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CHAPTER 1

INTRODUCTION

Since the invention of the transistor, the electronics industry has been continually working to reduce its size.

Remarkably, transistors used in commercial processors decreased from a ∼ 10 µm channel size in 1971 to

the state-of-the-art ∼ 10 nm channel size used today (2017) [1]. Consequently the processors they comprise

have been becoming faster and more powerful at a steady rate.

The same level of size reduction has not happened for machinery — generally classified as (micro) nano-

electromechanical systems or (M)NEMS. There are countless commercial examples such as accelerometers

(that are used in cell phones and video game consoles), inkjet printheads, and pressure sensors (used in e.g.

airbag systems). Nevertheless, device sizes are rarely below ∼ 10 − 100 µm in size and devices < 1 µm

in size do not exist outside research laboratories. This is because it is difficult to fabricate small and thin

structures in a way that has low cost and high device yield. Additionally, simply reducing the dimensions of a

design will typically not yield a functioning system. There are multiple reasons for this. First, mechanical de-

vices generally have multiple complex interfacing components. Second, the relevant device physics are scale

dependent. For example electrostatic forces such as van der Waals interactions cause stiction between compo-

nents with high surface to volume ratios [2]. Further, basic material properties such as stiffness and breaking

strength can change with size due to reduced defect number and increased surface energy contributions [3,

4].

The benefits of miniaturizing machinery goes beyond packing a higher density of components into a

product. Machinery at the nanoscale can have fundamental frequencies in the MHz-GHz range allowing

photonic coupling to microwaves, large quality factors, tiny active masses, force detection limits as low as

10−18 N enabling weighing single molecules; the list goes on [5]. This motivates us to study, understand and

manipulate mechanical devices with nanometer dimensions.

1.1 Graphene — a two-dimensional material

One of the biggest challenges in studying nanoscale mechanics is finding a suitable test material that can

be procured with ease. Two-dimensional (2D) materials, a recently discovered class of materials only a few

atoms thick, fit the bill perfectly. This class of materials includes graphene, monolayer hexagonal boron

nitride (hBN), monolayer molybdenum disulfide (MoS2), and many others [6]. The simplest 2D material is

graphene. It is a single layer of carbon atoms arranged in a hexagonal lattice as shown in Fig. 1.1. Graphene

can be easily obtained by either mechanically exfoliating thin flakes of graphite through the ‘Scotch tape
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Figure 1.1: Scanning transmission electron microscopy (STEM) image of monolayer graphene, showing the
hexagonal structure of the carbon lattice. Scale bar is 0.1 nm.

method’ [7] or grown via chemical vapor deposition (CVD) [8]. Critically, graphene is extremely robust

making it an ideal candidate for testing nanomechanics at the ultimate, atomic thickness limit. Indeed, a

variety of NEMS devices for academic research a such as: resonators [9], switches [10], mass sensors [11]

and photonic devices [12] have been made successfully from graphene.

The isolation and study of graphene earned a Nobel prize in 2010, even though the first studies of graphene

appeared in the sixties. Graphene is a semimetal with conductance and valance bands touching at the K points.

Near the K points the dispersion is linear forming ‘Dirac cones’. This means the electrons here behave like

massless relativistic particles. This, in part, leads to high electron mobilities [13], an ambipolar electric field

effect [7], and supports a plethora of observable quantum phenomena [14, 15]. Despite the lack of band

gap in graphene, its electronic properties made much of the research community consider it for superior

transistors; but whether this will ever be viable is unclear [16]. Graphene also has a host of other interesting

physical properties that promoted heavy study such as: high strength [17], high thermal conductivity [18],

and impermeability to gases [19] to name a few.

In this work, we consider mechanical properties of graphene, which are equally remarkable. Multiple

techniques were used to measure the stiffness of graphene such as: thin film bulge tests [20], Raman spec-

troscopy [21], bending apparatus [22], and specialized MEMS actuators [23]. Graphene’s stiffness can also

be inferred from inelastic neutron scattering of graphite, which measures the phonon dispersion relationship

[24]. The simplest mechanical test is indentation with an atomic force microscope (AFM) tip [25]. From

these experiments, graphene was found to exhibit a Young’s modulus of E = 1 TPa. This is typically quoted

in 2D units, as ‘in-plane stiffness’ E2D = Et ≈ 340 N/m, where t is the thickness of graphene, which is

typically taken as 0.345 nm, the spacing between graphite lattice planes. This confirms that graphene is one

of the stiffest materials ever discovered due to its sp2 hybridized bonds. The magnitude of this stiffness is

rivaled only by other carbon-based materials.
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Furthermore, graphene has a record high breaking strength of ∼ 40 N/m which is 100× higher than steel

[25]. Such high breaking strength means that graphene can be strained reversibly and elastically up to∼ 20 %

before failure [26], whereas steel fractures at∼ 2−3 %. This is a pertinent feature considering that the silicon

transistor technology discussed previously was made possible by ‘strain engineering’ the silicon up to 5%

[27]. There, strain modifies the electronic band structure of the silicon, preventing degradation of its electrical

properties as the transistors are miniaturized. In a similar way, such a large range of sustainable strain in

graphene means there is huge potential for tuning its properties to a greater extent than other materials. For

example, the resonance frequency of a graphene nanoribbon can be tuned up to 14 % of its fundamental

frequency [28]. Further, strain engineering is predicted to induce a bandgap [29] or allow study of exotic

physics such as ‘pseudomagnetic fields’ [30]. Pseudomagnetic fields is a phenomenon in which the electrons

in graphene behave as if under the influence of a magnetic field, due to strain, when no external field is

applied.

In addition to being strong and stiff, graphene is also extremely flexible. There have been a number

of attempts at measuring graphene’s bending rigidity (κ) directly with widely varying results, for example:

using buckled ribbons [31], resonances of few layer graphene cantilevers [32, 33], and resonances of single

layer graphene cantilevers (suspended in liquid) [34]. The bending rigidity has also been extracted from the

inelastic neutron scattering experiments discussed previously [24]. There, it was found to be κ = 1.2 eV,

in agreement with simulations and comparable to the bending rigidity of biological tissue discussed in the

next section. The small magnitude of the bending rigidity is expected for materials that are one atom thick.

Correspondingly, the energy contribution due to bending is often neglected in experiments.

1.2 Crumpled membranes

Thin membranes are easy to crumple. This is because of their low bending rigidity and the resulting inability

to sustain compressive forces. In graphene, compressive strains as small as 10−6 % can cause wrinkling and

buckling [35]. Sometimes crumpling is a nuisance and needs to be avoided as is the case in solar sails [36]

or wrinkled skin [37, 38]. On the contrary, controlled corrugations can be used as an advantage to strengthen

materials as is commonly used in the design and fabrication of sheet-metal roof-tops.

Graphene is usually depicted as a perfectly flat sheet (Fig. 1.2a), but in reality it is generally crumpled

(Fig. 1.2b). In graphene, crumpling originates from two sources. The first is static wrinkling and folds

such as those found in fabrics or sheared materials. This wrinkling likely arises due to uneven stresses at

the border of the membrane. Such wrinkling in graphene has been characterized by optical microscopy,

scanning electron microscopy (SEM), and atomic force microscopy (AFM) [39–41]. The second crumpling

mechanism is related to the out-of-plane (flexural) phonon mode of graphene. Such phonons are unique to 2D
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Figure 1.2: Illustration of graphene’s structure a) Typical, flat depiction of graphene. b) Realistic depiction
of graphene that includes crumpling.

materials and have been characterized by neutron scattering experiments [24]. Further evidence of flexural

phonons come from transmission electron microscopy (TEM) [42–44]. Crumpling persists in both supported

and freestanding samples [45].

Critically, crumpling has an important role in the mechanical response of thin membranes. One of the

first studies of the mechanics of crumpled membrane appeared in the context of biological lipid membranes

[46, 47]. Lipid membranes are lipid molecules arranged in a bilayer sheet. They cannot support shear

deformations because the molecules can flow past one another. The bending rigidity of such structures is

close to that of graphene, κ0 ∼ 3 eV. It was shown that thermal fluctuations cause these membranes to

contract, similar to the behavior seen in an entropic spring, for example, DNA [48]. Another key result is that

the bending rigidity of the biological membrane is reduced due to these thermal fluctuations κ� κ0.

The contribution of out-of-plane crumpling to the mechanical properties of crystalline materials has also

been considered theoretically [49–56]. However, ultra-thin crystalline membranes did not exist until very

recently. Crystalline membranes by definition can resist shear deformations due to their strong covalent

bonds, in contrast to the soft matter discussed previously. In crystalline membranes, in-plane modes are

anharmonically coupled to the out-of-plane modes. This nonlinear coupling produces rich and complex

renormalization of all mechanical constants. Renormalization in this context means that the elastic properties

are not constant and depend on parameters such as system size, temperature, and applied stress. In graphene,

crumpling leads to a decrease in the Young’s modulus [57, 58], an increase in the bending rigidity [34, 44],

variable (and negative) Poisson’s ratio [59, 60], and negative thermal expansion [61, 62]. The renormalization

of mechanical constants can be demonstrated by a crumpled sheet of paper shown in Fig. 1.3. Here, a flat

and crumpled piece of paper are held on one end only. The flat sheet bends very easily whereas the crumpled

sheet is rigid and can support its own weight. Theoretical works have mainly focused on the flexural phonon

source of crumpling. Only recently has the competition between static wrinkling and flexural phonons been

considered [51, 53, 63]. This is important because in experiment both effects may contribute.
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Figure 1.3: Demonstration of elastic constant renormalization with crumpled paper. Left, flat paper is very
hard to stretch but bends easily under gravity. Right, crumpled paper becomes easier to stretch but can support
more than its own weight under gravity.

The effects of crumpling in 2D materials extend beyond mechanics. Most notably, it has been sug-

gested that the high thermal conductivity of graphene is caused by the large density of states of flexural

phonon modes [64]. Also, flexural phonons may explain the temperature-dependent electrical conductivity

in graphene since they are another mode of electron scattering [65, 66]. Suppressing the flexural modes via

strain engineering may therefore offer a way to vary thermal and electrical conductivity.

1.3 Motivation of the work in the thesis

The goal of the thesis is to explore the effect of crumpling on the mechanics of graphene — the ultimate thin

membrane [67]. The effect due to crumpling on the mechanical response of 2D materials is almost universally

ignored in prior experiments. This is because the most widely used measurement schemes require high and

non-uniform applied stress that suppresses crumpling. Experiments that do probe the interplay between

crumpling and graphene mechanics remain highly challenging [34, 57, 68]. To measure the mechanical

effects of crumpling we need to develop a new measurement scheme which can apply low and uniform stress,

allow non-invasive topography measurements, and be applicable at cryogenic temperatures. The motivating

questions of this thesis are the following:

• How does out-of plane crumpling affect the mechanical constants of 2D materials?

• How do we implement measurement techniques sensitive to crumpling?

• Can we identify sources of crumpling and distinguish between static and dynamic crumpling?

• Can we tune the mechanical properties of 2D materials by controlling crumpling?
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CHAPTER 2

MECHANICS OF THIN AND CRUMPLED MEMBRANES

The main goal of this chapter is to show how to extract the mechanical properties of 2D materials from exper-

imental data. We focus on two parameters: in-plane stiffness (E2D) and bending rigidity (κ). First, we will

present the continuum elasticity theory of thin plates. This is a good starting point to describe the mechanical

behavior of graphene. In particular, we derive the deflection response of circular membranes subjected to

out-of-plane pressure similar to what is done in experiments and show how to extract in-plane stiffness from

deflection data. Then we derive the bending response of rectangular cantilevers, from which we can extract

bending rigidity. Second, we consider how the definition of strain is altered for the case of crumpled mem-

branes. Finally, we show how the two main sources of crumpling, static wrinkling/corrugations and flexural

phonons, affect the mechanical response of graphene. Specifically, we review the main results of the theory

of crumpled crystalline membrane mechanics and how it applies to our experiments.

2.1 Continuum theory of elasticity

Let us first consider the mechanics of flat graphene unaffected by crumpling. Stress (σ) and strain (ε) of that

membrane are related through tensorial Hooke’s law:

σij = Cijklεkl. (2.1)

Here σij and εkl are second rank tensors with nine components each, meaning the stiffness, Cijkl, is a

fourth-rank tensor with 81 components. Fortunately, the stiffness tensor can be greatly simplified into only 2

independent elastic constants by assuming an isotropic material [69]:

σij = λεkkδij + 2µεij . (2.2)

Here λ is the Lamé parameter, µ is the shear modulus, and δij is the Kronecker delta. This form is often used

in the theoretical description of 2D materials because it offers the simplest relationship. Equation 2.2 can be

re-parameterized into many pairs of variables. One common formulation uses Young’s modulus E = σxx
εxx

,

and Poisson’s ratio ν = − εyyεxx [70]:

σij =
E

1 + ν

(
εij +

ν

1− 2ν
εkkδij

)
. (2.3)
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Figure 2.1: Schematic of the two bulge test schemes used in this work. Electrostatic actuation schemes is
shown on the left. In it, a uniform force is applied to graphene with an electric field. On the right, a graphene
membrane pressurized with gas is shown. R is radius of curvature, θ is the angle subtended from the center of
the membrane to the edge, h is center-point deflection, a is membrane radius, σ is internal stress, l′ is bulged
arc length, and d is the gate distance.

Ideally, to determine the Young’s modulus from experimental data, one would design an experiment

where the material is pulled perfectly in one direction or equally in all directions. Then, stress and strain

can be obtained from force and displacement through geometrical considerations, as explained in the next

section. While such an experimental setup is easy to build for a macroscopic material, the nanoscopic size of

graphene makes similar experiments more challenging.

2.1.1 Derivation of bulge test equations

Next, from the continuum theory of elasticity, I will derive the main ‘bulge test’ equations [71] for the

analysis of experimental data. In bulge test experiments, uniform pressure is applied to the sample in the

out-of-plane direction and its deflection is monitored. The two experimental set-ups used in this work are

shown in Fig. 2.1: an electrostatic actuation scheme and a pressurized cavity. In the electrostatic technique,

an effective pressure is applied to graphene with an electric field induced by a voltage between the sample and

a chip underneath. Experimental details of this scheme can be found in chapter 3. In the pressurized cavity

technique, pressure is applied to graphene with compressed gas. Experimental details of this scheme can be

found in chapter 4. Technically, the first scheme is a uniform load and the second is uniform pressure. As we

will see later, since the deflection of graphene is much smaller than device size (h� a) the two schemes are

equivalent.

