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CHAPTER I 

 

INTRODUCTION 

 

 An important category of electronic clinical data is repeated events or measurements 

collected over time as patients interact with the healthcare system. These can be of almost any form, 

including free text notes, laboratory values, billing codes, clinical communications, and many more. 

While a static snapshot of medical data can reveal the current health state of a patient, a longitudinal 

timeseries can incorporate additional information, such as frequency of interactions and trends. 

Using this more complete information, clinicians can more appropriately take into account the 

history of a patient, which can allow for a fuller description of the patient’s current health state and 

improved predictions about future health states.  

 A challenge that arises when using clinical data for decision making is that timeseries are not 

typically neat representations of a clinical time course. Rather, data are sampled from patients at 

irregular intervals, often quite sparsely. Furthermore, clinical data are often noisy, containing 

significant sources of uncertainty and variability.  

 One solution to handling noisy, irregular, and sparse medical data has been to use Gaussian 

process regression, a Bayesian nonparametric method, to transform these observations into 

longitudinal probability distributions. This approach has been used for various machine learning 

tasks, and allows many standard techniques to be applied to data which would have been difficult to 

use otherwise [1]. 
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A Gaussian process is a collection of random variables, any finite number of which have a 

joint Gaussian distribution. Alternatively, Gaussian processes can be thought of as a distribution 

over functions. They are fully specified by the mean and covariance functions:  

𝑚(𝑥) = 𝐸[𝑓(𝑥)], (1) 

and 

𝑘(𝑥, 𝑥′) = 𝐸[(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′)]. (2)  

Combining these terms, a set of functions distributed as a Gaussian process can be written as: 

𝑓(𝑥) ~ 𝒢𝒫(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) (3) 

 In the medical field, Gaussian process regression has been used for various machine learning 

tasks. Gaussian process regression has been used to provide predictions and uncertainty estimates 

for noisy heart rate data [2].  Ghassemi et al. [3] have used multi-task Gaussian processes to model 

correlations between clinical timeseries of intracranial pressure and arterial blood pressure to predict 

patient acuity in the intensive care unit. Lasko et al. [4] used time-warped Gaussian process 

regression to transform uric acid time series into a form suitable for unsupervised feature learning.  

 In practice, most Gaussian processes assume that the function from which the data are 

drawn is stationary – in other words, the statistical properties of the function to not vary over its 

input spaces. Gaussian process inference is straightforward under this assumption, and can be 

problematic without it. 

 Unfortunately, clinical data are particularly nonstationary. While homeostasis maintains a 

tight bound on human physiology during times of overall wellness, acute events can cause rapid, 

extreme, and sometimes short-lived changes in biological measurements and in rates of interaction 

with the healthcare systems. In the context of biomedical data retrieved from an electronic health 

record, standard stationary Gaussian processes are often insufficiently expressive.  
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 Several approaches have been proposed for handling nonstationarity in Gaussian process 

regression. These have included warping two-dimensional space based on known covariances[5], 

mixture models [6], inferring an amplitude warping function [2], modeling time-varying length scales 

between observed points [7,8], inferring an input space warping function [9], and using local 

estimates of smoothness [10]. Some of these have been applied specifically to clinical data.  

 However, all of these methods for handling nonstationarity have drawbacks. All are too 

computationally inefficient to use on tens of sequences each for millions of patient records, and I 

have found none that are able to cope with the extreme nonstationarity of clinical data accurately 

enough to use in downstream research.   

 A promising approach to achieving efficient inference for highly nonstationary Gaussian 

process regression without these drawbacks is a covariance function using random forests to provide 

the estimates of covariances [11,12]. A covariance based on partitions from a random forest has 

been shown to be a valid positive semidefinite kernel [12,13]. The largest drawback of this approach 

is the piecewise-constant posterior it infers, which leads in turn to specific pathologic behavior in 

certain circumstances. As such, this work builds on these results and solves the problems caused by 

the piecewise-constant posterior.  

