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CHAPTER [

INTRODUCTION

1.1 Observing and Modeling the Large Scale Structure of the Universe

We are privileged to live in a time of vast and fascinating progress in the study of
the large scale structure of the Universe. A consistent model of the universe is emerging
from extensive observational surveys, a model that includes a mysterious “dark” energy
that is driving our accelerated expansion, and matter that cannot be directly detected
through our telescopes but has profound implications for cosmology. Understanding this
dark matter is key to understanding our cosmological history? without it, we cannot
explain how the Universe came to look the way it does. Our theories are being fueled and
tested by the new generation of galaxy surveys that provide a wide range of sensitivity

and observations heretofore thought impossible.

Galaxies are the objects that make up our observed structure, and studying how
they cluster can tell us much about the physical processes of the Universe. On the largest
scales, the observed galaxy clustering is a product of early universe physics. Measurements
at these scales constrain the cosmological parameters that govern the evolution of our
Universe as a whole. However, if we want to understand how dark matter influences the
evolution of a single galaxy, we must look at much smaller scales than one Megaparsec. By
measuring the very small scale clustering of galaxies and how it relates to the distribution

of dark matter in halos we can understand how galaxies evolve over cosmic time. Vital



to how we measure clustering is the amount of galaxies in our sample- hence the need
for such ambitious surveys. Combined with the ever increasing computational demands
of determining dynamical forces for this large sample of galaxies, very small scale galaxy
clustering is a sandbox to test the limits of galaxy formation models as well as advanced
modeling techniques.

In Section 1.2, there will be an overview of the tools needed, both historical and physics
background, to understand the clustering of galaxies. Section 1.3 will cover the details
of creating and measuring the autocorrelation function £(r), the most powerful tool for
quantifying the clustering of galaxies (Peebles, 1980; Padmanabhan, 1993). There will
also be a discussion about the technical details of large galaxy surveys, including the
Sloan Digital Sky Survey (SDSS) (York et al., 2000). In Section 1.4, we will attempt to
uncover the underlying physics behind why the structure of the Universe looks the way it
does, specifically how galaxies occupy dark matter halos. This will include a discussion
about N-body simulations, a key way to model galaxy clustering. Section 1.5 will include

a summary of the subject.

1.2 Background
1.2.1 Historical Perspective
The idea of dark matter and its effect on the observed galaxies from these surveys is
not a new one. Zwicky (1937) first drew the conclusion that there must be unseen matter
in the Universe through detailed observations of the velocity dispersion of galaxies in the

Coma Cluster. Using a simple application of the virial theorem, we can measure total



Figure 1.1 An image of the Cosmic Microwave Background (CMB) taken by the Wikilson
Microwave Anisotropy Probe (WMAP), scaled to show to the very small temperature
anisotropies in the CMB.

mass of a system by the velocity dispersion of its constituent parts (e.g. Ryden, 2003):

5(v?)r

LG -
where 7, is the half-mass radius of the cluster and (v?) is the mean squared velocity
of galaxies. The magnitude of their velocities could not be explained by the amount of
observed baryons. Zwicky’s detailed observations were groundbreaking and set the stage

for future research.
The discovery of the cosmic microwave background (CMB) by Penzias and Wilson in
1960, and the prediction by Sachs & Wolfe (1967) that the anisotropies in the density
field of the early universe would be visible as the variations in temperature of the CMB

(Figure 1.1) has motivated much of the research attempting to form a cohesive theory of



structure formation. This theory must bridge the gap between the tiny density fluctua-
tions imprinted during an event that happened when the Universe was only 0.003% of its

current size to the largest and most massive objects known today.

1.2.2  Composition of the Universe

Two of the most significant observations in cosmology are the location of first peak
of the Cosmic Microwave Background temperature anisotropy power spectrum, and the
distance measurements from far away Type la Supernovae (SNela). The first tells us
that the Universe is flat, which means that the energy density of the universe is at the
critical density; see Figure 1.1 for a map of the temperature anisotropies, and §1.4.2 for
their origin. This critical density is measured today to be about one hydrogen atom per
200,000 cm?® (Ryden, 2003). From the SNela, we observe that the universe isn’t only
expanding, something first noted by Hubble in 1929, but the expansion is accelerating.
Before these precise measurements were made, we knew the universe was expanding by

measuring the redshifts (see equations 1.3) of distant objects. Hubble’s Law states

cz = H,d, (1.2)

where ¢ is the speed of light and the recession velocity of a galaxy, cz, is equated to
its distance multiplied Hubble’s constant H,. H, denotes the present day value of the
constant, which is thought to be 70 km/s/Megaparsec!. This expansion is called the

Hubble Flow.

1One parsec (pc) = 3x 10'8cm. One Megaparsec (Mpc) = 10%pc.
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Figure 1.2 The Galaxy Rotation curve from Rubin & Ford (1970) measuring the rotational
velocity of stars as a function of their galactocentric distance using the Andromeda Galaxy.

We can tell that there is an energy component which we call the Cosmological
Constant, or A, driving this acceleration. Combined, these two observations point to
the rather strange idea that we are ‘missing’” mass. We know that A is the dominant
source of energy in the universe, making up ~ 70% of the energy and that the observed
baryons account for only another ~ 4%, with radiation only making up another minus-
cule portion. This means that there is a still more mysterious mass source in the universe.
This missing matter is appropriately called dark matter, noted earlier by Zwicky, and it

plays a critical role in how structure in the universe is formed.

1.2.3 Evidence for Dark Matter
Dark matter does not interact electromagnetically; since our telescopes (and eyes for
that matter) can only see photons, we can’t directly see dark matter- only its effect on

the visible matter of the universe. One of the first, and still most compelling, arguments



Figure 1.3 An image of the cluster Abell 2218 taken with the Hubble Space Telescope.
The effect of gravitational lensing is apparent in the light from background galaxies being
distorted into arcs surrounding the cluster.

for dark matter came with the measurements of galactic rotation curves of Rubin &
Ford (1970), Figure 1.2. If the potential well of our galaxy traced the luminous, baryonic
matter the rotational velocity of stars about a disk galaxy should drop off as v, oc 1/71/2.
Instead, we observe a “flat” rotation curve- indicative of more, unobserved, mass that
exists in a halo surrounding the central, luminous galaxy.

More empirical evidence for dark matter can be found by looking at the gravitational
lensing of distant galaxies by the potential well of galaxy clusters. As light from these
galaxies passes through a cluster, the bending of space time by the gravity of the cluster
causes light to bends and distort. This is observed as arcs and in some cases even Einstein

rings, Figure 1.3, and it magnifies the brightness of the lensed galaxy as well. The baryonic

mass in the cluster cannot account for these observations.



1.2.4 The Physics of Dark Matter

Now that we see the need for dark matter in order to understand the observations,
the question arises: what exactly is dark matter? The simple answer is that dark matter
is cold, dark and matter. It is cold, meaning it does not move at relativistic speeds. Dark
meaning that it does not produce or reflect electromagnetic radiation. We can measure the
physical effects that dark matter has on the visible baryons in the universe, but have yet
to directly detect dark matter particles though experiments 2. From these experiments,
we know that dark matter must be a very stable, massive particle. The current leading
candidate for dark matter is a weakly interacting massive particle (WIMP), but this is
still a very active area of inquiry.

We believe a galaxy forms in a diffuse halo of dark matter that is more massive and
extends much farther than the luminous matter. For instance, the baryonic mass of the
Milky Way is ~ 62101°M, 3 whereas the dark matter has a mass of ~ 10'2M,. Similarly,
the stellar disk has a radius of 15 kiloparsecs (kpc), while the dark matter halo extends
to about 200 kpc. All these properties make dark matter crucial to structure formation

in the universe. Without it, the universe today would be completely unrecognizable.

1.3  Observing the Structure of the Universe
Over the past few decades there have been tremendous leaps in our ability to observe
the universe at larger and larger scales. Coming from the first surveys of only a few

thousand galaxies, (Figure 1.4, to today’s surveys of over one million galaxies, see §1.3.6,

2See CDMS 11 Collaboration et al. (2010) for an example of a current experiment.
31t is convenient for astronomers to define M, as the mass of the sun, 221033g, and use it as a standard
unit of mass.
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Figure 1.4 The initial galaxy map of the Center for Astrophysics (CfA) Survey (Geller &
Huchra, 1989), showing a slice into an area of sky. The earth is at the point of the pie,
and distant galaxies are the dots.

we've come along way in understanding our universe. We believe that galaxies trace the
underlying dark matter distribution closely, and as such the study of galaxy properties is
key to understanding the formation and evolution of the structure of matter as a whole.
There are two main aspects to galaxy surveys: (i) imaging, or photometry, of galaxies and
(ii) redshift measurements. Redshift surveys measure the distances to galaxies, creating
a large sample of galaxies for which clustering statistics can be measured. As with all
observations, there are complications to measuring the redshift of a galaxy; for example

the proper motion of a galaxy imprints on the redshift.

1.3.1 Galaxy Surveys
Optical surveys of galaxies had been done since before the time of Messier, but the first

galaxy survey to attempt a large scale map of the Universe was the Center for Astrophysics



(CfA) Redshift Survey (Geller & Huchra, 1989), started in 1977 (see section 1.3). Galaxy
surveys once thought impossible are currently taking data, making unprecedented, precise
measurements of our particular cosmology and the structure of the universe. In order to
perform these measurements, surveys need to both of in cover large areas of the sky, and
observationally deep enough to measur extremely faint and distant objects. The need
for such a large sample of galaxies has driven the technology required to complete these

surveys, measuring the distance to more than one million galaxies.

1.3.2 Types of Surveys

The first aspect of a galaxy survey, imaging, can give us important information regard-
ing the morphology of galaxies. For instance, the Galaxy Evolution Explorer (GALEX,
Martin et al. (2005)) is studying the universe in the ultra violet wavebands to better un-
derstand star formation and galaxy merger rates. Angular positions of galaxies can also
be used to compute certain clustering statistics, see section 1.3.10.

Redshift surveys can give us three-dimensional positions, as well as detailed informa-
tion about galaxy composition. Accurate positions are key for measuring the clustering of
galaxies. Understanding the spatial distribution of galaxies in three dimensions requires

knowledge of the distance to the galaxy. This distance is measured in redshift (z):

(1.3)

where ). is the wavelength of the emitted light in the object’s rest frame, and )\, is the

wavelength of the observed light. Knowing the redshift of a galaxy requires measuring



a spectrum. Details of how spectra are taken can be found in section 1.3.6, but a good
estimate is that a spectrum takes about 10 times as long as the photometry for an object
(Weinberg et al., 2007). Hubble’s Law, equations 1.2, is the key to transforming this
measured redshift into a physical distance. For small redshifts, we can take z = v/c =
H,d/c (Geller & Huchra, 1989). Conventionally, distances are measured in units of Mpc.

More details about the specifics of this calculation can be found sections 1.3.6 & 1.3.7.

1.3.3 Types of Samples for Redshift Surveys

Another decision one must make when generating a galaxy catalogue from available
data is whether to use a flux-limited or volume-limited sample. Each has its own benefits
depending on the data analysis being done. Flux limited samples use all galaxies observed
above the detection limit of the telescope. The advantage to this approach is obvious—
there are no brightness cuts on which galaxies can be included in your sample, maximizing
the sample size. However, this also introduces a large selection effect, called Malmquist
bias, that causes a strong bias against faint objects. The number density of objects
observed drops off with distance, until only the brightest objects are observed.

One way of overcoming this bias is to create a volume limited sample. Volume-limited
catalogues, Figure 1.5, are complete galaxy catalogues in a defined luminosity bin, con-
taining all galaxies that could be observed in that bin, and are therefore optimal for
statistical analysis. They are created so that the faintest galaxy would be above the
lower luminosity threshold at the high redshift end and the brightest galaxy is below the
high luminosity cutoff at the low redshift end, (e.g. Zehavi et al., 2005b). Volume-limited

samples also have, by design, a constant number density of galaxies. Most of the analysis

10
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-21

Figure 1.5 Absolute magnitude (M,) as a function of redshift (z) for galaxies in the SDSS.
The three colored boxes represent different volume limited samples, M, brighter than
-18, -19 and -19.9 (Berlind et al., 2006). These lower boundaries evolve with redshift to
account for galactic evolution.

discussed herein is done on volume limited samples.

1.3.4 K-corrections

Galaxies emit a continuous spectrum of light with a characteristic shape, but our ob-
servations are done in particular photometric filters with a finite waveband. The location
of the peak in spectral energy distribution of galaxies is determined by the age of the
stellar population, with older stellar populations (and therefore galaxies) appearing more
red. When studying galaxies at high redshift, we may be missing much of their light be-
cause the peak of their spectrum has been redshifted outside the wavebands of our most

red filter; in the Sloan Digital Sky Survey (SDSS; §1.3.6) that filter is the z-band and it

11



has an effective wavelength of 8840A, (York et al., 2000). A K-correction is the difference
between the dimming as a function of redshift for an object in a fixed observing waveband,
and the bolometric (total) flux expected (Peacock, 1999). It is usually denoted K (z), as
it is a function of redshift. For a galaxy whose spectrum peaks in the red, observed at

high redshift, this correction can be quite substantial.

1.3.5 Evolution Correction

During the course of their lifetimes, galaxies undergo many traumatic events that
cause changes in color and morphology, and possibly even complete destruction. These
cataclysmic events can affect the stellar population and luminosity of galaxies, discussed
in §1.4.4; but galaxies also undergo what we call ‘passive’ evolution- over time their
luminosity dims, and their light becomes more red solely due to the evolution of the
stellar population. After 10 Gyr, all stars more massive than the Sun have left the main
sequence and moved onto the giant branch, causing the galaxy to be appear more red. The
very massive blue stars that dominate a young galaxy’s luminosity are long since gone,
leaving the galaxy less luminous. The same galaxy will be intrinsically more luminous
at higher redshift, and this must be accounted for when making volume limited galaxy
samples, which can be seen in Figure 1.5. The lower boundary of each sample evolves

with redshift so that fainter galaxies will be included at lower redshift.

1.3.6 Specifics of the Sloan Digital Sky Survey
The Sloan Digital Sky Survey (SDSS;York et al. (2000)) comprises four separate sur-

veys that use the wide-field 2.5m telescope (Gunn et al., 1998) at Apache Point Observa-

12



Figure 1.6 A slice of the SDSS galaxy survey, where each point is a galaxy and the earth
is located at the center. We can see the filaments and voids that make up the cosmic web
of our universe.

13



tory. One of these surveys, The Baryon Oscillation Spectroscopic Survey or BOSS, focuses
on precision measurements of galaxy clustering over a wide range of redshifts, providing
us with view of the universe (Weinberg et al., 2007). The original SDSS, as well as its
two extensions (SDSS II & III), have made enormous contributions to the understanding
of how galaxies cluster. The SDSS telescope has a large field of view and ability to take
multiple spectra at one time. This instrumentation is ideal for getting the large sample
size and detailed distances needed for precision clustering measurements ( see Figure 1.6
for a sample of galaxies observed).

The 2.5m telescope at Apache Point operates in drift mode— the telescope is stationary
and takes photometry in great circles as the sky rotates. Each object passes through one
column of 5 different CCDs corresponding to the 5 SDSS filters, arranged in 6 columns,
for a total of 30 CCDs. The SDSS filters are denoted, from ultraviolet to near-infrared,
asu g r i z. The SDSS covered over 8000 deg? of sky since.

Object classes are determined by comparing the object’s magnitude?, or flux, within
its Point Spread Function (PSF) and the modeled magnitude an extended light profile®.
To be included in the SDSS main galaxy sample, a galaxy must have an r-band apparent
magnitude r < 17.77. One of the major difficulties for the SDSS is deblending— when
the flux of two objects overlap (Strauss et al., 2002). A galaxy’s light can be blended
with that of a saturated star, causing the galaxy to not have a measured spectrum and

introduce incompleteness into the sample. Two galaxies may overlap, and it is the data

4 Astronomers measure the brightness of galaxies on the logarithmic magnitude system. The higher
the flux of an object, the more negative the apparent magnitude, denoted as m. An intrinsically more
luminous object has a more negative absolute magnitude, M.

5 An exponential or de Vaucouleurs profile.

14



Figure 1.7 An image of a plug plate and cartridge used used in SDSS. The optical fibers
are plugged by hand into the plate (bottom) and lead to the spectrograph. The cartridge
is slid behind the focal plane of the telescope to collect light from distant galaxies.

analysis pipeline’s job to correctly identify them as such, and distribute flux accordingly
to the ‘parent’ (brighter) and ‘child’ galaxies. Objects denoted as a child are not included
in the main galaxy sample (Strauss et al., 2002).

Once galaxies are detected and classified as extended sources, spectra must be mea-
sured to get precise redshifts. For the SDSS, the selected galaxies will be mapped onto
the sky and their location drilled onto an aluminum ‘plug plate,” Figure 1.7. These plug
plates are placed over the focal plane of the telescope; the plates are tiled over the sky and
holes are drilled in a way that maximizes the number of galaxies able to have measured
spectra (Blanton et al., 2003a). The 640 optical fibers that feed into the spectrographs
are plugged into the plates by hand. These fibers cannot be located closer than 55”7 on
the sky from another fiber. This is called a fiber collision, affecting about 6% of galaxies
(Strauss et al., 2002) and can influence clustering measurements. It takes approximately

45 minutes to measure a spectrum with an acceptable signal to noise (Strauss et al., 2002).

15



The measured spectra determine the absolute distance to within a precision of 1.0% at
z=0.35 and 1.1% at z=0.6. (Weinberg et al., 2007).

Thus, the main source of error in the galaxy catalogue is incompleteness due either to
deblending or to fiber collisions causing a galaxy to be left out of the catalogue- 99.9%
of galaxies that are observed spectroscopically yield successful redshifts (Strauss et al.,
2002). The SDSS has collected the spectra for almost one million galaxies already, with
the new SDSS-III extension aiming to collect 1.5 million spectra, making it the largest

galaxy redshift survey.

1.3.7 Redshift Distortions

While redshift space distortions can be seen as a technical aspect of building a galaxy
survey, they are the product not of details of the survey but of the physical properties
of the cosmological mass distribution. This mass distribution affects a galaxy’s peculiar
motion along the line of sight, as opposed to its Hubble flow motion, and causes what we
call redshift space distortions. What is actually measured when finding redshifts is the

combination of the Hubble flow and these peculiar velocities, v,, so that

cz = H,d + v,. (1.4)

These peculiar motions cause the galaxy’s position in redshift space to be displaced.
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Figure 1.8 A schematic presenting the physical mechanisms and observed effects of redshift
space distortions (Hamilton, 1998). The dots are galaxies and the arrows are their peculiar
velocity vectors.

1.3.8 Fingers of God

The first of these distortions are the so called “Fingers of God” (Hamilton, 1998)
caused by the velocity dispersion of galaxies within their own halo. The proper motions
cause a broadening of the galaxy redshift distribution along the line of sight in a given
cluster— making some galaxies appear farther away and others closer, depending on if their
doppler motion causes their spectrum to be blue or redshifted. They were noticed with
the first redshift surveys, and were named as such because this doppler shifting causes all

these ‘fingers’ to point directly to us. An illustration of this can be seen in Figure 1.8.

1.3.9 Kaiser infall
The second redshift space distortion is due to large scale coherent galaxy velocities,

caused by the bulk motion of groups of galaxies towards a very massive cluster, seen as
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an attractor (Kaiser, 1987). This is observed as a compression of the observed galaxy
distribution. These distortions are much more difficult to detect (Hamilton, 1998), but

can manifest themselves in statistical measurements of galaxy clustering (section 1.3.10).

