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CHAPTER I 

 

INTRODUCTION 

 

1.1 Challenges of Contemporary Lipidomics 

 

Advances in mass spectrometry (MS) instrumentation have facilitated the 

study of lipids on a comprehensive bioanalytical level previously occupied by 

genomics and proteomics initiatives.1 In particular, the capability to ionize and 

detect intact lipid molecules afforded by electrospray ionization (ESI)2,3 and 

matrix assisted laser desorption ionization (MALDI)4,5 has over the last decade 

assisted in the discovery of a wide diversity of lipid structures and their myriad 

spatial distributions in tissues and cells.6,7 There are now over 100,000 distinct 

lipid structures known, of which membrane lipids, such as glycerophospholipids 

and sphingolipids, number over 9,000 and counting in mammalian cells.8 This 

observation is significant from a biochemical point of view as dedicated or 

sufficiently adaptable biosynthetic machinery must be in place to produce each 

unique lipid structure.9,10 

Lipids are biosynthesized from a pool of relatively simple building blocks 

(e.g., glycerol, fatty acids, sterol core, sphingosine, amino acids), yet occur in a 

vast number of molecular compositions primarily due to differences in the 

conformational arrangement of various chemical groups and moieties (e.g., 

derivatization degree of sterol core, phospholipid headgroup type, position and 
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number of fatty acid carbons and double bonds, type of fatty acid linkage).11 It is 

now well understood that in eukaryotic membranes these diverse molecular 

compositions of lipids are necessary to support the structure and function of a 

diverse population of membrane proteins as well as participate in complex 

signaling mechanisms.12,13,14 Indeed, the undisputable contribution of MS to the 

biological knowledgebase of lipids is not only the characterization of the multitude 

of lipid structures but also its contribution to the elucidation of their specific 

cellular roles. Such findings have extensive application potential (e.g., elucidation 

of lipid biosynthetic pathways,8 cell membrane lipid distribution and function in 

membrane protein crystallography,15,16 gas phase studies of lipid stabilized 

membrane proteins17,18) and in this respect any relevant MS advances carry a 

large value added benefit. 

The impact of ESI and MALDI based MS analysis in lipidomics was 

realized by two technological advances, namely the coupling of MS to condensed 

phase separation techniques (e.g., gas and liquid chromatography), and the 

more recent development of precision MS instrumentation with high mass 

accuracy, resolution, and controlled analyte ion fragmentation tools. ESI/MS and 

LC/ESI/MS analysis platforms with tandem MS/MS and MSn fragmentation 

capabilities have led the gradual elucidation of the vast compositional complexity 

of lipid species.19 Structural diversity of lipids creates unique challenges to 

current efforts in quantitative characterization of the lipidome: (i) lack of 

availability of pure lipid standards, (ii) subtle structural and chemical features 

(i.e., fatty acid length, position and number of double bonds, ion adducts) 
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significantly affect lipid ionization efficiencies, (iii) competitive ionization 

suppression effects are common. 20,21 In addition to these challenges, the 

majority of lipid signals occur and subsequently overlap in relatively narrow mass 

ranges (e.g., between ca. 650 and 950 Da for membrane lipids), and their 

identification in complex biological samples can be hindered by the presence of 

endogenous and exogenous chemical noise. 

In this work I present the proof of principle capability of MALDI-Ion 

Mobility-MS to provide a unique enhancement to MS only analysis of lipid 

species. I summarize here the potential advantages of IM and IM-MS in mobility 

separation of lipids from endogenous and exogenous chemical noise and 

mobility separation of classes of lipids. While ion mobility (IM) cannot achieve the 

high peak capacity (i.e., theoretical number or resolved peaks per unit of 

separation time)  of condensed phase separation techniques, typical IM 

separations occur on the order of µs to ms, and yield high IM-MS peak capacity 

production rates (ca. 106 to 108 sec-1).22 Since IM disperses analyte signals based 

on a unique gas phase size dimension of separation, it has the potential to 

provide a concentration dynamic range enhancement to both condensed phase 

and MS lipid separations.23,24 Clemmer and coworkers have utilized a combined 

LC-IM-MS approach toward increased peak capacity profiling of peptides in 

human plasma proteome.25,26 These methods have the potential to greatly inform 

and advance the current proof of principle IM-MS analyses of lipids. 

As detailed in section 1.2 and chapter 2, IM-MS can be expected to 

provide an increase in dynamic range in lipid analysis based on relative 
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differences in gas phase folding efficiencies of different biomolecular classes. 

Additionally, IM-MS can be used to obtain collision cross section (i.e. apparent 

surface area) measurements of lipid ions for subsequent computational 

interrogation of their gas phase structural separation. Such methods are 

extensively described in sections 1.2.3 and 1.2.4 and applied in chapter 3 in the 

interpretation of observed mobility separation trends of membrane lipid 

standards. In addition to the promise of endogenous biomolecular IM 

separations, exogenous chemical noise can be efficiently removed in MALDI-IM-

MS analysis.  In chapter 4, I summarized this capability in the analysis and 

relative quantitation of brain lipids of the Drosophila eas mutant. 

 

1.1.2 Challenge of high spatial resolution in lipid analysis 

Advanced mass spectrometry approaches to obtaining better lipid 

structural and functional information have now been at the forefront of lipid 

research for a decade. An emerging technological challenge in lipid analysis is 

the determination of where lipid structures occur in cells and tissues, in a 

spatially and temporally resolved manner. While both ESI3,27 and MALDI28,29 lipid 

studies have greatly advanced the understanding of lipid fine structure, 

abundance and biomolecular function, relatively little is known about the spatial 

distribution and abundance of lipids and their spatially correlated fine structure 

detail.30 Chemical imaging methods (i.e., staining,31,32,33 antibody34) have been 

very useful in efforts to understand total lipid content and the distribution of 

various classes of lipids at the cellular and sub-cellular levels; however, chemical 
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imaging can only provide limited fine structure lipid information (e.g., 

headgroup).35 To build a picture about where and in what concentration lipids 

reside in cells and the sub-cellular compartments, new technological approaches 

are necessary.36 Indeed, to better appreciate the structural diversity and 

complexity of lipids, and the myriad roles of lipids in biology, high resolution 

spatial analysis of lipids at fine structure level is essential. 

Mass spectrometry detection coupled to post ionization by ion beams, i.e., 

secondary ionization mass spectrometry (SIMS), and assisted laser desorption 

ionization (LDI), have emerged as strong techniques for lipid imaging in cells and 

tissues. In chapter 5, I detail a promising novel approach to laser beam 

manipulation based on the digital micro mirror array (DMA) device. Current 15:1 

demagnification ratio of the DMA optical train is sufficient to generate a <1 µm 

image size from a laser beam reflected from a single 12x12 µm mirror of the 

DMA device, which is approximately two times larger than the limit imposed by 

diffraction (λ=355nm). In chapter 5, profiling experiments of peptide standards 

are demonstrated at 5 µm spatial resolution, and lipid imaging experiments at 8 

µm spatial resolution from mouse brain tissue sections. Since the optical train 

detailed in chapter 5 does not require optical components mounted in the 

vacuum of the imaging instrument, it can transfer seamlessly between MS 

instrumental platforms, including IM-MS.37 
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1.2 Biomolecular ion mobility-mass spectrometry overview 

 

The coupling of IM to a mass spectrometer (MS) occurred to achieve 

faster analyte identification and to utilize the two dimensional advantage of this 

technique in complex mixture analysis.38,39 Pioneering work in structural analysis 

of larger molecular species using ion mobility mass spectrometry (IM-MS) was 

performed by the laboratories of Bowers, Jarrold, and Clemmer. They 

successfully combined highly accurate experimental measurements with atomic 

detail of quantum mechanical and molecular dynamics calculations and reliable 

computational collision cross-section (CCS) calculations in analyses of metal40 

and carbon clusters,41 polymers,42 peptides,43 proteins,44,45 oligosaccharides,46 

and oligonucleotides.47,48 

Further biomolecular IM-MS structural studies uncovered an important 

result. Various types of biomolecules were found to separate in IM 

measurements based on their differences in intramolecular gas phase packing 

densities.39 For several years peptides,49,50 proteins,22,51 nucleotides,52 and 

carbohydrates53 remained the focus of IM-MS studies. In 2007 Jackson, et al.54,55 

demonstrated the utility of using an IM-MS (i.e., MALDI-IM-TOF-MS) instrument 

in imaging of rat brain lipids. Further data collected by Jackson, et al.56 and Fenn, 

et al.57,58 showed lipids to have the least gas phase packing efficiency of all 

previously studied biomolecules, allowing reliable separation of their signals from 

peptides and other biomolecular ions as shown in Figure 1.1. 
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Figure 1.1 2-D plot of MALDI-IM-MS conformation space for the simultaneous 
analysis of lipids and peptides directly from a thin animal tissue section (12 µm). 
Note the arrival times of lipid signals differ markedly from the arrival times of 
same mass peptide signals. False coloring represents signal intensity, such that 
the more intense signals are shown in brighter colors. Adapted from Figure 2 in 
Journal of Mass Spectrometry, “Profiling and imaging of tissues by imaging ion 
mobility-mass spectrometry,” 42, 2007, 1099-1105, J.A. McLean, W.B. Ridenour 
and R.M. Caprioli, with permission. Copyright© 2007 Wiley-Liss, Inc. 
 

1.2.1 Types of ion mobility 

 Ion mobility separations utilize low energy gas-phase collisions to 

separate ions predominantly on the basis of molecular surface area, also known 

as the ion-neutral collision cross-section (Ω) with units of Å2. Generally speaking, 

ions are injected into a separation cell filled with a neutral drift gas and migrate 

under the influence of a weak electric field. The applied electric field is 

electrostatic for drift tube ion mobility (DTIM) and electrodynamic for both 

traveling wave ion mobility (TWIM) (Figure 1.2) and field asymmetric waveform 

ion mobility spectrometry (FAIMS) separations. In the presence of the neutral 

drift gas larger ions have a lower mobility than smaller ions, resulting in longer 
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drift times versus shorter drift times, respectively. Following the elution profile of 

the ions from the IM-dimension, mass spectra are constantly being acquired and 

the drift time information from the ion mobility measurement is combined with the 

m/z measurement from the mass spectrometer. The result is a three dimensional 

data set displaying mass-to-charge typically on the x-axis, drift time on the y-axis, 

and signal intensity on the z-axis (Figure 1.3). 

 

 
 
 
 
Figure 1.2 General schematic of the IM-MS instrument and two predominant 
types of ion mobility separation, drift tube (DT) and traveling wave (T-Wave). In 
DTIM mobility separation occurs along a linearly decreasing electrostatic 
potential gradient, while in T-Wave IM ions encounter collisions and separate 
being propagated on electrodynamic potential waves. 
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Figure 1.3 Data dimensionality of the IM-MS separation. In the 3D plot % 
abundance (i.e., intensity) is projected along the z-axis, in the 2D IM-MS plot the 
intensity is represented by false coloring (i.e., here more intense signals are 
brighter), m/z typically projected on the x-axis and mobility drift time on the y-
axis. The MS spectrum shown on the bottom right is an extracted % abundance 
vs. m/z plot of lipid signals extracted from the highlighted region of the 2D IM-MS 
plot.  
 

1.2.1.1 Drift tube ion mobility (DTIM) 

The original ion mobility design was developed by using a drift tube 

composed of a series of concentric ring electrodes connected by resistors to 

create a uniform electrostatic field. Under the influence of this electrostatic field 

and in the presence of a low molecular weight drift gas (e.g., helium, nitrogen, 

argon) the ions separate along the axis of motion based on their mobility (i.e., the 

number of low energy collisions between the ions and the drift gas molecules). 
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The relative inherent simplicity of the drift tube design enables the transformation 

of measured drift time data into absolute collision cross-section by using the 

kinetic theory of gases as detailed in Section 1.2.3. Thus, structural information 

can be inferred from the measurement of cross-section when combined with 

computational approaches (section 1.2.4). The mobility resolution afforded in 

typical DTIM arrangements ranges from 30-50 (r = t/Δt at FWHH), although 

longer, cryogenically cooled, or higher pressure drift tubes can be used to 

achieve mobility resolutions exceeding 100.59,60 

 

1.2.1.2 Traveling wave ion mobility (TWIM) 

 The commercial availability of traveling wave ion mobility instrumentation 

continues to make IM-MS technology accessible to a large number of users. 

Similar to drift tube instruments, TWIM separates ions by time dispersion through 

collisions with a background drift gas, but by using electrodynamic fields rather 

than electrostatic fields.61 This is accomplished by transmitting voltage pulses 

sequentially across a stack of ring electrodes; the voltage pulses create a 

travelling wave.62 Conceptually, TWIM separations are performed based on the 

susceptibility of different ions to the influence of the specific wave characteristics 

and may be described as the ability of ions to "surf" on these waves. Adjustable 

wave parameters include: travelling wave pulse height, wave velocity, and 

ramping either of these variables. Generally IM resolution in the TWIM is similar 

to that of typical DTIM cells, ca. 30-50. Although there are protocols to obtain 

relative collision cross-section values by using TWIM experimental data, the 
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calculations still rely on absolute values obtained by using drift tube 

instruments.63,64 

 

1.2.1.3 Asymmetric field ion mobility spectrometry (FAIMS) 

Ion separations utilizing FAIMS were first documented in the early 1990s 

by Buryakov and coworkers65 and since have seen commercial success primarily 

as sensitivity improvement front-end devices. Separation selectivity in FAIMS 

occurs on the basis of the nonlinear dependence of the mobility coefficient in 

varying electric fields. Unlike time-dispersive DTIM and TWIM separations, 

FAIMS performs space-dispersive separations. In FAIMS devices, ions are 

subjected to positive and negative electric fields that oscillate perpendicular to 

the direction of ion propagation. By injecting ions between two parallel plates in a 

separation cell and directing this waveform perpendicularly across them, only 

selected ions will traverse the cell, and all other ions will strike either the lower or 

upper plate. The use of a compensation voltage roughly achieves in FAIMS a 

mobility-based selection similar to a radio frequency mass selection in a 

quadrupole. 

While ion mobility data obtained from DTIM enables absolute collision 

cross-section calculations (section 1.2.3) the TWIM and FAIMS can currently 

only provide estimated collision cross-sections based on previously measured 

DTIM values. Although efforts to understand the fundamental physical processes 

in TWIM and FAIMS separations are under way, gas-phase kinetics theory to 

describe these processes is still an ongoing research endeavor.66,67   
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66-69 

1.2.2 Motion of ions within neutral gases 

The theory of ion movement through a neutral gas medium is rooted in the 

classical electrodynamics of directed diffusion and theoretical gas dynamics 

studies by Mason and McDaniel, and others. The size-dependent movement of 

ions in an ion mobility cell is an intuitive process. After an ion is created in the 

source, it travels “downhill” through the mobility cell along a linearly decreasing 

electrostatic voltage gradient. As the ion traverses the mobility cell, it experiences 

numerous low-energy collisions (ca. 105-107) at moderate pressures and drift cell 

lengths. At sufficiently low electrostatic field strengths, where ion-neutral 

collisions are considered elastic, the ion is free to rotate and tumble through the 

drift cell. Owing to the combination of the large number of collisions and low field 

strength, the drift velocity (vd) of the ion as it moves through the neutral gas is 

size dependent. Ions experiencing different numbers of collisions will have 

different drift velocities and, therefore, will spatially separate along the direction 

of movement.                   68,69,70,71 

 

1.2.3 Foundational principles of ion mobility structural separations 

Several excellent works describe the mathematical foundation of ion 

mobility and the derivation of CCS from IM measurements, using the kinetic 

theory of gases.68,70,72 At sufficiently low field strength, the drift velocity (vd) is 

linearly dependent on the strength of the applied electrostatic field (E), and the 

linearity constant in this relationship is referred to as mobility (K). 
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Eq. (1) 

 

Generally, mobility can be determined by measuring the drift time (td) of an ion 

across a drift cell of fixed length (L). 

 

Eq. (2) 

 

In practice, however, the time parameter obtained in an IM experiment is the 

arrival time distribution (tATD) of a packet of identical ions at the detector. The 

arrival time of an ion is the sum of the time the ion spends in the drift cell (td) and 

that it spends in the other parts of the instrument (i.e., the ion source, ion optics, 

and detector region). The time spent outside the drift cell can be determined by 

performing IM at multiple electrostatic-field strengths by varying the potential (V) 

across the length of the drift cell. Through constructing a plot of tATD versus the 

inverse of the applied drift cell potential (1/V), a linear regression fit to these data 

yields two important results. Firstly, if the fit is linear, it indicates that low-field 

conditions predominate. Secondly, the y-intercept corresponds to the time the 

ions spend outside the drift cell region, which is the limit where the applied 

potential across the drift cell is infinite and td = 0.  

Ion-drift velocity changes with the number of collisions and, therefore, 

depends on gas number density (N), pressure (p) and gas velocity (vmean); all 

these also depend on temperature (T). To derive CCS from K, the dependence of 

K on temperature and gas density must be further evaluated. By convention, K is 
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reported as the standard or reduced mobility (K0), which normalizes K to 

standard temperature and pressure (i.e., 0 oC / 273 K and 760 Torr): 

 

Eq. (3) 

 

The mean thermal velocity of gas and ion molecules under zero electrostatic field 

conditions, assuming a Maxwellian distribution function of molecular and ion 

velocities at thermal equilibrium, can be expressed as vmean, where T is 

temperature (Kelvin), k is the Boltzman constant, and Mr is reduced mass. 

 

Eq. (4) 

 
When a sufficiently weak electrostatic field is applied to a mixture of gas and 

charged molecules, the direction of movement (and velocity) of ions in the gas 

consists of two components, the random motion of ions at the temperature of the 

gas, on which a second small component in the direction of the electrostatic field 

is imposed. If the mean ion energy (and, therefore, velocity) as the ion traverses 

the mobility cell does not increase, the mobility separation is said to be 

performed under “low field” conditions, and interaction of the ion with the gas 

molecules via elastic collisions can be assumed. At higher electrostatic field 

strengths, the ion velocity depends less strongly on the gas temperature, and the 

mean ion energy increases as it traverses the drift region. Under these “high 

field” conditions, tumbling and elastic collisions can no longer be assumed, and K 

is no longer constant, but depends on the ratio of electrostatic field to the gas-
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number density (E/N). Provided the field strength is sufficiently weak to afford 

mobility separation at low field conditions (i.e., constant K), a closed equation for 

the dependence of K0 on the ion-neutral CCS (Ω) of the ion-neutral pair can be 

expressed as follows: 

 

Eq. (5) 

 

where, ze is the elementary charge of the ion, N0 is the number density of the 

drift gas at STP (0 °C / 273 K and 760 Torr), the middle term is the reduced mass 

of the ion-neutral collision pair (ion and neutral masses of mi and mn, 

respectively), and kB is the Boltzmann’s constant. Substituting for K0 and 

rearranging to solve for Ω yields: 

 

Eq. (6) 

 

This is the functional form of the equation used to derive collision cross-section 

from mobility data. This equation holds when the collisions of ions with neutral 

gas molecules can be assumed to be elastic. The collision cross-section thus 

derived is termed “hard sphere” (i.e., only momentum is transferred at the point 

of ion neutral collision). Comparisons of experimentally measured and 

theoretically derived CCSs show that the hard-sphere, elastic-collision 

assumption holds for analytes larger than ca. 500 Da, which is a mass range well 

suited for lipid analysis.73 
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1.2.4 Computational approaches for interpretation of structure 

Empirically determined collision cross-section values can be used to probe 

structural motifs of various biomolecular ions including lipids,58 

peptides/proteins44,49,74 and protein complexes.63,46,75 This is accomplished by 

augmenting IM CCS measurements with computational modeling strategies. For 

structural interpretation, the CCS is used as a size constraint that can be used to 

discriminate and interpret a subset of structures from a large pool of 

computationally generated conformers. Structural populations can be expected to 

consist of structurally similar ions that either undergo thermally accessible 

structural/conformational isomerization/interconversion or, depending on 

intramolecular forces and atomic arrangement, may even remain in relatively 

fixed conformations on the time scale of the IM-MS experiment.76 Therefore, 

each IM-MS unique signal, ideally corresponding to identical ions with different 

conformations, has its own unique structural signature determined by the 

average shape of the populations of ions that create it. This structural signature 

is the basis for biomolecular separations39 observed in IM-MS, and is also the 

explanation for the observed difference in average IM vs. m/z trendline variability 

(i.e., spread, structural richness) of the different biomolecular classes observed 

by IM-MS.58  

Following the experimental determination of CCS, computational modeling 

is performed in the following general sequence: (i) the structure of the molecular 

ion is built by using one of the available structure-building software packages, (ii) 

the atomic charge parameters for the built structure are determined by using 
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quantum mechanical (QM) calculations, and point charge derivation, and (iii)  

molecular dynamics is performed to create a large number of structural 

conformers whose CCS can be computationally determined to allow 

experimental CCS based clustering analysis. A schematic of the workflow for 

combining the measured CCS with computational interpretation is illustrated in 

Figure 1.4. 

