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CHAPTER I

INTRODUCTION

My dissertation evaluates technology adoption and transfer both theoretically and

empirically, with the goal of providing new insights into the consequences of technology

adoption �an area that remains understudied in the macroeconomic literature.

I begin the investigation from the perspective of �rms. The major aim of my second

chapter is to analyze the mechanism of technology adoption across �rms under a framework

in which technology is transferred through mergers and acquisitions. In this chapter I

present a model that incorporates the cost of converting one �rm�s speci�c capital into that

of another �rm. I show that merger activity involves a pattern in which �rms that have high-

market valuations with respect to the book value of their assets (i.e., Tobin�s Q) will merge

with �rms that have lower yet not the lowest valuations. I also show that the ratio of bidder

to target Qs and the size di¤erential between acquirer and target have an inverted U-shaped

e¤ect on the probability of two �rms being involved in a merger, and that the likelihood of

a merger is positively and linearly related to the relative potential growth between acquirer

and its target. In terms of potential growth, the typical merger pattern is �high buys low�.

Based on data for mergers among US �rms available from the Securities Data Corporation

from 1986 to 2005, a series of bootstrap logistic regressions of the probability of an actual

merger on the ratio of bidder to target Qs, the two �rms� size di¤erential, their relative

potential growth, and other controls bear out the main implications of the model.

The third chapter provides a theoretical justi�cation for the bootstrap logistic

regressions, a new simulation-based method, for rare events data in which the binary de-

pendent variables have dozens to thousands of times fewer ones (events, such as mergers)
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than zeros (�nonevents�, such as pseudo mergers). The essentials of this method include

the following: First, the �nonevents�(pseudo mergers) are randomly selected to match the

events (mergers) and the logistic regression is applied. This procedure is then repeated

hundreds of times. We also construct the bootstrap standard errors and p values of the

estimates.

The last chapter analyzes the Cross-Country Historical Adoption of Technology

(CHAT) data set, which covers the di¤usion of about 110 technologies in over 150 countries

since 1820. We estimate and compare the convergence speed of each technological adoption

and that of income per capita across all countries, and then across the developed and devel-

oping countries (DCs and LDCs). We then document six general facts about cross-country

technology adoption and income inequality that emerge from these data: (i) Though DCs

always adopt a new technology earlier than LDCs, on average the convergence speed of tech-

nology adoption across LDCs is faster than that across DCs. (ii) Most technological adop-

tions among poorer economies cluster in a lower level than those among richer economies.

(iii) The convergence speed of the adoption of most technologies is non-monotone. (iv) The

invention of the computer and the internet has not increased the average convergence speed

of other technological adoptions. (v) The relation between the average convergence speed

of technological adoptions and that of per capita income is negative across all countries and

across LDCs, but is positive across DCs in the post-WWII period. (vi) The dispersion in

technology adoption for individual technology is 3 - 5 times larger than the dispersion in

income per capita both across DCs and LDCs.
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CHAPTER II

TECHNOLOGICAL DISTANCE, TOBIN�S Q, AND THE PROPENSITY TO MERGE

Introduction

According to the Securities Data Corporation (SDC), more than 3,700 �rms were

involved in domestic within-industry corporate mergers between 1987 and 2006 with a total

transaction value in excess 4.7 trillion constant 2005 dollars. At the same time, the vast

majority of US companies were not involved in mergers. Accordingly, the topic of who

merges, and with whom do they merge, has received a great deal of attention in recent

economic and �nancial research.

One of the most well-established stylized facts about the pattern of mergers and

acquisitions (M&A) is that �rms with high values of Tobin�s Q (de�ned as the ratio of a

�rm�s market value to the replacement cost of its capital) usually buy �rms with low Qs.

Manne (1965), for example, argues that low value, badly-managed �rms will be bought by

better-managed �rms. Servaes (1991) �nds that the total takeover returns, which measure

the abnormal increase in the combined values of the merging parties, are larger when the

bidder has a higher Q than its target. Andrade, Mitchell and Sta¤ord (2001), report that

roughly two-thirds of mergers since 1973 involve an acquiring �rm with a higher Q than

its target. Jovanovic and Rousseau (2002, 2007) provide a Q-theory of mergers to capture

these stylized facts.

Another group of researchers thinks that valuation errors a¤ect merger activity.

For example, Rhodes-Kropf and Viswanathan (2004) and Shleifer and Vishny (2003) pro-

vide theories suggesting that misvaluations drive mergers. Rhodes-Kropf, Robinson and
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Viswanathan (2005) �nd strong empirical support for the prediction that increasing market

misvaluation of a �rm increases the probability of being the acquirer when a merger occurs.

In this paper, we take a fresh look at who merges with whom. Our study is

motivated by Jovanovic and Rousseau (2002, 2007), who describe a theory of mergers in

which �rms with high Qs acquire �rms with low Qs, since the most value is created when

the worst performing assets are paired with the best managers. They argue that mergers are

a way for acquirers to pass their better technology to targets, or to substitute the target�s

poor management or inappropriate use of assets with superior management and direction.

Synergies are created in all of these cases. In their papers, they assume that capital is �rm

speci�c and a cost is needed to put new and used capital in place. When the conversion

cost is in�nite, there would be no net gains from a merger and thus no merger regardless

of the di¤erence between the counter parties�Qs.

Figure 1. Tobin�s Q for subgroups of Compustat �rms, 1986 - 2005

As Figure 1 shows, however, the Tobin�s Q�s of �rms that become acquirers, while
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larger than those of their targets, on average do not exceed those of the targets more than

they exceed the Q�s of �rms not involved in mergers at all.1 This suggests that a high Q

�rm will purchase a �rm with a lower, yet not the lowest Q; considering the conversion cost.

This phenomenon is the focus of our paper.

The �high buys less high�merger pattern has been observed by Rhodes-Kropf,

Robinson and Viswanathan (2005). Instead of explaining this pattern, Rhodes-Kropf and

Robinson (2007) suggest an even stronger pattern of �like buys like�, arguing that merg-

ers re�ect a desire to place complementary assets under common control more than the

substitution of badly performing assets with better ones.

Keeping the substitution assumption, however, we argue that a �high buys lower

yet not the lowest�pattern in terms of Q emerges from the �rm speci�city of capital and the

costs associated with converting a target�s capital into a form usable by the acquirer. We

build a model based on three assumptions. First, we assume there is a positive technology

shock which a¤ects one group of �rms more than the others. After this shock, two kinds

of �rms will coexist. Second, like Jovanovic and Rousseau (2002, 2007), we assume that

mergers are a channel through which capital �ows from low technology projects to high

technology ones. Finally, we assume that the total conversion costs are a convex function

of the technological "distance" between the acquirer and its target. Firms negotiate to

determine how they will share the surplus generated by the merger. If a high-tech and

low-tech �rm can make higher pro�ts under common control than they can separately, they

will merge. Guided by the model developed in the paper, we con�rm that merger activity

presents a pattern as �high buys lower yet not the lowest�in terms of Q, but �high buys low�

in terms of relative growth potentials. We also prove the following results:
1The annual averages presented in Figure 1 all constructed for US �rms listed on Standard & Poor�s

Compustat database from 1986 to 2005. We identify mergers among these �rms using information from the
Securities Data Corporation (SDC).
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(1) The ratio of bidder to its target Qs has an inverted U-shaped e¤ect on the

probability of the two �rms being involved in a merger. This means the bidder may not

purchase the lowest Q �rm that it can �nd, but rather a �rm with a lower Q:

(2) The likelihood of a merger is positively and linearly related to the relative

potential growth between an acquirer and its prospective target, which means that the

likelihood of a merger is larger when the potential growth of the acquirer is sizeable relative

to its target. Therefore, the relative potential growth is a more potent variable than Q in

characterizing what drives merger activity.

We restrict our data to US domestic merger activities reported in the SDC and US

exchange companies from 1986 to 2005. We pool a dataset with 1,317 merger pairs among

3,050,489 observations. Our data support the merger pattern of �high buys lower yet not

the lowest�in terms of Q. At the same time, we �nd the average total factor productivity

(i.e., TFP, measured as the ratio of net sales to assets) of the targets is greater than that of

the acquirers and that the average TFP of non-merging �rms exceeds that of the targets,

with both of these di¤erences statistically signi�cant at the one percent level. This implies

that the non-merging �rms are the most productive on average, while the target �rms

are second and the acquirers last, which runs counter to the implication of Jovanovic and

Rousseau (2002, 2007). Further, we �nd that the number of acquirers and targets are not

the same, as many potential mergers with multiple bidders appear in the SDC data but are

not completed. These �ndings lead us to focus on the di¤erences between the ratio of bidder

to target Qs and the two �rms�technological distance, considering only actual mergers and

potential within-industry pairings.

Using the data, we construct a series of quasi-bootstrap logistic regressions of the

probability of an actual merger on the ratio of bidder to target Qs, the two �rms� size
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di¤erential, their relative potential growth, and other controls. We then provide bootstrap

tests for all estimates. These regressions bear out the main implications of the model.

The remainder of this paper is organized as follows. In Section 2, we develop a

Nash bargaining solution model that incorporates a cost of converting capital. In Section

3, we describe the construction of the data. In Section 4, we introduce a new econometric

method. In Section 5, we make an empirical assessment of our theoretical model. In Section

6, we conclude.

Model

The model is based on Gort (1969) as well as Jovanovic and Rousseau (2002, 2007).

In an economy, some �rms are well positioned to take advantage of a shock, while others

are not. Hence, after a positive technology shock, some �rms are more productive than

others. We model this as two kinds of technology with a distinct type of capital. Capital

is technology-speci�c, as in Hulten (1992) and Greenwood et al. (1997, 2000). Given that

the high and the low technology �rms face the same output price, the high technology �rms

make better use of the assets they control and thus they have a higher Q than the low

technology �rms. As a result, the �rms with high technology have a desire to expand their

market share and �nd it optimal to acquire plants from less productive �rms in the industry,

even when it entails costs to convert the capital associated with low technology. By the

same token, a positive shock in an industry increases the opportunity cost of operating as an

ine¢ cient producer in that industry. In a sense, merger and acquisition (M&A) are often

the least-cost means for industry structure to respond to the changes brought about by

economic shocks. Thus, a positive industry shock alters the value of the assets and creates
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incentives for transfers to more productive users through M&A.2

All �rms in the model are assumed to be price-takers, to produce a homogenous

output, to be endowed with technology-speci�c production assets, and to have the same

technology initially. At time 0, there is a positive technology shock that a¤ects one group

of �rms more than the other. Hence, after the shock, there are two kinds of technology, each

associated with one kind of assets. High and low technology are respectively represented

by zh and zl, with zh > zl. The high technology asset is denoted as Kh; while the low

technology asset is denoted as Kl: Since the technology-speci�c assets Ki can be directly

used only by the �rms with technology zi; a cost is needed to convert low technology assets

to high technology uses.3 In this model the cost is assumed to be a convex function of

the technological distance between these two �rms. Namely, the larger the technological

distance, the higher is the cost incurred to convert the capital associated with the low

technology. After merging, the combined �rm inherits the technology from high productivity

�rm and also its latent intangibles, so the combined �rm has the same Q as the high

productivity �rm. It is also assumed that the acquirer and its target arrive at a Nash

bargaining solution to share the rents.4

Under a rational stock market, a �rm�s value can be written as

Vi = qiKi; i = h or l; (II.1)

where Vi is the market value of the �rm, and qi is the Tobin�s Q of �rm i that assigns a

market value to a given replacement cost of all its assets.

2Mitchell and Mulherin (1996) document that the rate of corporate takeovers and restructurings within
industries during 1980s is directly related to the economic shocks.

3See Jovanovic and Rousseau (2002, 2007), and Jovanovic (2006).
4Di¤erent choices for negotiating pro�ts will not change the main results of the model.
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After merging, the new �rm�s value function can be written as

VM = (1� C)qhKl + qhKh; (II.2)

where VM is the market value of the combined �rm�s and qh is its Tobin�s Q. C is the per

unit cost to convert Kl into Kh; which satis�es C 0 > 0; C 00 > 0, C(1) = C 0(1) = 0 and

lim zh
zl
!+1C(

zh
zl
) = +1:

We use a model of negotiations to determine how pre-merger �rms share the surplus

generated by the merger. There are di¤erent choices for the model of negotiations, but the

simplest one is the Nash bargaining solution, which in this case is just the solution to

W (Vh; Vl) = max
�hM ;�lM

(�hM � Vh)�(�lM � Vl)(1��) (II.3)

s:t: VM = �hM +�lM

where W is the joint welfare of the aquirer and its target, �iM is the merger share to �rm

i, and � 2 [0; 1] is the acquirer�s bargaining weight. The larger � implies a lower bargaining

power of the target.

Lemma 1 In equilibrium the resulting merger share for high-tech �rm merging with low-
tech �rm is

�hM = �(VM � Vh � Vl) + Vh; (II.4)

�lM = (1� �)(VM � Vh � Vl) + Vl: (II.5)

Proposition 1 Assume at time 0, the �rms a¤ected by a positive technology shock adopt a
high technology immediately, while the others use the low technology. If the combined market
value of the total assets of a high-tech �rm and a low-tech �rm is higher under common
control than it is separately, they will merge immediately at time 0.

Proof. If the high-tech and low-tech �rms merge at time s, then �rm h�s market
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value at time 0 is

Vhs =

Z s

0
(e�rtrVh)dt+ e

�rs�hM

= Vh � e�rsVh + e�rs[�(VM � Vh � Vl) + Vh]

= Vh + e
�rs�(VM � Vh � Vl) (since �(VM � Vh � Vl) > 0)

< Vh + �(VM � Vh � Vl) = Vh0 (when s=0).

Therefore, Vhs < Vh0:

With the same logic, we can prove that Vls < Vl0:

Since both �rms are worth more by merging at time 0 rather than waiting until a

later time s, they merge at time 0.

The proposition shows that mergers occur in waves and that technological shocks

drive industry merger waves. Several papers provide strong empirical supports for this

proposition, such as Faria (2003) and Harford (2005).

If the high technology and the low technology �rms merge at time 0, the gain for

each �rm from the merger is5

Gh = �hM � Vh = �(VM � Vh � Vl) + Vh � Vh = �(VM � Vh � Vl);

Gl = �lM � Vl = (1� �)(VM � Vh � Vl) + Vl � Vl = (1� �)(VM � Vh � Vl):

The two �rms will merge if and only if Gi > 0; which is equivalent to VM�Vh�Vl >

0; or

Gh +Gl = (1� C)qhKl + qhKh � qhKh � qlKl > 0; (II.6)

5Since merger will happen right after the technolgy shock, we disregard time index.
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After rearranging,

qh
ql
>

1

1� C( zhzl )
: (II.7)

However, since C is a convex function of zhzl ; zi is a technology parameter that represents the

total factor productivity (TFP), and qi is actually a function of zi; this inequality cannot

be directly used to predict whether a merger will occur. TFP re�ects a �rm�s current and

past performance, while Tobin�s Q is an expected pro�tability based on a �rm�s ex post and

current performance. In other words, Tobin�s Q not only measures the relation between

TFP and market value, but also measures the relation between latent intangibles and market

value.6 If there are no latent intangibles, Q and TFP are equivalent, which is what Jovanovic

and Rousseau (2002, 2007) implicitly assume. In our model, however, the high-tech �rm is

better equipped to adopt a new technology than the low-technology �rm. This means that

high-technology �rms have a greater latent ability to adopt an advanced technology than

low-technology �rms, and therefore have higher growth potential. Q includes this latent

ability (e.g. perhaps more �exible management), while TFP does not. Therefore, Q and

TFP are not equivalent. Nevertheless, Q and TFP are positively correlated. Indeed, Dwyer

(2001) shows that the plant-level productivity and the market value of a �rm are positively

related, and a manufacturing technique with high productivity acts as an intangible asset

for the �rm that owns it. In this paper, we introduce a new variable �i which is a �rm�s Q

de�ating by its TFP. This should measure the �rm�s latent adoptability of a new technology

and also its growth potential. We de�ne

6Griliches (1981) and Cockburn & Griliches (1988) report there is a signi�cant relation between the
market value of a �rm and its unanticipated intangible capital.
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�i =
qi
zi
; i = h or l; (II.8)

where a higher �i implies a higher growth potential. Next we de�ne � =
�h
�l
as the relative

growth potentials of two �rms. When the dispersion between �h and �l is larger, � is larger.

De�ne the ratio of an acquirer to a target Qs, qhql ; as qr; with qr � 1; and the ratio

of bidder to target productivity, zhzl ; as zr; with zr � 1: Gh +Gl normalized by the value of

low technology �rm can be simpli�ed as

g(qr) =
Gh +Gl
Kl � ql

= qr(1� C)� 1 > 0: (II.9)

Thus g(qr) measures the gain from merging as a share of the low technology �rm�s pre

merger value.

When g(qr) > 0, the two �rms will merge. When g(qr) � 0, the two �rms will not

merge regardless of the di¤erence between the acquirer and target Qs.

Proposition 2 Given qr � 1 and � > 0 : The distance between the potential acquirer and
target Qs has an inverted U-shaped e¤ect on the probability of a merger.

Proof. Since zhzl � 1 and
zh
zl
= qr

� ; C can be written as a function of
qr
� and qr � �:

The two �rms will merge if and only if g(qr) > 0: We can calculate

g(1) = 0; (II.10)

g(�) = �� 1; (II.11)

g0(qr) = 1� C � qr
�
C 0; (II.12)

g0(�) = 1 > 0; (II.13)

g00(qr) = �2 1
�
C
0 � qr

�2
C 00: (II.14)
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Since C 0 > 0 and C 00 > 0 when qr > �; g00(qr) < 0 holds. Consequently, g(qr) is a

concave function of qr:

When qr ! +1; C( qr� )! +1 given �: Therefore g(qr)! �1 and g0(qr)! �1

when qr ! +1:

Since g0(�) > 0, g0(qr) ! �1 when qr ! +1 and g00(qr) < 0; there exists a q�r ;

such that g0(q�r ) = 0; and for any qr 2 [�; q�r ); g0(qr) > 0; for any qr 2 (q�r ;+1); g0(qr) < 0:

Hence g(q�r ) = maxqr2[�;+1) g(qr):When g(q
�
r ) � 0; no merger occurs. When g(q�r ) > 0; the

di¤erence between the potential acquirer�s and target�s Qs has an inverted U-shaped e¤ect

on the probability of a merger, since g00(qr) < 0:

For example, when C = c( zhzl � 1)
2 we can solve for qr as follows:

qr 2
 
2�

3
� �
3

r
1 +

3

c
;
2�

3
+
�

3

r
1 +

3

c

!
() g0(qr) > 0: (II.15)

In equation II.15, g(qr) increases until q�r =
2�
3 +

�
3

q
1 + 3

c ; which corresponds to

the maximum value of g(qr): Figure 2 shows that the relative Q between bidder and its

target has an inverted U-shaped e¤ect on the potential gains from a merger.

g(x)

qr
qr*

*

0

Figure 2. Gains from mergers
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If g(q�r ) < 0 (i.e., lies beneath the horizontal axis in Figure 2), no merger occurs

regardless of the di¤erence between the two �rms�Qs. For instance, if c is too large,

g(q�r ) < 0 will hold.

If g(q�r ) > 0; a merger occurs. There are two cases:

Case 1: 2�3 �
�
3

q
1 + 3

c � 1 < q
�
r :

For any qr 2 [1; q�r ) ; g0(qr) > 0: This means g(qr) is increasing in the range of

[1; q�r ) :

For any qr 2 [q�r ;+1) ; g0(qr) < 0 and limqr!+1g(qr) = �1: This means g(qr) is

decreasing in the range of [q�r ;+1) : Hence, there exists q��r such that g(q��r ) = 0 and g(qr)

will be negative when qr > q��r : Consequently, we have a range (1; q
��
r ) such that for any

qr 2 (1; q��r ), g(qr) > 0 also holds, and the two �rms will merge.

