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CHAPTER I

Introduction

My focus in the thesis is the efficiency/inefficiency introduced by players’ selfish behavior

in games and markets, and the way to deal with the inefficiency. To model users’ selfish

behavior, I adopt game-theoretic analysis, which is widely used to model outcomes of

strategic interactions among multiple self-interested players. To deal with the inefficiency

due to players’ selfish behavior, I employ the mechanism/market design paradigm, which

studies how to design the rules of encounter which lead to socially desirable equilibrium

outcomes, such as to achieve high allocative efficiency. In the thesis, my goal is to study

some situations which lead to inefficiency in equilibrium outcomes, as well as approaches

for mitigating such inefficiency.

Broadly speaking, game theory studies mathematical models of strategic interaction

among rational decision-makers with perfect hindsight. In the thesis, I mainly consider

non-cooperative games, in which players are self-interested. Due to the selfish behavior

of players, the efficiency of a system may degrade. One well-known example of the inef-

ficiency is the prisoner’s dilemma, which shows why two completely rational individuals

might not cooperate, even if it appears that it is in their best interests to do so. In the thesis,

I quantitatively measure how the efficiency of a system degrades due to the selfish behav-

ior of its agents in some security domains, in terms of the price of anarchy, which is also

a general notion that can be extended to diverse systems and notions of efficiency. I also

note that the equilibrium introduced by selfish behavior can be efficient in some security

domain, which will be shown with full details in later chapters.

Having observed some examples where equilibria can be very inefficient, I explore the

problem of designing the rules of encounter, such as mechanisms and markets, that lead

to greater efficiency. Specifically, mechanism/market design paradigm takes an engineer-

ing approach to designing economic mechanisms or markets, toward desired objectives, in
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strategic settings, where players act rationally. The objectives of mechanism/market de-

sign consist of both economic and computational requirement. The economic requirement

includes efficiency, fairness, incentive compatibility, etc; and the computational objectives

consist of computational complexity, time and space efficiency, etc. Note that it may be

computationally hard for some mechanisms with good economic properties, and the trade-

off between economic and computational requirement is often considered when we are

designing mechanisms or markets in the real application. In the thesis, I consider both

economic and computational efficiency in designing mechanisms to partition a collection

of individuals into teams (coalitions). I also leverage some computational techniques to re-

duce the computational burden for some team formation mechanisms with good economic

properties but dissatisfactory in computation. Furthermore, I also study how it could im-

prove efficiency by introducing a secondary market among previously independent players.

By employing game theoretical analysis, I show that introducing a second market can often

improve efficiency.

In the following, I will mainly introduce the motivation and background of the problems

I study, and my contribution to these problems.

I.1 Towards Efficiency in Security Games

In the thesis, I first focus on efficiency/inefficiency in security scenarios. To analyze a

security domain, game theory has come to play an important role in it, with considerable

modeling and algorithmic advances, as well as the actual deployment of security systems

in practice that is based on such models and algorithms, including LAX Airport [3, 4], US

Coast Guard [5], and the Federal Air Marshals Service [6, 7, 8], among others.

A popular game-theoretic model of security that has received much attention both in

the research and in practice is a Stackelberg game between a single defender and a single

attacker, in which the defender commits to a randomized strategy, while the attacker, upon

learning this strategy, chooses an optimal target or a subset of targets to attack [9]. In
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most of the associated literature, it is assumed that a single defender is responsible for all

the targets that need protection, and that she has control over all of the security resources.

However, there are many domains in which there are multiple defender agencies who are

in charge of different subsets of all targets. While sometimes such agencies can be aligned

to follow the same set of goals, in general, different defender entities exhibit at least some

disparities in goals. In the thesis, I focus on the scenarios in which there are multiple

defenders who are rational and selfish, and analyze the efficiency/inefficiency introduced

by defenders’ strategic behavior.

I.1.1 Multi-Defender Security Games

I consider the security scenarios with multiple defenders, where each defender protects

multiple targets. In this setting, I theoretically characterize Nash and approximate Nash

equilibria, as well as their efficiency.

In the literature on security games, a defender is typically responsible (financially, po-

litically, or legally) for targets in their direct charge, rather than other targets that may have

social importance. This is certainly the case for the private sector, where different corpora-

tions secure their own resources without necessarily much concern for those of others, but

is also common for the public sector, with different government agencies held accountable

for their own assets, and not for those of others. In such non-cooperative security scenar-

ios, the typical single-defender Stackelberg game model is clearly inadequate. Instead, we

must consider the consequences of strategic interactions among multiple defenders, each

charged with protecting their assets from common adversaries. An important consideration

in such games is the negative externalities that security decisions impose on others: specif-

ically, when a defender chooses a high level of security investment, budget-constrained

attackers are more likely to choose others to attack. The resulting dynamics are likely to

lead to over-investment in security, a phenomenon observed in several related efforts [10].

In other words, the selfish behavior among defenders may incur severe degradation of effi-
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ciency.

In the thesis, I characterize Nash and approximate equilibrium among defenders and

theoretically analyze the efficiency degradation due to defenders’ selfish behavior in multi-

defender security games.

I.1.2 Multi-Defender Against Spear-Phishing Attacks

I also study the strategic interaction among multiple defenders in spear-phishing attacks.

Spear-phishing attacks pose a serious threat to sensitive computer systems, since they

sidestep technical security mechanisms by exploiting the carelessness of authorized users.

A number of high-profile targets have fallen victim to spear-phishing attacks. In 2013,

Target, the second largest general merchandise retailer in the US, suffered a massive data

breach due to a spear-phishing attack [11]. As a consequence, Target had to pay Visa is-

suers $67 million as reimbursement, and it is reportedly working on a similar deal with

MasterCard [12]. In 2014, the corporate network of a German steel mill was infiltrated

by a spear-phishing attack [13]. The attackers manipulated and disrupted control systems,

resulting in massive physical damage. Further examples include one of the White House

internal networks [14], computers at the Nuclear Regulatory Commission [15], and Oak

Ridge National Laboratory [16].

To mitigate spear-phishing attacks, an organization may set up an e-mail filter, which

assigns a maliciousness score to each incoming e-mail and delivers only those that are

below a given threshold [17]. Unfortunately, scoring is inevitably imperfect, and threshold

choice must necessarily balance security (risk of delivering malicious e-mails) and usability

(blocking of benign traffic).

Unlike non-targeted malicious e-mails, such as spam, spear-phishing e-mails must be

customized to their targets, which means that an attacker must spend a substantial amount

of effort on each target [18]. Consequently, attackers can only target a limited number of

users in any spear-phishing campaign. This limitation implies that an attacker must select a
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subset of targets to maximize expected yield from an attack. Moreover, resource limitation

on the attacker links the decisions of otherwise independent defenders: filtering decisions

by some may result in others being targeted. If a single organization were responsible for

setting filtering thresholds for all users, it could optimally account for such interdependen-

cies, as shown in prior work [1, 2]. Realistically, however, numerous organizations are

typically targeted, and their goals are generally distinct. The externalities that users impose

upon one another therefore become strategically significant, and no work to date analyzes

the resulting strategic dynamics in the spear-phishing context, even though prior work has

considered other, quite different, interdependent security problems [19, 20, 21, 22].

In the thesis, I study players’ strategic behavior when there are multiple selfish defend-

ers against spear-phishing attacks, analyze the existence and the efficiency of equilibrium,

and propose a polynomial algorithm to find such an equilibrium if it exists.

I.1.3 Decentralization and Security in Traffic Light Control

I consider the decentralized control system as a real application of the multi-defender secu-

rity game model. Effective design of large-scale complex traffic control systems, involving

many controlled intersections, is fundamental in modern urban centers. As a result, this

problem has been considered extensively in prior literature spanning fields such as trans-

portation, operations research, economics, and computer science. One broad class of ap-

proaches involve the study of self-organized phenomena in many-particle systems, such as

traffic flows on highways [23, 24]. In order to explain phenomena such as the emergence

of traffic jams or stop-and-go waves, a variety of different traffic flow models have been

proposed, including follow-the-leader models [25] and fluid-dynamic traffic models in both

discrete and continuous space. Recently, research has focused on network traffic, extending

one-dimensional traffic models in order to cope with situations, where traffic flows merge

or intersect. These models can explain how jam fronts propagate backward over network

nodes.
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One grand challenge in this connection is the optimization of traffic lights in urban road

networks [26], especially the coordination of vehicle flows and traffic lights. A common

goal in this literature is to minimize the travel times in a traffic network. In previous work, it

was shown that a further improvement of the traffic flow requires us to apply more flexible

strategies than fixed-time controls [27]. Gershenson and Rosenblueth [28], for example,

showed for a regular network with periodic boundary conditions that their control strategy

synchronizes traffic lights even without explicit communication between them. Lammer et

al. [29] proposed to represent the traffic lights by locally coupled phase oscillators, whose

frequencies adapt to the minimum cycle of all nodes in the network. Other algorithms

perform parameter adaptations by means of neural networks [30], genetic reinforcement

learning [31], fuzzy logic[32], or swarm algorithms [33].

Although adaptive, state-aware strategies can offer tremendous gains in traffic control

efficiency, they expose an attack surface that can be exploited to substantially increase

congestion. For example, a common kind of adaptive control logic involves state captured

by vehicle queue lengths in each direction, with light switching between red and green as

a function of relative queue lengths. While such state-aware switching can significantly

increase efficiency, they also expose the vulnerability of controllers to attacks on sensors

from which queue length information is derived.

An additional consideration which is crucial in modern complex traffic networks is

that traffic lights on the network are often designed by multiple actors (e.g., municipali-

ties). Consequently, while in principle we may be able to design extremely efficient and

resilient controllers for a particular traffic network, this is impractical due to misalignment

of interests among the different parties that actually control such networks. In the thesis, I

employ game theoretic analysis on the traffic control system and design scalable algorithm

for approximating a Nash equilibrium in the system.
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I.2 Toward Efficiency in Coalition Formation

The second part of the thesis is about designing efficient coalition formation mechanisms

among multiple selfish players. Besides the economic efficiency, the mechanisms need also

to meet some other economic and computational requirements, such as fairness, incentive

compatibility, and computational efficiency.

Division of individuals into groups is a common task, important in a multitude of

economic and social problems. Examples include dividing students into study groups or

dorms, forming teams for a basketball game, or forming groups for carpooling. The is-

sue of team, or coalition, formation in domains with hedonic preferences (players only

care about the members of their own team) is commonly studied from the perspective of

stability, where the focus is on characterizing or computing solutions of the game, such

as the core [34, 35, 36]. In the thesis, I consider the coalition(team) formation problem

mainly from the (centralized) mechanism design perspective. Then I specifically discuss

the roommates problem, a special case of coalition formation, and adopt automated mech-

anism design approach to deal with it.

I.2.1 Coalition Formation Mechanisms

In the thesis, I consider coalition formation as a mechanism design problem in which cen-

tral authority is in charge of forming coalitions based on players’ reported hedonic prefer-

ences. A challenging aspect of this mechanism design problem is that players may seek to

benefit by misreporting their true preferences. It is further complicated if the mechanism

is required to satisfy additional desiderata, such as individual rationality (players have in-

centives to participate), matching of soulmates (any collection of players who mostly pre-

fer to be with one another are always matched), efficiency, and fairness. Indeed, in gen-

eral, this combination of desiderata is impossible to achieve, even in two-sided matching

problems [37], which is a subclass of the coalition formation mechanism design problem.

Alcalde and Barberà [38] point out that without restrictions on the sets of admissible pref-
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erences, there is no matching mechanism that is Pareto efficient, individually rational, and

incentive compatible. In general, it is also impossible to design coalition formation mech-

anisms that are both incentive compatible and match soulmates [39].

Two special cases of the coalition formation mechanism design problem have received

considerable attention: two-sided matching markets [37], such as matching medical school

residents with residency programs, and one-sided matching or assignment problems [40,

41], such as school choice and course allocation (the latter abstracted as combinatorial as-

signment). Well-known mechanisms for one- and two-sided matching, such as the deferred

acceptance mechanism [37], possess many of the desired properties, but even generalizing

to combinatorial assignment runs into numerous impossibility results [41]. Indeed, even in

the roommate problem [42] where arbitrary teams of pairs can be constructed, few known

positive results exist. In the general coalition formation problems, random serial dictator-

ship (RSD) is, to our knowledge, the only mechanism which is incentive compatible and ex

post Pareto efficient [43, 44]. Although Wright and Vorobeychik [44] present several other

mechanisms, these do not satisfy any of the mentioned desiderata, making RSD the only

theoretically grounded mechanism known for general coalition formation.

In the thesis, I mainly consider the coalition formation problem from the perspective of

(centralized) mechanism design. Our mechanisms are constructed using subgame perfect

Nash equilibria (SPNE) of an accept-reject game (ARG) in which players propose coali-

tions in a predetermined order. Unlike RSD, prospective teammates may choose to either

accept or reject the proposals in ARGs. Chamber et al. [45] show that the SPNE of ARG

is individual rational and implements iterated matching of soulmates [39], where soulmate

coalitions are matched in an iterative fashion. Chamber et al. [45] also demonstrate that

the SPNE of Rotating Proposer Game (RPG), which is a special case of ARG, is Pareto

efficient. Rotating Proposer Mechanism (RPM) is a mechanism that implements the SPNE

of the corresponding RPG. As the SPNE is highly nontrivial to compute, I mainly focus

on the computation of the equilibrium. Other than the computational issues, I evaluate the
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RPM by employing empirical methods. And I show that RPM has very good efficiency and

incentive properties.

I.2.2 Mechanism Design for the Roommates Problem

Matching problem is a special case of coalition formation problem, and has received con-

siderable attention across multiple research areas in economics, operation research, and

computer science, starting with the seminal paper by Gale and Shapley [46] which first

introduced two-sided matching, along with the deferred acceptance (DA) algorithm for

finding a stable matching. Among its most prominent applications is the National Resident

Matching Program (NRMP). In addition to the matching problem, Gale and Shapley [46]

also introduced a generalization, the roommates problem, in which any player can match

with any other. While potential applications of the roommates problem abound, such as

pairing police officers on patrols or pilots on flights [47], holiday home exchanges [48],

kidney exchange [49], students to share double rooms in colleges, and course project teams,

there is still no widely accepted mechanism design solution for it.

I consider a new perspective on the roommates problem based on automated mechanism

design (AMD) [50]. In a prototypical AMD setup, one obtains preferences from the players,

and then solves an optimization problem (for example, an integer linear program) in which

constraints ensure incentive compatibility. However, applying AMD to matching problems

in general, and the roommates problem in particular, faces a number of challenges. First, it

is conventional to consider ordinal, rather than cardinal preference reports by the players.

Second, incentive compatibility is often incompatible with other highly desirable proper-

ties, such as stability and, for cardinal preferences, optimal social welfare. Third, standard

AMD methods explicitly compute the full mapping from preference reports to outcomes,

which is intractable for even small roommates problems.

To address the challenges, I implement a rank-preserving transformation from ordinal to

cardinal preferences, after ordinal preferences are received, and before the AMD approach
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is applied. Then I consider relaxing incentive compatibility, which bounds the most one can

gain from lying, and propose several approaches to construct integer linear programs for

computing outcomes. I will show that these approaches have good theoretical or empirical

properties.

I.3 Towards Efficiency by Introducing a Secondary Market

In the third part of the thesis I study how a free-trading secondary market could mitigate

players’ demand uncertainty in the primary market, and make the outcome more efficient.

Consider the following setting, increasingly common in international business. A com-

putationally intense corporation is allocating computational resources (e.g. cloud services,

CPUs, GPUs, or memories, etc.) to its business units (BUs). These BUs are affiliated with

the corporation, but decentralized management practices ensure that these are operating

independently in various decision-making tasks. The goal of the computational resource

manager is to meet BUs’ requirement instead of making decisions for them. At the begin-

ning of each season, each BU reports the number of resources it needs to the computational

resource manager of the corporation. Based on BUs’ requests, the resource manager or-

ders the corresponding amount of resources and allocates them to each BU based on the

reported amount, and each BU is responsible for paying for the resources they get. Since

these orders entail commitments at the beginning of a season, BUs are unable to perfectly

predict their need as the season progresses: actual realized demand depends on a host of

stochastic factors, such as growth or recession, expansion of the BU, changes in employee

structure, etc. However, if BUs run short of resources during the season, the company will

often impose stiff penalties, financial and otherwise (e.g., poor performance evaluation of

the BU), as this has both significant reputational and financial repercussions for the cor-

poration. As a consequence of the combination of uncertainty in true demand, and stiff

penalties following a shortage, BUs have a strong incentive to over-request resources from

the resources manager. This naturally leads to resource abundance among the BUs, but also
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to waste and unnecessary costs for the company.

In the thesis, I model the BUs as players, and I leverage game-theoretic analysis to

study the influence of a secondary market on players’ decisions and social welfare in the

resource allocation problem above.1 Secondary markets have been successfully used in

several other settings, such as spectrum market [51], emission trading market [52], and

energy market [53]. Unlike the approaches above, however, I study the extent to which the

secondary market can mitigate demand uncertainty when information is complete and all

players are strategic. To this end, I use a well-known newsvendor model as a starting point

to construct a two-stage game model:

1. In the first stage (i.e. primary market), players report their orders to the authority, and

then pay and get the requested resources. In this stage, actual demand is uncertain.

2. In the second stage (i.e. secondary market), demand uncertainty is resolved, all de-

manded resources used, and remaining resources can be traded freely.

Crucially, if no secondary market exists, the game devolves into a collection of indepen-

dent decisions by all players in the newsvendor framework. The secondary market, on the

other hand, creates an implicit dependency among optimal decisions in the first stage. Our

ultimate focus is on characterizing equilibrium decisions in this first stage of the two-stage

game.

In the thesis, by employing game theoretic analysis, I show that introducing a secondary

market among these players could indeed mitigate the demand uncertainty, sometimes sig-

nificantly. In particular, the resource allocation can be also much more efficient with a

secondary market than without.

1The focus on the free-trading market also distinguishes our work from those market design works that
involve invoking mechanism design approaches.
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CHAPTER II

Related Work

II.1 Stackelberg Security Games

Stackelberg game is a strategic game in which the leader moves first and then the follower

moves sequentially, and it is named after the German economist Heinrich Freiherr von

Stackelberg. In the early work, von Stackelberg [54] shows that in Cournot’ duopoly model

[55], if one firm is able to commit to a production quantity first, that firm will do much bet-

ter than in the simultaneous-move (Nash) solution. In the computer science community,

Conitzer and Sandholm [9] consider the Stackelberg model and study how to compute opti-

mal strategies to commit to under both commitments to pure strategies and commitment to

mixed strategies, in both normal-form and Bayesian games. They show that in two-player

normal-form games, an optimal mixed strategy to commit to can be found in polynomial

time using linear programming. However, finding an optimal pure strategy to commit to in

two-player Bayesian games is NP-hard, even when the follower has only a single type.

In the security domain, it is reasonable to assume that a defender firstly commits to

a (mixed) strategy and an attacker best responds it. Considering the uncertainty of play-

ers, these domains are commonly modeled as Bayesian games. Due to the NP-hardness of

computing the optimal strategy for defenders, there are many works that try to develop effi-

cient algorithms to deal with it. Paruchuri et al. [56] provide an efficient heuristic approach

for security against multiple adversaries. In another work, Paruchuri et al. [57] present

an efficient exact algorithm for finding the optimal strategy for the leader to commit to in

Bayesian Stackelberg games. The algorithm, DOBSS, is also at the heart of the ARMOR

system that was being deployed for security scheduling at the Los Angeles International

Airport (LAX) [58]. Afterwards, Kiekintveld et al. [59] develop new models and algo-

rithms that scale to much more complex instances of security games. The key idea is to
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use a compact model of security games, which allows exponential improvements in both

memory and runtime relative to previous algorithms. Based on the same idea of strategic

randomization in [59], Tsai et al. [60] implement Intelligent Randomization In Scheduling

(IRIS) system, a software scheduling assistant for the Federal Air Marshals (FAMs) that

provide law enforcement aboard U.S. commercial flights.

The success of Stackelberg security games in ARMOR (in LAX) and IRIS (in FAMs)

attract significant interest in game-theoretic approaches to security. And the Stackelberg

model has been adopted to a lot of real-world situations, such as protection of fisheries [61],

patrolling to protect ferries [62], protection of forest land [63] and wildlife [64], etc. Other

than those applications, Stackelberg model has been also used to study some problems

those look nothing like typical security games, such as adversarial machine learning [65],

privacy-preserving data sharing [66], vaccine design [67], etc.

II.2 Security Games with Multiple Defenders

It is assumed that there are two players in the Stackelberg game, and a group of players

are often modeled as a single agent when there are multiple players in the game. How-

ever, there are some works studying the scenarios that are not suitable to be modeled as

two-player games. Jiang et al. [68] considered (mis)-coordination in cases where there are

multiple defenders who are responsible for different sets of targets and share the common

utility function over all targets. In this work, the defenders are fundamentally cooperative

(sharing identical goals). Bachrach et al. [10] examined non-cooperative security games

among many defenders, in a two-stage model, but imposed strong assumptions on the

model structure, and only considered one-dimensional continuous “security investment”

strategies for the defender (departing significantly from the typical structure of Stackelberg

security games, in which defensive strategies are discrete protection choices).

Among the earliest multi-defender models is in the literature on interdependent security

games [69], in which interactions among multiple defenders are modeled as an n-player,
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2-action game, where a player decides whether to invest in security; however, no attacker

is considered. More recently, time-dependent scenarios where coordination of defender

resources amongst multiple defenders is assumed to have been studied using Markov de-

cision processes [70]. Since total cooperation is assumed, this model effectively reduces

to a single defender game in which the defender controls all resources. A natural exten-

sion of interdependent security games, interdependent defense games [71], does consider

an attacker who acts simultaneously with the defenders, rather than after observing the

joint defense configuration. Interdependent defense games have also been studied in the

context of traffic infrastructure defense [72]. Two recent efforts studying mult-idefender

games explicitly model interdependence among targets through a probabilistic contagion

process [73, 74]. Like our work, they consider attackers who observe the joint defense

prior to making a decision, but each defender is restricted to secure a single node, and

the strategy space is assumed to be continuous. Vorobeychik et al. [75] attempt to study

strategic settings related to security in which each player’s decision space is combinatorial.

However, this work does not consider a strategic attacker.

In security games with multiple defenders, players’ decisions are often correlated with

each other, and the interdependence among players can be often modeled as a network

structure. They motivate research on methods for improving information security, such as

network design. Individuals derive benefits from their connections, but these may expose

them to external threats. Cerdeiro et al. [76, 77] propose a model to explore the tension

between connectivity and exposure to an external threat when security choices are decen-

tralized. They find that faced with an intelligent adversary who seeks to minimize network

value, both over-investment and under-investment in security are possible. Social welfare

may be maximized in sparsely connected networks when under-investment pressures are

present, and fragmented networks when over-investment pressures prevail. Their result is

very similar to that in [78], though they are analyzing the problem from different perspec-

tives.
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II.3 Security Games for Defending Against Cyber Attacks

Recently, there are more and more works that apply security game theory to the defense

against cyber attacks. One representative example is applying the Stackelberg game to

solve the spear-phishing attack. Jain et al. [1] model the decision problem faced by a sin-

gle defender who has to protect multiple users against targeted and non-targeted malicious

e-mail. They focuses on characterizing and computing optimal defense strategies, and they

use numerical results to demonstrate that strategic threshold selection can substantially de-

crease losses compared to naı̈ve thresholds. Zhao et al. [79] study a variant of the previous

model: they assume that the targeting attacker can launch an unlimited number of costly

spear-phishing attacks in order to learn a secret, which only a subset of the users know.

This work also focuses on the computational aspects of finding an optimal defense strat-

egy; however, this variant of the model does not consider non-targeted malicious e-mails.

Classifying e-mails in order to estimate their likelihood of being malicious has been ex-

tensively studied [80]. Note that these results are complementary to the strategic threshold-

selection problem, since the latter builds on an exogenously given classifier. Potentially

malicious e-mails can be classified based on many attributes. For example, Fette et al. [81]

build a classifier for detecting phishing e-mails using a variety of features, such as the num-

ber of links in the e-mail and the age of the linked-to domain names. When evaluated on a

real-world dataset, the false negative rate of the classifier was less than 4%, while its false

positive rate was around 0.1%. As another example, Bergholz et al. [82] design an e-mail

classifier for detecting spam and phishing e-mails, and they describe a number of novel

features, such as design elements of known brands and intentional distortion of content not

perceivable by the reader.

Other than spear-phishing attacks, researchers also adopt security game theoretical

model to other cyber attack defense problems. Laszka et al. [83] model intrusion-detection

systems as an attacker-defender security game and study the problem of finding optimal

intrusion detection thresholds. Intrusion-detection systems can play a key role in protect-
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ing sensitive computer systems. However, an over-sensitive intrusion-detection system,

which produces a large number of false alarms, imposes prohibitively high operational

costs. Laszka et al. [83] try to optimize the sensitivity of intrusion detection systems and

try to balance between maximizing security and minimizing costs. Schlenker et al. [84]

study the scenario in which the attacker could use deceptive techniques to attack a cyber

network system, and introduce a game theoretical model of deceptive interactions between

a defender and a cyber attacker, which is called the Cyber Deception Game. Further-

more, they consider the computational complexity issues for both defender and attacker.

Li et al. [85] propose a game theoretical model in Man-in-the-Middle (MITM) attack, and

model the strategic interaction between the Man-in-the-Middle (MITM) attacker and mul-

tiple defenders as a simultaneous-move game. They also provide the theoretical analysis

of the uniqueness of Nash equilibrium, and propose practical learning algorithms for the

defenders and the attacker.

II.4 Hedonic Coalition Formation

In recent years, hedonic coalition formation has been extensively investigated in Economics

and AI literature. A hedonic coalition formation game [34, 86] is a game that models the

formation of coalitions (teams) of players when players have preferences over which group

they belong to.

Coalition formation problem has been studied since the early age of multi-agent sys-

tems. When agents communicate in the multi-agent systems, they may decide to cooperate

on a given task or for a given amount of time. Zlotkin and Rosenschein [87] consider the

coalition formation problem from the perspective of agents negotiation. They present a

coalition formation mechanism that uses cryptographic techniques for subadditive task ori-

ented domains. Since this work is conducted in a game theory framework, agents consider

the utility of joining a coalition in which they are bound to try to advance the utility of other

members in exchange for reciprocal consideration. Shehory and Kraus [88] present a dis-
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tributed algorithm for task allocation when coalitions are either needed to perform tasks or

more efficient than single agents. Sandholm and Lesser [89] use a vehicle routing domain

to illustrate a method by which agents can form valuable coalitions when it is intractable

to discover the optimal coalitions. There are also some more following works that consider

agents’ cooperation in coalition formation (such as [90, 91, 92]).

Besides the settings with cooperative agents, much research is also focused on self-

interested players aiming to maximize their utility. Bogomolnaia and Jackson [34] study

the existence of stable coalition structures, and provide, among other results, restrictions

on preference profiles that ensure the non-emptiness of the core. Besides the notion of core

stability – a traditional notion of stability – they also consider some other notion of stability,

such as individual stability, Nash stability, and contractual individual stability. The problem

of existence of (core, Nash, individually and contractually individually) stable coalitions is

also considered in other work, such as [93]. A potentially infinitely long coalition formation

process in the context of hedonic games was studied in [94]. There are some more works

those study the stability in coalition formation, and more literature can be seen in [86].