 The remainder of this chapter is dedicated to presenting the details of the random forest 

kernel as originally described, as well as demonstrating the pathology that results from using this 

kernel in a Gaussian process regression model. In Chapter II, I describe the modification that adds 

stochasticity to each tree in the random forest to overcome this pathology. I also describe the 

methods used to compare Gaussian process regressions using this new approach to Gaussian 

process regressions using the original random forest kernel and two other kernels.  Finally, some 

conclusions and discussion are provided in Chapter III.  
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Random Forest Kernel 

 Consider a data set 𝒟 = {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑁 , where 𝑥𝑖 are the input locations and 𝑦𝑖 are the 

measured values at those locations. In these applications, the 𝑥𝑖 are all on-dimensional measurement 

times, but these methods generalize to higher dimensions.  

 This kernel divides a data set into partitions via a forest of regression trees. Each tree is 

trained on a different subset of the data, sampled with replacement, and grown to a depth selected 

uniformly at random. If we use the notation 𝑐𝑖(𝑥) to denote the terminal leaf to which tree 𝑖 assigns 

input instance 𝑥, then the proximity 𝑟(𝑥, 𝑥′) between points 𝑥 and 𝑥′ is the fraction of time (over all 

M trees) that the points are assigned to the same leaf: 

𝑟(𝑥, 𝑥′) =  
1

𝑀
∑ 𝐼[𝑐𝑖(𝑥) =  𝑐𝑖(𝑥′)] (4) 

This proximity function can be converted to a covariance function by multiplying the signal variance 

scaling parameter 𝜎𝑓
2, and defining the covariance function:  

𝑘(𝑥, 𝑥′) =  𝜎𝑓
2𝑟(𝑥, 𝑥′) (5) 

 This supervised kernel has only the signal variance hyperparameter 𝜎𝑓
2 to learn. In some instances, 

the measurement noise parameter 𝜎𝑛
2 in the likelihood function may also need to be learned. There 

is no covariance length scale hyperparameter, which highlights the fact that this kernel naturally 

handles changes in the length scale throughout the input space[12].  

 

Pathologic Behavior 

 When used in a Gaussian process, the random forest kernel produces a posterior over 

piecewise-constant functions (Figure 1). For one-dimensional time data, the random forest 

partitioning over bootstrap samples causes each function to be potentially discontinuous at locations 

𝑑𝑖𝑗 =  
𝑥𝑖+ 𝑥𝑗

2
 for any 𝑥𝑖 ≠  𝑥𝑗  ∈ 𝐷, and constant everywhere else.  
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I call these points 𝑑𝑖𝑗 split locations because of their origin as points where the data set is split 

by a decision node in a tree. Despite the potential for 
𝑛(𝑛−1)

2
 discontinuities in the function, most of 

them are not actually realized because they occur only between points that are neighbors in the 

bootstrap sample. The probability of realizing split location 𝑑𝑖𝑗 drops nonlinearly as the number of 

points between 𝑥𝑖 and 𝑥𝑗 increases.  

 I have identified a particular pathology of this kernel (Figure 1). Because of the restricted set 

of locations at which a discontinuity may occur in the latent function, the inferred distribution over 

those functions is quite unrealistic, with uncertainty being concentrated in restricted regions between 

observations as determined by the split locations 𝑑.  In the following chapter, I propose a 

modification to the random forest kernel, and describe how it can be used to overcome this 

pathology.  

 

Figure 1. The piecewise-constant nature of the random forest kernel leads to a reproducible 
pathology. In (a), there is a substantial increase in uncertainty between two points in the center of 
the graph, which are the only allowable split locations. In (b) there is a similar pathology, where the 
uncertainty is artificially small near the data points and only allowed to grow at points where the 
mean function can be discontinuous. Red line: posterior mean function. Red shading: 95% 
confidence interval. Black points: observed data points. 

 

                       (a)                                            (b) 
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CHAPTER II 

 

METHODS 

 

 Here, I present my proposed modification for the random forest kernel, and describe the 

methods by which I compared it to the original random forest kernel and two other kernels.  