1.3.10 The Galaxy Autocorrelation Function

One of the most useful statistics we have to quantify galaxy clustering is the correlation
function. The Galaxy Autocorrelation Function measures the excess of pairs of galaxies as
a function of separation when compared to a random distribution (Peebles, 1980; Connolly
et al., 2001). The galaxy autocorrelation function is how galaxies are clustered together
over a random clustering.

The real-space correlation function can be defined as the Fourier transform of the

k-space matter power spectrum P(lg):

f&)z:/d%f%@eMXM;ﬁ, (1.5)

but it is often more useful to think of £(7) in relation to the probability dP of finding two

galaxies separated by a distance 73 — 77 for a given number density n of galaxies,
dP = mny(1 + &g (3 — 71))dPridrs. (1.6)

Taken in this way, {g¢ is the two-point auto-correlation function of galaxies (Padman-
abhan, 1993). A positive value for {gq, at a given separation indicates the galaxies are

more clustered than random. If g is zero, the galaxy distribution at that separation
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is homogenous (Landy & Szalay, 1993). It is also useful to introduce the overdensity

parameter

5@%:ﬂ@:£, (1.7)

where p(Z) is the density at point & and p is the mean density of the universe. In this
formalization, a galaxy is an overdensity at given location, and can be related to the

correlation function through

E(r)y = (6(r)o(r" +1)). (1.8)

In this form, the correlation function is the dependence of §(r’) on d(r’+7). The concept of
overdensity will be useful in our theoretical understanding of structure formation (§1.4.1).
In Figure 1.9, we can see at small separations galaxies are very clustered. That clustering
decreases as an approximate power law over many decades of separation, which is true
regardless of whether that distance is measured in angular space (Connolly et al., 2001),
redshift space or projected space (The SDSS Collaboration et al., 2010).

The most famous (and used) estimator for measuring the correlation function is the
Landy-Szalay Estimator (Landy & Szalay, 1993), equation 1.9, where DD is the number
of Data-Data pairs at a given separation, RR is the number of Random-Random pairs,

and DR is the cross correlation of Data-Random pairs

_ DD —2DR+RR

) e (19)

This estimator measures the correlation function for any galaxy catalogue as long as

we have an appropriate catalogue of random points. When generating these random
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Figure 1.9 The Correlation Function measured in redshift space for a sample of SDSS
galaxies (black points). The colored lines correspond to different cosmological models.
The Baryon Acoustic Oscillation Peak is highlighted in the inset, see §1.3.11 (Eisenstein
et al., 2005).

catalogues one must take into account the geometry of the data sample, as well as its
completeness.

The separation can be measured in physical distance &(r), comoving distance £(s),
projected distance &,(r,) or angular separation on the sky w(#). The advantage of mea-
suring w(#) over the other methods is that the calculation can be done without having
the redshifts of the observed galaxies- a time consuming process when dealing with the

large sample size needed to accurately measure the correlation function.
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1.3.11 Recent Observations

As mentioned before, there has been great leaps forward in our understanding of the
universe. A success of modern observational cosmology is the confirmation of the Baryon
Acoustic Oscillation (BAO) peak in the galaxy correlation function. Sound waves that
propagated in the hot plasma of the early universe imprinted a characteristic scale on
the clustering of dark matter, galaxies and intergalactic gas (FEisenstein et al., 2005).
This measurement can be seen in Figure 1.9. Much of the new extension of the Sloan
Digital Sky Survey, SDSS-III, will be dedicated to measuring this ‘bump’ in the correlation

function.

1.4 Theoretical Understanding of Observations

In this section, we will be constructing a theory that explains our observations of large
scale structure and galaxy clustering. We will go from the initial energy distribution of
the universe, to dark matter halos and finally how galaxies inhabit those halos, both in
the universe and in our N-body simulations.

Dark matter halos are believed to form in a hierarchical manner, meaning that they
start as small over-densities that accrete onto each other, forming larger and larger halos.
Our theoretical understanding of galaxy evolution and clustering is based on dark matter
halos. Galaxies are thought to form at the center of dark matter halos and, as such,
understanding the formation, growth and dynamics of halos is key to understanding the
observed properties of galaxies.

To theoretically predict the correlation function £(r)— our best statistic for measuring
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the observed clustering of galaxies- we require a spatial and mass distribution of halos (
the halo mass function), the density profile of the dark matter halos, and ha description
of the number and position of galaxies within a halo of a given mass (the Halo Occupation
Distribution). This is called the Halo Model, and encompasses a large range of physics

and statistics.

1.4.1 The Growth of Structure

To understand why our universe looks the way it does now, we have to understand
where it came from. There must be a theory that connects the dramatic structures we
observe today to those small anisotropies observed in the cosmic microwave background.
There was an initial energy density perturbation imprinted from the Big Bang that grew
differently depending on whether radiation or mass dominated the energy density of uni-
verse.

The final halo mass function is a product of both how matter collapses to form halos
and how these halos interact and merge. We believe that structure in the universe forms
hierarchically- meaning small, overdense objects collapse first and then merge together to
form the most massive objects in the universe. The most massive objects in the universe,
galaxy clusters, are therefore considered some of the youngest objects in the universe.
Press and Schechter (Press & Schechter, 1974) first introduced this theoretical construct of

hierarchical structure that has proven to be the foundation of modern structure formation.
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1.4.2  Origin of Cosmic Structure

The early universe density perturbations are thought be due to quantum mechanical
fluctuations in the early universe frozen in by an extremely accelerated expansion and
can be observed in the CMB. These quantum fluctuations are thought to have a scale

invariant power spectrum (e.g. Narlikar & Padmanabhan, 1991),

P = Ak", (1.10)

where k is the wavenumber (k = 27/)), and the power spectrum index n is thought to be
unity (e.g. Binney & Tremaine, 1987), meaning that perturbations on all scales behave
the same way. It is important to keep in mind that these anisotropies in the CMB are on
order of 6T/T o 10~° (Dodelson, 2003), very small indeed (these anisotropies can be seen
in Figure 1.1). So small, in fact, that we need to invoke inflation once again to explain
how regions causally unconnected in the universe are so similar. This is called the horizon

problem, and is solved by how rapid expansion was during the epoch of inflation, see for

example Guth (1981) and Linde (1982).

1.4.3 Evolution of Structure

The largest structures in the Universe form through what is called gravitational
instability- the slightly overdense regions (see equations 1.14) become increasingly over-
dense and eventually break away from the Hubble flow to form virialized dark matter
halos. Gravity works like capitalism- the rich get richer and the poorer, poorer. Density

perturbations on the scale of dark matter halos can only occur after matter has cooled
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sufficiently after the Big Bang so that it is no longer supported by radiation pressure.
For normal baryonic matter, this occurs at the time of decoupling, z ~ 1100, but for
non-baryonic dark matter this collapse can start much earlier.

When these overdensities are small, we can make a linear approximation on how
gravitational instability causes an overdense region to grow. In this approach, we see an
overdensity as a small perturbation about the mean density field of the universe that can
grow over time. Inverting equations 1.14, we see that the density at any location can be
approximated as

p=p(1+9), (1.11)

where § << 1.

Eventually, these small overdensities become too large (§ = 1) to use a linear approx-
imation of gravitational collapse. At this point, dark matter is collapsing into virialized
halos- an equilibrium state where the energy of the gravitational collapse is transferred
into the kinetic energy of the dark matter, causing pressure support and thus a stable
halo of dark matter (Padmanabhan, 1993). See §1.4.9 for a model of this collapse. These
halos form the fundamental framework of our current understanding of galaxy formation
and clustering. Because dark matter has a ‘head start’ on collapse, baryonic matter falls
into the pre-existing gravitational well of the dark matter halo (e.g. Ryden, 2003; Mo
et al., 2010). It can then cool and condense, something dark matter cannot do, and can

eventually form galaxies (White & Rees, 1978).
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Figure 1.10 An illustration of a subhalo, in blue, merging into a host halo.

1.4.4 Mergers

Up until now, our theory only treats galaxies and dark matter halos as stationary
objects, but to fully understand the observed structure of the universe we must understand
mergers. Small dark matter halos grow by merging together to form more massive halos.
The more massive halo is called the “host” halo and the smaller halo being merged
becomes a “subhalo” within the host, see Figure 1.10 for an illustration. Both of these
halos can contain baryonic matter, whether it be gas that may condense to form a galaxy
or an already formed galaxy (Benson, 2010).

There are two main processes that explain what happens to a subhalo as it falls into
and becomes merged into its host halo, dynamical friction and tidal stripping, (e.g. Binney
& Tremaine, 1987). As a subhalo, and its galaxy, falls into the potential of the larger host
halo, it will experience tidal forces that will strip away its least bound outer regions. The

limit at which the self-gravity of an object is equal to the gravitational pull of the host
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Figure 1.11 A mosaic of the structure formation and evolution of dark matter halos in a

A cold dark matter cosmological simulation during three different redshifts, from Jenkins
et al. (1998) for the VIRGO collaboration.

is called the tidal radius. Any mass outside the tidal radius of the object is able to be
stripped away and forms streams of material®. As a dark matter halo moves through its
host halo’s mass, it leaves behind a wake of material. The wake of masses trailing behind
the main body exerts a gravitational tug, called dynamical friction, on the main body,
slowing it down. Dynamical friction is a complicated physical process that depends on
the density profile and velocity dispersion of the host halo, among many other variables,

and whose understanding greatly benefits from N-Body simulations.

1.4.5 N-Body Simulations

N-body simulations are a very powerful tool for understanding different physical pro-
cesses. The equation of motion for gravitational collapse can only be analytically solved
in the linear regime, making N-body simulations a necessity for calculating the exact

evolution of the density field (e.g. Bertschinger, 1998). See Figure 1.11 for an example of

6Streams of merged galaxies are observed in the Milky Way- see Belokurov et al. (2006) for an example.
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structure evolution in a cosmological N-body simulation. N-body simulations are not just
used for cosmological simulations- there are a great variety of physical processes that can
be better understood through simulations such as how galactic bars are formed through
galaxy flybys (Lang, Holley-Bockelmann & Sinha, 2014). It is ideally suited, though, for
studying the evolution of the density field because dark matter particles can be approx-
imated as collisionless, discrete particles. The “N” in N-body refers to the number of

particles for which we must compute the equations of motion.

1.4.6 Growth of Structure in a Cosmological N-body Simulation

Cosmological N-body simulations reproduce structure growth in the universe, where
the initial conditions are dictated by the calculated power spectrum, the cosmology and
the parameters of the simulation. The higher the resolution of the simulation— the larger
number and smaller mass of the particles that make up dark matter halos— the more
computationally expensive it will be.

Before we can even worry about the time evolution of particle positions and velocities,
initial positions and velocities must be assigned. Once the initial mass power spectrum
has been calculated, there are a few methods for calculating positions and velocities of the
dark matter particles. The first of these approximations is the Zel’dovich approximation
(Zel’dovich, 1970) which perturbs an initial Cartesian lattice of dark matter particles in
the simulation ‘box’ (see fig 1.12) based on the growth of linear perturbations; once dark
matter halos start forming, this approximation becomes inaccurate. Other methods for
determining how structure grows are based on either linear perturbation theory or second

order perturbation theory. These methods are also approximations of how structure grows
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Figure 1.12 A dark matter simulation cube of size 180 Mpc/h containing 5123 dark matter
particles, in blue. The red areas denote clusters (Hahn et al. 2006).

in between the time the initial power spectrum is calculated and when the actual force
integrations are done- the higher the redshift (earlier time) the simulation starts, the more
accurate it will be.

Unfortunately, force calculations can be very costly. Without any approximations, a
cosmological N-body simulation must calculate the force on each particle from every other
particle in the simulation in order to determine the equations of motion. This is called
an N? process, so the amount of time the simulation takes to run increases as roughly
the number of particles in the simulation squared. There are thankfully improvements
and short-cuts to take, starting with the idea of a mesh or grid. Most of the gravitational
acceleration on a particle is due to other particles clustered to it within a distance much
smaller than the size of the simulation. Once the force from those particles has been

calculated, the rest of the box can be divided up into a grid where the mass of each
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grid point is the sum total of all the particles within. Another approximation is a tree-
algorithm, where particles are recursively placed in cubic boxes based on how far away
from the force calculation they are located (Barnes & Hut, 1986). In this way, only
particles very close are counted individually while those farther away are grouped together
in a box, reducing the time needed for the force calculation.

One of the final caveats to the force calculation is the idea of ‘softening.” Dark matter
particles in a simulation are very massive discrete points, and the force between particles
can increase unphysically at small particle separations 7. To account for this, we ‘soften’
the gravitational force at a given radial separation so it asymptotes to a finite value as r —
0. The softening radius represents a resolution limit, kiloparsecs for many cosmological

simulations, at which we can no longer trust the positions of particles (Bertschinger, 1998).

1.4.7 Defining A Halo

We will see that the mass of the halo is the most important factor in deciding how
many galaxies are placed in it, and therefore defining the particles that constitute a single
halo is extremely important. A Friends-of-Friends (FoF; Davis et al., 1985) algorithm
identifies a halo based on a characteristic ‘linking length’ between particles, see Figure
1.13 for an illustration of this. This linking length is usually some fraction of the mean
inter-particle separation, with 0.2 being a common choice motivated by physical processes,
see §1.4.9 for a discussion of these processes. All particles that are within a linking length
of another particle are grouped into a halo. When a halo is defined this way, its mass is
very dependent on the choice of linking length- a larger linking length will include more

particles and will make the halo more massive.
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Figure 1.13 An illustration showing how the friends-of-friends algorithm connects dark
matter particles in a simulation to form a halo. The black circles are the particles and
the red line in the lower left hand corner is the linking length. Particles within a linking
length of another particle will be grouped together

1.4.8 Halo Model
1.4.9 Halo and Galaxy Bias

Bias is the idea that an observable is a function of an underlying distribution. The
location of cities are biased tracers of the distribution of people- what we call cities are
just some location where the density of people is much higher than the average density.
Just like cities, dark matter halos are a biased function of the mass distribution (Press
& Schechter, 1974; Mo & White, 1996). In the Press-Schechter (PS) formalism, halos
start as regions of space that have an overdensity ¢ equal to some critical overdensity
d¢, as shown in Figure 1.14. The location of these peaks is dependent (or biased) on
the background matter distribution, which in turn is a product of the initial density

fluctuations. It is assumed that once the density inside an area reaches d., gravitational
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collapse will runaway from the Hubble expansion and the mass inside will eventually form
a virialized dark matter halo (Padmanabhan, 1993).

The value of §. can be derived through the spherical collapse model. This model
assumes that an object whose overdensity is too high for the linear regime (see §1.4.3)
can be approximated as a sphere undergoing gravitational collapse, (see Cooray & Sheth,
2002, for a review). One useful result from this formalism is that a region of space which
starts with 0. becomes a virialized halo whose density is A. times the critical density
at that redshift”, where A, ~ 200 is often used, (Binney & Tremaine, 1987; Bryan &
Norman, 1998). This result informs how halos are defined in N-body simulations, §1.4.7;
a Friends-of-Friends linking length is calibrated so that each halo has a A, ~ 200 (Jenkins

et al., 2001).

"Critical density today peris ~ 2.7210" My Mpc=3. The density of the Milky Way measured at a
radius of a few kpc is 10° times this (Binney & Tremaine, 1987).
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Dark matter halos are not the only biased tracers of the mass distribution. We know
that galaxy formation and evolution encompasses much more physics than that of dark
matter halos, and that luminous matter may not perfectly follow the distribution of mass,
even on the largest scales (Peacock, 1999). It is useful to employ a biasing parameter as
a way to scale the underlying mass correlation function so that it corresponds to the

correlation function of an object of interest,

&i(r) = b} &mm(r), (1.12)

where &;(r) can be the halo-halo or galaxy-galaxy correlation function, and &,,,,(r) is the
correlation function of the matter distribution, often measured as £(r) of particles in an
N-body simulation. The environmental bias parameter b; enables us to encode all the
physics that causes §; to not be exactly 0,45

On distance scales larger than that of a dark matter halo, the galaxy correlation
function can be seen as a biased tracer of the spatial distribution of dark matter halos,
which in turn is a function of the mass clustering. This often referred to as halo bias by,
and can be empirically derived using N-body simulations (§1.4.5). Recent simulations
have shown bpq, to be an increasing function of the mass of a halo (Seljak & Warren,
2004). Halo bias is a key component to understanding how galaxies cluster.

For scales within the size of a dark matter halo, the difference between the spatial
distribution of galaxies and dark matter has its own type of bias that can be parameterized
using the Halo Occupation Distribution (§1.4.12). See Figure 1.15 for an illustration of

both clustering within one halo and among a distribution of halos.
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Figure 1.15 An illustration of the parings of galaxies in one halo (red lines) as well as
the pairings of galaxies between two halos (blue lines). The pairings of the blue lines
depend on the halo distribution in the universe, whereas the pairings of the red lines are
determined by the distribution of galaxies within one halo.

1.4.10 Halo Mass Function

We now have the preparation to address our three ingredients to a theoretical galaxy
distribution on scales within a single halo. The first of these ingredients is our halo mass
function. We assume all mass is associated with virialized dark matter halos that obey a
given mass density distribution. This distribution, the halo mass function, measures the
number density of halos as a function of mass. A halo mass function will be characterized
by a power law slope at low halo masses until a characteristic mass, M,, at which point
there is a exponential cutoff, see Figure 1.16. This mass is roughly 1020, about the
same mass as the Milky Way’s halo.

Analytical calculations of the halo mass function, based on the work of Press and

Schechter, have proven fruitful though inexact®. In the PS formalism, the spatial bias of

8These calculations over-predict the number of low mass halos while under-predicting high mass ones
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Figure 1.16 The normalized halo mass function from a suite of high resolution cosmological
N-body simulations, showing the number density of dark matter halos as a function of their
mass (Warren et al., 2006). The different color crosses represent the different simulations,
while the the lines are different models and fits to the mass function.

halos (see §1.4.9) is used to estimate the fraction of the volume that has an overdensity
d > 0., and from that the number density of these regions as a function of mass (Cooray
& Sheth, 2002; Dodelson, 2003). We now have the spatial distribution (bias) of halos as
well as their mass function, but clustering on scales within the size of a dark matter halo
must depend how galaxies populate the inner structure of a halo (Cooray & Sheth, 2002).
For this, we need the density profile of mass in a halo and the number of galaxies that

occupy a halo of a given mass.

1.4.11 Density Profiles
Before the galaxy-mass spatial distribution bias is determined, we first need to derive

the density profile of the dark matter. Measuring density profiles of halos comes naturally

(Peacock, 1999).
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from very high resolution N-body simulations, with one of the most widely accepted
density profiles being the Navrro, Frenk and White density profile (NFW; Navarro et al.,
1997)

p(r) = ﬁ, (1.13)

where p; is the mean overdensity of the halo and r, is the scale radius at which the slope
of the density function changes. This result will prove very important for how the biased
galaxy clustering is modeled, §1.4.9. While it may look as if there are two free parameters
in an NFW profile, in practice the mean density ps of a halo is determined by the mass
and virial radius R,;- of a halo in a simulation. The concentration of a halo is defined as
¢ = Ryir/7s, and has also been shown using simulations to be a decreasing function of the
mass of a halo (Bullock et al., 2001).

Another interesting result from N-body simulations is that the halo density profiles,
and specifically their concentration are linked to the assembly history of halos (Wechsler
et al., 2002). We can track the assembly history of dark matter halos in a simulation or
model through a “Halo Merger Tree”, showing the progenitors of a present day halo that
have merged together to form the final halo. These trees give us important information
about how and when halos grew in mass and the effect this has on their concentration.
Halo density profiles most likely have a large effect on galaxy properties, such as galactic

rotation curves® (Bullock et al., 2001; Wechsler et al., 2002).