There are several software packages well suited for structure building of 

lipids, some proprietary (e.g., Molecular Operating Environment, Chemical 

Computing Group, Montreal, Canada), and some freely available (e.g., SIRIUS, 

University of California, San Diego). Although computer-processing speed has 

increased exponentially over several decades, computation still puts a limit on 

how large a system can be realistically studied by using the protocol described 

here.  QM geometry optimization and electrostatic potential calculations in 

charge parameter development at intermediate level of quantum theory on the 

most powerful desktop workstations give reasonable 24 h results on systems of 

20 atoms. Calculations, however, scale up exponentially not only with the level of 

theory and number of atoms, but also with mass of included elements. For 

example, studies of lipids in the presence of metal ions may require additional 

specialized basis sets and time. Therefore, quantum charge parameterization of 

larger systems has to be done on properly capped fragments, which are later 

connected for molecular dynamics sampling.  

Many free and proprietary QM software packages are capable of 

performing the needed geometry optimization and electrostatic potential 
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calculations (e.g., Cerius, Jaguar, Gaussian, Spartan) at basic to intermediate 

levels of theory. The last step of the computational protocol is the conformational 

MD sampling coupled with computational clustering analysis based on the 

comparison of the computed CCS values for the generated structural conformers 

with the experimental CCS value. Once the charge parameters for each atom in 

the built structure are determined, one of the available molecular dynamics 

packages (e.g., Amber,77 CHARMM, ACCELRYS) can be used to perform 

conformational sampling.  

Conformational sampling is a molecular dynamics calculation that yields a 

large number of structural conformers of the studied peptide/protein ion. Two 

primary challenges of MD-based conformational sampling methods are the use 

and development of reliable MD parameters that assure chemically and 

structurally relevant results and of temperature protocols that lead to a 

completely randomized pool of final structures. Aforementioned MD software 

packages typically contain reliable MD parameters for standard amino acids, 

carbohydrates and nucleotides. Fully randomized sampling without any bias 

toward one or several conformations can normally be guaranteed by selecting a 

temperature scheme (heating and cooling algorithm) for the MD calculation in 

which the studied lipid structure is heated to a temperature at which it can access 

all reasonably expected conformational states and then cooled slowly to relax 

into a low-energy structural conformer. 
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Figure 1.4 (A) Experimentally determined collision cross-sections (CCSs) are 
calculated from the measured ion mobility drift times (arrival time distributions). 
(B) Lipid molecule is built and fully parameterized for molecular dynamics (MD) 
using Gaussian and AMBER software. MD calculations yield an ensemble of 
structures (each data point represents an individual structure) each with a unique 
potential energy. MOBCAL calculates the theoretical CCS for each structure. (C) 
Plot of potential energy vs. CCS of each structure is generated. The subgroup of 
structures corresponding to the experimentally determined CCS and of lowest 
energy (e.g., here less than average < 55 kcal/mole) can then be examined to 
interpret structural similarities within the group of structures by (D) dendrogram 
and clustering analysis to better understand the prevailing intramolecular forces 
that govern the shape of the lipids in this study. 

 

 

An important output result of the MD calculation is the relative potential 

energy value of each conformer within the pool of generated structures. The 

computational collision cross-section value for each conformer is then calculated 
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by using one of two currently available codes, Mobcal78 or Sigma.79,80 Once both 

the relative potential energy and collision cross-section values are computed for 

each member of the computationally generated ensemble of structures, a plot of 

energy vs. computed CCS is generated and visually inspected. Typically the 

lowest energy conformers with a computed CCS that matches the experimental 

value range are selected for further computational analysis (e.g., analysis of 

selected average distances, or clustering on the basis of atomic positions). 

Following cluster analysis, general structural motifs are obtained that are 

consistent with the measurement, while other structural motifs can be ruled out.  

 

1.3 Characterization of lipids by IM-MS 

 

An important development in MS technology has been the recent 

incorporation of post-ionization gas-phase separation based on ion mobility (IM) 

into high-end commercial MS instrumentation.81,82 Current state-of-the art ion 

mobility-mass spectrometry (IM-MS) instruments integrate seamlessly with both 

ESI and MALDI soft ionization sources, and are highly applicable to the 

described lipid analysis challenges. IM-MS affords rapid (μs to ms) two-

dimensional size and mass based separations with unique benefits to the 

analysis of complex biological samples. Previously, IM-MS has been successfully 

used in studies of the gas-phase behavior and separations of 

peptides,43,49,83,84,85,86 proteins,44,45,74 and nucleotides.87,88,89 More recently, 

Woods et al.39 and Fenn et al.57 demonstrated that IM analysis efficiently resolves 
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lipids from peptides, carbohydrates and nucleotides and exogenous noise based 

on differences in their gas-phase packing efficiencies. This signal partitioning in 

IM-MS was recently shown to be particularly useful in the direct analysis of lipids 

from mutant Drosophila brain tissues.90 As compared with MS alone, the 

enhanced peak capacity of IM-MS analysis91 not only provides a substantial 

reduction of chemical noise in lipidomic measurements,54,58,92,93 and a 

concomitant increase in dynamic range, but it can also exploit an additional 

characteristic of lipid ions: various sub-classes of lipids display differences in 

gas-phase packing resolvable by IM-MS and this value-added information can be 

further utilized in the isolation, identification and characterization of specific lipid 

structures.37,56,58,94,95,96 

 

1.4 Summary and objectives 

  

 In this dissertation work, I sought to highlight the opportunities provided by 

IM-MS technology and high-resolution lipid imaging for high confidence structural 

and spatial analysis of lipids. Traditional mass spectrometry approaches have 

dramatically advanced lipid characterization by allowing both parent and 

fragment lipid mass analysis and thus made great inroads into understanding the 

complexity of lipid structures. IM-MS, which was only recently applied in lipid 

research, provides a technological platform that allows fast mobility separation of 

lipids from other biomolecules, potentially in simultaneous analysis (Chapter 2). 

Moreover, mobility profiles of various classes of lipids differ in the IM-MS 
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conformation space and the underlying structural detail of such separations can 

be elucidated using a combination of empirical IM-MS CCS studies with detailed 

computational MD simulations (Chapter 3). Recent commercialization of IM-MS 

allows a seamless transfer of basic IM-MS lipid research to current problems in 

biology and medical sciences (Chapter 4). In addition to advanced lipid mobility 

separation studies, I explored an opportunity to use an advanced laser patterning 

system based on digital mirror array device in improving the spatial resolution of 

MALDI-TOF-MS and MALDI-IM-MS lipid imaging of tissues and cells (Chapter 5). 

The specific objectives I pursued, and the titles of chapters where each objective 

was addressed, are: 

 

1. Where do lipids occur in the biomolecular conformation space of IM-MS, how 

well do they resolve from other biomolecules (i.e., peptides, carbohydrates, and 

oligonucleotides)? What is the breath of the conformation space they occupy? 

This goal was addressed in Chapter 2: Ion Mobility-Mass Spectrometry 

Conformational Landscape of Anhydrous Biomolecules. 

 

2. What overall trends of separation exist among membrane lipids? Can the IM-

MS resolution of various classes of membrane lipids be described using 

computational structure analysis? This objective was addressed in Chapter 3: 

Structural Selectivity of Anhydrous Sphingolipids and Glycerophospholipids in Ion 

Mobility-Mass Spectrometry Analysis. 
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3. Over the last decade prototype IM-MS has successfully been applied in 

current problems of biology and medicinal research, primarily for the analysis of 

peptides and proteins. Can the newly commercialized IM-MS instrumentation 

prove to be as useful in lipid analysis? The work toward this objective was 

described in Chapter 4: Structural Mass Spectrometry Analysis of Lipid Changes 

in a Drosophila Epilepsy Model Brain. 

 

4. The knowledge of the spatial distribution of specific lipid structures in cells and 

tissues is key to understanding the myriad roles lipids play in animal and plant 

biology. MALDI MS has been successfully applied in peptide and protein analysis 

at tens of micrometers spatial resolution. Can digital light patterning be used to 

narrow the current spatial resolution gap between MALDI MS and its older 

imaging partner SIMS? The data obtained toward this goal is summarized in 

Chapter 5: Dynamic Light Patterning for High Spatial Resolution Imaging of 

Lipids. 
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CHAPTER II 

 

Ion Mobility-Mass Spectrometry  

Conformational Landscape of Anhydrous Biomolecules. 

 

2.1 Introduction 

 

  Contemporary biomolecular studies often have to focus on structural and 

functional characterization of one biological class at a time, and then try to 

uncover a system wide view of the relationships between the different classes of 

biomolecules.1,2 Ideally, all biomolecular classes would be studied simultaneously 

and their interdependences preserved. There are several key advantages to 

performing simultaneous biomolecular measurements. First, such an approach 

would provide a rapid, high throughput method of analysis. Second, sample 

losses and analysis artifacts would be minimized, and last, biological context 

would be preserved.  

 Ion mobility-mass spectrometry (IM-MS) has proven to be a valuable tool 

in contemporary life science research.3,4 In ion mobility (IM), biomolecular 

separations occur on the basis of directed ion-neutral collisions with a 

background gas, where the rate of movement of biomolecular ions is proportional 

to their apparent gas phase surface area. Thus, when coupled with mass 

spectrometry, IM provides separation on the basis of structure and mass 

spectrometry on the basis of mass to charge (m/z).  
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 IM also affords structural interpretation when empirically determined gas 

phase collision cross-sections (CCS) are compared with a large pool of 

molecular dynamics (MD) generated structures whose computed CCSs match 

the empirical result. Unlike the atomic detail of X-ray crystallography and nuclear 

magnetic resonance, IM-MS structural interpretation only provides a relatively 

low resolution, coarse-grained view of the structural reasons for the observed 

biomolecular separations. However, IM-MS can provide this information for small 

sample quantities, often directly from complex biological mixtures (e.g., cell 

lysates, cells, tissues).  

 Prior studies utilizing IM-MS have first focused on structural 

characterization of peptides5 and proteins,6,7 carbohydrates8 and more recently 

oligonucleotides9,10 and lipids.11,12,13 Impressive work has also been performed in 

IM-MS characterization of large protein complexes,14 its application in imaging of 

thin tissue sections15,16 and comprehensive proteomics.17,18 IM-MS has gradually 

been shown to provide biomolecular separations on the basis of structure, since 

different biomolecular classes can be readily resolved based on differences in 

their gas-phase densities, where the gas phase density of 

lipids<peptides<carbohydrate<nucleotides.11  

 In this work, I contributed to the study of IM-MS conformation space of 

biomolecules by providing a database of lipid gas phase collision cross-sections. 

My colleagues explored the conformation space of oligonucleotides, 

carbohydrates, and performed statistical analysis of where their signals fall on 

the ion mobility vs. m/z conformational space. To illustrate the information 
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enhancement of molecular dynamics, I performed computational analysis for the 

observed IM separation of two isobaric oligonucleotide tetramers. 

 

2.2 Experimental 

 

2.2.1 Samples and Preparation 

2.2.1.1 Oligonucleotides 

 Oligonucleotide standards, matrix (2,4,6-trihydroxyacetophenone, THAP), 

and ammonium citrate were purchased from Sigma (St. Louis, MO, USA) and 

used for MALDI-IM-MS CCS studies without further purification. Oligonucleotide 

standards were initially dissolved in distilled deionized (DDI) water (18 MΩ cm, 

Millipore). Matrix solutions were prepared fresh daily by mixing 50 mg/mL THAP 

and 50 mg/mL ammonium citrate at a 9:1 ratio (v/v) in DDI. Samples were then 

prepared for MALDI by mixing 10 μL (10 nmoles) of oligonucleotide solution with 

30 μL (10,000 nmoles) matrix solution. An aliquot of 3 μL of the mixture was then 

spotted onto a MALDI plate and vacuum- dried prior to MALDI-IM-MS analysis. 

 

2.2.1.2 Carbohydrates 

 For MALDI-IM-MS measurements of CCSs of individual standards, Lacto-

N-fucopentaoses (LNFP) 1 and LNFP2 from human milk were obtained from 

Dextra Laboratories (Reading, UK); LNFP3, LNFP5, Lacto-N-difucohexaose 

(LNDFH) 1, and LNDFH2 were obtained from V Labs (Covington, LA, USA). 

Synthetic glycans, Gala3-type1, P1, H-type2-LN-LN, P1 antigen-sp, Di-LeA, P1 
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penta, LNT, Lec-Lec, Tri-LacNAc, GNLNLN, and 3′SLN-Lec were obtained 

through the Carbohydrate Synthesis/Protein Expression Core of The Consortium 

for Functional Glycomics. 2,5- Dihydroxybenzoic acid (DHB), NaCl, and all other 

reagents were purchased from Sigma and used without further purification. The 

matrix used for MALDI-IM-TOFMS was saturated DHB in 50% ethanol. The 

matrix and analyte were combined in a 1:1 volume ratio (or 200:1 molar ratio). 

NaCl was added to make a final concentration of 0.1% for purposes of converting 

all signals to those corresponding to sodium-coordinated ions. The samples were 

prepared using the dried droplet method.19 

 

2.2.1.3 Lipids 

 For proof-of-concept experiments five lyophilized lipid extracts, two 

sphingolipids, sphingomyelins (porcine brain) and cerebrosides (porcine brain), 

and three phospholipids, phosphatidylcholines (chicken egg), 

phosphatidylserines (porcine brain), and phosphatidylethanolamines (chicken 

egg), were obtained from Avanti Lipids (Birmingham, AL, USA). Each of these 

extracts were individually dissolved in a 2:1v/v CHCl3/ MeOH mixture to yield 2 

mM solutions. DHB was dissolved in 50% ethanol to yield a 200 mM solution. 

The individual lipid extracts were premixed with DHB matrix solution in a 1:10 

ratio (v/v) and manually spotted onto a 100-well steel MALDI plate and flash-

evaporated under vacuum.19 Identification of lipid species was aided by 

information available from Avanti Lipids,20 the LIPIDMAPS database,21 and 

previously published identification of MALDI lipid spectra.12 
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2.2.2 Instrumentation 

 MALDI-IM-TOFMS measurements were performed with MALDI ionization 

at the pressure of the mobility drift cell (3.8 Torr) with a frequency-tripled Nd-YLF 

(349 nm) laser (Explorer, Newport/Spectra-Physics, Mountain View, CA, USA). 

Once the ionized species moved through the helium filled drift cell under the 

influence of a weak electric field, they were guided by ion optics into the low-

pressure region of a TOFMS. Two-dimensional spectra (arrival time versus m/z) 

of each sample were analyzed and compared using custom visualization 

software (Ionwerks, Houston, TX, USA) developed on the IDL platform (ITT 

Visual Information Solutions, Boulder, CO, USA). Mass calibration of the 

instrument was performed externally using a mixture of C60 and C70.  

 

2.2.3 Molecular Dynamics Calculations 

 Computational starting structures of TGC and CGA trinucleotides were 

modified in the LEaP module of AMBER 9.0.22 Physical presence of protons 

neutralizing the negative charge of phosphates was deemed essential to the 

modeling of hydrogen bonding interactions. Protons were added to one oxygen 

of each phosphate of the TGC and CGA trinucleotides, and to the basic nitrogen 

of the guanine base. Quantum mechanical (QM) Hartree-Fock geometry 

geometry optimization and electrostatic potential calculations of protonated 

trinucleotides were performed using Gaussian 2003 with a 6-31G* basis set.23 

Partial charges were derived by fitting the QM electrostatic potential to an atom-
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centered point charge model using the RESP procedure.24 Terminal nucleosides 

A and T were connected to the trinucleotides TGC and CGA in LEaP to yield 

TGCA and CGAT tetranucleotides with a +1 net charge. Standard AMBER 99 

parameters were used for bond, angle, dihedral, and van der Waals interactions. 

For molecular dynamics (MD) simulation, the AMBER atom type of the 

phosphate protons was changed from H to HS. The smaller van der Waals radius 

of the HS atom type resolved the instability of the 1-4 electrostatic interaction 

energy term observed with the H atom type. Molecular dynamics (MD) 

simulations of tetranucleotide ions were performed with the SANDER module of 

AMBER 925 using a high temperature conformational sampling protocol. In this 

approach, each examined oligonucleotide ion was gradually heated to 1000 

Kelvin and allowed to sample high-energy conformations at this temperature for 

nine nanoseconds of simulation time.  Utilizing a modified simulated annealing 

approach, 24000 structures were extracted throughout this high temperature 

trajectory, gradually cooled to 50 Kelvin, and subsequently energy minimized. 

Mobcal26,27 was used to determine the projection approximation (PA) collision 

cross-section of cooled oligonucleotide conformational snapshots obtained from 

the modified simulated annealing procedure. Low energy (i.e., potential energy 

lower than the average energy of all simulated structures) MD snapshots whose 

collision cross-section matched experimental values were chosen for cluster 

analysis. Superposition and clustering programs available and partially 

developed at the Vanderbilt Center for Structural Biology were used to separate 

structures into clusters based on conformational similarity.28  
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2.3 Results and Discussion 

 

 Past isolated studies of peptides, proteins, nucleotides and lipids by IM-

MS revealed that individual biomolecular classes occupy relatively distinct 

regions in the two-dimensional IM-MS arrival time or CCS vs. m/z plot.11 Since 

the gas phase packing density of biomolecules is largely guided by constraining 

intramolecular interactions, such as hydrogen bonding, pi-pi stacking, and salt 

bridging, the two dimensional representation is often referred to as the IM-MS 

conformation space. Better knowledge of where different biomolecular signals 

occur in the IM-MS conformation space can greatly aid the identification of 

unknown signals.  

 In this work we combined CCS vs. m/z datasets of singly charged ion 

signals from oligonucleotide, carbohydrate and lipid standards (n=96,192,53, 

respectively). These results were compared to a large database of previously 

reported CCS values of singly charged peptide standards (n=610)29 and are 

summarized in Figure 2.1. In agreement with previous reports, the various 

classes of analytes occupy different regions of IM-MS conformation space. 

Relative collision cross-sections (CCSs) at a particular m/z decrease in the 

following order: lipids>peptides>carbohydrates>oligonucleotides. The separation 

of signals indicates different gas phase packing density of each biomolecular 

class. Since CCS, as area, scales as length squared and mass scales as length 

cubed, we decided to use the logarithmic function to fit the CCS vs. m/z data. 
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Figure 2.1 MALDI-IM-MS CCS vs. m/z plot of individually analyzed lipid, 
carbohydrate and oligonucleotide standards, here compared to previously 
published library of peptide CCS values.29 (a). Differences in intramolecular 
packing of different types of biomolecules results in different correlations of CCS 
at a given m/z. Phospholipids with fatty acid tails tend to pack the least tightly in 
vacuum among other biomolecules due to the lack of strong intramolecular 
interactions between the fatty acid tails and the headgroup region. (b). A 2D plot 
of MALDI-IM-MS conformation space: average logarithmic regression fit 
functions are based on the  CCS datasets for lipids (n=53), peptides (n=610),29 
carbohydrates (n=191), and oligonucleotides (n=110). With kind permission from 
Springer Science+Business Media: Analytical and Bioanalytical Chemistry. 
“Characterizing Ion Mobility-Mass Spectrometry (IM-MS) Conformation Space for 
the Analysis of Complex Biological Samples.” 394, 2009, 235-244, L.S. Fenn, M. 
Kliman, A. Mahsut, S.R. Zhao, J.A. McLean, adapted from Figure 1. 
 

Among the available fit functions, the logarithmic fit best approximates the 

decreasing incremental increase of CCS at the limit of high mass. The average 

regression fit for each biomolecular dataset is shown in Figure 2.1 (b). The 

distribution, of CCS values around the average logarithmic regressions is 

presented in Figure 2.2. Whereas a previous study of peptide conformation 
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space found the residual deviation from a linear regression fit of 2.5% (±σ),30 the 

residuals from the logarithmic regression of a larger library of 610 peptide signals 

used in this work have a relative deviation of 7.33% (±σ). 