The literature considering coalition formation from a mechanism design perspective

has been relatively limited. Several efforts consider this problem within a restricted set of

coalitions. Different from dealing with preference constraints in [34], Pápai [95] consid-

ers it as a generalization of more specific coalition formation model, such as the marriage

[46] and roommate models [42]. Rodriguez-Alvarez [96] introduces single-lapping prop-

erty, which is the sufficient and necessary condition of unique stability. Moreover, she also

shows that single-lapping rules are the only rules that satisfy strategy-proofness, individual

rationality, and Pareto efficiency when agents’ preferences over coalitions are not restricted.

Banerjee et al. [97] introduce the top-coalition property and they prove that top-coalition

property is sufficient to guarantee the existence of a unique core coalition structure. Aziz et

al. [98] identify a close structural connection between Pareto optimality and perfection that

has various algorithmic consequences for coalition formation. Based on this insight, they
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formulate an algorithm that computes an individually rational and Pareto optimal outcome

in hedonic games. Wright and Vorobeychik [44] consider the general coalition formation

problem with cardinality being the only constraints on coalitions. They also propose several

mechanisms for this problem; however, none are incentive compatible or Pareto efficient

with the exception of random serial dictatorship [99], which is both. The problem of in-

centive compatibility has been also considered in some other literature [100, 101, 96, 102],

albeit either in very restricted domains (such as single-lapping coalitions), or when mone-

tary transfers are allowed.

II.5 Matching and Roommates Problem

Since the seminal paper by Gale and Shapley [46], stable matching problems have been

well studied in economics and recently in computer science and artificial intelligence com-

munity. Algorithms for finding solutions to the stable matching problem have applications

in a variety of real-world situations. One of the best-known application of the matching

problem is the National Resident Matching Program (NRMP), which assigns graduating

medical students to their first hospital appointments.

In a marriage problem (two-sided matching), agents are divided into two disjoint groups

where agents can only be matched to an agent in the other group. Gale and Shapley [46]

prove that stable outcomes always exist in two-sided matching problem. And they pre-

sented deferred acceptance (DA) algorithm to find a stable outcome. Even though DA

mechanism is not incentive compatible, the stability property is very desirable and it is

stronger than individual rationality or Pareto efficiency. In fact, it has been shown that

incentive compatibility and stability are not compatible with two-sided matching [103].

What’s more, Alcalde and Salvador Barberà [38] prove that, without restrictions on the

sets of admissible preferences, there is no matching mechanism that is Pareto efficient, in-

dividually rational, and incentive compatible. In reality, the original marriage model can

be generalized to many-to-one [104] or many-to-many two-sided matching [105]. And in-
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centive compatibility is not a big issue for the two-sided matching model in a real-world

situation. For instance, Kojima and Pathak [106] analyze the scope for manipulation in

many-to-one matching markets, and they show that the fraction of participants with in-

centives to misrepresent their preferences when others are truthful approaches zero as the

market becomes large.

Gale and Shapley [46] also defined the roommates problem, in which all agents are

from a single group, and any agent can be matched with any other. Comparing with exten-

sive literature on the marriage problem, roommates problem has been much less studied.

However, there are many applications that can be modeled as a roommates problem: pair-

ing police officers on patrols or pilots on flights [47], holiday home exchanges [48], kidney

exchange [49], students to share double rooms in colleges, class project teams assignment,

etc. What’s more, roommates problem also boils down to hedonic coalition formation

problem [34, 86]. Gale and Shapley [46] also notes that stable outcomes do not necessarily

exist in roommates problem. Irving [42] presents a polynomial algorithm to find a stable

outcome if it exists in roommates problem. In some literature, it is common practice to

restrict the analysis to those problems in which a stable matching exists (see for instance,

[107, 108, 109, 110] ). However, restricting attention to the roommate problem which has

stable outcomes means ignoring a subclass of problems without stable matchings. In fact,

in [111] they show that as the number of agents increases, the probability of not resulting

in stable outcomes for a roommate problem increases fairly steeply, which makes predict-

ing the outcome of the problem much more challenging than marriage problem. Some

other works in roommates problem try to propose some other solution concept, which is

guaranteed to exist, in roommates problem, such as Q-stable matching [112].

Given the incompatibility between incentive compatibility (i.e., agents report their pref-

erences truthfully) and stability in marriage problems, it is even harder to design incentive

compatible mechanism for the roommates problem. Thus, things can be more severe if we

are designing some centralized roommates mechanism in which truthful preferences are
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expected to be received. Some literature tries to study the constrained manipulation in the

two-sided matching problem. In two-sided matching, the most commonly studied model of

manipulation in this literature is truncation [113], whereby one removes some of the least

preferred partners from a rank order. More pertinent to our work is permutation manipula-

tion [114], in which a player can permute her true preference. Vaish and Garg [114] study

such manipulations in the context of deferred acceptance, and they show that deferred ac-

ceptance can be manipulated by both permutations and promotions (where a player shifts

someone up in their preference order).

II.6 Secondary Markets

The idea of introducing a secondary market is not new. In the literature, auctions [115]

[116] have been used extensively as the mechanism for conducting trades in a secondary

market [51]. One such example is the secondary market design for spectrum auction [117].

In practice, a significant amount of wireless spectrum is under-used by current owners.

To enable better use of the spectrum, the auction approach was extensively adopted to

dynamically allocate the spectrum in a secondary market. In this line of works, different

designs of auctions have been proposed to fulfill the different requirement of spectrum

auction, such as improving social welfare, guaranteeing strategyproofness, fairness, etc

(see [118, 119, 120]). For instance, Kash et al. [51] propose an auction approach that

leverages dynamic spectrum access techniques to allocate spectrum in a secondary market.

These are markets where spectrum owners can either sell or lease spectrum to other parties.

Another salient application of secondary market is that of emission trading, which is

a market-based approach to controlling pollution by providing economic incentives for

achieving reductions in the emissions of pollutants [121]. Greenhouse gas emissions trad-

ing schemes (ETSs) are operational in several countries. The trade in carbon permits or

credits within and between ETSs is growing [122]. In the ETSs, the authority (usually the

government) allocates or sells permits to discharge specific quantities of a specific pollutant
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per time period [123]. Polluters who want to increase their emissions could buy permits

from others that are willing to sell in a secondary market [124]. Although there is some

difference between the emission trading setting and mine, the results in my analysis could

also give some managerial insight and implication for emission trading system.

My work is also closely related to game theoretical analysis in inventory management

and supply chain. To my best knowledge, Parlar [125] was the first to analyze the game

theoretic version of the newsvendor problem with two retailers competing on product avail-

ability, which is also one of the first articles modeling inventory management in a game the-

oretic framework. Following this line of research, Bernstein and Federgruen [126] investi-

gate the equilibrium behavior of decentralized supply chains with competing retailers under

demand uncertainty. Other than the noncooperative game, Hartman et al. [127] consider

a cooperative inventory-“centralized” game among n stores with single-item and single-

period demands. They examine the conditions under which such an inventory centraliza-

tion game has a nonempty core. Muller et al. [128] prove that the core is always nonempty

for all possible joint distributions of the random demands in a cooperative newsvendor

game. Cachon and Netessine [129] survey the applications of game theory to supply chain

analysis and outlines game-theoretic concepts that have a potential for real-world applica-

tion. More recently, Fiestras-Janeiro et al. [130] provide a review of the applications of

cooperative game theory in the management of centralized inventory systems.

Lee and Whang [131] discuss the impact of the secondary market on supply chain

problem, which is very relevant to mine. Lee and Whang develop a two-period newsven-

dor model with a single manufacturer and many resellers. At the beginning of the first

period, resellers order and receive products from the manufacturer; then in the second pe-

riod, resellers can trade inventories among themselves in the secondary market. One main

difference that distinguishes my work from [131] is that we aim to understand how sec-

ondary market mitigates the uncertainty in demands when allocating resources; in contrast,

the main goal of [131] is to understand the influence of secondary market in a supply chain
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and inventory management. Another main difference is that, in [131], the demand in the

secondary period remains stochastic, and thus the second period can still be modeled as a

newsvendor model - this to a certain degree helped simplify the analysis. To understand

how secondary market mitigates uncertainty, we assume that players’ demands will be real-

ized in the secondary market and it cannot be modeled as a newsvendor problem anymore.

Furthermore, [131] only discussed symmetric equilibrium (even in a large market), which

is hardly the case in my setting - if we assume that players’ demands have been realized

in the secondary market, then symmetric equilibrium does not exist almost surely in my

case (for large market). We have obtained and explained different results with my model:

for instance, [131] shows that the price in the secondary market is strictly lower than the

original purchase price - but this is not the case with my model. We’d like to emphasize that

both [131] and my work studied the influence of secondary market instead of the mecha-

nism/market design question, which is different from many of the secondary markets work

mentioned earlier.
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Part I

Toward Efficiency: Security Game
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CHAPTER III

Multi-Defender Security Games

In this chapter, I will analyze the equilibrium in general multi-defender security games. I

will characterize both Nash equilibrium and approximate equilibrium in the games, and

analyze the inefficiency introduced by defenders’ selfish behavior by the price of anarchy

analysis.

I consider a problem with multiple defenders protecting a collection of homogeneous

targets. Each defender chooses a probability distribution over protection levels for all tar-

gets in their charge. A single attacker then best responds to the defenders’ action by at-

tacking the target with the lowest probability to be protected, breaking ties uniformly at

random.

My analysis is focused on three models of such multi-defender games, with defenders

acting non-cooperatively in all of these. I show that a Nash equilibrium among defenders in

this two-stage game model need not always exist, even when the defenders utilize random-

ized strategies (i.e., probability distributions over target protection levels); this is distinct

from a model in which the attacker moves simultaneously with the defenders, where a

mixed strategy equilibrium is guaranteed to exist. When an equilibrium does exist, I show

that the defenders protect all of their targets with probability 1 in all three models, whereas

the socially optimal protection levels are generally significantly lower. When no equilib-

rium exists, I characterize the best approximate Nash equilibrium (that is, one in which

defenders have the least gain from deviation), showing that over-investment is substan-

tial in this case as well. Our price of anarchy (PoA) analysis, which relies on the unique

equilibrium when it exists, and the approximate equilibrium otherwise, demonstrates a sur-

prising finding: whereas PoA is unbounded in the simpler models, increasing linearly with

the number of defenders, the more general model shows this to be an atypical special case
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achieved when several parameters are exactly zero. More generally, PoA tends to a constant

as the number of defenders increases.

This work has been published in [22], [78].

III.1 Problem Setting

In the mult-idefender security game model, there are a collection of defenders N = {1,2,3,

. . . ,n}, and a single attacker. A collection of targets T will be protected by these defenders.

Each defender i is in charge of a set of targets Ti, such that Ti ⊆ T . I assume Ti ∩Ti′ = /0

when i 6= i′, and ∪i∈NTi = T .

Strategies Suppose that each defender i can choose from a finite set O = {o1,o2, . . . ,o|O|}

of security configurations for each target t ∈ Ti. A pure strategy of defender i is oi =<

oi,ti1,oi,ti2, . . . ,oi,tik . . . ,oi,ti|Ti|
>, in which tik is the kth target of defender i, and oi, j (here

j = ti1, ti2, . . ., etc.) means defender i’s security configuration on target j s.t. j ∈ Ti. I

assume the attacker is resource constrained and can only attack one target in the game.

That is, a pure strategy of the attacker is j, s.t. j ∈ T .

A Mixed Strategy of a defender i is a matrix

qi =



qo1
i,ti1 qo1

i,ti2 . . . qo1
i,ti|Ti|

qo2
i,ti1 qo2

i,ti2 . . . qo2
i,ti|Ti|

...
... . . . ...

q
o|O|
i,ti1 q

o|O|
i,ti2 . . . q

o|O|
i,ti|Ti|


In which, qo

i, j (here o = o1,o2, . . ., o|O| and j = ti1, ti2, . . ., ti|Ti|) is the probability that the

defender i chooses o at target j, and ∑o∈O qo
i, j = 1.

In the model, I assume a single strategic attacker that observes the defenders’ coverage

probabilities and chooses a target that maximizes its utility. A mixed strategy of the attacker

can be denoted by p =< pt1 , pt2, . . . , ptk . . . , pt|T | >, in which, tk is the kth target in target set

T , and p j (here j = t1, t2, . . . , t|T |) is the probability of attacking target j ∈ T .
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Let q =< q1,q2, . . . ,qn > denote the strategy profile of the defenders, and (q,p) denote

the strategy profile of the defenders and the attacker.

Payoffs A configuration o ∈ O for target j ∈ Ti incurs a cost co
j to the defender i. If the

attacker attacks a target j ∈ T while configuration o is in place, the expected value to a

defender i is denoted by Uo
i, j, while the attacker’s value is V o

j . We assume in this model that

each player’s utility depends only on the target attacked and its security configuration [132,

133].

Solution Concepts Traditionally, in single defender Stackelberg security games, the so-

lution concept used is Strong Stackelberg Equilibrium (SSE). A SSE is characterized by an

assumption that the attacker breaks ties in defender’s favor. However the notion of “break-

ing ties in defender’s favor” is no longer well defined when there are multiple defenders,

as we must specify which defender will receive the favor. In the thesis, I adopt a natural

tie-breaking rule in which the attacker chooses a target uniformly at random from the set

of all best responses. We call the corresponding solution concept (which is a refinement of

the subgame perfect equilibrium of our game) the Average-case Stackelberg Equilibrium

(ASE).

Definition III.1.1. (Average-case Stackelberg Equilibrium) A strategy profile (q,p) is ASE

if each defender’s strategy is a best response, taking other defenders’ strategies as given

and assuming that the attacker will always play a best-response strategy, breaking ties

uniformly at random if there are multiple best-response strategies.

As I demonstrate below, ASE is not guaranteed to exist, in which case I focus on ε-ASE

(a refinement of ε-equilibrium), in which no defender gains more than ε by deviating; in

particular, I will consider ε-ASE with the smallest attainable ε .

To measure how the efficiency of the game degrades due to selfish behavior of the

defenders, I consider Utilitarian Social Welfare and (ε)-Price of Anarchy in the thesis.

Utilitarian Social Welfare is the sum of all defenders’ payoffs. For the smallest attainable
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ε , I define ε-Price of Anarchy (ε-PoA) as follows:

ε-PoA =
SWO

ε-SWE

where SWO is the optimal (utilitarian) social welfare that can be obtained (i.e., if there

was a single defender), and ε-SWE is the worst-case (utilitarian) social welfare in ε-ASE.

An underlying assumption of this definition is that the value of SWO and ε-SWE are both

positive. If they are both negative, then ε-PoA will be the reciprocal of the above equation.

Note that the ordinary Price of Anarchy is a special case of ε-Price of Anarchy with ε = 0.

III.2 Equilibrium Analysis

In this chapter, I consider scenarios in which the values of the targets are independent and

homogeneous among the defenders. Our equilibrium and Price of Anarchy analysis will

show that a Nash equilibrium among defenders in the Stackelberg game model (equiva-

lently, ASE) 1 need not always exist, even when the defenders utilize randomized strategies

(i.e., probability distributions over target protection levels). For cases when there is no

Nash equilibrium, I make use of approximate Nash (ASE) equilibrium and the associated

(ε)-Price of Anarchy.

III.2.1 Equilibrium Analysis on a Baseline Model

I start with a model which most reflects the related literature: in particular, this model

involves n defenders and a single attacker, with each defender engaged in protecting a single

target. Each target has the same value to the defender v > 0. Suppose that the defender has

two discrete choices: to protect the target, or not. In addition, the defender can randomly

choose among these; our focus is on these coverage probabilities (i.e., the probability of

protecting, or covering, the target), which we denote by si for a given defender i. The

attacker is strategic and could observe the defenders’ strategies to choose a target so as to

1If we treat attacker as an externality, we could see an ASE as a Nash equilibrium among defenders. For
ease of exposition, we will also use “Nash equilibrium among defenders” to denote ASE in the chapter.
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maximize the damage. We assume that the attacker is indifferent among the targets, and

attacks the target with the lowest coverage probability, breaking ties uniformly at random.

In a given scenario, for all defenders, the attacker’s strategy is a vector of probabilities

P =< p1, p2, ..., pn >, where pi is the probability of attacking target i, with ∑
n
i=1 pi = 1.

We assume that if the attacker chooses to attack a target corresponding to defender i

and defender i chooses to protect the target, then the utility of the defender i is 0, and if the

attacker attacks the target but it is not protected, then the utility of the defender is −v. If a

defender chooses to cover a target, it will incur a cost c > 0. Additionally, we assume that

the defender gets a utility of zero whenever another defender’s target is attacked. We can

thus define the expected utility of a defender i as

ui = piua
i +(1− pi)uu

i ,

where ua
i is the utility of i if it is attacked, and uu

i is the utility of i if it is not attacked. By

the assumptions above,

ua
i =−(1− si)v− sic =−v+ si(v− c)

uu
i =−sic.

Our first result presents necessary and sufficient conditions for the existence of a Nash

equilibrium in the baseline model, and characterizes it when it does exist.

Theorem III.2.1. In the Baseline model, Nash equilibrium exists if and only if v ≥ c. In

this equilibrium, all targets are protected with probability 1.

Proof. Firstly, we claim that Nash equilibrium among defenders can appear only if all

targets have the same coverage probability s to be protected. Otherwise, some defender j

who has the possibility of 0 to be attacked has the incentive to decrease her s j. To find the

Nash equilibria, we need only consider strategy profiles in which all targets have the same
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coverage probabilities to be protected.

When all defenders have the same possibility s to cover their targets. For each defender,

her expected utility is

u =
(v− cn)s− v

n

If s < 1, some defender i could slightly increase s to s+ δ (δ is a very small positive real

number) to make sure herself not be attacked and get utility u′ =−(s+δ )c,

u′−u =
v(1− s)−ncδ

n

As δ can be very small, u′− u > 0 when s < 1. We could know that the defender has

incentive to improve s when s < 1. So the Nash equilibrium can appear only if si = 1 for

all defender i.

When all defenders have the same possibility s = 1 to cover their targets. For each

defender, her expected utility is

u =−c

If a defender i decreases her coverage probability to s′ < 1, then her target will have the

probability of 1 to be attacked, and she gets expected utility u′ =−v+ s′(v− c),

u′−u = (v− c)(s′−1)

If v ≥ c, then u′− u ≤ 0, all defenders do not have the incentive to deviate, so it is a

Nash equilibrium. If v < c, then u′−u > 0, the defender has the incentive to deviate, so it is

not a Nash equilibrium. To sum up, Nash equilibrium exists if and only if v≥ c, in which

all defenders have the same probability 1 to protect their targets.

Thus, if a Nash equilibrium does exist, it is unique, with all defenders always protecting

their target. But what if the equilibrium does not exist? Next, we characterize the (unique)

ε-equilibrium with the minimal ε that arises in such a case. We will use this approximate
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equilibrium strategy profile as a prediction of the defenders’ strategies.

Theorem III.2.2. In the Baseline model, if v < c, the optimal ε-equilibrium is for all

defenders to cover their target with probability v
c . The corresponding ε is v(c−v)

cn .

Proof. We firstly consider strategy profiles in which all targets have the same possibility s

to be protected. Then for each defender, her expected utility is

u =
(v− cn)s− v

n

Assume 0 ≤ s < 1. If some defender i slightly increase s to s+ δ1, then she could get

utility u′ =−(s+δ1)c,

u′−u =
v(1− s)−ncδ1

n
<

v(1− s)
n

Assume 0 < s≤ 1. If some defender i slightly decreases s to s−δ2, then she could get

the utility u′′ =−v+(s−δ2)(v− c)

u′′−u =
v(1− s)(1−n)+δ2n(c− v)

n

As δ2 ≤ s, we could get

u′′−u≤ v(1− s)(1−n)+ sn(c− v)
n

=
v(1− s)

n
+(sc− v)

Let d1 = v(1−s)
n , d2 = v(1−s)

n + (sc− v). For s = 0, a defender could deviate to get

an increased value which is less than v
n , so it is v

n -equilibrium. For s = 1, a defender

could deviate to get an increased value which is less or equal to (c− v), then it is (c− v)-

equilibrium.

When 0 < s ≤ v
c and d2 ≤ d1, it is d1-equilibrium. When v

c < s < 1 and d2 > d1, it is

d2-equilibrium.
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To sum up, for ε-equilibrium,

ε =


v(1−s)

n , if 0≤ s≤ v
c ;

v(1−s)
n +(sc− v), if v

c < s≤ 1.

When s = v
c , we could get the minimal ε = v(c−v)

cn . And it is the only v(c−v)
cn -equilibrium

in strategy profiles of all defenders having the same coverage probabilities.

We claim that the v(c−v)
cn -equilibrium could only exist in a profile of all defenders having

the same coverage probability s. Otherwise, assume defenders have different probabilities

to cover their targets, then there are α defenders (1 ≤ α < n) who have the same minimal

probability s′ to protect their targets. The expected utility for each defender among these α

defenders is:

ue =
(v− cα)s′− v

α

When v
c < s′ ≤ 1, some defender i among these α defenders could decrease her proba-

bility to 0 to get value u1 =−v,

u1−ue =
v(1− s′)

α
+(s′c− v)>

v(1− s′)
n

+(s′c− v)

When 0≤ s′ ≤ v
c , some defender i among these α defenders could slightly increase her

probability to s′+δ3 to get the utility u2 =−(s′+δ3)c

u2−ue =
v(1− s′)−αcδ3

α
>

v(1− s′)
n

The above inequation holds because δ3 can be very small. Then we could know that it

cannot be a v(c−v)
cn -equilibrium.

So we could know that it is the only v(c−v)
cn -equilibrium when all defenders have the

equal probability v
c to cover their targets. And it is the optimal approximate equilibrium.
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Armed with a complete characterization of predictions of strategic behavior among the

defenders, we can now consider how this behavior related to socially optimal protection

decisions. Since the solutions are unique, there is no distinction between the notions of

price of anarchy and price of stability; we term the ratio of socially optimal welfare to

welfare in equilibrium as the price of anarchy for convenience.

First, we characterize the socially optimal outcome.

Theorem III.2.3. In the Baseline model, the optimal social welfare SWO is

SWO =


−cn, if v≥ cn;

−v, if v < cn.

Proof. We firstly claim that we could get optimal social welfare only if all defenders have

the same probability s to protect their targets. Otherwise, their coverage probabilities are

different, and some defender j has the probability of 0 to be attacked. Then we could

decrease s j to get better social welfare. Therefore we just need to look for the identical

coverage probability s which makes the optimal social welfare. The function of social

welfare over s is as follows:

SW (s) =−v+ s(v− c)+(n−1)(−sc) = (v− cn)s− v

Then we could get the optimal social welfare as the theorem shown.

From this result, it is already clear that defenders systematically over-invest in security,

except when values of the targets are quite high. This stems from the fact that the attacker

creates a negative externality of protection: if a defender protects his target with higher

probability than others, the attacker will have an incentive to attack another defender. In

such a case, we can expect a “dynamic” adjustment process with defenders increasing

their security investment well beyond what is socially optimal. To see just how much the
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Figure III.1: Price of Anarchy when v≥ c

defenders lose in the process, we now characterize the price of anarchy of our game.

If v≥ c, it is one and only one Nash equilibrium when all defenders have the coverage

probability 1 for their targets. And the corresponding social welfare is

SWE =−cn

Because it is the only Nash equilibrium, we could get the Price of Anarchy as follows:

PoA =


1, if v≥ cn;

nc
v , if c < v < cn.

Figure III.1 shows the relationship among Price of Anarchy, the number of defenders,

and the ratio of cost c and value v. From the figure we could find that when the number of

defenders and the ratio of c and v are small enough (e.g. n ≤ 5 and c
v = 0.2), the price of

anarchy is close to 1. Otherwise, the price of anarchy is unbounded, growing linearly with

n.

If v< c, there is no Nash equilibrium. However, we could get the optimal ε-equilibrium

when all defenders have the same coverage probability v
c for their targets. The correspond-

ing Social Welfare is

SWE = (v− cn)
v
c
− v
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Similarly, we could get the v(c−v)
cn -Price of Anarchy as follows,

v(c− v)
cn

-PoA =
cn+ c− v

c
,

which is, again, linear in n.

III.2.2 Equilibrium Analysis of the General Model

In this model, we assume all targets in T are homogeneous, and each target has the same

value to the defender. In the game model, each defender protects k targets, i.e. |T1| =

|T2| = . . . = |Tn| = k. The security configuration space is O = {0,1}, i.e., the defender’s

decision is binary. For example, 1 can correspond to the decision to protect an asset, while

configuration 0 would leave the asset unprotected. The pure strategy of defender i is oi =<

oi,ti1,oi,ti2, . . . ,oi,tik >, in which oi, j (here j = ti1, ti2, . . .) is a binary value. The mixed strategy

of a defender i is qi =< qi,ti1,qi,ti2, . . .qi,tik >, in which qi, j is the probability of protecting

target j for defender i (coverage probability). The cost to defend each target is denoted by

c.

If the attacker chooses to attack a target controlled by defender i and the defender

chooses to protect the target, we define the value of the target to defender i to be Uc, and

if the attacker attacks the target but it is not protected, then the value of the target to the

defender is Uu. It is reasonable to assume that Uc ≥ Uu. If the target of defender i is

not attacked, the value of the target for defender i is Ω ≥Uc. In this setting, we assume

that the attacker aims to maximize expected damage to the defender, so that the attacker’s

utility is−Uu,−Uc, and−Ω for the three outcomes above, respectively. Since these values

are uniform across targets, equivalently the attacker attacks a target with lowest coverage

probability (breaking ties uniformly at random).

Our first result presents necessary and sufficient conditions for the existence of a Nash

equilibrium among defenders (ASE) in the setting, and characterizes it when it does exist.

34



Theorem III.2.4. In the Independent Multidefender setting, Nash equilibrium among de-

fenders (ASE) exists if and only if Uc−Uu ≥ kc− (n−1)(Ω−Uc)
n . In this equilibrium all

targets are protected with probability 1.

Proof. We firstly claim that Nash equilibrium can appear only if coverage probabilities of

all of targets ti j are identical. Otherwise, there will be a target tik which has the probability

0 of being attacked, and the defender i has an incentive to decrease qik. To determine a

Nash equilibrium, we therefore need only consider scenarios in which all targets have the

same coverage probability.

When all targets have the same coverage probability q to be protected, the utility of

each defender is

u =
(Uc−Uu−nkc)q+Uu +(nk−1)Ω

n
.

If q < 1, then some defender i could increase q to q+δ for all of her targets to ensure none

of them are attacked, and obtain utility of u′ = kΩ− k(q+δ )c, so that

u′−u =
(Uc−Uu)(1−q)+(Ω−Uc)−nkcδ

n
.

As Uc ≥Uu, Ω≥Uc, and δ can be arbitrarily small, u′−u > 0 when q < 1, which means

that this cannot be a Nash equilibrium. Thus, the only possible equilibrium can be qi j = 1

for all targets ti j.