9This has an interesting implication for the Tully-Fisher relation, an empirical relationship between
the rotation of a spiral galaxy and its luminosity.
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1.4.12 Halo Occupation Distribution

To describe the distribution of galaxies within a dark matter halo, we use the Halo
Occupation Distribution (HOD; Berlind & Weinberg, 2002). Within this framework, the
halo occupation numbers, the number of galaxies in a halo, can be parameterized, as well
as the spatial and velocity bias. Taken together, these three bias parameters represent
a complete model of galaxy clustering for a given cosmology, and a testable framework
that can provide insight into galaxy formation. When applied to a cosmological N-body
simulation, the HOD allows us to populate dark matter halos with galaxies, creating a
mock galaxy catalogue that provides the bridge between the theoretical construct of the
halo model and observed galaxy clustering.

The first of these biasing parameters, halo occupation number, tells us how many
galaxies are in a given halo, solely based on the mass of that halo. This parameter is
represented as P(Nyq|Mpaio), where the mean number of galaxies per halo of mass M is

given as

Nuvg = »  NP(N|M). (1.14)

The parameterization of Ny, has evolved from a simple power law (Berlind & Weinberg,
2002) to complicated functional forms that have been fit to data (Zheng et al., 2007a).

To illustrate, a power law form is

0 it M < My
Nyyy = (1.15)

(M/M;)* otherwise.

Here M,,;, is the lowest mass halo that can still host a galaxy, M; is the halo mass
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that contains on average one galaxy and « is the rate at which additional galaxies are
added. Physically, these parameters will change depending on the particular class of
galaxy studied, for instance, the M; for halos hosting a very massive, luminous galaxy
will be much larger than the M; for dwarf galaxies. The other parameters, M,,;, and «,
are also product of the physics of galaxy formation and evolution, including to host halo
mergers. Additional parameters are introduced to isolate specific physics, for instance a
characteristic mass at which a halo has on average one central and one satellite galaxy
(Zheng et al., 2005).

Once the halo occupation number has been calculated, we can turn our attention to
the other two features of the HOD- the spatial and velocity bias of the galaxies. In a
halo with only one galaxy, that galaxy could resides at the halo center- with additional
galaxies will act as satellites, that trace the density profile of the halo (Peacock & Smith,
2000). The difference between the density profiles of galaxies and mass can be modeled

as

po(1)/pm(r) =127, (1.16)

where p,,,(r) can be defined to be an NFW density profile and A+ is the biasing parameter
that ifs adjusted based on observables. When assigning galaxy positions in an N-body
simulation, p,,(r) is taken to be that of the particles in the halo. A galaxy is assigned to
a particle based on the value of A~; if this value is zero, a random dark matter particle
is picked to ‘host’ the galaxy.

Once a galaxy has been assigned to a dark matter particle in a simulation, this same

approach can be taken for velocity bias, where the velocity of a particular galaxy can be
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given as

Vgalazy = Vhalo + (Vparticle - Vhalo)a (117)

where vy, is the center-of-mass velocity for the host halo. The velocity and velocity
biasing of galaxies are important elements to incorporate in our model because of redshift
space distortions. The real-space clustering statistics can be compared to calculations
done in redshift space, comparing both to the measured statistics of galaxies. Taken
together, the HOD parameters: P(N—M), A~, and «, cover the entirety of galactic
physics that can influence the distribution of galaxies within a single halo and provides
the necessary link that connects theory to observations. See Figure 1.17 for a comparison

of data and theory.

1.5 Summary

The problem with a theory describing the universe as being compared of dark matter
halos that host galaxies is that we cannot directly observe these halos, only observe the
light- galaxies, stars, quasars. From this light, we can infer the properties of these
dark halos but not directly measure its mass, density or radius. Inference is costly; we
need a statistically significant population of galaxies to say anything definite about the
composition of the universe, driving the need for the next generation of galaxy surveys.

To understand the large scale structure of the universe, we must understand: (i) how
dark matter halos populate the universe and (ii) how galaxies populate the dark matter
halos. Much theoretical work has been done to analytically determine (i), but the most

promising results are coming from cosmological N-body simulations. The second factor
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Figure 1.17 The projected correlation w,(r,) function for different volume limited samples
of galaxies (points) from the SDSS and their corresponding HOD model (lines), (The
SDSS Collaboration et al., 2010). The data and corresponding lines are staggered 0.25
dex for clarity. The HOD is able to model the clustering of galaxies across a wide range of
luminosities, corresponding to much theoretical physics, including galaxy formation and
evolution.
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requires more complicated physics that can be parameterized using the Halo Occupation
Distribution. The basic equation for recreating observables now is an N-body combined
with a HOD gives us a Mock Galaxy Catalogue. By comparing this catalogue with data
using the galaxy correlation function, we can constrain our understanding of both halo
clustering and as galaxy formation and evolution.

Work is being done on all fronts- new data is being taken by SDSS as we speak,
larger N-body simulations are being run, ones that include the gas physics needed for
galaxy formation, and the parameters of the HOD are being refined to better represent
the underlying physics. Together, the theory and observations are working towards a

complete understanding of large scale structure formation and evolution.
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CHAPTER 11

THE SPATIAL DISTRIBUTION OF SATELLITE GALAXIES IN THE LOCAL
UNIVERSE

2.1 Introduction

One of the best statistical tools we have for an understanding of the galaxy distribution
in the universe is the two-point correlation function of galaxies. On large scales (approx-
imately greater than 10h~'Mpc), galaxies are simple tracers of the underlying matter
density field and so the correlation function (or its Fourier equivalent, the power spec-
trum) can be used to probe the nature of matter fluctuations, and thus yield constraints
on cosmological parameters (e.g., Tegmark et al., 2004b,a). At a scale of ~ 100h~'Mpc,
the Baryon Acoustic Oscillation (BAO) feature in the correlation function also provides
strong cosmological constraints (e.g., Eisenstein et al., 2005).

On scales smaller than ~ 10h~'Mpc, the galaxy correlation function encodes infor-
mation about the detailed relationship between the spatial distribution of galaxies and
the underlying dark matter, which is substantially more complex than on large scales.
Adopting the assumption that all galaxies live within dark matter halos, the halo model
provides a useful roadmap for interpreting galaxy clustering on these scales. In the halo
model framework, the clustering of galaxies can be calculated from statistical properties
of halos, such as their abundance, clustering and internal structure, combined with pa-
rameterized relations that describe how galaxies occupy halos. This latter part is referred

to as the Halo Occupation Distribution (HOD) and it typically specifies the number of
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galaxies as a function of halo mass, together with an assumption for the their spatial
distribution within halos (e.g., Peacock & Smith, 2000; Scoccimarro et al., 2001; Berlind
& Weinberg, 2002; Cooray & Sheth, 2002; Berlind et al., 2003; Kravtsov et al., 2004;
Zheng et al., 2005). Several studies have used the measured galaxy correlation function
on scales of ~ 0.1 — 10h~'Mpc to constrain the HOD and thus illuminate the nature of
the connection between galaxies and dark matter (e.g., Zehavi et al., 2005b, 2011; Zheng
et al., 2007b; Guo et al., 2014, and references therein).

On very small scales, well within 0.5k~ !Mpc, the typical size of halos that host bright
galaxy pairs, the shape of the correlation function is primarily dictated by the spatial
distribution of galaxies in each halo (e.g., Berlind & Weinberg, 2002; Zehavi et al., 2005b).
Most studies adopt a simple model whereby the first “central” galaxy in each halo lives
at the halo center, and subsequent “satellite” galaxies trace the density distribution of
the dark matter. Specifically, satellite galaxies are usually assumed to follow a Navarro-
Frenk-White (NFW; Navarro et al., 1997) profile, which does a good job of describing
the density profiles of halos in pure dark matter N-body simulations. This assumption
is theoretically motivated (e.g., Berlind et al., 2003) and it works well in explaining the
observed shape of the correlation function on small scales.

The first evidence from galaxy clustering that satellite galaxies might not actually trace
mass within halos came from Masjedi et al. (2006) who pushed the measurement of the
galaxy correlation function down to scales of 10h~'kpc. Using a sample of Luminous Red
Galaxies (LRGs; Eisenstein et al., 2001) selected from the Sloan Digital Sky Suvey (SDSS;
York et al., 2000), Masjedi et al. (2006) found that the correlation function of LRGs at the

smallest scales (< 30h~'kpc) was under-predicted by the Zehavi et al. (2005b) HOD model
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that had successfully fit the clustering of the same galaxies at larger scales. Specifically,
the HOD model predicted a r~! slope for the correlation function at the smallest scales
(which comes from the inner slope of the NFW profile), whereas Masjedi et al. (2006)
found a much steeper 7=2 slope. Watson et al. (2010) explored this discrepancy in detail
by fitting the Masjedi et al. (2006) correlation function measurements with a HOD model
that relaxed the assumption that satellite galaxies follow a NFW profile. Instead, they
adopted a more flexible profile where the inner slope was allowed to vary. Watson et al.
(2010) were able to obtain a good fit to the LRG clustering for a satellite galaxy profile

with an r—2

inner slope while ruling out the NFW profile at high significance.

Watson et al. (2012) extended this work to a wider range of galaxy luminosities. They
fit their flexible HOD model to measurements of the projected correlation function, w,(r,),
in several SDSS luminosity samples, ranging from absolute r-band magnitude of -18 on
the faint end, to LRGs on the bright end. These measurements were made by Jiang et al.
(2012) using the same methods as Masjedi et al. (2006) for pushing to very small scales.
Watson et al. (2012) found a clear luminosity trend whereby the clustering of galaxy
samples with M, < -20 and brighter demanded steeper density profiles for satellite galaxies
than NF'W, whereas lower luminosity samples were consistent with NF'W satellite profiles.
Guo et al. (2014) adopted the same flexible density profile when modeling the clustering
of galaxies in the SDSS III (Eisenstein et al., 2011) Baryon Oscillation Spectroscopic
Survey (BOSS; Dawson et al., 2013), and also found a significant departure from NFW,
albeit only for the reddest galaxies in that survey. Unfortunately, it is difficult to directly

compare these results with those of Watson et al. (2012) because of the substantially

different sample selections. Using a different technique that does not involve correlation
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functions, Tal et al. (2012) found that satellite galaxies around LRGs deviate from NFW
at very small scales, in agreement with Watson et al. (2010). On the other hand, Guo
et al. (2012b) used a similar technique to find that satellite galaxies have density profiles
that are consistent with NFW. Deep imaging of satellites around luminous Early-type
galaxies at intermediate redshifts have shown an isothermal profile (Nierenberg et al.,
2011) with no dependence on host mass (Nierenberg et al., 2012).

Measurements of the galaxy correlation function on such small scales suffer from two
potentially severe systematic errors. First, two bright galaxies that are only separated
by ~ 10 — 30h~'kpc are likely in the process of merging and will have overlapping light
profiles. It can be difficult to accurately de-blend the observed light into two separate
components and a sufficiently large error in the assigned magnitude of either galaxy can
cause the pair to either enter or drop out of a luminosity selected sample. Second, in
surveys that use fiber-fed multi-object spectrographs, it is not possible to obtain spectra
of both galaxies that are separated by less than the physical diameter of the fibers. In the
SDSS, these “fiber collisions” enter at an angular scale of 55” (Blanton et al., 2003a). At
the typical redshifts of SDSS galaxies, this corresponds to a much larger physical scale than
30h~'kpc. About a third of these collided galaxy pairs are recovered in the SDSS because
part of the survey footprint is observed (“tiled”) more than once. However, the spatial
distribution of this overlap region is very complex. Incompleteness due to fiber collisions
affects the correlation function the most on the smallest scales, but the 55" angular scale
translates into many different length scales in real and projected space, so even large
scales are affected. Various methods have been used to correct for fiber collisions. The

simplest method is to assign collided galaxies the redshifts of their nearest neighbors.
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This works well on large scales, but not small scales. Masjedi et al. (2006) and Jiang
et al. (2012) used an estimator for w,(r,) that corrects for fiber collision incompleteness
statistically. Guo et al. (2014) used a different method that essentially only considers
galaxy pairs in overlap regions (Guo et al., 2012a). It is important to correctly account
for these systematic effects before drawing any conclusions about the inner density profile
of satellite galaxies.

It should not necessarily come as a surprise that satellite galaxies may not be perfect
tracers of dark matter. The spatial distribution of satellite galaxies can be affected both
by dynamical mechanisms, such as dynamical friction and tidal stripping of stars due to
the host halo potential, and by baryonic processes, such as quenching of satellite star
formation. A detection of a departure from the dark matter profile in the satellite density
profile can thus serve as a probe of these processes. Theoretical predictions of the satellite
galaxy density profile at such small scales are difficult to make because it is challenging to
resolve massive distinct satellite halos (i.e., subhalos) so close to the center of a larger host
halo. Nevertheless, both pure N-body and hydrodynamic simulations are now achieving
the resolutions and volumes necessary to compare with SDSS data (e.g., Pujol et al., 2014;
Genel et al., 2014).

In this paper, we test the validity of the Watson et al. (2012) results using the same
galaxy selection, but an entirely different methodology. First, we measure the angular
correlation function w(#), instead of the projected function w,(r,). In general, w(f) is a
powerful tool for two-dimensional galaxy surveys (see Crocce et al. 2011 and references
therein). It has been employed to measure the galaxy clustering in the early data release

of the SDSS (Connolly et al., 2002; Scranton et al., 2002; Infante et al., 2002; Budavéari
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et al., 2003), as well many other galaxy surveys (e.g., Groth & Peebles, 1977; McCracken
et al., 2001; Maller et al., 2005). The angular function is less sensitive to fiber collisions
because the fiber incompleteness enters at a fixed scale and thus does not contaminate
larger scales. Moreover, we restrict our samples to survey overlap regions, which reduces
the effects of fiber collisions even more. Second, we improve on the HOD modeling by
switching to an accurate and fully numerical way of computing clustering predictions,
instead of the quick and approximate analytic method that was used in Watson et al.
(2012).

The description of our data samples appears in §2.2. The w(f) measurements, along
with power-law fits, are described in §2.3. The description of our modified density pro-
file HOD model is in §2.4, with results of the model fits presented in §3.4. In §2.5 we
summarize our results and discuss their implications. Finally, we discuss fiber collision
incompleteness in the Appendix.Throughout this paper, we assume a standard ACDM

cosmology in concordance with the best fit WMAP5 parameters.

2.2 Data Sample
Measuring angular correlations does not usually require galaxies with measured red-
shifts. However, we wish to constrain the density profile of satellite galaxies within their
halos for different luminosity samples so that we can test the Watson et al. (2012) re-
sults. We therefore need volume-limited samples built from a spectroscopic sample. We
use data from the SDSS Data Release 7 (DR7; Abazajian et al., 2009). Specifically, we
use the large-scale structure samples from the NYU Value Added Galaxy Catalog (NYU-

VAGC; Blanton et al. 2005), that were built from the SDSS main galaxy sample (Strauss
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Table II.1.  Volume-limited Samples and Power Law Fits

Collision Median
ME™  2in Zmax Ngal Scale Slope x2dof
(kpc/h)
-18 0.02 0.042 18690 25.7 —0.70 £0.05 1.45
-19 0.02 0.067 41515 39.9 —0.77 £ 0.02 0.70
-20 0.02 0.106 67108 59.9 —0.74 £ 0.02 1.06
-21 0.02 0.165 43528 89.1 —-0.92+0.02 0.779

Note. — The table shows the absolute magnitude and redshift limits
of each sample, the number of galaxies, the physical scale of fiber col-
lisions at the median redshift of the sample, and the median slope and
best-fit x2 from fitting a power law to the angular correlation function.

et al., 2002). The main spectroscopic galaxy sample is approximately complete down to
an apparent r-band Petrosian magnitude limit of < 17.77. However, we have cut our
sample back to r < 17.6 so that it is complete down to that magnitude limit across the
sky. Galaxy absolute magnitudes are k-corrected (Blanton et al., 2003c) to rest-frame
magnitudes at redshift z = 0.1.

We construct four volume-limited samples that are complete down to absolute r-band
magnitude limits of -18, -19, -20, and -21. When constructing the volume-limited samples,
we adopt corrections for passive luminosity evolution (Blanton, 2006), which results in
slightly evolving absolute magnitude limits as a function of redshift (the magnitude limits
listed above apply at z = 0.1). The four volume-limited galaxy samples are shown in
Figure 2.1 and their redshift limits and sizes are summarized in Table II.1.

The galaxy redshift sample has an incompleteness due to the mechanical restriction

that spectroscopic fibers cannot be placed closer to each other than their own thickness.
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0.05 0.10 0.15 0.20
Redshift

Figure 2.1 The four volume-limited samples that we use in this study, shown in absolute
r-band magnitude vs. redshift. Light grey points show the full flux-limited sample from
which the volume-limited samples were selected. The absolute magnitude limits of the
four samples evolve slightly with redshift to account for passive luminosity evolution in
the galaxy population.
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Figure 2.2 The footprint on the sky (Hammer projection) of the SDSS ‘overlap’ sample
that we use in this paper. The sample consists only of regions that were spectroscopically
observed more than once. The area of this footprint is roughly 40% of the full SDSS DR7

footprint.

This fiber collision constraint makes it impossible to obtain redshifts for both galaxies in
pairs that are closer than 55” on the sky. In the case of a conflict, the target selection
algorithm randomly chooses which galaxy gets a fiber (Strauss et al., 2002). Spectroscopic
plate overlaps alleviate this problem to some extent, but fiber collisions still account for
a ~ 6% incompleteness in the main galaxy sample. On the very small scales that we are
considering in this paper, fiber collision incompleteness is severe. The 55" angular scale
translates to physical scales of 25 — 90h~'kpc at the median depths of our four samples,
which is right in the interesting region we wish to study.

A commonly used correction for fiber collisions in galaxy clustering studies is to as-
sign fiber collided galaxies the redshift of the galaxy they collided with (i.e., the “nearest
neighbor correction”; Zehavi et al., 2002). This correction recovers the true correlation

function on large scales, but it performs poorly on small scales. Masjedi et al. (2006) and
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Jiang et al. (2012) addressed this problem by proposing a new estimator for the projected
correlation function. Instead of computing an autocorrelation function of spectroscopic
galaxies, they computed a cross-correlation between spectroscopic galaxies and all spec-
troscopic targets from the imaging survey. For each pair, the imaging galaxy was placed
at the same redshift as the spectroscopic galaxy. This procedure recovers all the fiber
collided pairs, but it also includes an artificial signal from pairs that are actually uncorre-
lated. The uncorrelated pairs are then statistically removed from the correlation function
using a random catalog. In this paper, we adopt a different approach. We apply the
nearest neighbor correction to recover collided galaxies without redshifts, we construct
our samples, and then we measure the angular correlation function of galaxies, w(#).
The angular function is significantly less sensitive to errors in the assigned redshifts than
the projected function w,(r,) because the angular scale ¢ is not affected by these errors,
whereas the physical scale 7, is. Errors in the nearest neighbor correction only affect w(#)
if they cause galaxies to enter or drop out of the volume-limited sample. For most collision
pairs, the nearest neighbor correction does not result in the gain or loss of the pair in the
sample. This only happens in special cases. For example, when a collision pair straddles
the outer redshift limit of a particular volume-limited sample, if the more distant galaxy
of the pair did not get a redshift due to the collision, the nearest neighbor correction will
bring it into the sample and thus result in a new small-scale pair contributing to w(8).
Alternatively, if the higher redshift galaxy of a collision pair is close to the luminosity
limit of the sample and did not get a redshift due to the collision, the nearest neighbor
correction could make it exit the sample. This would result in a loss of a small scale pair

contributing to w(h).
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The SDSS DR7 sample covers an area on the sky of approximately 8000 square degrees.
However, to minimize the errors due to fiber collisions discussed above, we restrict the
sample to regions on the sky that have been spectroscopically observed more than once
(the so called “plate overlap” regions) as part of the tiling process (Blanton et al., 2003a).
In these regions, which cover about 40% of the full SDSS footprint, the vast majority of
collided galaxies have been recovered. However, we note that a region that has been tiled
twice can only recover close pairs of galaxies. In order to measure the redshifts of close
triplets, a region would have to be tiled thrice. This continues on to higher groups, which
represent a small number of the collision groups, but a non-negligible fraction of pairs.
The effects of fiber collisions are thus not completely removed from our analysis and we
revisit this issue in §2.3 and in the Appendix. The total area of our sample is 3300 square
degrees and we refer to it as the ‘overlap’ sample throughout this paper. We show the

sample footprint in Figure 2.2.