Following Landau and Lifshitz [69], lets consider the free energy of a deformed thin plate in the x-y

plane with vertical deformation in the out-of-plane direction z, ζ(x, y) shown in Fig. 2.2. Assuming small
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Figure 2.2: Cross-section of deformed membrane with deflection defined by ζ.

deformations (u), the strain tensor reads:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.4)

where x1 is a spatial coordinate x, x2 is the spatial coordinate y, u1 is displacement along the x direction,

and u2 is displacement along the y direction. Each term in the expression describes the infinitesimal in-plane

strain in the membrane. The components of the strain tensor expressed in terms of ζ are:

uxx = −z δ
2ζ

δx2
, (2.5)

uyy = −z δ
2ζ

δy2
, (2.6)

uzz = z
ν

1− ν

(
δ2ζ

δx2
+
δ2ζ

δy2

)
, (2.7)

uxy = −z δ
2ζ

δxδy
, (2.8)

uxz = uyz = 0. (2.9)

The free energy of a deformed material per unit volume is:

F =
1

2
εijσij . (2.10)

Now, substituting σij (Eq. 2.3) and εij (Eq. 2.4) using Eqs. 2.5-2.9 into Eq. 2.10, we arrive at Eq. 2.11
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which is an expression for the free energy of a deformed plate in terms of Young’s modulus and Poisson’s

ratio:

F =
Et3

24(1− ν2)

∫ ∫ [(
∂2ζ

∂x2
+
∂2ζ

∂y2

)2

+ 2(1− ν)

{(
∂2ζ

∂x∂y

)2

− ∂2ζ

∂x2

∂2ζ

∂y2

}]
dxdy. (2.11)

Here, t is the membrane thickness and the quantity κ = Et3

12(1−ν2) is known as the effective bending rigidity

of a thin membrane. The first term is related to the average curvature of the membrane:
(

1
R1

+ 1
R2

)2

and the

second term in curly braces is related to the Gaussian curvature: 1
R1R2

, where R1 and R2 are the principle

radii of curvature. For a clamped system the Gaussian curvature is zero. This is typically shown by applying

two fixed boundary conditions and considering variations in the free energy (Eq. 2.11). The first boundary

condition, ζ = 0, ensures there is no out-of-plane deflection at the edge. The second boundary condition,

∂ζ
∂n = 0 (where n is the surface normal), ensures that the membrane remains horizontal at the edge. This

calculation is too cumbersome to present here, the reader is directed to any textbook on elasticity theory (see

e.g. [69, 72]). With these simplifications, Eq. 2.11 can be simplified to:

F =
1

2

∫
κ(∇2ζ)2dxdy. (2.12)

The equation describing equilibrium of the membrane under uniform applied pressure P in the downward

direction can be found by functional minimization of Eq. 2.12:

κ∇4ζ = P. (2.13)

Unfortunately, this result cannot be directly applied to graphene. For graphene, the assumption of small

deflection that was silently assumed in derivation of Eq. 2.13 breaks down. Indeed, any realistic displacement

magnitude is larger than the thickness of graphene t = 0.34 nm. Therefore we have to include a higher order

term in the strain tensor as follows:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂ζ

∂xi

∂ζ

∂xj

)
. (2.14)

Once again, the free energy can be obtained by substituting σij (Eq. 2.3) and εij (Eq. 2.14) into Eq. 2.10

[73]:

F =
1

2

∫ [
κ(∇2ζ)2 + λε2

ii + 2µεijεij
]
dxdy. (2.15)

While Eq. 2.12 only included the term related to bending rigidity, Eq. 2.15 includes additional terms related
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to the stretching energy: λε2
ii + 2µεijεij , which originated from the higher order term,

(
∂ζ
∂xi

∂ζ
∂xj

)
, in Eq.

2.14. Next, by minimizing the free energy described by Eq. 2.15, we arrive at the following equilibrium

conditions:

Et3

12(1− ν2)
∇4ζ − t ∂

∂xj

(
σij

∂ζ

∂xi

)
= P, (2.16)

∂σij
∂xj

= 0. (2.17)

Equations 2.16 and 2.17 are the Föppl von Karman equations. They are difficult to solve and are the

general starting point for most modern theories of elasticity. These equations can be simplified in particular

situations. As before, for graphene, since ζ > t and we consider large forces, the first term in Eq. 2.16 is

negligible. We also redefine bulk stress to ‘in-plane’ stress: tσij → σδij . This yields a simple expression for

elastic equilibrium of a membrane subject to pressure P :

σ∇2ζ = −P. (2.18)

Differential equation 2.18 is a classic example of Poisson’s equation in elasticity. Now lets solve Eq. 2.18

for a circular membrane of radius a that is clamped at the edge subject to a downward pressure P . This is the

main geometry used in this work. In polar coordinates Eq. 2.18 becomes:

1

r

d

dr

(
r
dζ

dr

)
= −P

σ
. (2.19)

The solution to Eq. 2.19 is:

ζ(r) =
Pa2

4σ

(
1− r2

a2

)
= h

(
1− r2

a2

)
, (2.20)

where h is the center-point deflection. The solution is of the form ζ(r) ∝
(

1− r2

a2

)
, i.e. parabolic. For

h << a the deflection is nearly spherical. Note that this solution is different from that of the biharmonic

differential equation. 2.13, which has solution of form ζ ∝
(

1− r2

a2

)2

. The key difference of the latter

solution is that dζdr = 0 at r = a due to non-negligible bending rigidity.

Next, we can determine P (h) by combining low and high deflection regimes of Eqs. 2.16 and 2.17

yielding a stress dominated term at small defections (P ∝ h) and a stiffness dominated term (P ∝ h3) at

high deflections:

P =
4σ0

a2
h+

8

3

Et

1− ν
h3

a4
. (2.21)
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Again, the reader is directed elsewhere for more details (e.g Refs. [69, 73, 74]). Equation 2.21 is known as the

bulge test equation in thin film mechanics and is the basis for extracting the mechanical constants of graphene

from applied pressure P and measured deflection of center-point h. For an atomically thin membrane such as

graphene, we define in-plane stiffness as E2D = Et. It is the 2D equivalent to Young’s modulus. The bulge

test subjects the membrane to biaxial stress and strain. Consequently, Ẽ2D = E2D

1−ν is known as the biaxial

modulus. The numerical pre-factors of each term are approximations which allow for the extraction of the

elastic constants within 10 % if h� a [74]. Following the same derivation for a point load retrieves a similar

expression used in AFM indentation experiments (discussed in Appendix B).

2.1.2 Geometrical derivation of bulge test equations

Here I will derive the stress and strain relations for a bulging circular thin film only from geometrical consid-

erations and show the corresponding relationship is identical to Eq. 2.21 derived in the previous section [71,

75–77]. In this way, it is clear that the bulge test method to extract stress and strain does not depend on the

nature of the deformation. I will also show that the stress and strain state can be calculated by knowing only

the applied pressure (P ), center-point deflection (h), and diameter (a) of the membrane.

To derive the expression for stress we consider the simplified case where the equilibrium of external

pressure and restoring elastic tension results in a perfectly spherical membrane shape. In this case the radius

of curvature R, is equal to membrane radius a. It can be shown that this simple derivation agrees with the

general case of a � R [78]. The force due to external pressure P is balanced by in-plane biaxial stress

σ = σ3Dt:

PπR2 = σ2πR. (2.22)

Solving for σ yields:

σ =
PR

2
. (2.23)

Referring to Fig. 2.1, simple geometry allows us to find an expression for R as follows:

R =
h

2
+
a2

2h
→ R =

a2

2h
for h� a. (2.24)

Combining Eq. 2.23 and Eq. 2.24 yields:

σ =
Pa2

4h
. (2.25)
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Note that this is identical to solution of the Föppl von Karman equations in Section 2.1, specifically Eq.

2.20 for ζ(r = 0) = h. We can also easily calculate the strain state of the membrane. Strain is given by:

ε =
l′ − l
l

=
∆l

l
. (2.26)

The bulged arc length is:

l′ = 2Rθ, (2.27)

where l is the length of the arc, l′ is the length of the bulged arc, and θ is the angle between the membrane

edge and the center (see Fig. 2.1). Since the membrane is deformed symmetrically, the change in arc length

across perpendicular directions are identical. This means the strain is biaxial. The angle θ can be expressed

in terms of a and R as follows:

θ = arcsin
( a
R

)
. (2.28)

The original length of the flat membrane is simply: l = 2a, as shown in Fig. 2.1. Recalling Eq. 2.24

yields the following expression for strain:

ε =
2R arcsin

(
a
R

)
− 2a

2a
=

a

2h
arcsin

(
2h

a

)
− 1. (2.29)

The first term in the Taylor expansion of Eq. 2.29 is our final equation for biaxial strain:

ε =
2h2

3a2
. (2.30)

In general there can exist a stress in the flat membrane before the application of pressure. This is called

built-in stress (σ0). The relation between stress and strain is then:

σ = Ẽ2Dε+ σ0. (2.31)

Using Eq. 2.25 and 2.30 and knowledge of applied pressure yields:

P =
4σ0

a2
h+

8Ẽ2D

3a4
h3. (2.32)

Equation 2.32 derived from geometrical considerations is identical to Eq. 2.21 derived from the Föppl von

Karman equations. From these expression, the mechanical constants such as Ẽ2D can be extracted from
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Figure 2.3: Finite element analysis of a clamped circular membrane loaded in the out-of-plane direction.
Main panel shows the stress-strain response of the membrane. The inset (bottom right) shows computationally
obtained center-point deflection (h) vs. applied pressure (P ). Inset (top left) shows deformed geometry where
color is deflection. The in-plane stiffness obtained from the slope of the stress-strain curve is within 10 % of
the value obtained from fitting to the P (h) data. This confirms the use of either technique to experimentally
extract the mechanical constants of thin membranes.

experimentally measured P (h). However, instead of fitting the P (h) response, one can plot the stress vs.

strain curves using Eqs. 2.25 and 2.30. The slope of this curve is biaxial in-plane stiffness Ẽ2D.

We tested the accuracy of these approximate expressions Eq. 2.21 and stress-strain analysis Eqs. 2.25

and 2.30 by comparing their predictions to exact numerical calculations obtained using commercial finite

element analysis (FEA) software, ABAQUS (Fig. 2.3). We used shell elements with fixed edges. The

stiffness of membranes was set to an arbitrary E0 = 3.5 GPa. We found that the slope of the stress strain

curve is identical to Ẽ2D as determined via the bulge test equations. Also, the obtained E does not deviate

from the pre-set E0 by more than 10 % in agreement with more detailed research [76].

2.1.3 Bending Beams

We have seen that the mechanical response of membranes only depends on stiffness and not bending rigidity.

To access bending rigidity, we consider the cantilever geometry. The bending rigidity is defined as:

κ =
dM

dC
, (2.33)

where M is bending modulus and C is bending curvature. We have seen from Eq. 2.11 that the bending

rigidity can be related to the Young’s modulus for a beam with thickness t by κ = Et3

12(1−ν2) .

The bending of cantilevers can be described by the effective spring constant (k) relating applied force (F )

and displacement (x) of the cantilever’s end: F = −kx. For a rectangular beam of width W , length L, and
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thickness t, the effective spring constant is [72]:

k =
Et3w

4L3
. (2.34)

The spring constant is related to κ through geometry [79]:

κ =
kL3

3W
. (2.35)

For the 5 × 5 µm2 graphene cantilevers considered in chapter 5, assuming κ = 1 eV yields a spring

constant of k ≈ 1× 10−8 N/m. This number is a good reference point to bear in mind. Even a cantilever this

short is 106 times softer than commercial AFM cantilevers.

2.2 Renormalization of elastic constants due to crumpling

This section is devoted to considering the renormalization of the elastic constants of 2D membranes due to

the two primary crumpling sources: static wrinkling and flexural phonons.

2.2.1 Hidden area

First we need to quantify crumpling strength through a concept known as ‘hidden area’ [58]. Consider Fig.

2.4 illustrating stretching a crumpled membrane. The hidden area ∆A0 is the difference between the true area

of the membraneA0, and the area of its projection onto a plane parallel to the membrane at zero applied stress.

∆A0 is the amount of area ‘hidden’ within out-of-plane crumpling and is ‘revealed’ when the membrane is

stretched to the point of becoming flat. For a flat membrane the hidden area is zero. Consider the change in

projected area ∆A of a crumpled square sheet when the length of its side l is increased by a small amount

∆l:

∆A = A′ −A = l2 + 2l∆l + ∆l2 − l2 = 2l∆l. (2.36)

The fractional change in area can be expressed as:

∆A

A
=

2∆l

l
= 2ε. (2.37)

Here we have used the definition of strain ε = l′−l
l = ∆l

l . Now, if a crumpled sample is stretched enough to

become flat, Eq. 2.37 can be used to quantify the amount of hidden area ∆A0. There, the change in area is

due to unravelling the crumpling present in the membrane. So the difference in the projected area of crumpled
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Figure 2.4: Hidden area and strain in a crumpled membrane. Original membrane length l is increased by
uniform stress σ resulting in new length l′. ∆A0 represents the amount of area unravelled due to uncrumpling
and is the difference between the true membrane area and its projection (shown as the shadow).

membrane and the projected area of the flat membrane can be expressing using Eq. 2.37:

∆A0

A
= 2εt. (2.38)

where εt is the ‘threshold’ amount of strain required to flatten the sample.

Strain in a crumpled membrane involves changes in both bond lengths in the material and changes in

device geometry. The change in device geometry can lead to large effective extensions due to unravelling

crumpling even if the bonds are not stretched very much. Therefore, when dealing with strain in 2D materials

one needs to distinguish between change of the true material size and the projected size [80]. For flat materials

they are identical — this is an implicit assumption of the continuum theory of elasticity discussed previously.

However, for crumpled materials they can be considerably different. In chapter 4 we show how to measure

this difference experimentally.

2.2.2 Static wrinkles and corrugations

We will first consider a simple case of 1D wrinkling and analyze changes in the elastic constants due to this

wrinkling. We will discuss how wrinkles form in thin plates due to shearing and how their presence affects

the mechanical constants the of a material. Compression and shear in thin materials cause wrinkling and

buckling since the energy cost of out-of-plane buckling is much less than that of in-plane compression.

One can predict the relationship between sample length L, thickness t, and Poisson’s ratio ν of a rectan-

gular sample and the amplitude (δ) and wavelength (λ) of wrinkling [37, 81]. The main assumption of the
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following analysis is that observed wrinkling is a single 1D sinusoid. For wrinkles that form predominantly

due to uniaxial tension, the relationship is:

δλ

L
=

√
8ν

3(1− ν2)
t. (2.39)

For wrinkles that form predominantly due to shearing, the relationship is:

δλ

L
=

√
8

3(1 + ν)
t. (2.40)

Direct measurement of the quantity δλ
L revealed that Eqs. 2.39 and 2.40 hold for multilayer graphene up to

20 nm thick [41, 82]. To our knowledge, the same type of analysis for circular membranes has not been

performed because such geometry is much more complicated to analyze.

Now we consider the changes in the effective elastic constants in a sinusoidally corrugated sheet as shown

in Fig. 2.5. The effective in-plane stiffness and bending rigidity are [83, 84]:

Exx =
E

6(1− ν2)

(
t

δ

)2

, (2.41)

κyy = κ+ 0.5Eδ2t. (2.42)

Here E is the uniaxial stiffness of the isotropic sheet. Equation 2.41 shows that the stiffness is softened due

to corrugations by a factor
(
t
δ

)2
. This softening only occurs when stretching along the wrinkles (in this case,

x-direction). There is no large change in stiffness when stretching perpendicular to the wrinkles (y-direction).

Correspondingly, the bending rigidity is increased perpendicular to the wrinkles (bending along y-direction)

by an additive term proportional to δ2 and E. The pre-factor ∼ 0.5 is an estimate of the increased moment of

inertia due to effective increased thickness.

