibitory α2 adrenergic receptors, resulting in increased 

catecholamine secretion (Lymperopoulos et al., 2007). The same group used adrenal 

targeted gene-transfer approaches to inhibit GRK2, and as a consequence significantly 

reduced circulating catecholamine (Lymperopoulos et al., 2008) and improved cardiac 

function in a post-myocardial infarction model of heart failure (Lymperopoulos et al., 

2010).   
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Intra-adrenal paracrine signaling 

 

Regulation of synthetic enzymes for PGE2 

Sympathoadrenal epinephrine outflow in response to physiological stressors like 

hypoglycemia, hemorrhagic hypotension, emotional stress, exercise beyond an anaerobic 

threshold, and shock is highly correlated with plasma adrenocorticotrophic hormone 

(ACTH) levels, suggesting a possible role for ACTH in coordinating adrenocortical-

adrenomedullary responses to stress, or indicating intra-adrenal interactions between 

cortical cells and chromaffin cells (Goldstein, 2010). Certainly catecholamines stimulate 

steroidogenesis and corticosteroid release from the adrenal cortex, demonstrated by the 

finding that tyrosine hydroxylase knockout mice had hypofunctional cortical cells and 

decreased circulated cortisol (Bornstein et al., 2000). Conversely, ACTH and 

glucocorticoids control epinephrine biosynthesis by regulating PNMT 

(phenylethanolamine N-methyltransferase) activity (Wurtman and Axelrod, 1965). 

Blood flow has been described as centripetal from the cortex to the medulla through a 

network of arterioles in the connective tissue, which branch and distribute blood to the 

cortex through a network of sinousoids, and to medulla through medullary arteries. 

(Bornstein et al., 1997), (Ehrhart-Bornstein et al., 1998). However the impact of blood 

flow on medullar-cortical counter regulation is unclear. 

 

In an animal model of systemic inflammation, infusion of LPS (lipopolysaccharide) 

induced the cortical expression of the proinflammatory mediator IL-1 (interleukin-1), 

its receptor IL-1R, and synthetic enzymes for PGE2: Cox-2 and mPGES1, both in 
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resident and newly infiltrating immune cells (macrophages and dendritic cells). Injection 

of IL-1 also induced its own cortical expression, and the expression of Cox-2. Because 

IL-1 stimulates cortisol release, and IL-1R was only found expressed on immune cells, 

the authors suggest perhaps prostaglandin production ultimately regulates cortisol release 

during an immune challenge (Engstrom et al., 2008) (Deak, 2008). Interestingly, Cox-1, 

Cox-2, and mPGES-1, were constitutively expressed in the adrenal medulla along with 

dense expression of receptors for PGE2, EP1 and EP3, shown by in situ hybridization 

(Engstrom et al., 2008). Given the close association of cortex and medulla, the functional 

effects that increased local production of PGE2 may have on medullar output remain 

unclear (Figure 6).  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

 



46 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

Figure 6: Intra-adrenal paracrine signaling in response to immune challenge. Schematic depicting 

potential cortex-to-adrenal signaling pathways and relative predicted movement of PGE2. Systemic 

injection of LPS induces the production of IL-1, its receptor IL-1R, and synthetic enzymes for PGE2: 

Cox-2 and mPGES1 in the adrenal cortex. Presumably LPS binds its cognate receptors, toll-like receptors 

(TLR4) and CD-14 on resident macrophages and dendrites (blue cells, top panel) to increase the expression 

of IL-1, which in turn increases the expression of Cox-2 and mPGES1. The functional effect of increased 

prostaglandin production “downstream” on adrenal chromaffin cells is unknown. Chromaffin cells express 

EP1 and EP3 receptors (bottom panel) and N-, P/Q-, and L-type calcium channels that trigger exocytosis of 

catecholamine and other neuropeptides directly into the circulation. How PGE2 may regulate catecholamine 

release from individual chromaffin cells is unclear. 
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Prostaglandins and the EP family of GPCRs 
 

PGE2 is the most widely expressed prostanoid, formed by cyclooxygenase (COX1/2) 

induced arachidonic acid metabolism to PGH2, which is converted to PGE2 by tissue 

specific synthases (PGE2 synthase) (Figure 7). PGE2 produces a myriad of biological 

effects including inflammation, tumorigenesis in a number of cancers (Chen and Smyth, 

2011; Rundhaug et al., 2011; Wu et al., 2010) uterine and smooth muscle contraction, 

inhibition of gastric acid secretion, modulation of neurotransmitter release and sodium 

and water reabsorption in the kidney (Grantham and Orloff, 1968).  

 

PGE2 mediates its effects in an autocrine or paracrine fashion on specific Class A, 

rhodopsin-like GPCRs designated EP receptors (Breyer et al., 2001; Regan, 2003; 

Sugimoto and Narumiya, 2007). Four EP receptor subtypes: EP1, EP2, EP3 and EP4 give 

rise to diverse, and sometimes contradictory functional effects of PGE2. Adding to the 

functional repertoire, multiple isoforms of EP1 and EP3 are generated by alternative 

splicing. (Coleman et al., 1994; Schmid et al., 1995). Therefore the diverse array of PGE2 

actions depends on the physiological context and expression of specific EP receptors in 

each respective tissue. 

 

Studying agonist-induced changes in second messenger signaling has led to the 

characterization of signal transduction pathways for each EP receptor (Hirata and 

Narumiya, 2011). Stimulation of mouse EP1 expressed in CHO cells leads to a robust 

increase in intracellular calcium concentration [Ca
2+

]i and to a lesser extent 

phosphotidylinositol hydrolysis and IP3 generation, both independent of phospholipase C 
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Figure 7: Prostanoid biosynthesis. Cyclooxygenase isozymes (COX-1 or COX-2) catalyzse a two-step 

synthesis of the prostanoid precursor PGH2. Arachidonic acid (AA) is cyclized to a PGG2 intermediate, 

then reduced in the peroxidase active site to PGH2. The expression of COX isozymes and cell specific PG 

synthases are highly regulated. 
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(Katoh et al., 1995). It is accepted that activating EP1 increases [Ca
2+

]i and produces 

smooth muscle contraction, however only recent work by Ji et al. shows human EP1 

produces PI turnover as well as a pertussis toxin-sensitive activation of PI3K, indicating 

an association with both Gq and Gi/o (Ji et al., 2010). Similarly, a rat EP1 splice variant 

has been characterized that fails to increase [Ca
2+

]i and when expressed in CHO cells, 

antagonizes the effects of EP4 receptor activation (Okuda-Ashitaka et al., 1996).   

 

The EP2 and EP4 subtypes couple to Gs and activate AC, converting ATP to cAMP. 

cAMP signals through the canonical activation of PKA, and the novel target Epac 

(exchange protein directly activated by cAMP), which impacts numerous physiological 

processes through its own ‘signalosome’ (Schmidt et al., 2013). Additionally EP4 can 

activate ERK 1/2 through PI3K activation (Regan, 2003).  

 

The EP3 receptors were initially characterized as smooth muscle constrictors, decreasing 

cAMP. Alternative splicing of the C-terminus generates three known mouse EP3 splice 

variants: EP3, EP3 and EP3 (Irie et al., 1993), that vary in G protein coupling and 

agonist dependent desensitization. In the mouse, EP3 and EP3 signal through Gi 

mediated inhibition of cAMP. Both bind agonist with similar affinities but EP3 has been 

shown to desensitize and downregulate. EP3 is coupled to both stimulation and inhibition 

of cAMP (Negishi et al., 1993). Additionally all three EP3 mouse splice variants increase 

[Ca
2+

]i and IP3 generation, and signal through RhoA (Macias-Perez et al., 2008)
,
 (Aoki et 

al., 1999; Katoh et al., 1995). Bovine and human EP3 splice variants have also been 

identified (Namba et al., 1993; Negishi et al., 1989; Schmid et al., 1995) (Figure 8). 
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Figure 8: Promiscuous coupling of EP receptors to intracellular signal transduction pathways. 

Commonly observed signaling pathways shown with dark arrows. The EP3 receptor, though primarily 

“inhibitory”, interacts with a greater diversity of G proteins due to C-terminal splicing (not shown but 

represented as dashed arrows). Additionally each EP3 splice variant can signal to RhoA (not shown). 
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The impact of PGE2 on adrenal function 

Studies focusing on PGE2 augmentation of adrenal catecholamine secretion have largely 

been conducted in bovine chromaffin cells or whole glands, measuring bulk 

catecholamine release, and have yielded inconsistent results. 1 M PGE2 application 

concomitant with ouabain stimulation of bovine chromaffin cells for up to 30 min was 

shown to enhance catecholamine secretion due to IP3 and DAG production, indicating 

PLC activation, with maximal DAG production to 1.5 fold basal occurring at a 

concentration of 10 M PGE2 (Negishi et al., 1990). Given the Kd for PGE2 binding to EP 

subtypes ranges from 1-40 nM, these concentrations are quite high. Potentiation of ACh 

stimulated secretion was also reported in perfused dog adrenals, but independent of 

[Ca
2+

]i elevations (Yamada et al., 1988). Other work suggests selective EP1 activation 

increases [Ca
2+

]i from caffeine and ryanodine dependent stores independent of IP3 

production (Shibuya et al., 1999), consistent with multiple functional enzyme couplings 

of EP1 (Figure 8). Karaplis and colleagues report PGE2  (1-10 nM ) inhibits nicotine 

stimulated catecholamine release, whereas higher concentrations (1 M) stimulated 

spontaneous release in bovine adrenal monolayers (Karaplis et al., 1989). Consistent with 

these findings, M&B28767, an EP3 specific agonist, inhibited dopamine release from 

PC-12 cells stably expressing the EP3 receptor variant (Nakamura et al., 1998). Clearly 

the functional effects of EP receptor activation in chromaffin cells depend on the 

stimulation paradigm and receptor subtype present. The effect of physiologically relevant 

PGE2 concentrations on quantal exocytosis, assayed using sensitive electrophysiological 

techniques to resolve individual fusion events has not been investigated. Similarly, 

physiological stimulation paradigms have not been employed. 
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Specific Questions 

 

Sympathetic stress increases firing rates at the splanchnic-adrenal synapse, resulting in 

sustained depolarization and secretion of catecholamine from chromaffin cells (Smith and 

Eiden, 2012). Similarly, systemic inflammation increases local production of Cox-2 and 

mPGES1, likely resulting in increased PGE2 production (Engstrom et al., 2008). The 

cellular consequences of PGE2 action are primarily mediated by binding four cognate 

GPCRs (EP1-EP4) with the net functional effect reflecting a balance of stimulatory and 

inhibitory receptors. EP1 and EP3 receptors are expressed in the adrenal medulla (Breyer 

et al., 1993; Engstrom et al., 2008; Namba et al., 1993; Shibuya et al., 1999) along with 

the synthetic enzymes for PGE2 (Engstrom et al., 2008; Ichitani et al., 2001). Thus the 

components are in place for local modulation of chromaffin cells by PGE2. We 

hypothesize that local PGE2 production in the adrenal gland serves to regulate stimulus 

secretion coupling in adrenal chromaffin cells.  

 

Specific Questions: 

1. Does PGE2 regulate Ca
2+ 

signaling in adrenal chromaffin cells? 

2. If we change the cellular context by modeling sympathetic stress firing, does the 

physiological impact of PGE2 on chromaffin cells change? 
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2. GENERAL MATERIALS AND METHODS 

 

 

Cell preparation and culture 

 

Male mice (6-12 weeks old), wild type, EP3 receptor knockout (Zhang et al 2011; 

manuscript submitted to Prostaglandins and Other Lipid Mediators) or EP1 receptor 

knockouts (Guan et al., 2007)), all on C57BL/6 background were euthanized using 

carbon dioxide followed by cervical dislocation. Adrenal glands were quickly harvested 

and placed in ice cold Magnesium Free Locke’s solution containing (in mM):153 NaCl, 6 

KCl, 2 NaH2PO4.7H20, 1 NaH2PO4.H20, 10 Glucose, 10 HEPES (Figure 9). The glands 

were trimmed of fat and the cortex dissected from the medullae. The medullae were 

incubated for 10 minutes at 37° C in a papain digestion solution (2.5 mg/ml papain, 

Genlantis, San Diego, CA), followed by another 10 minute incubation at 37° C in 

collagenase P (3 U/ml, Roche Diagnostics, Indianapolis, IN.). Tissues were washed 2X 

with Locke’s and transferred to growth medium consisting of:  DMEM / F12/GlutaMAX 

(catalogue # 10565) (Invitrogen, Carlsbad, CA) supplemented with Hyclone defined fetal 

bovine serum (10%) (Fisher Scientific, Pittsburgh, PA) and penicillin (100 unit/ml) / 

streptomycin (100 μg/ml), (Sigma Aldrich, St. Louis, MO). Tissues were then triturated 

with a 2 ml fire polished glass pipette coated in growth medium and allowed to settle.  

The cell containing supernatant was removed and plated on glass coverslips thinly coated 

in growth factor reduced Matrigel (BD Biosciences, Bedford, MA). Cells were allowed to 

settle and adhere to the coverslips for 2 hours before 2ml of growth medium was added to 
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the coverslips. Cells were maintained at 37° C in a humidified, 5% CO2 atmosphere and 

used 1-3 days post-isolation. Each cell preparation was from a single mouse. All 

experimental studies were approved by the IACUC of Vanderbilt University Medical 

Center.  

 

Electrophysiology 

 

Electrodes were pulled from borosilicate glass capillary tubes (World Precision 

Instruments, Sarasota, FL), coated with dental wax (Electron Microscopy Sciences, 

Hatfield, PA) and fire polished to a final resistance of 1.8-3 MΩ when filled with a CsCl-

based internal solution. Cells were voltage-clamped in the whole-cell configuration using 

an Axopatch 200B amplifier, Digidata1400A interface and PClamp10 software 

(Molecular Devices, Sunnyvale, CA). Analog data were filtered at 2 kHz and digitized at 

20 μs/point (50 kHz). Data were analyzed using PClamp10, OriginPro software 

(OriginLab Corp, Northampton MA) and GraphPad Prism (version 5, GraphPad Software 

Inc., San Diego, CA). For perforated whole- cell recording configuration the pipette tip 

was filled with amphotericin-free solution and then backfilled with solution that 

contained ~0.5 mg/ml amphotericin-B (Calbiochem, Carlsbad CA). After forming a cell- 

attached seal, series resistance was monitored to assess the progress of perforation.  

Typically, series resistance <10-15 M was achieved within 5-15 minutes, and cells that 

did not show good perforation within this time frame were discarded. ICa was activated 

by brief 20-100 ms step depolarizations to a predetermined peak (10-30 mV) from a  
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Figure 9: Preparation of chromaffin cells from mouse adrenal glands. (A) A single intact mouse 

adrenal gland (right) imaged under a Nikon stereoscope with a bifurcated fiber optic illuminator 

attachment. The bisected gland (left) reveals the relative volume of the inner, chromaffin cell containing 

medulla (black arrow), compared to the outer cortex. The darker contrast of the medulla under a bright field 

microscope aids in the removal of the cortex. Trimmed medullae were digested, dissociated, and plated on 

matrigel-coated coverslips as described in detail in the Materials and Methods section. (B) Individual 

chromaffin cells imaged with an inverted fluorescent microscope at 400X total magnification. Cells were 

isolated from a transgenic mouse carrying the gene for green fluorescent protein (GFP) under the control of 

the tyrosine hydroxylase (TH) promoter (courtesy of Dr. Danny Winder). TH is a key synthetic enzyme for 

catecholamine biosynthesis and is not expressed in cortical cells, fibroblasts, endothelial cells or various 

immune cells found in the adrenal gland, thus was used to verify isolation of chromaffin cells (C) The same 

field of cells as (B) imaged with a GFP filter, confirming our protocol is largely homogeneous for 

chromaffin cells.  
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holding potential of -80 mV, or by trains of action potential-like waveforms loaded as a 

stimulus file (-80-45 mV, 16 ms duration). Data were subjected to linear capacitance and 

leak subtraction using standard P/N protocols. When determining the inhibition of ICa 

produced by PGE2 (100 nM) cells in which the current amplitude decreased <10% were 

designated as “non-responders” and reported as such in the results section. Only 

“responders” (i.e. >10% current decrease) were included when calculating mean percent 

inhibition. The presence of both responders and non-responders was consistently 

observed in multiple cell preparations, but we did not investigate any other possible 

differences between the two sets of cells in this study. To calculate an EC50 for inhibition 

of ICa by PGE2 data were fit with a Boltzmann function of the form:  Y = Ymax / (1 + 

10^(Log EC50 - X)); where Y = % inhibition of ICa and X is the concentration of PGE2.  