2.3 Angular Correlation Function
2.3.1 Measuring w(0)
We measure w(f) using the Landy & Szalay (1993) estimator

_ DD —-2DR+RR
N RR ’

w(h) (2.1)

where DD, DR and RR are the correctly normalized number of data-data, data-random
and random-random pairs in each bin of angular separation #. We construct a random

sample that has the same overlap geometry as the data sample and a size such that the
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amount of shot noise in the inner bins is not dominated by RR or DR.

In order to estimate errors and measure the covariance matrix, we separate the foot-
print into 100 jackknife samples that represent approximately equal area sections on the
sky. For each jackknife sample k, we measure the angular correlation function w*(6). The
covariance matrix can then be computed as

N
N - 1 k _ k _
Cij = —— ;(wi — &) (W) — @), (2.2)

where Cj; is the covariance between angular bins ¢ and j, and w; is the mean of correlation
function measurements in angular bin ¢ computed from the N jackknife samples. We will
use the full covariance matrix to fit models to our measurements since neighboring data
points in the angular correlation function are highly correlated (Connolly et al., 2002).
The measurement of w(#) is done using STOMP, a C++ library platform for doing fast
spatial statistics on arbitrary spherical geometries using 10s of millions of points'. The

100 jackknife samples of equal area on the sky are made using the STOMP libraries.

2.3.2 Data Results

Figure 2.3 presents our measurements of the angular correlation function w(#), for the
four volume-limited samples described in §2.2 in the range 77 < 6 < 320”. We choose
this range of scales because on smaller scales photometric deblending effects are expected

to be severe, while larger scales no longer probe the clustering of galaxies within a single

dark matter halo. Masjedi et al. (2006) quantified the effects of photometric deblending

Thttp://code.google.com/p/astro-stomp/
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Figure 2.3 The angular correlation function of SDSS galaxies in four volume-limited sam-
ples, along with their power-law fits. Each panel shows results for a specific volume-limited
sample, as described in §2.2. Points show the measurements, and error bars are estimated
from jackknife resampling of the data on the sky. The bottom axis of each panel shows the
angular scale in units of arcsec and the top axis shows the corresponding physical scale
at the median redshift of each sample. The vertical dashed line in each panel denotes the
fiber collision scale of 55”. The gray band shows a selection of power law models that are
randomly drawn from the best-fitting 68% of models in the MCMC chain. The median

R (kpc/h) R (kpc/h)

5 10 20 50 100 10 20 50 100 200
CTTTTTT T T T T IT1111T 38 [T T T T TTITT I
5§§ —— 'SDSS M,<-187 ™ E —o—! SDSS M, <-197
L ¥ Aldot=145 1 Rldof=07
i ' Slope =-0.70 | | e, . Slope =-0.77 |

L " |
= < :§ i (] ] 42 fa z .} =
E ; higg] | ~— E
L | ] i ! *a o ]
: i I | ~)
-I | | II}IIIII | I: -I | (I I}IIIII | I:
10 20 50 100 200 10 20 50 100 200
O (arcsec) O (arcsec)
R (kpc/h) R (kpc/h)
10 20 50 100 200 20 50 100 200 500
In | T T TTTT] T4 8 F T T rrrrrm I N B B
E —— 1 SDSS M, <-207 " —— SDSS M, <-217
- x/dof=1.06 { [ ' %°/dof=0.78 ]
g }Slope= -0.74 | s Slope =-0.92 |
. | [ !

A ! 17 F Iy ! E
- e 1 F L0 N ]
N ® .:' o ] L L ll. ]
i i 1 I e ]
- : . . - - : . . .
l | tw | | -
F ! ] F ! [ ] 3
C | ] C | ®

| | L1 1 iill | 1 ] | | L1 1l | 1
10 20 50 100 200 10 20 50 100 200

O (arcsec) O (arcsec)

value of the slope and the goodness of fit are listed in each panel.

23

100

10

100

10



on the correlation function for LRGs by adding artificial galaxy pairs into the raw SDSS
images and studying how well the photometric pipeline recovered the light of each galaxy.
They found that the clustering of LRGs is significantly overestimated on scales less than
20h~'kpc due to deblending errors, while larger scales are mostly unaffected. Since the
physical sizes of galaxies decrease rapidly with decreasing luminosity, Jiang et al. (2012)
calculated that it is safe to ignore photometric deblending effects for the lower luminosity
samples and scales we consider here. The physical scales corresponding to these angular
scales for the median redshift of each sample are shown at the top axis of each panel in
Figure 2.3. For example, in the case of the M, < -20 sample, the physical range covered by
our measurements is approximately 10h~*kpc < r < 300h~'kpc, which is mainly probing
the spatial distribution within halos.

The points in Figure 2.3 show the w(f) measurements and the error bars are estimated
from jackknife resampling, as described in §2.3.1 (they are the diagonal values of the
covariance matrix). The M, <-18 sample is significantly noisier than the other three
because it is the smallest of our galaxy samples (see Table II.1). The amplitude of w(f)
is highest for the least luminous sample and drops progressively with luminosity. This is
simply due to the fact that more luminous samples extend further in redshift, resulting
in more uncorrelated galaxy pairs in each angular bin that dilute the clustering signal.

As we discussed in the previous section, we expect fiber collision errors to be small
in these measurements. However, there are still some galaxy pairs lost and gained in
special cases where the nearest neighbor correction applied to collision triplets and higher
multiplicity collision groups causes galaxies to incorrectly enter or exit the volume-limited

sample. One of the advantages of using the angular correlation function is that errors due
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to fiber collisions should appear as a sharp feature at 55”. An inspection of Figure 2.3
shows no such significant features, except perhaps for a small feature in the case of the
M, <-19 sample. The M, <-18 sample measurement shows two small discontinuities at
small scales, but these occur between bins four and five and again between bins seven
and eight, whereas the fiber collision scale occurs between bins eight and nine. We think
that it is more likely that these small scale discontinuities are due to noise, given that
they are similar in amplitude to the size of the data error bars, and that they occur at
the wrong scales to be obviously caused by fiber collisions. We therefore conclude that
fiber collision errors are indeed likely small, as expected. However, we emphasize that our
analysis method has not eliminated fiber collision incompleteness and that it is definitely
present in our measurements, as we discuss in detail in the Appendix.

All four correlation functions look approximately like power laws by eye and the most
luminous sample appears to have a somewhat steeper correlation function than that of
the lower luminosity samples. Before we can fit any model to our measurements we must
first estimate covariance matrices. We do this using jackknife resampling, as described
in §2.3.1. Figure 3.18 shows the correlation matrix, which is the covariance matrix nor-
malized by its diagonal elements, in the case of the M, <-18 sample. The matrix clearly
shows that nearby angular bins are highly correlated with each other, especially at large

angular scales.

2.3.3 Power Law Fitting
Galaxy correlation functions are approximately shaped like power laws and so the

power law model is often used to quantify their shape and amplitude. However, the near
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power-law shape of the galaxy correlation function is largely a coincidence (Watson et al.,
2011), and it has been shown that the correlation function is not well described by a power
law in a statistical sense, especially at the scales corresponding to the size of the typical
dark matter halos that contain bright galaxies (Zehavi et al., 2004). Power law models
are thus not accurate models and they do not directly yield a physical understanding
of galaxy clustering. However, they are useful as a descriptive tool for quantifying the
overall slope of the correlation function and for comparing the slopes of different galaxy
samples. The inner slope of the density profile of satellite galaxies in halos directly affects
the slope of the 3D correlation function on small scales, which in turn directly affects the
slope of the angular correlation function. A steeper density profile for satellite galaxies
should translate into a steeper w(f) (e.g. Peebles, 1980; Efstathiou et al., 1991; Watson
et al., 2010).

We fit a power law model to our w(f) measurements using the MCMC code emcee
(Foreman-Mackey et al., 2013), which we describe in more detail in §2.4.3. We calculate

the x2 value for each model parameter combination using

X2 = Z(Wz - wmodel,i)cigl(wj - Wmodel,j)v (23)

ij
where w; and weder; are the data and model correlation function in bin 7, and C’i; Lis the
inverse of the jackknife covariance matrix from Equation 2.2.
Figure 2.3 shows a random sampling of power laws drawn from the best-fitting 68%

of models in the MCMC chains. We list the median values and 68% confidence intervals

of power-law slopes for all four samples in Table 1.1, as well as the corresponding values
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Figure 2.4 Correlation matrix for the angular correlation function of the M, <-18 sample,
derived from 100 jackknife resamplings of the data on the sky. The correlation matrix is
simply the covariance matrix normalized by its diagonal elements and we compute it as
described in §2.3.1.
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of x? per degrees of freedom. The correlation matrix for the M, <-18 sample is shown in
Figure 3.18. Finally, in Figure 2.5, we show the posterior probability density function of
slope for each luminosity sample, as given from the MCMC chains. The best-fit y? values
indicate that a power law functional form provides a good statistical description of the
shape of w(#) for all four luminosity samples (the M, < -18 sample has a p-value of 0.12).
Furthermore, the fit results show that the most luminous galaxy sample, M, < -21, has
a significantly steeper power-law slope than the less luminous samples, while there is no
trend in the steepness of the slope for the lower luminosity samples. This result seems to
confirm the results of Watson et al. (2012), who found that only luminous galaxies had
steep satellite density profiles. In the next section we fit our clustering measurements with
a halo model in order to directly probe what constraints we can place on the distribution

of satellite galaxies within halos.

2.4 Halo Modeling

Most previous studies fitting halo models to clustering measurements, including Wat-
son et al. (2010, 2012), have used an analytic framework to compute the correlation func-
tion. This framework requires analytic approximations for the halo mass function, the
large scale bias of halos, and the halo density profile and it combines them together with
a parameterized HOD to predict the distribution of galaxy pairs. Analytic halo models
are fast and reasonably accurate; however, one should be cautious before trusting them
at better than the ~ 10 — 20% level. In this paper, we adopt a fully numerical procedure
that eliminates most of the systematic errors that are present in analytic models. We

populate dark matter halos in cosmological N-body simulations with galaxies according
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Figure 2.5 Probability density functions of slope for the power-law fits to the angular
correlation functions of our four luminosity samples. The clustering of the most luminous
galaxies exhibits a significantly steeper slope than that of the less luminous galaxies.
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to our adopted HOD, we then construct mock galaxy samples with similar selection as
our SDSS samples, and we measure w(f) from the mocks in the same way as we do from
the SDSS data. A few recent studies have used similar numerical modeling to fit galaxy

clustering measurements (White et al., 2011; Parejko et al., 2013; Reid et al., 2014).

2.4.1 Simulations and Halo Catalogues

We obtain halo catalogues from the Large Suite of Dark Matter Simulations (Las-
Damas; McBride et al., 2014) project?. LasDamas consists of many realizations of dark
matter N-body simulations for a few different box size formats. The goal of the project
is to create a large number of realistic mock galaxy catalogs for several luminosity sam-
ples in the SDSS in order to assist in the modeling of galaxy clustering measurements.
For each luminosity sample that we model, we use a set of LasDamas simulations with
appropriate box size and mass resolution, which are listed in Table I1.2. All the sim-
ulations adopt a ACDM cosmological model with parameter values that are consistent
with WMAP5 (Dunkley et al., 2009). The particle distributions were evolved using the
code GADGET-2 (Springel, 2005). Halos were identified from the dark matter distribu-
tions using a friends-of-friends (FoF) algorithm with a linking length of 0.2 times the
mean inter-particle separation. We use halo catalogues from ten independent realizations
(seeded with the same primordial power spectrum, but different random phases) when
we model our clustering measurements in order to address cosmic variance errors in our

analysis. We discuss this further in §2.4.5.

Zhttp://1ss.phy.vanderbilt.edu/lasdamas/overview.html
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Table I1.2. LasDamas Simulation Properties

Name Sample Lpox Npart Mpart Tsoft
(Mpc/h) (10'°Mg/h)  (kpc/h)
Consuelo -18, -19 420 14003 0.187 8
Esmeralda -20 640 12502 0.931 15
Carmen -21 1000 11203 4.938 25
Note. — For each LasDamas simulation, the table lists the absolute

magnitude limit for the galaxy sample modeled, the simulation box size,
the number of particles, the particle mass, and the force softening scale.
Ten realizations of each box were used in the analysis.

2.4.2 HOD Formalism

We use the halo occupation distribution (HOD; e.g., Berlind & Weinberg, 2002) frame-
work to create mock galaxy distributions from the dark matter halo catalogues. The HOD
completely describes the bias between galaxies and dark matter by specifying the num-
ber and spatial positions of galaxies within halos. We first parameterize the probability
distribution P(NN|M) that a dark matter halo of mass M contains N galaxies. We adopt
the specific formalism introduced by Zheng et al. (2007b), which separates central and
satellite galaxies as motivated by theoretical results (Kravtsov et al., 2004; Zheng et al.,
2005). The average number of central galaxies as a function of halo mass is essentially a

smooth step function that rises from zero to one,

(Nan(MD) = 5 |1+ et (<EX =08 ) (2.4)

Olog M

| —

where My, is the mass at which half the halos contain a central galaxy, and ojg a7 controls

the smoothness of the cutoff. The form of this function comes from the assumption that
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the scatter in the halo mass vs. galaxy luminosity relation has a lognormal form. The
average number of satellite galaxies as a function of halo mass is essentially a power law

with the same cutoff applied,

(2.5)

(N (M) = (Newn (M) (u)

M,y
where M, is the halo mass below which there are no satellite galaxies, M; is the halo
mass that contains on average one satellite galaxy ®, and « is the slope of the power law
relation. Once we have specified the mean number of centrals in a halo using Equation 2.4,
we place an actual central galaxy in that halo using a probability equal to (Neen) (e.g.,
if (Neen) = 0.7, we give the halo a 70% chance of actually containing a central galaxy).
Likewise, once we have specified the mean number of satellites in a halo using Equation 2.5,

we draw an actual number of satellites for that halo from a Poisson distribution.

2.4.3 Spatial Distribution of Galaxies Within Halos

Once we know how many galaxies a halo receives we have to decide where to put
them. We place each central galaxy at the deepest location of its halo’s gravitational
potential well, which we calculate from the dark matter particles in the halo. For satellite

galaxies, we adopt the methodology of Watson et al. (2010) and introduce a Generalized

3This is not exactly true unless (Neen) = 1 and M7>>My. However, for the samples we consider here,
this is close to correct.
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Navarro-Frenk-White (GNFW) density profile

Pat(r) = =
RN CSEICRE SR

(2.6)

where the slope of the profile transitions from -7 in the inner regions of the halo to -3 in the
outer regions. As with a NFW profile, the transition scale depends on the concentration,
but we allow the concentration of satellite galaxies to differ from that of dark matter

through the parameter fy,

Cgal = fgal X CDM - (27)

For the dark matter concentration we adopt the modified Bullock et al. (2001) relation

from Zheng et al. (2007b)

eout = 11 (M>_0'13. (2.8)

M,

The GNFW profile thus has two free parameters, v, and fga1, and we draw random radii
from this profile to determine the positions of satellite galaxies within each halo. Note
that values of v = fyu = 1 recover an NFW profile. Drawing satellite positions from an
analytic profile instead of using actual particle positions allows us to avoid force resolution
errors that occur at the smallest scales we consider. Models of this type have been used
to model the inner slope of the dark matter density profile (e.g., Fukushige et al., 2004;
Reed et al., 2005).

Before exploring the parameter space of our flexible GNFW model, we briefly inves-
tigate whether the NFW model can reproduce our w(f) measurements. We construct

mock catalogs for the M, < -20 SDSS sample using halo catalogs from the Esmeralda
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Figure 2.6 Angular correlation function for SDSS galaxies with M, < -20 compared to
a model where satellite galaxies within dark matter halos follow a NF'W density profile.
Points show w(f) for SDSS galaxies (also shown in Figure 2.3). Curves show measurement
from several independent mock galaxy catalogs that are constructed by populating dark
matter halos in N-body simulations with galaxies. Each sufficiently massive halo gets a
central galaxy that is placed at the halo center, while any additional satellite galaxies
are distributed according to an NFW density profile. The bottom axis shows the angular
scale in units of arcsec and the top axis shows the corresponding physical scale at the
median redshift of the M, < -20 sample.
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simulations, as detailed above. For this test we adopt values for the HOD parameters out-
lined in §2.4.2 that have been found to yield a projected correlation function w,(r,) that
agrees with M, < -20 SDSS galaxies on scales larger than 100h~'kpc (McBride, private
communication). We then adopt v = feu = 1 for our satellite profile, which corresponds
to a NFW profile. Figure 2.6 shows w(f) for several independent mock catalogs compared
to our SDSS measurements. The NFW mock catalogs go from faithfully reproducing the
clustering at high angular separations to under-predicting the observed clustering on the
very small scales. We therefore see the same tension as Masjedi et al. (2006) and this

further motivates us to explore alternative density profiles for satellite galaxies.

2.4.4 Computing w(f)

Once we have populated a N-body simulation with galaxies as outlined above, we
place the observer at the center of the box, compute spherical coordinates, and throw out
galaxies that lie outside the redshift limits of the sample we are trying to model. We do
not include redshift space distortions in our analysis since they do not affect the angular
clustering. Each resulting mock catalog covers the full celestial sphere and thus contains
about 12 times more volume than the corresponding SDSS sample. This guarantees that
the cosmic variance and shot noise in the mock catalog are much lower than in the SDSS
and will therefore not significantly degrade the precision of our results.

We compute w(f) using the natural estimator,

w(®) = 2= 1. (2.9)
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Table I1.3. Median Values of Halo Model Parameters from MCMC Chains

Mpim Olog M log Mo log M1 o ol feal x2dof  PPnrw

-18 0.48 7536 814 T231 1287 T0I8 110 T00%  1.80 7025 1117882 13710 3.3

-19 0.14 1619 930 F1-90 12,90 T00% 111 £09% 0.85 061 1.33 1046 16.210 1.17

—0.64
+0.34 +1.59 +0.14 +0.15 +0.27 +0.80
-20 0.49 Tos 1010 Ty 1344 T3 133 Tgp5 1.89 Toig 051 Toss 9.110 6.33
+0.31 +1.80 +0.10 +0.22 +0.24 +0.65
-21 0.54 Tg3s 1072 Tgg  14.03 Ty 163 To7g 1.80 Tgig  0.99 Toea 7.810 9.32
Note. — The median halo model parameter values, along with the middle 68% interval, as measured from the

MCMC chains. Also shown are the best-fit value of x2, as well as P/Pyrw, the ratio of probability between the
median value of v and v = 1.

We choose this estimator because it does not include a DR term, which is computationally
much more expensive than DD since the random catalog is much larger than the data
catalog. The RR term only needs to be computed once so when we perform our model
parameter search we only have to compute DD for each set of model parameter values.
This estimator is different from the one shown in Equation 3.12; however, on small scales
and for a full sky geometry, these estimators yield indistinguishable results (Kerscher

et al., 2000).