We used ABAQUS FEA to confirm that wrinkling leads to softening of the effective in-plane stiffness and

produces nonlinear stress-strain curves as shown in Fig. 2.6. We used a rectangular ribbon geometry with

wrinkles induced following the approach by Wong et al. [85]. The membrane was loaded under constant

pressure. Its effective stress and strain were extracted. We observed a nonlinear stress-strain relationship

(Fig. 2.6b) with the degree of nonlinearity depending on wrinkle amplitude δ. The effective stiffness of

the wrinkled sample was calculated as a derivative of the stress-strain curve normalized by the stiffness of

unwrinkled membrane E0. The membrane is seen softened in the regime of small strain.

We also used the FEM data to illustrate the hidden area metric as shown in Fig. 2.6c. The fractional

hidden area is defined from Eq. 2.38 is ∆A0

A = 2εt. The positions corresponding to threshold strains for
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Figure 2.5: Illustration of a sinusoidally corrugated sheet. The sheet is corrugated in the x-direction. The
effective in-plane stiffness is reduced along this direction. The effective bending rigidity is increased when
bending along the y-direction.

different amounts of wrinkling calculated from geometry are shown by dashed lines. Initially, at strains < εt

the material is softened due to wrinkling. At strains > εt, the sample behaves linearly with constant stiffness

as obtained in the FEM simulation.

Note that like all classical elastic theory, Eqs. 2.39, 2.40, 2.41 and 2.42 are derived for materials with

finite thickness and whose material stiffness in stretching perpendicular to corrugations comes from com-

pression and tension of opposite material surfaces. For a membrane such as graphene with only one layer

it is less obvious what will happen. One might expect stretching perpendicular to corrugations should yield

zero stiffness until the membrane is flat. One can see this is true by smoothly deforming paper along one

dimension. It is almost impossible to feel the deformation forces it takes to flatten out the sheet — yet it

extends by a large amount. Such an experiment with graphene would be extremely hard to realize.

To describe realistic crumpling of a membrane, we must introduce two complications to the 1D wrinkling

models outlined above. First, the membrane is wrinkled along all directions rather than only one direction.

Second, the amplitude of crumpling varies for different modes. One treatment [58] considers a membrane in

initially warped configurations by summing distributions of sinusoids. Here no internal stress is considered

and the crumpling height defined by 〈h2〉 = δ2

Aqdh
where δ is an amplitude, A is membrane area and dh is

a constant which controls the distribution the crumpling wavevectors q. The result of this theory is that the

mechanical constants E and κ are renormalized due to wrinkling. The renormalized elastic constants from

this treatment are:

ER ∝
√

κ

E〈h2〉
, (2.43)
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Figure 2.6: ABACUS FEM a) The model of a wrinkled membrane in unloaded (P = 0) and loaded (P 6= 0)
configurations. Pressure is in −z direction. b) Extracted stress-strain curves for different amplitudes (δ) of
wrinkles. c) Extracted in-plane stiffness vs. strain. The material is softened at small strains. When strain is
high enough to unravel the wrinkling (dashed markers at 0.25 %, 0.50 % and 0.80 %) we retrieve the defined
material stiffness.
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κR ∝
√
E〈h2〉
κ

. (2.44)

The constant of proportionality for these relationships is ∼ 1. It can be determined more precisely numeri-

cally. For dh > 2 there is a size dependance of the elastic constants. In particular, the thermal fluctuations

considered in the next section have dh = 4, and therefore the elastic constants depend heavily on system

size. It is interesting to compare Eqs. 2.43 and 2.44 for crumpled membranes to Eqs. 2.41 and 2.42 for 1D

corrugations. The renormalization for crumpling scales with crumpling amplitude h as opposed to wrinkle

amplitude squared (δ2). Also, membrane thickness does not directly enter Eqs. 2.43 and 2.44. Instead, there

is an effective elastic thickness described by the
√

E
κ term.

2.2.3 Flexural phonons

Now we discuss out-of-plane, flexural phonons and their impact on crystalline membrane mechanics. To ap-

preciate their interesting properties, I first briefly mention their relationship to mechanics. In bulk condensed

matter systems the in-plane stiffness is related to acoustic phonon dispersions near the Brillouin zone center

(TA and LA modes). This is because these modes have linear dispersion ω = vgq, where vg is the speed

of sound in the material which is dictated by the elastic constants. In 2D condensed matter systems there

are also out-of-plane (flexural) phonons in the ZA and ZO branches. These out-of-plane phonons have very

different properties than in-plane phonons. Namely, the ZA branch has a quadratic dispersion relationship

[86]:

ωq =

√
κq4 + 2(λ+ µ)εq2

ρ
, (2.45)

where ω is phonon frequency, q is phonon wavevector, ρ is mass density of graphene, ε is strain, κ is the

bending rigidity and λ and µ are the elastic Lamé coefficients. For the simple case ε = 0 the dispersion

is ω =
√

κ
ρ q

2. We can then easily estimate the total number of flexural phonons (N ) excited at finite

temperature (T ) [64]:

Nflex =
1

2π

∫
q dq

exp
(

~
kBT

√
κ
ρ q

2
)
− 1

. (2.46)

We note that this integral is divergent at q → 0. This divergence in the flexural phonon number dominates

the physical properties of a 2D membrane. For example, it leads to reduced in-plane stiffness and increasing

bending rigidity.

Now let us consider the renormalization of the elastic constants due to dynamic crumpling from flexural

phonons. Any fluctuation due to flexural phonons cannot occur without also stretching the membrane since

bending and stretching are coupled (Eq. 2.14). What is the minimum amplitude of thermal fluctuations,

〈u2〉, that coupling between the bending and stretching modes affect the measurable mechanical properties
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of the membrane? One estimate was performed by Nelson et al. [49]. The authors of Ref. [49] compared

the magnitude of the terms in Eq. 2.15 with deflection ζ stemming from thermal fluctuations, 〈u2〉 ≈ kBT
κ ,

where kB is the Boltzmann constant, and T is temperature. The result from this analysis is:

〈u2〉 ≥ 1

γ
l2 (2.47)

where γ = El2

κ is the Föppl von Karman number and is a metric used to compare how easy it is to stretch or

bend a membrane of linear size l. Very large γ means it is much easier to bend than to stretch. For a 200 µm

sheet of graphene γ ≈ 1012. This is 6 orders of magnitude larger compared to the same ratio for paper. In

other words, because graphene has an extremely high γ, the coupling between bending and stretching occurs

for even tiny out-of-plane deformations. Because of this, Eq. 2.47 suggests that the elastic constants are

renormalized for practically any amplitude of flexural phonons. The first order correction to the bending

rigidity (κ) was estimated with perturbation theory [49, 73]:

δκ =
3TE

8πκq2
=

3T

8π
γ (2.48)

The appearance of the Föppl von Karman number means that the predicted corrections to the bending

rigidity (δκ) are large (≥ κ). Therefore, perturbation theory is not applicable. There are a number of ways

to tackle this problem. Most formal theory considers the free energy Hamiltonian (Eq. 2.15) that is used

to derive the Föppl von Karman equations. The energy of the crumpled membrane is then calculated using

approaches such as: iterative perturbation, the self-consistent screening approximation (SCSA), renormal-

ization group theory, atomistic simulations, and numerical models [49–51, 53–55, 87]. The result of these

sophisticated theories are the following expressions for the renormalized elastic constants:

ER ∝ E
(
lth
l

)2−2η

, (2.49)

κR ∝ κ
(
l

lth

)η
. (2.50)

Here η ≈ 0.8 for thermal fluctuations and lth is the ‘cross-over length’ representing the minimum sample

size in which renormalization affects are important:

lth =

√
32π3κ

3EkBT
. (2.51)

For graphene, lth ≈ 3 nm. This means that for virtually any realistic sample size with dimensions l � lth,
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the elastic constants are renormalized. Specifically, in-plane stiffness is reduced and bending rigidity is

increased. This is because when stretching a crumpled membrane one effectively pays the small energy cost

to bend the membrane locally. Conversely, when bending a crumpled membrane one effectively pays the

larger energy cost of stretching the membrane. Both effects originate in the coupling between bending and

stretching caused by crumpling.

Now that we understand how the elastic constants of a crystalline membrane are renormalized, we derive

a simple stress-strain relationship of graphene that is crumpled due to flexural phonons. We follow a modified

derivation by Helfrich and Servuss [46]. First we consider a crumpled membrane. For any arbitrarily crum-

pled membrane the displacement profile can be decomposed into Fourier modes uq = exp(iqr), where q is

the wavevector of a single mode, and uq is the displacement of graphene from the x-y plane. Let us consider

a membrane crumpled by a single mode. For a small section of this mode, the difference of the membrane

area and the projected area is:

∆A = A(cos(θ)− 1) ≈ −Aθ
2

2
≈ −A tan(θ)2

2
(2.52)

where θ is the angle a section of the membrane makes with the x-y plane. For small angles θ, |∇u| ≈

tan(θ) = iquq . Then, ∆A per mode q can be expressed as:

∆Aq = −1

4
Aq2|2uq|2. (2.53)

It costs energy σ∆Aq , where σ is stress, to increase the in-plane area of the membrane by ∆Aq . Then,

the stretching energy associated with mode q is:

1

4
Aκq4|2uq|2. (2.54)

From the equipartition theorem, we can find the average amplitude per mode:

|uq|2 =
kBT

A (q4κ+ q2σ)
, (2.55)

where kB is Boltzmann constant, and T is temperature. Next, from Eq. 2.53 and 2.55 and we can calculate

the amount of crumpling due to a single mode:

(
∆A

A

)
q

= q2 kBT

A (q4κ+ q2σ)
. (2.56)

As discussed earlier, κ, the bending rigidity, is renormalized due to crumpling. Therefore we use Eq. 2.50
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0 =340 N/m

Figure 2.7: The stress-strain curves for graphene subject to thermal crumpling obtained numerically from Eq.
2.58. At = 1 K, the flexural phonons are almost completely suppressed and the stiffness of graphene is close
to that of flat graphene: 340 N/m. At T = 300 K, graphene appears much softer due to a large amount of
thermal crumpling.

to write: κ(q) = κ0 + kBTB
(
q0
q

)η
, with B = 5.9T ( η2−1), q0 = 2π

(
E0

2D

κ0

)1/2

, η = 0.85, E0
2D = 340 N/m

and κ0 = 1 eV [73]. We must sum the total contribution from all modes by integrating. This yields the total

decrease in projected area ∆A in a crumpled membrane:

∆A

A
= − 1

2π

∫ qmax

qmin

kBT

(q2κ(q) + σ)
qdq. (2.57)

In this expression the lower integration limit qmin = 2π√
A

is the lowest possible mode of excitation and is

related to the membrane size. The upper limit qmax =
√

3kBTE0
2D

8κ2
0π

ensures only phonons with wavelength

> lth contributing to stiffness are counted.

To compute the stress-strain relationship of a crumpled material, we convert changes in area to lengths

changes (section 2.2.1) and add the contribution due to stretching of the flat membrane:

ε =
1

2

∆A

A
+

σ

E0
2D

. (2.58)

The two terms in this expression stem from two sources of strain. The first term is crumpling due to flexural

phonons and the second term is stretching of carbon-carbon bonds with effective stiffness E0
2D = 340 N/m.

The stress-strain curves computed from the model are plotted in Fig. 2.7.

Renormalized elastic constants changes the bulge test expressed in Eq. 2.21 to [88]:

P = Ah+Bh3+2µ (2.59)
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where µ = 2−2η
2−η ≈ 0.28 and B ∝

(
κ

kBT

)µ
E

L4+2µ is an effectively reduced in-plane stifffness. Also note the

non-trivial power of deflection h3+2µ, where for a flat membrane this is simply h3.

2.2.4 General stress-strain relationship

Recently, a more sophisticated theory [63] was developed to describe the ‘anomalous’ Hooke’s law of crum-

pled graphene with static or dynamic crumpling:

ε(σ) =
σ∗
E

[
σ

σ∗
+

1

α

(
σ

σ∗

)α]
. (2.60)

Here α is an exponent which determines the degree of nonlinearity caused by crumpling and σ∗ is the

‘crossover stress’, a measure of the stress required to flatten the membrane. Qualitatively, the mechani-

cal behavior described by Eq. 2.60 is that of two springs in series. The first linear ‘spring’, with stiffness

Ẽ2D ∼ 400 N/m describes stretching of C-C bonds, while the second, nonlinear ‘spring’ corresponds to

uncrumpling of a membrane. The theory predicts α ∼ 0.1 for static disorder (wrinkling) and α ∼ 0.5 for

thermal fluctuations (flexural phonons). The Hooke’s law is called ‘anomalous’ because the stress-strain

relationship is nonlinear at low stress governed by the second term in Eq. 2.60. This is in contrast to nonlin-

earities in bulk materials which occur at very large stress. This theory is particularly useful because it allows

us to identify the source of crumpling and only requires three fitting parameters.

2.2.5 Effect of finite bending rigidity

In the derivations of the bulge test Eq. 2.21, we assumed negligible bending rigidity of graphene. For flat

graphene, with κ = 1 eV, this assumption is fully justified. However, as discussed previously, crumpling

increases κ. So can we still neglect the effects of bending in the bulge test for crumpled graphene?

To answer this question, we estimate the relative magnitude of the bending (Ub = 1
2κ

1
R2 ) and stretching

(Us = 1
2Eε

2) energies per unit area of a graphene sheet:

Us
Ub

=
E

κ
ε2R2 ≈ 109. (2.61)

Here R = 25 µm is the minimum radius of curvature seen in experiment for a l = 10 µm device, and

corresponding strain ε = 0.0067. This estimate quantitatively confirms that for flat graphene bending rigidity

is negligible. Now to describe crumpled graphene, we substitute the elastic constants E and κ with the

renormalized ones ER and κR from Eqs. 2.49 and 2.50:

E

κ
→ ER

κR
=

(
lth
l

)−2η (
l

lth

)−2−η
E

κ
≈ 10−6E

κ
. (2.62)
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By substituting ER
κR

into Eq. 2.61, allows us to include the effect of renormalization in our estimate. Now the

relative magnitude of stretching and bending energies per unit area is:

Us
Ub

=
ER
κR

ε2R2 ≈ 103. (2.63)

This confirms that the stretching energy contribution is larger by a factor of 103 and therefore bending rigidity

can still be neglected.

2.3 Summary

In summary, graphene is the thinnest possible crumpled membrane. From the view of continuum elastic

theory, the mechanical response of flat graphene is characterized by three elastic constants: Young’s modulus

(E = 1 TPa), Poisson’s ratio (ν = 0.165), and bending rigidity (κ = 1 eV). Related experimentally relevant

parameters such as the 2D Young’s modulus or in-plane stiffness E2D = Et ≈ 340 N/m, and biaxial

modulus Ẽ2D = E2D

(1−ν) ≈ 400 N/m are also used, since the thickness of an atomic layer (t) and ν are not well

known for monolayer graphene. However, graphene is always crumpled and such crumpling renormalizes

these constants. For a graphene sample with size L and crumpling amplitude δ, the Young’s modulus is

predicted to decrease (E2D ∝ 1
δ , E2D ∝ L−0.4) whereas the bending rigidity is predicted to increase (κ ∝

δ, κ ∝ L0.8). We also show the effective or renormalized in-plane stiffness can be extracted by using

simple geometrical relationships and known applied pressures, avoiding complicated force-deflection models

in circular membranes.
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CHAPTER 3

RENORMALIZATION OF IN-PLANE STIFFNESS

The first goal is to accurately probe the mechanical response of graphene drums characterized by in-plane

stiffness E2D. For that, we developed a new bulge test technique using electrostatics to apply a low and

uniform pressure, and interferometry to measure graphene’s deflection. Our results show that E2D is reduced

by up to 10 times from its standard value in flat graphene,E2D = 340 N/m, due to crumpling. Specifically, we

show that the origin of crumpling is static wrinkles, with only a minor contribution due to flexural phonons.

