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Chapter 1

Introduction

The Universe is comprised of structures on all scales, ranging from stars and planets

to galaxies and clusters. These structures form part of a much bigger web-like structure

built with systems of galaxies, filaments, walls, and cosmic voids between galaxies. The

Universe is comprised of Large-Scale structure, in which galaxies form, evolve, and even-

tually die. Theoretical and observational research over the last half of a century have led

to a consistent model of the Universe that includes a mysterious dark energy that is driving

the accelerated expansion of the Universe, and dark matter that cannot be directly observed

with telescopes. The theoretical frameworks of large-scale structure and galaxy formation

and evolution are being tested by the new generation of galaxy surveys, and they will keep

being challenged by the upcoming generation of telescopes and instruments, that will shed

light into the evolutionary paths of galaxies and the Universe.

Galaxies constitute the primary objects in the observed Universe, and act as the building

blocks of Large-Scale Structures in the Universe. By studying the evolutionary paths of

galaxies, and their connection to their environments, we can help constrain cosmological

parameters and provide a much clearer picture of the physical and statistical connection

between the luminous matter in the Universe (galaxies) and the dark matter in the Universe.

This relation is commonly referred to as the galaxy-halo connection. Understanding this

relation is crucial for constraining cosmological parameters and probing the distribution

and properties of dark matter in the Universe.

In this dissertation, I present some different statistical analyses that aim at analyzing

various aspects of the galaxy-halo connection. As I will elaborate on in this document,

these studies can provide us with a better understanding of the connection between galaxies

and their environments, as well as a glimpse into the formation and evolution of large-scale

structure of the Universe.
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1.1 An Expanding Universe in the ΛCMD Cosmological Model

The accepted cosmological theory of the origin of the Universe revolves around the

concept of the ‘Big Bang’, in which the Universe began in a hot, dense and nearly isotropic

state some 13.7 billion years ago, and expanded exponentially moments after through infla-

tion. Under this paradigm, the origin of cosmic structure is thought be caused by quantum

mechanical fluctuations in the early Universe, which froze in the Cosmic Microwave Back-

ground (CMB) by inflation, and led to perturbations in the density field of the Universe.

These anisotropies can be observed in the CMB as temperature variations, which are on

the order of δT/T ∝ 10−5. The Universe has been expanding ever since, but at a lower

rate. The structure that we see through a telescope is the direct result of the Big Bang, the

inflationary period, and rapid expansion of the Universe.

Since late 1920’s, with the advent of Friedmann’s equations about the geometry of the

Universe, researchers across the globe have tried to test the idea that the Universe is accel-

erating. In 1929, Edwin Hubble discovered a relation that relates the velocity of a galaxy

to its inferred distance to use. This relation is known as ‘Hubble’s Law’ and is indicative

for an expansion of the Universe. However, it was until 1998 that Saul Perlmutter and

Adam Riess were awarded the Nobel Prize in Physics for the discovery that the expansion

of the Universe is accelerating by observations of Type Ia supernovaes (Riess et al., 1998;

Perlmutter et al., 1999). Since then, our best cosmological models include a component

responsible for the cosmic expansion.

Observational facts in the last few years have led towards the development of a cosmo-

logical model referred to the Λ cold dark matter (ΛCMD) model. This model states that

the Universe is comprised of baryonic matter, and the dark sector. The dark sector is com-

posed of two different components that dictate the ultimate faith of the Universe, namely:

1) ‘cold dark matter’, a type of non-relativistic particle that most likely interacts with bary-

onic only through gravity and does not produce or reflect any electromagnetic radiation,

and 2) ’dark energy’, which acts as negative pressure causing the accelerating expansion
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of the Universe. This model is currently our best cosmological model for the formation

and evolution of cosmic structure in the Universe (Wechsler & Tinker, 2018). This model

indicates that the total energy density of the Universe today is comprised of about 70%

dark energy, 26% dark matter, and only 4% baryonic matter with great accuracy (Planck

Collaboration, 2016).

In general, based on various observations, the Universe started with the Big Bang.

Within moments after the Big Bang, the Universe rapidly expanded exponentially through

inflation. During the inflationary period, quantum mechanical fluctuations acted as pre-

cursors for the growth of structures in the Universe, and these were frozen in the CMB.

These perturbations of the density field led to the growth of the structure in the Universe,

including galaxy clusters, galaxies, filaments, walls, and more. After inflation, the Universe

kept expanding, but at a slower rate, which allowed for nucleosynthesis to take place. This

eventually led to the formation of stars, galaxies, and large-scale structure we see today.

1.2 Large-Scale Structure of the Universe

Large-Scale Structure (LSS) in the Universe is the result of the evolution of the density

perturbations in the initial density field of the Universe. These perturbations have been

amplified at a grand scale since then through gravitational forces, producing vast amount

of dense clumps of dark matter, which would eventually become the home for galaxies.

Today, the current ΛCMD paradigm is our best cosmological model for the formation and

evolution of the cosmic structure in the Universe (Wechsler & Tinker, 2018). It predicts

that all galaxies form and evolve within gravitationally bound structures of dark matter,

commonly referred to as dark matter haloes. A halo refers to a gravitationally bound struc-

ture with overdensity of ∼ 200 times the mean density of the Universe. These overdensed

regions form part of a much larger, web-like extragalactic structure, also known as the

cosmic web.
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Figure 1.1: The initial galaxy map of the Center for Astrophysics (CfA) Redshift Survey
(Huchra, 1988), showing the distributions of galaxies on the sky. The Earth is located at
the point of the slice. Black dots correspond to the location of galaxies on the sky.

1.3 Observing the Universe

With the advent of spectroscopic redshift surveys in the early 1980’s, we can now map

the locations of galaxies on the sky with great accuracy. Galaxy redshift surveys, such

as Center for Astrophysics (CfA) galaxy redshift survey (Huchra, 1988), the Two Degree

Field Galaxy Redshift Survey (Colless et al., 2001), the Two Micron All Sky Redshift Sur-

vey (Skrutskie et al., 2006), and in particular, the Sloan Digital Sky Survey (SDSS; York,

2000), have observed and quantified the cosmic web, and have provided us with reliable

spectroscopic information about the location of galaxies, clusters, and more. Figure 1.1

shows the initial galaxy map of the CfA Redshift Survey, and it shows the distribution of

galaxies on the sky. This figure illustrates different types of environments, in which galax-

ies reside, e.g. filaments, sheets, cosmic voids between galaxies, and more. This work

and more recent ones have tried to understand the connection between galaxies and their

corresponding environments.
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1.3.1 Sloan Digital Sky Survey

Many of the analyses presented in this dissertation are based on data collected by the

Sloan Digital Sky Survey (York, 2000, hereafter SDSS). SDSS is one of the most ambitious,

impressive, and influential surveys of the last two decades. It has completely revolutionized

our understating of galaxy formation and evolution, growth of cosmic structure, and the

demographics of galaxies. Additionally, it has also contributed to our understanding of

the galaxy-halo connection by providing exact and reliable spectroscopic measurements

of millions of galaxies. SDSS started in 2000, followed by SDSS-II in 2005, SDSS-III in

2008 (Eisenstein et al., 2011), and SDSS-IV in 2014 (Blanton et al., 2017). SDSS collected

its data with a dedicated 2.5-meter telescope (Gunn et al., 2006), camera (Gunn et al.,

1998), filters (Doi et al., 2010), and spectrograph (Smee et al., 2013) at the Apache Point

Observatory. Each object passes through one column of 5 different CCDs that correspond

to 5 different filters, arranged in 6 columns, with a total of 30 different CCDs. The SDSS

filters cover from the ultraviolet to the near-infrared part of the light spectrum, and are

denoted as ’u g r i z’ filters. Overall, the original SDSS covered a total of 8000 sq. degrees

on the sky. The original as well as its two consequent extensions (SDSS-II and SDSS-III)

have been instrumental in our understanding of galaxy formation and evolution, as they

have measured more than 4 million spectra in total (Alam et al., 2015).

1.3.2 Redshift-Space Distortions

One of the most important information about a galaxy is its distance to us, since that

can provide us put better constraints on cosmological models. In redshift galaxy surveys,

distance to galaxies are inferred from their spectra under the assumptions that they are only

being affected by cosmic expansion (’Hubble flow’). However, redshift of galaxies are not

only a product of cosmic expansion, but it is also affected by the individual motions of

galaxies, i.e. the peculiar motion. The relative motion of galaxies adds and extra redshift to

that caused by the Hubble flow, and will potentially affect our inferred distances to galaxies.
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Figure 1.2: Schematic of the physical mechanisms and observed effects that induce
redshift-space distortions. The direction of the arrows correspond to the directions of the
peculiar velocity vectors (Hamilton, 1998).

The measured redshift of galaxies is the result of a combination of the Hubble flow and the

peculiar velocity of galaxies. This results in galaxies being misplaced in redshift space,

to which we refer as redshift-space distortions (RSD). Equation 1.1 corresponds to the

redshift of galaxy, z, that an observer on Earth would measure, so that

cz = H0d + vp (1.1)

where z corresponds to the measured redshift of the galaxy, H0 to the Hubble constant, d

to the distance to the galaxy, and vp to the peculiar velocity of a given galaxy.

Figure 1.2 shows the observed effects from different physical process that may induced

RsD. At relatively small scales, the velocity dispersion of galaxies within their own halo

can make closer galaxies look apart, and vice versa. This effect forms elongated shapes in

redshift-space, and it is commonly referred to as "Fingers of God" (Hamilton, 1998). At
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larger scales, the bulk motion of groups of galaxies towards a more massive cluster, can

be observed as a compression of the galaxy distribution in redshift-space. This type of

distortions is commonly referred to as the "Kaiser effect" (Kaiser, 1987).

RSD are one of the biggest systematic errors when determining distances to galaxies in

redshift-space. They inadvertently cause errors when determining the cluster membership

of galaxies, and can affect our statistical inferences about the galaxy-halo connection. For

this reason, it is important to be able to model them and understand the effect that they have

on our measurements.

1.3.3 Galaxy group catalogs

The ΛCMD cosmological model predicts that all galaxies form and evolve in dark mat-

ter halos. The physical and statistical connection between galaxies and their host haloes

can provided us with an insight into how galaxies form and evolve, help us infer and con-

strain cosmological parameters, as well as help us probe the distribution of dark matter in

the Universe. For these reasons, it is important to be able to identify galaxies from the same

halo as single galaxy groups.

It is common practice to apply a group-finding algorithm to large galaxy redshift sur-

veys, in order to assign galaxies to groups and construct a ‘galaxy group catalog’. The

resulting group catalog can be used to study various aspects of the galaxy-halo connection,

including the relationship between galaxy properties and those of their host haloes, mech-

anisms that drive galaxy quenching within groups, or the impact that group environment

may have on the morphology of galaxies. These analyses try to answer some of the most

fundamental questions of galaxy formation and evolution, and they rely on a proper group

membership assignment for of galaxies. In this dissertation, I show how RSD can induce

errors in the statistical inferences of various aspects of the galaxy-halo connection, and

perform a robust and comprehensive study of these effects.
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1.4 N-body Simulations and Mock Catalogs

1.4.1 Overview of N-body simulations

The physics behind non-linear structure formation is very complex and cannot be fully

explained through analytical solutions. Modern astrophysics relies on numerical simula-

tions of the Universe that are able to reproduce the history of structure growth, incorporate

various physical process that may have an impact on galaxy formation and evolution. N-

body simulations also allow to trace the distribution of dark matter in the Universe and

trace back the evolution of the density field at various redshifts. They have become indis-

pensable for explaining and recreating various types of observations. However, they are

highly time consuming and computationally expensive to run. The adoption of this tech-

nique has changed dramatically with the advent of supercomputers and better algorithms,

as now we are able to run very complex cosmological simulations with billions of particles

in an appropriate time.

There are different flavours of cosmological simulations. For example, (Vogelsberger

et al., 2014) introduced a set of hydrodynamical simulations that were representative of

the observable Universe, and were able to simulate physical processes that are relevant

to galaxy formation and evolution, as well as simulate the distribution of dark matter in

the Universe. Similarly, semi-analytic models consists of combining the results of N-body

simulations with simple physical prescriptions to estimate the distribution of galaxies. N-

body simulations constitute the third flavour of cosmological simulations, in which dark

matter particles are laid down smoothly in a simulation box. Each particle, which is in

actuality corresponds to a certain mass, is then perturbed and initial velocities are given

based on perturbation theory from a given cosmological model. This approach provides

us with the set of initial conditions at very high redshifts, and as ’time’ progresses in the

simulation, gravitational forces act on every particle of the simulation. At each time step,

gravitational forces between particles are calculated and each particle is moved based on

its velocity components and total force applied to it. This step is repeated over and over

8



until the simulation has reached the desired redshift.

For the case of N-body simulations, once the simulation is complete, one can identify

the particles belonging to dark matter haloes of a given overdensity with the help of halo-

finding algorithm. Once haloes are identified, dark matter haloes are populated with mock

galaxies by specifying an Halo Occupation Distribution (Berlind et al., 2003), which pro-

vides a framework for describing the number, spatial and velocity distributions of galaxies

within a dark matter halo of a certain mass. This procedure would lead to the construction

of mock galaxy catalogs which provides with a way to test and compare theoretical models

and ideas to observed galaxy distributions.

Throughout this dissertation, I make use of mock galaxy catalogs to make statistical

inferences about the galaxy-halo connection. Without them, the majority of analyses and

results would not have been possible to perform.

1.4.2 LasDamas Simulations

Throughout this dissertation, I present analyses about various aspects of the galaxy-

halo connection. The main cosmological simulation that I use for these projects is the Large

Suite of Dark Matter Simulations (LasDamas)1. LasDamas is a suite of many cosmological

N-body simulations with the same cosmology but different initial conditions, that trace the

evolution of dark matter in the Universe. The dark matter haloes are found by applying

a Friend-of-Friends algorithm (Davis et al., 1985) with linking length of 0.2 times the

mean inter-particle separation. LasDamas provides multiple realizations of the Universe

with a common cosmological model, which is ideal for statistical studies, such as the ones

presented in this dissertation.

1.5 Summary

Throughout this work, I make use of the myriad of data from the Sloan Digital Sky

Survey to explore different aspects of the galaxy-halo connection. Moreover, I make use

1http://lss.phy.vanderbilt.edu/lasdamas/
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of a suite of mock galaxy catalogs from N-body simulations to statistically determine the

importance of each result. Moreover, I use galaxy and group galaxy catalogs to make

inferences about how galaxies correlate with neighboring galaxies, and about the stellar

content of galaxy groups. In chapter 2, I analyze the stellar content of galaxy groups with

group catalogs from SDSS, and present a set of value-added galaxy (group) catalogues for

three different galaxy samples. In chapter 3, I investigate a very important aspect of the

galaxy-halo connection, namely "galactic conformity". I also make use of realistic mock

galaxy catalogs to statistically claim the first robust detection of galactic conformity at large

scales. Chapter 4 introduces a method of estimated the masses of galaxies’ host dark matter

by employing information about the galaxies and their corresponding group environment.

A short conclusion is in chapter 5
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Chapter 2

PROBING THE STELLAR CONTENT OF GALAXY GROUPS WITH

VALUE-ADDED GROUP CATALOGUES IN THE SDSS DR7

The following work will be submitted to the Monthly Notices of the Royal

Astronomical Society Journal and is reprinted below in its entirety

Probing the Stellar Content of Galaxy Groups with Value-Added

Group Catalogues in the SDSS DR7

Victor F. Calderon1, Andreas A. Berlind1, Manodeep Sinha2

1 Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235

2 Centre for Astrophysics and Supercomputing, Swinburne University of Technology,

Hawthorn, Victoria 3122, Australia

2.1 Abstract

We investigate the ability to confidently make use of galaxy group catalogs to explore

various aspects of the galaxy-halo connection, including the stellar-to-halo mass relation

(SHMR) of galaxies. Moreover, we explore the role that group mass has determining

galaxy quenching as function of stellar mass for central and satellite galaxies. We deter-

mine that group-finding errors do not affect the sSFR−M? of central and satellite galaxies,

and that central and satellite galaxies follow the same relation of sSFR−M? at fixed group

mass. Additionally, we compute a correction factor to recover the true SHMR of central

galaxies as a function of group mass. To test the feasibility of group catalog derived statis-

tics, we perform a robust analysis of the impact by group-finding systematic errors on group

mass assignment and galaxy type identification in the SDSS DR7. We conclude that central

galaxies are correctly identified as central galaxies 80−90% of the time by group-finding,

regardless of group richness. However, satellite galaxies are correctly identified as satellite
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galaxies 60−70% of the time. Finally, we present and make available sets of galaxy group

catalogs for three volume-limited samples of SDSS DR7.

2.2 Introduction

Galaxies are gregarious by nature, and they can be found in different types of environ-

ments. Bright galaxies typically reside in large groups of galaxies or clusters, surrounded

by less luminous neighbours. Interactions within the group environment may have an effect

on the observational properties of galaxies, such as morphology, dynamics, star formation

histories, among others. Characterizing the relation between galaxy properties and their

group environment can shed light into how galaxies form and evolve. Today, the current Λ

cold dark matter (ΛCDM) paradigm is our best cosmological model for the formation and

evolution of the cosmic structure in the Universe (Wechsler & Tinker, 2018). It predicts that

all galaxies form and evolve within gravitationally bound structures of dark matter (DM),

commonly referred to as dark matter haloes1. The physical and statistical connection be-

tween the luminous matter in the Universe (galaxies) and the DM in haloes, is commonly

referred to as the ‘galaxy-halo’ connection, and it is crucial for constraining cosmological

parameters and probe the distribution and properties of DM in the Universe.

Given the hierarchical nature of structure formation, and the tendency of luminous

galaxies to reside in groups and clusters surrounded by less luminous neighbors, we expect

galaxy groups to constitute a fundamental physical scale important for galaxy formation

and evolution Campbell et al. (2015, ; hereafter C15). This idea motivates the study of

galaxies in groups to better understand the galaxy-halo connection. Galaxy groups and

clusters can be identified through various methods. Traditionally, galaxy clusters were

first detected as overdensities of galaxies in the visible spectrum (e.g. Abell, 1958; Zwicky

et al., 1968). Since then, galaxy systems can be identified as overdensities of red galaxies

in both the visible and IR spectrum (e.g. Gladders & Yee, 2005; Hao et al., 2010; Ascaso

1 Throughout this paper, we use the term "halo" to refer to gravitationally bound structure with overden-
sity ρ/ρ̄ ∼ 200, so an occupied halo may host a single luminous galaxy, a group of galaxies, or a cluster.
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et al., 2012). These can also be detected as extended X-ray sources (e.g. Rosati et al., 2002;

Vikhlinin et al., 2009), and by their signature in the cosmic microwave background (e.g.

Marriage et al., 2011; Staniszewski et al., 2009; Ade et al., 2015). With the onset of spec-

troscopic redshift surveys in the early 1980’s, systems of galaxies can be selected based

on the closeness of galaxies in redshift space, while minimizing the challenges associated

with projection effects in determining galaxy group membership. This leads to the con-

struction of group galaxy catalogs. Many of these analyses have adopted the widely-used

Friends-of-Friends percolation algorithm to put galaxies into groups and compile group

galaxy catalogs. The FoF algorithm puts into a single group all galaxies linked in pairs

based on the separation on the sky and along the line-of-sight direction. Most notably,

numerous group galaxy catalogs have been constructed for different spectroscopic redshift

surveys, including the Center for Astrophysics Redshift Survey (CFA; Geller & Huchra,

1983), the Las Campanas Survey (Tucker et al., 1997), the Two Degree Field Galaxy Red-

shift Survey (2dFGRS; Merchán & Zandivarez, 2002; Eke et al., 2004; Yang et al., 2005;

Einasto et al., 2007) the high-redshift DEEP2 survey (Gerke et al., 2005), the Two Micron

All Sky Redshift Survey (Crook et al., 2007; Lavaux & Hudson, 2011), and in particular,

the Sloan Digital Sky Survey (e.g. Goto, 2005; Berlind et al., 2006; Yang et al., 2007).

The Sloan Digital Sky Survey (York, 2000, ; hereafter SDSS) has been crucial for the

study of galaxy properties and their environments by providing one of the largest sam-

ples of galaxies with spectroscopic information, along with detailed information on galaxy

properties. SDSS has been widely used to analyse various aspects of galaxy demograph-

ics, and other aspects of the galaxy-halo connection. For example, Zehavi et al. (2011)

analyzed the luminosity and color dependence of galaxy clustering in SDSS, and found

that at fixed luminosity, the redshift-space correlation function of red galaxies exhibited

stronger "finger-of-God" distortions than that of blue galaxies, while blue galaxies show

stronger large-scale, coherent flow distortions. They also found a shallow, low-amplitude

correlation function for the bluest galaxies in the sample, while the clustering of "green
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valley" galaxies is intermediate between that of blue and red galaxies, with the reddest

galaxies having a steeper correlation function. Similarly, Martinez et al. (2006) analysed

the u−r colour distributions for several galaxy samples in groups from SDSS Data Release

4 (McCarthy et al., 2006), and found that the fraction of galaxies in the red sequence is an

increasing function of group mass. Additionally, they found that the fraction of red galaxies

monotonically increases with decreasing redshift, implying a much stronger evolution of

galaxies in groups than in the field.

It is clear that galaxy properties correlate strongly with environment in the local Uni-

verse. A colour-magnitude diagram of galaxies shows a bimodality in colour in the local

Universe that persists out to larger redshifts (Bell et al., 2004). The bimodal distribution of

galaxy colours is the result of the diverse star formation efficiencies of galaxies, dividing

galaxies into a star-forming blue cloud and a more quenched red sequence. The origin of

this relation is not well understood (C15), yet galaxies in dense environments exhibit an

enhanced quenched fraction relative to that of galaxies residing in more isolated environ-

ments (Dressler, 1980; Postman & Geller, 1984; Kauffmann et al., 2004). However, it is

not clear what drives this relation, and whether or not there exists a causal relationship

between galaxy properties and environment.

Within the framework of galaxy groups and DM haloes, it is customary to describe

galaxies as either ‘central’ galaxies or ‘satellite’ galaxies. Central galaxies are commonly

referred to those galaxies located at the deepest point of the gravitational potential of a

DM halo, and they are usually associated to the most massive or most luminous galaxies

in the halos. Satellite galaxies are those galaxies that are not central galaxies, and are

associated to DM subhaloes. Hence, a halo is comprised of a single central galaxy and zero

or more satellite galaxies. Central galaxies and satellite galaxies undergo different physical

processes that ultimately affect their galaxy properties. This criterion is motived by the

idea that central galaxies grow in mass, and brightness by galactic cannibalism (Dubinski,

1998; Cooray & Milosavljević, 2005), while satellite galaxies experience a series of events
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that strip them from their mass and inhibit star formation (Balogh et al., 2000; Grebel et al.,

2003). Distinguishing between central and satellite galaxies allows for the study of the

significance of various physical processes to the galaxy-halo connection.

Galaxy group catalogs serve as bridges between theory and observations of galaxies, as

they aim to represent the true group membership of galaxies, and can be used to explore

the multivariate distribution of properties of haloes and galaxies that form within them.

Galaxy group catalogs have been used to measure galaxy property correlations beyond

halo mass and galaxy type designations. For example, Zhang & Yang (2019) studied the

dependency of intrinsic properties on the size of galaxies. In their analysis, they used a

galaxy group catalog constructed by Yang et al. (2007) to distinguish between central and

satellite galaxies, and determine if late-type galaxies exhibited a different trend in galaxy

compared to that of early-type galaxies. Similarly, galaxy group catalogs have been used

to better understand different aspects of the galaxy-halo connection, such as correlations

between quenching properties of galaxies and those of neighboring galaxies (Weinmann

et al., 2006; Tinker et al., 2018; Lim et al., 2017; Treyer et al., 2017; Calderon et al.,

2018), prediction of galaxy halo masses (Calderon & Berlind, 2019), exploration of thermal

energy contents in the intergalactic medium (Lim et al., 2018), among others.

The main goal of a group-finding algorithm is to correctly determine the group member-

ship of galaxies in a galaxy sample. In an ideal scenario, a perfect group-finding algorithm

would be able to classify galaxies which occupy a common halo as members of the same

group. Unfortunately, due to peculiar motions of galaxies, it is not possible to perfectly

determine the group membership of galaxies in redshift-space. This results in a two dif-

ferent scenarios, whereby galaxies from distinct haloes are assigned to the same group, or

member galaxies of haloes are split into multiple groups. It is important to properly char-

acterize the group-finding errors and determine the impact that these have on inferences

about galaxy properties as function of halo properties. C15 investigated the use of group

catalogs to recover colour-dependent halo occupation statistics, and analysed the impact
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of group-finding errors from three different group-finders on the recovery of galaxy and

group properties as a function of halo properties. Similarly, Lim et al. (2017) applied a

halo-based group finder to four large redshift surveys and quantified the performance of

the group-finder at halo mass assignment and group membership identification. In this pa-

per, we release various sets of galaxy group catalogs for different volume-limited samples

of SDSS, and quantify the ability of the Berlind et al. (2006) group-finding algorithm at

recovering galaxy and group properties as a function of halo properties. Additionally, we

make use of the group galaxy catalogs to explore the stellar-to-halo mass relation and the

role of group mass in galaxy quenching.

This paper is organised as follows. In §2.3, we describe the observational (§2.3.1 and

§2.3.2) and simulated data (§2.3.3) used in this work. In §2.4, we introduce the group-

finding algorithm, as well as set of galaxy group catalogs. We then discuss and quantify

the errors group finders make in determining group mass and galaxy type §2.5. In §2.6, we

make use of the galaxy group catalogs to explore the stellar-to-halo mass relation of central

galaxies (§2.6.1), and the role of mass in galaxy quenching (§2.6.2). We conclude with a

discussion of our results and a summary in §2.7.

2.3 Data and Methods

In this section, we introduce the datasets used throughout this analysis, and discuss how

the various galaxy catalogs have been constructed. in §2.3.1, we present the characteris-

tics of the three volume-limited galaxy samples used in this paper. In §2.3.2, we present

the formalism used when assigning stellar masses and star formation rates to galaxies in

the three samples. Additionally, §2.3.3 summarizes the set of synthetic galaxy catalogues

corresponding to the three volume-limited samples from §2.3.3, including details about the

simulation used to create the synthetic catalogs (§2.3.3.1), the methods of assigning lumi-

nosities and stellar masses to synthetic galaxies (§2.3.3.2), and finally, the geometrical cuts

employed in order to obtain realistic mock galaxy catalogues of the Universe (§2.3.3.3).
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Table 2.1: Volume-limited Samples

Name Mlim
r zmin zmax Ngal n̄g

(h3Mpc−3)

Mr19-SDSS -19 0.02 0.67 90,893 0.01503
Mr20-SDSS -20 0.02 0.106 144,943 0.00593
Mr21-SDSS -21 0.02 0.165 96,400 0.00104

Note. — The table shows the absolute r-bandmagnitude and
redshift limits, the total number of galaxies and the number
density of galaxies in each of the galaxy samples.

2.3.1 Sloan Digital Sky Survey

For this analysis, we use data from the Sloan Digital Sky survey (hereafter SDSS; York,

2000). SDSS collected its data with a dedicated 2.5-meter telescope (Gunn et al., 2006),

camera (Gunn et al., 1998), filters (Doi et al., 2010), and spectrograph (Smee et al., 2013).

