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CHAPTER I

INTRODUCTION

Healthcare Organizations (HCOs) are inherently complex bodies of clinicians and 

support staff working to provide care for patients (1; 2).  In addition to this inherent 

complexity, HCOs deal with constant change, whether adopting new protocols, reacting 

to legislated changes, providing care in emergency situations, or annually introducing 

new classes of medical students and residents. The complexity and constant change of the 

organizational structure and workflows makes HCOs difficult to accurately model using 

traditional techniques. This difficulty particularly stymies the efforts of HCO privacy 

officials who wish to increase system security and ensure patient confidentially by 

applying fine-grained access control systems to the electronic Health Information 

Systems (HIS) within the HCO, systems such as Electronic Medical Record Systems 

(EMRS).

When security experts discuss healthcare, they often suggest that healthcare 

systems use the security models introduced by the military and by the banking industry. 

These groups have effectively implemented security measures such as role-based access 

control (3; 4), in which users are assigned a role or set of roles, which determines his or 

her access to information. 

Unfortunately, these access control systems are not widely adopted by HCOs for 

several reasons. First, clinicians have an understandable fear of being encumbered by 
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inappropriately configured access rights, making it difficult to access critical patient 

information in a timely fashion, particularly in medical emergencies (3). Second, the 

organizational complexity of HCOs is incredibly difficult to capture accurately or 

completely using the traditional top-down approach of manually defining the access 

policy. In a typical top-down approach, security experts try to manually codify the 

allowed actions within the system, as well as assign these actions to the proper 

individuals.  Unfortunately, this type of modeling can suffer from issues of informant 

accuracy (5). Third, the dynamic nature of an HCO can quickly invalidate manually-

defined access policies.

Since the policy definitions of access control systems can be too burdensome for 

HCOs, many fall back to retrospective auditing of users' actions within the system (6). 

Unfortunately, auditing merely shifts the manual burden from upfront policy definitions 

to the massive task of combing through thousands or millions of user actions every day. 

In practice, auditing reduces to random spot checks and requested reviews.  Even at 

advanced institutions, consequently, the level of auditing sophistication is very basic.

 Currently, many clinical systems are essentially vulnerable to insider attacks 

(attacks in which the user has a legitimate right to access the system, but not necessarily 

rights to specific information within the system) (7).

The lack of adoption of access control systems or thorough auditing within HIS is 

due neither to inherent problems in these technologies nor to the lack of vendor 

implementations within HIS products.  Rather, this lack is caused by the inability to 

create appropriate policy definitions of what is normal and abnormal usage of the HIS. 
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In this work, we will demonstrate a novel tool that can model an HCO using a 

bottom-up approach.  Our approach constructs a statistical model of the HCO by 

analyzing the usage of a HIS through its access logs. 

To our knowledge, no work exists that attempts to mine policies from access logs 

in the HCO setting. Previous work, however, has demonstrated the viability of using 

access logs to characterize user behavior (8; 9). Additionally, the fields on which the 

methods are based, such as social networking and data mining, have a successful history 

of distilling data and providing meaningful results. 

Our methods and tool are designed so an HCO can generate a statistical model of 

its users' interactions.  This statistical model can form the basis of policy definitions and 

rules in a real-world access control system or auditing system.  Specifically, our work 

will feed into the efforts in model-based software platforms, such as Vanderbilt's Model-

Integrated Clinical Information System, a system that assists in the rapid development 

and evaluation of formal systems based on service oriented architectures (10; 11). These 

platforms have integrated robust privacy and security policy specification and validation 

languages, such as Stanford's logic based on contextual integrity (12). The statistical 

modeling technique presented in this paper provides the dynamic policies needed by 

these systems. 

In this thesis, we first cover the issues with existing solutions and explain how 

this work relates to other work in the field.  Second, we present an open-source 

framework, the Healthcare Organization Relational Network Extraction Toolkit 

(HORNET), that allows HCO officials to generate a statistical model based upon their 
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own information systems and allows researchers to build on top of our work. Third, we 

explain an approach that HORNET can use to generate a statistical model of how the 

organization works from the organization's access logs.  Using this approach, we next 

demonstrate HORNET by generating a statistical model from the access logs of 

Vanderbilt University Medical Center's (VUMC) EMRS, known as StarPanel. With a 

statistical model built from StarPanel's access logs, we conduct a pilot survey to 

demonstrate the experts' inability to model how the organization works.  We conclude this 

work by summarizing our findings and proposing the next logical steps of this research.
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CHAPTER II

BACKGROUND

Electronic Medical Record Systems & Security

HCOs increasingly adopt Electronic Medical Record Systems (EMRS) as a means 

to improve quality while preventing errors (1; 2) and to reduce the cost of delivering care 

(13; 14). Initially believed to represent a massive step forward in terms of security when 

compared to the paper-based medical record, EMRSs instead shift the attack vectors (3). 

There is an ever increasing body of evidence of privacy violations conducted by 

insiders who, while authorized to use the EMRS, improperly access patient information. 

Numerous celebrities, including George Clooney, Britney Spears, and Farrah Fawcett, are 

victims of improper medical records access by valid EMRS users (15-17).  Although 

these high profile cases garner much media attention, there are likely dozens or hundreds 

of improper accesses that occur and are never caught. Some improper accesses are likely 

out of human compassion—wondering how a co-worker is doing during her stay in the 

hospital—but there are numerous cases of privacy violations for the sole purpose of 

conducting fraud (18; 19). 

A core benefit of an EMRS, centralization, allows providers from distant locations 

to view and contribute to a unique record for each patient. Centralization means that the 

records potentially could be protected by strict access control polices compared to paper 

records, which could lay exposed on a desk or a cart in a hallway. But, centralization also 

5



implies that a breach of privacy can be carried out from a distance and almost instantly. 

Many researchers and security officials realize the security implications of an 

electronic record and propose solutions often based on successes in other industries. 

Barrows and Clayton stress the importance of healthcare policy informing security 

policies (3). Their work suggests implementing access control in EMRS, in which each 

user's permissions to access specific patient information is explicitly defined pre-hoc. 

Most interestingly, the authors point out the paradox that exists with healthcare data: the 

most private and sensitive data in a patient's record is often the most relevant data when 

treating that patient. Denley and Smith have similar sentiments about the use of access 

control in EMRS (20). They suggest that the access control should be based upon a user's 

role in the organization (nurse, clerk, junior doctor, radiologist, etc.) and the locations of 

their responsibility (by ward, specialty, etc.). They indicate several cases in which this 

model breaks, such as if a user legitimately needs to access the record of a patient who 

visited the ward beyond a certain time window. Furthermore, Denley indicates that any 

access control system for medical records needs to have a security override method. 

These researchers provide sound justification for using access control in healthcare 

systems, but they fail to address the practical issue of actually building the access control 

policies.

To a large extent, HCOs successfully adopt many standard information 

technology security protocols, such as encryption, digital signatures, firewalls, and user 

authentication. These measures are primarily designed to prevent unauthorized access, 

rather than to prevent the insider threat by enforcing rules on how users should be 
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allowed to interact with the data once they have a legitimate need to access the system. 

Unfortunately, this insider threat proves a greater and more costly challenge to HCOs  (7; 

21).

The typical method for preventing insider attacks,  role-based access control, used 

by the banking industry and the military, does not work well in the healthcare 

environment. In role-based access control, each user is assigned to a role. The roles are 

given the ability to conduct certain tasks within the system. These systems rely on a 

complete upfront definition of the access policy in terms of the users, roles, and tasks. 

Due to the highly dynamic and critical nature of healthcare, it is nearly impossible for 

privacy administrators to manually conduct this upfront or pre-hoc definition of policy 

within the system. The fear of being too strict in the access policies permeates healthcare. 

Providers are often unwilling to give up control when providing care to patients, 

especially in emergency situations.

Government Regulation

Until recently, the most prominent national legislation dealing with healthcare 

security and privacy was the Health Insurance Portability and Accountability Act, known 

as HIPAA (22).  Within HIPAA, the Privacy Rule details the criteria for “protected health 

information,” how this information can be disclosed, and how improper disclosures are 

handled.  Also within HIPAA is the Security Rule, which indicates general safeguards for 

protecting healthcare data, including the use of auditing (§164.312(b)) and access control 

(§ 164.312(a)).  Unfortunately, these two rules, while mandating goals, lack specifics of 
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how these technologies should be implemented.  This lack of specificity puts the 

healthcare industry in a state of limbo—in which the industry acknowledges that its data 

must be secured, but lacks full, end-to-end security and privacy solutions.

While HCOs in the United States work to become HIPAA compliant, there have 

been few, if any, sanctions imposed for security or privacy lapses. But recently, 

government agencies have started pushing HCOs to comply with the legal codes by 

levying heavy sanctions (23).

In response to the ambiguous regulations of the past decade, the recent passage of 

the Health Information Technology for Economic and Clinical Health Act, part of the 

American Recovery and Reinvestment Act of 2009, is expected to improve the regulation 

of HCO security (24).  As part of the act, HCOs must simultaneously improve adoption 

and security of electronic medical record systems.  The act seeks to improve security by 

forcing HCOs to monitor and publicly report any breaches of patient privacy.  This 

renewed regulatory interest in healthcare information security justifies the need for the 

work that we are presenting.

Log Mining

A fairly young, but rich history exists for mining system access logs. Much of the 

work in log mining parallels the growth of the Internet. Some of the early work in access 

mining comes from Cooley, Srivastava, and colleagues. They discuss pattern discovery 

from web server access logs (25; 26). They additionally hint at the use of association rule 

mining as a method for performing the pattern discovery. They also discuss methods for 
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preparing data, specifically with the intent of tracking user sessions (27). 

Based on these techniques, researchers have begun to successfully use log mining 

to discover patterns in human behavior.  From email logs of who sent and received email 

within Enron during the company's collapse, researchers can detect fundamental 

organizational changes (8; 28).

In the healthcare setting, access log mining is often conducted in connection with 

improving electronic education resources (29-31). The work of Chen et al. shows that 

mining EHRS access logs is useful for discovering clinicians' information needs (32). 

