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Molecular mechanisms of protein degradation studied at the single molecule level

Juan Carlos Cordova

Department of Chemical and Biomolecular Engineering

Enzymatic proteins catalyze biochemical reactions central to many cellular processes.
Across all kingdoms of life, members of the AAA+ (ATPases associated with diverse
cellular activities plus) superfamily of enzymes convert chemical energy to mechanical
work through hydrolysis of the molecule adenosine triphosphate (ATP) One of the best
characterized AAA+ systems is the CIpXP protease, which degrades cellular proteins
targeted for disposal. As an oligomeric stackedring structure comprised of the AAA+
ClpX unfoldase and the ClpP peptidase, CIpXP repeatedly pulls against a targeted
protein until it ultimately mechanically unfolds the substrate. Upon unfolding, ClpX
translocates the polypeptide into the ClpP peptidase for degradation. Although structural
and ensemble biochemical studies have established many of the operating principles of
ClpXP, a detailed mechanochemical model for protein degradation remains largely
unknown.

Here we employ and engineer novel singlemolecule approaches to elucidate the
underlying physical mechanisms of protein unfolding and polypeptide translocation by
CIpXP at the single molecule level. Using a highresolution optical trapping assay, we
directly monitor degradation of homopolymer substrates to establish the kinetics of
protein unfolding which are tightly linked to substrate stability near the site of ClpX
pulling. During translocation, CIpXP spools polypeptides in -14nm steps, even when
only two of six subunits are active in ClpX mutants, suggesting a large amount of
subunit cooperativity within the ClpX ring. Using these findings, we present a
mechanochemical model for protein degradation by the CIpXP protease. Furthermore,
we develop singlemolecule fluorescence assays to report on nucleotide binding to
single ClpX subunits, as well as vital structural rearrangements in the ClpX ring. These
fluorescence approaches are then combined with optical trapping to simultaneously
visualize ClpX conformation, nucleotide binding, and mechanical activity. Lastly, a
synthetic technique for functionalizing highly stable optical trapping handles with
proteins and nucleic acids is presented.
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CHAPTER 1 

 

Introduction 

 

MOLECULAR MACHINES 

Biological cells are the fundamental building blocks of life. Together, groups of cells 

differentiate to form tissues and organs that comprise metazoan bodies, including homo 

sapiens ourselves. Even simple single-cell organisms, like the bacteria E. coli, have 

genomes containing thousands of genes, which encode the ~3 million proteins that 

make up a cell. With an approximate cellular volume ~0.7μm3 for E. Coli, the most 

studied model cell system, this results in a cellular environment that is extremely 

crowded (Figure 1A). For visualization purposes, a recent study used computational 

modeling to provide a realistic view of the proteome (Figure 1B) and the close proximity 

between proteins in the cytosol of the cell, as well as the high amount of kinetic energy 

in the cellular environment that leads to intimate interactions between different proteins 

(McGuffee, et al. 2010). All of these proteins are employed by the cell to perform highly 

specific and vital tasks.  

 

For instance, one can focus on the central dogma of biology. Albeit incomplete on its 

own, the central dogma of biology states that DNA makes RNA, which in turn makes 

protein. To fulfill this dogma, the cell employs a type of proteins known as enzymes to 

catalyze biochemical reactions like RNA and protein synthesis.  For example, in the 
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central dogma of biology DNA is transcribed into RNA by the enzyme RNA polymerase. 

This messenger RNA is then translated into protein by the ribosome enzyme. Many of 

these enzymes function as molecular motors given that they catalyze biochemical 

reactions by converting the free energy derived from breaking chemical bonds into 

mechanical work or motion.  

!

Figure 1. (A) Cartoon illustration for a cross-section of an E. Coli cell showing the 
flagella and cell wall (green), cytoplasmic proteins (purple and blue), and DNA (yellow) 
(image adapted from Goodsell et al. 2009). (B) Visualization of the extremely crowded 
cellular environment and the intimate contact between cytosolic proteins and nucleic 
acids (yellow/green) as estimated by a Brownian dynamics simulation (image adapted 
from McGuffee, et al. 2010). 
 

Perhaps the most common example of this is in enzymes that are dependent on the 

molecule adenosine triphosphate (ATP) as fuel. ATP dependent molecular motors bind 

ATP and hydrolyze into adenosine diphosphate (ADP) and inorganic phosphate (Pi). 

Hydrolysis of the phosphoanhydride bond in the ATP molecule releases ~7.3 kcal/mol of 

energy. This chemical energy can be used to power conformational changes that 
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enzymes use to generate motion or mechanical work. Molecular motors are central 

players in the majority of cellular tasks across all lifeforms. Apart from their involvement 

in the central dogma of biology, molecular motors are also involved in proteome 

maintenance including protein folding (Hayer-Hartl, et al. 2016), transporting cellular 

cargo across cells (Cho, et al. 2014), unfolding of protein aggregates (DeSantis, et al. 

2012), and protein degradation (Bar-Nun, et al. 2012). 

 

From an engineering perspective, molecular motors are analogous to the macroscopic 

machines we employ in everyday life. While conventional engines, like the internal 

combustion engine, use fuel to power piston movement (Figure 2A) that can be 

translated into mechanical force, and ultimately movement, molecular motors use 

chemical energy to power conformational changes in protein structure that generate 

work on a substrate (e.g. strands of nucleic acids or polypeptides) (Figure 2B). In a 

motor where movement of a piston is translated into motion of a gear, fuel ignition leads 

to volume expansion that results in piston displacement. This process requires work. 

Similarly, molecular motors require work to generate protein movement going from state 

0 to 1 in Figure 2B. In comparison to man-made engines, molecular motors are much 

more efficient. Kinesin, perhaps the best characterized molecular motor, is involved in 

transporting cellular cargo away from the nucleus of eukaryotic cells (Vale, et al. 2000). 

Kinesin hydrolyzes a single ATP molecule to generate a fundamental step ~8.2nm in 

size (Schnitzer, et al.1997), and can generate loads up to ~6pN (Svoboda, et al.1994), 

which yields an efficiency ~60% for converting chemical energy to mechanical work 



! 4!

(Bustamante, et al. 2004). Meanwhile, the internal combustion engine achieves ~20% 

efficiency given the large amount of energy loss due to friction between surfaces, and 

heat dissipation (Hugel, et al. 2010). A big difference between man-made and biological 

machines of course lies in scale. On the microscopic scale that molecular motors 

function at, the thermal free energy is large and helps overcome the energetic barrier in 

enzymatic reactions. At the macroscopic scale, man-made engines function at what can 

be approximated as constant temperature making the free energy from the environment 

negligible.  

 

Figure 2. Macroscopic engines, such as a two cycle Otto motor, depend on fuel ignition 
to move a piston from position <0> to <1> (A). Analogously, microscopic engines, like 
molecular motors, switch conformations upon ATP hydrolysis (B). Cycles of 
conformational changes propagate through the protein and generate mechanical 
motion. Figure adapted from Hugel et al. 2010. 
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Cells from all lifeforms employ a superfamily of ATP dependent molecular motors 

referred to as ATPases associated with various cellular activities (AAA+). The majority 

of AAA+ motors are normally functional as ring-shaped hexamers (Ogura, et al. 2001), 

where conformational changes in a single subunit propagate around the ring (Hwang, et 

al. 2013). This biological equivalent of the six-cylinder engine couples nucleotide 

hydrolysis to conformational changes in the ring that ultimately produce mechanical 

work on a protein or nucleic acid substrate to accomplish functionally diverse cellular 

tasks. Some of these tasks include initiating DNA replication by clamp loaders (Davey, 

et al. 2002), transporting cargo along microtubules by dynein (Cho, et al. 2014), 

maintaining circadian rhythm by KaiC (Ooijen, et al. 2012), and resolubilizing protein 

stress-induced aggregates by Hsp104 (DeSantis, et al. 2012). Motors from the AAA+ 

family contain a conserved ~230 amino acid sequence that forms the ATP binding 

pocket. Within this sequence, Walker-A and -B, and Sensor-1 and -2 motifs are hallmark 

structural elements of AAA+ domains that directly interact with the ATP nucleotide 

(Wendler, et al. 2012). In fact, mutations in Walker-A and -B motifs uncouple a motor’s 

ability to bind or hydrolyze nucleotide, respectively (Hanson, et al. 2005). 

 

Mammalian cells encode ~50-80 different ATPases, and mutations or altered 

expression of AAA+ motors have been found to be directly and indirectly linked in 

numerous types of human disease (Ogura, et al. 2001). For example, mutations in 

dynein and paraplegin are associated with primary ciliary dyskinesia (Omran, et al. 

200), and autosomal recessive spastic paraplegia (Casari, et al. 1998), respectively. 
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Furthermore, underexpression of N-ethylmaleimide-Sensitive Factor (NSF) is associated 

with schizophrenia and epilepsy (Guan, et al. 2001). Due to their involvement in 

fundamental cellular processes, AAA+ have become pharmaceutical drug targets (Tao, 

et al. 2015) (Brötz-Oesterhelt, et al. 2005), and their fundamentals continue to be the 

focus of basic research. 

 

INTRACELLULAR PROTEIN DEGRADATION BY AAA+ PROTEASES 

The densely packed cellular environment (Figure 1A) and the thermal energy in the 

system result in constant collisions between proteins, unstructured polypeptides and 

nucleic acids. Proteome maintenance requires the disposal of unneeded or damaged 

cellular contents to prevent harmful aggregation, and remove functional proteins for 

regulatory purposes. Prokaryotic and eukaryotic cells both employ a well regulated cycle 

to control protein degradation, in which AAA+ molecular motors known as proteases 

catalyze protein destruction. While protein folding and unfolding are reversible reactions, 

the degradation reaction is an irreversible one by nature. Much like trying to piece 

together a shattered glass bottle, once a polypeptide chain has been cleaved into small 

fragments putting them back together is not possible. Remaking a protein or polypeptide 

that has been degraded requires it be re-expressed through the central dogma of 

biology, which results in high energetic costs for the cell. Furthermore, uncontrolled 

degradation of cellular contents and proteins can be catastrophic, and self-harmful, thus 

requiring the degradation process to be carefully regulated.   
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AAA+ proteases are multifaceted enzyme complexes characterized by the presence of 

a regulatory ATPase ring that partners with a compartmentalized peptidase (Sauer, et 

al. 2004). Known AAA+ proteases include ClpAP, ClpCP, ClpXP, ClpYQ, FtsH, Lon, 

PAN/20S, and 26S proteasome. Common to all of these proteases is a stacked ring 

geometry, with radial pore symmetry, between the unfoldase and barrel-like proteolytic 

chamber (Figure 4A). Peptidases, like ClpP and 20S, are made up of multiple face-to-

face rings and are ATP-independent and thus not molecular motors. These peptidases 

house a high concentration (hundreds of millimolar) of active sites in the lumen of their 

barrel-like structure, which cleave peptide bonds when they come in contact with a 

polypeptide strand. Entrance into this highly destructive area of the peptidase can only 

be achieved through the central pore of each peptidase ring. These proteases self-

compartmentalize since the radial channels are too narrow, normally less than 1 nm, to 

allow entry of any type of structured polypeptide and therefore only small unstructured 

sequences can access the active lumen of peptidases (Sauer, et al. 2004). To degrade 

long and structured polypeptides, the peptidase must partner with an ATP dependent 

regulatory motor which will not only specifically recognize proteins tagged for 

degradation, but also unfold the protein and spool the unstructured polypeptide into the 

peptidase for fragmentation (Figure 3). In this manner, the highly destructive active sites 

within the proteolytic barrel are only employed on substrates that have been selectively 

transferred to it. 
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The AAA+ regulatory enzymes, like ClpX and PAN, are ring structures formed by 

multiple ATPase modules. These motors recognize proteins tagged for degradation by 

binding specific peptide sequences, referred to as degrons, in unstructured portions of 

proteins like the N or C termini. Degrons can be naturally encoded as part of a protein, 

or appended postranslationally. A well characterized degron motif is the eleven amino 

acid long SsrA tag, which is appended to the C-terminus of partially synthesized 

proteins during ribosome stalling (Keiler, et al. 1996). Engagement of degrons is carried 

out by pore-loops that extrude toward the radial pore of the AAA+ ring, and can be 

facilitated by adaptor proteins (Wah, et al. 2003).  

 

Upon engaging a folded substrate, the AAA+ ring will undergo cycles of ATP binding 

and hydrolysis to mechanically pull the folded structure against that narrow pore of the 

ATPase ring (Figure 3). The majority of pulling events are normally unsuccessful in 

unfolding the protein, however a single pulling event can stochastically achieve 

unfolding of the substrate (Martin, et al. 2005).  Once unfolded, the polypeptide is 

translocated through the central channel of the ATPase ring and into the lumen of the 

peptidase for degradation (Figure 3). A well characterized portion of this reaction 

includes substrate release after repeated cycles of unsuccessful unfolding. This is likely 

a mechanism by which AAA+ proteases can prevent mechanical clogging or trapping of 

the motor in a futile task that is energetically costly (Kenniston, et al. 2004). 
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!

Figure 3. Minimal model for protein degradation by AAA+ proteases. A substrate 
tagged for degradation is first recognized by the axial pores of the AAA+ ring. In order to 
unfold the substrate, cycles of ATP dependent mechanical pulling are repeated until 
protein denaturation is achieved. If unfolding is unsuccessful, the substrate can be 
released to prevent motor stalling. Once unfolding occurs, the unstructured polypeptide 
is translocated into the peptidase where it is fragmented into short sequences. Figure 
adapted from (Olivares, et al. 2016). 
 

A main difference between the various AAA+ proteases is that each of them will only 

recognize particular degradation tags, and in the case of the eukaryotic 26S proteasome 

the degradation tag is not a short peptide sequence, but rather the protein ubiquitin 

(Baker, et al. 2006). Thus, each AAA+ protease will only degrade specific proteins. 

Further differences between AAA+ proteases include the number of rings that make up 

the unfoldases. For example, ClpX, Pan and Lon form single hexameric rings while 

ClpA, FtsH and ClpC form two stacked rings (Olivares, et al. 2016). The mechanistic 

differences between single and double ring unfoldases have been well characterized for 

ClpX and ClpA. Olivares and coworkers observed ClpAP degrades protein substrates, 
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including titinI27 domains and GFP, ~3-fold faster than ClpXP although the velocity at 

which the unfolded polypeptide is translocated into ClpP is ~30% slower for ClpAP than 

ClpXP due to a smaller size of translocation steps (Olivares, et al. 2014). Thus, by 

encoding multiple AAA+ proteases, each with varying capabilities, the cell can employ 

specific proteases to ensure particular substrates are robustly removed. Investigating 

the mechanism of how this unfolding and translocation reactions are achieved by ClpXP 

protease is a major goal of the work presented in this thesis, and the ClpXP protease is 

introduced in the section below. 

 

THE ClpXP PROTEASE 

One of the best characterized AAA+ motor systems is the ClpXP protease. ClpXP is 

largely involved in cytosolic protein degradation in bacteria, while in eukaryotes it is 

mostly active in mitochondria (Baker, et al. 2012). Recent studies suggest that apart 

from proteolysis, ClpXP is involved in mitochondrial energy metabolism (Fischer, et al. 

2015). As a chaperone, ClpX was found to indirectly regulate heme biosynthesis in 

eukaryotes (Kardon, et al. 2015). In some bacteria ClpXP is an essential enzyme and 

therefore a pharmaceutical target for drug development. Acyldepsipeptides small 

molecule drugs have been used to target ClpP from M. tuberculosis, which cause entry 

pores of the peptidase to widen thereby allowing uncontrolled entry of any nascent and 

unfolded proteins it encounters into the proteolytic lumen (Brötz-Oesterhelt, et al. 2005). 

When these drugs are combined with antibiotics targeting RNA polymerase, even 

otherwise drug-resistant biofilms are destroyed (Conlon, et al. 2013). 
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Structurally, the ClpXP protease from E. coli is made up of the ClpX ATPase and the 

ClpP peptidase (Figure 4B). The ClpX ring consists of six identical subunits (Figure 4C-

D), ~46 kDa in size, each of which contains an AAA+ conserved ATPase module and 

can therefore bind and hydrolyze ATP. The ATPase module, also referred to as the 

nucleotide binding pocket, can be thought of as a hinge connecting the large and small 

domain of a ClpX subunit. In the presence of nucleotide, ClpX subunits self-assemble 

into a ring structure where two main types of subunit orientations are observed. Crystal 

structures reveal the majority of subunits are in a loadable conformation (referred to as 

L subunits) where the nucleotide binding pocket is accessible and able to bind 

nucleotide. Interestingly, a minority of subunits are observed to be in an unloadable 

conformation (U subunit) in which the small domain is rotated ~80o about the hinge, 

which in turn makes the nucleotide binding pocket inaccessible to ATP (Glynn, et al. 

2010). Thus, although identical in sequence, ClpX subunits switch between L and U 

conformations suggesting the ClpX ring is dynamic and flexible. Notably, experiments 

have shown ClpX can translocate multiple polypeptides that have been covalently 

crosslinked (Burton, et al. 2001). 

 

Each ClpX subunit contains several different types of flexible loops that are used to 

recognize tagged substrates, grip the polypeptide track, and bind ClpP. Specifically, at 

the ClpX pore entrance RKH loops are positively charged and vital to degron 

recognition. Lining the ClpX pore are YVG loops that grip the substrate through non-

specific van der Waals interactions and couple changes in subunit conformation to the 
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application of force on the polypeptide (Iosefson, et al. 2015). Another set of 

unstructured loops termed pore-2 loops and IGF loops are used to specifically stabilize 

the ClpX ring atop ClpP (Martin, et al. 2007).  

 

The ClpP protease is formed by two stacked seven membered rings (Figure 4A & D). 

Each of the fourteen ClpP subunits, ~23 kDa in size, contain the catalytic triad Ser-His-

Asp that cleave peptide bonds into fragments of ~10 residues. The stacked double rings 

form an active lumen ~5 nm in diameter, containing a local concentration of the active 

sites ~350mM, such that any polypeptide that is transferred into ClpP is quickly 

degraded (Baker, et al. 2012). Egress of degradation products from ClpP is thought to 

occur through transient openings between the two ClpP rings (Sprangers, et al. 

2005).  ClpX can bind either, or both, of the ClpP rings (Figure 4B) through the 

interaction of IGF loops of ClpX with a hydrophobic cleft at each ClpP subunit, and the 

interaction of ClpX pore-2 loops with the N-terminal loops of ClpP subunits (Martin, et al. 

2007). The N-terminal loops in ClpP cap entry into the catalytic sites, except for small 

and unstructured peptides that diffuse through, in the absence of a regulatory partner 

like ClpX (Bewleya, et al. 2009). Binding of pore-2 and N-terminal loops not only co-

aligns the radial pores of both rings, but also widens the ClpP pore size and creates a 

central channel for substrate processing (Baker, et al. 2012).  
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Figure 4. (A) Cartoon representation of the characteristic stacked ring assembly of 
AAA+ proteases. ATPase rings sit atop either interface of the peptidase, thereby 
controlling access into the degradation chamber (image adapted from Sauer, et al. 
2004) (B) Electron micrograph of a pre-assembled ClpXP motor, where separate ClpX 
rings cap each side of the ClpP barrel. The size bar is 10nm (image adapted from 
Ortega et al. 2000). (C) Surface representation of the ClpX crystal structure (PDB entry 
3HWS) color coded by subunit. Each ClpX subunit is formed by a large and small AAA+ 
domain, and at its widest the ClpX ring diameter is ~13.5nm (image adapted from Glynn 
et al. 2010). (D) Top down view of the ClpP heptameric ring (PDB entry 1YG6) color 
coded by subunit, with N-terminal pore-loops shown in red. The ClpP ring diameter is 
~9.5nm (image adapted from Baker et al. 2012). 
 

With more than 100 known substrates, ClpXP must be able to degrade proteins with 

varying stability. Previous biochemical experiments on ClpXP degradation of ssrA 
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tagged titinI27 domains show a substrate stability dependence on the degradation 

kinetics and the ATP consumption. Kenniston and colleagues found unfolding of wild 

type titinI27 domains by ClpXP requires hydrolysis of more than 500 ATPs, while 

translocation of the unfolded polypeptide requires about 100 ATPs. Contrastingly, as 

ClpXP encountered ssrA-titinV13P domains, a mechanically unstable substrate, an 

average of only 18 ATPs were used for unfolding (Kenniston, et al. 2003). Given the 

intimate contact between neighboring subunits, the unfolding and translocation 

mechanism may be a complex coordination of these six subunits.  

 

Although single subunits self assemble into hexameric rings in vivo, Martin and 

coworkers developed a novel ClpX variant in which individual subunits were covalently 

linked by an unstructured loop (Martin, et al. 2005). This single chain ClpX ring was 

measured to hydrolyze ATP and degrading protein substrates at rates highly similar to 

those of wild type ClpX. A big advantage of a single chain ClpX variant is that it provides 

a chassis to investigate the effect of single subunits on the overall function of the ClpX 

ring. For example, biochemical studies have shown specific mutations can disturb 

functionality in a subunit, allowing investigation of ClpX hexamers with reduced number 

of wild-type subunits. ClpX mutants with as little as a single wild type subunit are 

capable of unfolding and translocating substrates in biochemical studies, suggesting a 

power stroke from a single ClpX subunit is sufficient for activity, albeit with slower 

kinetics (Martin, et al. 2005). Similarly, by covalently stapling individual subunits, Stinson 
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and coworkers showed U-L transitions are not required to power ATP hydrolysis, but 

they are vital for robust degradation (Stinson, et al. 2015). 

 

Furthermore, a single chain ClpX variant allowed for protein engineering to introduce 

molecular and fluorescent tags, as well as for studying ClpXP function at the single 

molecule level (Shin, et al. 2009) where normally the concentrations (picoMolar) 

required for these experiments would have been too low to keep ClpX rings from 

disassembling. Recently, substrate degradation by single ClpXP motors was observed 

using optical tweezers to monitor unfolding and degradation of substrates including 

polyproteins of filamin and GFP (Aubin-Tam, et al. 2011) (Maillard, et al. 2011) (Sen, et 

al. 2013). These studies confirmed ClpXP uses a power stroke mechanism capable of 

generating more than 3 kcal/mol of work, and estimated a stall force for motor function 

near 30 pN. The translocation velocity of unfolded polypeptides into ClpP was found to 

decrease with load, with a calculated velocity under no load of 30 amino acids per 

second. In this thesis, we build on this work by using and developing single molecule 

techniques to probe the mechanochemical cycle of ClpXP activity, as well as monitor 

the conformational changes and nucleotide transactions during protein degradation.  

 

SINGLE MOLECULE TECHNIQUES 

Ensemble biochemical experiments measure the behavior of millions of cells, and 

therefore provide highly averaged measurements that can obscure important molecular 

behavior. Advances in optics and photonics technology have paved the way for the 
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development of high-resolution techniques capable of tracking behavior from single 

molecules. Single molecule techniques are widely used in the field of biophysics, and 

normally belong to either force or fluorescence spectroscopy techniques. For example, 

atomic force microscopy (AFM), magnetic tweezers, and optical tweezers can impart 

forces across an object to probe force dependent bioreactions like protein 

folding/unfolding (Ritchie, et al. 2015), biopolymer stretching (Khalil, et al. 2007), and 

organelle transport (Schnitzer, et al. 1997).  

 

The achievable force magnitudes, position resolution, rates of dynamic force control, 

and measurement throughput vary depending on the technique (Neuman, et al. 2008). 

For example, by imparting a magnetic field over a broad area (>100μm2), magnetic 

tweezers measurements can be multiplexed for high throughput data acquisition of 

single molecule interactions. Contrastingly, AFM and optical tweezers are usually limited 

to individual measurements, albeit with very high position resolution (Marszalek, et al. 

1999). Thus, choosing a specific force spectroscopy technique over another largely 

depends on the question under investigation. For investigation of protein folding 

landscape, optical traps and AFM are widely used due to their well controlled force 

application and their high resolution (Stigler, et al. 2011). For experiments probing 

protein binding to DNA, RNA, or protein tethers often magnetic tweezers, or fluid flow, 

are sufficient to set tension across these biopolymers to investigate protein binding 

interactions (Collins, et al. 2014). 
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Figure 5. (A) Simplified ray optic description of the gradient force. For a beam of light 
with an intensity profile that increases from left to right, refraction of high intensity light 
will generate a larger gradient force (Fb) than that of lower intensity light (Fa) from the 
beam periphery. This force will push the bead down and to the right. (B) An optical trap 
is formed by a focusing a Gaussian beam to a diffraction limited spot. Here, a dielectric 
particle experiences gradient forces toward the high photon flux of the beam focus. 
Thus, the dielectric object is said to be trapped since repositioning of the beam focus 
results in concomitant bead movement. The bead is slightly above the focus due to 
scattering. Image based on (Neuman, et al. 2004).  
 