Case 2: 1 < 2�
3 �

�
3

q
1 + 3

c� < q
�
r :

Since g(1) = 0 and g0(qr) < 0 for any qr 2
�
1; 2�3 �

�
3

q
1 + 3

c

�
; g
�
2�
3 �

�
3

q
1 + 3

c

�
<

0: Using the same logic as in case 1, we can show there exists q21r and q22r such that

q21r 2
�
2�
3 �

�
3

q
1 + 3

c ; q
�
r

�
; q22r 2 (q�r ;1) ; g(q21r ) = 0; and g(q22r ) = 0: Then, for any

valid qr 2 (q21r ; q22r ), it follows that g(qr) > 0 and the two �rms merge.

This proposition is striking precisely because it demonstrates that the distance

between the acquirer and its target Qs is non-monotonically related to the likelihood of

a merger. This inverted U-shape stands in contrast to the Q-theory of mergers, which

suggests high market-to-book �rms simply acquire those with low market-to-book values.

Thus, in our model, an acquirer may not purchase the lowest Q �rm that it can �nd, but

rather a �rm with a lower Q. The model also implies that the probability of being involved

in a merger depends on �. A �rm with greater ability to adopt new techniques and a higher

growth potential is likely to hold more capital and to acquire other �rms. A �rm with less
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ability to adopt new techniques and a lower growth potential will be in an inferior position

in future competition, so it will be more likely to be acquired by high productivity �rms.

Thus, when the relative potential growth between the acquirer and its target is high, the

probability of a merger is high. The following proposition states how mergers are a¤ected

by the �rms�size di¤erential and their relative growth potential.

Proposition 3 Given qr � 1; and � > 0 : the probability of merger is positively and linearly
related to �:

Proof. The maximum value of function g can be simpli�ed as follows.

De�ne G = max g(qr) = q�r � q�rC(
q�r
� ) � 1: A larger value of G implies a larger

likelihood of a merger, since there is a greater probability that g(qr) exceeds zero.

The e¤ect of � on G is

dG

d�
=
@G

@q�r

dq�r
d�

+
(q�r )

2

�2
C 0; (II.16)

d2G

d�2
=

@G

@q�r

d2q�r
d�2

+
@2G

@(q�r )
2

�
dq�r
d�

�2
+
2q�r
�2
C 0
dq�r
d�

+
(q�r )

2

�3
C 00
dq�r
d�

+
2q�r
�2
C 0
dq�r
d�

+
(q�r )

2

�3
C"
dq�r
d�

� 2(q
�
r )
2

�3
C 0 � (q

�
r )
3

�4
C 00

=
@G

@q�r

d2q�r
d�2

+
@2G

@(q�r )
2

�
dq�r
d�

�2
� 2 @

2G

@(q�r )
2

qr
�

dq�r
d�

+
@2G

@(q�r )
2

�qr
�

�2
; (II.17)

since

@G(q�r )

@q�r
= 1� C � q

�
r

�
C 0;

@2G

@(q�r )
2
= �2 1

�
C
0 � q�r

�2
C 00:

According to the envelope theorem, dGd� =
(q�r )

2

�2
C 0 > 0: And since

g0(q�r ) = 1� C
�
q�r
�

�
� q

�
r

�
C 0
�
q�r
�

�
= 0;
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we have

dg0(q�r )

d�
= 0 =

�
� 1
�
C
0 � q�r

�2
C 00
��

dq�r
d�

� q
�
r

�

�
=

@2G

@(q�r )
2

�
dq�r
d�

� q
�
r

�

�
:

Since @2G
@(q�r )

2 < 0;
dq�r
d� =

q�r
� holds. Substituting

dq�r
d� =

q�r
� into (16), we get

d2G
d�2

= 0:

Since @G
@� > 0 and

d2G
d�2

= 0; G is a linear and increasing function of �: This means

that the likelihood of a merger rises with �.

Proposition 3 highlights the factors which a¤ect mergers. Di¤erences in the growth

potentials have a signi�cant e¤ect on the propensity to merge. Propositions 2 and 3 show

that while Q is not a linear factor a¤ecting mergers, � is. Because the conversion cost, a

convex function of the relative technological distance between the two merging �rms, drives

the high productivity �rm to purchase a �rm with lower but not the lowest productivity,

and because Q positively relates to TFP, a high Q �rm buys a lower yet not the lowest

Q �rm. However, �; which is Q de�ated by TFP, is positively and linearly related to the

likelihood of a merger. Consequently, � is a more potent variable than Q in characterizing

what drives merger activity.

In light of the theoretical observations on who merges with whom and which factors

a¤ect mergers, our next task is to test whether the data on US mergers are consistent with

the theory.

Data Construction and Description

We restrict the empirics to data on domestic mergers available from Thompson�s

Securities Data Corporation (SDC) for �rms traded on US stock exchanges. Since we

compare actual mergers with potential ones, we proceed to construct a dataset for empirical
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testing in �ve steps.

First, we collect annual data items from 1986 to 2005 for the 22,888 �rms listed

on the 2006 version of the Compustat database, excluding �rms with less than two years of

sales data, and classify them according to the twelve industry groupings de�ned by Fama

& French.7 We then measure Tobin�s Q as the ratio of market-to-book values for each

�rm.8 Since total factor productivity (TFP) is a measure of the economic e¢ ciency of a

�rm�s operations, we measure it as the ratio of net sales to the book value of total assets

(Compustat item 12 divided by item 6).9 We refer to this dataset of listed �rms and their

accounting data as the "Compustat" �le.

Second, we select US domestic mergers listed on the SDC�s Mergers and Acquisi-

tions Database from 1987 to 2006, excluding repurchases and leveraged buyouts. To avoid

double-counting multiple announcements of the same merger, we work with only one obser-

vation per calendar year for each unique acquirer-target pair. We then separate the targets

and their corresponding merger information from the acquirers and their corresponding in-

formation. Table 1 provides summary statistics for the merger data that we use. From

Columns 4 and 5 in Table 1, we can see that the acquirers and targets are not matched.

Third, we match each target with its Compustat accounting data from the end of

the �scal year preceding the merger announcement (from step 1), and refer to the resulting

7The 12 Industry Portfolios class�cation based on the four-digit SIC code can be found through the
following link: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

8Following Jovanovic and Rousseau (2007), the numerator of Q is the sum of common equity at current
share prices (the product of Compustat items 24 and 25), the book values of preferred stock (item 130) and
short- and long-term debt (items 34 and 9). The denominator is the sum of the book values of common
equity (item 60), preferred stock (item 130), and short- and long-term debt (items 34 and 9). We omitted
Q�s for �rms with negative values for net common equity since they imply negative market to book ratios,
and eliminated observations with market-to-book values in excess of 100, since many of these were likely to
be serious data errors.

9The average ratio of the acquirer�s asset divided by the number of its employees to that of its target is
1.93, the median is 1.2, and the standard deviation is 3.32. For acquirers, the correlation between assets
and the ratio of asset to the number of employees is 0.33, and that for targets is 0.34.
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Table 1. Summary statistics of observations in each industry

Industry No. observations per year Merger activity
Mean Min. Max. Acquirers Targets Total

(1)Consumer nondurables 280 200 343 646 340 986
(2)Consumer durables 133 91 175 280 139 419
(3)Manufacturing 548 397 711 1,344 663 2,007
(4)Energy 125 88 159 455 155 610
(5)Chemicals 101 79 117 255 128 383
(6)Computers,software,etc. 803 465 1,172 2,966 1,050 4,016
(7)Telephone and TV 145 72 241 512 241 753
(8)Utilities 177 118 225 250 123 373
(9)Wholesale 492 348 640 1,057 567 1,624
(10)Medical 342 173 442 1,095 503 1,598
(11)Finance 643 380 985 2,135 839 2,974
(12)Everything else 580 422 808 1,455 717 2,172

Note: Industry de�nitions are taken from Fama and French. Merger activity is measured by the
number of �rms involved in mergers in each industry.

dataset as the "SDC targets".

Fourth, we take the Cartesian product of the "Compustat" �le (with acquirers

�agged) and the SDC targets �le (from step 3) in each year and for each industry to create

a database of all possible pairs. In other words, our �nal data set contains each observation

from the SDC target �le merged with every observation in the same year and the same

industry from the �agged Compustat �le. (i.e., each target is paired with its actual acquirer

as well as its potential acquirers.) This is important because our model analyzes the case

where the target�s technology is substituted with a better technology, and if two �rms are

not in the same industry, their assets are more likely to be complements than substitutes.

Finally, we identify whether each pair is the actual within-industry merging pair or

the pseudo merging pair. The �nal dataset includes 1,317 actual merger pairs and 3,054,479

potential transactions.
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Econometric Method

In this paper, we are discussing the probability of two �rms being involved in a

merger, the value of which should be between 0 and 1, so logistic regression is desirable.

After pooling all actual and pseudo mergers and running a logistic regression, however, we

can not get convergent results. In order to get convergent and e¢ cient estimates, the quasi-

bootstrap logistic regressions, a new econometric method, is constructed. The procedure

includes four steps. Step 1, we randomly select 1,317 pseudo-merger pairs with replacement

for each logistic regression, making sure that the number of actual and pseudo-mergers

from each industry are the same (as in Rhodes-Kropf and Robinson 2007, which is called

RR henceforth). Step 2, we match the randomly selected pseudo-transactions to the actual

merger sample, and then do a logistic regression. In the third step, we repeat Steps 1 and

2 for 100 times, and then report the mean and the standard deviation of the estimated

coe¢ cients. In the last step, we use bootstrap to test the statistical signi�cance of each

estimate. Since we randomly select 1,317 pseudo-merger pairs with replacement for each

logistic regression, our selected sample is choice-based. Thereby, we correct our estimates

from the quasi-bootstrap logistic regressions. The remainder of this section is organized as

follows. First, we provide a theoretical justi�cation to explain the e¢ ciency of our estimates.

We then present the bootstrap tests for the statistical signi�cance of each estimate in detail.

In addition, we provide the justi�cation for the correction of the estimates.

E¢ ciency of the Quasi-bootstrap Logistic Regressions

Assume the set N includes all the dependent variable Yi0 = 0; i = 1; 2; :::; n0; and

the set M includes all the dependent variable Yj1 = 1; j = 1; 2; :::; n1: It is also assumed

that n0 >> n1; which means that n0 is dozens to thousands of times more than n1: And
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then the fraction of ones in the population, � ; equals n1
n0+n1

: Given some regressors xi; the

goal is to estimate P (Yi1 = 1j xi); as this is the full conditional distribution. We assume

that the underlying distribution of the dependent variable is logistic, P (Yi1 = 1jxi) can be

expressed as:

P (Yi1 = 1jxi) =
1

1 + e�x
0
i�
;

where � is the true parameters for the choice-based sample.

We construct a new set At; t = 1; 2; :::; T; which contains n1 observations randomly

selected with replacement from N: And then we run a logistic regression using all the

observations from At and M; t = 1; 2; :::; T . From this procedure, we can get T estimates

of �; which are
n
�̂t; t = 1; 2; :::; T

o
:

For some T � T weight matrix W> 0; let

JT (�) = T

0BBBBBBBBBB@

(�̂1 � �)=T

:

:

(�̂T � �)=T

1CCCCCCCCCCA

0

W

0BBBBBBBBBB@

(�̂1 � �)=T

:

:

(�̂T � �)=T

1CCCCCCCCCCA
(II.18)

We use the minimum distance method (MDM ) to de�ne an estimator which

minimizes JT (�):We set W as the identity matrix. The solution of � for minimizing JT (�)

is the mean of
n
�̂t; t = 1; 2; :::; T

o
: We de�ne �̂ is the MDM estimate,

�̂ =

PT
t=1 �̂t
T

: (II.19)
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Since all the estimators
n
�̂t; t = 1; 2; :::; T

o
share some dependent variables M;n

�̂t; t = 1; 2; :::; T
o
are not independent from each other. To get more e¢ cient estimate, we

better set W as the variance-covariance of f�̂1; �̂2; :::; �̂T g; which is unknown and can not

be constructed easily. That means, the estimate �̂ is not the most e¢ cient, when W is the

identity matrix. However, it still has the following asymptotic properties.

Claim 1 The asymptotic properties of �̂ are:
(1) �̂ !p �: (2)
(2) Under H0 : � = 0;

p
T (�̂)!d N(0; �

2); where �2 is unknown. (3)

(3) �̂ is more e¢ cient than the estimator from RR one time logistic regression.

Since �2 is unknown, we can not directly test the statistical signi�cance of �̂:

Instead, we use a simulation method called the bootstrap. From the bootstrap samples, we

perform bootstrap tests on the basis of bootstrap P values.

Bootstrap Tests

To obtain the bootstrap samples, we use four steps:

Step 1. Draw with replacement n1 observations from M ;

Step 2. Draw with replacement n1 observations from At; and combine them with

the sample we obtain in Step 1;

Step 3. Run logistic regression using each combined sample from Step 2;

Step 4. Repeat Steps 1-3 B times.10

Hence, we de�ne set Ntb that includes n1 observations randomly drew with re-

placement from each At; and set Mtb that includes n1 observations randomly drew with

replacement from M; where t = 1; 2; :::; T and b = 1; 2; :::; B: Next, we run a logistic re-

gression using all the observations from sets Ntb and Mtb; and denote the estimator as

10According to Davidson and MacKinnon (2004), if we will perform a bootstrap test at level �; then B
should be choosen to satisfy the condition that �(B + 1) is an integer.
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�̂
�
tb:

We de�ne that

�̂
�
b =

PT
t=1 �̂

�
tb

T
; b = 1; 2; :::; B; (II.20)

which is constructed in the same way as that of �̂. And then the standard deviation ofn
�̂
�
b ; b = 1; 2; :::; B

o
will be the standard error of our quasi bootstrap estimates, which is

called quasi bootstrap standard error in this paper. Since the mean of �̂
�
b is �̂ and the null

hypothesis H0 is � = 0, we take �̂
�
b � �̂ as the simulated test statistics. There are two cases

to construct the empirical distribution function (EDF) based on the one-sided test.

If the alternative hypothesis H1 is � > 0; then the EDF is

F̂ �(�̂) =
1

B

BX
b=1

I(�̂
�
b � �̂ � �̂): (II.21)

Our estimate of the true P value for this case is therefore

p̂�(�̂) = 1� F̂ �(�̂) = 1� 1

B

BX
b=1

I(�̂
�
b � �̂ < �̂) =

1

B

BX
b=1

I(�̂
�
b > 2�̂): (II.22)

The last equality in II.22 means that the true P value is approximated by the proportion

of simulations, in which �̂
�
b is greater than 2�̂: For example, if B = 599; and 25 of all the

�̂
�
b are greater than 2�̂; then p̂

�(�̂) = 25=599 = 0:042: As a result in this example, we would

reject the null hypothesis that � = 0 at 5 percent statistic signi�cant level.

If the alternative hypothesis H1 is � < 0; then the EDF is

F̂ �(�̂) =
1

B

BX
b=1

I(�̂
�
b � �̂ � �̂): (II.23)

Our estimate of the true P value is
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p̂�(�̂) = 1� F̂ �(�̂) = 1� 1

B

BX
b=1

I(�̂
�
b � �̂ � �̂) =

1

B

BX
b=1

I(�̂
�
b < 2�̂): (II.24)

If B is in�nitely large, the EDF converges to the true conditional distribution

function (CDF). Consequently, our procedure would yield an exact test and the outcome of

the test would be the same as the P value computed by using the conditional distribution

function (CDF) of �̂.

Correction for the Estimates

Our above method use a "matched-pairs" design, which results in a sample pro-

portion of merged pair �rms of 0.50. This type of sampling implies typically that the

proportion of merged pairs in the sample is much larger than the proportion of such com-

panies in the grant population of all pairs (merged and non-merged). This "matched-pairs"

design causes a "choice-based sample bias" of the constant and the coe¢ cients in estimated

standard probit/logit models, in turn meaning that the probabilities being assessed in such

models are more or less biased. Hence, we provide the correction for the estimates from the

above quasi bootstrap logistic regressions.

Since the fraction of ones in the population, � , is known, we can use the prior

correction for the logit model (see King and Zeng, 2001). For the logit model, in any

of the above sampling designs, the estimated parameters except the constant item, �̂0; is

statistically consistent estimates of the true parameters, but the unbiased estimate �̂
c

0 for

the constant item is

�̂0 � ln
�
(
1� �
�

)

�
; (II.25)
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because �̂0 =
PT
t=1 �̂

�
t0

T ; and the correction for the constant item �̂
�
t0 of each logistic regression

is �̂
�
t0 � ln

�
(1��� )

�
:11

Evidence

In this section we begin by checking the basic model assumptions and their im-

plications for the data. Next, we investigate the relation between log q and log z that

emerges from the data. Then, using the econometric method constructed in Section 4, we

ask whether the �high buys lower but not the lowest�pattern that we observe for Q is an

artifact of another phenomenon such as �rms�relative sizes or relative cash holdings by in-

cluding these indicators as controls in a multiple regression framework. We also investigate

the high-buys-low pattern that we observe for relative growth by testing the sensitivity of

the likelihood of a merger to � after including these same control variables. Finally, we

repeat the analysis allowing a common covariance structure across industries to test the

robustness of our �ndings.

Basic Model Assumptions and their Implications for the Data

Using the sample of 1,317 actual merger transactions from the SDC database, we

�rst investigate whether acquirers typically absorb targets with lower market-to-book ratios,

while at the same time avoiding potential targets with the lowest market-to-book ratios in

the economy. Table 2 includes pooled summary statistics of book values, the market value

of all �nancial assets, and the market value of common equity in millions of 2005 US dollars
11From King and Zeng (2001), if the propotion of Y=1 in the selected sample is �; the corrected estimate

is consistent for constant item �0 :

�̂0 � ln
��
1� �
�

��
�

1� �

��
:
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for acquirers, targets, and �rms not involved in a merger for each year from 1986 to 2005,

along with the average values of Tobin�s Q and z.12 The table shows that the average Q

of acquirers is nearly 13 times greater than that of targets but that we can not distinguish

targets�Qs from those of non-merging �rms. This �nding that acquirers usually have higher

Qs than their targets is consistent with Jovanovic and Rousseau (2002, 2007).

Table 2. Characteristics of nonmerging, target and acquiring �rms before matching

Variable Nonmerging �rms Target Acquirer t(T-N) t(A-T)

Observations 69,598 5,465 12,450
Market value 4,286 2,293 8,427 -6.90��� 12.68���

Book value 2,738 1,565 4,388 -5.25��� 8.81���

Market equity 2,652 1,286 5,764 -8.52��� 14.29���

Tobin�s Q 2.149 2.096 2.837 -1.54 12.86���

z 1.088 1.051 0.941 -2.98��� -8.53���

Note: The data are from the Compustat database, and are pooled observations from 1986 to 2005.
Acquirers and targets are not matched. "Market value" is measured as the sum of the value of
common stock (the product of items 24 and 25), preferred stock (item 130), and short and long-term
debt (items 34 and 9), with the latter three components as book values. "Book value" replaces
the market value of common stock in the above calculation with its book value (item 60). "Market
equity" is simply the market value of common stock. All measures are constructed from end-of-year
data and are converted to millions of 2005 dollars. T statistics for the di¤erences in means across
groups appear in columns 4 and 5, with *** representing statistical signi�cance at 1 percent level.