The Hill slope was assumed to be 1 and the curve fit with the least squares method in 

Prism5 software. Goodness of fit was indicated by R
2
 = 0.97.   

 

Nicotinic ACh receptor currents were activated by bath perfusion for 45 s with 30-100 

M carbachol. This enabled multiple reproducible responses to be obtained from the 

same cell. The delay in current activation (see Figure 12A) was due to the “dead space” 

in the perfusion system. The amplitude of the sustained inward current activated by 

carbachol was determined by calculating the mean current amplitude over a 5 s period 

starting 30 s after carbachol application. The mean current amplitude over this 5 s period 

was determined for each cell and then data pooled. The current amplitude was also 

calculated (mean over a 5 s period) at the end of the drug application to determine the 

extent to which the response declined.  
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Changes in membrane capacitance (Cm) were monitored in the perforated whole-cell 

recording configuration using a HEKA EPC10 amplifier in combination with 

PatchMaster data acquisition software (HEKA Electronik). The software lock-in module 

was used to implement the “sine + d.c.” approach for estimating Cm. A sine wave (1 

kHz, 20 mV peak - peak) was imposed on the holding potential of -80 mV and the 

assumed reversal potential was set to 0 mV. Membrane conductance was simultaneously 

calculated by the software and any cells that showed simultaneous changes in Cm and Gs 

were discarded. Cells were stimulated by two step depolarizations (to +10 mV, 100 ms 

duration) separated by 100 ms. The stimulus was repeated every three minutes.  

Membrane capacitance was averaged over a 50 ms period before the stimulus (baseline) 

and again 50 ms after the end of the stimulus to calculate Cm. After two control 

responses cells were exposed to 100 nM PGE2 during the third response. The second 

control response was typically of equal or greater magnitude than the first and if this was 

not the case the cell was discarded due to concern about “rundown”. For data analysis, 

cells were divided into those that responded to PGE2 with decrease in ICa amplitude 

>10% (group-1), and those in which ICa was not inhibited (group-2) (see results for more 

discussion). Data are reported as mean  standard error of the mean and statistical 

significance was determined using paired or independent Student’s t test as appropriate.  
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Amperometry 

 

ProCFE Carbon Fiber Microelectrodes were purchased prefabricated from Dagan 

Corporation (Minneapolis, MN.). Electrodes were backfilled with 3 M KCl and fixed to a 

custom electrode holder on a standard NPI 500 M low-noise headstage. The 5M 

diameter carbon fiber was maneuvered to the side of the cell to easily confirm contact 

without depressing the membrane. Although the manufacturer allows 5-10 cells/electrode 

without fouling or increases in noise, fibers were discarded after no more than three uses.  

A +700 mV potential was applied to the carbon fiber using a NPI VA-10x voltammetric 

and amperometric amplifier (NPI electronic gmbH, Tamm, Germany). Amperometric 

currents were continuously sampled over two stimulation windows (denoted S1 and S2 in 

chapter 4 Results) at 10 kHz, and filtered at 2 kHz with a low-pass hardware filter on the 

NPI amplifier.   

 

Amperometric currents were digitized with a National Instruments BNC-2090 board 

(National Instruments Corporation, Austin, TX.) and acquired using the WinEDR 

Strathclyde Electrophysiological Recorder (Strathclyde Institute of Pharmacy and 

Biomedical Sciences, Glascow, Scotland). Peak finding and kinetic parameters were 

analyzed using a custom macro for Igor Pro (Wavemetrics, Lake Oswego, OR.) 

developed by Eugene Mosharov and David Sulzer at Columbia University. With this 

program an additional 150 Hz filter was applied to the current (I) and 300 Hz to the first 

derivative of the current (dI/dt). Events were detected using an initial threshold of 4X the 

SDdI/dt  in a spike free “control” region of the trace, with an absolute undifferentiated 
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current cutoff of 4 pA. After initial peak finding, events were confirmed by visual 

inspection. Overall secretory activity was assessed by counting all spikes ≥ 4 pA, which 

was the minimum threshold ensuring discrimination from noise. For quantal size 

determination and other kinetic parameters, spikes with a rise time ≥10 ms and an 

amplitude ≤ 4 pA were excluded, so only “fast” quantal events occurring near the fiber 

were analyzed. Further analysis and spike sorting was conducted using OriginPro 

spreadsheet software (OriginLab, Northhampton, MA) and Graphpad Prism (GraphPad 

software, San Diego, CA.). To take into account cell to cell variability in both the number 

and size of individual events as they factor in statistical weight, numbers of events for 

each cell and stimulation window were reported as an average (median or mean). 

Subsequently averages were pooled and subjected to non-parametric statistical tests as 

spike parameters do not follow a normal Guassian distribution. Pooled data are reported 

as mean   standard error of the mean and statistical significance was determined using 

paired or independent Student’s t test, ANOVA, or Dunnett’s multiple comparison post 

test as appropriate. 

 

[Ca2+]i Measurements 

 

Free cytosolic Ca
2+

 concentration ([Ca
2+

]i) was measured in cells loaded with the 

fluorescent  Ca
2+

 indicator Fura-2 (Molecular Probes, Eugene OR). Cells were washed 

twice with HEPES-buffered Hanks Balanced Salt Solution (HBSS) and incubated for 30-

45 minutes with 3 M Fura-2 AM at 37°C. Cells were then washed in Fura-free solution 

for 30-60 minutes before recording. For recording, the coverslip with the cells attached 
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was transferred to a recording chamber and mounted on the stage of a Nikon TE2000 

fluorescence microscope. The recording chamber had a volume of ~300-400 L and was 

continually perfused with fresh solution from gravity-fed reservoirs at a flow rate of ~4 

ml/min. An InCyt IM2 fluorescence imaging system (Intracellular Imaging Inc., 

Cincinnati, OH) was used to monitor [Ca
2+

]i. Cells were alternately excited at 

wavelengths of 340 nm and 380 nm and emission at 510 nm detected using a pixelfly 

digital camera as detailed previously (Dzhura et al., 2006). Ratios were collected every 2 

s throughout the experiment and converted to [Ca
2+

]i using an in vitro calibration curve, 

generated by adding 15.8 μM Fura-2 pentapotassium salt to solutions from a calibration 

kit containing 1mM MgCl2 and known concentrations of Ca
2+

 (0–1350 nM) (Molecular 

Probes, Eugene OR). One or two cells in the field of view were selected in each 

experiment and after a 2-minute baseline were exposed to 1M PGE2 for 3-minutes and 

subsequently to a 50 mM KCl containing solution (by replacing an equimolar amount of 

NaCl in our standard extracellular solution - see below). This was done as a positive 

control for the assay - to ensure the cells were loaded with Fura-2 and responded to 

calcium elevations. It also served as a means to identify any non-excitable (i.e. non-

chromaffin) cells as these typically fail to respond to KCl. Cells that had an unstable 

baseline or failed to respond robustly to KCl (>300 nM elevation) were excluded from 

analysis. Data analysis was performed using OriginPro software (OriginLab Corporation, 

Northampton, MA).  
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RT-PCR 

 

Total RNA was prepared from mouse adrenal and kidney tissue using Qiagen RNeasy 

Mini Kit (Qiagen, Valencia, CA). cDNA was synthesized from total RNA with ABI High 

Capacity Reverse Transcriptase Kit (Applied Biosystems, Foster City, CA) and amplified 

using specific primers: EP1: 5’-TTAACCTGAGCCTAGCGGATG-3’ (sense primer, 

nucleotides 13-37), 5’-CGCTGAGCGTATTGCACACTA -3’ (antisense primer, 

nucleotides 662-682), EP2: 5’-CCTGGGACATGGTGCTTTAT-3’ (sense primer, 

nucleotides 1404-1423), 5’-GGTGGCCTAAGTATGGCAAA -3’ (antisense primer, 

nucleotides 1797-1816), EP3c: 5’-CGCCGTCTCGCAGTC-3’ (sense primer, nucleotides 

849-863), EP3: 5’- TGTGTCGTCTTGCCCCCG -3’ (antisense primer, nucleotides 

1362-1379), EP3: 5’- TGTGGCTTCATTCCTTGCCCA -3’ (antisense primer, 

nucleotides 1572 -1592), EP4: 5’-GGTCATCTTACTCATCGCCACCTCTC -3’ (sense 

primer, nucleotides 1027-1052, 5’-TCCCACTAACCTCATCCACCAACAG  -3 

(antisense primer, nucleotides 1538-1562), GAPDH: 5’ 

GGCATTGCTCTCAATGACAA-3’ (sense primer, nucleotides 942-961) 5’-

TGTGAGGGAGATGCTCAGTG-3’ (antisense primer, nucleotides 1122-1141). 

 

Drugs and Solutions 

 

For whole cell and perforated whole cell patch clamp experiments, cells were perfused at 

a rate of ~ 4 ml/min with external solution consisting of (in mM): 136 NaCl, 2 KCl, 1 

MgCl.6H20, 10 Glucose, 10 HEPES, 10 CaCl.2H20, pH 7.3 osmolarity ~ 305. For 
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amperometry experiments, control solutions consisted of (in mM): 145 NaCl, 2 KCl, 1 

MgCl.6H20, 10 Glucose, 10 HEPES, 2 CaCl.2H20, pH 7.3 osmolarity ~ 305. Exocytosis 

was stimulated with a 30 mM KCl solution consisting of (in mM): 117 NaCl, 30 KCl, 1 

MgCl.6H20, 10 Glucose, 10 HEPES, 2 CaCl.2H20, pH 7.3 osmolarity ~ 305. For all 

amperometry experiments cells were perfused at a rate of ~4 ml/min from gravity fed 

reservoirs. All drugs were diluted (≥1000X) and perfused in these extracellular solutions 

unless otherwise noted. For whole-cell recordings electrodes were filled with internal 

solution containing (in mM):110 CsCl, 10 EGTA, 20 HEPES, 4 MgCl2, 0.35 GTP, 4 

ATP, 14 creatine phosphate, pH 7.3 osmolarity ~305. The free calcium concentration in 

this solution is estimated to be very low (<1nM) (http://maxchelator.stanford.edu). For 

perforated whole-cell recording electrode tips were filled with internal solution 

containing (in mM): 145 Glutamic Acid, 10 HEPES, 10 NaCl, 1 TEA-Cl, pH 7.3, 

osmolarity 309, and backfilled with internal solution containing Amphotericin B 

(Calbiochem, San Diego, CA) at a final concentration of 0.53 mM, prepared from a 100X 

stock solution in DMSO every two hours. PGE2 (Cayman Chemical Company, Ann 

Arbor, MI.) and Sulprostone (Sigma-Aldrich, St. Louis, MO.) were prepared as 10 mM 

stock solutions in ethanol and DMSO, respectively, and frozen until day of use. DG-041 

was synthesized in the Vanderbilt Institute of Chemical Biology Chemical Synthesis 

Core. Pertussis toxin (Calbiochem, San Diego, CA) was prepared as a 100 µg/µL stock in 

water and applied 24 hours prior to experiment in cell culture medium at 300 ng/µL.  

Carbachol (Calbiochem, San Diego, CA.) and TTX (Alomone Labs, Jerusalem, Israel) 

were prepared in sterile water as 100 mM and 1 mM stocks respectively and diluted on 

the day of use. Nitrendipine (ICN Biomedicals Inc., Aurora, OH.) was prepared as a 10 
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mM stock solution in ethanol and diluted to 10 M in external solution. Stock solutions 

of ω-conotoxin GVIA (100 M ) (Alomone Labs, Jerusalem, Israel) and ω-agatoxin IVA 

(10 M) (BACHEM Bioscience Inc., King of Prussia, PA.) were prepared in standard 

extracellular solution and diluted to final working concentrations of 1.5 μM and 400 nM 

respectively on the day of use. SC51322 (Cayman Chemical Company, Ann Arbor, MI.) 

was prepared as a 10mM stock in ethanol and frozen until day of use. Gallein (Tocris 

Bioscience, Bristol, UK.) and Phosducin C-terminal peptide (Anaspec, Fremont, CA.) 

were prepared as 50mM and 300 M stock solutions in DMSO, respectively. 
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3. REGULATION OF CALCIUM CHANNELS AND EXOCYTOSIS IN MOUSE 

ADRENAL CHROMAFFIN CELLS BY PROSTAGLANDIN EP3 RECEPTORS 

 

 

Abstract 

 

Prostaglandin E2 (PGE2) controls numerous physiological functions through a family of 

cognate G protein coupled receptors (EP1-EP4). Targeting specific EP receptors might be 

therapeutically useful and reduce side effects associated with non-steroidal anti-

inflammatory drugs and selective cyclooxygenase-2 inhibitors that block prostanoid 

synthesis. Recently, systemic immune challenge and inflammatory cytokines were shown 

to increase expression of the synthetic enzymes for PGE2 in the adrenal gland.  

Catecholamines and other hormones, released from adrenal chromaffin cells in response 

to Ca
2+

 influx through voltage-gated Ca
2+

 channels, play central roles in homeostatic 

function and the coordinated stress response. However, chronic elevation of circulating 

catecholamines contributes to the pathogenesis of hypertension and heart failure. Here we 

investigated the EP receptor(s) and cellular mechanisms by which PGE2 might modulate 

chromaffin cell function. PGE2 did not alter resting intracellular [Ca
 2+

] or the peak 

amplitude of nicotinic acetylcholine receptor currents, but did inhibit CaV2 voltage-gated 

Ca
2+

 channel currents (ICa). This inhibition was voltage-dependent and mediated by 

pertussis toxin-sensitive G proteins, consistent with a direct G subunit-mediated 

mechanism common to other Gi/o-coupled receptors. mRNA for all four EP receptors was 

detected, but using selective pharmacological tools and EP receptor knockout mice we 
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demonstrated that EP3 receptors mediate the inhibition of ICa. Finally, changes in 

membrane capacitance showed that Ca
2+

-dependent exocytosis was reduced in parallel 

with ICa. To our knowledge this is the first study of EP receptor signaling in mouse 

chromaffin cells and identifies a molecular mechanism for paracrine regulation of 

neuroendocrine function by PGE2. 

 

Introduction 

 

Catecholamines and other hormones released from adrenal chromaffin cells help maintain 

normal homeostatic function and play central roles in the coordinated response to acute 

stressors, for example during “fight-or-flight” sympathetic activation. Elevation of 

circulating catecholamines is closely correlated with hypertension and is a hallmark of 

chronic heart failure. Indeed, specifically targeting the adrenal gland to inhibit 

catecholamine outflow in vivo improved cardiac function in rat models of heart failure, 

suggesting adrenal hormone release as a potential therapeutic target (Lymperopoulos et 

al., 2008). In situ, acetylcholine (ACh) released from splanchnic nerve fibers activates 

nicotinic ACh receptors on the chromaffin cell causing membrane depolarization, 

opening of voltage-gated calcium channels, and influx of calcium that subsequently 

triggers exocytosis (Boarder et al., 1987). Thus, as with neurons and other excitable cells, 

voltage-gated calcium channels play pivotal roles in chromaffin cell function. The cells 

also express a variety of G protein coupled receptors (GPCRs) that orchestrate complex 

regulation of stimulus-secretion coupling. For example, chromaffin cells express 

autoreceptors for ATP (P2Y receptors), catecholamines (-adrenergic) and enkephalin 



66 

 

(-opioid receptors) that couple to Gi/o -type G proteins and mediate autocrine/paracrine 

inhibition of catecholamine release through inhibition of voltage-gated calcium channels 

(Albillos et al., 1996; Currie and Fox, 1996; Harkins and Fox, 2000; Powell et al., 2000; 

Ulate et al., 2000) and other downstream targets (Chen et al., 2005; Yoon et al., 2008).    

 

In this study we investigated the effects of prostaglandin E2 (PGE2) on chromaffin cells.  