Additionally, Malin's research shows that patients' Internet browsing patterns on a health 

information site are correlated to those patients' medical diagnoses (9).  

The work of these researchers indicates the usefulness of access logs as a source 

of information about how users and organizations interact and change.  Our proposed 

research extends the field of log mining by applying this field's techniques for the 

purpose of generating security policies.

Process Mining & Workflow Analysis

The concept of process mining or workflow analysis in healthcare is explored by 

several groups (33). The study of workflows is especially important to healthcare because 

it can help detect and fix suboptimal processes in an effort to increase the quality of care 

(1). The cases of HCO workflow mining are often localized to a small group and focused 

on safety improvement measures, instead of HCO-wide privacy and security issues.

Outside healthcare, the study of workflows is also active, from the 
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characterizations of how workflows and organizations change over time (34) to advanced 

techniques to detect, model, and analyze workflows (35-37).  Unfortunately, many of 

these techniques only work for small datasets, and therefore are not suitable when 

analyzing a whole organization.

Conclusion

Our work comes at an opportune time.  There is an existing void in healthcare 

security, caused by the inability of traditional solutions to prevent insider attacks within 

HCOs. Unfortunately, this void is increasingly exploited as EMRSs become more 

prevalent.  With the public aware of this growing privacy issue, the government is 

actively pressing HCOs to close the security void.  In the coming chapters we will present 

a framework takes the first step towards addressing the current security void.
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CHAPTER III

HORNET SOFTWARE ARCHITECTURE

Introduction

One of the main contributions of this work is an open-source software platform 

(HORNET) for efficiently analyzing HCO access logs.  The design of HORNET includes 

two primary goals: reusability and extensibility.  

In order to be reusable, HORNET uses abstract concepts and allows 

administrators to configure mappings from the organization-specific details into these 

abstract concepts. For example, specifics of the access log format, such as delimiters and 

fields, are configured by the user.  Configuration of HORNET allows other HCO 

administrators and researchers to reuse HORNET to conduct the analysis presented in 

this thesis on their own information systems. In order to analyze small to large HCOs, 

HORNET must also perform its analysis efficiently.

In addition to being reusable, HORNET is extensible, so that developers can add 

or customize analysis techniques.  HORNET utilizes a plugin architecture, in which 

developers can take advantage of a rich Application Programming Interface (API).  This 

API allows quick development for additional features and analysis techniques.  Since 

HORNET is an open-source project, released under the Apache License, Version 2.0 (38), 

developers can safely extend and contribute to the platform.
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HORNET Within An Existing HCO Infrastructure

To facilitate the adoption of HORNET by other HCOs, we have designed it to 

seamlessly fit into the existing IT infrastructure of an HCO.  HORNET will accept access 

logs in nearly any format from any source IT system.  The access logs can be in a text 

format, such as comma- or tab-separated or XML.  Likewise, the access logs can be 

stored in any major relational database system, such as Oracle, MySQL, Postgres, DB2, 

Access, SQL Server, or SQLite.  The ability to accept multiple data formats comes from 

our abstracted model of an access log, with specific implementations that map XML, flat 

text, or relational database tables into abstract access events.  Once HORNET is installed 

and configured to the format of the access logs, the user can select which analyses he or 

she wishes to run, using a configuration language. As shown in Figure 1, HORNET sits 

on top of the existing HCO information technology infrastructure, thus no changes 

beyond obtaining log files is necessary for HORNET.  HORNET can optionally feed off 

of sources of meta-information about users—such as a user's role or department that is 

stored in traditional human resource databases.
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Software Description

The HORNET software platform, developed in the Python language (39) has two 

key pieces:  HORNET Core and the HORNET plugins (Figure 2).  The HORNET plugins 

each perform a specific task, usually involving some specialized method of analysis, 

while HORNET Core is a general framework on which the plugins run.  The Core 

additionally provides common functionality (e.g., file and database access), general data 

structures (e.g., graphs, nodes, and edges), and plugin configuration.  New plugins can be 

written for alternate analysis and use HORNET Core to remove much of the “grunt” 

work.

13
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HORNET Core consists of a handful of modules that ease plugin development, 

shown in Table 1. HORNET Core also provides the “executable” that launches any 

desired analysis as well as the configuration mechanism to allow the user to specify what 

analysis is desired.  HORNET is capable of running on any modern operating system.

Table 1: HORNET Core Modules

Module Features

File API • Read/write delimited files, such as comma- or tab-separated data
• Create unique, temporary files
• Move & delete files
• Persist complex data structures to disk

Database API • Query major relational database products (including MySQL, Postgres, 
Oracle, SQLite, Access, SQL Server, and DB2)

• Wraps the functionality provided by the open-source SQLAlchemy1 
library

Network API • Basic data structures, such as a relational network, edge, and node
• Methods to manipulated and analyze these data structures
• Wraps the functionality provided by the open-source library NetworkX2 

Plotting API • Create common graphs, such as XY-plots or log-log plots 
• Wraps the functionality provided by matplotlib3 library

Task API • Run computationally intensive tasks in parallel, by taking advantage of 
multiple processors and multiple cores

Plugin API • Specification to which plugins must adhere
• Provides common utilities, such as logging

1 http://www.sqlalchemy.org/   
2 http://networkx.lanl.gov/   
3 http://matplotlib.sourceforge.net/   
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Plugin Architecture

On top of HORNET Core, we provide several plugins and allow for any 

additional plugins (Figure 2). The plugins must adhere to a basic contract which defines 

how they are notified that it is their turn to process data and how to return data once they 

are finished with their analysis.  Beyond this basic contract, the plugins can perform any 

type of operation a developer desires. The basic contract allows for plugin “chaining” in 

which the output of one plugin becomes the input of another plugin.  For example, one 

15

Figure 2: The modular design of HORNET allows easy extension.



plugin can create a relational network object from a log file, HORNET Core then passes 

this relational network object to the plugins that are configured to wait for this data. As 

Figure 3 shows, the network object is passed to the Social Network Analysis plugin and 

the Network Abstraction plugin. Once these plugins finish their analysis, their output is 

appropriately piped to the next plugins.  The plugin chaining can become complex, 

allowing for forks in processing (i.e., multiple plugins can process the output of a single 

plugin) and for joining forks (i.e., forked execution threads can be rejoined into a single 

plugin). The plugins and the piping configuration are specified in a single configuration 

file, using a powerful configuration language, which is a subset of the Python language.
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Figure 3: Example of HORNET's Plugin Chaining

Runtime Information

HORNET is designed to run efficiently, providing administrators or researchers 

results within a reasonable time frame. Since HORNET sits on top of the existing 

infrastructure, it can process data in an off-line, batch mode.

Many of the analyses that HORNET performs are CPU-intensive.  However, 
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HORNET can be memory-bound depending on the size of the dataset.  The memory 

required to store the data structures scales linearly with the number of relationships 

between users.  

We use several techniques to improve the runtime of HORNET.  First, the data 

structures and algorithms are optimized to reduce the size of objects in memory and the 

number of computations required (further optimization is very likely possible). Second, 

the Task API allows parallel computation.  We use the Task API to analyze multiple time 

periods in parallel. Third, if memory is an issue, HORNET can be configured to run in 

several steps, in which intermediate results are persisted to disk. 

As a point of reference, the retrospective study presented in Chapter V, which 

analyzes 21 weeks of access logs from VUMC, takes less than 12 hours on a machine 

with a dual core processor and 4 gigabytes of memory.

Development Information

HORNET is a command-line application, which is programmed in Python, and 

currently optimized for Python version 2.6.  The application consists of over 6,600 lines 

of source code, more than half of which are unit tests and functional tests to ensure the 

validity of the logic.  Over 93% of all code statements are unit tested.  The code contains 

in-file documentation, including sample use of the code, to assist plugin developers.

As an open-source program, we provide a public, version-controlled, source 

repository on Google Code4.  Third-party developers are encouraged to submit changes 

4 http://code.google.com/p/hornet/source/browse/    
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using the Mercurial version-control tool.  We also host an issue tracker on Google Code5, 

to which we encourage the submission of bug reports and feature requests. 

Upon every commit to the source code repository, our continuous integration 

server executes all the unit and functional tests and rebuilds the searchable 

documentation6.  This documentation is built from the in-file documentation and 

examples as well as from supplementary files detailing how to use, install, and develop 

HORNET (Figure 4).  If a commit causes a test to fail, the developers are notified via 

email, so that a prompt fix can occur.

We selected a permissive open-source license, the Apache License 2.0, which 

allows any HCO to use and extend HORNET.

Future Plans

HORNET's open nature, both in terms of its licensing and its plugin architecture, 

means that other developers and researchers can be part of the future direction of 

HORNET.  We specifically plan several major enhancements, including a graphical user 

interface.  We are also in active development of other plugins.  These plugins will 

experiment with different units of analysis and different methods of analysis. 

Additionally, we plan to develop a plugin that uses the statistical model we present in the 

following chapters to characterize if the accesses of individual users are suspicious. 

5 http://code.google.com/p/hornet/issues/list   
6 http://hiplab.mc.vanderbilt.edu/projects/hornet/snapshot/docs/   
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CHAPTER IV

STATISTICAL MODEL OF THE ORGANIZATION FROM ACCESS LOGS

Model Description

Our goal is to obtain a statistical model, which describes the interactions and 

relationships of providers within the HCO based upon their common interactions with 

patients, from the access logs of an EMRS. This model characterizes how the 

organization works by using the EMRS as a proxy for normal processes and operations 

within the HCO. We will first discuss the basics concepts of our relational network 

model, then cover how to build this model from access logs.  We use the HORNET 

framework discussed in the previous chapter to create a plugin that builds this statistical 

model.

Modeling the Organization as a Relational Network

The techniques we present are rooted in the social networking community, which 

has a rich history of modeling and analyzing bodies of people (40).  This history includes 

the famous small world experiments of Milgram and Traver that shows that any two 

people in the United States are separated, on average, by only 6 other people (41; 42). 

Recent re-creations of Milgram's study show similar results for the connections of users 

of instant messenger systems (43) and blog links (44). In the field of Biomedical 

Informatics, social network techniques are valuable in understanding the structure of 
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editorial boards of journals in the field (45) and in characterizing the focus of 

departmental research interests (46).