At the same time, row 6 of Table 2 reports that the average z (measured as the

ratio of net sales to assets) of the targets is greater than that of the acquirers and that the

average z of non-merging �rms exceeds that of the targets, with both of these di¤erences

statistically signi�cant at the one percent level. This implies that the non-merging �rms are

the most productive on average, while the target �rms are second and the acquirers last,

which runs counter to the model�s implication. At the same time, the average z for the

three groups are actually quite close. Further, as Table 1 shows, the number of acquirers

and targets are not the same, as many potential mergers with multiple bidders appear in

12We restrict the sample to include only those �rms with market values of equity that exceed $10 million.
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the SDC data but are not completed. For this reason, and because the model focuses on

the relative growth potential of horizontal merger pairs, Table 3 focuses on the di¤erences

in the model�s key parameters (zr and qr) at the industry level, considering only actual

mergers and potential within-industry pairings.

Table 3. Summary statistics of zr and qr in each industry

Industry zr qr
Pseudo-merger Merger t(M-N) Pseudo-merger Merger t(M-N)

mean mean mean mean

(1)Consumer nondurables 1.331 1.023 -2.11�� 2.260 1.661 -2.77���

(2)Consumer durables 1.149 0.891 -1.39 1.916 1.719 -0.74
(3)Manufacturing 1.260 1.010 -2.63��� 1.925 1.554 -2.58��

(4)Energy 1.785 1.241 -1.70� 1.679 1.253 -3.44���

(5)Chemicals 1.199 1.035 -1.05 2.115 1.401 -1.32
(6)Computers,software,etc. 2.007 1.262 -1.85�� 3.347 2.081 -5.44���

(7)Telephone and TV 4.763 1.120 -0.79 2.163 1.126 -4.33���

(8)Utilities 1.247 1.012 -1.47 1.215 1.096 -2.36��

(9)Wholesale 1.410 1.023 -2.54�� 2.376 1.656 -3.48���

(10)Medical None
(11)Finance 3.766 0.972 -1.31 1.841 1.145 -6.29���

(12)Everything else 4.335 1.033 -0.53 2.596 1.465 -3.40���

Note: t(M-N) in columns 4 and 7 is the t staitistics for the di¤erences of zr and qr in means across
groups, respectively. *, **, and *** represent statistical signi�cance at the 10 percent, 5 percent,
and 1 percent levels, respectively.

Columns 1 and 2 in Table 3 respectively report the average of zr of the pseudo-

merging pairs and the actual merging pairs in each industry. Nine of the eleven averages

listed in column 2 are greater than 1, which highlights that on average the acquirer is

more e¢ cient than its target when a merger actually occurs. At the same time, column 1

shows that the zr associated with potential yet non-merging pairs are higher in all instances

than those associated with actual mergers. Column 3 shows that the di¤erence in mean zr

between merging �rms and potential mergers is statistically signi�cant at conventional levels

for 5 of the 11 industries. This means that on average the technological distance between the

actual merging pairs is less than that of the pseudo merging pairs. The results displayed in
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columns 1 - 3 of the table also suggest that the pooled (i.e., unmatched) summary statistics

in Table 2 are misleading.

The last three columns of Table 3 reports the average qr of the pseudo-merging

and actual merging pairs by industry, and shows that acquirers have higher Qs on average

than their targets in each industry when the merger occurs. Once again, however, the t-

statistics for the null hypothesis that actual mergers have the same qr as potential mergers

are all negative and for the most part statistically signi�cant. This indicates that on average

the relative Qs of the actual merging pairs is lower than that of the pseudo pairs in each

industry. That is to say, a high Q �rm purchases a �rm associated with a lower but not the

lowest Q.

All the observations from Table 3 are consistent with the theoretical implications

that a high Q �rm will buy a �rm with a lower yet not the lowest Q.13 In the next section,

we test the implications of our model and explore the high-buys-lower pattern in terms of

relative potential growth.

Relation between Q and TFP

Table 4 reports results from the pooled regressions of qi;t on zi;t from 1986 to

2005. Column 1 reports the baseline OLS regression. The estimated coe¢ cient of log zi;t is

0.076 and is statistically signi�cant at the one percent level. Columns 2 and 3 show that

this result is robust to the inclusion of �xed e¤ects for industries and time. Since current

technology is highly correlated with that of the previous year (� = :88), columns 4 and 5

repeat the results from two-step least squares (2SLS) regressions, in which �ve annual lags

of the �rm�s TFP and 12-industry dummies are used as instruments. In both regressions
13Even after excluding potential pairs where the pseudo-target has a higher Q than its pseudo-acquirer,

we still �nd that on average the actual mergers�x is signi�cantly smaller than that of the pseudo mergers
in each industry. We do not report these results in this paper, but they are available upon request.
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Table 4. Pooled regressions of qi;t on zi;t; 1986-2005

OLS(1) OLS(2) OLS(3) IV(1) IV(2)

Const. 0.565��� 0.519��� 0.643��� 0.445��� 0.581���

(0.002) (0.006) (0.011) (0.006) (0.011)

log(zi;t) 0.076��� 0.072��� 0.077��� 0.101��� 0.111���

(0.002) (0.003) (0.003) (0.004) (0.004)

Industry E¤ect Yes Yes Yes Yes
Year E¤ect Yes Yes
Obs. 86,863 86,863 86,863 40,573 40,573
R2 0.151 0.114 0.153 0.100 0.123

Note: The dependent variable is log(qi;t). The IV(1) and IV(2) regressions use �ve lags of
zi as instruments in the �rst stage regression. Standard errors are in parentheses. *** represents
statistical signi�cance at the 1 percent level.

the correlation coe¢ cient between log qi;t and log zi;t is about 10 percent. Thus, Table 4

indicates that Q and TFP are positively correlated, which implies that productivity has an

implicit value, yet because the correlation between log qi;t and log zi;t is far below 1 they

can not be regarded as equivalent.14

E¤ects of qr and � on the Likelihood of Mergers by Controlling for Alter-
native Explanations

Our methodology compares mergers which actually occurred with mergers that

might have occurred but did not. This follows Rhodes-Kropf and Robinson (2007), which

randomly pairs any two non-merging �rms to create a matched sample of pseudo-transaction

in which the sample of pseudo-mergers must have the same number of observations as the

sample of actual mergers. Our next step then estimates a series of logistic regressions

of the probability of being involved in a merger on combinations of zr; qr; �; and other

control variables. To obtain e¢ cient estimates from the logistic, we adopt the econometric

method presented in Section 4 and we set T = 100 and B = 599. That is to say, we

14Dwyer (2001) �nds a positive relation between plant-level productivity and the market value of a �rm
that is consistent with our data.
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repeat randomly selecting pseudo-transactions with replacement to match the actual merger

sample and running a logistic regression for 100 times, and then report the mean and the

standard deviation of the estimated coe¢ cients as well as the bootstrap p values, and also

correct the constant item by subtracting 7.749, which equals ln
�
1��
�

�
and in our data

� = n1
n0+n1

= 1;317
3;054;479+1;317 = 0:0004:

Table 5. Quasi-bootstrap logistic regressions for speci�cations that control for k while also
allowing qr and zr to enter separately with both linear and quadratic terms

Variable (1) (2) (3) (4) (5) (6) (7) (8)

Const. -8.162��� -7.977��� -7.398��� -7.211��� -8.042��� -7.849�� -7.283��� -7.090
(0.041) (0.053) (0.043) (0.060) (0.044) (0.059) (0.046) (0.066)

logk 0.889��� 0.900��� 0.803��� 0.813��� 0.875��� 0.883��� 0.765��� 0.771���

(0.043) (0.045) (0.046) (0.046) (0.043) (0.044) (0.044) (0.044)

(logk)2 -0.115��� -0.116��� -0.091��� -0.092��� -0.112��� -0.113��� -0.088��� -0.088���

(0.009) (0.009) (0.010) (0.010) (0.009) (0.009) (0.008) (0.009)

logqr 0.612��� 0.613��� 0.613��� 0.613���

(0.058) (0.058) (0.060) (0.060)

(logqr)2 -0.405��� -0.425��� -0.412��� -0.429���

(0.043) (0.046) (0.046) (0.049)

logzr -0.066 -0.072 -0.059 -0.065
(0.059) (0.061) (0.061) (0.064)

(logzr)2 -0.367��� -0.378��� -0.366��� -0.376���

(0.058) (0.061) (0.055) (0.058)

log_c_r No No 0.106��� 0.107��� No No 0.135��� 0.136���

(0.033) (0.033) (0.034) (0.034)

(log_c_r)2 No No -0.029��� -0.029��� No No -0.135��� -0.136���

(0.006) (0.006) (0.006) (0.006)

Ind. FE No Yes No Yes No Yes No Yes
Obs. 2634 2634 2602 2602 2634 2634 2602 2602
Bootstrap 100 100 100 100 100 100 100 100

Note: The reported estimates are the mean of each quasi bootstrap estimation. The quasi bootstrap
standard error is reported in parentheses. * and *** represent statistical signi�cance at the 10 percent and
1 percent levels, respectively.

Table 5 presents estimates from these quasi-bootstrap logistic regressions (with

standard deviation of the estimated coe¢ cients) for speci�cations that control for �rms�
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size di¤erential (i.e., k) while also allowing qr and zr to enter separately with both linear

and quadratic terms. For example, in the �rst column of the table, the coe¢ cient on log k is

0.889 and that of (log k)2 is -0.115, with both statistically signi�cant at the one percent level.

This indicates that the probability of a merger is a nonlinear function of the size di¤erential

between bidder and its target. The estimated coe¢ cients for log qr and (log qr)2 are 0.612

and -0.405 respectively, and both are also statistically signi�cant at one percent level. This

�nding shows that the distance between acquirer�s Q and target�s Q has a strongly inverted

U-shaped e¤ect on the probability of the two �rms being involved in a merger, even after

controlling for the relative sizes of the acquirer and its target. Columns 2 - 4 of the table

show that this �nding is robust to the inclusion of dummy variables for industries and after

controlling for the level of cash balances (log_c_r). Interestingly, and broadly consistent

with Jensen�s (1986) "free cash" hypothesis, cash-rich �rms are also more likely to engage

in mergers with �rms that are cash-poorer but not the poorest, though the e¤ect of the cash

holdings is small relative to that of k and qr. Based on the regression results in column 3,

for example, when qr = k =c_r=5, the partial e¤ect of log qr on the probability of a merger

is -0.001, that of log k is 0.001, and that of log_c_r is only 0.0002.15 Based on the results

in Table 5, we conclude that the merger pattern of �high-buys-lower-yet-not-the-lowest�in

terms of Q is reasonable and not driven by some alternative explanation.

Columns 5 - 8 in Table 5 indicate that the technological distance (zr) between an

acquirer and its target also has a nonlinear e¤ect on the likelihood of a merger. Another

observation from Table 5 is that (log zr)2 and (log qr)2 have very similar e¤ects on the

probability of two �rms involved in a merger because the estimated coe¢ cients are very

close. For example, the estimated coe¢ cient of (log zr)2 is -0.367 in column 5, while that

15Cash_r is the ratio of acquirer to its target cash holdings and log_cash_r is the log of cash_r.
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of (log qr)2 is -0.405 in column 1. Their absolute di¤erence is only 0.038. Therefore, from

the de�nition of �; which is log � = log qr � log zr; we can say that log � has almost no

quadratic e¤ect on the probability of a merger. This means that log � a¤ects mergers in a

predominately linear fashion. We obtain similar results after controlling for industry �xed

e¤ects and the relative cash holdings of acquirers and their potential and actual target and

report these results in columns 6 - 8.

Figure 3. qr, zr and ��s e¤ect on the probability of mergers

To illustrate our �ndings, we simulate the e¤ects of log qr, log zr and log � on the

likelihood of a merger using the estimated coe¢ cients listed in column 1 and column 5

in Table 5 and present them in Figure 3.16 This �gure shows that log qr and log zr have

an inverted U-shaped e¤ect on mergers, but their di¤erence (i.e., log �) a¤ects mergers

positively and linearly.17 Thus, in terms of �; the merger pattern is that �rms with high

16Since the actural likelihood of a merger is close to zero, we simulate the probability of a merger with
uncorrected coe¢ cients and set log k = 1:5:
17Indeed, the "qr" e¤ect in Figure 3 is the empirical analog of Figure 1.
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growth potential tend to acquire �rms with low potential, or simply put, that �high buys

low�.

Table 6. Quasi-bootstrap logistic regressions for speci�cations that control for k while also
allowing � to enter with both linear and quadratic terms

Variable (1) (2) (3) (4) (5) (6) (7) (8)

Const. -8.261��� -8.089��� -7.504��� -7.329��� -8.047��� -7.868�� -7.291��� -7.111
(0.038) (0.050) (0.039) (0.056) (0.045) (0.058) (0.047) (0.063)

logk 0.881��� 0.891��� 0.773��� 0.783��� 0.857��� 0.868��� 0.766��� 0.777���

(0.042) (0.043) (0.044) (0.044) (0.043) (0.044) (0.045) (0.046)

(logk)2 -0.121��� -0.122��� -0.098��� -0.098��� -0.112��� -0.113��� -0.090��� -0.091���

(0.009) (0.009) (0.009) (0.009) (0.008) (0.009) (0.010) (0.010)

log� 0.132��� 0.133��� 0.120��� 0.121��� 0.382��� 0.391��� 0.376��� 0.382���

(0.023) (0.023) (0.024) (0.024) (0.059) (0.060) (0.060) (0.062)

(log�)2 -0.300��� -0.308��� -0.297��� -0.302���

(0.047) (0.048) (0.047) (0.048)

log_c_r No No 0.131��� 0.1318��� No No 0.112��� 0.112���

(0.033) (0.033) (0.034) (0.034)

(log_c_r)2 No No -0.029��� -0.030��� No No -0.028��� -0.028���

(0.006) (0.006) (0.006) (0.006)

Ind. FE No Yes No Yes No Yes No Yes
Obs 2634 2634 2602 2602 2634 2634 2602 2602
Bootstrap 100 100 100 100 100 100 100 100

Note: The reported estimates are the mean of each quasi bootstrap estimation. The quasi bootstrap
standard error is reported in parentheses. *, ** and *** represent statistical signi�cance at the 10 percent,
5 percent and 1 percent levels, respectively.

In addition, in Table 6, we directly estimate the e¤ects of log � and (log �)2 on

the probability of a merger, which control for k and the log of cash holdings. Columns 1

- 4 indicate that log � has a positive e¤ect on mergers, in which the estimated coe¢ cients

of log � are close to 0.13 and all are statistically signi�cant. When including (log �)2 in

our regressions, we get a positive estimate on log � but a negative one for (log �)2 on the

probability of an actual merger, with both statistically signi�cant at the one percent level.

However, the absolute values of the estimates of log � and (log �)2 are smaller than that of
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log qr and (log qr)2 respectively. This indicates that the e¤ect of log � on mergers has less

curvature than that of log qr, and therefore that � more succinctly explains merger activity

than qr. For example, in column 5 of Table 6, the estimated coe¢ cient of log � is 0.382 and

that of (log �)2 is -0.3, while the estimated coe¢ cient of log qr is 0.612 and that of (log qr)2

is -0.405 in column 1 of Table 5.

Figure 4. qr and ��s e¤ect on the probability of mergers

Based on the above estimates, Figure 4 displays the simulation results of the e¤ects

of log qr and log � on the likelihood of a merger.18 In Figure 4, the curve representing the

e¤ect of log � with its quadratic term has less curvature than that representing the e¤ect

of log qr with its quadratic term. This indicates that when both the linear and quadratic

terms of log qr and log � are considered, log � a¤ects the probability of an actual merger

more linearly than log qr: Indeed, though some curvature is apparent in the relationship

between the probability of merger and � when � enters the empirics explicitly, it remains

18Once again, we simulate the probability of a merger with uncorrected coe¢ cients and set log k = 1:5:
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quite nearly linear for ranges of � that we would most likely encounter in the data (say

log � < 1; i.e., � < 2:73). In a word, the simulation results also support our theoretical

implication that log � is a more potent variable than log qr in characterizing what drives

mergers.

Robustness Tests

For robustness, we revisit the questions of who purchases whom and which factors

drive mergers using Seemingly Unrelated Regression (SUR) methods.19 The results are

reported in Tables 7 and 8. We use the same strategy as Section 4 randomly selecting

1,317 pseudo mergers from all possible mergers on each of 100 iterations of an SUR logistic

regression, with Table 7 showing the means of the estimated coe¢ cients from the 100

logistic regressions of the probability of an actual merger on the Kronecker Products of

(log k, (log k)2; log qr; (log qr)2) and industry dummies. Table 8 provides the means of the

estimated coe¢ cients from these logistic regressions of the probability of an actual merger

on the Kronecker Products of (log k, (log k)2, log �) and industry dummies. In Tables 7

and 8, all the estimates of log k are positive and that of (log k)2 are negative, and almost

all are statistically signi�cant. This �nding strongly supports that �rms�relative size has a

nonlinear e¤ect on the propensity to merge. In columns 3 and 4 of Table 7, almost all the

estimated coe¢ cients of log qr are positive and those on (log qr)2 are negative, while more

than half of these estimates are statistically signi�cant. The last two columns in Table

7 indicate that the ratio between acquirer to target Qs also has nonlinear e¤ect on the

likelihood of the two �rms being involved in a merger. In the last column of Table 8, seven

of the eleven estimated coe¢ cients of log � are positive and statistically signi�cant. This

19Since our model is talking about the within-industry mergers, it is necessary and important to distinguish
industries.
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suggests that the likelihood of a merger is larger when the relative potential growth between

acquirer and its target is sizeable. As a result, these two tables also provide empirical

support that our nonlinear Q theory on M&A is robust to disaggregation by sector.

Conclusion

The key assumptions in our model are that a �rm�s capital is �rm speci�c and

a cost is needed to convert target�s capital into a form usable by the acquirer. We show

that mergers present a pattern in which �high buys lower yet not the lowest�in terms of Q;

but �high buys low�in terms of the �rms�growth potentials. Therefore, the relative growth

potential of a prospective merger pair is more suitable to explain whether they merge than

the ratio of the bidder to target�s Q. From our model, we document the following �ndings

about technology and the propensity to merge: (1) The distance between acquirer and its

target Qs has an inverted U-shaped e¤ect on the probability of the two �rms being involved

in a merger. This means the acquirer may not purchase the lowest Q �rm that it can �nd,

but rather a �rm with a lower Q: (2) The likelihood of a merger is positively and linearly

related to the relative growth potentials of the acquirer and its target. This means that the

likelihood of a merger is larger when the relative potential growth between acquirer and its

target is high.

Using data for mergers among US �rms available from the Securities Data Cor-

poration from 1986 to 2005, we construct a series of quasi-bootstrap logistic regressions

of the probability of an actual merger on the ratio of bidder to target Qs, the two �rms�

size di¤erential, their relative adoptability of a new technology, and other controls. The

empirical evidence supports the main implications of the model.
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There are four possible extensions. One might be to construct more accurate

measurements of Q than current proxies in the literature, which might in turn lead to more

accurate estimates of their e¤ects on mergers.20 The second one would be to expand the

empirics to consider international and cross-border merger activity. Third, to get more

e¢ cient estimator, we better set the weight matrix in Section 4 as the variance-covariance

matrix of the estimates from the logistic regressions. It might also improve the empirical

results, if we use the non-parametric method to estimate the e¤ects of qr and � on the

likelihood of mergers, since this method has no problem to deal with the huge unbalance

between actual mergers and pseudo-mergers.