We construct our galaxy sample from the large-scale structure sample of the NYU

Value-Added Galaxy Catalogue (NYU-VAGC; Blanton et al., 2005), based on the spectro-

scopic sample in Data Release 7 (SDSS DR7; Abazajian et al., 2009). The main spec-

troscopic galaxy sample is approximately complete down to an apparent r-band Petrosian

magnitude limit of mr = 17.77. However, we have cut our sample back to mr = 17.6 so it

is complete down to that magnitude limit across the sky. Galaxy absolute magnitudes are

k-corrected (Blanton et al., 2003) to rest-frame magnitudes at redshift z = 0.1.

We construct three volume-limited samples that contain all galaxies brighter than r-

band absolute magnitudes Mr = -19, -20, and -21, and from this point forward, we will

refer to these galaxy samples as Mr19-SDSS, Mr20-SDSS, and Mr21-SDSS, respectively.

Table 2.1 summarizes the r-band absolute magnitude and redshift limits, the total number

of galaxies, and the galaxy number density of each of the three volume-limited samples.

These samples also include the right ascension, declination, redshift, Sérsic, and (g− r)

colour for each galaxy.
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2.3.2 Stellar Masses and Star Formation Rates

To each galaxy in the three volume-limited galaxy samples, we assign a stellar mass and

star formation rate (SFR) using the MPA Value-Added Catalogue DR7 (hereafter, MPA-

JHU ) 2. This catalog includes, among many other parameters, stellar masses based on fits

to photometry using Kauffmann et al. (2003) and Salim et al. (2007), and star formation

rates based on Brinchmann et al. (2004). We cross-match the galaxies of the NYU-VAGC to

those in the MPA-JHU catalog using their MJD, plate ID, and fiber ID. A total of 5.84%

(7.14%), 6.72% (8.63%), and 8.16% (9.85%) of galaxies did not have corresponding values

of SFR (M?) in the Mr19-SDSS, Mr20-SDSS, and Mr21-SDSS samples, respectively.

We follow the formalism presented in Bell et al. (2003, hereafter B03) to assign stellar

masses to those galaxies, for which we were unable to find a corresponding stellar mass in

the MPA-JHU catalog. Each galaxy has an accompanying flag that indicates if its stellar

mass was extracted from the MPA-JHU catalog or was calculated using the B03 formalism.

We discuss this further in §2.4.2.2.

Additionally, we explore the stellar mass at which the galaxy catalogs are complete, and

only show the result for the Mr19-SDSS sample for brevity. Figure 2.1 presents the stellar

mass completeness of Mr19-SDSS as a function of galaxy stellar mass. The orange and

green dots and contours in the top panel correspond to the r-band absolute magnitudes and

stellar masses of galaxies in the Mr18-SDSS and Mr19-SDSS galaxy samples, respectively.

The dashed gray vertical line corresponds to the stellar mass, at which 95% of galaxies from

Mr18-SDSS are brighter than the Mr19-SDSS r-band absolute magnitude limit of Mr < −19.

The bottom panel shows the sample completeness level in galaxy stellar mass bins of 0.4

dex. In both panels, the dashed gray vertical line corresponds to the stellar mass at which

95% of galaxies in the Mr18-SDSS sample are brighter than the r-band absolute magnitude

limit of Mr19-SDSS. In Figure 2.1, we observe that the Mr19-SDSS galaxy sample is com-

plete at a stellar mass of of log M? ≥ 10.6 h−1M�. which corresponds to ∼ 29.7% of the

2http://www.mpa-garching.mpg.de/SDSS/DR7
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total number of galaxies in the sample. Similarly, we compute the same statistics for the

Mr20-SDSS and Mr21-SDSS galaxy samples, and conclude that these samples are stellar

mass complete at log M? of 11.0 and 11.4, respectively.

2.3.3 Mock Catalogues

To assess the performance of the group-finding algorithm, it is important to understand

the systematic and statistical errors involved during the group assignment process. We use

a set of realistic mock galaxy catalogs that have the exact same geometry as the SDSS

volume-limited samples in §2.3.1. For the purpose of this paper, we will use the set of

mock catalogs to estimate the accuracy and effectiveness of the group-finder, and evaluate

the errors involved during the group-finding process, as described in 2.5.

In the following subsections, we present the suite of simulations used to produce the

set of realistic galaxy catalogs, along with the methodology used to populate dark matter

haloes with galaxies (§2.3.3.1); the framework used to assign luminosities, stellar masses

and specific star formation rates to mock galaxies (2.3.3.2). Finally, 2.3.3.3 discusses the

geometrical and redshift cuts we make to produce realistic mock galaxy catalogues that

resemble SDSS.

2.3.3.1 Numerical Simulations

We construct a set of mock galaxy catalogs from the Large Suite of Dark Matter Simu-

lations3 (McBride et al., 2009), a suite of 50 cosmological N-body simulations per galaxy

sample, that trace the evolution of dark matter in the Universe and have sufficient volume

and mass resolution to properly model each of the galaxy samples in §2.3.1. The dark mat-

ter (DM) haloes are found by applying a Friends-of-Friends algorithm (FoF; Davis et al.,

1985) using a linking length of 0.2 times the mean inter-particle separation. The total mass

of the DM halo is the sum of all of the contributing DM particles. The suite assumes the

same cosmology as the one in the Warren et al. (2006) halo mass function. Throughout

3http://lss.phy.vanderbilt.edu/lasdamas/
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Figure 2.1: Sample completeness as a function of galaxy stellar mass for the Mr19-SDSS
sample. Top panel: Orange and green dots and contours correspond to r-band absolute
magnitudes and stellar masses of galaxies in the Mr18-SDSS and Mr19-SDSS galaxy sam-
ples, respectively. The dashed gray vertical line corresponds to the stellar mass, at which
95% of galaxies in Mr18-SDSS have brighter r-band absolute magnitudes than the Mr19-
SDSS luminosity limit of Mr < −19. Bottom panel: Completeness level as a function
of galaxy stellar mass. The dashed green line corresponds to the fraction of galaxies with
brighter r-bandabsolute magnitudes than the luminosity limit of Mr19-SDSS, in stellar mass
bins of 0.4 dex. The dashed gray vertical line corresponds to the stellar mass at which 95%
of galaxies in Mr18-SDSS have brighter r-band absolute magnitudes the the Mr19-SDSS
luminosity limit of Mr < −19.
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this paper, we assume a cosmology of Ωm = 1−ΩΛ = 0.25, Ωm,b = 0.04, h = H0/ (100

km s−1 Mpc−1) = 1, σ8 = 0.8, and ns = 1.0.

We used an Halo Occupation Distribution (HOD; Berlind & Weinberg, 2002) model to

populate the DM haloes with central and satellite galaxies, whose numbers as a function

of halo mass were chosen to reproduce the number density, ngal, and the projected 2-point

correlation function, wp
(
rp

)
of the Mr19-SDSS, Mr20-SDSS, and Mr21-SDSS samples. Each

central galaxy was placed at the minimum of the halo gravitational potential and was as-

signed the mean velocity of the halo. Satellite galaxies were assigned the positions and

velocities of randomly chosen DM particles within the halo in the galaxy sample. The next

step is to assign realistic galaxy properties to each of the mock galaxies in the samples,

including stellar masses, specific star formation rates, and luminosities.

2.3.3.2 Luminosities, stellar masses, and star formation rates

For this project, the mock galaxy catalogs come in two different flavors. The first

version of the mock catalogs includes luminosities for each mock galaxy, while the second

version includes stellar masses instead. We will refer to these two different versions of

mock catalogs as mr-set and mstar-set , respectively.

1. For the mr-set mock galaxy catalogues, we adopt the formalism of the conditional lu-

minosity function (CLF; Yang et al., 2003; Van Den Bosch et al., 2003) that specifies

functional forms for the luminosity distributions of central and satellite galaxies as a

function of halo mass. Specifically, we use the Cacciato et al. (2009, hereafter C09) ver-

sion of the CLF, but modified slightly to match our adopted cosmological model (van den

Bosch, private communication). This methodology allows us to create a link between the

distribution of DM haloes and that of the residing galaxies, while also differentiating be-

tween central and satellite galaxies (c.f. Eq. 32-39 in C09). The values of the parameters

used in the analysis are a1 = 0.501, a2 = 2.106, b0 = −0.766, b1 = 1.008, b2 = −0.094,

σc = 0.142, γ1 = 3.273, γ2 = 0.255, log M1 = 11.070, log M2 = 14.280, and log L0 = 9.935.
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We refer the reader to C09 for further discussion on the different variables used in CLF.

We then abundance match the luminosities obtained from the CLF to the r-band absolute

magnitude in the SDSS galaxy samples. As a result, our mock catalogs have the same

exact luminosity function as the SDSS data.

2. For the mstar-set mock catalogues, we adopt the formalism of the conditional stellar

mass function (CSMF) presented in Moster et al. (2010, hereafter M10), which provides

the functional forms for the stellar mass distributions of central and satellite galaxies

as a function of halo mass (c.f. Eq. 7-15 in M10). The values used in this model

are taken from Table 3 σm = 0. The values of the parameters used in the analysis

are log M1c = 11.9347, (mc/M)0 = 0.0267, βc = 1.0059, γc = 0.5611, log M2 = 11.9652,

σ∞ = 0.0569, σ1 = 0.1204, ξ = 6.3020, log M1s = 12.1988, (ms/M)0 = 0.0186, βs =

0.7817, γs = 0.7334, logΦ0 = −11.1622, λ = 0.8285, log M3 = 12.5730, α∞ = −1.3740,

α1 = −0.0309, ζ = 4.3629. We refer the reader to M10 for further discussion on each

of the model parameters. Similarly to mr-set , we abundance match the stellar masses

obtained from the CSMF to the stellar masses in each galaxy sample. As a result, the

mock catalogs have the same exact stellar mass function as the SDSS data.

We assign specific star formation rates, (g−r) colours and Sérsic indices to mock galax-

ies by first adopting the formalism presented in Zu & Mandelbaum (2016, hereafter Z16),

and then sampling from the original distributions of sSFR, (g− r) colour and Sérsic indices

of the three SDSS galaxy samples. Specifically, we adopt the ’halo’ quenching model from

Z16, which assumes that halo mass is the sole driver of galaxy quenching. According to

that model, the red/quenched fraction of central and satellite galaxies is given by

f red
cen (Mh) = 1− exp

[
−(Mh/M

qc
h )µ

c]
(2.1)
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and

f red
sat (Mh) = 1− exp

[
−(Mh/M

qs
h )µ

s]
, (2.2)

where Mqc
h , Mqs

h , µc, and µs are parameters of the model that Z16 fit to the observed clus-

tering and galaxy-galaxy lensing measurements of red and blue galaxies in the SDSS. We

assign each of our mock galaxies a probability of being quenched from equations (2.1)

and (2.2) and we randomly designate it as ‘active’ or ‘passive’ consistent with that proba-

bility (e.g., if f red
sat = 0.8 for a particular mock satellite galaxy, we give it an 80% chance of

being labeled ‘passive’). To assign realistic values of sSFR, (g− r) colour, and Sérsic index

to mock galaxies, we divide the observed distributions of these properties of Mr19-SDSS

into ‘active’ and ‘passive’ distributions by making cuts at log10 sSFR =−11, (g−r)cut = 0.75

and ncut = 3 for sSFR, (g− r) colour, and Sérsic index, respectively. For example, to assign

sSFRvalues to mock galaxies from Mr19-Mock in the mr-set , we do the following. For

each mock galaxy, we randomly draw a sSFRvalue from the active or passive distribution,

depending on the designation that the mock galaxy has received. Moreover, we do this

in a way that preserves the sSFR-luminosity distribution. For example, if a mock galaxy

has been labeled ‘active’, we randomly select a real active galaxy from Mr19-SDSS that

has a similar luminosity as the mock galaxy, and we assign its sSFRtot he mock galaxy.

As a result of this procedure, the final joint sSFR-luminosity distribution of mock galax-

ies closely resembles the one for Mr19-SDSS. We repeat this procedure for Mr20-SDSS and

Mr21-SDSS. For the case of mstar-set , we perform these steps with stellar masses instead

of luminosities.

2.3.3.3 Geometrical and Redshift Cuts

As the final step, we construct volume-limited galaxy redshift survey catalogs from

simulation boxes. First, we place a virtual observer at the center of the box and define

the right ascension (RA) and declination (DEC) for each galaxy with respect to the virtual
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observer. Then, for every mock galaxy, we compute the angular coordinates and redshift,

including the effect due to line-of-sight peculiar velocities, also referred to as redshift-space

distortions. The final result is a set of volume-limited galaxy catalogs in redshift-space,

with the exact same geometry as that of SDSS. We construct sets of 100, 94, and 100

volume-limited realistic mock galaxy catalogs for the Mr19, Mr20-SDSS, and Mr21-SDSS

samples, respectively. The resulting mock galaxy catalogs for the various galaxy samples

are publicly available online4.

2.4 Group-Finding Algorithm and Group Catalog

In this section, we summarize the motivation for using group finders, and the different

aspects of the group finder that we use throughout the project (§2.4.1); the set of group

(galaxy) catalogues constructed from the NYU-VAGC and MPA-JHU catalogs after the

group finding process (§2.4.2); and the set of mock group catalogs and their corresponding

content for each of the three volume-limited samples (§2.4.3).

2.4.1 Group-finding algorithm

We identify galaxy groups using the Berlind et al. (2006, hereafter berlind-fof)

group-finding algorithm. This is a Friends-of-Friends (FoF; Huchra & Geller, 1982) al-

gorithm that links galaxies recursively to other galaxies that are within a cylindrical link-

ing volume around the galaxy. The FoF algorithm assumes no geometry for the resulting

groups, but it encloses galaxies within an isodensity surface that is closely related to the st

of chosen linking lengths. For a pair of galaxies i and j separated by an angular distance

θi j, the projected separation D⊥,i j, and the line-of-sight separation, D‖,i j, are given by

D⊥,i j = (c/H0)(zi + z j) sin(θi j/2) (2.3)

D‖,i j = (c/H0)|zi− z j| (2.4)

4http://vpac00.phy.vanderbilt.edu/~caldervf/Group_Catalogue_Websites/
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, where zi and z j correspond to the redshifts of the galaxies i and j, respectively. The

galaxies are linked if

D⊥,i j ≤ b⊥n̄g (2.5)

D‖,i j ≤ b‖n̄g (2.6)

where n̄g is the mean density of galaxies in the sample, and b⊥ and b‖ are the projected and

line-of-sight linking lengths in units of the mean inter-galaxy separation, respectively. For

a chosen set of linking lengths (one linking length in real-space and two linking lengths in

redshift-space), the FoF algorithm produces a unique group catalogue. The projected and

line-of-sight linking lengths used in this analysis are b⊥ = 0.14 and b‖ = 0.75 in units of the

mean inter-galaxy separation, respectively. This choice of linking lengths was optimized

by Berlind et al. (2006) to identify galaxy systems that live within the same DM halo, and

the performance of the algorithm is expected to be slightly inferior for smaller groups with

10 or less member galaxies.

2.4.2 SDSS Group Catalogs

In this subsection, we introduce the set of Group and Cluster and Member galaxies

catalogs for the three SDSS volume-limited samples, and describe in detail the information

attached to each of the different catalogs.

2.4.2.1 Group and Cluster Catalogue

We apply the berlind-fof algorithm to the three volume-limited samples described in

§2.3 using the sets of linking lengths from §2.4.1. For each galaxy sample we produce a set

of group and group member catalogs, each containing information about the galaxy groups

and member galaxies. The fractions of singletons or isolated galaxies are 41.18%, 45.19%,

and 54.85% for the Mr19-SDSS, Mr20-SDSS, and Mr21-SDSS samples, respectively. The

fractions of galaxies grouped in pairs are 17.49%, 18.74% and 19.82%. The remaining
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41.33%, 36.07%, and 25.33% of galaxies are in groups of three or more members. The

Mr19-SDSS, Mr20-SDSS, and Mr21-SDSS samples contain a total of 6439, 10124, and 5712

groups with richness N ≥ 3, respectively.

The ‘Group and Cluster’ catalog for the three galaxy samples include the following

information:

Group and Cluster catalog

1 Group ID: This number corresponds to the ID of the galaxy group in the catalog.

2 Group richness, Ngal: It indicates the total number of galaxies in the group.

3–5 ra, dec, cz̄: For each group, we calculate an unweighted group centroid, which consists

of a group right ascension, declination, and mean velocity (cz̄). RA and DEC are given

in units of degrees, and cz̄ in units of kms−1.

6 Velocity dispersion, σv: We compute a group one-dimensional velocity dispersion

given by

σv =
1

1 + z̄

√√√
1

N −1

N∑
i=1

(czi− cz̄)2 (2.7)

where ‘N’ is the total number of galaxies in the group, ‘cz̄ ’ is the mean velocity of the

group, and ‘cz̄i’ is the velocity of the ith member galaxy in the group.

7–8 Absolute magnitudes, Mg,y and Mr,y: Total luminosity of the group. This parameters

is the sum of the luminosities of each of the member galaxies. We compute the total

group absolute magnitude in the g-band and r-band

Mx,y = −2.5log10

 N∑
i=1

10−0.4M0.1x,i

 (2.8)

where ‘x’ corresponds to the colour band (r-band or g-band), ‘y’ to the absolute r-band
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magnitude limit of the volume-limit sample, and ‘N’ to the number of member galaxies

in the group

9 redge: Perpendicular distance to the group center from the survey edge.

10 Projected radius, R⊥,rms: Projected rms radius of the galaxy group. This variable is

calculated as follows

R⊥,rms =

√√√
1
N

N∑
i=1

r2
i (2.9)

where ‘ri’ corresponds to the projected distance between the i-th member galaxy of the

group and the group centroid.

11 Total stellar mass, log M?,G: Logarithmic 10-based total stellar mass of the group.

This quantity is the sum of the stellar mass of the individual member galaxies of the

group, without making distinctions between stellar masses from the MPA-JHU or B03

catalogs.

12 Total specific star formation rate, log sSFRG: Logarithmic 10-base total specific star

formation rate of the group, sSFR. For each group, the total specific star formation rate

computes as

sSFRG =
SFRG

M?,G
=

N∑
i=1

S FRi

N∑
i=1

M?,i

(2.10)

where ‘N’ refers to the number of member galaxies in the group with measured star

formation rates (SFR’s), and stellar mass ‘M?’. We only include a value for sSFRG if

more than 50% of the member galaxies in the group have a measured SFR from the

MPA-JHU catalog. Otherwise, a value of ‘nan ’ gets assigned to sSFRG instead.
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13 Group mass, MHAM: Logarithmic 10-base estimated mass via HAM method. We es-

timate the total mass of the group via abundance matching. This method assumes a

monotonically increasing relation between the group r-band total luminosity, Mr,y, and

the dark matter halo mass. We adopt the Warren et al. (2006) mass function for this

purpose.

In Table 2.2, we present an excerpt of the structure of the ‘Group and Cluster’ catalog

for the Mr19-SDSS sample. The rest of the table and the tables for Mr20-SDSS and Mr21-

SDSS are available at the url in 2.

2.4.2.2 Member Galaxies of Groups Catalog

We produce a separate set of ‘Member Galaxies of Groups’ catalogs for each of the

three volume-limited samples. These catalogs include information about the member galax-

ies and their galaxy groups. For each galaxy, we include the following information

The ‘Member Galaxies of Groups’ catalog for the three galaxy samples include the

following information:

Member Galaxies of Groups catalog

1 Galaxy ID: Galaxy ID in the NYU-VAGC catalog. This number corresponds to the index

of the galaxy in the list of properties from the NYU-VAGC catalog.

2–4 Angular coordinates and velocity, ra, dec, cz: Angular coordinates and velocity of

the galaxy. The (J2000) right ascension and declination are given in units of degrees,

and ‘cz’ is given in units of kms−1.

5–6 Absolute magnitudes, M0.1,g and M0.1,r: Absolute magnitudes of the galaxy in the

g-band and r-band. These magnitudes have already been k-corrected to z = 0.1

7 Sérsic index: This parameter provides an insight into the morphology of the galaxy, as

derived by the MPA-JHU catalog.
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8 Fiber collision flag, fibcol: A value of ‘x’ other than ‘-1’ indicates that the galaxy

collided with the x-th galaxy in NYU-VAGC due to fiber collisions. A value of ‘-1’

corresponds to an uncollided galaxy.

9 Distance to survey edge, redge: Perpendicular distance of the galaxy from the survey

edge. This quantity is given in units of h−1Mpc .

10 Galaxy stellar mass, log M?: Stellar mass of the galaxy, either from the MPA-JHU

catalog or calculated using the B03 formalism. The stellar mass is determined as dis-

cussed in §2.3.2, and it is in units of M�.

11 Stellar mass flag, flag?: Stellar mass flag. It designates the source of the galaxy’s

stellar mass value. A value of ‘1’ corresponds to stellar masses from the MPA-JHU

catalog, while a value of ‘0’ corresponds to stellar masses derived from the B03 for-

malism.

12 Specific star formation rate, sSFR: Logarithmic 10-base specific star formation rate

of the galaxy. This value is calculated by dividing the star formation rate (SFR) of the

galaxy by the galaxy’s stellar mass, (M?). A galaxy is assigned a value of ‘nan ’ if it

did not have a corresponding SFR value in the NYU-VAGC catalog. sSFRis given in units

of yr−1.

13 Group ID: ID of the galaxy group, to which the galaxy belongs. This variable is

computed by the berlind-fof algorithm.

14 Group galaxy type, TypeG: Group type of the galaxy. We denote a value of ‘1’ to

group central galaxies, and a value of ‘0’ to group satellite galaxies. As mentioned in

§2.2, central and satellite galaxies undergo different evolutionary paths. For this rea-

son, it is important to make the distinction between the two types of galaxies. After

determining the group membership of each galaxy, we designate the galaxy type based

on the galaxy’s stellar mass or absolute magnitude. For the case of mr-set , we des-
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ignate the brightest galaxy of the group in the r-band as the group central, while the

rest of galaxies are identified as group satellites. Hence, a galaxy group is composed

of one bright group central and a number of group satellites. For the mstar-set ,

we identify the group central as the most massive galaxy in the group. This criterion

is motivated by the idea that central galaxies grow in mass and brightness by galactic

cannibalism (Dubinski, 1998; Cooray & Milosavljević, 2005), while satellite galaxies

experience a series of events that strip them from their mass and inhibit star formation

(e.g ram-pressure stripping and tidal stripping).

In Table 2.3, we present an excerpt of the ‘Member Galaxies of Groups’ catalog for

the Mr19-SDSS sample. The rest of the table and the tables for Mr20-SDSS and Mr21-SDSS

are available at the url in 2. Next, we discuss the mock group and galaxy catalogs that we

produce after running the berlind-fof on the mock galaxy catalogs from §2.3.3.
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2.4.3 Mock Group Catalogs

We are interested in producing a set of mock catalogs analogous to the ones presented

in §2.4.2. We apply the berlind-fof group-finder to the set of mock galaxy catalogs from

§2.3.3, and produce corresponding sets of Mock Group Cluster Catalog and Mock Member

Galaxies of Groups and Clusters catalogs for the Mr19-SDSS, Mr20-SDSS, and Mr21-SDSS

samples.

The format of ‘Mock Group Cluster Catalog’ is similar to the one presented in §2.4.2.1,

with the exceptions of Mg, redge and log sS FRG of each group. The final format of this

version of ‘Mock Group Cluster Catalog’ is shown in Table 2.4. For each group, we include

the following information:

Mock Group and Cluster catalog

1–9 These parameters are calculated in the same way as those presented in Table 2.2

10 Group’s ‘true’ mass, log Mhalo: ‘True’ group mass. For a galaxy group, we wish

to know the true, realistic mass that represents the underlying DM distribution of the

halo. We estimate this mass for galaxy groups based on the contributions of number of

galaxies from each of the DM halos that contribute galaxies to the group to the overall

number of galaxies in the group. We quantify these contributions by determining the

‘pointing fraction’ of group-halo pairs, fh,g, using Equation 2.11,

fh,g =
N2

c

Nh×Ng
(2.11)

where ‘Nc’ corresponds to the number of galaxies shared between the galaxy group

and the halo; ‘Nh’, to the total number of galaxies in a given halo; and ‘Ng’, to the

total number of galaxies in the group. The halo, whose fh,g is the largest out of all the

group-halo pairs will be identified as the halo that is most representative of the group,

i.e. the group is mostly comprised of galaxies from this DM halo. We assign the mass
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Table 2.4: Mock Group Catalogue Parameters

Column Param. Description Unit

1 Group ID . . ID of the galaxy group -
2 N . . . . . . . . . . Group richness -
3 RA . . . . . . . . Right ascension of group centroid deg
4 Dec . . . . . . . . Declination of group centroid deg
5 cz . . . . . . . . . . Mean velocity of group kms−1

6 σv . . . . . . . . . One-dimensional line-of-sight
velocity dispersion of group

kms−1

7 Mr,y . . . . . . . . Total r-bandabsolute magnitude -
8 R⊥,rms . . . . . . Rms projected distance h−1Mpc
9 MHAM . . . . . . Estimated group mass via abundance

matching
h−1M�

10 Mhalo . . . . . . . Estimated true group mass h−1M�

Note. — This table summarizes the content of the Group and Cluster catalogues for the
mock catalogues. These catalogues have a similar format as those in Table 2.2. These
catalogues are available for the Mr19, Mr20, and Mr21 mock galaxy samples.

of this halo t the group, and refer to this mass as the group’s halo mass, Mhalo. In the

case where there are two halos with equal fh,gvalues, we randomly choose one of the

halos and assign its mass Mhalo. Each galaxy group in the mock galaxy catalog has

both a Mhalo and MHAM masses, while groups in the group catalogs only have MHAM

masses. In the case of a perfect group finder, both masses, MHAM and Mhalo, would be

very similar. This is not the case due to group-finding errors

Additionally, we construct a ‘Mock Group Member Galaxies’ catalog that includes the

true positions, velocities, halo and group membership of mock galaxies for the Mr19-Mock,

Mr20-Mock, and Mr21-Mock samples. Table 2.5 shows the format of this catalog. For each

mock galaxy, we include the following information

Mock Member Galaxies of Groups catalog

1–2 Angular coordinates, ra, dec: Angular coordinates of the galaxy. The (J2000) right

ascension and declination are given in unts of degrees.
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3 czobs: Line-of-sight component of the galaxy with respect to the observer. This com-

ponent includes the redshift-space distortions due to the peculiar velocity of the galaxy.

This quantity is given in units of kms−1.

4 cztrue: Line-of-sight velocity component of the galaxy, without the effects of redshift-

space distortions. This provides a measure of the exact location of the galaxy with

respect to the observer. This quantity is given in units of kms−1.

5 cz⊥: Tangential velocity component of the galaxy’s peculiar velocity. This quantity is

connected to the absolute value of the peculiar velocity of the galaxy, vp, as follows:

v2
p = (czobs− cztrue)2 + cz2

⊥ (2.12)

This quantity is given in units of kms−1.