When all targets have the same coverage probability q = 1, each defender’s utility is

u =
Uc−nkc+(nk−1)Ω

n
.

We claim that if a defender i has an incentive to deviate, it is optimal for this defender

to use the same coverage probability for all her targets. Otherwise, for some target tik

which has probability 0 of being attacked, she could decrease q′ik to obtain higher utility.

If probabilities of targets protected by defender i are all q′ (0≤ q′ < 1), then her expected
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utility is u′ = (Uc−Uu− c)q′+Uu +(k−1)(Ω−q′c), and

u′−u = (Uc−Uu− kc)(q′−1)+
(n−1)(Uc−Ω)

n
.

We therefore have two cases:

1) If Uc−Uu ≥ kc, then u′−u≤ 0, and q = 1 for all targets is a Nash equilibrium.

2) If Uc−Uu < kc, the maximal value of u′−u corresponds to q′ = 0:

max
0≤q′<1

u′−u =−(Uc−Uu− kc)− (n−1)(Ω−Uc)

n
.

If kc− (n−1)(Ω−Uc)
n ≤Uc−Uu < kc, u′−u≤ 0, it is a Nash equilibrium; otherwise, it is

not.

To sum up, a Nash equilibrium exists if and only if Uc−Uu ≥ kc− (n−1)(Ω−Uc)
n , and the

equilibrium corresponds to all targets having probability 1 of being protected.

Thus, if a Nash equilibrium does exist, it is unique, with all defenders always protecting

their targets. But what if the equilibrium does not exist? Next, we characterize the (unique)

ε-equilibrium (ε-ASE) with the minimal ε that arises in such a case. We will use this

approximate equilibrium strategy profile as a prediction of the defenders’ strategies.

Theorem III.2.5. In Independent Multidefender setting, in the optimal ε-equilibrium (ε-

ASE) all targets are protected with probability Ω−Uu

kc . The corresponding ε is (Ω−Uu)(kc−Uc+Uu)
cnk .

Proof. When all targets have the same coverage probability q, the expected utility of each

defender is

u =
(Uc−Uu−nkc)q+Uu +(nk−1)Ω

n
.

Suppose 0≤ q < 1. If some defender i increases q to q+δi j for each of her target ti j, then
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she would obtain utility u′ = ∑
k
j=1 Ω− (q+δi j)c, and

u′−u =
Ω− (Uc−Uu)q−Uu

n
−

k

∑
j=1

δi jc

≤ Ω− (Uc−Uu)q−Uu

n
.

(III.1)

Now we consider scenarios in which a defender i could obtain higher utility by decreas-

ing protection probability. We claim that if a defender i has an incentive to deviate, it is

optimal for this defender to use the same coverage probability for all her targets. Other-

wise, for some target tik which has probability 0 of being attacked, she could decrease q′ik

to obtain higher utility. Thus, we need only consider cases in which a defender deviates

by decreasing coverage probabilities for all her targets to q− δ . Her utility will become

u′′ = (Uc−Uu− kc)(q− δ )+Uu +(k− 1)Ω. Since Uc−Uu < kc, δ = q (the maximal

value of δ ) maximizes u′′−u:

max
0<δ≤q

u′′−u =
Ω− (Uc−Uu)q−Uu

nk
+ kcq+Uu−Ω. (III.2)

By comparing the value of equation (III.1) and equation (III.2), we get different values of

ε for ε-equilibrium:

ε =


Ω−(Uc−Uu)q−Uu

n , if 0≤ q≤ Ω−Uu

kc ;

Ω−(Uc−Uu)q−Uu

n + kcq+Uu−Ω, if Ω−Uu

kc < q≤ 1.

When q = Ω−Uu

kc , we get the minimal ε = (Ω−Uu)(kc−Uc+Uu)
cnk .

We claim that the (Ω−Uu)(kc−Uc+Uu)
cnk -equilibrium can appear only if all targets have the

same coverage probability q. We prove this by contradiction. Suppose that targets have

different coverage probabilities. This gives rise to two cases: 1) Each defender uses an

identical coverage probability for each target she owns (these may differ between defend-

ers); and 2) Some defender has different coverage probabilities for her targets. In case 1),
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there exist β defenders (1 ≤ β < n) who have the same minimal coverage probability q′.

The expected utility for each defender among these β is

u =
(Uc−Uu− kβc)q′+Uu +(kβ −1)Ω

β
.

When Ω−Uu

kc < q′ ≤ 1, some defender i among these β could decrease the coverage proba-

bility of all her targets to 0 and obtain the utility of u1 =Uu +(k−1)Ω, so that

u1−u =
Ω− (Uc−Uu)q′−Uu

β
+ kcq′+Uu−Ω

>
Ω− (Uc−Uu)q′−Uu

n
+ kcq′+Uu−Ω.

When 0≤ q′ ≤ Ω−Uu

kc , some defender i among these β can increase coverage probabilities

of all her targets to q′+δ3 to obtain utility of u2 = kΩ− k(q′+δ3)c, with

u2−u =
Ω− (Uc−Uu)q′−Uu− kβcδ3

β

>
Ω− (Uc−Uu)q′−Uu

n
,

where the inequality holds because δ3 can be arbitrarily small. Thus, no profile in case

1) can be a (Ω−Uu)(kc−Uc+Uu)
cnk -equilibrium. In case 2), any defender who has different

coverage probabilities among her targets can always increase her payoff by decreasing the

coverage probabilities of the targets with higher coverage to yield identical coverage for all

targets. Consequently, no profile in case 2) can be a (Ω−Uu)(kc−Uc+Uu)
cnk -equilibrium.

Armed with a complete characterization of predictions of strategic behavior among the

defenders, we can now consider how this behavior is related to socially optimal protection

decisions. Since the solutions are unique, there is no distinction between the notions of

price of anarchy and price of stability; we term the ratio of socially optimal welfare to

welfare in equilibrium as the price of anarchy for convenience.

Theorem III.2.6. In the Independent Multidefender setting, the optimal social welfare
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SWO is

SWO =


Uc−nkc+(nk−1)Ω, if Uc−Uu ≥ nkc;

Uu +(n−1)Ω, if Uc−Uu < nkc.

Proof sketch. First, we claim that we could get optimal social welfare only if all targets

have the same coverage probability q. Otherwise, some target j, which is influenced by

defender i has probability 0 of being attacked, and we can decrease qi, j to improve social

welfare. Consequently, we need only to consider an optimal symmetric coverage prob-

ability q to maximize social welfare, which can be done in a relatively straightforward

way.

If Uc−Uu≥ kc− (n−1)(Ω−Uc)
n , the Nash equilibrium is unique, with all targets protected

with probability 1. The corresponding social welfare is

SWE =Uc−nkc+(nk−1)Ω.

So far we have not yet added any constrains to value of Ω, Uc, and Uu (except that

Ω≥Uc ≥Uu). In order to make Price of Anarchy well-defined, we need to add constraints

that values of Ω, Uc, and Uu are all non-positive or all non-negative. We add constraints

that Uc, Uu and Ω are all non-positive (little changes if all are non-negative).

In the case of a unique Nash equilibrium, the price of anarchy is

PoA =


1, if Uc−Uu ≥ nkc;

Uc−Uu−nkc
Uu+(nk−1)Ω +1, if kc− (n−1)(Ω−Uc)

n ≤

Uc−Uu < nkc.

If Uc−Uu < kc− (n−1)(Ω−Uc)
n , there is no Nash equilibrium. The Social Welfare in the
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Figure III.2: (Approximate) Price of Anarchy when c= 1,Ω=−1,Uc =−2 and Uu =−10

optimal approximate equilibrium is

ε-SWE = (Uc−Uu−nkc)
Ω−Uu

kc
+Uu +(nk−1)Ω,

and the (Ω−Uu)(kc−Uc+Uu)
cnk -Price of Anarchy is (Uc−Uu−nkc)(Ω−Uu)

kcUu+(nk−1)kcΩ
+1.

From this result, it is already clear that defenders systematically over-invest in security.

This stems from the fact that the attacker creates a negative externality of protection: if a

defender protects his target with higher probability than others, the attacker will have an

incentive to attack another defender. In such a case, we can expect a “dynamic” adjustment

process with defenders increasing their security investment well beyond what is socially

optimal.

We now analyze the relationship between (ε-)PoA and the values of n and k. First, we

consider (ε-)PoA as the function of n. If Ω = 0, (ε-)PoA linearly increases in n, and is

therefore unbounded. However, if Ω 6= 0, while PoA and ε-PoA are increasing in n, as

n→ ∞, they approach 1− c
Ω

and 1+ Uu−Ω

kΩ
, respectively. In other words, PoA (exact and

approximate) is bounded by a constant, for a constant k.
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III.3 Conclusion

I examined a non-cooperative multi-defender security game in which defenders may pro-

tect multiple targets, offering complete characterization Average-case Stackelberg Equi-

librium (or equivalently, Nash equilibrium among defenders) and approximate equilibria,

socially optimal solutions, and price of anarchy. The results show that defenders gener-

ally over-protect the targets in this model, but different modeling assumptions give rise to

qualitatively different outcomes: a simpler model gives rise to an unbounded price of an-

archy, whereas a more general model sees PoA converge to a constant when the number of

defenders increases.
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CHAPTER IV

Multi-Defender Strategic Filtering Against Spear-Phishing Attacks

In this chapter, I address the problem of strategic e-mail threshold selection by a collec-

tion of independent users, faced with a threat of both spear-phishing and non-targeted (e.g.,

spam) malicious e-mail campaigns. I consider strategic dynamics by appealing to a Stack-

elberg multi-defender equilibrium concept. I offer a characterization of the equilibria, and

present a polynomial-time algorithm for computing the Stackelberg multi-defender equi-

librium. Remarkably, I demonstrate that Stackelberg multi-defender equilibria need not

exist, and it is socially optimal if it exists, which is very different from the outcome I get

from general multi-defender security games.

This work is published in [134].

IV.1 Problem Settings

The model is based on the model introduced in [1], which we now extend for independent

and self-interested defenders. I model the strategic interactions of spear-phishing as a game

between multiple users and a targeting attacker. Note that I refer to the defending players

as users; however, these players can naturally model groups of users having the same e-mail

filtering policy, or even entire organizations.

Users may receive three types of e-mails: non-malicious, malicious non-targeted, and

malicious targeted. If a non-malicious e-mail is filtered out, which we call a false positive

(FP), then the user suffers usability loss. If a malicious e-mail is not filtered out, which

we call a false negative (FN), then the user might open that e-mail and suffer loss from the

attack. We assume that the attainable false-positive and false-negative probability pairs are

given by a function FP : [0,1] 7→ [0,1], where FP( f ) is the probability of false positives

when the probability of false negatives is f . In any practical e-mail classifier, FP( f ) is a

non-increasing function of f (see Figure IV.1 for an illustration). For analytical tractabil-

ity, we further assume that FP( f ) is a continuous, strictly decreasing, and strictly convex
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Figure IV.1: False-negative to false-positive tradeoff curves for the two datasets used in [1]
and [2].

function of f . Note that these assumptions hold approximately in practice.

Malicious e-mails are divided into two categories: targeted and non-targeted. The for-

mer includes spear-phishing and whaling e-mails sent by the targeting attacker, while the

latter includes spam and non-targeted phishing e-mails. Since the senders of non-targeted

e-mails do not choose their targets in a strategic way in practice, we model them as non-

strategic actors instead of game-theoretic players (see constant Nu below).

Strategies A pure strategy of user u is a false-negative probability fu, and we let fff denote

the strategy profile of the users. Note that we do not have to consider thresholds explicitly

in our model, since there is a bijection between false-negative probabilities and thresholds

values.

A pure strategy of the attacker is a set of users A , who will be attacked. Since targeted

e-mails have to be customized, which requires spending a considerable amount of effort

on each target, the number of users that can be targeted is limited. Formally, the attacker’s

strategy is subject to |A | ≤ A. For the same reason, we also assume that the attacker is lazy

in the sense that she does not target a user when she would receive zero payoff for targeting

the user.
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We will also consider mixed strategies, which are defined naturally: a mixed strategy

of the attacker is a distribution over subsets of users, while a mixed strategy of user u is a

distribution over false-negative values from [0,1].

Payoffs For a given pure-strategy profile ( fff ,A ), the attacker’s payoff is

U = ∑
u∈A

fuLu, (IV.1)

where Lu > 0 is the expected amount of damage when user u falls victim to a targeted

attack.

If user u is targeted by the attacker, then her loss (i.e., inverse payoff) is

L 1
u ( fu) = fu(Lu +Nu)+FP( fu)Cu, (IV.2)

and if user u is not targeted, her loss is

L 0
u ( fu) = fuNu +FP( fu)Cu, (IV.3)

where Nu > 0 is the loss of user u for delivering non-targeted malicious e-mails, and Cu > 0

is the loss for not delivering non-malicious e-mails. Payoffs for mixed-strategies are defined

naturally as the expected payoff.

Solution Concepts In our analysis, we will study both short-term and long-term strategic

dynamics of the e-mail filtering problem. As is typical in the literature, we study them

using two different solution concepts, Stackelberg multi-defender equilibrium and Nash

equilibrium.

In the short-term model, the game has two stages: in the first stage, the users make their

strategic decision simultaneously; while in the second stage, the attacker makes its decision

knowing which strategies the users have chosen. We solve this model using the concept of

Stackelberg multi-defender equilibrium (SMDE), which is defined as follows.
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Definition IV.1.1 (Stackelberg multi-defender equilibrium). A strategy profile is an SMDE

if each user’s strategy is a best response, taking the user’s strategies as given and assuming

that the attacker will always play a best-response strategy.

IV.2 Equilibrium Analysis

First, in Section IV.2.1, we provide necessary conditions on the equilibria and introduce ad-

ditional notation to facilitate our analysis. Then, we study and characterize the Stackelberg

multi-defender of the game in Sections IV.2.2.

IV.2.1 Preliminaries

I begin the analysis by providing a necessary condition on the users’ mixed-strategy best

responses, which applies to SMDE.

Lemma IV.2.1. The best-response strategy for a user is always a pure strategy.

As a consequence, for the remainder of this chapter, I will consider only pure strategies

(i.e., single false-negative values) for the users.

Proof. Suppose that we are given a mixed strategy that is not a pure strategy (i.e., its support

consist of more than one false-negative value); then, we show that the expected false-

negative value is a better strategy than the distribution. Firstly, it is easy to see that the

other players’ payoffs (and, hence, their best responses) remain the same if the user changes

its strategy from a distribution to the expected value. Secondly, since the function FP is

strictly convex, we have from Jensen’s inequality that the user’s loss is strictly less for the

expected value than for the distribution. Therefore, for every mixed strategy that is not a

pure strategy, there exists a strictly better pure strategy.

Next, we introduce a simpler notation for the attacker’s mixed strategies. Let au be the

probability that user u is targeted by the attacker, that is, the probability that u is an element
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of a subset chosen randomly according to the attacker’s mixed strategy. Using this notation,

we can express the attacker’s expected payoff as

U = ∑
u

au fuLu (IV.4)

and user u’s expected loss as

L au
u ( fu) = fu(auLu +Nu)+FP( fu)Cu. (IV.5)

For every mixed strategy of the attacker, we can easily compute the corresponding vector

of probabilities aaa, which must satisfy ∑u au ≤ A. Furthermore, it is also easy to see that for

every vector of probabilities aaa satisfying ∑u au ≤ A, there exists a mixed-strategy whose

marginal is aaa. For the remainder of this chapter, we will represent the attacker’s mixed-

strategies as vectors of probabilities.

Now, we introduce some additional notation to facilitate our analysis. Let f au
u denote

user u’s optimal false-negative probability given that the attacker targets it with probability

au, that is, let f au
u be the fu which minimizes L au

u ( fu). It is easy to see that f au
u is well

defined for any au, and it is a non-increasing and continuous function of au.

Finally, consider the value f 0
u , which is the optimal false-negative probability given

that the attacker never targets user u (i.e., given au = 0). If f 0
u = 0 for user u, then it

is easy to see that the user will always play the strategy fu = 0, regardless of the other

players’ strategies or the solution concept used. Furthermore, such users do not affect the

other players’ strategic choices either, since an attacker will never target user u if fu = 0.

Consequently, for the remainder of the chapter, we can disregard these users and assume

that f 0
u > 0 for every user u.
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IV.2.2 Stackelberg Multi-Defender Equilibrium

In this subsection, I characterize the Stackelberg multi-defender equilibrium (SMDE) and

design an algorithm to find it. First, I show that in an SMDE, the attacker plays a pure

strategy and the users play f 1
u or f 0

u . Then, I show that the SMDE is unique if it exists, and

provide an efficient algorithm for computing it. However, I also find that the SMDE does

not necessarily exist, but our algorithm can return “there is no SMDE” if it does not exist.

The following lemma shows that the attacker always plays a pure strategy in an SMDE.

Lemma IV.2.2. A strategy profile is an SMDE only if for each user u, either au = 0 or

au = 1 holds.

Proof sketch. We prove the claim by contradiction. If 0 < au < 1 for some user u, then her

expected loss is

L au
u ( fu) = fu(auLu +Nu)+FP( fu)Cu. (IV.6)

Since the attacker’s strategy is a best response, 0 < au < 1 implies that there exists some

user v 6= u with 0 < av < 1 and fuLu = fvLv. Hence, if user u changes her strategy to fu−ε

(where ε is an arbitrarily small positive number), the attacker will target user v (or some

other user) instead of user u. Then, the loss of user u will be

L 0
u ( fu− ε) = ( fu− ε)Nu +FP( fu− ε)Cu, (IV.7)

since she is no longer targeted. We can compute the decrease in her loss due to deviating

from her strategy as

L au
u ( fu)−L 0

u ( fu− ε)

=au fuLu + εNu +[FP( fu)−FP( fu− ε)]Cu.

(IV.8)

Clearly, L au
u ( fu)−L 0

u ( fu− ε) can be greater than 0, as ε can be arbitrarily small and

FP( fu)−FP( fu− ε) can be arbitrarily close to 0. Hence, user u can decrease her loss by
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deviating from the strategy fu, which leads to a contradiction with our initial assumption

that the strategy profile is an SMDE. Therefore, the claim of the lemma has to hold.

From Lemmas IV.2.1 and IV.2.2, we know that in an SMDE, both the users and the

attacker play pure strategies. Now, we further constrain the users’ equilibrium strategies by

showing that user u plays either f 1
u or f 0

u in an SMDE.

Lemma IV.2.3. A strategy profile is an SMDE only if fu = f 1
u for every user u who is

targeted, and fu = f 0
u for every user u who is not targeted.

Proof. We prove the claim by contradiction. Suppose that ∃u such that fu 6= f 1
u and fu 6= f 0

u .

Based on Lemma IV.2.2, if the profile is an SMDE, then either au = 0 or au = 1, i.e., user

u is targeted with probability 1 or 0.

1) First, assume that user u is targeted. Then, we show that strategy f 1
u is better for user u

than strategy fu. First, if user u is still attacked after she switches to f 1
u , then we have

by definition that f 1
u is better since it minimizes L 1

u . On the other hand, if the attacker

no longer targets user u, then we have that the users’ loss is even lower: L 0
u ( f 1

u ) ≤

L 1
u ( f 1

u )< L 1
u ( fu). Hence, fu cannot be a best response.

2) If user u is not targeted, there are two cases: fu > f 0
u or fu < f 0

u . If fu > f 0
u , she can

switch to f 0
u to lower her loss without becoming a target of the attacker. If fu < f 0

u ,

then we consider another user v = argminu∈A fuLu, i.e., the user in the targeted set that

makes attacker get lower payoff. Using an argument similar to the one used in the proof

of Lemma IV.2.2, we can show that fuLu < fvLv; otherwise, user v could lower her

loss by decreasing fv with an arbitrarily small value. On one hand, when f 0
u Lu < fvLv,

user u can switch to f 0
u to lower her loss without becoming a target of the attacker.

On the other hand, when f 0
u Lu ≥ fvLv, user u can switch to some value f ′u such that

fuLu < f ′uLu < fvLv and still not be targeted. Then, based on characteristics of L 0
u ( fu),

we have that user u can lower her loss by switching to strategy f ′u.
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Consequently, user u has incentives to deviate from her strategy in both cases, which im-

plies that there is no SMDE in which fu 6= f 1
u and fu 6= f 0

u for some user u.

Based on the above results, I first provide a necessary and sufficient condition for a

strategy profile being an SMDE, and then present an algorithm to find an SMDE.

Theorem IV.2.1. A strategy profile ( fff ,A ) is an SMDE if and only if

1) ∀u ∈A : fu = f 1
u ,

2) ∀u /∈A : fu = f 0
u ,

3) F1 > F0,

4) ∀u ∈A : L 1
u ( f 1

u )≤L 0
u (

F0
Lu
),

where F1 = minu∈A f 1
u Lu and F0 = maxu6∈A f 0

u Lu.

Proof sketch. First, we prove that the conditions of the theorem are necessary. From

Lemma IV.2.3, we readily have that fu = f 1
u , ∀u ∈ A , and fv = f 0

v , ∀v /∈ A hold in an

SMDE. Next, since the attacker’s best response must target the users with the highest fuLu

values, we also have that minu∈A f 1
u Lu ≥ maxu6∈A f 0

u Lu has to hold in an SMDE. Further-

more, this inequality has to be strict, otherwise a user in A could decrease her loss by

decreasing her strategy by an arbitrarily small amount. Finally, in an SMDE, users in A do

not have the incentive to deviate from their strategy. If some user u ∈ A were to deviate,

then she would pick a strategy that would divert attacks to another user, that is, she would

consider a strategy fu ≤ F0
Lu

(otherwise, following f 1
u would obviously be better). Since

f 0
u > f 1

u > F0
Lu

, her best choice would have to be F0
Lu

. Therefore, if user u has no incentive to

deviate, then L 1
u ( f 1

u )≤L 0
u (

F0
Lu
) has to hold.

Second, we prove that the conditions of the theorem are sufficient. For ∀u /∈A , based

on characteristics of the functions L 1
u ( fu) and L 0

u ( fu), we have that L 0
u ( f 0

u ) is the min-

imal loss user u can ever get, so she has no incentive to deviate. For ∀u ∈ A , L 1
u ( f 1

u ) is
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the minimal loss of user u given that she is targeted. Hence, the only way that she could

decrease her loss is to avoid being targeted by the attacker. In order to avoid being targeted,

she has to pick a strategy fu ≤ F0/Lu. From the convexity of L 0
u and f 0

u > f 1
u > F0/Lu, we

have that L 0
u ( fu) is a decreasing function when fu < F0/Lu. Hence, her best strategy that

avoids being targeted is F0/Lu; however, it follows from ∀u ∈ A : L 1
u ( f 1

u ) ≤L 0
u (F0/Lu)

that this is inferior to f 1
u . Therefore, the users’ strategies are best responses under the con-

ditions of the theorem. Finally, it follows readily from F1 > F0 that the attacker’s strategy

is also the best response.

In Theorem IV.2.1, we provided conditions for determining whether targeting a given

set of users is an SMDE. In order to find an equilibrium, we could enumerate every sub-

set A of users subject to |A | = A, and check whether targeting A is an SMDE using

Theorem IV.2.1. However, the running time of this approach grows exponentially as a

function of A, and quickly becomes prohibitively large. We now provide a rather strong

and surprising result which states that in an SMDE, the attacker will always target the set

of A users with the highest value of f 1
u Lu.

Lemma IV.2.4. Let A be a subset of users such that |A |= A and minu∈A f 1
u Lu >maxu/∈A

f 1
u Lu. In an SMDE, all of the users in A will be targeted.

Proof. We prove the claim by contradiction. Suppose that there is an SMDE such that

some user v /∈ A is targeted. Then, user v plays f 1
v , and there exists some user w ∈ A

who is not targeted and plays f 0
w. Since the attacker’s strategy is a best response, we have

that f 1
v Lv ≥ f 0

wLw. From minu∈A f 1
u Lu > maxu/∈A f 1

u Lu, we obtain f 1
v Lv < f 1

wLw. However,

since ∀u : f 1
u ≤ f 0

u , we also have f 1
v Lv < f 1

wLw ≤ f 0
wLw, which contradicts f 1

v Lv ≥ f 0
wLw.

Hence, the original claim must hold.

Then, based on Theorem IV.2.1 and Lemma IV.2.4, we propose Algorithm 4 for finding

an SMDE. We also find that an SMDE may not necessarily exist, and we provide an exam-

ple for this case below. Furthermore, we find that the SMDE is unique if it exists. To see
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Algorithm 1 Find a Stackelberg Multi-Defender Equilibrium (SMDE)
input: a set of users U, Lu, L 1

u ( fu) and L 0
u ( fu) for every user u, and A for attacker

return: a SMDE or “there is no SMDE”

1: for each user u do
2: compute f 1

u and f 0
u based on L 1

u ( fu) and L 0
u ( fu)

3: end for
4: if |U| ≤ A then
5: A ← U
6: F0← 0
7: else
8: A ← the set of A users with highest f 1

u Lu value
9: F0←maxu6∈A f 0

u Lu
10: end if
11: F1←minu∈A f 1

u Lu
12: if F1 > F0 and ∀u ∈A , L 1

u ( f 1
u )≤L 0

u (
F0
Lu
) then

13: return profile ( fff ,A ) in which ∀u ∈A : fu = f 1
u , o.w. fu = f 0

u
14: else
15: return “there is no SMDE”
16: end if

this, recall that in an SMDE, the attacker always plays a pure strategy targeting the set of

users with the highest values of f 1
u Lu, and this set is obviously unique. Algorithm 1 always

finds the unique SMDE if it exists, and returns “no SMDE” if there is no SMDE. Finally,

it is also easy to see that the running time of the algorithm is polynomial in the number of

users.

Numerical Example Consider a game consisting of two users (user 1 and user 2) and an

attacker, who can target only a single user (i.e., A = 1). Let L1 = L2 = 1, N1 = N2 =
1
2 , C1 =

1, and C2 = 2. Finally, let FP( f ) = (1− f )2, which obviously satisfies our assumptions

about FP. Then, f 1
1 = 1

4 , f 0
1 = 3

4 , f 1
2 = 5

8 , and f 0
2 = 7

8 .

Now, we show that the game does not have an SMDE. From Lemma IV.2.2, we know

that the attacker will target either user 1 or user 2. First, suppose that the attacker targets

user 1 (i.e., A = {1}). Then, from Theorem IV.2.1, we have that the users’ strategies must

be f1 = f 1
1 = 1

4 and f2 = f 0
2 = 7

8 . However, this contradicts that A is a best response,
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since f1L1 = 1
4 < 7

8 = f2L2. Second, suppose that the attacker targets user 2. Then, the

user’s strategies must be f1 = f 0
1 = 3

4 and f2 = f 1
2 = 5

8 , which contradicts that A is a best

response, since f1L1 =
3
4 > 5

8 = f2L2.

For now, we have characterized SMDE, which are formed by the users’ selfish deci-

sions. A crucial question regarding these equilibria is how close they are to the social

optimum, i.e., to the strategies chosen by a social planner who is interested in minimizing

the players? losses. The details of the discussion can be seen in [134].

IV.3 Conclusion

In order to mitigate the serious threat posed by spear-phishing attacks, defenders can deploy

e-mail filters. However, the strategic nature of these attacks and the independent configu-

ration of the e-mail filters may lead to a coordination problem. In this chapter, I studied

this coordination problem by extending previous work on the strategic threshold-selection.