   

 

 
Figure 2.2 Residual plots of biomolecular standard CCS values around their 
logarithmic regression fit functions presented in Figure 2.1 (b). The plots 
represent the percent relative deviation for the reported signals ordered by 
descending values of percent relative deviation from left to right. Calculated 
variance from each of the residual plots is 3.70, 8.81, 7.33, and 2.64 for 
oligonucleotides, carbohydrates, peptides, and lipids, respectively. With kind 
permission from Springer Science+Business Media: Analytical and Bioanalytical 
Chemistry. “Characterizing Ion Mobility-Mass Spectrometry (IM-MS) 
Conformation Space for the Analysis of Complex Biological Samples.” 394, 2009, 
235-244, L.S. Fenn, M. Kliman, A. Mahsut, S.R. Zhao, J.A. McLean, Figure 2. 
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Statistical analysis of lipid, carbohydrate, and oligonucleotide CCS values yielded 

±σ relative deviation values of 2.64%, 8.81%, and 3.70%, respectively. Thus, the 

order of biomolecular classes based on increasing standard deviation of each 

respective dataset is lipids<oligonucleotides<peptides<carbohydrates.  

 Structural analysis of each biomolecular class analyzed provides an 

intriguing explanation for the observed amount of variability. The relative 

narrowness of the distribution of lipid signals may reflect the limited number of 

analytes tested but may also be indicative of the structural simplicity of the 

examined lipids (i.e., in all cases here lipids consist of long hydrophobic fatty 

acids and relatively smaller polar head groups), which limits the number of 

distinct structural forms they can adopt. Similarly, low standard deviation of the 

oligonucleotide dataset may be a result of the limited number of monomeric units 

that comprise this class. In contrast, both carbohydrates and peptides have 

greater structural diversity, which arises from the larger number of monomeric 

units and the potential for significant branching and cyclization. 

 From a more fundamental perspective of gas phase packing efficiency, it 

is the prevailing intramolecular folding forces that dictate the structural diversity 

of different biomolecular classes. Even this, more fundamental perspective, 

provides a valid explanation for the varying diversity observed, especially in 

combination with in-depth molecular modeling of various biomolecular ions. Such 

modeling can effectively elucidate the relative contibutions of various structurally 

constraining forces, such as hydrogen bonding, pi-pi stacking, salt bridging, or 

even van der Waals interactions, to the structural diversity of each class of 
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compounds. The relative contributions of these intramolecular forces are 

strikingly different in each biomolecular class, again primarily because of the 

difference in chemical composition, the number of monomeric units, and the type 

of linkages that comprise each. 

 In Figure 2.3, we show the residuals from each regression analysis in 

histogram form. The histograms profiles for lipids and oligonucleotides, the two 

classes with smallest standard deviations, appear to have a Gaussian 

distribution, whereas he broader profiles of carbohydrates and peptides appear 

to have a skewed distribution, carbohydrates toward signals with lower CCSs 

than the average logarithmic fit, peptides toward signals with higher CCSs than 

the average fit. Clearly, despite the fact the logarithmic regression is 

mathematically the most appropriate, it seems to overestimate the relative 

frequency of signals deviating from the average correlation of carbohydrates and 

peptides. Importantly, fitting this data to a polynomial function does result in more 

Gaussian histograms, but does not capture the mathematical limit of high mass 

best approximated by the logarithmic fit. 

 The presented data describes the conformation space of biomolecules 

over a relatively narrow range of masses and it should therefore not be used to 

approximate CCS values of biomolecular signals of greater mass. At present, we 

lack sufficient experimental data for, for example, the transition region from 

peptides to ordered protein complexes in the mass range of 3kDa to 200kDa. 

The correlation between CCS and m/z in this region cannot yet be established. 

Nevertheless, the correlations presented provide a strong guide for identification 
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of unknown signals in the analysis of biological samples in the mass range up to 

2kDa, a typical range for proteomic and lipidomic experiments. 

 

 

 
Figure 2.3 Histograms of statistical frequency of analyte signal deviations from 
the logarithmic regressions for each molecular class shown in Figure 1 (b). With 
kind permission from Springer Science+Business Media: Analytical and 
Bioanalytical Chemistry. “Characterizing Ion Mobility-Mass Spectrometry (IM-MS) 
Conformation Space for the Analysis of Complex Biological Samples.” 394, 2009, 
235-244, L.S. Fenn, M. Kliman, A. Mahsut, S.R. Zhao, J.A. McLean, Figure 3. 
 

 The historgrams in Figure 2.3 have approximately normal distributions, yet 

we should not fail to recognize that each class contains deviations from the 

average correlation that are due to specific structural forms of each class. For 

example, peptide secondary structure is often retained in the gas phase,31,32,33,34 
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the branching ratio and glycosidic linkage variation of carbohydrates35,36 can be 

expected to have a effect on mobility, as can lipid backbone and headgroup 

differences as show in Chapter 3. 

 

  

 

 
Figure 2.4 (a) CCS profile of the IM separation of a mixture of two same mass 
tetranucleotide species, CGAT and TGCA (m/z = 1,174.3 Da). The solid line 
corresponds to an IM CCS profile for the mixture of the two components. Dashed 
lines correspond to IM CCS profile for each oligonucleotide analyzed separately. 
(b) Representative structures for the molecular dynamics output for each of the 
two oligonucleotide species. For each tetramer I calculated close to 21,000 total 
structures among which 667 and 1,405 structures were considered low energy 
and matched the empirically determined CCS to within ±2.5 Å2 (i.e., ±1%). The 
representative structures were obtained by root mean squared (RMS) analysis. 
With kind permission from Springer Science+Business Media: Analytical and 
Bioanalytical Chemistry. “Characterizing Ion Mobility-Mass Spectrometry (IM-MS) 
Conformation Space for the Analysis of Complex Biological Samples.” 394, 2009, 
235-244, L.S. Fenn, M. Kliman, A. Mahsut, S.R. Zhao, J.A. McLean, Figure 4. 
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 To illustrate the complexity that can arise within a probability conformation 

space distribution profile of a single biomolecular class, we show in Figure 4 the 

separation of two oligonucleotides composed of the same four monomeric units, 

but of permuted sequence (i.e., CGAT and TGCA). The two oligonucleotides 

have the same mass, yet are nearly baseline resolved on the basis of structure in 

IM (Figure 4(a)). Figure 4(b) shows representative structures of the 

conformations these two oligomers preferentially adopt in the gas phase. The two 

single stranded DNA tetramers adopt structures with strikingly different average 

gas phase surface areas. CGAT adopts a compact structure dominated by base-

stacking, whereas the TGCA structure is more extended, and exhibits extensive 

hydrogen bonding. In a similar fashion molecular dynamics simulations can 

provide a fine structure level of information about the preferential conformations 

within broader biomolecular correlations of other classes such as carbohydrates, 

peptides, proteins and lipids. Chapter 3 details an application of the molecular 

dynamics protocol to IM separation of glycerophospholipids and sphingolipids. 

 

2.4 Conclusions 

 

 The analysis presented in this work forms a broad view of the 

conformation dependent landscape of different biomolecular classes. This study 

provides an initial general metric for assigning unknown signals to particular 

classes based on where the unknowns occur in the conformation space. 

Molecular dynamics based analysis of fine structure can be used effectively to 
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elucidate various trends within each biomolecular class related to sub-

populations of structurally similar bioanalytes. In case of peptides these sub-

populations can occur due to post-translational modification, retained secondary 

structure, metal coordination,  in case of lipids, such as glycerophopholipids vs. 

sphingolipids as described in Chapter 3, the sub-populations can be resolved 

based on fine structure detail of the lipid backbone and metal coordination. 

Additional characterization of the IM-MS conformation space of different 

biomolecules will likely open new avenues for rapid integrated systems biology 

and life-science research. 
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CHAPTER III 

 

Structural Selectivity of Anhydrous Sphingolipids and 

Glycerophospholipids in Ion Mobility-Mass Spectrometry Analysis 

 

3.1 Introduction 

 

In the last decade, mass spectrometry (MS) has enabled the 

comprehensive characterization of the myriad lipid structures and their structure 

specific functions,1,2,3 building upon prior fundamental lipid research.4,5,6,7 

Lipidomics is still a relatively young discipline yet is quickly progressing through 

enhancements in the data acquisition,8 bioinformatics,9 and systems biology 

approaches10 which have paralleled the development of the other omics 

initiatives. 

The discovery of the enormous diversity of lipid structures11 created an 

ongoing analytical challenge that requires the adoption of selective separation 

strategies for the deconvolution of complex lipid MS data. The chief technological 

advances to date include: (i) tailored condensed phase separations coupled to 

MS,12 (ii) tandem mass spectrometry strategies,13,14 (iii) standardized lipid 

nomenclature,15 (iv) comprehensive lipid database construction,16 (v) synthesis of 

lipid standards,17 and (vi) integration of bioinformatics towards automation of data 

analysis.18,19 Collectively, these initiatives are advancing lipidomics towards 

absolute quantitation and systems biology integration.20 These advances target 
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the key analytical challenges in lipid analysis.  Firstly, the majority of naturally 

occurring lipid signals occur over relatively narrow mass ranges and can often 

suffer from isobaric interferences (i.e., different lipids possessing the same 

nominal mass).  Secondly, lipids present in high concentration partially or fully 

suppress the detection of numerous important low abundance lipids.21,22 Lastly, 

the identification of lipid signals from complex biological samples is often 

hindered by the detection of endogenous and exogenous chemical noise.23 

 An emerging technology which has only recently been applied in 

lipid analysis is ion mobility-mass spectrometry (IM-MS).24,25 In the first 

comprehensive MALDI IM-MS study of phospholipids, Jackson et al.26 

demonstrated that specific lipid species are resolved in the ion mobility analysis 

based on the type of headgroup and the number of carbons and double bonds 

present in the phospholipids’ fatty acid subdomains. This study also reported 

intriguing differences in gas-phase ion mobility and ionization efficiency based on 

adduction of lipid ions to different alkali metals (Li+, Na+, K+, Cs+). Trimpin, et al.27 

and Kim et al.28 have investigated phospholipids and N-acyl amino acids by using 

ESI IM-MS. Trimpin et al. reported that the same sphingomyelin (SM) lipid 

cationized with H+, Na+, K+ and NH4
+ appears to have indistinguishable gas-

phase ion mobilities (referred to as isodrifts). Jackson et al. have also previously 

shown that cationization of SM to the smaller alkali metals (Na+, K+, Rb+) does 

not lead to significant mobility shifts, while cationization with the larger Cs+ 

significantly shifts the SM lipid signal in the ion mobility dimension away from the 

ions adducted with the smaller alkali metals. 
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I report here the results of MALDI IM-MS study of five abundant 

mammalian phospholipids, three glycerophospholipids: phosphatidylcholine 

(PtdCho), phosphatidylethanolamine (PtdEtn), phosphatidylserine (PtdSer), and 

two sphingolipids: choline headgroup sphingomyelin (SM) and 

galactocerebroside (CB). Based on mobility measurements, I derived gas-phase 

collision cross-section values for each identified IM-MS lipid signal and then used 

computational modeling to derive a structural interpretation for the observed 

mobility resolution of glycerophospholipids and sphingolipids. 

Consistent with the observations of Jackson et al.26 and Trimpin et al.,27 I 

confirm the ability of IM-MS to separate lipids in mobility space on the basis of 

fatty acid chain length, the number of double bonds, and type of headgroup. 

These findings are extended by a more general observation of ion mobility 

separation of glycerophospholipids and sphingolipids. Thus, gas-phase ion 

mobility separation of lipids appears feasible not only on the basis of differences 

in headgroup and fatty acids but also on the basis of structural differences of the 

main lipid backbone (i.e., glycerol vs. sphingosine).  

 

3.2 Experimental 

 

3.2.1 Lipid samples and preparation 

 For proof-of-concept experiments five lyophilized lipid extracts were 

purchased from Avanti Lipids, Inc. (Birmingham, AL) and individually dissolved in 

2:1 chloroform:methanol mixture to yield 2mM solutions. The lipid extracts 
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included the sphingolipids, sphingomyelin (SM, porcine brain), and cerebroside 

(CB, porcine brain) and the phospholipids, phosphatidylcholine (PtdCho, chicken 

egg), phosphatidylserine (PtdSer, porcine brain), and phosphatidylethanolamine 

(PtdEtn, chicken egg). The MALDI organic matrix 2,5-dihydroxybenzoic acid 

(DHB, Sigma, St. Louis, MO) was dissolved in 50% ethanol to yield a 200mM 

solution. The individual lipid extract solutions were each mixed with the DHB 

MALDI matrix solution in a 1:10 ratio, and then manually spotted onto a 100 well 

stainless steel MALDI plate (Applied Biosystems, Foster City, CA). Sample spots 

were prepared via the vacuum dried droplet method, whereby the solution spots 

were flash evaporated under vacuum to promote uniform crystallization of 

sample and matrix. 

 

3.2.2 IM-MS and MS analysis 

 Measurements were obtained on a custom built ion mobility-mass 

spectrometer (Ionwerks, Houston, TX) incorporating a MALDI ionization source 

(MALDI IM-MS).29 In this instrument, MALDI ionization occurs at the pressure of 

the drift cell (helium at 3.8 Torr) utilizing a frequency tripled Nd-YLF (349nm) 

MALDI laser (Explorer, Newport / Spectra-Physics Corp., Mountain View, CA). 

The ionized species traverse a helium filled drift cell under the influence of a 

weak electric field where they are temporally dispersed based on their ion 

mobilities. Following the ion mobility (IM) separation, ions are guided by ion 

optics into the low pressure region of an orthogonal geometry time-of-flight (TOF) 

mass spectrometer. Arrival time data is measured for both the mobility and mass 
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dimensions and assembled into two dimensional spectra, while recording 

detector response (relative ion abundances) as a third dimension of 

information.30 These multi-dimensional spectra were recorded for each individual 

lipid extract and were then analyzed and compared by using custom visualization 

software (Ionwerks, Houston, TX) developed on the IDL platform (ITT Visual 

Information Solutions, Boulder, CO). 

The identities of intact lipid signals were confirmed with high-resolution 

MALDI – TOF MS (Voyager DE – STR, Applied Biosystems, Foster City, CA) and 

high-resolution MALDI – TOF/TOF MS (Ultraflex III, Bruker Daltonics, Billerica, 

MA) both operated in reflectron mode. A 337 nm N2 laser operated at 20Hz was 

utilized for the MALDI-TOF MS analysis, while a Smartbeam frequency-tripled 

Nd:YLF (349nm) 200 Hz laser was used for MALDI-TOF/TOF MS analysis. Lipid 

identification was aided by information available from the website of Avanti Lipids 

Inc. (Birmingham, AL),31 the LIPIDMAPS database,15,16,17 and previously 

published identification of MALDI lipid spectra.32 Laser ionized spherical 

fullerenes C60 (720 m/z) and C70 (840 m/z) were used as mass calibrants for the 

IM-MS. The cardiac peptide bradykinin has been extensively studied with ion 

mobility methods33 and was used in this study as a collision cross-section 

standard for the calibration of the ion mobility drift time data.  

 

3.2.3 Collision cross-section (CCS) determination. 

The raw mobility time data recorded by the instrument is a composite of 

the time it takes the ions to traverse the drift cell, td, plus the time the ions spend 

in the ion optic interface, tint. To determine the CCS of the measured lipid ions, tint 
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must be calculated and subtracted from the total recorded mobility time in order 

to obtain the ion’s drift time in the IM, td. Time correction plots were generated as 

follows: ion mobilities of each sample are recorded at a series of decreasing drift 

cell voltages. Under low field conditions of this experiment the mobility drift time 

is directly proportional to the inverse of voltage (1/V) due to the direct relationship 

between the drift velocity and electric field.34 In a linear fit of the data projected as 

mobility drift time (x-axis) vs. 1/V (y-axis), the y-intercept determines tint. The 

corrected ion mobility drift time, td, can thus be calculated by subtracting tint from 

the mobility time recorded by the instrument. 

The exact hard sphere scattering model is used to extract CCS values 

from ion transport data. In general, the accuracy of the hard sphere model 

improves as the size of the analyte with respect to the drift gas increases.35 The 

low mass and polarizability of helium drift gas and the low electric field conditions 

of the ion mobility experiment lead to the predominant elastic hard sphere 

scattering contribution to measured drift time data. CCS values are calculated 

using the Mason-Schamp equation corrected for standard temperature and 

pressure (i.e., reduced ion mobility)36; 

 

 

 

here z is the charge of the ion, kB is the Boltzmann constant, T is the temperature 

of the drift gas, td is the ion mobility drift time through the drift cell region, L is the 
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length of the drift region, E = V/L is the magnitude of the electric field, P is the 

pressure of drift gas (He), and N0 is the number density of helium gas at standard 

temperature and pressure (T = 273.15 K, P = 760 Torr).  

 

3.2.4 Computational modeling. 

 Computational starting structures of lipid headgroups and fatty acid tails 

were built using the Molecular Operating Environment (MOE) package (Chemical 

Computing Group, Montreal, Canada).37 Quantum mechanical Hartree-Fock 

(QM) geometry optimization and electrostatic potential calculations were 

performed using Gaussian0338 with a 6-31G* basis set. Partial charges for fatty 

acids were derived by fitting the QM electrostatic potential to an atom-centered 

point charge model using the RESP procedure.39,40 Standard AMBER 99 

parameters were used for bond, angle, dihedral, and van der Waals interactions. 

Additional dihedral parameters needed for unsaturated fatty acid side chains 

were taken from previous parameterization for arachidonic acid.41,42 Molecular 

dynamics (MD) simulations of lipid ions were performed with the SANDER 

module of AMBER 1043 using a high temperature conformational sampling 

protocol. In this approach, each examined lipid ion was gradually heated to 1100 

Kelvin and allowed to sample high-energy conformations at this temperature for 

nine nanoseconds of simulation time.  Utilizing a modified simulated annealing 

approach, 30000 structures were extracted throughout this high temperature 

trajectory, gradually cooled to 50 Kelvin, and subsequently energy minimized. I 

used the MOBCAL35 program to determine the projection approximation (PA) 
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collision cross-section of cooled lipid conformational snapshots obtained from the 

modified simulated annealing procedure. Low energy (i.e., potential energy lower 

than the average energy of all simulated structures) MD snapshots whose 

collision cross-section matched experimental values were chosen for cluster 

analysis. Superposition and clustering programs partially developed at the 

Vanderbilt Center for Structural Biology44 were used to sort structures into 

clusters based on conformational similarity (Figure 1.2). Selected atoms were 

included in the clustering analysis based on their expected contribution to the 

conformational arrangement of lipid ion atoms, including the metal cation, 

phosphate, carboxyl ester linkage (phospholipids), carboxyl ester and amide 

linkage (sphingolipids) and selected headroup atoms (e.g., nitrogen of quaternary 

ammonium cation of choline in PtdCho and SM structures). Structures featuring 

the correct sodium coordination were then analyzed for equivalent intercarbon 

distances as outlined in Figures 3.3 and 3.5 using the ptraj structure analysis 

software of AMBER. 

 

3.3 Results and Discussion 

 

In eukaryotic organisms, the overwhelming majority of membrane lipids 

are comprised of glycerolipids, glycerophospholipids and sphingolipids. Example 

structures of the glycerophospholipid and sphingolipid animal lipid extracts 

investigated in this work are provided in Figure 3.1. Glycerophospholipids and 

sphingolipids are characterized by different backbones (i.e., glycerol, 
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sphingosine) and appear to serve a diverse and in some cases distinctive 

structural and biochemical functions.3,45,46,47 In these lipids, glycerol and 

sphingosine backbones can both esterify to phosphate and it is through this 

phosphate that the lipids functionalize to various polar headgroups (e.g., 

ethanolamine, serine, choline, carbohydrates). In positive mode MS experiments, 

phosphatidylcholines (PtdChol, PC) and sphingomyelins (SM) with a choline 

headgroup cationize most efficiently from complex mixtures due to the positively 

charged quaternary ammonium ion of the choline headgroup. Across organisms, 

these two classes of lipids represent the most abundant membrane lipid species. 

Other lipid species, such as phosphatidylethanolamines (PtdEtn, PE) and 

phosphatidylserines (PtdSer, PS) also tend to form stable negative ions, and thus 

are also observable in negative ion mode MS. 