2.4.5 Model Fitting

We are most interested in constraining the inner slope of the satellite galaxy den-
sity profile, which is described by the v parameter. Even though this parameter plays a
primary role in setting the shape of the correlation function on the small scales we are
examining, it is not easy to disentangle its effect on w(#) from that of the other HOD pa-

rameters. We therefore allow all the following parameters to be free during our parameter

66



R (kpc/h) R (kpc/h)
5 10 20 50 100 10 20 50 100 200
8 Errorn T T T 1111 8 |0 T T T TTT1IT] ] 8
T " —— SDSS M,<-189 ™ E —— SDSS M,<-193 ™
& Cldof=137 1 [ x2/dof=1.62 1
i 1L v=0.85 ]
®(0)2 12 F 3¢
: Bl ! 5
Ll L L1 I R L1 L L1
10 20 50 100 200 10 20 50 100 200
0 (arcsec) O (arcsec)
R (kpc/h) R (kpc/h)
10 20 50 100 200 20 50 100 200 500
S [C T T T T T — T J8 F I T T TTITTId 1 T 1]8
T E —— SDSS M,<-209 " E —o— SDSS M,<-217 ™
- — y/dof=091 7 f x’/dof=0.78 ]
I v=1.89 1 i v=1.8 1
®(0)2 12k e
i " 1 ]
Ll L L1 I R L1 L L1
10 20 50 100 200 10 20 50 100 200
O (arcsec) O (arcsec)

Figure 2.7 The angular correlation function of SDSS galaxies in four volume-limited sam-
ples, along with their halo model fits. The data measurements and overall layout are the
same as in Fig. 2.3. The gray lines show a selection of model correlation functions that
are randomly drawn from the best-fitting 68% of halo models in the MCMC chains. The
median value of the satellite galaxy density profile inner slope ~, and the goodness of fit
are listed in each panel.
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search:

1. 010 m: Amount of scatter in the luminosity-mass relation for central galaxies.
2. My: Mass below which halos contain no satellite galaxies.
3. M;: Mass at which halos contain on average one satellite galaxy.

4. «: Slope of the power-law relation between the mean number of satellite galaxies

and halo mass.
5. 7: Inner slope of the number density profile for satellite galaxies within their halo.

6. fea: Concentration of satellite galaxies with respect to the dark matter concentra-

tion.

For each combination of the above six free parameters, we set My, to the value that
recovers a total galaxy number density equal to that observed by the SDSS.

We perform a parameter search using the MCMC emcee code and algorithm described
by Foreman-Mackey et al. (2013). The algorithm is based on the affine invariant sam-
pling algorithm proposed by Goodman & Weare (2010). It is fast, efficient, and easily
parallelized. We use 500 “walkers” to explore the parameter space in parallel. The basic
procedure we follow each time we test a new location in our six dimensional parameter
space is as follows. We first select a random halo catalog from among ten independent
N-body realizations. This builds cosmic variance errors in our theoretical calculations
directly into the modeling. We then use the halo catalog to determine the value of M,
required to create a galaxy catalog with the observed mean number density. For each

halo in the catalog, we use Equation 2.4 to determine whether the halo contains a cen-
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tral galaxy, and Equation 2.5 together with a Poisson distribution to choose the number
of satellite galaxies. We then randomly draw satellite positions from the density profile
shown in Equations 2.6 and 2.7. We make an all-sky galaxy mock catalog and compute
w(0) as described in §2.4.4. Finally, we estimate y? for the parameter combination using
the jackknife covariance matrix described in §2.3.1. All six of our free parameters are given
physically motived flat priors. In particular, the satellite profile parameters v and fga1 are
allowed to vary over a broad range that includes the NF'W profile. For all four luminosity
samples, we find that we need approximately one million parameter combinations in order

to get MCMC chains that converge.

2.4.6 Halo Modeling Results

Figure 2.7 shows the resulting w(f) of our halo modeling in each luminosity bin. SDSS
measurements and the overall figure layout are the same as in Figure 2.3, while the gray
lines show a random sampling of halo model correlation functions drawn from the best-
fitting 68% of models in the MCMC chains. The lines thus illustrate the spread in w(f)
for models that are consistent with the SDSS data. Each panel shows the median value
of 7, as well as the value of x2dof for the best fit model. With 16 angular bins and 6 free
parameters, the number of degrees of freedom is equal to 10. Our halo model produces
good fits to the angular clustering of all four luminosity samples. There is a slight tension
in the case of the M, < -19 sample, but the difference between the model and the SDSS
data is not statistically significant (the p-value for this sample is 0.094). We list the y*dof
values for all four samples in Table II1.3. Though it looks like the model is not a good

fit to the data in the case of the M, <-18 sample, we note that it is very misleading to
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perform x by eye because neighboring bins in w(f) are extremely correlated with each

other, as shown in Figure 3.18.

The main focus of this analysis is the inner slope v of the satellite galaxy density
profile within halos. Figure 2.8 shows the marginal distribution of v values from the
MCMC chains as a function of galaxy luminosity. Specifically, the middle line in each box
shows the median value of ~, the shaded box shows the 68% confidence interval, and the
whiskers show the 95% confidence interval for . The two most luminous samples, M, <
-20 and -21, both prefer fairly steep density profiles and are inconsistent with the NFW
profile at approximately the 20 level. Specifically, the fraction of points in the MCMC
chain that have v > 1 is 97% and 96% for the M, < -21 and -20 samples, respectively.
The less luminous M, < -19 sample prefers less steep profiles and is perfectly consistent
with NFW. The lowest luminosity M, < -18 sample seems to favor steep profiles, but
it has a broad ~ distribution and is not significantly inconsistent with NF'W. The poor
constraints for the least luminous sample are due to the small size of this galaxy sample.

The constraints on v are consistent with those from Watson et al. (2012), denoted by
the asterisks in Figure 2.8, at the 1o level for the M, < -19, -20, and -21 samples. The
M, <-18 sample is consistent at approximately the 2o level. The constraints are somewhat
weaker in this paper because we reduce our sample size by only considering galaxies in
plate overlap regions. Additionally, fiber collisions are a source of systematic error that
was not included explicitly in our model. Though we do not expect this error to be large,
it might be affecting the M, <-18 measurement in a subtle way that is contributing to

the tension with Watson et al. (2012). We list the median and 68% confidence intervals
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Figure 2.8 Luminosity dependence of the satellite galaxy density profile inner slope. Each
box and associated whiskers corresponds to a particular luminosity sample, as shown on
the x-axis. The middle line in each box shows the median value of v from the MCMC
chain, the vertical range of the box shows the middle 68% of v values, and the whiskers
extend to the middle 95% of values. For the two high luminosity samples, a value of
~v = 1, corresponding to the NF'W density profile, is inconsistent with the SDSS data at
approximately the 20 level. Lower luminosity galaxies do not show this tension. The
median values of 7 from Watson et al. (2012) are marked as asterisks.
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for all four samples in Table I1.3. We note that a cursory examination of Figure 2.6 may
lead to the impression that the NF'W model is ruled out at higher significance than 2o.
However the models shown in Figure 2.6 were fit to w,(r,) on larger scales, not w(f) on
very small scales. Moreover, as stated previously, it is misleading to perform x by eye
due to the high degree of correlation between bins.

We now quantify the extent to which the v values preferred by our clustering measure-
ments are more likely than the v = 1 NFW case. We calculate the number of accepted
parameter combinations in the MCMC chain that have values of v in a bin of width +0.1
that is centered around the median value of v. We then do the same for a bin centered
around v = 1 and take the ratio of these two numbers, which we call PPypw. This yields
the relative likelihood of the two 7 values given the measured correlation function. We
find that the steep slopes measured for the M, < -20 and -21 samples are 6.3 and 9.3
times more likely than v = 1, while the slopes measured for the less luminous samples are
only 3.1 and 1.2 times more likely than v = 1. We list these values in Table I1.3.

Figure 2.9 shows the final probability distributions of the HOD parameters that de-
termine the number of galaxies as a function of halo mass. The parameter controlling
the shape of the low mass cutoff for central galaxies o1g a7 is poorly constrained by the
angular correlation function on the small scales we consider in this study. This is due to
the fact that on these scales most galaxy pairs come from within a single halo and so the
low mass regime where a halo either has zero or one galaxy is not very important. The
distributions of oo ps are bound by values of 0 and 1 as this was the prior that we adopted
for this parameter. The parameter M is also very poorly constrained because it cuts off

the satellite occupation number on a sufficiently small mass scale where the expected
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Figure 2.9 The probability distributions for the four HOD parameters that control the
number of galaxies a dark matter halo of a given mass will receive. Each panel shows a
different parameter, while the four distributions in each panel show results for our four

logMg

luminosity samples. The parameters i, and M are largely unconstrained by our
measurements and the bounds of their distributions reflect their prior flat distributions.
Ol0g M Was restricted to the range 0 — 1, while M, was restricted to values greater than

108 M.

73



number of satellites is already much less than one. This result is consistent with other
studies (e.g., Zehavi et al., 2011). The lower bound for M, at 108 My, is once again due to
the prior we adopted for this parameter. Though these priors are physically motivated,
we have checked that relaxing them does not significantly change our conclusions about
the slope 7. The two parameters that control the number of satellites a halo receives, «
and M, are much better constrained. More luminous samples have a higher mass M; at
which they typically contain a single satellite and they have a steeper relation between
the number of satellites and halo mass. These trends are consistent with Zehavi et al.
(2011) though the values we find are somewhat higher for both M; and a. This could
be due to the different information content of w(#) compared to w,(ry), or it could be
due the difference between our numerical modeling compared to the analytic halo model
used in Zehavi et al. (2011), or it could be due to the extra freedom we have added to
the HOD model by using a GNFW profile. We note that for the purpose of this paper we
are mainly interested in the v parameter and these parameters therefore act as nuisance
parameters. We list the median and 68% confidence intervals for all model parameters
in Table I1.3. We also note that the galaxy concentration parameter fg, is very poorly

constrained.

2.4.7 Power Law vs. Halo Model

Both the power-law fits and the halo model have suggested that luminous satellite
galaxies have a steeper density profile than lower luminosity galaxies. However, the two
analyses also show some differences. In the case of the power law slope, M, < -21 galaxies

have a steeper w(#) than less luminous samples and this difference is highly significant. On
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the other hand, when using the halo model, M, < -20 galaxies have consistent values of ~
with M, < -21 galaxies and discrepancies with less luminous galaxies are less significant.
We now take a closer look at these results to determine if they are consistent with each
other.

We first make a naive comparison between the power law slope and the value of ~.
If we assume that the galaxy correlation function £(r) is dominated by central-satellite
pairs in halos of mass ~ M; that only have a single satellite galaxy, then its slope should
essentially be the same as the slope of the satellite galaxy density profile within these
halos. This is not a bad assumption since more massive halos that contain more than
one satellite galaxy are relatively rare. Therefore, the slope of £(r) should be equal to
-v. If we further assume that £(r) is a perfect power law, then the angular correlation
function w(0) should also be a power law with a slope that is shallower by +1 (Totsuji &
Kihara, 1969). Therefore, the slope of w(f) should be 1 — ~, or conversely, v should be
1 — slope. Using this simple transformation, we can check whether the power law slopes
that we found in §2.3.3 are consistent with the v distributions shown in Figure 2.8. The
values of «y inferred from the power law slopes of w(f) are 1.7, 1.77, 1.76, and 1.92 for the
M, < -18, -19, -20, and -21 samples, respectively. These values are perfectly consistent
with the broad distributions shown in Figure 2.8.

We next perform a more sophisticated test to assess the relationship between the slope
of the power law model and . We fit a power law to measurements of w(f) made from
mock galaxy catalogues produced using the best-fit HOD model. We then compare the
recovered power law slopes and compare them to the input values of 7. We find that for

three out of four samples, slope ~ 1 — ~, as expected. For the M, < -19 sample, the
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power-law slope is somewhat steeper than 1 — . We conclude from these explorations
that our results from fitting power laws and halo models are consistent with each other,
and that constraints on v are weaker than on the power law slope due to marginalization

over all the other HOD parameters.

2.5 Summary & Discussion

The goal of this paper is to probe the radial number density profile of satellite galaxies
within dark matter halos using SDSS clustering measurements. We wish to test the
results of Watson et al. (2012), who found that luminous satellite galaxies (SDSS, M, <
-20) have significantly steeper density profiles than the NFW profile on scales smaller than
< 40h~*kpe. Unfortunately, clustering measurements on these scales are strongly affected
by fiber collision incompleteness, making it important to verify this result with different
measurements and modeling methodology. We used the angular correlation function w(f)
as our clustering statistic of choice because it is fairly insensitive to fiber collision errors.
Moreover, we restricted our measurements to plate overlap regions on the sky, where most
fiber collided galaxy pairs are recovered because of repeat observations. We measured w(6)
on four volume-limited samples with absolute r-band limits of M, < -18, -19, -20, and
-21, on scales in the range 7 — 320”. These angular scales correspond to physical scales
that are within the virial radii of dark matter halos expected to host these galaxies, even
at the far redshift of each sample. Our measurements thus directly probe the spatial
distribution of galaxy pairs within halos.

Motivated by the approximately power-law shape of our correlation function mea-

surements, we first fit a power law function to w(f) in order to quantify its slope. We
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found that the most luminous galaxies (M, < -21) have a significantly steeper correlation
function than the lower luminosity samples. We then used the more physically motivated
halo model to determine what constraints our w(f) measurements place on the density
distribution of satellite galaxies within halos. We used a fully numerical modeling proce-
dure that populates dark matter halos in N-body simulations with galaxies, creates mock
SDSS samples, and computes w(#) the same way as it is done in the real galaxy data. This
method is computationally expensive, but it minimizes systematic errors in the modeling.
The key ingredient in our halo model is a generalized density profile for satellite galaxies,
whose inner slope is a free parameter. After marginalizing over other parameters in our
halo model, we found that the two more luminous galaxy samples (M, < -20 and -21)
prefer a satellite density profile that is substantially steeper than the NF'W profile. The
NFW profile is discrepant at the 20 level for these galaxy samples. We found that the
lower luminosity samples do not constrain the satellite inner profile slope as well and they
are consistent with NFW.

Our results are qualitatively consistent with those of Watson et al. (2012) who also
found that satellite galaxies more luminous than M, < -20 have steeper density profiles
than NFW. Our results are also quantitatively consistent, as our marginal distributions
of the inner profile slope overlap nicely. The main differences between our two studies are
that (1) Watson et al. (2012) found somewhat shallower inner profiles than we did for the
least luminous (M, < -18) galaxies, and (2) their constraints on the inner profile slope
of the most luminous galaxies are tighter than ours. These differences allowed them to
detect a significant luminosity trend in the spatial distribution of satellite galaxies, while

we cannot do the same with confidence. The loss of statistical significance in our study
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is mainly due to the lower information content of w(f) compared to w,(r,), as well as
to the fact that we reduce our sample size by only considering galaxies in plate overlap
regions. On the other hand, our constraints are less likely to be affected by errors in the
halo modeling. In addition, the two studies are affected by fiber collision incompleteness
in different ways. Overall, the agreement between the two studies despite the different
measurement and modeling methods lends credibility to the main conclusion that the
spatial distribution of luminous satellite galaxies is steeper than that of the underlying
dark matter.

Before making claims about how well satellite galaxies trace the dark matter distribu-
tion, we need to consider whether the NF'W model is itself an accurate representation of
the density profile of dark matter. Though the NF'W profile has been shown to provide
an imperfect description of the structure of dark matter halos in collisionless N-body sim-
ulations (e.g., Navarro et al., 2004; Merritt et al., 2005; Gao et al., 2008; Navarro et al.,
2010; Ludlow et al., 2013), the departures shown by these studies are not large and the
NFW model remains consistent with simulation results at the ~ 10 — 20% level (Ben-
son, 2010). However, it is far less safe an assumption that the density profiles of halos
in collisionless simulations represent reality given that they completely ignore the effects
of baryons. This is especially true for the very small scales we consider in this paper,
since baryons dominate the mass budget at the centers of halos. Some theoretical studies
argue that the condensation of baryons at the centers of halos should steepen the dark
matter density profile (e.g., Gnedin et al., 2011), while others argue the opposite (e.g.,
Del Popolo, 2012). Observational studies using weak lensing measurements have found

that the density profiles at of clusters are either consistent with or shallower than NF'W
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(e.g., Mandelbaum et al., 2008; Newman et al., 2013), though the measurements are noisy
on the small scales we care about here.

It is not necessarily surprising that satellite galaxies do not trace the underlying mass
distribution. Galaxies are extended massive objects and they should thus experience dy-
namical effects such as dynamical friction and tidal stripping of mass and stars, which do
not affect dark matter particles. These mechanisms could act to steepen the density pro-
file of satellites. Moreover, this could be a luminosity dependent process. To study these
effects, it would be illuminating to compare our satellite profile results with the distribu-
tion of dark matter subhalos within host halos, since satellite galaxies presumably occupy
these systems. However, this comparison will have to wait for simulations of sufficient
volume and particle mass resolution to be able to accurately measure the distribution of
massive subhalos at scales of only a few tens of kpc from the center of host halos. It would
be even better to compare our results with predictions from hydrodynamic simulations
that include baryonic processes such as gas cooling and feedback, which can affect the
density profiles of halos. Our measurements can help to constrain these processes. Simu-
lations that have both sufficient volume and resolution to make such predictions are now
becoming possible. For example, the Illustris simulation has already enabled a prediction
of the density profile of luminous satellite galaxies on small scales (Genel et al., 2014).
Though this result is a bit too noisy to be tested against our measurements, the next

generation of simulations should be more than adequate for making this comparison.
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CHAPTER III

EXTENDING BEYOND THE LOCAL: VERY SMALL SCALE CLUSTERING IN
THE DISTANT UNIVERSE

3.1 Introduction

Measuring galaxy clustering is a powerful tool for understanding the fundamental
physics of the universe. The current galaxy-halo model, in which galaxies are biased
tracers of the underlying dark matter, exists because it has been so successful at predicting
galaxy clustering using statistics like the two-point galaxy correlation function (2PCF).

On the largest scales of the universe, the 2PCF has been used to constrain cosmology
(Eisenstein et al., 2005). On the smallest, it probes possible deviations of the galaxy
distribution from that of dark matter (Masjedi et al., 2006; Watson et al., 2010). Much
of our physical interpretation of the 2PCF comes from modeling clustering using cos-
mological N-body simulations and the Halo Occupation Distribution (HOD; Peacock &
Smith, 2000; Seljak, 2000; Berlind & Weinberg, 2002; Zheng et al., 2005). The HOD is
a prescription for relating the mass of the host halo to the number of galaxies residing
within. There are many assumptions implicit here: from the cosmological parameters of
the simulation to the galaxy distribution in one dark matter halo.

Our current theories of galaxy clustering assume that the density distribution of dark
matter drives the distribution of galaxies in the universe. However, what if there are
scales at which galaxy clustering is determined not by just the dark matter, but by some

intrinsic property of the galaxy? The answer to these questions can be found by studying
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galaxy clustering within an individual dark matter halo. Measuring and modeling galaxy
clustering on these scales less than about one Megaparsec requires careful analysis of large
data sets, in particular the Sloan Digital Sky Survey (SDSS; York et al., 2000).