Published as: Nat. Comm. 6, 8789 (2015)

3.1 Device preparation and set-up

Our experimental setup is shown in Fig. 3.1. At its heart is a suspended graphene membrane that is actuated

by applying an electrical bias between it and a silicon ‘gating chip’ underneath and whose deflection is

monitored via interferometric profilometry.

The main sample chip is a silicon based die with suspended silicon nitride (SiNx) windows with pre-

patterned holes of diameters ranging between 7.5 µm and 30 µm onto which graphene is transferred by the

wet transfer of graphene grown via chemical vapor deposition (CVD) with subsequent thermal annealing as

described in Appendix A. The SiNx used was very thick (∼ 1 µm) to minimize deformation under load since

windows less than 300 nm thick were seen to bend severely and eventually fracture. The sample chip is placed

onto the gating chip consisting of degenerately doped silicon coated with 2 µm of SiO2. To provide additional

electrical insulation, a 7.5 µm thick Kapton film with a hole punched in the center is inserted between sample

and gating chips. The kapton was laterally larger than the size of the chips to prevent electrical arcing around

the edges when using high voltages. The entire structure is then mechanically clamped as shown in Fig.

3.1, resulting in an average separation of 15 µm between the graphene and the gating chip. Finally, separate

electrical contacts are made to the graphene and the gating chip. The entire device structure is placed inside

an optical cryostat (Janis ST-500) in vacuum better than 10−5 Torr at temperatures between 4 K and 400 K.

Close inspection of our freestanding samples reveal static wrinkles with wavelength∼ 50 nm and average

amplitude ∼ 1 nm via AFM (Fig. 3.2, left/bottom). Somewhat larger micron-scale features are seen in a

minority of membranes, as shown in the SEM images (Fig. 3.2, right). Also, flexural phonons are invariably

present in graphene at room temperature.

Graphene was electrostatically pressured by applying a voltage Vg between the graphene and the gating
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a) b)

Figure 3.1: Electrostatic bulge test experimental setup. a) Schematic of device consisting of the gating chip,
insulating kapton spacer, and the sample chip. The sample chip holds graphene whose deflection under
gate voltage Vg is measured via interferometric profilometry. b) Photographs of device and experimental
setup. Main panel, shows device within a Janis ST-500 optical cryostat to be measured via the Veeco Wyko
9800 NT 20× through-transmissive media interferometric objective. Right, shows how the device stack is
mechanically clamped between two brass plates with insulting screws.

Figure 3.2: AFM measurements of graphene membrane showing nanometre-scale static wrinkles (left, scale
bar, 100nm). A cross section of the AFM data are shown in the bottom panel. Wrinkling is also evident on
the high-angle tilted SEM image (right, scale bar, 1 µm).
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chip. The pressure applied to graphene can be evaluated as:

P =
ε0
2

(
εr

εrd+ doxide

)2

V 2
g ≈

ε0V
2
g

2d2
(3.1)

where ε0 is the vacuum permittivity, εr is the relative permittivity of SiO2, and d is the separation between

graphene and gate as determined by interferometric profilometry (discussed below), and doxide is the thick-

ness of the SiO2. Even though we use very thick oxides, doxide ∼ 2 µm, to prevent dielectric breakdown. The

presence of oxide does not influence gating since εrd � doxide. Additionally, the applicability of parallel-

plate capacitor approximation is justified since d ∼ 10 − 20 µm is much larger compared to the maximum

deflection of graphene (∼ 600 nm). The maximum Vg that can be applied without dielectric breakdown is

∼ 2000 V, which allowed us to reach maximum pressures around 30 KPa. The uncertainty in P is below 5%

for all voltages.

3.2 Interferometric profilometry

A legacy Veeco Wyko 9800 NT wide-field interferometric profilometer offered a non-invasive method to

probe the topography of graphene membranes. A schematic of the setup is shown in Fig. 3.3. The sample

rests within a cryostat, on a 5-axis stage suspended on an air table to isolate the sample from vibrations. The

deflection of graphene is probed via phase shift interferometry (PSI) using a 530 nm high brightness (HB)

LED. This allowed the direct measurement of the graphene surface h(x, y) with sub-nanometer precision in

the out-of-plane direction and sub-micron resolution in the in-plane direction (e.g. Fig. 3.4a and Fig. 4.2).

The light in the interferometer is split into two arms. The measurement arm illuminates the sample. The

reference arm is calibrated to match the working distance of the measurement arm. Variations in sample

height changes the path length of light travelling through the measurement arm. Then, the light from both

paths is combined. Modulation in the light intensity allows detection of phase difference. Since the wave-

length of light is known, this phase difference can be converted to a length travelled by the light. When the

sample is in a cryostat there is an additional optical element that the light transverses (quartz cryostat win-

dow). The through-transmissive media lens includes an identical compensating piece of quartz in a Michelson

interferometer geometry (perpendicular arms). This ensures that no spurious phase shifts occur due to differ-

ences in the arms other than topography changes. When samples are not inside a cryostat this special lens and

compensating quartz is not needed (e.g. chapter 4). There, the lenses have a Mirau interferometer geometry

(coaxial arms, not pictured). A separate measurement is performed to find gate distance d by deliberately

sweeping the focus from the sample to gating chip using white light in vertical scanning interferometry (VSI)

mode (Fig. 3.4b). In VSI mode, the sample stage is moved with motors to determine topography, rather
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CCD
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Figure 3.3: Schematic of the Veeco Wyko interferometric profilometer. A 530 nm light source is split between
two arms: the reference and measurement arms. These arms are calibrated to have identical optical paths.
Within the ‘through-transmissive media’ objective there is a compensating quartz window to account for the
cryostat window which sits in the measurement arms’ optical path. The light is then combined and viewed on
a CCD. Variations in sample height causes a phase difference between the arms, indicated by bright and dark
fringes on the CCD. The distance between these fringes are used to calibrate sample deflection in nanometers.

than detecting path differences of the light. We use a wide field interferometer for all interferometry mea-

surements. Wide-field means interferometric data from the entire image plane is collected without the need

for laborious raster scanning. This offers a significant advantage compared to confocal interferometry which

only collects data at a single point. One limitation of this method is that sample deflections beyond 10◦

from horizontal cannot be detected since since light is reflected outside the range of the lens. This limits the

applicability of this method for measurements of graphene cantilevers (see chapter 5).

The main goal of the topography measurement is to determine the center-point deflection of the membrane

h. This can be achieved in two ways. The first is directly taking the difference h = h(xcenter, ycenter) −

h(xedge, yedge). The second is fitting multiple membrane cross-sections to circles h = a2

2R (valid for h� a,

see chapter 2) and averaging. Both methods are valid, however the former should be used with care. The

underlying assumption of the measurement is that all phase shifts come from topography changes. This is
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Figure 3.4: a) Cross-sections of a graphene membrane at various applied voltages. Height data obtained from
phase shift interferometric profilometry (PSI mode) corresponding to these cross-sections are shown in the
inset. Also shown is a three-dimensional view of the data at Vg = 400 V. b) Gate distance determined from
interferometric profilometry (VSI mode). In this case the gate distance is d = 18 µm

not true. Since the refractive index of graphene and SiNx are different, there can be an arbitrary phase jump

from the reflection of either surface. Therefore checking consistency between both measurements methods

gives the most accurate data. This is another example of the advantage of using a wide-field interferometer,

both methods are available to cross-check our results and we do not only rely on phase shifts from a single

point.

It is interesting to consider how it is possible to see a single atomic layer optically. High contrast optical

microscopy allowing identification of single layer graphene is typically achieved through a Fabry-Perot cavity

geometry. Most often, graphene is deposited on a silicon substrate with 300 nm of SiO2. The silicon acts as

a high reflectance mirror and the graphene acts as the lossy mirror resulting in a increase of signal intensity

contrast by 15 % relative to the signal intensity when no graphene is present [89]. Other researchers have

exploited this as an optical measurement technique for graphene NEMS on silicon [90, 91]. There, graphene

under the influence of external forces acts as a movable mirror which changes the cavity resonance condition.

This modulates the intensity of the signal, identical to the function of the interferometer described above.

Subsequently this allows the extraction of the distance between graphene and the fixed mirror.

In our experimental setup we do not exploit cavity resonances, but instead look directly at the reflection

from the graphene surface. We ensure a large gate distance so that the gating chip is completely out of focus

to reduce unwanted signal. For gate distances < 2 µm we found that the reflection from the gating chip

obscures the measurement of graphene. In general the reflection signal from graphene is weak. Below we

estimate the magnitude of that signal and ensure that it is measurable. We consider the reflection (R) and

transmission (T ) coefficients of graphene as follows: R ≈ (πα)2

4 = 0.013 % and T ≈ 1 − πα = 2.3 %

[92] where α = 1
137 is the fine structure constant. The field of view of the 640 × 480 CCD array translates

to an on sample area of ∼ 62 × 46 µm2 for the 50× objective. Lets assume this entire area is occupied by
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suspended graphene. The intensity of the 530 nm HB-LED is at least ∼ 10 W/m2. The reflected power using

the estimate for graphene above is Preflected ≥ 4× 10−13 W. Using E = hc
λ , this is ≥ 1× 107 photons per

second. The absolute sensitivity threshold for a typical CCD sensor requires 10 − 50 electrons per pixel to

beat the noise in the detector. The electrons per pixel from my estimate is at least 1
2

1×107

640×480 ≈ 15 assuming

a typical quantum efficiency of 50 % . This means for pristine graphene and a typical CCD sensor, detection

via reflection from the graphene surface is possible, especially with an integration time of a few seconds.

Realistically, the reflection from graphene may actually be many times larger due to surface contaminants.

3.3 Mechanics at room temperature

The in-plane stiffness of graphene at room temperature is extracted from measured membrane profiles h(x, y)

vs. known applied pressure P . We determined the biaxial in-plane stress σ and biaxial strain ε from the

equations derived in chapter 2:

σ =
Pa2

4h
, (3.2)

ε =
2h2

3a2
, (3.3)

where a is the radius of a graphene membrane, and h is its center-point deflection determined by fitting

many cross sections to a circle and averaging (e.g. Fig.3.4a). We note the stress σ is the total stress that

includes both the built-in (existing without the application of pressure) and applied (due to applied pressure)

stress components. Consequently, σ = 0 means the membrane is completely relaxed. We call the strain

determined from interferometry εI in later chapters to distinguish it from other extraction methods (e.g.

Raman spectroscopy in chapter 4). Since ε is measured geometrically relative to the initial state at P = 0, it

does not include the built-in strain (ε0) component. In the majority of measured devices we observe a linear

relationship between ε and σ (Fig. 3.5a), allowing us to determine the in-plane stiffness of graphene. It is

given by E2D = (1 − ν)σε , where we use the Poissons ratio for flat graphene ν ∼ 0.165. This is only an

approximation since the the value of flat graphene likely doesn’t apply here. In chapter 4, where crumpling

strength is changed, we do not make this assumption.

While in realistic devices both strain and stress vary slightly throughout the device, our finite element

modeling in chapter 2 confirms that the exact numerical solution for E2D does not deviate more than 10%

from the simple analytical estimates [76]. This is within the uncertainty of extracting E2D from our data.

We also note that the obtained E2D agrees with the value obtained by fitting P (h) data to the bulge-test

equation (Fig. 3.5a, Inset). In all 26 measured monolayer CVD graphene membranes (Fig. 3.5b) we find

E2D = 35± 29 N/m, consistent with previous work [57].

Our method of probing the mechanical properties of graphene has several critical advantages over AFM-
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a) b)

E2D=18±2 N/m

Figure 3.5: a) Stress (ε) vs. strain (σ) dependence for a typical device. The in-plane stiffnessE2D is extracted
from the slope of linear fit to these data (black line). Inset a) shows raw center-point deflection, h, vs.
pressure, P , data used for calculation of stress and strain (red: loading cycle, blue: unloading cycle) b)
Histogram of E2D for all measured CVD graphene devices

based nanoidentation and other techniques. First, graphene deflection is measured via a non-contact approach.

This means that the membrane morphology is not disturbed with a sharp tip that applies non-uniform stress.

Second, the height data from the entire membrane is recorded at the same time. This means we can find the

true maximum center point deflection, h, and verify that the membrane is deflecting symmetrically. Third, the

pressure is applied uniformly, allowing us to use simple and reliable models to extract mechanical constants.

Fourth, the optical nature of the technique allows simple characterization of devices inside an optical cryostat

at low temperatures. A limitation of the method is that it cannot be used to measure breaking strength.

We performed numerous consistency checks to rule out possible measurement artifacts. First, we ob-

served no hysteresis in P (h) data between loading and unloading cycles (Fig. 3.5a, Inset). This establishes

that graphene is not slipping against the substrate. Second, we observed similarly softE2D for CVD graphene

(Fig. 2b; grain size 50 µm, bigger than the membrane size) and exfoliated graphene (E2D ∼ 50− 80 N/m in

two devices). This confirms that E2D in our experiments is not affected by the grain boundaries in graphene,

consistent with conclusions from previous experiments [93]. Third, we cross-checked our results against the

measurements obtained via AFM nanoindentation. In the regime of low loading forces< 300 nN, nanoinden-

tation measurements on the same devices yielded E2D consistent with optical profilometry measurements.

It is important to note that AFM nanoindentation pushes graphene towards the substrate, while electrostatic

loading pulls graphene away from it. Similarity in E2D values obtained for opposite loading directions

confirms that interaction of graphene with the sidewalls does not affect the measured E2D. Finally, simple

estimates show that the organic residues that may remain on graphene after the fabrication process [94] are

unlikely to affect E2D. A uniform residue layer with Youngs modulus of ∼ 2 GPa [95] and thickness < 5

nm is expected to be at least 100 times softer compared to graphene. However, it is still possible that residues
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contribute to crumpling to begin with.

In a few devices we observed pronounced nonlinear dependence of σ(ε), with E2D = (1− ν)dσdε increas-

ing from less than 10 N/m at low stress to 50 N/m at higher stress (Fig. 3.6). This nonlinearity is investigated

in chapter 4. In that chapter, we measure identical devices at higher stress and retrieve E2D = 340 N/m.

This offers a final consistency check that our mechanics measurement is artifact free — and the low stress

softening is physical. We hypothesize that this softening is due to crumpling from static wrinkling or flexural

phonons.

E2D~10 N/m

E2D~50 N/m

Figure 3.6: A nonlinear stress-strain curve seen in a minority of devices. Stiffness increases from ∼ 10 N/m
at low stress to ∼ 50 N/m at higher stress. The dashed line is a guide to the eye. We hypothesize that this is
due to changing the amount of crumpling present in the membrane as a function of strain. This is investigated
in more detail in chapter 4.