 

Modified Random Forest Kernel 

 The modified random forest kernel overcomes this pathology by randomizing the selection 

of the split locations 𝑑 that determine the boundaries of 𝑐(𝑥). Instead of selecting 𝑑𝑖𝑗 =  
𝑥𝑖+ 𝑥𝑗

2
, I 

instead selected 𝑑𝑖𝑗  ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑥𝑖, 𝑥𝑗), which gives more flexibility to the regression trees and 

removes the source of the pathology (Figure 2b, d). The form of the covariance function remains 

the same (1), but the means of partitioning 𝒟 into leaves 𝑐𝑖(𝑥) as in (1) now uses an additional 

source of randomness. The distribution of possible split locations becomes a probability density 

instead of a discrete probability mass function.   
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Figure 2. Using the modified random forest kernel in a Gaussian process alleviates the pathology 
present in the original kernel. On the right hand side of the figure, we see the same two pathologic 
examples from Figure 1 (a, c). On the right, we see that the pathology is resolved in both cases by 
the modified random forest (b, d). Red line: posterior mean function. Red shading: 95% confidence 
interval. Black points: observed data points. 
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It may be tempting to avoid the work of building the forest and simply select split locations 

uniformly across the entire range of 𝑥. However, that would provide a different and less useful result 

than using a random forest to define the splits. The random forest naturally uses the values 𝑦𝑖 to 

take into account the degree of nonstationarity of the latent function, while a uniform distribution 

over all 𝑥𝑖 does not make use of this information. It seems unlikely that a distribution of split 

locations that does not take into account the measured values at observed locations could ever 

capture nonstationarity.  

 The modified random forest kernel produces posterior mean functions that often appear 

piecewise linear (Figure 3), which is not a realistic estimate of how physiologic functions behave. 

Draws from the posterior, however, appear much more physiologically realistic, and demonstrate 

that in this case the posterior mean is not a typical draw. Similarities to both behaviors can be seen 

with the original random forest kernel, although they are constrained to approximate them using 

piecewise-constant functions.  
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Figure 3. The piecewise-linear posterior mean function using the modified random forest kernel is 
not a typical draw from that posterior (a). The posterior mean of the original random forest kernel 
(b) does appear to be a typical draw as a consequence of the piecewise-constant constraints it 
imposes. Red line: posterior mean function. Red shading: 95% confidence interval. Black line: draw 
from posterior distribution. Black points: observed data points.  

 

 

 

Experiments 

 I performed several experiments using both synthetic and real data to evaluate the 

performance of the modified random forest kernel.  

 

Methods 

 I compared the modified random forest kernel to the original random forest kernel, as well 

as a standard squared exponential Gaussian kernel and a treed Gaussian process regression that fits 

segments of the input data in a piecewise fashion. I chose treed Gaussian process regression as my 

comparator nonstationary approach is based on the fact that both Gaussian process regression with 

modified random forest kernel and treed Gaussian process regression separate the input space as 

part of their modeling. Thus, it is a reasonable standard for comparison.  
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Gaussian process regression with a squared exponential kernel was performed with the R 

package gptk [14], and the treed Gaussian process regression was performed using the R package 

tgp [15]. I used the randomForest package to produce the proximity matrices for the original and 

modified random forest kernels [16]. All analysis was carried out using R version 3.0.1 [17]. 

Experiments were run on a single machine with an Intel Core i7-26000 3.4 Ghz and 16 GB DDR4.  

 

Evaluation Measures 

 I evaluated the four approaches on synthetic data where the true function 𝑓(𝑥) was known 

for all 𝑥, using two measures of fit and one measure of runtime. I evaluated the approaches in terms 

of negative log probability:  

NLP = ∑ − log 𝑝(𝑦𝑖
∗|𝐷, 𝑥𝑖

∗) =  ∑
1

2
𝑖𝑖

log(2𝜋𝜎∗
2) + 

(𝑦𝑖
∗ −  𝑓(𝑥𝑖

∗))
2

2𝜎∗
2

, (6) 

where 𝜎∗
2 is the posterior variance, (𝑥𝑖

∗, 𝑦𝑖
∗) is a test point, and 𝑓(𝑥𝑖

∗) is the posterior mean at the 

test point 𝑥𝑖
∗.  I also compared the approaches using standardized mean squared error: 

𝑆𝑀𝑆𝐸 = ∑(𝑓(𝑥𝑖) − 𝑓(𝑥𝑖))
2

𝑖

/ ∑(𝑓(𝑥𝑖) − 𝑓 ̅)
2

𝑖

, (7) 

where 𝑓(𝑥𝑖) is the posterior mean at the training point 𝑥𝑖 , and 𝑓̅ =  
1

𝑛
∑ 𝑓(𝑥𝑖)𝑖 . I also measured the 

runtime reported in seconds.  