In this thesis, we use optical trapping to probe protein degradation by the ClpXP 

molecular motor. Optical traps are some of the most widely used tools in single 

molecule biophysics due to the fact that they can generate picoNewton forces, and track 

sub-nanometer displacements in real time. Given the fact that light has momentum, 

seminal work by Ashkin observed that when microscopic objects in solution come in 

contact with a beam of light they are pushed away in the same direction as the 
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propagation of the laser beam (A. Ashkin 1970). Interestingly, Ashkin and Chu later 

showed that when a laser beam is focused by a lens, dielectric particles are attracted 

towards the light focus due to a gradient force from photons that diffract through the 

transparent object (Ashkin, et al. 1986). This behavior can be understood using a 

simplified ray optics diagram for the interaction of a dielectric particle and a beam of 

light as described in Figure 5. When a biomolecule of interest is tethered between a 

trapping handle and a second surface, like a coverslip or another trapped object, optical 

force can be applied across the tether. By displacing the trapped bead from the focus, 

exquisite control of force magnitudes can be achieved given that the optical trap 

behaves as a Hookean spring at small displacements from the trap center (Neuman, et 

al. 2004). 

 

Optical traps are by and large custom-built instruments employing somewhat complex 

optical arrangements. The layout of an optical trapping instrument is shown in Figure 6. 

While many designs have been developed, a few principles remain constant for optical 

trapping instruments. First, a high numerical aperture objective (normally NA>1.2) is 

used to focus a laser beam into a diffraction limited spot near the sample plane. In order 

to steer the position of the trap acousto-optic deflectors (AODs), picomirrors, or other 

steerable optics can be used. To detect movement of a trapped handle a video camera 

can be used, or scattered trapping photons can be imaged onto a photodetector. 

Another strategy images scattered photons from a separate laser used for detection in 

an interferometry approach.  
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High intensity lasers with low power fluctuations, and high pointing stabilities, must be 

used to achieve high resolution. Normally, laser power outputs are capable of reaching 

~10W, although less than 1-2W actually reach the sample plane of the instrument. 

While any laser wavelength can be used to generate an optical trap, normally infrared 

lasers have been employed for biophysical measurements. This is due to the fact that 

biological buffers and systems are largely water based, and absorption of light by water 

and proteins is minimized at wavelength of ~750-1200nm (Svoboda, et al. 1994). Thus, 

a common wavelength for trapping lasers is 1062nm, and for instruments that employ 

low power detection beams normally 800-1000nm wavelengths are used. This not only 

minimizes phototoxicity and sample heating on biological systems, but it also leaves the 

visible spectrum (λ ~ 400-800nm) open for fluorescence approaches. 

 

While the majority of optical trapping experiments prove the mechanics of proteins and 

molecular motors in the order of picoNewtons (Fazal, et al. 2011), in some cases protein 

monomers self-assemble into aggregates that are able to withstand more than 200pN of 

force without disassembling (Dong, et al. 2010).  For these systems, optical traps are 

hard pressed to generate high enough forces to fully characterize their dynamics. These 

mechanically stable protein aggregates have been identified as hallmarks of 

neurodegenerative disease making them high interest targets for study and 

pharmaceutical targeting (Narayan, et al. 2014). To study these, and other, stable 

structures recent development of trapping handles with enhanced trapping stability 
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provide a promising avenue to expand the force ranges that can be achieved using 

optical traps (Jannasch, et al. 2012). 

 

 

!

Figure 6. Sample optical layout of an optical tweezers instrument outfitted with a 
fluorescence branch. The trapping laser is expanded to overfill the back-aperture of a 
high numerical aperture objective. The trapping beam is focused at the sample stage, 
and can be steered using acousto-optic deflectors (AODs). A low power detection laser 
is used to monitor displacement of a trapped object by measuring scattered photons 
using a quadrant photodiode (QPD). A lamp provides brightfield illumination that is 
imaged by a video camera. Additionally, this instrument design incorporates objective-
side TIRF illumination for fluorescence measurements. Fluorescence emission can be 
imaged by an intensified camera, or by separate silicon avalanche photodiodes (SAPD) 
with a confocal pinhole. The additional labels correspond to L-lens, S-shutter, F-filter, P-
polarizer D-dichroic mirror, B-beam block, FM-flipper mirror. Figure adapted from Lang 
et al. 2003. 
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The next generation of biophysical assays employing optical traps will largely benefit 

from the addition of fluorescence capabilities. Single molecule fluorescence provides an 

avenue to measure nanoscale structural changes using fluorescence tools like 

fluorescence resonance energy transfer (FRET) (Tarsa, et al. 2007), and single 

molecule fluorescence quenching (Zhou, et al. 2011). Single molecule fluorescence 

experiments normally employ confocal or total internal reflection fluorescence (TIRF) 

illumination schemes to minimize background signal from dyes in solution. Seminal work 

combining optical trapping and fluorescence has shown the powerful tool it can become 

(Ishijima, et al. 1998) (Lang, et al. 2003), as well as some of the challenges involved. 

For example, the instruments can require many optics and components that are 

challenging to build but are necessary to control the assembly of the assay (a sample 

optical layout is shown in Figure 6). Additionally, fluorescence from a single fluorophore 

can be hard to measure since its intensity is more than ten orders of magnitude smaller 

than that of an optical trap (Lang, et al. 2003). Similarly, fluorophores are known to 

photobleach faster when in close proximity to an optical trap (Dijk, et al. 2004). For a 

thorough discussion of combined force-fluorescence approaches, the reader is referred 

to our review on the subject (Cordova, et al. 2014). 
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CHAPTER 2 

 

Stochastic but highly coordinated protein unfolding and polypeptide 

translocation by the ClpXP proteolytic machine 

 

This chapter was published as referenced below: 

Cordova, J. C. et al. Stochastic but highly coordinated protein unfolding and 

translocation by the ClpXP proteolytic machine. Cell 158, 647–658 (2014)  

 

ABSTRACT 

ClpXP and other AAA+ proteases recognize, mechanically unfold, and translocate target 

proteins into a chamber for proteolysis. It is not known if these remarkable molecular 

machines operate by a stochastic or sequential mechanism or how power strokes relate 

to the ATP-hydrolysis cycle. Single-molecule optical trapping allows ClpXP unfolding to 

be directly visualized and reveals translocation steps of ~1-4 nm in length, but how 

these activities relate to solution degradation and the physical properties of substrate 

proteins remains unclear. By studying single-molecule degradation using different multi-

domain substrates and ClpXP variants, we answer many of these questions and provide 

evidence for stochastic unfolding and translocation. We also present a 

mechanochemical model that accounts for single-molecule, biochemical, and structural 

results, for our observation of enzymatic memory in translocation stepping, for the 
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kinetics of translocation steps of different sizes, and for probabilistic but highly 

coordinated subunit activity within the ClpX ring. 

 

INTRODUCTION 

AAA+ proteases (ATPases associated with diverse cellular activities) maintain protein 

quality control in the cell by converting the energy derived from ATP binding and 

hydrolysis into work that powers mechanical protein unfolding, translocation, and 

ultimately degradation (Sauer and Baker, 2011). How these destructive enzymes 

degrade proteins with widely varying sequences, structures, and stabilities is only 

beginning to be understood. ClpXP, one of the best-characterized members of this 

family of degradation machines, consists of ClpX, a hexameric AAA+ ATPase, and 

ClpP, a barrel-shaped peptidase (Baker and Sauer, 2012). Degradation is initiated when 

the ClpX ring binds a substrate via an unstructured degron, such as the ssrA tag, and 

attempts to translocate this peptide through its narrow axial pore. For native substrates, 

degron translocation by ClpX pulls on the folded portion of the protein, driving 

mechanical denaturation that allows subsequent translocation steps to spool the 

unfolded polypeptide into ClpP for degradation. 

 

Single-molecule studies, using optical tweezers to monitor ClpXP unfolding and 

translocation of multi-domain substrates, establish that ClpXP can work against forces 

of 20 pN or higher, demonstrate that the smallest translocation steps are ~1 nm (~4-8 

amino acids), and reveal physical steps that are multiples of this value, resulting from 
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kinetic bursts of two, three, or four power strokes (Aubin-Tam et al. 2011; Maillard et al., 

2011; Sen et al., 2013). Studies of variants containing inactive subunits support a 

probabilistic mechanism of ATP hydrolysis and mechanical function by ClpXP (Martin et 

al., 2005), but this model is not firmly established, and a related AAA+ protease has 

been proposed to operate by a sequential mechanism (Smith et al., 2011). At present, it 

is not known how the physical properties of native and unfolded substrates affect the 

kinetics of single-molecule ClpXP unfolding and translocation or if these reactions 

account for solution-degradation rates. Moreover, no current model satisfactorily 

explains how the ClpX ring generates translocation steps of different sizes, accounts for 

the kinetics of unfolding and translocation, or explains the linkage between ATP 

consumption and these mechanical reactions. Any deep understanding of AAA+ 

proteases and related remodeling machines requires answers to these questions.  

 

Here, we use optical trapping to assay single-molecule ClpXP unfolding and 

translocation of substrates consisting of domains with varying stabilities and sequences. 

We find that ClpXP unfolds most domains by a single pathway, with kinetics that depend 

on the native fold and structural stability. Subsequent translocation or pausing occurs at 

rates that vary with the sequence of the unfolded substrate. During translocation, ClpXP 

does not exhibit a sequential pattern of step sizes, supporting a fundamentally 

stochastic reaction, but a mechanism of enzymatic memory results in short physical 

steps being more probable after short steps and longer physical steps being more likely 

after longer steps, allowing the enzyme to run at different speeds. 
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Figure 1. Single-molecule unfolding and translocation of substrates. (A) Cartoon 
structure of the titinI27 domain (pdb code, 1tit), colored from the N terminus (blue) to the 
C terminus (red). Spheres show α carbons for residues 13, 15, and 87. ClpXP pulling on 
an ssrA tag at the C terminus would be resisted by local titin structure, including β-sheet 
hydrogen bonding between the C-terminal β strand and the β strand with residues 13 
and 15. (B) The V13P and V15P mutations disrupt hydrogen bonds that directly or 
indirectly stabilize the titinI27 domain. (C) Experimental setup for single-molecule assays  
of ClpXP unfolding and translocation. ClpXP is attached to one laser-trapped bead and 
has engaged the ssrA tag of a multi-domain substrate consisting of four titin domains 
and a Halo domain, which is attached to a second laser-trapped bead via a DNA linker. 
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(D) Trajectories for ClpXP unfolding and translocation of multi-domain substrates. 
Unfolding of individual domains increases bead-bead distance (upward movement), 
whereas translocation decreases bead-bead distance (downward movement). After 
completed translocation of one domain, there is a variable dwell time before ClpXP 
unfolds the next domain. The dwell baselines between successive titin unfolding events 
are spaced as expected for the end-to-end distance of a native titin domain (4.4 nm) or 
native titin plus the linker to the Halo domain 
 

Surprisingly, two ATP-hydrolysis events can drive more than two power strokes, as an 

engineered ClpX hexamer with just two active subunits also takes ~1-4 nm physical 

steps. Finally, we show that solution proteolysis is many times slower than predicted 

from single-molecule results. We discuss the implications of these results for 

understanding ClpXP structure and biological function and present a mechanochemical 

model in which initial stochastic ATP hydrolysis in the AAA+ ring can be followed by a 

cascade of coordinated power strokes. This model explains our single-molecule results 

and also accounts for a wide range of previous biochemical, genetic, and structural 

results. 

 

RESULTS 

Substrate design and single-molecule degradation 

ClpXP degrades ssrA-tagged variants of the titinI27 domain at different rates (Kenniston 

et al., 2003). For example, the V13P and V15P mutations disrupt or eliminate hydrogen 

bonds close in space to the C-terminal ssrA tag (Figs. 1A, 1B), reduce thermodynamic, 

kinetic, and mechanical stability, and accelerate ClpXP degradation, with the wild-type 

(WT) domain being most stable and degradation resistant, V15P having intermediate 

stability and degradation rates, and V13P being least stable and most rapidly degraded 
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(Li et al., 2000; Kenniston et al., 2003). For single-molecule studies, we constructed 

Halo-WT-WT-WT-WT-ssrA, Halo-V13P-V13P-V13P-V13P-ssrA, Halo-V15P-V15P-

V15P-V15P-ssrA, and Halo-WT-V13P-V13P-V13P-ssrA substrates, in which Halo is an 

N-terminal HaloTag domain that allows covalent attachment to a biotinylated DNA 

spacer. For optical-trapping (Fig. 1C), multi-domain substrates were attached via the 

Halo domain and DNA spacer to one streptavidin-coated bead, and a biotinylated 

variant of ClpXP was attached to a second streptavidin-coated bead (Aubin-Tam et al., 

2011). In all substrates, the Halo domain was connected to the adjacent titin domain by 

a 22-residue linker, whereas the remaining titin domains were connected by 4-residue 

linkers. 

 

Optical-trapping measurements under constant force (Aubin-Tam et al., 2011) were 

used to visualize single-molecule ClpXP unfolding and translocation. Individual traces 

displayed three signatures of ClpXP mechanical function as shown in Fig. 1D. First, 

abrupt increases in bead-to-bead distance occurred upon unfolding, with the size of the 

transition being smaller for titin domains than for the Halo domain. Second, bead-to-

bead distance decreased following unfolding, as ClpXP translocated the unfolded 

polypeptide, with the total decrease depending upon the size of the denatured domain 

and the length of the linker to the next domain. Third, between completed translocation 

of one unfolded domain and denaturation of the next native domain, there was a pre-

unfolding dwell with little change in bead-to-bead distance.  
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Figure 2. ClpXP unfolding of domains in multi-domain substrates. (A-C) Distributions of 
pre-unfolding dwell times for the V13P, V15P, and Halo domains. In each plot, the solid 
line is a non-linear-least-squares fit to y=A*(1-exp(-t/tunf)). (D) For the Halo-WT-V13P-
V13P-V13P-ssrA substrate, long “terminal” dwells were often observed following 
unfolding and translocation of the V13P titin domains. (E) ClpXP unfolding of wild-type 
titinI27 domains. Black symbols are pre-unfolding dwells; gray symbols are “terminal” 
dwells. The line is a fit to y=A*(1-exp(-t/tunf)). (F) Plots of average force versus average 
pre-unfolding dwell times (calculated over a moving 50-point window) for the V13P and 
V15P domains. (G) Plot of average force versus average pre-unfolding dwell times 
(calculated over a moving 40-point window) for the Halo domain. See also Figs. S1, S4, 
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and S7. 
 

Pre-unfolding dwell times depend on substrate stability 

The pre-unfolding dwell represents the time that ClpXP pulls on a native protein domain 

before denaturation occurs. Pre-unfolding dwells for the first unfolding event in each 

trajectory were not quantified, as recording began after some attempted unfolding, 

unfolding, or translocation by ClpXP had occurred. For example, the second and fourth 

traces in Fig. 1D contain just three titin unfolding events and one Halo unfolding event. 

Because there are four titin domains in the multi-domain substrate, one V15P or V13P 

domain must have been unfolded and translocated before these traces began. 

 

ClpXP unfolding of a protein domain typically requires many ATP-hydrolysis events 

(Kenniston et al., 2003). If enzymatic unfolding occurs by a single pathway and one 

rate-limiting kinetic step, then pre-unfolding dwells should be exponentially distributed. 

Multiple unfolding pathways with one rate-limiting step would give dwells distributed as a 

sum of exponentials, whereas multiple kinetic steps with similar time constants would 

give a gamma distribution of dwell times. For ClpXP unfolding of V13P (N = 278 events), 

V15P (N = 127 events), and Halo (N = 73 events), the pre-unfolding dwell distributions 

fit well to single exponentials (R2 ≥ 0.987), with average unfolding times (tunf) of 5.9, 17, 

and 8.7 s, respectively (Figs. 2A-2C). Only 17 WT unfolding events, some of which may 

be ClpXP independent (see Supplemental Results), were observed in ~200 

experiments, indicating that most experiments terminated before WT unfolding. Indeed, 

some Halo-WT-V13P-V13P-V13P-ssrA traces contained three V13P unfolding events, a 
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long terminal dwell, and rupture of the bead-bead tether before ClpXP could unfold the 

WT domain (Fig. 2D). Including WT pre-unfolding dwells and these terminal dwells, 

which represent a lower bound of the pre-unfolding dwell, gave an exponential 

distribution with tunf ~55 s (N = 41; Fig. 2E). Fitting just the WT pre-unfolding dwells gave 

a tunf about half this value, which was unrealistically small given the distribution of 

terminal dwells. Rates of ClpXP unfolding in the order V13P > V15P > WT are 

consistent with the relative stabilities of these domains (Li et al., 2000; Kenniston et al., 

2003). Thus, destabilizing mutations proximal to the site of ClpXP pulling result in faster 

enzymatic denaturation. The exponential distribution of pre-unfolding dwells for these 

proteins indicates that one kinetic step is largely rate limiting for ClpXP unfolding, a 

finding supported by inspection of the randomness of the process (see Supplemental 

Results). Models with parallel faster and slower exponential processes improved the 

residuals of the V13P and V15P fits modestly (Fig. S1), consistent with the possibility of 

two unfolding pathways (see Discussion). 

 

Force has opposing effects, reducing ClpXP activity but also destabilizing domains in 

the substrate to a degree that depends on the distance to the unfolding transition state 

(Carrion-Vazquez et al., 1999). We ranked pre-unfolding dwells by force, calculated 

averages over a moving window, and plotted average dwell time against average force 

(Figs. 2F & 2G). Unfolding of V13P and V15P was faster at higher force (Fig. 2F), 

suggesting that force destabilizes these titin domains more than it decreases ClpXP 

activity. By contrast, Halo unfolding was slower at higher force, suggesting that force 
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destabilizes Halo less than it decreases ClpXP activity, a result consistent with the 

distance to the transition state being smaller for ClpXP unfolding of Halo than the titin 

domains. The ratios of ClpXP-dependent to ClpXP-independent unfolding events were 

~20, ~7 and ~1 for the V13P, V15P and WT domains, respectively, a trend consistent 

with distances to the unfolding transition state determined from atomic-force microscopy 

experiments for these domains (Li et al. 2000; see Supplemental Results). 

 

Translocation velocity and pausing 

ClpXP translocation typically proceeded monotonically, but pauses longer than 2.5 s 

were occasionally observed (Fig. 3A). After subtracting these pauses, we calculated 

average translocation velocities. The V13P, V15P, and WT velocities were similar, as 

expected because these sequences differ at only one residue position. For 656 pooled 

titin translocation traces, the mean velocity was 24 ± 0.4 aa s-1 (4.4 ± 0.1 nm s-1), where 

the errors are SEM values. For 78 Halo translocation traces, the mean velocity was 

slower (18 ± 0.8 aa s-1; 3.3 ± 0.1 nm s-1). Thus, the polypeptide sequence has a modest 

impact on ClpXP translocation velocity, a result consistent with biochemical studies 

(Barkow et al., 2009). Fig. 3B shows average translocation velocities plotted against 

average force. Fitting these data gave unloaded translocation velocities of 29 aa s-1 for 

titin domains and 20 aa s-1 for Halo domains.  

 

Pausing occurred with higher probability at some titin and Halo sequences (Fig. 3C, 3D) 

and was less common during translocation of titin (3.7% of events) than Halo (17% of 
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events). Sequence dependent pausing could occur either because of direct interactions 

of the translocating polypeptide with ClpXP or because some sequences have a higher 

probability of forming transient structure that impedes translocation. 

 

!

Figure 3. Translocation and pausing. (A) The left panel shows a V13P translocation 
trace proceeding with approximately constant velocity. The right panel shows a V13P 
translocation trace with a pause. (B) Plots of average force versus average translocation 
velocity were calculated over a moving 50-point window for the V13P and V15P 
domains and over a 40-point window for the Halo domain. The lines are fits to a single-
barrier Boltzmann equation v = v0•(1.05)/(1+0.05•exp(F•0.7/kT)) where F is the average 
force and kT is 4.1 pN•nm at room temperature. (C) Probability of pausing of ClpXP 
along the length of a titin domain (N = 25). (D) Probability of pausing of ClpXP along the 
length of a Halo domain (N = 24). Secondary structure in the native structure is 
indicated schematically in panels C and D (arrows represent β strands; zigzag lines 
represent α helices). 
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Stochastic steps of different size and kinetic complexity contribute to 

translocation 

Using a chi-squared algorithm (Kerssemakers et al., 2006), we resolved individual 

physical steps in a subset of translocation traces with good signal to noise (for 

examples, see Fig. 4A). As reported (Aubin-Tam et al., 2011; Maillard et al., 2011; Sen 

et al., 2013), the smallest physical steps were ~1 nm but many steps were 2-fold, 3-fold, 

and 4-fold larger (Figs. 4A, 4B). Force had little effect on the average step length (~2 

nm; Fig. 4C), and complete translocation of each titin domain (~90 residues) required an 

average of ~8 physical steps (Fig. 4D). 

 

During titin translocation, the dwell times both preceding and following a physical step 

increased with the size of the step (Fig. 4E). The dwell times for pooled steps of all sizes 

(Fig. 4F) and for individual steps of different sizes (Fig. S2) were distributed non-

exponentially, suggesting that multiple kinetic steps contribute to each physical 

translocation step. Importantly, there was no strong sequential pattern of step sizes 

(Fig. 4G). In the trajectories shown in Fig. 4A, for example, the order of steps was 1-2-1-

1-1-2-3-3-1-1 for the leftmost trace, 3-2-2-2-3-4 for the center trace, and 1-1-1-1-1-2-2-

3-2-2-1-1 for the rightmost trace. Despite the absence of a clear pattern, 1 nm steps had 

a higher probability of being preceded or followed by another 1 nm step compared to 

longer steps, and steps of 2-4 nm also tended to be preceded and followed by longer 

steps (Fig. 4G). These results support a stochastic mechanism of subunit firing with 
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some degree of motor memory. ClpXP translocation of the Halo domain also showed a 

distribution of steps ranging from ~1-4 nm (Fig. S3). 

 

!

Figure 4. Physical steps during titin translocation. (A) Representative stepping in ClpXP 
translocation trajectories. Raw data were decimated to 500 Hz (gray) or 50 Hz (orange). 
Chi-square fits to the 50 Hz data are shown in black (Kerssemakers et al., 2006). (B) 
Distribution of physical steps sizes during titin translocation. (C) Mean physical step size 
during titin translocation as a function of force. X- and Y-error bars are ± 1 SD (N = 70-
221). (D) Mean number of physical steps required to translocate an 89-residue titin 
domain and 4-residue linker as a function of force (black squares). X- and Y-error bars 
are ± 1 SD (N = 6-20). Gray X’s are step numbers from individual translocation 
trajectories. (E) Mean dwell times ± SEM (N = 45-236) before (red) or after (green) a 
physical step of ~1, ~2, ~3, or ~4 nm (pre- and post-step values are offset slightly on the 
x-axis for clarity). (F) Distribution of dwell times preceding steps of all sizes during titin 
translocation. (G) Occurrence of steps of different size either before (N-1) or after (N+1) 
physical steps of 1-4 nm. (H) Distribution of times required to complete translocation of 
89-residue titin domains and subsequent 4-residue linkers after subtracting pauses. See 
also, Figs. S2, S3, S5, S6, and S8. 
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To investigate mechanism independently of the detection of individual steps, we 

calculated times from the beginning to the end of translocation of V13P and V15P 

domains followed by the 4-residue linker (93 total residues; N = 387) and subtracted any  

pauses. The histogram of completion times showed multiple peaks (Fig. 4H), supporting 

populations of faster and slower moving enzymes, a finding consistent with our 

observation that ClpXP has an increased probability of taking short steps after short 

steps and vice versa. 