The basic unit of analysis of social networking is a user, also called a node, and 

represented as n. Two nodes can be connected by an edge, labeled e. The set of all nodes, 

N, and set of all edges, E, exist within the network (also called a graph), G.  In G, an 

edge, ex,y, exists between two nodes, x and y, if those users accessed at least one patient's 

record in common. We denote the distinct number of patients a user has accessed by |n| 

and the number of patients two users accessed in common by |ex,y|. Finally, we keep track 

of how many distinct patients in total exist as |G|.  

We can examine a trivial example, as shown in Figures 5 and 6. Imagine there are 

three users, who access a total of four patients' records.  We initially show these two 

classes of people in a traditional bipartite graph (Figure 5).  Our goal is to transform the 

bipartite graph into a relational graph (Figure 6), in which the patients become a property 

of the relationships or edges between users.  User A is the only person to access Patient 1, 

so |User A|=1. User B accesses Patients 2, 3, and 4, thus |User B|=3.  User C accesses 

Patients 3 and 4, thus |User C|=2.  The total number of patients in the network, |G|, is 4. 

Since Users B and C accessed two patients in common, there is an edge between their 

two nodes, with |eUser B, User C|=2.
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Figure 5: Simple Example of Bipartite Graph

Figure 6: Bipartite Graph Converted to Relational Network
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From this rather simple relational network construct, we can compute several 

interesting metrics and statistics. Using a similarity metric, such as the cosine distance 

(47), we can quantify the strength of relationship between two edges, with respect to their 

other relationships.  We compute the cosine similarity as:

similarity=
∣ex , y∣

∣x∣2∣y∣2

Thus, for each node, we can rank-order that node's edges, essentially providing us 

a list of strength of “friendship.”  It is important to note that when we use the words 

“friendship” or “relationship” we mean purely from the perspective of the relational 

network.  It is very likely that in the actual organization two people who are in a common 

care pathway may never know each other, yet they are connected from our perspective 

because they care for the same patients.

In addition to similarity, we can compute several probabilities related to the user 

accessing a record.  We refer to the probability of a patient's record being accessed by two 

specific users, such as x and y, as the pair probability, and compute it as:

P x , y =
∣e x , y∣

∣G∣

The conditional probability is the probability of a patient's record being accessed 

by a certain user, y, given that the record is accessed by a certain different user, x:

P  y∣x=
P x , y
∣x∣/∣G∣

=
∣ex , y∣

∣x∣

In the conditional probability equation, we refer to x as the antecedent and y as the 

consequent. We sometimes refer to the relationship between x and y as the rule between x 

and y.
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Extracting the Relational Network from Access Logs

In order to create this relational network of the HCO, we need system access logs. 

Nearly all Health Information Systems generate access logs for the purpose of generating 

an auditing trail of what information providers see and what actions they take.  The 

access logs may be stored as plain text, XML, or within a database. We can build our 

model using either files or a database with the same approach, but for simplicity we will 

just refer to them as files. Typically, each line of the file represents a single action in time 

by a user as demonstrated in Figure 7. A line should contain at the very least a timestamp 

of when the action occurred, a unique identifier of the user performing the action, and a 

unique identifier for the patient. The line may have additional information that is relevant 

to the EMRS, such as the client's IP address and the action taken by the user.

Figure 7: Example Access Log

With the timestamp, user identifier, and patient identifier from the access logs, we 

construct the relational network according to the steps in Table 2.  If desired, we can 

partition the access log entries based upon some time-period, such as 7-days, and create 

individual networks for each time period.
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Timestamp User ID Patient ID Client IP Page Accessed
01/01/2006 02:23:47 drsmith 012345 10.127.0.1 view.cgi
01/01/2006 02:24:02 drsmith 999999 10.127.0.1 view.cgi
01/01/2006 02:24:03 drjones 012345 10.127.0.2 view.cgi
01/01/2006 02:38:00 drsmith 012345 10.127.0.1 view.cgi
...



Table 2: Steps to Generate Relational Network

Step

1 Create an empty network, G. 

2 Find the number of distinct patients, set this number into |G|.

3 For each user, n, create a list of patients that user accessed. |n| = size of 
this list. Insert n into G.

4 For each possible pair of users, x and y, find the intersection of their lists. 
|ex,y| = size of this intersection. In G, connect x and y with an edge, ex,y.

Statistics from the Relational Network

After using the steps in Table 2 to generate a relational network, we can easily 

compute the pair and conditional probabilities using the equations we previously defined. 

A high pair probability for this edge would indicate that this is a very common 

relationship within the HCO, such that a large number of patients are accessed by both 

providers. High pair probabilities indicate that the users are likely in high volume care 

areas. However, given the typical delivery of care by all but the smallest HCOs, it is 

unlikely that any set of users will have relatively large pair probabilities. For example, in 

order for an edge to have a pair probability of 0.10, both users must access at least 1 in 

every 10 patients.

While the pair probability is useful for putting each relationship in perspective to 

all the other relationships, the conditional probability gives a more local view of the 

relationships and allows us to find strong relationships that may by rare according to the 

pair probability.  For example, two users may be part of an workflow in a care area that 

only sees a handful of patients in a week.  The pair probability of this edge will be 
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function m(n) 
return the list of meta-information mappings of n

Create new network, G', with |G'| = |G|.
For each node, n, in G,  find m(n)

If m(n) is empty, ignore n and continue
Else for each n' in m(n)

If n' already exists in G', add |n| / size(m(n)) to |n'|
Else insert n' into G', with |n'|=|n| / size(m(n))

For edge, ex,y, in G, find m(x) and m(y)

If m(x) or m(y) is empty, ignore e and continue
Else for each x' in m(x) and y' in m(y)

If ex',y' already exists in G', add |ex,y| / (size(m(x)) * size(m(x))) to |ex',y'|

Else insert ex',y' into G', with |ex',y'|=|ex,y| / (size(m(x)) * size(m(x))) 



dwarfed by other edges representing groups such as the emergency department who 

likely see dozens to hundreds of patients a day. 

This relational network and statistical model is simple, yet powerful for reducing 

the huge amount of data that access logs provide into likelihoods of seeing certain events 

within the EMRS.

Abstracting the Low-Level Network into a Generalized Network

While examining how specific providers interact within the system is informative, 

this provider-level model can be very brittle when modeling modern HCOs due to the 

way in which providers act in roles and teams. For instance, if a patient is being treated in 

an Intensive Care Unit, it may be more informative to know that a critical care nurse 

accessed the record than to know the particular identity of the nurse.  Understanding who 

the providers are at an abstracted level empowers our model to make broader 

generalizations of the HCO.  

Additionally, these abstractions could potentially smooth volatility from the 

model. For example, several nurses and fellows may perform the same actions on the 

same set of patients but work at different times of the day. At the user level, we will 

detect different clusters of relationships depending on the time of day.  But if we abstract 

the data appropriately, we could remove the time factor to study true care roles.

We can construct abstracted versions of the relational network if, in addition to 

the access logs, we have a mapping of the users to some generalization, such as their 

department (Critical Care, Medicine, Oncology, etc.) or their role (fellow, nurse, biller). 
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function m(n) 
return the list of meta-information mappings of n

Create new network, G', with |G'| = |G|.
For each node, n, in G,  find m(n)

If m(n) is empty, ignore n and continue
Else for each n' in m(n)

If n' already exists in G', add |n| / size(m(n)) to |n'|
Else insert n' into G', with |n'|=|n| / size(m(n))

For edge, ex,y, in G, find m(x) and m(y)

If m(x) or m(y) is empty, ignore e and continue
Else for each x' in m(x) and y' in m(y)

If ex',y' already exists in G', add |ex,y| / (size(m(x)) * size(m(x))) to |ex',y'|

Else insert ex',y' into G', with |ex',y'|=|ex,y| / (size(m(x)) * size(m(x))) 



We refer to this type of information about users as “meta-information.” The abstraction 

process (Figure 8) takes in a relational network and returns a new relational network 

where nodes are at the generalized level and the edges between these generalized nodes 

represent the combined edges of the constituent user-level nodes.  If the generalization 

mappings indicate that a user has more than one generalization (e.g. an attending 

physician has appointments to two distinct departments), we discount the user's 

contribution to the abstracted edges and nodes proportional to the number of 

generalizations for that user. 

Figure 8: Pseudocode for Abstraction a Relational Network

As an example in performing an abstraction, we will use the sample relational 

network in Figure 6. Let us define the meta-information mapping such that User A has no 

mapping, User B maps to Dept 1 and Dept 2, and User C maps to Dept 3. Using the 

algorithm in Figure 8, we discount the nodes and edges of User B since User B has two 

28

function m(n) 
return the list of meta-information mappings of n

Create new network, G', with |G'| = |G|.
For each node, n, in G,  find m(n)

If m(n) is empty, ignore n and continue
Else for each n' in m(n)

If n' already exists in G', add |n| / size(m(n)) to |n'|
Else insert n' into G', with |n'|=|n| / size(m(n))

For edge, ex,y, in G, find m(x) and m(y)

If m(x) or m(y) is empty, ignore e and continue
Else for each x' in m(x) and y' in m(y)

If ex',y' already exists in G', add |ex,y| / (size(m(x)) * size(m(x))) to |ex',y'|

Else insert ex',y' into G', with |ex',y'|=|ex,y| / (size(m(x)) * size(m(x))) 



department abstractions, as shown in Figure 9.

Figure 9: Sample of an Abstracted Relational Network

Implementing as HORNET Plugins

We implement this approach using HORNET's plugin framework.  To build the 

network graph, we use a File or Database Network Builder plugin, which reads the access 

logs.  As it inserts nodes and edges into the network, it begins calculating the pair and 

conditional probabilities of each edge.  Once complete, HORNET pipes the resulting 

network objects to any plugins configured to receive the Network Builder's results.  