The galaxy density profile gal is the radial distribution of galaxies in one halo. In
principal, pgq; should be the product of the dynamical or baryonic processes a galaxy
undergoes over its formation and merger history. These histories correlate with the galaxy
environment and luminosity of a galaxy (Hogg et al., 2003). Because it is difficult to
simulate a cosmological volume that includes detailed enough baryonic physics, pgq is a
choice. Oftentimes this choice is made unknowingly: galaxy positions are drawn directly
from the dark matter distribution. Since the dark matter follows a Navarro-Frenk-White
(NFW; Navarro et al., 1997) density profile, this technique generates p,, with an NFW
profile as well. In the most popular semi-analytic recipes for galaxy clustering, NF'W
is imposed for pgq. This assumption has far reaching consequences, from affecting our
understanding of galaxy evolution to how we derive fundamental cosmological parameters
from galaxy clustering. Indeed, Watson et al. (2012) found that the deviation of pyq from
NFW was a function of luminosity. Improving on that work, I have introduced new
methods for studying pgq as a function of both redshift and luminosity.

In Chapter 2, I have shown that significant deviations from the standard Navarro-
Frenk-White density profile are seen in the distribution of satellite galaxies in the local
universe. This deviation could even be a function of the luminosity of the galaxy. Instead
of looking at how different classes of galaxies occupy their halos at low redshifts, we now
investigate how the same mass galaxy changes its radial distribution as a function of time.

In principle, this could tell us about the merger history and evolution of a specific type
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of galaxy. In this case, we focus on using the SDSS-IIT BOSS CMass sample- specifically
designed to be constant mass over redshifts 0.45 < z < 0.6.

With the new data from the Baryonic Oscillation Spectroscopic Survey (BOSS Dawson
et al., 2013), one of the four science projects from the SDSS-III survey (Eisenstein et al.,
2011), we can now study galaxies extending back a few billion years at the same statistical
level as galaxies in our own backyard. BOSS has measured the spectra of 1.5 million
galaxies extending out to a redshift of 0.7- corresponding to when our universe was slightly
more than half the size it is today. This chapter is organized as follows. The data sample
selection is described in Section 1. In Section 2, we describe the statistical method in
which we study the very small scale clustering of BOSS galaxies. In Section 3 we compare
our findings to previous results. Section 4 is a discussion of implications and physical
interpretations of our findings. The chapter concludes in Section 6. Throughout this paper

we assume a spatially flat A cold dark matter (AC'DM) cosmology with €, = 0.274.

3.2 Data Sample

Accurate measurements of galaxy clustering at very small scales requires a large galaxy
survey. Data were taken from the five-band ugriz imaging from the Sloan Digital Sky
Survey (York et al., 2000). The SDSS survey uses a dedicated 2.5m telescope (Gunn
et al., 2006) with a wide-field mosaic CCD (Gunn et al., 1998) operating in drift scan
mode (Fukugita et al., 1996). Additional photometry for SDSS-III was taken in the
southern galactic cap and all imaging data, including the previous SDSS-I,II data, was
re-reduced for SDSS-III. The results of this re-reduction are in Aihara et al. (2011).

Data in the sample used in this analysis covers 6500 sq. deg. of the sky. The footprint
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Figure 3.1 Footprint on the sky (Hammer Projection) of the Sloan Digital Sky Survey
Data Release 11 BOSS CMASS galaxy sample. The individual jackknife regions are shown
in color. Jackknife regions were determined using the underlying sector distribution of
targeted galaxies.

is shown in Figure 3.1. Below we will detail the color and magnitude cuts that were used

to target the high redshift sample of galaxies used in this analysis.

3.2.1 Target Selection

The SDSS-II targeted Luminous Red Galaxies (LRGs), highly biased traces of the
dark matter distribution with very little star formation, in order to better constrain
cosmological parameters using the BAO. This initial target selection for (LRGs Eisenstein
et al., 2001) was incomplete in mass at the bright end (Tojeiro et al., 2012). SDSS-III
sought to construct a mass limited sample with well understood mass completeness limits.
In order to create a Constant Mass (CMASS Reid et al., 2015) sample, the color-magnitude
cuts were extended to include bluer star-forming galaxies thought to be the progenitors

of the lower redshift LRGs.
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The selection criterion for the CMASS sample was informed by the galaxy evolution
and stellar population synthesis models of Maraston et al. (2009). These models allow
us to target a more complete high mass galaxy population over a redshift range of 0.1 <
z < 0.7. The targeting uses four different definitions of magnitude for the central g, r, z
magnitude bands in order to target a clean sample, without contamination from stars or
low redshift galaxies. All magnitudes are corrected for galactic dust extinction (Schlegel
et al., 1998) and are in the observed frame.

The four different definitions of magnitude used to select BOSS CMASS galaxies are

as follows:

1. SDSS calibrated model magnitudes, subscript mod, from Padmanabhan et al. (2008),
denoted with the subscript mod. These magnitudes are derived from either an ex-

ponential or a DeVaucouleurs light profile fit to the r band.

2. ¢mod magnitudes. The cmod are defined first as a flux f:

fcmod: (1_P)ferp+PfdeV (31)

where P is the probability of an exponential or deVaucouleaur profile.

3. Point Spread Function, psf, magnitudes.

4. Fiber Magnitudes in a 2 arcsecond aperture, fib2.

For the CMASS sample, magnitudes are all calculated using cmod magnitudes while

colors are all defined using mod magnitudes. The SDSS-II LRG sample included another
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definition of magnitude, Petrosian magnitudes, that are no longer used for galaxy sample
selection in SDSS-III.
The following are the selection criteria for BOSS CMASS Galaxies, from Reid et al.

(2015) and Tojeiro et al. (2012). First we define an ancillary color, d; as

dJ_ = Tmod — imod - (gmod - Tmod)/8-0- (32)

This color separates lower redshift galaxies from the CMASS sample by cutting on

d, > 0.55. (3.3)

An additional sliding color cut

iomod < 19.86 + 1.6(d, — 0.8) (3.4)

which selects the brightest and most massive objects at each redshift based on the passively
evolving galaxy models of Maraston et al. (2009). Maraston et al. (2013) showed that
this cut creates a more complete galaxy sample at z > 0.6. Additionally, these color
cuts include bluer galaxies making the CMASS sample more complete at the higher mass
end(Tojeiro et al., 2012).

The following are all magnitude cuts. This cut,

17.5 < iemoq < 19.9, (3.5)
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Figure 3.2 The color and magnitude cuts that were used in this paper. Apparent magni-
tude cuts were done using ‘cmodel’ magnitudes whereas color cuts were done using model
magnitudes. The cuts were designed to select the most massive galaxies over a large range
of redshifts. There is no absolute magnitude cut, however we show the trend with redshift
in the lower right panel.
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selects out low redshift interlopers on the bright limit and ensures a high redshift success
rate on the faint limits. To increase the redshift success rate, which is based on the

observational limits of the telescope, we cut on

ifibg < 21.5. (36)

An additional cut to protect against some outliers is

Tmod — imod <2 (37)

and

irden < 20.0 (3.8)

where i,4., 18 the effective radius in the fit to the deVaucouleurs profile for the i — band
magnitude. The population of CMASS galaxies is separated from stars using a comparison

of model magnitudes and psf magnitudes

Z.psf - imod > 0.2 + 0.2 % (200 — imod) (39)

Zpsf — Zmod > 9.125 — 0.462,04. (3.10)

Combined these cuts create a clean and complete sample of galaxies with masses up
to 1012 Mg, (Maraston et al., 2013). We present these cuts in Figure 3.2. Throughout this
chapter, we will refer to all the objects that have passed these color and magnitude cuts

as the 'Imaging’ Sample.

87



3.2.2  Spectroscopic Sample

Once the Imaging Sample has been defined, the process of observing galaxy spectra to
measure redshifts and absolute magnitudes can begin. The SDSS-III spectrograph (Smee
et al., 2013) is an improvement upon on the original SDSS spectrograph (Gunn et al.,
1998), allowing the SDSS to observe 1000 objects at a time using a duel channel fiber-fed
multi-object spectrograph. The 2”7 fibers are plugged manual into aluminum plates which
subtend 3° on the sky (Smee et al., 2013). In SDSS-III these fiber cannot be placed closer
than 627; targeted objects closer than this cannot be observed on a single plate. This
causes a problem called fiber collisions, which in SDSS-II affected up to 10% of targets
(Blanton et al., 2003b) and which will be revisited later on. Because of the overlap of the
tiles, about one third of fiber collision objects can be recovered. These plates form the
bases of how objects are optimally tiled for spectra. Below we summarize the steps taken

to create a large scale structure galaxy catalogue.

3.2.2.1 Tiling

The tiling algorithm (Blanton et al., 2003b) is the process of arranging these plates
on the sky such that the maximal number of targets are observed with the minimal
number of plates. The tiling algorithm adapts to the local angular density of targets to
maximize the number of objects receiving spectroscopic fibers. Tiling was done piecemeal
over the course of the survey, in ‘chunks’. Each chunk is a spatially contiguous set of
overlapping tiles that the targeting algorithm has arranged. These chunks comprise the

SDSS footprint, shown in Figure 3.1.
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This is going to be a summary of Bolton et al. (2012) and Dawson et al. (2013).

3.2.2.2 Fitting Redshift

The galaxy is observed for four to five 15 minute intervals until a minimum signal-to-
noise, S/N > 15 (Smee et al., 2013) is reached. A template is then fit to the spectra of the
galaxy using a x? minimization. The templates are built up from previous observations
and include non-galaxy objects in case of misclassification. The template is spaced out
in 45 km/s steps, going from redshift 0.1 to 1, with emphasis placed on fitting the 4000A
break prevalent in CMASS galaxies. The x? minimum is found, and must be much more
significant than any other minima that is found — about 7o (Bolton et al., 2012). CMASS
galaxies are dominated by continuum, as opposed to specific spectral features that would

cause the redshift fitting to fail. Sky subtraction does not cause redshift failures for the

BOSS survey (Bolton et al., 2012).

3.2.2.3 Mask & Weights

The Angular Selection Function, including the observed footprint, of the SDSS survey
is described using a mask. These masks mathematically detail the observed regions for
the survey. Because the survey is tiled in chunks, the observable region is a complicated
footprint that cannot be simply broken up into cut on Right Ascension and Declination.
The masks, whose base level pixel structure is the the sector, incorporates this complicated
selection function as well as additional information that is necessary to take into account
when making a measurement of the galaxy distribution. A sector is a portion of a tile

that is unique- two overlapping tiles have three sectors, like a venn diagram. Each galaxy

89



belongs to a single sector which has a weighting associated with it based on completeness.
The completeness of a sector is determined by the number of galaxies that were targeted
vs. the number of galaxies that actually received redshifts.

In order to account for fiber collisions in the correlation function we assign a fiber
collision weight to each galaxy. For each galaxy that did not receive a redshift, its nearest
neighbor galaxy’s weight increases by one. In a pair of galaxies separated by less than 627,
one galaxy has a weight of two. These weights will factor during the pair counting aspect
of measuring the correlation function. Additional weights include the sector completeness
weights, which are based on the number of targeted galaxies versus the number of galaxies
actually observed not due to fiber collisions. The total completeness of SDSS is over 97%,

but individual sectors may be lower or higher depending on weather or fibers failings.

3.2.2.4 Calculating Absolute Magnitude

When calculating absolute magnitude, we must take into account how the emitted
spectrum of the galaxy has been redshifted. These corrections are called k-corrections,
and we use the model of Tojeiro et al. (2012) that models the evolution of the galaxy
spectrum. This model corrects all galaxies’ spectra to a common redshift of z = 0.55 so
that the absolute magnitude in the » — band can be compared equally between galaxies,
regardless of how the observed flux has been altered by the spectra being redshifted out of
the band. Figure 3.3 illustrates the k-correction by showing how the spectra of a galaxy

at z = 0.55 has been redshifted.
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Figure 3.3 Figure 5 from Tojeiro et al. (2012) showing the expected observed spectrum,
in black, of a typical BOSS CMASS galaxy at a redshift of z = 0.55. This Figure is meant
to illustrate how the rest-frame spectrum of a typical galaxy will be redshifted out of the

observed g —band. We correct for this decrease in flux using a k — correction from Tojeiro
et al. (2012).
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Table I1I.1. Galaxy Catalogue Properties

Bin Redshift Range Ngai Ngal M;

BinAll (0.43,0.7] 505261 0.0001847 -21.5
Binl (0.43,0.5] 133404  0.0002494  -21.25
Bin2 (0.5,0.55] 143895  0.0003150  -21. 5
Bin3 (0.55,0.6] 116239  0.0002238 -21.6
Bin4 (0.6, 0.7] 111723  0.00009129  -22.0
LRG (0.16,0.36) 61899 0.000094 -21.65

Note. — Attributes of the CMASS redshift samples that we
use. We note that the number density of the total sample is
closest to Bin4, the highest redshift sample. For part of our
analysis we combine the lower and upper two bins. We have
also included values for the LRG sample, from Kazin et al.
(2010)

3.2.2.5 Redshift Samples

We choose to make redshift cuts for the spectroscopic sample based on having equal
number of galaxies in each bin. A summary of the properties of these samples can be
found in Table III.1 and the number distribution is shown in Figure 3.4. The peak of
the redshift distribution of galaxies corresponds to our second bin, 0.5 < z < 0.55, which
has the highest number density of all the bins. Figure 3.5 shows the evolution in the
color-color targeting cuts as function of redshift. As we move to higher redshift bins the
galaxies become redder. Additionally we show the same redshift evolution as a function of
d, in Figure 3.6. Higher redshift galaxies have on average higher values of d,. Combined,
both of these redshift trends are due to needing to get more red galaxies as a function of
redshift in order to have a constant number density.

The bins span a large range of cosmic time; long enough to see an evolution in the very
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Figure 3.4 The number density of CMASS galaxies as a function of redshift. The redshift
range of our four samples are highlighted in different colors. The number of galaxies is
roughly equal in each of the redshift bins. Their properties are shown in Table III.1.

93



1.2- W 1.2- @

081 ¢ | Los @ —

0.4- 05>z>0.43 0.4- 055>2>05

Fmod — Imod
Fmod — Imod

05 1.0 15 2.0 05 1.0 15 2.0

Jmod — 'mod Jmod ~ 'mod
< 1.2 < 1.2
£ e
5081 = —| 5081/ —
£ N
0.4+ 0.6 >z > 0.55 0.4 - 0.7>z>0.6

05 1.0 15 20 05 1.0 15 20
gmod - rmod gmod - rmod

Figure 3.5 The color and magnitude cuts as a function of redshift. The grey points are
the same in every panel and show the total underlying color color distribution of CMASS
galaxies. The colored lines are the iso-density contours for galaxies in each of the four
redshift bins. We can see that the higher redshift galaxies have a larger spread in the
color-color space. As the volume increased, redder galaxies had to be included in order
to keep the same number density. This is shown in the rotated color d; in Figure 3.6.
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small scale clustering, if one exists, due to a change in the satellite occupation fraction
of halos. The dynamical time for a satellite galaxy falling into a halo at z = 0.7 is rough
900Myr. This would put the theoretical satellite’s peri-center passage at a redshfit of

z ~ (.55, straddling our second and third redshift bin.

3.3 Projected Cross Correlation Function

The project two-point correlation function can be defined as

wy(rp) = Q/OWWﬂé(rpm), (3.11)

where 7}, is the distance perpendicular to the line of sight and 7 is the line of sight distance.

We define £ using the Landy & Szalay (1993) estimator:

_ DD -2DR+RR
N RR ’

3 (3.12)

where DD, DR and RR are the correctly normalized number of data-data, data-random
and random-random pairs in each bin of angular separation r,. By integrating over a
sufficiently large 7, all physically correlated pairs are included. Omne of the benefits of
measuring w, instead of the real- or redshift-space correlation function is its insulation
from line of sight distance errors due to the peculiar velocity of galaxies. The r, we
calculate is the comoving distance between this pair of galaxy at the redshift of the
spectroscopic galaxy.

Measuring galaxy clustering on very small scales presents two main challenges— sample
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Figure 3.6 The rotated color d, vs i — band apparent magnitude of the total CMASS
sample, shown with the median values and standard error spread at each redshift. We
can see that the higher redshift bins have a higher d, on average, which is consistent with
being redder, as shown in Figure 3.5. The locus of points that extends outside of the cuts,
to the lower right, consists of the commissioning photometry sample which had a slightly
different color-magnitude cut. This sample went on to be named the sparse sample.
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contamination from survey dependent systematics, such as fiber collisions and deblending,
and low number counts causing large noise. Some of these effects can be mitigated by cross
correlating a spectroscopic sample, having redshifts, and an imaging sample, which is much
larger. Having the redshift of one of the galaxy pairs transforms an angular distance on
the sky to a physical separation. Having an imaging sample that includes galaxies missed
due to fiber collisions adds reliability to very small scale clustering measurements.

Cross correlation have been shown to measure the small scale clustering of Luminous
Red Galaxies (Eisenstein, 2003). Here, we employ the Masjedi et al. (2006) method.
This method measured the projected cross correlation function between spectroscopic
and imaging samples in order to recover galaxies lost to fiber collisions. Galaxies that do
not exist in the spectroscopic, or Dy, catalogue would still be present in the imaging, or D;,
catalogue. The cross correlation allows us to count those pairs by assuming the imaging
galaxy is at the same redshift as the spectroscopic galaxy. However, cross correlating
D, and D; also introduces line of sight uncorrelated pairs. If we assume that those
uncorrelated pairs are distributed randomly, we can subtract off their contribution by
including cross correlations between random catalogues.

We define the cross correlation function as

(3.13)

where n is the average comoving number density of the spectroscopic catalogue, D,
and D; are the spectroscopic and imaging data samples, and R, andR; are the random

spectroscopic and random imaging samples. In follow up work, Masjedi et al. (2008),
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changed the definition of number density to be that of Imaging data catalogue— a number
that cannot be measured as the true number density of the imaging catalogue is not able
to be determined without redshifts. While we do note that the theoretically quantity np;
is technically the more accurate term, nps should be very similar np;.

The first half of the estimator cross correlates the spectroscopic data catalogue D to
determine the signal of clustering. The first numerator is defined as

2.

j€DsD;pairs

>

JEDs

D,D; (3.14)

where p; is fiber collision weight assigned to each spectroscopic galaxy. This term sums
over all the pairs of galaxies, weighting them by their fiber collision weights (explained
below), and then normalizes by the sum of fiber collision weight in the sample. Fiber
collision weights are very close to unity so this term is effectively counting all the pairs
and then dividing by the number of galaxies in the spectroscopic sample.

Fiber collision weights are assigned by running a friends-of-friends group finding al-
gorithm, with the linking length being the fiber collision scale (SDSS-1T 55”7, SDSS-II1
62”). Each fiber collision group is then assigned spectroscopic fibers in such as way as
to maximize the number of galaxies retained in the sample, echoing the spectroscopic
tiling algorithm (Blanton et al., 2003b). The weight p; is then calculated by counting
the number of galaxies lost and assigning those counts to their nearest neighbor with was
retained and is very close to unity.

Continuing, the first denominator is defined as,
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(3.15)

where (%)j is the inverse square of the comoving distance to spectroscopic galaxy j and %
is the number density of the random imaging catalog per solid angle. The multiplication
of these two terms gives the average number of random imaging objects per unit comoving
area around each spectroscopic galaxy. In practice, the numerator is counting all pairs
between the D, and R; catalogues, weighting by the fiber collision weight of the D, galaxy
pair. The denominator is normalizing the number of Dy-R; pairs by estimating the number
of possible random imaging galaxies around each spectroscopic galaxy.

The second half of the estimator, the cross correlation with the random spectroscopic
catalogue R;, is meant to subtract out physically un-associated pairs that can be seen as
noise in the pair counting of the first half. The second numerator is defined as:

ij

JjERsD;pairs

S

J€ERs

R.D; = (3.16)

where f; is the weight given to random spectroscopic galaxy j which accounts for other
incompleteness of the spectroscopic survey in that region of the sky not due to fiber
collisions. Similarly to Eq. 3.14, this is a sum over all pairs, weighted by the completeness
weight associated with the Ry galaxy pair. It is then normalized by the sum of all f;
weights. Completeness in each sector is determined by the number of galaxies that were

targeted versus the number of galaxies that actually received good redshift measurements.
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Incompleteness that is not fiber collision related could be due to poor signal to noise in
a spectra or fibers failing. Completeness is very close to 100% in all sectors, so the f;
completeness weights are often unity.