 

Unfolding, translocation, and pausing by a hobbled ClpX motor. To determine the 

effects of eliminating ATP hydrolysis in multiple ClpX subunits, we used a variant 

containing two subunits with ATPase-defective R370K sensor-II mutations (R), two wild-

type subunits (W), and two subunits with ATPase-defective E185Q Walker-B mutations 

(E) in the order RWERWE. The ATPase defective subunits in this ClpX variant, which 

supports degradation of ssrA-tagged V13P, V15P, and WT titin substrates at 15-30% of 

wild-type ClpXP rates, can still bind and release nucleotide (Joshi et al., 2004; Hersch et 

al., 2005; Martin et al., 2005). In optical-tweezer experiments, we observed RWERWE 

ClpXP unfolding and translocation of V13P domains in Halo-V13P-V13P-V13P-V13P-

ssrA (Fig. 5A) at forces up to 10.4 pN, whereas the wild-type enzyme was active at 

forces as high as 26 pN. An exponential fit of pre-unfolding dwell times for RWERWE 

ClpXP gave a tunf of 50 s (N = 19; Fig. 5B), corresponding to ~8-fold slower unfolding 

than by ClpXP with six active subunits. In experiments using Halo-V15P-V15P-V15P-

V15P-ssrA or Halo-WT-WT-WT-WT-ssrA, we detected no RWERWE ClpXP unfolding. 
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Thus, preventing ATP hydrolysis in four ClpX subunits dramatically slows the rate of 

unfolding of V13P, the least stable of the three titin-domain variants tested, and makes 

enzymatic unfolding of the V15P and WT domains too slow to detect under the forces 

used for optical trapping. 

 

For V13P translocation by RWERWE ClpXP, the average translocation velocity after 

removing pauses was 5.7 ± 0.5 aa s-1, a rate ~4-fold slower than ClpXP. Pauses defined 

as dwells longer than 7.5 s were present in ~45% of RWERWE traces, whereas pauses 

defined as dwells longer than 2.5 s were present in fewer than 4% of wild-type ClpXP 

traces. Thus, a ClpX ring with just two active subunits pauses more frequently and for 

longer times than a ring with six active subunits. The dwells between RWERWE ClpXP 

translocation steps were substantially longer than between ClpXP translocation steps 

(Figs. 5C, 5D). Strikingly, however, individual physical steps in RWERWE ClpXP 

translocation traces also ranged from ~1-4 nm (Figs. 5C, 5D). We conclude that large 

physical steps do not require ATP hydrolysis in more than two ClpX subunits. 

 

Commitment is a slow step in solution degradation. Previous studies show that 

ClpP proteolysis is not a slow step in degradation (Thompson and Maurizi, 1994; 

Kenniston et al., 2003). How well do average times of unfolding (tunf) and translocation 

(ttrans) determined in single-molecule experiments predict average degradation times 

determined at substrate saturation (tdeg = 1/Vmax) in solution? If the average commitment 

time (tc) is defined to satisfy the equation tc + tunf + ttrans = tdeg, then tunf + ttrans ≈ tdeg only 
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when tc is small compared to tunf + ttrans. For six substrates of varying stability, a plot of 

(tunf + ttrans) against tdeg gave a linear correlation with a slope of ~0.25 (Fig. 6A), 

indicating that solution degradation is ~4-times slower than expected from single-

molecule unfolding and translocation. Although differences in conditions between 

solution and single-molecule experiments could account for some variation (see Fig. 6A 

legend), this result suggests that tc is the slow step in solution degradation or that ~75% 

of ClpXP enzymes are inactive, as calculation of Vmax assumes 100% activity. To 

distinguish between these possibilities, we monitored single-turnover binding and 

unfolding of GFP-ssrA by a 20-fold molar excess of ClpXP (5- to 20-fold excess over 

KM) at a series of temperatures and fit the exponential trajectories to determine t values 

(Fig. 6B). We also performed steady-state degradation at each temperature to 

determine tdeg (Fig. 6C), KM for protein substrate (Fig. 6D), and measured rates of ATP 

hydrolysis in the presence of saturating GFP-ssrA (Fig. 6E). To calculate fractional 

activity, we added the time expected for GFP translocation to the single-turnover 

t values for binding/unfolding and divided this time by tdeg. The fractional ClpXP activity 

was ~0.4 at 15 °C and increased to ~0.9 at 37 °C (Fig. 6F). The latter result indicates 

that ClpXP is ~90% active, a result consistent with previous studies (Hersch et al., 2005; 

Shin et al., 2009). Lower “activity” at lower temperatures may be a consequence of 

more ClpXP enzymes assuming a conformation that does not support substrate binding 

or activity. 
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Figure 5. Unfolding and translocation by RWERWE ClpXP. (A) V13P unfolding and 
translocation traces for RWERWE ClpXP (top) and ClpXP with six active subunits 
(bottom). (B) Distributions of RWERWE ClpXP pre-unfolding dwell times for the V13P 
domain. The line is a non-linear-least-squares fit to y = A*(1-exp(-t/tunf)). (C) 
Representative stepping in titin V13P translocation by ClpXP (orange) and RWERWE 
ClpXP (green). Decimation and fits (black) are described in Fig. 4A. (D) Distribution of 
RWERWE physical step sizes. Inset- Cumulative frequency distributions of dwell times 
preceding steps for ClpXP (orange) or RWERWE ClpXP (green). See also Fig. S8. 
 

The time required for ClpXP unfolding of pre-engaged GFP in solution is ~6 s at 30 °C 

(Martin et al., 2008a). Subtracting this time from the 34 s required to bind and unfold 

GFP in our single-turnover experiment at 30 °C yields a tc of 28 s, which is ~4.5-fold 

longer than the pre-engaged unfolding time. As tdeg is substantially longer than tunf + ttrans 

even for substrate proteins with marginal stability (Fig. 6A), tc represents much of the 

time required for ClpXP degradation and appears to increase in proportion to substrate 
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stability. For ClpXP degradation of wild-type titinI27 substrates, cycles of binding, 

attempted engagement and/or unfolding, and substrate release contribute to the time 

needed for degradation (Kenniston et al., 2005). The linearity of the Fig. 6A plot 

suggests that similar cycles of substrate binding and release contribute to the 

degradation time required for many substrates. 

 

DISCUSSION 

Domain stability and ClpXP unfolding 

Matouschek and colleagues first reported that the local stability of structural elements 

adjacent to the degradation tag determined resistance to enzymatic unfolding (Lee et 

al., 2001). Our results support their model, as we find that mutations that decrease 

stability by altering hydrogen bonds to the C-terminal β-strand of titin also decrease the 

average pre-unfolding dwell time in single-molecule ClpXP experiments. However, rates 

of ClpXP degradation are not always correlated with global stability. For example, 

ClpXP degrades an ssrA-tagged variant of a hyperstable RNase-H (∆Gu ≈ 12 kcal/mol) 

faster than it degrades V13P-titinI27-ssrA (∆Gu ≈ 3 kcal/mol) (Kenniston et al., 2003; 

2004). In RNase-H-ssrA, ClpXP initially pulls against a C-terminal helix as opposed to 

pulling against a β-strand in titin. Lee et al. (2001) speculated that AAA+ proteases 

might be able to unfold an α-helix, which can be pulled apart by stepwise unzipping, 

more easily than a strand in a β-sheet, which requires simultaneous shearing of multiple 

hydrogen bonds (Fig. S4). In the absence of force, our results suggest that ClpXP 

unfolds the Halo domain, which has a C-terminal helix, substantially faster than any of 
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the titin domains, supporting the possibility that helices are inherently easier to unfold 

than strands in β sheets. 

 

To a first approximation, the pre-unfolding dwell times for the V13P, V15P, and Halo 

domains were exponentially distributed, supporting one major unfolding pathway and a 

single rate-limiting kinetic step. Nevertheless, unfolding times were substantially longer 

than times required for even a burst of power strokes (~0.6 s based on the ATPase rate 

and translocation dwells), as expected if unfolding requires coincidence between a 

power stroke and transient stochastic thermal destabilization. Because most protein 

domains fold cooperatively, ClpXP disruption of even a small number of stabilizing 

native interactions could result in rapid global unfolding of the remaining structural 

elements in the domain. At a second level, ClpXP unfolding of V13P fit better to 

exponential processes acting on less-stable and more-stable populations of similar size 

(Fig. S1), with enough events (N = 262) to make sampling error unlikely. This result is 

consistent with the existence of two unfolding pathways, which could depend upon 

which parts of the V13P domain are stochastically destabilized. For example, the N-

terminal portion of V13P might be transiently frayed in the more-stable population and 

the C-terminal transiently region frayed in the less-stable population. 
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Figure 6. Solution degradation times are poorly predicted by single-molecule unfolding 
and translocation times. (A) Plot of average times required for solution degradation (tdeg) 
of titin-ssrA (WT), V15P-titin-ssrA (V15P), V13P-titin-ssrA (V13P), carboxymethylated 
titin-ssrA (CM), GFP-ssrA (GFP), and Halo-ssrA (Halo) versus tunf + ttrans times from 
single-molecule experiments (Kim et al., 2000; Kenniston et al., 2003; Sen et al., 2013; 
this work). Times for titin and GFP degradation were determined at 30 °C, whereas 
single-molecule experiments and Halo-ssrA degradation were performed at room 
temperature. Degradation is slower at lower temperatures (see panel C), which would 
increase the discrepancy between the solution and single-molecule results. tunf values 
were determined under load and could be different at zero force, but V13P and V15P tunf 
values (Fig. 2E) would not increase 4-fold and the Halo tunf value appears to decrease 
(Fig. 2F). (B) t values for single-turnover binding and unfolding of GFP-ssrA (0.5 µM) by 
ClpXP (10 µM ClpX∆N; 20 µM ClpP) at different temperatures. (C) tdeg values (1/Vmax) at 
different temperatures determined from Michaelis-Menten plots of steady-state rates of 
degradation of different concentrations of GFP-ssrA by ClpX∆N (0.3 µM) and ClpP (0.9 
µM). (D) KM values for GFP-ssrA degradation at different temperature (conditions as in 
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panel C). (E) Rates of ClpXP ATP hydrolysis at different temperatures by ClpX∆N (0.3 
µM) in the presence of ClpP (0.9 µM) and GFP-ssrA (20 µM). (F) Fractional activity of 
ClpXP at different temperatures calculated as (tc + tunf + 5 s)/tdeg, where the tc + tunf value 
is taken from panel B and 5 s is the estimated time for translocation of GFP-ssrA. 
 

A model for unfolding, different physical step sizes, and motor memory 

We find that a substantial number of physical translocation steps occur in multiples of 

~1 nm, in agreement with previous results (Aubin-Tam et al., 2011; Maillard et al., 2011; 

Sen et al., 2013). Based on structures of ClpX rings, conformational changes larger than 

1 nm seem unlikely, and it is commonly assumed that a ~1 nm step involves hydrolysis 

of one ATP and one power-stroke (Glynn et al., 2009; Aubin-Tam et al., 2011; Maillard 

et al., 2011; Sen et al., 2013; Stinson et al., 2013). Thus, bursts involving multiple power 

strokes are likely to drive larger physical steps. For wild-type ClpXP, each power stroke 

could result either directly or indirectly from hydrolysis of one ATP, as a ClpX hexamer 

binds a maximum of four ATPs (Hersch et al., 2005). Despite having just two 

catalytically active subunits, however, RWERWE ClpXP also takes physical steps 

ranging from ~1-4 nm, raising the possibility that a single ATP-hydrolysis event can 

generate more than one power stroke. For example, an initial power stroke might be 

generated by ATP hydrolysis and ADP/Pi release in one subunit and a subsequent 

power stroke by ATP dissociation from an inactive subunit in RWERWE ClpX (see 

below). 

 

Any model of ClpXP function needs to be consistent with structural and biochemical 

results. For example, subunits in the ClpX hexamer display structural and biochemical 
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asymmetry, suggesting a large number of different states and nucleotide-bound ring 

configurations (Baker and Sauer, 2012). Moreover, based on equilibrium and kinetic 

studies, two subunits in a ClpX hexamer do not appear to bind ATP, two bind ATP 

weakly, and two bind ATP strongly (Hersch et al., 2005; Stinson et al., 2013). ATP 

binding to subunits with weak affinity drives conformational changes required for the 

ClpX ring to hydrolyze ATP and perform mechanical work (Stinson et al., 2013). ATP 

hydrolysis and coupled mechanical work by ClpX rings cannot depend on a strictly 

sequential mechanism, as variants with numerous ATPase-inactive subunits still unfold 

and degrade protein substrates in solution (Martin et al., 2005) and in the single-

molecule RWERWE studies here. Moreover, a strictly sequential mechanism should 

generate a clear sequence of translocation step sizes, which we do not observe. Finally, 

a model should account for the fact that ATP hydrolysis is substantially slower during 

ClpXP unfolding of native substrates than during translocation (Kenniston et al., 2003). 

 

The models depicted in Fig. 7A and 7B meet the criteria described above and provide a 

quantitative framework for understanding ClpXP unfolding and translocation. ClpX rings 

are designated as active (X) or inactive (iX) with the number of bound ATPs specified by 

a trailing number. Thus, X4 is an active ring with four ATPs, and iX2 is an inactive ring 

with two ATPs. X3 and X4 rings are active. In agreement with biochemical studies 

(Stinson et al., 2013), all other rings are inactive and must bind additional ATP and/or 

change conformation to become an active X4 or X3 ring. When a natively folded protein 

domain cannot enter the axial channel of an X4 or X3 ring, ATP hydrolysis and product 
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release result either in a futile power stroke or in a power stroke that causes unfolding 

(Fig. 7A). For simulations with the kinetic constants shown, the rates of these 

processes, conformational changes, and ATP-binding steps result in single-exponential 

unfolding kinetics (R2 = 0.999) and a tunf of 6 s, a value close to tunf for V13P titin. 

Decreasing just the rate constant for unfolding in the model produces longer pre-

unfolding dwells, as we observe for the Halo, V15P titin, and WT titin domains. The 

model also predicts hydrolysis of an average of ~5 ATPs for each V13P domain that 

ClpXP unfolds and higher ATP consumption in proportion to the increased unfolding 

times for more stable domains, as observed experimentally (Kenniston et al., 2003). 

 

Once unfolding is successful, additional cycles of ATP hydrolysis drive translocation of 

the polypeptide chain as diagrammed in Fig. 7B. Again, only X4 and X3 rings are active. 

From the X4 ring, physical steps of 1-4 nm are taken depending upon which ATP-bound 

subunit hydrolyzes ATP or fires first. For example, initial firing of low-affinity subunit a 

results in a 1 nm step, initial firing of low-affinity subunit b results in a 2 nm step, and so 

on (Fig. 7C). From the X3 ring, firing of the b subunit results in a 1 nm step, whereas 

firing of the c and d subunits result in steps of 2 and 3 nm, respectively. For steps of 2, 

3, or 4 nm, we assume that 2, 3, or 4 ATPs are hydrolyzed and/or released in rapid 

succession, generating a burst of power strokes that are not experimentally resolved. 

Simulations using the rate constants in Fig. 7B produce step-dwell distributions (Fig. S2) 

and step-size distributions close to the experimental distributions (Fig. S5). Step 

memory, which depends on the rates at which the X3 ring takes additional steps or 
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recycles to X4, was also recapitulated (Fig. S6), but to a smaller extent than observed. 

In simulated data, for example, 38% of all 1 nm steps were followed by a second 1 nm 

step, whereas this value was 41% in the experimental data. In the absence of memory, 

only 29% of the next steps would also be 1 nm. Sen et al. (2013) reported almost 

complete loss of 4 nm steps at ATP concentrations near KM. At low ATP concentrations, 

our model predicts that the population of X3 rings would increase substantially 

compared to X4 rings, reducing the average step size and fraction of 4 nm steps. The 

ATPase rate in our model is effectively determined by the slow conformational 

rearrangements needed to generate active X4 and X3 rings (2.2 s-1 for translocation; 0.5 

s-1 for unfolding), predicting ~4-fold faster ATP hydrolysis during translocation than 

unfolding, as is experimentally observed during ClpXP degradation of native and 

denatured titin substrates (Kenniston et al., 2003). Thus, our model accounts for a broad 

range of experimental results. We were unable to match the experimental results using 

models in which ClpX conformational changes precede rather than follow ATP binding 

or in which X4 rings are the only active species. 

 

Stochastic AND coordinated ATP hydrolysis 

In our model, initial ATP hydrolysis in the X4 or X3 rings is probabilistic, as first 

proposed based on studies of ClpX rings with mixtures of active and inactive subunits 

(Martin et al., 2005). Contrary to arguments by Smith et al. (2011), a probabilistic or 

stochastic model does not imply that subunits act independently. Indeed, Martin et al. 

(2005) found that ATP-hydrolysis activity was not strictly proportional to the number of 
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ATPase active subunits and provided strong evidence that directional communication 

between neighboring subunits regulates ATP hydrolysis and mechanical activity. In 

crystal structures of hexameric ClpX rings, the nucleotide-binding pockets in each 

subunit that can bind ATP (loadable subunits) vary slightly (Glynn et al., 2009; Stinson 

et al., 2013), providing a basis for differential nucleotide affinities and for different 

probabilities of which subunit fires first. It is also possible, however, that interactions 

with the protein substrate determine which subunit fires first (Martin et al., 2005). For 

example, GYVG loops in the axial pore of ClpX are known to contact the ssrA tag and 

translocating substrates and to influence ATP-hydrolysis rates. Thus, an ATP-bound 

subunit whose pore loop was in direct contact with a translocating polypeptide or the 

ssrA tag might have a higher probability of firing first (Martin et al., 2008b; 2008c), and 

the highly variable chemical and conformational heterogeneity of an unfolded 

polypeptide chain could determine the stochastic nature of initial firing. 

 

Following stochastic firing of a specific subunit in the ClpX ring, whether and how many 

additional subunits fire rapidly will depend on subunit-subunit communication. Although 

the details of such communication remain to be deciphered, we suggest one possibility. 

For example, firing of a given subunit might cause ATP-bound counter-clockwise 

subunits to fire or release nucleotide, so that initial firing in the a, b, c, or d subunits in 

X4 would result in hydrolysis/release of 1, 2, 3, or 4 ATPs and translocation steps of 1, 

2, 3, or 4 nm, and initial firing of the b, c, or d subunits in X3 would result in 

hydrolysis/release of 1, 2, or 3 ATPs and physical steps of 1, 2, or 3 nm (Fig. 7C). Thus, 
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a physical translocation step that began with a stochastic ATP-hydrolysis event could be 

followed by coordinated hydrolysis/release events, which could be programmed 

sequentially or stochastically. The choice of counter-clockwise versus clockwise 

propagation in the model is arbitrary. 

 

With minor modifications, this subunit-subunit communication model can also explain 

how RWERWE ClpXP could take steps of ~3 nm or larger using only two hydrolytically 

active wild-type subunits in the ClpX ring. As shown in Fig. 7D, multiple configurations of 

an X4 ring are possible for RWERWE ClpX. When W subunits occupy both the a and d 

positions (Fig. 7D, left), initial firing of the a subunit could generate a 1 nm step, 

whereas initial firing of the d subunit could yield a 4 nm step, with ATP release from 

inactive subunits generating some power strokes. By contrast, RWERWE X4 

configurations with wild-type subunits at the b or c positions (Fig. 7D, center and right) 

could result in 2 or 3 nm steps. Is it energetically feasible for ATP release to generate a 

power stroke? The highest force at which we recorded RWERWE ClpXP activity was 

~10 pN. To drive a ~1 nm movement against this force requires ~1.5 kcal/mol (~2.5 kT) 

of energy. At the 2 mM ATP concentrations used for our experiments, a conformational 

change in the ATP-binding pocket that weakened affinity to ~30 mM would allow ATP 

dissociation to generate a favorable free-energy change of ~1.6 kcal/mol (∆G = –RT ln 

(30 mM/2 mM)), making it plausible that ATP release drives a power stroke. ATP-

loadable and unloadable subunits in the ClpX ring interconvert during function (Stinson 

et al., 2013), and thus the affinity of a given subunit for ATP could become substantially 
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weaker as a consequence of structural changes in neighboring subunits. Why are the 

dwell times between physical steps in RWERWE ClpXP translocation so much longer 

than in wild-type ClpXP translocation? The simplest possibility is that the presence of 

catalytically inactive R or E subunits at ring positions poised to fire requires a slow ring-

resetting reaction.  

 

Alternative models 

Although the models in Fig. 7 explain our single-molecule results and are consistent 

with a wide range of observations, related models may do so equally well. For example, 

we model the active ClpX ring with five loadable subunits and one unloadable subunit 

(Stinson et al., 2013). However, models that allow other ratios of loadable to unloadable 

subunits could work equally well. Similarly, we assume that only four ATPs bind to the 

ClpX ring based on biochemical results (Hersch et al., 2005), but the results could also 

be fit if ATP bound to each loadable subunit. The modeled arrangement of high-affinity 

and low-affinity subunits in the ClpX ring is also speculative. 

 

In a very different model proposed by Sen et al. (2013), the number of ATPs bound to 

the ClpX ring solely determines the size of the subsequent physical step, which always 

ends with a nucleotide-free ClpX ring. Thus, they suggest that a 4 nm step is taken if 

four ATPs are initially bound to the ClpX ring, a 3 nm step is taken if three ATPs are 
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Figure 7. Mechanochemical models for ClpXP function. X4 and X3 rings are 
hydrolytically and mechanically active. iX3, iX2, iX1, and iX0 rings are inactive. Numbers 
after the X are bound ATPs. In the cartoons of the ClpX hexamer, dark red subunits 
bind ATP tightly, red subunits bind ATP weakly, and light gray subunits do not bind ATP. 
(A) Unfolding model. ATP hydrolysis in the X4 or X3 rings results in an unfolding power 
stroke, which allows translocation to begin, or in a futile power stroke. ATP-binding 
reactions are represented by green arrows and conformational changes by dark red 
arrows. For simplicity, ATP binding to iX0 or iX1 rings is not shown in this panel, ATP-
dissociation reactions are not included, and different configurations of nucleotide-bound 
subunits in the X3 ring are not considered. Pseudo first-order rate constants for ATP-
association reactions are for saturating concentrations of ATP. The mechanical stability 
of a native protein determines the rate of the unfolding reaction; other rates are 
determined by the properties of ClpXP. The rate constants in parenthesis give 
exponential unfolding kinetics (tunf ~6 s). (B) Translocation model. Depending on which 
ATP-bound subunit in the X4 or X3 rings hydrolyzes ATP first, physical translocation 
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steps of 1, 2, 3, or 4 nm are taken (black arrows). A physical step of N nm is associated 
with N hydrolysis/release events. Numbers in parentheses are rate constants that were 
adjusted to provide a reasonable fit to experimental data. (C) In the cartoons shown, 
initial ATP hydrolysis in subunits of X4 or X3 rings (labeled d, c, b, or a) result in very 
fast ATP hydrolysis/release events that generate power strokes (arrows) in the ATP-
bound counter-clockwise subunits, generating physical translocation steps of 4, 3, 2, or 
1 nm, respectively. (D) As shown on the left, if wild-type (W) subunits occupy the d and 
a positions in X4 rings of RWERWE ClpX, then translocation steps of 1 nm (subunit a 
fires first) or 4 nm (subunit d fires first) are taken. When subunit d fires first, ATP is 
released from the counter-clockwise inactive c (R) and b (E) subunits to generate power 
strokes (crooked arrows). If wild-type (W) subunits occupy the b or c positions in the X4 
ring (center and right, respectively), then initial hydrolysis in these subunits results in 
steps of 2 or 3 nm, respectively, again with ATP release from counter-clockwise inactive 
subunits generating power strokes (crooked arrows). See also Figs. S2, S5, and S6. 
 

bound, and a 2 nm step is taken if two ATPs are bound. Their model excludes the 

possibility of 1 nm steps. In conflict with biochemical experiments (Stinson et al., 2013), 

the Sen model requires ClpX rings with ATP bound only to two high-affinity subunits to 

be active. It also fails to account for the motor memory we observe or to explain why a 

broad mixture of physical-step sizes is observed at saturating concentrations of ATP. 

Sen et al. (2013) propose that Pi release is the force-sensitive step coupled to each 

power stroke, rather than ATP hydrolysis, ADP release, or ATP binding. In our view, the 

chemical step responsible for power strokes remains in question, as the Pi-release 

model depends upon untested assumptions and fails to account for our finding that 

RWERWE ClpXP can take steps of ~3 nm or longer. 