I considered the dynamics from the perspective of Stackelberg model. I consider the multi-

defender Stackelberg equilibrium in the model, and propose a polynomial algorithm to find

such an equilibrium.
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CHAPTER V

Decentralization and Security in Dynamic Traffic Light Control

In the chapter, I propose to systematically address the decentralized control problems de-

scribed in the introduction by considering a multi-intersection scenario in which a) traffic

light controllers take into account relative queue lengths to determine red-green state of

the traffic lights at an intersection, b) controllers for all lights must be designed to work

jointly so as to optimize overall traffic network performance, c) sensors feeding data into

the controllers are vulnerable to denial-of-service attacks, and d) intersections are parti-

tioned among a set of players, with own goals pertaining to congestion within their local

municipal region, which are in general misaligned with global interests of the entire traffic

network. In particular, I make the following contributions:

1. A scalable local search algorithm for multi-intersection controller design,

2. a game theoretic model of resilient control in the face of denial-of-service attacks,

3. a scalable algorithm for resilient control,

4. a game theoretic model of decentralized traffic light control involving multiple self-

interested parties (e.g., municipalities), and

5. a scalable algorithm for approximating a Nash equilibrium for decentralized control

games in both baseline and resilient (i.e, accounting for sensor attacks) settings.

I use the “Simulation of Urban MObility” (SUMO) [135] platform to implement, illus-

trate, and evaluate our approach.

V.1 Traffic Network Model

In the section, I introduce the control logic I use in the chapter, and define the metrics to

measure the efficiency of a traffic system. The control logic is adapted and revised from
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Figure V.1: Intersection

[136]. However, they only considered a single-intersection scenario. In the chapter, I

will generalize the control logic into cases with multiple intersections and correspondingly

multiple traffic lights.

Traffic Control System Consider a traffic network consisting of n intersections I1, I2, . . .,

In. We assume that each intersection is a cross of two “one-way” roads, and has no left

turns (see Figure V.1).1 In addition, we assume (as is common) that yellow light cycles

are counted as a part of red lights cycles. Each direction j ( j = 1, or 2) of intersection Ii

(1 ≤ i ≤ n) has an exogenously specified minimum green light cycle length Ωi, j,min and

maximum green light cycle length Ωi, j,max. We assume that each intersection Ii has two

sensors in each direction j allowing us to count the number of vehicles, mi, j(t), queued

at that intersection in direction j (specifically, an ingress sensor counts incoming vehicles,

and an egress outgoing vehicles, with the difference giving us the queue length). For each

direction j, we also define a clock variable ci, j(t), which measures the time since the last

switch from red to the green of the traffic light for direction j.

Controllers For a given intersection Ii, we adopt a two-parameter control logic model

from [136], which determines behavior based on a comparison of queue lengths mi, j(t) and

corresponding thresholds si j. Intuitively, when queue length in a particular direction j ex-

ceeds the corresponding threshold, this direction is viewed as high-priority and congested.

1Allowing for “two-way” streets and left turns is a relatively straightforward generalization.
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We thereby obtain four distinct cases:

• Mi,1 = {(mi,1,mi,2) : mi,1(t)< si,1,mi,2(t)< si,2};

• Mi,2 = {(mi,1,mi,2) : mi,1(t)< si,1,mi,2(t)≥ si,2};

• Mi,3 = {(mi,1,mi,2) : mi,1(t)≥ si,1,mi,2(t)< si,2};

• Mi,4 = {(mi,1,mi,2) : mi,1(t)≥ si,1,mi,2(t)≥ si,2}.

Let ∆i(t) denote the traffic light state for intersection Ii. ∆i(t) = 1 means the road 1 is green

and road 2 is red; and ∆i(t) = 2 means road 2 is green and road 1 is red. Then we could get

different control logic when it is in different state spaces.

For Mi,1 and Mi,4,

∆i(t) =


1 if ci,1(t) ∈ (0,Ωi,1,max) and ci,2(t) = 0,

2 otherwise
(V.1)

For Mi,2,

∆(t) =


1 if ci,1(t) ∈ (0,Ωi,1,min) and ci,2(t) = 0,

2 otherwise
(V.2)

For Mi,3,

∆(t) =


2 if ci,2(t) ∈ (0,Ωi,2,min) and ci,1(t) = 0,

1 otherwise
(V.3)

The equation V.1 shows that at some time t, if the number of vehicles in both directions

is lower or higher than the corresponding thresholds, then they have the same priority for

the two directions, and we will wait for the current green cycle to reach the maximum

green cycle length. However, if one direction exceeds the threshold but not the other, then

the former has a higher priority. Generally speaking, the above control logic is “interrupt”

based, which could ensure that the road i always receives a minimum green light cycle
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Figure V.2: Emergency Vehicle Scenario

Ωi,min, and the green light cycle may be dynamically interrupted anytime after Ωi,min based

on the vehicle information gathered from sensors. However, when the green light cycle

reaches the Ωi,max, then the cycle has to be terminated and switched to red light cycle

(correspondingly green light cycle for another direction).

Objective: Weighted Average Latency Assume there is a vehicle set V in the system,

s.t. |V | = d. We assume V = {v1,v2, . . . ,vd}, and every vehicle vi (1 ≤ i ≤ d) has a

corresponding weight wi which denotes the relative importance of the vehicle. For instance,

an ambulance may have a higher weight than a common personal car. For each vehicle

vi traveling in the traffic system, latency li measures the time consumed for the car from

entering the system to leaving the system. We can define Weighted Average Latency (denote

as L ) as follows, and minimizing it is also the main goal for the manager of the system.

L =
∑

d
i=1 wili

∑
d
i=1 wi

Optimization Problem
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Consider a set of n intersections, {I1, . . . , In}, and associated threshold parameters

s = {
〈
s1,1,s1,2

〉
,
〈
s2,1,s2,2

〉
, . . . ,

〈
sn,1,sn,2

〉
}

in which si, j ∈ R+ (1 ≤ i ≤ n, j = 1,2). Our goal is to choose the parameters of all inter-

sections s so as to minimize overall weighted latency, for a given weight vector w:

min
s

L (s;w). (V.4)

V.2 Optimizing Traffic Network Configuration

The optimization problem in Equation V.4 is intractable because the objective function is

a challenge to evaluate even for a fixed parameter vector s, let alone optimize (typically,

as below, it is evaluated by running simulations). Rather than exhaustive search, we pro-

pose a coordinate greedy (or just CGA) local search method for efficiently computing an

approximately optimal configuration s. The proposed algorithm, Algorithm 2, works by

Algorithm 2 Coordinate Greedy Algorithm (CGA)
input: Starting Parameter set ŝ
return: Local Minimal Parameter set s∗

1: Copy ŝ to s∗
2: while There exists an intersection, such that we could change parameters of the inter-

section to make L smaller do
3: Make the change to s∗
4: end while
5: return s∗

first discretizing parameters for each traffic light i, and then iteratively choosing a partic-

ular traffic light, and finding the optimal configuration of parameters of this light, keeping

configuration of the rest fixed.

V.3 Resilient Traffic Network Control

Game Theoretic Model
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In order to formally investigate the consequence of DoS attacks on sensors, as well as

the associated problem of resilient traffic network control (i.e., designing control parame-

ters of all intersections so as to endow the network with a degree of resilience against DoS

attacks), we consider a Stackelberg game model. In this model, the controller (defender) D

first chooses the parameter vector s, and the attacker A chooses a single sensor rik at a sin-

gle intersection i to disable in order to maximally disrupt traffic, where k = 0 corresponds

to an ingress and k = 1 an egress sensor. Formally, the defender’s goal is to minimize

weighted latency, L , which the attacker aims to maximize.

Definition V.3.1. A Stackelberg equilibrium of the resilient network control game Γ is

(s∗,r∗(s∗)), such that ∑i,k rik = 1, r∗ maximizes latency L (s∗,r(s)), and s∗ minimizes the

resulting maximal latency L (s,r∗(s)).

Resilient Control Algorithm

The goal of resilient network control is to choose s∗ which is a part of a Stackelberg

equilibrium accounting for the attacker’s best response. Since, again, exhaustive search

is clearly intractable, we propose an augmented version of the CGA algorithm, shown as

Algorithm 3 (RCGA).

Algorithm 3 Resilient CGA (RCGA)
input: Local Optimal Parameter set ŝ given no Attacker
return: Resilient Parameter set s∗

1: Given ŝ is applied in the system, enumerate sensors and find a sensor α , by attacking
it we could get maximal L .

2: Given α is attacked, we run Algorithm 2 starting from ŝ
3: return resulting parameter set s∗

V.4 Decentralized Control

Game Theoretic Model

I now present the most general model, in which multiple defenders determine configu-

rations non-overlapping subsets of traffic lights. There may or may not be an attacker. If
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the attacker is not considered, we view it as a baseline decentralized control game, whereas

consideration of an attacker extends the model to a resilient decentralized control game.

Formally, assume there is a set of defenders D (|D| ≤ n) who are in charge of differ-

ent districts and corresponding traffic lights in a traffic network. Each defender d is only

concerned about the Weighted Average Latency Ld for her own district d. Let sd be the

set of parameters controlled by defender d ∈D, then sd ∩ sd′ = /0 for d 6= d′, and
⋃

d sd = s.

Assume there is an attacker A who can attack a sensor in the system, and her goal is to

increase the overall L of the system. We define Multi-Defender Traffic Control Game as

follows:

Definition V.4.1. A Multi-Defender Traffic Control Game is defined by a tuple Γ = [P,S(·),

v(·)], where

• There is a set of players P = {D,A }, in which D is set of defenders in the traffic

system, A is an attacker;

• For each d ∈D, the strategy space of defender d is the space of parameters under her

control, i.e. S(d) = {sd}; for the attacker A , her strategy space is the set of sensors

in the system.

• For each d ∈ D, she only cares about the Weighted Average Latency in her own

district, i.e. the payoff of d is v(d) = −Ld; for the attacker A , her payoff is the

Weighted Average Latency in the overall system, i.e. the payoff of attacker is v(A ) =

L .

Approximating Equilibrium in Decentralized Control

As previously mentioned, a traffic system may consist of different districts, which may

be owned and controlled by different agents. Sometimes, these agents may have varying or

sometimes conflicting interests. When there are multiple defenders, I consider the game as

a Normal-Form game among multiple agents, and my goal is to compute or approximate a

Nash equilibria among them.
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Definition V.4.2. A profile of traffic light parameters s is a Nash equilibrium if no defender

d ∈ D can reduce its latency Ld by unilaterally reconfiguring its lights through changing

sd .

Since computing a Nash equilibrium in our setting is intractable, I propose a simple

iterative best response algorithm (Algorithm 4), in which each traffic light is chosen in

a given iteration, and the associated defender d optimizes parameters of this traffic light

only to minimize Ld , fixing all other parameters. We refer to this algorithm as BRA (best

response algorithm).

Algorithm 4 Best Response Algorithm (BRA)
input: Starting Parameter set ŝ
return: Equilibrium Parameter set s∗

1: Copy ŝ to s∗
2: while There exists an defender d, such that we could change parameters of the inter-

section controlled by defender d to make Ld smaller do
3: Make the change to s∗
4: end while
5: return s∗

Approximating Equilibrium in Resilient Decentralized Control

Finally, I consider the decentralized setting, but now allowing for an attacker who will

optimally respond to the joint configuration of all traffic lights by all defenders, s. Formally,

each Defender d wants to minimize Ld to improve resilience, and the attacker wants to

maximize overall L by attacking a sensor. I propose a resilient extension of BRA, shown

Algorithm 5 Finding Resilient Parameter Set When There are Multiple Defenders
input: Equilibrium Parameter set ŝ given no Attacker
return: Resilient Parameter set s∗

1: Given ŝ is applied in the system, enumerate sensors and find a sensor α , by attacking
it we could get maximal L .

2: Given α is attacked, we run Algorithm 4 starting from ŝ
3: return resulting parameter set s∗
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Figure V.3: Comparison with single-defender
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Figure V.4: Comparison with no attacker (baseline) configuration

in Algorithm 6, in which each best response iteration now accounts for the attacker’s sensor

DoS attack strategy.

Finally, I consider the decentralized setting, but now allowing for an attacker who will

optimally respond to the joint configuration of all traffic lights by all defenders, s. Formally,

each Defender d wants to minimize Ld to improve resilience, and the attacker wants to

maximize overall L by attacking a sensor. I propose a resilient extension of BRA, shown

in Algorithm 6, in which each best response iteration now accounts for the attacker’s sensor

DoS attack strategy.
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Figure V.5: Comparison with resilient single-defender configuration

Algorithm 6 Finding Resilient Parameter Set When There are Multiple Defenders
input: Equilibrium Parameter set ŝ given no Attacker
return: Resilient Parameter set s∗

1: Given ŝ is applied in the system, enumerate sensors and find a sensor α , by attacking
it we could get maximal L .

2: Given α is attacked, we run Algorithm 4 starting from ŝ
3: return resulting parameter set s∗

V.5 Evaluation and Results

To implement the traffic control algorithm and perform simulation, I employ a simulation

suit called SUMO (short for “Simulation of Urban MObility”). SUMO [135] is an open

source, highly portable, microscopic road traffic simulation package designed to handle

large road networks. SUMO also provides a Traffic Control Interface (TraCI) to let external

controllers control the traffic. In our work, we use a Python script to control the simulation

through TraCI and implement our control algorithm.

In the chapter, I consider an Emergency Vehicle Scenario (see Figure V.2). In the

scenario, there are some common cars traveling from west to east, and some emergency

vehicles (firetrucks) traveling from north to south. Assume that common cars have weight

1, and emergency vehicles have higher weights. There are some traffic lights that can be

controlled in the intersections of the scenario. Before each direction in an intersection,

there are two sensors that count the number of vehicles.
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Figure V.6: Comparison with decentralized solutions

The experiment results can be seen in Figure V.3, V.4, V.5 and V.6, which shows the

overall Weighted Average Latency L as a function of firetruck weights. When there is

a single defender (Figure V.3) and no attacker, we obtain a relatively low L (applying

Algorithm 2). However, the figure shows that an attack on the non-resilient configuration

can substantially elevate L : ignoring the possibility of a DoS attack can be disastrous for

traffic in this scenario. On the other hand, resilient configuration (applying Algorithm 3)

performs substantially better under attack.

Next, I split the scenario into two parts, in the upper part, one defender is in charge of the

upper two intersections and another defender is in charge of the lower three intersections.

And each defender only cares about Weighted Average Latency of her own district. The

result is shown in Figure V.4. As we can observe, considering resilience is beneficial for

the defenders; however, the benefit is smaller than if there were only one defender.

From Figures V.5 and V.6, we can observe how decentralization impacts the efficiency

of a system. By comparing single-defender cases and two-defender cases, we find that

the overall L in two-defender cases is higher than that in single defender cases, with and

without attacker. It comes from the negative externalities introduced to the system when

there are multiple selfish defenders, which make the overall system behavior inefficient.
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V.6 Conclusion

I considered decentralization and security issues in dynamic traffic light control as a multi-

defender security game. I proposed a game theoretic model and simulation-based optimiza-

tion and equilibrium approximation algorithms to address the problem. I then implemented

and evaluated our algorithms on the SUMO platform.

There are a number of future research directions that can be considered. One such

direction is to investigate the scalability of our approach to significantly larger and more

complex scenarios. Additionally, I only consider DoS attack on sensors. In future work, it

will be important to evaluate resilience in the context of integrity attacks as well.
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Part II

Toward Efficiency: Coalition Formation

Mechanism
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CHAPTER VI

Mechanism Design in Coalition Formation

In this chapter, I discuss the mechanism design in coalition formation (team formation). In

[45], we consider an accept-reject game (ARG) in which players propose coalitions in a

predetermined order, and prospective teammates may choose to either accept or reject the

proposals in ARGs. We have shown some theoretical properties of the subgame perfect

Nash equilibrium (SPNE), such as individual rationality and iterated matching of soul-

mates [39], where soulmate coalitions are matched in an iterative fashion. In [45], we also

demonstrate that the SPNE of Rotating Proposer Game (RPG), which is a special case of

ARG, is Pareto efficient. Rotating Proposer Mechanism (RPM) is a mechanism that imple-

ments the SPNE of the corresponding RPG. As the SPNE is highly nontrivial to compute,

I focus primary on the computation of the equilibrium and evaluate the RPM by empirical

methods in the thesis.

One significant challenge in implementing RPM in practice is the combinatorial com-

plexity of backward induction. I address this issue in two ways. First, I use the IMS

(iterated matching of soulmates) as an efficient preprocessing and pruning procedure. I

show experimentally that this significantly reduces the computational burden of perform-

ing backward induction. Second, I develop a method to approximate RPM on the room-

mate problem which allows us to trade off computation time and quality of approximation

of the subgame perfect equilibrium in RPM. My experiments demonstrate that there is a

natural tradeoff point which allows us to retain most of the positive properties of RPM at

a significantly reduced computational overhead. To enable scalability on problems with

larger coalitions, I propose Heuristic Rotating Proposer Mechanism (HRPM) which uses

heuristics both to determine which coalitions are proposed and whether they are accepted.

In extensive experiments, I evaluate the economic properties of RPM in both exact and

approximate versions, compared to the RSD and a recent alternative, one-player-one-pick
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(OPOP) shown previously to be highly effective. I observe that in all instances, exact

and approximate RPM is significantly more efficient (in terms of social welfare) and more

equitable than RSD in the roommate problem. I also observe that HRPM significantly

outperforms both RSD and OPOP in settings where coalitions’ size can be at most 3 on

both of these metrics in nearly all cases. Moreover, using an algorithm for finding an upper

bound on untruthful players, I show that RPM and its approximate versions introduce few

incentives to lie.

VI.1 Problem Setting

I consider the standard model described in [97] of an environment populated a set of players

N = {1, . . . ,n} who need to be partitioned into coalitions. A team (coalition) T ∈ 2N is a

set of players, and a partition (coalition structure) π is a collection of coalitions such that:

1) for any distinct T,T ′ ∈ π , T ∩T ′ = /0, and 2) ∪T∈πT = N. For a player i, let πi be the

coalition in the partition π containing i. In many tasks, coalitions have some feasibility

constraints; for example, one could constrain coalitions to consist of at most k individuals.

Generically, let T denote the set of feasible coalitions, which we assume to always include

singleton coalitions, {i}. For a player i, we denote a subset Ti ⊂ T of coalitions that

include i by Ti. Each player i ∈ N has a strict hedonic preference ordering �i over Ti. A

profile of preferences � (or profile for short) is a list of preferences for every i ∈ N. Given

a profile �, the list of preferences for all players except i is denoted by �−i. A coalition

formation mechanism M maps every preference profile � to a partition π , i.e. π = M(�).

VI.2 Team Formation Games and Rotating Proposer Mechanism

We begin by considering a natural sequential non-cooperative coalition formation game

with complete information about hedonic preferences of all players, which will serve as

the core component of the coalition formation mechanism below. We term such games

accept-reject games (ARGs), because they proceed through an exogenously specified order

of players, with each player making a proposal of a coalition, and all prospective members
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having a chance to accept or reject this proposal.

Formally, an ARG is defined by a set of players N, a preference profile �, a set of

feasible coalitions T , and an ordered list of players O = (o1,o2, . . . ,om), in which each

player i ∈ N is included at least once. The game proceeds through a series of rounds. In

each round the next player i in the order list O proposes to a coalition T ∈ Ti, with the

constraint that i cannot have proposed to T in any prior round. Given a proposal T made

by i, all j ∈ T \ i sequentially decide whether to accept or reject the proposal.1 If any

player rejects, the entire proposal is rejected, and we proceed with the next round. If all

j ∈ T \ i accept, the coalition T is added to the partition π , all players are removed from the

game and from O, and the game proceeds to the next round, unless no players remain (in

which case the game ends with a partition π). If after m rounds there are players remaining,

they each become singleton coalitions, completing the partition. Algorithm 7 describes the

game procedure more precisely. And the Example VI.2.1 shows an example of the game.

Example VI.2.1. Consider an ARG with four players N = {1,2,3,4}, and the order of

proposers O = (1, 2, 3,4) in which the size of each coalition is at most two. Suppose that

the profile is as follows:

1 : {1,4} �1 {1,2} �1 {1,3} �1 {1}

2 : {2,1} �2 {2,4} �2 {2,3} �2 {2}

3 : {3,2} �3 {3,1} �3 {3,4} �3 {3}

4 : {4,3} �4 {4,2} �4 {4,1} �4 {4}

The following is an example scenario:

1. Player 1 proposes to {1,4}, and 4 rejects the proposal.

2. 2 proposes to {2,1} and 1 accepts the proposal. 1 and 2 are removed from the game.

1The order of this sequence can be arbitrary; for example, it can follow the order of the players’ first
appearance in O.
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Algorithm 7 Construction of ARG
input: (N,�,T ,O)
return: Coalition formation outcome π

1: π = /0
2: while O is non-empty do
3: i← the first player in O
4: Player i proposes to a coalition T ∈Ti(N)
5: All the players in T sequentially decide whether to accept i’s proposal (if T = {i},

the proposal is automatically accepted)
6: if All players in T accept player i’s proposal then
7: π ← π ∪{T}
8: N← N\T
9: for each j ∈ T do

10: O← O\{ j}
11: end for
12: else
13: Get new O by removing the first instance i in O
14: end if
15: for each player i ∈ N do
16: for each feasible coalition T ∈Ti do
17: if T 6⊂ N then
18: Ti←Ti\{T}
19: end if
20: end for
21: end for
22: end while
23: while N is non-empty do . add singletons into the outcome.
24: pick an arbitrary instance i from N
25: π ← π ∪{i}
26: N← N\{i}
27: end while
28: return π
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3. 3 propose to {3,4} and 4 accepts the proposal. 3,4 are removed.

The partition that results from this sequence is π = {{1,2},{3,4}}.

In our working paper [45], we demonstrate that there are several important properties

that hold in any subgame perfect Nash equilibrium of an arbitrary accept-reject game:

• individual rationality (players are not a part of any coalition if they would prefer to

be by themselves),

• matching of soulmates (players who all prefer to be together are matched) (see [39]

for more details), and

• when the game is “IMS-complete” [39], the outcomes are in the core of the derived

cooperative game.

However, we cannot guarantee the Pareto efficiency of the SPNE of any ARG. In [45],

we show that if we add some constraints to the proposing order O, then we can make sure

the Pareto efficiency of the ARM. We propose a class of ARGs which we term rotating

proposer games (RPG). In the RPG, the order O over players is such that each player i can

make |Ti|+1 proposals before we move on to another player.

We also introduced a centralized coalition formation mechanism, termed Rotating Pro-

poser Mechanism (RPM), which implements the subgame perfect Nash equilibrium of the

RPG in which all proposals are accepted. In this equilibrium, whenever it’s a player i’s

turn to propose, i makes a proposal to her most preferred coalition among those that would

be accepted. For any profile, if all players report their preferences truthfully, equilibrium

outcomes of the game have a number of good properties which are thereby inherited by

RPM. Of particular note is that RPM is individually rational, Pareto optimal, and imple-

ments IMS. However, it is also immediate from known results that the RPM mechanism is

not in general strategyproof [39].

70



VI.3 Implementing RPM

In [45], we showed that RPM has important theoretical advantages. However, it is com-

putationally challenging to implement. In particular, the size of the backward induction

search tree is O(2∑
n
i=1 |Ti|). Even in roommate problem, in which the size of coalitions is

at most two, computing SPE is O(2n2
). We address this challenge in three ways: (1) pre-

processing and pruning to reduce the search space, (2) approximation for the roommate

problem, and (3) a general heuristic implementation.

VI.3.1 Preprocessing and Pruning

One of the central properties of RPM is that it implements iterative matching of soulmates.

In fact, it does so in every subgame in the backward induction process. Now, observe that

computing the subset of coalitions produced through IMS is O(n3) in general, and O(n2)

for the roommate problem, and is typically much faster in practice. We therefore use it as

a preprocessing step both initially (reducing the number of players we need to consider in

backward induction), and in each subgame of the backward induction search tree (thereby

pruning irrelevant subtrees).

VI.3.2 Approximate RPM for the Roommate Problem

Using IMS for preprocessing and pruning does not sufficiently speed up RPM computation

in large-scale problem instances. Next, we developed a parametric approximation of RPM

which allows us to explicitly trade-off computational time and approximation quality. We

leverage the observation that the primary computational challenge of applying RPM to the

roommate problem is determining whether a proposal is to be accepted or rejected. If

we are to make this decision without exploring the full game subtree associated with it,

considerable time can be saved. Our approach is to use a heuristic to evaluate the “likely”

opportunity of getting a better teammate in later stages: if this heuristic value is very low,

the offer is accepted; if it is very high, the offer is rejected; and we explore the full subgame

in the balance of instances.
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More precisely, consider an arbitrary offer from i to another player j. Given the sub-

game of the corresponding RPM, let U j(i) denote the set of feasible teammates that j

prefers to i, and let U j( j) be the set of feasible teammates who j prefers to be alone. We

can use these to heuristically compute the likelihood R j(i) that j can find a better teammate

than the proposer i:

R j(i) =
|U j(i)|
|U j( j)|

· 1
|U j(i)| ∑

k∈U j(i)

(
1− |Uk( j)|
|Uk(k)|

)
=

1
|U j( j)| ∑

k∈U j(i)

(
1− |Uk( j)|
|Uk(k)|

)
(VI.1)

Intuitively, we first compute the proportion of feasible teammates that j prefers to i. Then,

for each such teammate k, we find at the proportion of feasible teammates who are not

more preferred by k than the receiver j. Our heuristic then uses an exogenously specified

threshold, α , (0 ≤ α ≤ 0.5) as follows. If R j(i) ≤ α , player j accepts the proposal, while

if R j(i) ≥ 1−α , the proposal is rejected. In the remaining cases, our heuristic proceeds

with evaluating the subgame at the associated decision node. Consequently, when α = 0, it

is equivalent to the full backward induction procedure, and computes the exact RPM. Note

that for any α , this approximate RPM preserves IR, and we also maintain IMS by running

it as a preprocessing step.

VI.3.3 Heuristic Rotating Proposer Mechanism (HRPM)

Unlike the roommate problem, general coalition formation problems have another source

of computational complexity: the need to iterate through the combinatorial set of poten-

tial coalitions to propose to. Moreover, evaluating acceptance and rejection becomes con-

siderably more challenging. We therefore develop a more general heuristic which scales

far better than the approaches above, but no longer has the exact RPM as a special case.

We term the resulting approximate mechanism Heuristic Rotating Proposer Mechanism

(HRPM), and it assumes that the sole constraint on coalitions is their cardinality and that

preferences can be represented by an additively separable utility function [97]. With the

latter assumptions, we allow preferences over coalitions to be represented simply as pref-
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erence orders over potential teammates, avoiding the combinatorial explosion in the size of

the preference representation.