Finally, the second denominator (similar to the first denominator) is defined as:

>k

JERsR;pairs

=y (%)% ,

JERs

RsRy

(3.17)

where the terms are similar to those in Eq 3.15, except f; is the sector completeness
weight.

In order to estimate errors and measure the covariance matrix, we separate the galaxy
catalogue footprint into 150 jackknife samples that represent approximately equal area
sections on the sky, shown in Figure 3.1. For each jackknife sample k, we measure the

projected correlation function w’g. The covariance matrix can then be computed as

N
N -1 _ _
Cij = N Z(Wpf - Wpi)(WP§ - ij)a (3.18)

k=1

where Cj; is the covariance between projected distance bins 7 and j, and wp, is the
mean of correlation function measurements in projected distance bin ¢ computed from
the N jackknife samples. In practice, each jackknife region has the four terms of wy
measured separately and then combined before the variance between jackknife regions
can be calculated. Jackknife regions are based on the underlying sector distribution of

galaxies.
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3.3.1 Tests on Mock Galaxy Catalogues

In order to test the efficacy of this method for estimating the projected correlation
function, we perform validation tests on Mock galaxy catalogues. For the first test,
we compare the results of the CrossCorrelation estimator to a standard Landy-Szalay
estimator. Because of the lack of fiber collisions and deblending errors in mocks the two
estimators should be equivalent. The mock galaxy catalogues were creating using dark
matter halos from the LasDamas N-body simulation and standard values for the halo
occupation distribution (Guo et al., 2014). This allows us to populate dark matter halos
with a realistic distribution of galaxies. Because we will be populating halos at very small
scales, we assume that the galaxies follow an Navarro-Frenk-White density profile. This
allows us to avoid numerical issues, such as softening, that could bias our comparison.
See Chapter 2 for a more detailed description of how mock galaxy catalogues are created.

In Figure 3.7, we compare the results of the Landy-Szalay estimator to the Cross
Correlation estimator. We performed this test on ten different mock galaxy catalogues
for robustness. In Figure 3.7 we see good agreement between the two different methods of
estimating clustering on mocks. There is a much larger variance in the cross correlation
wp, at the largest scales, which we believe is due to treatment of random-random pairs in
the estimator. From this test we conclude that the cross correlation estimator is effective
at accurately measuring clustering in the absence of systematics.

For the second test, we compare results between mock galaxy catalogues with and
without fiber collisions. As stated before, the main motivation for using the cross correla-

tion estimator is that it is able to account for galaxy pairs lost to fiber collisions The mock
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Figure 3.7 Comparison of the cross correlation estimator to the Landy-Szalay estimator.
Each line represents a measurement from a single mock galaxy catalogue. The mock
galaxy catalogues were created using a standard HOD from the literature and dark mat-
ter halos from the LasDamas simulations. We measured the cross correlation and L-S
estimator on each catalogue. There is good agreement at all scales, however the large
scatter shown in the cross correlation is not present in the L-S estimator. We have added
our measurement of BOSS CMASS galaxies to guide the eye. Please see Section 3.4 for
a description of the data measurement.
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galaxy catalogues are populated the same way as before, but we then run a collision group
finder which groups galaxies using a linking length of 62”7. We assign redshifts optimally
so that the most number of galaxies in a collision group receive redshifts. Often, these
groups are simply pairs where the pair galaxy that gets to keep its redshift is randomly
chosen. Our imaging sample D; includes all galaxies, while the spectroscopic sample, Dy,
only includes galaxies that kept their assigned redshifts.

We note that this is only an approximation of how fiber collisions occur in observations-
there are additional constraints such as foreground objects or Quasars, which have target
priority over galaxies. Asshown in Appendix A, this approximation only recovers only half
the number of fiber collisions that occur in data. The correct way to add fiber collisions
to mocks is to create a full flux limited mock catalogue that includes both foreground and
background uncorrelated objects. This is not feasible at this time because of numerical
constraints and is not necessary for this test.

Once fiber collisions are included in our mocks, we can test how well the cross cor-
relation estimator is able to recover the correct clustering where the correct clustering is
the clustering measured on the mocks without fiber collisions. This is a fair comparison
as the only difference between individual mocks is the effect of fiber collisions. We see
good agreement between these two measurements, lending veracity to the claims that the
cross correlation estimator is able to take into account data systematics. For compari-
son, we have also used the L-S estimator on the fiber collided mocks as well as showing
the clustering of a mock without any galaxies separated by less than the fiber collision
scale to show maximum effect. This shows that the CC estimator is the better choice for

measuring very small scale structure.
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Figure 3.8 Comparison of the cross correlation estimator on mocks with and without fiber
collisions. Each line is a different mock galaxy catalogue made from different realizations
of the same simulation. The red lines are the CC on mock catalogues without any fiber
collisions, the same as in the previous plot. The blue lines are the CC measurement on
mock catalogues that have fiber collision incompleteness introduced through a friends-
of-friends collision group finding algorithm. The CC estimator effectively recovers the
correct clustering at very small scales. We have also included lines showing the maximum
affect of fiber collisions, where all galaxies without measured redshifts are removed from
the sample. We can see that fiber collision play a very large role starting around 7, <
0.3h"'Mpc
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3.3.2 Comparison to Masjedi et al. 2006

In order to verify our implementation of the CC estimator, we reproduced the measure-
ments of both Masjedi et al. (2006), hereafter M06, and Zehavi et al. (2005a), hereafter
Z05. MO06 found a good agreement in the real space correlation function £(r) with the
results of Z05. Here, we will compare the measurement, of w,. The steps to recreate
these measurements are as follows: 1) Locate the correct spectroscopic catalogues, both
data and randoms, 2) Create the appropriate imaging catalogues and 3) Calculate w, in
the exact same way as M06, including making the same absolute magnitude cuts on the
imaging catalogue needed to make this measurement an autocorrelation between samples
with the same luminosities. This last point requires validation of our calculation of ab-
solute magnitude. Once we have verified our method, we will apply it to measuring the
very small scale clustering of SDSS DR7 LRGs, a much larger sample than those used in
either M06 or Z06, and with better calibrated magnitudes.

We use data and random spectroscopic catalogues from Kazin et al. (2010) for both
Data Release 3 and Data Release 7, which already have accurately computed fiber collision
and completeness weights. DR3 is very similar in footprint and number of galaxies to the
Sample 14 that both M06 and MO05 used in their analysis, which is no longer available.
We used OmegaM=0.3 Omegal.=0.7 for DR3 and for DR7 we used OmegaM=0.25 and
OmegalL=0.75 to be consistent with both previous analysis.

We constructed our imaging catalogues using the SDSS Catalogue Archive Server
(CAS), selecting objects that passed the correct LRG primtarget flag from the photoObj]

schema. We return the objects’s RA, Dec, r-band magnitude and r-band extinction. The
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necessity of the last two items is discussed below. This query is equivalent to creating a

query using the full LRG sample selection, which is included in the appendix.

SELECT
ra, dec, petroMag.r, extinction_r into
mydb. Irg_dr3 from photoObj

WHERE ( PrimTarget=32 )

We made the random imaging catalogue using the mangle ransak function and the
appropriate polygon files describing the survey footprint.

Unlike CMASS galaxies, the sample of LRGs used in this analysis has an absolute
magnitude cut. In order to make the same absolute magnitude and redshift cuts from
Masjedi et al. (2006), we calculated the absolute g-band Magnitude of each imaging galaxy
at the redshift of its spectroscopic pair. The m, apparent magnitude is used because the
rest frame g-Band absolute Magnitude of the galaxy is redshifted into the r-band in the
observed frame (Zehavi et al., 2005a). We follow the methodology of Kazin et al. (2010)

outlined below.

Dy (z
My = rpetro — extinction, — dlogig ( oz )) — K.(2). (3.19)

10pc

Where K.(z) are color, evolution and k-corrections based on the models of Eisenstein
et al. (2001)

Ke(Z) = 69 - (g - T‘) + Zealibration - (320)

In practice, these values are interpolated from the table in Eisenstein et al. (2001)
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and are solely a function of redshift. The value of z.yipration 1S @ constant 0.2, taking into
account evolution. The values of K.(z) are meant to evolve all galaxies to a rest frame
redshift of z = 0.35. We show in Figure 3.9 that our calculation of absolute magnitude is
consistent with that of Kazin et al. (2010).

We present our measurement of very small scale LRG clustering in Figure 3.10. We
see a good agreement with previous results on all scales, thus verifying our algorithm as
well as sample selection for the imaging sample. We also present, for the first time, a
measurement of the very small scale clustering of SDSS DR7 LRGs. We see that there is
little to no difference in the small scale pairwise distribution, excluding a bump at about
100kpc. We do include in our measurements the correction M06 used to compensate for

the affect of deblending, which will be discussed in Section 3.4.

3.4 Clustering Results

In Figures 3.11 and 3.12 we present the measurements of the projected correlation
function for the samples described above in the range 0.01h~'Mpc < r, < 5h~'Mpc.
We have go much smaller than the standard separation of 0.1h"*Mpc to emphasize the
clustering due to central-satellite pairs, which make up the majority of counts in the
innermost bins. The gray dotted line in each panel of Figure 3.11 represents the fiber
collision scale in real space separation at the innermost redshift. It is clear that the scale
at which fiber collisions become a source of error also corresponds to roughly the beginning
of the one-halo term around r, = 0.45h~'"Mpec. This further motivates our use of the cross
correlation estimator. We also note, with the golden dashed line, the smallest separation

that M06 found to be trustworthy based on the seeing of the telescope.
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Figure 3.9 This figure shows the comparison between our calculation of M, to those stated
by Kazin et al. (2010). The bottom axis shows our calculated M, while the vertical axis
shows the fractional difference between our calculation and those stated in the literature.
The blue line shows the smoothed mean and the grey shaded region shows the standard
error. This comparison was necessary in order to be confident we were recreating the
measurement of M06, who used absolute Magnitude cuts to create their sample. We note
the lower luminosity limit of the sample with the solid black line.
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Figure 3.10 The projected cross correlation function wy, of the very small scale clustering
of SDSS-IT Luminous Red Galaxies. We plot the literature values for M06 and Z05, as
well as our measurement of LRGs from Data Releases 3 & 7. Our measurements agree
very well with those previously published. Our measurements of LRGs are also consistent
with each other, except for a bump at 7, = 0.1h~*Mpec, and show no discrepancy on the
smallest scales. The slight difference at the larger scales could be due to cosmic variance.
The errors are taken from MO6.
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We show the measurement of the very small scale clustering of BOSS CMASS galaxies
in four redshift bins in Figure 3.11. The points are the mean value of w, measured in
each jackknife region and the error bars are the diagonal elements of the covariance matrix
estimated using jackknife regions and Equation 3.18. We see hints of evolution in the inner
bins, with the highest redshift bin having a very flat shape at separations smaller than
about r, < 0.1h"*Mpc. The lowest redshift bin show a smoothly increasing function with
a much less pronounced turn over at smallest scales. Regardless of bin, one can see that
there is a flattening in the CMASS clustering.

In order to better measure any trend in the shape of the correlation function at very
small scales, we combine to four redshift bins into two. This has the benefit of beating
down noise at the smallest scales. We present this w, measurement for two total samples
of CMASS galaxies ranging from 0.43 < z < 0.55 and 0.55 < z < 0.7 in Figure 3.12.
Additionally, we present the measurement for the SDSS DR7 LRGs. Previous clustering
measurements of LRGs, in M06 and Z05, have been performed on the smaller Sample14
data release. We have shown in Section 3.3.2 that our measurements are consistent with
previous findings. The slight offset at larger scales between our DR3 and DR7 LRG
measurement is most likely due to cosmic variance; the DR3 sample is both smaller and
covers a smaller footprint on the sky. Again, we note the fiber collision and deblending
scales, calculated at z = 0.43.

There is a statistically significant different in the very small scale clustering of LRGs
and CMASS galaxies, thought to be the progenitors of the LRGs (Maraston et al., 2009;
Tojeiro et al., 2012). Additionally, there is a smaller but still significant difference between

the clustering of the different CMASS bins, with the largest downturn happening in the
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Figure 3.11 We show here the very small scale clustering in four different redshift bins
of BOSS CMASS galaxies. The gray dotted lines denote the fiber collision limit at the
inner edge of each redshift bin. The golden dotted line is the effective radius of the LRG
galaxies from MO06 transformed into a physical radius at the outmost edge of the redshift
bin. There does appear to be a trend towards flattening of the inner slope of w, as we go

out to higher redshifts.
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higher redshift sample. This is consistent to what was hinted at in the previous Figure 3.11
but is now made clearer due a decrease in the errors.

One possible explanation for this turn down is an observational systematic called
‘deblending’. When two extended objects are overlapping on the plane of the sky, the
PHOTO pipeline has to decide how to allocate flux to each of the galaxies. Naively, one
could think that this would cause galaxies to be lost from the sample thus decreasing
the pair counts at very small separations. Howeve, M06 showed that the downturn is
not due to deblending, as deblending tends to boost clustering at small scales by adding
lower luminosity galaxies into the sample. The PHOTO pipeline assigns additional flux
to the fainter galaxy, augmenting its brightness enough to pass the lower luminosity
threshold. Additionally MO6 estimated a deblending correction term for the smallest bins
that pushes the correlation downwards. For our measurements of LRGs we do implement
this correction term in order to better compare our measurements with MO06.

Additionally, M06 also estimated the minimum projected separation that one may
trust the distribution of fluxes that occurs due to deblending. We note this separation
one our plots with the gold dashed line. This calculation is based on the angular scale of
the half light radius of the galaxies transformed into a physical scale at the median redshift
of the survey. We do stress that the turnover in the last bin of the LRG measurement is
most likely due to deblending, our measurement turns over far before this scale. We do
not implement the same correction as M06 for our CMASS galaxies; had we done this,
the turnover would be more pronounced. While we cannot run the same estimation of the
effect of deblending, Beifiori et al. (2014) has measured half light radii of BOSS CMASS

galaxies and have found that these radii are substantially smaller than our smallest bin—
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Figure 3.12 The projected cross correlation function wy, for SDSS-II Luminous Red Galax-
ies in green and two redshift bins of SDSS-IIT BOSS CMASS galaxies in blue and pink.
We see for the first time a significant difference in the shape of clustering between the
LRGs and the CMASS galaxies. We also see a smaller but still significant difference in
the clustering between the two CMASS redshift bins.
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about bkpc. This translates to 17 on the sky— half the angular resolution of the SDSS
survey. Additionally these half light radii are consistent with that of the LRGs, meaning
that the deblending correction for CMASS galaxies would be similar to that for the LRGs.

Based on these facts, we believe that the difference in slopes for our three measurements,

the DR7 LRGs and the two redshift bins of CMASS galaxies, is not due to deblending.

3.4.1 Comparison to Theory Prediction

In order to better understand pyq on very small scales, we compare our measurements
of both CMASS galaxies and LRGs to mocks created using the HOD of Guo et al. (2014)
and assuming that galaxies follow an NFW distribution inside their host dark matter
halos. We use halos from the LasDamas N-body simulation evolved to a redshift of
z = 0.52, consistent with the redshift of our second bin.

As compared to data we see a much more pronounced transition between the one and
two halo terms, happening at 1 Mpc, that is not visible in the mock measurement. The
measurements in Guo et al. (2012a) do show more of a transition than our measurement.
We emphasize that the HOD we use was not fit to our data measurement, nor was it fit
to an N-body simulation. We have compared the clustering results of this HOD with the
values from White et al. (2011) and find very little difference in clustering. Another note
is that the cosmology assumed in the LasDamas simulations differs from the one assumed
in Guo et al. (2014). However, that will not affect the very small scale clustering enough
to make the mock catalogue clustering measurements agree with the data measurement.

We see a clear difference between the clustering predicted from theory and what is

actually observed in the data. The shape of the NFW model prediction is much more
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Figure 3.13 A comparison of the clustering of mock galaxy catalogues assuming an NF'W
profile with our data measurements. The two solid lines are same as in the previous figure.
Each gray line is the measurement on an independent realizations and the heavy dotted
black line is the mean of these measurements. NF'W is unable to replicate the clustering
of both the CMASS sample or the LRG clustering.
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clustered at the smallest scales than the CMASS measurement, and does not exhibit the
turnover that is observed. It is however less clustered than the LRG measurement, which
is more in line with the findings in Chapter 2. We can theorize that the difference in
shape is due to the actual pyq of CMASS galaxies is much shallower than NFW. These
systems are still assembling and the satellite galaxies have not yet fallen inward. Over

time, satellites will fall inward causing the correlation function to steepen on small scales.

3.5 Summary & Discussion

We have presented the very small scale clustering of SDSS-II Data Release 7 Luminous
Red Galaxies as well as SDSS-III BOSS CMASS galaxies. The clustering for the BOSS
galaxies was measured in four separate redshift bins. We have validated both our code
and method by successfully comparing to the previous results of M06 and Z05. We have
also tested the cross correlation estimator on mocks. First, we compared the results of the
cross correlation estimator to that of the LS estimator on mock galaxy catalogues without
fiber collisions. We used a standard HOD present in the literature, dark matter halos from
the LasDamas simulation and an assumption of an NFW profile for the galaxies to make
our mocks. The cross correlation and LS estimator were virtually indistinguishable. Next,
we tested how well the cross correlation estimator is at recovering the very small scale
clustering in mocks with fiber collisions. In order to do this, we introduced fiber collisions
in a similar way as is done by the data targeting algorithm. We do caution that we find
a significantly fewer number of galaxies affected by fiber collisions in our mocks. This is
expected because our mocks are not flux limited and do not contain any foreground stars

or background quasars. We find that the cross correlation estimator does recover the very
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small scales clustering, and more effectively than the LS estimator.

The flattening in the very small scale clustering was observed in this work, something
that has not been measured before. We find a significant evolution between the cluster-
ing of LRGs and CMASS galaxies on the very small scales, with the CMASS galaxies
flattening out on small scales while the LRGs continue upwards in more of a power law
like fashion. This small scale clustering behavior of LRGs has been measured before, but
never compared to the galaxies thought to be their progenitors Tojeiro et al. (2012). We
also see a trend, though less significant, between the clustering of CMASS galaxies in the
redshift range of 0.43 < z < 0.55 and 0.55 < z < 0.7. It makes intuitive sense that there
would be a difference in clustering given that the dynamical time between these bins is
long enough for a satellite galaxy to infall, thus increasing the number of pairs at the
smallest scales.

This downturn in clustering at early times implies a steepening of the galaxy distri-
bution profile over cosmic time. As more satellite galaxies are accreted onto a system the
number of pairs on very small scales increases, boosting the w,. The dynamical time of a
galaxy accreted at a redshift of z = 0.55, the median redshift of BOSS CMASS, is roughly
Tayn ~ 1Gyr. Since the LRG sample has a median redshift of z = 0.27, there is enough
time for an accreted satellite galaxy accreted sink into the inner part of a halo.

What is unclear however, and the focus of the follow up work, is whether this is a
trend in redshift as stated above or the result of looking at a different class of galaxy. We
also expect that different mass galaxies, with different number densities, occupy more or
less rare density peaks and are such differently clustered. We see evidence for this at the

large scale clustering of our two samples. In the two-halo term, started at separations
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of hundreds of kpc, the higher redshift bin is more clustered. This bin also has a lower
number density, leading one to think that we are indeed looking at two different classes
of galaxies, as opposed to the same class in two redshift bins.