20The accuracy of measures of Q has been discussed in Erickson and Whited (2000, 2006), in which they
argue that most proxies for Q are poor.
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Table 7. SUR logistic regressions on the Kronecker Products of
(log k,(log k)2; log qr;(log qr)2) and industry dummies

Industry Name logk (logk)2 logqr (logqr)2

(1)Consumer nondurables 0.627��� -0.102��� 0.361��� -0.329���

(0.012) (0.003) (0.025) (0.022)

(2)Consumer durables 0.693 -0.164 0.645 0.164
(7.334) (2.431) (12.931) (10.920)

(3)Manufacturing 0.575��� -0.094��� 0.265��� -0.064���

(0.010) (0.003) (0.019) (0.016)

(4)Energy 0.917��� -0.174��� 0.271��� -0.568���

(0.184) (0.035) (0.258) (0.232)

(5)Chemicals 0.572�� -0.075�� 0.499�� -0.536��

(1.484) (0.292) (0.834) (1.103)

(6)Computers,software,etc. 0.452��� -0.034��� 0.390��� -0.259���

(0.007) (0.002) (0.006) (0.004)

(7)Telephone and TV 0.543��� -0.072��� -0.072�� -0.300���

(0.013) (0.003) (0.024) (0.025)

(8)Utilities 0.504��� -0.089��� 1.342��� -0.543�

(0.021) (0.007) (0.119) (0.398)

(9)Wholesale 0.519��� -0.069��� 0.513��� -0.347���

(0.010) (0.003) (0.021) (0.017)

(11)Finance 0.574��� -0.082��� 0.435��� -0.866���

(0.006) (0.001) (0.015) (0.022)

(12)Everything else 0.562��� -0.083��� 0.492��� -0.364���

(0.010) (0.003) (0.018) (0.017)

Bootstrap 100 100 100 100

Note: The mean of the 100 constants is -7.963 with one percent statistically signi�cant and the
standard deviation is 0.003. The reported estimators are the mean of the 100 times regressions of
each coe¢ cient. The standard deviations are reported in parentheses. *, **, and *** represent
statistical signi�cance at the 10 percent, 5 percent, and 1 percent levels, respectively.
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Table 8. SUR logistic regressions on the Kronecker Products of (log k, (log k)2; log �) and
industry dummies

Industry Name logk (logk)2 log�

(1)Consumer nondurables 0.631��� -0.105��� 0.121���

(0.012) (0.003) (0.014)

(2)Consumer durables 0.616 -0.155 0.785
(6.402) (3.799) (39.221)

(3)Manufacturing 0.598��� -0.095��� 0.135���

(0.010) (0.003) (0.014)

(4)Energy 0.892��� -0.173��� 0.004
(0.026) (0.009) (0.025)

(5)Chemicals 0.551��� -0.078� 0.094��

(0.069) (0.014) (0.048)

(6)Computers,software,etc. 0.434��� -0.037��� 0.144���

(0.007) (0.002) (0.004)

(7)Telephone and TV 0.528��� -0.073��� 0.075���

(0.012) (0.003) (0.014)

(8)Utilities 0.560��� -0.090��� -0.175���

(0.025) (0.008) (0.039)

(9)Wholesale 0.527��� -0.081��� 0.262���

(0.010) (0.003) (0.011)

(11)Finance 0.589��� -0.085��� -0.129���

(0.006) (0.001) (0.006)

(12)Everything else 0.558��� -0.094��� 0.113���

(0.010) (0.003) (0.010)

Bootstrap 100 100 100

Note: The mean of the 100 constants is -8.063 with one percent statistically signi�cant and
the quasi bootstrap standard error is 0.003. The reported estimators are the mean of the 100 times
regressions of each coe¢ cent. The quasi standard deviations are reported in parentheses. ** and
*** represent statistical signi�cance at the 10 percent and 5 percent, respectively.
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CHAPTER III

A SIMULATION-BASED METHOD FOR RARE EVENTS DATA

Introduction

Over the years a considerable number of empirical investigations of Mergers and

Acquisitions (M&A) have been carried out. Various types of statistical methods have been

used, ranging from fairly ad hoc applications of regression analysis to more sophisticated

variants of discriminant or probit/logit analysis. However, most of the methods may not

provide unbiased estimates for the probability of two �rms being involved in a merger.

This bias is due to the data structure, which contains binary dependent variables with

dozens to thousands of times fewer ones (merger pairs) than zeros (nonmerger pairs). In

my second chapter, for example, I collect 1,317 actual within-industry merger pairs but

construct more than 3 million nonmerger pairs. This kind of data is termed rare events

data, and the di¢ culties in explaining it as well as predicting it have already been discussed

in the literature. The problems in the statistical analysis of rare events data are reviewed

and a new simulation-based method is provided in this paper.

It has been documented that there are three problems for explaining and predict-

ing rare events. First, the probability of rare events can be sharply underestimated by

most popular statistical procedures, such as probit and logit regressions. Furthermore, the

commonly used data collection strategies are far more e¢ cient. In addition, even when

all observations and necessary variables are collected, it is sometimes di¢ cult for the the

probit and logit regression to reach convergent results. Detailed explanations for the three
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problems are discussed in the following paragraphs.

First of all, the statistical properties of the regressions for the binary dependent

variable models are not invariant to the (unconditional) mean of the dependent variable.

In the binary dependent variable models, the mean of the dependent variable is the relative

frequency of events in the data, which, in addition to the number of observations, constitutes

the information content of the data set.

For the rare events data, a "matched-pairs" design has been often used, resulting

in a sample proportion of merger pairs of 0.50. This type of sampling typically implies that

the proportion of merger pairs in the sample is much larger than the proportion of such

pairs in the population of all actually merged and pseudo merged pairs. In a word, the

"matched-pairs" design causes a "choice-based sample bias" of the coe¢ cients in estimated

standard probit/logit models, in turn meaning that the probabilities being assessed in such

models are more or less biased. Usually the merger probability will be underestimated, and

hence the nonmerger probability will be overestimated.

Figure 5. The densities of Y=1 and Y=0 separately.

To explain intuitively why the probability of rare events will be misestimated, King

and Zeng (2001) provide a simpli�ed case with one explanatory variable illustrated in Figure

5, where X denotes the explanatory variable and Y represents the dependent variable. This
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�gure draws the densities of Y=1 and Y=0 separately, where the observations are arrayed

horizontally according to the value of X. Here, Y=1 means that two selected �rms are

merged, and Y=0 indicates that they are not involved in a merger. In �gure 5, the left

dotted curve demonstrates the distribution of Y=0 and the right solid one exhibits the

distribution of Y=1. In their example, King and Zeng assume that there are only �ve

observations of Y=1, which are displayed by the short vertical lines. They argue that the

dotted density curve can be estimated essentially without error because of the large number

observations of Y=0, but any estimate of the solid density curve from the mere �ve data

points will be very poor, and the estimate of the density of Y=1 will be systematically

biased toward tails. The cutting point, which maximally distinguishes the zeros and ones,

will be too far to the right since no information exists about the left end of the solid density.

As a result, Pr(Y=1) will be underestimated and then Pr(Y=0) will be overestimated.

In addition, data collection causes another di¢ culty in analyzing rare events.

There is a trade-o¤ between gathering more observations and including better or additional

variables when resources are limited. King and Zeng (2001) mention that approximately

99% of the costs in the data collection can be used to add new variables to an existing

collection. For fear of null observation of rare events, some researchers usually choose very

large numbers of observations with few, and in most cases poorly measured, explanatory

variables, which turns out ine¢ cient data collection strategies. Because it is believed that

the real information in the data lies much more with the ones than the zeros, the strategies

to have more observations have been criticized for spending time in analyzing very crude

measures on many observations almost all of which contain no relevant information. To

address the controversy in selecting the dependent variable, some advice has been given in

King and Zeng (2001). For choosing the ones, it is best to collect all available observations.
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For choosing the zeros, it depends on the cost: If it is costless to collect the zeros, the

researcher should collect as many as he or she can. If it is not costless but not more expen-

sive than in collecting the ones, the researcher should collect two to �ve times more zeros

than ones. This sampling method is known in econometrics as choice-based or endogenous

strati�ed sampling.

Besides, there may still have management and estimation issue when all observa-

tions and necessary variables are collected. In my second chapter, for example, there are

1,317 actual within-industry mergers and more than 3 million nonmergers. Data sets of this

size are not uncommon, but they make data management di¢ cult and statistical analyses

time consuming. This outcome has already been shown in my second chapter. After pooling

all actual and pseudo mergers and running a probit or logit regression to analyze the M&A

activities, however, convergent results cannot be reached numerically by using the built-in

program in STATA or SAS1.

To provide a consistent and e¢ cient estimate for the probability of rare events,

several methods have already been constructed in the literature. The �rst one is prior cor-

rection, which involves computing the usual logit regression maximum likelihood estimation

(MLE) and correcting the estimates based on prior information about the fraction of ones

in the population and the observed fraction of ones in the sample. It is easy to use, but

requires knowledge of the fraction of ones in the population, which may not be available

in some cases. Another disadvantage of prior correction is that if the model is misspec-

i�ed, the estimates will be biased. The last but not the least issue of prior correction is

how to randomly select the zeros. The second method is the weighted exogenous sampling

maximum-likelihood method, which is proposed by Xie and Manski (1989). The essential

1To get a convergent result, this kind of data need more iteration times than those set in the logistic and
probit program in STATA and SAS.
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component of this method is to weight the data to compensate for di¤erences in the sample

and population fractions of ones induced by choice-based sampling. However, it is very

di¢ cult to apply, since it requires specialized software for estimation. Combining the above

two methods, King and Zeng (2001) build a corrected version of weighting with rare event

corrections.

Given that the underlying distribution of the dependent variable is logistic, this

paper proposes a new simulation-based econometric method to estimate the probability

of a merger, which increases the e¢ ciency of prior correction. We randomly select the

"nonevents" (pseudo merger pairs) to match the events (mergers) and apply the logit re-

gression, and then repeat the procedure a thousand times. We also construct the variance

and covariance matrix of the estimates and identify their limiting distributions, and com-

pare the e¢ ciency of our method with Rhodes-Kropf and Robinson (2007), who adopt the

"matched-pairs" design.

The remainder of this paper is organized as follows. In section 2, we discuss the

choice-based sample probability bias. In section 3, we present a simulation-based method

for the rare events data, and analyze the e¢ ciency and the asymptotic properties of the

estimates from this method. Section 4 concludes our analysis.

The Choice-Based Sample Probability Bias

The Relation between the Sample-Based and Population-Based Merger
Probability

From Compustat and the Securities Data Corporation databases, we collect the

companies�name and their accounting information, and also identify which two �rms have
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been merged in a given year. If two �rms in the same industry have not been involved in a

merger in a given year, they may have the propensity to merge. In this sense, we take them

as a potential merger pair. However, in this setting, the number of actual merger pairs is

very small relative to the number of potential mergers. In the empirical work, we expect to

identify the factors that could a¤ect two �rms�propensity to merge. After pooling all actual

and pseudo mergers, we can not reach a convergent result numerically by using probit and

logistic regressions.

One way to get convergent results numerically is to reduce the number of pseudo

merger pairs. However, if the statistical methods have not been adjusted in this context,

the estimated coe¢ cients should have been arbitrarily a¤ected by the chosen sample com-

positions. That means, the expected probability of two �rms to be merged based on the

exogenous strati�ed sample strongly di¤ers from the corresponding probability in the whole

population.

In order to analyze the chioce-based sample bias, the following notation is intro-

duced:

fY g = set of dependent variables from the whole population, which is dummy

variables. Y = 1 means that the selected two �rms are merged, and Y = 0 means that the

selected two �rms are not merged.

fyg = set of dependent variables from the selected sample, which is dummy vari-

ables. y = 1 means that the selected two �rms are merged, and y = 0 means that the

selected two �rms are not merged.

fXg = set of independent variables from the whole population.

fxg = set of independent variables from the selected sample.

� = P (Y = 1); proportion of merger pairs in the grand population, where 0 <
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� < 1:

P �m = P (Y = 1jfXg); population-based probability of two �rms involving in a

merger.

p = P (y = 1); proportion of merger pairs in the estimation sample, where 0 <

p < 1:

P̂ pm = P (y = 1jfxg); unadjusted estimated probability of two �rms involving in a

merger based on a selected estimation sample with a proportion of merger pairs equals to

p:

If the prediction model has been estimated with a sample proportion of merger

pairs p is the same as the population proportion of merger pairs � ; the estimated merger

probability P̂ pm from the sample is an unbiased probability assessment of the corresponding

population-based probability P �m. Otherwise, the calculated probability P̂
p
m will no longer

be an unbiased estimate of P �m, but they are correlated.

Proposition 4 If P (fXgjY = 1) = P (fxgjy = 1); and P (fXgjY = 0) = P (fxgjy =
0), the relation between the merger probability P̂ pm from the sample and the corresponding
population-based probability P �m can be expressed as

P̂ pm =

�
1 +

�
1� p
p

��
�

1� �

��
1� P �m
P �m

���1
: (III.1)

Proof. Since P (Y = 1) = � ; then P (Y = 0) = 1� � :

Assuming P �m > 0; the unbiased probability P �m can be unfolded according to

Bayes�theorem:

P �m = P (Y = 1jfXg) (III.2)

=
P (Y = 1; fXg)

P (fXg)

=
P (fXgjY = 1)P (Y = 1)

P (fXgjY = 1)P (Y = 1) + P (fXgjY = 0)P (Y = 0)

=
P (fXgjY = 1)�

P (fXgjY = 1)� + P (fXgjY = 0)(1� �) ;
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Similarly, we get

P̂ pm =
P (fxgjy = 1)p

P (fxgjy = 1)p+ P (fxgjy = 0)(1� p) : (III.3)

Equations III.2 and III.3 can be simpli�ed as III.4 and III.5 correspondingly.

P (fXgjY = 1)
P (fXgjY = 0) =

�
(P �m)

�1 � 1
� �

1� � ; (III.4)

P (fxgjy = 1)
P (fxgjy = 0) =

��
P̂ pm

��1
� 1
�

p

1� p: (III.5)

Since P (fXgjY = 1) = P (fxgjy = 1); and P (fXgjY = 0) = P (fxgjy = 0); we

have

P (fXgjY = 1)
P (fXgjY = 0) =

P (fxgjy = 1)
P (fxgjy = 0) : (III.6)

Therefore,

�
(P �m)

�1 � 1
� �

1� � =
��
P̂ pm

��1
� 1
�

p

1� p; (III.7)

After simpli�cation, equation III.7 can be written as

P̂ pm =

�
1 +

�
1� p
p

��
�

1� �

��
1� P �m
P �m

���1
: (III.8)

From equation III.8, we can see that the sample-based probability of a merger is

not only a function of the unbiased probability P �m; but also depends on the proportion of

merged pairs in the population (�) and the proportion of merged pairs in the sample (p).

To better understand the association between P̂ pm and P �m; � as well as p; we

provide the following corollaries.

Corollary 1 If and only if p = � or P �m = 1; then P̂
p
m = P �m:
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Proof. ) When p = � ; equation III.8 is

P̂ pm =

�
1 +

�
1� P �m
P �m

���1
= P �m: (III.9)

When P �m = 1; then the right side of equation III.8 is 1. That means P̂
p
m = P �m = 1:

( when P̂ pm = P �m; equation III.8 can be rewritten as

P̂ pm =

�
1 +

�
1� p
p

��
�

1� �

��
1� P �m
P �m

���1
; (III.10)

=
P �m

P �m �
�
1�p
p

��
�
1��

�
P �m +

�
1�p
p

��
�
1��

� ;
Since P̂ pm = P �m; we have

P �m �
�
1� p
p

��
�

1� �

�
P �m +

�
1� p
p

��
�

1� �

�
= 1; (III.11)

Equation III.11 is equivalent to

�
1�

�
1� p
p

��
�

1� �

��
P �m = 1�

�
1� p
p

��
�

1� �

�
; (III.12)

Equation III.12 holds only if p = � or P �m = 1:

Therefore, P̂ pm = P �m, if and only if p = � or P
�
m = 1:

Corollary 1 indicates that the sample-based probability of a merger P̂ pm will di¤er

from an unbiased estimate of the merger probability P �m, when p 6= � and P �m 6= 1: The

following corollary discusses the factors that a¤ect P̂ pm:

Corollary 2 The sample-based probability of a merger P̂ pm is positively related to the un-
biased merger probability P �m and the proportion of merged pairs in the sample (p), but
negatively related to the proportion of merged pairs in the population (�).

Proof. When p 6= � ; from equation III.8, we can calculate

@(P̂ pm)

@(P �m)
=

�
1 +

�
1� p
p

��
�

1� �

��
1� P �m
P �m

���2
(P �m)

�2 > 0; (III.13)
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When p = � ; we have

@(P̂ pm)

@(P �m)
= 1 > 0; (III.14)

Inequalities III.13 and III.14 show that P̂ pm is positively associated with the unbiased merger

probability P �m.

The �rst order conditions of p and � on P̂ pm are

@(P̂ pm)

@p
=

�
1 +

�
1� p
p

��
�

1� �

��
1� P �m
P �m

���2
p�2 > 0; (III.15)

@(P̂ pm)

@�
= �

�
1 +

�
1� p
p

��
�

1� �

��
1� P �m
P �m

���2
(1� �)�2 < 0; (III.16)

Inequalities III.15 and III.16 imply that P̂ pm is an increasing function in p, but a decreasing

function in � :

Equation III.8 demonstrates P̂ pm as a function of P �m; p and � : In a decision context,

however, one might primarily be interested in an assessment of the unbiased probability

P �m; and identifying the factors, which a¤ect this probability. Though we have problem to

directly estimate P �m, we can estimate P̂
p
m �rst, and then approximate P �m through equation

III.8. We rewrite it as

P̂ �m =

"
1 +

�
1� �
�

��
p

1� p

� 
1� P̂ pm
P̂ pm

!#�1
; (III.17)

where P̂ �m represents an estimate of P
�
m:

A necessary condition for P̂ �m to be an unbiased estimate of P
�
m is that the selected

sample should be a random drawing from a sub-population of the whole sample. After

estimating P̂ pm from the selected sample, we can calculate P̂ �m with some correction if p and

� are given.
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Prior Correction of the Estimates from Logit Model

Assume P̂ pm = P (yi = 1jfxig) = P (xi�); where � are the unknown parame-

ter vector (�0; �
0
1)

0
; a k � 1 vector. Here, �0 is the scalar constant term and �1 is a

vector with elements corresponding to the explanatory variables. The parameters can

be estimated by maximum likelihood method, where the likelihood function is formed

by assuming independence over the observations. The likelihood function is L(�jy) =

�ni=1 [P (xi�)]
yi [1� P (xi�)]1�yi : By taking logs, the log-likelihood simpli�es to

lnL(�jy) =
X
fyi=1g

lnP (xi�) +
X
fyi=0g

ln [1� P (xi�)] : (III.18)

The estimate of �, labeled as �̂ , gives the maximum value of function III.18. As

a consequence, P̂ pm = P (xi�̂):

According to equation III.17, we can approximate P �m as a function of P̂
p
m; � and p:

In most general formulation of P̂ pm; the prior correction of P̂ �m is consistent but not necessary

feasible to apply. Fortunately, in the logit special form of P̂ pm; the prior correction is not

only consistent and fully e¢ cient, but also easy to apply.

Proposition 5 In the logit model if P̂ pm = 1

1+e�x�̂
; then

P̂ �m =
1

1 + e
�x�̂+ln

h
( 1��� )

�
p

1�p

�i : (III.19)

Proof. When P̂ pm = 1

1+e�x�̂
; equation III.8 can be written as

1

1 + e�x�̂
=

"
1 +

�
1� p
p

��
�

1� �

� 
1� P̂ �m
P̂ �m

!#�1
;
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, 1 + e�x�̂ = 1 +

�
1� p
p

��
�

1� �

� 
1� P̂ �m
P̂ �m

!
;

, e�x�̂ =

�
1� p
p

��
�

1� �

� 
1

P̂ �m
� 1
!
;

, 1

P̂ �m
� 1 =

�
1� �
�

��
p

1� p

�
e�x�̂;

, 1

P̂ �m
= 1 + e

�x�̂+ln
h
( 1��� )

�
p

1�p

�i
;

, P̂ �m =
1

1 + e
�x�̂+ln

h
( 1��� )

�
p

1�p

�i :

The above proposition implies that for the estimate of P �m; parameters �̂1 need

not be changed, and only the constant term �̂0 should be corrected by subtracting out the

bias factor, ln
h�
1��
�

� � p
1�p

�i
. Furthermore, the estimate after correction is consistent. It

has been proved that the prior correction is identical to the conditional maximum likelihood

estimate proposed by Manski et al. (1981) and Amemiya et al. (1987) when the model is

logistic. And it is also equivalent to the generalized method of moments estimate by Imbens

(1992), Cosslett (1981a, b), and Lancaster et al. (1996a, b) when the functional form of P̂ pm

is logistic and the sampling probability, E(p); is unknown2.