 

Importance of large and small step sizes 

What role do large physical translocation steps play in ClpXP degradation? As a single 

4 nm step takes ~35% as much time as four 1 nm steps, bigger physical steps may 
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simply allow faster translocation and thus faster degradation. We note, however, that 

translocation may represent a small fraction of the time required for degradation of 

many proteins. Another possibility is that a kinetic burst of power strokes is better able 

to unfold certain proteins, for example those with larger distances to the unfolding 

transition state. If large translocation steps are beneficial, then why has ClpXP evolved 

to take small steps as well? Small steps may allow ClpX to maintain a tighter grip on the 

substrate because more subunits are ATP bound (Nager et al., 2011), allowing more 

efficient transfer of force and increasing the probability of unfolding certain proteins. 

 

Lessons for solution degradation 

For multiple substrates, ClpXP degradation is substantially slower than predicted based 

on single-molecule rates of unfolding and translocation (Fig. 6A), indicating that 

commitment is the slowest step in solution degradation. Indeed, experiments suggest 

that native titin substrates are bound and released many times before being unfolded by 

ClpXP (Kenniston et al., 2005). Two factors can affect commitment times for ClpXP. 

First, the SspB adaptor, which binds both to the ssrA tag and to ClpX, increases Vmax for 

protein degradation (Levchenko et al., 2000; Flynn et al., 2001; Wah et al., 2002). If 

commitment is the slow step in degradation at substrate saturation, then SspB must 

make this step faster. Consistently, SspB reduces the time required for binding and 

unfolding in single-turnover experiments. For example, in single-turnover experiments at 

30 °C, the time required for ClpXP binding and unfolding of GFP-ssrA is ~34 s in our 

experiment but ~17 s with SspB present (Martin et al., 2008a). Thus, SspB is likely to 
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increase the probability of unfolding by increasing the average number of ClpXP 

unfolding attempts that occur before substrate dissociation and the need for rebinding. 

Second, the length of polypeptide bound in the axial pore of ClpXP influences 

commitment. For example, this length is ~15 residues for ssrA-tagged titin, Halo, and 

GFP substrates but 35-40 residues for the non-tagged domains of multi-domain 

substrates, including those in single-molecule experiments (Lee et al., 2001; Kenniston 

et al., 2005; Martin et al., 2008a). In single-turnover experiments performed in the 

presence of SspB at 30 °C, ClpXP degraded GFP followed by an unstructured C-

terminal titin-ssrA domain almost twice as fast as GFP-ssrA and at rates similar to those 

observed for single-molecule unfolding (Martin et al., 2008a; Maillard et al., 2011; Sen et 

al., 2013). From a mechanistic perspective, a longer region of polypeptide in the axial 

pore of ClpXP should allow a tighter grip by the enzyme and thus reduce the probability 

of dissociation following a failed unfolding attempt. If longer unstructured degrons can 

speed degradation and result in a lower net cost in terms of ATP hydrolysis, then why 

are relatively short degrons used so often in biological systems? One possibility is that 

protein degradation typically occurs in energy-rich cellular environments and that longer 

degrons would open the possibility for truncation of the degron by non-specific 

proteases, preventing targeted degradation of the proper substrates by ClpXP and other 

AAA+ proteases. 
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EXPERIMENTAL PROCEDURES 

Complexes of ClpXP with multi-domain substrates containing an N-terminal Halo 

domain, which was covalently linked to biotinylated double-stranded DNA, were 

tethered between two laser-trapped beads as described (Aubin-Tam et al., 2011). 

Briefly, DNA-linked substrates were tethered to a 1-µm streptavidin-coated polystyrene 

bead that was loosely bound to the surface of a glass cover slip via a DNA-tethered 

glass-binding peptide aptamer. Biotinylated ClpXP was attached to a 1.26-µm 

streptavidin-coated polystyrene bead, which was trapped and brought into the vicinity of 

the bead containing the DNA-linked substrate. Upon substrate recognition by ClpXP, as 

determined by inter-bead tension, the laser trap for the substrate bead was turned on 

and the cover slip was moved to rupture the aptamer-glass attachment, resulting in 

tethering the ClpXP-substrate complex between two laser-trapped beads (Fig. 1C). 

Experiments were performed at room temperature (18-22 °C), using 2 mM ATP and 

ATP-regeneration and oxygen-scavenging systems (Aubin-Tam et al., 2011). 

 

Data acquisition was carried out as described (Aubin-Tam et al., 2011). Custom 

MATLAB scripts were used to calculate inter-bead distances, measure the magnitude of 

unfolding distances, and measure the time elapsed from the end of one translocation 

event to the next unfolding event, which represents the pre-unfolding dwell time. 

Translocation events in each trace were separated and fit with a linear equation to 

determine the average translocation velocity. We developed a pause-detecting MATLAB 

script in which the translocation data is smoothed to decrease environmental noise, and 
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then differentiated to determine the instantaneous velocity. Pauses were identified as 

time periods in which this velocity remained at or below zero for longer than 2.5 s for 

ClpXP translocation or 7.5 s for RWERWE ClpXP translocation. 

 

Additional experimental procedures are documented in the Supplement below. 
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SUPPLEMENTAL RESULTS 

Randomness calculations. The number of rate-limiting steps required for unfolding 

can be assessed by a randomness parameter (r) that measures the dwell-time variance 

divided by the average dwell time squared (Svoboda et al., 1994; Schnitzer and Block, 

1997: Floyd et al. 2010). An r value of ~1 is expected for an exponential process with a 

single rate-limiting kinetic step, a value of ~1/n is expected for n sequential reactions 

with similar time constants, and a value >1 is expected for reactions involving two 

populations and time constants (Fig. S7). For ClpXP pre-unfolding dwells, the r values 

were 1.50 (V13P), 0.95 (V15P), and 1.24 (Halo). To estimate likely errors, we performed 

trials in which half of the dwell times from each data set were randomly removed, 

calculated r values, and then determined an average ± 1 SD for a set of 10 independent 

trials, yielding values of 1.44 ± 0.16 (V13P), 0.91 ± 0.19 (V15P), and 1.31 ± 0.25 (Halo). 

For V13P unfolding, the lower error bound of the randomness parameter was 

substantially above 1, as expected for a reaction with two populations, in agreement 

with the better fit of these data by exponential processes operating on two populations 

(Fig. S1). For ClpXP unfolding of V15P and Halo, the fits and randomness values 

indicate that a single predominant kinetic step is rate limiting. 

 

ClpX-independent unfolding. The protein substrate is under tension and destabilized 

in the optical trap. Thus, spontaneous unfolding of any domain in a substrate is 

possible, whereas ClpXP can only unfold a domain that is directly engaged. Unfolding 



! 66!

transitions followed by translocation were classified as ClpXP-dependent and those not 

followed by translocation as ClpXP-independent. When we divided the number of 

ClpXP-dependent unfolding events by the number of ClpXP-independent events, the 

ratio was ~20 for the least stable V13P domain (188 experiments), ~7 for the more 

stable V15P domain (121 experiments), and ~1 for the most stable WT domain (129 

experiments). If experimental tension unfolded a domain proximal to ClpXP, then 

translocation could potentially ensue, but the probability of such events is only 

significant for the WT domain. 

 

Why does ClpXP accelerates domain unfolding above the destabilizing influence of the 

experimental load in the order V13P > V15P > WT. One possibility is that ClpXP pulls 

only from the C-terminus, whereas experimental tension pulls from both termini and thus 

changes the unfolding pathway. Distances between the native structure and the 

unfolding transition state may also explain these results. Force accelerates kinetic 

reactions along the direction of applied load with an exponential dependence: 

exp(Fd/kT), where F is the force, d is the distance between the native structure and the 

unfolding transition state, and kT is 4.1 pN•nm under our experimental conditions. In our 

experimental dumbbell geometry (Fig. 1C), mechanical force applied by the traps acts 

on both motor-dependent and motor-independent events. The actual force applied to a 

ClpXP engaged substrate includes the mechanical load across the system and a 

transient pulling force from the ClpX power stroke. All substrate domains are under 

tension applied by the traps and are therefore subject to ClpXP-independent mechanical 
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unfolding. However, unfolding is accelerated further by intermittent ClpXP pulling 

applied to the engaged domain with a force that we estimate to be ~20 pN. As noted 

above, the unfolding rate is exponentially weighted by the distance to the unfolding 

transition state. Using distances to the unfolding transition states of the V13P (0.6 nm), 

V15P (0.45 nm), and WT (0.25 nm) domains measured in AFM experiments (Li et al., 

2000) and assuming ClpXP additionally applies 20 pN of force, ClpXP would be 

expected to accelerate the unfolding rates of the V13P, V15P, and WT domains by 

factors of 19 (exp(20 pN•0.6 nm/4.1 pN•nm)), 9 (exp(20 pN•0.45 nm/4.1 pN•nm)), and 3 

(exp(20 pN•0.25 nm/4.1 pN•nm)), respectively. The observed ratios of ClpXP-

dependent to ClpXP-independent events for these domains were 20, 7, and 1. We note 

that sampling errors, especially for the WT domain, and the possibility that the unfolding 

transition state for ClpXP-dependent unfolding is different from that for ClpXP-

independent unfolding make it unlikely that the calculated and observed ratios would be 

exactly the same. 

 

SUPPLEMENTAL DISCUSSION 

Conformational switching. Conformational switching between ATP loadable and 

unloadable subunits in the ClpX ring, with concomitant changes in the identities of the 

subunits that bind ATP with high and low affinity, appears to be required for robust 

mechanical activity (Stinson et al., 2013). How can this requirement be rationalized in 

terms of the models shown in Fig. 7? One possibility is that conformational switching is 
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directly involved in force generation for every power stroke. Another possibility is that 

the products of ATP hydrolysis are not properly ejected after some unfolding attempts or 

translocation steps. Loadable-unloadable conformational switching might eject these 

products and redefine the ATP affinities of individual subunits to reset the ClpX ring and 

allow resumption of translocation or unfolding attempts (Stinson et al., 2013). Pausing 

during ClpXP translocation may arise in this manner, with the greater pausing 

propensity of RWERWE ClpXP resulting from the presence of catalytically inactive 

subunits, which increase the probability that a translocation step finishes with a ring 

conformation that must be reset before activity resumes. 

 

SUPPLEMENTAL EXPERIMENTAL METHODS 

Protein expression and purification. SsrA-tagged protein substrates, E. coli ClpP, 

and single-chain hexamers of wild-type ClpX∆N or RWERWE ClpX∆N with a C-terminal 

biotinylation site were cloned, expressed, and purified as described (Kim et al., 2000; 

Kenniston et al., 2003; Martin et al., 2005; Aubin-Tam et al., 2011; Stinson et al., 2013). 

In multi-domain substrates, the linker between the Halo domain and the adjacent titin 

domain had the sequence ISGEPTTEDLYFQSDNAIAPRM; all additional titin domains 

were connected by the sequence GTRM. The C-terminal sequence of each multi-

domain substrate was KVKELGH6GAANDENYALAA, where the ssrA tag that targets 

the substrate to ClpXP is underlined. 
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Step-finding in translocation traces. Data collected at a 3 kHz sampling frequency 

were decimated to 50 Hz (i.e., filtered using a third-order Chebyshev Type I low-pass 

filter and resampled to 50 Hz). To find steps in the decimated data, we used a MATLAB 

implementation of the chi-squared minimization method of Kerssemakers et al. (2006) 

provided by J. Kerssemakers (TU Delft), which has been shown to outperform the 

Student’s t-test and other step-finding algorithms (Carter et al., 2008). The chi-squared 

method requires input of the number of steps to fit within a given trace, which we 

estimated by taking the pair-wise distribution of decimated data subjected to a step-

smoothing algorithm based on L1-regularization with independent noise (Little et al., 

2011; http://www.maxlittle.net). Because the chi-squared algorithm does not require a 

minimum detectable step size to be set, a threshold of 0.75 nm was selected. Steps 

smaller than this threshold, including backward steps or slips, were combined with 

previous and following steps by adding the dwell-weighted average (Savg) of a small step 

(S) to the previous step (S-1) and subtracting Savg from the following step (S+1). The 

dwell-weighted average is defined as:  

Savg = S•(dS+1)/(dS + dS+1) 

where dS is the dwell preceding a small step and dS+1 is the dwell following a small step. 

A custom MATLAB script was written to automate this iterative process. 

 

Accuracy of the step-finding algorithm.  The chi-squared method has been found to 

be as good or better than other step-finding algorithms (Carter et al. 2008; Aggrawal et 
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al. 2012), but we sought to test its accuracy in detecting steps in data with noise 

comparable to the smallest steps, as observed in our ClpXP translocation traces (SD ~1 

nm). Two tests were employed. First, translocation traces consisting of a mixture of 1 to 

4 nm steps were simulated using the Gillespie stochastic simulation method (Gillespie 

1977) with a kinetic time constant of 0.2 s for all steps. 1-nm noise (SD) was added to 

the simulated traces, and steps were detected using the chi-squared algorithm (for 

examples, see Fig. S8 A-C). For fitting, we initially overestimated the number of steps 

by 5%, then eliminated steps less than 0.75 nm and combined them with adjacent steps 

as described above. 84% of 4734 simulated steps were correctly identified in the fits. As 

might be expected, the accuracy of detection of the 1-nm steps was lowest (~40%), 

whereas longer steps were better identified (Fig. S8D). Based on these results, ClpXP 

may take a higher proportion of 1-nm steps than detected in our experimental data, but 

this would not change any of our major conclusions. 

 

As an independent method of assessing step-finding accuracy, we generated ~1-nm 

stepping traces by moving a 1-µm polystyrene bead (Spherotech, IL, USA) stuck to a 

glass cover slip using a nanopositioning piezo stage (Physik Instrumente Model# P-

517.3CD, 1-nm positioning resolution). Data were collected similarly to ClpXP data (3 

kHz sampling frequency) and further down sampled to 300 Hz to achieve a noise level 

of SD ~0.7 nm (Fig. S8 F). Fitting using the chi-squared algorithm identified steps with a 

mean size close to 1 nm (Fig. S8 F inset). 
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Simulations. The kinetics of domain unfolding by ClpXP were simulated using the 

reactions shown in Fig. 7A plus ATP-binding steps to generate the iX1 and iX2 species 

using the program Tenua 2.0 (Daniel Wachsstock; http://bililite.com/tenua/), which 

derives and numerically solves differential equations for the concentrations of each 

reaction species. The kinetics and step distributions in translocation trajectories for a 

single molecule of ClpXP were simulated using the Gillespie-direct Monte Carlo 

algorithm implemented in the program Edinburgh Dizzy (2000 s; 100000 result points 

sampled at 50 Hz; stochastic ensemble size of 1) using the reactions shown in the Fig. 

7B model. For both types of simulations, individual rate constants were varied until 

reasonable agreement between the simulated and observed kinetics were obtained. 

10% changes in the rate constants shown in Figs. 7A and 7B still match the 

experimental results reasonably well; 50% changes resulted in substantial differences 

between the simulated and experimental results. 
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Figure S1. Randomness Simulations, Related to Figure 2. Simulation of time courses 
and randomness parameters for a simple unimolecular process (reaction 1), for two 
sequential steps with the same time constant (reaction 2), and for a heterogeneous 
process with two reactions and time constants (reaction 3). The top portion of the figure 
shows simulations of time courses for each type of reaction. The bottom portion of the 
figure shows the distribution of randomness parameters calculated for each type of 
reaction from distributions of dwell times (1000 trials) simulated randomly for 130 or 260 
events. 
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Figure S2. Single and Double Exponential Fits of Preunfolding Dwell Times, Related to 
Figure 2. Plots of cumulative frequency versus ClpXP pre-unfolding dwell times for 
titinV13P (green symbols) and titinV15P domains (red symbols). Although single 
exponentials fit the data reasonably well (black solid lines, top panels), a double 
exponential function, y = amplitude1

∗(1-exp(-t/τunf1) + amplitude2
∗(1-exp(-t/τunf2) (gray 

dashed lines, top panels), fits the data better (residual plots shown in bottom panels). 
For V13P, τunf1 = 3.6 ± 0.2 s (48% amplitude1) and τunf2 = 13.1 ± 1.1 s (52% amplitude2). 
For V15P, τunf1 = 5.3 ± 0.9 s (16% amplitude1) and τunf2 = 24.4 ± 1.3 s (84% amplitude2). 
Double-exponential fitting of Halo unfolding resulted in equal time constants for τunf1 and 
τunf2 (8.7 s), which were identical to a single-exponential fit of the data. 
 



! 74!

!

Figure S3. Experimental and Simulated Prestep Dwell Distributions, Related to Figures 
4 and 7. Distribution of dwell times before physical steps of different sizes from 
experiments (observed; left panel on top; blue symbols on bottom) or a simulation using 
the model and rate constants shown in Figure 7B (right panel on top; red symbols on 
bottom). 
 



! 75!

!

Figure S4. Distributions of ClpXP translocation step sizes and dwell durations (related 
to Fig. 4). (A) Probability-density distribution of individual physical-step sizes during Halo 
translocation. Arrows show positions of 1, 2, 3, and 4 nm steps. (B) Distribution of dwell 
durations preceding individual steps for Halo translocation. (C) Distribution of physical-
step sizes during combined titin and Halo translocations calculated in units of amino 
acids (aa). 
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Figure S5. ClpXP Unfolding of the C-Terminal Elements of Secondary Structure in the 
TitinI27 or Halo Domains, Related to Figure 2. 
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Figure S6. Experimental and Simulated Distributions of Translocation Step Sizes, 
Related to Figures 4 and 7. Comparison of step-size distributions calculated from titin 
translocation experiments (red bars) and from a simulation performed using the model 
and rate constants shown in Figure 7B (blue bars). 
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Figure S 7. Observed and Simulated Memory in Translocation Stepping, Related to 
Figures 4 and 7. A simulation performed using the model and rate constants shown in 
Figure 7B predicts that 1 nm steps are more probable after 1 nm steps than after steps 
of 2-4 nm. For example, before or after a 1 nm step, the probability of another 1 nm step 
is 0.38, whereas before or after 2-4 nm steps, the probability of a 1 nm step is ∼0.25. 
Although these results match the trend seen in experiment data (Figure 4G), the 
simulation under predicts the degree of step memory in the experimental data. 
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Figure S8. Controls for Accuracy of Translocation-Step Detection, Related to Figures 4 
and 5. (A–C) Simulated stepping traces were used to test the chi-square step-finding 
algorithm. Simulations contained a mixture of 1-4-nm steps (τ = 0.2 s; data sampled at 
50 Hz), to which random noise of 1 nm (SD) was added. The top panels show the noise-
free simulated data in black, the simulated data plus noise in gray, and the chi-square 
fits to the simulated data plus noise in magenta. The bottom panels show the residuals 
of the chi-square fits to noise-free simulated data. (D) Comparison of the number of 
simulated steps of different sizes and the number of steps detected. (E) Pre-step dwell 
distributions of noise-free simulated steps (black) and steps found in simulated steps 
with added noise using the chi-square method (magenta). Single-exponential fits gave τ 
values of 0.203 s (R2 ≥ 0.999) for the noise-free data and 0.239 s (R2 ≥ 0.998) for the 
data with added noise. (F) Piezo stage-driven ∼1-nm movements of a stuck bead were 
used to test the accuracy of the chi-square step finder. Data were collected at 3 kHz, 
down sampled to 300 Hz (gray) to mimic the noise level observed in ClpXP 
translocation traces, and steps were determined using the chi-square algorithm (fit 
shown in magenta). Data shown in black represents a portion of the piezo-stage 
movements and were decimated to 30 Hz for clarity. The inset shows the distribution of 
all fitted step sizes with a mean of 1.3 ± 0.06 nm (SEM, N = 46). 
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CHAPTER 3 

 

Direct visualization of nucleotide turnover during protein degradation by a AAA+ 

molecular machine 

 

ABSTRACT 

Single molecule techniques such as optical trapping and fluorescence have been widely 

used to investigate biophysical properties of molecular motors, proteins, and 

biomolecules (e.g. nucleic acids, biopolymers, etc.). Experiments combining optical 

force-fluorescence spectroscopy provide an unprecedented ability to directly visualize 

protein dynamics during specific parts of the mechanochemical cycle of enzymatic 

processes. However, these technically challenging methods have proven difficult to 

implement, particularly for molecular motors. Here we develop a single molecule surface 

tethered optical trapping assay to track mechanical activity during protein degradation 

by the ClpXP protease, a model AAA+ molecular machine. Using an analogue of the 

ATP nucleotide, we present a method to directly visualize nucleotide binding during 

unfolding and translocation using TIRF microscopy. This coincident, interlaced force-

fluorescence approach provides a framework for the next-generation of single molecule 

studies on ClpXP and other AAA+ motors. 
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INTRODUCTION 

Much like the machines we encounter in everyday life, cells across all lifeforms employ 

enzymes that function like molecular machines to carry out a diverse set of tasks vital to 

many elemental cellular processes (Hwang, et al. 2013). Molecular machines from the 

AAA+ superfamily of enzymes use the power of ATP binding and hydrolysis as chemical 

fuel to generate mechanical forces and produce work (Hanson, et al. 2005). While AAA+ 

ATPases are involved in transcription (Kakihara, et al. 2012), protein folding (Hayer-

Hartl, et al. 2016), and cargo transport (Cho, et al. 2014), a well studied AAA+ model 

enzyme, ClpXP, is responsible for proteolysis. 

 

The AAA+ ClpX unfoldase binds the ClpP peptidase in the presence of nucleotide and 

recognizes molecular labels that guide an unneeded protein to destruction. Upon 

binding a labeled protein substrate, the ClpX ring undergoes conformational changes 

that ultimately result in protein denaturation by pulling the folded protein through its 

narrow pore. Upon successful unfolding, the polypeptide is translocated into ClpP which 

catalytically degrades the polypeptide into short amino acid sequences that can then be 

recycled or disposed of (Baker, et al. 2012). 

 

The ClpX ring is made up of six subunits, identical in sequence, that self assemble to 

form a central pore for substrate processing (Figure 1A). Each subunit has a large and a 

small domain, which are connected by an unstructured loop where nucleotide binding 

occurs. This loop is conserved in enzymes belonging to the AAA+ superfamily of motors 
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(Hanson, et al. 2005), and in the case of ClpX, subunit rotation about this hinge 

generates two main types of subunit structures (Glynn, et al. 2010). The majority of the 

time, subunits adopt a loadable conformation (L subunit) in which the nucleotide binding 

pocket remains accessible. This binding pocket gets abolished in unloadable subunits 

(U subunit, Fig 1A), preventing nucleotide binding. 

 

Recently, single molecule experiments on the ClpXP model enzyme have advanced our 

understanding of this molecular motor, and together with biochemical and structural 

studies have led to a working model for the function of ClpXP. However, the next 

generation of single molecule studies on this, and other AAA+, motors may require the 

simultaneous combination of single molecule techniques to elucidate the structure-

function relationship of these enzymes (Cordova, et al. 2014). Here we develop and 

apply a combined force-fluorescence assay to directly visualize nucleotide binding 

during specific portions of the ClpXP degradation cycle. Our results set the stage for the 

next generation of single molecule experiments for the model system ClpXP, and the 

myriad of other ATPases ubiquitously involved in cellular tasks across all life forms. 

 

RESULTS 

Motor and Nucleotide Construct Design 

Previous work to monitor nucleotide binding at the single molecule level relied on using 

nucleotide molecules labeled with fluorescent dyes (Ishijima, et al. 1998) (Funatsu, et al. 

1997). However, this approach limits single molecule experiments to abnormally low 
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concentrations (less than 10 nM) of nucleotide given the large fluorescence background 

noise observed at concentrations resembling cellular levels of ATP (larger than 1 mM). 

Therefore, we opted instead to label the ATP molecule with a dark fluorescence 

quencher, and fluorescently label single ClpXP motors. To monitor nucleotide turnover 

by the ClpXP protease using single-molecule fluorescence, we introduced the single 

point mutation K330C in the small domain of a single subunit proximal to the nucleotide 

binding pocket. This cysteine was then covalently labeled with a maleimide-

tetramethylrhodamine (TMR) fluorophore. The choice to use this rhodamine dye was 

vital to the assay, since it has been shown to be among the most resistant fluorophores 

to enhanced photobleaching from optical trapping photons and reactive oxygen species 

in solution (Ferrer, et al. 2009). This is of special concern in our assay as we have three 

different coincident, directly overlapped, laser beams (fluorescence, trapping, and 

detection). 