 

Figure 3.1 Representative structures for the lipids that constitute the animal 
extracts investigated for mobility separation properties. The circled areas denote 
the principal structural difference between glycerophospholipids and 
sphingolipids.  
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Previous IM-MS studies of lipids focused on the mobility drift time 

characterization of glycerophospholipids and the choline headgroup bearing 

sphingomyelin.26,27,28 I extend these observations by noting an important trend in 

glycerophospholipid and sphingolipid IM separation. In addition to previously 

observed structural separation of glycerophospholipids based on headgroup and 

alkali metal coordination, I find that sphingolipids, on a more general level, tend 

to mobility separate from glycerophospholipids. This represents a practical 

finding that in the future may become applicable to the deconvolution of lipid 

signals from complex samples using the IM-MS analytical approach.23 

Recently a review of MALDI/secondary ionization MS analysis of lipids 

underscored the need for a database of lipid ion collision cross-section (CCS) 

values.48 The prototype MALDI IM-MS instrument utilized in this work 

incorporates a uniform electric field IM spectrometer operated under low field 

conditions, which allows first principles based determination of absolute gas-

phase CCS of both positive and negative lipid ion species. Following the 

experimental MALDI IM-MS protocol of Woods and coworkers,26 mobility drift 

time data was first acquired for signals from tested lipid standards. Then, mobility 

drift time measurements were transformed into absolute CCS values (in Å2). We 

present here the first cross-section and reduced mobility lipid database of 

positive and negative lipid species (Table 3.1, Appendix Table A.1).    
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Table 3.1 Table of assigned phosphatidylcholine (PC) and sphingomyelin (SM) 
signals with their respective measured CCS and reduced mobility (Ko) values. 

Lipid 
Mass-to-Charge (m/z) 

Value CCS 
Reduced Mobility 

(Ko) 
[M+X]

+
 X=H or Na Experimental Theoretical Ǻ2

 cm
2·V-1·sec

-1
 

SM (36:1) H
+
 731.63 731.61 221.1 ± 1.9 2.430 ± 0.021 

SM (36:1) Na
+
 753.58 753.59 221.3 ± 2.6 2.427 ± 0.029 

PC 34:2 H
+
 758.59 758.57 217.4 ± 3.2 2.472 ± 0.037 

SM (38:1) H
+
 759.60 759.64 229.8 ± 3.4 2.337 ± 0.034 

PC 34:1 H
+
 760.59 760.59 219.1 ± 2.7 2.452 ± 0.030 

PC 34:2 Na
+
 780.58 780.55 218.9 ± 2.8 2.454 ± 0.032 

SM (38:1) Na
+
 781.63 781.62 231.3 ± 2.5 2.323 ± 0.025 

PC 34:1 Na
+
 782.57 782.57 221.7 ± 3.2 2.423 ± 0.034 

PC 36:2 H
+
 786.65 786.60 222.6 ± 2.2 2.413 ± 0.023 

SM (40:1) H
+
 787.65 787.67 232.2 ± 5.0 2.314 ± 0.050 

PC 36:1 H
+
 788.66 788.62 227.4 ± 4.3 2.362 ± 0.044 

PC 36:2 Na
+
 808.59 808.58 226.7 ± 4.6 2.370 ± 0.048 

PC 36:1 Na
+
 810.64 810.60 228.1 ± 2.0 2.354 ± 0.021 

SM (42:2) H
+
 813.73 813.68 241.8 ± 2.5 2.221 ± 0.023 

SM (42:1) H
+
 815.72 815.70 242.1 ± 6.3 2.219 ± 0.058 

SM (42:2) Na
+
 835.69 835.67 239.4 ± 2.8 2.243 ± 0.026 

SM (42:1) Na
+
 837.71 837.68 239.3 ± 4.7 2.245 ± 0.044 

SM (44:1) Na
+
 865.56 865.71 247.9 ± 4.3 2.167 ± 0.037 

PC 42:1 Na
+
 894.54 894.69 238.2 ± 2.3 2.254 ± 0.021 

The nomenclature of PC X:Y, indicates that there are X carbons in the fatty acid chains and Y 
sites of unsaturation. In the nomenclature of SM X:Y, X indicates the number of carbons in the 
amide linked fatty acid plus eighteen carbons of the sphingosine backbone and Y the total 
number of double bonds in the entire lipid structure. Parentheses () distinguish sphingolipid from 
glycerophospholipid nomenclature in the table. Summary tables for positive and negative mode 
PtdSer (PS), PtdEtn (PE) and cerebroside (CB) signals are included in Appendix Table A.1. 

 
 

Mobility drift time investigation and the subsequent CCS analysis of 

positive mode signals from two sphingolipid extracts and three 

glycerophospholipid extracts reveal that sphingolipid signals tend to adopt less 

compact gas-phase structures than glycerophospholipids, which allows for the 

mobility separation of these two lipids classes by IM-MS (Figure 3.2). Note that in 

Figure 3.2, the average peptide mobility-mass correlation trendline is also 

provided as a frame-of-reference49. 
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Figure 3.2 (top) A plot of collision cross-section versus m/z for sphingolipids 
(sphingomyelins, n = 10 and cerebrosides, n = 17) and glycerophospholipids 
(phosphatidylethanolamines, n = 9, phosphatidylserines, n = 7, and 
phosphatidylcholines, n = 10). Error bars represent ± 1σ  for a minimum of 30 
measurements. The average collision cross-section versus m/z for ca. 600 
singly-charged peptides is indicated as a solid-line whereby ± 5% of the 
correlation is shown as dashed-lines. (bottom) Linear regressions plotted for 
each lipid class from the experimental data above. The specific species used in 
the modeling data presented in Figure 3.3 are circled. 
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The results also confirm previously observed mobility resolution of 

glycerophospholipids based on headgrooup differences (i.e., phosphatidylserines 

from PtdCho and PtdEtn lipids), but also reveal that on a more general level, ion 

mobility separation can resolve glycerophospholipid and sphingolipid classes. 

The elucidation of the more subtle mobility differences within glycerophospholipid 

and sphingolipid classes will be reserved for future studies on IM-MS instruments 

with higher mobility resolution.  

At the low electric field strengths utilized in the ion mobility experiments 

each IM-MS signal consists of populations of ions that are near thermal 

equilibrium with the room temperature drift gas as they travel through the drift 

region. These ion populations can be expected to consist of structurally similar 

ions that either undergo thermally accessible structural isomerization or 

depending on intramolecular forces and atomic rearrangement may even be 

expected to remain in relatively fixed conformations on the time scale of the IM-

MS experiment.50 One can think of the experimental collision cross-section as a 

size constraint that can be used to discriminate for and interpret a subset of 

structures from a large pool of computationally generated conformers. 

In an effort to derive structural information from the IM measurements, 

selected PtdCho and SM experimental collision cross-section values were 

compared to lowest energy structures generated in silico and matched using 

theoretically generated CCS values in an approach pioneered by Jarrold35,51 and 

Bowers.33, 52 The computational modeling results appear to explain the main 

structural reasons for the observed ion mobility differences between the modeled 
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PtdCho and SM lipids, but also elucidate the relative lack of cationization (i.e., 

small cation adduction) effect on the measured ion mobility of SM lipids 

previously observed by both Jackson et al. and Trimpin et al. 

 
 

Figure 3.3 Average carbon pair distances d1 – d13 for SM and PtdCho 
irrespective of coordination. Equivalent carbon-carbon distances are significantly 
shorter in the PtdCho structures and thus PtdCho ions occupy a smaller volume 
in gas phase. Average carbon-carbon distances were determined from ca. 1000 
structures whose theoretical CCS value matched the experimentally measured 
CCS.  
 

In order to investigate the underlying reasons for the observed mobility 

separation of PtdCho and SM I chose to model two representative ions, which 

differ in mass by about a single mass unit, however their isotopic distributions 

effectively overlap with a mass difference of just 0.052 m/z; sodiated 

phosphatidylcholine PtdCho 34:2 (16:0 – 18:2) Na+ at 780.552 m/z and 

sphingomyelin SM 38:1 (18:1d – 20:0) Na+ at 781.604 m/z. Using the outlined 
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molecular dynamics protocol, I generated ca. 30,000 model structures for each 

selected ion, out of which approximately one thousand low energy structures 

matched the empirically derived collision cross-section to within 1% of the 

experimentally derived value. Based on initial MD simulations it appears 

reasonable to expect that the CCS of lipid species as they tumble through the 

helium drift gas depends primarily on the degree of acyl tail separation. In the MD 

simulations the fatty acids have a high propensity to wrap around the headgroup 

(i.e., self solvate), which results in a roughly spherical compact ion. Thus, the 

acyl tail separation, if critical for the observed mobility separation of PtdCho and 

SM ions, should be distinctly different for each lipid type.  An analysis of the tail 

distances (as outlined in Figure 3.3, top) of the modeled PtdCho and SM 

structures reveal that the mean acyl tail separation distances of the SM 

structures are indeed significantly larger than the mean acyl tail separation 

distances of the PtdCho structures (Figure 3.3, bottom). Tail separation thus 

appears to be a good descriptor of the gas-phase size of lipid ions.  

After noting different coordination schemes of the sodium ion at the 

phosphate region of the modeled SM and PtdCho ions, conformational effects 

were further investigated by clustering analyses of the modeled structures based 

on conformational similarity. Superposition and clustering programs were used to 

compare MD generated structures based on the relative positions of selected 

backbone and headgroup atoms and the position of the sodium ion. Two primary 

coordination schemes existed (Figure 3.4); (i) a single coordination scheme in 

which the phosphate region of the lipid interacts with one feature of the tail region 
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(i.e., one of the PtdCho carboxyls; the hydroxyl or amide group in SM) either via 

sodium or hydrogen bonding, and (ii) a double coordination scheme in which the 

phosphate region interacts with two features of the tail region (i.e., both carboxyls 

in PtdCho, both the hydroxyl and carbonyl group in SM).  

 

 
 
 
Figure 3.4 Examples of cation coordination: (Top). Representative structures of 
most populated MD clusters of SM 38:1 coordinated with Na+ (i.e., [M+Na]+). The 
structures represent the predominant headgroup conformational arrangements of 
low energy structures whose computed CCS values match the experimentally 
measured CCS. (Bottom). Representative structures from the most populated 
MD clusters of PtdCho 34:2. Notable for both top and bottom representative 
structures are the oxophilic positioning of the sodium cation and its ability to act 
as a coordination bridge between the phosphate and other electron rich parts of 
the backbone. The coordination is termed single, double or zero, based on the 
number of non-phosphate atom centers coordinated to the sodium, and/or the 
tertiary amine of the choline headgroup.  
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I tested the hypothesis that the type of coordination leads to different tail 

separations within the SM and PtdCho structures and/or has different effects on 

the tail separation of their structures. The types of atomic interactions at the head 

group were found to play a significant role in tail separations of the modeled 

PtdCho lipid structures and a less significant role in tail separation differences of 

SM lipid structures (Figure 3.5).  Based on the two plots presented in Figure 3.5, 

it appears that, while the type of coordination at the headgroup – tail interface 

leads to significant differences in tail separation of PtdCho structures.  

 

Figure 3.5 Clustering analysis of effect of coordination on average tail distances 
for SM (left) and PtdCho (right) lipids. A comparison of the two plots reveals that 
the average distances (ca. 1000 modeled structures) of equivalent carbons of 
PtdCho 34:2 and SM 38:1 are indeed larger in the SM lipid. Surprisingly, the 
distance remains larger even for carbons remote to the headgroup region and 
carbon-carbon distances are highly dependent on whether the prevailing sodium 
coordination is single or double.  
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The SM structures seem to be less responsive to the type of coordination at the 

headgroup-tail interface region. That is, on average, the sphingomyelin tail 

distances do not seem to strongly respond to single or double coordination to 

sodium cation, whereas the equivalent tail distances of phosphatidylcholine 

structures depend strongly on the type of cation coordination. 

This apparent unresponsiveness of the sphingomyelin structures to the 

type of headgroup coordination of the sodium ion can be rationalized as follows: 

the reduced rotational degrees of freedom introduced by the presence of the 

trans-double bond and the amide bond in the sphingosine backbone most likely 

dominate the dynamics of SM, CB tail separation. Therefore, it appears that the 

experimentally observed gas-phase separation of sphingolipids from 

glycerophospholipids is most likely due to the relative rigidity of sphingosine 

backbone vs. the glycerophospholipids’ relatively greater rotational flexibility of 

the glycerol backbone which allows it to more effectively self-solvate and form 

more compact, globular structures. 

 

3.4 Conclusions 

 

Ion mobility is a rapid gas-phase separation approach for the resolution of 

glycerophospholipids and sphingolipids based on structural differences of the 

glycerol and sphingosine backbones. In addition, the correlation of empirically-

derived CCS with molecular dynamics simulations is used to better characterize 

where and why particular lipid signals occur in mobility separation space. 
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Whereas IM-MS experimental measurements are best suited to answer binary 

structural hypotheses (e.g., is an ion in gas-phase predominantly compact or 

extended), here I combine IM-MS results with modern computer modeling 

approaches via empirical CCS analysis to elucidate 3D atomic level structural 

signatures of PtdCho and SM lipids. Additional experimental and modeling work 

will elucidate known and likely reveal new valuable resolution trends within the 

glycerophospholipid and sphingolipid classes.  
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CHAPTER IV 

 

Structural Mass Spectrometry Analysis of Lipid Changes in a 

Drosophila Epilepsy Model Brain 

 

4.1 Introduction 

 

Phosphatidylethanolamine (PtdEtn) is a highly abundant phospholipid in 

many species ranging from yeast to mammals. The second most abundant 

phospholipid after phophatidylcholine (PtdCho) in mammals, PtdEtn constitutes 

15-25% of the total phospholipid content and is required in a diverse array of 

cellular functions.1 In the Drosophila genetic model, PtdEtn lipid content is 

greater than 50%, making it the key component of phospholipid-dependent 

biology.2 Due to cholesterol auxotrophy in Drosophila, lipid homeostasis is 

regulated by PtdEtn, rather than sterols, via the sterol element binding protein 

pathway.3,4 Thus, PtdEtn synthesis and metabolism is central to Drosophila lipid 

biology. 

 The first step in PtdEtn biosynthesis in the CDP-ethanolamine pathway 

requires ethanolamine kinase. Drosophila possesses only a single ethanolamine 

kinase encoded by the easily shocked (eas) locus.5 Adult eas mutant animals 

were previously isolated in a classic behavioral genetic screen for bang-sensitive 

paralysis.6 Adult eas mutants are homozygous viable but display brief 

hyperactivity followed by complete paralysis when given a mechanical shock 
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such as banging on a bench top or short (10 second) vortex shaking.7 The 

seizure-induced paralysis is transitory and is repeatedly manifest upon 

mechanical shock. In wildtype, PtdEtn is a major constituent of neuronal 

membranes. This eas mutant epileptic behavior results from defects in 

membrane neuronal excitability causing a burst of unregulated action potentials 

followed by neuronal transmission failure upon stimulation.8-10 Compensatory 

mutations that decrease neuronal excitability eliminate the eas mutant defect.11  

 Previous studies have examined the link between the eas epileptic 

phenotype and the biochemistry of phospholipid metabolism by assaying whole 

head lipid levels using lipid extraction and thin layer chromatography (TLC) 

followed by colorimetric or fluorimetric reagent-based detection.12 As expected, 

these studies showed an overall decrease in PtdEtn in eas mutants. However, 

these techniques did not reveal the specific lipid species present, nor could they 

distinguish a heterogeneous response within a specific lipid class in which the 

biosynthesis of particular lipid species is up or down regulated. Recent advances 

in mass spectrometry (MS) instrumentation coupled with the development of lipid 

databases (e.g., LipidMaps, SphinGOMAP) have allowed rapid identification of 

lipids on the basis of highly accurate mass measurements and targeted 

fragmentation experiments. For example, isotopic pattern matching in tandem 

with controlled fragmentation can often yield unambiguous identification of lipid 

class and composition (e.g., identification of sn-1 and sn-2 fatty acids in 

glycerophospholipids).13-15 
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 In the present study, we have developed a rapid structural MS 

methodology using matrix assisted laser desorption ionization (MALDI) combined 

with ion mobility-MS (IM-MS) for the relative quantitation of intact phospholipid 

signals directly from isolated brain tissue. Importantly, IM-MS provides a rapid 

(<ms) 2D separation of species on the basis of structure, or apparent surface 

area, and mass-to-charge (m/z) in the IM and MS dimensions, respectively. At a 

particular m/z specific signals can be confidently assigned to being lipid species 

on the basis of their ion mobility drift time, or apparent surface area, in spite of a 

background of exogenous or endogenous chemical noise (e.g., protein 

degradation products, peptides, carbohydrates, metabolites, etc.).16,17,18 Unlike 

previous methods of overall Drosophila lipid class abundance comparisons,5,12 

the strategies we have developed provide a detailed molecular assay of specific 

lipid structures that show changes in abundance in the mutant brain. These 

methods can be generalized to any Drosophila tissue that can be selectively 

dissected, (e.g., optical lobes, ring gland, garland cells). This approach paints a 

much more detailed picture of the entire lipid profile within the brain proper, with 

dramatically improved sensitivity, as well as decreased processing time for 

evaluating changes across PtdEtn, PtdIns, and PtdCho lipid species in the brains 

of eas2 mutants relative to matched wildtype controls.  
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4.2 Experimental 

 

4.2.1 Drosophila stocks 

Control and mutant stocks were reared and maintained at 25oC on 

standard agar/yeast/ molasses/cornmeal food. Canton S (CS) was used as the 

wildtype control. The eas2 allele, kindly provided by Barry Ganetzky, University of 

Wisconsin, Madison, WI, is an amorphic allele with no detectable ethanolamine 

kinase (EK) activity.12, 32 

 

4.2.2 MALDI preparation 

 Adult female animals (3-5 day old) were anesthetized with CO2 and then 

immediately decapitated with forceps in phosphate buffered saline (PBS). Whole 

intact brains were dissected free with the optic lobes removed. The central brain 

in PBS was pipetted onto a MALDI plate prechilled on dry ice and then dried in 

the desiccator for 15 min. Lipid MALDI matrix 2,5-Dihydroxyacetophenone (DHA, 

Aldrich Chemicals) was selected from five MALDI matrices (2,5–

Dihydroxybenzoic acid (DHB), Trihydroxyacetophenone (THAP), 2-

Mercaptobenzothiazole (MBT), p-Nitroaniline (PNA)) on the basis of providing 

maximum lipid signal intensity. DHA crystals were first crushed through ball 

milling to submicrometer size. The nanoparticle crystals were carefully applied on 

top of desiccated brain tissues with a small paintbrush. The plate with DHA 

covered tissues was inserted into the ion source of a Synapt HD IM-MS 

instrument (Waters, Corp). One experimental dataset consisted of 3 wildtype 
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control and 3 eas2 mutant brains. Three experimental datasets were generated in 

both positive and negative ionization modes on three different days, representing 

a total of 9 control and 9 mutant brains. 

 

4.2.3 Ion mobility-mass spectrometry 

Signals were generated using an Nd:YAG 355nm laser at an energy 

setting of 25 for 3 mins, rastering the entire area of the matrix covered tissue. IM 

was performed using traveling wave separation through nitrogen gas.33 The ion 

guide T-wave was operated at 300 m/s and linearly ramped in amplitude from 5-

20 V over each experiment. The Transfer guide T-wave was operated at 248 m/s 

with a constant 3 V amplitude. Ion injection voltages in the trap and transfer 

regions were set at 4 and 6 V, respectively. The TOF mass analyzer was 

calibrated in both ionization modes using a mixture of fullerenes C60 and C70 

(Acros Organics) and typically provided ca. 10,000 resolution for both parent ion 

and fragmentation spectra. Both negative and positive mode experiments 

consisted of recording lipid signals from 9 wildtype control and 9 eas2 mutant 

brains. Each extracted lipid profile consisted of a list of specific m/z signals with 

absolute number of measured counts. The number of counts for each m/z signal 

was normalized to the total number of lipid counts in the m/z range of 700 to 900. 