However, as indicated in the previous section, corrected P̂ �m is an unbiased estimate

of P �m only when the sample of merged pairs constitutes a random drawing from the sub-

population of merged pairs and the sample of pseudo merged pairs are randomly drew from

all possible merger pairs. It will be an issue for randomly selecting the sample, especially

for rare events data, in which the binary dependent variables with dozens to thousands of

times fewer ones than zeros. This paper adopts the bootstrap method to select the sample

and construct a simulation-based method.
2See King and Zeng (2001).
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A Simulation-Based Method

Many papers, such as Rhodes-Kropf and Robinson (2007), have already studied

the probability of two �rms being involved in a merger. Since probit and logistic regressions

may not reach convergent results numerically from all observations, Rhodes-Kropf and

Robinson (2007) adopt the "matched-pairs" design, but they do not collect their estimates.

As a result, their estimates are biased. In order to get unbiased estimates, we provide a

new econometric method, in which we randomly select the �nonevents� (pseudo mergers)

to match the events (mergers), and then repeat the procedure one hundred times. As a

summary, for each time selection, we match the zeros with the ones and keep all ones, since

it is believed that the real information in the data lies much more with the ones than the

zeros.

The remainder of this section is organized as follows. First, we provide a theoretical

justi�cation to explain the e¢ ciency of our estimates. Then, we present the bootstrap tests

for the statistical signi�cance of each estimate in detail. Moreover, we discuss how to correct

the estimates.

E¢ ciency of the Quasi-bootstrap Logistic Regressions

Assume the set N includes all the dependent variable Yi0 = 0; i = 1; 2; :::; n0; and

the set M includes all the dependent variable Yj1 = 1; j = 1; 2; :::; n1:It is also assumed

that n0 >> n1; which means that n0 is dozens to thousands of times more than n13. And

then the fraction of ones in the population, � ; equals n1
n0+n1

: Given some regressors xi; the

goal is to estimate P (Yi1 = 1j xi); as this is the full conditional distribution. We assume

that the underlying distribution of the dependent variable is logistic, P (Yi1 = 1j xi) can be
3Here, 1 represents the actual merger pairs and 0 represents the pseudo-merger pairs. Therefore, N1 =

1; 317 and N0 = 3; 054; 479:
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expressed as:

P (Yi1 = 1jxi) =
1

1 + e�x
0
i�
;

where � is the true parameters for the choice-based sample.

We construct a new set At; t = 1; 2; :::; T; which contains n1 observations randomly

selected with replacement from N: And then we run a logistic regression using all the

observations from At and M; t = 1; 2; :::; T . From this procedure, we can get T estimates

of �; which are
n
�̂t; t = 1; 2; :::; T

o
:

For some T � T weight matrix W > 0; let

JT (�) = T

0BBBBBBBBBB@

(�̂1 � �)=T

:

:

(�̂T � �)=T

1CCCCCCCCCCA

0

W

0BBBBBBBBBB@

(�̂1 � �)=T

:

:

(�̂T � �)=T

1CCCCCCCCCCA
(III.20)

We use the minimum distance method (MDM ) to �nd an estimate, which mini-

mizes JT (�): For simplicity, we setW as the identity matrix. And then the solution of � for

minimizing JT (�) is the mean of
n
�̂t; t = 1; 2; :::; T

o
. We de�ne �̂ is the MDM estimate,

�̂ =

PT
t=1 �̂t
T

: (III.21)

Since all the estimates
n
�̂t; t = 1; 2; :::; T

o
share some dependent variables M;n

�̂t; t = 1; 2; :::; T
o
are not independent from each other. To get more e¢ cient estimate, we

better set W as the variance-covariance of f�̂1; �̂2; :::; �̂T g; which is unknown and can not
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be constructed easily. That means, the estimate �̂ is not the most e¢ cient, when W is the

identity matrix. However, it still has the following asymptotic properties.

Claim 2 The asymptotic properties of �̂ are:
(1) (1) �̂ !p �: (2)
(2) Under H0 : � = 0;

p
T (�̂)!d N(0; �

2); where �2 is unknown. (3)

(3) �̂ is more e¢ cient than the estimate from Rhodes-Kropf and Robinson (2007) "matched-
pairs" design probit regression.

Since �2 is unknown, we can not directly test the statistical signi�cance of �̂:

Instead, we use the bootstrap, a simulation based method. From the bootstrap samples,

we perform bootstrap tests on the basis of bootstrap P values.

Bootstrap Tests

To obtain the bootstrap samples, we use four steps:

Step 1. Draw with replacement n1 observations from M ;

Step 2. Draw with replacement n1 observations from At; and combine them with

the sample we obtain in Step 1;

Step 3. Run logistic regressions using each combined sample from Step 2;

Step 4. Repeat Steps 1-3 B times.4

Hence, we de�ne set Ntb that includes n1 observations randomly drew with re-

placement from each At; and set Mtb that includes n1 observations randomly drew with

replacement from M; where t = 1; 2; :::; T and b = 1; 2; :::; B: Next, we run a logistic regres-

sion using all the observations from sets Ntb and Mtb; and denote the estimate as �̂
�
tb:

We de�ne that
4According to Davidson and MacKinnon (2004), if we will perform a bootstrap test at level �; then B

should be choosen to satisfy the condition that �(B + 1) is an integer.
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�̂
�
b =

PT
t=1 �̂

�
tb

T
; b = 1; 2; :::; B; (III.22)

which is constructed in the same way as that of �̂. And then the standard deviation ofn
�̂
�
b ; b = 1; 2; :::; B

o
will be the standard error of our quasi bootstrap estimates, which is

called quasi bootstrap standard error in this paper. Since the mean of �̂
�
b is �̂ and the null

hypothesis H0 is � = 0, we take �̂
�
b � �̂ as the simulated test statistics. There are two cases

to construct the empirical distribution function (EDF) based on the one-sided test.

If the alternative hypothesis H1 is � > 0; then the EDF is

F̂ �(�̂) =
1

B

BX
b=1

I(�̂
�
b � �̂ � �̂): (III.23)

Our estimate of the true P value for this case is therefore

p̂�(�̂) = 1� F̂ �(�̂) = 1� 1

B

BX
b=1

I(�̂
�
b � �̂ < �̂) =

1

B

BX
b=1

I(�̂
�
b > 2�̂): (III.24)

The last equality in equation III.24 means that the true P value is approximated by the

proportion of simulations, in which �̂
�
b is greater than 2�̂: For example, if B = 599; and 25

of all the �̂
�
b are greater than 2�̂; then p̂

�(�̂) = 25=599 = 0:042: As a result in this example,

we would reject the null hypothesis that � = 0 at 5 percent statistic signi�cant level.

If the alternative hypothesis H1 is � < 0; then the EDF is

F̂ �(�̂) =
1

B

BX
b=1

I(�̂
�
b � �̂ � �̂): (III.25)

Our estimate of the true P value is
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p̂�(�̂) = 1� F̂ �(�̂) = 1� 1

B

BX
b=1

I(�̂
�
b � �̂ � �̂) =

1

B

BX
b=1

I(�̂
�
b < 2�̂): (III.26)

If B is in�nitely large, the EDF converges to the true conditional distribution

function (CDF). Consequently, our procedure would yield an exact test and the outcome of

the test would be the same as the P value computed by using the conditional distribution

function (CDF) of �̂.

Correction for the Estimates

Though a bootstrap has been adopted in the above method, it is still a "matched-

pairs" design, which results in a sample proportion of merged pairs of 0.50. This type of

sampling typically implies that the proportion of merged pairs in the sample is much larger

than the proportion of such pairs in the grant population of all pairs (merged and non-

merged). This design causes a "choice-based sample bias" of the constant and the coe¢ cients

in the standard logit models, in turn meaning that the probabilities being assessed in such

models are more or less biased. Hence, we provide the correction for the estimates from the

above quasi bootstrap logistic regression.

Since we know the fraction of ones in the population, � , which equals n1
n0+n1

; we

can use the prior correction for the logit model. For each logistic regression above, the

constant item �̂
�
t0 should be corrected by subtracting out the bias factor; ln

��
1��
�

��
; and

other parameters are statistically consistent5. The �nal corrected estimate �̂
c

1 is the same

as �̂1 and the �nal corrected estimate �̂
c

0 for the constant item �̂0 is

5Here, y = 1=2; so y
1�y = 1:
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�̂0 � ln
��
1� �
�

��
; (III.27)

because �̂1 =
PT
t=1 �̂

�
t1

T and �̂0 =
PT
t=1 �̂

�
t0

T : Subsequently, we have the following corollary.

Corollary 3 The corrected estimate
�
�̂
c

0; �̂
c

1

�
has the same asymptotic properties as �̂:

Conclusion

This paper reviews three problems in explaining and predicting rare events data.

First, the probability of rare events can be sharply underestimated by most popular sta-

tistical procedures, such as probit and logit regressions. In addition, the commonly used

data collection strategies are far more e¢ cient. Further, even when collecting all observa-

tions and necessary variables, the logistic and probit regressions may sometimes not reach

numerically to a convergent result.

Although there are some problems for estimating rare events data, several methods

have been constructed to provide consistent estimates under some conditions, such as the

prior correction, weighting, and the corrected version of weighting with rare event correc-

tions. In addition, this paper contributes a new simulation-based econometric method to

the literature. The method adopts bootstrap to select the data. The procedure goes as the

following. First, we randomly select the "nonevents" (pseudo merger pairs) to match the

events (mergers) and run a logistic regression, and then repeat this procedure hundreds of

times. We also construct the bootstrap standard errors and p values of the estimates.

In this paper, we set the identity matrix as the weighted matrix to estimate the

parameters with the minimum distance method. With this setting, the simulation-based
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method bring consistent but not the most e¢ cient estimates, since all the intermediate

estimates
n
�̂t; t = 1; 2; :::; T

o
from each logistic regression share some dependent variables

M and then independent from each other. To get more e¢ cient estimates, however, we

better set the variance-covariance matrix of the estimates f�̂1; �̂2; :::; �̂T g from the logistic

regressions as the weighted matrix, which we would like to explore further in the future.
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CHAPTER IV

INTERNATIONAL TECHNOLOGY DIFFERENCES AND INCOME INEQUALITY:
EVIDENCE FROM CROSS-COUNTRY HISTORICAL DATA

Introduction

Today, we live in a world with signi�cant di¤erences in living standards and pro-

duction across countries. According to the Penn World Table project conducted by Robert

Summers and Alan Heston, the richest countries such as the United States and Switzerland

are about thirty times richer than the poorest countries in Africa and South Asia. Pro-

duction per person in the wealthiest economy is thirty times more per person than in the

poorest economy. Why are some economies so much richer than others? What accounts for

sustained economic growth in these countries? Although there are a few di¤erent voices,

most economists agree that the most important driver of economic growth is progress in

technology. Klenow and Rodriguez-Clare (1997) as well as Hall and Jones (1999) show that

di¤erences in total factor productivity (TFP) account for a majority of the gap in income

per capita between rich and poor countries. Prescott (1998) argues that di¤erences in phys-

ical or human capital are not, in themselves, su¢ cient to account for the large international

income di¤erences. He emphasizes the need for developing a theory of TFP. "To account

for sustained growth," Robert E. Lucas Jr. has written in the 2003 Annual Report of the

Federal Reserve Bank of Minneapolis, "the modern theory needs to postulate continuous

improvement in technology or in knowledge ..." In focusing on this area of the literature,

we reexamine these fundamental questions by analyzing the relation between cross-country

technology di¤erences and income inequity.
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A number of researchers have devoted much e¤ort to proposing answers to the

question: What are the determinants of cross-country disparities in technology? Most

macroeconomists use the vintage capital models to understand the adoption of new tech-

nologies, such as Johansen (1959), Solow (1960), Gilchrist and Williams (2001) and Laitner

and Stolyarov (2002). However, most vintage capital models assume that �rms or coun-

tries invest only in frontier technology and the old vintages decrease because of depreciation,

which violates the fact that investment in non-frontier technologies is an important empirical

reality in cross-country technological adoption. Vintage human capital theory explains the

technology adoption delays only for those technologies that are associated with technology-

speci�c skills, such as Chari and Hopenhayn (1991), Brezis et al. (1993), Jovanovic and

Nyarko (1996) and Jovanovic (2006b). Jones (1994) argues that di¤erent policies result in

di¤erent technologies across countries. Barro and Sala-i-Martin (1997) and Eeckhout and

Jovanovic (2002) provide imitator-innovator models to explain the fact that leaders tend to

innovate and to be the �rst to adopt new technologies while the lagging countries mostly

imitate. Parente and Prescott (1999) argue that poor countries cannot adopt better tech-

nologies because of monopoly rights that are protected via regulation. The poor country

uses ine¢ cient technology, and therefore, remains poor. Basu and Weil (1999) introduce an

appropriate technology model, in which new technologies can only be implemented success-

fully by countries with the appropriate endowments. Khan and Ravikumar (2002) develop

a model of technology adoption incorporating an irrecoverable and �xed cost. They show

that there is a unique threshold level of wealth, which depends on technology parameters.

If a country is richer than the threshold, it will adopt the new technology, otherwise it

will retain the outdated technologies. Comin and Hobijn (2003) show that a country�s hu-

man capital endowment, type of government, degree of openness to trade, and adoption of
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predecessor technologies are the most important determinants of the technology adoption

speed. Antras (2005) argues that goods are initially manufactured in the country where

they are �rst introduced because of contractual frictions, and then shifted to a low-wage

foreign location when they become su¢ ciently standardized and need less management.

Some researchers focus on technology adoption and inequality. Matsuyama (2002)

shows that income inequality induces technological adoption lags between rich and poor

countries. He argues that each new product is bought �rst by the rich and then by the

poor, and the di¤usion lags are determined by income dispersion. Rogers (2003) concludes

that the consequences of the di¤usion of innovations usually widen the socio-economic gap

between the earlier and later adopting categories in a system. Jovanovic (2006) states that a

new technology adoption will �rst slow down economic growth and then speed it up. Lahiri

and Ratnasiri (2007) use a dynamic general equilibrium model with household speci�c costs

of technology adoption to catch the negative correlation between the degree of technology

adoption and income inequality within countries.

However, most of the literature is short of measurement, which can capture the

extensive and intensive margin of the technological adoptions, and then may only explain

some speci�c anecdotes about the cross-country technology adoption patterns rather than

general facts. It is therefore worthwhile to dig out the adoption processes and their rela-

tion to cross-country income inequality, which occur for most major technologies and most

countries.

This paper re-investigates the Cross-Country Historical Adoption of Technology

data set (CHAT) introduced by Comin and Hobijn (2006). This dataset covers about 110

technologies in over 150 countries over the last 200 years. Comin and Hobijn (2006) have

summarized �ve facts about the historical technology usage: (1) Once the intensive margin
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is measured, technologies do not di¤use in a logistic way. (2) Within a typical technology,

the dispersion in the adoption levels across countries is about 5 times larger than the cross-

country dispersion in income per capita. (3) The rankings of countries by level of technology

adoption are very highly correlated across technologies. (4) Within a typical technology,

there has been convergence at an average rate of 4 percent per year. (5) The convergence

rates of the technologies developed since 1925 have been almost three times higher than

those of the technologies developed before 1925.

In this paper, we focus on the relation between technological adoptions and income

dispersion across countries. We follow the example of the convergence of income per capita

literature and estimate measures of absolute �-convergence. We also study the kernel joint

density estimate of income and each technology, and test that most of the estimates are

multimodal by means of the graphical technique of Signi�cance in Scale Space, a visualiza-

tion method based on the gradient direction. Besides these �ndings from Comin and Hobijn

(2006), we explore CHAT further and document the following facts:

(i) Though DCs always adopt a new technology earlier than LDCs do, the conver-

gence speed of technology adoption across LDCs is faster than that across DCs after this

technology is also adopted by LDCs.

(ii) Most technological adoptions among poorer economies cluster in a lower level

than those among richer economies.

(iii) The convergence speed of each technology adoption is non-monotone over time

rather than accelerating.

(iv) Computer and internet invention have not increased the convergence speed of

other technologies adoption across all countries, across DCs or across LDCs.

(v) The relation between the convergence speed of technology adoption and that
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of per capita income is negative across all countries and across LDCs, but is positive across

DCs from the period 1946 - 1972 to the period 1973-2000.

(vi) The dispersion in technology adoption for individual technologies is 3 - 5 times

larger than the dispersion in income per capita both across DCs and LDCs.

The remainder of this paper is organized as follows. In section 2, we describe

the CHAT data set. In section 3, we present the empirical evidence. Our conclusions are

presented in section 4.

Data

This paper reanalyzes the Cross-Country Historical Adoption of Technology (CHAT)

data set, introduced by Comin and Hobijn (2006). This data set is an unbalanced panel,

which contains historical information on the adoption of about 110 technologies in the past

200 years across over 150 countries. The technologies in the data set can be classi�ed into

nine groups: (1) Agriculture, (2) Finance, (3) Health, (4) Steel, (5) Telecommunication, (6)

Textiles, (7) Tourism, (8) Transportation, and (9) General technologies.1 CHAT also has

the records of these countries�population from 1750 to 2000 and real GDP from 1820 to

2000 that is measured in million of 1990 international Stone-Geary dollars.

To capture both the extensive and the intensive margins of di¤usion, we follow the

measurement introduced by Comin and Hobijn (2003) to approximate the level of technology

adoption. There are �ve di¤erent proxies. First, some technologies are measured as share of

output produced by various production technologies, such as percent of irrigated land out of

cultivated land in agriculture, percent of children aged 12 - 23 months who received a measles

immunization before the age of one year in health, percent of steel produced by the acid

1The general technologies include three technologies, namely electricity production, the number of com-
puters and the number of internet users.
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Bessemer method and so on. Second, technologies in textiles and shipping are measured as

capital share, which means a technology is approximated by the fraction of capital stock to

be made up of equipment that embodies a particular technology. Third, we use production

to real GDP to measure some production technologies for which CHAT does not have capital

stock data but only data on output produced. We have four technologies measured in this

way: civil aviation ton-KM of cargo carried on scheduled services by companies registered in

the country concerned, ton-KM of freight carried on railways, metric tons of freight carried

on railways and geographical length of line open at the end of the year. The forth proxy, for

passenger cars, mobile phones, ATMs and so on, is de�ned as capital stocks per capita. The

last but not the least measure is consumption per capita used for mail, telegrams, cheques

issued, debit and credit card transactions as well as passenger transportation variables. The

�ve proxies can be classi�ed into three groups: on per capita basis, on unit real GDP basis,

and the share of output produced with the technique. Technology variables description and

their measurements are listed in Tables 9 - 11.

Empirical Evidence

Following the literature about the convergence of income per capita, we estimate

the measures of absolute �-convergence. We estimate the speed of �-convergence of technol-

ogy i by running the following regression for technologies measured in log-per-capita terms

or in log-unit-real-GDP terms:

lnYij;t � lnYij;t�1 = �+ cj � (1� e��i) lnYij;t�1 + uij;t; (IV.1)

For technologies measured as shares, we estimate �-convergence from:
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yij;t � yij;t�1 = �+ cj � (1� e��i)yij;t�1 + uij;t; (IV.2)

where � is constant, cj is country j �xed e¤ect, and uij;t is the residual.