3.4 Probing contribution due to flexural phonons

To study the effect of flexural phonons, we examined changes of graphenes E2D with temperature. Since the

amplitude of flexural phonons causing crumpling scales with temperature T as kBT (kB is the Boltzmann

constant), we would expect strong stiffening of graphene at low temperature if this were the dominant effect.

We measured two different devices in the range of temperatures between 400 K and 10 K (Fig. 3.7). While

we observed moderate stiffening of graphene from E2D ∼ 20 N/m at 300 K to E2D ∼ 85 N/m at 10 K, all

of the measured devices are much softer compared to 340 N/m throughout the range of temperatures. This

suggests that the contribution due to flexural phonons does not dominate the mechanics of graphene at room

temperature.

We note that it is tempting to interpret the stiffening of graphene at low temperature seen in Fig. 3.7 as a

signature of the temperature-dependent suppression of crumpling due to flexural phonons. Indeed, the data in

Fig. 3.7 can be fit to an expression describing the contribution of flexural phonons to in-plane stiffness. That
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Figure 3.7: The in-plane stiffness E2D measured for two circular membranes (diameters 17.5 µm and
13.7 µm) as a function of temperature. The dotted line is fit to an analytical model which includes the effect
of crumpling from flexural phonons (Eqs. 3.4 and 3.5). The dashed line shows the stiffness of a flat graphene,
E2D = 340 N/m. The error bars are obtained by estimating the standard deviation of E2D measurements.

expression was derived in chapter 2:

ε =
1

2

∆A

A
+

σ

E0
2D

(3.4)

∆A

A
= − 1

2π

∫ qmax

qmin

kBT

(q2κ(q) + σ)
qdq (3.5)

For a realistic value of built-in stress σ0 = 0.02 N/m, the model fits our data well as shown by the dotted

line in Fig. 3.7. However, since the contribution due to static wrinkling may also be temperature dependent,

this agreement may be accidental.

3.5 Probing contribution due to static wrinkles

To isolate the contribution due to static wrinkles, we analyzed changes in E2D of patterned graphene mem-

branes. In general, there is a concentration of stress along the wrinkles in a crumpled sheet called a ‘tension

ray’ [96, 97]. The stress can be relieved by cutting the membrane across such wrinkles. The reduction in

stress, in turn, leads to a decrease in wrinkle amplitudes. In particular, for very narrow ribbons we expect

fully suppressed wrinkles.

Experimentally, our suspended graphene devices were cut using focused ion beam (FIB) lithography.

The FIB beam was rastered to carve thinner and thinner ribbons out of the same, initially circular graphene

membrane. The FIB lithography was carried out using a Novalab 600 Dual-Beam (electron/ion) FEI. The
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Figure 3.8: Crumpling in graphene membranes and ribbons. a-d) Evolution of the topography of a wrinkled
device as viewed by SEM during FIB cutting. e-f) As fabricated circular membrane and ribbon without the
use of FIB. The ribbon shows less wrinkling overall than a similarly sized circular membrane.

system is aligned to the graphene with the electron beam (5 KeV, 0.4 nA) while cuts are made with Ga+

ion beam (30 KeV, 50 pA current, exposure time < 500 ms). Using SEM we confirmed that the process

of cutting reorients wrinkles along the cut direction and suppresses their amplitude. The progression of

cutting and corresponding changes in the wrinkling are seen in Fig. 3.8a-d. Additionally, Fig. 3.8b shows

as-fabricated circular membranes and ribbons without the use of FIB cutting. Since stress and strain from

fabrication in ribbons is mostly uniaxial, there is less wrinkling compared to the circular device.

The initial circular membrane with diameter 12.5 µm was first cut into a ribbon with width of w = 5 µm.

Then width of this ribbon was then reduced to w = 2.7 µm. This progression is shown in the three panels at

the bottom of Fig. 3.9a. We extracted the effective mechanical constants of such devices by measuring their

deflection vs. applied electrostatic force, similar to the analysis above. For near-rectangular ribbons uniaxial

stress is extracted as:

σ =
Pa2

2h
(3.6)

Since the derivation of Eq. 3.3 considered changes in arc lengths (see chapter 2), it is valid to use it here for

uniaxial strain in ribbons. The in-plane stiffness was then computed as: E2D = σ
ε . We observed that the

devices stiffen with each subsequent cut (Fig. 3.9a). The in-plane stiffness increased from E2D = 36 N/m
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for initial circular membrane to 138 N/m for 5 µm wide ribbon, and to 300 N/m for 2.7 µm wide ribbon. The

in-plane stiffness of flat graphene, 340 N/m, is within the uncertainty of the last value.

b)a)

E2D=300±50 N/m

E2D=138±9 N/m

E2D=36±6 N/m

E2D=22±15 N/m

E2D=129±35 N/m

gr

5μm

gr

5μm

Figure 3.9: Probing wrinkle contribution to mechanics. a) Stress (σ) vs. strain (ε) curves for a single graphene
device as its aspect ratio is changed via FIB lithography. SEM images of the device at each step of cutting
are shown in bottom panels (cut directions are white dashed lines). b) Stress-strain curves for another device
as it is perforated near the edge of the membrane. SEM image of the device before and after perforations is
shown in bottom panels.

We also explored an alternative approach to relieve crumpling of graphene by puncturing a series of

∼ 100 nm diameter holes near the edge of the membrane using FIB. Similarly, we observe a significant

increase in the measured in-plane stiffness after perforations (Fig. 3.9b). Overall, we see that once crumpling

associated with static wrinkles is relieved, the stiffness of graphene increases to almost 340 N/m. This further

suggests that static wrinkles have the dominant contribution to softening of the effective in-plane stiffness of

circular graphene membranes.

3.6 Probing contribution due to defects

Normally, the presence of defects lowers the mechanical stiffness of any material. This has also been shown

to be true for graphene [98]. However, it has been reported that under certain conditions vacancy type defects

at sufficient density can lead to mechanical stiffening of graphene above 340 N/m [68]. The authors of Ref.

[68] claim that defects suppress flexural phonons by scattering them. The underlying assumption of that

work is that the accepted value of graphene stiffness, 340 N/m, contains the contribution due to flexural

phonons. Later work found that the defects actually induce high strain in their vicinity which in turn is

expected to suppress the flexural phonons. Additionally, defects are a source of disorder which may lead to

static crumpling in addition to suppressing flexural phonons [99]. At the same time, Ref. [68] and subsequent

works use AFM nanoindentation to extract stiffness. Recent work [100] has suggested that the typical models
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for the AFM indentation used are not sufficiently accurate to extract the mechanical constants of crumpled

membranes. Because of this, the effect of defects on the mechanical response of 2D membranes remain a

subject of debate within the literature.

To confirm that the stiffening seen in Fig. 3.9 stems from changes in devices geometry rather than from the

induction of defects in graphene that can occur during FIB cutting, we performed an additional experiment

to study E2D vs. defect density. We started by ensuring that FIB cutting indeed induced defects. Raman

spectroscopy confirms that FIB cutting induces defects in the remaining membrane (Fig. 3.10). The spectra

was taken ∼ 1 µm away from a single typical FIB cut in an originally pristine graphene membrane. The

additional Raman features: D peak at ∼ 1400 cm−1 and weaker D′ above ∼ 1500 cm−1, indicate the

presence of defects. For a pristine membrane, only the G and 2D Raman peaks are seen.
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Figure 3.10: Example Raman spectra of graphene ∼ 1 µm away from a typical FIB milled cut. The presence
of the D and D′ peaks indicates a large number of defects. From this data, following the analysis described
in the main text, we deduce that a single cut induces ≤ 5× 1012 cm−2 of defects.

To controllably introduce defects, we placed our membranes into an FIB chamber and rastered a 5 keV

beam of Ga+ ions (29 pA) over an area larger than our samples (100 × 100 µm2). Typical exposure times

between 0 and 30 s translates into ion doses between 0 and 5× 1013 cm−2. We took devices devices through

several successive steps of irradiation gradually increasing the doses 0 to ∼ 5× 1013 cm−2.

To determine the concentration and type of defects upon irradiation, we collected Raman spectra of our

devices following the exposure. Example spectra are shown in Fig.3.11a where each spectrum is offset for

clarity. The increase in the intensity of the Raman D peak indicates creation of defects. To determine the

defect type, we monitored the ratio betweenD andD′ peaks and determined I(D)
I(D′) ∼ 6±1 on average across

all our samples. This is very close to I(D)
I(D′) = 7 expected for vacancy-type defects [101]. To quantitatively

determine the defect concentration, we analyzed the ratio between the D and G Raman peaks using Eq. 3.7
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2
s/L

2
D − e−π(r2A−r

2
s)/L2

D

]
(3.7)

where length scales of scattering rs = 1 nm, rA = 3.1 nm, and CA = AE−BL with A = 160 eV4, B = 4,

and EL = 1.96 eV (for 633 nm excitation), and LD is the distance between defects. Defect density is then

finally evaluated as 1
L2
D

cm−2.

Defect density obtained from Eq. 3.7 is plotted vs. the density of impinging ions in Fig. 3.11b. A linear

fit to this data, with slope ∼ 0.9, suggests that Ga+ ions produce vacancy-type defects in graphene with 90%

probability, as expected [103]. The same analysis applied to the spectra in Fig. 3.10 suggests that each cut

when forming ribbons induces defects with density ≤ 5 × 1012 cm−2. To carve a pristine membrane into

multiple thinner ribbons (such as Fig. 3.9a) takes at least 4 cuts. This means that the defect density range we

study is sufficient to determine whether or not the reduced in-plane stiffness we measured previously is due

to defects.

We examined the evolution of the in-plane stiffness E2D (measured at room temperature, following Ga+

irradiation) vs. defect concentration (as determined from Raman spectra). The data shown in Fig. 3.11c were

collected from 14 different devices at room temperature. Two distinct representative devices are shown as red

and blue points respectively, the data from the other devices are gray. The inset of Fig. 3.11c shows a zoomed-

in region of low defect densities. Every device remained softer than 340 N/m in the entire range of induced

defect concentrations. The in-plane stiffness did not appear to be strongly affected by the presence of defects,

apart from small changes that could be ascribed to variation in experimental conditions. This confirms that

the changes in stiffness observed in Fig. 3.9 can only be caused by changes in devices geometry. This is also

further evidence that the stiffness of the membrane is dominated by another effect such as wrinkling.

It is interesting to note that after FIB exposure, the membranes in Fig. 3.9 show higher built-in stress, as

indicated by the increased y-intercept. In all our devices we saw no correlation between built-in stress and

in-plane stiffness in accordance with other work [68]. Specifically, even if defects do increase built-in stress,

our defect analysis previously show there is no correlation between in-plane stiffness and defect density.

3.7 Competition of crumpling mechanisms

It is instructive to estimate relative contributions for flexural phonons and static wrinkling to the in-plane

stiffness of our devices. The in-plane stiffness of graphene E2D measured in the experiment can be loosely

approximated as:

E−1
2D = E−1

latt + E−1
flex + E−1

wrin (3.8)
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Figure 3.11: Confirming that stiffness is not affected by defects in crumpled graphene. a) Evolution of
Raman spectra following ion beam exposure. b) To control the amount of defects we induce into graphene
we calibrate the amount of defects we induce by the impinging ions dose. The linear fit to induced defect
density vs. impinging ions shows that 90 % of impinging ions create a vacancy type defects. c) E2D vs.
defect density. Inset: close-up view close to zero defect density. We conclude that defects in this density
range do not affect the mechanical response of crumpled graphene.

where Elatt ∼ 340 N/m, Eflex and Ewrin are contributions to stiffness from three different mechanisms:

stretching of carbon-carbon bonds, flexural phonons, and static wrinkles. The data in Fig. 3.9a suggests

that suppression of the contribution due to wrinkling increases E2D from 36 N/m to 300 N/m. Provided

that the width of graphene ribbon is much larger compared to the typical wavelength of a flexural phonons,

∼ 10−1000 nm, we expect that the process of cutting does not affect the contribution due to flexural phonons.

Therefore, we can use Eq. 3.8 to estimate Ewrin < 40 N/m and Eflex > 2500 N/m from this data. We see,

in agreement with our earlier conclusion, that the contribution due to wrinkles dominates E2D.

A simple estimate can clarify why the contribution due to static wrinkling is larger than that of flexural

phonons. The degree of crumpling of a membrane can be quantified as ∆A0

A = A′−A0

A , where A is the area

of the flat membrane and ∆A0 is the hidden area as discussed in chapter 2. Stretching caused by an external

stress gradually flattens the membrane. When stress is large enough to suppress crumpling and flatten the
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membrane, the projected area is fractionally increased by ∆A0

A . This corresponds to a fractional increase

εt = ∆A0

2A in the linear dimensions of the membrane. We therefore conclude that when graphene is extended

less than this threshold strain εt, it is mostly crumpled and should appear soft, while at strains above εt it is

mostly flat and should have in-plane stiffness close to E2D ∼ 340 N/m. This is in agreement with the FEM

in chapter 2. The degree of crumpling of graphene due to flexural phonons can be estimated using Eq. 3.5:(
∆A0

A

)
flex

≈ 0.5%. This estimate agrees with ∆A0

A extracted from more detailed calculations [87]. The

corresponding strain ε = ∆A0

2A ∼ 0.25% is smaller than the average built-in strain for devices used in our

experiments: ε0 = σ0

E2D
∼ 0.3%. We therefore expect that flexural phonons are at least partially suppressed

in our devices. For static wrinkling, assuming sinusoidal wrinkles with wavelength λ = 50 − 100 nm and

amplitude δ = 1 − 2 nm (Fig. 3.2) we estimate:
(

∆A0

A

)
wrin

∼ π2 δ2

λ2 > 0.1 − 1.6%. The lower bound here

is likely a very conservative estimate as it neglects wrinkles with longer wavelengths. The corresponding

εt from this estimate is larger than the average built-in strain observed in experiment, and we therefore do

expect softening of graphene due to static wrinkling. The argument above can be summarized simply. The

amplitude of crumpling due to static wrinkling is higher than that due to flexural phonons. Therefore, the

contribution of static wrinkling to stiffness is also larger.

3.8 Conclusion

We have developed a non-contact technique for probing the mechanical properties of graphene and potentially

any conductive 2D material. The approach uses uniform loading and can operate at cryogenic to room tem-

peratures. We have confirmed that graphene is significantly softened by out-of-plane crumpling. Moreover,

we developed an approach to test relative contributions of flexural phonons and static wrinkles to the in-plane

stiffness of graphene by changing the geometry in-situ, and found that the latter dominates the contribution

due to flexural phonons.
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CHAPTER 4

ANOMALOUS HOOKE’S LAW

In this chapter we investigate the nonlinear response of graphene membranes as they transition from the

crumpled state to the flat state. This was achieved by extending the bulge test technique used in chapter

3 to accommodate higher pressures. We discover an anomalous Hooke’s law behaviour in agreement with

recent theory. Moreover, we introduce a method to measure the degree of crumpling called hidden area

experimentally, by comparing strain extracted from two complementary techniques — interferometry and

Raman spectroscopy. Finally, we confirm that strain engineering can suppress and control the degree of

crumpling and therefore the mechanical response of 2D materials.