In HRPM, each proposer i attempts to add a single member to their team at a time in

the order of preferences over players. If the potential teammate j accepts i’s proposal, j

is added to i’s coalition, and i proposes to the next prospective teammate until either the

coalition size constraint is reached, or no one else who i prefers to be alone is willing to

join the coalition. Player j’s decision to accept or reject i’s proposal is based on calculating

R j(l) for each member l of i’s current coalition T using Equation VI.1, and then computing

the average for the entire coalition, R j(T ) = 1
|T |∑l∈T R j(l) (see Algorithm 8 for the fully

precise description of HRPM). We then use an exogenously specified threshold β ∈ [0,1],

where j accepts if R j(T ) ≤ β and rejects otherwise. The advantage of HRPM is that the

coalition partition can be found in O(ωn2), where ω is the maximum coalition size. The

disadvantage, of course, is that it only heuristically implements RPM. Crucially, it does

preserve IR, and IMS is implemented as a preprocessing step.

VI.4 Experiment

My evaluation considers two coalition formation settings: (1) the roommate problem, where

coalitions are capped at 2, and (2) the trio-roommate problem, with coalitions of at most 3.

We note that both of these problems are essentially open from a mechanism design perspec-

tive: in either case, RSD is the only known mechanism which is either Pareto efficient or

incentive compatible even in a well-understood restricted setting. No mechanism is known

for these problems which are both IR and Pareto efficient, or IR and implements IMS. We

benchmark RPM and its approximate variants to RSD in the roommate problem, and addi-

tionally to the One-Player-One-Pick (OPOP) mechanism [44] in the trio-roommate setting

(OPOP and RSD are equivalent in the roommate problem). OPOP first chooses a set of

captains, and then captains choose a single teammate at a time, while non-captains choose

a coalition to join following a heuristic evaluation function. In either case, such “proposals”
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Algorithm 8 Heuristic Rotating Proposer Mechanism (HRPM)
input: (N,�,O), ω , β

return: Team formation outcome π

1: π = /0
2: while O is non-empty do
3: i← the first player in O
4: πi←{i}
5: while |πi|< ω do
6: if �i is empty or the first player in �i is i then
7: O← O\{i}
8: break
9: end if

10: Player i proposes to the first player j in �i
11: for each l ∈ πi do
12: Calculate R j(l) based on equation VI.1
13: end for
14: Calculate R j(πi) =

1
|πi|∑l∈πi R j(l)

15: if R j(πi)≤ β then . player j accepts the proposal
16: πi← πi∪{ j}
17: O← O\{ j}
18: N← N\{ j}
19: end if
20: Delete j from �l for each player k ∈ N
21: end while
22: O← O\{i}
23: N← N\{i}
24: Delete i from �l for each player k ∈ N
25: end while
26: while N is non-empty do . add singletons into the outcome.
27: pick an arbitrary instance i from N
28: π ← π ∪{i}
29: N← N\{i}
30: end while
31: return π
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are always accepted. OPOP was previously shown to outperform several others, including

RSD, in terms of social welfare and fairness [44], but does not satisfy any of our desiderata.

In all mechanisms, players are ordered randomly.

VI.4.1 Data Sets

For evaluating our proposed mechanisms, we use both synthetic and real hedonic prefer-

ence data. In both cases, preferences were generated based on a social network structure

in which a player i is represented as a node and the total order over neighbors is then

generated randomly. And non-neighbors represent undesirable teammates (i would prefer

being alone to being teamed up with them). The networks used for our experiments were

generated using the following models:

• Scale-free network: We adopt the Barabási-Albert model ([137]) to generate scale-

free networks. For each (n,m), where n is the number of players, m denotes the

density of the network, we generate 1,000 instances of networks and profiles.

• Karate-Club Network [138]: This network represents an actual social network of

friendships between 34 members of a karate club at a US university, where links

correspond to neighbors. We generate 100 preference profiles based on the network.

Finally, we used a Newfrat dataset [139] which contains 15 matrices recording weekly

sociometric preference rankings from 17 men attending the University of Michigan. In

order to quantitatively evaluate both the exact and approximate variants of RPM, the ordinal

preferences �i have to be converted to cardinal ones ui(·), upon which both mechanisms

operate. For this purpose, we introduce a scoring function suggested by Bouveret and

Lang [140] to measure a player’s utility. The scoring function is a non-increasing function

g : [1..k]→R for some k and [1..k] is the list of integers from 1 to k. To compute a player i’s

utility of player j we adopt normalized Borda scoring function, defined as ui( j) = g(r) =

2(k− r+1)/k−1, where k is the number of i’s neighbors, and r ∈ [1..k] is the rank of j in
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i’s preference list. Without loss of generality, for every player i we set the utility of being

a singleton ui(i) = 0. As mentioned above, in trio-roommate problem we assume that the

preferences of players are additively separable [97], which means that a player i’s utility of

a coalition T is ui(T ) = ∑ j∈T ui( j).

VI.4.2 Computing and Approximating RPM

We begin by investigating the relationship between running time and the approximation

quality of our approaches to the roommate problem. Our simulations were performed on

Mac OS 10.11 with a 2.6 GHz Intel Core i5 processor.

IMS Preprocessing

First, we show the computational value of IMS in preprocessing and pruning using

synthetic preference profiles based on the generative scale-free model.
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Figure VI.1: Time consumed ratio (with IMS/without IMS) for RPM on scale-free net-
works

Figure VI.1 shows the ratio of time consumed by RPM with IMS to that without IMS.

In all cases, we see a clear trend that using IMS in preprocessing and pruning has increasing

importance with increased problem size. The key takeaway is that implementing IMS has

both important economic and computational consequences.

Approximating RPM

The parameter α of our approximation method for RPM in the roommate problem

allows us to directly evaluate the tradeoff between running time and quality of approxi-
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mation: small α will lead to less aggressive use of the acceptance/rejection heuristic, with

most evaluations involving actual subgame search, while large α yields an increasingly

heuristic approach for computing RPM, with few subgames fully explored.
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Figure VI.2: Time consumed and average proportion of same coalitions

Figure VI.2a depicts the fraction of time consumed by RPM with different values of

α compared to exact RPM (when α = 0) on scale-free networks (m = 3). Based on this

figure, even a comparatively small value of α dramatically decreases computation time.

Figure VI.2b compares the similarity of the final coalition partition when using the heuris-

tic compared to the exact RPM. Notice that even for high values of α , there is a significant

overlap between the outcomes selected by RPM with and without the heuristic. α = 0.1

appears to trade off approximation quality and running time particularly well: for com-

paratively sparse networks (i.e., m = 2) it yields over 99% overlap with exact RPM (this

proportion is only slightly worse for denser networks), at a small fraction of the running

time. Henceforth, we use α = 0.1 when referring to the approximate RPM.

VI.4.3 Utilitarian Social Welfare

Ex post Pareto efficiency, satisfied by both RSD and RPM, is a very weak criterion. Con-

version of ordinal to cardinal preferences allows us to consider empirically utilitarian so-

cial welfare, a much stronger criterion commonly used in mechanism design with cardinal

preferences. We define social welfare as 1
|N|∑i∈N ui(πi), where πi is the coalition that i was

assigned to by the mechanism.
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Figure VI.3: Utilitarian social welfare for roommate problem

Figures VI.3a and VI.3b depict the average utilitarian social welfare for RSD and RPM

in the roommate problem on scale-free networks, Karate club networks, and the Newfrat

data. In all cases, RPM yields significantly higher social welfare than RSD, with 15%−

20% improvement in most cases. These results are statistically significant (p < 0.01).

Furthermore, there is virtually no difference between the exact and approximate RPM.
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Figure VI.4: Utilitarian social welfare for trio-roommate problem

For the trio-roommate problem, we compare HRPM (β = 0.6) with RSD and OPOP on

the same data sets. Figures VI.4a and VI.4b show that HRPM yields significantly higher

social welfare than both RSD and OPOP in all instances, and HPRM performs even better

when the network is comparatively dense (m = 3 in the scale-free network). All results are

statistically significant (p < 0.01).
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VI.4.4 Fairness

A number of measures of fairness exist in prior literature. One common measure, envy-

freeness, is too weak to use, especially for the roommates problem: every player who is

not matched with his most preferred other will envy someone else. Indeed, because RPM

matches soulmates—in contrast to RSD, which does not—it already guarantees the fewest

number of players with envy. We consider two alternative measures, which aim to capture

different and complementary aspects of fairness: maximum coalition utility difference, and

the correlation between utility and rank in the random proposer order. Maximum coali-

tion utility difference measures the difference in utility between teammates in each coali-

tion T in a partition π , and takes the largest such difference over all coalitions. Formally,

it computes maxT∈π(maxi∈T ui(T )−mini∈T ui(T )). Correlation between utility and rank

considers each random ranking of players in O used for both RSD and RPM, along with

corresponding utilities ui(π) of players for the partition π generated by the mechanism,

and computes the correlation between these. It thereby captures the relative advantage that

someone has by being earlier (or later) in the order to propose than others, and is a key

cause of ex-post inequity in RSD.
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Figure VI.5: Maximum team utility difference for the roommate problem

Our experiments on the roommate problem show that RPM is significantly more equi-

table than RSD on scale-free networks (Figures VI.5a and VI.6a), as well as on the Karate

club network and Newfrat dataset (Figures VI.5b and VI.6b). The differences between
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Figure VI.6: Pearson Correlation for the roommate problem
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Figure VI.7: Maximum Coalition Utility Difference for the trio-roommate problem

exact and approximate RPM are negligible in most instances.

In the trio-roommate problem, HRPM (β = 0.6) is much more equitable than both RSD

and OPOP, except for correlation on Newfrat data, in which OPOP is better, as shown in

Figures VI.7 and VI.8. These results are statistically significant (p < 0.01).

VI.4.5 Incentive Compatibility

Incentive compatibility is where RSD has a clear advantage over RPM. Although RPM

is strongly incentive compatible on IMS-complete domains, we now explore its incentive

properties empirically in more general settings. We focus on the roommate problem, be-

cause here we can compute an upper bound on the number of players with an incentive

to lie using Algorithm 9, where we use Ti to denote the set of feasible teammates (since

coalitions are of size at most 2). At the high level, this algorithm considers all the play-
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Figure VI.8: Pearson Correlation for the trio-roommate problem

ers who have accepted or rejected a proposal, and checks whether reversing this decision

improves their outcomes. The following theorem shows that this method indeed finds the

upper bound of untruthful players.

Theorem VI.4.1. Algorithm 9 returns an upper bound on the number of players who can

gain by misreporting their preferences.

Proof. We divide the players into proposers and receivers. Proposers are those who pro-

posed in RPM and were thus teamed up (including singleton coalitions). Receivers ac-

cepted someone’s offer.

There are 4 cases:

1. A proposer i untruthfully reveals its preference and remains a proposer. In RPM,

a proposer proposes to other players in order of preference. When i proposes to j,

all others more preferred by i must have already rejected. Consequently, i cannot

improve the utility by lying.

2. A receiver j untruthfully reveals its preference and is still a receiver. In this case, if

j has an incentive to lie, there has to be a proposer i′ who prefers j to its teammate

under RPM, while j must prefer i′ to its teammate. Steps 4−7 in Algorithm 9 count

all such instances.
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Algorithm 9 Computing Upper Bound of Untruthful Players
input: (N,�,T ,O) , teammate vector teammate[] which results from RPM
return: number of potential untruthful players Sum

1: Sum← 0
2: while |O| ≥ 2 do
3: proposer← the first player in O
4: receiver← teammate[proposer]
5: for player i ∈Tproposer do
6: if i�proposer receiver and proposer �i teammate[i] then
7: Sum← Sum+1 . i is potentially untruthful
8: end if
9: end for

10: for player j ∈Treceiver do
11: if j �receiver proposer and receiver � j teammate[ j] then
12: Sum← Sum+1 . receiver is potentially untruthful
13: end if
14: end for
15: remove proposer and receiver from N, O and T
16: end while
17: return Sum

3. A proposer i untruthfully reveals her preference and becomes a receiver. In this case,

if i has an incentive to untruthfully reveal her preference, there has to be a proposer

i′ who prefer i to their teammate under RPM, and who i also prefers to its teammate.

Steps 4−7 in Algorithm 9 count all such instances.

4. A receiver j untruthfully reveals its preference and becomes a proposer. In this case,

if j has an incentive to misreport its preference, there must be a receiver j′ who

prefers j to its teammate, while j must prefer j′ to its teammate. Steps 8− 10 in

Algorithm 9 count all such instances.

Table VI.1 presents the upper bound on the number of players with an incentive to lie,

as a proportion of all players, on scale-free networks. We can observe that the upper bound

is always below 0.2%, and is even lower when the networks are sparse (m = 2). On the
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Table VI.1: Average Upper Bound of Untruthful Players for (Approximate) RPM

n 20 30 40 50 60 70 80
m = 2, α = 0 0.015% 0.013% 0.013% 0.002% 0.008% 0.011% 0.010%

m = 2, α = 0.1 0.015% 0.010% 0.015% 0.004% 0.022% 0.029% 0.036%
m = 3, α = 0 0.105% 0.107% 0.072% 0.038% 0.037% 0.024% 0.023%

m = 3, α = 0.1 0.115% 0.103% 0.085% 0.076% 0.065% 0.074% 0.093%

Table VI.2: Lower Bound of Profiles Where Every Player Is Truthful for (Approximate)
RPM

n 20 30 40 50 60 70 80
m = 2, α = 0 99.7% 99.6% 99.5% 99.9% 99.6% 99.2% 99.2%

m = 2, α = 0.1 99.7% 99.7% 99.4% 99.8% 98.8% 98.1% 97.2%
m = 3, α = 0 97.9% 96.8% 97.1% 98.1% 97.8% 98.4% 98.3%

m = 3, α = 0.1 97.8% 96.9% 96.8% 96.2% 96.3% 95.1% 92.9%

Karate club data, we did not find any player with an incentive to lie in test cases when

we apply (Approximate) RPM. On the Newfrat data, the upper bounds are less than 0.4%

and 7% when we apply RPM without and with heuristics, respectively. In addition, we

also computed the lower bound on the fraction of preference profiles where truth-telling is

a Nash equilibrium (Table VI.2). We find that without the heuristic, when m = 2 (sparse

networks), RPM is incentive compatible in more than 99% of the profiles; and when m = 3

(the networks are comparatively dense), RPM is truthful at least 96% of the time.

Table VI.3: Average Upper Bound of Untruthful Players for HRPM

n 20 30 40 50 60 70 80
m = 2, β = 0.5 1.44% 1.77% 1.71% 2.00% 2.09% 2.16% 2.06%
m = 2, β = 0.6 1.62% 1.83% 1.96% 2.09% 2.25% 2.11% 2.11%
m = 3, β = 0.5 2.99% 3.36% 3.76% 3.90% 4.18% 4.02% 4.33%
m = 3, β = 0.6 3.44% 3.69% 3.97% 3.98% 4.40% 4.24% 4.52%

Table VI.3 presents the upper bound on the number of untruthful players for HRPM
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(still for the roommate problem). Even with this heuristic, we can see that less than 5% of

the players have any incentive to misreport preferences.

VI.5 Conclusion

I mainly address the computational challenges in implementing rotating proposer mecha-

nism, which implements a subgame perfect Nash equilibrium in the corresponding rotating

proposer game, and evaluate the mechanism by empirical methods. To address the chal-

lenges, I introduce preprocessing and pruning, as well as approximate versions of RPM,

one tailored to the roommate problem (with coalitions of at most two), and another for

coalitions of arbitrary size. The experiments show that even the approximate versions of

RPM significantly outperforms several alternative mechanisms for coalition formation in

terms of social welfare and fairness, are do not introduce significant incentives to misreport

preferences.
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CHAPTER VII

Automated Mechanism Design for Roommates Problem

In the thesis, I consider a new perspective on the roommates problem based on automated

mechanism design (AMD) [50]. In a prototypical AMD setup, one obtains preferences

from the players, and then solves an optimization problem (for example, an integer linear

program) in which constraints ensure incentive compatibility. However, applying AMD to

matching problems in general, and the roommates problem in particular, faces a number

of challenges. First, it is conventional to consider ordinal, rather than cardinal preference

reports by the players. Second, incentive compatibility is often incompatible with other

highly desirable properties, such as stability and, for cardinal preferences, optimal social

welfare. Third, standard AMD methods explicitly compute the full mapping from prefer-

ence reports to outcomes, which is intractable for even small roommates problems.

I address the first challenge by implementing a rank-preserving transformation from

ordinal to cardinal preferences, after ordinal preferences are received, and before the AMD

approach is applied. To address the second challenge, I propose relaxing incentive com-

patibility along two dimensions: a) restrictions on the set of salient deviations, and b)

approximation, which bounds the most one can gain from lying. Specifically, I consider

three restricted forms of incentive compatibility: permutation IC (where manipulations are

permutations of the preference ranking, and exclude truncations), promotion IC (which

allows promotions of prospective roommates), and promotion-one IC (which only consid-

ers promotions to the top position in the preference order). DA is known not to even be

promotion IC, but I show, surprisingly, that it is promotion-one IC.

To address the final challenge, I propose several approaches to construct integer linear

programs for computing outcomes for a specific set of preference reports, which extends

social welfare maximization by introducing constraints which aim to achieve approximate

restricted IC. For one of these approaches, I am able to show that the solution, in fact,
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guarantees a bound on incentives to lie in the restricted space of manipulations. Two oth-

ers, however, lack such guarantees, but show superior performance in the experimental

evaluation.

VII.1 The Roommates Model

The roommates problem, a generalization of two-sided matching [46], involves a set of

players N = {1,2, . . . ,n} who are to be grouped into a collection of teams of at most two

each. Each i ∈ N has a set of feasible partners Ri ⊆ N, and a preference ranking �i (i.e., a

complete, anti-symmetric, and transitive relation) over Ri. We assume player i would rather

be a singleton than be with a player in N\(Ri ∪{i}). We say that a player j has a higher

rank than player k in player i’s preference if j,k ∈ Ri and j �i k. Preferences are assumed

to be strict, and x�i y means that either x�i y or x = y.

A profile of preferences � (or simply profile) is a list of preferences for every i ∈

N. Given a profile, the list of preferences for all players except i is denoted by �−i. A

roommates matching π is a function π : N→ N, such that π(π(i)) = i for any player i, and

π(i) 6= π( j) if i 6= j. We also assume that π(i) = i if player i is a singleton in the matching.

The well-known two-sided matching (marriage) problem is a special case of roommates

model in which players are separated into two disjoint sets M and W , s.t. Ri ⊂W ∀i ∈M

and R j ⊂ M ∀ j ∈W . A roommates mechanism M maps every preference profile � to a

roommates matching π , i.e. π = M (�).1 We denote the roommate of player i generated

by the mechanism M by M (�, i). Finally, we let � j
i denote a preference ranking of i

modified by promoting another player j to be most preferred by i.

Throughout, we make use of both ordinal and cardinal preference notions. We leverage

ordinal preferences for two reasons: a) such preferences are easier to express in the context

of matching problems, and b) it restricts inputs to the mechanism itself. The mechanism

transforms ordinal preferences into cardinal in order to (a) consider social welfare as an

1To simplify notation, we also let �i denote the preference over several matching outcomes, i.e. π �i π ′

denotes π(i)�i π ′(i).
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objective, which is a much stronger notion of efficiency than, say, Pareto optimality, and

(b) consider quantitative relaxations of incentive compatibility to allow us to consider the

problem in the automated mechanism design framework; we discuss this in greater detail

below. We define ui(π(i)) as the cardinal utility of the partner assigned to player i in the

matching π . If the partner of i is j, we use ui j to denote ui( j).

VII.1.1 Incentive Compatibility

In mechanism design, a crucial criterion is incentive compatibility, which aims to eliminate

any incentives for players to misreport their true preferences (in our case, over partners).

Formally, we say that a mechanism M is ex-post incentive compatible (IC) if ∀ �, i,�′i

,M ((�i,�−i), i) �i M ((�′i,�−i), i). When preferences are cardinal transformations of

�i, we can define an approximate IC in cardinal form, for a given additive approximation

ε , as

∀ �, i,�′i: ui(M ((�i,�−i), i))≥ ui(M ((�′i,�−i), i))− ε.

VII.1.2 Individual Rationality

Another important criterion in mechanism design is individual rationality. In the room-

mates problem, this can be represented by constraints ∀ �, i,M (�, i) �i {i}, which, for

cardinal preferences, becomes ui(M (�, i))≥ ui({i})

VII.1.3 Social Welfare

Social welfare is a notion of efficiency defined for cardinal preferences. Formally, the

social welfare of a matching π is sw(π) = ∑i ui(π). Our goal below will be to maximize

social welfare for a cardinal transformation of ordinal preferences, subject to approximate

incentive compatibility (in a restricted form, discussed below). Formally, we aim to solve
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the following problem:

max
M

∑
�∈D

∑
i∈N

[(1−α)ui(M (�))−α|N|ε] (VII.1a)

s.t.

∀ �, i,�′i:

ui(M ((�i,�−i), i))≥ ui(M ((�′i,�−i), i))− ε. (VII.1b)

It trades off relaxations of incentive compatibility and optimizing social welfare, with α the

associated tradeoff parameter. The key technical challenge is that this problem requires us

to optimize over all possible mechanisms M , and even representing a given mechanism is

intractable (since it maps all possible preference profiles to matchings). Instead, we would

like to leverage the structure of the problem in computing a matching for a given preference

profile. As we show presently, we can indeed accomplish this. We do so by appealing to

relaxed notions of IC, which we turn to next.

VII.2 Restricted Incentive Compatibility

It is well-known that when payments are not allowed and/or utility is not transferable, in-

centive compatibility is, in general, in conflict with social welfare optimality [141]. One

classical approach to address this tension is to additively relax incentive compatibility, re-

quiring instead that no player can gain from lying about preferences more than a small

amount, ε [142]. This relaxation is justified by suggesting that agents typically face im-

plicit costs (actual or cognitive) from lying, or gaming the system.

However, traditional concepts which focus on small gains from lying do not account

for another barrier to manipulation: complexity. A common approach in this vein is to

consider the computational hardness of manipulation [143]. However, when manipulators

are human, computational complexity may not be appropriate. We propose several alterna-

tive notions of cognitive salience in considering the space of possible manipulations. The
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central idea is to restrict the space of feasible manipulations to those which are cognitively

natural. We present three classes of such restrictions: promotion-one IC, where salient ma-

nipulations involve promoting a player to the top position; promotion IC, in which agents

consider promoting a prospective roommate in their reported ranking to an arbitrary posi-

tion; and the far more general permutation IC, in which agents may report a permutation

of their true preferences.

VII.2.1 Promotion-One Incentive Compatibility

We now present the first restriction of manipulating to allow players to promote anyone

to the first position in their preference ranking. We term this promotion-one incentive

compatibility (POIC).

Definition VII.2.1. A mechanism M is promotion-one incentive compatible (POIC) for a

profile domain D if for any profile �∈D , i, j ∈ N, M (�)�i M (� j
i ,�−i).

Translation to cardinal preferences is direct.

I now present one of our main results, which demonstrates the value of POIC as a re-

striction of incentive compatibility. In particular, I show that the most common mechanism

for two-sided matching, deferred acceptance [46], is POIC. 2

Theorem VII.2.1. Deferred acceptance mechanism is promotion-one incentive compati-

ble.

Proof. Without loss of generality, we consider the women-proposing deferred acceptance

mechanism (DA for short). We have known that DA is incentive compatible for the propos-

ing side (i.e. women), so we will show that it is also promotion-one incentive compatible

for the men.

The proof is by contradiction. Suppose that a man m matches with a woman w under the

true profile �, and matches with a more preferred woman w′ (i.e. w′ �m w) when reporting

2[37] shows a similar result.
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some promotion-one manipulating preference �w∗
m , where the promoted woman is w∗. As

DA(�) 6= DA(�w∗
m ,�−m), there must be a round of DA that differs when DA is applied to

� and (�w∗
m ,�−m). Let r∗ be the first such round.

Let Sm denote the set of women held by m, which includes m’s current mate and un-

matched women that propose to m in the round r∗. As r∗ is the first round in which the

outcome of DA is different in the two profiles, we know that the set Sm is the same at the

beginning of round r∗ under both profiles. Because m is the only player whose preferences

are different in the two profiles, m must be the man whose mate is different in the two

profiles at the end of round r∗. Assume ŵ is the mate of m under the true profile � in the

round r∗, based on the property of DA , ŵ�m w̃, for all w̃ ∈ Sm.

Also, because w∗ is the only woman whose ranking changes in �m and �∗m, set Sm

must contain woman w∗. (Otherwise, m would match with the same players at the end of

round r∗ under both profiles, contradicting the fact that DA is different in the round r∗.)

Furthermore, w∗ must be the woman that m matches at the end of round r∗, and w∗ 6= ŵ.

(Otherwise, because Sm is the same under both profiles and w∗ is the only woman the

ranking of which changes in the preference of m, m would again match the same players at

the end of round r∗ under both profiles.) Then we could know that ŵ�m w∗.

As w∗ has been promoted to the first place in m’s preference�∗m, m cannot expect to get

a better mate than w∗. At the same time, the receiving side players can only improve (or re-

main the same) with respect to their reported preferences as the rounds of DA progress. So

DAm(�w∗
m ,�−m) = w∗, and DAm(�) �m ŵ. It implies DAm(�) �m ŵ �m w∗ = DAm(�w∗

m

,�−m), which contradicts with the assumption that m matches with a better player by re-

porting preference �w∗
m .

This result may help explain the success this mechanism has had in practice, with rather

little concern about preference manipulation: it appears that it is incentive compatible under

a highly salient set of preference manipulations.
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VII.2.2 Promotion and Permutation Incentive Compatibility

POIC is still a rather restrictive set of manipulations, and it is natural to consider further

generalizations. The first generalization is promotion incentive compatibility, where pro-

motion can be to an arbitrary position in the preference ranking. To formally define it, let

� j→l
i denote a manipulation of an original preference ranking of i, �i, in which j is pro-

moted to a position l. Let p(�i, j) be the position of j in i’s original preference ranking.

Suppose that position l < k in a preference order �i means that a player in position l is

more preferred than one in position k.

Definition VII.2.2. A mechanism M is promotion incentive compatible (PIC) for a profile

domain D if for any profile �∈ D , for every player i, prospective partner j, and position

l < p(�i, j), M (�)�i M (� j→l
i ,�−i).

The final relaxation of IC we consider is permutation incentive compatibility.

Definition VII.2.3. A mechanism M is permutation incentive compatible (Permutation IC)

for a profile domain D if for any profile �∈D , for every player i, M (�)�i M (�′i,�−i),

in which �′i is any permutation of �i.

Again, we can translate these two definitions to cardinal preferences directly. Observe

that if players are required to submit full preference orders among feasible roommates,

permutation IC is equivalent to general IC; consequently, this is a very general notion of

incentive compatibility.

Perhaps surprisingly, Example 2 in [114] shows that deferred acceptance mechanism is

not even promotion IC. Thus, our positive result above is tight.

One of the major successes of the deferred acceptance has been the belief that it doesn’t

incentivize manipulation in practice [144]. Showing that it is IC for the restricted subset

of promotion-one manipulations, coupled with this anecdotal claim, offers evidence that

promotion-one manipulations may be the most salient manipulations in matching settings.
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Consequently, our experimental evaluation below focuses on promotion-one incentives to

measure benefits from misreporting preferences.