PGE2 is produced in a variety of cell types through metabolism of arachidonic acid by 

cyclooxygenase (COX-1 or COX-2) and prostaglandin E synthases. It acts in an autocrine 

/ paracrine manner, primarily through binding to a family of cognate GPCRs (EP1-EP4 

receptors) (Breyer et al., 2001), to control a variety physiological functions including: 

protection of the gastric mucosa, renal function, inflammation, pain, blood pressure, and 

secretion of hormones and neurotransmitters. Non-steroidal anti-inflammatory drugs such 

as aspirin and selective COX-2 inhibitors reduce production of PGE2, but also disrupt 

synthesis of other prostanoids and can cause serious side effects. One strategy to reduce 

these unwanted side-effects is to identify specific cellular functions of EP receptors and 

develop EP receptor subtype-selective drugs. For example, characterization of EP 

receptor signaling in smooth muscle suggests EP1 receptors could be targeted for 

antihypertensive treatment, and an EP3 receptor antagonist (DG-041) is under 

investigation for treatment of atherothrombosis (Guan et al., 2007; Heptinstall et al., 

2008). 

 

EP1 and EP3 receptors are expressed in the adrenal medulla (Breyer et al., 1993; 

Engstrom et al., 2008; Namba et al., 1993; Shibuya et al., 1999) along with the synthetic 
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enzymes for PGE2 (Engstrom et al., 2008; Ichitani et al., 2001). Moreover, systemic 

immune challenge or circulating cytokines rapidly recruit dendritic cells and 

macrophages to the adrenal gland, increase the expression of COX-2 and PGE synthase, 

and presumably local PGE2 production (Engstrom et al., 2008). Thus the components are 

in place for local modulation of chromaffin cells by PGE2, but previous studies present 

confusing and contradictory findings: PGE2 has been reported to increase (Karaplis et al., 

1989; Marley et al., 1988; Yamada et al., 1988; Yokohama et al., 1988) or decrease 

(Karaplis et al., 1989) adrenal catecholamine release, elevate intracellular calcium levels 

(Mochizuki-Oda et al., 1991; Shibuya et al., 1999), or inhibit voltage-gated calcium 

channels (Currie et al., 2000). In sympathetic neurons, which are closely related to 

chromaffin cells, PGE2 can modulate nicotinic ACh receptors (Du and Role, 2001; Tan et 

al., 1998) as well as voltage-gated calcium channels (Ikeda, 1992). Thus PGE2 may alter 

calcium signaling and exocytosis in chromaffin cells by multiple pathways and 

potentially through multiple EP receptors.   

 

The goal of this study was to define the receptors and mechanisms by which PGE2 

modulates calcium signaling in adrenal chromaffin cells using a combination of 

pharmacological tools and EP receptor knockout mice. We show that PGE2 did not alter 

the peak amplitude of nicotinic ACh receptor currents or resting intracellular [Ca
2+

], but 

potently inhibited CaV2 voltage-gated calcium channel currents (ICa) (EC50 = 5.5 nM).  

Although mRNA for all four EP receptor subtypes is expressed in the mouse adrenal 

gland, our data unequivocally show that EP3 receptors mediate this inhibition of ICa.  

PGE2 also decreased the change in membrane capacitance in response to membrane 
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depolarization / calcium entry, suggesting that the number of secretory vesicles 

undergoing exocytosis was reduced. To our knowledge this is the first study of EP 

receptor signaling in mouse chromaffin cells and identifies a cellular / molecular 

mechanism for paracrine regulation of neuroendocrine function by PGE2. 

 

Results 

 

PGE2 inhibits ICa in mouse adrenal chromaffin cells 

Given the pivotal roles of voltage-gated calcium channels in stimulus-secretion coupling 

and many other cellular functions we initially tested whether PGE2 inhibited the calcium 

channel currents (ICa) in mouse chromaffin cells. The cells were voltage-clamped at -80 

mV and stimulated with a 20 ms step-depolarization to evoke ICa every 10 s (Figure 10A).  

Application of 100 nM PGE2 produced a significant and reversible inhibition of peak ICa 

amplitude (Figure 10A) in approximately 76% of cells tested under similar experimental 

conditions (conventional whole-cell recording, n = 37 of 49 cells; N = 9 mice). The 

inhibition of ICa was concentration dependent (Figure 10B) and the data fit well with a 

Boltzmann function that yielded a maximal inhibition of 40% and an EC50 of 5.5 nM 

consistent with the low nM affinities reported for PGE2 binding to EP receptors (Breyer 

et al., 2001).   
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Figure 10: PGE2 inhibits ICa in mouse adrenal chromaffin cells. (A) Peak amplitude of ICa is plotted 

against time in a representative cell. The cell was voltage-clamped in the whole-cell configuration and 

stimulated with a 20 ms step-depolarization from -80 mV to +20 mV every 10 s. Application of PGE2 (100 

nM) (indicated by horizontal bar) produced robust, reversible inhibition of ICa. Inset: shows the voltage 

command (upper) and three representative current traces before (ctl), during (PGE2), and after washout of 

PGE2 (wash). (B) Log 10 concentration response curve plotting percent inhibition of ICa to varying 

concentrations of PGE2. Each cell was exposed to three increasing concentrations of PGE2, with 10 nM 

being common to all experiments (n = 4-16 cells). The indicated fit was to a Boltzmann function with a 

Hill slope = 1 (see methods) and yielded an EC50 of 5.5 nM.   
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The inhibition of ICa by PGE2 is voltage-dependent and mediated by pertussis 

toxin-sensitive G proteins 

G protein coupled receptors (GPCRs) inhibit ICa by several different mechanisms, but 

perhaps the most widespread and best understood pathway is mediated by direct binding 

of G protein  subunits to P/Q-type (CaV2.1) and N-type (CaV2.2) channels (Currie, 

2010a). Although there are exceptions, in most cases this pathway involves GPCRs that 

couple to pertussis toxin-sensitive Gi/o-type G proteins. We and others have previously 

shown that P2Y purinergic receptors and μ-opioid receptors utilize this pathway to 

produce autocrine/paracrine inhibition of ICa in chromaffin cells (Albillos et al., 1996; 

Currie and Fox, 1996; Powell et al., 2000). To determine if PGE2 acts through a Gi/o-

coupled GPCR we incubated isolated mouse chromaffin cells with pertussis toxin (300 

ng/mL) for ~24-hours prior to whole-cell recording. Control cells were from the same 

cell preparations and were recorded on the same days as the pertussis toxin treated cells.  

As shown in Figure 11A, the inhibition of ICa produced by PGE2 was virtually abolished 

in pertussis toxin treated cells (2 ± 2.6%, n = 6 compared to 31 ± 7.1%, n = 7, in control 

cells; p < 0.002). As a positive control we also used the P2Y receptor agonist ATP (100 

μM), as this is known to inhibit ICa via pertussis toxin-sensitive G proteins in chromaffin 

cells (Currie and Fox, 1996). The inhibition produced by ATP was also significantly 

reduced (29 ± 8.5 %, n = 7 in control cells compared to 7 ± 5.4 %, n = 6, in pertussis 

toxin treated cells; p < 0.05). These data confirmed that PGE2 acts though a Gi/o-coupled 

GPCR to inhibit ICa.  
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A defining biophysical signature of direct Gβγ-mediated inhibition of N- and P/Q-type 

channels is reversal by a strongly depolarizing voltage-step. This reversal is thought to 

reflect transient dissociation of G from the channel at the depolarized membrane 

potential (for review see (Currie, 2010a). Therefore, we used a prepulse facilitation 

protocol to determine if PGE2 utilized this mechanism to inhibit ICa in mouse chromaffin 

cells. Figure 11B illustrates a representative voltage command (upper) and current trace 

(lower). The cell was stimulated by two identical test pulses (P1 and P2), the second of 

which was preceded by a 50 ms step to +120 mV. PGE2 significantly reduced the 

amplitude of ICa during both P1 and P2 (Figure 11C), but the prepulse (immediately 

preceding P2) significantly reduced this inhibition from 43 ± 6 % during P1 to 13 ± 3% 

during P2 (n = 6; p < 0.001) (Figure 11D). Thus the inhibition of ICa produced by PGE2 

was largely voltage-dependent although there was also a voltage-independent component 

to the inhibition (the residual inhibition seen during P2) consistent with what has been 

reported previously for P2Y and opioid receptors.   

 

Voltage-dependent inhibition of ICa by other GPCRs preferentially targets the CaV2 

family of calcium channels, in particular P/Q-type (CaV2.1) and N-type (CaV2.2) 

channels (Currie, 2010a). Mouse chromaffin cells are known to express CaV2 channels 

(P/Q-type and N-type and R-type channels) and also members of the CaV1 family (L-type 

channels) (Garcia et al., 2006). Consistent with previous reports we found that 

nitrendipine, a dihydropyridine antagonist of L-type channels, blocked 41 ± 5 % (n = 7) 

of the whole-cell current. We did not systematically dissect the channel types comprising 

the non-L-type current, but previous reports indicate the majority is carried by N- and 
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P/Q-type channels, with 10-20% accounted for by R-type and perhaps T-type channels 

(Garcia et al., 2006). After block of N-type (CaV2.2) and P/Q-type (CaV2.1) channels by 

pre-incubation with ω-conotoxin GVIA (1.5 μM) and ω-agatoxin IVA (400 nM) 

respectively, the inhibition by PGE2 was dramatically reduced (7 ± 1%; n = 6; p < 0.05) 

confirming that N- and P/Q-type channels are the main target for this pathway.  

 

Short-term application of PGE2 did not alter peak nicotinic acetylcholine receptor 

currents 

In situ, chromaffin cells are directly innervated by cholinergic splanchnic nerve fibers.   

Activation of nicotinic acetylcholine receptors (nAChRs) on the chromaffin cells causes 

membrane depolarization, activation of voltage-gated calcium channels and influx of 

calcium that triggers exocytosis. It has been reported that PGE2 modulates nicotinic 

acetylcholine receptors in sympathetic neurons (Du and Role, 2001; Tan et al., 1998), 

although we are not aware of any similar studies in chromaffin cells. However, it has 

been shown that inhibition of nAChRs in chromaffin cells can reduce cytosolic calcium 

elevations and catecholamine release elicited by cholinergic stimuli (Dzhura et al., 2006). 

Thus PGE2 could indirectly alter calcium channels and calcium signaling in chromaffin 

cells by modulating nAChR. To test this possibility cells were voltage-clamped at a 

holding potential of -80 mV in the perforated whole-cell recording configuration and the 

bath was continuously perfused with fresh extracellular recording solution. Nicotinic 

ACh receptor currents were evoked by application of 100 µM carbachol for 45 seconds 

(Figure 12A). Under these conditions the inward current was primarily due to the 

relatively non-desensitizing nACh receptors found in chromaffin cells. 
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Figure 11: The inhibition of ICa by PGE2 is voltage-dependent and mediated by pertussis toxin-

sensitive G proteins. (A) The percent inhibition of ICa produced by 100 nM PGE2 or 100 μM ATP for 

control cells (left panel) and cells treated with 300 ng/mL pertussis toxin (PTX) for ~24-hours prior to 

whole-cell recording of ICa. Control and pertussis toxin-treated cells were from the same cultures, and 

recordings were alternated on the same day. PTX treatment significantly reduced the inhibition by PGE2 

(** p < 0.002) and ATP (* p < 0.05). (B) The inhibition of ICa by PGE2 was voltage-dependent. The upper 

trace illustrates the voltage command for the prepulse facilitation protocol. Cells were stimulated by two 

identical test pulses (P1 and P2, 20 ms step to +10 mV, separated by 300 ms), but the second pulse (P2) 

was preceded by a 50 ms step to +120 mV. Three representative currents are superimposed (lower trace), 

showing ICa before (ctl), during application of 100 nM PGE2 (PGE2), and after washout (wash). The 

prepulse to +120 mV reversed most of the inhibition of ICa produced by PGE2. (C) Bar chart summarizing 

the mean peak amplitude of ICa  in six cells like that shown in panel B during the first pulse (P1-no 

prepulse) and the second pulse (P2- with prepulse) (* P < 0.05; n = 6). (D) The percent inhibition by PGE2 

of ICa elicited by P1 (without a prepulse) and P2 (with a prepulse) (*** P < 0.001; n = 6).   
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Figure 12: PGE2 does not alter peak nicotinic acetylcholine receptor currents or resting [Ca
2+

]i  in 

mouse chromaffin cells. (A) Representative recording of nicotinic acetylcholine receptor (nAChR) 

currents evoked by two applications of carbachol (100 µM) in the absence (left) or presence (right) of 100 

nM PGE2. Drug application is indicated by the horizontal bars. Cells were voltage-clamped at -80 mV in 

the perforated whole-cell recording configuration. (B) Bar chart showing that PGE2 had no effect on the 

mean amplitude of the nAChR currents evoked by carbachol (n = 8 cells). (C) Ratiometric imaging of 

FURA2 loaded chromaffin cells. Inset shows a representative recording from a single cell plotting 

estimated [Ca
2+

]i against time (sampling rate 0.5Hz). The cell was exposed to 1μM PGE2 for three minutes 

and then to 50 mM KCl to depolarize the membrane and elicit Ca
2+

 entry through voltage-gated Ca
2+

 

channels (positive control). The main chart shows mean [Ca
2+

]i before (control), during (PGE2) and after 

washout (wash) of 1μM PGE2, and the response to 50mM KCl. (n = 9 cells from 7 independent 

experiments). 
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After washout of carbachol the cells were allowed to recover for six minutes before 

exposure to 100 nM PGE2 and a second application of 100 M carbachol (in the 

continued presence of PGE2) (Figure 12A). Acute application of PGE2 had no effect on 

the mean peak inward current evoked by carbachol (351 ± 65 pA in the presence of PGE2 

compared to 352 ± 63 pA before application of PGE2; n = 8) (Figure 12B). The inward 

current response did decay slightly during continued application of carbachol (9 ± 2% in 

control conditions) and this was significantly increased in the presence of PGE2 (21 ± 

3%; p < 0.01). 

 

Short-term application of PGE2 did not elevate basal intracellular calcium 

concentration 

Previous reports indicated that relatively high concentrations of PGE2 ranging from 200 

nM to 1 µM can directly elevate intracellular calcium concentration ([Ca
2+

]i ) either by 

activating a Ca
2+

 influx pathway or by releasing Ca
2+

 from intracellular stores 

(Mochizuki-Oda et al., 1991; Shibuya et al., 1999). However, in the experiments 

investigating the effects of PGE2 on nAChR currents, PGE2 did not alter the holding 

current of chromaffin cells voltage-clamped at -80 mV (see Figure 12A) suggesting that 

PGE2 did not activate an inward calcium current. We also used Fura-2 imaging to 

determine if PGE2 could elevate resting [Ca
2+

]i in individual mouse chromaffin cells.  

Our data showed that an acute (3-minute) application of 1 M PGE2 had no effect on 

[Ca
2+

]i (82 ± 15 nM before and 85 ± 16 nM during application of  PGE2 ; n = 9 cells from 

7 independent experiments) (Figure 12C).  
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mRNA for all four EP receptor subtypes was detected in mouse adrenal tissue 

The data presented above demonstrated that PGE2 acts through a Gi/o-coupled GPCR to 

inhibit ICa in mouse chromaffin cells. Of the four known receptors for PGE2, termed EP1-

EP4, only EP3 typically couples to Gi/o-type G proteins, although it has been reported 

recently that EP1 receptors might also couple to Gi/o at least in some cell types (Ji et al., 

2010). Both EP3 and EP1 receptors have been reported previously in the adrenal medulla 

(Breyer et al., 1993; Engstrom et al., 2008; Namba et al., 1993).   