One such receiver is the Network Abstraction plugin, which connects to a pre-

configured data source of meta-information.  Using this data source, the plugin joins 

nodes that have common meta-information (e.g., the same department).  When the join 

occurs, the plugin appropriately joins any associated edges and re-computes the edge 

29



probabilities. Once the abstraction is complete, HORNET passes the abstracted network 

object onto any plugins configured to receive its output.

30



CHAPTER V

USAGE OF HORNET ON STARPANEL ACCESS LOGS

In Chapters III & IV we introduced a framework for mining healthcare access 

logs then, using this framework, built specific methods for representing and analyzing the 

data in these access logs. In this chapter, we demonstrate these techniques by analyzing 

access logs from Vanderbilt University Medical Center's (VUMC) EMRS. Specifically, 

we present results on how users and departments interact within VUMC, and we 

demonstrate how inherent organizational structure makes examining the organization in 

an abstracted manner more appropriate.  Additionally, we discuss issues in using data 

from real-world information systems such as incomplete data.

Materials

We wish to use the plugins presented in Chapter IV to build a relational network 

that characterizes the probabilities of clinicians caring for the same patient using data 

from VUMC's EMRS, StarPanel.  VUMC is a large, tertiary care hospital located in 

Nashville, Tennessee.

VUMC has developed a custom longitudinal medical record system, StarPanel 

(48-50), based upon the MARS clinical repository, originally developed at the University 

of Pittsburgh (51).  StarPanel is a web-based system, which employs a number of servers 

that users access through a web browser.  These servers track usage of the system by 
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writing a summary of each action a user takes within the system to a log file.  These log 

files provide an auditing capability, however, as discussed in Chapter II, the task of 

manually auditing each action is monumental.  Each audit event stored in these logs 

consists of a timestamp, the user's information (username and Internet Protocol address), 

and information on the resource the user accessed (e.g., server file and patient medical 

record number).

We obtained a 21-week sample of the StarPanel access logs, dating from January 

1st, 2006, to May 27th, 2006.  These logs are consistently de-identified with pseudonyms, 

such that each instance of a unique username, IP address, and medical record number is 

globally replaced with a random ID number.  This approach to de-identification removes 

all identifiable information, while preserving the patterns and context within the log files. 

In this 21-week sample of data, 9,940 distinct StarPanel users accessed the records of 

350,889 distinct patients, resulting in a total of 7,575,434 accesses of patient information.

In addition to the StarPanel access logs, we sought to obtain meta-information 

about the StarPanel users—information such as the user's role (e.g., physician, nurse, 

etc.) and the user's department (e.g., Internal Medicine, Radiology, etc.).  Several sources 

each provide some subset of this meta-information, but none represent a consistent, 

universal dataset that provides information about the users. One source, StarPanel, 

maintains simple role information for customization of StarPanel based upon a user's 

self-identified role.  Each user has one of seven roles assigned, shown in Table 3. 

Unfortunately, a large number of users lack a specific role (they are given the role of 

“??”).  This lack of universal identification of role within StarPanel does not represent an 
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issue with StarPanel, but rather an issue caused by trying to use the data for a secondary, 

unintended use.  A second source of meta-information is the several distinct databases 

Vanderbilt maintains about clinicians.  Information about medical students, residents, and 

attending physicians is stored in separate databases.  In addition to the information being 

in separate physical databases, the information within these databases is not consistent. 

For instance, the labels for the same departments were often completely different between 

databases. The rationale for keeping this information separate is valid, since these 

populations have intrinsic differences, but it does create issues when trying to use the 

information for a secondary purpose as we intend in this study.

Table 3: Self-Assigned Roles for StarPanel Users

StarPanel 
Role

Number 
of Users

RN 3471

?? 2521

MD 1089

AT 945

AN 812

MR 451

MS 377

Ultimately, we use a single source of this meta-information, a database of 

physicians, nurses, and administrative users, located in VUMC's Enterprise Data 

Warehouse (EDW). From this database, we link the department of a user to that user's 

accesses.  This database contains department information on 3,687 users, 36.9% of the 

9,940 distinct users during our study period.  We will discuss the impact and implications 
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of using only this single provider database later.

We configure HORNET to connect to an Oracle 10g database, which stores the 

de-identified access logs and this departmental information.  We import the access logs 

into a database as opposed to building the relational model straight from the raw text log 

files to improve our ability to query the data. Once configured, HORNET processes the 

access log data using the plugin described in Chapter IV.  Specifically, we configure 

HORNET to  detect changes over time by analyzing the data in 21 one-week segments, 

split on midnight on Saturday.  We determined that one week segments were appropriate 

due to the periodic nature of system usage as shown in Figure 10.  

Figure 10: Number of Accesses Across Time.  A periodic trend shows much greater 
system usage during weekdays as opposed to weekends.

For each week, HORNET builds a relational network using the access log data 

from that week.  Using HORNET's plugin piping system, we route the results of the 

Network Builder to the Network Abstraction plugin, so that the user-user relational 
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network is abstracted into a department-department relational network, using the 

department information from the EDW database.  We then route the output of the 

Network Builder and Network Abstractor plugins to several plugins that compute various 

general statistics on the relational network.  These general statistics include the number of 

relationships in the network. 

Ignoring Users When Abstracting Relational Network

When performing the abstraction of the network, HORNET ignores the 63.1% of 

users who lack department information.  We will discuss the implications of the removal 

later, but we believe we are justified:  the two populations (those with departmental 

information and those without departmental information) have statistically 

indistinguishable patterns of accessing patient information. A Mann-Whitney U test 

rejected the null hypothesis that the two groups are different in terms of how many 

records each user in the two groups accessed, with a p < 0.001. Additionally, when we 

compare the a complete version of the user-level network to a version with all users who 

lack department information filtered out, we see that the ranks of the remaining rules do 

not change in relational to each other. So removing the users still keeps a meaningful sub-

network.

Results

Using HORNET to transform the access logs into a relational network allows us 

to examine some basic properties of the way in which Vanderbilt clinicians operate. We 

can see that the number of users accessing patients' records in StarPanel is consistent 
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throughout the 21-week study period (Figure 11), with an average of 6,406 users per 

week and a standard deviation of 126.  Relatedly, the average number of departments 

each week is 292 with a standard deviation of 4.5.  

Figure 11: Number of Departments and Users each week.

While the system usage is consistent, we see a huge variation in the number of 

patients' medical records a clinician accesses, as Figure 12 indicates.  If we look at the 

week of April 23, 2006, arbitrarily picked from our 21-week sample, we can see that 861 

of the 6,389 users accessed only a single patient's medical record, while one user 

accessed 1,097 records.  The number of records accessed by a user in one week on 

average is 28.8, with a median of 11.  The distribution of the number of patients accessed 

by each user appears to follow a power-law distribution, a property that is often seen in 
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social networks.  

This distribution indicates that a large number of users interact with only a few 

patients' medical records each week, while a small number of StarPanel “power users” 

access hundreds of patients' records.  We can confirm this concept of “power users” by 

examining the job titles of those users who were on the upper end of this distribution. 

The user who accessed 1097 patients' records is a medical records analyst in the 

Emergency Medicine department.  The person who accessed the second most patients in 

the week of April 23rd, is a coding specialist.  Both of these users have jobs that entail 

accessing the medical records of numerous patients.

Figure 12: Patients accessed per user for the week starting April 23, 2006. All other 
weeks during the 21-week study period had a similar power law distribution.
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Interaction Probabilities

Moving beyond these simple network statistics, we can look at the rules, which 

form the basic probability model for the likelihood of users and departments accessing 

common patients.  As Figure 13 shows, the number of rules detected each week is 

extremely consistent.  In terms of user-user probabilities, we detect on average 886,784 

rules per week, with a standard deviation of 48,972.  There is an upper limit to how many 

of these user-user relationships are possible, given by 
n2−n

2
, where n is the number of 

users.  Using the average number of users per week, 6406, we find an upper limit of 

20,515,215.  With only 4.32% of all possible relationships, we see that the user-level 

network is relatively sparse—indicating the possibility of community structure withing 

the organization.

If we look at the abstraction of these user-user rules into department-department 

rules, we detect 27,261 rules on average per week with a standard deviation of 862. 

There is also an upper limit to the number of department-department relationships, given 

by n2
−n
2

n , where n is the number of departments.  We add an additional n in this 

equation because it is possible for departments to have relationships to themselves. Using 

the average number of departments per week, 292, the upper limit is 42,778.  We discover 

63.7% of the possible department relationships, indicating a greater amount of cross-

community relationships at the department-level than we see at the user-level.
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Figure 13: Number of rules each week at the User and Department levels.

When we examine the distribution of relationships per user for the week of April 

23rd  (Figure 14), we discover that it roughly follows a power law distribution.  This 

highly skewed distribution has an average of 139 rules per user and a median of 77.  The 

distribution shows that there are certain users of StarPanel who are the only person 

accessing a patient's record in that week, while other users are connected to a very large 

number of other users.  In the week of April 23rd, 118 users (1.8% of the users during the 

week) were the only users accessing a specific patient's record, and 95 users (1.5% of 

user) only accessed records that one other person accessed.  At the other end of the 

spectrum, one highly connected person had rules with 2,584 other users.

When we look at the same measurement at the department level, the number of 

rules per department in a week, we do not find any clear distribution.  Nonetheless, the 
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average number of relationships for each department was 98, with a median of 88.

Figure 14: Rules per user for the week starting April 23, 2006. This distribution is  
consistent with the distributions seen for the other 20 weeks in our study period.

We can speculate the nature of types of accesses for both ends of this distribution. 

For the records that were accessed a single time, the user may have been accessing the 

record for a retrospective chart review or renewing a patient's prescription.  Alternatively, 

the low access count could be an artifact of how we split the data into weeks; for 

example, the physician could be writing a clinical note on a Sunday when the patient had 

been discharged on Saturday.  In future work, we can investigate if splitting the data on a 

weekly is the cause by exploring larger time periods.  Patients who receive a much larger 

number of accesses are most likely actively being cared for by multiple clinicians.
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Rule Decay

We now know the basic distributions of how many patients a user or department 

accesses, as well as how many rules those users and departments are involved in, but 

these distributions tell us nothing about how the relational network evolves over time.  At 

one extreme, we can imagine an HCO that has a static relational network due to 

extremely consistent behavior of all parties over time. For example, a theoretical practice 

with 2 doctors and 3 nurses will likely be extremely stable over time as long as no one 

leaves the practice, since on average the 3 nurses will likely interact with the 2 doctors 

consistently, and the 2 doctors will likely have independent sets of patients they treat.  At 

the other extreme, we can imagine an HCO that has an extremely dynamic relational 

network.  The dynamic nature of this HCO could be caused by having a large number of 

clinicians and by having multiple clinicians who can all perform roughly the same job. 