Following equation IV.1, we estimate �s across all countries, across developed

countries (DCs) as well as across developing countries (LDCs) for these technologies mea-

sured in log-per capita or log-unit-real-GDP terms over all available time.2 The results

are reported in Tables 12 - 14.3 It indicates that, among the 92 technologies, 22 of them

experience convergence rates 0 - 0.5 times faster across LDCs than across DCs, 13 of them

experience convergence rates 0.5 - 1 times faster within LDCs than within DCs, 21 of them

have at least one time faster convergence speeds within LDCs than within DCs, 5 of them

converge within LDCs but diverge within DCs, and only 20 of them have lower convergent

speeds within LDCs. Half of the 20 technologies are from health industry and another

half includes ship_sail, TV, txtlamat_totalraw, telephone, steel_stainless, railp, railPKM,

railTKM, txtlmat_synth, and shipton_total.

Following equation IV.2, we estimate �s across all countries, across DCs as well

as across LDCs for the 21 technologies measured in shares over all available time. Table

15 presents the results. Among the 21 technologies, one of them is convergent across LDCs

but divergent across DCs, 12 of them converge faster across LDCs than across DCs, only

�ve of them have lower convergence speed across LDCs than across DCs, and others have

no enough information.

Fixing the physical time, we get very similar results as those from equation IV.1

and equation IV.2. Since World War I took place between 1914 and 1918, World War II

2We exclude Israel when we divide the countries into developed countries and developing countries.
3We measure steel and ship technologies both on log-per capita basis and as the share of output producted

with the technique.
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happened from 1939 to 1945, and personal computer and internet were invented on 1973, we

divide the time series into three part: 1919 - 1938, 1946 - 1972 and 1973 - 2000.4 In period

1919 - 1938, 6 percent out of the total 110 technologies have higher convergence speeds across

DCs than across LDCs, 13 percent technologies have lower convergence speeds across DCs

than across LDCs, and others do not have enough observations. In period 1946 - 1972,

there are 9 percent technologies having higher convergence speeds across DCs than across

LDCs, and 19 percent technologies with higher convergence speeds across LDCs than across

DCs. In period 1973 - 2003, only 16 percent technologies that DCs have higher convergence

speed than LDCs do, but 48 percent technologies that DCs have lower convergence speed

than LDCs, and 4 percent technologies diverge in DCs but converge in LDCs.

One may argue that LDCs adopt lower quality technologies, and then have lower

cost than DCs. Consequently, it takes less time for LDCs converging to their equilibrium

than DCs. However, there are some technologies experiencing higher convergence speed

across LDCs than across DCs, such as credit and debit card transactions as well as steel

produced by electric arc furnaces, the measure of which is relatively homogenous both over

time and across countries. For some technologies, such as cars, computers and TVs, though

they are constantly reinvented and have important di¤erences in the quality of the object

measured over time and across countries, the measure we apply partially re�ects the cross-

country and time-series variation in the quality of technologies and also keep as homogenous

as possible of these variant technologies, resulting from the positive correlation between

demand and the quality of a technology moderating in part the di¤erences in quality. The

more important fact is that this kind technologies with di¤erent quality over time and across

countries are not the majority which experiences a higher convergence speed across LDCs
4We think the inventions of internet and computer are special, because after that, low-cost information,

data storage and transmission technologies are in general use, leading the way to deep changes in all �elds
of life.
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than across DCs. As a result, the quality di¤erence may not be the main reason to result

a higher convergence speed in LDCs.

For robustness of the �nding that technologies converge faster within LDCs than

within DCs, we run the following regression for technologies measured in log-per-capita

terms or in log-unit-real-GDP terms:

lnYij;t � lnYij;t�1 = �+ cj � (1� e��i) lnYij;t�1 + 
j lnYij;t�1 � dc+ uij;t; (IV.3)

while for technologies measured as shares we estimate �-convergence from:

yij;t � yij;t�1 = �+ cj � (1� e��i)yij;t�1 + 
jyij;t�1 � dc+ uij;t; (IV.4)

where dc is a dummy. When country j belongs to developed countries, dc = 1; otherwise

dc = 0: If 
j > 0; then �j for LDCs is larger than DCs. If 
j = 0; they have the same �j :

Otherwise, DCs have a larger �j than LDCs. During the whole time series, 59 percent of

technologies have a positive 
, and 63 percent out of them are signi�cant. While 25 percent

of technologies have a negative 
; but only 28 percent out of them are signi�cant. We also

�x the physical time. From 1919 to 1938, 13 percent of technologies have a positive 
, and

54 percent out of them are signi�cant. While 8 percent of technologies have a negative


; but only 38 percent out of them are signi�cant. From 1946 to 1972, 28 percent of

technologies have a positive 
, and 54 percent out of then are signi�cant. While 10 percent

of technologies have a negative 
; but only 10 percent out of them are signi�cant. From

1973 to 2000, 59 percent of technologies have a positive 
, and 63 percent out of them are

signi�cant. While 25 percent of technologies have a negative 
; but only 28 percent out of
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them are signi�cant. Consequently, based on these facts, we conclude our �rst �nding as

the following.

Fact 1: Though developed countries always adopt a new technology earlier than

developing countries, the convergence speed of technology adoption across developing coun-

tries is faster than that across developed countries after this technology is adopted by

developing countries as well.

In growth economics, �-convergence has been widely used to test whether each

country converges to its own equilibrium, but does not provide much information on how

economies perform relative to each other. A process of either technology homogenization or

persistent gaps can be manifested in the shape of the joint density distribution of income

per capita and the level of each technology adoption along the time. As Bianchi (1997),

we also let the data speak for themselves through the nonparametric density estimators.

To test whether the observed features from the nonparametric joint density estimators are

"really there", we use the graphical technique of signi�cance in scale space, a visualization

method proposed by Godtliebsen, Marron and Chaudhuri (2002).

The kernel joint density estimate of the log of income per capita and technological

adoption at a given year can be expressed as the following:

f̂h(x; y) = N
�1

NX
k=1

Kh(x�Xk; y � Yk); (IV.5)

where Xk is the log of income per capita in country k at a given year, Yk is the log (or the

share) of the adoption level of technology Y in country k at a given year, k = 1; :::; N ; K is

the kernel function and h is the bandwidth. After K is taken to be a spherically symmetric

Gaussian density, equation IV.5 can be written as the following product form,
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Kh(x�Xk; y � Yk) = 'hx(x�Xk)'hy(y � Yk); (IV.6)

where 'hi denotes the rescaling

'hi(�) =
1

hi
'(
�
hi
); i = x or y; (IV.7)

where ' is the standard Gaussian density.

To investigate the features of the joint distribution of income per capita and tech-

nology adoptions, we use the "normal reference rule" to select the optimal bandwidth,

which minimizes the mean integrated squared errors (MISE). The optimal bandwidth can

be approximated by hi;

hi = �in
�1=6; i = x or y;

where �i is the standard deviation of the ith variate and can be replaced by its sample

estimator in practical implementations.5

Under these settings, we estimate the joint distribution of income per capita and

each technology. These estimates can tell us which joint density is bimodal, and in turn

tell us which technological adoption clusters in a lower level at LDCs. Because of the

"curse of the dimension", kernel density estimates may miss important structure via over-

smoothing, or may �nd unimportant spurious structure via undersmoothing, though it is

a good smoothing method which can show structure in data. Even we apply the �normal

5See Scott (1992), Bowman and Azzalini (1997), in which hi = �if 4
(d+2)n

g1=(d+4); for i = 1; 2; :::; d and d
is the dimension. In our paper, d=2.
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reference rule�, a data-based bandwidth selection, to select the bandwidth, we may not

get good estimates of the joint density of income and each technological adoption, because

the underlying distribution of our data may be non-Gaussian. The streamline version of

Signi�cance in Scale Space, which simultaneously study a very wide range of bandwidth,

avoid bandwidth selection and test whether the observed features from the kernel density

estimates are "really there". The streamlines are curves essentially indicating the gradient

direction and therefore indicating the statistically signi�cant structure. In others words,

these curves indicate the direction that a drop of water would follow as it moves down the

surface.

To construct these streamlines, we randomly pick up a point where the gradient is

signi�cant, and then end the streamlines when there is no signi�cant gradient in this region

or a peak/vally or a boundary is reached. The main idea is to test the signi�cancy of the

gradient of the kernel estimates.

Without specifying the bandwidth, as Godtliebsen et al. (2002), we bin our data

to an equally spaced rectangular grid,

f(xi; yj) : xi = Lx + i�x; yj = Ly + j�y; i = 0; :::; n; j = 0; :::;mg: (IV.8)

The bin is a rectangular lattice, in which xi is equally spaced over [Lx + n�x] and yj is

equally spaced over [Ly +m�y]: Then the mapped points are counted to give a matrix C

of bin counts, whose ith; jth entry is

ci;j = ](data points assigned to bin i; j): (IV.9)
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The kernel density estimate f̂h of x and y can be approximated by

~fh = N
�1(C � ~Kh); (IV.10)

where � denotes bivariate discrete convolution, and ~Kh is a matrix of evaluation of the

kernel function Kh: The partial derivatives of f̂h can be approximated by

D ~fh = N
�1(C �D ~Kh); (IV.11)

whereD denotes various partial derivative operators, including (@=@x); (@=@y); (@2=@x2); (@2=@x@y)

and (@2=@y2):

At a given location, the gradient of the underlying density f is

G(f) = [(fx)
2 + (fy)

2]1=2;

where fx = (@=@x)f and fy = (@=@y)f: The estimate of G(f) is

Ĝ(f) = [( ~fh;x)
2 + ( ~fh;y)

2]1=2;

where ~fh;x and ~fh;y come from formula IV.11. The null hypothesis is

H0 : G(f) = 0:

The null distribution of this test is based on the bivariate Gaussian distribution
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0BB@ ~fh;x

~fh;y

1CCA � N

0BB@
0BB@ 0

0

1CCA ;
0BB@

�2x
8�h4

; 0

0;
�2y
8�h4

1CCA
1CCA :

Because of this Gaussian distribution, we have

( ~fh;x)
2

�2x=8�h
4
+

( ~fh;y)
2

�2y=8�h
4
� �22:

That means, we will reject the null hypothesis when

( ~fh;x)
2

�̂21
+
( ~fh;y)

2

�̂22
> q�22(�

0); (IV.12)

where �̂21 and �̂
2
2 are the estimates of the sample variance

dvar[Df̂h(x; y)] = 1

N � 1

(
N�1

NX
k=1

(DKh(x�Xk; y � Yk))2 �
�
D ~fh(x; y)

�2)
: (IV.13)

A new binned approximation for the �rst term inside the braces of the expression of

dvar[Df̂h(x; y)] is

N�1
n
C � [(D ~Kh)2]

o
:

In equation IV.12, �0 is the signi�cance level for con�dence intervals, which cover the e¤ec-

tive independent points of each bin at a desired overall signi�cance level �:6 The relation

between �0 and � is
6In the empirical work , we set � = 0:05:
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� = Pfkth con�dence interval not covering, k = 1; :::; lg

= 1� Pfcon�dence interval coversgl

= 1� (1� �0)l;

where l is the average number of the e¤ective independent data points. According to "kernel

weighted count" of the number of points in each bin, the e¤ect sample size l in each bin is

de�ned as

l =
Xn

i=1

Xm

j=1
ESSi;j =

Xn

i=1

Xm

j=1

PN
k=1Kh(xi �Xk; yj � Yk)

Kh(0; 0)
�
Xn

i=1

Xm

j=1

C � ~Kh
Kh(0; 0)

;

where ESS stands for e¤ect sample size for each point.

After introducing the theories, we put them with the data. Since we will test that

technological adoptions among poorer economies cluster in a lower level than that among

richer economies, we only investigate these technologies that have observations in at least 65

countries in some years. Totally 32 technologies satisfy our conditions, out of which 24 are

measured on per capita, 4 are measured in share, and the last 4 are measured in unit real

GDP. To save space, we only present the kernel density estimates and their corresponding

contour plots of the electricity production and income at year 1950, 1960, 1970, 1980, 1990

and 2000 in �gure 6. From the kernel density estimates in �gure 6, we can see that except

in year 1950, the joint density of income and electricity production is multi-modal. From

the contour plots, we can see that all the data are along the 45 degree line. It seems the

LDCs�electricity production cluster in a lower level than that of DCs.

To test whether the LDCs experience a lower electricity production level, we draw

the streamlines for each kernel density estimate. To save space again, only 4 scales, i.e.
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bandwidth, are shown in �gures 7 - 12, in which we present h=5, 5.3, 5.6, and 6.7 In these

�gures, gray level images are shown, which are adjusted for maximum contrast. That is,

the color white is used for all regions where the density is higher than 20% of its maximum

and the color black is used for the minimum. The green "streamlines" indicate the gradient

direction and therefore the structure of a surface. The purple lines are contour lines, which

are orthogonal to the green ones. Statistical signi�cant cluster will be highlighted by a

purple circle surrounding it, because it will be a hill of high density (light gray). In these

�gures, the gray regions are around the 45 degree line, which means richer countries have

higher electricity production. According to the light gray region, streamlines and purple

lines show that the joint densities of income and electricity production are bimodal for year

1970, 1980, 1990 and 2000, but not for year 1950 and 1960. Although Streamlines and

purple lines will give us strong evidence of presence of a feature, lack of streamlines and

purples only indicates the evidence is not strong and does not prove absence of a cluster.

Subsequently, we can not tell whether the bimodal structure is really not there at year 1950

and 1960.

Though we do not present every kernel density estimate of each technology in this

paper, we summarize the result in Tables 16 - 18.8 Tables 16 and 17 shows that 18 out of

24 technologies measured in per capita basis have multi-modal joint density with income

per capita. In Table 18, 3 out of 4 technologies measured in unit real GDP and 1 out of

4 technologies measured in share have multi-modal joint densities with income per capita.

This observation implies that technological adoptions in poor countries may converge to a

lower level than that in rich countries, which is consistent with �club convergence�theory

in growth economics. The �club convergence� theory says that developing countries dis-

7The full scale space can be shown in a movie, which is available upon request.
8Each kernel density estimate is available upon request.
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play faster growth rates in terms of �-convergence but can not catch up with developed

economies, such as Durlauf and Johnson (1995), Quah (1996a, b).

Based on our kernel density estimates and the streamline version of Signi�cance

in Scale Space, we conclude the following fact:

Fact 2: Most technological adoptions among developing economies cluster in a

lower level than those among developed economies.

Comin and Hobijn (2006) document a fact that the speed of technological con-

vergence across countries has accelerated over time. They also document that across all

countries, the median speed of convergence for technologies invented before 1925 is 2 per-

cent per year, that for technologies invented between 1925 and 1950 is 5.5 percent per year,

and that for technologies invented since 1950 is about 6 percent per year. Besides, from

Tables 12 - 15, we observe that some technologies invented in 1960s have very high conver-

gence speeds, which result in a high median speed of convergence for technologies invented

since 1950: the convergence speeds for transplant_lung invented in 1963, pctimmunizmeas

invented in 1964, med_mammograph invented in 1966, transplant_liver invented 1967,

transplant_heart invented in 1967, and atm invented 1967 correspondingly are 11.8 per-

cent, 11.9 percent, 10.4 percent, 11.2 percent, 9.3 percent and 14.8 percent. There are

some technologies invented after 1950 having very low convergence rate. For example, the

convergence speeds of eft invented in 1979 and med_lithotriptor invented in 1980 are only

2 percent. From these tables, we also observe that technologies invented after 1973 have

lower � than those invented in 1960s.

Looking at the technological adoption convergence speed across LDCs and DCs

separately in Tables 12 - 15, we observe that across DCs the median speed of convergence

for technologies invented before 1925 is 2.4 percent per year, that for technologies invented
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between 1925 and 1950 is 8.5 percent per year and that for technologies invented since 1950

is about 6.6 percent per year. Across LDCs the median speed of convergence for technologies

invented before 1925 is 4.4 percent per year, that for technologies invented between 1925

and 1950 is 11.4 percent per year and that for technologies invented since 1950 is about 9.5

percent per year. The observations do not support the Comin and Hobijn�s argument that

the speed of convergence of technology across countries has accelerated over time.

Tables 19 -21 report the �s in 1919 - 1938, 1946 - 1972 and 1973 - 2000 across all

countries estimated according to equations IV.1 and IV.2. From period 1919 - 1938 to period

1946 - 1972, among 110 technologies shown in this table, 16 technologies�convergence rates

decrease but only 4 technologies�convergence rates increase, and from period 1946 - 1972 to

period 1973 - 2000, 19 technologies�� decrease but 15 technologies�� increase. On average,

the convergence speed of technologies adoption in period 1919-1938 across all countries is

0.111, that in period 1946 - 1972 is 0.137 and that in period 1973-2000 is 0.115, which are

presented in Table 22. Table 22 also reports the �s across DCs and across LDCs in the

three periods. We �nd the �s are increasing from period 1919-1938 to period 1946-1972,

but decline from period 1946-1972 to 1973-2000.

The change of the cost to adopt a new technology may contribute to the non-

monotone change of technological adoption convergence rate among these three periods.

The cost of technological adoptions decrease in 1940s but increase in 1970s, which has the

opposite trend as the change of technological adoption convergence rates.

Schmookler (1954) document that the patent-invention ratio fell after 1940, which

implies a lower cost of adopting technologies. There are two reasons for the fall of patent-

invention ratio: (1) As science and technology grew in complexity, the sheer intellectual

di¢ culty of advancing beyond the existing boundaries probably increased. (2) The rise in
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the size of the average �rm and the growth of scienti�c management probably increased the

relative attention devoted to unpatentable small improvements.

The Patent Cooperation Treaty concluded in 1970 which covers 137 countries and

the European Patent Convention to be e¤ective in 1973 result the rising of the cost to adopt

a new technology innovated by other countries after 1970s. The transition to information

technology in the middle of 1970s cause the adjustment costs more than doubled, which is

found by Bessen (2001).

From our exploration of the cross-country technology adoption, we can summarize

our third �nding as the following.

Fact 3: The convergence speed of each technology adoption is non-monotone along

the time series.

After the inventions of internet and computer, low-cost information, data storage

and transmission technologies are in general use, leading the way to deep changes in all

�elds of life. The Solow�s paradox� that "we can see the computer age everywhere except

in the productivity statistics" is still a puzzle to economists. Gordon (2000) summarizes �ve

reasons to explain why the internet has not had a signi�cant e¤ect on productivity growth

outside of durable manufacturing. First, since consumer time is limited, the internet use

only substitutes for other forms of entertainment and information gathering. Second, much

investment in Internet web sites and infrastructure competes for market share by redis-

tributing sales rather than creating them. Third, internet provides preexisting information

cheaply and conveniently rather than creates truly new products and activities. Fourth,

much web site development duplicates existing forms of commerce and information which

results higher costs. Fifth, a large fraction of consumption activity on the web takes place

at the o¢ ce, which decreases the e¢ ciency of working. Another reason, not mentioned in

76



Gordon (2000), is the limited human being who grasp the knowledge to use PC and internet.

For PC use and Internet access, a more di¤erentiated and complex set of skills is required.

However, the Eurobarometer survey on "ICT and work" indicates that most workers have

no formal quali�cations and many have had no training. The number of ICT trained work-

ers is still limited and relative human capital does not have a signi�cant increase after the

invention of Computer and Internet.

Our regression results indicate that computer and internet invention have not

increased the convergence speeds of other technologies invented after 1973, which are con-

sistent with Solow�s paradox. Across all countries, the convergence speeds for eft invented

on 1979, for med_lithotriptor invented on 1980, for surg_corstent invented on 1980 and

for med_mriunit invented on 1981 are 2 percent, 2 percent, 5.9 percent and 5.4 percent

separately, some of which are even lower than the �s for technologies invented before 1925.