 

To determine which EP receptors were expressed in the mouse adrenal gland we used 

RT-PCR. The adrenal gland was isolated as described in the methods section and kidney 

tissue, which expresses all four EP receptor subtypes, was isolated in parallel as a 

positive control. The adrenal cortex was dissected from the gland leaving the adrenal 

medulla for RNA isolation, however small traces of cortex were likely present. Three 

known splice variants of the EP3 receptor are found in mice: EP3, EP3 and EP3 

(Breyer et al., 2001; Irie et al., 1993). These splice variants differ in their C-terminal tail 

and can exhibit different downstream signaling pathways and agonist dependent 

desensitization in heterologous expression systems. We detected mRNA for all three EP3 

receptor splice variants in the mouse adrenal tissue (Figure 13A). We also detected 

mRNA for the EP1, EP2 and EP4 receptors (Figure 13B). GAPDH was used as an 

internal standard and amplified in all tissues (data not shown).   
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Figure 13: EP receptor mRNA expressed in mouse adrenal tissue. (A) RT-PCR was used to detect 

expression of the EP3 receptor in mouse adrenal tissue (left), and kidney tissue (right) that was isolated in 

parallel as a positive control. The upper panel used primers common to all splice variants of the EP3 

receptor. The lower two panels used primers selective for the splice variants. The forward primers for 

EP3 and EP3 are identical so the fragments run in the same lane (middle panel): the top band 

corresponds with the expected amplicon size of EP3, and the bottom band EP3 . (B) In addition to EP3, 

EP1 (top), EP2 (middle) and EP4 (bottom) mRNA was amplified. All samples from figures A and B 

expressed the internal standard GAPDH (data not shown). Data shown are representative of three replicate 

experiments on tissue from three different mice. 
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Pharmacological evidence that EP3 receptors mediate the inhibition of ICa by 

PGE2 

We showed that the inhibition of ICa was abolished in pertussis toxin treated cells (Figure 

11A), so is mediated by Gi/o-coupled GPCRs. While we detected mRNA for all four EP 

receptor subtypes in the mouse adrenal gland (Figure 13), generally only EP3 receptors 

couple to Gi/o (Breyer et al., 2001). Therefore, we used EP receptor subtype selective 

agonists and antagonists to investigate the involvement of EP3 receptors. First we used 

the selective EP1/EP3 receptor agonist sulprostone (Figure 14A, B). In these experiments 

we used perforated whole-cell recordings to maintain endogenous calcium buffering of 

the chromaffin cells. The inhibition produced by 100 nM PGE2 (43 ± 6%, n = 15) was 

similar to that in conventional whole-cell recording. Sulprostone (100 nM) significantly 

reduced the amplitude of ICa in six-out-of-seven cells by 41 ± 9% (n = 6) and this was not 

significantly different from the inhibition produced by 100 nM PGE2 under the same 

recording conditions (p = 0.89).   

 

It has been reported that DG-041 is a selective, non-competitive antagonist of EP3 

receptors (Heptinstall et al., 2008). Cells were stimulated every 10 seconds with a 20-ms 

step depolarization to evoke ICa. DG-041 (30 nM) was applied to the cells for ~2 minutes 

before application of PGE2 (100 nM). DG-041 alone had little effect on ICa but 

completely blocked the inhibition produced by PGE2 (2.0 ± 2.2 %, n = 9; Figure 14C, D). 

Subsequent applications of PGE2 after several minutes of washout of DG-041 also 

produced no inhibitory effect, suggesting DG-041 is functionally irreversible over the 

time course of our experiments. As a control we used ATP (100 μM) to activate P2Y 
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receptors in the presence of DG-041. ATP inhibited ICa by 26 ± 4.7 % (n = 4) (Figure 

14D), similar to the inhibition produced by ATP in the absence of DG-041 (29 ± 8.5 %; 

Figure 11A). This suggests DG-041 selectively blocked PGE2 and the downstream 

signaling pathways responsible for voltage-dependent inhibition of ICa were intact.  

 

The inhibition of ICa produced by PGE2 was abolished in cells isolated from EP3 

receptor knockout mice 

The pharmacological data presented above strongly implicated EP3 receptors in the 

inhibition of ICa by PGE2. However, it was still possible that other receptors could play a 

role. For example, DG-041 is reported to be a selective noncompetitive antagonist of EP3 

receptors but off-target effects of the compound have not been widely studied.  

Therefore, to unequivocally identify the receptor subtype involved, we isolated 

chromaffin cells from EP3 receptor knockout mice (EP3
-/-

 mice). As shown in Figure 15, 

the inhibition of ICa by PGE2 was abolished in cells isolated from EP3
-/-

 mice. In the same 

cells 100 M ATP significantly reduced the amplitude of ICa by 33 ± 7 % (n = 6, p < 

0.05), indicating the effect of the knockout was selective for PGE2 and did not perturb G 

protein mediated inhibition of ICa by other receptors. Similarly, in perforated whole- cell 

recording PGE2 did not inhibit ICa in cells isolated from EP3
-/-

 mice (1 ± 4% inhibition; n 

= 6). 

 

As a complementary approach, we tested the ability of sulprostone (an EP1/EP3 selective 

agonist) to inhibit ICa in cells isolated from EP1 receptor knockout mice. Under these  
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Figure 14: Pharmacological evidence that EP3 receptors mediate the inhibition of ICa by PGE2. (A) 
The selective EP1/EP3 receptor agonist sulprostone inhibits ICa. Representative voltage command (upper) 

and ICa (lower) recorded in presence and absence of sulprostone (100 nM), obtained in the perforated 

whole-cell recording configuration. (B) Bar chart illustrating the mean percent inhibition of ICa produced 

by PGE2 (100 nM) or sulprostone (100 nM). The inhibition produced by the two agonists was not 

significantly different. (C, D) DG-041, a selective EP3 receptor antagonist, blocked the inhibition of ICa 

produced by PGE2. (C) Experimental time course in a representative cell plotting peak amplitude of ICa 

against time. DG-041 (30 nM) was applied ~ 2 minutes before PGE2 (100 nM) and completely blocked the 

inhibition of ICa, but had no effect on the inhibition produced by the P2Y receptor agonist ATP (100 μM). 

(D) Bar chart summarizing the percent inhibition of ICa by application of 30 nM DG-041 alone (DG), and 

in the presence of either 100 nM PGE2  (DG + PGE2; n = 9) or 100 μM ATP (DG + ATP; n = 4). DG-041 

prevented the inhibition produced by PGE2 but not that produced by ATP. 
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Figure 15: The inhibition of ICa produced by PGE2 was abolished in cells isolated from EP3 receptor 

knockout mice. (A) Experimental time course plotting peak amplitude of ICa vs. time from a representative 

cell isolated from an EP3 receptor knockout mouse (EP3
-/-

 cells). ICa was recorded in the conventional 

whole-cell configuration and elicited every 10 s with a 20 ms step-depolarization from -80 mV to +20 mV.  

The cell was exposed first to 100 nM PGE2 and subsequently to 100 μM ATP (to activate P2Y receptors) 

as indicated by the horizontal bars. PGE2 had no effect on ICa recorded from EP3
-/-

 chromaffin cells 

whereas the inhibition produced by P2Y receptors remained intact. The inset shows three superimposed 

currents recorded before application of PGE2 (ctl), during application of PGE2 and during application of 

ATP. (B) Bar chart plotting the effects of PGE2 and ATP on the mean peak amplitude of ICa in EP3
-/-

 

chromaffin cells (* p < 0.05; n = 6). (C) Data obtained from wild type and EP receptor knockout mice 

using perforated whole-cell recording. Left panel: mean percent inhibition of ICa produced by PGE2 in cells 

isolated from wild type (wt) (n = 15) vs. EP3 receptor knockout mice (EP3
-/-

) (n = 6) (*** p < 0.001).  

Right panel: percent inhibition of ICa produced by sulprostone (an EP1/EP3 selective agonist) in cells 

isolated from wild type mice (wt) (n = 6) vs. EP1 receptor knockout mice (EP1
-/-

) (n = 4). (Wild type data 

is from the same cells shown in Figure 14B).  
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conditions any effect of sulprostone can be attributed to EP3 receptor signaling as the 

EP1 receptors are absent. Sulprostone inhibited ICa in these EP1
-/-

 chromaffin cells by 47 

± 12 % (n = 4), an effect that was not significantly different from that seen in chromaffin 

cells from wild type mice (41 ± 9 %; n = 6). Taken together, our data using 

pharmacological approaches and knockout mice demonstrate the inhibition of ICa by 

PGE2 is mediated solely by EP3 receptors. 

 

Effects of PGE2 on Ca2+-dependent exocytosis 

Ca
2+

 influx through voltage-gated calcium channels is the primary trigger for fusion of 

large dense core vesicles with the plasma membrane (i.e. Ca
2+

-dependent exocytosis).  

Inhibition of ICa is thought to an important mechanism that controls neurosecretion and a 

number of GPCRs inhibit ICa and exocytosis in parallel in adrenal chromaffin cells 

(Currie, 2010b; Garcia et al., 2006). Membrane capacitance precisely reflects the surface 

area of a cell and transiently increases when secretory vesicles fuse with the plasma 

membrane. The magnitude of this increase (Cm) reflects the number of vesicles that 

have undergone exocytosis. We used perforated whole-cell recordings to measure ICa and 

Cm evoked by two 100 ms steps from -80mV to +10mV (Figure 16A) in chromaffin 

cells isolated from wild type mice. As already noted, cells could be separated into two 

groups based on the response of ICa to application of PGE2. In this particular series of 

experiments PGE2 (100 nM) inhibited the peak amplitude of ICa in seven-out-of-twelve 

cells (group-1) by 41 ± 10% (n = 7; p < 0.005) but had no effect in the remaining five 

cells (group-2) (3 ± 4% decrease; n = 5; p = 0.41) (Figure 16B). Application of 100 nM 

PGE2 significantly reduced Cm in group-1 (those cells in which ICa was inhibited) from 
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153 ± 40 fF to 68 ± 16 fF (n = 7, p < 0.03). Cm was also significantly smaller during 

application of PGE2 in group-2, even though ICa was not reduced in these cells (Figure 

1617C). This might reflect other pathways recruited by PGE2 to control exocytosis 

independent of ICa and/or time-dependent rundown of the exocytotic response, but these 

possibilities will require further investigation. Notably, the inhibition of Cm was 

significantly greater in group-1 cells (in which ICa was also reduced) compared to group-

2 cells (49 ± 7 %, n = 7 compared to 24 ± 4%, n = 5; p < 0.02) (Figure 16C) consistent 

with the idea that inhibition of Ca
2+

 entry by PGE2 leads to a parallel inhibition 

exocytosis as reported for other Gi/o-coupled GPCRs (Harkins and Fox, 2000; Powell et 

al., 2000; Ulate et al., 2000).  
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Figure 16: Parallel inhibition of ICa and Ca
2+

-dependent exocytosis by PGE2. Perforated whole- cell 

recording was used to measure ICa and membrane capacitance (Cm) in chromaffin cells isolated from wild-

type mice. (A) Voltage command (top panel), ICa (middle panel), and membrane capacitance (lower panel) 

recorded from a representative cell. Two superimposed recordings are shown in the absence (control) and 

presence of 100 nM PGE2. The stimulus (top panel) consisted of two step-depolarizations (100 ms duration) 

from -80 to +10 mV. A 1 kHz sine wave was superimposed on the holding potential to calculate membrane 

capacitance (see methods for details) and this was interrupted during the step-depolarizations as indicated.  

(B) Peak amplitude of ICa in the presence of PGE2 was normalized to control ICa amplitude in the same cell 

(open bar- control). Cells were separated into two groups based on the response of ICa to application of 

PGE2: group-1 (black bar; n = 7 / 12 cells) in which PGE2 significantly reduced the amplitude of ICa, and 

group-2 (grey bar; n = 5/12 cells) in which PGE2 did not inhibit ICa (* denotes p < 0.05 comparing group-1 

and group-2 in the presence of PGE2). (C) The change in membrane capacitance (Cm) in response to 

stimulation in the presence of PGE2 was normalized to Cm in control conditions in the same cell. Black 

bar (group-1) shows data from cells in which ICa was inhibited (7/12 cells) and the grey bar (group-2) from 

cells in which ICa was not inhibited. Cm was reduced in both groups but the inhibition was significantly 

greater in group-1 compared to group-2 (* p < 0.05) (i.e. in those cells in which ICa was also reduced). 
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Discussion 

 

Previous work has suggested that PGE2 might modulate adrenal chromaffin cells, 

although the effects and EP receptors involved remained unclear. The synthetic enzymes 

for PGE2 are present in the adrenal medulla, and cholinergic stimulation leads to release 

of prostaglandins from the intact adrenal gland (Ramwell et al., 1966). Furthermore, a 

recent in vivo analysis showed that systemic immune challenge or circulating cytokines 

rapidly recruited dendritic cells and macrophages to the adrenal gland and increased the 

expression of COX-2 and PGE synthase (Engstrom et al., 2008). Thus, periods of 

inflammation or stress might boost production of PGE2 within the adrenal gland. We 

previously reported that PGE2 inhibited ICa in bovine chromaffin cells, although the 

receptor(s) and detailed mechanisms were not determined (Currie et al., 2000). In 

contrast, others reported that PGE2 stimulated calcium influx (Mochizuki-Oda et al., 

1991) or released calcium from a ryanodine sensitive intracellular store, an effect 

attributed to EP1 receptors (Shibuya et al., 1999). It has also been reported that PGE2 

inhibited nicotinic ACh receptors in sympathetic neurons (Tan et al., 1998). To our 

knowledge this has not been tested in chromaffin cells, but if it were to occur it could 

reduce cholinergic excitation / membrane depolarization and thereby opening of voltage-

gated calcium channels.   

 

In the current chapter we report that PGE2 inhibits ICa in mouse chromaffin cells through 

pertussis toxin-sensitive G proteins. The inhibition was voltage-dependent (reversed by 

strong membrane depolarization) and preferentially targeted CaV2 calcium channels (N- 
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and P/Q-type channels). Thus, PGE2 mimicked agonists of other Gi/o-coupled GPCRs 

including P2Y receptors that inhibit ICa in chromaffin cells (Albillos et al., 1996; Currie 

and Fox, 1996; Powell et al., 2000). The inhibition by PGE2 bore all the hallmarks of that 

mediated by G subunit binding to the calcium channels (for reviews see (Currie, 

2010a)). To unequivocally identify the EP receptor subtype(s) involved we used cells 

isolated from knockout mice that lack either the EP3 or EP1 receptors. To complement 

this genetic approach we used selective pharmacological tools including a recently 

described EP3 receptor antagonist, DG-041 (Heptinstall et al., 2008). As this compound 

was not readily available it was made in the Vanderbilt Institute for Chemical Biology 

Chemical Synthesis Core. Our data provide conclusive evidence that EP3 receptors 

mediated the inhibition of ICa by PGE2 in chromaffin cells.  

 

It should be noted that PGE2 inhibited ICa in approximately three-quarters of cells tested, 

presumably reflecting expression of the EP3 receptor in this subpopulation of cells. In the 

rodent adrenal medulla 70-80% of chromaffin cells express phenylethanolamine N-

methyltransferase (PNMT), the enzyme that converts norepinephrine to epinephrine, so 

are termed “adrenergic” (Verhofstad et al., 1985). The remainder lack PNMT and are 

termed “noradrenergic”. There is evidence for differential expression of GPCRs in 

adrenergic vs. noradrenergic cells (Renshaw et al., 2000), so it is interesting to speculate 

that EP3 receptor expression might be limited to the adrenergic cells and preferentially 

modulate epinephrine release. Further work will be required to determine if this is the 

case. It is also noteworthy that the EP3 receptor undergoes alternative splicing, leading to 

sequence diversity in the cytoplasmic C-terminus (Breyer et al., 2001)). In recombinant 
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systems all the splice variants couple to Gi/o-type G proteins, but can also couple 

differentially to other effectors including Gs, and G12-RhoA. Because extracellular ligand 

binding is not altered, pharmacological distinction of the EP3 splice variants is not 

possible. Four alternatively spliced variants of the EP3 receptor have been identified in a 

bovine chromaffin cell library (Namba et al., 1993), and we detected mRNA for all three 

mouse splice variants (EP3, EP3 and EP3) in the adrenal gland using RT-PCR (Figure 

13). However, a more detailed molecular analysis will be required to determine which 

splice variants are expressed in chromaffin cells and if additional non-Gi/o-coupled 

signaling pathways are recruited.   

 

In contrast to some previous reports (Mochizuki-Oda et al., 1991; Shibuya et al., 1999), 

we found no evidence that PGE2 can directly elevate [Ca
 2+

]i (Figure 12C). PGE2 had no 

effect on the holding current needed to voltage-clamp cells at -80 mV (i.e. did not open / 

close any channels) (Figure 12A), and had no effect on resting [Ca
 2+

]i in Fura-2 loaded 

cells (Figure 12C). It is possible there are species differences in the expression of EP 

receptor subtypes as none of the previous studies used mice. We also found that PGE2 

had no effect on the peak amplitude of whole-cell nicotinic ACh receptor currents evoked 

by bath application of carbachol for 45 s (Figure 12A, B). However, we did note that 

there was a modest increase in current decay during the sustained application of 

carbachol in the presence of PGE2 (21 ± 3%; p < 0.01 compared to 9 ± 2%). Although 

“non-desensitizing” 34* containing channels predominate in chromaffin cells, several 

other nicotinic receptor subunits are expressed in a species dependent manner, including 

the rapidly desensitizing 7 subunit (Lopez et al., 1998; Sala et al., 2008). In chick 
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sympathetic neurons PGE2 inhibited the whole-cell nicotinic current, but closer analysis 

revealed opposing effects on different channel subtypes. In particular, the dominant 36pS 

channel was inhibited, but a 23 pS channel likely mediated by 7 containing receptors 

was potentiated by PGE2 (Du and Role, 2001). Further studies using fast, brief agonist 

applications will be needed to fully address the effects of PGE2 on nicotinic receptors, but 

our data do suggest that the predominant non-desensitizing nAChR current, (34* 

receptors) is likely not a major target for PGE2 modulation of chromaffin cell function.  