Normalization was used to correct for sample-to-sample variation due to 

differences in laser rastering accuracy (i.e., laser residence time on tissue) and 

for the variation due to sample microdissection heterogeneity. Significantly 

changing lipid signals in both positive and negative modes were fragmented in 
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the transfer region of the Synapt HD MS using a collision energy (CE) setting of 

50. The LM parameter, which controls the range of masses used for parent ion 

selection, of the mass selection quadrupole was adjusted from 4 to 16 to provide 

a 3 Da window, the narrowest available, for parent mass selection before 

fragmentation. The fragmentation data was used to validate the parent mass 

identity. All MS/MS spectra and annotation of the peaks used for lipid 

identification are provided in the electronic supplementary materials. MassLynx 

software (Waters Corp., Manchester, UK) was used for both instrument control 

and data analysis. 

 

4.2.4 Peak alignment and statistical analysis 

 MS peak alignment was performed using a custom swift peak alignment 

(SPA) Visual Basic Excel (Microsoft) macro. SPA uses the longest sample m/z 

column (i.e., containing the highest number of m/z signals) to search for closest 

m/z matches in the other data columns. Closeness is defined by the absolute 

value of the difference of two compared cells. SPA flags any differences greater 

than a user specified m/z threshold. Custom mass difference thresholds can be 

chosen based on the expected mass measurement accuracy of the instrument. 

Here, due to expected peak overlaps of nearly isobaric species that can lead to 

peak broadening we chose a single mass difference threshold value of 0.20 Da. 

 Statistical analysis was conducted using SAS (version 9.1.3, SAS 

institute, Cary, NC) Procedure GLIMMIX. To identify lipids differentially 
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expressed between wildtype control and mutant groups, we used the following 

Poisson Linear Mixed Model: 

 

Let      spectral count for sample j from group i on day k; 

We assume     for each lipid, to fit the following model:  

 

 

 

where       = the mean of assumed Poisson distribution above;  total spectral 

count from all lipids for sample j from group i on day k; Group = 1 if the sample is 

from mutant group, 0 otherwise;        parameter for fixed group effect that 

describes group differences, statistical significance of the null hypothesis Ho: 

 would indicate the average proportion (count for the particular lipid /total 

count) is significantly different for the two groups;  

Day1, .., Dayn_days ~    are random effects that model effects due to days.  

In addition, the model     includes an overdispersion 

parameter , which accounts for greater variability in the dataset than those 

accounted by assuming the Poisson model. Because both fixed and random 

effects are included, this model is a mixed effects model. We used the Kenward-

Roger’s adjusted degrees of freedom solution (option DDFM=KR in Proc 

GLIMMIX) for statistical inference,34 an approach specifically proposed for small 

sample settings. Because many lipids were examined, to account for false 

positives caused by multiple comparisons, given the nominal p-values, we also 
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estimated False Discovery Rate (FDR) using the method of Benjamini and 

Hochberg.35 The experimental p-values obtained using the poisson model were 

successfully tested for p-value stability. To quantify the stability of the p-values 

due to sampling variations, we took sub-samples from the 18 original samples 

and estimated the standard deviation of the p-values for each lipid. More 

specifically, the Poisson model described above was repeated 18 times, each 

time leaving out one sample in turn. Then, we have 18 sets of p-values, one for 

each repetition. In Appendix B, Table B.1, for each negative mode lipid signal 

change with p<0.1, we show the standard deviation based on the 18 p-values. 

 

4.2.5 Lipid signal assignment 

Negative mode assignments were based on intact lipid mass, fatty acid, 

headgroup and neutral loss fragment assignments based on previously published 

PtdEtn and PtdIns lipid fragmentation studies.36,37 Positive mode assignments 

were based on intact lipid mass, PtdCho and PtdEtn signature peaks 147 

(PtdCho), 163 (PtdCho), 184 (PtdCho), 121 (PtdEtn), 146.0 (PtdEtn), 164 

(PtdEtn).38,39,40 The LipidMaps database (Nature Lipidomics Gateway) in tandem 

with previously published lipid fragmentation studies were used in lipid identity 

assignment on the basis of obtained fragmentation spectra and accurate parent 

masses. Results were tabulated and graphed using Excel. Fragmentation 

spectra and peak assignments for all significantly changing lipid species are 

annotated and provided in the Supporting Materials of reference 41, M. Kliman, 

N. Vijayakrishnan, L. Wang, J.T. Tapp, K. Broadie, J.A. McLean, Molecular 
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BioSystems 2010, 6, 958-966. – Reproduced here by permission of The Royal 

Society of Chemistry (RSC). Fragment mass assignments are also provided in 

tables B.2, B.3, B.4, and B5 of the Appendix B section. 

 

4.3 Results 

 

 The adult brain proper was acutely dissected and optic lobes removed 

from wildtype control (Canton-S; CS) and easily shocked null (eas2) mutants 

lacking ethanolamine kinase activity. Brain tissue microsectioning, MALDI matrix 

selection and tissue application were first optimized for maximum lipid MS signal 

response (Figure 4.1 A). To maximize signal intensities, we used MALDI 

ionization via a nanocrystalline organic matrix (2,5-dihydroxyacetophenone, 

DHA), a modification of previously described microcrystaline dry matrix 

deposition.19 Isolated central brains were deposited onto a MALDI plate, 

microsectioned, and painted with nanocrystalline DHA matrix. One experimental 

data set consisted of three wild type control and three mutant brain tissues (three 

control and mutant replicates). Using both positive and negative ionization 

modes, three experimental datasets (recorded on three different days) were 

generated.  

 The IM-MS was used to rapidly separate the relatively large lipid ions from 

smaller concomitant ions (e.g., MALDI matrix signals) based on size, followed by 

m/z. (Figure 4.1 B). Data was acquired using signal integration, i.e., accumulation 

of all lipid signals throughout the course of the experiment, rather than signal 
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averaging. Lipid peak lists consisting of m/z values with corresponding intensities 

were extracted from 2D spectra and aligned using an in-house developed swift 

peak alignment (SPA) program for subsequent statistical analysis. The general 

structure of significantly changing glycerophospholipids reported in this work is 

given in Figure 4.1 C. Different fatty acids and polar headgroups give rise to the 

various PtdEtn, PtdIns, and PtdCho lipid species. 

Representative 2D data obtained from wt control and mutant brains are 

illustrated in Figure 4.2 A for both negative and positive ionization modes. Over 

200 lipid signals in negative ionization mode and over 1000 lipid signals in 

positive ionization mode were detected. Statistical analysis yielded 49 negative 

mode signals and 194 positive mode signals that changed significantly between 

the wild type control and eas2 mutant conditions. An expanded view for the 

highlighted region on the corresponding 2D spectrum (Figure 4.2 A) of typical 

extracted raw MS data from negative and positive mode operation is illustrated in 

Figure 4.2 B. The isotopic envelopes of the lipid signals tend to cluster and within 

clusters, the monoisotopic (exact mass) lipid peaks are separated by two mass 

units, each 2 Da separation corresponding to a single double bond difference. 

This distribution is the result of the natural occurrence of various degrees of 

unsaturation within the fatty acids comprising the lipid species. In negative (left) 

and positive (right) ionization modes, the comparison of eas2 mutant and control 

MS spectra visually illustrates the lipid intensity differences later identified as 

significant changes (p<0.03) by statistical analysis.  
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Figure 4.1 A schematic diagram of the workflow for MALDI-IM-MS analysis of 
phospholipids in the microdissected Drosophila brain. (A) The Drosophila central 
brain was spotted on a frozen MALDI plate and microsectioned. Finely crushed 
nanometer crystal size DHA MALDI matrix was deposited on the brain using a 
paint brush. Lipid signals were subsequently measured by MALDI-IM-MS. (B) 
Lipid MS data was extracted and aligned across three experimental sets using 
SPA peak alignment macro. Significance of lipid changes between control and 
mutant conditions were determined using Poisson model statistics. (C) The 
structures of significantly changing glycerophospholipids, where R1 and R2 are 
alkyl groups of fatty acids bound to the sn-1 and sn-2 hydroxyls of a glycerol 
phosphate and (X) are the structures of polar headgroups esterified to the 
phosphate that give rise to PtdEtn, PtdIns, and PtdCho lipid species. M. Kliman, 
N. Vijayakrishnan, L. Wang, J.T. Tapp, K. Broadie, J.A. McLean, Molecular 
BioSystems 2010, 6, 958-966. - Reproduced by permission of The Royal Society 
of Chemistry (RSC). 
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Figure 4.2 Spectral comparison of eas null versus control brains. (A) Raw 2D ion 
mobility drift time vs. m/z spectra used in the extraction of lipid signals in negative 
(left) and positive (right) ionization modes. (B) Comparison of wildtype control 
and eas2 raw extracted mass spectra for the highlighted region of the lipid signal 
from the corresponding 2D spectrum. This spectral comparison of wildtype 
control and eas2 null provides a visual illustration of changes later identified as 
significant by statistical analysis of aligned MS peak lists. M. Kliman, N. 
Vijayakrishnan, L. Wang, J.T. Tapp, K. Broadie, J.A. McLean, Molecular 
BioSystems 2010, 6, 958-966. - Reproduced by permission of The Royal Society 
of Chemistry (RSC). 
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4.3.1 Changes in PtdEtn and PtdIns species in negative mode MALDI IM-MS

 From negative mode MS experiments (Table 4.1, sections A and B) we 

identified five significantly changing (p<0.03) PtdEtn lipid species (36:2, 34:1, 

36:4, 35:1, 38:3) and three significantly changing PtdIns lipid species (34:1, 36:2, 

36:3) in the eas2 null mutant brain compared to wt control. Three PtdEtn lipids 

show a significant increase in the mutant condition (34:1, +21.2%, p<0.001; 36:4, 

+43.6%, p<0.001; 35:1, +19.2%, p<0.03), whereas three PtdEtn species show a 

significant or nearly significant (p<0.10) concomitant decrease (36:2, -15.3%, 

p<0.001; 38:3, -20.8%, p<0.03; 36:3, -9.01%, p<0.1). In parallel, three PtdIns 

species display significant changes in the absence of ethanolamine kinase 

activity in the brain. Two PtdIns species show a significant or nearly significant 

decrease (34:1, -42.3%, p<0.01 and 34:2, -24.8%, p<0.1), while two show a 

significant increase (36:2, +41.1%, p<0.01; 36:3, +40.2%, p<0.01). Table 4.1 lists 

the 95% confidence intervals of the reported percent change values. 

Furthermore, in negative mode, we determined from fragmentation data the 

specific fatty acid composition of structures that result in the two most 

significantly changing PtdEtn and PtdIns signals, namely PtdEtn 36:2 (sn1-

18:0/sn2-18:2), PtdEtn 34:1 (16:0/18:1), PtdIns 34:1 (16:0/18:1), PtdIns 36:2 

(18:0/18:2).  
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4.3.2. Changes in PtdCho and PtdEtn in positive-mode MALDI IM-MS 

In cells, PtdEtn can be synthesized by decarboxylation of 

phosphatidylserine (PtdSer) and reversible methylation from PtdCho.20 We 

therefore examined the relative abundance of these species via positive mode 

analysis in the eas2 null versus wildtype brain (Table 4.1 C and Table 4.2). 

 

Table 4.1 Changes in PtdEtn, PtdIns and PtdCho lipids observed in negative and 
positive ionization modes between wild type control and eas mutant brains.41 
 

Identity
a
 

avg. 
m/zb

 
(stdev) 

% change between 
wt control and eas 
(95% conf. interval) 

raw p 
value

c 

M.W. (exact) 
(detected as  
[M-H]- ion)

d 

M.W. (exact)
 

(detected as 
[M+H]+ ion)

d 

M.W. (exact)
 

(detected as 
[M+Na]+ ion)

d
 

M.W. (exact)
 

(detected as 
[M+K]+ ion)

d 

A. Negative mode significant PtdEtn (PE) lipid changes 

PE 36:2 
742.60 
(0.008) 

-15.3 (-20.2, -10.2) 3.E-05 743.55  
 

 

PE 34:1 
716.58 
(0.006) 

+21.2 (13.4 , 29.5) 2.E-05 717.53  
 

 

PE 36:4 
738.56 
(0.009) 

+43.6 (26.0, 63.7) 4.E-05 739.52  
 

 

PE 35:1 
730.63 
(0.007) 

+19.2 (3.97, 36.7) 2.E-02 731.55  
 

 

PE 38:3 
768.60 
(0.011) 

-20.8 (-35.0, -3.52)  2.E-02 769.56  
 

 

PE 36:3 
740.58 
(0.008) 

-9.01 (-18.8, 2.01) 0.099 741.53  
 

 

B. Negative mode significant PtdIns (PI) lipid changes 

PI 34:1 
835.59 
(0.010) 

-42.3 (-57.9, -20.9) 2.E-03 836.54  
 

 

PI 36:2 
861.62 
(0.010) 

+41.1 (15.3, 72.7) 3.E-03 862.56  
 

 

PI 36:3 
859.59 
(0.007) 

+40.2 (12.2, 75.2) 6.E-03 860.54  
 

 

PI 34:2 
833.58 
(0.008) 

-24.8 (-46.8, 6.09) 0.097 834.53  
 

 

C. Positive mode significantly changing signals with highest PtdEtn (PE) contribution 

PE 36:3 
PC 35:6 
PC 32:4 
PC 33:3 

764.54 
(0.005) 

-36.1 (-41.7, -29.9) 6.E-08 

  
763.51 

741.53 
 
 

741.53 (<10%) 

 
725.50 (<20%) 

PE 36:2 
PC 35:5 
PC 32:3 
PC 33:2  

766.56 
(0.006) 

-33.6 (-39.4, -27.2)  2.E-07 

  
765.53 

743.55 
 
 

743.55 (<10%) 

 
727.51 (<20%) 

PE 35:3 
PC 32:3 

750.56 
(0.006) 

-35.0 (-42.0, -27.3) 5.E-07 
 

 
727.52 
727.52 

 

PE 35:2 
PC 32:2 

752.57 
(0.007) 

-22.1 (-29.1, -14.5) 6.E-05 
 

 
729.53 
729.53 

 

PE 34:3 
PC 30:4 

736.52 
(0.009) 

-15.6 (-23.8, -6.62) 3.E-03 
 

 
713.50 

 697.47 (<20%) 
PE 36:1 
PC 33:1 
PC 35:4 
PC 32:2 

768.57 
(0.008) 

-8.27 (-15.9, 0.05) 0.051 

  
 

767.55 

745.56 
745.56 

729.57 (<10%) 
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Table 4.1 Notes: (a) Lipid identities determined by fragmentation and closest 
mass matches. Contribution from lipids with plasmalogen (p) and ether fatty acid 
linkages (o) cannot be determined at the mass resolution of the instrument 
(PE=PtdEtn, PI=PtdIns, PC=PtdCho, ex. PE X:Y, where X is the total number of 
carbons and Y is the total number of double bonds in the fatty acyl chains). 
(b) Average and standard deviation of detected m/z from 18 measurements (9 
control, 9 mutant) 
(c) Only p values less than 3.E-02 were deemed significant 
(d) Exact monoisotopic molecular weight of the identified lipid detected as either 
[M-H]-, [M+H]+ or metal (Na, K) coordinated ion. M. Kliman, N. Vijayakrishnan, L. 
Wang, J.T. Tapp, K. Broadie, J.A. McLean, Molecular BioSystems 2010, 6, 958-
966. - Reproduced by permission of The Royal Society of Chemistry (RSC). 
 
 

The analysis of fragment spectra revealed protonated and sodium and potassium 

coodinated PtdCho signals with characteristic peaks at 184, 147, and 163 m/z 

respectively. PtdCho species constituted nearly 80% of significantly changing 

signals in positive mode. Fragmentation analysis of the remaining signals 

revealed primarily contribution from PtdEtn, with characteristic peaks at 164 and 

146 m/z, and secondary contributions from isobaric (same m/z) PtdCho lipids. 

Most of the significantly changing positive mode signals have overlapping 

contribution from multiple lipids; however, overall lipid class changes can be 

readily characterized. Importantly, all statistically significant signals with primarily 

PtdEtn contribution in positive mode (Table 4.1 C) decrease in the eas2 null 

condition (36:3+Na, -36.1%, p<0.001; 36:2+Na, -33.6%, p<0.001; 35:3+Na, -

35.0%, p<0.001, 35:2+Na, -22.1%, p<0.001; 34:3+Na, -15.6%, p<0.01, 36:1+Na, 

-8.27%, p<0.06). Table 4.1 lists the 95% confidence intervals of the reported 

percent change values. Of the significantly changing signals with predominant 

PtdCho contribution, roughly half show a decrease in the eas2 null brain (Table 
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4.2). Multiple significant PtdCho changes contain contributions from no more 

than one PtdCho lipid (32:0+H, +14.5%, p<0.001, 36:2+H, +21.5%, p<0.001; 

36:1 + H, -40.3%, p<0.01; 34:1+H, +13.3%, p<0.01; 34:2+H, +23.6%, p<0.01; 

36:4+Na, -17.8, p<0.03; 32:2+H, -11.1%, p<0.03). Table 4.2 lists the 95% 

confidence intervals of the reported percent change values. Based on normalized 

MS intensity values, there is a significant overall increase (12%) of PtdCho in 

brain lacking ethanolamine kinase activity.  

 

Table 4.2 Changes in PtdCho lipids observed in positive ionization mode 
between wild type control and eas mutant brains.41 

 

Identity
a
 

avg. 
m/zb

 
(stdev) 

% change between 
wt control and eas 
(95% conf. interval) 

raw p 
value 

M.W. (exact)
c
 

(detected as 
[M-H+2Na]+ion) 

M.W. (exact)
c 

(detected as 
[M+H]+ ion) 

M.W. (exact)
c 

(detected as 
[M+Na]+ ion) 

M.W. (exact)
c 

(detected as 
[M+K]+ ion) 

Positive mode significantly changing signals with highest PtdCho (PC) contribution 

PC 35:2 
PC 34:3 

794.60 
(0.022) 

+259 (227, 294) 8.E-14 
 

 
771.58 

755.55 
PC 32:1 
PC 35:3 
PC 33:0 
PE 35:4 

770.59 
(0.024) 

+96.2 (71.4, 125) 1.E-08 

 
 
 

725.50 

 
769.56 

 
 

747.58 

731.55 

PC 35:3 
PC 34:4 

792.59 
(0.024) 

+116 (84.8, 151) 1.E-08 
 

 
769.56  

753.54 
PC 35:2 
PC 32:0 
PE 35:3 

772.60 
(0.041) 

+58.3 (36.1, 84.2) 8.E-06 
 
 

727.52 

771.58 

 

 
733.57 

PC 32:0 
734.59 
(0.006) 

+14.5 (8.57, 20.7)  8.E-05 
 

733.57 
 

 

PC 36:5 
PC 37:1 

802.55 
(0.008) 

-28.6 (-36.2, -20.0) 2.E-05 
 

801.62 
779.55 

 

PC 30:0 
PC 32:3 

728.57 
(0.006) 

-22.6 (-29.3, -15.1) 3.E-05 
 

727.51 
705.53 

 

PC 31:0 
PC 33:3 
PE 34:0 
PC 30:1 

742.56 
(0.005) 

-20.6 (-27.9, -12.5) 2.E-04 

  
741.53 

719.55 
 

719.55(<20%) 
703.51(<20%) 

PC 32:4 
PC 33:0 
PE 35:4 

748.59 
(0.046) 

-34.4 (-45.2, -21.5) 2.E-04 
  

747.58 
725.50 

 
725.50 (<10%) 

 
 

PC 33:2 
PC 32:6 

744.58 
(0.006) 

-23.3 (-32.0, -13.5) 3.E-04 
 743.55 

721.47 
 

PC 36:2 
786.61 
(0.009) 

+21.5 (9.4, 34.9) 1.E-03 
 

785.59   

PC 32:1 
PE 32:2 

732.58 
(0.005) 

+29.4 (12.5, 48.7) 1.E-03 
 

687.48 
731.55 

  

PC 34:3 
PC 32:0 

756.57 
(0.003) 

+8.5 (3.46, 13.8) 3.E-03 
 755.55 

733.56 
 

PC 36:0 
PE 36:1 

790.56 
(0.009) 

-19.7 (-29.6, -8.53) 3.E-03 
 

745.56 
789.62 

  

PC 36:1 
788.60 
(0.032) 

-40.3 (-56.1, -18.9) 3.E-03 
 

787.61 
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PC 34:1 
760.59 
(0.007) 

+13.3 (4.88, 22.3) 4.E-03 
 

759.58   

PC 36:2 
PC 38:5 

808.60 
(0.005) 

+17.3 (5.63, 30.3) 6.E-03 
 

807.58 
785.59 

 

PC 34:2 
758.58 
(0.004) 

+23.6 (7.37, 42.3) 6.E-03 
 

757.56   

PC 32:1 
PC 34:3 
PE 35:1 

754.56 
(0.006) 

+15.6 (4.77, 27.7) 7.E-03 
 

753.53 
731.55 

 
731.55 (<20%) 

 

PC 31:3 
PE 32:0 

714.53 
(0.008) 

-15.8 (-26.1, -4.01) 1.E-02 
 713.50 

691.52 
 

PC 34:2 
PC 37:4 
PC 35:1 

796.57 
(0.018) 

+38.9 (8.03, 78.5) 1.E-02 
  

795.58  
773.59 (<20%) 

757.56 

PC 36:4 
804.57 
(0.006) 

-17.8 (-30.0, -3.60) 2.E-02 
 

 781.56  

PC 30:5 
PC 31:1 

718.56 
(0.005) 

+23.6 (3.38, 47.8) 2.E-02 
 

717.53 (<20%) 
695.45 

 

PC 32:2 
730.58 
(0.006) 

-11.1 (-19.8, -1.43) 0.028 
 

729.53   

 
Table 4.2 Notes: (a) Lipid identities determined by fragmentation and closest 
mass matches. Contribution from lipids with plasmalogen (p) and ether fatty acid 
linkages (o) cannot be determined at the mass resolution of the instrument 
(PC=PtdCho, PE=PtdEtn, ex. PE X:Y, where X is the total number of carbons 
and Y is the total number of double bonds in the fatty acyl chains). 
(b) Average and standard deviation of detected m/z from 18 measurements (9 
control, 9 mutant) 
(c) Exact monoisotopic molecular weight of the identified lipid detected as either 
[M-H]-, [M+H]+ or metal (Na, K) coordinated ion. M. Kliman, N. Vijayakrishnan, L. 
Wang, J.T. Tapp, K. Broadie, J.A. McLean, Molecular BioSystems 2010, 6, 958-
966. - Reproduced by permission of The Royal Society of Chemistry (RSC). 
 