6 Absolute Magnitude, M0.1,r: r-band absolute magnitude of the galaxy. This value is

assigned using the ranking of the luminosities from the CLF and the absolute magni-

tudes from SDSS DR7, as described in §2.3.3.2. In the case of mstar-set , stellar

mass is included instead of M0.1,r.

7 Halo ID: True halo membership. This variable indicates the ID of the DM halo, to

which the galaxy belongs.

8 Halo richness, Ngal, h: Total number of galaxies in the galaxy’s host DM halo. Some

galaxies may not be present in a catalog due to geometrical and/or redshift cuts made

to the sample.

9 Halo galaxy type, Typehalo: Type of the galaxy in the halo. This parameter indicates

if the galaxy is a central or satellite in the halo. As discussed in §2.3.3.1, a halo can

only have one central galaxy, but the number of satellite galaxies can range from zero

to multiple satellite galaxies, depending on the mass of the halo. We denote a value of
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Table 2.5: Mock Group Member Galaxies Catalogue Parameters

Column Param. Description Unit

1 RA . . . . . . . . . (J2000) Right Ascension deg
2 Dec . . . . . . . . (J2000) Declination deg
3 czobs . . . . . . . Line-of-sight observed velocity kms−1

4 cztrue . . . . . . . True line-of-sight velocity kms−1

5 cz⊥ . . . . . . . . . Tangential velocity component kms−1

6 M0.1r . . . . . . . r-band absolute magnitude -
7 HaloID . . . . . True halo membership -
8 Nh . . . . . . . . . Number of galaxies in halo -
9 Halo type . . . Galaxy type in the halo -

10 GroupID . . . Group membership of the galaxy -
11 TypeG . . . . . Galaxy type in group -

Note. — This table summarizes the content of the Group and Cluster catalogues for the
mock catalogues. These catalogues are available for the Mr19, Mr20, and Mr21 mock galaxy
samples.

‘1’ to halo central galaxies, and a value of ‘0’ to group satellite galaxies.

10 (g− r) colour of galaxy: The difference between the absolute magnitudes in the g-band

and r-band. This variable was assigned to mock galaxies in a manner similar to that of

sSFR.

11 Galaxy morphology: This parameter gives an insight into the morphology of the

galaxy. This variable was assigned to mock galaxies in a similar fashion as sSFRand

(g− r) colours.

Finally, we construct a set of ‘perfect’ mock group catalogs based on the the mock group

galaxy catalogs. The idealized versions of group catalogs are comprised of groups that

perfectly recover the group membership of galaxies, i.e. a group is comprised of galaxies

from the same DM halo. For each of these groups, we recompute group properties such as

total stellar mass and r-band luminosity, specific star formation rate, velocity dispersion,

among others, using the new set of galaxies. This approach allows for the study of ‘perfect’,

idealized systems of galaxies, as they do not, by construction, include any group-finding
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errors. This set of catalogs will prove to be useful when determining the impact that group-

finding errors have on different metrics that quantify the efficiency and performance of the

berlind-fof group-finder.

The reader is directed to the URL in 2 to obtain copies of both the SDSS (mock) group

and galaxy catalogs for the rest of Mr19, Mr20, and Mr21 samples.

2.5 Group-Finding Errors

A group finder can suffer of different failure modes that can ultimately change the prop-

erties of the overall group population. In this section, we identify different ways a group-

finder can fail at identifying galaxy groups (§2.5.1); the failures involves in determining

galaxy types within a group, along with the metrics used to evaluate the overall perfor-

mance of the group finder (§2.5.2); and the effects that group-finding errors have in the

estimation of group mass (§2.5.3).

2.5.1 Merging and Fragmentation

The goal of a group-finder is to correctly identify the galaxies from the same DM halo.

In an ideal scenario, a ‘perfect’ group-finder would be able to identify and group those

galaxies from the same DM halo, while distinguishing among those galaxies from distinct

halos. Such algorithm would produce a set of perfect group catalogs, both in real- and

redshift-space. Unfortunately, one of the main challenges that a group-finder faces is to

correctly identify the group membership of galaxies. Figure 2.3 shows the schematic of the

second largest galaxy group as defined by the berlind-fof group-finder in the Mr19-SDSS

galaxy catalog. Each panel corresponds to the two-dimensional projection of the group

in Cartesian coordinates centered at the group centroid in redshift-space. The black cross

corresponds to the coordinates of the group centroid. Each point corresponds to the location

of member galaxies in the group, with the size of the point being representative of the

galaxy’s stellar mass, i.e. larger dots correspond to galaxies with larger stellar masses than

galaxies with smaller dots. Each galaxy is also color-coded by its specific star formation
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rate, with bluer colours corresponding to more active galaxies than redder galaxies. Finally,

the position of the group central galaxy is shown by the black circle.

The X-Y projection is analogous to how the galaxy group would look on the sky to an

observer, while the Z-coordinate is parallel to the line-of-sight direction of the observer. In

redshift-space, galaxy groups suffer from redshift-space distortions, as they appear elon-

gated along the line-of-sight direction due to the peculiar motions of the galaxies, as they

move within the group itself. This finger-of-god effect distorts the relative positions and

velocities of galaxies, as some galaxies may appear to be closer to the observer than in

reality, and vice-versa. By visually inspecting the galaxy group in Figure 2.3, this group

portraits the effects of redshift-space distortions, as it is possibly the result of galaxies from

distinct halos being merged into a single group. We use the mock catalogs from §2.3.3 to

investigate this further.

Throughout this analysis, we adopt the terminology presented in Duarte & Mamon

(2014) and define two failure modes in the identification of group membership of galax-

ies, and refer to these as ‘fragmentation’ and ‘merging’ of DM haloes. A halo has been

fragmented if its member galaxies have been assigned to multiple galaxy groups. On the

contrary, a halo has been merged if its galaxies have been assigned to a group that is com-

prised of galaxies from multiple haloes. These concepts are illustrated in Figure 2.2, with

‘fragmentation’ in top panel and ‘merging’ in the bottom panel. Solid circles corresponds

to the boundaries of DM haloes, within which coloured the points correspond to galax-

ies that truly reside in the haloes. Galaxies from the same halo share the same colour.

Dashed circles on the right correspond to the boundaries of galaxies groups, as identified

by the group finder. Additionally, this figure includes the pointing fractions, fh,g, for each

halo-group pair, as described in Equation 2.11.

We are interested in exploring the impact that group-finding errors have on the galaxy

assignment to groups. In a complementary fashion to Figure 2.3, we explore how these

errors affect the group population in mock catalogs. Figure 2.4 shows the schematic of
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the largest galaxy group in the Mr19-Mock galaxy sample across all mock galaxy catalogs.

The panels in the figure are similar to the ones from Fig. 2.3. The black cross corresponds

to the coordinates of the group centroid as defined the berlind-fof group-finder. Each

dot corresponds to the Cartesian coordinates of galaxies, with each galaxy being color-

coded by its halo membership, i.e. galaxies from the same DM halo share the same color.

Additionally, member galaxies of the galaxy group have an additional black edge. The

colored circles in the x−y panel show the haloes that contribute with galaxies to the group,

with each circle’s radius denoting the virial radius of the halo. Finally, the location of the

group central galaxy is depicted by the black star within the black circle.

The group in Fig. 2.4 is comprised of galaxies from 116 different DM haloes and a

total of 528 galaxies. This group is an example of multiple haloes being merged into a

single galaxy group. This aspect is an artifact of the FoF algorithm, and it can lead to other

cascading effects, as discussed in §2.5.2.

2.5.2 Galaxy type designation

The second challenge during the group-finding process pertains to the correct classifi-

cation of group central and satellite galaxies. As mentioned in §2.4, we define the group

central galaxy as being the brightest or most massive galaxy in the group, depending on

the type of group catalog. Group-finders that rely solely on the position and velocity infor-

mation of galaxies can incorrectly place galaxies into groups due to ‘merging’ and ‘frag-

mentation’ errors, and these lead to incorrect designations of the galaxy type of member

galaxies. They also increase the likelihood for halo centrals to be misidentified as group

satellites, and vice-versa. Ultimately, the misclassification of galaxy type lead to error in

the overall group mass estimation, as discussed in the next section.

The impact of group-finding errors on the classification of galaxy types can be measured

by quantifying the following metrics of a group galaxy catalog:

• Purity: Fraction of group central (satellite) galaxies that are also central (satellite)
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Figure 2.2: Illustration of ‘fragmentation’ (top) and ‘merging’ (bottom) of DM haloes.
Solid circles on the left correspond to the boundaries of DM haloes, within which the
coloured points refer to galaxies that truly reside in the haloes. Each point is colour-coded
based on its host halo. Dashed circles on the right correspond to the boundary of galaxy
groups, as identified by the group-finder. The relative size of each circle can be interpreted
as the group/halo mass of the system. Additionally, we compute the pointing fractions for
each halo-group pairs, as described in Equation 2.11.
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Figure 2.3: Schematic of the second largest galaxy group as defined by the berlind-fof
group-finder in the Mr19-SDSS galaxy catalog. Each panel corresponds to a two-
dimensional projection of the group in Cartesian coordinates centered at the centroid of
the galaxy group. The black cross corresponds to the coordinates of the group centroid.
Additionally, each point corresponds to the locations of member galaxies in the group,
with the size of the point being representative of the amount of stellar mass in each galaxy,
i.e. smaller dots correspond to less massive galaxies, while larger dots correspond to more
massive member galaxies in terms of stellar mass content. Each galaxy is color-coded
based on its specific star formation rate, with bluer colors corresponding to more active
galaxies than more redder galaxies. Finally, the central galaxy is depicted by the black
circle.
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Figure 2.4: Schematic of the largest galaxy group found by the berlind-fof group-finder
across all galaxy catalogs in the Mr19-Mock galaxy sample. The panels in this figure are
similar to those in Fig 2.3. The black cross corresponds to the coordinates of the group
centroid as defined by the group-finder. Each dot corresponds to the Cartesian coordinates
of galaxies, with each galaxy being color-coded by its halo membership, i.e. galaxies from
the same dark matter halo share the same color. Additionally, member galaxies of the
galaxy group have an additional black edge. In the x− y panel, colored circles show the
halos that contribute with galaxies to the group, with each circle’s radius denoting the virial
radius of the halo. Finally, the central galaxy is depicted by the black star within the black
circle.
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galaxies in their host DM halo.

• Completeness: Fraction of halo central (satellite) galaxies that are also central (satel-

lite) galaxies in their galaxy group.

We adopt the nomenclature presented in Campbell et al. (2015) to describe purity and

completeness by defining the completeness of central and satellite galaxies as

Ccen =
Ncen|cen

Ncen|cen + Nsat|cen
(2.13)

and

Csat =
Nsat|sat

Nsat|sat + Ncen|sat
(2.14)

where, for example Ncen|sat refers to the number of halo satellite galaxies that have been

identified as group central galaxies. Similarly, purity of central and satellite galaxies are

defined as

Pcen =
Ncen|cen

Ncen|cen + Ncen|sat
(2.15)

and

Psat =
Nsat|sat

Nsat|sat + Nsat|cen
(2.16)

To clarify further, the total number of galaxies and number of galaxy groups in the

catalog are defined by

Ngal = Ncen|cen + Ncen|sat + Nsat|cen + Nsat|sat (2.17)

Ngroups = Ncen|sat + Ncen|cen (2.18)
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These two metrics provide an insight into how well a group-finder is performing, and

about its efficiency at classifying central and satellite galaxies in a group. Figure 2.5 shows

the purity and completeness levels for central and satellite galaxies in the Mr19-Mock galaxy

sample. In the top panel, the light blue (red) bars correspond to the fractions of group cen-

tral (satellite) galaxies that are also central (satellite) galaxies in their corresponding DM

haloes, as a function of galaxy group richness. Similarly, the dark-shaded blue (red) bars

correspond to the fraction of group central (satellite) galaxies that are also halo central

(satellite) galaxies and reside in DM haloes of similar sizes as their corresponding groups.

In the bottom panel, the light blue (red) bars correspond to the fractions of halo central

(satellite) galaxies that have been correctly classified as group central (satellite) galaxies,

in bins of halo richness. Similarly, the dark-shaded blue (red) bars correspond to the frac-

tions of halo central (satellite) galaxies that have been correctly classified as group central

(satellite) galaxies in their group, and reside in galaxy groups of similar sizes as their host

DM haloes.

Figure 2.5 shows prominent results about the inner-workings of the berlind-fof

group-finder. From this figure, we notice that halo central galaxies are being correctly

classified as group centrals 80− 90% of the time, regardless of the number of galaxies of

the galaxy group. Halo satellites exhibit a similar trend as that of halo centrals, as they

are being correctly classified as group satellites at a similar rate. However, this fraction

gets smaller with increasing halo richness and when controlling for group and halo sizes,

as satellites tend to be correctly identified as group satellites 60−70% of the time for halos

with nine or more galaxies. Additionally, we notice that in poor groups with as much as 4

galaxies, ∼ 50% of group satellite galaxies are truly halo satellites. This fraction improves

for groups with more galaxies, reaching purity levels of up to ∼ 84%. Group centrals tend

to be true halo centrals about 90% of the times, regardless of the group richness. This

fraction becomes smaller when taking the group and halo richness into account, reaching

purity levels of up ∼ 60% for groups with three and 8 galaxies. This fraction increases
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up to purity levels of ∼ 83% for group centrals that are truly central galaxies and reside in

galaxy groups of similar size as their host haloes. This figure shows that the berlind-fof

group-finder is efficient but not perfect at correctly identifying central and satellite galaxies

within a group environment.

Additionally, the results of this analysis are in agreement with those by Campbell et al.

(2015), in which they report similar trends of purity and completeness for central and satel-

lite galaxies. In their work, they analyze these metrics for three different group-finding

algorithms as functions of group and halo mass. The results in this work differ from Camp-

bell et al. (2015) in that they use a single luminosity-based group galaxy catalog, and com-

pute these metrics as functions of mass. However, in this analysis we utilize all of the

mock catalogs to compute purity and completeness metrics as a function group and halo

richnesses. We will discuss this further in §2.7.

2.5.3 Halo mass estimates

The third challenge during the group-finding process deals with correctly estimating

the masses of galaxy groups, and how these are affected by group-finding errors, such as

the ones discussed in previous sections. As mentioned in §2.4.2 and §2.4.3, group masses

are determined by assuming a monotonically increasing relation between the group total

stellar mass or luminosity and a mass function. However, group-finding errors, such as

fragmentation and merging of haloes, can lead to a false estimate of the group mass. For

example, in the case of fragmentation, in which galaxies from a single halo are being

distributed among various groups, the total stellar mass or luminosity of the group is lower

than expected, resulting in an underestimate of the total mass of the group. The opposite is

true for ‘merging’, in which galaxies from distinct haloes are assigned to a single group. In

this case, the total stellar mass and luminosity of the group is greater than expected when

no merging takes place, thus leading to an overestimate of group mass.

To understand this further, we explore the effects that group-finding errors, such as
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Figure 2.5: Purity and completeness of central and satellite galaxies in the Mr19-Mock
galaxy sample. Top panel: The light blue (red) bars correspond to the fractions of group
central (satellite) galaxies that are also central (satellite) galaxies in their corresponding DM
halo, as function galaxy group richness. Similarly, the dark-shaded blue (red) bars corre-
spond to the fraction of group central (satellite) galaxies that are 1) also central (satellite)
galaxies in their DM halo, and 2) reside in DM halos of similar size as their corresponding
galaxy group. All fractions are given in terms of galaxy group richness. Bottom panel:
In this panel, the light blue (red) bars correspond to the fractions of halo central (satellite)
galaxies that are classified as group central (satellite) galaxies, as function of halo rich-
ness. Similarly, the dark-shaded blue (red) bars show the fractions of halo central (satellite)
galaxies that 1) are classified as group central (satellite) galaxies, and 2) reside in galaxy
groups of similar size as their parent DM halo. All fraction in this panel are given in terms
of number of galaxies in a given halo.
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fragmentation and merging, have on the final assessment of group mass. We define two sets

of galaxy groups based on the ‘pointing fractions’ (see Equation 2.11), and refer to these

as good and bad matches. In the case of merging and fragmentation, haloes can contribute

with galaxies to multiple groups, while a group can be comprised of galaxies from multiple

haloes (see Fig. 2.2). However, we are interested in determining which group is mostly

representative of a given halo, and vice versa. For example, Fig. 2.2 shows the case where

a halo ‘A’ is being fragmented into 3 different groups. However, this halo points only to

the first galaxy group, as most of its galaxies get assigned to this group. Similarly, the first

group points to halo ‘A’, as most of its galaxies are true members of this halo. A ‘good

match’ corresponds to the group-halo pair, in which both the halo and group point to each

other. Any other group is considered a catastrophic failure or ‘bad match’. Catastrophic

failures are indicative of fragmentation, and they account for ∼ 3.4% of galaxy groups

in Mr19-Mock sample. Additionally, we make use of the set of perfect galaxy groups in

mock catalogs (§2.4.3) to determine how well group masses are being recovered, when no

group-finding errors are involved.

Figure 2.6 presents the comparison of groups masses as determined by HAM , MHAM , to

those determined by the pointing method (§2.4.3), Mhalo, for three types of galaxy groups in

Mr19-Mock, i.e. ‘good matches’ (left), ‘bad matches’ (centre), and ‘perfect groups’ (right).

The yellow, solid lines and errorbars correspond to the median and standard deviation of

Mhalo in bins of MHAM. The blue shading shows the frequency of galaxy groups in two-

dimensional bins, where the number of groups in each bin has been normalized by the

value for the bin containing the most galaxies. The dashed black lines show the one-to-

one relation between MHAM and Mhalo. Additionally, in the bottom panel, the yellow line

corresponds to the scatter in Mhalo as a function of MHAM. By comparing Mhalo and MHAM

, one can determine the level of merging and fragmentation induces by the group-finder.

Figure 2.6 shows prominent results, as good and bad matches constitute two distinct

populations when comparing MHAM and Mhalo masses. In the case of ‘good’ matches’,
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Figure 2.6: Galaxy group masses for Mr19-Mock galaxy groups calculated from HAM com-
pared to those determined using the pointing method, for three different kinds of galaxy
groups, i.e. good matches (left), bad matches (centre), and perfect groups (right) Top pan-
els: The x-axis shows mass estimates for galaxy groups through HAM , and y-axis shows the
mass estimates of galaxy groups through the pointing formalism. The blue shading shows
the frequency of galaxy groups in two-dimensional bins, where the number of groups in
each bin is normalized by the value for the bin containing the most galaxies. Yellow
solid lines and errorbars correspond to the mean and standard deviation of Mhalo in bins
of MHAM. The dashed black lines show the one-to-one relation between mass estimates.
Bottom panels: Scatter in Mhalo as a function of estimated group mass, MHAM . Yellow
solid lines correspond to the standard deviation of Mhalo as function of MHAM .
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the median relation is in close agreement to the one-to-one relation, indicating that MHAM

is able to recover the true, underlying DM halo mass with minimal error. Additionally,

the scatter in Mhalo peaks at MHAM ≈ 1013 h−1M�, reaching values of up to 0.5 dex.

The scatter is smaller at smaller and larger MHAM , with values as low as 0.2 dex for

MHAM ∼ 1011.5 h−1M� and MHAM ∼ 1015 h−1M�. This indicates that mid-sized galaxy

groups are more prone to be affected by group-finding errors than low-mass and high-mass

systems, and suggests that merging of haloes takes place within this mass range much more

frequently than at low- and high-mass regimes. On the other hand, ‘bad matches’ exhibit a

different relation. This population is the result of fragmentation, in which member galaxies

of haloes are split into multiple groups. This group-finding error causes MHAM estimates

to be much lower than in reality. The median relation of Mhalo is much larger than that of

‘good’ matches, and includes a much larger scatter in Mhalo. The scatter in Mhalo is large for

small groups with MHAM ≈ 1011.5 h−1M�, and it decreases with increasing MHAM, reach-

ing values down to 0.2 dex in Mhalo for groups with MHAM ≈ 1014.5 h−1M�. As mentioned

earlier, this population only constitutes ∼ 3.4% of the galaxy groups in Mr19-Mock. Lastly,

‘perfect groups’ show a relatively small but steady scatter in MHAM of ∼ 0.2 dex across

MHAM masses. This result suggests that group-finding errors tend to inflate group mass

estimates to levels of up to ∼ 0.2 dex from the true, underlying scatter between MHAM and

Mhalo. Moreover, mid-sized groups have mass estimates that are on average 50% higher

than the true group mass, while both low mass systems and massive clusters have unbiased

mass estimates. We obtain similar results for the Mr20-Mock and Mr21-Mock samples.

2.6 Stellar Content of Group Centrals and Group Satellites

In this section, we explore the stellar content of galaxy groups in SDSS and verify our

results carefully taking into account any effects induces by group-finding errors. In §2.6.1,

we characterize the stellar-to-halo mass relation of central and satellite galaxies as function

of group mass, and predict a correction factor to account for group-finding errors. In §2.6.2,
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we explore the role of group mass in galaxy quenching by carefully analyzing this relation

for central and satellite galaxies in different environments.

2.6.1 Stellar-to-Halo mass relation

One of the most important aspects of the galaxy-halo connection relates to the corre-

lation between galaxy properties and those of haloes. Most empirical models of galaxy

formation relate galaxy properties to properties of their host DM haloes, with larger haloes

hosting larger galaxies with relatively low scatter in the stellar-to-halo mass relation (SHMR)

More et al. (2009); Yang et al. (2009); Leauthaud et al. (2012); Reddick et al. (2013); Wat-

son & Conroy (2013); Tinker et al. (2013); Gu et al. (2016); Behroozi et al. (2018). Hence,

it has become common to explore how average galaxy growth depends on the average

growth of haloes (see Wechsler & Tinker (2018) for a review).

In this section, we are interested in exploring how the SHMR is affected by group-

finding errors, and by much does it change from the true, underlying SHMR. To test the

fidelity of the inferred SHMR from group galaxy catalogs, we use mock galaxy group cata-

logs from Mr19-Mock, and compare it to the perfect mock group catalogs. This comparison

allows us to calculate a correction factor that can be applied to Mr19-Mock to account for

group-finding errors and recover an idealized SHMR of central galaxies. Figure 2.7 shows

the SHMR of central and satellite galaxies as a function of group or halo mass. in Mr19-

Mock group catalogs. In the top panel, the dashed, blue line and the shaded contours corre-

spond to the median relation of stellar mass, M?, and the 1σ, 2σ, and 3σ ranges of M? for

group centrals as functions of group mass in the Mr19-Mock sample. Similarly, the dotted,

cyan line shows the median relation of ‘true’ central galaxies as a function of halo mass, in

the perfect version of the Mr19-Mock group catalogs. Additionally, we add the Moster et al.

(2010) and Behroozi et al. (2013) SHMR of central galaxies as functions of halo mass, for

comparison purposes. In the middle panel, we are showing a correction factor of log M?

for mock group central galaxies, ∆ log(M?)med, as a function of group mass. The blue,
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dashed line shows the correction factor, by which one would modify the SHMR of ‘group’

central galaxies to remove the effects of group-finding errors. Finally, in the bottom panel,

we show correction factor for the scatter in galaxy stellar mass, ∆σ
(
log M?

)
, for central

galaxies as a function of group mass. The red, orange, and cyan lines correspond to the

correction factors of the 1σ, 2σ, and 3σ scatter in SHMR of central galaxies as functions

of group mass, respectively. This relations show the amount of correction one would need

to apply to the scatter in SHMR for group central galaxies in order to remove any effects

induced by group-finding errors.

Figure 2.7 shows prominent results, as it shows that the SHMR of group centrals is not

different by much to that of true central galaxies, i.e. group-finding errors do not affect

the SHMR of central galaxies drastically, yet group-finding errors do influence this relation

slightly. The first panel of this figure compares the SHMR of group centrals to that of halo

central galaxies. The result of such comparison is that these two exhibit a similar trend with

increasing group/halo mass, and are in agreement with the Moster et al. (2010) relation, and

not so much with Behroozi et al. (2010). Moreover, the second panel of this figure shows

the correction factor needed to recover the idealized SHMR for central galaxies as function

of group mass. This quantity is the result of taking difference between the logarithmic 10-

base median SHMR relation of true halo centrals in the ‘perfect’ groups to that of group

centrals in the Mr19-Mock sample. For example, if the correction factor, at a given group

mass, were to have a value of ∆ log(M?)med = 0.1, this would mean that the median SHMR

of group centrals at that given group mass would be adjusted by increasing it by 0.1, in order

to remove the effects of group-finding errors. This panel shows prominent results. It shows

that the median SHMR relations of group central galaxies and true central galaxies are only

affected slightly by group-finding errors. Typically, ∆ log(M?)med ranges from -0.05 dex to

0.05 dex in log M?, with lower-mass group of MHAM ∼ 1011.6 h−1M� reaching values of up

to ∆ log(M?)med ≈ 0.2 dex, while higher-mass groups of MHAM ∼ 1014.4 h−1M� reaching

∆ log(M?)med ≈ 0.05 dex. Similarly, the third panel indicates by much the scatter of the
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SHMR of group centrals as function of group mass would need to increase or decrease in

order to exclude any effects from group-finding errors. For example, if ∆σ
(
log M?

)
= −0.2

at a given group mass, one would need to reduce the width of the scatter by subtracting

0.2 dex from the median SHMR of group centrals, in order to remove effects induced by

group-finding errors. This panel shows that the SHMR of group centrals in groups with

MHAM / 1012 h−1M� typically would need to increase by factors of up to 0.6 dex in log M?

in order to recover the idealized SHMR of centrals. On the other hand, the SHMR of central

galaxies that live in groups with MHAM ' 1012 h−1M� would need to reduce their scatter by

factors of up to ∆σ
(
log M?

)
≈ −0.5 dex.

After evaluating the results from Fig.2.7 and determining that only a small correction is

needed on the SHMR to account for group-finding errors, we feel confident to apply such

correction to the SHMR of central galaxies in SDSS. Figure 2.8 show the SHMR of group

centrals and group satellites in the Mr19-SDSS. This figure is similar in fashion to the top

panel of Fig. 2.7 with a few exceptions. The solid, blue line shows the median SHMR of

group central galaxies in SDSS as a function of group mass, MHAM. The shaded contours

show the 1σ, 2σ, and 3σ ranges of log M? for group central galaxies. The dotted, blue

line shows the result of applying the correction factor, ∆ log(M?)med, from Fig. 2.7 to the

median SHMR relation of group centrals in SDSS. For comparison purposes, the green and

dark green dashed lines correspond to the SHMR of central galaxies from Moster et al.

(2010) and Behroozi et al. (2010) as functions of halo mass. Lastly, the red dots refer to

the SHMR of group satellites.