 

Previous studies investigating the effects of PGE2 on catecholamine secretion have all 

used large populations of cultured chromaffin cells or intact adrenal gland preparations 

and present somewhat inconclusive findings. In some cases PGE2 inhibited release 

(Karaplis et al., 1989), while others report that PGE2 potentiated release (Marley et al., 

1988; Yamada et al., 1988; Yokohama et al., 1988). As discussed above, high 

concentrations of PGE2 used in some of these studies raise the possibility of non-EP 

receptor involvement. Our data demonstrate for the first time that EP3 receptors utilize 

the same mechanism as P2Y, α2-adrenergic, and μ-opioid receptors to inhibit voltage-

gated calcium channels in chromaffin cells. Typically such inhibition of ICa by GPCRs is 

paralleled by an inhibition of Ca
2+

-dependent exocytosis, the mechanism that underlies 

vesicular catecholamine release (Harkins and Fox, 2000; Powell et al., 2000; Ulate et al., 

2000). Exocytosis can be monitored in individual cells by tracking changes in membrane 

capacitance (Cm) that precisely reflect the surface area of a cell. The magnitude of Cm 

reflects the number of vesicles that have undergone exocytosis. As previously reported 

for other GPCRs application of PGE2 led to a robust inhibition of Cm (49 ± 7%) that 
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paralleled inhibition of ICa (41 ± 10%) (Figure 16). There was also a modest decrease in 

Cm (24 ± 4%) in cells that showed no inhibition of ICa. This might reflect a time-

dependent rundown of the exocytotic response or the possibility that other mechanisms 

are recruited to control secretion. Gβ-mediated inhibition of catecholamine release 

independent from ICa modulation has been reported for other Gi/o-coupled receptors 

(Chen et al., 2005; Yoon et al., 2008). We also detected mRNA for EP1, 2 and 4 

receptors in the mouse adrenal gland, in addition to all three splice variants of the EP3 

receptor (Figure 13). Further detailed investigations will be required to determine if these 

receptors are expressed in chromaffin cells and what functional impact they might have.  

However, our data clearly show that the inhibition of Cm was significantly greater when 

ICa was also reduced (49 ± 7 %, n = 7 compared to 24 ± 4%, n = 5; p < 0.02) (Figure 

16C) supporting the idea that inhibition of Ca
2+

 entry by PGE2 leads to a parallel 

inhibition exocytosis as reported for other Gi/o-coupled GPCRs (Harkins and Fox, 2000; 

Powell et al., 2000; Ulate et al., 2000).   

 

To summarize, there is growing interest in developing subtype selective EP receptor 

drugs as therapeutic agents for a variety of disorders, so identitying the physiological 

roles distinct receptors play will be important for interpreting and predicting the impact 

of these drugs. We have used a powerful combination of pharmacology and cells isolated 

from receptor knockout mice to demonstrate that prostaglandin EP3 receptors inhibit ICa 

in adrenal chromaffin cells and that this results in a parallel inhibition of Ca
2+

-dependent 

exocytosis. To our knowledge this is the first study of EP receptor signaling in mouse 
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chromaffin cells and identifies a cellular / molecular mechanism for paracrine regulation 

of neuroendocrine function by PGE2. 
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4. POTENTIATION OF ADRENAL CATECHOLAMINE RELEASE BY PGE2: A 

NOVEL ROLE FOR “INHIBITORY” G PROTEINS? 

 

 

Abstract 

 

PGE2 is the most widely expressed prostanoid, exerting its functional effects in an 

autocrine or paracrine manner. The net functional effect of PGE2 may depend on the 

relative expression of specific EP receptors. We have shown previously that PGE2 

functions through the Gi/o -coupled EP3 receptor to inhibit ICa and exocytosis evoked by 

short step depolarizations. To define the physiological impact of PGE2 on adrenal 

catecholamine release during sustained stress depolarization, we employ two electrical 

stimulus models: action potential waveforms (APW) delivered at 15 Hz, whereby cells 

are voltage clamped and ICa is quantified, or chemical depolarization with a 30 mM KCl 

containing extracellular solution, while evoked quantal catecholamine release is 

measured amperometrically. We show the inhibitory contribution of PGE2 on ICa is 

negligible as Ca
2+ 

channels inactivate, revealing a PGE2 mediated potentiation of the 

secretory response during a sustained depolarization that mimics acute stress. The 

potentiation resulted from a significant increase in number of vesicles fusing, with little 

increase in single vesicle content, and was abolished by pertussis toxin treatment, 

consistent with a Gi/o –coupled G protein signaling pathway. Additionally, treatment with 

two different Gβγ inhibitors (gallein or phosducin-like C terminus peptide) blocked the 

inhibition. Furthermore, we show the potentiation is prevented by the selective EP3 
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inhibitor DG-041 or in chromaffin cells isolated from EP3
-/-

 mice. Thus during brief 

stimuli that mimic basal sympathetic tone, EP3 receptors suppress exocytosis by 

mediating voltage dependent inhibition of ICa. During sustained stress depolarization, 

EP3 receptors potentiate catecholamine release by a non-canonical mechanism that 

involves Gβγ subunits from Gi/o -coupled receptors. Taken together, our data reveal a 

novel molecular framework for context-dependent modulation of catecholamine secretion 

by the inflammatory mediator PGE2, and identify a novel signaling pathway through 

which “inhibitory” G-proteins can potentiate neuroendocrine hormone secretion.   

 

Introduction 

 

Chromaffin cells of the adrenal medulla release epinephrine, norepinephrine, and a 

cocktail of bioactive peptides that modulate hemodynamics and metabolism in response 

to physiological stress. ACh released onto chromaffin cells by preganglionic sympathetic 

afferents activates nicotinic ACh receptors, triggering membrane depolarization and 

opening of voltage-gated Ca
2+

 channels (Boarder et al., 1987; Ehrhart-Bornstein et al., 

1998). Ca
2+

 entry induces a conformational change in the SNARE complex that 

ultimately triggers exocytosis (Catterall and Few, 2008), thus regulation of intracellular 

Ca
2+ 

homeostasis is crucial for appropriate tuning of adrenomedullar outflow. 

 

Intra-adrenal autocrine/paracrine signaling is coordinated by cell-surface G protein 

coupled receptors (GPCRs) that regulate chromaffin cell activity. Our group and others 

have shown that voltage-gated Ca
2+

 channels and exocytosis evoked by short step- 
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depolarizations or low frequency trains of depolarizations are inhibited in parallel by 

activation of auto-inhibitory receptors for ATP (P2Y-receptors), enkephalin (-opioid 

receptors) or catecholamines (-adrenergic) (Albillos et al., 1996; Currie and Fox, 1996; 

Harkins and Fox, 2000; Powell et al., 2000; Ulate et al., 2000). This type of inhibition is 

attributed to direct binding of activated G subunits to an intracellular binding pocket on 

the 1 subunit of the channel, and mediated almost entirely by Gi/o -coupled G proteins 

(Ikeda, 1996; Zamponi and Currie, 2013). A strong depolarizing prepulse reverses the 

inhibition (facilitation) by transiently dissociating G from the channel, thus the 

inhibition is referred to as ‘voltage-dependent’ (Currie and Fox, 1996). In addition to 

facilitation by a conditioning prepulse, the inhibition mediated by ATP or enkephalin is 

relieved with sustained chemical depolarization (Ulate et al., 2000) or trains of action 

potential-like waveforms (APW) (Currie and Fox, 2002; Womack and McCleskey, 

1995). As such, activation of Gi/o -coupled GPCRs during sustained depolarization may 

have minimal physiological impact. 

 

Conversely, activation of PLC-coupled receptors, with endogenous ligands histamine or 

bradykinin, potentiates catecholamine release evoked by step-depolarizations or sustained 

chemical depolarization in bovine chromaffin cells (Bauer et al., 2007; Marom et al., 

2011). Gq -coupled GPCRs activate PLC, mobilizing inositol 1,4,5-trisphosphate (IP3) 

and diacylglycerol (DAG) from phosphatidylinositol 4,5-bisphosphate PIP2. IP3 raises 

[Ca
2+

]i by releasing Ca
2+ 

from internal stores which may activate PKC and potentiate 

release on its own during depolarizing trains (Smith, 1999). DAG is a well-known 

modulator of synaptic plasticity in all types of synapses (Zucker and Regehr, 2002), and 
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acts in conjunction with Ca
2+

 to enhance presynaptic release by a PKC dependent 

pathway (Barclay et al., 2003; Wierda et al., 2007) or by direct activation of the vesicle 

priming protein Munc-13 (Rhee et al., 2002). These stimulatory pathways downstream of 

PLC activation are conserved in chromaffin cells and both Munc13 and PKC are likely 

involved in potentiation of exocytosis (Bauer et al., 2007; Gillis et al., 1996). 

 

Sympathetic stress at the splanchnic-adrenal synapse increases the rate of acetylcholine 

output as well as the neuropeptide co-transmitter PACAP, resulting in sustained 

depolarization and secretion of catecholamine from chromaffin cells (Smith and Eiden, 

2012). Similarly, systemic inflammation modeled by the injection of LPS increases local 

expression of Cox-2 and mPGES1, likely resulting in PGE2 production (Engstrom et al., 

2008). The cellular consequences of PGE2 action are primarily mediated by binding four 

cognate GPCRs (EP1-EP4) with the net functional effect reflecting a balance of 

stimulatory and inhibitory receptors. We have shown previously by using genetic and 

pharmacological tools in isolated mouse adrenal chromaffin cells that PGE2 functions 

through the EP3 receptor to inhibit ICa and exocytosis evoked by short action potentials. 

The inhibition was pertussis-toxin sensitive and reversed by a strong depolarizing 

prepulse, suggestive of direct Gi/o -coupled G subunit binding to the channel (Jewell et 

al., 2011). Thus, PGE2 uses the same mechanistic framework as Gi/o
 
-coupled 

autoreceptors for ATP and enkephalin. 

 

Previous reports suggest strong expression of EP1 and EP3 receptors in adrenal medulla 

(Breyer et al., 1993; Engstrom et al., 2008; Shibuya et al., 1999) and we have identified 
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mRNA for all four EP receptor subtypes (EP1-EP4) in adrenal tissue. The goal of this 

study is to define the action of PGE2 on chromaffin cells during sustained stress 

depolarization. Given the diverse expression of EP receptor subtypes on chromaffin cells, 

and relief of Gi/o -mediated inhibition during sustained depolarizations, we hypothesize 

that the net functional impact of PGE2 during a strong stimulation will depend on the 

recruitment of distinct signaling pathways, and will reveal functional diversity reliant on 

cellular context. 

 

Results 

 

Inhibition of ICa by PGE2 does not persist during sustained depolarization 

To define the physiological impact of PGE2 on adrenal catecholamine release during 

sustained stress depolarization, we employ two electrical stimulus models: action 

potential waveforms (APW) delivered at 15 Hz, whereby cells are voltage clamped and 

ICa is quantified, or chemical depolarization with a 30 mM KCl containing extracellular 

solution, while evoked quantal catecholamine release is measured amperometrically. We 

have shown previously that PGE2 inhibits ICa and exocytosis evoked by short step- 

depolarizations. The effect was pertussis toxin sensitive and reversed by a strongly 

depolarizing voltage step; characteristic of direct G protein  subunit binding to the 

channel ((Jewell et al., 2011)/Chapter 3). Generally voltage-dependent inhibition targets 

CaV2 family members CaV2.1 (P/Q- type) and CaV2.2 (N-type), and we showed 

previously that the inhibition by PGE2 preferentially targets N- and P/Q- type Ca
2+ 

channels over L-type channels in both mouse and bovine chromaffin cells, although the 
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relative contribution of each channel subtype differs between species (Currie and Fox, 

2002; Jewell et al., 2011). The physiological impact of Gi/o –coupled receptor activation 

during longer depolarizations is unclear as the inhibition of both N- and P/Q- type 

calcium channels  can be reversed during trains of action potentials (Currie and Fox, 

2002; Womack and McCleskey, 1995) and cumulative inactivation is reduced (McDavid 

and Currie, 2006). As a consequence, inhibition of ICa became negligible during sustained 

stimulus trains (McDavid and Currie, 2006).   

 

To determine the effect of PGE2 on ICa during sustained stimulation, cells were patch 

clamped and stimulated with 15 Hz trains of APW as described previously (Currie and 

Fox, 2002). Briefly, action potentials were stimulated in chromaffin cells by short current 

injections and recorded in the standard whole- cell configuration. A typical action 

potential was used as a template for generating APW commands used in voltage clamp. 

The duration of the APW at half maximal amplitude was 4 ms, and the holding and peak 

potential were adjusted to -80 mV and +45 mV, respectively (Figure 17A). For the 

experiment, cells were voltage clamped in the perforated whole-cell recording 

configuration and ICa was evoked with two trains of APW (15 Hz for 90 s) separated by 

an intervening period of 210 s (Figure 17B, middle panel). Application of PGE2 or 

vehicle control occurred in the intervening window, 120 s prior to S2 (Figure 17B, top 

panel). Individual currents (1350 total, 15/sec, 90 sec total) in S1 and S2 were normalized 

to the first current in the S1 train. The amplitude of ICa showed a rapid decline during the 

first ~6 seconds of the S1 train (Figure 17C, D, black trace), reaching a stable plateau at ~ 

30% of maximum that was maintained  for the remainder of the train. In control cells, ICa 
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evoked by the second train (S2) was almost identical to S1, decaying at a similar rate and 

reaching a similar plateau (Figure 17C) (amplitude of ICa at end of S1 train = 178  20 pA 

n=4 vs. end of S2 train = 198  21 pA n=3). In the presence of PGE2, the amplitude of ICa 

during S2 was smaller than that of S1 for only the first ~5s (Figure 17D, inset) after 

which the currents reached a sustained plateau of similar amplitude (amplitude of ICa at 

the end of S1 = 208  65 pA, n=3 vs end of S2 =  211  86 pA n=3). Previous reports 

suggest trains of APW may potentiate catecholamine release by Ca
2+ 

dependent PKC 

activation (Smith, 1999), or by altering the relative coupling of CaV1 current (L-type) to 

catecholamine release (Polo-Parada et al., 2006). We don’t specifically dissect the Ca
2+

 

channel subtype contribution to the currents or the exocytotic response, but the primary 

difference between the S2 segment in CTL and PGE2 treated cells is for the first ~6-8 

seconds, indicating PGE2 is ineffective at regulating whole-cell current during sustained 

stimulation. 
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Figure 17: Inhibition of ICa by PGE2 does not persist during sustained depolarization: (A) 

Chromaffin cells were recorded in the amphotericin B perforated whole-cell recording configuration (left) 

and stimulated with trains of APW. The whole cell ICa elicited by a single APW is shown (right). (B) Cells 

were stimulated with two trains of APW (15Hz of 90 s; S1 and S2-middle) separated by a 210 s recovery 

window. The schematic indicates timing of drug application (top), stimulation paradigm (middle) and a 

representative current recording for a control cell (bottom). (C) Individual currents in S1 and S2 were 

normalized to the first current in the S1 train and plotted over each 90 s stimulation window. The 

amplitude of ICa was very similar during both S1 and S2 trains. It declined rapidly during the first ~6-8 

seconds of stimulation and reached a stable plateau (~30% of maximum) that was maintained for the 

duration of the train. The inset shows the first 16 s of stimulation on an expanded time frame (D). In the 

presence of PGE2, the amplitude of ICa during S2 was smaller than that of S1 for only the first ~5 s (see 

inset) after which the currents reached a sustained plateau of similar amplitude. In both CTL (panel C) and 

PGE2 treated cells (panel D), the amplitudes of ICa evoked by the last APW of the trains were not 

significantly different. Thus the effect of PGE2 on ICa amplitude only persists for a brief 6-8 second 

window at the start of the APW train. 
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PGE2 potentiates exocytosis during cellular conditions that mimic stress firing 

Chromaffin cells constitutively express synthetic enzymes for PGE2, however in an 

animal model of systemic inflammation, expression of Cox-2 and mPGES are enhanced, 

suggesting increased production of adrenal PGE2 consequent to a physiological stress 

response (Engstrom et al., 2008). We have detected mRNA for all four EP receptor 

subtypes (EP1-EP4 Figure 13). So while the net functional impact of PGE2 during brief 

depolarizations may solely rely on EP3, PGE2 may recruit additional cellular architecture 

during sustained depolarization that ultimately represents a shift in the balance of various 

EP subtypes. To assay the effect of PGE2 on sustained depolarizations, we used carbon 

fiber amperometry as described in MATERIALS AND METHODS. Figure 18A depicts 

the experimental setup. Briefly, a carbon fiber held at a positive potential was positioned 

next to individual chromaffin cells, the cells were depolarized with 30 mM KCl for two 

90-second stimulation periods (S1 and S2) separated by an inter-stimulation interval of 

210 seconds. KCl was used to avoid dialyzing the cell, thus serves as a non-invasive 

model of stress stimulation. Catecholamines released in the vicinity of the fiber are 

oxidized and exocytotic activity is recorded as amperometric current ‘spikes’ (Figure 

18A inset), each individual spike representing the catecholamine content from a single 

vesicle fusing with the membrane. Cells were either controls (treated with vehicle before 

and during S2) or treated with 100 nM PGE2. This paired experimental design means that 

each cell serves as its own control by comparing secretion evoked during S2 to that 

evoked during S1. This helps account for the well-documented variability of secretory 

responses detected by amperometry. Furthermore, normalizing the data within each cell 

(the S2/S1 ratio) reports the “change in secretion” and permits comparison across 
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different experimental preparations and treatment groups. With this design the duration of 

the inter-stimulation interval is vitally important to ensure recovery between S1 and S2, 

and as shown in Figure 18 the S2/S1 ratio in control cells was close to 1.   