VII.3 Automated Mechanism Design for Roommates Problem

I now proceed to leverage the (restricted) notions of incentive compatibility in devising an

automated mechanism design (AMD) approach [50] for the roommates problem. First, I

always treat individual rationality as a hard constraint. Second, I aim to maximize social

welfare subject to constraints involving approximate notions of IC.

In this section, I describe several automated mechanism design approaches for the

roommates problem. I present integer linear programming methods for this problem that

trade off social welfare and an upper bound of ε in a manner similar to Problem (VII.1), but

for a specific instance of reported preferences; consequently, the mechanism is implicitly

specified through solutions of such programs for all possible preference profiles.

Throughout, I consider the transformation from ordinal preference to the cardinal util-

ity. A transformation is a mapping from an ordinal profile � to a set of utility functions

{ui(·)}, s.t. i ∈ N. Specifically, ui( j) means the utility of player i for matching with player

j. For any j, j′ ∈ Ri, if j �i j′, then ui( j) ≥ ui( j′), or, in our notation introduced above,

ui j ≥ ui j′ .

VII.3.1 AMD That Maximizes Social Welfare

As a benchmark, I first present the program that could maximize the social welfare of

players with only individual rationality constraints. This also provides the main building

block for the AMD approaches that follow.

First, I introduce integer variables xi j ∈ {0,1} which represent matching a player i

with j. Since the “roommates” matching is symmetric (if i is j’s roommate, then j is i’s

roommate), xi j = x ji for all i, j. Moreover, since a player can have at most one roommate,

and can be a roommate of at most one player I have in addition the constraints ∑i xi j ≤ 1

and ∑ j xi j ≤ 1 for all i, j. Finally, the objective of social welfare becomes ∑i, j xi jui j. The
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full mechanism then becomes Program (VII.2).

PMSW =max
x ∑

i∈N
∑
j∈N

xi jui j (VII.2a)

s.t. : ∑
j∈N

xi j ≤ 1, ∀i ∈ N (VII.2b)

∑
i∈N

xi j ≤ 1, ∀ j ∈ N (VII.2c)

xi j = x ji, ∀i, j ∈ N (VII.2d)

IR : ∑
j∈N

xi jui j ≥ uii, ∀i ∈ N (VII.2e)

xi j ∈ {0,1}, ∀i, j ∈ N (VII.2f)

VII.3.2 AMD with Approximate Permutation Incentive Compatibility

Next, I consider the problem of maximizing social welfare with restricted forms of in-

centive compatibility captured by a collection of constraints. As I had remarked earlier,

the central challenge in doing so is that, in general, incentive compatibility must consider

mechanism outcomes for alternative manipulation, something that can be difficult to capture

without explicitly defining a general roommates mechanism (a clearly intractable proposi-

tion). In this subsection, I demonstrate that the special structure of the roommates problem

allows us to overcome this challenge.

As our principle approach, I present an integer linear program that trades off social

welfare and an upper bound of ε . And the resulting mechanism is ε-permutation incentive

compatible. The key idea for developing this approach is to consider each possible manip-

ulation by a player i. The worst case, from the mechanism designer’s standpoint, is that

the manipulation succeeds, and i matches with a better roommate than her current mate. I

can very conservatively guard against all such possible deviations by simply introducing

a collection of constraints that each player i obtains at least ui j for any possible partner

j they may have. This yields our first integer program for automated mechanism design,
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presented in Program (VII.3). In the program, α is set to trade off between social welfare

and incentive compatibility and 0≤ α ≤ 1.

PIC =max
x,ε

(1−α)∑
i, j

xi jui j−α|N|ε, (VII.3a)

s.t. : constraints (VII.2b)− (VII.2e)

ε-IC : ∑
k∈N

xikuik ≥ ui j− ε,∀i ∈ N, j ∈ Ri (VII.3b)

ε ≥ 0 (VII.3c)

xi j ∈ {0,1}, ∀i, j ∈ N (VII.3d)

The above optimization problem is clearly conservative, as it introduces constraints about

prospective roommates whether or not they can be realized through a unilateral deviation.

I deal with this presently, but for the moment, this provides our first principled approach.

Let us denote by MIC(�) the mechanism (implicitly) implemented by the integer pro-

gram (VII.3). As we now observe, the optimal solution to this program yields an upper

bound on the most any player can gain from arbitrary permutations of their preferences—

that is, the result is approximately permutation IC (and, consequently, promotion and

promotion-one IC).

Theorem VII.3.1. Assume the optimal solution of Program VII.3 is (x∗,ε∗), then the mech-

anism MIC is ε∗-Permutation IC, i.e. no player can gain more than ε∗ via permutation of

her true preference.

Proof. Due to the IR constraints (VII.2e), player i never team up with a player that is not

in Ri. When player i untruthfully report her preference by permutation, she will still match

with one player in Ri (or be a singleton). The constraint (VII.3b) can make sure that player

i cannot gain more than ε∗ by matching with any player in Ri.

While this program appears simplistic, it is a useful step as enables us to parametrically
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trade off social welfare and incentives to lie by tuning the parameter α . As our experiments

demonstrate, this yields a non-trivial tradeoff with respect to the highly salient promotion-

one-IC deviations.

We note that many of the constraints in the above integer program are unnecessary, and,

indeed, significantly over-constrain the problem. In the program, all players in the feasible

set Ri are treated as “potential” teammates when i is trying to manipulate the mechanism,

and some players in Ri are far less preferred than the final teammates. Consequently, these

constraints will never be relevant.

I use this intuition to develop an iterative approach to generating the approximate per-

mutation IC constraints, allowing us to focus only on those which actually matter. We start

with a program that maximizes social welfare, and use it to obtain an initial roommates as-

signment π . Then we add constraints to make sure that player i cannot gain more than ε by

matching with any player j s.t. j �i π(i). We then solve the program with the newly added

constraints (replacing the objective with (VII.3a) and adding the constraint that ε ≥ 0), ob-

tain a new assignment, and repeat the process until convergence (which is guaranteed in the

quadratic time since the set of possible constraints is quadratic). This approach is shown in

Algorithm 10, and the resulting program is, again, ε-permutation IC (details omitted due

to space constraints).

Algorithm 10 ε-Permutation IC Program
input: initial program (VII.2)
return: ε-Permutation IC Program

1: program PIC ← program (VII.2)
2: repeat
3: solve the program and get the matching assignment π

4: for i, and j ∈ Ri do
5: if j �i π(i) and corresponding constraint has not been added then
6: add ∑k∈N xikuik ≥ ui j− ε into PIC
7: end if
8: end for
9: until the value ε converges

10: return program PIC
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VII.3.3 Heuristic Approaches with Promotion-One Manipulations

While the approaches described above are principled in the sense that they yield provable

guarantees, even the iterative approach is likely to introduce too many constraints (thereby

compromising social welfare which could have been achieved). One major reason for this

is that it still accounts for the full space of permutation manipulations, rather than the more

salient restricted space of manipulations in which a player only promotes another to the top

position in her order. We now introduce two iterative heuristic approaches which directly

consider this smaller set of manipulations, albeit losing theoretical guarantees.

The intuition behind our first heuristic approach is to iteratively allow each player to

promote another to the top position, check if the result yields strictly higher social welfare

than current allocation, if only in this case add the corresponding constraint. The full ap-

proach is shown in Algorithm 11. Here PMSW (·) denotes the assignment which maximizes

social welfare (i.e., solves program (VII.2)), and sw(·) denotes the social welfare of an

assignment.

Algorithm 11 Heuristic 1
input: initial program (VII.2)
return: Heuristic ε-POIC Program

1: program PPOIC ← program (VII.2)
2: Replacing the objective with (VII.3a)
3: repeat
4: for i, and j ∈ Ri do
5: if sw(PMSW (� j

i ,�−i)) > sw(PPOIC(�)) and corresponding constraint has not
been added then

6: add ∑k∈N xikuik ≥ ui j− ε into PPOIC
7: end if
8: end for
9: until the value ε converges

10: return program PPOIC

Our second heuristic approach even further relaxes the IC constraints. In the process

of constraint generation, we still compute the social welfare of the manipulated profile.

However, unlike from Algorithm (11), we let player i match with j, compute the social
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welfare of the remaining players in the current program, and check if the utility of i and j,

along with social welfare of the match among remaining players, is thereby increased; if

it is, we add the constraint, since this is likely the salient manipulation. The full approach

for the second heuristic is described in Algorithm 12. Here Ui is the utility i receives from

ranking a player ( j in this case) in the first position, and �−{i, j} is the profile of all players

other than i and j.

Algorithm 12 Heuristic 2
input: initial program (VII.2)
return: Heuristic ε-POIC Program

1: program PPOIC ← program (VII.2)
2: for i, and j ∈ Ri do
3: if Ui +u ji + sw(PPOIC(�−{i, j}))> sw(PPOIC(�)) then
4: add ∑k∈N xikuik ≥ ui j− ε into PPOIC
5: end if
6: end for
7: return program PPOIC

VII.4 Experiments

I evaluate the proposed approaches (Algorithm 1–3) on preference profiles generated by

social networks with respect to the social welfare and (approximate) promotion-one in-

centive compatibility (POIC). In the three approaches introduced, α = 0 is equivalent to

Program (VII.2), which maximizes social welfare; this will be the baseline for our ap-

proaches. I consider two measures to capture incentives to lie: 1) maximum benefit from

deviation to any player (a relatively standard metric), and 2) proportion of players who ben-

efit from deviation (used for matching settings [144]). I adopt Erdös-Rényi (ER) [145] and

Barabási-Albert (BA) [137] models to generate random networks. For ER, the probability

of an edge is p = 0.2. For BA, each new node is connected to 2 nodes when generating

the network (see [137] for more details). For each network, I generate preference profiles

among players as follows. We assume that a player i is only willing to match with neigh-

bors, i.e. j ∈ Ri if and only if i and j are neighbors, and rank i’s neighbors in random
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order. To map ordinal preference to the cardinal, we use Borda scoring functions sug-

gested by [140]. Specifically, I adopt the normalized Borda scoring function, defined as

ui( j) = g(r) = (k− r+1)/k where k is the number of feasible roommates, and r ∈ [1 . . .k]

is the rank of j in i’s preference. Thus, utilities are in the [0,1] interval.

For all the results, we take the average over 100 samples, and consider games with 20

players. I solve mixed integer linear programs using CPLEX 12.6.1.
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Figure VII.1: Social welfare on ER (left) and BA (right) networks.

Figure VII.1 shows the (normalized) social welfare on ER and BA models, respectively.

As expected, social welfare decreases with α (the weight of the incentive term). Our key

observation here, however, is that our three algorithmic approaches (Algorithm 1-3) yield

similar social welfare when α ≤ 0.3 (within 0.01).
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Figure VII.2: Maximum benefit from deviation on ER (left) and BA (right) networks.

Figures VII.2 and VII.3 present the results regarding incentives to lie. It is perhaps

surprising that these are not monotonically decreasing with α , but note that our approaches

minimize an upper bound on the gain from lying, which can lead to over-constrained pro-

grams and be actually counterproductive. The sweet spot appears to be α = 0.2. For ER
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Figure VII.3: Proportion of players who can benefit from deviation on ER (left) and BA
(right) networks.

networks, Algorithm 2 and 3 are both considerably better than Algorithm 1 in terms of in-

centives to lie. However, the difference is not that significant for BA networks, even though

we can also see the superiority of Algorithm 2 and Algorithm 3. Moreover, there doesn’t

appear to be an appreciable difference between Algorithms 2 and 3.

VII.5 Conclusion

I present the first treatment of the roommates problem from an automated mechanism de-

sign (AMD). The proposed approaches and analysis discussed through the chapter, are

mainly based on two restricted incentive compatibility: promotion-one incentive compati-

bility, in which the manipulation consists of promoting a single player to the top position

in the manipulator’s preference list; and permutation incentive compatibility, in which the

manipulation is a permutation of the preference. Specifically, I prove that the well-known

deferred acceptance mechanism in two-sided matching is promotion-one IC, which in some

sense explains the success of this mechanism and also shows the usefulness of the restric-

tion. Finally, I propose several automated mechanism design approaches to the roommates

problem. I prove that the first approach is ε-permutation IC. While the other two don’t

have theoretical guarantees, empirical results show that they have even better incentive

properties.
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Part III

Toward Efficiency: Secondary Market
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CHAPTER VIII

Secondary Market Mitigates Demand Uncertainty

In the chapter, I leverage game-theoretic analysis to study the influence of a secondary mar-

ket on players’ decisions and social welfare in the resource allocation problem introduced

in the introduction. I use a well-known newsvendor model as a starting point to construct a

two-stage game model:

1. In the first stage (i.e. primary market), players report their orders to the authority, and

then pay and get the requested resources. In this stage, actual demand is uncertain.

2. In the second stage (i.e. secondary market), demand uncertainty is resolved, all de-

manded resources used, and remaining resources can be traded freely.

I focus on the following two representative settings, one for a large market and another

for a small one:

• Large markets: In the large market model, I analyze the influence of a secondary market

asymptotically as the number of players n approaches infinity. In this setting, our solution

concept for the secondary market is a competitive equilibrium, with backward induction

allowing us to characterize the (asymptotic) Nash equilibrium strategies in the first stage.

I find that an individual’s influence on the price in the secondary market is bounded by

O
(

1
min(
√

n,π(n))

)
, where π(n) ≤ n and limn→+∞ π(n) = +∞, which validates the price-

taking assumption of the competitive equilibrium solution concept. Moreover, I show

that the secondary market is able to significantly mitigate the uncertainty of demand by

aligning with the price in the primary market. Furthermore, for both social welfare and

total orders in the primary market, the difference between the optimal and equilibrium

outcomes is bounded by O(max(
√

n, n
π(n))), a significant improvement over the Θ(n)

difference between the optimum and the outcome with only the newsvendor model (i.e.,

without the secondary market).
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• Small markets (2 players): In the small market model, I assume players are bargaining

on the price in the secondary market, and adopt the Nash bargaining solution concept

[146]. In this model, I provide a sufficient condition that guarantees the existence of pure

strategy Nash equilibrium and subsequently focus on characterizing symmetric equilib-

rium outcomes when the game is symmetric. Under this equilibrium, I prove that social

welfare is always no worse than in the newsvendor model (i.e., without the secondary

market).

In summary, I conclude that secondary market is indeed able to mitigate demand uncer-

tainty and improve social welfare.

The rest of this chapter organizes as follows. I formalize our model in Section VIII.1.

The results for a large market are presented in Section VIII.2, followed by the results for a

small market in Section VIII.3. This chapter is concluded with discussion and future work

in Section VIII.4.

VIII.1 Model

In this section, I go through our market model with and without a secondary market, and

formalize the setup of the induced game.

VIII.1.1 Background: The Newsvendor Model

My point of departure is the standard newsvendor model [147]. The focus of this model is

an agent who decides on the quantity of homogeneous and divisible resources to order to

satisfy uncertain future demand. To formalize, let c be the unit cost of the resource, x ≥ 0

the number of units of the resource ordered, and Q the random variable representing the

uncertain demand, distributed according to a continuous cumulative distribution function

FQ(·). Finally, let c′ be the marginal penalty of resource shortage. The expected utility of

the agent is then modeled by

U(x) = EQ
[
−cx− c′(Q− x)+

]
, (VIII.1)

102



where (Q− x)+ = max(Q− x,0). Thus, the agent trades off the immediate incurred cost

of ordering x units, and the uncertain future deleterious consequences of failing to fulfill

demand.

Based on Littlewood’s rule [148], the optimal solution to the newsvendor problem is

characterized by

x∗ = F−1
Q

(
1− c

c′

)
(VIII.2)

where F−1
Q (·) is the inverse cumulative distribution function of Q. An equivalent charac-

terization is

P(Q≥ x∗) =
c
c′
, (VIII.3)

where c
c′ is known as the critical fractile.

VIII.1.2 The Newsvendor Model with a Secondary Market

I consider an extension of the standard newsvendor model in which there exists a secondary

market at which players can trade excess supply of the resource after demand uncertainty

has been resolved.

To formalize, let N = {1,2, . . . ,n} be the set of players. For each player i ∈ N, the

marginal penalty of resource shortage is c′i, whereas the unit cost of procuring the resource

is c for all players. In addition, each player i ∈ N has a stochastic demand Qi distributed

according to FQi(·), and we assume that 0≤Qi≤ qmax, where qmax is the maximum possible

demand. To simplify notation, let Q = {Q1,Q2, . . . ,Qn}. Let xi denote the number of units

of the resource i orders, and assume that this is bounded by xmax.

So far, the decisions of all players are entirely independent. We now suppose that

there is a secondary market in which the players can trade resources after their individual

demands Qi have been realized and the ordered resources have been consumed. This ability

to trade in the future then connects the initial decisions by the players about how many

resources to purchase. The consequence is the following two-stage game:
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• In the first stage (primary market), all players’ demands are unknown (but their dis-

tributions are assumed to be common knowledge) and each player i ∈ N orders xi

units of the resource at unit price c.

• In the second stage (secondary market), the demand of each player i ∈ N is realized

and order resources are consumed. We denote these realizations of demand by qi,

and let q = {q1,q2, . . . ,qn}. We assume that these realizations become common

knowledge. At this point, the resource can be exchanged on the secondary market,

where sellers are players i with xi− qi > 0 (excess supply) and buyers are players i

with xi−qi < 0 (excess demand). The secondary market then determines the price p

for exchanging the resource among players; I discuss the specific solution concepts

used to characterize the market price below.

The price in the secondary market is influenced by the excess demand and supply in

the market, which are jointly determined by x and Q. Let P(Q,x) denote the price in the

secondary market. For each player i, the amount of the resource purchased or sold in the

secondary market is then jointly determined by x, Q and P(Q,x). Let Ii (Q,x,P(Q,x))

and Oi(Q,x,P(Q,x)) denote the amount of the resource purchased and sold by player i in

the secondary market, respectively (note that at most one of these is non-zero). Then the

(expected) utility of player i (i ∈ N) in the full game, as a function of the joint resource

ordering decisions x = (xi,x−i) in the first stage is defined as

Ui(xi,x−i) =EQ

{
−cxi +P(Q,x)Oi(Q,x,P(Q,x))−P(Q,x)Ii(Q,x,P(Q,x))

− c′i

[
Qi− xi− Ii(Q,x,P(Q,x))+Oi(Q,x,P(Q,x))

]+} (VIII.4)

In the thesis I study the pure strategy Nash equilibrium of the game in the first stage,

with behavior in the secondary market characterized using an associated solution concept

that I deal with shortly (observe that the game can be treated as complete information, as

is common in related literature [129], since there is no information asymmetry among the
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players).

Definition VIII.1.1. (x1,x2, . . . ,xn) is a pure strategy Nash equilibrium if for any player i,

given x−i, we have Ui(xi,x−i)≥ Ui(x′i,x−i) for any 0≤ x′i ≤ xmax.

VIII.2 Large Markets: Asymptotic Analysis

I begin our study with a limiting case where the number of players n approaches to infinity.

Let π(·) be a function of n such that π(n)≤ n for any n and π(n)→+∞ as n→+∞. The

assumptions can be formalize as follows,

Assumption VIII.2.1. Assume that the number of players n→ +∞. Furthermore, we as-

sume that the domain of marginal penalty of resource shortage c′ is [c′min,c
′
max], in which

c′min and c′max are the minimum and maximum marginal penalty of resource shortage, re-

spectively, with c′min ≥ c. Finally, for any given range [b,b] with c′min ≤ b < b ≤ c′max, we

have limn→+∞ ∑i∈N 1(c′i ∈ [b,b]) = Ω(π(n)), where π(n)≤ n and limn→+∞ π(n) = +∞.

Intuitively, we consider the case where players are distributed based on their marginal

penalty of resource shortage, and the distribution does not exhibit significant skew in the

valid range. This assumption will be important when we study the beneficial impact that

the secondary market has on social welfare.

Under the asymptotic assumption, we focus on the ε-Nash equilibrium (where ε → 0

as n→+∞) of the game in the first stage. We term it as “asymptotic Nash equilibrium”.

Definition VIII.2.1. (x1,x2, . . . ,xn) is an asymptotic Nash equilibrium if for any player

i, given x−i, we have Ui(xi,x−i) ≥ Ui(x′i,x−i)− ε for any 0 ≤ x′i ≤ xmax, where ε → 0 as

n→+∞.

VIII.2.1 Market Clearing Price in Secondary Market

In the limiting case when the number of players approaches infinity, it is natural to consider

the competitive equilibrium as the solution concept for the secondary market, in which the

price P(Q,x) is the market clearing price.
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Let N+ = {i ∈ N |xi− qi > 0} be the set of players with excess supply, N− = {i ∈

N |xi− qi < 0} the set of players with excess demand. We define competitive equilibrium

as follows,

Definition VIII.2.2. Given the orders x (in the primary market) and the realized demands

q (in the secondary market), the price P(q,x) and {Oi(q,x,P(q,x)), Ii (q,x,P(q,x))}i∈N

form a competitive equilibrium (CE) of the secondary market if the following conditions

hold:

• For all players i ∈ N− with c′i > P(q,x), 0 ≤ Ii (q,x,P(q,x)) ≤ qi− xi, and Oi(q,

x,P(q,x)) = 0. That is to say, these players are willing to buy resources at price

P(q,x).

• For all players i ∈ N+, Ii (q,x,P(q,x)) = 0, and 0≤ Oi(q,x,P(q,x))≤ xi−qi. That

is to say, these players are willing to sell redundant resources at price P(q,x).

• For all players i∈N− with c′i < P(q,x), Ii (q,x,P(q,x)) = Oi(q,x,P(q,x)) = 0. That

is to say, these players are not willing to sell or buy resources.

• Market Clears: ∑i∈N Ii (q,x,P(q,x)) = ∑i∈N Oi(q,x,P(q,x)).

We observe that the competitive equilibrium may be not unique, and we define the

maximum market clearing price under a competitive equilibrium in the following.

Let z+ = ∑i∈N+
(xi−qi) be the aggregate supply, and z− = ∑i∈N−(qi−xi) be the aggre-

gate demand (in the secondary market). Recall that P(q,x)≥ 0 is the market clearing price

given the strategy profile x and realized demands q. We divide the relation between supply

and demand in the secondary market into two cases:

1. z+ ≥ z−, i.e. supply exceeds demand. Sellers always have an incentive to decrease

prices when P(q,x)> 0, which means that in this case, P(q,x) = 0.
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2. z+ < z−, i.e. demand exceeds supply. Given a price p = P(q,x), players in {i ∈

N− |c′i ≥ p} will purchase the resource on the market, while those with c′i < p will

not.

We now characterize the market clearing price in case 2 above. First, let us sort players

i∈N− in increasing order of c′i; let c′( j) denote the jth marginal penalty of resource shortage

in this order. Let j∗ be the smallest j such that

∑
i:{i∈N− |c′i≥c′

( j)}
(qi− xi) = z̄≤ z+. (VIII.5)

In other words, the total demand by players, including ( j∗)th, who purchase the resource

with the market price z̄ is no larger than the supply z+. Next, observe that if z̄ = z+, then

c′( j∗) is the market clearing price, by definition. Otherwise (i.e., if z̄ < z+), if we reduce the

price to c′( j∗−1) (noting that j > 1 since otherwise we are in case 1), we can clear the market

by having ( j∗−1)th player purchase the rest of the available resource (since this player is

indifferent between purchasing and not). Consequently, in case 2, a market clearing price

is

P(q,x) =


c′( j∗) if z̄ = z+

c′( j∗−1) o.w.

(VIII.6)

The choice of the competitive equilibrium solution concept and market clearing price are

subsequently justified when we show that an individual player’ influence on the market

price indeed vanishes, and price-taking is indeed a Nash equilibrium in the limit that n→

+∞.

We now could get players’ (expected) utility function as follows,

• When P(Q,x) = 0, Ui(xi,x−i) =−cxi for all player i.

• When P(Q,x)> 0,

– player i∈N+(i.e. sellers) could sell all her redundant resources in the secondary
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market at price P(Q,x), i.e. Ui(xi,x−i) = EQ
[
−cxi +(xi−Qi)P(Q,x)

]
;

– player i∈N− s.t. c′i > P(Q,x) would buy as many of the resources as she needs,

i.e. Ui(xi,x−i) = EQ
[
−cxi− (Qi− xi)P(Q,x)

]
;

– player i∈N− s.t. c′i =P(Q,x) (including the ( j∗−1)th player mentioned above)

may buy some resources in the secondary market while bear the cost of resource

shortage for the rest, as c′i = P(Q,x), we could get Ui(xi,x−i) = EQ
[
−cxi−

(Qi− xi)c′i
]
;

– player i ∈ N− s.t. c′i < P(Q,x) does not buy resources in the secondary market,

so Ui(xi,x−i) = EQ
[
−cxi− (Qi− xi)c′i

]
.

To sum them up,

Ui(xi,x−i) = EQ
[
−cxi +(xi−Qi)

+P(Q,x)− (Qi− xi)
+min

(
P(Q,x),c′i

)]
(VIII.7)

VIII.2.2 Players’ Influence on the Price

It is commonly assumed that players are price-takers in a market with perfect competi-

tion. Under the price-taking assumption, sellers and buyers could sell or buy resources

at the market price without affecting that price. This is in general clearly not the case in

our setting. However, in this subsection, we will show that in the asymptotic model, an

individual’s influence on the expected price in the secondary market is O
(

1
min(
√

n,π(n))

)
as

n→ +∞, where π(n) measures the density of players’ distribution in any finite range of

marginal penalty of resource shortage. In the model, we assume that players’ demand are

independent and identically distributed with finite mean and variance.

Note that P(Q,x) is jointly determined by Q and x. We will firstly show that the in-

fluence of an individual’s order in the primary market on the market clearing price in the

secondary market is upper bounded by O
(

xmax
min(σ

√
n,π(n))

)
as n→+∞, where xmax is maxi-

mum possible amount of resources an individual could order in the primary market. Then

we show that the influence of different realization of an individual’s demand on the ex-
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pected price is O
(

qmax
min(σ

√
n,π(n))

)
as n→ +∞, where qmax is the maximum possible real-

ized demand of an individual. The two results together validate the price-taking assumption

adopted in the following subsection.

Before introducing the two results, we firstly present a lemma that will be useful in the

proof of the two results.

Lemma VIII.2.1. Let {Y1,Y2, . . . ,Yn} be a sequence of independent and identically dis-

tributed (i.i.d.) random variables drawn from a distribution of expected value given by µ

and finite variance given by σ2, and Sn = ∑i∈nYi. For any sequence of numbers {z1,z2, . . . ,

zn} and a nonnegative number b, P(zn ≤ Sn ≤ zn +b) is bounded by O
(

b
σ
√

n

)
as n→ ∞.