Since multiple people are essentially interchangeable, the possible combinations of care 

paths increases dramatically.  It is important to note that we are not suggesting that 

clinicians are commodities, but rather that as the number of qualified clinicians in the 

organization increases, the probability of a patient being assigned to a specific clinician 

decreases.  

To learn how static or dynamic VUMC is, we wish to find the number of weeks a 

given rule exists during our 21-week study period.  A rule that appears for all 21 weeks 

shows that those two users or two departments accessed records in common each week. 

The more rules that exist for all 21 weeks, the more evidence we have for a stable 

organization structure.  If rules exist for only a few of the 21 weeks, we have more 
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evidence that there are organization changes.

We can visualize this stability using a decay curve, as seen in Figure 15.  For rules 

at the user level, 56% exist for only a single week.  Less than 1% of  the rules exist for at 

least 14 weeks and only 0.07% of the rules exist for the entire study period.  This high 

decay in how long rules last has several possible causes, including the possibility that the 

organization is changing rapid or simply that departments do not interact every week.  

We know that VUMC is a large academic medical center, in which residents rotate 

through different clinical areas and in which care is not so much delivered by specific 

individuals but rather by care teams.  Therefore, we can look at abstractions of the users 

to see if the delivery is by similar clinicians.  For example, is it important that any 

anesthesiologist treats a patient, or must a specific anesthesiologist treat the patient? 

Since the only practical abstraction dataset we obtained is the department information, we 

use the abstraction of the user into his or her department.

When we abstract to the department level, we see a much slower rate of decay of 

the rules (Figure 15).  Instead of the 44% drop after one week at the user level, the 

department level only had a 17% drop. While the department level still decays, the decay 

is much slower, such that 50% of the rules still remain at 7 weeks.  Over 16% of rules 

exist the entire 21-week study period.  This 16% represents a consistent and highly stable 

set of rules, which could be one group of rules to focus on when building an access 

control system or auditing system.

The highly dynamic nature of VUMC indicates that even at the abstracted level, 

any statistical model used for access control or auditing would need to be re-tuned or 
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regenerated on a fairly regular basis using the latest access data.

Figure 15: Decay of rules over time. 16% of the department rules existed for all 21-
weeks of the study, while only 0.07% of the user rules lasted that long. 

Sample Rules

We can examine a subset of these rules that HORNET generates from the 

StarPanel access logs to gain perspective on what the probabilities look like.  We will 

look at just the department-level rules, since the user-level rules are de-identified and 

therefore lacking any context.  Additionally, the department-level rules are much more 

stable, therefore more likely to be used by any anomaly detection system.

For our 21-week study period, we generated a total of 58,415 department-

department rules in the form of pair and conditional probabilities of those departments 

accessing the records of the same patients.  
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High Conditional Probability Rules

The rules with the highest conditional probabilities, in which we have the 

probability of one department given some other department, as shown in Table 4, 

occurred for only a small part of the 21-week period (1 to 2 weeks).  Most high 

conditional probability rules occur for a very short time—it is not until the 184th highest 

conditional probability rule that we see a rule that occurred for all 21 weeks of the study 

period.  Therefore, we will use a simple filter to try to obtain rules with some 

permanence.  If we only look at rules that occur for at least three weeks, we will 

eliminate any accesses that occurs in a single work session.  Two weeks is too short since 

users can access the system across our arbitrary week-long periods, for example a shift 

that spans Saturday evening and Sunday morning would count as 2 weeks.  An alternative 

would be to use a sliding window approach instead of our strict 7-day splits.  Applying 

this exclusion criteria, we obtain Table 5, which has the highest conditional probability 

rules that occurred for at least 3 weeks of our 21-week study period.  We see rules that are 

intuitive, such as the 0.378 probability of the Nephrology Clinic accessing a patient who 

was also accessed by the Hypertension Clinic. This result is intuitive since nephrology, 

the branch of internal medicine that focuses on the kidneys, often deals with kidney 

diseases that include hypertension, so we expect overlap between these two departments.

High Pair Probability Rules

While the rules with the highest conditional probabilities often do not appear for 

the full study period, the rules with the highest pair probabilities last for the entire study 
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period (Table 6).  Since the pair probability represents the frequency a specific rule, we 

expect departments who traditionally see many patients at the top of the list of high pair 

probability rules.  This expectation is validated by the departments in Table 6, such as the 

Emergency Medicine department.  Furthermore, in Table 6 there are multiple rules where 

the antecedent is the same as the consequent.  In this case, we are seeing the fact that 

people within the department are working very frequently with other people in that same 

department—a logical occurrence.  These top 20 rules form a large proportion of the total 

number of rules in the 21-week study period, for example the “Emergency Medicine – 

Emergency Medicine” rule accounts for nearly 6.5% of all 58,415 rules detected in our 

study period.  While a large number of the high pair probability rules are for the same 

department, some have different departments such as the rule between the 

Allergy/Pulm/Critical Care department and Emergency Medicine department, which 

represents 1.3% of all the rules.

Low Conditional Probability Rules

Just as we can see inherent organizational structure in the rules with the highest 

conditional and pair probabilities, we can also see this structure in the rules with the 

lowest conditional and pair probabilities.  The rules with the lowest conditional 

probabilities (Table 7), applying the same 3-week minimum criterion, show department 

combinations that have low pair probabilities.  The Emergency Medicine department is a 

common antecedent for many of these rules, since the Emergency Medicine department is 

connected to so many other departments (we are seeing the Emergency Medicine 
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department's role as a triage point into the hospital). 

Low Pair Probability Rules

While the rules with the lowest conditional probabilities should likely be excluded 

when building a probabilistic model of VUMC, the rules with the lowest pair 

probabilities (Table 8) could possibly remain in the model.  A low pair probability does 

not necessarily indicate that the rule is noise, but rather that it merely does not occur a 

large number of times in the total body of 58,415 rules.
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Table 4: 20 Department Rules with Highest Conditional Probabilities.  Includes the average and standard deviation of the 
conditional, P(B|A), and pair, P(A, B), probabilities over the 21 one-week periods. The “Weeks” column refers to how many of the 
one-week periods that rule appeared in. The department labels are from the clinician database.

A B

P(B|A)  P(A,B)

WeekAverage Std Dev Average Std Dev
Nuclear Med Housestaff Psychiatric Hosp at Vanderbilt 1 0 8.00E-06 0 1

VMG Bus Ofc Provider Enrollmnt Pediatric Cardiology 1 0 5.06E-06 0 1

Ctr of Occupational & Env Med Trauma 0.69 0.31 7.00E-06 9.96E-07 2

VCOEM Trauma 0.69 0.31 7.00E-06 9.96E-07 2

Ctr for Molecular Neuroscience Internal Medicine 0.5 0 1.90E-06 0 1

Psychology & Human Devel Psychiatric Hosp at Vanderbilt 0.5 0 8.22E-06 0 1

Ctr for Molecular Neuroscience Medicine 0.5 0 1.90E-06 0 1

VMG Bus Ofc Provider Enrollmnt Pediatric Urology 0.5 0 2.64E-06 0 1

Nursing Education & Developmen Rheumatology 0.5 0 1.92E-05 0 1

Computer Administration Vanderbilt Home Care 0.5 0 1.60E-05 0 1

Nursing Education & Developmen Rheumatology Clinic 0.5 0 1.92E-05 0 1

Human & Organizational Dev School Of Nursing 0.4 0.23 3.60E-05 1.87E-05 7

Hypertension Clinic Nephrology Clinic 0.38 0.17 4.16E-05 2.02E-05 3

VMG Bus Ofc Correspondence The Learning Center 0.33 0.47 5.71E-06 3.72E-06 3

VMG Bus Ofc Fees Group Strategy & Transformation 0.33 0 8.00E-06 0 1

VMG Bus Ofc Fees Group Admissions Office 0.33 0 8.23E-06 0 1

VMG Bus Ofc Fees Group Diabetes/Endocrinology 0.33 0 1.64E-05 0 1

VMG Bus Ofc Provider Enrollmnt Liver Transplant 0.25 0.25 3.99E-06 1.35E-06 2

Ctr of Occupational & Env Med Nephrology & Hypertension 0.25 0 8.33E-06 0 1

Radiology Administration VMG - Franklin 0.25 0 5.01E-06 0 1
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Table 5: 20 Department Rules with Highest Conditional Probability That Existed at Least 3 Weeks.  Includes the average and 
standard deviation of the conditional, P(B|A), and pair, P(A, B), probabilities over the 21 one-week periods. The “Weeks” column 
refers to how many of the one-week periods that rule appeared in. The department labels are from the clinician database.