Across DCs, the convergence speeds for eft invented on 1979, for med_lithotriptor invented

on 1980, for surg_corstent invented on 1980 and for med_mriunit invented on 1981 are 6.9

percent, 12 .9 percent, 12 percent and 5.8 percent separately. Across LDCs, the convergence

speeds for eft invented on 1979, for med_lithotriptor invented on 1980 and for med_mriunit

invented on 1981 are 8.8 percent, 27.7 percent, and 5.4 percent separately.

Table 22 shows that �s increase from period 1919 - 1938 to period 1946 - 1972,

but decline from period 1946 - 1972 to 1973 - 2000 across all countries, across DCs or across

LDCs. In a words, the convergence speed of each technology is not signi�cantly a¤ected by

the invention of computer and internet.

Therefore, we reach the following conclusion:

Fact 4: Computer and internet invention have not increased the convergence speed

of other technologies adoption across all countries, across developed countries or across
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developing countries.

Klenow and Rodriguez-Clare (1997) and Hsieh and Klenow (2003) argue that

di¤erences in technology are the main determinant of income dispersion across countries.

Rogers (2003) think that the di¤usion of innovations generally causes wider socioeconomic

gaps within an audience. One of his arguments is that by adopting innovations relatively

sooner than others in their system, innovators and early adopters achieve windfall pro�ts,

thereby widening the socioeconomic gap between these earlier adopting categories versus

later adopting categories. Thus, the earlier adopters get richer and the later adopters�

economic gain is comparatively less.

From CHAT, however, we can not observe monotone relation between technological

adoption and income growth. Across all countries and across LDCs, the convergence speed

of technology adoption and that of per capita income is negative , while across DCs, it is

negative from period 1919 - 1938 to period 1946 - 1972 and positive from period 1946 - 1972

to period 1973 - 2000. Table 7 reports the average �-convergence speed of technologies and

income per capita in 1919 - 1938, 1946 - 1972 and 1973 - 2000 across all countries, DCs as

well as LDCs. Across all countries or developing countries, the �-convergence of income per

capita decrease from period 1919 - 1938 to period 1946 - 1972 but increase from period 1946

- 1972 to 1973 - 2000, while the average �-convergence of technologies adoption increase

from period 1919 - 1938 to period 1946 - 1972 but decrease from period 1946 - 1972 to 1973

- 2000. Across developed countries, the �-convergence of income per capita decrease along

the time series, while the average �-convergence of technologies adoption keep the same

trend as those across all countries and across LDCs.

Across all countries in period 1946 - 1972, the technologies that have the high-

est convergence speed are spindle_ring, txtlmat_otherraw and txtlmat_otherraw. Their
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convergence speeds are 1.26, 0.942 and 0.6 respectively. To study whether the outliers

dominate the average technological adoption convergence speed, we exclude the three tech-

nologies and recalculate the average convergence speed. After excluding them, however,

technology adoption and income across all countries still experience a non-positive relation.

Across DCs in period 1946 - 1972, the top three highest convergence speed is: that of spin-

dle_ring is 0.777, that of txtlmat_otherraw is 1.173 and that of steel_acidbess is 0.600.

Excluding the three technologies, the relation between technological adoption and income

across DCs is still non-positive. Across LDCs in period 1946 - 1972, after spindle_ring and

txtlmat_otherraw are excluded, which experience highest convergence speed, we still get a

non-positive relation between technological adoption and income per capita.

To investigate whether the characteristics of each technology play an important

role in stimulating its adoption speed, we study the average convergence speed for each in-

dustry. Table 23 reports the income per capita �-convergence and the average �-convergence

of technologies in each industry in period 1919-1938, 1946-1972 and 1973-2000 across

all countries. Table 24 reports the income per capita �-convergence and the average �-

convergence of technologies in each industry in period 1919-1938, 1946-1972 and 1973-2000

across DCs. Table 25 reports the income per capita �-convergence and the average �-

convergence of technological adoptions in each industry in period 1919 - 1938, 1946 - 1972

and 1973 - 2000 across LDCs. These tables show that most industries experience a decreas-

ing convergence rates and then increasing among the three periods.

Since the cross-sectional dispersion falls with �; the negative relation between the

dispersion of income and technology adoption implies enlarging dispersion of income per

capita across countries when the dispersion of technology adoption declines. From period

1919 - 1938 to period 1946 - 1972, since a new technology was adopted by DCs countries in
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very di¤erent date, the income inequality enlarges. Now because of the globalization, a new

technology is adopted by each developed country quickly, which results a positive relation

between the dispersion of income per capita and that of technological adoption among the

DCs from period 1946 - 1972 to period 1973 - 2000. For the developing countries, however,

there are still huge gaps among the dates to adopt a new technology in period 1973 - 2000.

As a result, the dispersion of per capita income and that of technology adoption are still

negative related across LDCs from period 1946 - 1972 to period 1973 - 2000. Since there are

137 developing countries and only 28 developed countries in CHAT data set, the relation

between income and technological adoption across all countries is dominated by developing

countries.

Hence, we conclude with another �nding of our analysis:

Fact 5: The relation between the convergence speed of technology adoption and

that of per capita income is negative across all countries and across LDCs, but is positive

across DCs from period 1946 - 1972 to period 1973 - 2000.

Comin and Hobijn (2006) �nd that the cross-country dispersion in technology

adoption for individual technology is 3 - 5 times larger than cross-country dispersion in

income. Using the same measurement provided by Comin and Hobijn (2006), we explore

the relation between the dispersion of the technological adoption and that of income per

capita across DCs and across LDCs.

For the technologies measured in log per capita or in log per real GDP, we compute

the cross-country variance of 5-year moving averages of each technology adoption level

after the year when it has been adopted in some countries. For the technologies measured

as shares, we compute the cross-developed-country (cross-developing-country) coe¢ cient

of variance of 5-year moving averages of each technology level for which we have data.
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We then compare the cross-developed-country (cross-developing-country) dispersion of each

technology with the cross-developed-country (cross-developing-country) dispersion of either

the log of income per capita (for log per capita and log per real GDP) or income per capita

(for shares) over 5 years for each interval over the same time period. We aggregate all

information across technologies both weighted by the length of our time series (measured

by the number of �ve year periods for which we have data) and un-weighted. The results

are shown in Table 26, which indicates that the relation between the variation in technology

adoption and income across DCs and LDCs is consistent with the �nding documented by

Comin and Hobijn (2006). It can be summarized as follows:

Fact 6: the dispersion in technology adoption for individual technologies is 3 - 5

times larger than the dispersion in income per capita both across DCs and LDCs.

Conclusion

This paper reanalyzes the Cross-Country Historical Adoption of Technology (CHAT)

data set. We estimate and compare the convergence speed of each technological adoption

and that of income per capita across all countries, and then across the developed and

developing countries (DCs and LDCs). We then document six new general facts about

cross-country technology adoption and income inequality that emerge from these data: (i)

Though DCs always adopt a new technology earlier than LDCs, on average the conver-

gence speed of technology adoption across LDCs is faster than that across DCs. (ii) Most

technological adoptions among poorer economies cluster in a lower level than those among

richer economies. (iii) The convergence speed of the adoption of most technologies is non-

monotone. (iv) The invention of the computer and the internet has not increased the average

convergence speed of other technological adoptions. (v) The relation between the average
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convergence speed of technological adoptions and that of per capita income is negative

across all countries and across LDCs, but is positive across DCs in the post-WWII period.

(vi) The dispersion in technology adoption for individual technology is 3 - 5 times larger

than the dispersion in income per capita both across DCs and LDCs. In addition, our paper

is the �rst one in economics literature to adopt the graphical technique of Signi�cance in

Scale Space, a visualization method based on the gradient direction. This method avoids

the bandwidth selection when studying the joint kernel density. In future analysis, we will

try to provide a theoretical model to explain these �ndings.
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Table 9. Technology variables and their measurement

Variable Variable Description Measurement
fert_total Fertilizer consumed, total on per capita basis
ag_harvester Harvesters on per capita basis
irrigatedarea Irrigated area on per capita basis
ag_milkingmachine Milking machines on per capita basis
pctirrigated Percent of irrigated land out of cultivated land share
pest_total Pesticide consumed, total on per capita basis
ag_tractor Tractors on per capita basis
atm ATMS on per capita basis
cheque Cheques issued on per capita basis
creditdebit Debit and credit card transactions on per capita basis
eft Electronic funds transfers on per capita basis
pos Points of service for debit/credit cards on per capita basis
elecprod Electricity production on per capita basis
internetuser Internet users on per capita basis
computer Personal computers on per capita basis
surg_appendectomy Appendectomies on per capita basis
bed_acute Beds: in-patient acute care on per capita basis
bed_longterm Beds: in-patient long-term care on per capita basis
bed_hosp Beds: total hospital on per capita basis
transplant_bonemarrow Bone marrow transplants on per capita basis
surg_breastcnsv Breast conservation surgeries on per capita basis
surg_csection Caesarean sections on per capita basis
surg_cardcath Cardiac catheterizations on per capita basis
surg_cataract Cataract surgeries on per capita basis
surg_cholecyst Cholecystectomies on per capita basis
surg_lapcholecyst Cholecystectomies, laparoscopic on per capita basis
med_catscanner Computed tomography (CAT) scanners on per capita basis
surg_corbypass Coronary bypasses on per capita basis
surg_corinterven Coronary Interventions, Percutaneous on per capita basis
surg_corstent Coronary stenting procedures on per capita basis
kidney_dialpat Dialysis patients on per capita basis
kidney_homedialpat Dialysis patients, home on per capita basis
transplant_heart Heart transplants on per capita basis
surg_hernia Hernia procedures, inguinal and femoral on per capita basis
surg_hipreplace Hip replacement surgeries on per capita basis
surg_hysterectomy Hysterectomies on per capita basis
transplant_kidney Kidney transplants on per capita basis
surg_kneereplace Knee replacement surgeries on per capita basis
med_lithotriptor Lithotripters on per capita basis
transplant_liver Liver transplants on per capita basis
transplant_lung Lung transplants on per capita basis
med_mammograph Number of dedicated mammographs machines on per capita basis
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Table 10. (Continued) Technology variables and their measurement

Variable Variable Description Measurement
surg_mastectomy Num. of mastectomies performed on per capita basis
med_mriunit Num. of MRI units on per capita basis
surg_pacemaker Pacemaker surgical procedures on per capita basis
pctimmunizdpt Per immunized for DPT, children 12-23 months share
pctimmunizmeas Per immunized for measles, children 12-23 months share
pctdaysurg_cataract Per of cataract surgeries done as day cases share
pctdaysurg_lapcholecyst Per of cholecystectomies done as day cases share
pctdaysurg_cholecyst Per of cholecystectomies done as day cases share
pcthomedialysis Per of dialysis patients at home share
pctdaysurg_hernia Per of hernia procedures done as day cases share
pctdaysurg_tonsil Per of tonsillectomies done as day cases share
pctdaysurg_varicosevein Per of varicose veins proc. done as day cases share
surg_prostatextrans Number of non-trans. prostatectomies performed on per capita basis
surg_prostatetrans Number of trans. prostatectomies performed on per capita basis
med_radiationequip Radiation therapy equipment on per capita basis
surg_tonsil Numer of tonsillectomies performed on per capita basis
surg_varicosevein Number of varicose vein corr. proc. performed on per capita basis
steel_stainless Stainless steel production on per capita basis
steel_acidbess Steel prod. by the acid Bessemer method share
steel_basicbess Steel prod. by the basic Bessemer method share
steel_bof Steel production in blast oxygen furnaces share
steel_eaf Steel production in electric arc furnaces share
steel_ohf Steel production in open hearth furnaces share
steel_other Steel production by other methods share
cabletv Cable television subscribers on per capita basis
cellphone Number of users of portable cell phones on per capita basis
mail Number of items mailed on per capita basis
newspaper Number of newspaper copies circulated daily on per capita basis
radio Number of radios on per capita basis
telegram Number of telegrams sent on per capita basis
telephone Number of mainline telephone lines on per capita basis
tv Number of television sets in use on per capita basis
loom_auto Looms: automatic on per capita basis
loom_total Looms: total on per capita basis
spindle_mule Number of mule spindles in place at year end on per capita basis
spindle_ring Number of ring spindles in place at year end on per capita basis
txtlmat_artif Spindle raw materials weight: arti�cal �bers share
txtlmat_otherraw Spindle raw materials weight: other share
txtlmat_synth Spindle raw materials weight: synthetic share
visitorbed Number of visitor beds available in hotels on per capita basis
visitorroom Number of visitor rooms available in hotels on per capita basis
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Table 11. (Continued) Technology variables and their measurement

Variable Variable Description Measurement
aviationPKM Aviation: passenger kilometers on per capita basis
aviationTKM Aviation: freight ton-kilometers on unit real GDP basis
railTKM Railroads: freight ton-kilometers on unit real GDP basis
railT Railroads: freight ton-kilometers on unit real GDP basis
railline Railroads: length of line open on unit real GDP basis
railP Railroads: passenger journeys on per capita basis
railPKM Railroads: passenger kilometers on per capita basis
ship_motor Number of motor ships in use at midyear share
ship_sail Number of sail ships in use at midyear share
ship_steam Num. of steam ships in use at midyear share
ship_steammotor Num of steam&motor ships in use at midyear share
shipton_motor Ton of motor ships in use at midyear share
shipton_sail Ton of sail ships in use at midyear share
shipton_steam Ton of steam ships in use at midyear share
shipton_steammotor Ton of steam&motor ships in use at midyear share
vehicle_com Num of comm. vehicles, including buses & taxis on per capita basis
vehicle_car Num of passenger cars in use on per capita basis
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Table 12. Invention data and � convergence rate across all countries, DCs and LDCs for
technologies based on per-capita or per-unit-real-GDP

Variable Invention date �
All DCs se LDCs se

ship_sail pre-1500 0.02 0.001 0.006 -0.003 0.012
surg_appendectomy 1885 0.037 0.139 0.095��� 0.007 0.190
kidney_dialpat 1943 0.065 0.043 0.006��� 0.009 0.028
surg_corbypass 1953 0.036 0.104 0.030��� 0.048 0.046��

tv 1924 0.009 0.076 0.005��� 0.042 0.003���

txtlamat_totalraw 1884 0.134 0.164 0.040��� 0.104 0.022���

telephone 1876 0.041 0.009 0.001��� 0.006 0.002���

med_radiationequip 1900 0.083 0.087 0.042��� 0.066 0.054��

steel_stainless 1913 0.022 0.248 0.043��� 0.189 0.099���

railP 1825 0.013 0.015 0.002��� 0.011 0.004���

railPKM 1825 -0.002 0.015 0.003��� 0.011 0.005���

railTKM 1825 0.008 0.018 0.006��� 0.014 0.006���

txtlmat_synth 1884 0.126 0.148 0.021��� 0.115 0.022���

surg_hipreplace 1938 0.025 0.129 0.052��� 0.114 0.306
transplant_bonemarrow 1956 0.043 0.066 0.017��� 0.060 0.046���

transplant_liver 1967 0.112 0.095 0.018��� 0.087 0.090�

shipton: total pre-1500 0.009 0.031 0.006��� 0.029 0.005���

med_mriunit 1981 0.054 0.058 0.016��� 0.054 0.089
surg_pacemaker 1952 0.028 0.066 0.080� 0.063 0.277
med_catscanner 1972 0.037 0.061 0.012��� 0.058 0.051��

vehicle_com 1885 0.024 0.021 0.002��� 0.021 0.003���

shipton_steammotor 1788 0.02 0.026 0.005��� 0.027 0.005���

vehicle_car 1885 0.055 0.013 0.002��� 0.015 0.003���

loom_auto 1801 0.001 0.156 0.041��� 0.176 0.027���

bed_hosp pre-1500 0.082 0.061 0.022��� 0.070 0.025���

irrigatedarea pre-1500 0.012 0.026 0.005��� 0.030 0.004���

aviationTKM 1903 0.033 0.031 0.005��� 0.036 0.007���

bed_longterm pre-1500 0.011 0.049 0.012��� 0.058 0.072�

transplant_heart 1967 0.093 0.157 0.023��� 0.189 0.132��

steel_eaf 1900 0.048 0.051 0.009��� 0.065 0.012���

cellphone 1947 0.033 0.038 0.006��� 0.048 0.008���

kidney_dialpat 1943 0.069 0.073 0.014��� 0.093 0.084��

eft 1979 0.02 0.069 0.020��� 0.088 0.053���

telegram 1835 0.001 0.037 0.006��� 0.048 0.009���

Note: *** means signi�cant at 1%, ** means signi�cant at 5% and * means signi�cant at
10%.
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Table 13. (Continued) Invention data and � convergence rate across all countries, DCs and
LDCs for technologies based on per-capita or per-unit-real-GDP

Variable Invention date �
All DCs se LDCs se

steel_bof 1950 -0.027 0.135 0.011��� 0.177 0.018���

radio 1901 0.004 0.019 0.002��� 0.025 0.002
pos 1950 0.148 0.095 0.021��� 0.129 0.030���

ag_milkingmachine 1870 0.006 0.016 0.005��� 0.022 0.007���

computer 1973 0.082 0.040 0.005��� 0.057 0.006���

loom_total 1785 0.123 0.101 0.034��� 0.145 0.026���

steel_ohf 1867 0.025 -0.030 0.021��� -0.044 0.030
surg_csection pre-1500 0.03 0.052 0.046�� 0.078 0.195
cabletv 1949 0.015 0.085 0.011��� 0.132 0.021���

pest_total 1939 0.164 0.315 0.073��� 0.490 0.051���

aviationPKM 1903 0.047 0.016 0.003��� 0.026 0.004���

visitorbed pre-1500 0.011 0.042 0.015��� 0.070 0.012���

ship_steammotor 1788 0.002 0.018 0.007��� 0.031 0.006���

fert_total 1815 0.004 0.045 0.013��� 0.078 0.007���

transplant_kidney 1951 0.229 0.060 0.010��� 0.106 0.038���

visitorroom pre-1500 0.035 0.028 0.017��� 0.050 0.010���

ag_tractor 1868 0.007 0.017 0.003��� 0.032 0.003���

creditdebit 1950 -0.002 0.037 0.015��� 0.067 0.065��

elecprod 1882 0.01 0.009 0.001��� 0.016 0.002���

surg_hysterectomy 1843 0.028 0.207 0.079��� 0.391 0.108���

ag_harvester 1850 0.008 0.012 0.003��� 0.025 0.004���

med_lithotriptor 1980 0.02 0.129 0.029��� 0.277 0.147���

mail pre-1500 0.02 0.007 0.001��� 0.015 0.004���

internetuser 1973 0.078 0.049 0.009��� 0.107 0.010���

surg_cholecyst 1882 0.002 0.081 0.106 0.183 0.108��

ships: total pre-1500 0.033 0.017 0.006��� 0.046 0.007���

txtlmat_artif 1884 0.073 0.082 0.047��� 0.223 0.115���

atm 1967 0.148 0.049 0.014��� 0.148 0.023���

surg_tonsil pre-1500 0.023 0.203 0.113��� 0.648 0.459
newspaper 1606 0.041 0.010 0.006��� 0.032 0.005���

shipton_steam 1788 0.001 0.018 0.006��� 0.058 0.037���

surg_hernia pre-1500 0.122 0.169 0.110��� 0.589 0.123���

surg_mastectomy pre-1500 -0.002 0.165 0.089��� 0.726 0.248���

surg_cardcath 1941 0.044 0.040 0.040�� 0.195 0.210

Note: *** means signi�cant at 1%, ** means signi�cant at 5% and * means signi�cant at
10%.
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Table 14. (Continued) Invention data and � convergence rate across all countries, DCs and
LDCs for technologies based on per-capita or per-unit-real-GDP