 

To monitor nucleotide binding we synthesized an ATP analogue containing the dark 

quencher molecule, dabcylplus, covalently linked to the 2’ carbon of ATP (Figure 1C). In 

bulk studies, the hydrolysis rates of ATP-dabcylplus quencher (referred to as ATPQ) by 

ClpXTMRP remained largely unchanged in the presence of substrate compared to those 

of normal ATP (Figure 1D). Although ClpX is able to hydrolyze ATPQ, the degradation 

activity for a GFP-ssrA substrate decreased nearly 3-fold compared to that of normal 

ATP (Figure 1E). A lowered degradation rate is to be expected given the large increase 

in molecular size between ATP and ATPQ, and the well known tight-fitting interaction 
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between ClpX subunits and nucleotide. We used these constructs below to characterize 

their single molecule behavior. 

 

!

Figure 1. Protein degradation in using the ATPQ nucleotide. (A) Crystal structure of the 
ClpX ring (PDB entry 3HWS) with nucleotide loadable subunits colored in silver, and 
nucleotide unloadable subunits colored in blue. Bound nucleotides (ATPγS) are shown 
in orange and the estimated distance between neighboring nucleotides is shown. (B) 
Structure of the ATP nucleotide and (C) ATPQ nucleotide analogue. (D) Hydrolysis of 
ATP and ATPQ by ClpXTMR (100 nM) in the absence (light gray) and presence (dark 
gray) of ClpP (300 nM) and an ssrA-GFP substrate (10 μM). (E) Degradation rates of 
ssrA-GFP substrate by ClpXTMRP in the presence of 2 mM ATP or ATPQ. Panels B-E 
are courtesy of B. Stinson (MIT). 
 

Tracking mechanical activity from surface tethered ClpXP motors  

Previous single molecule studies on the ClpXP motor used a dual trap assay geometry, 

in which ClpXP motors tethered to a plastic bead are brought in the vicinity of a second 

bead labeled with a multimeric substrate tagged for degradation (Aubin-Tam, et al. 



! 86!

2011) (Maillard, et al. 2011) (Sen, et al. 2013) (Cordova, et al. 2014) (Iosefson, et al. 

2015). In order to combine the optical trapping assay with TIRF based single-molecule 

fluorescence (smFluorescence), we engineered a surface-tethered assay geometry. To 

track mechanical degradation using a single optical trap, the ClpXTMRP motor was first 

bound to the surface of a glass coverslip. This was done by binding biotinylated ClpP to 

a coverslip passivated with polyethylene glycol (PEG) using streptavidin. The surface 

bound ClpP was then used to bind ClpXTMR in the presence of nucleotide. A polystyrene 

bead functionalized with a multimeric substrate and a terminal ssrA degradation tag was 

then trapped, brought in the vicinity of the coverslip surface, and ClpXP-substrate 

connections were actively formed by scanning the microscope stage until substrate 

recognition occurred. Upon substrate recognition, the displacement of the bead from the 

center of the optical trap was recorded.  

 

As shown in Figure 2B, using this surface tethered assay geometry, we observed 

signature ClpXP degradation behavior, evident by the abrupt changes in distance 

signifying successful protein unfolding, directly followed by constant rate decreases in 

distance attributed to polypeptide translocation into ClpP (Figure 2A). In the presence of 

ATP nucleotide, ClpXTMRP is able to unfold titinI27 domains with a V13P mutation 

(referred to as V13P) and Halo substrates (Figure 2C) at similar rates to those reported 

in dual trapping assays (Cordova, et al. 2014). Similarly, translocation velocities of 

V13P, Halo, and a pre-unfolded version V13P (Figure 2B) closely resemble those 

previously observed (Cordova, et al. 2014) (Iosefson, et al. 2015). These results 
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validate the new surface tethered assay, and suggest that a ClpXP mutant labeled with 

a fluorescent tag near the nucleotide binding pocket maintains activity similar to that of 

wild type ClpXP. 

 

Upon switching nucleotide conditions from saturating ATP (2 mM) to 100 μM ATPQ, 

single molecule degradation behavior was no longer observed. ClpXP mediated 

substrate recognition of both folded and unfolded protein substrates was commonly 

observed (middle panel, Figure 2A) but successful protein denaturation or polypeptide 

translocation could not be achieved at this concentration, or lower. A characteristic part 

of the protein degradation cycle by ClpXP includes attempted protein denaturation 

commonly followed by substrate release to prevent stalling the ClpXP machinery if the 

substrate is too stable to be degraded (Kenniston, et al. 2004). Furthermore, when 

pulling against the mechanical load from the optical trap, the large majority of substrate 

recognitions and unfolding attempts lead to unsuccessful degradation and substrate 

release (Cordova, et al. 2014). This behavior was exacerbated in previous studies using 

nucleotide analogues like ATPγS (Aubin-Tam, et al. 2011), or ATPQ only as used here, 

as expected for a ClpXP motor with lowered/slowed-down mechanical output due to an 

“un-natural” nucleotide molecule. Saturating concentrations of ATPQ, 2 mM, were able 

to degrade a GFP-ssrA protein in bulk experiments (Figure 1E), yet larger 

concentrations of ATPQ in a combined force-fluorescence assay yield too fast binding 

kinetics, and a highly increased background noise signal from inherent light scattering 
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by the dabcylplus molecule (see fluorescence characterization section below for 

details). 

!

Figure 2. (A) Single molecule degradation traces obtained using a surface-tethered 
optical trapping assay for ClpXP. The three upper traces show ClpXTMRP mediated 
degradation of pre-unfolded titinI27 (left) and V13P (right) substrates with a terminal Halo 
domain in the presence of saturating ATP, 100 μM ATPQ (middle three traces), and a 
mixture of 2 mM ATP + 100 μM ATPQ (bottom three traces). (B) Translocation 
velocities calculated from optical trapping trajectories in the presence of ATP only, or a 
mixture of ATP and ATPQ. Pause free velocities exclude translocation dwells longer 
than 10 sec observed in the ATP + ATPQ experiments. (C) Unfolding dwell times 
observed for V13P and Halo substrates in the presence of ATP only, or a mixture of 
ATP + ATPQ. For (B)-(C), values represent means ± SEM. 
 

Single-molecule degradation behavior was regained by using a 1:20 mixture of 

ATPQ:ATP as shown in the bottom panel of Figure 2A. When using a mixture of 

nucleotides, single molecule degradation traces show slower translocation rates (Figure 

2B), 3 ± 0.9 nm/s (mean ± SEM) versus 6 ± 0.3 nm/s with ATP only, which include a 
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population of long translocation dwells uncommon in traces using ATP only, and are 

clearly visible at the ~20 sec and 140 sec mark in the bottom panel of Figure 2B. 

Unfolding dwells times for V13P domains increased from 13 ± 3.2 sec with native ATP 

to 35 ± 9.5sec with a mixture of ATP + ATPQ, and from 5 ± 2.3 sec to 10 ± 3.7sec for 

Halo domains (Figure 2C). Albeit with slower degradation kinetics compared to native 

nucleotide, we used these conditions to characterize the nucleotide binding kinetics, 

below, using smFluorescence, and investigate nucleotide turnover during unfolding and 

translocation under load in combined force-fluorescence experiments. 

 

Characterization of fluorescence quenching upon ATPQ binding 

To characterize the nucleotide binding kinetics of ATPQ in competition with ATP using 

smFluorescence, we tethered ClpXTMRP motors to the surface of a glass coverslip as 

described above. To enable multiplexed measurements of fluorescent spots on the 

coverslip surface, an EMCCD camera was used to track fluorescence intensity behavior 

over time.  

 

For competition experiments between ATP and ATPQ nucleotides, there are three 

possible ClpX subunit configurations that lead to high fluorescence emission, and one 

configuration where the fluorescence is expected to be quenched (Figure 3A). When  

the fluorescently tagged subunit is nucleotide free, binds ATP, or is in an unloadable 

conformation (U subunit) the fluorescence is expected to be in the “on” state. 

Alternatively, when an ATPQ molecule binds the tagged subunit, fluorescence is 
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quenched almost to background level, “off” state, due to the close proximity between 

ATPQ and the TMR dye. Upon ATPQ, or ADPQ, release the fluorescence emission 

returns to “on”, unless dye photobleaching occurs during the quenched period. 

 

Representative traces in the presence of ATP only (upper panel, Figure 3B) show stable 

fluorescence intensity up to the photobleaching of the dye, or fluorescence lifetimes 

longer than the length of the acquired movie (40 sec). When a mixture of ATP and 

ATPQ (2 : 0.1 mM) is flowed into the slide, fluorescent traces show multiple levels of 

emission prior to photobleaching (lower panel, Figure 3B). Crystal structures of the ClpX 

ring suggest neighboring loadable subunits have a nucleotide-to-nucleotide distance as 

close as ~3.2nm, and as long as 6.2nm for loadable subunits across the ring (Figure 

1A). These distances suggest an ATPQ bound to a neighboring subunit of the 

fluorescently tagged subunit being imaged can induce FRET-mediated changes in 

fluorescence intensity of the dye, leading to the multiple intensity levels observed in 

some traces. In fact, previous ensemble experiments have used FRET between 

fluorescently tagged ATP analogues to characterize nucleotide affinities to the RPT1 

and PAN proteasomes at the bulk level (Kim, et al. 2015). However, the change in 

intensity from a neighboring subunit is much lower in magnitude, and clearly discernable 

from ATPQ binding directly to the tagged subunit, which leads to nearly complete 

quenching of signal (lower panel, Figure 3B). Distributions of the normalized spot 

intensity in the presence of ATP only (Figure 3C) show a narrow single peak distributed 

around the normalized intensity value of 1 (i.e. “on” state). This distribution becomes 
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wider and a new state centered near zero normalized intensity (quenched state) is 

observed when a mixture of ATP and ATPQ is used. To quantitatively measure 

nucleotide binding lifetimes we fit the intensity versus time traces using Hidden-Markov 

modeling (McKinney, et al. 2006), and extracted the dwell times for high and low 

fluorescence states (see Methods section). In experiments with a mixture of 2 mM ATP 

and 0.1 mM ATPQ, the average quenched state lifetime, representing the residence 

time of ATPQ in a ClpX subunit, is 8.0 ± 2 sec (Figure 5). When the amount of ATPQ 

was lowered to 0.01 mM the residence time remained similar with a value of is 5.2 ± 1 

sec (Figure 5). To investigate how nucleotide residence times change when unfolding or 

translocating a protein we used a combined force-fluorescence approach below. 

 

Combined force-fluorescence traces 

To combine the optical trapping and smFluorescence experiments we added a confocal 

TIRF branch to our custom-built optical trapping instrument, similar to that described by 

Lang and coworkers (Brau, et al. 2006). Specifically, a 532nm fluorescence excitation 

laser beam was sent through an Acousto-Optic Modulator (AOD) and reflected by a 

dichroic filter into a 100X objective lens, on an inverted microscope, at the critical angle 

to achieve objective-side TIRF. The illumination area was overlapped with the position 

of the optical trap. Fluorescence emission collected through the objective was focused 

onto a confocal pinhole, aligned such that only photons emitted within a circular area, 

~1.5μm in diameter, centered at the trap position are imaged by a Scanning Avalanche 

Photodiode (SAPD). 
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Figure 3. (A) In the presence of a mixture of ATP (black disk) and ATPQ (orange disk), 
a ClpX subunit (made up of a large and small domain) labeled with a TMR dye is 
expected to exhibit high fluorescence when the subunit is empty (“apo” state), bound to 
ATP, or in an unloadable conformation. When the subunit binds ATPQ the fluorescence 
is quenched. (B) Sample fluorescence traces for ClpXTMRP motors in the presence of 2 
mM ATP (upper panel), and a mixture of 2 mM ATP and 100 μm ATPQ (bottom panel). 
(C) Histogram of normalized fluorescence intensities for ClpXTMRP in the presence of 
ATP only and a mixture of ATP + ATPQ (D). Fits in gray are to a double Gaussian 
function. 
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A separate AOD in the trapping branch of the instrument allowed for the generation of 

fast, 50 kHz, interlaced pulses of trapping and fluorescence beams, in order to 

maximize the fluorescence lifetime using interlaced optical force fluorescence (IOFF, 

(Brau, et al. 2006)). This approach helps prevent the shortened photobleaching times 

observed in coincident, simultaneous, force-fluorescence experiments (Dijk, et al. 2004) 

(Ferrer, et al. 2009). 

 

Upon successful substrate recognition by a surface-bound ClpXTMRP motor, a computer-

automated shutter was opened to illuminate the slide with the excitation laser, and both 

fluorescence intensity and bead displacement signals were recorded using custom 

made LabVIEW routines. Combined force-fluorescence experiments in the presence of 

ATP only, show fluorescence intensity remained constant during degradation of a V13P 

substrate, and the dye photobleached before the second V13P domain in the substrate 

was successfully unfolded (Figure 4B).  

 

When a mixture of ATP and ATPQ was added, unfolding dwells were generally long, 

more than 20sec, when ATPQ turnover was observed as evidenced by quenching and 

unquenching of fluorescence intensity (Figure 4B), and often lead to substrate release, 

or tether breakage, which end the experiment. However, when a mixture of ATP and 

ATPQ was used to monitor translocation of a  pre-unfolded titinI27 substrate, 

fluorescence signals clearly show high fluorescence emission, with small changes in 

intensity likely caused by binding/un-binding of ATPQ in a neighboring subunit, and 
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occasional large magnitude quenching due to ATPQ binding to the subunit being 

imaged (Figure 4C). Interestingly, for periods of time in which multiple ATPQ 

nucleotides are bound to the same ClpX ring (~210-220sec mark in Figure 4C), 

translocation steps dwells are seen to slow down, and resume upon unbinding of ATPQ. 

Moreover, when only ATP molecules are used during substrate translocation, the 

fluorescence emission remains constant, without quenching events, and translocation 

proceeds without pausing (data not shown).  This provides real-time visual evidence of 

how the molecular identity of the nucleotide used as fuel by ClpX, and other ATPases, 

directly impacts the motor’s mechanical output.  

 

Nucleotide binding lifetimes during unfolding were measured to be much longer than 

during translocation (Figure 5). Compared to nucleotide binding lifetimes in the absence 

of force and substrate, nucleotide turnover appears to speed up considerably during 

translocation of an unfolded polypeptide against the optical load of the trap. 

 

DISCUSSION 

Here we provide a novel method to directly visualize, in real-time, ATP turnover by a 

AAA+ model enzyme while simultaneously tracking mechanical protein degradation. 

These results provide a window into the relative timing of nucleotide transactions during 

the fundamental portions of the protein degradation cycle. Furthermore, they clearly 

illustrate the effect of molecular identity of the nucleotide used as fuel, and its impact on 

motor activity. 
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Figure 4. Combined force-fluorescence measurements. Mechanical degradation and 
fluorescence intensity traces for ClpXTMRP mediated unfolding of a V13P substrate in 
the presence of 2 mM ATP only (A), and a mixture of 2 mM ATP and 0.1 mM ATPQ (B-
C). In (C) a pre-unfolded titinI27 substrate was used. Position and intensity data were 
acquired at 90 Hz, but filtered and plotted at 10 Hz for the fluorescence. 
 

While previous combined force-fluorescence experiments have predominantly focused 

on nucleic acid structures (Lang, et al. 2004) (Tarsa, et al. 2007) (Hohng, et al. 2007) 

and their associated enzymes (Comstock, et al. 2015), here we advance the 

applicability of this method to molecular motors that function on a protein track. As is the 

case for proteases like ClpXP, a major experimental hurdle lies within the well 

established degradation mechanism which includes occasional substrate release after 

failed degradation attempts (Kenniston, et al. 2004). In practice, this translates into 

having to use an experimental strategy in which the enzyme-substrate complex is 
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actively formed in real time, unlike previous studies using nucleic acid systems which 

are dynamic only upon the application of force (e.g. DNA shearing, DNA-hairpin 

transitions) and allow for pre-assembly of the biomolecular system.  Here we use a 

highly  automated, computer controlled, routine to actively assemble enzyme-substrate 

complexes, and carefully control light illumination/exposure to maximize fluorescence 

lifetimes.  

 

!

Figure 5. Average residence times for ATPQ in a ClpX subunit under different substrate 
and nucleotide conditions. Values represent means ± SEM. 
 
 

Moreover, by interlacing coincident fluorescence and trapping laser beams at high rates, 

we have shown the ability to track protein degradation at high resolution using a single-

trap apparatus in a surface-tethered assay geometry. By strategically selecting 

rhodamine fluorophores we observe fluorescence lifetimes during the combined force-
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fluorescence experiments on time scales similar to those of cellular tasks performed by 

molecular motors like ClpXP. 

 

Together, these results set up the next-generation wave of single molecule experiments 

to investigate the ubiquitous enzymes of the AAA+ superfamily of molecular motors 

(Olivares, et al. 2016). Such experiments include using smFluorescence techniques like 

FRET (Tarsa, et al. 2007), or TMR/TMR quenching (Zhou, et al. 2011), to investigate 

whether large conformational changes in a single ClpX subunit coincide with successful 

protein denaturation. Also, similar strategies to the dark quencher assay studied here 

could be used to investigate substrate engagement by the ClpX ring, as well as to 

characterize substrate processing through the ClpXP pore-channel. 

 

METHODS 

Single molecule fluorescence measurements 

Surface tethered ClpXTMRP motors were assembled on a PEG coated slide to prevent 

non-specific adsorption onto the glass coverslip surface. PEGylation of coverslips was 

done using a slightly modified version of the method described by previously reported 

(Jang and Nam 2008). Single molecule fluorescence only measurements were carried 

out on a custom-built instrument using a 532nm illumination laser (Coherent, Inc). 

Excitation light at ~3mW was sent into the back aperture of a 100X 1.49NA objective 

(Olympus), mounted on a modified inverted microscope (Nikon), at a critical angle for 

TIR. Fluorescence emission was collected by the objective and imaged using an 
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EMCCD camera (Andor Technology). Series of fluorescence images were acquired at 

10Hz for 40-180 seconds and analyzed using MATLAB. To measure dwell times for 

specific fluorescence states the program vbFRET was used to carry out Hidden Markov 

Modeling of fluorescence intensities prior to photobleaching of the dye (McKinney, et al. 

2006). Dwell times for high and low fluorescence states were extracted using custom 

written MATLAB routines. ATPQ and ClpXTMR motors were made by B. Stinson (MIT) 

as described in (B. M. Stinson, et al. 2015). 

 

Combined force-fluorescence measurements 

Flow cells used for the combined force-fluorescence assay were prepared as described 

in the fluorescence methods section above, except the final solution included a 

suspension of substrate coated beads. Substrate coated beads were prepared by 

crosslinking Anti-Digoxigenin antibody (Roche) with Protein-G coated beads (780nm in 

diameter, Spherotech, Inc.) using BS3 crosslinker (Thermo Scientific). Protein 

substrates with an ssrA tag, and a HaloTag domain (Promega), were incubated 

overnight with a 100bp dsDNA spacer labelled with a HaloTag Ligand (Promega) on 

one end, and a Digoxigenin tag on the opposite end. DNA-Substrate tethers were then 

incubated with Anti-Digoxigenin beads for at least 30 minutes prior to loading on the 

slide. 

 

To assemble tethers, beads in solution were trapped and brought in the vicinity of the 

coverslip surface. A piezo-stage (Physik Instrumente) was used to scan the coverslip 
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surface underneath the trapped bead until a surface bound ClpXP motor engaged a 

DNA-substrate tether, as monitored by tracking the bead displacement from the trap 

center. Upon tether formation, fluorescence illumination was turned using a computer 

controlled shutter. Bead displacement and fluorescence data was acquired using a 

custom written LabView (National Instruments, Inc.) program at 90Hz. Upon tether 

breakage and fluorescence photobleaching, position and stiffness calibration of the 

optical trap was carried out as previously described (Lang, et al. 2002). The stiffness of 

the optical trap was kept ~0.10pN/nm.  
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CHAPTER 4 

 

Real-time visualization of subunit conformational switching during protein 

degradation by a AAA+ machine 

 

ABSTRACT 

To degrade unneeded proteins, ATP-dependent proteases harness chemical and 

thermal energy to generate mechanical work. A model ATPase system is the ClpXP 

proteolytic enzyme. Subunits forming the ClpX hexameric ring catalyze ATP turnover to 

power conformational changes that lead to unfolding and translocation of substrates 

tagged for destruction.  Here we use single molecule fluorescence to visualize 

conformational switching in single ClpX subunits during protein degradation. Large ring 

rearrangements are loosely coupled to nucleotide hydrolysis, supporting and support a 

model in which thermal energy drives conformational switching. To measure the effect 

of structural transitions on molecular function, we develop a novel combined optical 

force-fluorescence assay to directly visualize the structural conformation of the ClpX 

ring as it degrades a protein substrate in real time. Our results show large subunit 

conformational changes are not responsible for successful protein unfolding, but provide 

a way for stalled motors to regain functionality. Together, these findings corroborate a 

large set of structural and ensemble biochemical studies that suggested large 

conformational transitions occur dynamically in a functional AAA+ ring. 
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INTRODUCTION 

Across all kingdoms of life, members of the AAA+ superfamily of enzymes (ATPases 

associated with diverse cellular activities plus) harness the energy of ATP hydrolysis to 

generate mechanical work (Ogura, et al. 2001). These molecular motors power highly 

diverse, and vital, cellular tasks like transport of cellular cargo (Cho, et al. 2014), 

remodeling of protein aggregates (DeSantis, et al. 2012), and degradation of unneeded 

proteins (Olivares, et al. 2016). One of the best understood AAA+ systems is the ClpXP 

protease (Baker, et al. 2012). ClpXP consists of the ClpX unfoldase, a homohexameric 

ring, which partners with the ClpP peptidase, a barrel-shaped double ring that houses a 

high concentration of catalytic active sites. ClpXP powers protein degradation by binding 

proteins tagged for degradation, followed by ATP-dependent mechanical unfolding and 

translocation of the substrate into the lumen ClpP for fragmentation of the polypeptide 

(Figure 1A).  

 

The majority of active AAA+ motors function as ring structures (Ogura, et al. 2001) 

usually hexameric, through which motion of a single subunit allosterically changes the 

structure of other subunits in order to maintain a closed ring topology. X-ray crystal 

structures have shown the ClpX ring is asymmetric (Glynn, et al. 2010). Although each 

ClpX subunit is identical in sequence, ring asymmetry stems from the fact that not all 

subunits bind ATP at the same time in a functional ring. Rather, two major structural 

classes of ClpX subunits are present. The first is a nucleotide loadable subunit (referred 

to as L), which binds ATP at the conserved AAA+ nucleotide binding pocket that links 
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together the large and small domains of ClpX subunits. The second type of subunit 

contains an inaccessible nucleotide binding pocket due to rotation of the small domain 

about the large domain, rendering the subunit unloadable (referred to as U). Ensemble 

measurements have provided strong evidence that individual ClpX subunits couple ATP 

hydrolysis to mechanical force generation by switching between the L and U 

conformations. For example, ClpX mutants containing a single covalently locked ClpX 

subunit, in either U or L conformations, is able to hydrolyze ATP robustly but generally 

unable to degrade substrate (Stinson, et al. 2015). Yet, these large conformational 

changes have never been directly visualized, and the kinetics of these transitions 

remain undetermined. Furthermore, it is not known whether U-L transitions in a single 

subunit lead to the successful unfolding of a protein domain, or to what extent these 

transitions are used during polypeptide translocation. Finally, these large ring re-

arrangements have been theorized to be a “fail-safe” mechanism that may provide a 

way for ClpXP to prevent stalling of motor activity by resetting the ring after a series of 

power strokes are unable to successfully degrade a bound substrate (Olivares, et al. 

2016). 

 

Here we carry out single-molecule measurements to investigate ClpX subunit 

conformation during degradation of protein substrates. Our results provide the first direct 

visualization of dynamic conformational changes in active ClpX rings using single-

molecule fluorescence quenching. Furthermore, we develop the first combined force-

fluorescence assay for a AAA+ enzyme to simultaneously visualize subunit 
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conformation and mechanical activity of single ClpXP motors in real time. Our 

experiments suggest ClpX subunits spend the majority of time in a loadable 

conformation, but dynamically switch to an unloadable conformation during protein 

degradation. Conformational switching of subunits is not dependent on nucleotide 

hydrolysis, as similar transition rates are observed for ATP and ATPγS, a slowly 

hydrolysable ATP analogue. These large conformational changes are not directly 

responsible for successful protein denaturation as they are not concomitant with 

unfolding events in combined force-fluorescence experiments. The techniques 

described here provide a platform for future single-molecule studies of molecular motors 

and AAA+ enzymes. 