We find our SHMR results from Fig. 2.8 to be in agreement with those from Behroozi

et al. (2010) across MHAMmasses. However, they differ from the Moster et al. (2010) at

masses larger than MHAM ≥ 1013 h−1M�. This novel approach leverages the use of mock

group catalogs to understand the errors induced by the group-finding process, and aims

at recovering SHMR of central galaxies while removing any systematic offset induced by

group-finding errors.
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Figure 2.7: Stellar-to-Halo mass relation (SHMR) of central and satellite galaxies in the
Mr19-Mock galaxy sample. Top panel: Galaxy stellar mass of central and satellite galaxies
as a function of mass. The dashed, blue line corresponds to the median relation of stellar
mass, M?, of group central galaxies as a function of group mass in the Mr19-Mock group
catalogs. The shaded contours show the 1σ, 2σ, and 3σ ranges of M? for group centrals
in Mr19-Mock. Similarly, the dotted, cyan line corresponds to the median relation of halo
central galaxies as a function of ‘halo’ mass, in the perfect version of the Mr19-Mock group
catalogs. Additionally, we plot the Moster et al. (2010) and Behroozi et al. (2010) SHMR
relations of central galaxies as functions of halo mass, for comparison purposes. Finally, the
red dots refer to the SHMR of group satellite galaxies in the Mr19-Mock sample. Middle
panel: Correction factor of log M? for mock group central galaxies, ∆ log(M?)med, as a
function of group mass. The dashed, blue line refers to the correction factor of SHMR in
bins of group mass. This relation shows by much one needs to modify the SHMR of central
galaxies to remove the effects of group-finding errors. Bottom panel: Correction factor of
the scatter in galaxy stellar mass, ∆σ

(
log M?

)
, for central galaxies as a function of group

mass. The red, orange, and cyan lines correspond to the correction factors of the 1σ,
2σ, and 3σ scatter in SHMR of central galaxies as functions of group mass, respectively.
These lines show the factor, by which the scatter would need to change in order to remove
the effects of group-finding errors in the SHMR of central galaxies.
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Figure 2.8: Similar in fashion to the top panel of Fig. 2.7, with the exception that the central
and satellite galaxies corresponds to the Mr19-SDSS sample. The solid, blue line shows the
median relation of the SHMR of group central galaxies in SDSS as a function of group
estimated mass, MHAM. The shaded contours correspond to the 1σ, 2σ, and 3σ ranges
of M? for group central galaxies. The dotted, blue line shows the corrected version of
the median relation of the SHMR of group centrals, after applying the correction factor,
∆ log(M?)med from Fig. 2.7. The green and dark green lines correspond to the Moster
et al. (2010) and Behroozi et al. (2010) SHMR of central galaxies as function of halo mass
for comparison purposes. Finally, the red dots refer to the SHMR of group satellites in
Mr19-SDSS.
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2.6.2 Unraveling the role of group mass in galaxy quenching

It is clear that galaxy properties tend to correlate with galaxy environment. As noted in

§2.2, a galaxy sample can be divided into a star-forming blue cloud and a more quenched

red sequence. The origin of this relation is still unclear, yet galaxies in more dense envi-

ronments exhibit an enhance quenched fraction relative to that of galaxies in more isolated

environments. In this work, we are interested in understanding exploring the relationship

between the specific star formation rate (sSFR) of galaxies and galaxy stellar mass as func-

tion of different types of environments, i.e. as a function of group mass. Moreover, we

investigate how group-finding errors affect these relations, and whether or not central and

satellite galaxies exhibit similar trends.

To explore this further, we first quantify to what degree group-finding errors can affect

the sSFR−M? relation of central and satellite galaxies as function of group mass. Fig-

ure 2.9 shows the galaxy specific star formation rate as a function of galaxy stellar mass

for group centrals (top row) and group satellites (bottom row) in the Mr19-Mock galaxy

sample. Each column corresponds to bins of group mass, MHAM. Each panel is divided

into active (top of the panel) and passive (bottom of the panel) galaxies, with division at

log sSFR = 11. The blue (red) solid lines and errorbars correspond to the median and

standard deviation of log sSFR of group central (satellite) galaxies in bins of stellar mass,

M?. For comparison purposes, we show the median relations for group central and group

satellite galaxies in each of the panels as dashed blue and red lines, respectively. Similarly,

Figure 2.10 the sSFR−M? relation of galaxies, with the exception that top and bottom rows

correspond to the true central and satellite galaxies in in the ‘perfect’ version of Mr19-Mock

sample, respectively. Each column corresponds to a bin in group mass, MHAM .

Figure 2.9 and 2.10 show interesting results. By comparing each of the panels on

both figures, we can determine to which degree group-finding errors affect the sSFR−M?

relations for central and satellite galaxies as function of group mass. At fixed group mass

and galaxy type, we conclude that group-finding errors do not severely affect the median
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Figure 2.9: Galaxy specific star formation rate as a function of galaxy stellar mass for group
centrals (top row) and group satellite (bottom row) in the Mr19-Mock galaxy sample. Each
column corresponds to a bin of group mass, MHAM, as listed in each panel. Each panel is
divided into active (top) and passive (bottom) galaxies, with division at log sSFR = −11.
Blue (red) solid lines and errorbars correspond to the median and standard deviations of
log sSFR of group central (satellite) galaxies in bins of M?. We show the lines for group
central and group satellite galaxies in each of the panels to make it easier to compare the
relations among galaxy types.

sSFR−M? relation of galaxies. This result implies that at fixed group mass and galaxy

type, the sSFR−M? relations of active and passive galaxies are unbiased to group-finding

errors, and one can confidently use the berlind-fof group-finder to identify central and

satellite galaxies and characterize the sSFR−M? relation.

The results from Figs. 2.9 and 2.10 are encouraging results, and provide us with the

confidence of applying the berlind-fof to SDSS and characterize the sSFR−M? rela-

tion of central and satellite galaxies as a function of group mass. Figure 2.11 shows the

sSFR−M? relation for group centrals (top row) and group satellite (bottom row) galax-

ies in the Mr19-SDSS galaxy sample. This figure is similar in fashion to Fig. 2.9. This

figure shows two main trends. First, most group centrals become quenched in groups of

MHAM ≥ 1013 h−1M�, while the quenching halo mass scale is higher for group satellites.

Second, at fixed group mass and galaxy quenching state (active or passive), group central
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Figure 2.10: Similar to Fig. 2.9, except that the galaxy sample corresponds to the perfect
version of Mr19-Mock. This figure tries to recover the log sSFR−M? relation of galaxies
if no group-finding errors were involved.

and group satellite galaxies exhibit similar trends with M?. This suggests that, for example,

active centrals and active satellites share a similar trend with increasing M?. This relation

persists with increasing group mass. These results are in agreement with other analyses

that have found that galaxies in denser environments exhibit an enhanced quenched frac-

tion relative to that of galaxies in more isolated, less dense environments (Dressler, 1980;

Postman & Geller, 1984; Kauffmann et al., 2004). Finally, we conclude that group-finding

error do not have impact on the sSFR−M? relation of active and passive galaxies, and one

can confidently employ such algorithm to further characterise this relation.

2.7 Summary and Discussion

In this paper, we investigate the ability to confidently make use of galaxy group catalogs

to explore different aspects of the galaxy-halo connection, including the stellar-to-halo mass

relation (SHMR) of central and satellite galaxies. Moreover, we explore the role that group

mass plays in determining the quenching state of galaxies as a function of galaxy stellar

mass. We are motivated to conduct a comprehensive and robust study of the impact that

group-finding systematic errors have on group mass assignment, galaxy type determination,
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Figure 2.11: Similar to Fig. 2.9, except that the galaxy sample used corresponds to the
Mr19-SDSS galaxy sample.

and characterization of the SHMR of galaxies, in order to implement the use of group

catalogs to further constrain the relationship between galaxies and their host haloes.

Our best cosmological model of structure formation and evolution predicts galaxies to

reside in dark matter (DM) haloes, with the tendency of luminous galaxies to reside in

groups and clusters surrounded by less luminous neighbors. This motivates the usage of

groups to better understand galaxy formation and evolution. These systems can be iden-

tified through various methods, and can identified as overdensities of galaxies or as ex-

tended X-ray sources. With the advent of spectroscopic surveys, galaxy groups can now be

identified by the closeness of their member galaxies with minimum errors associated with

projected effects with the use of group-finding algorithms. An ideal group-finder would

identify member galaxies from the same halo while distinguishing galaxies from distinct

haloes. In reality, these group-finders are limited to work with observations, and it is not

possible to perfectly recover the group membership of galaxies, resulting in ‘group-finding’

errors. These error may impact inferred group statistics, and result in wrong statistical

inferences about the galaxy and group populations. In this analysis, we perform a com-

prehensive analysis of the effect of group-finding errors on several group-related statistics,
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such as purity and completeness of the sample, and group mass assignment, among others,

on three volume-limited galaxy samples of SDSS DR7. Additionally, we test the group-

finding algorithm on multiple types of realistic mock catalogs to test the fidelity of our

results.

The main results of our work are as follows

• We construct three volume-limited samples that contain all galaxies brighter than r-band

absolute magnitudes Mr = -19, -20, and -21 from SDSS Data Release 7. We refer to

these catalogs as Mr19-SDSS, Mr20-SDSS, and Mr21-SDSS, respectively. We assign stel-

lar masses (M?) and star formation rates (SFR) to galaxies from the MPA-JHU Value

Added Catalogue DR7 (MPA-JHU ). We perform this for every galaxy of the three

volume-limited galaxy samples. Additionally, we construct analogous versions of the

SDSS volume-limited samples using realistic mock galaxy catalogs from a cosmological

N-body simulation that traces the evolution of DM in the Universe. Finally, we apply

the the Berlind et al. (2006) (hereafter berlind-fof) group-finding algorithm to Mr19-

SDSS, Mr20-SDSS, and Mr21-SDSS and their corresponding mock catalogs, and construct

galaxy group catalogs for each sample. We refer to these catalogs as Mr19-Mock, Mr20-

Mock, and Mr21-SDSS. Lastly, we construct ‘perfect’ versions of the mock group catalogs

that include no redshift-space distortions and do not suffer from group-finding errors.

• We test the efficiency of berlind-fof to correctly distinguish between central and satel-

lite galaxies in a galaxy sample. We compute the ‘purity’ and ‘completeness’ metrics for

the Mr19-Mock sample, and conclude that central galaxies are correctly identified as cen-

tral galaxies within groups 80− 90% of the time, regardless of galaxy group richness.

Satellite galaxies are correctly identified 60−70% of the time by berlind-fof. More-

over, in poor groups with as much as 4 galaxies, ∼ 50% of group satellite galaxies are

truly satellites in their host haloes. This fraction improves for groups with more galaxies,

reaching purity levels of satellites up to ∼ 84%. Group centrals tend to be central galaxies

in their host haloes ∼ 90% of the times, and this fraction is unbiased to group richness.
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These results are in agreement with C15, in which they report similar trends of purity and

completeness for central and satellite galaxies.

• We test the proficiency of estimating group masses when making use of group galaxy

catalogs. We classify groups from Mr19-Mock into ‘good’ and ‘bad’ matches, and com-

pare these against ‘perfect’ galaxy groups to determine how well group masses are be-

ing recovered for galaxy groups. We find that abundance matched mass, MHAM, are

good estimates of the true, underlying DM halo mass. The scatter in MHAM peaks at

MHAM ≈ 1013 h−1M�, reaching values of up to 0.5 dex. This scatter gets smaller at smaller

and larger MHAM. This indicates that mid-sized galaxy groups are more prone to be af-

fected by group-finding errors than low-mass and high-mass systems, and it suggests that

merging of haloes takes place within this mass range much more frequently than at other

mass regimes.

• After carefully characterizing how group-finding errors affected inferred galaxy group

statistics, we explore the SHMR of galaxies and compute a correction factor that removes

the effects of group-finding errors. We compare the SHMR of central galaxies in galaxy

groups from Mr19-Mock to that of ‘true’ central galaxies in the ‘perfect’ group catalogs

from Mr19-Mock. This lead to a correction factor of the median SHMR relation of central

galaxies as a function of group mass, MHAM. We determine that only a small correction is

needed for the SHMR to account for group-finding errors. We later applied this correction

factor to the SHMR of group centrals in SDSS, and compare the corrected relation of that

of previous empirical models of the SHMR of central galaxies.

• Finally, we explore the dependence of group mass on the quenching state of galaxies as

a function of galaxy stellar mass, sSFR−M?, and explore how it is affected by group-

finding errors. We test the impact of group-finding errors on this relation by comparing

active and passive galaxies in bins of group mass from Mr19-Mock and the perfect group

catalogs, and find that group-finding errors do not severely affect the median sSFR−
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M? relations of central and satellite galaxies as functions of group mass. Moreover, we

explore the sSFR−M? relation in Mr19-SDSS. We find that most group central galaxies

become quenched in groups of of MHAM ≥ 1013 h−1M�, while the quenching halo mass

scale is higher for group satellite. We also conclude that, at fixed group mass and galaxy

quenching state (active and passive), central and satellite galaxies exhibit similar trends

with M?, and follow the same median sSFR−M? relation. This relation persists with

increasing group mass.

• In this paper, we release various sets of galaxy group catalogs for different volume-limited

SDSS galaxy samples, including the set of realistic mock group catalogs. We make these

catalogs available for download.

These results demonstrate the feasibility of using group galaxy catalogs to explore as-

pects of the galaxy-halo connection. Moreover, this analysis provides a robust and compre-

hensive examination of the impact that group-finding errors have on inferred galaxy group

statistics, and validates the use of galaxy group catalogs to further explore various aspects

of the galaxy-halo connection. To conclude, group-finding algorithms suffer from system-

atic errors that may have an impact on the the overall group membership of galaxies, and

can induce systematic offsets to inferred statistics. However, galaxy group catalogs have

proven to be extremely useful when examining various aspects of the galaxy-halo connec-

tion.
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Chapter 3

SMALL- AND LARGE-SCALE GALACTIC CONFORMITY IN SDSS DR7

The following work has been accepted by the Monthly Notices of the Royal

Astronomical Society Journal (Calderon et al. 2018) and is reprinted below in its

entirety

Small- and Large-Scale Galactic Conformity in SDSS DR7

Victor F. Calderon1, Andreas A. Berlind1, Manodeep Sinha2

1 Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235

2 Centre for Astrophysics and Supercomputing, Swinburne University of Technology,

Hawthorn, Victoria 3122, Australia

3ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D)

3.1 Abstract

Galactic conformity is the phenomenon whereby galaxy properties exhibit excess cor-

relations across distance than that expected if these properties only depended on halo mass.

We perform a comprehensive study of conformity at low redshift using a galaxy group cat-

alogue from the SDSS DR7 and their satellites (1-halo), and between central galaxies in

separate haloes (2-halo). We use the quenched fractions and the marked correlation func-

tion (MCF), to probe for conformity in three galaxy properties, (g− r) colour, specific star

formation rate (sSFR), and morphology. We assess the statistical significance of confor-

mity signals with a suite of mock galaxy catalogues that have no built-in conformity, but

contain the same group-finding and mass assignment errors as the real data. In the case of

1-halo conformity, quenched fractions show strong signals at all group masses. However,

these signals are equally strong in mock catalogues, indicating that the conformity signal

is spurious and likely entirely caused by group-finding systematics, calling into question

previous claims of 1-halo conformity detection. The MCF reveals a significant detection of
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radial segregation within massive groups, but no evidence of conformity. In the case of 2-

halo conformity, quenched fractions show no significant evidence of conformity in colour

or sSFRonce compared with mock catalogues, but a clear signal using morphology. In con-

trast, the MCF reveals a small, yet highly significant signal for all three properties in low

mass groups and scales of 0.8− 4h−1Mpc, possibly representing the first robust detection

of 2-halo conformity.

3.2 Introduction

Characterizing the relation between the properties of galaxies and their host dark matter

(DM) haloes – referred to as the “galaxy-halo” connection – has emerged as a powerful tool

to constrain theories of galaxy formation with statistical measurements in galaxy surveys.

The phenomenon called “galactic conformity” is a subtle feature of this galaxy-halo con-

nection, whereby galaxy properties are spatially correlated even at fixed halo mass. Specif-

ically, several studies have claimed to detect a correlation between quenching properties of

galaxies, such as morphology, gas content, star formation rate, neutral hydrogen content,

and broad-band colour, and those of neighbouring galaxies (Weinmann et al., 2006; Ann

et al., 2008; Ross & Brunner, 2009; Kauffmann et al., 2010; Prescott et al., 2011; Wang

& White, 2012; Kauffmann et al., 2013; Knobel et al., 2015; Hartley et al., 2015; Wang

et al., 2015; Kawinwanichakij et al., 2016; Berti et al., 2017; Zu & Mandelbaum, 2018).

This effect of “galactic conformity” exists over two distance regimes, both between cen-

tral and satellite galaxies within the same halo, and between galaxies separated by several

virial radii of their haloes. We refer to these regimes as “1-halo” and “2-halo” conformity,

respectively (Hearin et al., 2015). 2-halo conformity is closely linked to “halo assembly

bias” or “secondary bias” (e.g., Gao et al., 2005; Wechsler et al., 2005; Salcedo et al.,

2017), whereby the clustering of haloes depends on secondary properties, like age, at fixed

mass, and “galaxy assembly bias” (e.g., Croton et al., 2007), whereby galaxies inherit this

clustering when their observed properties correlate with these secondary halo properties.
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Assembly bias provides a natural explanation for 2-halo conformity (Hearin et al., 2015,

2016).

Conformity detections are notoriously difficult to make because it is hard to be confi-

dent that measurements are truly being made at fixed halo mass and also to know whether

a given galaxy pair lives in the same halo or not. At the present time, there are several

detection claims of 1-halo conformity at both low and high redshifts. These studies have

looked at correlations between galaxy properties of the central galaxies and their respec-

tive satellite galaxies. Some have used isolation criteria to distinguish between centrals

and satellites, while others have used group galaxy catalogues to do this. However, the

impact of systematic errors on these results has not been quantified. In the 2-halo regime,

conformity has not yet been detected, as a couple recent works showed convincingly that

past detections were entirely caused by selection biases. The current state of affairs for

both 1-halo and 2-halo galactic conformity is still inconclusive and it is thus important to

investigate this further.

The term “galactic conformity” was first coined by Weinmann et al. (2006, hereafter

W06) after finding a correlation between the colours and star formation rates (SFR) of cen-

tral and satellite galaxies in common Yang et al. (2005) galaxy groups of similar mass at

low-redshifts, i.e. z < 0.05, in SDSS (York, 2000) DR2 (Abazajian et al., 2004). Specifi-

cally, W06 found that in galaxy groups of similar mass, quenched satellite galaxies occur

more frequently around quenched central galaxies than around star-forming central galax-

ies. Controlling for halo mass is of critical importance in conformity studies because the

SFRs of both centrals and satellites decrease with halo mass, which can naturally induce a

conformity-like signal. W06 attempted to control for halo mass by adopting bins in total

group luminosity.

Several subsequent studies also found correlations in SFR and other properties between

central and satellite galaxies, using different methods for distinguishing between centrals

and satellites and different ways of controlling for mass. Ann et al. (2008) used isola-
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tion criteria, rather than a group catalogue, to identify centrals and satellites in SDSS DR5

(AdelmanâĂŘMcCarthy et al., 2007). They found that early-type satellite galaxies tend

to reside in the vicinity of early-type central galaxies, and argue that this conformity in

morphology is likely due to hydrodynamic and radiative influence of central galaxies on

satellite galaxies, in addition to tidal effects. They attempted to control for mass by restrict-

ing their analysis to central galaxies in a limited range of luminosity. Wang & White (2012)

also used isolation criteria to study correlations between isolated bright primary galaxies in

SDSS DR7 (Abazajian et al., 2009) and nearby secondary galaxies (i.e., satellites) in SDSS

DR8 (Aihara et al., 2011). They found that the colour distribution of satellites is redder

for red primaries than for blue primaries of the same stellar mass. This is a similar 1-halo

conformity trend in colour as found by W06, except that Wang & White (2012) control for

central galaxy stellar mass. In addition, Wang & White (2012) compared their results to the

Guo et al. (2011) semi-analytic model (SAM). They found that the SAM predicted a similar

conformity signal as the SDSS. However, when they re-analysed the SAM controlling for

halo mass instead of central galaxy stellar mass, they found a substantially reduced signal.

This implies that a large portion of their observed SDSS conformity signal could be due

to halo mass differences between red and blue galaxies at fixed stellar mass. Phillips et al.

(2014a,b) also used isolation criteria to study the SFR of ∼ 0.1L∗ satellites around isolated

∼ L∗ central galaxies in the local Universe using SDSS DR7. They found that satellites of

quiescent primaries are more than twice as likely to be quenched than similar mass satel-

lites of star forming primaries. Unlike other studies, these authors control for the stellar

mass of satellites, rather than centrals. This might seem risky since satellite galaxy stellar

mass is not expected to correlate strongly with halo mass. However, the authors compare

the velocity distributions of satellites around star forming and quiescent primaries and they

conclude that the difference in halo mass between the two samples is not large enough to

account for the conformity signal they observe. Finally, Knobel et al. (2015) used the Yang

et al. (2012) group catalogue in SDSS DR7 to study the degree of central-satellite confor-
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mity, controlling for several combinations of properties, including total group stellar mass.

They confirmed that satellites of quenched central galaxies are more likely to be quenched

than those of active central galaxies.

Ross & Brunner (2009) found evidence of 1-halo conformity using a completely dif-

ferent approach. They used a Halo Occupation Distribution (HOD; Berlind & Weinberg,

2002) model to fit the clustering of photometric samples in SDSS DR5. They found that

they could only simultaneously match the clustering of all, early- and late-type galaxies

with a model that segregates early- and late-type galaxies into separate haloes as much as

possible. This is similar in spirit to the previous work of Zehavi et al. (2005) who modelled

the cross-correlation function between red and blue galaxies in SDSS DR2, though that

study concluded that red and blue galaxies are well mixed within their haloes. Zehavi et al.

(2010) revisited this issue using SDSS DR7 and found significant evidence of colour seg-

regation into different haloes, but the degree of segregation was much less than that found

by Ross & Brunner (2009).

There have also been studies that have claimed a detection of 1-halo conformity at

higher redshift. Hartley et al. (2015) used isolation criteria in the UKIDSS (Lawrence

et al., 2007) Ultra Deep Survey DR8, to explore the redshift evolution of the correlation

between the SFR of central galaxies and satellite galaxies at intermediate to high redshifts

(0.4 < z < 1.9). They confirmed that passive satellites tend to be preferentially located

around passive central galaxies, and showed that the trend persists to at least z ∼ 2 without

any significant evolution. Kawinwanichakij et al. (2016) carried out a similar analysis and

identified central and satellite galaxies in the range of 0.3 < z < 2.5 by combining imaging

from three deep near-infrared-selected surveys ZFOURGE/CANDELS, UDS, and UltraV-

ISTA (McCracken et al., 2012) and deriving accurate photometric redshifts. They found

that, at similar central stellar mass, satellites of quiescent central galaxies are more likely

to be quenched compared to satellites of star-forming central galaxies. This conformity

signal is only significant at 0.6 < z < 1.6, and becomes weaker at both lower and higher
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redshifts. Kawinwanichakij et al. (2016) argue that their detection is unlikely to arise from

any difference in halo mass between star-forming and quiescent centrals. To check this

they allowed for star-forming centrals to have a stellar mass of up to 0.2 dex higher than

quiescent centrals and found that, though the conformity signal weakens, it does not van-

ish. Most recently, Berti et al. (2017) used isolation criteria in the spectroscopic PRIMUS

Survey (Coil et al., 2011; Cool et al., 2013) to look for conformity at 0.2 < z < 1.0. After

matching the stellar mass and redshift distributions of star-forming and quenched centrals,

Berti et al. (2017) claimed a 3σ detection of a ∼ 5% excess of star-forming neighbours

around star-forming central galaxies on scales of 0-1 Mpc. This conformity signal is sub-

stantially weaker than the W06 signal observed in SDSS at z . 0.05. Berti et al. (2017) also

reported on a 2-halo conformity detection, albeit with weaker statistical significance.

In the 2-halo regime, Kauffmann et al. (2013, hereafter K13) claimed a detection of

conformity using a volume-limited sample of galaxies with redshifts z < 0.03 from the

SDSS DR7. They adopted isolation criteria to identify central galaxies and studied the

median specific SFR of neighbouring galaxies as a function of different properties of the

centrals. K13 found that the SFR of neighbours correlates with that of centrals, even up to

4 Mpc, a distance that is well outside the virial radius of the primary galaxy’s halo. This

2-halo conformity signal is present for low stellar mass galaxies, with massive galaxies

only exhibiting a 1-halo conformity signal. The K13 result was intriguing and motivated a

number of theoretical studies to explain it. However, a pair of recent studies have shown

convincingly that the result in K13 is entirely due to selection bias. Tinker et al. (2018,

hereafter T17) reproduced the result of K13 and then used a group finding algorithm and

a mock catalogue to show that the majority of the 2-halo conformity signal comes from a

subset of satellite galaxies that were mis-identified as primaries in the galaxy sample. Af-

ter removing this small fraction of satellite galaxies, T17 detect no statistically significant

2-halo conformity in galaxy star formation rates. Sin et al. (2017, hereafter S17) carried

out a similar analysis, and argued that the isolation criteria in K13 could potentially in-
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clude low-mass central galaxies in the vicinity of massive systems, and that the large-scale

conformity signal is likely a short-range effect coming from massive haloes. In addition

to the misclassification of satellite galaxies as central galaxies in the isolation criteria, S17

argued that a weighting in favour of central galaxies in very high-density regions, and the

use of medians to characterize the bimodal distribution of sSFRcould potentially amplify

the large-scale conformity signal seen in K13.

Zu & Mandelbaum (2018) came to a similar conclusion about the lack of 2-halo confor-

mity by finding that conformity measurements in SDSS DR7 are consistent with predictions

from the iHOD halo-quenching model (Zu & Mandelbaum, 2015, 2016), in which galaxy

colours depend only on halo mass. This suggests that all conformity signals are simply

due to the combination of the environmental dependence of the halo mass function com-

bined with the strong correlation between galaxy colours and halo mass. In other words,

no galaxy assembly bias or other environmental quenching mechanisms are required to

explain 2-halo conformity signals.

On the theoretical side, there have been several studies looking at both 1-halo and 2-halo

conformity. Paranjape et al. (2015) called into question the conformity signal measured

by K13 at a projected distance of . 4 Mpc by generating mock catalogues with varying

levels of built-in galactic conformity, and comparing these to SDSS galaxies in the Yang

et al. (2007) galaxy group catalogue. They argued against the K13 result being evidence

of galaxy and halo assembly bias. Paranjape et al. (2015) also argued that only at very

large separations, (& 8 Mpc), does 2-halo conformity, driven by the assembly bias of small

haloes, manifest distinctly. They suggest that the observed conformity at . 4 Mpc is simply

due to central galaxies of similar stellar mass residing in haloes of different masses. Other

papers have tried to explore the origin of galactic conformity. Hearin et al. (2016) studied

the correlation between the mass accretion rates of nearby haloes as a potential physical

origin for 2-halo galactic conformity. They found that pairs of host haloes have correlated

assembly histories, despite being separated from each other by distances greater than thirty
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virial radii at the present day. They presented halo accretion conformity as a plausible

mechanism driving 2-halo conformity in SFR. Moreover, they argued that galactic con-

formity is related to large-scale tidal fields, and predicted that 2-halo conformity should

generically weaken at higher redshift and vanish to undetectable levels by z ∼ 1. In this

context, the 2-halo galactic conformity signal in Berti et al. (2017) is consistent with the

Hearin et al. (2016) prediction and Berti et al. (2017) state that their detection of galactic

conformity is thus likely indicative of assembly bias and arises from large-scale tidal fields.