 

These results reveal that specific molecular lipids may either be biosynthetically 

up or down regulated in the Drosophila eas mutant. Such changes could not be 

elucidated by previous TLC techniques examining gross changes in 

glycerophospholipid levels.12 

 

4.4 Discussion 

 

Drosophila bang-sensitive paralytic mutants such as easily shocked 

provide an exceptionally well characterized genetic model of epilepsy.5-8, 11, 21 
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However, using traditional TLC methods the mechanistic link between the eas 

epileptic phenotype and phosphatidylethanolamine (PtdEtn) metabolism could 

only be superficially assayed from whole head tissue and body.12 In the current 

study, we developed a MALDI-IM-MS measurement strategy to directly assay 

relative phospholipid levels directly from dissected central brains. Ethanolamine 

kinase is required for the synthesis of PtdEtn via the Kennedy pathway, just one 

of several pathways available for PtdEtn synthesis (Figure 4.3).22,23 We therefore 

examined the levels of PtdEtn and biosynthetically related lipids directly and 

selectively from brain tissue.  

 Previous studies5,12 required large amounts (>100) of whole animals 

and/or heads to solvent extract the lipids and to subsequently perform TLC. In 

the current study, we assayed individual central brains from 9 wt control and 9 

eas2 mutant animals. Intact lipid masses were detected directly from central brain 

tissue without the need for extraction and reagent-based detection. This 

approach minimizes potential contamination and oxidative degradation, while 

providing a detailed molecular view of relevant lipid changes.  

 Based on differences in the composition of the lipid headgroup, different 

classes of lipids are more likely to ionize in the negative or the positive mode.24,25 

For example, PtdEtn, PtdIns, fatty acids, phosphatidylglycerol (PG) preferentially 

ionize in negative mode, while positive mode ionization can be expected of 

PtdCho and PtdSer. In the ethanolamine kinase null brain, we identified 38 

significantly changing (p<0.03) lipid species from >1200 lipid signals, 8 via 

negative mode and 30 via positive mode. Due to high abundance of PtdEtn in the 
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Drosophila brain, several signals containing significant contributions of PtdEtn 

were identified in both negative and positive modes while no significantly 

changing PtdSer signals were detected. 

 By examining specific lipid species in this work, we found that not all 

PtdEtn lipids decrease in the eas mutant as was previously reported.5,12 

Specifically, five PtdEtn species, expected to be made by the CDP-ethanolamine 

biosynthetic pathway (Figure 4.3)22,23,26 show a significant decrease in the eas2 

null brain. In contrast, three PtdEtn species, expected to be made primarily by 

the alternate PtdSer decarboxylase pathway (Figure 4.3), show a significant 

increase in the mutant condition. In negative mode, the trend set by the two most 

significantly changing PtdEtn 36:2 (down) and PtdEtn 34:1 (up) is exactly 

opposite for the two most significantly changing PtdIns 36:2 (up) and PtdIns 34:1 

(down). The fatty acid composition and position in the respective PtdEtn/PtdIns 

36:2 and PtdEtn/PtdIns 34:1 is the same. In positive mode, except for PtdEtn 

36:2, the significantly changing signals with predominant PtdEtn contribution are 

not the same as the PtdEtn lipid species detected in negative mode, most likely 

due to preferential ionization of different PtdEtn species in positive and negative 

ionization modes. The PtdEtn 36:2 signal that appears in both modes shows a 

significant decrease in eas2 null mutant brain. The decrease in positive mode is 

more pronounced and is most likely due to the presence of overlapping PtdCho 

signals that also decrease in the mutant condition, for which we see evidence in 

Table 4.2 (i.e., significant decrease in signals with PtdCho 32:3 and PtdCho 33:2 

contribution). 
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Figure 4.3 Schematic diagram of the known PtdEtn biosynthetic pathways. 
PtdEtn can be synthesized by several routes. The major route is the CDP-Etn 
pathway (Kennedy Pathway). Dietary Etn is converted to PtdEtn, by the stepwise 
action of ethanolamine (Etn) kinase (encoded by the Drosophila eas locus), Etn 
cytidyltransferase (ECT) and Etn phosphotransferase (EPT). PtdEtn can also be 
produced by PtdSer decarboxylation and converted to PtdCho by sequential 
methylation. The known enzymes required for the various steps in the pathway 
are shown. Abbreviations: choline (Cho), phosphoethanolamine (P-Etn), 
phosphatidylinositol (PtdIns), phosphatidylethanolamine (PtdEtn), 
phosphatidylcholine (PtdCho), phosphocholine (P-Cho), phosphatidylserine 
(PtdSer). M. Kliman, N. Vijayakrishnan, L. Wang, J.T. Tapp, K. Broadie, J.A. 
McLean, Molecular BioSystems 2010, 6, 958-966. - Reproduced by permission 
of The Royal Society of Chemistry (RSC). 
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4.5 Conclusions 

 

 The MALDI-IM-MS method reported here provides a rapid and sensitive 

assay to quantify phospholipid species, potentially providing a diagnostic tool in a 

variety of mutant and disease comparative studies. This method provides great 

molecular detail compared to traditionally used detection techniques. Future 

studies will optimize and adapt this method for the detection of other classes of 

lipids, many of which are lower in abundance. This method used in concert with 

genetic manipulations may shed new light on the regulation of lipid biosynthetic 

pathways and alterations that occur in a range of disease conditions. 
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CHAPTER V 
 

Dynamic Light Patterning for High Spatial  

Resolution Imaging of Lipids 

 

5.1 Introduction 

 

 Biomolecular imaging mass spectrometry has been successfully applied to 

spatial characterization of peptides and proteins, and more recently lipids.1,2,3 In 

imaging MS, tissue slices,4,5 cellular monolayers,6,7 even individual cells or 

vesicles deposited on a flat substrate,8,9,10 can be spatially interrogated by 

dividing their area into a regular 2-D array of pixels and obtaining a full MS profile 

at each pixel.11,12 The mass to charge and intensity (i.e., % relative abundance) 

information of the MS spectra at each pixel can be combined into abundance 

images of individual m/z signals using specialized free and proprietary MS 

imaging software. MS image spatial resolution is limited by the size of each pixel 

and the step size (i.e., smallest unit of lateral movement with respect to laser 

impact) of the sample stage.  

Matrix assisted laser desorption ionization (MALDI) appears to be well 

suited for spatial interrogation of larger (i.e., >500 Da) lipid species at resolutions 

of tens of micrometers,2 while secondary ionization mass spectrometry (SIMS), 

especially in combination with energy absorbing matrices on imaged surfaces 

can provide spatial information about cholesterol mass range lipids, fatty acids 

and lipid fragments at hundreds of nanometers spatial resolution.13,14 Currently 
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neither MALDI nor SIMS are particularly well suited for imaging of intact lipids at 

resolutions of ca. one micrometer.15 

Several recent developments have led to improvements in the imaging 

resolution attainable by laser light ionization. New matrix deposition methods, 

such as sublimation,11,16 dry matrix deposition,17,18 and metal nanoparticles19,20 

have been shown to provide surfaces that do not constrain mass imaging spatial 

resolution by matrix crystal size; others have used nanostructured surfaces to 

overcome this limitation.21 Another approach to increased resolution of MALDI 

experiments is improving the final focus of the ionizing laser beam at the sample 

surface. Tighter focus of the laser beam leads to smaller pixel size of the 

resulting MS image, and therefore to higher imaging spatial resolution.22 Highly 

sensitive MS platforms that offer detection of all ionized species, such as time-of-

flight MS instruments are best suited for typical high resolution MALDI imaging 

with organic matrix compounds, due to the relatively low ionization efficiency of 

the organic matrix assisted LDI process (i.e., one ion estimated for every ten 

thousand neutral desorbed species).23 However, size selected nanoparticles with 

much higher ionization efficiencies currently explored by several groups have the 

potential to substantially improve lipid detection in high spatial resolution 

experiments on an expanded number of instrumental platforms.24,25,26,27 

In principle, the focusing ability of any laser optics for MALDI imaging is 

limited by the properties of laser light (i.e., spot size and shape, divergence, and 

wavelength) and the diffraction limited demagnification of the laser optics. 

Current approaches to sub-micron focusing of laser beams require positioning of 
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optical components close to the imaged surface.28,29 Such methods require 

custom optics and specialized instrumental hardware, and are limited to 

producing symmetrical (i.e., typically round) laser spot shapes. Building on 

previous work by Sherrod et al.,30 I optimized a digital micro-mirror array (DMA) 

device for laser focusing and user defined laser patterning coupled to a highly 

sensitive commercial TOF MS instrument. This approach does not require 

positioning of optics close to the imaged surface inside the vacuum of the ion 

source, and has the potential to transfer seamlessly between different MS 

instrumental platforms, including commercial IM-MS instruments. When coupled 

to IM-MS instrumentation, such system has the potential to offer high resolution 

spatial interrogation of lipids, while simultaneously allowing their mobility 

separation from concomitant biomolecular signals. 

 

5.2 Experimental 

 

5.2.1 DMA optical train 

 The MS imaging laser optics shown in Figure 5.1 consist of the pulsed 

laser as described in section 5.2.2, optional beam homogenizer (2 microlens 

arrays and 2 cylindrical fourier-lenses) used to generate a flat laser beam energy 

profile, a digital micro mirror array (DMA) device based on the digital light 

patterning (DLP) technology, a set of 2 cylindrical filed lenses for correction of 

laser light divergence post DMA reflection and a final objective triplet lens with a 

focal length f =125 mm (BLZ-Bayerisches Laserzentrum, Erlagen, Germany). 
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The demagnification ratio β depends on the following properties of the optical 

setup: a is the distance between DMA and objective lens, b is the distance 

between the objective lens and MALDI target, f is the focal length of the objective 

lens, u is object height (size of area selected at DMA), and v is image height 

(size of focuses area projected onto the MALDI target). The properties of 

projection can be calculated with the following equations. Magnification 

  
β =

v
u
=

b
a

 and image distance   b = f(1+ β). Thus increasing the distance a 

between the DMA device and objective results in a smaller demagnification ratio 

β (i.e., smaller size image on the MALDI target). Optical support equipment (i.e., 

rails, stages, posts, and post holders) were purchased from OptoSigma (Santa 

Ana, CA) and Newport (Irvine, CA). 

 

5.2.2 TOF-MS instrumentation 

 MS imaging data was collected on a high-resolution MALDI – TOF MS 

instrument (Voyager DE – STR, Applied Biosystems, Foster City, CA) operated 

in linear or reflectron modes. A 337 nm N2 laser operated at 20Hz was utilized for 

MS signal and instrument method optimization, while a frequency-tripled Spectra-

Physics (Newport, Irvine, CA) Nd:YLF (349nm) µJ energy range laser and a 

Tempest (ESI, Portland, OR) Nd:YAG (355 nm) flash lamp pumped mJ energy 

range laser were used for MALDI-TOF MS imaging either at default 3Hz or 

optimized 20Hz frequencies. 
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5.2.3 Sample preparation 

 Initial optics and instrument optimization were performed with cardiac 

peptide bradykinin and MALDI matrices α-Cyano-4-hydroxycinnamic acid (α-

Cyano) and 2,5-dihydroxybenzoic acid (DHB), which were purchased from Sigma 

(St. Louis, MO) and used without further purification. For optimal signal intensity 

testing bradykinin 0.1mg/mL water solution was dissolved in 30 mg/mL α-Cyano 

in methanol (MeOH), pipetted at 1 µL amounts onto 2x2mm wells of an Applied 

Biosystems standard 100 well steel MALDI plate and flash evaporated under 

vacuum. For initial laser beam imaging either DHB or α-Cyano were dissolved at 

3mg/mL concentration in MeOH and pipetted onto 45x45 mm indium tin oxide 

(ITO) coated glass slides and air dried. ITO slides were then mounted into 

Applied Biosystems standard gold plate MALDI plate holder. 

 

5.2.4 Monolayer cell culture protocol 

 HT1080 cells (i.e., a human fibroblast like cell line) were maintained in 

Dulbeco's Modified Eagles Medium (DMEM) (Invitrogen) with 10% fetal bovine 

serum (FBS) (HyClone, Logan, UT) and 1% penicillin/streptomycin (Invitrogen). 

Cells were then trypsinized with 0.25% Trypson-EDTA (Invitrogen) and plated on 

ITO slides (previously sterilized under UV light). Cells were allowed to become 

confluent, and a scratch wound was made using a 20 µL pipette tip. Three hours 

post wounding, the growth media was removed and the sample was washed 

twice with PBS. Excess PBS was aspirated, and the sample was frozen at -80°C.  

For analysis the ITO slides were vacuum dried and equilibrated to room 
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temperature. Before imaging the monolayers were coated with nanoparticle 

elemental gold using a Cressington 108 manual sputter coater (Ted Pella, 

Redding, CA). Optimal tissue silver coating times at half maximum height of the 

sputter coater sample stage were between 15 and 30 seconds. 

 

5.2.5 Tissue sectioning and coating 

 Mice were bred in Division of Animal Care facilities at Vanderbilt 

University. Embryos at E20 or postnatal, day 0, pups were dissected. Heads 

were removed, brains were rapidly dissected, and instantly frozen in precooled 2-

methylbutane (on dry ice) and stored at -80ºC until sectioning. Coronal cryostat 

sections (10 to 50 µm thick) were prepared from fresh frozen KO and WT brains. 

All procedures were performed in accordance with the Guide for the Humane 

Use and Care of Laboratory Animals. The use of mice in this study was approved 

by the IACUC of the Vanderbilt University. 

 Tissue sections were thaw mounted on metal MALDI plates, microscope 

or indium tin oxide (ITO) glass slides. All sections were stored in -80°C freezer 

until analysis. Before imaging the tissues were coated with nanoparticle 

elemental silver using a Cressington 108 manual sputter coater (Ted Pella, 

Redding, CA). Optimal tissue silver coating times at half maximum height of the 

sputter coater sample stage were between 5 and 15 seconds. 
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5.3 Results and Discussion 

 

 Mass spectrometry imaging has demonstrated great potential for spatially 

profiling biomolecular content of tissues and cells.10,22,31 The main advantage of 

this technology is that biomolecules are intrinsically labeled by mass, and also by 

size and thus it is well suited for studies characterizing the distribution of lipid 

species directly from complex biological samples, especially in combination with 

IM-MS instrumentation as described in chapters 1 to 4. 

 In contrast with contemporary MS imaging using matrix assisted laser 

desorption/ionization (MALDI), the proposed dynamic light patterning MALDI 

optical system for MS imaging provides 5 significant advantages: (1) diffraction 

limited spatial resolution at UV laser wavelengths of < 1 µm (compared with ca. 

30-150µm in typical MALDI experiments), (2) the ability to generate complex 

shapes for selective ionization from user defined cellular regions, (3) selective 

and simultaneous ionization can be performed from multiple non-congruent 

regions, (4) the ability to rapidly raster the laser across the sample optically, 

rather than physically moving the target, and (5) elimination of perspective 

distortion from ionization at oblique angles relative to the target.32,33,34 In my 

dissertation work I focused on optimization of parameters needed to attain the 

first three advantages. 

 The principal component of the new optical system is a digital micro-mirror 

array (DMA) device, described in mid-1980s by Hornbeck.35 DMA device is a 

1x1.5 cm array of ca. one million 13x13 μm size mirrors. Each one of the micro-
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mirrors can be individually controlled to tilt + or – 12 degrees to either reflect or 

deflect parts of an incident laser beam (Figure 5.1). Using this device the laser 

beam can be patterned at the MALDI target into regular or complex shapes of 

variable dimensions and even non-congruent spatial regions can be irradiated 

simultaneously. Importantly, the ability to use the DMA as a non-diffractive 

aperture to reflect micron sized laser beams and focus these using a high 

numerical aperture triplet lens objective allows sub-micron laser beam sizes at 

the MALDI target. 

 

 

Figure 5.1 A schematic of the optical arrangement incorporating laser light 
patterning with a digital micro-mirror array. Regular (e.g. triangular, elliptical) or 
irregular laser patterns can be reflected and focused at the MALDI target. The 
current demagnification ratio allows ionization experiments with a spatial 
resolution of ca. 800 nm. 
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Prior to reflection from the DMA a laser homogenizer can be used to 

produce a laser beam with uniform photon density to ensure a uniform energy 

profile across any arbitrary pattern at the target and therefore uniform ionization 

across such pattern. Owing to the potentially large demagnification of the 

individual micro-mirrors of the DMA (i.e. hundreds of nm in the diffraction limit of 

the objective triplet lens) the “true” image will be limited in pixel resolution to 

several hundred nm, which is still within an acceptable range for most imaging 

applications. 

 

 

 
 
 
 
 
 
 
Figure 5.2 Mass spectrum of the peptide RPPGFSPFR ([M+H]+ = 1060 m/z) 
obtained from an image generated by ca. 300000 mirrors on the DMA (200 µm at 
the MALDI target). Inset: the image of the patterned laser beam taken by a CCD 
camera  confirmed that the homogenizer produces a beam with a flat-top energy 
profile, energy scale is right of inset. 

 

After initial alignment, the work focused on demonstrating the patterning 

viability of the optical system proposed for cellular and sub cellular imaging. I was 

able to achieve MALDI ionization from a complex laser pattern of roughly 200 

microns in size at the MALDI target, as shown in Figure 5.2, in initial experiments 
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with a standard MALDI Nitrogen gas laser. In subsequent testing, I installed a 

higher energy solid state diode laser into the optical train.  

The solid state laser is capable of producing laser pulses at 120 µJ of 

energy per pulse, and provides about double fluence (i.e., energy per unit of 

area) at the target compared to the Nitrogen gas laser first used. The increase in 

photon density achieved with the solid state laser at the MALDI target over the 

traditional Nitrogen laser led to a striking observation. The signal intensity 

obtained during initial experiments (104 counts from 0.1 pmoles of peptide 

RPPGFSPFR) with a 200 µm pattern reflected from ca. 300,000 mirrors at the 

DMA was also achieved when an equilateral triangle pattern from only 500 

mirrors (i.e., tens of µm at target) was used in sample ionization. To achieve 

ionization from this small a pattern, laser energy incident on the MALDI target 

was measured and found to be approximately double. I now predict that 

significant ionization can be induced from even smaller patterns as long as 

increased laser energy can be supplied at these resolutions. Our group has 

recently purchased a high power Tempest solid state laser to achieve ionization 

with even fewer mirrors. 