A B

P(B|A)  P(A,B)

WeekAverage Std Dev Average Std Dev

Human & Organizational Dev School Of Nursing 4.04E-01 2.28E-01 3.60E-05 1.87E-05 7

Hypertension Clinic Nephrology Clinic 3.78E-01 1.73E-01 4.16E-05 2.02E-005 3

VMG Bus Ofc Correspondence The Learning Center 3.35E-01 4.70E-01 5.71E-06 3.72E-06 3

VMG Bus Ofc Fees Group Ofc of Compliance & Corp Integ 2.46E-01 1.84E-01 7.94E-06 2.21E-07 4

Main OR - Rollup VMG - Franklin 1.94E-01 8.02E-02 5.94E-05 3.07E-05 6

Psychology & Human Devel Mental Health Center 1.92E-01 7.55E-02 7.74E-06 4.77E-06 7

Human & Organizational Dev Univ Comm Health Services 1.50E-01 7.84E-02 1.13E-05 4.94E-06 7

Main OR - Rollup Spring Hill WIC 1.24E-01 5.90E-02 3.94E-05 2.12E-05 6

VMG Bus Ofc Fees Group Internal Medicine 1.22E-01 1.50E-01 5.32E-06 2.06E-06 3

Radiology-Housestaff Orthopaedics & Rehab 1.19E-01 1.00E-01 2.12E-05 1.23E-05 10

VMG Bus Ofc Fees Group School Of Nursing 1.12E-01 7.83E-02 6.25E-06 2.58E-06 3

Radiology-Housestaff Ob-Gyn 1.08E-01 6.60E-02 3.12E-05 1.95E-05 3

Pediatric Services Development Neuro-Peds 1.06E-01 1.21E-01 4.52E-06 1.65E-06 3

Radiology Administration Anesthesiology 1.06E-01 1.24E-01 6.19E-06 2.27E-06 9

VMG Bus Ofc Provider Enrollmnt Neurosurgery 1.02E-01 1.66E-01 1.20E-05 9.12E-06 14

Psychology & Human Devel Psychiatry 1.02E-01 7.69E-02 3.16E-06 1.38E-06 7

Psychology & Human Devel Orthopaedics & Rehab 9.41E-02 1.10E-01 2.00E-06 8.48E-07 3

Psychology & Human Devel Emergency Medicine 9.41E-02 1.10E-01 2.00E-06 8.48E-07 3

Institute of Imaging Science Emergency Medicine 9.28E-02 1.33E-01 8.90E-05 5.53E-05 11

Junior League Unit Pediatric Endocrinology 9.16E-02 1.02E-01 2.11E-04 1.28E-04 19
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Table 6: 20 Department Rules with the Highest Pair Probabilities.  Includes the average and standard deviation of the 
conditional, P(B|A), and pair, P(A, B), probabilities over the 21 one-week periods. The “Weeks” column refers to how many of the 
one-week periods that rule appeared in. The department labels are from the clinician database.

A B

P(B|A)  P(A,B)

WeekAverage Std Dev Average Std Dev

Emergency Medicine Emergency Medicine 6.47E-04 4.69E-05 6.48E-02 8.97E-03 21

Ophthalmology Ophthalmology 3.36E-03 6.43E-04 2.85E-02 4.68E-03 21

Ob-Gyn Ob-Gyn 1.55E-03 1.69E-04 2.69E-02 2.94E-03 21

Orthopaedics & Rehab Orthopaedics & Rehab 1.47E-03 1.72E-04 2.06E-02 2.93E-03 21

Pediatric Hematology Pediatric Hematology 4.28E-03 4.89E-04 2.06E-02 2.53E-03 21

Emergency Medicine Emergency Med-Housestaff 1.75E-04 3.49E-05 1.73E-02 2.63E-03 21

Emergency Med-Housestaff Emergency Medicine 2.56E-03 3.52E-04 1.73E-02 2.63E-03 21

School Of Nursing School Of Nursing 1.83E-03 1.93E-04 1.70E-02 1.32E-03 21

Hematology/Oncology Hematology/Oncology 2.01E-03 3.51E-04 1.59E-02 2.51E-03 21

Univ Comm Health Services School Of Nursing 5.08E-03 1.07E-03 1.44E-02 1.72E-03 21

School Of Nursing Univ Comm Health Services 1.56E-03 2.20E-04 1.44E-02 1.72E-03 21

Pediatric Cardiology Pediatric Cardiology 2.71E-03 2.88E-04 1.43E-02 2.51E-03 21

Orthopaedics & Rehab Emergency Medicine 1.02E-03 1.08E-04 1.42E-02 1.59E-03 21

Emergency Medicine Orthopaedics & Rehab 1.44E-04 2.10E-05 1.42E-02 1.59E-03 21

School Of Nursing Ob-Gyn 1.42E-03 1.89E-04 1.32E-02 1.60E-03 21

Ob-Gyn School Of Nursing 7.63E-04 1.05E-04 1.32E-02 1.60E-03 21

Emergency Medicine Pediatrics-Housestaff 1.32E-04 3.30E-05 1.30E-02 2.84E-03 21

Pediatrics-Housestaff Emergency Medicine 2.49E-03 3.18E-04 1.30E-02 2.84E-03 21

Cardiovascular Medicine Cardiovascular Medicine 1.58E-03 1.67E-04 1.30E-02 2.42E-03 21

Allergy/Pulm/Critical Care Emergency Medicine 1.62E-03 1.98E-04 1.30E-02 1.55E-03 21
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Table 7: 20 Department Rules with the Lowest Conditional Probabilities That Existed at Least 3 Weeks.  Includes the average and 
standard deviation of the conditional, P(B|A), and pair, P(A, B), probabilities over the 21 one-week periods. The “Weeks” column 
refers to how many of the one-week periods that rule appeared in. The department labels are from the clinician database.

A B

P(B|A)  P(A,B)

WeekAverage Std Dev Average Std Dev

Emergency Medicine 4 S GYN Holding/PACU 2.25E-08 6.69E-09 2.31E-06 7.38E-07 5

Emergency Medicine Kennedy Center 2.29E-08 1.07E-08 2.00E-06 8.48E-07 3

Emergency Medicine Psychology & Human Devel 2.29E-08 1.07E-08 2.00E-06 8.48E-07 3

Emergency Medicine Cardiology 7N 2.35E-08 1.22E-08 2.40E-06 1.21E-06 9

Emergency Medicine Pulmonary Clinic 2.93E-08 1.36E-08 2.73E-06 1.24E-06 4

Emergency Medicine Admin MH Clinic 3.78E-08 2.13E-08 3.42E-06 2.05E-06 4

Emergency Medicine Office Of Research 4.34E-08 5.77E-09 4.06E-06 3.24E-08 5

Emergency Medicine NICU 5.09E-08 3.23E-08 5.00E-06 2.83E-06 9

Emergency Medicine Worklife Connections -EAP 8.32E-08 1.01E-08 8.11E-06 7.63E-08 3

Emergency Medicine Vanderbilt Oncology 8.54E-08 4.18E-08 8.07E-06 4.26E-06 4

Emergency Medicine Radiology Administration 9.24E-08 6.30E-08 1.02E-05 8.25E-06 8

Emergency Medicine Sedation Service 9.55E-08 6.67E-08 1.05E-05 8.78E-06 7

The Learning Center Law School Deans Office 9.97E-08 2.63E-08 1.97E-06 7.44E-07 6

The Learning Center University Library 9.97E-08 2.63E-08 1.97E-06 7.44E-07 6

Anesthesiology Admin MH Clinic 1.03E-07 1.43E-08 1.58E-06 3.54E-08 5

Emergency Medicine Urology/Pediatric Surgical Sci 1.10E-07 7.09E-08 9.56E-06 5.96E-06 4

Emergency Medicine Special Procedures 1.12E-07 9.95E-08 1.02E-05 8.08E-06 8

Emergency Medicine Ob/Gyn Practice 1.13E-07 7.08E-08 1.19E-05 7.98E-06 13

Emergency Medicine Med Ethics 1.13E-07 7.95E-08 1.06E-05 6.43E-06 11

Emergency Medicine VIPPS 1.14E-07 8.39E-08 1.12E-05 7.93E-06 17
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Table 8: 20 Department Rules with the Lowest Pair Probabilities That Existed at Least 3 Weeks.  Includes the average and 
standard deviation of the conditional, P(B|A), and pair, P(A, B), probabilities over the 21 one-week periods. The “Weeks” column 
refers to how many of the one-week periods that rule appeared in. The department labels are from the clinician database.

A B

P(B|A)  P(A,B)

WeekAverage Std Dev Average Std Dev

Nursing Support Services 7-S  MICU 1.18E-05 3.61E-06 5.11E-07 1.78E-07 3

7-S  MICU Nursing Support Services 1.37E-06 6.90E-07 5.11E-07 1.78E-07 3

9S General Surgery Special Procedures 4.45E-06 2.17E-06 5.81E-07 4.52E-09 3

9S General Surgery Hematology/Stem Cell Clinic 4.45E-06 2.17E-06 5.81E-07 4.52E-09 3

Special Procedures 9S General Surgery 4.98E-04 4.78E-04 5.81E-07 4.52E-09 3

Hematology/Stem Cell Clinic 9S General Surgery 1.67E-06 1.64E-07 5.81E-07 4.52E-09 3

9S General Surgery Radiology Administration 4.23E-06 1.91E-06 5.82E-07 4.91E-09 4

Radiology Administration 9S General Surgery 3.56E-04 4.66E-04 5.82E-07 4.91E-09 4

Nursing Support Services SICU 1.42E-05 3.39E-06 6.48E-07 3.72E-07 3

SICU Nursing Support Services 8.07E-06 7.40E-06 6.48E-07 3.72E-07 3

Asthma/Sinus/Allergy Prog SICU 7.94E-05 2.60E-05 6.74E-07 1.07E-08 4

SICU Asthma/Sinus/Allergy Prog 5.00E-06 1.30E-06 6.74E-07 1.07E-08 4

Special Procedures Nursing Support Services 4.46E-04 4.24E-04 6.86E-07 1.82E-07 4

Hematology/Stem Cell Clinic Nursing Support Services 2.08E-06 7.39E-07 6.86E-07 1.82E-07 4

Nursing Support Services Special Procedures 1.12E-05 2.75E-06 6.86E-07 1.82E-07 4

Myelosuppresion (11N) Nursing Support Services 9.48E-06 1.72E-06 6.86E-07 1.82E-07 4

Nursing Support Services Myelosuppresion (11N) 1.12E-05 2.75E-06 6.86E-07 1.82E-07 4

Nursing Support Services Hematology/Stem Cell Clinic 1.12E-05 2.75E-06 6.86E-07 1.82E-07 4

9S General Surgery SICU 3.72E-06 2.08E-06 7.03E-07 3.36E-07 4

SICU 9S General Surgery 8.48E-06 6.45E-06 7.03E-07 3.36E-07 4
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Discussion

In this chapter we demonstrated our use of HORNET to generate a statistical 

model of how VUMC operates from the access logs of its electronic medical record 

system.  This model includes a wide range of access patterns—from heavy users to 

occasional users, from patients who are rarely accessed to patients who are commonly 

accessed. We also provided some justification for who these users are in relation to their 

access patterns.  Additionally, our results show that VUMC is a dynamic organization, 

but we see greater stability when we model the users in terms of their department 

affiliations.