Additionally, Bray et al. (2015) investigated the role of assembly bias in producing galactic

conformity in the Illustris (Vogelsberger et al., 2014) simulation, and argued to have found

2-halo conformity in the red fraction of galaxies. They found that, at fixed stellar mass, the

red fraction of galaxies around redder neighbour galaxies is higher than it is around bluer

galaxies and this effect persists out to distances of 10 Mpc. They concluded by saying that

the predicted amplitude of the conformity signal depends on the projection effects, stacking

techniques, and the criteria used for selecting central galaxies. Lacerna et al. (2018) used

three semi- analytic models to study the correlations between sSFRof central galaxies and

neighbour galaxies out to scales of several Mpc. They predicted a strong 1-halo galactic

conformity signal when the selection of primary galaxies was based on an isolation crite-

rion in real space, and claimed a significant 2-halo conformity signal as far as ∼ 5 Mpc.

However, the overall signal of galactic conformity decreased when satellites that had been

misclassified as central galaxies were removed in the selection of primary galaxies. The

authors concluded that the SAMs used in the analysis do not show galactic conformity for

the 2-halo regime.

Galactic conformity remains a debated topic, and it is unclear if all previous detection

claims are valid. The work of Campbell et al. (2015) exposed the dangers of using group

catalogues to study 1-halo conformity. They showed that group finders do a good job at re-

covering galactic conformity, but they also tend to introduce weak conformity when none is

present in the data. This calls into question previous claims, such as the one by W06. More

69



recently, T17 and S17 challenged the measurement of 2-halo conformity made by K13 by

showing that their isolation criteria were not sufficiently robust. These conflicting results

open the door for improvements in the measurements of 1-halo and 2-halo conformity. In

this paper we investigate both regimes using a galaxy group catalogue from the SDSS DR7.

Our analysis contains three main improvements over previous works. First, we study three

observed properties of galaxies: (g− r) colour, sSFR, and Sérsic index. Second, we use

a new statistic, the marked correlation function,M(rp), in addition to the previously used

quenched fractions. M(rp) is ideally suited for conformity studies and is a more sensitive

probe of weak conformity signals. Third, we use a suite of 100 mock galaxy catalogues

to quantify the statistical significance of our results. The mock catalogues do not have any

built-in conformity, but they are affected by the same systematic errors as the SDSS data.

By comparing our SDSS measurements to the distribution of mock measurements, we can

quantify the probability that whatever signal we detect could have arisen from a model with

no conformity.

This paper is organized as follows. In §3.3, we describe the observational and simu-

lated data used in this work, as well as the main analysis methods. In §3.4, we present a

detailed examination of galactic conformity, distinguishing between 1-halo (§3.4.1) and 2-

halo (§3.4.2). We summarize our results and discuss their implications in §3.5. The Python

codes and the catalogues used in this project will be made publicly available on Github 1

upon publication of this paper.

3.3 Data and Methods

In this section, we present the datasets used throughout this analysis, and introduce the

main statistical methods that we use to search for conformity signals. In §3.3.1 we briefly

describe the SDSS galaxy sample that we use, along with the parameters that are included

in this catalogue. In §3.3.2 we summarize how we identify galaxy groups and estimate

their masses. In §3.3.3 we describe in detail the mock catalogues that we use throughout
1https://github.com/vcalderon2009/SDSS_Conformity_Analysis
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the paper. Finally, we describe the two main statistical methods for probing conformity in

§3.3.4 and §3.3.5.

3.3.1 SDSS Galaxy Sample

For this analysis, we use data from the Sloan Digital Sky Survey. SDSS collected its

data with a dedicated 2.5-meter telescope (Gunn et al., 2006), camera (Gunn et al., 1998),

filters (Doi et al., 2010), and spectrograph (Smee et al., 2013). We construct our galaxy

sample from the large-scale structure sample of the NYU Value-Added Galaxy Cat-

alogue (NYU-VAGC; Blanton et al., 2005), based on the spectroscopic sample in Data

Release 7 (SDSS DR7; Abazajian et al., 2009). The main spectroscopic galaxy sam-

ple is approximately complete down to an apparent r-band Petrosian magnitude limit of

mr = −17.77. However, we have cut our sample back to mr = −17.6 so it is complete

down to that magnitude limit across the sky. Galaxy absolute magnitudes are k-corrected

(Blanton et al., 2003) to rest-frame magnitudes at redshift z = 0.1.

We construct a volume-limited galaxy sample that contains all galaxies brighter than

Mr = −19, and we refer to this sample as Mr19-SDSS. The redshift limits of the sample

are zmin = 0.02 and zmax = 0.067 and it contains 90,893 galaxies with a number density

of ngal = 0.01503h3Mpc−3. The sample includes the right ascension, declination, redshift,

Sérsic index, and (g− r) colour for each galaxy.

To each galaxy, we assign a star formation rate (SFR) using the MPA Value-Added

Catalogue DR7 2. This catalogue includes, among many other parameters, stellar masses

based on fits to the photometry using Kauffmann et al. (2003) and Salim et al. (2007), and

star formation rates based on Brinchmann et al. (2004). We cross-match the galaxies of the

NYU-VAGC catalogue to those in the MPA-JHU catalogue using their MJD, plate ID, and

fibre ID. A total of 5.85% of galaxies in the sample did not have corresponding values of

SFR and we remove them from the sample. This leaves a sample of 85,578 galaxies. For

each of these galaxies, we divide its SFR by its stellar mass to get a specific star formation
2http://www.mpa-garching.mpg.de/SDSS/DR7
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rate sSFR.

sSFRand (g− r) colour are highly correlated galaxy properties with the main difference

coming from dust attenuation that moves some intrinsically star forming galaxies onto the

red sequence. However, we have chosen to use both galaxy properties in this analysis in

order to facilitate the comparison of our work to previous claims of conformity detection.

3.3.2 Group Finding Algorithm and Mass Assignment

We identify galaxy groups using the Berlind et al. (2006) group-finding algorithm. This

is a Friends-of-Friends (FoF; Huchra & Geller, 1982) algorithm that links galaxies recur-

sively to other galaxies that are within a cylindrical linking volume. The projected and

line-of-sight linking lengths are b⊥ = 0.14 and b‖ = 0.75 in units of the mean inter-galaxy

separation. This choice of linking lengths was optimized by Berlind et al. (2006) to iden-

tify galaxy systems that live within the same dark matter halo. In each group, we define the

most luminous galaxy (in the r-band) to be the ‘central’ galaxy. The rest of the galaxies are

defined as ‘satellite’ galaxies.

We estimate the total masses of the groups via abundance matching, using total group

luminosity as a proxy for mass. Specifically, we assume that the total group r-band lumi-

nosity Lgroup increases monotonically with halo mass Mh, and we assign masses to groups

by matching the cumulative space densities of groups and haloes:

ngroup(> Lgroup) = nhalo(> Mh). (3.1)

To calculate the space densities of haloes, we adopt the Warren et al. (2006) halo mass

function assuming a cosmological model with Ωm = 1−ΩΛ = 0.25, Ωb = 0.04, h ≡ H0/

(100 km s−1 Mpc−1) = 0.7, σ8 = 0.8, and ns = 1.0. We refer to these abundance matched

masses as group masses, Mgroup.
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3.3.3 Mock Galaxy Catalogues

To quantify the statistical significance of any conformity signal that we measure using

our SDSS groups, it is necessary to compare to a null model (i.e., no intrinsic confor-

mity) that incorporates the same systematic errors as our measurements and also includes

robust error distributions. For this purpose, we construct a suite of 100 realistic mock cat-

alogues that are based on the Large Suite of Dark Matter Simulations (LasDamas) project3

(McBride et al., 2009).

We start with a set of 50 cosmological N-body simulations that trace the evolution of

dark matter in the Universe and have sufficient volume and mass resolution to properly

model the Mr19-SDSS sample. These simulations assumed the same cosmological model

described at the end of §3.3.2. Dark matter haloes were identified with a FoF algorithm

(Davis et al., 1985) using a linking length of 0.2 times the mean inter-particle separation.

We used an HOD model to populate the DM haloes with central and satellite galaxies,

whose numbers as a function of halo mass were chosen to reproduce the number density,

ngal, and the projected 2-point correlation function, wp
(
rp

)
, of the Mr19-SDSS sample.

Each central galaxy was placed at the minimum of the halo gravitational potential and was

assigned the mean velocity of the halo. Satellite galaxies were assigned the positions and

velocities of randomly chosen dark matter particles within the halo. Within each simulation

box, we applied redshift space distortions and then we carved out two independent volumes

that precisely mimic the geometry of our Mr19-SDSS sample. This procedure yields 100

independent mock catalogues from the 50 simulation boxes.

To assign a luminosity to each mock galaxy, we adopt the formalism of the conditional

luminosity function (CLF; Yang et al., 2003; Van Den Bosch et al., 2003) that specifies

functional forms for the luminosity distributions of central and satellite galaxies as a func-

tion of halo mass. Specifically, we use the Cacciato et al. (2009) version of the CLF, but

modified slightly to match our adopted cosmological model (Van den Bosch, private com-

3http://lss.phy.vanderbilt.edu/lasdamas/
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munication). We then abundance match the luminosities obtained from the CLF to the

r-band absolute magnitudes in Mr19-SDSS. As a result, our mock catalogues have the same

exact luminosity function as the SDSS data.

We assign specific star formation rates, (g−r) colours and Sérsic indices to mock galax-

ies by first adopting the formalism presented in Zu & Mandelbaum (2016, hereafter Z16),

and then sampling from the original distributions of sSFR, (g− r) colour and Sérsic in-

dices of Mr19-SDSS. Specifically, we adopt the ‘halo’ quenching model from Z16, which

assumes that halo mass is the sole driver of galaxy quenching. According to that model,

the red/quenched fraction of central and satellite galaxies is given by

f red
cen (Mh) = 1− exp

[
−(Mh/M

qc
h )µ

c]
(3.2)

and

f red
sat (Mh) = 1− exp

[
−(Mh/M

qs
h )µ

s]
, (3.3)

where Mqc
h , Mqs

h , µc, and µs are parameters of the model that Z16 fit to the observed clus-

tering and galaxy-galaxy lensing measurements of red and blue galaxies in the SDSS. We

assign each of our mock galaxies a probability of being quenched from equations (3.2)

and (3.3) and we randomly designate it as ‘active’ or ‘passive’ consistent with that proba-

bility (e.g., if f red
sat = 0.8 for a particular mock satellite galaxy, we give it an 80% chance of

being labelled ‘passive’). To assign realistic values of sSFR, (g−r) colour, and Sérsic index

to mock galaxies, we divide the observed distributions of these properties of Mr19-SDSS

into ‘active’ and ‘passive’ distributions by making cuts at log10 sSFR =−11, (g−r)cut = 0.75

and ncut = 3 for sSFR, (g− r) colour, and Sérsic index, respectively. For example, to assign

sSFRvalues to mock galaxies, we do the following. For each mock galaxy, we randomly

draw a sSFRvalue from the active or passive distribution, depending on the designation

that the mock galaxy has received. Moreover, we do this in a way that preserves the joint
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sSFR-luminosity distribution. For example, if a mock galaxy has been labelled ‘active’,

we randomly select a real active galaxy from Mr19-SDSS that has a similar luminosity as

the mock galaxy, and we assign its sSFR to the mock galaxy. As a result of this procedure,

the final joint sSFR-luminosity distribution of mock galaxies closely resembles the one for

Mr19-SDSS. However, the model contains no intrinsic 1-halo or 2-halo conformity because

the galaxy sSFR values only depend on halo mass. We apply this same procedure to as-

sign (g− r) colours and Sérsic indices to each mock galaxy in order to preserve the joint

distributions of these galaxy properties with luminosity as seen the Mr19-SDSS sample.

After constructing our 100 mock catalogues, we run the group-finding algorithm on

each one to produce a corresponding group catalogue. We then label each mock galaxy as

‘central’ or ‘satellite’ and estimate total group masses by following the same methodology

as in §3.3.2. The end result is a set of mock catalogues that do not have built-in galac-

tic conformity in sSFR, (g− r) colour, or Sérsic index, but suffer from the same kinds of

systematics as the SDSS data, i.e. group-finding errors that lead to central-satellite mis-

classification and errors in the estimated group masses.

3.3.4 Quenched Fraction Difference ∆ fq

Previous studies of conformity have mostly focused on measuring the fractions of

quenched neighbour galaxies around active and passive primary galaxies, either as a func-

tion of group mass or as a function of distance (e.g., W06, K13). Following these studies,

we also consider quenched fractions of neighbour galaxies, focusing on the difference be-

tween the fraction for passive primaries and that for active primaries. Moreover, we use

three different galaxy properties to search for conformity: (g− r) colour, sSFR, and Sérsic

index. The cuts we use to designate galaxies as red, passive or early type are (g− r) > 0.75,

log sSFR < −11, and n > 3, respectively. These are the same cuts we discuss in §3.3.3.

To explain this better, let us consider the specific case of probing 1-halo conformity

in galaxy colour. We measure the fraction of red satellite galaxies around red centrals,
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P (sat = red | cen = red), and the fraction of red satellite galaxies around blue centrals,

P (sat = red | cen = blue). We then determine the difference between these two fractions,

which we refer to as ∆ fred. A conformity signal is then the case of |∆ fred| > 0. We define

similar quantities using sSFRand morphology. The three quenched fraction differences that

we measure are thus

∆ fred = P (sat = red | cen = red) (3.4)

−P (sat = red | cen = blue)

∆ fpassive = P
(
sat = passive | cen = passive

)
(3.5)

−P
(
sat = passive | cen = active

)
∆ fearly = P

(
sat = early | cen = early

)
(3.6)

−P
(
sat = early | cen = late

)
Finally, as a way to control for halo mass, we measure these fractions in bins of Mgroup.

In the mock catalogues, we follow the same procedure to calculate ∆ fred, ∆ fpassive and

∆ fearly . For convenience, we refer to all three of these quantities as “quenched” fraction

differences, ∆ fq, recognizing that Sérsic index is a measure of galaxy morphology and not

star formation activity.

In the case of 2-halo conformity, we use the same formalism of equations (3.4)−(3.6),

with the difference that we only consider pairs of central galaxies with line-of-sight sep-

arations of πmax < 20 h−1Mpc and we calculate the fractions in bins of projected sepa-

ration within each Mgroup bin. For each central-central galaxy, we designate one to be

the primary and the other to be the secondary and we calculate the difference between

the quenched fractions of secondary galaxies that are associated with quenched primaries

and those that are associated with active primaries. Each galaxy pair contributes twice to

the calculation of ∆ fq because both galaxies get a turn at being considered the primary

galaxy. For example, suppose there is a pair of galaxies, one red and one blue, that are
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both centrals in groups of similar mass. When the blue galaxy is the primary, the pair

will contribute positively to the fraction P
(
secondary = red | primary = blue

)
. On the other

hand, when the red galaxy is the primary, the pair will contribute negatively to the fraction

P
(
secondary = red | primary = red

)
. Therefore, red-red and blue-blue pairs act to increase

∆ fred, while red-blue pairs do the opposite. ∆ fred essentially measures the excess number

of similar pairs (i.e., red-red or blue-blue) over what one would expect if the population of

red and blue galaxies were randomly mixed. The value of ∆ fq ranges from +1 where all

pairs are similar, to −1 where pairs are as different as possible.

3.3.5 Marked Correlation FunctionM(rp)

Galactic conformity is essentially a correlation between the properties of galaxies across

distance. In the case of 1-halo conformity, we care about the correlation between properties

of central galaxies and satellites within the same halo. In the case of 2-halo conformity,

we look for a correlation between properties of central galaxies in separate haloes. The

“marked correlation function” is an ideal tool for quantifying correlations across scale and

it has been used successfully to probe the environmental dependence of galaxy properties

(Beisbart & Kerscher, 2000; Sheth et al., 2005; Skibba et al., 2006; Martinez et al., 2010).

The marked statisticM(rp) provides a measure of the clustering of galaxy properties,

or “marks”. In this paper, we analyse the marked statistics for (g− r) colour, specific star

formation rate (sSFR), and Sérsic index n in bins of group mass Mgroup. We adopt the

formalism presented in Sheth et al. (2005) and Skibba et al. (2006) for definingM(rp)

M(rp) =
1 + W(rp)
1 + ξ(rp)

≡
WW
DD

(3.7)

where ξ(rp) is the usual two-point correlation function with pairs summed in bins of pro-

jected separation rp, and W(rp) is the same except that galaxy pairs are weighted by the

product of their marks. The estimator used in equation (3.7) can also be written as WW/DD,

where DD is the raw number of galaxy pairs separated by rp and WW is the weighted num-
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ber of pairs. Defining the statistic as a ratio in this way is advantageous because, unlike

the correlation function, it can be estimated without explicitly constructing a random cat-

alogue, but, like the correlation function, it accounts for edge effects so one does not need

to worry about the geometry of the survey (Sheth et al., 2005).

The marked statistic is essentially a measurement of the correlation coefficient between

the marks of galaxies, as a function of projected separation. Though it is similar in spirit

and goal to the quenched fraction difference statistic described in the previous section, the

marked correlation function contains more information because it uses the full values of

galaxy properties (e.g., colour) instead of just a binary classification (e.g., red or blue).

There is thus reason to hope that M(rp) is a more sensitive probe of galactic conformity

than the usual quenched fractions.

3.4 Galactic Conformity Results

In this section, we present the results of the galactic conformity analysis of SDSS DR7.

In §3.4.1, we investigate 1-halo conformity by looking at both quenched fraction differ-

ences, ∆ fq, as a function of group mass (§3.4.1.1), and the mark correlation function,

M(rp), as a function of projected separation (§3.4.1.2). In §3.4.2, we investigate 2-halo

conformity, also using ∆ fq (§3.4.2.1) andM(rp) (§3.4.2.2).

3.4.1 1-halo Conformity

3.4.1.1 Quenched Fractions and 1-halo Conformity

We first study 1-halo conformity using the quenched fraction difference statistic defined

in § 3.3.4 as a function of group mass. This is very similar to the original method that W06

used to detect 1-halo conformity. Specifically, we create six Mgroup bins of width 0.4 dex

in the range logMgroup: 11.6–14.0. Within each bin of group mass, we make a list of all

satellite galaxies that are in groups with a red central and a second list of all satellites in

groups with a blue central. We then calculate the red fraction of satellites in each list and

take the difference ∆ fred. We repeat this process using sSFRand Sérsic index to calculate
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Figure 3.1: Difference of fractions, ∆ f, of red (left), passive (centre), and early-type (right)
satellites as function of estimated group mass, Mgroup, where the difference is measured be-
tween groups with red and blue, passive and active, early-type and late-type central galax-
ies, as measured in the Mr19-SDSS sample. Top panels: The solid black lines correspond
to the ∆ f of each galaxy property. The shaded contours show the 1σ, 2σ, and 3σ ranges
of ∆ f calculated from many realizations in which the values of the galaxy properties are
randomly shuffled, thus erasing any trace of 1-halo galactic conformity. Bottom panels:
Normalised residuals of ∆ f of each galaxy property with respect to the shuffled realiza-
tions. The solid black lines show the difference between ∆ f and the mean of the shuffles,
divided by the standard deviation of ∆ f for the shuffles. The shaded contours show the 1σ,
2σ, and 3σ ranges of the shuffled scenario in this normalised space.

∆ fpassive and ∆ fearly. When using these quenched fraction differences, a conformity signal

corresponds to values that are not zero, i.e.,
∣∣∣∆ fq

∣∣∣ > 0.

To determine the statistical significance of any conformity signal, we use a random

shuffling method to eliminate any intrinsic conformity or correlation in the sample at the

group level. Specifically, we shuffle the properties (colour, sSFR, Sérsic index) of all central

and satellite galaxies within each group mass bin. Each central galaxy swaps properties

with a randomly selected central galaxy from a different group of similar mass, and each

satellite swaps properties with a randomly selected satellite from a group of similar mass.

This procedure preserves the distributions of central and satellite properties as a function of

group mass, but it explicitly erases any correlation between the properties of centrals and

their satellites within any single group. The shuffling thus completely erases any 1-halo

conformity signal that may exist in the data. We repeat this shuffling process a total of 1000
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times (using different random seeds) and we re-measure the quenched fraction differences

each time. The resulting distribution of ∆ fq,shuffle values thus allows us to quantify the

probability that any measured conformity signal could be a statistical fluke. We find that the

distribution of shuffle values is consistent with being Gaussian and so we use the standard

deviation of the shuffled values to calculate the 1σ, 2σ, and 3σ ranges of the distribution

of ∆ fq,shuffle. We adopt the 3σ level as our detection threshold.

For each measurement of ∆ fq on the un-shuffled data, we calculate the residual with

respect to the shuffled data as

Res =
∆ fq−∆ fq,shuffle

σq,shuffle
(3.8)

where ∆ fq,shuffle is the mean of the 1000 shuffles and σq,shuffle is their standard deviation.

Figure 3.1 presents our main results of probing 1-halo conformity using quenched frac-

tion differences. The black lines in the top three panels show the ∆ fq for (g− r) colour,

sSFR, and Sérsic index, as measured in the Mr19-SDSS sample. The shaded contours

show the 1σ, 2σ, and 3σ ranges of ∆ fshuffle for the shuffle cases of each galaxy prop-

erty. The bottom panels show the residuals of each galaxy property with respect to the

shuffles, as defined in equation (3.8). Figure 3.1 shows prominent conformity signals in

the quenched fraction differences for (g− r) colour and sSFRat large group masses, while

for morphology the signal only appears at low group mass. Specifically, the conformity

signal in colour rises with mass from ∆ fred=0.06 to 0.14 and is at the 4 − 6σ level of

statistical significance for masses above 1012 h−1M�. In the case of sSFR, the signal is

lower, rising from ∆ fpassive=0.05 to 0.1 and is at the 3− 4σ level, except for a 6σ peak at

∼ 1013 h−1M�. Finally, in the case of Sérsic index, the signal is only significant for groups

of mass ∼ 1012.2 h−1M�, where ∆ fearly=0.07 and has a statistical significance of 5− 6σ.

These results are in agreement with the results shown in W06, who also find a significant

difference in the red fraction at high masses and a slightly weaker signal when using sSFR.
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We have found statistically significant correlations between the properties of central and

satellite galaxies within groups in Mr19-SDSS by comparing to the distribution of shuffled

measurements, where any correlations between the properties of centrals and satellites have

been erased. However, this does not mean that we have detected 1-halo galactic conformity,

which is a correlation at fixed halo mass. Grouping errors that cause misidentification

of centrals and satellites as well as errors in the estimated group mass Mgroup could be

responsible for inducing a conformity-like signal (Campbell et al., 2015). To test this, we

need to compare our measurements to mock catalogues that contain no built-in conformity,

but are analysed in the same way as the SDSS data.

We apply the same procedure described above to the set of mock catalogues described

in §3.3.3. The goal is to determine if the signal revealed in Figure 3.1 remains statisti-

cally significant when compared to the distribution of ∆ fq,mock measurements from the 100

mock catalogues with no conformity built-in. We find that the distribution of 100 values of

∆ fq,mock is approximately Gaussian and so we use their standard deviation to estimate the

1σ, 2σ, and 3σ ranges of the distribution. As we did previously for the shuffles, for each

measurement of ∆ fq on the SDSS data, we calculate the residual with respect to the mocks

as

Res =
∆ fq−∆ fq,mock

σq,mock
(3.9)

where ∆ fq,mock is the mean of the 100 mocks and σq,mock is their standard deviation.

Figure 3.2 is analogous to Figure 3.1, except that the shaded contours now show the

distribution of mocks rather than shuffles. The black lines in the top panels show the ∆ fq

for each galaxy property as measured in the Mr19-SDSS sample and are thus identical to

the black lines in the three top panels of Figure 3.1. The shaded contours show the 1σ,

2σ, and 3σ ranges of ∆ fq,mock values of the mock catalogues. The bottom panels show the

residuals with respect to the mocks, as defined in equation (3.9). The prominent conformity
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Figure 3.2: Similar to Figure 3.1, except that the ∆ fq of Mr19-SDSS are compared to the
distributions of measurements from mock catalogues rather than randomly shuffled data.
Top panels: The solid black lines correspond to the ∆ fq in Mr19-SDSS. The shaded contours
show the 1σ, 2σ, and 3σ ranges of ∆ fq calculated from 100 mock catalogues with no
built-in conformity. Bottom panel: Normalised residuals of ∆ fq with respect to the mock
catalogues. The solid black lines show the difference between ∆ fq for Mr19-SDSS and the
mean of the mocks, divided by the standard deviation of the mocks. The shaded contours
show the 1σ, 2σ, and 3σ ranges of the mocks in this normalised space.

signals that we found previously disappear when compared against the mock catalogues.

This is because the whole shaded bands are no longer centred at ∆ fq = 0, but have shifted

up significantly. In other words, the mock catalogues with no built-in conformity have

an average quenched fraction difference of 0.02 to 0.05 for the three galaxy properties,

depending on group mass. These spurious conformity signals must be due to grouping

errors – either in misidentification of centrals and satellites, or in estimation of Mgroup.

We have examined the contributions to the induced signal from both of these factors by

constructing versions of our mock catalogues that do not contain these errors. We find that

most of the induced signal comes from errors in assigning Mgroup, consistent with Campbell

et al. (2015).

Figure 3.2 shows that the statistical significance of the 1-halo conformity signal in the

quenched fractions of the Mr19-SDSS sample drops from 5−6σ when using the shuffles to

2.5− 3σ when using the mocks. Consequently, we can no longer claim a significant de-

tection of 1-halo galactic conformity. This result illustrates the importance of using mock
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catalogues to compute the null model (i.e., no conformity case) in any conformity analysis.

Moreover, it is necessary to use a large suite of mock catalogues to properly specify the

distribution of the null model. A few of our 100 mock catalogues do not display spurious

conformity signals and so if we had only used one mock that happened to lack any confor-

mity signals, we would have come to the wrong conclusion about the significance of our

conformity detection. Our result calls into question previous claims of 1-halo conformity

detections, especially from papers that used similar group-based methods as ours, including

the original detection by W06.

3.4.1.2 M(rp) for 1-halo Conformity

We now move to the second statistic that we are using to probe galactic conformity,

the “marked correlation function”, M(rp). Since the M(rp) can be more sensitive than

binary statistics, and can potentially uncover the scale dependence of any correlations (see

discussion in §3.3.5), theM(rp) is well-suited to exploring the correlations between central

and satellite galaxies.

We evaluateM(rp) for the three galaxy properties, i.e. (g− r) colour, sSFR, and Sérsic

index, in different bins of Mgroup. Each galaxy pair is comprised of a central galaxy and

a satellite galaxy of the same galaxy group, and the projected distance, rp, is the distance

between the two member galaxies. We then take the product of the ‘marks’ of the two

galaxies and average this over all pairs in bins of rp. The mark for each galaxy is just the

value of its property (e.g., colour) normalised by the mean value over the whole population

of similar galaxies. We do this in two ways. First, we normalise using the mean of all

central or satellite galaxies in the same bin of Mgroup. For example, the colour of each

central (satellite) galaxy is divided by the mean colour of all central (satellite) galaxies that

live in similar mass groups. M(rp) then measures the correlation coefficient between the

normalised colours of central and satellite galaxies. Since this measurement is done in rp

bins, it is sensitive to radial gradients in the properties of satellite galaxies within groups,
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typically referred to as segregation. For example, if groups contain colour segregation in the

sense that satellite galaxies in the central regions of groups tend to be redder than satellite

galaxies in the outskirts of groups, thenM(rp) will be larger than unity in bins of small rp

and less than unity in bins of large rp. Such a radial segregation effect will masquerade as

a 1-halo conformity signal. To account for this, we do a second normalization where the

properties of satellite galaxies are normalised by the mean values of all satellites that live in

the same bin of both Mgroup and rp. Measured in this way,M(rp) is not sensitive to radial

segregation and so values different from unity are direct indications of conformity.