 

RESULTS 

Design of ClpX variants for single molecule fluorescence 

Crystal structures suggest the ClpX ring (PDB entry 4I81), at its widest, has a diameter 

~13nm, with single subunits extending ~7nm when bound to nucleotide (L subunit). 

However, nucleotide unloadable subunits (U subunits) measure ~6.5nm end-to-end. 

Given the small differences in length between a subunit in the U and L conformation, we 

opted to think of the ClpX ring as an assembly of six rigid bodies, each made up of a 

large domain and a small domain from separate neighboring subunits, connected by 

hinges (i.e. nucleotide binding pocket). Rigid body units rotate around the hinge when 

undergoing L-U transitions (Glynn, et al. 2012). Estimates form the crystal structures 

suggest the distance between two neighboring large domains at positions Q167 and 
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K213 is ~0.8 nm when in the loadable conformation, and ~3.5 nm upon rigid body 

rotation to reach an unloadable conformation (Figure 1B). Although the separation 

distance between these two points is too small to track at high resolution using 

conventional single molecule FRET, it is well designed for a single molecule 

fluorescence quenching (smFQ) approach (Topraka, et al. 2009).  

 

While in vivo ClpX subunits actively self assemble to form a hexameric ring, rebuilt 

single-chain ClpX hexamers (Martin, et al. 2005) lacking the N-terminal region, used for 

binding adaptor proteins, have been widely used to study ClpXP behavior at the single 

molecule level (Shin, et al. 2009) (Aubin-Tam, et al. 2011) (Maillard, et al. 2011) (Sen, et 

al. 2013) (Cordova, et al. 2014) (Iosefson, et al. 2015). Here we used a variation on this 

single-chain strategy and synthesized single-chain trimers that can then be covalently 

linked through a sortase-mediated reaction to form hexameric rings (Stinson, et al. 

2013). This strategy allowed us to tag separate batches of trimers with either a 

fluorophore or a dark quencher molecule. Trimers containing a Q167C single point 

mutation were labeled with an ATTO550 dye, while trimers with the K213C mutation 

were labeled with DabcylPlus using maleimide conjugates of the molecules to generate 

ClpXFQ rings. With this construct design, when the labeled subunit adopts a loadable 

conformation the dye/quencher pair undergoes mostly contact quenching through which 

more than 95% of the fluorescence emission is expected to be quenched (Crisalli, et al. 

2011). However, when the subunit is in an unloadable conformation, fluorescence 
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emission is expected to remain high given that quenching through a FRET mechanism 

is expected to be less than 50%.  

 

Bulk degradation assays were carried out to test the degradation activity of labeled ClpX 

variants (Figure 1C). At saturating ATP concentrations (3 mM), ClpXFQP motors 

degraded CFP-ssrA substrate at similar rates to those of wild type ClpXP as determined 

by disappearance of CFP fluorescence using a stopped-flow fluorimeter. Thus, ClpX 

variants containing two fluorophores remain catalytically active. Moreover, using 530nm 

excitation light bulk fluorescence measurements of ClpXFQ revealed emission spectra 

with high intensity distributed ~575 nm as expected for the ATTO550 dye (Figure 1D). 

When ClpXFQ hexamers were incubated with 3 mM ATP nucleotide, there was a 

pronounced decrease of the fluorescence intensity suggesting a large fraction of the 

labeled ClpX subunits assume an L conformation in presence of nucleotide, and that 

DabcylPlus reliably quenches ATTO550 fluorescence. In the presence of Elastase, 

which digests ClpX, the fluorescence intensity peak was ~18% higher than in the 

absence of nucleotide. This shows the quenching of fluorescence through a FRET 

based mechanism is markedly lower in magnitude compared to contact quenching. 

 

ClpX subunits dynamically switch conformations 

To investigate whether subunits in individual ClpX rings dynamically switch 

conformations, and how often these transitions occur, we carried out single molecule 

fluorescence experiments using surface immobilized ClpXP motors (Figure 2A). 
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Figure 1. (A) The ClpX ATPase (PDB entry 3HWS) partners with the ClpP peptidase 
(PDB entry 1TYF) to power degradation of substrates tagged for destruction (substrate 
shown here is titinI27, PDB entry 1TIT). Cycles of ATP hydrolysis drive protein unfolding 
and translocation. The structures were stacked manually for visualization. (B) Crystal 
structure of the ClpX hexameric ring (PDB entry 3HWS), with nucleotide loadable 
subunits colored in yellow and unloadable subunits colored in blue. The Q167 and K213 
residues in each subunit are labeled in green and black respectively. The distance 
between these two positions is ~0.8 nm when neighboring subunits are in an L 
conformation, and ~3.6 nm when neighboring subunits are in an U-L arrangement. (C) 
Ensemble degradation of the substrate ssrA-CFP in the presence of saturating ATP by 
parental ClpXP (black), the variant ClpXFQP (green), or in the absence of ClpX (gray). 
(D) Fluorescence emission spectra (excitation at 530 nm) of ClpXFQ in the presence 
(red) or absence (black) of ATP, or in the presence of elastase which digests ClpX. 
Panels C-D courtesy of B. Stinson (MIT). 
 

Glass coverslips were passivated using polyethylene glycol (PEG) to prevent 

nonspecific binding of proteins to the coverslip surface. A small fraction (1%) of 
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biotinylated PEG was used for targeted bottom-up assembly of ClpXP motors on the 

surface. First, streptavidin was used to bind the biotin-PEG, followed by incubation with 

ClpP molecules containing multiple biotin tags (Olivares, et al. 2014). Finally, ClpXFQ 

hexamers were added to the flow-cell and allowed to self-assemble with ClpP in the 

presence of ATP nucleotide.  

 

Fluorescence intensity from individual surface tethered ClpXP motors was measured 

using a custom-built total internal reflection fluorescence (TIRF) microscope employing 

objective-side illumination. Analysis of individual trajectories shows a large fraction of 

molecules undergoing dynamic changes in intensity between high and low fluorescence 

states (Figure 2B). In the presence of saturating ATP, a histogram of normalized 

intensities for 151 separate ClpXFQP molecules shows a bimodal distribution with 

populations centered around normalized intensity values of 0.02 and 0.69, as 

determined by a double Gaussian fit (Figure 2C). Based on the design of the ClpX 

construct, the low intensity population was assigned to subunits in the L conformation, 

and the high intensity population was assigned to those in the U conformation.  

 

To measure the substrate dependence on conformational switching, experiments were 

carried out in the presence of 25 μM titinI27 domains, native or pre-unfolded, tagged with 

a C-terminal ssrA degron. Normalized intensity histograms for 247 ClpXFQP molecules 

in the presence of a pre-unfolded titinI27, and 241 molecules in the presence of native 

titinI27, both show ClpX subunits have a higher probability of assuming an L 
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conformation, and a lower probability of assuming a U conformation, in the presence of 

substrate compared to the nucleotide only case. Notably, the histograms for subunits in 

the presence of folded or unfolded substrate show similar distributions (Figure 2D-E), 

suggesting ClpX subunits adopt similar arrangements when engaged to substrate 

regardless of the substrate’s identity. Furthermore, the histograms show ~5:1 probability 

 

!

Figure 2. (A) For single molecule TIRF measurements, ClpXP motors were bound to a 
PEG-passivated coverslip surface using biotinylated ClpP and streptavidin. (B) 
Representative fluorescence trajectories for ClpXFQP motors in the presence of ATP 
only (top panel), and ATP plus pre-unfolded (middle panel) and native (bottom panel) 
ssrA-titinI27 substrate. The red lines were fitted using HMM. (C-E) Fluorescence 
histograms of ClpXFQP in the presence of ATP or ATP plus different substrates. A 
double Gaussian distribution was fitted to each histogram.  
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of observing a subunit in an L conformation than a U conformation in the presence of 

substrate. This result is in agreement with ensemble studies proposing ClpX rings have 

a working conformation of 5-L and 1-U subunits (Stinson, et al. 2013). 

 

To characterize the transition rates between L-U conformations, Hidden Markov 

Modeling (McKinney, Joo and Ha 2006) was used to fit traces with more than one L-U 

transition (red lines in Figure 2B) in the presence of ATP or ATPγS nucleotide at 3 mM, 

or ATP plus native and unfolded titinI27 substrate. Dwell times for each conformation 

were extracted for the HMM idealized traces, and used to generate the distributions 

shown in Figure 3. Cumulative frequency represents the fraction of total events that 

display a specific dwell time or lower. Across all conditions, the amount of time a ClpX 

subunits spends in the U conformation is shorter than in the L conformation. Dwell time 

distributions displayed double exponential behavior, suggesting there are two classes of 

U and L subunit conformations. Similar characteristic times for U and L subunits (Figure 

3D) in the presence of ATP and ATPγS, an ATP analogue which ClpXP hydrolyzes ~30-

fold slower (Burton, et al. 2003), suggests L-U switching is not tightly coupled to ATP 

hydrolysis. Notably, transition kinetics for U subunits remained constant for all the 

conditions tested, while subunits spend longer time in the L conformation when 

translocating substrate. The fact that U and L kinetics in the presence of native titinI27 

highly resemble those for ATP only may suggest ClpX rings spend the majority of time 

unbound from substrate due to a higher propensity to release substrate to prevent motor 

stalling when encountering a mechanically stable protein (Kenniston, et al. 2004). This 
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is consistent with optical trapping assays where the overwhelming majority of native 

titinI27 substrates are not successfully unfolded and are quickly released (Cordova, et al. 

2014). To unambiguously visualize subunit conformation during active protein 

degradation we developed a combined optical trapping and fluorescence assay below.  

 

!

Figure 3. Dwell time distributions for L (black) and U (green) subunits for experiments in 
the presence of ATP only (A), and ATP plus unfolded (B) or folded (C) titinI27 substrate. 
The distributions were fit to a double exponential function (gray line). The residuals for 
single (small green and black dots) and double (unfilled green and black circles) 
exponential fits are shown for each distribution. The predicted characteristic times from 
single (τ) and double (τ1 and τ2) exponential fits under different nucleotide and 
substrate conditions are summarized in (D). For double exponential fits, the percentage 
value corresponds to the contribution of that population to the overall fit. 
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Mechanical degradation by surface tethered ClpXFQP molecules 

To simultaneously measure fluorescence intensity using TIRF microscopy while tracking 

ClpXP-driven mechanical motion using an optical trap, we engineered a single-trap 

mechanical assay with a surface tethered geometry (Figure 4A). Specifically, an anti-

digoxigenin coated bead was functionalized with a multimeric substrate containing an 

ssrA degron to initiate ClpXP mediated substrate recognition and proteolysis. The 

substrate also included a terminal HaloTag domain, which was used to covalently bind 

the protein substrate to a short 100bp dsDNA tether labeled with a 3’-digoxigenin 

molecule. This short DNA tether was vital for successful assembly of ClpXP-substrate 

tethers. 

 

While our group and others have previously developed an optical trapping assay to 

track mechanical force generation by ClpXP, those experimental geometries strictly 

relied on dual-trap setups uncoupled from the sample surface due to the concern of 

instrumental drift noise inherent to many surface-tethered optical trapping assays 

(Aubin-Tam, et al. 2011) (Maillard, et al. 2011) (Sen, et al. 2013) (Cordova, et al. 2014) 

(Olivares, et al. 2014). However, using a stable single trap instrument, we were able to 

reliably form ClpXP-substrate interactions and track mechanical degradation of 

multimeric substrates. Figure 4B shows single molecule degradation of model protein 

systems like titinV13P domains and green fluorescent protein (GFP), as well as 

substrates with multiple pre-unfolded titinI27 domains (titinUF).  
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The mechanical degradation traces for folded substrates are characterized by large 

abrupt changes in distance representing successful domain unfolding. The size of the 

unfolding steps are dependent on the sequence length of the domain, and the optical 

force at unfolding. For example, Figure 4C shows a large unfolding distance for GFP 

(~238 amino acids in length) compared to the smaller Halo (~189 aa), and titinI27 (89 aa) 

unfolding transitions. Unfolding events are directly followed by constant-rate decreases 

in relative distance corresponding to polypeptide translocation. The bottom trace of 

Figure 4B shows the long continuous translocation of a titinUF substrate with a terminal 

Halo unfolding and translocation. For substrates with multiple folded domains, upon 

completion of translocations, observed periods of constant trap position represent the 

time it takes ClpXP to unfold the abutting protein domain. The upper trace in Figure 4B 

shows the unfolding dwell time of the first GFP domain is ~7 sec, while the second 

domain requires ~70 sec before unfolding is achieved. While noise introduced by 

instrumental drift is sometimes observed (e.g. upper trace at time ~105 sec of Figure 

3B), our surface tethered assay maintains high resolution as evident in the clear 

unfolding transitions (Figure 4C), and observation of clear discrete translocation steps 

(Figure 4D).  Additionally, this custom built instrument was outfitted with a TRIF-based 

fluorescence excitation branch with confocal fluorescence detection of ATTO550 

emission (See Methods section). We used this instrument below to directly visualize 

subunit conformation during protein unfolding and translocation. 

 



! 117!

!

Figure 4. (A) Experimental geometry of the surface-tethered ClpXP optical trapping 
assay (not to scale). A laser trap was used to trap an anti-digoxigenin bead labeled with 
DNA-substrate tethers. The substrate was engaged by ClpXP motors bound to a PEG 
passivated coverslip. (B) Representative mechanical degradation traces by surface 
bound ClpXP motors. The upper trace shows the degradation of a titinV13P-GFP-titinUF-
GFP-Halo substrate. The bottom three traces show the degradation of substrates with 
multiple titinV13P domains, titinI27 domains with an N-terminal ssrA tag, or titinUF domains, 
respectively. (C) Comparison of the size of unfolding events for titinI27, Halo, and GFP. 
The GFP unfolding exhibits a well characterized intermediate (Maillard, et al. 2011). (D) 
Trace showing discrete steps during translocation of a Halo substrate at ~20 pN. For 
panels B-D raw data is shown in gray, and decimated data is shown in red. 
 

Combined force-fluorescence measurements 

To actively assemble ClpXP-substrate complexes (Figure 5A) and simultaneously 

measure bead displacement and fluorescence intensities, we relied on a highly 

automated system which employs multiple computer controlled shutters to control the 

timing of fluorescence, trapping, and detection laser beam exposure. As displayed in 

Figure 4B, and quantified in previous studies (Cordova, et al. 2014) (Iosefson, et al. 

2015), complete degradation of folded and unfolded substrates against an optical load 

normally takes ~20 sec to more than 100 sec depending on the mechanical stability of 
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the substrate. Yet, fluorophore photobleaching is enhanced in the presence of the high 

photon flux of the optical trap (Ferrer, et al. 2009) (Dijk, et al. 2004), leading to 

fluorescence lifetimes for single molecules of ~2 sec for the widely used Cy3 dye (Brau, 

et al. 2006). To help offset this effect, we employed an Interlaced Optical Force-

Fluorescence (IOFF) strategy (Brau, et al. 2006). Using separate acousto-optic 

deflectors to rapidly modulate the intensity of the trapping and fluorescence lasers in an 

out-of-phase scheme (Figure 5A), we were able to observe sufficiently long 

fluorescence lifetimes while maintaining high resolution in the optical trap. 

 

ClpXP-substrate complexes were actively assembled by stepping the coverslip surface, 

using a piezo nanopositioning stage, directly underneath a trapped bead coated with 

substrate. Upon successful substrate recognition, illustrated by bead displacement from 

the trap center (xtrap), fluorescence excitation was turned on and both bead position and 

fluorescence counts were acquired until tether breakage and fluorescence 

photobleaching occurred. For the degradation of a titinUF substrate (Figure 5B), 

simultaneous trapping and fluorescence trajectories (Figure 5C-D) provide real time 

visualization of ClpX subunit conformation during translocation. While translocating 

substrate, our experiments show ClpX subunits preferably adopt an L conformation and 

dynamically convert to the U conformation (Figure 5). This is the first instance dynamic 

conformational switching in the ClpX AAA+ ring has been observed during substrate 

processing. Notably, these experiments suggest a ClpX subunit will on average switch 

conformations after translocating ~25 nm of substrate.  
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Figure 5. (A) For combined force-fluorescence experiments the intensities of the optical 
trap (OT) and the fluorescence (TIRF) lasers were interlaced in an out-of-phase 
scheme. The estimated durations of each laser pulse are shown. (B) Cartoon of the 
combined force-fluorescence assay geometry (not to scale). Bead displacement from 
the trap center (xtrap) and fluorescence intensity are measured concurrently. (C-D) 
Simultaneous observation of translocation of a titinUF substrate and fluorescence 
intensity of the same ClpXFQ ring. Abrupt changes in intensity (fitted using HMM, red 
lines in fluorescence panels) correspond to L-U transitions. 
 

To investigate importance of L-U switching during protein unfolding, we carried out 

combined force-fluorescence experiments using substrates containing multiple folded 

domains (Figure 6A). Similarly to the behavior observed during translocation, ClpX 

subunits spend a majority of time in an L conformation and briefly visit the U 

conformation. Given the importance of L-U switching to degradation activity of ClpX 

rings, we wondered if these transitions drive successful protein unfolding? Our 

experiments suggest this is not the case. When degrading a titinI27 labeled with an N-

terminal ssrA tag (titinN), L-U transitions are not concomitant with unfolding transitions 
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(Figure 6B). In more than 12 unfolding events, we did not observe a coincident unfolding 

event and an L-U transition. Since we are observing the conformation of only one of six 

ClpX subunits, one would expect to observe coincident unfolding and conformational 

switching in two of twelve events if L-U transitions are directly responsible for 

denaturation. We tested if this was also the case when unfolding more stable proteins, 

such as substrates containing multiple titinV13P domains (Figure 6C), which ClpXP 

normally degrades in ~7sec (Cordova, et al. 2014) compared to ~1sec for N-tagged 

titinI27 (unpublished data).  In more than six titinV13P unfoldings, L-U transitions did not 

directly lead to successful unfolding.  

 

DISCUSSION 

The well studied ClpX AAA+ ring is composed of six separate subunits identical in 

sequence. Crystal structures of ClpX rings exhibit two main types of subunit 

orientations, nucleotide loadable and unloadable, which have been found to be vital for 

robust motor activity (Stinson, et al. 2015). Here we use fluorescence quenching 

between a donor fluorophore and a non-fluorescent acceptor to monitor these 

conformational changes in individual ClpX subunits. Single molecule fluorescence 

measurements using TIRF microscopy display two major populations corresponding to 

loadable (low fluorescence) and unloadable (high fluorescence) subunits (Figure 2B). 

During degradation of titinUF substrate, our experiments show a 5:1 probability of 

observing a subunit in an L versus U conformation (Figure 2D), consistent with 
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ensemble measurements suggesting the working conformation of the ClpX ring consists 

of 5L:1U subunits (Stinson, et al. 2013).  

!

Figure 6. (A) Cartoon of the combined force-fluorescence assay geometry. The 
substrates used here contained multiple folded titinI27 domains (not to scale). 
Mechanical protein unfolding and translocation with the corresponding fluorescence 
signal during degradation of titinN (B) or titinV13P domains (C).  While both of these 
substrates are folded structures, their mechanical stability is very different. ClpXP 
unfolds titinN much faster than titinV13P as discussed in the text. 
 

Fluorescence trajectories provide real-time visualization of dynamic L-U switching with 

high resolution between conformational states. Similar kinetics of L-U transitions (Figure 

3) for ClpX motors in the presence of ATP and ATPγS suggest hydrolysis of ATP does 

not directly fuel L-U conformational switching. As characterized in Chapter 2 of this 

thesis, ClpXP takes advantage of stochastic thermal fluctuations to denature folded 

proteins, and degradation kinetics increase with temperature. Thus, we hypothesize L-U 

switching may also be largely driven by thermal energy in the environment. 
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Using a novel combined force-fluorescence assay we report on the conformational state 

of the ClpX ring as it degrades a substrate in real time, and probe the extent to which 

large subunit rearrangements are involved in protein unfolding and translocation. To our 

knowledge, these results provide the first combined measurement for an AAA+ motor, 

and elucidate the structure-function relationship of active ClpXP motors. An unresolved 

question has been whether L-U conformational switching is necessary for protein 

translocation? Our results provide direct evidence for L-U transitions during 

translocation of substrate, although these transitions do not result in specifically long 

steps sizes (Figure 5). Thus, ring rearrangements occur during translocation but may 

not required.  Are large conformational rearrangements in the ClpX ring used as a 

mechanism to prevent motor stalling? Our experiments provide some evidence that this 

may in fact be the case. As shown at the 45 sec mark in Figure 6B, during translocation 

of the fourth titinI27 domain a translocation pause is observed lasting ~20 s. Remarkably, 

an L-U transition is observed during this pause, yet it is only after the return U-L 

transition occurs that translocation is resumed, suggesting these large conformational 

changes may provide the ClpXP motor with a strategy to escape a futile conformation. 

Do large ring rearrangements compromise substrate gripping by ClpX? The majority of 

L-U transitions we observed do not coincide with substrate release represented by the 

return of the trapped bead to the center of the optical trap. However, there is one 

instance in which substrate release occurs shortly after an L-U transition (~75 sec in 

Figure 6B), suggesting the possibility that large ring rearrangements can compromise 
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substrate gripping and provide a mechanism for substrate release, a well characterized 

part of ClpXP function (Kenniston, et al. 2004). Are L-U transitions responsible for 

successful unfolding events? Optical trapping experiments have revealed long unfolding 

dwells are sometimes required to unfold mechanically stable proteins (Aubin-Tam, et al. 

2011) (Cordova, et al. 2014) (Maillard, et al. 2011), yet it was undetermined whether 

successful unfolding was achieved due to large conformational changes in the ClpX ring 

or stochastic changes in protein stability due to thermal energy. Our measurements 

suggest L-U transitions are not directly responsible for successful unfolding, supporting 

a model where a power-stroke from a single subunit coinciding with thermal 

destabilization of the protein substrate drives protein unfolding (Martin, et al. 2005). 

 

We anticipate future work employing the techniques presented here will allow for further 

dissection of the structure-function relationship during particular portions of the 

degradation cycle. For example, the conformational states observed when ClpX 

translocates two disulfide-linked substrates (Glynn, et al. 2010) where the ClpX pore 

must widen remain unknown, but could be probed with the approaches described here. 

More broadly, it remains to be determined whether other AAA+ motors share some of 

the mechanisms of force generation as the model ClpXP protease. 
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METHODS 

Fluorescence quenching  measurements 

Surface tethered ClpXFQP motors were assembled on a PEG coated slide to prevent 

non-specific adsorption onto the glass coverslip surface. PEGylation of coverslips was 

done using a slightly modified version of the method described by previously reported 

(Jang and Nam 2008). Single molecule fluorescence only measurements were carried 

out on a custom-built instrument using a 532nm illumination laser (Coherent, Inc). 

Excitation light at ~3mW was sent into the back aperture of a 100X 1.49NA objective 

(Olympus), mounted on a modified inverted microscope (Nikon), at a critical angle for 

TIR. Fluorescence emission was collected by the objective and imaged using an 

EMCCD camera (Andor Technology). Series of fluorescence images were acquired at 

10Hz for 3 minutes and analyzed using MATLAB. To measure dwell times for specific 

fluorescence states, corresponding to subunit conformations, the program vbFRET was 

used to carry out Hidden Markov Modeling of fluorescence intensities prior to 

photobleaching of the dye (McKinney, et al. 2006). Dwell times for high and low 

fluorescence states were extracted using custom written MATLAB routines, and used to 

calculate cumulative frequency distributions. 

 

Combined force-fluorescence measurements 

Flow cells used for the combined force-fluorescence assay were prepared as described 

in the fluorescence methods section above, except the final solution included a 

suspension of substrate coated beads. Substrate coated beads were prepared by 
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crosslinking Anti-Digoxigenin antibody (Roche) with Protein-G coated beads (780nm in 

diameter, Spherotech, Inc.) using BS3 crosslinker (Thermo Scientific). Protein 

substrates with an ssrA tag, and a HaloTag domain (Promega), were incubated 

overnight with a 100bp dsDNA spacer labelled with a HaloTag Ligand (Promega) on 

one end, and a Digoxigenin tag on the opposite end. DNA-Substrate tethers were then 

incubated with Anti-Digoxigenin beads for at least 30 minutes prior to loading on the 

slide. 