Proof. Based on central limit theorem, as n→ ∞,

1
n

Sn ∼ N
(

µ,
σ2

n

)
(VIII.8)

After normalizing,
1
nSn−µ

σ√
n
∼ N (0,1) (VIII.9)

So
P(zn ≤ Sn ≤ zn +b)

=P

(
1
nzn−µ

σ√
n
≤

1
nSn−µ

σ√
n
≤

1
n(zn +b)−µ

σ√
n

)

=P

(
zn

σ
√

n
−
√

nµ

σ
≤

1
nSn−µ

σ√
n
≤ zn

σ
√

n
−
√

nµ

σ
+

b
σ
√

n

)

=O
(

b
σ
√

n

)
(VIII.10)

Theorem VIII.2.1. Assume that Qi (i ∈ N) are independent and identically distributed

with finite mean µ and variance σ2. For a player i ∈ N, for any x′ and x′′, s.t. 0≤ x′,x′′ ≤

xmax, we could get
∣∣EQ [P(Q,x)|(xi = x′)]−EQ [P(Q,x)|(xi = x′′)]

∣∣ = O
(

xmax
min(σ

√
n,π(n))

)
,

as n→+∞, given {x1, . . . ,xi−1, xi+1, . . . ,xn}.
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Proof. Let zn =∑
n
j=1 x j−xi and we know that zn has been determined based on the assump-

tion. Firstly, we note that given any realization of players’ demands q, the market-clearing

price P(q,x) in the secondary market is monotonically non-increasing with the increasing

of xi. Take the expectation of the players’ demands, the expected price is also monotoni-

cally non-increasing with the increasing the xi. So we obtain the following:

∣∣EQ
[
P(Q,x)|(xi=x′)

]
−EQ

[
P(Q,x)|(xi=x′′)

]∣∣
≤EQ

[
P(Q,x)|(xi=0)

]
−EQ

[
P(Q,x)|(xi=xmax)

] (VIII.11)

Let p1 = P(Q,x)|(xi=xmax), p2 = P(Q,x)|(xi=0), and ∆p = p2− p1, and we consider

different realizations of Q as follows,

• When ∑i qi ≤ zn, no matter how much player i purchased in the primary market, the

supply is always over (or equal to) demand, the market-clearing price is always 0, so

∆p = 0 (VIII.12)

• When ∑i qi > zn + xmax, the demand is always over supplies. When xi changes from

xmax to 0, the supply in the secondary market will be decreased by xmax, which will

push the price increase somehow. Specifically1,

xmax−0≈ ∑
i∈N

1(c′i ∈ [p1, p2])(qi− xi)
+ (VIII.13)

Based on Assumption VIII.2.1, ∑i∈N 1(c′i ∈ [p1, p2]) = Ω(π(n)). As (qi− xi)
+ =

Θ(1), so

∆p =
xmax

Ω(π(n))Θ(1)
= O

(
xmax

π(n)

)
(VIII.14)

• When zn < ∑i qi ≤ zn + xmax, the demand can be either over or under the supply. If

1The consideration of corner cases is similar as that in Equation VIII.6, and it does not influence the order
in asymptotic analysis

110



xi = xmax, the supply is over demand, and the market-clearing price is 0; if xi = 0, the

demand is over supply and the price is some value between c′min and c′max. So

∆p = Θ(1) (VIII.15)

Based on Lemma VIII.2.1, Pr (zn < ∑i qi ≤ zn + xmax) = O
(

xmax
σ
√

n

)
.

Combining the three cases of the realization of Q, the following can be derived:

∣∣EQ
[
P(Q,x)|(xi = x′)

]
−EQ

[
P(Q,x)|(xi = x′′)

]∣∣
≤EQ [P(Q,x)|(xi = 0)]−EQ [P(Q,x)|(xi = xmax)]

=P

(
∑
i∈N

Qi ≤ zn

)
·0+P

(
∑
i∈N

Qi > zn + xmax

)
·O
(

xmax

π(n)

)

+P

(
zn < ∑

i∈N
Qi ≤ zn + xmax

)
·Θ(1)

=Θ(1) ·0+Θ(1) ·O
(

xmax

π(n)

)
+O

(
xmax

σ
√

n

)
·Θ(1)

=O
(

xmax

σ
√

n
+

xmax

π(n)

)
=O

(
xmax

min(σ
√

n,π(n))

)

(VIII.16)

Secondly, in Theorem VIII.2.2, we also show that the influence of an individual’s de-

mand on market-clearing price in the secondary stage is O
(

qmax
min(σ

√
n,π(n))

)
as n→+∞. As

the proof is very similar to Theorem VIII.2.1, we provide the proof sketch here.

Theorem VIII.2.2. For a player i, assume that Q−i (i∈N) are independent and identically

distributed with finite mean µ and variance σ2. For any q′ and q′′ s.t. 0 ≤ q′,q′′ ≤ qmax,

we have
∣∣EQ−i [P(Q,x)|(Qi = q′)]−EQ−i [P(Q,x)|(Qi = q′′)]

∣∣= O
(

qmax
min(σ

√
n,π(n))

)
as n→

+∞, given {x1,x2 . . . ,xn} have been determined.
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Proof (Sketch). Let zn = ∑
n
j=1 x j, and we assume it has been determined. Firstly, we note

that given any realization of Qi (i.e. Q1, . . . ,Qi−1,Qi+1, . . . ,Qn), the market-clearing price

p in the secondary market is monotonically non-decreasing with the increasing of qi. Take

the expectation of Q−i, the expected price is also monotonically non-decreasing with the

increasing the qi. So we get

∣∣EQ−i

[
P(Q,x)|(Qi=q′)

]
−EQ−i

[
P(Q,x)|(Qi=q′′)

]∣∣
=EQ−i

[
P(Q,x)|(Qi=qmax)

]
−EQ−i

[
P(Q,x)|(Qi=0)

] (VIII.17)

Let p1 = P(Q,x)|(Qi=0), p2 = P(Q,x)|(Qi=qmax), and ∆p = p2− p1, and we consider

different realizations of Q as follows,

• When ∑ j 6=i q j ≤ zn− qmax, no matter how much player i purchased in the primary

market, the supply is always over (or equal to) demand. So the market-clearing price

is always 0, i.e.

∆p = 0 (VIII.18)

• When ∑ j 6=i q j > zn, the demand is always over supplies. When qi changes from 0 to

qmax, the demand in the secondary market will be increased by qmax, which will lead

to an increase of the price. Similar to the proof of Theorem VIII.2.1, we can show

∆p = O
(

qmax

π(n)

)
(VIII.19)

• When zn− qmax < ∑ j 6=i q j ≤ zn, the demand can be either over or under the supply.

Similar as the proof of Theorem VIII.2.1, we could get

∆p = Θ(1) (VIII.20)

Based on Lemma VIII.2.1, we have P
(
zn−qmax < ∑ j 6=i q j ≤ zn

)
= O

(
qmax
σ
√

n

)
.
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Combining the three cases of the realization of Q, we conclude:

∣∣EQ−i

[
P(Q,x)|(Qi=q′)

]
−EQ−i

[
P(Q,x)|(Qi=q′′)

]∣∣= O
(

qmax

min(σ
√

n,π(n))

)
(VIII.21)

Together Theorem VIII.2.1 and VIII.2.2, we conclude that an individual’s influence on

the price in the secondary market is O
(

max(xmax,qmax)
min(σ

√
n,π(n))

)
as n→ +∞. In other words, for

player i ∈ N, for any xi,x−i and Qi, we have:

EQ−i

[
P(Q,x)

∣∣Qi
]
=EQ−i [P(Q−i,x−i)]±O

(
max(xmax,qmax)

min(σ
√

n,π(n))

)
. (VIII.22)

VIII.2.3 Existence and Characteristics of the asymptotic Nash Equilibrium

In this subsection, we firstly analyze the utility functions and best responses of players, and

then discuss the existence and characteristics of the asymptotic Nash equilibrium defined

in Definition VIII.2.1. We find that an asymptotic Nash equilibrium among players always

exists, and the expected price in the secondary market equal to the price in the primary

market, as the number of players approaches to infinity. It implies that the secondary

market can mitigate the demand uncertainty of the first stage. If a player is in short of

resources, she may buy resources at the same (expected) price as c in the secondary market

to reduce the penalty; if a player has redundant resources, she may also sell resources in

(expected) price c to reduce the waste.

Before introducing the main result, we provide two lemmas that are helpful in our

analysis.

Lemma VIII.2.2. Assume that {Qi} (i ∈ N) are independent and identically distributed

with finite mean µ and variance σ2. For a player i ∈ N, for any x′ and x′′, s.t. 0≤ x′,x′′ ≤
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xmax, we have

∣∣EQ
[
min(P(Q,x),c′i)|(xi = x′)

]
−EQ

[
min(P(Q,x),c′i)|(xi = x′′)

]∣∣
=O

(
xmax

min(σ
√

n,π(n))

) (VIII.23)

as n→+∞, given {x1, . . . ,xi−1,xi+1, . . . ,xn} have been determined.

Proof (Sketch). Based on Theorem VIII.2.1,

∣∣EQ
[
P(Q,x)|(xi = x′)

]
−EQ

[
P(Q,x)|(xi = x′′)

]∣∣= O
(

xmax

min(σ
√

n,π(n))

)
(VIII.24)

As
∣∣EQ [c′i|(xi = x′)]−EQ [c′i|(xi = x′′)]

∣∣= 0, we coud get the result.

Lemma VIII.2.3. For player i ∈ N, assume that {Q−i} are independent and identically

distributed with finite mean µ and variance σ2. For any q′ and q′′ s.t. 0 ≤ q′,q′′ ≤ qmax,

we have

∣∣EQ−i

[
min(P(Q,x),c′i)|(Qi = q′)

]
−EQ−i

[
min(P(Q,x),c′i)|(Qi = q′′)

]∣∣
=O

(
qmax

min(σ
√

n,π(n))

) (VIII.25)

as n→+∞, given {x1,x2 . . . ,xn} have been determined.

Proof (Sketch). Based on Theorem VIII.2.2,

∣∣EQ−i

[
P(Q,x)|(Qi = q′)

]
−EQ−i

[
P(Q,x)|(Qi = q′′)

]∣∣= O
(

qmax

min(σ
√

n,π(n))

)
(VIII.26)

As
∣∣EQ−i [c

′
i|(Qi = q′)]−EQ−i [c

′
i|(Qi = q′′)]

∣∣= 0, we could get the result.

Intuitively, the two lemmas show that player i’s influence to min(P(Q,x),c′i) is also

O
(

1
min(
√

n,π(n))

)
as n→+∞. Similarly as Equation VIII.22, for player i∈N, for any xi,x−i
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and Qi, we have

EQ−i

[
min(P(Q,x),c′i)

∣∣Qi
]
=EQ−i

[
min(P(Q−i,x−i),c′i)

]
±O

(
max(xmax,qmax)

min(σ
√

n,π(n))

)
(VIII.27)

We now reorganize the (expected) utility function in Equation VIII.7. For easiness of

notation, let ψ(n) = max(xmax,qmax)
min(σ

√
n,π(n)) , and P = P(Q−i,x−i) in the following discussion.

Ui(xi,x−i)

=EQ
[
−cxi +(xi−Qi)

+P(Q,x)− (Qi− xi)
+min

(
P(Q,x),c′i

)]
=EQi

{
−cxi +(xi−Qi)

+EQ−i

[
P(Q,x)

∣∣Qi
]

− (Qi− xi)
+EQ−i

[
min

(
P(Q,x),c′i

)∣∣Qi
]}

=EQi

{
−cxi +(xi−Qi)

+EQ−i [P(Q−i,x−i)]

− (Qi− xi)
+EQ−i

[
min

(
P(Q−i,x−i),c′i

)]}
±O(ψ(n))

=EQi

{[
EQ−i (P)− c

]
xi +(Qi− xi)

+
[
EQ−i (P))−EQ−i

[
min

(
P,c′i

)]]
−QiEQ−i(P)

}
±O(ψ(n))

(VIII.28)

It is easy to see that EQ−i(P)−EQ−i [min(P,c′i)]≥ 0, and Ui(xi,x−i) is convex for xi,

as n→ ∞. Then the best response of player i can be got only when xi = 0 or xi = xmax.

• When xi = 0, then Ui(xi,x−i) =−EQi(Qi)EQ−i [min(P,c′i)]±O(ψ(n));

• When xi = xmax, then Ui(xi,x−i)=
[
EQ−i(P)− c

]
xmax−EQi(Qi)EQ−i(P)±O(ψ(n)).

Let A = EQi(Qi)
{
EQ−i(P)−EQ−i [min(P,c′i)]

}
, and B =

[
EQ−i(P)− c

]
xmax, then the

best response of player i (as n→ ∞) is

x∗i =


0, A > B

0 or xmax, A = B

xmax, A < B

(VIII.29)
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Note that when A = B, player i is indifferent between 0 and xmax.

We now discuss the existence and characteristics of asymptotic Nash equilibrium among

players, as shown in Theorem VIII.2.3.

Theorem VIII.2.3. Asymptotic Nash equilibrium always exists, and x∗ = {x∗1,x∗2, . . . ,x∗n}

is an asymptotic Nash equilibrium if and only if the following conditions holds,

1. For any player i ∈ N, there exists a threshold θ ∗, in which

x∗i =


0, c′i < θ ∗

0 or xmax, c′i = θ ∗

xmax, c′i > θ ∗

(VIII.30)

2. EQ [P(Q,x∗)] = c as n→+∞.

Proof. Firstly we prove that if a strategy profile x∗ satisfies the two conditions above, then

it is an asymptotic Nash equilibrium. Assume that there is a threshold θ ∗, such that players

in N+ = {i ∈ N|c′i > θ ∗} order xmax and players in N− = {i ∈ N|c′i < θ ∗} order 0, and for

corresponding x∗, EQ [P(Q,x∗)] = c holds as n→∞, we now show that x∗ is an asymptotic

Nash equilibrium.

When EQ [P(Q,x∗)] = c, as EQ [P(Q,x∗)] = EQ−i

[
P(Q−i,x∗−i)

]
±O(ψ(n)), then we

could get EQ [P(Q,x∗)] = EQ−i

[
P(Q−i,x∗−i)

]
as n→ +∞. And Equation VIII.28 can be

simplified as follows (let P = P(Q−i,x∗−i)),

Ui(x∗i ,x
∗
−i)

=EQi

{
(Qi− x∗i )

+
{
EQ−i(P)−EQ−i

[
min(P,c′i)

]}
−Qic

}
±O(ψ(n))

(VIII.31)

As EQ−i(P)−EQ−i [min(P,c′i)]≥ 0, we could get that Ui(x∗i ,x
∗
−i) is a non-increasing

function with x∗i (as n→ ∞).
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• For any player i that in N− = {i ∈ N|c′i < θ ∗}, her best response is x∗i = 0. As

Ui(x∗i ,x
∗
−i) is non-increasing, her expected utility cannot be improved.

• For any player i that in N+ = {i∈N|c′i > θ ∗}, her best response is x∗i = xmax. We have

known that c′i > θ ∗>P (based on Equation VIII.6), so EQ−i(P)−EQ−i [min(P,c′i)]=

0. So we could get

Ui(x∗i ,x
∗
−i) =−EQi(Qi)c±O(ψ(n)) (VIII.32)

Then player i cannot gain by deviating.

So x∗ is an asymptotic Nash equilibrium.

Then we show that if x∗ is an asymptotic Nash equilibrium, then condition 1 holds.

It is easy to see that all players order 0 or all players order xmax cannot be an asymptotic

Nash equilibrium. Otherwise, all players will become buyers (or sellers) in the secondary

market, and some players can deviate from their strategies to gain profit.

From Equation VIII.29, we observe that: If x∗i = xmax, then for any player j with c′j > c′i,

x∗j = xmax; If x∗i = 0, then for any player j with c′j < c′i, x∗j = 0. Then we could know that

the condition 1 holds on x∗.

Then we show that if strategy profile x∗ is an asymptotic Nash equilibrium, then we

could get EQ
[
P(Q,x∗)

]
= c as n→+∞. We prove it by contradiction:

• If EQ [P(Q,x∗)] < c, we claim that players in N+ = {i ∈ N|c′i > θ ∗} (i.e. players

those order xmax) have incentive to deviate. When EQ [P(Q,x∗)] < c, for player i in

N+ = {i ∈ N|c′i > θ ∗}, we have EQ [P(Q,x∗)] = EQ−i(P) as n→+∞, and

Ui(x∗i ,x
∗
−i) = EQi

{[
EQ−i(P)− c

]
x∗i −QiEQ−i(P)

}
±O(ψ(n)) (VIII.33)

As EQ−i(P)−c < 0, any player i ∈ N+ has incentive to decrease the xi. So it cannot

be an asymptotic Nash equilibrium.

• If EQ [P(Q,x∗)]> c, we claim that there exists player i ∈ N− = {i ∈ N|c′i < θ ∗} (i.e.

117



players those order 0 unit of resources) has incentive to deviate. Intuitively, player i

with c′i that is very closed to θ ∗ may have incentive to deviate. Based on Assumption

VIII.2.1 and definition of market clearing price, for any small δ , there exists ε such

that for player i with c′i = θ ∗− ε , and c′i ≥P +δ . So we could get

Ui(xi = 0,x∗−i)

=EQi(Qi)
[
EQ−i(P)−EQ−i(min(P,c′i))

]
−EQi(Qi)EQ−i(P)±O(ψ(n))

=0−EQi(Qi)EQ−i(P)±O(ψ(n))
(VIII.34)

If EQ−i(P)− c > 0 as n→ ∞, then

Ui(xi = xmax,x∗−i)

=EQi(Qi)
[
EQ−i(P)− c

]
xmax−EQi(Qi)EQ−i(P)±O(ψ(n))

>0−EQi(Qi)EQ−i(P)±O(ψ(n))

=Ui(xi = 0,x∗−i)

(VIII.35)

Then player i has incentive to deviate and x∗ cannot be an asymptotic Nash equilib-

rium.

So we conclude that EQ [P(Q,x∗)] = c as n→+∞.

Recall that we have assumed that xmax ≥ qmax. If all players order either 0 or xmax

in the primary market, then we can always adjust the proportion of players those order 0

or xmax to make EQ [P(Q,x∗)] = c hold as n→ ∞. So the existence of the equilibrium is

straightforward.

To sum up, asymptotic Nash equilibrium exists and x∗ is an asymptotic Nash equilib-

rium if and only if the two conditions hold.

Intuitively, Theorem VIII.2.3 warrants the existence of the asymptotic Nash equilib-

rium and characterizes the equilibrium. In the equilibrium, players are divided into two
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sets based on the marginal penalty of shortage c′. Those players with relatively high c′

would order as many resources as they can in the primary market and become sellers in the

secondary market, and players with relatively low c′ would not order resources and wait

to buy resources in the secondary market. More importantly, in equilibrium, the expected

price in the secondary market is equal to the price in the primary market, as the number

of players approaches infinity. The properties of the asymptotic equilibrium imply that

secondary market could mitigate the demand uncertainty in the primary market.

VIII.2.4 Social Welfare and Aggregated Orders

Based on the existence and characteristics of asymptotic Nash equilibrium in Theorem

VIII.2.3, we discuss the social welfare (i.e. ∑i∈N U(xi,x−i)) and the aggregated orders

(i.e. ∑i∈N xi) in the game with a secondary market, comparing these to the social welfare

and aggregated orders without a secondary market. We find that both social welfare and

aggregated orders with a secondary market are significantly better than those without when

the number of players is approaching infinity.

We begin by discussing the optimal social welfare and aggregated orders. The optimal

social welfare and aggregated orders in this case can be obtained when we treat all players

as a single player, in which the (stochastic) demand is ∑i∈N Qi. Assume players’ demands

are independent and identically distributed, let Q denote the random demand of a player,

and q1,q2, . . . ,qn be a sequence of realization of random variable Q. Based on the Law of

Large Numbers, as n→ +∞, 1
n ∑i∈N qi→ EQ(Q). Consequently, the authority can simply

order nEQ(Q) resources and distribute resources to players according to their needs at price

c. Let SW# and OD# denote the optimal social welfare and aggregated orders, respectively.

Then we can easily obtain that

SW# =−cnEQ(Q) (VIII.36)

and

OD# = nEQ(Q). (VIII.37)
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Let SW2nd denote the social welfare in the case without a secondary market, where each

player makes an independent choice about the optimal amount of resource to order (note

that this is also the optimal social welfare in the setting without a secondary market, since

all player decisions are entirely decoupled). Correspondingly, let SW2nd denote the social

welfare in the equilibrium of the game with a secondary market. Similarly, let OD2nd and

OD2nd denote the aggregated order of players in cases of without and with a secondary

market (in the latter case, in equilibrium), respectively.

Our main results in this section (Theorems VIII.2.4 and VIII.2.5) show that the differ-

ence between the optimal and equilibrium outcomes is bounded by O(max(
√

n, n
π(n))), a

significant improvement over the Θ(n) difference between the optimum and the outcome

with only the newsvendor model (i.e., without the secondary market).

Theorem VIII.2.4. The difference between optimal social welfare and the social welfare

without secondary market is Θ(n), i.e.
∣∣SW#−SW2nd

∣∣= Θ(n), as n→+∞.

Proof. Based on Equation VIII.2, without secondary market, for player i, the (expected)

utility is Ui(x∗i ) = EQ [−cx∗i − c′i(Q− x∗i )
+], in which x∗i = F−1

Q

(
c′i−c

c′

)
. And it can be also

denoted as Ui(x∗i ) = −cEQ(Q)±Θ(1). As players are independent, the social welfare

is SW2nd = ∑i∈N Ui(x∗i ) = −cnEQ(Q)±Θ(n) as n→ +∞. So
∣∣SW#− SW2nd

∣∣ = Θ(n) as

n→+∞.

Theorem VIII.2.5. The difference between optimal social welfare and the social welfare

in the equilibrium with secondary market is upper bounded by O(n ·ψ(n)), i.e.
∣∣SW#−

SW2nd
∣∣= O(n ·ψ(n)) as n→+∞, where ψ(n) = max(xmax,qmax)

min(σ
√

n,π(n)) .

Proof. With secondary market, based on Theorem VIII.2.3, in equilibrium, EQ(P(Q,x)) =

c as n→+∞. For any player i, EQ−i [P(Q−i,x−i)] = c±O(ψ(n)).

We have known that in equilibrium, players’s strategy is either 0 or xmax,
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• If xi = 0, then

Ui(xi = 0,x−i) = −EQi

{
QiEQ−i

[
min(P(Q−i,x−i),c′i)

]}
±O(ψ(n))

=−EQi(Qi)EQ−i

[
min(P(Q−i,x−i),c′i)

]
±O(ψ(n))

≥−EQi(Qi)EQ−i [P(Q−i,x−i)]±O(ψ(n))

=−EQi(Qi)c±O(ψ(n))

(VIII.38)

• If xi = xmax,

Ui(xi = xmax,x−i) =EQi

{
−cxmax +(xmax−Qi)EQ−i [P(Q−i,x−i)]

}
±O(ψ(n))

=EQi [−cxmax +(xmax−Qi)c]±O(ψ(n))

=−EQi(Qi)c±O(ψ(n))

(VIII.39)

To sum them up, then (ignoring the constant factor):

SW2nd = ∑
i∈N

Ui(xi,x−i)≥−cnEQ(Q)±O(n ·ψ(n)) (VIII.40)

So we could get that:

|SW#−SW2nd|= O(n ·ψ(n)) (VIII.41)

Similarly, the sum of orders in the equilibrium of the game with a secondary market is

also much closer to the optimal sum of orders than the case without a secondary market.

Theorem VIII.2.6. The difference between the aggregated orders without secondary mar-

ket and the optimal aggregated orders is Θ(n), i.e.
∣∣OD2nd−OD#

∣∣= Θ(n), as n→+∞.

Proof. Based on Equation VIII.2, without secondary market, the optimal order for player

i is x∗i = F−1
Q

(
1− c

c′i

)
. It can be also denoted as x∗i = EQ(Q)±Θ(1). So the aggregated
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order is OD2nd = nEQ(Q)±Θ(n), and
∣∣OD2nd−OD#

∣∣= Θ(n) as n→+∞.

Theorem VIII.2.7. The difference between the aggregated orders with secondary market

and the optimal aggregated orders is upper bounded by O(1
c n ·ψ(n)), i.e.

∣∣SW#−SW2nd
∣∣=

O(1
c n ·ψ(n)) as n→+∞, where ψ(n) = max(xmax,qmax)

min(σ
√

n,π(n)) .

Proof. Based on Equation VIII.40 in the proof of Theorem VIII.2.5, we could know that

SW2nd =−cnEQ(Q)±O(n ·ψ(n)). As the price in the primary market is c and the expected

price in a secondary market is also c. So the overall quantity of resources in the two

markets is OD2nd = |SW2nd |
c = nEQ(Q)±O(1

c n ·ψ(n)). So we could get |OD2nd−OD#|=

O(1
c n ·ψ(n)) as n→+∞.

VIII.3 Small Markets: Two Players

In this section, I discuss another side of the problem, where there are only two players.

In this case, the secondary market takes the form of a trade of the resource between the

two players. It is therefore natural to use the bargaining framework to model this market.

In particular, we use the Nash bargaining solution concept to characterize the price in the

secondary market [146].

Building on the Nash bargaining price in the secondary market, I firstly provide a suffi-

cient condition that guarantees the existence of a pure strategy Nash equilibrium, and then

characterize the symmetric equilibrium in a symmetric game by comparing the aggregated

order and social welfare under equilibrium with those without a secondary market. I find

that, in the two-player case, the aggregated order under equilibrium with a secondary mar-

ket is not necessarily lower than that without a secondary market, but always more “closer”

to the optimal aggregated order. Furthermore, the social welfare under equilibrium with a

secondary market is always larger or equal to that without a secondary market.

Let the player set be N = {i, j}. Without loss of generality, we focus on player i - the

argument for player j is symmetric. For player i, recall that her demand follows the random

variable Qi, the realized demand is qi, the marginal penalty of resource shortage is c′i, and
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the amount of ordered resources (i.e. strategy in the game) from the primary market is xi.

In this case Q = {Qi,Q j}, and x = {xi,x j}.

Assuming the price in the secondary market is P(Q,x), the expected utility of player i

can be expressed as follows,

Ui(xi,x j) =EQ
{
−cxi +min

[
(xi−Qi)

+,(Q j− x j)
+
]

P(Q,x)

−
[
(Qi− xi)

+− (x j−Q j)
+
]+ c′i

−min
[
(Qi− xi)

+,(x j−Q j)
+
]

P(Q,x)
}
.

(VIII.42)

Intuitively, in the secondary market, when xi >Qi and x j <Q j, player i could sell min
[
(xi−

Qi)
+,(Q j− x j)

+
]

units of resources to player j; when xi < Qi and x j > Q j, player i could

buy min
[
(Qi− xi)

+,(x j−Q j)
+
]

units of resources from player j, and the marginal penalty

of shortage is c′i if she is still in short of resources after the trading in the market; finally

when xi < qi and x j < q j, both players are in short of resources, and player i has to pay the

penalty c′i for each unit of shortage.

VIII.3.1 Nash Bargaining Price

When there are two players, the price in the secondary market can be any value between 0

and c′i, assuming player i is the buyer and j is the seller in the market. It is also possible

that both two players have redundant or shortage of resources, and there is no trading in

the secondary market. We assume that the two players are bargaining about the price in

the secondary market when one player has an excess supply (i.e. the seller) and the other

has excess demand. Specifically, we consider the Nash bargaining [146] solution concept

to identify the price in the secondary market.

The Nash bargaining solution is the unique solution to a two-player bargaining prob-

lem that satisfies the axioms of scale invariance, symmetry, efficiency, and independence

of irrelevant alternatives [146]. In our case, we find that the Nash bargaining price only de-

pends on the marginal penalty of shortage for the buyer in the market. Indeed, the resulting
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solution takes a particularly simple form, as the following theorem attests.