 Preliminary experiments demonstrate that at sufficient photon densities, 

significant amounts of signal can be expected from a single mirror with < 1 µm 

resolution at target. In the experiments with beam sizes of tens of µm, total 

integrated signal from 0.1 pmole of peptide RPPGFSPFR reached close to 1 

million counts per laser shot, which is equivalent to ca. two thousand counts of 

signal per single mirror. More recently, patterns of 5 x 5 mirrors (size on the 
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target 4 x 4 µm) yielded 105 integrated signal counts and a pattern of 4 x 4 

mirrors (size on the target 3.3 x 3.3 µm) yielded 103 counts of integrated signal. 

Therefore, in terms of counts per mirror, I am now able to generate up to 40,000 

counts per mirror from 5 x 5 mirror patterns and 6,000 counts per mirror from 4 x 

4 mirror patterns. Based on previous work by the groups of Dr. Knochenmuss, 

Dr. Zenobi, and Dr. Karas, I expect that the difference in counts per mirror as the 

images decrease in size will be overcome by utilizing a higher energy MALDI 

laser. 

 Laser images created on photosensitive paper and by laser ablation of 

MALDI organic matrix at the MALDI target showing images prior to and after 

perspective correction are shown in Figure 5.3. 

 

Figure 5.3 A. An equilateral triangle laser pattern with a side dimension of 3.5 
mm at the mirror array focused onto a UV photosensitive paper (left) and an 
equilateral triangle pattern with side dimension of a 1.7 mm used to ablate a solid 
ionization matrix DHB (right). The dotted line delineates the area of partial DHB 
ablation which occurred due to excessive thickness corrected in later imaging 
experiments (see B.). B. An equilateral triangle laser pattern with side dimension 
of 1.7 mm at the mirror array was focused onto a thin monolayer of α-cyano-4-
hydroxycinnamic acid MALDI matrix. The optical focus was modified manually to 
correct for perspective distortion observed in part A. 
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In Figure 5.3 the demagnification to obtain the resulting triangle side dimensions 

on ionization target is ca. 15:1 for all projected triangles. Under current 

experimental conditions this focusing power is sufficient to generate a < 1 µm 

image size from a laser beam reflected from a single mirror. The perspective 

distortion at the target in Figure 5.3A is due to the angle of incidence of the laser 

at the target plane, which has been manually corrected in Figure 5.3B. 

 To demonstrate the viability of the light patterning optics for high resolution 

MS lipid imaging of novel substrates, I imaged a monolayer of HT1080 cells, a 

human fibroblast like cell line, using a scratch-wound assay. In this assay, a 

confluent cell monolayer is scratched or “wounded” to generate an area denuded 

of cells, which causes the cells to become polarized and initiates directional 

migration to close the gap.36 MS imaging was performed at the wound edge in 

the positive ion mode. These images correspond to choline containing lipids, 

such as phosphatidylcholines, and sphingomyelins. An example MS image 

across the wound edge is shown in Figure 5.4 for the phosphatidylcholine 34:1. 

In this image, a nominal spatial resolution of 29 µm was used, which is 

approximately one cell diameter. The highest intensity peaks for this particular 

lipid are ca. 104 counts, suggesting adequate sensitivity for the analysis of lipids 

at higher spatial resolution. The higher energy Tempest laser now available for 

DMA based MS imaging is expected to enhance MS imaging sensitivity even 

further.  
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Figure 5.4 (Left) An optical micrograph of a wounded cell monolayer is shown. 
(Right) An extracted MS image of phosphatidylcholine 34:1 (m/z = 782-783) of a 
1 x 1 mm square area of cells at the wound edge imaged at a resolution of 28.8 
µm. Note that Au nanoparticles were used as the MALDI matrix. Some lipid 
signal was observed beyond the wound edge most likely reflecting a few cells (or 
parts of cells) that remained in the denuded area. 
 

Further studies of these cellular monolayers will focus on MS imaging of 

lipids in both positive and negative modes at the wound edge. After wounding, 

the vast majority of cells become highly polarized and extend a leading edge 

protrusion into the wound in the direction of movement. Localized selective lipid 

composition at the leading edge is thought to be involved in cell polarization, 

which makes this assay ideal for studying lipids involved in migration. Thus, this 

measurement strategy potentially provides information for previously 

uncharacterized lipids involved in membrane polarization in support of cell 

migration. Temporal changes in concentration of various lipids can also be 

determined by imaging samples that were fixed at different time intervals after 

wounding. At higher spatial resolution, we will be able to outline and image a 

region that represents, for example, the first 800 nm behind the leading edge 
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membrane (Figure 5.5). Subsequently, we will continue to image in 800 nm 

intervals marching toward the interior of the cell. Thus, we can compare these 

images to assess the extent of lipid polarization within the various cellular 

regions. Importantly, because the proposed optical arrangement allows complex 

patterning of the laser we are not restricted to simple shapes. Therefore, we can 

accurately map the irregular contours of the cell. 

 

 

Figure 5.5 (left) An optical micrograph of a human fibrosarcoma HT1080 cell line 
serum polarized cell, where the leading edge protrusion appears at the top of the 
image. In this concept experiment, different regions of the optically imaged cell 
will be selectively targeted for laser desorption/ionization (center) and MS 
analyses, which may provide localized relative abundance of lipids, depending on 
the specific area to be analyzed (right). Typical cell diameter of individually grown 
and polarized HT1080 cells is 30 µm. 
 

 Previous experiments with peptide RPPGFSPFR showed that ionization 

from 5x5 and 4x4 µm laser spot sizes can be achieved, but requires considerably 

higher laser fluences. Toward the goal of imaging of endogenous compounds in 

cell monolayers and tissues at these spatial resolutions, we acquired a pulsed 

mJ laser that provides laser pulse energies in 1-30 mJ range, which translates 

10 μm 



 

 

 

115 
 

into one to two orders of magnitude higher fluences at the sample target than the 

fluences of nitrogen gas and diode lasers used at the beginning of this project. 

To test the capabilities of the new high energy laser I chose to image cholesterol 

distribution in coronal mouse tissue sections of various thicknesses, shown in 

Figure 5.6. 

 

 

Figure 5.6. MS images of cholesterol silver adduct (i.e., cholesterol+Ag+ at 495.3 
m/z) from three different coronal mouse brain sections, (A.) 10 micrometer tissue 
thickness, (B.) and (C.) 50 micrometer tissue thickness, at three different imaging 
spatial resolutions (A.) 20, (B.) 16, and (C.) 8 μm. 
 

Notably, the silver nanoparticle coating protocol used in these 

experiments, coupled with higher laser fluence allowed imaging of tissues thicker 

than 10 µm typically used in laser desorption imaging experiments. I expect that 

further fine tuning of the sectioning, coating, and imaging protocols will soon 

allow similar lipid imaging of biological tissues and cells at or close to 1 µm 

resolution. 
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5.4 Conclusions 

 

 Mass spectrometry characterization of the spatial distribution of lipids in 

tissues and individual cells adds an important layer of information to the overall 

understanding of lipid function. Imaging methods based on laser desorption 

ionization have the potential to reveal the m/z distribution of lipids ionized and 

detected as intact molecules. In this work I built an optical system based on the 

digital micro-mirror array technology and tested its laser focusing and patterning 

capabilities. This system shows promise in bridging the current spatial resolution 

gap between the typical spatial resolutions currently afforded by the MALDI and 

SIMS imaging platforms. Since it does not require optics mounted inside the 

mass spectrometer, the DMA optical system can be aligned to other instrumental 

platforms, including MALDI IM-MS systems. 
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CHAPTER VI 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

6.1 Summary and Conclusions 

 

 The key advantages of ion mobility-mass spectrometry (IM-MS), speed of 

mobility separation, sensitivity to small differences in gas phase densities, and 

compatibility with matrix assisted laser desorption ionization (MALDI) and 

modified electrospray ionization (ESI) sources, may soon make this technology a 

valuable tool for lipidomic research. Both the wealth of basic peptide and protein 

IM-MS research, and its technological advances over the last two decades, 

resulted in the recent commercialization of this instrumental platform for 

bioanalytical applications. The commercial success of IM-MS attests to the 

practicality of its dimensionality enhancement and high throughput capabilities. 

 In the presented work, IM-MS offers new insights into lipid structural 

separations, and, potentially, combined structural and spatial analysis of lipids 

directly from complex biological samples. At the time I joined the McLean group, 

only two other groups were actively involved in structural and imaging studies of 

lipids by IM-MS. Woods and coworkers focused solely on mobility separation 

trends of various classes of lipids without measuring collision cross-sections 

(CCSs) and performing computational analysis, while Kanik and coworkers 

studied mobility separation trends of one class of lipids, phosphatidylcholines, 
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with various degrees of unsaturation and ultimately used CCS values measured 

in the McLean lab for molecular dynamics simulations. To my knowledge, no 

other group to date has pursued laser focusing and patterning for mass 

spectrometry imaging using digital micro-mirror array (DMA) technology. 

 After joining the McLean group, I first contributed IM-MS data from various 

phospholipid and sphingolipid standards to an overall study of biomolecular 

mobility separations trends. In that study my colleagues and I examined the IM-

MS conformational space correlations of lipids, peptides, carbohydrates and 

oligonucleotides. My lipid collision cross-section measurements and molecular 

dynamics simulations of the gas phase behavior of various bioanalytes provided 

the structural detail needed to elucidate the statistical variability of the IM-MS 

correlations of the different biomolecules. 

 Further computational analysis of the lipid IM-MS data uncovered an 

important result; in depth molecular dynamics of empirically studied 

phospholipids and sphingolipids pointed out the key structural differences of the 

glycerophospholipid and sphingolipid backbone that contribute to the previously 

unnoticed mobility separation of these two important classes of membrane lipids. 

In the gas phase sphingolipids are less compact, have lower folding density than 

glycerophospholipids. Based on computational modeling, the reason for the 

lower packing ability of sphingolipids appears to be the relative rigidity of the 

sphingolipid backbone. 

 Fundamental IM-MS lipid analysis in the context of other biomolecules and 

in the context of multiple lipid classes naturally led to application of the collected 
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knowledge into the study of lipids directly from complex biological samples. First, 

we focused on the ability of IM-MS to remove chemical noise (i.e., MALDI matrix 

clusters) from the lipid mobility m/z correlation line. The ability to distinguish 

relatively small percent changes in abundance of lipid signals with high statistical 

significance from small (i.e., 1 mm2 on plate) Drosophila brain tissues, may open 

the door to high throughput studies of abundance changes of lipids in plant and 

animal tissues and cell monolayers exposed to external stimuli or challenged by 

mutations, using the inherently high throughput MALDI platform. 

 In parallel with IM-MS experiments, I built and characterized a novel optical 

system for high resolution mass spectrometry imaging of lipids based on the 

digital micro-mirror array (DMA) device. In my research, I focused on the laser 

focusing and patterning capabilities of this system. However, the additional 

capabilities, correction of perspective distortion, and tissue imaging by rapid laser 

beam rastering across stationary tissues remains an untapped potential of this 

technology. This optical train does not require optics positioned inside the 

vacuum of the imaging instrument, and can therefore be used on any other 

MALDI ready instrumental platform, including IM-MS. 

 

6.2. Future Directions 

 

 Mass spectrometry, coupled to condensed phase separation, has enabled 

lipid structural characterization at an unprecedented level of detail and has the 

promise to inform our understanding of how lipid structures interact with other 
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biomolecules. Modern advances in lipid mass spectrometry, such as gas phase 

separation by ion mobility, coupling of condensed phase and ion mobility 

separations, and promising new approaches to MS/MS characterization of lipid 

structures by tailored chemical and electron transfer dissociation will continue to 

have high impact in lipid research.  

Owing to the capability of IM-MS to separate lipids in the IM dimension of 

analysis by structure, improved detection of lower abundance lipids and/or lipids 

with low ionization efficiency directly from complex biological samples may be 

materializing. State of the art commercial IM-MS instruments now allow signal 

integration, i.e. accumulation of all MS signals during the course of an entire MS 

experiment. IM-MS also allows separation of endogenous and exogenous 

chemical noise away from the IM-MS spectrum area of lipid signal and IM readily 

couples to LC separations. I would like to perform proof of principle comparisons 

of lipid detection from LC/MS vs. LC-IM-MS and MALDI-MS vs. MALDI-IM-MS 

experiments to determine the contribution of IM separation to increased detection 

of molecular lipids.  

 In near future, I also see several opportunities in using nanoparticles in 

lipid MS analysis. I would like to pursue selective suppression of 

phosphatidylcholines by a modified gold nanoparticle approach. Using 

established synthesis protocols,1 and commercially available starting materials, I 

intend to derivatize gold nanoparticles of various gold core diameters with thiol 

and phosphate terminated ligands. The final optimized synthesis product 

envisioned is a soluble ligand coated gold nanoparticle with the phosphate 
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terminus of the ligand oriented to the outside of the gold-ligand sphere. Based on 

previously published studies about the gas phase stability of the phosphate 

quaternary ammonium ion non-covalent interaction,2,3 I propose to test the 

following hypothesis: I anticipate that laser desorption of lipids from cell and 

tissue samples in the presence of phosphate terminated gold-ligand 

nanoparticles will lead to selective suppression of ionization of high abundance 

choline containing lipid species by phosphate solvation of the preformed charge 

on the quaternary ammonium ion. If the hypothesis is correct, ionization and 

detection of lower abundance lipid species normally not available in LDI-MS 

experiments, due to their suppression by phosphatidylcholines, may be achieved. 

 The study of spatial distribution of both high and low abundance lipids at 

higher and higher spatial resolution, down to sub-cellular dimensions, will also 

continue to be a choice research focus. Metal nanoparticles, particularly those 

with dimensions of less than 5nm in diameter, may soon become extremely 

useful in lipid imaging of individual cells and parts of cells, as they have been 

shown to provide signal enhancement by, most likely, a surface plasmon 

resonance mechanism. Close on the horizon, I expect, specific metal 

nanoparticles and nanoparticle combinations will also prove useful in lipid signal 

selectivity experiments (i.e., preferential ionization of selected lipids), and 

selective lipid fragmentation. 

Plasma sputtering, a method of metal nanoparticle generation and 

deposition, commonly used to coat nonconductive samples for scanning electron 

microscopy (SEM), has previously been described to assist analyte desorption 
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and ionization in secondary ionization mass spectrometry (MS).4,5,6 I propose to 

use plasma sputtering for sample preparation for laser desorption ionization (LDI) 

lipid profiling and imaging MS experiments. Based on previous studies and 

preliminary data I foresee quick adoption of the proposed plasma sputter 

deposition protocols by the wider LDI-MS community for reasons of sample 

preparation speed, selectivity,7 imaging spatial resolution, and signal 

enhancement (i.e. sensitivity) due to both bulk8,9 and quantum confinement 

effects.10,11 

First, I intend to test and understand the effect of all adjustable parameters 

on the plasma sputtering process (i.e. electrode voltage, argon pressure, plasma 

to sample distance), on the size of individual deposited silver and iron 

nanoparticles, and on their deposition thickness. With this knowledge, I will 

optimize the use of plasma sputtering for silver and iron deposition for MS 

profiling and imaging of lipids (e.g. silver adducts of cholesterol and cholesterol 

derivatives) from cell and tissue samples.  I will then test the potential to image 

and profile thick tissues, cell colonies, and cell extracts (afforded by the 

increased surface conductivity of silver and iron covered samples).  Last, I will 

test signal enhancement capabilities due to previously observed quantum dot 

electronic excitation effects.10,11  

 My time spent with the McLean group and other perceptive collaborators 

convinced me that there is just as much value in using the proven analytical 

techniques to solve current challenges in biology, medicine, engineering, as 

there is in pursuing further and greater analytical capabilities on the horizon. In 
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fact, I believe, the current climate of science funding seems to encourage 

visionary projects at the expense of solving much needed problems in basic 

science for which plentiful analytical capabilities are already available. In this 

respect I found a much needed balance both within and without the McLean 

laboratory on the Vanderbilt campus. In my future endeavors I would like to take 

with me this particular lesson and always balance the yearning to discover and 

create with the responsibility to apply what we already know well. 
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APPENDIX A 

 

DETAILED TABULAR DATA OF REDUCED MOBILITIES AND COLLISION 
CROSS-SECTIONS OF LIPIDS 

 
 

Lipid 

Mass-to-Charge 

Value CCS 

Reduced Mobility 

(Ko) 

[M+X]
+
 X=H or Na m/z Ǻ2

 cm
2·V-1·sec

-1
 

PE 34:2 H
+
 716.52 206.9 ± 2.0 2.627 ± 0.068 

PE 34:1 H
+
 718.54 205.8 ± 4.3 2.638 ± 0.086 

PE 34:2 Na
+
 738.51 213.5 ± 2.1 2.532 ± 0.032 

PE 34:1 Na
+
 740.52 214.7 ± 1.5 2.518 ± 0.027 

PE 36:4 Na
+
 762.51 214.4 ± 1.6 2.523 ± 0.028 

PE 36:2 Na
+
 766.54 220.9 ± 2.7 2.446 ± 0.038 

PE 36:1 Na
+
 768.55 221.7 ± 4.8 2.438 ± 0.036 

PE 38:5 Na
+
 788.52 220.6 ± 5.2 2.457 ± 0.080 

PE 38:4 Na
+
 790.54 228.1 ± 3.6 2.396 ± 0.084 

CB (40:1) Na
+
 806.65 232.9 ± 2.4 2.303 ± 0.023 

CB (39:1)h Na
+
 808.63 236.2 ± 2.9 2.271 ± 0.028 

PS 36:2 Na
+
 810.53 217.1 ± 5.5 2.484 ± 0.054 

PS 36:1 Na
+
 812.54 222.6 ± 2.4 2.407 ± 0.026 

CB (40:2)h Na
+
 820.63 236.2 ± 5.6 2.271 ± 0.055 

CB (40:1)h Na
+
 822.64 234.6 ± 5.3 2.286 ± 0.052 

CB (42:6) Na
+
 824.60 237.9 ± 1.9 2.254 ± 0.018 

CB (42:2) Na
+
 832.66 238.8 ± 1.7 2.245 ± 0.016 

PS 38:4 Na
+
 834.53 225.5 ± 2.1 2.376 ± 0.022 

CB (42:1) Na
+
 834.68 239.3 ± 2.6 2.240 ± 0.024 

CB (41:1)h Na
+
 836.66 240.2 ± 3.4 2.233 ± 0.032 

PS 38:1 Na
+
 840.57 222.6 ± 5.5 2.408 ± 0.047 

CB (42:3)h Na
+
 846.64 238.8 ± 2.2 2.245 ± 0.021 

CB (42:2)h Na
+
 848.66 240.3 ± 2.7 2.231 ± 0.025 

CB (44:7) Na
+
 850.62 242.8 ± 1.9 2.208 ± 0.017 

CB (44:6) Na
+
 852.63 243.3 ± 3.7 2.204 ± 0.033 
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PS 40:6 Na
+
 858.53 231.9 ± 2.8 2.309 ± 0.028 

CB (44:2) Na
+
 860.70 245.9 ± 5.2 2.181 ± 0.046 

CB (44:1) Na
+
 862.71 244.3 ± 5.5 2.195 ± 0.050 

CB (44:8)h Na
+
 864.60 245.2 ± 2.9 2.205 ± 0.020 

CB (44:7)h Na
+
 866.61 252.2 ± 5.1 2.118 ± 0.046 

CB (44:2)h Na
+
 876.69 246.7 ± 3.7 2.174 ± 0.033 

PS 42:9 Na
+
 880.51 238.0 ± 1.7 2.265 ± 0.027 

PS 42:8 Na
+
 882.53 230.8 ± 3.0 2.386 ± 0.120 

Lipid 

Mass-to-Charge 

Value CCS 

Reduced Mobility 

(Ko) 

[M-H]- m/z Ǻ2
 cm

2·V-1·sec
-1

 

PE 34:2 - H 714.51 207.7 ± 1.6 2.587 ± 0.020 

PE 34:1 - H 716.52 205.6 ± 2.6 2.613 ± 0.033 

PE 36:2 - H 742.54 210.8 ± 1.4 2.548 ± 0.017 

PE 36:1 - H 744.55 211.5 ± 4.4 2.540 ± 0.053 

PS 36:1 - H 788.54 233.3 ± 1.5 2.302 ± 0.023 

PS 40:6 – H 834.53 237.3 ± 2.3 2.263 ± 0.029 

 
Table A.1 Table of assigned positive and negative mode 
phosphatidylethanolamine (PE), cerebroside (CB), and phosphatidylserine (PS) 
signals with their respective measured CCS and reduced mobility (Ko) values. 
The nomenclature of PE and PS X:Y, indicates that there are X carbons in the 
fatty acid chains and Y sites of unsaturation. In the nomenclature of CB X:Y, X 
indicates the number of carbons in the amide linked fatty acid plus eighteen 
carbons of the sphingosine backbone and Y the total number of double bonds in 
the entire lipid structure. Parentheses () distinguish sphingolipid from 
glycerophospholipid nomenclature in the table. In the nomenclature for 
hydroxylation on cerebrosides (i.e., CB (x:y)h) h denotes presence of hydroxyl 
group, normally on the number two carbon (from carbonyl) of the amide linked 
fatty acid. 
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APPENDIX B 
 
Table B.1 Negative Mode Dataset p-value Stability Analysis 
Statistical analysis was repeated 18 times, each time removing one out of 18 samples (9 control and 9 mutant). This 
process yielded 18 p-values, one for each sample omission. Table B.1 lists the 18 calculated p-values for each lipid signal 
change with raw p-value <0.10. The reported standard deviation of the raw p-value is based on the 18 recalculated p-
values. 