Published as: Phys. Rev. Lett. 118, 266101 (2017)

4.1 Experimental set-up

Two types of samples were produced: standard and strain-engineered. Standard samples are similar to those

used in chapter 3 and consisted of a monolayer graphene membrane suspended over a single hole with diam-

eter ∼ 10 µm in a silicon nitride (SiNx) support on a silicon chip. Strain-engineered samples are described

in Appendix C.

The mechanical response of graphene membranes was characterized through measurements of sample

deflection (as described in chapter 3) under a known pressure (P ). Pressure was applied to graphene using

compressed nitrogen gas [104]. The gas was fed into a cell that was sealed with the graphene membrane on

one side. It has been shown that graphene and other 2D materials are impermeable to all standard gases, and

diffusion through the substrate is only significant on the timescale of days [20]. A PDMS O-ring established

a leak-tight seal between SiNx/Si sample substrate and the cell base 4.1. A digital pressure gauge and a gas

flow regulator allowed the control of pressure in increments < 1 KPa up to ∼ 200 KPa, ∼ 10 times larger

than in our previous method in chapter 3. This is a key distinction in the methodology used in this chapter.

At pressures > 200 KPa the O-ring fails. The pressure was stable to below 0.05 KPa over the length of our

measurements, ∼ 1 hour.

Upon application of pressure, the mechanical strain ε of the graphene membrane was measured in two

different yet complementary approaches: interferometric profilometry (εI , as described in chapter 3) and

Raman spectroscopy (εR, discussed below).
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Figure 4.1: Gaseous pressure bulge test experimental setup. a) Device schematic showing the application of
pressure and our two measurement techniques: interferometry and Raman spectroscopy. Depending on the
orientation of the sample chip we can apply positive (away from the sample, as pictured) or negative (towards
the sample) pressures. b) Photograph of pressure cell implementation with custom PDMS O-ring. The top
clamp mechanically presses the sample toward the O-ring to ensure a leak-tight seal.

4.2 Strain from Raman Spectroscopy (εR)

In this approach, the strain was determined by monitoring the shifts of the 2D and G peaks in the Raman

spectra of graphene as a function of applied pressure taken at the center of the membrane (e.g. Fig. 4.3a).

Inaccuracy of spot position by up to 2 µm changes the results no more than 4%, see Fig. 4.3b. We use a

focused 633 nm excitation source with an estimated spot size < 1 µm, resolution ∼ 1 cm−1 and power < 1

mW to avoid heating. The strain was extracted as [22]:

ε2D,G
R =

(
∂ω2D,G

∂ε2D,G
R

)−1 (
ω2D,G − ω2D,G

0

)
(4.1)

where ω2D,G is the frequency position of the 2D(G) Raman peak of strained graphene, ω2D,G
0 is the peak

position at zero strain. Since the 2D peak is dispersive with excitation [105] and there are very little mechan-

ical studies using 633 nm excitation, the 2D Raman peak is not a reliable way to determine built-in strain. On

the other hand, the G peak is not dispersive and has a very well-known position for zero strain, ωG0 = 1580

cm−1 [106]. However, the position of this peak is affected by doping. Neglecting that doping, we estimate a

compressive built-in strain between 0.01 and 0.09 % in our samples from the data shown in Fig. 4.3. Another

way to probe the built-in strain is with the lesser known 2D′ peak. It has a similar peak sensitivity as the G

peak, but is less intense. Although it is dispersive with excitation, it has the advantage of being unaffected by

doping. Unfortunately there are limited studies of this peak [107], so we do not use it to probe strain. Instead,

we define ω2D,G
0 as the position of the 2D(G) Raman peak at zero applied pressure. We emphasize that εR
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Figure 4.2: Deflection measurements with interferometric profilometry. a) Example membrane profiles for
both positive and negative pressures as measured by wide-field interferometry. b) Full interferometric data
for standard samples A, B, C, and a strain engineered sample at different pressures. Color is out-of-plane
displacement. Missing data are labelled white.
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Figure 4.3: Raman spectra in strained graphene. a) Raman spectra of graphene showing theG and 2D Raman
peaks throughout the range of applied pressure. b) Dependence of Raman spectra on spot position. Raman
spectra were taken in 5 locations at 1 µm increments away from the center of a pressurized, non-strain-
engineered device These positions are indicated on the photograph of the device (inset, scalebar is 10 µm).
The main panel shows the resulting shifts of the 2D Raman peak vs. pressure, the dashed lines are linear
fits to the data. The spectra show identical trends within ∼ 2 µm of the membrane center the slope varies
no more than ∼ 4 %. Further away from the center, the response changes. For example, 4 µm away from
the center there is a ∼ 30 % reduction in the magnitude of slope. This is expected: in pressurized bulge test
set-up, only the center of the membrane is under perfect biaxial strain. The Raman spectra we used to extract
the mechanical response is at the center of the membrane, with accuracy better than ∼ 2 µm.

is also a measurement of strain relative to the initial state. Then, we can compare the mechanical response as

determined from both types of strain measurements.

The peak sensitivity, ∂ω
∂ε , for each device was found by extracting the slope of Raman peak positions

vs. εI (Fig. 4.4a, left inset, dashed line) at stresses > 1 N/m. We find peak sensitivities
∣∣∣∂ω2D

∂εI

∣∣∣ ∼ 155 −

200cm−1/% and
∣∣∣∂ωG∂εI

∣∣∣ ∼ 55 − 90cm−1/% consistent with recent values in literature [108–110]. The

necessity of applying such large stress is discussed later. We ensured that changes in Raman peak positions

vs. pressure were entirely due to strain rather than e.g. changes in doping by observing ∂ω2D

∂ωG
∼ 2.2 (Fig,

4.4a right inset). This result is expected for strain related Raman peak shifts but not doping related shifts

[106]. This also confirms identical results for extraction of strain from either G or 2D peaks.

4.3 Comparison of stress-strain curves from interferometry and Raman spectroscopy

The stress-strain relationships of three standard samples (A, B, and C) as measured from Raman spectroscopy,

εR(σ), and interferometry, εI(σ), are shown in Fig. 4.4. We observe dramatic differences between the εR(σ)

and εI(σ) curves. The εR(σ) curves are linear (Fig. 4.4a). The average biaxial modulus for all devices

extracted from them is Ẽ2D = dσ
dεR

= 480 ± 10 N/m. In contrast, the εI(σ) curves are strongly nonlinear

(Fig. 4.4b). In the region of low stress (σ < 1 N/m), graphene is soft, Ẽ2D ∼ 30 − 150 N/m. At the same

time, in the high stress region (σ > 1 N/m) we retrieve an average value of Ẽ2D = 450 ± 70 N/m, close to

what is measured by Raman spectroscopy. In the most interesting intermediate region (σ ∼ 1 N/m), we see
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Figure 4.4: Comparision of strain-stress curves measured from Raman spectroscopy and interferometry. a)
Stress-strain as determined from Raman spectroscopy, εR(σ), for three standard samples A, B, and C (blue
points) along with a strain engineered device (orange points). The data for the strain-engineered device is
offset for clarity. Left inset: The progression of Raman 2D peak shift vs. εI used to calibrate peak sensitivity
∂ω
∂ε (dashed black line). Right inset: The position of the 2D Raman peak plotted vs. the position of the G
Raman peak. The slope of 2.2 indicates that changes in peak positions are due to strain. b) Stress-strain
as determined from interferometry, εI(σ), for the same devices shown in a). Dashed grey line shows slope
expected for flat graphene with the stiffness Ẽ2D = 400 N/m. Dashed colored lines indicate the region of
linear mechanical behavior.

Table 4.1: Linear fits to stress-strain curves to determine Ẽ2D.

Device Interferometry Ẽ2D (N/m) Raman Ẽ2D (N/m)
A 570± 110 498± 5
B 400± 50 554± 17
C 380± 60 424± 8

Strain Engineered 426± 7 430± 10

a transition from non-linear to linear mechanical response with increasing stress. For the strain-engineered

device (Fig. 4.4a, b, orange points), we observe a linear and identical response from both Raman spectroscopy

(Ẽ2D = 430± 10 N/m) and interferometry (Ẽ2D = 426± 7 N/m) throughout the range of applied stress.

Table 4.1 summarizes the stiffness extracted from each device from both determinations of strain. The

uncertainty for stiffness is computed by determining the standard deviation of the parameters from the linear

fit. The stiffness obtained from high stress interferometry and Raman are comparable, with the largest differ-

ence seen in device B. The measurement from interferometry is less precise because we only use the last 10

data points at high stress to estimate stiffness. Consequently, depending on the crumpled nature of the mem-

brane, a small inconstancy in stiffness is not surprising. To confirm this view, we recognize that in our strain

engineered (flat) device we have perfect agreement of stiffness between both measurement techniques. The

value of stiffness is close to the value expected for flat graphene obtained in other experiments [20, 25, 111],

calculated from Lamé parameters [86] (λ = 2 eV Å−2 and µ = 10 eV Å−2) and extracted from simulations
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[112]. The biaxial modulus can be converted to an in-plane stiffness, E2D = (1 − ν)Ẽ2D with ν ∼ 0.165.

This yields an average of E2D = 380 ± 30 N/m over all our devices. However as we learned in chapter

2, the Poisson’s ratio for graphene is not well known and may not be constant or even take negative values.

Therefore, we directly report the biaxial modulus Ẽ2D.

While the high stress behavior is clear, the low stress behavior is puzzling. The data of Fig. 4.4 invites

the following questions. Why are the observed behavior and magnitudes of εR and εI so different? What is

the nature of the nonlinearity in εI and can we quantify it?

4.4 The relation between stress-strain curves and crumpling

We believe the disparity between εR(σ) and εI(σ) at low stress is a signature of crumpling and can be

understood by clarifying the definition of strain. The shifts of Raman peaks, and hence εR(σ) derived from

them, reflect length changes of the carbon-carbon (C-C) bonds. Quantitatively, εR = (L−L0)
L0

, where L0

and L are the lengths of the membrane before and after the application of stress averaged over the size of

the diffraction limited laser spot ∼ 1 µm. The true length of the membrane L is not affected by crumpling,

provided C-C bond lengths are unchanged. We observe that Raman spectra for our standard samples are

similar to that of substrate supported samples and that changes in the spectra vs. stress are similar in standard

and strain-engineered samples. From that, we conclude that the amount of crumpling in our experiment is not

sufficient to affect the C-C bonds. On the other hand, interferometric profilometry senses the profile of the

entire membrane averaged to micron resolution, εI(σ) =
(LAV −LAV0 )

LAV0
, where LAV0 and LAV are the lengths

of the averaged profiles. Thus defined LAV decreases when the membrane is crumpled. The difference

between L (red lines) and LAV (dashed green lines) is illustrated in the cartoon of Fig. 4.5b showing cross

sections of circular membranes under the application of stress. At zero applied stress, crumpling causes a

large difference between the true length of the cross section, L0, and the length of its averaged profile, LAV0 .

When the stress is large enough to suppress crumpling (σ∗), that difference vanishes and the true profile is

virtually indistinguishable from the averaged profile, L ∼ LAV . Summarizing, εR is the microscopic strain,

relative change in the bond lengths or the change in true membrane length, whereas εI is macroscopic strain,

relative change in the length of the averaged profile.

This insight allows the following interpretation of the data. At small stress, the changes in LAV per unit

stress are large compared to those in L as the significant amount of ‘hidden’ length contained in crumpling

is being unraveled (Fig. 4.5b, middle). In the experimental data at σ < σ∗ ∼ 1 N/m, we indeed observe

much larger dεI
dσ compared to dεR

dσ (Fig. 4.5a). As the stress becomes larger, the amount of crumpling is

gradually decreased. Finally, the crumpling is suppressed, the membrane is flat, and the difference between

the change in L and LAV disappears almost completely (Fig. 4.5b, right). Correspondingly, in standard
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Figure 4.5: Measurement of hidden area. a) The comparison of the strain measured via interferometry (εI ,
green curve) and the strain determined via Raman spectroscopy (εR, red curve) vs. stress σ for device A.
Inset: εR vs εI for the same device shown in the main panel (blue points) and strain engineered device (orange
points). Dashed black line has slope ∼ 1. b) Cartoon illustrating the evolution of crumpling in a membrane
under gradually increasing stress. Cross-section of the membrane and the same cross-section averaged with
micron resolution are shown above each membrane. c) Visualization of hidden area ∆A0 of a membrane.

devices at σ > σ∗ ∼ 1 N/m (Fig. 4.5a) or in strain engineered devices (Fig. 4.5a Inset, orange points) we

observe dεI
dσ ∼

dεR
dσ or equivalently dεR

dεI
∼ 1.

The near-constant difference ∆ε = εI(σ) − εR(σ) observed in the regime of high stress is related to

what is known as hidden area in geometry (see chapter 2 for details). The hidden area ∆A0 is the differ-

ence between the true area of the membrane A0 and the AAV0 area of its projection onto a plane parallel

to the membrane at zero applied stress. ∆A0 is the amount of area hidden in out-of-plane crumpling and

is revealed when the membrane is stretched. From simple geometrical considerations, ∆ε ≈ (LAV0 −L0)
L0

≈
1
2

(AAV0 −A0)
A0

= 1
2

∆A0

A0
. We use the relative hidden area ∆A0

A0
extracted from ∆ε to quantify the amount of

crumpling in our devices. We obtain relatively large ∆A0

A0
of 0.6, 0.8 and 1.0 % for devices A, B, and C

respectively.

4.5 Exploring the nonlinear response

Having obtained a quantitative measure for crumpling strength, we further investigate the nonlinear behavior

of the macroscopic strain (εI ) relevant for most experiments.

The comparison of our experimental data with the predictions of Eq. 2.60 is greatly facilitated by our

complementary measurements of εI and εR. By taking the difference εI(σ)−εR(σ), we isolate the contribu-

tion of the nonlinear term in Eq. 2.60 pertaining to the mechanics of crumpling. To account for built-in stress

in our devices, we subtract an additional term ε0 = ε(σ0), where σ0 is built-in stress leading to Eq. 4.2. This
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Figure 4.6: Fits to Anomalous Hooke’s law (Eq. 4.2) as described in the main text. a) The difference between
the strain extracted from interferometry and the strain from Raman εI − εR vs. stress σ for standard samples
A, B, C (blue points) and the strain-engineered device (orange points). Solid lines are fits to the non-linear
model described in the main text (ε ∝ σα). b) Disorder parameter B from the model vs. experimentally
determined hidden area ∆A0

A0
. The correlation indicates higher disorder in the model corresponds to a higher

crumpling strength as seen in experiment.

Table 4.2: Anomalous Hooke’s law fit parameters for devices A, B, and C.