Theorem VIII.3.1. When there are two players i and j, assume i is the buyer and j is the

seller in the secondary market. Then the Nash bargaining price in the secondary market is

1
2c′i.

Proof. Assume the price is p, and the amount of resources traded is y. Then the utility

gained by accepting the price for player i is (c′i− p)y, and the utility gained for player j is

py. Based on Nash bargaining solution in [146], we maximize the product of (c′i− p)y · py,

so the Nash bargaining price is p = 1
2c′i.

Based on Theorem VIII.3.1, the price in the secondary market (whenever trade is pos-

sible) is characterized as follows:

P(Q,x) =


1
2c′i, xi < Qi and x j > Q j

1
2c′j, xi > Qi and x j < Q j.

(VIII.43)

VIII.3.2 Existence of Pure Strategy Nash Equilibrium between Two Players

We will show a sufficient condition that guarantees the existence of pure strategy Nash

equilibrium, and also show that symmetric equilibrium always exists when the two players

are symmetric in the game.

Given the Nash bargaining price in the secondary market and a realization of demands

{qi,q j}, the utility function of player i writes as follows,

Ui(xi,x j) =− cxi +min
[
(xi−qi)

+,(q j− x j)
+
] 1

2
c′j

−
[
(qi− xi)

+− (x j−q j)
+
]+ c′i

−min
[
(qi− xi)

+,(x j−q j)
+
] 1

2
c′i

(VIII.44)

And the expected utility function of player i is

Ui(xi,x j) = EQ
[
Ui(xi,x j)

]
(VIII.45)
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Equation VIII.44 can be divided into two cases: (1) x j−q j > 0, (2) x j−q j ≤ 0. Taking

gradient w.r.t. xi for the two cases, we obtain the following:

• When x j−q j > 0,

∂
[
Ui(xi,x j)

]
∂xi

=


−c+ c′i, xi−qi ≤ q j− x j

−c+ 1
2c′i, q j− x j < xi−qi ≤ 0

−c, xi−qi > 0

(VIII.46)

• When x j−q j ≤ 0,

∂
[
Ui(xi,x j)

]
∂xi

=


−c+ c′i, xi−qi ≤ 0

−c+ 1
2c′j, 0 < xi−qi ≤ q j− x j

−c, xi−qi > q j− x j

(VIII.47)

Now we show a sufficient condition that guarantees the existence of pure strategy Nash

equilibrium, which based on the concavity of Ui(xi,x j) derived from equation VIII.46 and

VIII.47.

Theorem VIII.3.2. Pure strategy equilibrium exists in the two player game if 1
2 ≤

c′i
c′j
≤ 2.

Proof. Based on Equation VIII.46 and VIII.47, Ui(xi,x j) is concave when c′i
c′j
≥ 1

2 . Sim-

ilarly, U j(x j,xi) is also concave when c′i
c′j
≤ 2. So when 1

2 ≤
c′i
c′j
≤ 2, both Ui(xi,x j) and

U j(x j,xi) are concave. After taking expectation, Ui(xi,x j) and U j(x j,xi) both remain being

concave. As the strategy spaces of players are continuous and compact, based on [149],

pure strategy Nash equilibrium exists in the two player game.

For detailed characterization, we will focus on the symmetric game, in which players

have and identical distribution of (stochastic) demand and identical marginal penalty of

resource shortage. And we mainly consider symmetric equilibrium in the game.
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Definition VIII.3.1. (xi,x j) is a symmetric pure strategy Nash equilibrium if it is pure

strategy Nash equilibrium and xi = x j.

Again we show that symmetric equilibrium exists in the symmetric game.

Theorem VIII.3.3. Symmetric pure strategy Nash equilibrium exists in the two-player sym-

metric game.

Proof. Based on Equation VIII.46 and VIII.47, when two players are symmetric, c′i = c′j,

both Ui(xi,x j) and U j(x j,xi) are concave (similar as the argument in proof of Theorem

VIII.3.2). As the strategy spaces of players are continuous and compact, based on Theorem

3 in [150], symmetric equilibrium always exists in the two-player symmetric game.

VIII.3.3 Characteristics of a Symmetric Pure Strategy Nash Equilibrium

In this subsection, we characterize the symmetric pure strategy Nash equilibrium between

two players when the game is symmetric. We will compare aggregated order and social

welfare under symmetric equilibrium with those without a secondary market. Note that

there are only two players, therefore the aggregated order is simply twice of the number of

resources ordered by each player. The aggregated order in equilibrium with a secondary

market will be shown to be not necessarily less than the one without a secondary market,

it is however always “closer” to the optimal aggregated order. And we also prove that

the social welfare in equilibrium with a secondary market is always larger or equal to that

without a secondary market.

Recall that, without a secondary market, the order that maximizes the expected utility of

player i is simply given by x∗= F−1
Qi

(
1− c

c′i

)
, where F−1

Qi
(·) denotes the inverse cumulative

distribution function of Qi. Before introducing the main results, we first analyze the optimal

aggregated order and social welfare in a centralized mechanism. The optimal aggregated

order and social welfare can be got when we treat two players as a single player, in which

the (stochastic) demand is Qi+Q j, and the marginal penalty of resource shortage is c′i. Let

126



2x# denote the optimal aggregated order, then

2x# = F−1
Qi+Q j

(
1− c

c′i

)
, (VIII.48)

where F−1
Qi+Q j

(·) is the inverse cumulative distribution function of Qi +Q j. Reorganizing

Equation VIII.48 yields

P(Qi +Q j ≥ 2x#) =
c
c′i

(VIII.49)

For ease of exposition, slightly abusing our previous notation, let SW2nd(x) denote the

social welfare for the case without a secondary market when each player orders x in the

primary market. Similarly, let SW2nd(x) and SW#(x) denote social welfare with a secondary

market and optimal social welfare when each player orders x, respectively. We observe

that, for any given x, we have

SW#(x)≥ SW2nd(x)≥ SW2nd(x), for any x≥ 0 (VIII.50)

Intuitively, SW#(x) can be seen as a centralized mechanism, and it is easy to see that

SW#(x) ≥ SW2nd(x) and SW#(x) ≥ SW2nd(x); given a specific amount of resources, with

secondary market, resources can be traded between players to improve the social welfare

after the realization of demands, so SW2nd(x)≥ SW2nd(x).

Assuming the symmetric equilibrium in the two-player game is (xe,xe), we are ready

to compare x∗, xe, and x# for the aggregated order, and compare SW2nd(x
∗), SW2nd(xe), and

SW#(x#) for social welfare.

Note that the aggregated order is ∑k∈N xk = xi + x j . To compare the aggregated order

with and without a secondary market, we need only compare x∗ with xe.

Before presenting the main results, we first derive the best responds of players. As

Ui(xi,x j) is concave, the best responds of player i obtains when ∂Ui(xi,x j)
∂xi

= 0. Interchange

the order of expectation and gradient, we get,
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∂Ui(xi,x j)

∂xi
=

∂EQ
[
Ui(xi,x j)

]
∂xi

= EQ
∂
[
Ui(xi,x j)

]
∂xi

(VIII.51)

We consider 4 disjoint parts of domain of Qi and Q j. (also illustrated in Figure VIII.1)

1. A(x) = {(Qi,Q j)
∣∣0≤ Q j ≤ x,Qi +Q j ≥ 2x},

2. B(x) = {(Qi,Q j)
∣∣0≤ Q j ≤ x,Qi ≥ x,Qi +Q j ≤ 2x},

3. C(x) = {(Qi,Q j)
∣∣Q j ≥ x,Qi ≥ x},

4. D(x) = {(Qi,Q j)
∣∣Q j ≥ x,0≤ Qi ≤ x,Qi +Q j ≥ 2x}.

Figure VIII.1: Illustration of A(x), B(x), C(x), and D(x)

In the above four parts, A(x) and B(x) correspond to the first two cases in Equation

VIII.46; C(x) and D(x) correspond to the first two cases in Equation VIII.47. It easy to

verify that Equation VIII.51 can be denoted as follows,

∂Ui(xi,x j)

∂xi

∣∣∣
x j=xi

=− c+ c′iP(A(xi))+
1
2

c′iP(B(xi))+ c′iP(C(xi))+
1
2

c′iP(D(xi))

(VIII.52)

Let ∂Ui(xi,x j)
∂xi

∣∣∣
x j=xi

= 0, assume the equilibrium is (xe,xe), then we have

P(A(xe))+
1
2
P(B(xe))+P(C(xe))+

1
2
P(D(xe)) =

c
c′i

(VIII.53)
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Let G(x) =P(A(x))+ 1
2P(B(x))+P(C(x))+ 1

2P(D(x)), then we could get the following

lemma:

Lemma VIII.3.1. For any given distribution of Qi, G(x) is monotonically non-increasing

as the increasing of x.

Proof. Assume 0 < xk < xi, then the following statements are easy to verify,

• If (Qi,Q j) ∈ A(xi), then (Qi,Q j) ∈ A(xk)∪C(xk);

• If (Qi,Q j) ∈ B(xi), then (Qi,Q j) ∈ A(xk)∪B(xk)∪C(xk);

• If (Qi,Q j) ∈C(xi), then (Qi,Q j) ∈C(xk);

• If (Qi,Q j) ∈ D(xi), then (Qi,Q j) ∈C(xk)∪D(xk).

In G(x), the coefficient of P(A(x)) and P(C(x)) is 1, and the coefficient of P(B(x)) and

P(D(x)) is 1
2 . For any (Qi,Q j), the coefficients of the corresponding item in G(x) are non-

increasing when we increase xk to xi. So we could get that G(xk) ≥ G(xi), and G(x) is

monotonically non-increasing with the increasing of x.

We now show a sufficient and necessary condition under which the aggregated order in

equilibrium (i.e. 2xe) is less or equal to that without a secondary market (i.e. 2x∗):

Lemma VIII.3.2. In symmetric equilibrium (xe,xe) of two-player symmetric game, xe≤ x∗

if and only if P
(
Qi +Q j ≥ 2x∗

)
≤ P(Qi ≥ x∗), in which x∗ = F−1

Qi

(
1− c

c′i

)
.

Proof. As P(A(x))+P(C(x))+P(D(x)) = P((Qi,Q j)|Qi +Q j ≥ x), let x = x#, then

P(A(x#))+P(C(x#))+P(D(x#)) = P((Qi,Q j)|Qi +Q j ≥ x#) =
c
c′

(VIII.54)

in which 2x# = F−1
Qi+Q j

(
c′i−c

c′i

)
.

Under equilibrium (xe,xe), we know Equation VIII.53 holds, therefore
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P(A(xe))+
1
2
P(B(xe))+P(C(xe))+

1
2
P(D(xe))

=
c
c′i

=P(A(x#))+P(C(x#))+P(D(x#))

(VIII.55)

As G(x) is monotonically non-increasing with the increasing of x, so

xe ≥ x#

⇐⇒ G(x#)≥ G(xe) =
c
c′i

= P(A(x#))+P(C(x#))+P(D(x#))

⇐⇒ P(A(x#))+
1
2
P(B(x#))+P(C(x#))+

1
2
P(D(x#))≥ P(A(x#))+P(C(x#))+P(D(x#))

⇐⇒ P(B(x#))≥ P(D(x#))

⇐⇒ P(A(x#))+P(B(x#))+P(C(x#))≥ P(A(x#))+P(C(x#))+P(D(x#))

⇐⇒ P(Qi +Q j ≥ 2x#)≤ P(Qi ≥ x#)

(VIII.56)

completing the proof.

We further show another sufficient and necessary condition, under which the aggregated

order in equilibrium (i.e. 2xe) is greater or equal to the optimal aggregated order (i.e. 2x#).

Lemma VIII.3.3. In symmetric equilibrium (xe,xe) of two-player symmetric game, xe≥ x#

if and only if P
(
Qi +Q j ≥ 2x#)≤ P(Qi ≥ x#), in which 2x# = F−1

Qi+Q j

(
c′i−c

c′i

)
.

Proof. As P(A(x))+P(C(x))+P(D(x)) = P((Qi,Q j)|Qi +Q j ≥ x), let x = x#, then

P(A(x#))+P(C(x#))+P(D(x#)) = P((Qi,Q j)|Qi +Q j ≥ x#) =
c
c′

(VIII.57)

in which 2x# = F−1
Qi+Q j

(
c′i−c

c′i

)
.

Under equilibrium (xe,xe), we know Equation VIII.53 holds, therefore
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P(A(xe))+
1
2
P(B(xe))+P(C(xe))+

1
2
P(D(xe))

=
c
c′i

=P(A(x#))+P(C(x#))+P(D(x#))

(VIII.58)

As G(x) is monotonically non-increasing with the increasing of x, so

xe ≥ x#

⇐⇒ G(x#)≥ G(xe) =
c
c′i

= P(A(x#))+P(C(x#))+P(D(x#))

⇐⇒ P(A(x#))+
1
2
P(B(x#))+P(C(x#))+

1
2
P(D(x#))≥ P(A(x#))+P(C(x#))+P(D(x#))

⇐⇒ P(B(x#))≥ P(D(x#))

⇐⇒ P(A(x#))+P(B(x#))+P(C(x#))≥ P(A(x#))+P(C(x#))+P(D(x#))

⇐⇒ P(Qi +Q j ≥ 2x#)≤ P(Qi ≥ x#)

(VIII.59)

completing the proof.

The above two lemmas help us prepare Theorem VIII.3.4. The theorem states that xe

is always between x# and x∗. Intuitively, when the marginal penalty is very large, then

players have a strong incentive to over-request resources without a secondary market, i.e.

x∗ > x#. In this case, introducing a secondary market could decrease the total order of re-

sources (comparing with the case without a secondary market). On the other hand, when

the marginal penalty is very close to the unit cost of the resource, then players have in-

centive to under-request resources without a secondary market, i.e. x∗ < x#. Introducing

a secondary market could increase the total order of resources (comparing with the case

without a secondary market).

Theorem VIII.3.4. In symmetric equilibrium (xe,xe) of two-player symmetric game,

• If x# ≤ x∗, then x# ≤ xe ≤ x∗;
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• If x# ≥ x∗, then x# ≥ xe ≥ x∗.

Proof. The proof proceeds by cases:

• If x# ≤ x∗, we have

P(Qi +Q j ≥ 2x∗)≤ P(Qi +Q j ≥ 2x#) =
c
c′i

= P(Qi ≥ x∗) (VIII.60)

P(Qi +Q j ≥ 2x#) =
c
c′i

= P(Qi ≥ x∗)≤ P(Qi ≥ x#) (VIII.61)

Based on Lemma VIII.3.2 and VIII.3.3, we could get that x# ≤ xe ≤ x∗

• If x# ≥ x∗, we have

P(Qi +Q j ≥ 2x∗)≥ P(Qi +Q j ≥ 2x#) =
c
c′i

= P(Qi ≥ x∗) (VIII.62)

P(Qi +Q j ≥ 2x#) =
c
c′i

= P(Qi ≥ x∗)≥ P(Qi ≥ x#) (VIII.63)

Based on Lemma VIII.3.2 and VIII.3.3, we could get that x# ≥ xe ≥ x∗

Now we are ready to show that the social welfare in equilibrium with secondary market

is always at least that without a secondary market when there are two players.

Theorem VIII.3.5. In symmetric equilibrium (xe,xe) of two-player symmetric game, we

always have SW#(x#)≥ SW2nd(xe)≥ SW2nd(x
∗).

Proof. Note that SW#(x) and SW2nd(x) are both single-peaked with peak point at x = x# and

x = x∗, respectively. We argue in two cases,

• When x#≤ x∗, Theorem VIII.3.4 implies that x#≤ xe≤ x∗. Based on the single-peakedness

of SW#(x) and SW2nd(x), we further have

SW#(x#)≥ SW#(xe)≥ SW#(x∗) (VIII.64)
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SW2nd(x
∗)≥ SW2nd(x

e)≥ SW2nd(x
#) (VIII.65)

Based on Equation VIII.50, we have SW#(xe)≥ SW2nd(xe)≥ SW2nd(x
e). So we conclude

SW#(x#)≥ SW2nd(xe)≥ SW2nd(x
∗).

• When x#≥ x∗, Lemma VIII.3.4 implies that x#≥ xe≥ x∗. Based on the single-peakedness

of SW#(x) and SW1(x), we have

SW#(x#)≥ SW#(xe)≥ SW#(x∗) (VIII.66)

SW2nd(x
∗)≥ SW2nd(x

e)≥ SW2nd(x
#) (VIII.67)

Similar as the argument in the first case, we again conclude SW#(x#) ≥ SW2nd(xe) ≥

SW2nd(x
∗).

VIII.4 Conclusion

This chapter investigates the impact of the secondary market to demand uncertainty. I de-

velop a two-stage model with multiple players. In the first stage, players with uncertain

demands order and obtain resources from the authority; in the second stage, after the re-

alization of players’ demands, resources can be traded among them. I derive the optimal

decisions and pure strategy Nash equilibrium for players in the first stage, along with the

price of resources in the secondary market, in both a large market with an infinite num-

ber of players and a small market with two players. In the large market, with asymptotic

analysis, I find that the expected price in the secondary market is the same as the price in

the primary market, and the aggregated order and social welfare under equilibrium with

the secondary market are both better than those without. In the small market, I show that

the aggregated order under equilibrium with the secondary market is always closer to the

optimal aggregated order than that without the secondary market. And the social welfare

under equilibrium with the secondary market is guaranteed to be no worse than the social
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welfare without.

In this chapter, I assumed zero trading cost in the secondary market. In a large market,

if a non-zero trading cost is considered, characterizing players’ best response can be highly

non-trivial, and the corresponding equilibrium analysis will become more involved. This

merits more efforts to understand in the future. I also assume that players’ demands are

independent of each other. In reality, players’ demands are likely to be correlated. A more

elaborate model incorporating demand correlation will be a future direction that worths

to pursue. Analysis of the game with more than two but not infinite players is also a

challenging but meaningful work to do.
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CHAPTER IX

Conclusion

In this thesis, I study situations which lead to efficiency/inefficiency in equilibrium out-

comes, as well as approaches for mitigating the inefficiency.

I firstly examined a non-cooperative multi-defender security game in which defenders

may protect multiple targets, offering complete characterization Average-case Stackelberg

Equilibrium (or equivalently, Nash equilibrium among defenders) and approximate equi-

libria, socially optimal solutions, and price of anarchy. The results show that defenders

generally over-protect the targets and efficiency may degrade due to players’ selfish behav-

ior. Furthermore, I also study the multi-defender security game model in spear-phishing

attacks and dynamic traffic light control, respectively.

Then I consider the mechanism design in coalition formation problem, and I mainly use

computational methods to design mechanisms which have good theoretical and empirical

properties. I study both general coalition formation and roommates problem. For coalition

formation mechanisms, I mainly address the computational challenges in implementing ro-

tating proposer mechanism, which implements a subgame perfect Nash equilibrium in the

corresponding rotating proposer game, and evaluate the mechanism by empirical methods.

To address the challenges, I introduce preprocessing and pruning, as well as approximate

versions of RPM, one tailored to the roommate problem (with coalitions of at most two),

and another for coalitions of arbitrary size. The experiments show that even the approxi-

mate versions of RPM significantly outperform several alternative mechanisms for coalition

formation in terms of social welfare and fairness, are do not introduce significant incentives

to misreport preferences. Then I present the first treatment of the roommates problem from

an automated mechanism design (AMD). The proposed approaches and analysis are mainly

based on two restricted incentive compatibility: promotion-one incentive compatibility, in
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which the manipulation consists of promoting a single player to the top position in the ma-

nipulator’s preference list; and permutation incentive compatibility, in which the manipula-

tion is a permutation of the preference. I also propose several automated mechanism design

approaches to the roommates problem. I prove that the first approach is ε-permutation IC.

While the other two don’t have theoretical guarantees, empirical results show that they have

even better incentive properties.

Finally, I investigate the impact of the secondary market to demand uncertainty in a

resource allocation problem. I develop a two-stage model with multiple players. In the first

stage, players with uncertain demands order and obtain resources from the authority; in

the second stage, after the realization of players’ demands, resources can be traded among

them. I derive the optimal decisions and pure strategy Nash equilibrium for players in the

first stage, along with the price of resources in the secondary market, in both a large market

with an infinite number of players and a small market with two players. In the large market,

with asymptotic analysis, I find that aggregated order and social welfare under equilibrium

with the secondary market are both better than those without. In the small market, I show

that the aggregated order under equilibrium with the secondary market is always closer

to the optimal aggregated order than that without the secondary market. And the social

welfare under equilibrium with the secondary market is guaranteed to be no worse than the

social welfare without.

Below, I describe some other possible works I will do in the future.

• Mechanism Design in Computational Resource Allocation: In chapter VIII, I intro-

duce a secondary market to make the resource allocation inside a company more

efficient. We can also treat the problem as a mechanism design problem. In the prob-

lem, the authority is benevolent, i.e. its goal is improving the efficiency of a system

instead of gaining more profits. The work in the thesis is an option to improve the

efficiency of the system. But it is worthwhile to consider some other ways to deal

with the mechanism design problem of allocating computational resources inside a
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big company.

• Optimal Pricing in Cloud Services: I will try to leverage the Stackelberg model to

optimize the pricing scheme in cloud services, especially spot instance in elastic

computing. I will try to differentiate the different level of cloud service quality and

decide how to set price for different levels of quality. We can consider it as a two-

stage sequential game, in which the seller set the prices for different services in the

first stage, and the buyers choose the most favored service to buy. The challenge

of the problem is that we do not know users’ preferences, even the distribution of

the preferences. I will try to combine game theory, robust optimization and online

learning to deal with the problem.

• Optimal Ad Auction Design: I will also do some research on mechanism design in

sponsored search auction. Generalized second price (GSP) auction is widely used

and well studied in sponsored search auction. One advantage of GSP is that it is very

simple and does not rely on the prior knowledge of users utility functions. However,

A straightforward question is whether we can get higher revenue if we can get more

prior knowledge of users’ utility functions. One possible option is Myerson’s mecha-

nism, which has very high revenue but is also very sensitive to the error of estimation

of users’ utility function. In the future, I will try to design more robust ad auction

mechanism that could deal with the error of estimation better.
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[145] P. Erdös and A. Rényi. On the evolution of random graphs. In Publication of the

Mathematical Institute of the Hungarian Academy of Sciences, pages 17–61, 1960.

[146] John Nash. The bargaining problem. Econometrica, 18(2):155–162, 1950.

[147] K. J. Arrow, T. Harris, and Jacob Marshak. Optimal inventory policy. Econometrica,

1951.

[148] Ken Littlewood. Special issue papers: Forecasting and control of passenger book-

ings. Journal of Revenue and Pricing Management, 4(2):111–123, Apr 2005.

[149] Gerard Debreu. A social equilibrium existence theorem. Proceedings of the National

Academy of Sciences, 38(10):886–893, 1952.

[150] Shih-Fen Cheng, Daniel M. Reeves, Yevgeniy Vorobeychik, and Michael P. Well-

man. Notes on equilibria in symmetric games. In In Proceedings of the 6th Interna-

tional Workshop On Game Theoretic And Decision Theoretic Agents (GTDT), pages

71–78, 2004.

155


	COPYRIGHT
	DEDICATION
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	I Introduction
	I.1 Towards Efficiency in Security Games
	I.1.1 Multi-Defender Security Games
	I.1.2 Multi-Defender Against Spear-Phishing Attacks
	I.1.3 Decentralization and Security in Traffic Light Control

	I.2 Toward Efficiency in Coalition Formation
	I.2.1 Coalition Formation Mechanisms
	I.2.2 Mechanism Design for the Roommates Problem

	I.3 Towards Efficiency by Introducing a Secondary Market

	II Related Work
	II.1 Stackelberg Security Games
	II.2 Security Games with Multiple Defenders
	II.3 Security Games for Defending Against Cyber Attacks
	II.4 Hedonic Coalition Formation
	II.5 Matching and Roommates Problem
	II.6 Secondary Markets

	I Toward Efficiency: Security Game
	III Multi-Defender Security Games
	III.1 Problem Setting
	III.2 Equilibrium Analysis
	III.2.1 Equilibrium Analysis on a Baseline Model
	III.2.2 Equilibrium Analysis of the General Model

	III.3 Conclusion

	IV Multi-Defender Strategic Filtering Against Spear-Phishing Attacks
	IV.1 Problem Settings
	IV.2 Equilibrium Analysis
	IV.2.1 Preliminaries
	IV.2.2 Stackelberg Multi-Defender Equilibrium

	IV.3 Conclusion

	V Decentralization and Security in Dynamic Traffic Light Control
	V.1 Traffic Network Model
	V.2 Optimizing Traffic Network Configuration
	V.3 Resilient Traffic Network Control
	V.4 Decentralized Control
	V.5 Evaluation and Results
	V.6 Conclusion


	II Toward Efficiency: Coalition Formation Mechanism
	VI Mechanism Design in Coalition Formation
	VI.1 Problem Setting
	VI.2 Team Formation Games and Rotating Proposer Mechanism
	VI.3 Implementing RPM
	VI.3.1 Preprocessing and Pruning
	VI.3.2 Approximate RPM for the Roommate Problem
	VI.3.3 Heuristic Rotating Proposer Mechanism (HRPM)

	VI.4 Experiment
	VI.4.1 Data Sets
	VI.4.2 Computing and Approximating RPM
	VI.4.3 Utilitarian Social Welfare
	VI.4.4 Fairness
	VI.4.5 Incentive Compatibility

	VI.5 Conclusion

	VII Automated Mechanism Design for Roommates Problem
	VII.1 The Roommates Model
	VII.1.1 Incentive Compatibility
	VII.1.2 Individual Rationality
	VII.1.3 Social Welfare

	VII.2 Restricted Incentive Compatibility
	VII.2.1 Promotion-One Incentive Compatibility
	VII.2.2 Promotion and Permutation Incentive Compatibility

	VII.3 Automated Mechanism Design for Roommates Problem
	VII.3.1 AMD That Maximizes Social Welfare
	VII.3.2 AMD with Approximate Permutation Incentive Compatibility
	VII.3.3 Heuristic Approaches with Promotion-One Manipulations

	VII.4 Experiments
	VII.5 Conclusion


	III Toward Efficiency: Secondary Market
	VIII Secondary Market Mitigates Demand Uncertainty
	VIII.1 Model
	VIII.1.1 Background: The Newsvendor Model
	VIII.1.2 The Newsvendor Model with a Secondary Market

	VIII.2 Large Markets: Asymptotic Analysis
	VIII.2.1 Market Clearing Price in Secondary Market
	VIII.2.2 Players' Influence on the Price
	VIII.2.3 Existence and Characteristics of the asymptotic Nash Equilibrium
	VIII.2.4 Social Welfare and Aggregated Orders

	VIII.3 Small Markets: Two Players
	VIII.3.1 Nash Bargaining Price
	VIII.3.2 Existence of Pure Strategy Nash Equilibrium between Two Players
	VIII.3.3 Characteristics of a Symmetric Pure Strategy Nash Equilibrium

	VIII.4 Conclusion

	IX Conclusion
	 BIBLIOGRAPHY 