 

The secretory response was quantified in a number of ways. First, to obtain a measure of 

the overall amount of catecholamine secretion, we calculated the total charge (sum of 

AUC) of all the amperometric spikes evoked during S1 or S2. In control cells the total 

charge in S2 was slightly reduced compared to S1 but this was not statistically significant 

(92.9  24.5 pC Vs. 79.8  20.8 pC; n=11; p = 0.2) (Figure 18B). In contrast, treatment 

with PGE2 prior to the S2 stimulation significantly potentiated catecholamine secretion 

from 65  26.7 pC during S1 to 113.6  36.6 pC during S2 (n=7; p < 0.02) (Figure 18C). 

We also compared the S2/S1 ratio for PGE2 treated cells and control cells. In PGE2 

treated cells there was a nearly 2.5 fold potentiation of catecholamine release whereas 

there was virtually no change in secretion in control cells (Figure 18D) (S2/S1 ratio for 

PGE2 was 2.45  0.51, n=7 compared to 0.94  0.8, n=11 for controls; p<0.005). The 

potentiation of total catecholamine secretion could reflect more vesicles fusing with the 

plasma membrane, a larger quantal content of individual vesicles, or a combination of 

both these effects. As shown in Figure 18E, we found that the number of secretory events 

(amperometric spikes) was significantly potentiated by PGE2 compared to controls 

(S2/S1 ratio = 0.88  0.07, n=11 for controls and 1.67  0.26, n=6 for PGE2 treated cells; 

p < 0.005). We also calculated the median charge of the individual amperometric spikes 

which is proportional to the amount of catecholamine released from each vesicle. 
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Although there was a small increase in spike charge during the S2 train, this was not 

significantly different in PGE2 treated cells compared to control cells (Figure 18F).    

 

To summarize, PGE2 did not elicit secretion directly, but significantly potentiated evoked 

catecholamine release during a sustained stress depolarization. The potentiation is 

manifest by more vesicles fusing with the plasma membrane, rather than larger vesicles. 

 

The PLC inhibitor U73122 and its unreactive analogue U73343 blocks stimulus-

secretion coupling  

The EP1 receptor is highly expressed in the adrenal medulla (Breyer et al., 1993; 

Engstrom et al., 2008). EP1 Gqα subunits activate PLC, mobilizing inositol 1,4,5-

trisphosphate (IP3) and diacylglycerol (DAG) from phosphatidylinositol 4,5-

bisphosphate (PIP2). IP3 raises [Ca
2+

]i by releasing Ca
2+ 

from internal stores and DAG 

enhances exocytosis by binding to several cellular effectors (Barclay et al., 2003; Rhee et 

al., 2002; Wierda et al., 2007; Zucker and Regehr, 2002). It is well established that PLC 

activation increases the size of the readily releasable pool of secretory vesicles (RRP) 

(Bauer et al., 2007; Gillis et al., 1996), resulting in a potentiation in the number of 

secretory events, but not the size of individual events. Because the functional 

consequences of PLCβ activation were consistent with our results in Figure 18, we 

predicted PLCβ was a reasonable downstream mediator of the potentiation. We tested the 

widely used PLC inhibitor U73122 and its inactive analogue U73343.  
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Figure 18: PGE2 potentiates exocytosis during cellular conditions that mimic stress firing. (A) 
Representative amperometric current from a control cell showing experimental setup (cartoon inset) and 

timing of S1 and S2 KCl depolarizations (90 s each) in relationship to PGE2 application (120 s). (B, C) 

Total amperometric charge (the sum of all spikes) during each stimulation period (total area under the 

curve for S1 and S2) was calculated and is reported as mean ± SE. In control cells evoked secretion was 

similar in both rounds of stimulation and the total charge during S2 was not significantly different from S1 

(79.8  20.8 pC vs 92.9  24.5 pC, n=11; p = 0.2; paired t-test; (B)). Treating cells with PGE2 prior to the 

S2 stimulation significantly potentiated catecholamine secretion (total during S2 = 113.6  36.6 pC 

compared to 65  26.7 pC during S1; n=7; p < 0.02; paired t-test; (C)). (D) The change in secretion in each 

cell was calculated as the S2/S1 ratio for total amperometric charge. In controls cells secretion showed little 

change (S2/S1 ratio = 0.94  0.8, n=11), whereas PGE2 produced a substantial potentiation (2.45  0.51, 

n=7) ( *** p<0.005; unpaired t-test). (E) The number of fusion events (amperometric spikes) showed little 

change in control cells (S2/S1 ratio = 0.88  0.07, n=11) but was significantly potentiated by PGE2 (S2/S1 

ratio = 1.67  0.26, n=6; *** p<0.005, unpaired t-test). (F) The “quantal size” or amount of catecholamine 

released from each vesicular fusion event (median spike charge) was not significantly altered by PGE2 

treatment compared to controls. 
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U73122 (3 µM) completely abolished the secretory response evoked by KCl in S2 in 

control cells (Figure 19A) or PGE2 treated cells (Figure 19B). Surprisingly, the inactive 

analogue U73343 (3 µM) had the same effect, a complete block of exocytosis not rescued 

by application of PGE2. Several groups have reported that U73122 has off target effects 

and potentially acts as a weak agonist of PLC, opens ion channels and increases 

intracellular calcium concentration (Horowitz et al., 2005; Mogami et al., 1997), however 

none of these off target effects would block exocytosis. U73122 is an N-substituted 

maleimide, like N-ethylmaleimide, and therefore it has been suggested that U73122 

inactivates its targets by irreversible alkylation of –SH groups, covalently attaching itself 

to its target (useful discussion in (Horowitz et al., 2005)). U73343 is structurally identical 

except for one double bond, thus is unreactive. We show the complete block of 

exocytosis (Figure 19) is supported by both U73122 and the ‘unreactive’ U73343, hence 

may be independent of the capacity for alkylation. The exact mechanism of action 

warrants further examination, however we discontinued use of U73122 due to significant 

off target effects. 
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Figure 19: The PLC inhibitor U73122 blocks stimulus-secretion coupling by a non-enzymatic 

mechanism: Amperometric current traces showing the experimental design and relative timing of drug 

application in four representative cells. The two consecutive red bars in each trace labeled KCl represent S1 

and S2. (A) The PLC inhibitor U73122 abolished the secretory response in the KCl evoked S2 stimulation 

window in control cells. (B) Application of PGE2 was unable to rescue the secretory response in S2. (C) 

The inactive analogue U73343 also blocks the secretory response in both control and PGE2 treated cells 

(D). 
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PGE2 does not elevate intracellular calcium concentration 

Activation of EP1 receptors raises intracellular calcium concentration ([Ca
2+

]i) (Funk et 

al., 1993; Hata and Breyer, 2004; Shibuya et al., 1999; Watabe et al., 1993) and 

stimulates IP production (Ji et al., 2010) consistent with coupling to Gq receptors. PGE2 

does not alter resting [Ca
2+

]i (Figure 12) yet may potentiate KCl mediated Ca
2+

 transients 

which would be expected to potentiate exocytosis. Similarly cAMP may raise [Ca
2+

]i by 

facilitating L-type channels. We used Fura-2 ratiometric imaging to test if PGE2 

potentiates the KCl stimulated rise in [Ca
2+

]i over stimulation periods relevant to our 

amperometry experiments (Figure 20A). Two 90-second KCl applications depolarize the 

cell and raise [Ca
2+

]i. A 2-minute bath application of 100 nM PGE2 prior to S2 did not 

alter the magnitude of KCl evoked [Ca
2+

]i  transients (KCl: 388 ± 56 vs KCL/PGE2 : 376 

± 55, n=16, Figure 20B ). PGE2 application in the inter stimulation window caused a 

slight dip and recovery in baseline cytosolic Ca
2+

 (Figure 20B) that was not seen in all 

cells, and not reflected on the cell averages (Figure 20B). While this data is inconsistent 

with PGE2 activation of EP1 receptors, we also tested the EP1 selective antagonist SC-

51322 using amperometry. SC-51322 (100 nM) was applied after S1, but before PGE2 

application, and remained in the bath for the duration of the experiment. Blocking EP1 

receptors pharmacologically did not significantly alter the PGE2 mediated potentiation 

(Figure 20C).  

 

We have also detected mRNA for EP2 and EP4 receptors, which typically raise cAMP 

(Breyer et al., 2001). Several groups have reported cAMP dependent facilitation of ICa, 

and cAMP increased unitary quantal size during brief depolarizations. Significant 
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increases in calcium entry would be reflected in our fura-2 imaging, and we measured no 

significant change in median quantal size in PGE2 treated cells (Figure 18F). Also, we 

previously isolated L-type currents by pharmacological block of N- and P/Q-type 

channels and found the inhibition by PGE2 was abolished, suggesting PGE2 does not 

signal through cAMP. Taken together these results cast doubt the PGE2 mediated 

potentiation of catecholamine release during sustained depolarization is mediated by EP1, 

EP2 or EP4 receptor activation. 

 
 

PGE2 mediated potentiation is pertussis-toxin sensitive and abolished by 

pharmacological and genetic targeting of the EP3 receptor 

We have shown previously that during short step depolarizations, PGE2 signals through 

EP3 receptors to produce voltage-dependent inhibition of CaV2 currents through 

activation of pertussis toxin sensitive Gi/o –coupled G proteins (Jewell et al., 2011). PGE2 

had no modulatory effect on intracellular calcium concentration in our fura-2 imaging 

that would be expected downstream of IP3 turnover (EP1) or production of cAMP 

(EP2/EP4). To determine whether PGE2 potentiation of the secretory response acts 

through a Gi/o –coupled GPCR, we pre-treated cells with 300 ng/ml pertussis toxin for 24 

hours prior to amperometric recording. As shown in Figure 21A, the number of secretory 

events (amperometric spikes) in pertussis-toxin treated cells was not potentiated by 

application of PGE2 (S1 200 ± 39, n=5 vs S2 142 ± 63, n=5). The average number of S1 

events was not altered by PTX treatment, and was consistent with S1 in our controls 

(CTL S1: 206  39, n=11 vs PTX S1: 200 ± 39, n=5).  
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Figure 20: PGE2 does not elevate intracellular calcium concentration. (A) KCl evoked calcium 

transients from a representative fura-2 loaded cell. The fluorescent response to KCl was converted to 

[Ca
2+

]i using an in vitro calibration curve, as described in METHODS, and plotted against time. The 

experimental time course and drug application windows mirrored our amperometry experiments. (B) A 2-

minute application of 100 nM PGE2 did not alter the magnitude of KCl evoked [Ca
2+

]i  transients (KCL: 

387.6 ± 55.7, n=16 vs KCL/PGE2 : 375.7 ± 54.7 ). (C) PGE2 potentiates the number of fusion events 

compared to control (S2/S1 ratio: 0.88  0.07, n=11 to 1.67  0.26, n=6; p<0.005; unpaired t-test), while 

pre-application of the selective EP1 inhibitor SC-51322 does not significantly alter the potentiation (1.67  

0.26, n=6 to 1.31 ± 0.22, n=5). 
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This data demonstrates, rather unexpectedly, that PGE2 mediated potentiation occurs 

through a Gi/o-coupled G protein receptor which are thought to typically inhibit secretion.  

 

To confirm these results we use pharmacological and genetic approaches to target the 

EP3 receptor. We tested the capacity of the selective, non-competitive antagonist of EP3 

receptors, DG-041 (reported on in Chapter 3 and elsewhere (Heptinstall et al., 2008)), to 

block PGE2 mediated potentiation of the secretory response. DG-041 (30 nM) was 

applied subsequent to S1 KCL, and ~90 seconds prior to PGE2 application, and remained 

on the cells through the S2 stimulation window. DG-041 blocked the potentiation of the 

S2/S1 ratio by PGE2 (Figure 21B), and was not significantly different than control (S2/S1 

CTL:  0.88 ± 0.07, n=11 vs DG-041 1.06 ± 0.17, n=5). While this data strongly 

implicates the EP3 receptor, we tested PGE2 in chromaffin cells isolated from EP3
-/- 

mice. The secretory ratio (S2/S1) of PGE2 treated  EP3
-/- 

cells was not significantly 

different than CTL. These results unequivocally validate the EP3 receptor as the target 

for PGE2 -based enhancement of the secretory response. 
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Figure 21: PGE2 mediated potentiation is pertussis-toxin sensitive and abolished by pharmacological 

and genetic targeting of the EP3 receptor. (A) PGE2 mediated potentiation was blocked in pertussis-

toxin treated cells. The number of secretory events during PGE2 treatment (S2) is not significantly different 

than S1 (S1 200 ± 39, n=5 vs S2 142 ± 63, n=5). (B) PGE2 -mediated potentiation of the secretory response 

is blocked in cells treated with DG-041 or cells isolated from EP3
-/-

 mice (S2/S1: PGE2 1.67 ± 0.26, n=7; 

DG-041 1.06 ± 0.17, n=5; EP3 
-/-

 1.01 ± 0.22, n=9; ANOVA p=0.04) and both DG-041treated and EP3
-/-

 

cells were not significantly different than control (S2/S1 CTL:  0.88 ± 0.07, n=11 vs DG-041 1.06 ± 0.17, 

n=5; vs EP3 
-/-

 1.01 ± 0.22; Dunnett’s multiple comparison post- test ). 
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PGE2 mediated potentiation is dependent on G subunits 
 

Of the four main G protein families, the relative expression of Gi/o heterotrimers is 

relatively high. Activation of Gi/o-coupled receptors may be the primary means of 

activating G mediated signaling processes (Clapham and Neer, 1997; Wettschureck 

and Offermanns, 2005). Consequently pertussis- toxin treatment, which ADP ribosylates 

Gαi subunits and prevents receptor interaction and subsequent release of G, blocks a 

number of G subunit regulated process, including N-type calcium channel inhibition 

(Ikeda, 1996). To test if PGE2 dependent potentiation is mediated by release of G 

subunits, we used the cell-permeant small molecule G inhibitor gallein. Gallein has 

been shown to disrupt protein-protein interactions between G and GRK2 (Casey et al., 

2010) and PI3K (Lehmann et al., 2008), in both instances inhibiting G dependent 

activation. However the gallein specificity against G interaction with relevant 

exocytotic effectors remains unclear.  