 

Synthetic Data 

 I tested these approaches on sets of synthetic data, created by adding random Gaussian noise 

𝑁(0, 𝜎2) for some choice of 𝜎2 to known functions to create new data sets. The first three of these 
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functions have previously been used to compare different methods of nonstationary Gaussian 

process regression [8,10,18]. I used them here because they have become a de facto test suite.  

 The fourth function displays a much higher degree of nonstationarity, manifest as rapid, 

bursty changes in the underlying function. This function was designed to mimic a specific kind of 

extreme nonstationarity seen in clinical data, highlighting the issues I seek to address with my kernel.  

 

Function 1. The true function is a spline with three internal knots at (0.2, 0.6, 0.7) and coefficients 

𝛽 = (20, 4, 6, 11, 6), with 𝜎 = 0.9, and 101 data points sampled for each new data set.  

 

Function 2. The true function is 

𝑓(𝑥) = sin(𝑥) + 2 exp(−30𝑥2) , 𝑥 ∈ [−2, 2], 

with 𝜎 = 0.3, with 101 points sampled for each new data set.  

 

Function 3. The true function is a spline with five knots located at (0.4, 0.4, 0.4, 0.4, 0.7) and 

coefficients (2, -5, 5, 2, -3, -1, 2) and 𝜎 = 0.55, with 201 points sampled for each new data set.  

 

Function 4. The true function is a sine wave with discontinuous jumps,  

𝑓(𝑥) = sin(0.05𝑥) + 𝐼[100 < 𝑥 < 135] ∗ −0.1𝑥 + 𝐼[250 < 𝑥 < 275] ∗ 0.1𝑥 

+𝐼[300 < 𝑥 < 310 ∗ (−1 ∗ (𝑥 − 305)2 − 25), 

with 𝜎 = 0.5 and 100 points sampled for each new data set.  

 

I compared Gaussian process regression using the modified random forest kernel to the 

three other approaches described above.  Applying these methods to data drawn from these known 

functions, I evaluated the performance of the regression methods using negative log probability (3), 
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standardized mean squared error (4), and runtime (Table 1). All functions were evaluated at a 

regularly spaced grid of 500 points, and both random forest kernels used forests with 500 trees.  

 For the first three functions, I optimized the fit of both the signal variance 𝜎𝑓
2 and noise 

parameter 𝜎𝑛
2 for all methods. For the fourth function, I fixed the measurement noise parameter to 

its known value. This is consistent with the approach I use later for medical data, where the value of 

the measurement noise is generally known. Typical regression fits to the data for each method are 

shown in Figure 3.  

 

Table 1. Modified random forest kernel regression performs favorably, even on smooth, stationary 
data, and excels on extremely nonstationary data. MRF: modified random forest kernel. RF: random 
forest kernel. SE: squared exponential kernel. TGP: treed Gaussian process regression. NLP: 
negative log probability. SMSE: standardized mean squared error.  
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Figure 4. The modified random forest kernel produces posterior distributions which are not smooth, 
but which naturally handle nonstationarity. Each row represents one data set drawn from each of 
the four synthetic functions. For these data sets the horizontal and vertical scales are arbitrary, and 
therefore omitted for clarity. Red line: posterior mean function. Red shading: 95% confidence 
interval. Black line: known function. Black points: observed data points.   
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Real Data 

 After obtaining IRB approval, I extracted the full sequence of measurements for a small 

number of laboratory tests from Vanderbilt’s Synthetic Derivative, the deidentified mirror of the 

electronic health record [19], which contains up to 30 years of clinical data on over 2 million 

patients.  

I extracted measurements of blood urea nitrogen and glucose, which are commonly measured in 

many circumstances and display the kind of bursty nonstationarity that makes medical data 

challenging to fit with stationary regression techniques.  