To assess the statistical significance of a conformity signal while at the same time avoid-

ing any biases due to grouping errors, we now only compare the results of the M(rp) of

Mr19-SDSS to those of the mock catalogues and not to those from the shuffling technique.

By making this type of comparison, we avoid systematic errors that might masquerade as

conformity signals. For example, it may be the case that galaxies that live in the outskirts

of large groups are more likely to have been mis-assigned to their group than galaxies in

the central regions of groups. These “satellites” may actually be centrals in much smaller

neighbouring haloes that were incorrectly merged into the large groups. Since these low-

mass centrals are likely to be bluer in colour than actual satellites of the large group, this

error will masquerade as a radial colour gradient within groups. Such an effect may rep-

resent itself as an anti-correlation at large 1-halo scales. This type of systematic error will

be present in the mocks as well and so we can account for the role of grouping errors by

comparing our measurements to mock catalogues that contain no built-in conformity or

segregation, but are analyzed in the same way as the SDSS data

Like we did for the quenched fraction differences in §3.4.1.1, we analyse the 100 mock

catalogues in the same way as we analyse the Mr19-SDSS data. Specifically, we compute

M(rp) of each galaxy property, i.e. sSFR, (g− r) colour, and Sérsic index, on the mocks

after first normalizing each galaxy property the two different ways (in bins of Mgroup and in

bins for both Mgroup and rp ). We use the standard deviation ofM(rp) values to estimate the
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1σ, 2σ, and 3σ ranges of the distributions for each galaxy property. We then determine the

statistical significance of the result by calculating the residuals of the SDSS measurements

with respect to mocks as

Res =
M(rp)−M(rp)mock

σmock
. (3.10)

This is similar to the residuals in equation (3.9).

Figure 3.3 showsM(rp) of (g− r) colour (left), sSFR(centre), and Sérsic index (right),

as a function of projected distance, rp , with each row corresponding to a bin of Mgroup.

In this figure, we only show bins with Mgroup > 1012.4 h−1M� since these exhibited the

largest signals in the quenched fraction difference statistic for colour and sSFR, as shown

in Figure 3.1. In the top part of each panel, the black, solid line corresponds to theM(rp)

of SDSS galaxies, when properties are normalised within bins of rp in order to remove

the effects of radial segregation. For comparison, the grey dashed line corresponds to the

case when the segregation effect is included, i.e., the contributions for the M(rp) results

are coming from both galactic conformity and the segregation effect. The shaded regions

correspond to the 1σ, 2σ, and 3σ ranges of the distributions of M(rp) values for mock

catalogues. However, these results are analysed by normalizing properties within bins of rp

, so only the black, solid lines can be compared to the shaded regions. We do not show the

results that correspond to the grey, dashed lines. The bottom part of each panel shows the

residuals of eachM(rp) with respect to the mock catalogues, as defined in equation (3.10).

In this case, the black solid lines and grey dashed lines are each computed using their

corresponding set of mock results.

In Figure 3.3 the shaded regions for (g − r) colour, sSFR, and Sérsic index are not

centred atM(rp) =1, indicating the effect of group errors. The strength of both radial seg-

regation and conformity signals in the SDSS are weak when compared to mock catalogues

containing neither effect. First we examine the case where we normalise galaxy properties
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by their mean values in bins of Mgroup, makingM(rp) sensitive to both conformity and seg-

regation (dashed grey lines). We do detect significant radial segregation (dashed grey lines)

for colour and sSFRat scales smaller than 0.2 h−1Mpc in the case of massive groups, in the

sense that satellite galaxies close to the centres of their groups tend to be more quenched

(and thus more similar to their central galaxies) than satellite galaxies farther out. We do

not find such correlations for the Sérsic index at those scales. Next we examine the case

where radial segregation is removed (solid black lines). The 1-halo conformity signal hov-

ers near the 3σ level for a wide range of small scales for colour and sSFR. However, the

signal is not strong enough for us to claim a conformity detection. In summary, neither the

quenched fractions nor the marked correlation function reveal any statistically significant

1-halo conformity signal after controlling for group errors for the cases of (g− r) colour,

sSFR, and Sérsic index.

3.4.2 2-halo Conformity

We next study 2-halo conformity, which is the correlation of properties for galaxies

that live in separate haloes. As we discussed in §3.2, a detection of 2-halo conformity in

sSFRwas claimed by K13 for low-mass central galaxies out to scales of 4 Mpc. This claim

has been challenged by T17 and S17 who reproduced the result of K13 and showed that the

conformity signal is mainly driven by contamination in the isolation criterion to select the

sample of central galaxies. After removing a small fraction of satellite galaxies that were

misclassified as centrals from the primary sample, only a weak conformity signal remains

out to projected distances of 2 Mpc.

3.4.2.1 Quenched fractions for 2-halo Conformity

We first analyse 2-halo conformity using the quenched fraction difference statistic,

which is similar to what was used by some of these previous works. We use a sample

composed of only central galaxies as classified by our group-finder, which are the most

luminous galaxies in the r-band within their respective groups. Then, using the same group
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Figure 3.3: Marked correlation function,M(rp), of (g− r) colour (left), sSFR(centre), and
Sérsic index (right), as a function of projected distance rp for central-satellite galaxy pairs
within the same galaxy groups in Mr19-SDSS and mock catalogues. Each row corresponds
to a bin of group mass, Mgroup, as listed in the left panels. Top panels: The solid black
lines correspond to the case where the marks have been normalised to remove the effects
of radial segregation, while the dashed grey lines include segregation. The shaded contours
show the 1σ, 2σ, and 3σ ranges of M(rp) calculated from 100 mock catalogues with no
built-in conformity or radial segregation. These mock results can only be compared to the
solid black lines. We do not show the mock results that correspond to the dashed grey
lines. Bottom panels: Normalised residuals ofM(rp) with respect to the mock catalogues.
The lines show the difference between M(rp) of the SDSS and the mean of the mocks,
divided by the standard deviation ofM(rp) for the mocks. The solid black and dashed grey
lines correspond to the cases where effects of radial segregation are removed and included,
respectively. The shaded contours show the 1σ, 2σ, and 3σ ranges of the mocks in this
normalised space.
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mass bins as before, we compute the quenched fraction difference statistic, as described

in §3.3.4, in bins of projected separation rp and only counting galaxy pairs within a line-

of-sight separation of πmax = 20 h−1Mpc. For example, to calculate ∆ fred for the smallest

group mass bin we consider, we first list all the central galaxies in groups with logMgroup:

11.6–12.0, then find all pairs of these galaxies that have line-of-sight separations less than

πmax, and place them in logarithmic bins of rp. Each radial bin now contains a set of

central-central galaxy pairs where one of the galaxies is designated as “primary" and the

other as “secondary" (each pair is counted twice so that both galaxies have a turn at being

primary). We then make one list of pairs where the primary is red and another where it is

blue. For each list we then calculate the fraction of pairs where the secondary is red (i.e.,

the “quenched fraction") and we take the difference between these two fractions. We repeat

this procedure for all group mass bins and for sSFRand Sérsic index. As before, we assess

the statistical significance of conformity signals by comparing with our set of 100 mock

catalogues that contain no intrinsic conformity, but do contain the same types of systematic

errors that affect the SDSS analysis.

Figure 3.4 presents our main results of probing 2-halo conformity using quenched

fraction differences. The three columns show results for (g − r) colour (left column),

sSFR(middle column), and Sérsic index (right column), as measured in the Mr19-SDSS

sample and mock catalogues. Each row corresponds to a bin of Mgroup, as listed in the left

column of plots. We focus on the four lowest-mass bins since K13 found 2-halo conformity

signals at these masses. The black lines in the top portions of each panel show the ∆ fq as

a function of projected separation rp , while the shaded contours show the 1σ, 2σ, and 3σ

ranges of ∆ fq,mock for the 100 mock catalogues of each galaxy property. The bottom panels

show the residuals of each galaxy property with respect to the mock catalogues, as defined

in equation (3.9).

Figure 3.4 does not reveal any 2-halo conformity signals for most group masses and

scales for (g− r) colour and sSFR. Sérsic index exhibits a prominent 2-halo conformity
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Figure 3.4: Difference of fractions, ∆ f, of red (left), passive (centre), and early-type (right)
secondary central galaxies as a function of their projected distance, rp , from primary cen-
tral galaxies in groups of similar mass, where the difference is measured between primary
galaxies that are red and blue, passive and active, early-type and late-type, respectively.
Each row corresponds to a bin of group mass, Mgroup, as listed in the left panels. Top
panels: The solid black lines correspond to the ∆ f of each galaxy property in Mr19-SDSS.
The shaded contours show the 1σ, 2σ, and 3σ ranges of ∆ f calculated from 100 mock
catalogues with no built-in conformity. Bottom panels: Normalised residuals of ∆ f with
respect to the mock catalogues. The solid black lines show the difference between ∆ f for
Mr19-SDSS and the mean of the mocks, divided by the standard deviation of ∆ f for the
mocks. The shaded contours show the 1σ, 2σ, and 3σ ranges of the mocks in this nor-
malised space.
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signal for the two lowest-mass bins, i.e., for group masses of logMgroup 11.6–12.4 and at

scales of rp > 3h−1Mpc. This large Sérsic index signal is caused by the fact that SDSS cen-

tral galaxies in groups of logMgroup 11.6–12.4 exhibit a small ∆ fearly=1–2% that is constant

with scale, while the scatter among the mock catalogues reduces with scale, resulting in a

strongly increasing significance of the conformity signal. This figure also shows that the

mock results are perfectly centred at ∆ fq=0, which means that group errors do not seem to

impact 2-halo conformity measurements nearly as much as they did in the 1-halo case.

3.4.2.2 M(rp) for 2-halo Conformity

We next study 2-halo conformity using the marked correlation function M(rp). We

perform a similar analysis as the 1-halo case presented in §3.4.1.2, except that now we

only consider pairs of central galaxies from different groups of similar mass. As with the

quenched fraction difference case, we count all central-central pairs with a line-of-sight

separation less than πmax = 20h−1Mpc and place them in logarithmic bins of projected

distance rp . We then compute M(rp) for our three galaxy properties after normalizing

them by their mean values within Mgroup bins.

To assess the statistical significance of our results and investigate the impact of grouping

errors and mass assignment, we compare our SDSS results with measurements on our

100 mock catalogues that contain no built-in 2-halo conformity. Once again, we use the

standard deviation of mock M(rp) values to estimate the 1σ, 2σ, and 3σ ranges of the

mock distribution. We then calculate the residuals of the SDSS measurements with respect

to mocks as in equation (3.10).

Figure 3.5 shows the M(rp) of (g− r) colour (left), sSFR(middle), and Sérsic index

(right), as a function of projected distance, rp , with each row corresponding to a bin of

Mgroup. They layout is similar to that in the previous figures. The figure reveals weak,

but highly significant 2-halo conformity signals for all three properties in low mass haloes.

In the lowest mass bin, logMgroup: 11.6–12.0, these signals reach a significance as high
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Figure 3.5: Mark correlation function, M(rp), of (g− r) colour (left), sSFR(centre), and
Sérsic index (right), as a function of projected distance rp for central-central galaxy pairs
within separate galaxy groups in the Mr19-SDSS sample and mock catalogues. Each row
corresponds to a bin of group mass, Mgroup, as listed in the left panels. Top panels: The
solid black lines show results for SDSS, while the shaded contours show the 1σ, 2σ, and 3σ
ranges ofM(rp) calculated from 100 mock catalogues with no built in 2-halo conformity.
Bottom panels: Normalised residuals ofM(rp) with respect to the mock catalogues. The
solid black lines show the difference between M(rp) of the SDSS and the mean of the
mocks, divided by the standard deviation of M(rp) for the mocks. The shaded contours
show the 1σ, 2σ, and 3σ ranges of the mocks in this normalised space.
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as 7σ. In the case of (g− r) colour, the signal reaches as high as M(rp) =1.02-1.03 and

then declines with scale, while the statistical significance peaks at scales rp : 0.6−4h−1Mpc

and hovers at the 3σ level out to rp ∼ 10h−1Mpc before dropping at larger scales. There

is no significant large-scale conformity signal in more massive group bins. sSFRbehaves

the same way, except that the conformity signal is much weaker (yet equally signifiant),

peaking at M(rp) value of less than 1.007. In the case of Sérsic index, the signal is also

as high asM(rp) =1.02-1.03, but, unlike with colour, it keeps this constant amplitude out

to the largest scales we consider. As a result, the statistical significance of the conformity

signal keeps rising with scale because the scatter in the mock distribution decreases with

scale. In the next mass bin, logMgroup: 12.0-12.4, the conformity signals almost disappear,

but are still significant for Sérsic index. There are no 2-halo conformity signals in the

higher group mass bins.

These results are similar to what we found using the quenched fraction difference statis-

tic, where Sérsic index displayed the strongest 2-halo conformity signal but only for the low

mass groups. However, the marked correlation function is a more sensitive statistic for de-

tecting 2-halo conformity as demonstrated by the much higher statistical significance of the

weak observed signals in the case of color and sSFR. Where we found no strong evidence

of 2-halo conformity using ∆ f in Figure 3.4, we find strong such evidence using M(rp)

in Figure 3.5. The marked correlation function is clearly a more sensitive probe of 2-halo

conformity than quenched fractions, and gives us a better handle on 2-halo conformity sig-

nals for colour and sSFR. In summary, we have found low amplitude, but highly significant

2-halo conformity signals for (g− r) colour and sSFRout to 4h−1Mpc and an intriguing

signal in Sérsic index out to the largest scales that we probe.

3.5 Summary and Discussion

In this paper, we study galactic conformity, which is the phenomenon that galaxy prop-

erties, such as colour or morphology, may exhibit correlations across distance, beyond what
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would be expected if these properties only depended on halo mass. At small scales, this

“1-halo conformity" is seen as a correlation between the properties of satellite galaxies with

those of the central galaxy whose halo they inhabit. At large scales, “2-halo conformity" is

seen as a correlation between central galaxies in haloes that are well separated from each

other. In both cases, it is important to control for halo mass in order to ensure that any de-

tected correlations are not simply due to the well-established correlations between galaxy

properties and halo mass, as well as the correlation between halo mass and larger-scale

environment. We are motivated to perform a comprehensive study of conformity because

recent works have exposed systematic problems with previous claims of conformity detec-

tion at z = 0, calling into question whether conformity has actually been detected. In the

1-halo regime, the original detection came from W06 using a group catalogue to desig-

nate central and satellite galaxies and to control for halo mass. However, Campbell (2015)

used a mock catalogue to show that errors in group-finding and group mass assignment can

lead to a spurious 1-halo conformity signal when none is actually present. In the 2-halo

regime, K13 detected conformity out to 4 Mpc using isolation criteria to avoid including

satellite galaxies. However, T17 and S17 showed that this result was most likely due to

insufficiently stringent isolation criteria and that the detected conformity signal arose from

a small number of satellite galaxies that were misidentified as centrals.

We investigate both 1-halo and 2-halo conformity using a galaxy group catalogue from

the SDSS DR7. Our analysis contains three main improvements over previous works. First,

we study three observed properties of galaxies: (g− r) colour, sSFR, and Sérsic index.

Second, we use a new statistic, the marked correlation function,M(rp), in addition to the

previously used quenched fractions. M(rp) is ideally suited for conformity studies and is a

more sensitive probe of weak conformity signals. Third, we use a suite of 100 mock galaxy

catalogues to quantify the statistical significance of our results. These mock catalogues

have the same clustering and same distributions of “observed" properties as the SDSS data

(luminosity, (g− r) colour, sSFR, and Sérsic index), and we analyse them in exactly the
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same way (i.e., same group-finding algorithm, same way of assigning group masses, etc).

The mock catalogues do not have any built-in conformity, but they are affected by the

same systematic errors as the SDSS data. By comparing our SDSS measurements to the

distribution of mock measurements, we can quantify the probability that whatever signal

we detect could have arisen from a model with no conformity.

The main results of our work are as follows.

• When measuring the difference between quenched fractions of satellite galaxies around

quenched vs. non-quenched centrals, we detect a strong 1-halo conformity signal at all

group masses, which is strongest for (g− r) colour, somewhat weaker for sSFR, and only

significant at low masses for Sérsic index. These results are in perfect agreement with

the results of W06. However, when we compare the (g− r) colour, sSFR, and Sérsic

index results to measurements made on our mock catalogues, we find that they are also

in perfect agreement. Since the mock catalogues contain no built-in conformity, this

strongly suggests that the conformity signal we detected is a result of systematic errors in

the group mass estimation and in central/satellite mis-assignment. This calls into question

the validity of the W06 detection, as well as other 1-halo conformity detections at z = 0

that use group catalogues.

• The marked correlation function,M(rp), calculated with central-satellite galaxy pairs is

sensitive to the radial segregation of satellite galaxy properties within groups. Using the

1-haloM(rp), we find significant radial segregation for colour and sSFRat scales smaller

than rp < 0.2 h−1Mpc in the case of groups more massive than logMgroup >13. We do

not find such a signal for Sérsic index. We thus claim a detection of radial segregation in

(g− r) color and sSFR.

• After removing the effect of radial segregation from M(rp) by properly renormalising

galaxy properties, the amplitude ofM(rp) reduces and the conformity signal mostly van-

ishes. We thus do not detect 1-halo conformity using the M(rp) statistic in any of the
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three galaxy properties.

• Studying the quenched fraction difference statistic as a function of projected scale for

central-central galaxy pairs in groups of similar mass reveals no 2-halo conformity signal

for (g−r) colour or sSFR. However, we find a highly significant 2-halo conformity signal

for Sérsic index in low mass groups of logMgroup < 12.4. This signal is constant with

scale and thus increases in statistical significance with scale. The mock measurements

of the three galaxy properties indicate that group errors do not strongly affect our 2-halo

quenched fractions, and that the detection of 2-halo conformity in Sérsic index is likely

robust.

• The M(rp) of central-central galaxy pairs proves to be a more sensitive probe of con-

formity than quenched fractions. We find a low amplitude, yet highly significant signal

in all three galaxy properties for group masses below logMgroup =12. For (g− r) colour

and sSFR, the signal is strongest at scales of rp : 0.6− 4h−1Mpc and hovers at the 3σ

level out to rp ∼ 10h−1Mpc before dropping at larger scales. For Sérsic index, the 2-halo

conformity signal increases in significance with scale. There is no significant large-scale

conformity signal in more massive groups. Our detection is unlikely caused by group er-

rors and thus represents robust 2-halo conformity detections in colour, sSFR, and Sérsic

index for central-central galaxy pairs at low masses.

These results demonstrate the importance of using mock galaxy catalogues in any study

of galactic conformity. Comparing our SDSS measurements with the distribution of mock

measurements allows us to test the null model (i.e., no conformity) in a way that includes

systematic errors in group-finding or mass estimation. Without the mock catalogues, we

would have claimed a strong detection of 1-halo conformity. Instead, we are driven to the

conclusion that the 1-halo signal is not real. This result calls into question whether any

study has actually detected 1-halo conformity in the SDSS data. The one caveat to these

conclusions is that they only hold to the extent that our mock catalogues faithfully represent
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the real universe. If, for example, the correlation between sSFRand halo mass in the mocks

is not as strong as it should be, then the impact of group mass errors on the conformity

signal will not be accurate.

In the case of 2-halo conformity, we do not find any statistically significant signals

when looking at quenched fractions using colour or sSFR. We thus agree with the claim

in T17, that the K13 result must have suffered from errors in the isolation criteria used.

On the other hand, we show that the marked correlation function is more sensitive to the

underlying weak signal and displays a clear conformity trend, even when compared against

the mock catalogues. This measurement may thus represent the first robust detection of 2-

halo conformity to-date. Our finding that 2-halo conformity is strongest when considering

galaxy Sérsic index is curious and merits further study. Overall, to understand the physical

origin of these conformity signals, it will be necessary to model them in detail, which we

leave for future work.
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Chapter 4

PREDICTION OF GALAXY HALO MASSES IN SDSS DR7 VIA A MACHINE

LEARNING APPROACH

The following work has been submitted to the Monthly Notices of the Royal

Astronomical Society Journal and is reprinted below in its entirety

Prediction of galaxy halo masses in SDSS DR7 via a machine learning

approach

Victor F. Calderon1, Andreas A. Berlind1

1 Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235

4.1 Abstract

We present a machine learning (ML) approach for the prediction of galaxies’ dark mat-

ter halo masses that achieves an improved performance over conventional methods. We

train three ML algorithms (XGBoost, Random Forests, and neural network) to predict halo

masses using a set of synthetic galaxy catalogues that are built by populating dark mat-

ter haloes in N-body simulations with galaxies, and that match both the clustering and the

joint-distributions of properties of galaxies in the Sloan Digital Sky Survey (SDSS). We ex-

plore the correlation of different galaxy- and group-related properties with halo mass, and

extract the set of nine features that contribute the most to the prediction of halo mass. We

find that mass predictions from the ML algorithms are more accurate than those from halo

abundance matching (HAM) or dynamical mass (DYN) estimates. Since the danger of this

approach is that our training data might not accurately represent the real Universe, we ex-

plore the effect of testing the model on synthetic catalogues built with different assumptions

than the ones used in the training phase. We test a variety of models with different ways

of populating dark matter haloes, such as adding velocity bias for satellite galaxies. We
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determine that, though training and testing on different data can lead to systematic errors in

predicted masses, the ML approach still yields substantially better masses than either HAM

or DYN. Finally, we apply the trained model to a galaxy and group catalogue from the SDSS

DR7 and present the resulting halo masses.

4.2 Introduction

The practice of grouping galaxies observed in a galaxy catalogue into galaxy groups

and clusters has been utilised extensively in astrophysics and cosmology, since the pio-

neering work of George Abell and Fritz Zwicky (Abell, 1958; Zwicky et al., 1968), who

constructed cluster catalogues from the Palomar Observatory Sky Survey (POSS) using

local galaxy surface number densities. Galaxy clusters represent the largest primordial

density perturbations to have formed by now, and typically contain tens to hundreds of

galaxies embedded within a common dark matter halo1, thus tracing the high mass tail of

the halo mass function. As a result, clusters constitute one of the most powerful cosmo-

logical probes and measurements of their abundance can be used to constrain cosmological

parameters (e.g., Voit, 2005; Allen et al., 2011; Kravtsov & Borgani, 2012; Weinberg et al.,

2013; Mantz et al., 2014). Additionally, our current understanding of galaxy formation

and evolution revolves around the idea that all galaxies are formed and live within dark

matter haloes. Therefore, galaxy groups and clusters, if identified correctly, can be used

to study the galaxy-halo connection and thus how galaxies form and evolve within dark

matter haloes. Whether we wish to use galaxy groups as probes of cosmology or galaxy

formation, determining their masses accurately and robustly has proven to be a difficult

task.

Galaxy groups and clusters can be identified in various ways. Originally, clusters were

first detected as overdensities of galaxies in broad-band images in the visible spectrum

(e.g. Abell, 1958; Zwicky et al., 1968). Since then, clusters have mainly been identified as

1Throughout this paper, we use the term "halo" to refer to a gravitationally bound structure with over-
density ρ/ρ̄ ∼ 200, so an occupied halo may host a single luminous galaxy, a group of galaxies, or a cluster.
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overdensities of red galaxies in visible and IR bands (e.g. Gladders & Yee, 2005; Hao et al.,

2010; Ascaso et al., 2012), as extended X-ray sources (e.g. Rosati et al., 2002; Vikhlinin

et al., 2009), or by their signature in the cosmic microwave background (e.g. Marriage

et al., 2011; Staniszewski et al., 2009; Ade et al., 2015). Since the early 1980’s and with the

onset of redshift surveys, groups of galaxies have also been selected based on the closeness

of galaxies in redshift space using three-dimensional algorithms. Many of these analyses

have adopted the widely-used Friends-of-Friends percolation algorithm (Geller & Huchra,

1983) to place galaxies into groups and thus compile group catalogues. This algorithm

links galaxies in pairs based on their separation along the line-of-sight or on the sky and

places all linked galaxies into a single group. Numerous group galaxy catalogues have been

constructed in this way for different redshift surveys, including the Center for Astrophysics

Redshift Survey (CfA; Geller & Huchra, 1983), the Las Campanas Survey (Tucker et al.,

1997), the Two Degree Field Galaxy Redshift Survey (2dFGRS; Merchán & Zandivarez,

2002; Eke et al., 2004; Yang et al., 2005; Tago et al., 2006; Einasto et al., 2007), the high-

redshift DEEP2 survey (Gerke et al., 2005), the Two Micron All Sky Redshift Survey

(Crook et al., 2007), and the Sloan Digital Sky Survey (e.g., Goto, 2005; Berlind et al.,

2006).

Once galaxy groups and clusters are identified, mass measurements are needed to map

observable properties to the underlying masses of dark matter haloes. Traditionally, there

are two main methods to assign masses to galaxy groups and clusters that are built from

galaxy redshift surveys, i.e., Halo Abundance Matching (hereafter HAM; e.g., Kravtsov et al.,

2004; Tasitsiomi et al., 2004; Vale & Ostriker, 2004; Conroy et al., 2006) and dynamical

mass estimates (hereafter DYN; e.g., Teague et al., 1990; Colless & Dunn, 1996; Fadda

et al., 1996; Carlberg et al., 1997; Girardi et al., 1998; Brodwin et al., 2010; Rines et al.,

2010; Sifón et al., 2013; Ruel et al., 2014). The HAM method assumes a monotonic relation

between a theoretical mass-like quantity related to dark matter haloes and another observ-

able quantity related to galaxies. This approach is simple yet powerful, wherein matching
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cumulative number densities of galaxies and haloes yields an implicit relationship between

the theoretical quantity and the observational quantity (Hearin & Watson, 2013). HAM is

typically used to connect galaxies to both host haloes and subhaloes, but in this context

we refer to a variant of the method that connects galaxy groups to host haloes alone. For

example, Yang et al. (2007) applied a halo-based group-finder (Yang et al., 2005) to the

2dFGRS and assigned halo masses to galaxy groups based on characteristic luminosity and

characteristic stellar mass. Lim et al. (2017) extended this approach and applied a modified

version of the same algorithm to multiple large redshift surveys. Calderon et al. (2018) ap-

plied the Berlind et al. (2006) algorithm to the SDSS and used HAM to estimate halo masses,

based on the integrated luminosity of the groups. Moffett et al. (2015) did the same for the

REsolved Spectroscopy of a Local VolumE (RESOLVE; Eckert et al., 2015) and the Envi-

ronmental COntext catalog (ECO; Moffett et al., 2015). On the other hand, DYN estimates

of clusters use the line-of-sight velocity dispersion of galaxies within clusters, together with

measurements of their size, as dynamical tracers of the underlying gravitational potential.