 

We initially tested whether 10 µM gallein blocked voltage-dependent inhibition of 

whole-cell ICa in chromaffin cells. Cells were voltage clamped at -80 mV and ICa was 

evoked by two consecutive 100 ms steps to +10 mV every two minutes (Figure 22A). 

ATP is known to activate Gi/o –coupled P2Y receptors and inhibit ICa through pertussis 

toxin sensitive G proteins in bovine chromaffin cells (Currie and Fox, 1996). After two 

control stimulations, application of 100 µM ATP produced a significant inhibition of ICa 

(second control: 434 ± 43 vs first ATP : 197± 18 pA; paired t-test; p<0.05; Figure 22B). 

A 30 minute pre-incubation with 10 µM gallein did not block ATP mediated inhibition of 

ICa, and in fact was quantitatively very similar (second control: 422 ± 30 vs first ATP :  



111 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Gallein does not perturb G protein mediated inhibition of ICa (A) Cartoon depiction of 

experimental setup (top). The voltage command (middle) consisted of two consecutive 100 ms step-

depolarizations from -80 mV to +10 mV(1 and 2). Evoked ICa in the absence (CTL), and presence, of 100 

µM ATP (bottom). Peak amplitude was measured from the first depolarization (1), as ICa inactivated during 

the second depolarization (2). (B) Peak amplitude plotted against drug application. Cells were stimulated 

every two minutes, application of ATP subsequent to two control stimulation significantly inhibited peak 

amplitude of ICa. (C) Pre-treating cells for 30 minutes with G inhibitor gallein (10 µM) did not block 

ATP mediated inhibition of ICa, or have any obvious off-target effects on peak amplitude of controls or 

recovery from inhibition. 
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193 ± 17 pA; paired t-test; p<0.05; Figure 22C). From these results we conclude gallein 

does not perturb G protein mediated inhibition of ICa, or have any remarkable off-target 

effect on Ca
2+ 

flux through voltage-gated Ca
2+

 channels.  

 

To determine if the potentiation of secretion mediated by PGE2 is a functional effect of 

G subunit release from activated EP3 receptors, and subsequent downstream signaling, 

we used carbon fiber amperometry. Cells were depolarized with 30 mM KCl for two 90-

second stimulation periods (S1 and S2), identical to the experimental setup described in 

Figure 18A. We pre-incubated cells for 15 minutes in two different concentrations of 

gallein (10 µM and 50 µM). As a complimentary approach we also pre-incubated cells 

with the membrane permeable, phosducin-like C-terminal peptide (1 µM), which is 

derived from the inhibitory domain (C-terminal residues 168-195) of the ubiquitous G 

inhibitor phosducin-like protein (Chang et al., 2000). We find the PGE2 mediated 

potentiation of exocytosis is significantly blocked by pre-treatment with gallein (10 and 

50 µM) or phosducin-like C-terminal peptide (1 µM compared to vehicle treated controls 

(1/5000 DMSO) (Figure 23A,B). Three representative amperometric current traces in 

Figure 23A show evoked secretion and the timing of PGE2 application prior to S2. Figure 

23B reports the S2/S1 ratios for PGE2 treatment, showing that both inhibitors 

significantly reduced PGE2 potentiation. Notably, in control cells (no PGE2, lower panel), 

the evoked secretory spikes in S2/S1 were not significantly altered by pre-treatment with 

DMSO (vehicle), phosducin-like C-terminal peptide, or 10 µM gallein, however 50 µM 

gallein reduced spikes evoked in S1 compared to DMSO controls (quantitative data not 

shown). In conclusion, we have defined a non-canonical regulatory framework by which 
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Gi/o –coupled EP3 receptors activate G subunits and potentiate the secretory response 

during depolarizations that mimic acute stress. 

 

Discussion 

 

PGE2 is the most widely expressed prostanoid, exerting its functional effects in an 

autocrine or paracrine manner on four GPCRs designated EP1, EP2, EP3 and EP4 

(Breyer et al., 2001; Regan, 2003; Sugimoto and Narumiya, 2007). The net functional 

effect of PGE2 may depend on the relative expression of specific EP receptors, a useful 

example being the well-studied impact of PGE2 on rodent vascular tone. EP1 and EP3 

receptors constrict vascular beds by increasing [Ca
2+

]i or decreasing cAMP, respectively, 

while EP2 and EP4 increase cAMP and are known vasodilators. Infusion of PGE2 

decreased mean arterial pressure (MAP) in wild type animals, but the effect was reversed 

in EP2 
-/-

 animals as MAP increased. Intravenous infusion of EP3 or EP1/ EP3 selective 

agonists increased MAP, while EP1 selective antagonists lowered MAP in spontaneously 

hypertensive rats. Ultimately, while the net functional effect of PGE2 was to lower blood 

pressure, the vasoconstrictor effect mediated by EP1 and EP3 is “uncovered” by genetic 

elimination of EP2 (Guan et al., 2007; Zhang et al., 2000). Previous reports suggest 

strong expression of EP1 and EP3 receptors in adrenal medulla (Breyer et al., 1993; 

Engstrom et al., 2008; Shibuya et al., 1999) and we have identified mRNA for all four EP  
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Figure 23: Gβγ inhibitors block potentiation mediated by PGE2 Three representative amperometric 

current traces are shown in (A): (top) pre-incubation with vehicle control (DMSO), (middle) pre-incubation 

with phosducin-like C-terminal peptide, and (bottom) 10 µM gallein. The timing of PGE2 application (100 

nM) is displayed; KCl application is inferred by evoked amperometric spikes. The evoked secretory spikes 

in S1 were not significantly altered by pre-treatment with DMSO, phosducin-like C-terminal peptide, or 10 

µM gallein. (B) Change in secretion (S2/S1) in PGE2 treated cells (upper panel). Pre-treatment with 1/5000 

DMSO (vehicle) did not alter PGE2 mediated potentiation (1.35 ± 0.26,n=6). However, pre-treatment with 

phosducin-like C-terminal peptide (0.70 ± 0.33,  n=8 ), 10 µM gallein (0.51 ± 0.20, n=5 ) and 50 µM 

gallein (0.70 ± 0.25, n=5) significantly reduced the potentiation (ANOVA, overall p=0.011, Dunnett’s post 

test ,* denotes p < 0.05 ). In control cells (no PGE2, lower panel), the S2/S1 ratio was not altered by 

pretreatment with DMSO, phosducin-like peptide or 10 µM gallein (ANOVA p=0.67). 
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receptor subtypes (EP1-EP4) in adrenal tissue. PGE2 inhibits voltage gated Ca
2+

 channels 

and exocytosis in parallel during short step depolarizations (2-100 ms depolarizing steps). 

Furthermore the inhibition is mediated solely by EP3 receptors coupled to Gi/o-associated 

G subunits (Chapter 3). We hypothesized that by changing the cellular context, and 

evoking exocytosis with sustained depolarizations resembling the physiological stress 

response, we would “uncover” additional signaling modalities with potential therapeutic 

use for tuning adrenal output. In the present study we have dissected the molecular 

mechanism by which PGE2 modulates chromaffin cell function. 

  

PGE2 potentiates exocytosis during sustained depolarizations that mimic stress firing 

In the present study we show PGE2 produces a robust potentiation of the secretory 

response during a sustained depolarization that mimics acute stress. The potentiation 

resulted from a significant increase in the numbers of vesicles fusing with the membrane, 

rather than augmentation of quantal size. Moreover PGE2 application did not raise 

intracellular calcium concentration, or directly elicit release of catecholamine, suggesting 

membrane potential was not appreciably altered by PGE2.  

 

We used a paired experimental design to account for the well-documented variability of 

secretory responses detected by amperometry. By comparing secretion evoked during S2 

to that evoked during S1, each cell serves as its own control and normalizing the data 

within each cell (the S2/S1 ratio) reports the “change in secretion”. With this design, the 

duration of the inter-stimulation interval is vitally important to ensure recovery between 

S1 and S2. Alternatively Ca
2+ 

entry associated with S1 may potentiate S2 because 

refilling of the readily releasable pool of vesicles is Ca
2+

 dependent (von Ruden and 
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Neher, 1993). The S2/S1 ratio in control cells was close to 1, suggesting 210 second 

inter-stimulation interval provided adequate time for recovery and for PGE2 to exert its 

physiological effect. 

 

The effect of PGE2 on intracellular calcium and the potential implication of signaling 

through EP1/EP2/EP4 

The EP1 selective antagonist SC-51322 in our secretion assay did not significantly alter 

the PGE2 mediated potentiation. Furthermore, PGE2 did not alter the magnitude of KCl 

evoked [Ca
2+

]i  transients which is inconsistent with PGE2 activation of EP1 receptors, 

which have been shown to raise [Ca
2+

]i (Hata and Breyer, 2004; Shibuya et al., 1999) and 

stimulate IP production (Ji et al., 2010). 

 

As previously mentioned we detected mRNA for EP2 and EP4 receptors, which typically 

raise cAMP (Breyer et al., 2001). Application of the membrane permeable cAMP 

analogue 8-CPT-cAMP to chromaffin cells potentiates L-type currents in single channel 

recordings (Carabelli et al., 2001). Similarly, in perforated whole cell recordings ICa and 

exocytosis evoked by short 100-ms step depolarizations are potentiated by 8-CPT-cAMP 

or activation of 1-adrenoreceptors, and reversed by a PKA inhibitor (Carabelli et al., 

2003). Notably, the potentiation of exocytosis was attributed to an increase in quantal 

size of individual release events, which we do not observe. Furthermore any potentiation 

of L-type currents would likely be reflected in the fura-2 imaging. As outlined previously 

and in Chapter 3, PGE2 does not modulate pharmacologically isolated L-type channels, 

suggesting PGE2 does not raise cAMP enough to observe any measurable functional 

outcomes in mouse chromaffin cells. 
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Interestingly, activation of Gs-coupled D1-like dopamine receptors facilitate calcium 

channels by a cAMP dependent mechanism (Artalejo et al., 1990), and D1 agonists 

potentiated secretion evoked by subsecond pressure injected puffs of 60 mM KCl in 

bovine chromaffin cells (Villanueva and Wightman, 2007). However, D1 receptor 

agonists inhibited catecholamine release stimulated by a 10-minute application of 55 mM 

KCl (Dahmer and Senogles, 1996). These results raise questions whether Gs would 

potentiate exocytosis under sustained depolarizations that were used in this study. 

Collectively we find it unlikely that PGE2 mediated potentiation of catecholamine release 

during sustained depolarization is mediated by EP1, EP2 or EP4 receptor activation. 

 

PGE2 mediated potentiation is dependent on pertussis toxin sensitive Gβγ subunits 

associated with the EP3 receptor 

We show the potentiation is prevented by the selective EP3 inhibitor DG-041 or in 

chromaffin cells isolated from EP3
-/-

 mice. Thus during brief stimuli that mimic basal 

sympathetic tone, EP3 receptors suppress exocytosis by mediating voltage-dependent 

inhibition of ICa, but during sustained stimulation this inhibition shifts to potentiation. 

Alternative splicing of the EP3 C-terminus generates three known splice variants (α-, β-, 

γ-) that vary in G protein coupling. Activation of EP3α and EP3β were initially 

characterized to inhibit cAMP (Negishi et al., 1993), so we first tested pertussis toxin to 

characterize the pathway downstream of EP3. Pertussis toxin abolished the PGE2-

mediated potentiation, suggesting the involvement of Gi/o –coupled G protein signaling, 

as did two Gβγ inhibitors, gallein or phosducin-like C terminus peptide.  Gallein is a cell-

permeant small molecule shown previously to disrupt protein-protein interactions 
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between G and GRK2 (Casey et al., 2010) and PI3K (Lehmann et al., 2008), but its full 

inhibitory repertoire is not well understood. Gallein is related in structure and efficacy to 

several molecules in the M119 class of compounds that compete for binding with a 

fluorescein isothiocyanate-labeled Gαi to the Gα switch II binding surface on Gβγ 

(Bonacci et al., 2006; Casey et al., 2010). This so called “hotspot” mediates interaction 

with a number of G effectors, including stimulatory contacts with PLCβ (Bonacci et 

al., 2006). On the surface, the finding that gallein potentially binds a region on Gβγ 

known to activate PLCβ and also blocks PGE2 mediated potentiation of exocytosis is 

circumstantial evidence that the final mediator of the potentiation is downstream of PLCβ 

activation. However, another molecule in the M119 class, M201, binds a subsurface in 

the hotspot and instead of inhibiting the interaction, potentiates PLCβ2 activation by G, 

an indication of the functional complexity of the switch II binding surface on G 

(Bonacci et al., 2006; Ford et al., 1998). Preliminary to targeting G with gallein in our 

secretion assay, we tested if pre-incubation with 10 µM gallein blocked voltage-

dependent inhibition of whole-cell ICa in chromaffin cells. ATP produced a significant 

and reversible inhibition of ICa in gallein treated cells (Figure 22C). This demonstrated 

G interactions with CaV2 channels are not perturbed by gallein, making it a potentially 

useful tool for dissecting G protein mediated aspects of the secretory response distinct 

from Ca
2+

 channels. To our knowledge this is the first characterization of this nature.  

Interestingly, by blocking Gβγ signaling (Figure 23B), the secretion ratio (S2/S1) drops 

below the ratio of ~1 we observed for S2/S1 control cells (CTL S2/S1: 0.94 0.8, n=11; 

Figure 18D, Figure 21B) and for PTX treated cells ( PTX S2/S1 0.89  0.27; Figure 

21B ). As mentioned previously, a rise in cAMP through Gs –coupled receptor activation 
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would be expected to potentiate L-type currents, which is not observed. However we 

have not investigated the impact of Gα subunit mediated inhibition of cAMP in any of 

our assays, and this effect is certainly occluded by our potentiation. Two recent reports 

outline cAMP- independent inhibitory effects of Gi/o Gα subunits. NPY inhibition of 

insulin secretion from intact islets is pertussis toxin sensitive, but did not block the 

insulin potentiating effects of the Gβγ activating peptide mSIRK, indicative of an 

inhibitory pathway distinct from Gβγ. Furthermore the inhibition was independent of 

[Ca
2+

]i, and downstream of cAMP, suggesting the inhibitory effect of NPY is through  

non-canonical Gi/o -inhibitory signaling mediated through the Gα subunit (Schwetz et al., 

2013). Similarly, norepinephrine inhibited filling of the readily releasable pool of 

secretory granules in INS 832/13 β-cells, and the inhibition was blocked by Gαi 

inhibitory peptide (Zhao et al., 2010). This effect did not involve Gα mediated disruption 

of the cAMP/PKA pathway (which can increase the RRP) because [cAMP]i was buffered 

in the patch pipette solution for these experiments suggesting a cAMP independent 

inhibitory effect of Gαi. Although we see a potentiation, we cannot rule out cAMP 

dependent or independent inhibitory EP3 signaling through Gi/oα. 

 

Targets of Gβγ 

 

Whether the PLC inhibitor U73122 inactivates PLC by irreversible alkylation, and the 

specific target by which U73122 and the control U73343 block secretion warrants further 

study. Regardless, based on our observation that potentiation of catecholamine release by 

PGE2 is manifest by more vesicles fusing with the plasma membrane, rather than larger 

vesicles, PLC activation by Gβγ remains a potential mechanism. Currently there are 13 

identified isoforms of PLC divided into six families: PLC β-, γ-,δ-,ε-,ζ-, and η-, and Gβγ 
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can activate β-,ε-, and η- (Khan et al., 2013). PLC mediated production of IP3/Ca
2+

 and 

DAG can activate at least 12 different protein kinase C subtypes (PKC), which may  

phosphorylate several critical exocytotic effectors (Staal et al., 2008). Consequently PLC 

is emerging as a regulatory node as its downstream products produce great functional 

diversity necessary for organizing signals from a large number of GPCRs. 

 

Pertussis toxin blocks receptor-mediated IP3 generation in leukocytes and mast cells but 

fails to have an effect in hepatocytes or cardiac myocytes (Gilman, 1987). This suggests 

both Gi/o- and Gq/11 -coupled receptors must participate in PLCβ activation, however no 

pertussis toxin sensitive Gα subunits have been shown to activate PLC (Clapham and 

Neer, 1997). In vitro, synergistic activation of PLCβ3 by Gβγ dimers and Gqα produces a 

ten fold increase in the Ca
2+ 

response compared to either subunit alone, thus displaying 

allosteric synergism for regulation of PLCβ3 (Philip et al., 2010), however this was not 

supported in any other PLCβ isoform (1,2 and 4).  