Device α σ∗ (N/m) σ0 (N/m)
A 0.08± 0.02 0.8± 0.2 0.07± 0.01
B 0.16± 0.02 0.9± 0.1 0.09± 0.01
C 0.11± 0.02 0.8± 0.1 0.05± 0.01

allows us to compare our data (where only applied strain is measured) with the model:

ε(σ)− ε(σ0) =
σ∗
E

[
σ

σ∗
+

1

α

(
σ

σ∗

)α
− σ0

σ∗
− 1

α

(
σ0

σ∗

)α]
. (4.2)

We are then able to fit our experimental data for devices A, B, and C to the non-linear component in Eq. 4.2

with Ẽ2D determined from interferometry at high stress and α, σ∗, and σ0 treated as free parameters. We

estimate for the uncertainty in the non-linear fits as follows. We calculate the change in residual of the fit by

varying the device stiffness, Ẽ2D, by the standard deviation obtained from the linear fits in table 4.1. Then

we vary each parameter in the model independently to achieve the same change in residual with all other

parameters remaining constant. The amount we change the input parameter to achieve the same residual

change we deem the uncertainty in that parameter.

Figure 4.6a illustrates the adherence of our data to the non-linear model with fit parameters listed in table

4.2. For all standard devices, we retrieve an average exponent α = 0.12 ± 0.02. This is close to α = 0.1

expected for statically wrinkled graphene, confirming our earlier interpretation that static wrinkling rather

than flexural phonons is the primary contributor to crumpling (chapter 3). The average value of built-in stress
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obtained from the fit, σ0 = 0.07± 0.01 N/m, is close to what is observed by others. The average cross-over

stress was found to be σ∗ = 0.8 ± 0.1 N/m. Physically, this means a stress of at least 0.8 N/m was required

to flatten the sample and retrieve a linear response at higher stress. In agreement with that, linear ε(σ) was

observed for the strain-engineered device where we estimate σ0 = 0.84±0.02 N/m (> σ∗). It should be noted

that the fits are not perfect indicating that there are facets of our experimental data not accounted for by the

model. Possible reasons for deviations include: non-uniform stress fields, non-random wrinkle distribution,

deviation of the geometry from perfectly circular, and presence of contaminants. We recognize that there

may be polymeric residues left on our devices from the fabrication stage. While such residues may contribute

to crumpling, their direct effect on the mechanical response of the membrane is expected to be insignificant

[113].

The notion of the hidden area can be further used to compare the data to prediction of the model of Ref.

47. There, the degree of crumpling was controlled by the disorder parameter: B ∝ (σ∗−σ0)

Ẽ2D
. In Fig. 4b,

parameter B extracted from our fits vs. ∆A0

A0
is plotted. The correlation seen in Fig. 4.6 means that higher

crumpling measured experimentally does, in fact, correspond to higher disorder in the model.

4.6 Possible measurement artifact: graphene slipping

Delamination and slipping of graphene from the substrate surface can happen, potentially distorting our

measurements. One careful study of graphene on SiO2 found delamination occuring at∼ 2.5 MPa for similar

sized devices. This is one order of magnitude higher than the pressures we apply [104]. In our data, identical

responses for both positive and negative pressures (colored vs. grey curves in Fig. 4.2) confirm that there

was no significant slippage or delamination occurring between graphene and the SiNx interface. With that in

mind, if slipping and delamination were occurring, their effects would be seen the in strain engineered device

as well, yet it had a perfectly linear behaviour. Additionally, the high pressure device of Fig. 4.7 also shows a

perfectly linear mechanical behaviour at even higher stresses > 2 N/m. These conclusions are also consistent

with the lack of discontinuities in pressure vs. deflection curves or consequently the strain vs. stress curves.

Some devices did show hysteric behaviour, but it is unclear if this was due to slipping, excess contaminants

or reorganisation of crumpling (e.g. buckling). Devices like this were excluded from the previous study on

the anomalous Hooke’s Law of graphene.

4.7 Why do we see such large effects of crumpling?

While working on this project, we noticed that while others have measured mechanical response of graphene,

they do not see ‘softnening’ of E2D. One notable exception is Ref. [57]. Below I would like to suggest a few

possible reasons as to why our data are different.
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First, all prior work assumes that microscopic and macroscopic strain measurements are identical. We

have shown that the two, in general, are not equivalent. Microscopic strain measurements such as Raman

spectroscopy only probe C-C bond changes. Therefore, regardless of whether the membrane is crumpled or

flat, the measured mechanical constants from this method will always be that of flat graphene. On the other

hand, macroscopic strain as measured through e.g. membrane deflection, includes the effects of crumpling.

In our experiments, we reconcile this difference by directly comparing the mechanical response of graphene

measured by both techniques in tandem.

Second, we use comparatively large devices of circular shape ∼ 10 µm in diameter (and even larger in

chapter 3). Since crumpling is a highly scale-dependant phenomenon, larger samples are more likely to have

crumpling large enough to measurably affect the mechanical response. Furthermore, the circular geometry

is a complicated boundary condition to fulfil without wrinkling due to uneven stresses during transfer [114,

115]. This means, in thin nanoribbons, crumpling is likely suppressed to the point it is not noticeable. We

have seen evidence of this in chapter 3. This means graphene nanoribbons used in many works likely have

highly suppressed crumpling.

Third, we apply uniform stress to our samples as opposed to non-uniform stress used in an AFM indenta-

tion test. We believe the high stresses applied by AFM tips may conceal mechanical evidence of uncrumpling.

In the analysis of such AFM indentation data, one needs to correctly determine the equilibrium of forces to

find the zero-point of the measurement which is quite tricky and has a large impact on the extracted mechan-

ical constants. Reliable fitting of stiffness can only be performed at large indentation where crumpling, if

originally present, will be suppressed. Further, the selection of the spring constant of the AFM cantilever

is also important; one requires a cantilever of similar spring constant to the effective stiffness of the mem-

brane. This is experimentally found to be 1 − 10 N/m and supports the use of cantilevers in this range to

probe the Young’s modulus of ∼ 1 TPa. Crumpling can reduce the effective stiffness of a sample by an order

of magnitude (or more), making the mechanics of crumpling more difficult to detect since it would require

even softer cantilevers (0.1 − 1 N/m). See Appendix B for more information regarding AFM indentation

for mechanics measurements of 2D materials. Some experiments do apply uniform stress. In those works,

completely sealed pits in silicon are used in contrast to our to open holes in SiNx membranes. It is possible

that open holes and closed pit samples are not equivalent since there will be trapped gas in the latter case.

Fourth, by clamping our samples very tight to increase the effectiveness of the O-ring seal, we were able

to measure the response of a standard sample at pressures > 200 KPa as shown in Fig. 4.7. We find a

stiffness of 380 ± 18 N/m in agreement with that expected for flat graphene. It is easy to see how nonlinear

effects at low stress could be easily overlooked. In the measurement of high pressure data in Fig. 4.7, we

used a course pressure gauge. The first data point is already at fairly large stress (> 1 N/m), concealing
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the effects due to crumpling and nonlinear mechanics if present. This highlights the importance of careful

pressure measurement using the digital pressure gauge with precision < 1 KPa as used to obtain our main

results above.

𝜀

𝜎
(N
/m

)

෨𝐸2𝐷 = 380 ± 18 N/m

Figure 4.7: Demonstration of linear device mechanics using a course pressure gauge. The first data point
is > 1 N/m, which is enough to fully suppress crumpling. This demonstration illustrates the importance of
measuring the low stress regime carefully.

Finally, it is important to consider that the nature of crumpling is random. Therefore even small differ-

ences in fabrication procedures may have a large impact on the topography of the final device. So perhaps,

the fabrication procedure we use produces highly crumpled samples.

4.8 Conclusion

In conclusion, we observed the crossover from nonlinear mechanical response of graphene in the regime

of low applied stress to linear response at high stress. The low stress regime gave results consistent with

chapter 3, where an electrostatic actuation scheme was used instead of gas. The degree of nonlinearity and

the crossover stress were found to depend on the amount of crumpling. We determined the latter, as quan-

tified by the hidden area, through complementary Raman spectroscopy and interferometry measurements.

Our data are in good agreement with recent theoretical predictions of the ‘anomalous Hookes law’ in crum-

pled membranes. Furthermore, we have demonstrated the distinction between experimentally measuring the

microscopic or macroscopic mechanical response of materials.
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CHAPTER 5

RENORMALIZATION OF BENDING RIGIDITY

In this chapter I present fabrication techniques to create graphene cantilevers and preliminary measurements

of their bending rigidity κ. We find that our devices are significantly stiffer to bend than 1 eV, the bending

rigidity of flat graphene. This increase of bending rigidity is likely related to crumpling. Since it is a chal-

lenging endeavor to construct a singly clamped atomically thin structure, candidate devices rarely survived

to be measured. The process of fabrication also teaches us how atomically thin cantilevers behave and may

allow us to gain insight into the optimum fabrication route for future work. Such cantilevers have potential

as sensitive force sensors.

5.1 Device Fabrication

Graphene cantilevers were carved with a Ga+ ion beam (Novalab 600 Dual-Beam FEI) with 30 KeV, 50 pA

current using the cuts similar to those in chapter 3. The general cutting procedure is shown in Fig. 5.1. We

start with suspended graphene prepared similarly to the membranes used in chapters 3 and 4. Figure 5.1a

shows the procedure for creating a ‘pure’ graphene cantilever, whereas Fig. 5.1b shows the procedure for

creating a graphene cantilever with a Silicon Nitride (SiNx) piece attached to the cantilevers end. This is

advantageous for the interferometric measurement scheme, were the paddle can be used as a large reflector.

First, two parallel cuts, labelled 1© and 2©, are made to make a ribbon. The final cut labelled 3© frees the

cantilever. For the case of the devices with the SiNx paddle, the final cut takes a significantly longer time and

must be at least 500 nm wide to ensure the nitride is completely severed.

This procedure has low yield and seldom results in a stable device. Figure 5.2 shows most of the common

Figure 5.1: General fabrication for graphene cantilevers. Suspended graphene over a) circular hole and b)
rectangle with paddle. The cuts along the dashed lines are performed with a FIB. a) Cuts result in a ‘pure’
graphene cantilever. b) Cuts result in a cantilever with a paddle on the end.
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failure mechanisms. Perhaps the primary source of failure is the destructive nature of the ion beam. It induces

defects and can damage graphene far from the defined cut region, even under perfect beam conditions (see

chapter 3 and below). The Ga+ ions can implant and adsorb on to graphene or the surrounding substrate and

cause significant heating. Also, when milling SiNx there is likely additional sputtering occurring. Figure

5.2a (left and middle) shows graphene rupturing during cuts, likely from the above mechanisms. It is also

possible that failure occurs along a grain boundary of graphene. Figure 5.2b (right) shows a ‘cross’ cut that

should result in four triangle cantilevers, but the graphene furls up and adheres to to itself. Another mode of

failure is shown in Fig. 5.2b. Upon performing the final cut, the cantilever ‘springs away’ due to releasing

significant built-in stress. We hypothesize that the built-in stress could come from the transfer of graphene

and depend on initial hole shape and PMMA residue, be induced by the ion beam cutting, or bending of the

nitride (shown in Fig. 5.2b, left).

Even when fabrication is successful, another challenge is removing the devices from the FIB for measure-

ment. Graphene cantilevers are potentially the worlds’ most sensitive electrometers with spring constants as

low as k ≈ 1 × 10−8 N/m. Consequently, any uncontrolled force in the system could render them unstable

as shown in Fig. 5.2c. Even though graphene is conductive, SiNx is highly insulating. Embedded elec-

trons and ions could cause charging on the cantilever. Also, van der Waals interactions with the vertical side

walls could also cause unwanted cantilever deflection. Differential stress could be induced due to varying

amounts of surface contaminants on either side of the graphene since only the top side was coated in PMMA

during fabrication. Normally, the effect of gravity can be ignored in MEMS, but graphene cantilevers are

extraordinarily sensitive. Even the mass of a paddle (∼ 2 × 10−14 Kg) could cause measurable deflections.

Finally, ubiquitous 1
f noise in mechanical systems could excite the cantilever and add to the above instability

mechanisms.

Despite a large number of fabrication failures, stable cantilevers do sometimes survive. Figure 5.3 shows

one such an example of successful cantilever fabrication. In the following sections we study the behavior of

similar devices that survived to be measured after unloading from the SEM.

There has been a few recent works that explore alternate methods to fabricate graphene cantilevers. For

example, graphene cantilevers have been suspended with vapor phase etching [33], by using thick samples

[32], and prevented furling by stabilizing cantilever edges with carbon nanotubes [116]. The most successful

technique involves ebeam patterning and manipulating graphene with microprobes and magnetic paddles

within liquid [34]. However, this technique cannot be extended to measurements in vacuum.
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Figure 5.2: Cantilever fabrication failure mechanisms during FIB milling. a) Rupturing, tearing and self-
adhesion. b) ‘Springing’ away after final cut. In this case you can see the initial device is curved (dashed line).
c) Drifting downwards (upwards) toward (away) from gravity prohibiting measurement. Arrow indicates
direction of gravity.

Figure 5.3: SEM of successfully fabricated cantilever. The cantilever is stable within the SEM and can be
observed for many minutes.
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Figure 5.4: Deflection of graphene cantilever under the influence of gravity. Cross-section of cantilever
deflection as measured by interferometric profilometry. There is an arbitrary phase jump at the each
graphene/SiNx interface that should be ignored. We can easily measure the out-of-plane displacement
z ∼ 0.55 µm at the center of the paddle

5.2 Preliminary Measurements

5.2.1 Static deflection due to gravity

In our first approach, we determine the bending rigidity by measuring the deflection of the cantilever due to

its weight, F = mg. Since we observe the cantilevers sometimes deflect upwards, away from gravity (Fig.

5.2c, right), we know that this may be a poor assumption but we should at least check if the estimate makes

sense.

The mass of the cantilever shown in Fig. 5.3 is dominated by the 5 × 5 µm paddle, that has 50 nm of

gold and 300 nm of silicon nitride yielding a mass of approximately m = 2 × 10−14 Kg. The mass of the

graphene is negligible (∼ 10−17 Kg). From the deflection z = 0.5 µm measured from the profilometry in

Fig. 5.4 under the influence of the force F = mg, we calculate a lower limit of the bending rigidity κ > 100

eV. This is factor of 102 larger than expected for flat graphene. Unfortunately the force due to gravity cannot

be adjusted. To better measure κ we need to control F .

5.2.2 Electrostatic actuation

Another way to precisely measure κ is by monitoring deflection via interferometric profilometry under known

forces. We developed such a scheme using electrostatic actuation of membranes in chapter 3. We first

calibrate the technique for cantilevers with similar geometry. We fabricated these calibration cantilevers from

silicon nitride (SiNx) since it is a well characterized material.

Here we used a ∼ 150 nm thick SiNx film coated with ∼ 30 nm of gold (to allow for gating), patterned
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Figure 5.5: Silicon Nitride cantilever measurements. a) Interferometric image of SiNx cantilever, scale bar
is 10 µm. Greyscale is deflection and pink is missing data since there is no material to reflect light under
or around the cantilever. b) Cross-sections of cantilever under electrostatic pressure controlled by actuating
voltage. The cantilever is initially deflected upwards due to differential stress from fabrication. c) Estimated
force from electrostatic pressure vs. measured deflection curves. Line is a fit for the effective spring constant
k ∼ 0.02 N/m

into a ∼ 18 µm long ∼ 2.5 µm wide cantilever with a ∼ 5 µm paddle on the end. An interferometric image

of the device is shown in Fig. 5.5a and its electrostatic response is shown in Fig. 5.5b. Force is applied by

applying voltage across the cantilever and a gating chip underneath, see chapter 3 for details. The force is

estimated by taking the area of the cantilever and multiplying by the effective electrostatic pressure assuming

a parallel plate capacitor geometry. Then, the force vs. deflection curves are fit to a straight line as shown

in 5.5c. The slope of this curve is the spring constant: k ∼ 0.02 N/m. This is close to that calculated

from Eq. 2.34 in chapter 2: k = Et3w
4L3 ∼ 0.1 N/m, where E ∼ 300 GPa is the Young’s modulus of SiNx.