These estimates make use of variants of the virial theorem to estimate group masses.

Each of these approaches are not perfect, and may include possible biases or system-

atic errors in their mass estimates that may influence the final results. Old et al. (2014)

performed an extensive comparison between various galaxy-based cluster mass estima-

tion techniques that use position, velocities, and colours of galaxies to quantify the scatter,

systematic biases and completeness of cluster masses derived from a diverse set of 25

galaxy-based methods. They found that abundance-matching and richness-based methods

provide the best results, with some estimates being under- and overestimated by a factor

greater than ten. Wojtak et al. (2018) studied these results further and found that contami-

nation in cluster membership can affect the mass estimates greatly, with all methods either

overestimating or underestimating the final cluster masses when applied to contaminated

or incomplete galaxy samples, respectively. Additionally, Armitage et al. (2018) used the

C-EAGLE galaxy clusters sample (Barnes et al., 2017) to quantify the bias and scatter of
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three mass estimators, and found no significant bias, but a large scatter when comparing

estimated to true masses. For the case of HAM , Campbell et al. (2015) compared three

different FoF-based group-finding algorithms by applying them to a realistic mock galaxy

catalogue where the halo masses are known. They found that estimating group masses us-

ing HAM is limited by the intrinsic scatter in the relation between the observed quantity and

the halo mass. They also show that errors in the group-finding process can cause catas-

trophic errors in estimated halo mass.

These previous works have demonstrated that galaxy groups and clusters identified in

redshift surveys have mass estimates that are prone to large statistical and systematic errors,

mostly due to failures of the group finding algorithms. These methods for estimating mass

use one or two properties of groups, such as total luminosity in the case of HAM, or velocity

dispersion and radius in the case of DYN. However, there are many additional properties of

groups that should contain information about halo mass, such as colours and star formation

rates, full density and velocity profiles, large scale environments, etc. This suggests the

opportunity to apply nonparametric algorithms to analyse the abundant data at our disposal.

There has been a significant increase in recent years in the number of studies applying

machine learning (ML) techniques to astronomy. One of the most important applications

of ML in astronomy is the classification of various objects, e.g. transient events (Mahabal

et al., 2008) and galaxy morphology (Banerji et al., 2010). Other applications include the

determination of photometric redshifts of galaxies from a set of broadband filters (Ball

et al., 2007; Gerdes et al., 2010), the assignment of dark matter haloes to generate synthetic

catalogues from N-body simulations (Xu et al., 2013; Kamdar et al., 2016a,b) and the

study of the structure of the Milky Way (Riccio et al., 2016). Relevant to this work, ML

has also been used to improve galaxy cluster dynamical mass measurements by employing

the entire line-of-sight velocity PDF information of galaxy clusters (Ntampaka et al., 2015,

2016). More recently, ML algorithms have been used to measure cluster masses using

a combination of dynamical and X-ray data (Armitage et al., 2019), and more complex
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algorithms have been employed to estimate the masses of galaxy clusters using synthetic

X-ray images from cosmological simulations (Ntampaka et al., 2018). However, these

studies were restricted to the massive cluster regime.

In this paper, we explore the possibility of employing ML techniques to estimate the

halo masses of galaxies in a wide range of mass. We adopt observed properties of both

the galaxies and their groups to act as features and we train the ML algorithms on syn-

thetic data. This paper is organised as follows. In §4.3, we describe the observational and

simulated data used in this work (§4.3.1), introduce the set of features used in this anal-

ysis (§4.3.2), and present the main set of ML algorithms that we use (§4.3.3). In §4.4,

we provide the main analysis of feature selection (§4.4.1), and present our main results of

mass estimates (§4.4.2). In §4.5 we also present a detailed examination of how mass esti-

mates may vary depending on the choice of HOD parameters (§4.5.1), velocity bias, σv,b

(§4.5.2), or scatter in the mass-to-light ratio of central galaxies (§4.5.3). In §4.6, we apply

our trained algorithms to SDSS, and present the resulting galaxy catalogue with various

estimates of halo mass. We summarise our results and discuss their implications in §4.7.

The Python code and catalogues used in this project will be made publicly available on

Github2 upon publication of this paper.

4.3 Data and Methods

In this section, we present the datasets used throughout this analysis, and introduce

the main ML algorithms and statistical methods that we use to estimate the halo masses

of galaxies. In §4.3.1, we briefly describe the SDSS galaxy sample and synthetic galaxy

catalogues that we use, along with the parameters that are included in these catalogues.

In §4.3.2, we introduce the different features that we use for training our ML predictors,

and provide a guide on how these are calculated. Finally, in §4.3.3 we provide a brief

overview of the different algorithms that we use in this analysis, as well as the default

tuning parameters used by each algorithm.
2https://github.com/vcalderon2009/SDSS_Groups_ML
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4.3.1 SDSS Galaxy Sample and Mock Galaxy Catalogues

For this analysis, we make use of a modified version of the galaxy and group galaxy

catalogues used in Calderon et al. (2018). We will provide a brief description of the galaxy

sample used, and also an overview of the synthetic galaxy and group galaxy catalogues

used in this analysis.

4.3.1.1 SDSS Galaxy Sample

For this analysis, we use data from the Sloan Digital Sky Survey (hereafter SDSS;

York, 2000). SDSS collected its data with a dedicated 2.5-meter telescope (Gunn et al.,

2006), camera (Gunn et al., 1998), filters (Doi et al., 2010), and spectrograph (Smee et al.,

2013). We construct our galaxy sample from the large-scale structure sample of the

NYU Value-Added Galaxy Catalogue (NYU-VAGC; Blanton et al., 2005), based on the

spectroscopic sample in Data Release 7 (SDSS DR7; Abazajian et al., 2009). The main

spectroscopic galaxy sample is approximately complete down to an apparent r-band Pet-

rosian magnitude limit of mr = 17.77. However, we have cut our sample back to mr = 17.6

so it is complete down to that magnitude limit across the sky. Galaxy absolute magnitudes

are k-corrected (Blanton et al., 2003) to rest-frame magnitudes at redshift z = 0.1.

We construct a volume a volume-limited galaxy sample that contains all galaxies more

luminous than Mr = −19, and we refer to this sample as Mr19-SDSS. The redshift limits of

the sample are zmin = 0.02 and zmax = 0.067 and it contains 90,893 galaxies with a number

density of ngal = 0.01503 h3Mpc−3. The sample includes the right ascension, declination,

redshift, and (g− r) colour for each galaxy.

To each galaxy, we assign a star formation rate (SFR) using the MPA-JHU Value-Added

Catalogue DR73. This catalogue includes, among many other parameters, stellar masses

based on fits to the photometry using Kauffmann et al. (2003) and Salim et al. (2007), and

star formation rates based on Brinchmann et al. (2004). We cross-match the galaxies of the

3https://wwwmpa.mpa-garching.mpg.de/SDSS/DR7/
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NYU-VAGC to those in the MPA-JHU catalogue using their MJD, plate ID, and fibre ID.

A total of 5.65% of galaxies in the sample did not have corresponding values of SFR and

were removed from the main sample. This leaves a sample of 85,578 galaxies. For each

of these galaxies, we divide its SFR by its stellar mass to get specific star formation rates,

sSFR.

Ultimately, we identify galaxy groups using the Berlind et al. (2006) group-finding al-

gorithm. This is a Friends-of-Friends (FoF; Huchra & Geller, 1982) algorithm that links

galaxies recursively to other galaxies that are within a cylindrical linking volume. The

projected and line-of-sight linking lengths are b⊥ = 0.14 and b‖ = 0.75 in units of the

mean inter-galaxy separation, respectively. This choice of linking lengths was optimised

by Berlind et al. (2006) to identify galaxy systems that live within the same dark matter

halo. In each group, we define the most luminous galaxy (in the r-band) to be the ’central’

galaxy. The rest of the galaxies are defined as ’satellite’ galaxies.

In previous works, we have estimated the total masses of the groups via abundance

matching, using total group luminosity as a proxy for mass. Specifically, we assume that

the total group r-band luminosity Lgroup increases monotonically with halo mass Mh, and

we assign masses to groups by matching the cumulative space densities of groups and

haloes:

ngroup(> Lgroup) = nhalo(> Mh). (4.1)

To calculate the space densities of haloes, we adopt the Warren et al. (2006) halo mass

function assuming a cosmological model with Ωm = 1−ΩΛ = 0.25, Ωb = 0.04, h ≡ H0/

(100 km s−1 Mpc−1) = 0.7, σ8 = 0.8, and ns = 1.0. We refer to these abundance matched

masses as group masses, Mgroup. In this paper, we also use a dynamical mass estimate for

each group, as well as other group properties, which are described in §4.3.2.
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4.3.1.2 Mock Galaxy Catalogues

In order to make proper predictions of the halo masses of galaxies, we need a train-

ing dataset where the halo mass of each galaxy is known. This necessitates that we use

mock, rather than real data. However, the accuracy of our predictions hinges on the de-

gree to which the mock data are truly representative of the observable Universe. Therefore,

the mock dataset must not only contain the same observable properties that we will use

as features in the SDSS data, it should also faithfully reproduce the true correlations be-

tween these properties and halo mass. At a minimum, the training data should be able

to accurately reproduce the observed clustering of galaxies and the joint distributions of

"observed" galaxy properties.

For this project, we use a suite of 10 realistic synthetic galaxy and group galaxy cat-

alogues similar to Calderon et al. (2018), with the one exception that we use a different

definition when identifying dark matter haloes, i.e. we use a spherical-overdensity (SO)

definition as opposed to the Friends-of-Friends (FoF) halo definition used in Calderon et al.

(2018). These synthetic catalogues are based on the Large Suite of Dark Matter Simulation

(LasDamas) project4 (McBride et al., 2009), and have the same clustering and same dis-

tributions of "observed" properties as the SDSS data (luminosity, (g− r) colour, sSFR, and

Sérsic index). We use an Halo Occupation Distribution (HOD; Berlind & Weinberg, 2002)

model to populate the DM haloes with central and satellite galaxies, whose numbers as a

function of halo mass were chosen to reproduce the number density, ngal, projected 2-point

correlation function, wp
(
rp

)
, and group multiplicity function, n(N), of the Mr19-SDSS sam-

ple. Specifically, we use the best-fit HOD values of Sinha et al. (2018) for the case of the

Mr19-SDSS sample, the ‘LasDamas’ cosmology, the ‘Mvir’ halo definition, and the ‘PCA’

option.

Once galaxies are placed in haloes, we assign luminosities and colours using modified

versions of the Conditional Luminosity Function (CLF; Yang et al., 2003) framework and

4http://lss.phy.vanderbilt.edu/lasdamas/
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the Zu & Mandelbaum (2016) halo-quenching model. This approach yields luminosity

and colour distributions as well as luminosity- and colour-dependent clustering that are in

agreement with SDSS measurements. The resulting mock catalogues have been analysed in

exactly the same way as the SDSS data (i.e. same group-finding algorithm, same method of

assigning group masses, etc). In their final version, the catalogues contain information on

various galaxy-related properties (e.g., sSFR, Sérsic index, (g− r) colour, luminosity) and

group-related properties (e.g., group richness, groups’ total r-band absolute magnitudes,

velocity dispersion within the groups, etc).

For a more detailed explanation of what went into producing the set of mock catalogues

used in this analysis, we refer the reader to §2.3 of Calderon et al. (2018).

4.3.2 Galaxy properties as features

As part of our analysis, we must make a decision on which features to use when training

the ML algorithms to predict the masses of galaxies’ dark matter halos. The set of features

that we use includes properties of the galaxy in question as well as properties of the group

to which the galaxy belongs. All features can be observed and measured in the SDSS. Here

we provide a list of the features that we consider initially with a description of how each is

computed. Later on we reduce this to a shorter list using a feature selection algorithm.

Galaxy-related features

1 Distance to group’s centre: This feature refers to how far a galaxy is from the centre

of its corresponding galaxy group. This variable is given in units of of h−1Mpc , but it

is calculated in three-dimensional space so it is dominated by the velocity component

of the galaxy’s position. The centre of the group is computed as the centroid of the

group’s member galaxy positions.

2 Absolute Magnitude: r-band absolute magnitude of the galaxy, k-corrected to z = 0.1.

3 Specific star formation rate of the galaxy, sSFR: Logarithmic value of the specific
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star formation rate of the galaxy. As mentioned in §4.3.1.2 and in Calderon et al. (2018),

in our mock catalogues these sSFRvalues were assigned using the Zu & Mandelbaum

(2016) halo-quenching model, and matched to the distribution of sSFR values in SDSS

DR7 through abundance matching.

4 Group galaxy type: The galaxy type of the galaxy, in terms of its galaxy group. We

denote a value of "1" if the galaxy is a group central, and a "0" if the galaxy is a

group satellite. After determining the group membership of each galaxy, we designate

the brightest galaxy of the group in the r-band as the group central, while the rest

of galaxies are identified as group satellites. Hence, a galaxy group is composed of

one bright group central and a number of group satellites. This criterion is motivated

by the idea that central galaxies grow in mass and brightness by galactic cannibalism

(Dubinski, 1998; Cooray & Milosavljević, 2005), while satellite galaxies experience a

series of events that strip them from their mass and inhibit star formation (e.g. ram-

pressure stripping and tidal stripping).

5 (g− r) colour of galaxy: The difference between the absolute magnitudes in the g-band

and r-band, after these have been k-corrected to z = 0.1. In our mock catalogues, galaxy

colours were assigned in a manner similar to that of sSFR.

Group-related features

6 Luminosity of brightest galaxy: r-band absolute magnitude value of the brightest

galaxy in the group that the galaxy in question belongs to. This absolute magnitude

is the same as that of the group central galaxy, according to our designation of group

centrals and group satellites.

7 Luminosity ratio: Ratio between the r-band luminosity of the brightest and second

brightest galaxies in the group.

8 Total luminosity, Mr,tot: The total r-band luminosity of the group is the sum of the r-
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band luminosities of its member galaxies. We compute the total group r-band absolute

magnitudes as

Mr,tot = −2.5log10

 N∑
i=1

10−0.4M0.1r,i

 , (4.2)

where ‘N‘ corresponds to the number of member galaxies in the group, and ‘M0.1r,i‘ to

the k-corrected r-band absolute magnitude of the i-th galaxy in the galaxy group. The

resulting variable is the groups’ total r-band absolute magnitude, Mr,tot.

9 Total specific star formation rate, sSFRG: Logarithmic value of the total specific star

formation rate of the group. For each group, the total specific star formation rate is

calculated as:

sSFRG =
SFRG

M∗,G
=

N∑
i=1

SFRi

N∑
i=1

M∗,i

, (4.3)

where ‘N‘ refers to the number of member galaxies in the galaxy group, ‘M∗,i‘ and

‘SFRi‘ to the stellar mass and star formation rate of the i-th galaxy in the galaxy group.

10 Shape: The shape of the group is calculated by first computing the eigenvalues of the

group’s moment of inertia tensor, and then by taking the ratio between the values of

the largest and second largest eigenvalues. This ratio is what we designate as the group

shape feature.

11 Richness: Richness is the total number of galaxies in the galaxy group. A galaxy group

can be composed of a single galaxy, or many galaxies.
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12 Projected rms radius, R⊥,rms: Projected rms radius of the group. It is given by

R⊥,rms =

√√√
1
N

N∑
i=1

r2
i , (4.4)

where ri is the projected distance between each member galaxy and the group centroid.

This variable is only computed for galaxy groups with two or more member galaxies.

For groups with just one member galaxy, we assign a value of ’0’ to R⊥,rms.

13 Maximum projected radius, rtot: The total radius of the galaxy group corresponds to

the projected distance between the centre of the galaxy group and and the most distant

member galaxy of the group.

14 Median projected radius, rmed: The median radius of the galaxy group is the median

distance between the centre of the group and the group’s member galaxies.

15 Total velocity Dispersion, σv: We compute a group one-dimensional velocity disper-

sion given by

σv =
1

1 + z̄

√√√
1

N −1

N∑
i=1

(czi− cz̄)2, (4.5)

where N is the total number of galaxies in the group, cz̄ is the mean velocity of the

group, and cz̄i is the velocity of each member galaxy. This variable is only computed

for galaxy groups with two or more member galaxies. For groups with just one member

galaxy, we assign a value of ’0’ to σv.

16 Velocity dispersion within rmed: Similar to σv. We compute a one-dimensional ve-

locity dispersion of the galaxies that are within rmed with Equation 4.5, but only using

galaxies within the designated radius from the centre of the galaxy group.

17 Abundance-matched mass, Mgroup: We estimate the total mass of the group via abun-
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dance matching. This method assumes a monotonically increasing relationship between

the group total luminosity, Mr,tot, and the dark matter halo mass. We adopt the Warren

et al. (2006) mass function for this purpose.

18 Dynamical mass: We follow the prescription from Girardi et al. (1998) for estimating

the group dynamical mass, using σvand R⊥,rms as follows

Mdyn = A×
3π
2
σ2

vR⊥,rms

G
, (4.6)

where G is the gravitational constant. A is a fudge factor that we use to remove any

systematic offset between the dynamical mass estimate and the true halo mass in the

cluster mass regime. Based on tests with our mock catalogs, we set this fudge factor

to a value of ‘1.04’. With this value of A, the above equation recovers the correct halo

mass for a massive halo in the ideal case where the radius and velocity dispersion of the

halo are known perfectly.

19 Distance to closest cluster: Distance to the closest cluster of galaxies that is at least a

factor of 10 times more massive than the host group of the galaxy in question. Masses

are measured using halo abundance matching and the distance is in units of h−1Mpc and

is calculated in three-dimensional space. If no such cluster of galaxies is to be found,

we assign a value of ’0’ to this variable.

This list of features contains spectro-photometric properties of the galaxies, sizes and

velocity dispersions of their groups, two halo mass estimates (one derived from spectro-

photometric properties, i.e., HAM , and one derived from group size and velocity dispersion,

i.e., DYN ), a group morphological parameter, and a large-scale environmental metric. All

of these features are expected to contain information about halo mass.
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4.3.3 Machine Learning Algorithms

Machine learning is an inventive field in computer science, with a variety of different

applications in a number of areas. As mentioned in §4.2, ML algorithms are able to learn

non-parametric relationships between some input data and an expected output, without

having to explicitly provide an analytic prescription. In the case of supervised learning,

which is the type of ML used in this paper, a training dataset (X,y) is provided, and the

ML algorithms try to learn the mapping F(X→ y) between the set of features, X, and the

expected output, y. Once the algorithm is trained, it is tested on a different ‘test’ dataset

in order to quantify how well it works. Ultimately, the goal is to apply the algorithm to an

application dataset where y is not known.

For our study, we test the performance of 3 different flavours of ML algorithms in

order to see which algorithm can provide us with the best prediction for the halo masses

of galaxies. We use the Random Forest an Neural Network algorithms from the python

package scikit-learn5 (Pedregosa et al., 2012), as well as the XGBoost algorithm 6.

4.3.3.1 Random Forest

One of the ML algorithms that we use in this analysis is Random Forests (hereafter

RF; Breiman, 2001). A random forest is an ensemble learning technique that builds upon a

collection of tree-structured classifiers, also known as decision trees. For the purpose of this

analysis, we implement RF for regression rather than for classification, and decision trees

are to be referred as regression trees in this context. RFmakes use of the bagging method, in

which it generates n samples from the dataset, trains each sample individually and averages

all of the predictions at the end. For a more comprehensive account of this technique, the

reader is referred to Breiman et al. (1984). We implement the scikit-learn version of

RF, RandomForestRegressor, with its default settings.

5http://scikit-learn.org/
6https://xgboost.readthedocs.io/
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4.3.3.2 XGBoost

XGBoost (Chen et al., 2006) is part of the family of boosting algorithms, which makes

use of the boosting method. In Boosting, unlike in Bagging, the algorithm generates n

random samples for training with replacement over weighted data. Each of these regression

trees are referred to as weak learners, and they each get assigned weights based on the

accuracy of their predictions. After these weak learners are trained, the weighted averages

of each of their estimates are used to compute the final predictions. The combination of

weak learners is referred to as strong learners. For a more in-depth discussion of XGBoost

and its different features, the reader is referred to the online documentation 6.

4.3.3.3 Neural network

The last ML algorithm used in this analysis is the simplest type of a neural network

(NN), i.e. the Multi-Layer Perceptron (MLP). A MLP is a model with interconnected infor-

mation processing units, often referred to as neurons, that learns the mapping F(X→ y)

given a training set (X,y), with X being the input features and y the target elements to

predict. We implement the scikit-learn version of a 3-layer MLP with each layer con-

taining 100 neurons. We refer the user to the scikit-learn documentation5 for a more

comprehensive account of this method.

4.4 Training and Testing ML algorithms

In this section, we present results from the training and testing of the three ML algo-

rithms for predicting the halo masses of galaxies in SDSS DR7. Moreover, we compare

these predictions to the more traditional estimates from halo abundance matching (HAM)

and dynamical mass measurements (DYN). In §4.4.1, we present the set of features that

contribute the most to the overall prediction of halo mass in order to reduce the dimension-

ality of our feature space in further training. In §4.4.2, we present results from the training

and testing phases of each of the three ML algorithms using our synthetic catalogues of the

Universe. The mock catalogues used in the training and testing phases are built using the
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same HOD model and thus represent the overly optimistic scenario in which the training

data perfectly represents the real universe. Results in this section thus serve as a proof

of concept that ML is a feasible method of determining the halo masses of galaxies. We

explore the more realistic case that the training data is drawn from a different underlying

model than the real universe in §4.5.

4.4.1 Feature Selection

In §4.3.2 we presented a list of 19 properties of galaxies and their groups that may

contain useful information about halo mass. In this section we analyse the predictive power

of these features in order to eliminate ones that are not as useful and thus reduce the overall

number of features that we will use as inputs to the ML algorithms. This is conventionally

referred to as feature selection, and it plays an important role into the training process of

a ML algorithm. Reducing the dimensionality of the feature space is desirable because

it reduces the computational cost of ML algorithms and can also improve their predictive

performance.

Before we determine the importance of each feature for the prediction of halo mass, we

first explore the amount of correlation among the different features from §4.3.2. Figure 4.1

presents the correlation matrix of these 19 features as measured from our mock galaxy

catalogues. The matrix shows the correlation coefficient between each pair of features, with

red and blue shadings corresponding to positive or negative correlation, respectively. The

matrix also includes halo mass in the first column and thus reveals how much each feature

is correlated with the quantity we are trying to predict. Figure 4.1 shows that almost all 19

of our features exhibit correlations with halo mass. Additionally, many of the features are

highly correlated with each other, as expected, and are thus unlikely to contain independent

information about halo mass.

To quantify the importance of each feature for the purpose of feature selection, we use

the native feature importance calculation within the RF and XGBoost algorithms (the NN
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Galaxy’s Halo mass
Distance to Group’s centre

Absolute Magnitude
Specific star formation rate of the galaxy

Group galaxy type
(g-r) colour of galaxy

Luminosity of brightest galaxy (G)
Luminosity ratio (G)
Total luminosity (G)

Total specific star formation rate (G)
Shape (G)

Richness (G)
Projected rms radius (G)

Maximum projected radius (G)
Median projected radius (G)
Total velocity dispersion (G)

Velocity Dispersion within rmed (G)
Abundance-matched mass (G)

Dynamical mass (G)
Distance to closest cluster (G)

−1 0 1
⇐ Correlation⇒

Figure 4.1: Correlation matrix of the galaxy- and group-related features presented in §4.3.2,
computed using our mock galaxy catalogues. The figure shows how correlated the features
are with each other, with red and blue shadings corresponding to positive and negative
correlations, respectively. Additionally, the first column displays the degree of correlation
of each feature with halo mass, which is the quantity we wish to predict. This figure
conveys the point that the mass of the dark matter halo is strongly correlated with almost
all of the features that we consider for training the different ML algorithms.
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Luminosity of brightest galaxy (G)

(g-r) colour of galaxy

Specific star formation rate of the galaxy

Total specific star formation rate (G)

Median projected radius (G)

Distance to closest cluster (G)

Total velocity dispersion (G)

Total luminosity (G)
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Figure 4.2: Feature importance for the top nine features used when predicting the mass of
a galaxy’s host dark matter halo, as calculated by the XGBoost (blue bars) and RF (purple
bars) ML algorithms. The length of each bar indicates its importance rank, with shorter
bars corresponding to more important features.

algorithm does not compute such a statistic). In general, these algorithms estimate the

importance of a feature by calculating how much it is used to make key decisions with

their decision trees. Each feature gets an importance score allowing us to compare them

to each other and rank them. Though later on we will split our 10 mock catalogues into

training and testing subsets, for the purpose of feature selection we use them all to train

the RF and XGBoost algorithms. Each algorithm then produces a ranked list of the 19

features in order of their importance, as discussed above. Though the two algorithms differ

in their detailed ranking of features, they are generally consistent and are almost in perfect

agreement on which features land in the top nine (out of 19). The remaining set of features

do not contribute much to the overall prediction of halo mass and so we focus on these nine

features moving forward.

Figure 4.2 shows the feature importance ranks for these top nine features for both the

XGBoost and RF algorithms. In the case of each feature, the length of the blue and purple

bar indicates its importance rank as calculated by XGBoost and RF , respectively, with

shorter bars corresponding to more important features. We estimate the overall importance

of each feature by adding its two ranks (the combined length of the blue and purple bars)
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and we order the features in Figure 4.2 according to this overall score. The figure shows

that the luminosity of the galaxy itself and the luminosity of the brightest galaxy in the

galaxy’s group are the overall most useful features in predicting halo mass, while the total

group luminosity is the least useful from this set of top nine features.

We select these top nine features that contribute the most to the prediction of halo mass

as our final set of features moving forward.

Final set of features

1 Galaxy’s r-band absolute magnitude

2 Luminosity of the brightest galaxy in the group

3 Galaxy’s (g− r) colour

4 Galaxy’s specific star formation rate

5 Group’s total specific star formation rate

6 Group’s median projected radius

7 Distance to the closest cluster

8 Group’s total velocity dispersion

9 Group’s total r-band absolute magnitude

For the rest of the analysis in this paper, we will exclusively use this set of features to

train the various ML algorithms and evaluate their performance at correctly predicting halo

masses.

4.4.2 Training and Testing

Now that we have a final list of nine input features, we can proceed to the training and

testing of the ML algorithms. We start with our set of 10 mock galaxy catalogues, each

of which has the same volume and approximate number density as the Mr19-SDSS sample.

Combined, these catalogues contain a total of 758,528 mock galaxies. For each galaxy we
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have values for the nine input features as well as the target halo mass. We also have the

traditional HAM and DYN mass measurements to compare against.

We split the mock data into training and testing sets. The training set consists of 8 of

the 10 catalogues, while the testing set consists of the remaining 2. We will use the testing

set to evaluate how well the trained algorithms perform. It is important to perform this

evaluation on an independent set of data from the training set in order to guard against the

problem of over-fitting. Sometimes ML analyses also use a third, validation, dataset for the

purpose of tuning the hyper-parameters of a given ML algorithm. However, in this paper

we choose to adopt the default values of hyper-parameters and thus we do not need to add

a validation step to our workflow.