This model and the specific results from our 21-week study period are not the 

major finding in this chapter.  The major finding in this chapter is that our tool, 

HORNET, can effectively and efficiently generate a probabilistic model of a Healthcare 

Organization from the access logs of that organization's information system.  This tool 

seamlessly incorporates any meta-information about the organization, such as human-

resource type data, even if that data is less than ideal.  Furthermore, it is important to 

realize that the specific results in this chapter, such as the rules, are not meant to be 

applicable at any other organization or even at VUMC today, three and a half years after 

this data set was collected—especially given the rate of decay of rules.  This lack of 

current applicability or applicability to other organizations does not mean the results are 

not reproducible.  Far from it, with our open source HORNET tool, any organization is 

able to generate a customized statistical model of itself.
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Limitations

While we successfully built a model from StarPanel's access logs, we do have 

several limitations—some related to our approach and some related to the realities of 

working with production data in a way that was never intended.

From our perspective, the biggest limitation is from our co-opting of production 

data and use of it in ways for which is was never designed.  Having complete, consistent, 

accurate, and clean meta-information on all users in the system would be very beneficial. 

In addition to using the department meta-information, we could also use roles.  We 

believe that the combination of role and department would have made a very compelling 

statistical model (for example, do attending physicians in one department always work 

with charge nurses in some other department?). Alas, we are unable to find the “perfect” 

source of meta-information.  Due to the nature of what various administrators were trying 

to model, we know of at least 4 distinct sources of partial meta-information.  The first 

source is a database collected to keep track of the medical residents.  Since the residents 

often rotate through different care areas in the organization, this database does not 

contain information of what department or care area each resident is in or what time they 

were in that area.  The second source is designed to allow customization of experience 

within StarPanel based on a self-selected role—unfortunately, a majority of users never 

customize their experience. A third source, while containing department information, 

lacks any key to which we could link the users in this source to the users in the access 

logs.  Additionally, this third source holds different department labels than the primary 

meta-information source we use.  We do not wish to perform a mapping between the two 

53



sets of labels (while linking “Emergency Medicine” to “Emergency Med” is 

straightforward, there are cases in which we lack the domain knowledge to make an 

informed match).  We doubt this is an issue that is specific to VUMC—the effort to create 

and maintain a complete meta-information source often outweighs the potential benefits 

of such a database.

Interestingly, this is an issue that any role-based security system in healthcare 

must itself confront.  Due to the lack of complete, centralized knowledge about who users 

are, any role-based security system must first undertake the monumental task of creating 

and maintaining such a database.  While a probabilistic anomaly detection system based 

upon the work presented in this document would ideally have such a complete source of 

meta-information, a detection system using HORNET could be greedy and take whatever 

various sources are available.  For example, we could generate one model based upon the 

resident database and apply it to detect anomalies for only the residents, then use a more 

standard employee database to detect anomalies for only those employees.  This greedy 

approach would allow HCO administrators to more quickly and cheaply deploy an 

anomaly detection system, since the complete meta-information database would never 

have to be created.

For this study, we ignore a significant portion of the accesses when abstracting the 

model to the department level, since we lack department information for a large number 

of our users. While less than ideal, we believe that the exclusion does not negatively 

affect the model.  We believe so because the users with departments account for a larger 

portion of the accesses and the two groups (those with and without departments) are, as 
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we showed, indistinguishable in their access patterns.

While the lack of complete meta-information is the biggest limitation of this 

study, we have several limitations specific to our modeling technique.  For one, we only 

build the relational networks for one week periods, instead of trying to vary the period 

size or define periods as the length of individual stays in the hospital based on admission 

and discharge. We noticed a strong 7-day periodicity in the data (Figure 10), and chose a 

logical default value.

Another limitation is that we perform only a single type of weighting on the 

relationships, when there are several additional logical ways to weight the relationships. 

We do weight the relationships based upon how many other relationships a user is 

involved in, such that the relationship for a user who has only a single relationship is 

stronger that a relationship for a user who has relationships with 100 other users.  In 

addition to this style of weighting, we can discount patients who are accessed by a large 

number of users, using a weighting system similar to term frequency-inverse document 

frequency that is commonly found in information retrieval.

We could also weight the rules by strength (either conditional or pair probability), 

allowing us to understand if important rules disappear or if the important rules last all 21 

weeks (Figure 15).
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CHAPTER VI

SURVEY OF EXPERT UNDERSTANDING OF ORGANIZATION

In the previous chapter, we evaluated a simple, yet powerful, method for 

obtaining a statistical model how clinicians interact via patients' medical records. This 

model represents actual clinician usage of the medical record system and can be the basis 

for automatically defining a security policy to restrict access to medical records or detect 

possible improper accesses.  Traditional methods for defining the security policies rely 

upon organizational experts manually defining these policies.  Since our model offers a 

potential replacement or supplement to these traditional methods, we wish to understand 

how well experts perform at characterizing how the organization delivers care.  To 

compare the HORNET data mining approach, we administered a pilot, which 

demonstrates the benefits of automatically mining access control and lays the 

groundwork for a more thorough study on the subject.

Survey Methods

Survey Design

This preliminary survey is designed to test the null hypothesis that experts are 

good at approximating the conditional probability of two departments caring for the same 

patients, a task necessary for manually building access control policies.  To test this 
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hypothesis, we randomly select 3 departments from the set of rules presented in the 

previous chapter: the SICU, Ob-Gyn, and the Nephrology & Hypertension departments. 

For each of these 3 departments, we select 10 rules in which the department is the 

antecedent in the conditional probability, therefore creating a total of 30 rules (as shown 

in Table 9, along with the conditional and pair probabilities). Each set of 10 rules is from 

a cross section of the conditional probability distribution of rules involving the 

antecedent, such that we pick roughly one rule from every 10th percentile (e.g. ~99th 

percentile, ~90th percentile, ~80th percentile, etc.).  Additionally, all the rules occur for at 

least 16 weeks in our 22 week study period.  We arbitrarily set the 16 week limit to 

ensure that all the rules in the survey consistently occur within the organization. For each 

of the 30 rules we attach a 1-to-5 Likert-scale question, for example: 

“If a patient is seen by the 'SICU' department, how likely is that patient to be 

seen by the '5N CVICU' department?”

In an introduction to the survey (Appendix A), we ask the survey participants to 

rate each statement on a 1 to 5 scale based upon their own knowledge of the organization, 

where 5 indicates they think it is very likely and 1 indicates they think it is unlikely. If 

experts are good at defining the conditional probabilities, we would expect to see high 

scores for rules with high conditional probabilities, and low scores for rules with low 

conditional probabilities. 

Administration

Using the RedCap Survey system we included an introduction, the 30 rules and 
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their Likert scale choices, and an optional comments box, in a web-based survey, using 

the RedCap Survey tool (52). We solicited responses from 15 attending physicians at 

VUMC.  These physicians have appointments in a variety of departments including 

Internal Medicine, Emergency Medicine, and various Intensive Care Units.  We used the 

RedCap system to email the survey to the individuals and anonymously collect responses. 

We received 7 responses over the course of one month, resulting in a 44% response rate.

Analysis

To test our hypothesis, we try to find a linear correlation between the conditional 

probabilities of the 30 rules against the average score of the respondents.  If a correlation 

exists, we can assume that the experts agreed with the probabilistic model that HORNET 

generated.  If no correlation or a very poor correlation exists, we question the ability of 

human experts to document how the organization works.  Additionally, we assess for 

inter-rater agreement using Fleiss' kappa (53) and look at the deviation for each survey 

question.  We use Fleiss' kappa instead of the more traditional Cohen's kappa since the 

survey has multiple choices for each question and we wish to compare all respondents. 

One weakness of using Fleiss' kappa is that we treat the Likert scale as a categorical 

variable instead of an ordinal value.  Thus we lose the context that a response of 4 is more 

similar to 3 or 5 than it is to 1 or 2.  Therefore, to supplement Fleiss' kappa, we examine 

the deviation of the respondents' compared to the mean.

 It is important to note that results of the survey are not sufficiently powered to 

make any formal claims.  Yet, as a pilot study, it can provide suggestions of possible 
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results and directions for future, more powerful studies.

Results

We can see the descriptive statistics of how the 7 respondents answered each 

question in Table 9 along with the probabilities that HORNET computed. From this data, 

we can compute the inter-rater agreement.  For all three antecedent groups (SICU, Ob-

Gyn, and Nephrology & Hypertension), Fleiss' kappa showed there was only slight 

agreement between the raters (54), since all three had kappa values in the range of 0.11 to 

0.18.   The SICU group had a kappa of 0.11, the Ob-Gyn group had a kappa of 0.18, and 

the Nephrology & Hypertension group had a kappa of 0.16. However, by using Fleiss' 

kappa we are treating the responses as categorical data instead of ordinal data, so we lose 

the context of the Likert scale.  If we examine the raw standard deviations we see that 20 

of the 30 response standard deviations are less than 1 step in the Likert scale.  Examining 

the standard deviations suggests that, while not strong, there is at least a degree of 

agreement between the raters.

Since we wish to understand if there is a correlation between the Percentile of 

P(B|A) and the Survey Response for each department pair, we try to fit a linear model to 

the data. Plotting the Percentile of the conditional probability of the rules against the 

Survey Response (Figure 16), yields a very poor result.  We expect that for increasing 

conditional probabilities (represented by the increasing percentile) we should see an 

increase in the expert's belief in the likelihood of the relationship between the 

departments.  However, as Figure 16 shows, only the Nephrology & Hypertension has a 
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successful linear fit, even though it is a poor fit with a R2 value of 0.38.