 

To assemble tethers, beads in solution were trapped and brought in the vicinity of the 

coverslip surface. A piezo-stage (Physik Instrumente) was used to scan the coverslip 

surface underneath the trapped bead until a surface bound ClpXP motor engaged a 

DNA-substrate tether, as monitored by tracking the bead displacement from the trap 

center. Upon tether formation, fluorescence illumination was turned using a computer 

controlled shutter. Bead displacement and fluorescence data was acquired using a 

custom written LabView (National Instruments, Inc.) program at 90Hz. Upon tether 

breakage and fluorescence photobleaching, position and stiffness calibration of the 

optical trap was carried out as previously described (Lang, et al. 2002). The stiffness of 

the optical trap was kept ~0.10pN/nm.  

 

The combined optical trapping and confocal TIRF instrument used is a modified version 

of the apparatus previously described (Brau, et al. 2006). Briefly, optical trapping 

(1064nm, Coherent, Inc.) and fluorescence (532nm, World Star Tech) lasers interlaced 
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out-of-phase at 50kHz using a two-function generator (Sony, Inc.) to control input 

signals into separate Acousto-Optic Deflectors (IntraAction). A low power detection laser 

(975nm, Corning Lasertron) was kept continuously on during the measurement to track 

displacement of the trapped bead. A set of computer automated shutters were used to 

control light exposure into a photon-counting silicon avalanche photodiode 

(PerkinElmer) to acquire photons filtered by a pinhole (Thorlabs). The pinhole was 

aligned at a conjugate plane to the coverslip surface, and centered directly at the 

position of the trapping and detection lasers. 
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CHAPTER 5 

 

Bio-functionalization of core-shell particles with enhanced trapping stability 

 

ABSTRACT 

Due to their high spatial resolution and precise application of force, optical traps are 

widely used to study the mechanics of biomolecules and biopolymers at the single-

molecule level. Recently, newly developed trapping handles have shown a considerable 

improvement in trapping stability making them promising candidates for high-force 

experiments. However, a strategy for labeling these particles with biomolecules is yet to 

be developed. Here we provide a straightforward synthetic strategy to functionalize 

titania core-shell particles with proteins and nucleic acids by adding a silane-thiol 

functionalizer to the shell surface. These bio-functionalized particles display higher 

stability in an optical trap compared to the plastic beads commonly used as handles in 

optical trapping experiments. We anticipate the functionalized core-shells can be used 

to probe the mechanics of stable proteins structures, and employed in combined 

trapping and fluorescence experiments where lower trapping powers are advantageous. 
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INTRODUCTION 

Optical traps have been widely used as a tool to measure small displacements, exert 

finely controlled forces, and manipulate microscopic objects. By tethering a biomolecule 

of interest between a dielectric particle, like a plastic bead, and a glass coverslip surface 

the optical force can be finely controlled to measure the mechanical properties of 

proteins, biopolymers, and protein aggregates involved in disease (Fazal, et al. 2011). 

Micrometer sized beads, normally made of polystyrene, are widely employed in optical 

trapping experiments. These plastic beads can be functionalized at the surface with 

chemically reactive molecules like primary amines, carboxylates, and hydroxyls, which 

in turn can be conjugated to biomolecules of interest for single molecule experiments 

(Bugiel, et al. 2015). 

 

An optical trap is formed by focusing a laser beam into a diffraction limited spot using a 

high numerical aperture objective lens.  In the presence of the optical trap a dielectric 

particle will experience a gradient force toward the focus of the trap where the photon 

flux is highest, as well as a scattering force in the direction of propagation of light 

(Neuman, et al. 2004). A dielectric object, referred to as a trapping handle, is trappable 

when the magnitude of the gradient force is larger than that of the scattering force. 

Using a single gradient optical trap, objects with refractive indices larger than n=1.73 

become untrappable in an aqueous medium, such as biological buffers, due to large 

amounts of scattering (Hu, et al. 2008). Yet, fine tuning the difference in index of 
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refraction of the handle and the surrounding medium can lead to higher trapping 

stabilities (Horst, et al. 2008). 

 

Recently, Schaffer and coworkers developed coated microspheres with decreased 

scattering and exceptionally high trapping stability (Jannasch, et al. 2012), without the 

need to use high laser powers that can lead to photodamage of biomolecules and 

sample heating (Peterman, et al. 2003). However, in order for these anatase-titania 

core-shell handles to become a useful tool in the field of single-molecule biophysics, a 

clear and straightforward method to synthesize these promising particles must be 

developed. Currently, the literature provides only vague descriptions of the synthesis of 

these microparticles, and a strategy to functionalize these handles with biomolecules 

relevant to biophysical assays has not been developed. Here we provide a synthetic 

strategy for making anatase-titania core-shell particles covalently linked to biomolecules 

like proteins (prion proteins, streptavidin) and nucleic acids (double stranded DNA). We 

anticipate the methods described here will allow for wider applicability of these improved 

trapping handles in optical trapping applications requiring the use of high forces (Dong, 

et al. 2010) (Castro, et al. 2011), as well as in combined coincident optical trapping and 

fluorescence assays (Lang, et al. 2004) (Tarsa, et al. 2007) (Brau, et al. 2006) where 

minimizing  laser powers while maintaining trapping stability is vital (Dijk, et al. 2004). 
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MATERIALS AND METHODS 

Core-Shell synthesis 

Cores were synthesized by chelating a 0.46% (by weight) solution of titanium butoxide 

(TBT, Sigma Aldrich) with ethylene glycol (EG, Sigma Aldrich) overnight in a nitrogen 

environment under rotation. A 100 mL acetone solution with 2.03 mM Tween-20 (Sigma 

Aldrich) and 100 µL of water was mixed with 18-20 mL of the TBT-EG solution 

depending on the size of cores needed (19 mL of TBT-EG solution produced ~500 nm 

cores, Figure 2B). The reaction mixture was agitated for 10 minutes and stored at room 

temperature for 24 hours. The particles were collected by centrifuging the solution for 

five minutes at 7,000 rpm and redispersed in cold ethanol a total of three times. After 

the final centrifugation step, the pellet was dried in a convection oven at 70°C for thirty 

minutes to evaporate any remaining solvent prior to calcination. The dried cores were 

then annealed for 1 hour at 500°C in a furnace to induce a transition of the titania into 

the anatase phase. The cores were sized using a light microscope with differential 

interference contrast microscopy (DIC).  

 

For the addition of the amorphous titania shells, 0.5 mg of anatase cores were 

resuspended in 3.3 mL of ethanol with 800 μM Lutensol (BASF) and disaggregated 

using a probe sonicator. This solution was then added to a 3.3 mL ethanol solution with 

50-175 μL of TBT. The amount of TBT added in this step dictates the diameter of core-

shell particles after mixing, with 100 µL TBT producing core-shell particles with diameter 

~1,350 nm. The core-TBT mixture was reacted for a total of two hours in a temperature 



! 134!

controlled bath sonicator kept at ~30oC. To incorporate surface exposed thiol groups, 80 

µL of a 1:100 dilution of (3-mercaptopropyl)trimethoxysilane (MPTS, Sigma Aldrich) in 

ethanol was added to the reaction mixture after 1 hour of sonication. The MPTS solution 

was prepared under a nitrogen environment. Upon completion of the reaction, the core-

shell particles were cleaned by centrifuging for 5 minutes at 5,000 rcf resuspending in 3 

mL of ethanol after each wash for a total of three times. After the final wash, the 

particles were sonicated for 2 minutes prior to heating. 

 

To tune the index of refraction of the titania shell, a 100 µL aliquot of the cleaned core-

shells was centrifuged for 5 minutes at 1,500 rcf in a microcentrifuge tube, the 

supernatant was removed, and the pellet was heated at 50oC on a dry block heater for 

5-15 minutes. The particles were then quenched by placing the microcentrifuge tube on 

ice for 1 min, followed by resuspension of the particles in 100 µL of phosphate buffered 

saline buffer (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4 , 2 mM KH2PO4 , pH = 7.4), 

sonicated for 2 minutes, and stored at 4oC under rotation. The final diameter of the core-

shells particles was determined similarly to the sizing process described for the anatase 

cores. 

 

Covalent Crosslinking to Protein or DNA  

A two-step crosslinking reaction was used to covalently couple Amine-containing 

proteins or DNA strands to the surface exposed sulfhydryl groups of the particles. The 

procedure described here is for the Sup35 prion protein (Dong, et al. 2010) and a 3,500 
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base pair dsDNA tether harboring a terminal amine group opposite a terminal biotin tag, 

although the methodology is applicable to any biomolecule with a surface exposed 

primary amine moiety. 

!

Figure 1. Synthetic strategy for the production of anatase-titania core-shell particles 
functionalized with proteins or nucleic acid structures. Anatase cores with a high index 
of refraction (n1~2.3)  are coated with an amorphous titania shell (with index of refraction 
n2~1.6), and functionalized with surface exposed thiol groups using MPTS. The index of 
refraction of the shell can be tuned by heating to an estimated n3~1.7-1.8, which leads 
to high trapping stability (see Discussion). The surface exposed thiol groups can be 
crosslinked to proteins and nucleic acids using thiol-maleimide chemistry. 
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A 30 μL solution of 100 μM protein in PBS was incubated with 3 μL of 20 mM 

sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate (sulfo-SMCC, Pierce 

Biotechnology) at room temperature for two hours. During the incubation period, 25 μL 

of core-shell particles were cleaned in 500 μL of PBST by centrifuging at 1,500 rcf for 2 

minutes, resuspended in 100 μL of PBS sonicated for 2 minutes. Excess sulfo-SMCC 

was removed from the protein solution using a disposable chromatography column 

(Micro Bio-Spin, Bio-Rad) in PBS buffer a total of three times. The maleimide activated 

protein was then immediately added to the core-shell suspension, and mixed overnight 

at 4oC. The bio-functionalized core-shells were then washed three times at 1,500 rcf for 

2 minutes, and in 100 μL of PBST buffer under rotation. 

 

Optical trapping and TIRF 

To test the stability of the core-shell particles in an optical trap, we used a custom built 

optical trapping instrument. The optical trapping instrument relies on back focal plane 

detection of scattered photons. To quantify any improvement in trapping stability when 

using core-shells versus commercially available polystyrene particles, the trapping and 

detection lasers were first aligned and the trap stiffness was calculated using an 

equipartition based calibration. For each batch of core-shells the variance of at least five 

beads was measured. 

 

For DNA stretching experiments, a glass coverslip (Fisher Scientific) was passivated 

with polyethylene glycol (PEG, Laysan Bio) as previously described (Jang and Nam 
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2008). The PEGylated coverslip was used to make a ~10 μL flow-cell by coupling the 

coverslip to a microscopy glass slide (Fisher Scientific) using double sided sticky tape. 

Then, a streptavidin solution (0.1 mg/mL in PBS) was flowed into to the flow-cell and 

incubated for 10 minutes at room temperature under high humidity. Excess streptavidin 

was removed by washing the flow-cell with 100 μL of PBS. Particles coated with DNA-

Biotin were introduced into the flow-cell (20 μL) and incubated for 30 minutes. 

Untethered particles were removed with a 100 μL PBS wash, and the slide was loaded 

onto the optical trapping instrument. For DNA pulling experiments, a surface tethered 

bead was located on the coverslip surface, and centered in the detection laser. Then, 

the optical trap was turned on and a piezoelectric nanopositioning stage (Physik 

Instrumente) was moved at a constant rate (2 μm/sec for 5 μm) displacing the bead 

form the trap center. Bead position was acquired at 3kHz using a custom-written 

LabVIEW routine. 

 

To measure the presence of covalently linked proteins using fluorescence, we used a 

custom-built total internal reflection fluorescence (TIRF) microscope with a 532 nm 

excitation laser (World Star Technologies) used for excitation of the Sup35 proteins 

labeled with Alexa555. Fluorescence emission was imaged using an EM-CCD camera 

(Andor Technologies). 
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!

Figure 2.  Synthesis and characterization of core-shell particles. (A) Image of anatase 
cores (~ 400 nm in diameter) obtained using a light microscope with DIC. The size bar 
is 2 μm. Average anatase core size (B) and titania shell thickness (D) as a function of 
the concentration of TBT. (C) Raman spectra for cores before (gray) and after (black) 
calcination showing the transition of titania to the anatase phase. For (B) and (D) values 
are mean ± SEM. 
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RESULTS AND DISCUSSION 

Synthesis and characterization of core-shell particles 

Using the synthetic strategy outlined in Figure 1, we  provide a straightforward method 

for the synthesis of optical trapping handles with increased trapping stability. This 

strategy is based on a considerably modified version of work developed by several 

groups (Yu, et al. 2008) (Demirörs, et al. 2011) (Demirörs, et al. 2010). In the initial step, 

titania cores are synthesized by a nucleation reaction where the diameter of the cores is 

linearly dependent on the concentration of TBT used (Figure 2B). Using 1.5-3 mM TBT, 

we were able to synthesize cores with tightly controlled diameters between 200-800 nm. 

To determine the size of the particles, we found that particle diameters estimated using 

a scanning electron microscope (SEM) were close predicted (normally less than 10% 

error) using a custom-built light microscope equipped with a 100X objective (1.4 

numerical aperture, Nikon) and DIC. A representative image of the cores is shown in 

Figure 2A. To calculate particle diameters, DIC images were used to measure the 

average number of pixels that make the diameter of a particular particle using the 

software ImageJ. With a predetermined pixel size of 50.4 nm/pixel for the CCD camera 

used (DAGE-MTI), we estimated the average diameter in nanometers for numerous 

beads per condition.  

 

Since a mismatch in the index of refraction between the core (n = 2.3, (Demirörs, et al. 

2011)) and shell (1.6 < n < 1.8, (Demirörs, et al. 2011)) materials is vital for enhanced 

trapping stability (Jannasch, et al. 2012), we used Raman spectroscopy to test whether 
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synthesized cores were in-fact in the anatase phase after calcination. Indeed, Raman 

spectra show the emergence of the characteristic peaks for anatase at wavenumbers 

144, 399, 519, and 639 cm-1 (Zhang, et al. 2000) (Ohsaka, et al. 1978) only upon 

heating the cores at 500oC (Figure 2C).  

 

Coating of the anatase cores with amorphous titania shells was carried out at constant 

surfactant concentration, using varying concentrations of TBT precursor to dictate the 

shell thickness (Figure 2D). Previously, it had been suggested that a silica layer 

deposited on the surface of core-shells could provide a conjugation strategy to couple 

molecules of interest to the particles, but was mainly used as a way to generate 

fluorophore-free luminescent beads upon calcination (Demirörs, et al. 2011) (Demirörs, 

et al. 2009). However, silica coating of particles can be a tedious reaction and often 

leads to particle clumping (Bharti, et al. 2014).  Instead, here we employed a silane 

functionalizer, MPTS, to insert thiol groups on the titania shell surface. Although thiol 

chemistry provides a convenient strategy for coupling to primary amines in 

biomolecules, other silane analogues can easily be used to insert different surface 

chemistries including amines, and hydroxyls. 

 

Particle size and trapping stability are temperature dependent 

The amorphous titania shell has an index of refraction of ~1.55 which is lower than the 

suggested n=1.75 for optimal trapping stability of the core-shells, as predicted by theory 

(Jannasch, et al. 2012). However, the titania index of refraction can be tuned by heating. 
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Upon heating at 50oC, the particle diameter decreased ~15% within 15 minutes (Figure 

3A). Thus, to synthesize core-shells with a final diameter of 1.0-1.1 μm we started with 

core-shells ~1.25 μm in diameter prior to heating.  

!

Figure 3. (A) Average diameter of anatase-titania core-shell particles as a function of 
heating time at 50oC. Two separate batches of core-shells are plotted, with initial 
diameters of 1.28 μm (black) and 1.4 μm (red). (B) Average trapping stiffness for 
conventional polystyrene beads (P.S., diameter ~ 1 μm), and core-shells (C.S.) heated 
for 0, 5, or 10 minutes. Values are mean ± SEM. 

 

 

Using a single beam optical trapping instrument, we characterized the trapping stability 

of the particles by comparing the trap stiffness, at a constant laser power (~80mW at the 

back aperture of the objective), between the core-shells and polystyrene beads of a 

similar size (1.025 μm, n=1.57, Spherotech). Polystyrene beads are widely used in the 

field of single-molecule biophysics for optical trapping experiments, including at high 

forces (Dong, et al. 2010). Even in the absence of heating, the core-shell particles 
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displayed higher trapping stability than the polystyrene beads (Figure 3B). Upon 

heating, the change in density of the titania shell leads to an increase in index of 

diffraction (Demirörs, et al. 2011), and we observe increased trap stiffness for the core 

shells (Figure 3B). When heated for longer than 10 minutes, the core-shells were no 

longer trappable with a single beam trap likely due to an increase in the scattering force 

(Jannasch, et al. 2012). These results show functionalized anatase-titania core-shell 

particles display a 5-fold improvement in trapping stability compared to standard 

polystyrene beads.  

 

Biophysical experiments using core-shell particles 

To demonstrate the use of the core-shell particles in biophysical experiments, we 

coated the particles with either proteins or strands of DNA. The DNA was produced by 

PCR amplification on an M13mp18 bacteriophage plasmid to make 3,500 base pairs 

long strands harboring opposite 5’-Biotin or primary amine moieties. The 

heterobifunctional amine-thiol crosslinker sulfo-SMCC was used to couple the NH2-

DNA-Biotin to the functionalized core-shells. To test the efficiency of this reaction, DNA 

coated core-shells were tethered to a PEGylated coverslip through a biotin/streptavidin 

interaction (Figure 4A). Successfully tethered beads were stretched by turning on an 

optical trap and moving the coverslip surface at a constant rate using a piezoelectric 

microscope stage. The pulling trace shown in Figure 4B shows DNA stretching up to 

~100pN before tether breakage. Although an overstretching transition is not observed in 

this trace due to the presence of two tethers, as suggested by the dual transition break 
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~3.3 sec, this and other traces obtained suggest DNA coupling to the core-shell surface 

was achieved. 

!

Figure 4. (A) Cartoon of the optical trapping assay used to stretch DNA tethers (not to 
scale). A core-shell particle covalently labeled with 3,500bp dsDNA is tethered to the 
PEG-passivated coverslip surface through a biotin-streptavidin connection. When the 
optical trap is on, controlled stage movement displaces the particle from the center of 
the trap and applies tension across the DNA. (B) Representative pulling trace showing 
an increase in force across the tether as the stage is moved at 2 μm/sec. A two step 
rupture occurs at ~3.3 sec as the core-shell returns to the trap center. 
 

Furthermore, as an extension of this approach, we coupled core-shell particles to the 

prion protein Sup35 labeled with an Alexa555 fluorescent tag. We chose to use the 

Sup35 protein, produced in Saccharomyces cerevisiae, due to its involvement in 

amyloid fibril formation (Dong, et al. 2010). To study the mechanics of these protein 

aggregates using optical trapping, Lang and coworkers tethered amyloid fibrils between 

a coverslip surface and a polystyrene bead (Castro, et al. 2011). To do so, a Sup35 

protein seed was coupled to the polystyrene bead through a biotin-streptavidin 
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connection. Here we used sulfo-SMCC to covalently bind the amine-terminus of Sup35 

to surface exposed thiol groups on the core-shells. Sup35 coated core-shells were 

imaged using DIC, and TIRF microscopy (Figure 5 A and B).  

 

!

Figure 5. DIC image of anatase-titania core-shell particles coated with Sup35 proteins 
(left panels (A) and (B)). TIRF microscopy images (right panels (A) and (B)) show 
fluorescence emission of the Alexa555 dye on the surface-bound Sup35 protein. The 
fluorescence intensity from the beads decreased with time due to photobleaching of the 
dye.  
 
 
Fluorescence intensity of the core-shells decreased with time due to photobleaching of 

the Alexa555 dye, suggesting the Sup35 protein successfully bound the core-shell 

surface. These Sup35 coated core-shells can be used to probe amyloid fibril mechanics 

(work in progress). The same process was successfully carried out to covalently bind 

the protein streptavidin to the core-shell surface. Given the ubiquitous use of 

biotinylated proteins, nucleic acids, and molecular motors in single-molecule 

experiments, streptavidin coated core-shells can be easily introduced into well 

developed assays to probe biomolecule mechanics and activity (e.g. ClpXP mechanical 
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protein degradation (Aubin-Tam, et al. 2011), protein folding-unfolding (Ritchie, et al. 

2015)). 

 

CONCLUSIONS 

Here we provide a synthetic strategy for making optical trapping handles that display 

increased trapping stability. These handles are composed of a high-refractive-index 

anatase cores coated with an anti-reflection titania shell. By introducing a silane 

functionalizer to the particle surface, we provide a straightforward method for covalently 

coupling nucleic acid and protein structures. We anticipate this approach will allow the 

single-molecule biophysics community to employ these next-generation trapping 

handles in experiments probing mechanically stable biological interactions/structures 

such as studying the mechanics of amyloid fibrils. Furthermore, these particles are 

promising candidates for use in combined optical trapping and fluorescence approaches 

where decreasing trapping laser intensity can provide longer fluorophore lifetimes 

(Peterman, et al. 2003). 
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CHAPTER 6 

 

Conclusions and Future Directions 

 

Molecular motors form the AAA+ superfamily of enzymes are ubiquitously employed 

across all forms of life to carry out highly diverse and vital cellular tasks. AAA+ 

molecular machines largely assume a hexameric ring-shaped structure that is used to 

generate mechanical work. Although structural and biochemical studies on AAA+ 

systems have been used to decipher some of the operating principles of these versatile 

machines, a molecular mechanism of how these ring-shaped motors convert chemical 

energy to mechanical work remains largely undetermined. Using the ClpXP protease as 

a model AAA+ system, the work presented in this thesis provides detailed insights into 

fuel consumption, force generation, and conformational switching by a ring-shaped 

motor at the single molecule level. 

 

Using an optical trapping assay to track mechanical degradation of homopolymer titin 

substrates, we develop a mechanochemical cycle for the ClpXP protease that accounts 

for structural, ensamble, and single-molecule experimental data. The impact of this work 

is evident in the fact that the same single-molecule approach has since been used in 

several studies to investigate the molecular mechanisms of protein degradation by the 

double-ring system ClpAP (Olivares, et al. 2014), as well as characterize the impact of 

individual ClpX pore-loops on substrate gripping (Iosefson, et al. 2015). Future work 
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studying the mechanics of protein degradation using an optical trapping assay could 

focus on probing the molecular communication between ClpX and ClpP. Specifically, 

stacked assembly of the ClpX ring atop the ClpP barrel occurs through a set of 

peripheral and axial interaction loops (Joshi, et al. 2004). Peripheral loops, referred to 

as IGF loops, on one interface of the ClpX ring bind to hydrophobic clefts in six of the 

seven ClpP subunits leading to an asymmetric ClpX ring structure (Glynn, et al. 2010). 

Binding of these ClpX loops to ClpP results in widening of the entrance pore into the 

ClpP barrel. Mutagenesis of multiple IGF loops in a single ClpX ring largely abolishes 

proteolytic activity but does not hobble chaperone activity (Kim, et al. 

2001).  Interestingly, recent work by our collaborators using a ClpX variant containing a 

single IGF loop mutation displays ~50% degradation activity compared to wild-type 

ClpXP in ensemble biochemical studies (unpublished results). Thus, this construct 

provides an interesting avenue to probe the communication between ClpX and ClpP 

during substrate processing. Are the lower degradation kinetics observed at the bulk 

level for ClpX-IGF mutants due to slower unfolding dwell times, translocation velocities, 

or changes in translocation step sizes? If ClpX constructs with a mutated IGF loop 

display similar translocation velocities to that of wild-type ClpXP, this would support a 

model in which the ClpP central pore remains closed and therefore translocation of the 

polypeptide must occur through the space between the ClpX and ClpP interface. 

Contrastingly, if translocation velocities are significantly slower for ClpX-IGF mutants, 

then a model in which the ClpP pore opens only transiently could account for the slower 

kinetics. 
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Furthermore, the dual-trap assay presented in this thesis can be slightly altered to study 

protein degradation under an assisting load. In the experimental geometry shown in 

Figure 1 of Chapter 2 in this thesis, an optical load is applied in a direction opposite that 

of ClpXP mechanical pulling. Thus, ClpXP must not only mechanically pull on a protein 

to catalyze unfolding and translocation, but it must also work against the force from the 

optical trap. However, in vivo ClpX, and other AAA+ chaperones, unfold unstrained 

substrates by applying force only to the portion of the protein proximal to the ClpX pore. 