 

Others have shown Gqα and Gβγ can synergistically activate PLCβ2 (Wu et al., 1993), 

furthermore PLC activity is enhanced by intracellular Ca
2+ 

release from internal stores 

(Horowitz et al., 2005). Thus KCl evoked Ca
2+ 

transients in our amperometry 

experiments (Figure 20) may serve as the minimum threshold for activation of PLCβ, 

which is enhanced by activation of βγ subunits, resulting in a quantifiable effect on the 

secretory response. Certainly Gq has a higher binding affinity for PLCβ (Khan et al., 

2013), but we may be compensating for an absence EP1/ Gq release by activating Gβγ 

through EP3 concomitant with increasing [Ca
2+

]i. In transfected Cos-7 cells, fMet-Leu-
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Phe (fMLP)- receptors (Jiang et al., 1996) and adenosine A1 receptors (Tomura et al., 

1997) couple to pertussis toxin-sensitive generation of IP, suggestive of Gi/o mediated 

activation of PLC. Whether the potentiation of catecholamine release by PGE2 is 

mediated by Gβγ activation of PLC requires further study, however to our knowledge this 

has not been shown previously in a secretory system. It is known that inhibition of 

phosphoinositide 3 kinases (PI3K) in chromaffin cells blocked secretion and prevented 

cortical actin disassembly (Chasserot-Golaz et al., 1998). Similarly F-actin disassembly 

has been shown to favor full fusion of chromaffin granules (Doreian et al., 2009). P13K 

and cytoskeletal components are regulated by Gβγ, and their involvement in EP3 -

mediated potentiation requires further investigation. 

 

During sustained stress depolarization, EP3 receptors potentiate catecholamine release by 

a non-canonical mechanism that involves Gβγ subunits from Gi/o -coupled receptors 

(Figure 24/Chapter 4). We believe the contextual shift in the function of an EP3, Gi/o-

coupled pathway is a novel characterization, but it was unexpected. A broad literature 

describes how Gi/o- coupled G activation generally reduces membrane excitability in 

several systems by activating GIRK channels (Logothetis et al., 1987), inhibiting TRPM1 

channels (Shen et al., 2012), targeting SNARES to inhibit synaptic transmission 

(Gerachshenko et al., 2005), and/or mediating voltage-dependent inhibition of CaV2 

channels at the synapse and in neuroendocrine cells (Zamponi and Currie, 2013). In 

chromaffin cells, activation of Gi/o –coupled P2Y receptors, µ-opioid receptors or 

exogenous Gβγ application reduced the number and quantal size of amperometric events 

evoked by ionomycin or direct application of Ca
2+

 in the patch pipette (Yoon et al., 
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2008). It was proposed that Gβγ may bind exocytotic machinery and shift the mode of 

exocytosis to a preference for smaller events. Notably in these experiments the evoked 

secretion was markedly smaller (by ~25%) than our KCl evoked secretion. Whether the 

potentiation is restricted to EP3 or supported by other Gi/o –coupled receptors needs to be 

investigated further, but it is clear that cellular context does matter. 

 

Taken together, we have outlined a molecular framework for the context-dependent, 

bimodal regulation of adrenal catecholamine release by the Gi/o-coupled EP3 receptor. 

Additionally we identify a novel behavior for Gi/o associated  subunits not previously 

observed in the regulation of stimulus secretion coupling. 
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Figure 24: Bimodal regulation of adrenal catecholamine release by PGE2: (A) Chromaffin cells are 

directly innervated by cholinergic sympathetic afferents that release Acetylcholine (ACh). Low 

frequency sympathetic nerve activity (basal) was modeled using step depolarizations (Ch. 3/top panel). 

Sympathetic stress at the splanchnic-adrenal synapse increases the rate of acetylcholine output resulting 

in sustained depolarization and increased secretion of catecholamine (bottom panel). These conditions 

were modeled with sustained application of 30 mM KCl (Ch. 4). (B) Activation of cell surface nicotinic 

ACh receptors depolarizes the membrane and opens voltage-gated Ca
2+

 channels, subsequently triggering 

exocytosis. (C, D) PGE2 suppresses adrenal output during brief step depolarizations or low frequency 

trains of APW that mimic basal sympathetic tone (Top panel). The EP3 receptor supports voltage-

dependent inhibition of ICa and exocytosis, by activating Gβγ subunits from the Gi/o coupled EP3 

receptor. During sustained stress depolarization, PGE2 potentiates catecholamine release, by an 

unexpected mechanism involving the same molecular components as inhibition:Gβγ subunits liberated 

from the Gi/o -coupled EP3 receptor (bottom). This regulatory shift may serve to augment circulating 

neuropeptides co-released with catecholamine during stress firing. Model summarized in (D). 
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5. GENERAL DISCUSSION AND FUTURE DIRECTIONS 

 

 

General Discussion 

 

A broad variety pharmaceutical agents in clinically important drug classes target stimulus 

secretion coupling: sulfonyurea antidiabetic drugs, opioids, non-opioid anesthetics, 

antidepressants, anti-arrhythmics and antihypertensives. Might pharmacological 

augmentation of adrenal catecholamine release provide potential therapeutic benefit? The 

intra-adrenal signaling pathway referenced in Chapter 1, Figure 6, was initiated with an 

i.v. injection of 25 μg/kg LPS in rat: a dose associated with moderate, but not severe, 

endotoxemia. The net functional consequence was an increase in cortical expression of 

synthetic enzymes for PGE2, and presumably PGE2, at the cortical/medullar interface. 

The authors hypothesize prostaglandin production ultimately regulates cortisol release 

during an immune challenge. Hypotension is a feature of endotoxemia, and both 

hypotensive and non-hypotensive doses of endotoxin elicit elevated circulating 

catecholamine (Burnier et al., 1988; Evequoz et al., 1988). It is interesting to speculate, 

based on the findings here, that adrenal PGE2 production during systemic stress may 

connect the inflammatory immune response to increased sympathetic output from 

chromaffin cells, in an effort to maintain cardiovascular homeostasis. In support of this 

idea, pretreatment with indomethacin, an NSAID, prior to a nonhypotensive dose of 

endotoxin reduced plasma catecholamine levels (Burnier et al., 1988), and the endotoxin 

induced blood pressure fall in biadrenalectomized rats is prevented by epinephrine 
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infusion (Evequoz et al., 1988). However other reports suggest the vascular and 

myocardial responsiveness to catecholamine may be reduced by endotoxin administration 

(Bhagat et al., 1970).  

 

If PGE2 tunes adrenal output through the EP3 receptor in response to endotoxic stress, the 

logical extension to human therapeutics would be management of hemodynamics in the 

clinical setting of severe sepsis and septic shock. The transition from systemic 

inflammatory response syndrome to sepsis, and subsequently septic shock occurs in a 

setting of circulatory abnormalities that lead to tissue hypoxia. While specific treatment 

regimens are multifactorial, hemodynamic optimization and the general prevention 

cardiovascular collapse significantly improves outcomes (Rivers et al., 2008). The 

significant benefit of intact adrenal medullar function in this setting may simply be 

cardiovascular maintenance rather than an explicit therapeutic target, per se. Epinephrine 

is the primary catecholamine released from chromaffin cells, and has the highest potency 

of any endogenous agonists for β2 receptors. As a result, while exogenous epinephrine 

increases heart rate and systolic blood pressure, it has little effect on diastolic pressure 

and is rarely administered as a pressor. In clinical settings, epinephrine use is generally 

limited to treatment of anaphylaxis (Nowak et al., 2013).  

 

Targeting adrenal output, potentially through EP3, in the pathogenesis of heart failure 

(Lymperopoulos et al., 2008) and metabolic syndrome (Ziegler et al., 2012), may be more 

therapeutically useful. Both diseases are progressive, where maladaptive signaling leads 

to progression of disease and symptoms over time. The long-term consequence of PGE2 
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signaling in chromaffin cells was not investigated, and may provide insight on relevance 

of the pathway. Additionally, many components of the adrenal ‘secretome’ are bioactive 

and along with catecholamine, are correlated with disease. It remains uncharacterized 

how EP signaling may regulate peptide hormone synthesis, co-packaging with 

catecholamines (granulogenesis), and release.   

 

Future Directions 

 

We have outlined a molecular framework for the regulation of adrenal catecholamine 

release by receptors for prostaglandin E2, specifically the Gi/o-coupled EP3 receptor. In 

the process we identified a stimulatory behavior for Gi/o associated  subunits not 

previously observed in the regulation of stimulus secretion coupling. We outline the 

potential for bimodal, EP3-mediated regulation of catecholamine release, however the 

fundamental question underlying future experiments will be: Is bimodal, EP3-mediated 

regulation a relevant mechanism at the systems or organismal level for regulating adrenal 

output? Initially we intend to further characterize the pathway by identifying the 

molecular effector of Gβγ. In addition to activation of PLCβ discussed in Chapter 4, Gβγ 

subunits from Gi/o- receptors are known to activate PI3K (Kamal et al., 2011; Stoyanov et 

al., 1995). Neuroendocrine exocytosis is sensitive to the PI3K inhibitor LY294002 

(Meunier et al., 2005; Wen et al., 2008), as PI3K may modulate granule priming and 

potentiate exocytosis through both PKA and Akt dependent pathways (Mori et al., 2004). 

Preliminary data from our lab suggests PGE2 mediated potentiation of exocytosis is 

blocked by LY294002, however more work is needed to characterize this pathway. Along 
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with identifying a cellular target, four lines of inquiry directed at the relevance of this 

mechanism will be determining 1) the source of PGE2, 2) the scale of the effect 3) the 

prevalence in other Gi/o coupled receptors and 4) the long-term consequences of PGE2 

application. 

 

Source of PGE2 

The first arm of bimodal regulation by EP3 was described in Chapter 3. We proposed that 

during brief stimuli, EP3 receptors suppress secretion through inhibition of ICa, but we 

provide background leading into Ch. 4 that systemic immune challenge is thought to 

boost local production of prostaglandin E2. Therefore the implication is that PGE2 is a 

paracrine signal of cortical origin produced in response to physiological stress and likely 

accompanied by increased sympathetic firing.  However the origin of PGE2 is an 

important unanswered question. Cox-1, Cox-2, and mPGES-1, are constitutively 

expressed in the adrenal medulla, therefore autocrine, or chromaffin- to -chromaffin 

regulation is possible. We propose a model that during brief stimuli, EP3 receptors 

suppress secretion through inhibition of ICa, but during sustained stimuli EP3 receptors 

potentiate evoked catecholamine secretion through a distinct pathway which also 

involves Gβγ subunits liberated from Gi/o-type G proteins. It follows that demonstrating 

both pathways work together in a physiological setting will help demonstrate regulatory 

relevance. In pre-synaptic neurons, voltage dependent inhibition of Ca
2+ 

channels 

suppresses exocytosis contributing to short-term plasticity at the synapse. It is interesting 

to speculate that during basal sympathetic firing rates, autocrine PGE2 is produced in 

chromaffin cells and subsequently transported out of the cell where it activates auto-
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receptors or receptors on nearby cells, ultimately inhibiting catecholamine release by 

binding to EP3 receptors. This is mechanistically similar to the physiological function of 

ATP and enkephalin binding P2Y and µ-opioid receptors. However during stress 

activation/increased sympathetic input, paracrine PGE2 is produced and potentiates 

release. Recent work similarly aimed to identify the role of EP signaling and enzymatic 

source of PGE2 in subfornical organ (SFO) neurons, which may mediate slow pressor 

Ang II hypertension through production of reactive oxygen species (ROS). The authors 

show COX-1 derived PGE2 was increased in SFO neurons and not surrounding brain 

regions, and elicited ROS production and ultimately hypertension through the EP1 

receptors (Cao et al., 2012). Interestingly, prostaglandins are poorly membrane 

permeable. Prostaglandin uptake is thought to be mediated by the prostaglandin 

transporter (PGT), whereas multidrug resistance protein four (MRP4) mediates release of 

PGE2 from cells. We used RT-PCR to detect expression of MRP4, but not PGT, in mouse 

adrenal tissue, suggesting the components are in place for chromaffin-chromaffin, or 

autocrine inhibition (Figure 25). Demonstrating both arms of our bimodal regulation 

work in tandem in a physiological setting, potentially increasing the functional range of 

sympathetic input/ adrenal output, will help show relevance of the model. 

 

Scale of effect 

High frequency splanchnic input to the adrenal gland has been proposed to desensitize 

nACh receptors on a scale of minutes, thus the non-cholinergic peptide transmitter 

PACAP may predominate as the primary stress mediator of exocytosis (Smith and Eiden, 
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2012; Stroth et al., 2011). Therefore chemical depolarization with KCl may closely 

model the physiological setting. PACAP application to adrenal slices has been shown to 

increase cell-to-cell electrical coupling via regulation of gap-junctions (Hill et al., 2011). 

Investigating EP signaling in a more tissue selective manner, e.g. adrenal slices, would be 

a useful model to uncover tissue specific influences in sustained stress depolarization. 

Using the same rational we conducted preliminary experiments sampling blood via 

cardiac puncture and measuring circulating catecholamine in wild type, EP1
-/-

, EP3
-/-

, and 

EP1/3
-/-

 animals. Our results were highly variable, as is reported across different 

sampling methodologies (Grouzmann et al., 2003). An interesting approach would revisit 

circulating catecholamine levels in animals with pharmacological or genetic targeting of 

EP receptors, employing chronic catheterization to normalize reported variability. 

 

Is Gβγ mediated bimodal regulation supported by other Gi/o –coupled receptors? 

Certainly Gi/o - receptors for ATP (P2Y-receptors), enkephalin (-opioid receptors) or 

catecholamines (-adrenergic) (Albillos et al., 1996; Currie and Fox, 1996; Harkins and 

Fox, 2000; Powell et al., 2000; Ulate et al., 2000) support voltage-dependent inhibition of 

ICa and exocytosis, however potentiation has not been shown. In addition to ATP and 

enkephalin, chromaffin granules contain NPY and dopamine which may modulate 

exocytosis. It is notable that activation of Gs-coupled D1-like dopamine receptors 

facilitate calcium channels by a cAMP dependent mechanism (Artalejo et al., 1990), and 

D1 agonists expectedly potentiated secretion evoked by short depolarizations (Villanueva 

and Wightman, 2007).Yet, D1 receptor agonists inhibited catecholamine release 

stimulated by a 10-minute application of 55 mM KCl (Dahmer and Senogles, 1996). One  
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Figure 25: MRP4 export pump mRNA expressed in mouse adrenal tissue. (A) RT-PCR was used to 

detect expression of the MRP4 receptor in mouse adrenal tissue (left), and kidney tissue (right) that was 

isolated in parallel as a positive control. (B) PGT mRNA was not amplified. All samples from  A and B 

expressed the internal standard GAPDH (data not shown) 
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could speculate the source of the ligand, regardless of its GPCR receptor coupling, may 

determine the net functional effect during a stress response. Similar to ascertaining the 

scale of our effect, broadening the scope of the model imparts relevance.  

 

Long-term consequences of PGE2 application 

By necessity, our current studies outlined in Ch. 3 and 4 measure Ca
2+

 activation and 

exocytosis with precise temporal resolution. This is crucial for coupling activation of 

receptor mediated second messenger pathways to distinct cellular cascades in stimulus 

secretion coupling. However many diseases that implicate adrenal function are chronic, 

progressive, inflammatory states where maladaptive signaling leads to worsening of 

symptoms over time. Investigating cellular changes due to chronic PGE2, and on a larger 

scale, characterizing adrenal function in EP
-/- 

animals will be an important approach to 

determine if EP3-mediated, bimodal regulation is relevant in vivo. 

 

Final Remarks 

 

Dissecting subcellular GPCR signaling has intellectual value, but also makes therapeutic 

sense as most drugs targeting GPCRs lack selectivity and display complex pharmacology. 

This may doom a potential drug on adverse side effects, or conversely, may have clinical 

relevance and contribute to the desired efficacy by acting on multiple GPCRs. (Hopkins 

et al., 2006; Overington et al., 2006). Several studies highlight significant risk of broadly 

targeting prostanoids with NSAIDS (Gurwitz et al., 1994; Laine et al., 2003; Nussmeier 

et al., 2005), thus specifically targeting EP receptors may be the practical approach. 
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Overall, this work has increased the understanding of basic molecular instructions 

inherent to EP receptor function and control of neuroendocrine release. 
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