The basic question we are asking is “Is the evolution in the downturn at the smallest
scales due to comparing two different masses of galaxies or an evolution in the central-
satellite pair separation of the same galaxies?” A simple way to check this would be adjust
the number density of the lower redshift bin to that of the higher by only taking the
brightest galaxies until the number densities were equal. This should fix the discrepancy
at the largest scales, meaning that we are now comparing similarly rare density peaks
in both redshift samples which results in the same large scale clustering. If we then still
see the trend in downturn at the smallest scales, we can conclude that we are seeing a
redshift evolution in the satellite pair separation. With some modeling, this result could
be turned into a merger rate and an understanding of how both CMASS and LRGs are
assembled.

Conversely, if once the large scale clustering is fixed there is no trend on the smallest
scales we can conclude that the difference we see is mass related. This is also interesting
because we do not expect to see a mass evolution in a sample that was specifically designed
to be mass complete.

In conclusion, we have measured an evolution of the very small scale clustering of
BOSS CMASS galaxies and SDSS-II LRGs. The very small scale clustering of BOSS
CMASS galaxies shows shows an evolution in the turnover of very small scale clustering
between z = 0.7 and z = 0.5. Both redshift ranges of BOSS CMASS galaxies exhibit

significantly flatter very small scale clustering than the SDSS-IT Luminous Red Galaxies
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at z = 0.3. Additionally we have shown that their clustering is most likely not fit by an
NFW profile. Future work will focus on the physical explanation for this changing very
small scale clustering, including modeling the changing distribution profile of massive

satellite galaxies over cosmic time.
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CHAPTER IV

CONCLUSIONS

Galaxy clustering on very small scales is driven by the spatial distribution of satellite
galaxies— measuring the clustering means measuring where satellite galaxies are in their
host dark matter halos. There is a direct connection between the distribution profile of
satellites and the shape of clustering on scales less than one Megaparsec. This distribution
profile has long been assumed to be the same as the host dark matter profile at these
scales, but I have shown that this is not the case by measuring and modeling the very
small angular clustering of Sloan Digital Sky Survey galaxies. Additionally, we see space
for a trend with luminosity— a trend that has been observed before but neither with
the precise accounting for observational systematics nor a more complete modeling of
the galaxy distribution. It is not surprising that the satellite distribution profile is not
necessarily consistent with that of the dark matter— where satellites are located in their
host halos is dependent on a combination of complicated baryonic physics. More luminous
satellite galaxies live a more turbulent life, which could explain why they have a steeper
distribution profile. Modeling this trend required a large suite of cosmological N-body
simulations of different volumes and a sophisticated massively parallel Bayesian fitting
engine powered by petascale computing cluster. The inherent systematics and technical
challenges in these measurements present opportunities to develop new techniques that
can benefit the entire field, as opposed to just the very small slice of physics that it was

developed for. I developed a technique that exploited regions on the sky with high redshift
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completeness in order to maximize the signal from the close pairs of galaxies that make
up my measurement.

Once we turned our eyes to the higher redshift regime, we see evidence of a changing
galaxy-halo connection with cosmic time. Higher redshift galaxy progenitors show a
striking flattening in their clustering at very small scales, indicative of their systems
having fewer satellite galaxies at earlier times. The steepening signal we see in the lower
redshift galaxy sample is a signature of galaxies being gravitationally bound to more
massive systems— eventually these satellites will fall to the center of their host dark matter
halos and be accreted onto the central galaxy. Each redshift bin is a snapshot of the
satellite galaxy distribution at that time, and combining these snapshots we have a better
indication of how galaxies evolve. While it is unclear now whether these snapshots show
the life cycle of the same type galaxy or the evolving halo occupation distribution of the
same number density dark matter halo, this new measurement presents a vital building

block in understand how the universe evolves.

E quindi uscimmo a riveder le stelle.

Dante Alighieri
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APPENDIX A

FIBER COLLISION INCOMPLETENESS

1.1 Cross Correlation Test

As we discussed in Chapter 2, our method of reducing the effects of fiber collisions
consists of three parts. First, we restrict our samples to the plate overlap regions, where
the vast majority of collided galaxies are recovered. Restricting our samples to the plate
overlap regions guarantees that all cases of collision pairs are recovered. These are cases
where there are only two galaxies within 55” of each other. Additionally, some cases of
collision triplets are recovered. These are cases where one galaxy is within 55” of two
other galaxies, but these others are not within 55” of each other. However, other cases of
collision triplets are not recovered, such as when three galaxies are all within 55” of each
other. In these cases, only two of the three galaxies in the triplet get measured redshifts.
Naturally, higher order collision groups are also not fully recovered.

Second, for those few galaxies in collision triplets and higher multiplicity collision
groups that do not get measured redshifts, we use the nearest-neighbor approximation
and assign the collided galaxies the redshifts of their nearest neighbors on the sky. By
studying close pairs that have been recovered in the plate overlap regions, we find that
this correction works well roughly two-thirds of the time for SDSS Main galaxies. In other
words, roughly two-thirds of the time, two galaxies that are closer than 55” on the sky
are actually at the same redshift.

Third, we use the angular correlation function instead of the projected correlation
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function. This has the advantage that the angular separation of a given galaxy pair is
completely unaffected by collisions, while the projected physical separation is not free of
error. Since we are using angular instead of physical scales, a collided galaxy will only
cause errors in our measurements if the nearest-neighbor redshift assignment causes the
galaxy to drop out of or enter into the volume-limited sample in question. FErrors in
redshift that do not change a galaxy’s membership in the sample (whether it was in or
out) have zero effect on our measurements. Even when a collided galaxy’s membership
changes, there are really only three cases of collisions that can cause an error in our
angular clustering measurements. The first occurs when the two galaxies straddle the
redshift boundary of the volume-limited sample — i.e., one is inside the sample and the
other is outside the sample — and the galaxy that is outside the sample did not get a
measured redshift. The collided galaxy is then given the redshift of its neighbor and is
thus brought into the sample. This error results in a small-scale pair that should not have
been counted. The second failure mode occurs when the two collided galaxies straddle
the luminosity limit of the sample, with the less distant galaxy being both outside the
sample (i.e., below the luminosity limit) and the one that did not get a measured redshift.
The collided galaxy is then moved to a larger distance and its calculated luminosity can
now be high enough to bring it into the sample. This error also results in a small-scale
pair that should not have been counted. The third and final failure mode occurs when
the two collided galaxies are both in the sample, but the more distant one is close to the
luminosity limit of the sample and does not get a measured redshift. When this galaxy
is given the lower redshift of its neighbor, its calculated luminosity can make it drop out

of the sample. This error results in a loss of a small-scale pair that should have been
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counted. All other cases of collisions result in no net gain or loss of a small-scale pair.

As a result of our methodology, only a very small fraction of all SDSS fiber collisions
appear in our samples and only a small fraction of those that do appear actually cause
errors on our measurements. Nevertheless, this small number of collided galaxies that do
cause errors is not necessarily a negligible contribution to the number of galaxy pairs at
very small scales. It is thus important to assess the magnitude of fiber collision errors in
our analysis. The first test uses a cross-correlation test that is designed to maximize the
fiber collision signal present in our samples. The second way is to approximate realistic
mock galaxy catalogs that include fiber collisions so that we could directly test the extent
to which our analysis method minimizes these errors. However, to be suitable for this
purpose, the mock catalogs would have to cover the full flux-limited SDSS sample, making
them a significant challenge to construct.

We first introduce a new low-redshift cut in each of our four volume-limited samples
so that it does not overlap with any of the other samples. For example, we cut the M, <
-21 sample at the outer redshift limit of the M, < -20 sample, we cut the M, < -20 sample
at the outer redshift limit of the M, < -19 sample, and so forth. This results in four new
volume-limited samples that have no spatial overlap with each other. We then measure
the angular cross-correlation function between each of these new samples and the union
of the other three new samples. In this way, each cross-correlation is measured between
two samples that have no physical overlap and thus a minimal number of real physical
correlated pairs, resulting in a measured cross-correlation that should be close to zero
(it should actually be slightly higher than zero because there will be some real physical

correlated pairs that straddle the redshift boundary between the samples). However, fiber
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Figure 1.1 Cross-correlation test designed to probe the presence of fiber collision incom-
pleteness in our volume-limited samples. The plot shows the angular cross-correlation
function between sets of two samples that are designed to be spatially exclusive with each
other. This is done by first introducing a low redshift cut in each of our four volume-limited
samples so that no sample overlaps with another. We then measure the cross-correlation
of each resulting sample with the union of the other three. With this setup there should
be no real physical pairs in the cross-correlation except for erroneous pairs created due to
fiber collisions. The 55" collision scale is denoted by the vertical dashed line.
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collision errors can cause a fake signal in this cross-correlation because these errors can
move galaxies across sample boundaries, as we have discussed above. Furthermore, this
signal should only appear below the collision scale of 55”.

The results of this test are shown in Figure 1.1. The Figure shows exactly what we
expect if fiber collision incompleteness is present in our samples. All four cross-correlations
are slightly higher than zero for # > 55”, and they exhibit a sharp decrement below this
scale. The transition occurs exactly where we expect it, between the two bins that straddle
the collision scale. Moreover, the suppression of the cross-correlation function below this
scale appears to be roughly scale-independent, at least as far as we can tell with the
precision level of the measurements. Finally, the fiber collision signal is similar for all four
samples, with perhaps some slight suggestion of a larger effect for less luminous samples.

The cross-correlation test proves definitively that our analysis methodology does not
eliminate fiber collision incompleteness. This incompleteness is clearly present in the
angular clustering of our samples. However, it is very difficult to translate the signal in this
cross-correlation test into an estimate of the effect of fiber collisions on our auto-correlation
measurements shown in Figures 2.3 and 2.7. The cross-correlation test maximizes the
visible effect of fiber collisions in two ways. First, by removing any spatial overlap of the
samples being cross-correlated, the unphysical pairs caused by fiber collisions become the
entire signal, whereas in the auto-correlation measurements they are only a tiny fraction of
the signal. Second, fiber collisions can only cause a deficit of pairs in this cross-correlation
test, whereas they can both add or subtract pairs in the auto-correlation function, as we
argued above. This adding and subtracting of pairs in the auto-correlation function could

result in a smaller net effect due to fiber collisions. In the cross-correlation test, the only
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case of collisions that affects the measurement is when the two collided galaxies straddle
the redshift boundary between the two samples. Regardless of which of these galaxies
receives a redshift, the nearest-neighbor correction results in both galaxies ending up in
the same sample, which removes the pair from the cross-correlation. This is why we see
a deficit below the collision scale in Figure 1.1. The set of collisions affecting the cross-
correlations is thus quite different from that affecting the auto-correlations, making it
difficult to translate between the two.

We interpret the lack of any obvious visible features at the collision scale in our auto-
correlation measurements as evidence that fiber collision errors in these measurements
must be small relative to the real physical signal. Figure 1.1 demonstrates that these
features should appear between the two bins that straddle 55", exactly as we expect. The
various discontinuities seen in Figure 2.3 occur at other scales and are thus not likely
caused by fiber collisions. The only exception to this is the slight discontinuity seen in the
auto-correlation of the M, <-19 sample. However, the magnitude of this discontinuity
is consistent with the up and down fluctuations seen at other scales. Moreover, there
does not appear to be any systematic enhancement or suppression at all scales less than
55" as is seen in the cross-correlation test. Errors due to fiber collisions are thus likely
small relative to the real physical signals present in our auto-correlation measurements.
Nevertheless, we emphasize that fiber collision errors are definitely present in our mea-
surements at some level and it is not easy to asses their exact impact on our modeling
results. Though we do not expect this impact to be large, it is prudent to treat our

derived parameter values with some degree of caution.
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1.2 Test on Mocks

It is important to understand how many galaxies pairs come from single pair collision
groups, which will be recovered in the overlap, as opposed to higher order groups, which
will not. We use mock galaxy catalogues to test the percentage of pairs that are recovered.
Figure 1.2 shows how different sized collision groups affect w(#). We measure w(#) on a full
mock sample without any fiber collisions. The group finder is then employed to introduce
fiber collisions. Next, we allow all galaxies in pairs to have redshifts. This is equivalent to
the entire sky being tiled twice. And finally, we allow all triplets to have redshifts which
would be equivalent to the entire sky being tiled thrice. The overlap region recovers most
of the counts that we are missing, with the double overlap sample recovering almost all.
A very small percentage of counts are from groups with four or more collided galaxies. An
important point is that the effect of fiber collisions goes out to higher separations than
the fiber collision limit. We also test how the nearest neighbor correction affects the slope
of w(f) in the overlap region. The effect is small and does not effect our results due to
the small number of pairs in triplet or higher collision groups.

Fiber collisions affect all pairs (or groups) of galaxies separated by less than its angular
scale. Losing one galaxy to a fiber collision will also affect pairs on all scales. There
are three types of galaxy-galaxy pairs in a measurement of w(f) with a fiber collision

correction:

1. DDyyye, the physical galaxy pairs

2. DD, are correlated pairs of galaxies that have been recovered by a correction
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Figure 1.2 A comparison w(f) for a sample of galaxies with measured redshifts (blue
points) and a sample of galaxies using the ‘nearest neighbor’ correction. This correction
assigns the redshift of the nearest neighbor galaxy to the galaxy that has collided with
it. The drastic drop is at the fiber collisions limit and any pairs within that limit for the
blue points are in overlap regions. The open points are the blue points when the missing
area of the footprint is taken into account.
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3. DD 4 uncorrelated pairs of galaxies included in the samples by a correction

Figure 1.2 shows w(#) for two samples of galaxies. The first sample, blue solid points,
only has DD, pairs less than the fiber collision limit. These pairs come from about one
third of the SDSS footprint that was tiled twice. We account for this different in footprint
by multiplying the blue points by the missing area, shown by the open blue points in
Figure 1.2. We then apply a nearest neighbor correction to the missing redshifts shown
by the red points in Fig 1.2. In this correction, a group finder is run on the galaxy target
sample to maximize the number of galaxies that receive redshifts. If the corrected w(f)
did not include DDy pairs, the red points would completely agree with the open blue
points. This is not the case and the deviation between the two is a function of angular
separation continuing further out than the fiber collision scale.

These reasons motivate our method of trimming the sample to the overlap region which
recovers most of the missing counts while still using the nearest neighbor correction on
the remaining galaxies. This is a compromise between having high enough number counts

but being confident that the pairs we measure are correct.
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APPENDIX B

SELECTION FOR SDSS-IIT BOSS CMASS GALAXIES AND LUMINOUS RED
GALAXIES

#1/usr/bin/python

# Selection for BOSS CMASS Galazies

import pyfits
import numpy as np
from astropy.cosmology import FlatLambdaCDM

cosmo=FlatLambdaCDM (H0O=100,0m0=0.266)

## Read in the fits file

hdulist = pyfits.open(’/hd0/Research/Clustering/Boss/drll/drllv2

/cmass—drl1v2—-N—Anderson.dat. fits )

## Uncomment the following line to wview the info about the table

print hdulist.info ()
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## Read the tabular portion of the fits file into the wvariable ~
table . This assumes that the table of interest is located

im extension 1

table = hdulist [1]. data

ra=table. field ('RA”)

dec=table. field ( 'DEC”)

redshift=table. field ('Z")
polygon=table. field ( 'IPOLY ")
extinction=table. field ("EXTINCTION ")
frac=table. field ("FRACPSF ")

exponential _flux=table. field ( "EXPFLUX")

dev_flux=table. field ( 'DEVFLUX")

extinction_g=extinction [: 1]
extinction_r=extinction [: 2]

extinction_i=extinction [:,3]

fiberflux=table. field ( "FIBER2FLUX")

fiberflux_i= 22.5—-2.5%np.logl0(fiberflux[:,3]) — extinction_i
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f.i_cmod=(1 — frac|:,3])*exponential_flux[:,3] + frac|[:,3]x
dev_flux [:,3]

i_cmod=22.5—2.5%np.logl0(f_.i_cmod) — extinction_i
modelflux=table. field ( '"MODELFLUX" )
modelflux_g= 22.5—-2.5%np.logl0( modelflux[:,1]) — extinction_g

modelflux_r= 22.5—-2.5%np.logl0( modelflux[:,2]) — extinction.r

modelflux_i= 22.5—-2.5%np.logl0( modelflux[:,3]) — extinction_i

d_perp=(modelflux_r—modelflux_i) — (modelflux_g—modelflux_r) /8.

i_cmod_cut= 19.86 + 1.6%(d_perp — 0.8)

d_perp_cut=0.55

weight_cp=table. field ( "WEIGHT CP ")

icollided=table. field ( "ICOLLIDED ")

distance_modulus=cosmo. distmod (redshift)
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Mag_i=i_cmod — distance_modulus — (—0.5)

array=np.column_stack ((ra,dec,redshift ,weight_cp ,polygon ,i_cmod ,
modelflux_g ,modelflux_r , modelflux_i, fiberflux_i ,
distance_modulus ,Mag_i))

dimensions=str ("ra_dec_redshift _weight_cp_polygon._i_cmod._
modelflux_g_modelflux_r_modelflux_i_fiberflux_i._

distance_modulus._.Mag_i”)

np.savetxt(’/hd0/Research/Clustering/Boss/drll/drllv2/drl1l1v2_all
.out’ array ,delimiter="\t’ ,newline="\n’,header=str (dimensions

) ,comments="_")

#this really isn’'t necessary but it’s here anyway

ids=np.where(( i_cmod > 17.5 ) &

( icmod < 19.9) &

( modelflux.r — modelflux_i < 2 ) &

( d_perp > d_perp_cut) &
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( fiberflux_.i < 21.5 ) &

( icmod < i_cmod_cut))

array_filter=array[ids |

bin=(0.43,0.5,0.55,0.6,0.7)

np.savetxt(’/hd0/Research/Clustering/Boss/drll/drllv2/

drllv2_imaging.txt’,array_filter ,delimiter="\t’ ,newline="\n")

path=(’/hd0/Research/Clustering /Boss/drll/drllv2/")

for x in range(0,4):
array_list=array_filter [np.where((array_filter [:,2] >
bin[x]) & (array_filter [:,2] < bin[x + 1]))]
np.savetxt (str(path) + "bin” + str(x+1) + " _selection.

txt” ,array_list ,delimiter="\t’ ,newline="\n")
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array_output=array _filter [: ,range(0,5) |

np.savetxt(’/hd0/Research/Clustering/Boss/drll/drl11v2/Di.drllv2.

out.selection’  array_output ,delimiter="\t’ , newline="\n")

for x in range(0.,4):
array _list=array _output [np.where((array _filter [:, 2] >
bin[x]) & (array_filter [:,2] < bin[x + 1]))]
np.savetxt(str(path) + "bin” + str(x+1) + 7
_Ds_dr1lv2_selection.out” ;array_list ,delimiter="\t",

newline="\n")

Selection for SDSS-II Luminous Red Galaxies

SELECT

ra ,

dec,

petroMag_r ,

extinction_r into mydb.lrg dr7 _primtarget_selection from
photoObj

WHERE ( PrimTarget=32 ) AND
petroMag_r < 19.2 AND

(psfMag_r — modelMag.r) > 0.3 AND
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(r — 1) — (g —1r)/4.0 — 0.18 < 0.2 AND

(r — 1) — (g —1r)/4.0 — 0.18 > —0.2 AND

petroMag r < 13.1 + (0.7*x(g — r) + (1-0.7)%4.0x((r — 1) —
0.18)) /0.3 AND

petroMag._r + 2.5%logl0(2%3.14159xpetroR50_r*xpetroR50_r) <

24.2
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