Figure 16: Survey Responses versus Conditional Percentile.
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Table 9: Survey Results

A B

Probabilistic Model Survey Response

P(B|A) P(A,B) Weeks
Percentile
of P(B|A) Mean Std Dev

Coefficient 
of Variance Median

SICU Trauma PCC 1.90E-03 2.04E-04 20 100 2.86 1.07 0.71 3
SICU 7-S  MICU 3.14E-04 3.36E-05 21 90.56 2 0.58 1 2
SICU Allergy/Pulmonary/Critical Care 1.84E-03 1.86E-04 21 99.57 2.29 0.76 1.14 2
SICU Transplant Center 2.76E-04 3.14E-05 21 89.7 3.14 1.35 0.79 3
SICU Diabetes/Endocrinology 1.19E-04 1.34E-05 20 78.97 2.86 1.21 0.71 3
SICU Neurology 8.16E-05 8.65E-06 21 69.53 2.43 0.79 0.81 2
SICU TVC PreAdmit Testing 5.41E-05 5.59E-06 19 58.8 4 0.82 0.8 4
SICU Psychiatry 3.59E-05 4.07E-06 18 45.92 2.14 0.69 0.71 2
SICU 5N CVICU 2.94E-05 3.05E-06 17 35.62 3.29 0.76 0.82 3
SICU Neuro-Sleep Disorders 2.13E-05 2.51E-06 17 27.04 1.86 0.38 0.93 2
Ob-Gyn Anesthesiology 1.70E-04 2.97E-03 21 98.21 4.29 0.76 0.86 4
Ob-Gyn Pediatric Cardiology 4.59E-05 7.93E-04 21 89.96 1.71 0.95 1.71 1
Ob-Gyn Plastic Surgery 1.76E-05 3.08E-04 21 79.57 2.14 0.69 0.71 2
Ob-Gyn Pediatric Critical Care 8.77E-06 1.53E-04 21 69.53 1.43 0.79 1.43 1
Ob-Gyn Pediatric Urology 3.74E-06 6.68E-05 20 59.5 1.86 1.21 1.86 1
Ob-Gyn Trauma PCC 2.36E-06 4.23E-05 21 49.82 2 0.58 0.67 2
Ob-Gyn Pain Center 1.63E-06 2.72E-05 20 39.78 3 0.58 1 3
Ob-Gyn 5S PICU 9.38E-07 1.62E-05 20 25.09 1.29 0.49 1.29 1
Ob-Gyn Asthma/Sinus/Allergy Program 6.96E-07 1.25E-05 17 19 2.29 0.95 0.57 2
Ob-Gyn Nursing Support Services 3.72E-07 6.42E-06 18 8.24 4 1 1 4
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Table 9, continued

A B

Probabilistic Model Survey Response

P(B|A) P(A,B) Weeks
Percentile
of P(B|A) Mean Std Dev

Coefficient 
of Variance Median

Nephrology & Hypertension Emergency Medicine 1.65E-03 1.16E-02 21 100 4.14 1.07 0.83 4
Nephrology & Hypertension Allergy/Pulmonary/Critical Care 4.81E-04 3.38E-03 21 99.3 3 1.15 0.75 3
Nephrology & Hypertension Renal Transplant 9.37E-05 6.40E-04 21 89.08 3.57 1.27 0.89 4
Nephrology & Hypertension Neonatology 3.84E-05 2.61E-04 21 79.23 1.29 0.49 1.29 1
Nephrology & Hypertension Oncology/Hematology 2.02E-05 1.39E-04 21 68.31 2.43 0.79 0.81 3
Nephrology & Hypertension Psychiatry 1.12E-05 7.89E-05 21 59.86 2.43 0.98 0.61 2
Nephrology & Hypertension Oral Surgery 6.31E-06 4.57E-05 20 49.65 2 1 0.5 2
Nephrology & Hypertension Pediatric Emergency 3.92E-06 2.63E-05 19 38.38 1.71 1.25 1.71 1
Nephrology & Hypertension Cardiac Cath Lab 2.37E-06 1.61E-05 16 28.17 2.86 0.9 0.71 3
Nephrology & Hypertension Student Health & Wellness 1.57E-06 1.14E-05 16 19.37 1.43 0.79 1.43 1
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Discussion

From these results, we can draw two preliminary conclusions: first, human 

domain experts perform poorly at manually building a probabilistic model of how the 

medical center operates, and second, the agreement between experts is less than ideal, 

thus raising questions of how one would ever correctly pick experts if manually building 

such a model.  We believe that the poor expert performance indicates the superiority of a 

computational approach to generate this type of organizational model of the organization. 

However, we believe that the use of our approach in addition to using experts in tasks 

they are more suited for, such as defining policies like “a user should not access a 

coworker's record,” will perform better than our approach alone.  As stated previously, 

the survey was not fully powered, thus we believe that further, more thorough studies 

should be conducted to validate this preliminary results.

While the results are interesting in that they suggest the need to use a tool such as 

HORNET to build a probabilistic model of the organization as compared to the 

traditional, human-based method of building intrusion detection rules or access control 

policies, they do have two possible flaws.  

The first possible flaw is in the survey instrument.  While we performed several 

iterations of survey development and testing, multiple respondents indicated in the free 

response section that it was difficult to think through what the survey was asking for.  We 

attempted to model the survey on the task that an administrator would have to conduct in 

order to build policies for access control or intrusion detection.  Improvements can likely 

be made to clarify the survey device, but we believe that the respondents' difficulty in 
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completing the survey indicates the inherent difficulty of using humans to quantitatively 

characterize how a complex organization works.

The second flaw is related to the issue first discussed in the previous chapter 

about the secondary use of meta-information data sources.  Several respondents indicated 

that they were unsure of what the department labels referred to.  It is likely that at least 

some of the department labels serve an administrative purpose that most clinicians would 

be unaware of.  For example “Nursing Support Services” refers to an administrative 

department label, but would any practicing clinician know who is part of this department? 

This flaw helps to further advance our previous arguments that complete and accurate 

meta-information databases should be built to provide this information universally and 

that traditional methods would run into the same issue. This flaw also demonstrates the 

superiority of computational approaches to building the model using a bottom up 

approach instead of what a manual, human based system would perform.
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CHAPTER VII

DISCUSSION & FUTURE WORK

In the previous chapters, we introduced an open-source tool for building access 

logs into a relational network, from which we can obtain a statistical model of how a 

healthcare organization operates.  Using this tool, we successfully demonstrated its use 

on access logs from StarPanel, Vanderbilt University Medical Center's EMRS.  We 

additionally measured the performance of domain experts in building a similar statistical 

model.

This work comes at an opportune time in a field that has a major unsolved 

problem.  To date, healthcare organizations have been largely unsuccessful with 

implementing solutions that protect patient privacy against insider attacks.  Neither 

auditing nor access control has been truly deployed in HCOs, due to numerous issues of 

defining the models of what actions are and are not allowed.  These issues include human 

inability to characterize the models and natural, constant structural changes of the 

organization.  In spite of these issues, HCOs now have a mandate from the government to 

increase the adoption and security of electronic healthcare systems.  Our work provides a 

potential first step to a solution of these issues by automatically learning how the 

organization naturally operates.

Specifically, we have several contributions to the field.  First, and most 

importantly, is our Apache-licensed tool itself.  Administrators at other HCOs can now 
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conduct the same analysis using data from their own institution.  HORNET is also a 

platform that researchers and software developers can build on top of, taking advantage 

of the system's advanced plugin architecture, configuration system, and plugin chaining.

Second, we contribute an approach which makes the best of incomplete data.  Our 

findings suggest that we can successfully find meaningful results in spite of missing data. 

Existing methods of policy definitions would almost certainly need complete, accurate, 

and maintained data in order to function.  Our approach will accept whatever information 

is available about the organization.  However, we argue that for the best performance of 

any access control system or auditing system, administrators should work to assemble 

and maintain a complete, detailed, and accurate representation of the people who have 

access to health information systems.

Third, we provide pilot results of a survey that indicates the difficultly of using 

humans to manually define a statistical model for access control or auditing.   This is not 

to say that humans are not good at defining certain classes of rules, for example, that 

Ob/Gyn physicians should not look at male patients' medical records.  An ideal access 

control system would likely incorporate both humans and computer generated models—

leaving each to what it is best at.

While our work focuses on healthcare, specifically on electronic medical record 

systems, there is a wider applicability for this work.  Any system which logs a user 

accessing some resource could be modeled with our tool.  In the example at Vanderbilt, 

patients were this resource. A natural extension is examining Clinical Provider Order 

Entry (CPOE) systems' access logs or other types of HIS.  Even beyond the healthcare 
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realm, this approach and tool can be used to model use of web sites.

Next Steps

With the open-source distribution of our framework, the future of this work is 

open to the wishes of HCO administrators and researchers.  Specifically, we plan to 

continue to develop HORNET, by improving its core, adding plugins for different types 

of analysis, and developing a graphical user interface.

In each chapter, where we have indicated limitations of our existing methods, we 

can work to fix these inadequacies. We plan to experiment with period sizes other than 7 

days and with different methods of weighting relationships.  Additionally, we can use the 

temporal context of the access logs to generate probabilities that have a temporal 

meaning.  For example, we might expect that the Emergency Department sees patients 

before any other department.

If VUMC provides a complete source of meta-information about the users of 

StarPanel, including the users' department and role, we can make more specific statistical 

models.

We suspect that our model can be dramatically improved using several additional 

techniques and sources of information.  Using referrals within the organization we could 

confirm existing work patterns, which might confirm and allow tuning of our statistical 

model.  Additional improvements will likely result from incorporating a temporal view of 

the data (for example, we might expect the emergency medicine department to access 

records first, then some other department such as internal medicine or surgery). Our 
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model also only models pairwise relationships—the expansion of this into group 

detection using clustering techniques could provide more specific rules.

The most important next step in this work is incorporating the statistical model we 

dynamically generate into an access control system or into a retrospective auditing 

system.  We specifically plan to incorporate our system into Vanderbilt's Model-

Integrated Clinical Information System (MICIS) to define access control policies. 

Additionally, we plan to spike the access logs from our study period with known 

improper accesses to perform a retrospective audit.
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APPENDIX A

EXPERT SURVEY
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