Variable Invention date �
All DCs se LDCs se

surg_cataract 1748 0.072 0.040 0.040�� 0.195 0.210
med_mammograph 1966 0.104 0.022 0.021�� 0.117 0.081���

txtlmat_otherraw 1884 0.230 0.088 0.064��� 0.607 0.103���

railT 1825 -0.001 0.001 0.003 0.009 0.005���

surg_kneereplace 1970 0.016 0.057 0.036��� 0.663 0.564
ship_steam 1788 -0.002 0.004 0.005� 0.055 0.025���

surg_prostatextrans 1883 0.024 0.044 0.064 0.667 0.525
spindle_ring 1828 0.015 0.033 0.032�� 0.657 0.064���

spindle_mule 1779 0.000 0.000 0.029 0.003 0.015
shipton_motor 1897 0.039 0.004 0.006���

ship_motor 1897 0.024 0.009 0.008���

steel_basicbess 1855 0.082 0.119 0.075���

surg_corstent 1980 0.059 0.120 0.066���

surg_prostatetrans 1931 0.051 0.145 0.070���

surg_breastcnsv pre-1500 0.022 0.160 0.087���

surg_lapcholecyst 1901 0.039 0.180 0.051���

steel_acidbess 1855 0.08 0.192 0.065���

transplant_lung 1963 0.118 0.204 0.033���

surg_corbypass 1953 0.033
surg_varicosevein pre-1500 0.033 -0.041 0.121 0.279 0.227
shipton_sail pre-1500 0.027 -0.002 0.004 0.010 0.016
railline 1825 0.004 -0.004 0.002 0.009 0.005���

bed_acute pre-1500 0.035 -0.015 0.010��� 0.025 0.017���

cheque pre-1500 0.059 -0.073 0.032��� 0.022 0.112

Note: *** means signi�cant at 1%, ** means signi�cant at 5% and * means signi�cant at
10%.
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Table 15. Invention data and � convergence rate across all countries, DCs and LDCs for
technologies measured in share

Variable Invention date �
All DCs se LDCs se

pctdaysurg_cataract 1748 0.039 -0.019 0.026 0.366 0.120���

pctdaysurg_varicosevein pre-1500 0.007 0.031 0.037� -0.215 0.746
pctimmunizdpt 1927 0.086 0.158 0.024��� 0.082 0.009���

pctloom_auto 1801 0.063 1.275 0.055��� 0.742 0.038���

pctirrigated pre-1500 -0.005 0.015 0.006��� 0.011 0.003���

pctimmunizmeas 1964 0.119 0.110 0.018��� 0.102 0.010���

pctshipton_steammotor 1788 0.007 0.014 0.004��� 0.016 0.004���

pctsteel_ohf 1855 0.014 0.009 0.010�� 0.010 0.016
pctship_steammotor 1788 0.004 0.007 0.005��� 0.009 0.002���

pctsteel_bof 1950 0.061 0.058 0.012��� 0.081 0.016���

pctship_sail pre-1500 0.002 0.002 0.003 0.003 0.009
pctsteel_eaf 1900 0.015 0.027 0.011��� 0.048 0.011���

pctspindle_ring 1828 0.025 0.019 0.020�� 0.049 0.036���

pctdaysurg_tonsil pre-1500 0.001 0.223 0.069��� 0.598 0.177��

pctship_steam 1788 0.051 0.039 0.012��� 0.198 0.064���

pctshipton_sail pre-1500 0.008 0.006 0.003��� 0.041 0.015���

pctshipton_steam 1788 0.025 0.019 0.008��� 0.174 0.067���

pctdaysurg_hernia pre-1500 0.009 0.024 0.034 1.880 0.433�

pctdaysurg_cholecyst 1882 -0.145 0.010 0.042
pctdaysurg_lapcholecyst 1901 -0.133 0.042 0.053�

pcthomedialysis 1943 0.021 4.074 0.000���

pctship_motor 1897 0.009 0.009 0.008���

pctshipton_motor 1897 0.004 0.004 0.006�

pctsteel_acidbess 1855 0.276 0.597 0.078���

pctsteel_basicbess 1855 0.023 0.002 0.039
pctsteel_other 1855 0.04 0.173 0.072���

pctsteel_stainless 1913 -0.005

Note: *** means signi�cant at 1%, ** means signi�cant at 5% and * means signi�cant at 10%.
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Table 16. Summary of kernel density estimates and their feature tests of technologies
measured on per capita basis

Technologies Year Observations Modality Multi-modality test Bandwidth for test
Bed_hosp 1960 97 2 Not clear 5-6

1970 97 2 Clear 5-6
1980 69 2 Clear 5-6
1990 120 2 Clear 5-6

visitorbed 1980 98 2 Clear 5-6
1990 94 3 Clear 5-6
2000 88 2 Clear 5-6

visitorroom 1980 99 2 Clear 5-6
1990 95 3 Clear 5-6
2000 95 2 Clear 5-6

Newspaper 1960 91 2 Clear 5-6
1970 101 3 Clear 5-6
1980 115 3 Clear 5-6
1990 115 2 Clear 5-6
1999 102 2 Clear 5-6

Railp 1960 85 3 Clear 5-6
1970 84 3 Clear 5-6
1980 72 3 Clear 5-6

Tractors 1970 108 2 Clear 5-6
1980 118 3 Clear 5-6
1990 119 3 Clear 5-6
2000 109 2 Clear 5-6

Telephones 1960 98 2 Not clear 5-6
1970 101 2 Clear 5-6
1980 103 3 Clear 5-6
1990 86 2 Clear 5-6

Elecprod 1950 94 1 Not clear 5-6
1960 106 2 Not clear 5-6
1970 115 2 Clear 5-6
1980 118 2 Clear 5-6
1990 120 3 Clear 5-6
2000 75 2 Clear 5-6

Vehicle_car 1960 101 2 Clear 5-6
1970 107 2 Clear 5-6
1980 106 2 Clear 5-6
1990 120 2 Clear 5-6

Vehicle_com 1960 103 2 Not clear 5-6
1970 106 2 Not clear 5-6
1980 105 2 Clear 5-6
1990 94 3 Clear 5-6
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Table 17. (Continued) Summary of kernel density estimates and their feature tests of
technologies measured on per capita basis

Technologies Year Observations Modality Multi-modality test Bandwidth for test
Radios 1960 94 3 Clear 5-6

1970 112 3 Clear 5-6
1980 117 3 Clear 5-6
1990 119 3 Clear 5-6
1999 115 3 Clear 5-6

Aviationpkm 1960 74 2 Clear 5-6
1970 92 2 Clear 5-6
1980 96 3 Clear 5-6
1990 97 3 Clear 5-6

TVs 1970 90 2 Not clear 5-6
1980 113 2 Clear 5-6
1990 139 1 Clear 5-6

Cell phones 1995 105 2 Clear 5-6
2000 110 2 Clear 5-6

Computers 1995 92 2 Clear 5-6
2000 103 3 Clear 5-6

Internet users 1995 96 2 Clear 5-6
2000 110 2 Clear 5-6

Textlmat_artif 1975 70 2 Clear 6-7
1979 70 1 Not clear 6-7

Txtlmat_synth 1975 71 2 Clear 6-7
1979 73 1 Not clear 6-7

Steel_EAF 1995 82 2 Clear 6-7
2000 69 2 Clear 6-7

Irrigated area 1970 114 2 Not clear 7-8
1980 115 2 Not clear 7-8
1990 116 1 Not clear 7-8
2000 108 2 Not clear 7-8

Fert 1970 113 2 Clear 7-8
1980 117 3 Clear 7-8
1990 117 2 Not clear 7-8
2000 109 1 Not clear 7-8

Railpkm 1960 76 2 Clear 7-8
1970 83 2 Clear 7-8
1980 80 3 Clear 7-8
1989 71 2 Clear 7-8

Harvesters 1970 87 2 Clear 7-8
1980 87 2 Clear 7-8
1990 88 2 Clear 7-8
2000 90 1 Not clear 7-8

Cable TV 2000 72 2 Not clear 7-8

91



Table 18. Summary of kernel density estimates and their feature tests of technologies
measured on share and on unit real GDP based

Technologies Year Observations Modality Multi-modality test Bandwidth for test

In unit real GDP
Railline 1960 94 1 Not clear 7-8

1970 93 1 Not clear 7-8
1980 87 2 Not clear 7-8
1990 87 2 Not clear 7-8

RailT 1960 88 2 Clear 7-8
1970 88 2 Clear 7-8
1980 73 2 Clear 7-8

RailTKM 1960 83 2 Not clear 7-8
1970 88 2 Clear 7-8
1980 86 2 Clear 7-8
1990 82 2 Clear 7-8

Aviationtkm 1970 89 3 Clear 7-8
1980 95 1 Not clear 7-8
1990 92 2 Clear 7-8

In share
pctirrigated 1970 114 1 Not clear 5-6

1980 115 2 Not clear 5-6
1990 116 2 Clear 5-6
2000 108 1 Not clear 5-6

pct_txtlmat_artif 1975 70 1 Not clear 5-6
1979 70 1 Not clear 5-6

pct_txtlmat_synth 1975 71 2 Clear 5-6
1979 73 2 Not clear 5-6

pct_steel_eaf 1995 82 3 Clear 7-8
2000 69 3 Clear 7-8
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Table 19. Each technology �-convergence rates in 1919-1938, 1946-1972 and 1973-2000
across all countries

Variable 1919-1938 1946-1972 1973-2000
� se � se � se

Agriculture
fert_total 0.095 0.016��� 0.126 0.011���

harvester 0.050 0.013��� 0.019 0.004���

irrigated area 0.052 0.014��� 0.045 0.006���

milking machines 0.062 0.016��� 0.016 0.008���

pctirrigated 0.054 0.014��� 0.022 0.004���

pest_total 0.475 0.042���

tractors 0.065 0.008��� 0.029 0.004���

Financial
ATM 0.090 0.017���

cheque 0.031
creditdebit 0.067 0.032���

eft 0.073 0.023���

pos 0.094 0.023���

General
elecprod 0.030 0.008��� 0.024 0.004��� 0.042 0.005���

internetuser 0.098 0.010���

computer 0.057 0.005���

Health
appendectomies 0.206 0.097���

bed_acute -0.009 0.010��

bed_longterm 0.073 0.031��� 0.043 0.018���

bed_hosp 0.079 0.021���

transplant_bonemarrow 0.064 0.017���

surg_breastcnsv 0.171 0.098���

surg_csection 0.062 0.049���

surg_cardcath 0.080 0.034���

surg_cataract 0.052 0.041���

surg_cholecyst 0.130 0.112��

surg_lapcholecyst 0.215 0.051���

med_catscanner 0.060 0.020���

surg_corbypass 0.075 0.024���

Note: *** means signi�cant at 1%, ** means signi�cant at 5% and * means signi�cant at 10%.
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Table 20. (Continued) Each technology �-convergence rates in 1919-1938, 1946-1972 and
1973-2000 across all countries

Variable 1919-1938 1946-1972 1973-2000
� se � se � se

surg_corinterven 0.087 0.029���

surg_corstent 0.107 0.075���

Dialysis patients 0.033 0.007���

Dialysis patients, home 0.086 0.017���

heart transplante 0.163 0.026���

surg_hernia 0.353 0.097���

surg_hipreplace 0.130 0.062���

surg_hysterectomy 0.272 0.080���

kidney transplants 0.106 0.078��� 0.079 0.014���

surg_kneereplace 0.067 0.043���

lithotripters 0.145 0.032���

liver transplants 0.096 0.020���

lung transplant 0.221 0.036���

mammographs 0.079 0.042���

surg_mastectomy 0.200 0.090���

MRI units 0.061 0.024���

surg_pacemaker 0.115 0.093��

pctimmunizdpt 0.092 0.009���

pctimmunizmeas 0.107 0.010���

pctdaysurg_cataract -0.030 0.032��

pctdaysurg_lapcholecyst 0.062 0.067�

pctdaysurg_cholecyst
pcthomedialysis 0.098 0.028���

pctdaysurg_hernia
pctdaysurg_tonsil 0.271 0.062���

pctdaysurg_varicosevein
surg_prostatextrans
surg_prostatetrans 0.185 0.080���

med_radiationequip 0.072 0.044���

surg_tonsil 0.228 0.104���

surg_varicosevein
steel
steel stainless 0.215 0.050���

steel_acidbess 0.600 0.081���

steel_basicbess 0.072 0.060�� 0.158 0.032�

steel_bof 0.091 0.014���

steel_eaf 0.088 0.03��� 0.045 0.009���

steel_ohf 0.014 0.018� 0.015 0.016��

steel_other 0.113 0.058���

Note: *** means signi�cant at 1%, ** means signi�cant at 5% and * means signi�cant at 10%.
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Table 21. (Continued) Each technology �-convergence rates in 1919-1938, 1946-1972 and
1973-2000 across all countries

Variable 1919-1938 1946-1972 1973-2000
� se � se � se

telecommunications
cabletv 0.103 0.012���

cell phones 0.046 0.007���

mail 0.100 0.020��� 0.058 0.010��� 0.055 0.014���

newspaper 0.066 0.007��� 0.036 0.007���

radio 0.083 0.028��� 0.036 0.004��� 0.028 0.004���

telegram 0.563 0.033��� 0.040 0.012���

telephone 0.049 0.012��� 0.020 0.005��� 0.008 0.005���

TV 0.091 0.008��� 0.042 0.004���

Textiles
looms: automatic 0.211 0.033��� 0.577 0.046���

looms: total 0.085 0.032��� 0.480 0.043���

spindle_mule 0.125 0.093��� 0.147 0.084���

spindle_ring 0.135 0.069��� 1.260 0.055���

txtlmat_artif 0.288 0.039��� 0.389 0.047���

txtlmat_otherraw 0.943 0.180��� 0.139 0.091���

txtlmat_synth 0.120 0.040��� 0.188 0.041��*
Tourism
visitorbed 0.075 0.011���

visitorroom 0.051 0.010���

Transportation
aviationPKM 0.085 0.031��� 0.057 0.007��� 0.073 0.011���

aviationtkm 0.059 0.009��� 0.092 0.012���

railtkm 0.207 0.034��� 0.052 0.011��� 0.049 0.012���

railt 0.077 0.021��� 0.039 0.010��� 0.054 0.013���

railline 0.058 0.018��� 0.035 0.008���

railp 0.089 0.016��� 0.050 0.011��� 0.040 0.014���

railpkm 0.059 0.022��� 0.058 0.011��� 0.027 0.013���

ship_motor 0.023 0.021��

ship_sail 0.041 0.020��� 0.055 0.027���

ship_steam 0.170 0.082��� 0.093 0.027��� 0.308 0.092���

ship_steammotor 0.049 0.024��� 0.088 0.015���

shipton_motor 0.013 0.013��

shipton_sail 0.075 0.026��� 0.232 0.018��� 0.116 0.082���

shipton_steam 0.037 0.034�� 0.032 0.017��� 0.182 0.051���

shipton_steammotor 0.151 0.030��� 0.135 0.012��� 0.125 0.007���

vehicle_com 0.077 0.010��� 0.045 0.006��� 0.051 0.009���

vehicle_car 0.073 0.010��� 0.028 0.005��� 0.044 0.007

Note: *** means signi�cant at 1%, ** means signi�cant at 5% and * means signi�cant at 10%.
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Table 22. Average �-convergence speed of technologies and income per capita in 1919-1938,
1946-1972 and 1973-2000 across all countries, DCs as well as LDCs

1919-1938 1946-1972 1973-2000
All countries � � �

Per capita Income 0.068 0.010 0.028
Average � of tech_adoption 0.111 0.137 0.115

Developed countries � � �

Per capita Income 0.074 0.010 0.006
Average � of tech_adoption 0.109 0.128 0.099

Developing countries � � �

Per capita Income 0.063 0.011 0.036
Average � of tech_adoption 0.124 0.196 0.158

Table 23. Income per capita ��convergence rate and average ��convergence rate in each
department in 1919-1938, 1946-1972 and 1973-2000 across all countries

1919-1938 1946-1972 1973-2000
All countries � � �

Income per capita 0.068 0.010 0.028

Agriculture 0.063 0.105
Finance 0.081
Electricity 0.031 0.024 0.042
Internet 0.098
Computer 0.057
Bed_longterm 0.073 0.043
Kidney_transplants 0.106 0.079
Health 0.090 0.118
Steel 0.177 0.105
Telecommunication 0.199 0.052 0.046
Textile 0.130 0.436 0.354
Tourism 0.063
Transportation 0.089 0.066 0.092

96



Table 24. Income per capita ��convergence rate and average ��convergence rate in each
department in 1919-1938, 1946-1972 and 1973-2000 across DCs

1919-1938 1946-1972 1973-2000
Developed countries � � �

Income per capita 0.074 0.010 0.006
Agriculture 0.060 0.069
Finance 0.045
Electricity 0.025 0.011 0.021
Internet 0.039
Computer 0.041
Bed_acute 0.027 -0.014
bed_longterm 0.071 0.040
Kidney_transplants 0.101 0.060
Health 0.066 0.111
Steel 0.177 0.132
Telecommunication 0.215 0.053 0.026
Textile 0.105 0.384 0.314
Tourism 0.037
Transportation 0.085 0.060 0.078

Table 25. Income per capita ��convergence rate and average ��convergence rate in each
department in 1919-1938, 1946-1972 and 1973-2000 across LDCs

1919-1938 1946-1972 1973-2000
Developing countries � � �

Income per capita 0.063 0.011 0.036
Agriculture 0.066 0.107
Finance 0.158
Electricity 0.035 0.026 0.045
Internet 0.125
Computer 0.062
Health 0.229
Steel 0.811 0.087
Telecommunication 0.194 0.058 0.051
Textile 0.214 0.502 0.407
Tourism 0.065
Transportation 0.093 0.078 0.060
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Table 26. Dispersion in technology adoption relative to dispersion in income per capita

DCs Average dispersion Percentage of instances with ratios>1
Log per capita Share All Log per capita Share All

Weighted by # of
5-Year Intervals 3.97 2.36 3.99 100 79 93

Un-weighted 4.15 3.54 3.98 99 85 96

LDCs Average dispersion Percentage of instances with ratios>1
Log per capita Share All Log per capita Share All

Weighted by # of
5-Year Intervals 3.48 1.43 3.12 98 51 90

Un-weighted 5.21 1.55 4.45 92 57 85
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Figure 6: Kernel density estimates and their corresponding contour plots of income per capita 
and electricity production in year 1950, 1960, 1970, 1980, 1990 and 2000 
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Figure 7: Significance in Scale-Space analysis of the joint density of income per capita and 
electricity production at year 1950 
 

 
 
Note: Figures 7 – 12 show the streamlines for each corresponding kernel density estimate. The x-axis 
represents income per capita, the y-axis represents electricity production, and h represents bandwidth. The 
color white is used for all regions where the density is higher than 20% of its maximum and the color black 
is used for the minimum. The green ‘streamlines’ indicate the gradient direction and therefore the structure 
of a surface. The purple lines ate contour lines, which are orthogonal to the green gradient lines. Statistical 
significant cluster will be highlighted by a purple circle surrounding it, because it will be a hill of high 
density. 
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Figure 8: Significance in Scale-Space analysis of the joint density of income per capita and 
electricity production at year 1960 
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Figure 9: Significance in Scale-Space analysis of the joint density of income per capita and 
electricity production at year 1970 
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Figure 10: Significance in Scale-Space analysis of the joint density of income per capita and 
electricity production at year 1980 
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Figure 11: Significance in Scale-Space analysis of the joint density of income per capita and 
electricity production at year 1990 
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Figure 12: Significance in Scale-Space analysis of the joint density of income per capita and 
electricity production at year 2000 
 

 