To investigate single-molecule protein degradation under an assisting load, preliminary 

work used a dual-trap assay strategy (Figure 1A) in which substrate harboring a C-

terminal Histidine-6 tag, directly following the ssrA tag, was pre-engaged to ClpX 

hexamers on a streptavidin bead. A separate bead coated with a DNA-Antibody 

conjugate was used to specifically bind the His-tag of the partially translocated substrate 

thereby applying an optical load in the same direction as ClpX pulling. Single molecule 

trajectories using this strategy (Figure 1B-C) display segments with constant interbead-

distance presumed to be unfolding dwell times, followed by quick increases in distance 

interpreted as translocation. Here, unfolding events don’t result in abrupt changes in 

distance since the substrate is unstrained, and thus the dumbbell length is only 

expected to change during translocation. Future work using this strategy will allow for 

the calculation of unfolding dwell time and translocation velocity distributions to 

determine what effect tilting the reaction coordinate has on the kinetics of protein 

degradation by ClpX.  
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Figure 1. (A) Experimental setup for single molecule assays of ClpX unfolding and 
translocation under an assisting optical load. A laser trapped streptavidin bead is coated 
with biotinylated ClpX motors pre-engaged with a multimeric substrate. A second 
trapped bead coated with DNA-Antibody conjugates is used to bind a Histidine-6 tag 
near the C-terminus of the substrate after it has been translocated by ClpX. This dual-
trap assembly imparts an optical load in the same direction as ClpX pulling. (B and C) 
Sample optical trapping trajectories for the unfolding and translocation of an ssrA-His6-
FilaminA(1-8)-HaloTag substrate. The force during the experiments is clamped at 12pN 
(B) and 9pN (C). 

 

The first observation of ClpXP-mediated proteolysis at the single molecule level was 

achieved by monitoring the kinetics of degradation of fluorescently tagged substrates 

(Shin, et al. 2009). In this thesis we expand on this work by using a fluorescence 
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quenching strategy to characterize nucleotide binding (Chapter 3) and ClpX subunit 

conformational changes (Chapter 4) in real time. The fluorescence-quenching 

approached used here has several advantages over other widely used fluorescence 

approaches like smFRET and fluorescence colocalization. First, given that dark 

quencher molecules do not fluoresce, high concentrations (micromolar) of quencher-

labeled ATP molecules can be used. Previous demonstrations of nucleotide binding to 

individual molecular motors required the use of picomolar concentrations of 

fluorescently labeled ATP analogs (Ishijima, et al. 1998). Additionally, in molecular ruler 

applications, fluorescence quenching provides higher resolution at small displacements 

(1-3 nm) compared to smFRET due to the fact that energy transfer between a 

fluorophore and a dark quencher occurs only when both molecules are in physical 

contact, rather than through a resonance energy transfer mechanism. Thus, the 

fluorescence-quenching strategy described here provides a reliable approach to study 

conformational transitions in other AAA+ ring-shaped motors. Lastly, the fluorescence 

quenching approach used here employs only a single rhodamine fluorophore, which is 

less susceptible than other organic dyes to enhanced photobleaching from reactive 

oxygen species in the buffer medium or by the proximity of an optical trap (Ferrer, et al. 

2009).  

 

The combined force-fluorescence assays developed in Chapters 3 and 4 provide 

unprecedented insight into the structure-function relationship of ring-shaped motors 

during substrate processing. By simultaneously watching and manipulating single ClpXP 
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motors we can characterize the structure of ClpX subunits while performing highly 

specific tasks (e.g. protein unfolding, nucleotide binding) in real time. Future work using 

this approached can focus on characterizing whether the ClpX ring assumes 

significantly different conformations during chaperone activity compared to proteolysis. 

Similarly, the ClpX ring is known to be highly flexible and adaptable, as evidenced by 

the fact that ClpXP can degrade substrates with highly diverse polypeptide identities 

(Barkow, et al. 2009) as well as multiple substrates covalently linked through disulfide 

bonds (Glynn, et al. 2010). Future work employing combined force-fluorescence assays 

can be used to decipher the specific contortions in the ClpX ring as it translocates 

multiple covalently stapled substrates.  
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APPENDIX A 

 

Protocols 
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PCR amplification of dsDNA for ClpXP assays 

To amplify dsDNA of different predetermined lengths from the same M13mp18 plasmid 
we use the same reverse primer and change the forward primer to yield the desired 
length of the dsDNA.  

The Primers used here are: 

Reverse Primer: 

5'- Amino - TTG AAA TAC CGA CCG TGT GA - 3' 

5'- Dithiol - TTG AAA TAC CGA CCG TGT GA - 3' 

Forward Primers: 

For 100bp DNA: 5’ - Dig - TGT ATA ACG CAT ATG ATA CT - 3’ 

For 1010bp DNA: 5’ - Dig - TAT TGC GTT TCC TCG GTT TC - 3’ 

For 3500bp DNA: 5'- Biotin - AAT CCG CTT TGC TTC TGA CT- 3' 

Materials 

Flat cap PCR tubes (Thermo Sci. cat#AB-0620) 

Forward Primer(IDT, custom oligo) 

Reverse Primer(IDT, custom oligo) 

dNTP solution (New England Biolabs cat#N04475) 

m13mp18 plasmid (Bayou Biolabs cat#P-105) 

Phusion DNA Polymerase (New England Biolabs cat#M0530S) 

TE buffer (Ambion cat#AM9849) 

UltraPure water (Invitrogen cat#10977-015) 

QIAquick PCR purification kit (Qiagen cat#!28106) 

UV-Vis spectrophotometer (Thermo Sci. NanoDrop 2000) 

 

1.Remove all materials form the freezer and allow any frozen solutions to thaw at room 
temperature. Upon thawing, immediately transfer and maintain in ice. 
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2. To prepare 1mL of PCR reaction mixture, mix the following in a 1.7mL microtube: 

• 715uL U.P. water 
• 25uL of 20uM biotin primer in TE buffer 
• 25uL of 20uM amino primer in TE buffer 
• 20uL of 10mM dNTPs mixture 
• 5uL of 50ng/uL m13mp18 plasmid in TE buffer 
• 200uL of 5X GC buffer  
• 10 uL Phusion polymerase 

 

3. Mix thoroughly by gently pipetting the solution up and down. 

4. Add 100uL of PCR reaction mixture to 10 flat-cap PCR tubes 

5. Immediately transfer tubes to PCR machine and run the “PHUSION” program/routine 
(outlined below) 

 

PHUSION PCR program: 

1) 980C during 30sec 

2) 980C during 10sec 

3) 490C during 30sec 

4) 720C during 90sec 

5) repeat steps 2-3-4 for a total of 35X 

6) 720C during 10 min 

7) keep at 40C 

 

6. Upon completion of PCR program, purify with the DNA using the Qiaquick purification 
kit (protocol for purification is included in the kit). Last step in purification resuspend 
using 30uL of PBS instead of elution buffer included in kit.  

7. Measure nucleic acid concentration of the purified DNA using the NanoDrop. Normal 
yields for us are reproducibly ~200ng/uL (~100nM for 3500bp dsDNA) 

!
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DNA-Amine to Thiol-HaloTag Ligand Conjugation    
   
Materials 
NH2-DNA @~200ng/uL in PBS (see protocol on PCR amplification) 
Ultrapure distilled water (Invitrogen cat#10977-015) 
Sulfo-SMCC (Pierce cat#22622 in 2 mg sealed tubes) 
PBS buffer at pH 7.4  
HaloTag Thiol Ligand (Promega cat#P6761) 
Bio-Rad Micro Bio-Spin 30 columns (BioRad cat#732-6223) 
Bio-Rad Micro Bio-Spin 6 columns (BioRad cat#732-6221) 
UV-Vis spectrophotometer (Thermo Scientific NanoDrop 2000) 
 

1. Remove a 2mg Sulfo-SMCC tube from the freezer and allow it to equilibrate to 
room temperature for 30min. 

2. Dissolve 2mg of Sulfo-SMCC in 200 µL Ultrapure water by perforating the 
tube with a pipette tip only. This may take ~15minutes of mixing. 

3. Immediately combine 60µL of Sulfo-SMCC solution with 60 µL NH2-DNA-
Biotin @~200ng/uL  

4. Incubate for 2 hours at room temperature on a rotator 
5. Remove unreacted Sulfo-SMCC with gel chromatography columns: 

a. Prepare six MBS6 columns by exchanging the buffer to PBS as 
described below (*) 

b. Place 60uL of DNA-SMCC solution into two columns 
c. Spin column at 1000g for 4 mins, collect flow through 
d. Clean a total of 3X 

6. Combine cleaned DNA-Maleimide with 2uL of 100mM Thiol-Halotag Ligand, 
wrap in aluminum foil, and rotate overnight at 4oC 

7. Remove unreacted HaloTag Ligand using gel chromatography columns: 
a. Prepare 10 MBS6 columns by exchanging the buffer to PBS as 

described below (*) 
b. Place a maximum of 70 µL DNA-HaloTag Ligand on each column 
c. Spin at 1000 g for 4 mins and retain flow through 
d. Clean a total of 3X(**) 

8. Measure nucleic acid concentration of the biotin-DNA-HaloTag Ligand using 
the NanoDrop. Normal yields for us are reproducibly ~100ng/uL 

 
 
Note: During the SMCC conjugation, there must not be any other primary amines 
present. 
This means any samples in a Tris buffer (TE) must undergo a buffer exchange. Best 
results have 
been obtained when samples originated in a non-NH2 buffer. 
 
(*) Exchange buffer in MBS columns: 
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(a) Invert/mix the MBS column, snap tip, and drain for 2 mins into a 2 mL tube 
(b) Empty flow through, spin at 1000 g for 2 mins and discard flow through 
(c) Load 500 µL PBS, spin 1000 g for 1 min and discard flow through 
(d) Repeat PBS load and spin a total of 3 times 
 
(**)Alternatively you can desalt 2X in MBS6 columns and then once in MBS30 columns 
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Making ATP regeneration solution (20X) for ClpXP experiments 

Adapted by the Sauer Lab (MIT) 

 

Materials 

Creatine Phosphokinase (CalBioChem 238395) 

Creatine Phosphate (CalBioChem 2380) 

Adenosine Triphosphate (Sigma A7699) 

PD buffer 

 

1. Prepare the following stock solutions in PD buffer, and keep on ice:  
• 300mM ATP (pH to 7.6 with KOH) 
• 3mg/mL Creatine Phosphokinase  
• 1M Creatine Phosphate  

2. In a 1.7mL microtube on ice, mix the following: 
• 633.4uL PD 
• 200uL Creatine Phosphokinase stock 
• 100uL Creatine Phosphate stock 
• 66.6uL ATP stock 

3. Vortex, and aliquot (40uL per aliquot) 
4. Flash freeze with liquid nitrogen and store @-800C 

• Use aliquots within 3 months. 
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ClpXP dumbbell assay      
 
Developed with M.E. Aubin-Tam, and A. Olivares 
 
Materials 
3µL of ~5-6uM ClpX (biotinylated) 
11µL of 20uM ClpP (with his tag) 
20X ATP with regeneration system 
3µL of 20µM HaloTag terminated Substrate with ssrA tag 
15µL of ~150ng/µL HaloTag-3500bpDNA-biotin in PBS 
50µL of 0.5ng/µL A08-3500bpDNA-biotin 
1 µm streptavidin coated polystyrene beads (Polysciences Inc 24162-1) 
1.26 µm streptavidin coated polystyrene beads (Spherotech SVP-10-5) 
100X catalase (3 mg/mL in PD, Sigma C40) 
100X glucose oxidase (25 mg/mL in PD, CalBioChem 345386) 
100X glucose (500 mg/ml β-D-glucose in PD, CalBioChem 34635) 
Dithiothreitol (100mM, Thermo 20290) 
Casein (Sigma C7078) 
Bovine Serum Albumin (CalBioChem 2905-OP) 
PD buffer 
PBS 
0.2um Syringe filters (Fisher SLMP025SS) 
Microcentrifuge tubes (1.5mL and 0.7mL, Fisher 02-682-556 and 05-408-120) 
Vacuum grease 
 

9. Prepare surface blocking buffer: Make a 1mg/mL casein solution in PBS, filter 
with 0.2µm syringe filter and keep in a microtube on ice.  

a. This solution must be made fresh everyday and used within 6 hours 
10. Prepare anti-clumping buffer: Make a 5mg/mL BSA solution in PD, filter with 

0.2µm syringe filter, transfer 1.5mL of buffer to a microtube and add 15uL of 
DTT @100mM and keep on ice.  

a. This solution must be made fresh everyday and used within 6 hours. 
BSA must always be stored at 40C 

11. Make a narrow flow chamber with an etched coverslip (See Protocols 1 and 
2) 

12. Flow 0.5ng/µL A08-3500bpDNA-biotin into flow chamber and incubate 30min 
in a humidity chamber*.   

a. When adding solution to the flow cell for the first time, add solution to 
one side of the channel and allow capillary action to fill the flow cell.  

b. Normally 3-5 tethers per field of view are desired, so this A08 
concentration can be tuned.  

13. Remove unbound A08-DNA-Biotin and coat coverslip surface by flowing 
100uL of casein solution through the flow cell. Incubate 20min. 
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a. To establish fluid flow through the cell we use a vacuum line connected 
to a pipette tip with a plastic piece of tubing. Flowing 100uL through the 
channel should take ~3minutes to ensure that flow is slow enough to 
prevent unbinding and shearing of flow cell contents. 

14. During the casein incubation, prepare bead solutions: 
a.  In two separate tubes, mix 180µL PD with 3µL of 1µm and 1.26µm 

streptavidin bead stock solution, respectively. 
b. Wash beads by spinning down at 10,000rpm for 3 min, remove 

supernatant, and resuspend thoroughly in 180µL PD. 
i. After centrifugation, a white pellet of beads is clearly visible near 

the bottom of the microtube. Use a pipette to remove the 
supernatant without disturbing the pellet. 

c. Repeat for a total of three washes. The final resuspension is in 60uL of 
BSA solution. 

d. To breakup any bead clumps that may have formed during bead 
storage, and cleaning, sonicate both bead solutions for 2 minutes at 
40% in a cup sonicator. (Fill the cup sonicator with cold water, but no 
ice) 

e. Keep beads on ice 
15. Flow 20 µL of cleaned 1µm streptavidin beads into flow chamber, incubate 10 

minutes. 
16. During this incubation period, functionalize 1.26um beads with ClpXP (see 

procedure below) 
17. Wash flow cell with 100µL of BSA solution to remove unbound beads. 
18. Mix 6µL of substrate-DNA-biotin with 12µL of BSA solution, flow in channel, 

and incubate 20min. 
19. Wash channel with 100µL BSA solution to remove unbound substrate-DNA-

biotin 
20. In a 0.7mL microtube, mix the following immediately before flowing into flow 

cell: 
15µL of 1.26µm beads functionalized with ClpXP 
+  8.1µL of BSA solution 
+  6µL of 20X ATP with regeneration system 
+  0.3µL of 100X catalase 
+  0.3µL of 100X glucose oxidase 
+  0.3µL of 100X glucose 

21. Flow into channel, and seal chamber with vacuum grease. Start a timer for 
1hour (after which ATP regeneration system is no longer effective) and load 
slide on optical trap. 
 

ClpXP functionalization of beads 
• Mix the following in a microtube: 

14µL of 1.26µm streptavidin beads solution 
+ 5µL of ~5-6µM ClpX 
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+ 2.3µL of 44.4µM ClpP 
+ 6µL 10X ATP with regeneration system 
+ µL BSA solution 

• Allow protein to bind beads by incubating 30 minutes at room temperature 
• To remove unbound ClpXP, spin down at 7500rpm for 1min 
• Remove supernatant (the pellet is very small/almost invisible, look carefully to 

make sure pellet is not removed along with supernatant) and resuspend gently in: 
51µL BSA solution 
6µL of 20X ATP Regeneration system  
3µL of 44.4µM ClpP  

! Keep on ice 
 
* For humidity chambers we fill with water the bottom of an empty pipette tip box, then 
we store flow-cells on the pipette tip tray and close the lid of the box during incubations 
to maintain a high humidity environment during incubation periods. This is vital in 
preventing evaporation of the flow cell contents during incubation periods in this assay.  
All incubations are at room temperature. 

 

 
!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



! 164!

Anti-Digoxigenin coated beads 

 

Materials 

Protein G beads (Spherotech PGP-08-5) 

Anti-Digoxigenin (Roche 11333089001) 

PBS buffer 

PBST buffer 

BS3 Crosslinker (Lifetechnologies ) 

Ethanolamine (Sigma ) 

 

1. Wash 25uL of Protein G bead stock solution with 500uL PBST by spinning down 
for 3 minutes a 8000rpm (repeat a total of three times) 

2. Remove the supernatant and resuspend in 500uL PBST (repeat a total of three 
times). Final resuspension is in 100uL of PBS. 

3. Sonicate for 3min at 30% (fill cup sonicator with cold water, but no ice) 
4. Add 80uL of 200ug/mL Antibody to the cleaned bead solution (make sure Anti-

Dig bottle is not past the use-by date) 
5. Mix for 1hr @ R.T. on a rotator 
6. Spin down for 2min at 8000rpm 
7. Remove supernatant, and gently resuspend beads with 500uL PBST (repeat 

wash a total of 3 times). 
8. Resuspend after last wash in 475uL of PBST 
9. Prepare 100mM BS3 crosslinker by adding 35uL PBS* to a pre-weighed 2mg 

tube of BS3 
10. Add 25uL of 100mM BS3 to the bead solution in step 8 (final concentration of 

5mM BS3 in the tube) 
11. Sonicate the tube for 2min @ 20%( fill cup sonicator with cold water, but no ice) 
12. React for 1hr @ R.T. on a rotator. 
13. Quench reaction by adding 250uL of 50mM ethanolamine to the bead solution (to 

make 50mM ethanol amine mix 2uL of ethanolamine with 658uL PBS) 
14. Incubate for 30min @ R.T. on rotator 
15. Spin down for 2min at 8000rpm 
16. Remove supernatant, and gently resuspend beads with 500uL PBST (repeat 

wash a total of 3 times). Final resuspension is in 250uL PBST 
17. Store @40C on rotator 

• Use beads within 2 months 
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TiO2 Core/Shell Microsphere synthesis 
 
NOTE: Ethanol used in these experiments is refrigerated. 
 
Procedure: 
I) Preparation of Anatase Core Particles 
1) Chelate 0.46% (by weight) Titanium butoxide solution (97%) by mixing Ethylene 
glycol in a glovebox for 10 hours (or overnight). Alternatively, create the mixture inside 
the glovebox and paraflim the reaction vessel vigorously to mix overnight in open air. 
Take 30mL EG and mix with 154µL TBT. These amounts should produce somewhere 
from 15-35 milligrams of cores. 
2) Dissolve 226.7µL Tween 20 [2.03 mM] in 100mL acetone (reagent grade) with 
rigorous stirring for 10 minutes. Add 100µL of water (or 100µL H2O/100mL acetone). 
The amount of water is crucial for the spherical shape of these titania cores. 
3) Mix 19mL TBT with the 100mL acetone solution. (To use the full 30 we can scale up 
step 2 to 158mL of acetone solution with 158µL H2O and 358.2µL Tween 20). The 
amount of TBT solution added to the acetone solution affects the size of the cores. 
(19mL will produce ~500nm cores). 
4) Agitate reaction mixture for 10 minutes, then remove the stir bar and leave for 24 
hours. The relatively transparent solution will turn milky white and form precipitate on 
the bottom. 
5) Clean this white precipitate by centrifugation at 7000rpm for 5 minutes and then 
redisperse in refrigerated ethanol. Wash the mixture TWICE. (During these washes 
reduce the resuspension volume to make the next step easier. I.E. resuspend the 
100mL acetone mixture in 10-15mL ethanol and transfer to 1.7mL microtubes.) 
6) Dry precipitate in convection oven at 70°C. Having the precipitate in a microtube 
during the drying makes transfer to our heating vessel significantly easier during this 
step. 
7) Transfer dried precipitate to foil and anneal particles for 1 hour at 500°C in a furnace. 
The furnace takes about 1 hour to heat to 500°C. 
8) After annealing weigh product and suspend with concentration of about 1mg 
cores/1mL EtOH. Keeping track of this concentration makes step II easier to keep track 
of. 
9) Before storage on a rotator in a refrigerator, make sure to sonicate at 80% for 2:30 as 
this keeps clumping at a minimum. Make sure to do this routine sonication before every 
use of these particles. 
 
NOTE: Changing the TBT concentration will affect core size. Refer to Diameter of Core 
Particles vs. TBT Concentration to adjust the diameter of the cores. (19mL " 500nm; 
19.5mL " 550nm) 
 
II) Addition of Amporhous Titania Shells 
1) Prepare 1mL of 0.1M Lutensol ON60 solution by adding 41.8µL Lutensol to 1mL DI 
H2O. 
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2) Sonicate cores at 80% for 2:30. Take 0.5mg cores and disperse in 1mL EtOH and 
sonicate again. Now add this 1mL core dispersion to 2.3mL EtOH to make a 3.3mL total 
dispersion. 
3) Add 26.6µL 0.1M Lutensol solution to your 3.3mL core dispersion and mix this 
solution. 
 
 
4) In the glove box in a different vial, take 3.3mL EtOH and add (50 - 175)µL TBT. The 
amount of TBT is vital in the sizing of core-shell particles post-mixing. Refer to the Core-
Shell Size vs. Sonication Time graph with various concentrations experimented with. 
100µL TBT produces ~1350nm core-shell particles. The reaction is quite sensitive to 
small changes in TBT amounts so be sure to measure this accurately. Close the vial 
prior to taking the mixture outside the glove box. 
5) Outside of the glove box add the core dispersion to the EtOH/TBT solution and close 
immediately. Parafilm the vial vigorously and quickly vortex this mixture before the next 
step. 
6) Add the vial to a sonication bath and sonicate for 2 hours. 
 
NOTE: The specimen jar should be tightly parafilmed and the level of water in the 
sonication bath should not be higher than the lip of the jar. This reaction is quite 
sensitive to water. Also, be sure to monitor the temperature of the sonication bath. 
Exchange the water in the bath if the temperature exceeds about 45°C (this will likely 
happen 30 minutes or so). A high temperature and an ice-bath sonication both had 
negative effects on titania addition to the core seeds. 
 
OPTIONAL: Add 80µL of a 1:100 dilution of MPTES in EtOH to the reaction mixture at 
the 1 hour sonication mark. (This addition will functionalize the core-shells). The MPTES 
in EtOH should be prepared in the glove box as MPTES is hyper-sensitive to moisture. 
 
7) Collect the titania core-shell particles by centrifuging for 5 minutes at 1500 rcf. 
Redisperse in the balance EtOH. Wash THREE times. After the final wash, resuspend 
the particles in half of the EtOH used previous. (6.6mL reaction will produce 3mL+ core-
shells). This halving is important as the heating step data was collected with these 
concentrations. Make sure to sonicate these core-shell particles at 40% for 2 minutes 
prior to storage and prior to any use. 
 
III) Heat Tuning of Core-Shell Particles 
1) Distribute desired amount of core-shell particles as 100µL aliquots in tubes. 
2) Spin down particles at 1500rcf for 5 minutes. Then resuspend in about 10µL EtOH. 
Sonicate this small suspension at 40% for 2 minutes. Then spin down this suspension 
using the mini-centrifuge for only a couple seconds and remove the supernatant. 
3) Heat these particles on the heating block at 50oC for 5-30 minutes. After 30 minutes, 
most particles become untrappable. As a general model, particle size shrinks 20-25% 
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with 30 minutes of heating. Resuspend these particles in 100mL EtOH. Sonicate before 
storage. 
 
NOTE: During steps 2 and 3 particles tend to clump so sonicating them before every 
use is necessary. In order to get mainly single particles it is advised to spin down the 
particles at 100rcf for 5 minutes. The supernatant will contain mostly single particles and 
smaller junk that made its way through the reaction. This supernatant is still decently 
populated and must be diluted if expecting to run force and/or binding experiments with 
the particles. 
 