After training the three ML algorithms to predict the dark matter halo masses of mock

galaxies in the training set, we apply these trained algorithms to the testing data and get

a list of predicted masses, Mpred, for these galaxies. We then compare these predictions

against the true halo masses, Mtrue, and compute the fractional difference between their

logarithmic values as

∆ f = 100×
[
log Mpred

log Mtrue
−1

]
. (4.7)

Each galaxy in the testing set gets three values of ∆ f (one for each ML algorithm), which

are essentially the fractional errors in the ML predictions. Note that these are errors in the

logarithm of halo mass. A value of ∆ f =5% thus corresponds to a fractional error in mass

of ∼ 250− 400% for the mass range we consider here. For comparison, we also calculate

∆ f using the HAM and DYN masses in place of Mpred. This will allow us to examine how

well the ML algorithms perform relative to traditional methods for estimating halo mass.

Figure 4.3 presents results for ∆ f , as a function of predicted mass, for different methods

of estimating the halo masses of galaxies. The solid, coloured lines correspond to the mean

fractional difference of galaxies in bins of Mpred, while the shaded regions represent the
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Figure 4.3: Fractional difference between predicted and true logarithmic halo mass for
galaxies, as a function of predicted halo mass, for different methods of estimating the dark
matter halo mass of a galaxy. Results are shown for a testing set of mock galaxies, for which
their true masses are known. The solid, coloured lines correspond to the mean fractional
difference of each method, while the shaded regions represent the 1σ ranges. This figure
compares the predictions of halo mass made by the three different ML algorithms to the
estimates from conventional methods, i.e. halo abundance matching (HAM) and dynamical
mass estimates (DYN).
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1σ ranges of ∆ f . We show predictions made by the XGBoost, RF, and NN algorithms,

and compare these to the mass estimates obtained from HAM and DYN. Figure 4.3 shows

promising results, in that all three ML algorithms are performing significantly better at

predicting the mass of a galaxy’s host halo than either HAM and DYN. Specifically, HAM yields

halo masses that are unbiased on average at low masses and have a 1σ error of ∼ 3%, but it

systematically overestimates masses on average at high masses, reaching a systematic error

as high as ∆ f ∼ 10% in the cluster regime. Moreover, the scatter grows to ∼ 10% in this

regime as well. DYN exhibits even worse performance since it has similar poor performance

for large masses, but also does badly at low masses, systematically underestimating masses

on average as much as ∆ f ∼ 10%. In contrast, the three ML algorithms yield predicted

masses that are unbiased on average at all masses and have a 1σ scatter in ∆ f of ∼ 3−5%.

To understand the poor performance of the HAM and DYN methods, it is important to

consider that we are not evaluating the ability of these methods to correctly estimate the

halo masses of galaxy groups, but rather of individual galaxies. Grouping errors made

by the group-finding algorithm can thus cause catastrophic errors in the halo masses of

galaxies that have been incorrectly grouped. For example, if the group-finder incorrectly

merges together a few galaxies that live in small haloes with the galaxies of a large halo

to yield a single massive galaxy group, both HAM and DYN will estimate a large halo mass

for this group and, thus, for all its members. The error in this estimate will be small for

the galaxies that actually belong to the large halo, but will be enormous for the galaxies

that were mistakenly grouped. It is these catastrophic errors that drive both methods to

overestimate the masses of galaxies on average in the high mass regime in Figure 4.3. At

low masses, where most galaxies live in N = 1 groups, HAM does a good job at recovering the

mass because galaxy luminosity correlates strongly with mass. DYN, however, does poorly

because dynamical measurements are very unreliable for systems with a small number of

galaxies. The ML algorithms have the advantage that they use additional information that

can help fix some of the problems caused by grouping errors. In the example above, the
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colours of incorrectly grouped galaxies are likely different from those of actual satellite

galaxies in massive halos and the ML algorithms exploit this to distinguish between the

two. An exciting possibility that arises from this is that the halo masses predicted by ML

could be used to improve the group-finding itself since galaxies whose predicted masses

are much smaller than the groups they’ve been assigned to could be removed from them.

We return to this point in the final section.

Another way to quantify the effectiveness of these algorithms at predicting halo masses

is to determine the percentile discrepancy between the true and predicted halo masses

across a big range of Mpred masses. To compute this statistic, we first determine the abso-

lute value of the log-difference between predicted and true halo mass, and rank-order them

from smallest to largest. We then determine the discrepancy that corresponds to the 68%

of galaxies that are best predicted. This statistic is given by the following equation:

(∆logM)68 = P68
( ∣∣∣logMpred− logMtrue

∣∣∣ ) . (4.8)

In other words, 68% of galaxies have their masses predicted with an error less than (∆logM)68.

We split the test sample into a low-mass and high-mass galaxy sample. Galaxies with

log Mpred ≤ 12.5 are assigned to the low-mass sample, while those with log Mpred > 12.5 are

assigned to the high-mass sample. For each sample, we compute (∆logM)68 for each ML

algorithm, and compare them to those for HAM and DYN. This statistic shows how well each

method is at estimating the halo masses in these two mass regimes.

Figure 4.4 presents the results for the typical mass error (∆logM)68. Horizontal bars

show values for the three ML algorithms, while solid and dashed vertical lines show results

for the HAM and DYNmethods, respectively, for comparison. In all cases, results for galaxies

with low predicted masses are shown in red, while results for galaxies with high predicted

masses are shown in blue. Figure 4.4 shows clearly that the three ML algorithms exhibit

similar performance and they significantly outperform traditional methods in most cases.
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Figure 4.4: Mass discrepancies, (∆logM)68 , for the three ML algorithms, as compared
to those of HAM and DYN methods, when splitting the galaxy sample into low-mass and
high-mass samples. The quantity (∆logM)68 is the 68% prediction error in the log of halo
mass, meaning that 68% of galaxies are predicted better than this. The horizontal bars
show this typical error for the ML algorithms while the solid and dashed vertical lines
correspond to the HAM and DYN methods, respectively. In all cases, results for galaxies
with log Mpred ≤ 12.5 are shown in red, while results for galaxies with log Mpred > 12.5 are
shown in blue. The three ML algorithms exhibit similar performance and are significantly
better than traditional methods, especially in the high mass regime.
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HAM does well at low masses, but at high masses its error is ∼ 50− 60% larger than ML

methods. DYN does poorly in both mass regimes, with a typical error that is 2− 4 times

larger than that for ML methods. More specifically, HAM is able to estimate halo masses

to within a (∆logM)68 ≈ 0.27 dex and (∆logM)68 ≈ 0.90 dex for the low-mass and high-

mass regimes, respectively. On the other hand, DYN can only recover halo masses to within

(∆logM)68 ≈ 0.92 dex and (∆logM)68 ≈ 1.25 dex for the low-mass and high-mass regimes,

respectively. The corresponding errors for the XGBoost, RF, and NN ML algorithms range

from, (∆logM)68 ≈ 0.23−0.25 dex and (∆logM)68 ≈ 0.51−0.60 dex for the low-mass and

high-mass samples, respectively.

In summary, we find that we are able to obtain better mass estimates for a galaxy’s host

halo by using ML methods in place of the more traditional mass estimators, such as HAM

or DYN . This statement is true regardless of predicted mass, Mpred. However, so far this

statement only holds for the case in which the training and testing samples share the same

underlying model that connects galaxies to dark matter halos. This is not likely to be true

when we apply the trained models to real SDSS data. We address this issue in the next

section.

4.5 Are Mock-Trained Models Universally Applicable?

The results shown in §4.4.2 support the notion that we can obtain better halo mass

estimates for galaxies by employing ML algorithms instead of the traditional HAM or DYN

methods. We evaluated the performance of the ML algorithms using a testing set of mock

galaxy catalogues that are independent from the set that we used to train the models. In this

context, “independent” means that they are constructed from cosmological N-body simula-

tions that are independent realisations of the density field (i.e., have initial conditions with

different random phases). However, the testing catalogues adopt the same prescription for

populating dark matter halos with galaxies and assigning them observed properties like

luminosity and colour. A better approach would be to test the ML algorithms using cata-
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logues that were built with different such prescriptions, since the real universe is unlikely

to perfectly conform to the assumptions made in the training phase. In this section, we test

the impact of these assumptions in order to assess whether mock-trained models can be

applied to the real universe.

4.5.1 Varying HOD models

The first step we make to build mock galaxy catalogues from a dark matter halo dis-

tribution is to populate the halos using a HOD model. This model specifies the number of

central and satellite galaxies that are placed in each halo. The model is flexible and has

five free parameters. We use the best-fit parameter values of Sinha et al. (2018), which

ensure that the number density, clustering, and group statistics of our catalogues match

those observed in the SDSS. This is the fiducial HOD model that we used to train and test

our models in §4.4. To test how sensitive our results are to the HOD model of the testing

sets, we now produce different versions of our two synthetic testing catalogues, each with

different values for the five HOD parameters. We select the parameter sets from the Sinha

et al. (2018) MCMC chain so that the resulting mock catalogues are still consistent with

SDSS observations. We then run the previously trained ML algorithms on these new test

mock catalogues to investigate how much performance we lose from modifying the HOD

model in the testing phase.

Figure 4.5 shows the fractional difference between predicted and true halo mass, ∆ f , for

these new test sets. The figure is similar to Figure 4.3, except that it only shows results for

the XGBoost algorithm and it focuses on the different HOD models instead. Also shown are

the HAM and DYN results for comparison, which are applied to the fiducial test catalogues.

We have also done the same tests using the RF algorithm and obtained similar results.

Figure 4.5 reveals that the performance of the ML algorithm degrades significantly at low

masses when it is applied to testing catalogues with different HOD models. For predicted

masses larger than ' 1012h−1M� the effect is negligible and ML clearly outperforms the
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HAM and DYNmethods just as it did when tested on the fiducial model. However, for Mpred /

1012h−1M�, the mean ∆ f is significantly biased for some of the HOD models, reaching

values as high as 4%.

To understand why the ML algorithms degrade at low Mpred, we take a close look at

the HOD parameters of our models to see if there is a trend that explains why some models

result in high ∆ f while others do not. We find a very strong correlation between ∆ f and

σlogM, the scatter in halo mass at the luminosity limit of the sample. Test catalogues with

high values of this scatter receive predicted masses that are systematically overestimated

when trained using the fiducial model. The fiducial model adopts a value of σlogM = 0.14

(Sinha et al., 2018), while the most extreme HOD models we test have values of 0.5−0.9.

Increasing the scatter this much is equivalent to removing some central galaxies from larger

halos and placing them in lower mass halos. However, their observed properties (e.g.,

luminosity and colour) don’t change much because they are assigned in a way that perfectly

recovers the observed distributions in the SDSS. For example, in our mock catalogues the

faintest r-band absolute magnitudes for mock galaxies are always equal to −19 regardless

of their halo mass, since that is the luminosity limit of our SDSS sample. As a result, ML

algorithms trained on a catalogue where these faintest galaxies live in more massive haloes,

but applied to a catalogue where they live in less massive halos, will learn an incorrect

mapping between luminosity and halo mass and thus predict masses that are too high.

Figure 4.5 suggests that in the low mass regime, the HAMmethod can yield more reliable

halo masses than the ML algorithms. However, this is not the case. The HAM result shown

is only for the fiducial model and performs well at low mass. However, the HAM method

applied to the other HOD models exhibits even worse performance than the ML algorithms.

The reason for this is that catalogues built assuming a high σlogM have their lowest lumi-

nosity galaxies living in lower mass haloes than they do in catalogues with a smaller scatter,

but their number density is not correspondingly higher because not all haloes down to this

mass are occupied. Since the HAM method uses abundances to assign mass, it will overpre-
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dict these galaxies’ masses. So even though ML does poorly when applied to high σlogM

datasets, it still outperforms HAM. Another thing to consider is that the ML algorithms only

perform poorly when applied to very large values of σlogM = 0.5− 0.9, which are likely

inconsistent with observed data. The true amount of this scatter in the real universe is most

likely close to ∼ 0.2 where our trained ML algorithms perform quite well.

4.5.2 Varying Satellite Galaxy Velocity bias

In the previous section, we demonstrated the effect of varying the HOD parameters

that control the number of central and satellite galaxies that occupy haloes as a function of

mass. Now we investigate varying how we place these galaxies in their haloes when we

construct test mock catalogues. Specifically, we study the effect of adding velocity bias to

our mocks. In the fiducial model, satellite galaxies are assigned the positions and velocities

of randomly selected dark matter particles within their haloes. However, it is possible that

satellite galaxies have kinematics that are either hotter or colder than the underlying dark

matter (e.g., Guo et al., 2015). This is referred to as velocity bias. We parameterise this

bias as the ratio between the velocity dispersion of satellite galaxies, σv,sat, within a halo

and the velocity dispersion of dark matter, σv,dm,

σv,sat = fvb×σv,dm, (4.9)

where fvb is the velocity bias parameter, and we explore models with values between fvb

=0.9 and 1.1. We implement velocity bias into our mock catalogues simply by scaling

satellite galaxies’ assigned velocities by fvb . Velocity bias is important in this ML context

because it directly affects dynamical measurements of group mass. A test mock catalogue

with velocity bias will have a different relationship between group velocity dispersion and

halo mass, which could cause errors in the predicted mass since velocity dispersion is a

feature used by the ML algorithms. In addition, velocity bias will change the size of small-

scale redshift distortions in groups, which can affect grouping errors.
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Figure 4.5: Fractional difference between predicted and true logarithmic halo mass for
galaxies, as a function of predicted halo mass, for a variety of testing data sets that were
constructed using different halo occupation models than what was used in the training
phase. All models shown use the XGBoost ML algorithm. Lines and shaded regions have
the same meaning as in Fig. 4.3. Results for HAM and DYN are also shown for comparison
(for the fiducial model case).
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To probe the effect of velocity bias on the performance of the ML algorithms, we con-

struct a few sets of the two testing mock catalogues, each time adopting the fiducial HOD

model, but adding an amount of velocity bias between fvb =0.9 and 1.1. We then apply our

previously trained ML algorithms to these new test sets. Figure 4.6 shows the fractional

difference ∆ f for these test cases compared, as always, to the HAM and DYN methods. We

only show results for the XGBoost algorithm, but the other algorithms exhibit similar be-

haviour. The figure shows clearly that the performance of ML is almost entirely unaffected

by velocity bias. This is to say that, regardless of the choice of fvb in the testing catalogues,

the predictions of halo mass made by ML algorithms that were trained on the fiducial model

are not biased by this choice of parameters.

4.5.3 Varying the Luminosity-Mass relation

Having explored the impact of training ML models on data sets that assume incorrect

relationships between the numbers and velocities of galaxies with halo mass, we now turn

to assumptions about the mass-luminosity relation. This is potentially important since our

feature selection procedure showed that a galaxy’s luminosity and the luminosity of the

brightest galaxy in its group are the two most important features for predicting halo mass. In

our mock catalogues, we assign luminosities to galaxies using the Conditional Luminosity

Function (CLF) formalism of Cacciato et al. (2009). Within the CLF model, the main

parameter that controls the strength of the correlation between the mass of a halo and the

luminosity of its central galaxy is σlogL, which is the scatter in the log of luminosity of

central galaxies at fixed halo mass.7 In the fiducial model that we used to train the ML

algorithms, the value of this scatter is σlogL=0.142. To investigate the effect of applying

the algorithms to data with different correlation between halo mass and luminosity, we

construct sets of our two test catalogues that assume different values of σlogL, ranging from

0.1 to 0.3.

Figure 4.7 shows the fractional difference ∆ f for these test cases. As before, we only
7In Cacciato et al. (2009) this parameter was called σc.
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Figure 4.6: Similar to Fig. 4.5, except that the various testing data-sets now share the same
set of halo occupation parameters as the training data, but cover a wide range of different
values for satellite galaxy velocity bias, fvb.
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Figure 4.7: Similar to Figs. 4.5 and 4.6, except that the various testing data-sets now share
the same set of halo occupation parameters as the training data and have no velocity bias,
but cover a range of different values for the assumed scatter in the luminosity-mass relation
for central galaxies, σlogL.

show results for the XGBoost algorithm and we include the results for HAM and DYN for

comparison. The figure shows that the performance of ML algorithms is not affected much

by the assumed value of σlogL. This is reassuring and implies that our halo mass predictions

are not sensitive to the detailed form of the mass-luminosity relation.
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4.6 Application to SDSS Galaxies

In §4.4 and §4.5, we showed how machine learning algorithms, such as XGBoost, RF,

and NN, can be used to predict the mass of a galaxy’s host halo with a higher accuracy on

average than more conventional mass estimators, such as HAM and DYN. The next logical

step is to choose the best of these algorithms and apply the trained model to real observed

data. All three ML algorithms that we have explored perform very similarly so we choose

XGBoost to be our algorithm of choice because it is faster than RF and NN. We apply the

XGBoostmodel that we trained and tested on mock catalogues to the Mr19-SDSS catalogue,

using the nine features described in §4.4.1 as inputs to the model. The model outputs

a predicted halo mass, Mpred, for each SDSS galaxy. We produce a final catalogue that

includes the set of nine features for each galaxy in the sample, our value for Mpred, and the

HAM and DYN group mass estimates. The catalogue is available for download. 8

Figure 4.8 shows the relationship between Mpred for SDSS galaxies and the masses

from the HAM and DYN methods. The figure shows the two-dimensional histogram (blue

shaded pixels) as well as the mean and standard deviation of Mpred in bins of MHAM and

Mdyn (yellow lines and error bars). In the case of HAM, Figure 4.8 shows that the masses

predicted by XGBoost tend to be lower, on average, than those determined by HAM for all

but the lowest MHAM masses. This is in agreement with Figure 4.3, which showed that

the masses determined by HAM tend to have larger ∆ f ’s than the Mpred’s by XGBoost for

Mpred > 1012 h−1M�. In the case of DYN, the XGBoost predicted masses are larger, on

average, than those determined by DYN at small dynamical masses, but smaller for Mdyn

larger than Mdyn > 1012 h−1M�. This is also in agreement with what we expect based on

Figure 4.3. The qualitative agreement between these results from SDSS and what we found

in our mock catalogue is encouraging.

Our tests with mock catalogues suggest that these predicted halo masses for SDSS

galaxies may be significantly more accurate than those estimated using HAM or DYN meth-

8http://lss.phy.vanderbilt.edu/groups/ML_Catalogues/
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Figure 4.8: Galaxy halo masses for SDSS galaxies predicted by ML compared to traditional
methods. The y-axis shows galaxy mass predictions from the XGBoost algorithm that was
trained on mock catalogues. The x-axis shows mass estimates for galaxies through HAM
(left panel) and DYN (right panel). The blue shading shows the frequency of galaxies in
two-dimensional bins, where the number of galaxies in each bin is normalised by the value
for the bin containing the most galaxies. Yellow solid lines and errorbars correspond to the
mean and standard deviation of Mpred in bins of MHAM or Mdyn. The dashed black lines
show the one-to-one relation between mass estimates.

ods, especially at large masses. Naturally, the worry with using these masses is the possi-

bility that the real universe does not look like our training mock data in some critical way

and that the predicted SDSS masses thus contain a large systematic error. Though this is

certainly possible, it is not likely because the mock catalogues were constructed to have

several statistical properties that are in agreement with the SDSS data. Moreover, HAM and

DYN masses are known to have large systematic errors. We thus feel fairly confident that

our ML halo masses are the best available measurements for galaxy halo environments in

the SDSS and are safe to use.

4.7 Summary and Discussion

In this paper, we estimate halo masses of galaxies by employing machine learning

(ML) techniques, and we compare these to results by other, more traditional, mass estima-
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tion techniques, such as Halo Abundance Matching (HAM) and Dynamical Mass Estimates

(DYN). We are motivated to explore ML because of limitations in these traditional meth-

ods and because we expect that we can obtain more precise halo mass estimates if we use

information from all the galaxy properties that correlate with mass, such as luminosities,

colours, group dynamics, and large-scale environments.

We investigate three ML algorithms: XGBoost, Random Forest (RF), and neural net-

works (NN). Each of the algorithms is trained on synthetic mock galaxy catalogues to pre-

dict the masses of galaxies’ host halos, using a set of features selected from both galaxy-

and group-related properties. The mock catalogues were constructed to have the same clus-

tering and same distribution of observed properties as the SDSS data, such as luminosity,

(g− r) colour, and sSFR. The final set of nine features that we use (§4.4.1) are chosen

based on their feature importance towards the overall prediction of halo mass, i.e., how

much each feature contributes to the overall prediction of halo mass. To quantify the per-

formance of the ML algorithms, we test them using an independent set of mock catalogues

and we compare them to the HAM and DYN methods. We probe to what extent the trained

ML models can be universally applied by testing them on data that have different proper-

ties from the training data. Specifically, we investigate variations in the halo occupation

distribution (HOD), velocity bias for satellite galaxies, and the mass-luminosity relation

for central galaxies. Finally, we apply our mock-trained XGBoost model to the Mr19-SDSS

galaxy sample and produce a SDSS catalogue that contains predicted halo masses, as well

as the nine features used and the HAM and DYN masses.

The main results of our work are as follows:

(i) We determine the set of nine features (out of the 19 features from §4.4.1) that contribute

the most to the prediction of a galaxy’s host halo mass. Among the set of nine features, we

find that the two strongest features are the r-band absolute magnitude of the galaxy and

the absolute magnitude of the brightest galaxy in the group to which the galaxy belongs.

Following these are the (g−r) colour and specific star formation rate of the galaxy and the
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group as a whole, the size and velocity dispersion of the group, and the galaxy’s distance

to the nearest cluster.

(ii) We find that HAM and DYN overestimate halo masses on average for large Mpred, reaching

average fractional errors in logM as high as 10% at the highest masses. This is due

to group-finding errors that misclassify some galaxies as satellites and thus assign them

too large halo masses. At low Mpred HAM works well, but DYN underestimates galaxies’

halo masses. In contrast, the ML algorithms all predict halo masses that are unbiased,

on average, across the whole range of masses probed. To quantify the typical error in

predicted halo mass, we calculate the quantity (∆logM)68, where 68% of galaxies have

their masses predicted with an error less than this. The three trained ML models have

values for this typical mass error of 0.23−0.25 dex and 0.51−0.60 dex for values of Mpred

smaller or greater than 1012.5 h−1M�, respectively. On the other hand, HAM yields typical

halo mass errors of 0.27 dex and 0.90 dex for the low-mass and high-mass regimes,

respectively, while DYN can only recover halo masses to 0.92 dex and 1.25 dex for low

and high masses.

(iii) When tested against mock data built with different assumptions than the training data, ML

models mostly perform well. Results are insensitive to the presence of satellite galaxy

velocity bias or the amount of scatter in the mass-luminosity relation for central galaxies.

When we vary the relation between halo mass and occupation number, there is no effect

at large masses, but predicted masses can be over-estimated in the low mass regime.

However, ML predictions still outperform HAM and DYN

(iv) Predicted XGBoost halo masses for galaxies in the Mr19-SDSS sample are similar to HAM

masses, but higher than DYNmasses in the low mass regime, but smaller, on average, than

HAM or DYN masses in the high mass regime. This is in qualitative agreement with our

testing results on mock catalogues.

These results demonstrate the power of using ML algorithms to infer the true underlying
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mass of a galaxy’s dark matter halo. Spectrophotometric properties of galaxies and their

groups, dynamical properties of the groups, and large scale environments, all correlate with

halo mass in different ways. It is thus not surprising that, when used jointly, they deliver

tighter constraints on halo mass than any one method. Our results confirm this, especially

at large masses, where methods like HAM and DYN suffer from the standard group-finding

errors that mistakenly place some field galaxies into large groups.

The big caveat to these results is that they only hold to the extent that the mock cat-

alogues used to train the ML algorithms match the real universe. We have taken care to

make sure that our mock galaxies have distributions of observed properties and clustering

that are consistent with those in the SDSS. However, we cannot guarantee that the corre-

lations between these properties and halo mass are correct in the training data. Though

our tests modifying the galaxy-halo connection are encouraging, we have not explored the

whole possible space of mock catalogues. Readers are advised to use the SDSS predicted

masses in §4.6 at their own discretion.

Perhaps the most interesting implication of this paper is the possibility that we can use

ML approaches to eliminate some of the systematic issues with the group-finding process,

such as merging of galaxies from different host haloes into the same group, or the splitting

of galaxies from the same halo into several different galaxy groups. For example, galaxies

in the same group that have very discrepant ML-predicted halo masses may have been

incorrectly grouped together. We plan to explore this in future work.
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Chapter 5

CONCLUSIONS

In this dissertation, I have presented several different but related analyses on various

aspects of the galaxy-halo connection.

First, I constructed a set of volume-limited galaxy samples from the Sloan Digital Sky

Survey (SDSS) Data Release 7 (DR7). Moreover, I presented a set of galaxy group catalogs

for three different volume-limited samples from SDSS, along with analogous realistic mock

galaxy group catalogs. These catalogs have been made publicly available for consumption.

The suite of galaxy and group catalogues contain information about several different galaxy

properties, as well as that related to galaxies’ group environments. Additionally, I also

investigated the impact that group-finding errors have on inferred statistics from galaxy

group catalogs by performing a careful analysis using mock galaxy (group) catalogs. In

this analyses I showed that group-finding errors do indeed have an impact of the estimation

of group mass and galaxy type. Additionally, I also made use of this framework to study

the stellar-halo mass relation of central galaxies, and computed a correction to SDSS that

I determined through the use of mock catalogs. I also explored what the role of group

mass is for determining the galaxy’s quenching state as a function of galaxy stellar mass.

I found that group-finding errors do not affect this relation significantly, and one can use

these mocks to further constrain this relation.

Secondly, I performed a comprehensive study of "galactic conformity" at low redshift

using a galaxy group catalog from SDSS DR7 and their satellites (1-halo), and between

central galaxies in separate haloes (2-halo). I used two metrics to probe for conformity in

three galaxy properties, (g− r) colours, specific star formation rate sSFR, and morphology

of galaxies. I also assessed the statistical significance of conformity signals with mock

galaxy catalogs from LasDamas simulation, and was able to make the first robust detection
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of 2-halo conformity.

At last, I presented a machine learning approach (ML) for the prediction of galaxies’

dark matter halo masses that achieved an improved performance over conventional meth-

ods. I trained three different ML algorithms to predict halo masses using a set of realistic

mock galaxy catalogs. I used these mock catalogs to explore how the choice of differ-

ent model parameters affected the predicted masses, and found that the ML approach still

yielded substantially better mass estimates than those of conventional methods, even when

modifying our choices of model parameters. I ultimately applied the trained model to a

galaxy group catalog from SDSS and presented the resulting halo masses.

In conclusion, I have explored various aspects of the galaxy-halo connection and deter-

mined that galaxy group catalogs are important tools that allow us to statistically measure

how galaxies correlate with their host haloes. What I present in this dissertation are some

examples of how group catalogs can efficiently characterize the galaxy-halo connection,

and can provide us with a better insight into how galaxy properties depend of cosmic struc-

ture. Moreover, the next generation of astronomical surveys, such as the Large Synoptic

Survey Telescope (LSST) and Euclid will provide an immense amount of data in the next

decades. Analyzing these data will require novel approaches and techniques and will result

in a thorough understanding of the Universe. It will also allow to better understand our

place in the Universe.
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