 Rather than inferring a parameter for the measurement noise 𝜎𝑛
2, I fixed the parameter at the 

value defined by the national Clinical Laboratory Improvement Amendments (CLIA) requirements 

for laboratory tests[20]. While measurement error for a given test or even a given machine can vary 

significantly over time, CLIA limits have remained largely unchanged for over a decade, providing a 

stable bound on the measurement error associated with various laboratory tests. For blood urea 

nitrogen, the CLIA-defined uncertainty is the maximum of 9% of the laboratory measurement value 

and 2mg/dL. For glucose, it is the maximum of 10% of the laboratory measurement value and 

6mg/dL. As a result of this variable uncertainty, I set the noise parameter to a different value at each 

observed data point; this is allowed by most Gaussian process regression packages. All functions 

were evaluated at a regularly spaced grid of 1000 points. The original random forest kernel and 

modified random forest kernel used forests with 1000 trees. Typical regression fits to selected 

sequences that display varying degrees of bursty nonstationarity are shown in Figures 5 and 6. As I 

fit the regression models using negative log probability minimization and I did not know the true 

underlying function, I could not compare these approaches on the same evaluation measures I used 

on the synthetic data. Instead, I compared them qualitatively to describe differences in fit (Figures 5 

and 6).  
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Figure 5. The modified random forest kernel handles many different nonstationary functions on real 
clinical data. While the squared exponential kernel and treed Gaussian process 
regression often underfit nonstationary functions, the random forest kernel and modified 
random forest kernel do not demonstrate this limitation. Red line: posterior mean function. 
Red shading: 95% confidence interval. Black points: observed data points. 
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Figure 6. Additional fits of real clinical data. In the second row, we see an example of the modified 
random forest kernel overcoming the pathology of random forest kernels described earlier in this 
thesis. The fourth row is a magnification of the third row, of the boxed area between 
days 800 and 900. Red line: posterior mean function. Red shading: 95% confidence interval. 
Black points: observed data points. 
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CHAPTER III 

 

DISCUSSION 

 

 In this thesis, I present a modified random forest kernel. When used in Gaussian process 

regression, this new kernel remains fast and nonstationary, and also removes a pathology that results 

from the piecewise-constant posterior created by the original random forest kernel. For data sets 

with very few instances or for which there are long stretches of time between measurements, the 

pathology of the original random forests is easily seen  and the modified kernel demonstrates a clear 

benefit. However, the pathology exists to some degree in every data set.  

 This modified random forest kernel performs favorably against other methods. The 

modified random forest kernel consistently outperforms the original random forest kernel in terms 

of negative log probability and standardized mean squared error, possibly due to the more realistic 

posterior uncertainty estimates and the flexibility of the posterior mean function. On the first and 

second functions, which are fairly close to stationary, the squared exponential kernel and treed 

Gaussian process regression outperform both random forest kernels by a wide margin in terms of 

both negative log probability and standardized mean squared error. On the third function in 

particular, treed Gaussian process regression provides a superior fit to the data. This makes some 

sense, given this methods’ approach of fitting Gaussian processes over individual segments of the 

input data. On the fourth function, which was constructed to mimic the bursty nonstationarity of 

medical data, the regression using the modified random forest kernel performed much better than 

the others.  

I did not optimize the implementation of the modified random forest kernel for speed, and 

thus this method was slightly slower than the original random forest kernel due to the additional 
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processing needed to draw the split points from a uniform distribution. Both of the random forest 

kernel regresisons were slower than squared exponential Gaussian process regression, but both were 

also faster than the treed Gaussian process regression. Future work on the modified random forest 

kernel, such as byte compiling and growing the forests in parallel, will likely improve the speed of 

this method.  

 The modified random forest kernel resolves the pathology seen with the original random 

forest kernel; an example of this can be seen in the second row of Figure 5. When faced with the 

task of fitting highly nonstationary data, the squared exponential kernel and treed Gaussian process 

methods each converged to one of the two possible modes: short length scale with high signal 

variance 𝜎𝑓
2, or moderate length scale with high measurement noise 𝜎𝑛

2. Both are suboptimal fits, 

but are the only two reasonable alternatives given their stationarity constraints [1]. Regression using 

either of the random forest kernels found subjectively better fits.  

 Using the modified random forest kernel and Gaussian process regression on large sets of 

continuous medical data could allow for automatic, fast construction of compact longitudinal data 

representations from noisy, sparse, and irregular observations. Such representations of medical data 

could be used as input to standard machine learning algorithms, allowing improved mining of 

clinical relationships.    
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