 
Note: (a) for m/z values with the ISO suffix ex. 716ISO p-value analysis was done on combined intensities of the 
monoisotopic peak 716.6 and isotopic peak 717.6. 
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Table B.1 (continued). Negative Mode Dataset p-value Stability Analysis 

 
Note: (a) for m/z values with the ISO suffix ex. 716ISO p-value analysis was done on combined intensities of the 
monoisotopic peak 716.6 and isotopic peak 717.6. M. Kliman, N. Vijayakrishnan, L. Wang, J.T. Tapp, K. Broadie, J.A. 
McLean, Molecular BioSystems 2010, 6, 958-966. - Reproduced by permission of The Royal Society of Chemistry (RSC). 
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Table B.2 PtdEtn Lipid Fragment Assignments in Negative Ionization Mode. 
 

Identity
a
 

avg. m/zb
 

(stdev) 

m/z of PE 
signature 

fragment peaks
c 

m/z (sn-2 
fatty acid) 

m/z (sn-1 
fatty acid) 

m/z of neutral 
loss of sn-2 

fatty acid
 

m/z of neutral loss of 
sn-2 fatty acid as 

ketene  
[M-H-RCH=C=O] 

PE 36:2 
742.60 
(0.008) 

140.0, 196.0 279.2 (18:2) 283.3 (18:0) 462.3 480.3 

PE 34:1 
716.58 
(0.006) 

140.0, 196.1 281.3 (18:1) 255.3 (16:0) 434.3 452.3 

PE 36:4 
738.56 
(0.009) 

140.1, 196.1 
279.3 (18:2) 
277.3 (18:3) 

279.3 (18:2) 
281.3 (18:1) 

458.4 476.3 

PE 35:1 
730.63 
(0.007) 

140.1, 196.1 
281.3 (18:1) 
283.3 (18:0) 

269.2 (17:0) 
267.2 (17:1) 

448.4 466.4 

PE 38:3 
768.60 
(0.011) 

140.0, 196.0 
279.2 (18:2) 
277.2 (18:3) 

309.3 (20:1) 
311.3 (20:0) 

488.3 506.4 

PE 36:3 
740.58 
(0.008) 

140.1, 196.1 277.3 (18:3) 283.3 (18:0) 462.4 480.4 

Notes:  (a) Lipid identities determined by fragmentation and closest mass 
matches. Contribution from lipids with plasmalogen (p) and ether fatty acid 
linkages (o) cannot be determined at the mass resolution of the instrument; 
PE=PtdEtn, ex. PE X:Y, where X is the total number of carbons and Y is the total 
number of double bonds in the fatty acyl chains. 
(b) Average and standard deviation of detected m/z from 18 measurements (9 
control, 9 mutant). 
(c) Negative mode PtdEtn signature fragment peaks as described in F. F. Hsu 
and J. Turk, Charge-Remote and Charge-Driven Fragmentation Processes in 
Diacyl Glycerophosphoethanolamine upon Low-Energy Collisional Activation: A 
Mechanistic Proposal, Journal of the American Society for Mass Spectrometry, 
2000, 11, 892-899. M. Kliman, N. Vijayakrishnan, L. Wang, J.T. Tapp, K. 
Broadie, J.A. McLean, Molecular BioSystems 2010, 6, 958-966. - Reproduced by 
permission of The Royal Society of Chemistry (RSC). 
 
 
Table B.3 PtdIns Lipid Fragment Assignments in Negative Ionization Mode. 
 

Identity
a
 

avg. 
m/zb

 
(stdev) 

m/z of PI 
signature 
fragment 
peaks

c 

m/z (sn-2 
fatty 
acid) 

m/z (sn-1 
fatty 
acid) 

m/z of loss of 
inositol (180) 
from neutral 

loss of sn-2/sn-1 
fatty acid 

m/z of loss of 
inositol –H2O 

(162) from 
neutral loss of 
sn-2/sn-1 fatty 

acid 

m/z of neutral 
loss of sn-2/ 

sn-1 fatty acid
 

m/z of neutral 
loss of sn-2 fatty 

acid as ketene  
[M-H-RCH=C=O] 

PI 34:1 
835.59 
(0.010) 

223.0, 
241.0 

281.3 
(18:1) 

255.3 
(16:0) 

373.2/ -- --/417.3 553.3/579.3 -- 

PI 36:2 
861.62 
(0.010) 

223.0, 
241.0 

279.3 
(18:2) 

283.3 
(18:0) 

-- / --  419.3/ -- 581.3/ -- 599.4 

PI 36:3 
859.59 
(0.007) 

223.0, 
241.0 

277.23 
(18:3) 

283.3 
(18:0) 

-- / -- 419.3/ -- 581.3/ -- 599.3 

PI 34:2 
833.58 
(0.008) 

223.0, 
241.0 

279.2 
(18:2) 

255.2 
(16:0) 

-- / -- 391.2/415.2 553.3/577.3 -- 

Notes: (a) Lipid identities determined by fragmentation and closest mass 
matches. Contribution from lipids with plasmalogen (p) and ether fatty acid 
linkages (o) cannot be determined at the mass resolution of the instrument; 
PI=PtdIns, ex. PI X:Y, where X is the total number of carbons and Y is the total 
number of double bonds in the fatty acyl chains. 
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(b) Average and standard deviation of detected m/z from 18 measurements (9 
control, 9 mutant). 
(c) Negative mode PtdEtn signature fragment peaks as described in F. F. Hsu 
and J. Turk, Characterization of Phosphatidylinositol, Phosphatidylinositol-4-
phosphate, and Phosphatidylinositol-4,5-bisphosphate by Electrospray Ionization 
Tandem Mass Spectrometry: A Mechanistic Study, Journal of the American 
Society for Mass Spectrometry, 2000, 11, 986-999. M. Kliman, N. Vijayakrishnan, 
L. Wang, J.T. Tapp, K. Broadie, J.A. McLean, Molecular BioSystems 2010, 6, 
958-966. - Reproduced by permission of The Royal Society of Chemistry (RSC). 
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Table B.4 PtdEtn, PtdCho Lipid Fragment Assignments in Positive 
Ionization Mode. 
 

Identity
a
 

avg. 
m/zb

 
(stdev) 

M.W. (exact)
 

(detected as 
[M+H]+ ion)

c 

M.W. (exact)
 

(detected as 
[M+Na]+ ion)

c
 

M.W. (exact)
 

(detected as 
[M+K]+ ion)

c 

 
m/z of [PE + Na]+ 

signature fragment 
peaks

d
 

 

m/z of 
[PC+H]+ 

signature 
fragment 

peak
e
 

m/z of 
[PC+Na]+ 
signature 
fragment 

peak
e
 

m/z of 
[PC+K]+ 

signature 
fragment 

peak
e
 

Fragment assignments of significantly changing positive mode signals with highest PtdEtn (PE) contribution 

PE 36:3 
PC 35:6 
PC 32:4 
PC 33:3 

764.54 
(0.005) 

 
763.51 

741.53 
 
 

741.53 (<10%) 

 
725.50 (<20%) 

121.0, 146.0, 164.0  
184.1 

 
 
 

147.0 

 
 

163.0 

PE 36:2 
PC 35:5 
PC 32:3 
PC 33:2  

766.56 
(0.006) 

 
765.53 

743.55 
 
 

743.55 (<10%) 

 
727.51 (<20%) 

121.0, 146.0, 164.0  
184.1 

 
 
 

147.0 

 
 

163.0 

PE 35:3 
PC 32:3 

750.56 
(0.006) 

 
727.52 
727.52 

 
121.0, 146.0, 164.0   

147.0 
 

PE 35:2 
PC 32:2 

752.57 
(0.007) 

 
729.53 
729.53 

 
121.0, 146.0, 164.0   

147.0 
 

PE 34:3 
PC 30:4 

736.52 
(0.009) 

 
713.50 

 697.47 (<20%) 
121.0, 146.0, 164.0   

163.0 
PE 36:1 
PC 33:1 
PC 35:4 
PC 32:2 

768.57 
(0.008) 

 
 

767.55 

745.56 
745.56 

729.57 (<10%) 

121.0, 146.0, 164.0  
 

184.1 

 
147.0 

 
163.0 

 
Notes: (a) Lipid identities determined by fragmentation and closest mass 
matches. Contribution from lipids with plasmalogen (p) and ether fatty acid 
linkages (o) cannot be determined at the mass resolution of the instrument; 
PC=PtdCho, PE=PtdEtn, ex. PE X:Y, where X is the total number of carbons and 
Y is the total number of double bonds in the fatty acyl chains. 
(b) Average and standard deviation of detected m/z from 18 measurements (9 
control, 9 mutant). 
(c) Exact monoisotopic molecular weight of the identified lipid detected as 
[M+H]+ or metal (Na, K) coordinated ion. 
(d) Positive mode PtdEtn signature fragment peaks as described in C. Simoes, 
V. Simoes, A. Reis, P. Domingues and M. R. Domingues, Determination of the 
fatty acyl profiles of phosphatidylethanolamines by tandem mass spectrometry of 
sodium adducts, Rapid Communications in Mass Spectrometry, 2008, 22, 3238-
3244 and G. Stubiger, E. Pittenauer and G. Allmaier, MALDI Seamless 
Postsource Decay Fragment Ion Analysis of Sodiated and Lithiated 
Phospholipids, Analytical Chemistry, 2008, 80, 1664-1678. 
(e) Positive mode PtdCho signature fragment peaks as described in R. C. 
Murphy, J. A. Hankin and R. M. Barkley, Journal of Lipid Research, 2009, 50, 
S317-S322. M. Kliman, N. Vijayakrishnan, L. Wang, J.T. Tapp, K. Broadie, J.A. 
McLean, Molecular BioSystems 2010, 6, 958-966. - Reproduced by permission 
of The Royal Society of Chemistry (RSC). 
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Table B.5 PtdCho, PtdEtn Lipid Fragment Assignments in Positive Ionization Mode. 
 

Identity
a
 

avg. 
m/zb

 
(stdev) 

Raw p 
value 

M.W. (exact)
c
 

(detected as 
[M-H+2Na]+ion) 

M.W. (exact)
c 

(detected as 
[M+H]+ ion) 

M.W. (exact)
c 

(detected as 
[M+Na]+ ion) 

M.W. (exact)
c 

(detected as 
[M+K]+ ion) 

m/z of 
[PC+H]+ 

signature 
fragment 

peak
d
 

m/z of 
[PC+Na]+ 
signature 
fragment 

peak
d
 

m/z of 
[PC+K]+ 

signature 
fragment 

peak
d
 

m/z of 
[PE+Na]+ 
signature 
fragment 

peak
e
 

m/z of [PE-
H+2Na]+ 
signature 
fragment 

peak
f
 

Fragment assignments of significantly changing positive mode signals with highest PtdCho (PC) contribution 

PC 35:2 
PC 34:3 

794.60 
(0.022) 

8.E-14 
 

 
771.58 

755.55 
 147.0  

163.0 
 

 
PC 32:1 
PC 35:3 
PC 33:0 
PE 35:4 

770.59 
(0.024) 

1.E-08 

 
 
 

725.50 

 
769.56 

 
 

747.58 

731.55  
184.1 

 
 

147.0 

163.0   
 
 

168.0, 186.0 
PC 35:3 
PC 34:4 

792.59 
(0.024) 

1.E-08 
 

 
769.56  

753.54 
 147.0  

163.0 
  

PC 35:2 
PC 32:0 
PE 35:3 

772.60 
(0.041) 

8.E-06 
 
 

727.52 

771.58 

 

 
733.57 

184.1   
163.0 

  
 

168.0, 186.0 

PC 32:0 
734.59 
(0.006) 

8.E-05 
 

733.57 
 

 184.1 
   

 

PC 36:5 
PC 37:1 

802.55 
(0.008) 

2.E-05 
 

801.62 
779.55 

 
 

184.1 
147.0   

 

PC 30:0 
PC 32:3 

728.57 
(0.006) 

3.E-05 
 

727.51 
705.53 

 
 

184.1 
147.0   

 

PC 31:0 
PC 33:3 
PE 34:0 
PC 30:1 

742.56 
(0.005) 

2.E-04 

  
741.53 

719.55 
 

719.55(<20%) 
703.51(<20%) 

 
184.1 

147.0  
 
 

163.0 

 
 

121.0, 164.0 
 

PC 32:4 
PC 33:0 
PE 35:4 

748.59 
(0.046) 

2.E-04 
  

747.58 
725.50 

 
725.50 (<10%) 

 
 

 
184.1 

147.0   
 

121.0, 164.0  
PC 33:2 
PC 32:6 

744.58 
(0.006) 

3.E-04 
 743.55 

721.47 
 

 
184.1 

147.0   
 

PC 36:2 
786.61 
(0.009) 

1.E-03 
 

785.59   184.1 
   

 

PC 32:1 
PE 32:2 

732.58 
(0.005) 

1.E-03 
 

687.48 
731.55 

  
184.1     

168.0, 186.0 
PC 34:3 
PC 32:0 

756.57 
(0.003) 

3.E-03 
 755.55 

733.56 
 

184.1  
147.0 

  
 

PC 36:0 
PE 36:1 

790.56 
(0.009) 

3.E-03 
 

745.56 
789.62 

  
184.1     

168.0, 186.0 

PC 36:1 
788.60 
(0.032) 

3.E-03 
 

787.61 
 

 184.1 
   

 

PC 34:1 
760.59 
(0.007) 

4.E-03 
 

759.58   184.1 
   

 

PC 36:2 
PC 38:5 

808.60 
(0.005) 

6.E-03 
 

807.58 
785.59 

 
 

184.1 
147.0   
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PC 34:2 
758.58 
(0.004) 

6.E-03 
 

757.56   184.1 
   

 

PC 32:1 
PC 34:3 
PE 35:1 

754.56 
(0.006) 

7.E-03 
 

753.53 
731.55 

 
731.55 (<20%) 

 
 

184.1 
147.0   

 
121.0, 164.0 

 

PC 31:3 
PE 32:0 

714.53 
(0.008) 

1.E-02 
 713.50 

691.52 
 

184.1    
121.1, 164.0 

 

PC 34:2 
PC 37:4 
PC 35:1 

796.57 
(0.018) 

1.E-02 
  

795.58  
773.59 (<20%) 

757.56  
184.1 

 
 

147.0 

163.0   

PC 36:4 
804.57 
(0.006) 

2.E-02 
 

 781.56  
 

147.0 
  

 

PC 30:5 
PC 31:1 

718.56 
(0.005) 

2.E-02 
 

717.53 (<20%) 
695.45 

 
 

184.1 
147.0   

 

PC 32:2 
730.58 
(0.006) 

0.028 
 

729.53   184.1 
   

 

Notes:  (a) Lipid identities determined by fragmentation and closest mass matches. Contribution from lipids with 
plasmalogen (p) and ether fatty acid linkages (o) cannot be determined at the mass resolution of the instrument; 
PC=PtdCho, PE=PtdEtn, ex. PE X:Y, where X is the total number of carbons and Y is the total number of double bonds in 
the fatty acyl chains. 
(b) Average and standard deviation of detected m/z from 18 measurements (9 control, 9 mutant). 
(c) Exact monoisotopic molecular weight of the identified lipid detected as [M+H]+ or metal (Na, K) coordinated ion. 
(d) Positive mode PtdCho signature fragment peaks as described in R. C. Murphy, J. A. Hankin and R. M. Barkley, 
Journal of Lipid Research, 2009, 50,S317-S322. 
(e) Positive mode PtdEtn signature fragment peaks as described in C. Simoes, V. Simoes, A. Reis, P. Domingues and M. 
R. Domingues, 
Determination of the fatty acyl profiles of phosphatidylethanolamines by tandem mass spectrometry of sodium adducts, 
Rapid Communications 
In Mass Spectrometry, 2008, 22, 3238-3244. 
(f) Positive mode PtdEtn signature fragment peaks as described in G. Stubiger, E. Pittenauer and G. Allmaier, MALDI 
Seamless Postsource Decay Fragment Ion Analysis of Sodiated and Lithiated Phospholipids, Analytical Chemistry, 2008, 
80, 1664-1678. M. Kliman, N. Vijayakrishnan, L. Wang, J.T. Tapp, K. Broadie, J.A. McLean, Molecular BioSystems 2010, 
6, 958-966. - Reproduced by permission of The Royal Society of Chemistry (RSC). 
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APPENDIX C 
 
 
 

REFERENCES OF ADAPTATION 
FOR CHAPTERS 

 
 
Chapter I: Sections adapted from:  
 
(a) Michal Kliman, Jody C. May, and John A. McLean, “Lipid Analysis and 
Lipidomics by Structurally Selective Ion Mobility-Mass Spectrometry”, submitted 
to Biochimica et Biophysica Acta – Molecular and Cell Biology of Lipids. 
 
(b) Michal Kliman, Jody C. May, Jarrod Smith, Amina S. Woods, J. Albert 
Schultz, Terry P. Lybrand, John A. McLean, “Structural Selectivity of Anhydrous 
Sphingolipids and Glycerophospholipids in Ion Mobility-Mass Spectrometry 
Analysis”, submitted to coauthors, formatted for Journal of American Chemical 
Society. 
 
(c) Jeffrey R. Enders, Michal Kliman, Sevugarajan Sundarapandian, John A. 
McLean, “Peptide and Protein Analysis using Ion Mobility-Mass Spectrometry”, 
submitted to Protein and Peptide Mass Spectrometry in Drug Discovery, 
Wiley-Blackwell John Wiley & Sons, Inc., Michael L. Gross, ed.  
 
(d) Figure 1.1 adapted from Figure 2 in John A. McLean, Whitney B. Ridenour 
and Richard Caprioli “Profiling and imaging of tissues by imaging ion mobility-
mass spectrometry”, Journal of Mass Spectrometry 2007, , 42 (8), 1099-1105. 
 
 
Chapter II: Adapted with kind permission from Springer Science+Business 
Media: Larissa S. Fenn, Michal Kliman, Ablatt Mahsut, Sophie R. Zhao, and John 
A. McLean, “Characterizing Ion Mobility-Mass Spectrometry Conformation Space 
for the Analysis of Complex Biological Samples”, Analytical and Bioanalytical 
Chemistry 2009, 394 (1), 235-244. 
 
Chapter III: Adapted from Michal Kliman, Jody C. May, Jarrod Smith, Amina S. 
Woods, J. Albert Schultz, Terry P. Lybrand, John A. McLean, “Structural 
Selectivity of Anhydrous Sphingolipids and Glycerophospholipids in Ion Mobility-
Mass Spectrometry Analysis”, submitted to coauthors, formatted for Journal of 
the American Chemical Society 
 
Chapter IV: Adapted from Michal Kliman, Niranjana Vijayakrishnan, Lily Wang, 
John T. Tapp, Kendal Broadie, and John A. McLean, “Structural Mass 
Spectrometry Analysis of Lipid Changes in a Drosophila Epilepsy Model Brain”, 
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Molecular BioSystems 2010, 6 (6), 958-966. - Reproduced by permission of The 
Royal Society of Chemistry (RSC). 
 
Chapter V: Adapted from Michal Kliman, Jay G. Forsythe, John A. McLean, 
“Dynamic Light Patterning for High Spatial Resolution Imaging of Lipids, in 
preparation for the Journal of the American Society for Mass Spectrometry. 
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