Although the measured and calculated spring constants are close, they are not in perfect agreement. This is

expected because a small uncertainty in t or L can cause large differences in the calculated spring constant.

Furthermore, we have neglected the effects of built-in stress and small layer of gold. This is why in AFM,

spring constant calibration is typically performed by measuring the amplitude of thermal brownian motion of

the cantilever end, which is less prone to these uncertainties.

Applying the electrostatic actuation scheme to graphene cantilevers is not straightforward when fabrica-

tion is successful. The cantilevers are hard to transport to the measurement setup without destroying them.

The most careful protocol we devised was to fabricate cantilevers when the chip was already within the mea-

surement clamp which was grounded to prevent unwanted charging. Then, the clamp becomes a make-shift

Faraday cage for transport. Even this method had low yield, but it allowed a simple electrostatic measurement.

Figure 5.6 shows the electrostatic actuation of a∼ 5 µm long graphene cantilever with a 5×5 µm paddle
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Figure 5.6: Interferometric video snapshots of repeatable electrostatic actuation of a graphene cantilever.
Left, only the paddle is visible as a white spot. Right, it becomes invisible to the interferometric imaging
technique at the lowest voltage (50 V).

on the end. In these images, graphene is barely visible. Initially, at zero applied force (0 V) the paddle is

visible. However, upon application of force (50 V) the cantilever is bent and the paddle is shifted out of view.

This is because with the interferometer we can only measure up to 10◦ deflection before the reflected light is

no longer collected by the objective. For a 5 µm graphene cantilever, the maximum displacement we could

see at the edge of the paddle is zmax ≈ 5 × tan(10) ≈ 1 µm. The electrostatic pressure we apply at 15 µm

gate distance and 50 V is ∼ 50 Pa. Since the area of the cantilever is ∼ 5× 10 µm2, the force applied to this

cantilever ∼ 2.5 nN. By assuming this force is just enough to bend the paddle out of range we get an upper

estimate for spring constant: k < F
zmax

≈ 2.5× 10−3 N/m and therefore bending rigidity κ < 5 KeV.

5.2.3 Dynamics

On occasion, the final cut in the fabrication stage will cause excitation of the cantilever, as shown in Fig.

5.7. The blurriness apparent in Fig. 5.7 stems from the vibration of the cantilever which is much faster

compared to the raster speed of the SEM. The fastest raster speed (50 ns per line) of the SEM cannot resolve

the cantilevers motion. This does however allow us to estimate a lower limit of the bending rigidity of the

cantilevers. This cantilever has width, W = 5 µm and length L = 7.5 µm. The field of view of the scan

shown in Fig. 5.7 is∼ 10×10 µm2, this allows us to determine that the vibration amplitude isA ∼ 1−5 µm.

It is hard to get a very accurate number here because it is impossible to differentiate between the lateral extent

of the paddle compared with the vibration of the end of the paddle. Since Fig. 5.7 has ∼ 64 lines per µm,

we can estimate the resonant frequency of the device f = t
A > 0.5− 3.0 MHz, where t is the time to scan

amplitude of the paddle.

With resonant frequency we can estimate the cantilever spring constant k = m(2πf)2 > 0.1 − 10 N/m

and therefore corresponding bending rigidities of κ > 5− 500 MeV! However, we cannot assume the entire
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Figure 5.7: Example of oscillating cantilever after fabrication. The highest raster speed of the SEM cannot
resolve its motion — hence the cantilever appears blurred.

cantilever is bending. In fact, from the SEM image of Fig. 5.7, it seems as if only the paddle at the end is

moving. This brings up the possibility that the entire cantilever is very rigid apart from the final ∼ 100 nm

where it behaves like a hinge. From this, following the same analysis above yields κ ∼ 40 − 4000 eV in

agreement with other measurements.

5.3 Other explanations for bending rigidity renormalization

In all of the preliminary measurements above we extract κ � 1 eV. Given our results in chapters 3 and 4, it

is natural to assume that this stiffening compared to κ = 1 in flat graphene is elastic constant renormalization

due to crumpling. Indeed, static wrinkles could still persist in the cantilever. Assuming regular corrugations

of 1 nm we estimate κ ≈ 103 eV from Eq. 2.42. However, it is pertinent to remember that the scale of forces

in the cantilever experiments above is very different from those used to probe in-plane stiffness. Therefore

there are a number of other explanations for this data.

First, the effects of gaussian curvature in the free energy cannot be neglected in Eq. 2.11 as for fully

clamped membranes as disccussed in chapter 2. In other words, overall curvature of the the device facilitated

by the free edges can stiffen the beam. An estimate for the relative change in stiffness due to gaussian

curvature is as follows [117]:

∆kG
k

=
L2

60

β4

η2
e−cβ (κy − νκx)

2
=
L2

60

β4

η2
e−cβκ2

y (5.1)

where L is the length of the cantilever, β = w
L with width w, η = t

L with thickness t, numerical constant
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c ≈ 3 and κx,y are curvatures along the x and y directions. Here only the transverse (defined as y) curvatures

contribute to stiffening of the beam. This yields a relative stiffening of up to a factor of 106 (∼ 10−2 N/m) for

an assumed curvature of κy = 1
1×10−6 µm−1. Even for weaker curvatures of κy = 1

100×10−6 µm−1 yields

stiffening of a factor of 102.

Second, free edges of the cantilevers could roll up into nanotubes. This would increase the rigidity by a

large amount. Modelling the edges as solid cylinders we get an effective spring constant expressed as [116]:

kroll =
3πr4E

2L3
(5.2)

Here E is the Young’s modulus of graphene, and r is the radius of the nanotube at the edge. For a roll as

small as 10 nm yields an effective spring constant of k ∼ 1× 10−6 N/m.

Third, bending rigidity may also be affected by defects induced during fabrication. The FIB fabrication

procedure induces defects well beyond the region of the cut, since even when the FIB is well focused, there

is a large ion tail that extends laterally. Typically such a beam follows a Holtsmark rather than Gaussian

distribution [118]. We have seen in chapter 3 that each cut induces a defect density of ≤ 5 × 1012 cm−2.

While we found earlier that the presence of defects does not change the stiffness. The same conclusion

cannot be made for bending rigidity. In fact, the problem is worse for cantilevers with paddles since we have

to mill through the SiNx which takes a much higher dose to achieve. Figure 5.8 shows an example Raman

spectra taken on the center of a graphene cantilever with ion-milled SiNx paddle. The spectrum indicates the

presence of graphene oxide. Presumably, the large dose required to mill the SiNx made the graphene heavily

defective. Upon venting the FIB chamber, oxygen then attaches to the defect sites forming oxide. Although

it is predicted that graphene oxide should have lower κ than graphene [119], it is unclear how the defects

and/or contamination of re-depositing SiNx contribute to the effective rigidity of graphene. Furthermore,

these defects can contribute to the crumpled landscape of the material. Using helium ion microscopy (HIM)

instead of FIB could help reduce defects since the beam can be controlled to higher precision.

Finally, although we can neglect contaminants such as PMMA resist in the study of in-plane stiffness

(chapters 3 and 4), it is likely that the effects are more prominent in cantilevers. The fact that cantilevers

during fabrication sometimes rise away from gravity points to other forces present in the system. Although

these could be from electrostatic charging and van der Waals interactions, it is also possible the culprit is

PMMA resist. A layer with flexural modulus Eflex ∼ 3 GPa as thin as t = 5 nm is enough to explain the

stiffness of the cantilevers: k = Eflex
4wt3

L3 = 1 × 10−5 N/m. Another contaminant present on graphene is

water. The effect of adsorbed water that is present on all surfaces at ambient temperature and pressure on the

mechanical response of graphene is unknown.
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Figure 5.8: Raman spectra from the center of a cut graphene cantilever which included the milling of SiNx.
The spectra is indicative of graphene oxide, meaning FIB milling of SiNx in the vicinsity of graphene causes
a large number of defects.

To conclude that the renormalized bending rigidities measured here are really due to crumpling, one would

have to perform additional studies. For example, if the renormalization were caused by flexural phonons, then

κ should be both temperature and device size dependent. If static crumpling was the primary cause, one would

expect to see modulation of κ via controlled undulations through, for example, patterned substrates.

5.4 Conclusion

Mechanical measurements of cantilevers offer the best way to study the bending rigidity of 2D materials.

However these cantilevers are extraordinarily difficult to fabricate and measure. Despite low yield, we find

κ � 1 eV from gravity deflection, electrostatic actuation and resonance measurements. Although such high

bending rigidity can be caused by crumpling, we cannot rule out other artifacts such as rolled edges, defects,

and contaminants. A summary of the measurements and calculations is shown in table 5.1. Developing a

scheme that allows fabrication and measurements in-situ and in vacuum will be fruitful but highly challeng-

ing.
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Table 5.1: Summary of measured bending rigidities of graphene (top). Bottom: Expectations of increased
bending rigidity stemming from different mechanisms. All calculations are performed with 5 × 5 µm2 can-
tilever.

Method k (N/m) κ (eV)
flat 1× 10−8 1.2

gravity 4× 10−7 1× 102

electrostatic 3× 10−3 < 5× 103

resonances 10−7 − 101 101 − 106

curvature 10−6 − 10−2 103 − 105

corrugations 1× 10−5 1× 103

edges 1× 10−6 1× 102

contaminants 1× 10−5 1× 103
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

It is clear that graphene has remarkable mechanical properties — high in-plane stiffness and low bending

rigidity. I have shown that out-of-plane crumpling greatly renormalizes these properties. To measure the

effects of crumpling on the mechanical response of 2D materials, I developed a new interferometric bulge

test technique applicable at low applied stresses and cryogenic temperatures. I then extended this technique

to allow complementary measurement of strain via Raman spectroscopy at higher stresses applied with gas

pressure. Specifically, I have shown that static wrinkling reduces the in-plane stiffness of graphene by up to

10 times compared to flat graphene. I have shown for the first time experimentally, that graphene exhibits

a nonlinear (‘Anomalous’) Hooke’s law at low stress. To measure the bending rigidity, I developed process

flows to fabricate atomically thin cantilevers. Although difficult to measure, I have also shown that the

bending rigidity is increased by at least 102 − 103 times compared to flat graphene. While the origin of

stiffening could potentially be crumpling, it is currently unclear and requires more detailed experiments and

refined fabrication procedures.

My observations reinforce the idea that great care is needed when applying classical elasticity theories

to atomically thick materials. I demonstrate that clearly defining strain is critical to the understanding of 2D

materials. Strain can refer to stretching the bonds in the lattice or to stretching an entire micron-scale device.

These two types of strain are not always equivalent. This distinction is currently not widely considered in

literature.

6.2 Future work

The elastic constants of 2D materials strongly depend on crumpling. Since crumpling is a salient feature

of graphene or any 2D material membrane at finite temperature, the results reported here are relevant to

the majority of the experiments and devices dealing with 2D materials. For example, in most mechanical

experiments the linear mechanical response of 2D materials is assumed in the regime of low stress (e.g.

[11, 120]). The conclusions of some of these works may need to be reassessed. Changes in the effective

stiffness will affect operation of graphene nanoelectromechanical devices including resonators, mass sensors

and switches. And further, controlling crumpling could enable tuning of the mechanical constants in a wide

range or enable the design of highly anisotropic devices. Extremely soft devices may be useful, for example,

as exquisite force sensors.
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Figure 6.1: Controlling stiffness of graphene cantilevers via crumpling. Left) A cantilever that crumpled
during fabrication. Heavily crumpled cantilevers appear very stiff. Right) Controllably corrgated graphene
cantilever. Corrugations were formed by patterning grooves into the substrate prior to graphene transfer.
Arrows highlight significant wrinkles induced by the groove edges.

Figure 6.2: Example device for torsion measurement. Force could be applied to one side of the paddle
by using light pressure from a focused laser spot. Deflection and/or angle can be monitored with high angle
SEM. A more stable geometry may include an additional graphene ribbon, as opposed to the cantilever shown
here.

A key future direction is to study the effect of crumpling on the bending rigidity of 2D materials in more

detail. This could be facilitated by controllably inducing corrugations of known wavelength and amplitude

into cantilevers as shown in Fig. 6.1.

There are many other basic mechanical parameters which could be investigated. For example, it would be

interesting to apply non-uniform strain, shear or torsion as has been done in other nanomechanical systems

[121]. An example of a torsion measurement is shown in Fig. 6.2. Perhaps the most interesting parameter that

is heavily influenced by crumpling is the Poisson’s ratio ν. It too is renormalized and depends on crumpling

strength. For a highly crumpled device one expects ν = −0.3 [122]. This negative Poisson’s ratio means that

the membrane would extend transversely as it is stretched. One could potentially extract ν by comparing the

mechanical response of a uniaxially stressed (ribbon) and a biaxially stressed (circular membrane) devices in

both crumpled and strain engineered 2D membranes.

Extending the quasi-static measurements of this work to multilayer graphene, other 2D materials and
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heterostructures offers other platforms to study the coupling between bending and stretching in different thin

systems [123]. For example, MoS2 has E2D ∼ 180 N/m and κ ∼ 10 eV [124, 125]. Here, due to the lower

in-plane stiffness and higher bending rigidity the anharmonic effects of flexural phonons should be reduced

by ∼ 100 times. This offers another way to suppress the effects of flexural phonons without application

of high strains or changing temperatures. One could use other materials like this or varying thickness, as a

platform to investigate the competition between static and dynamic crumpling.

Moving toward dynamic measurements, is essential to gain a full understanding the nanomechanics of

thin materials. As such, it would be interesting to consider how competition between static and dynamic

crumpling, renormalized elastic constants, and the low stress nonlinear response may affect the function of

MEMS oscillators. In such oscillators, it has been suggested that wrinkles may be an overlooked dissipation

mechanism [91, 126, 127].

6.3 The future of 2D mechanics

Graphene has been considered a wonder material with many proposed applications in the areas of electronics,

thermal management, and MEMS. The future of graphene and other 2D materials is still uncertain, but the

study of mechanics in these systems has become much more interesting. Strain engineering and harnessing

of the third dimension has opened an entire subfield in 2D mechanics where a crumpled membrane should

be considered a metamaterial [128]. For example, with careful induction of defects [129] or otherwise [130,

131], one can design the topography of a 2D material and enhance its properties. It is possible to increase

fracture stiffness [132, 133] and induce hydrophobicity [134, 135]. Whilst the commercial application of

graphene in MEMS may be in the distant future, the utility in of such MEMS in research is very current. In-

tegration of graphene as a mechanical element to ‘lab-on-a-chip’ setups facilitates the study of exotic physics

not limited to: nonlinear dynamics [136], coupling of mechanical motion to electronics [137] and optics [12],

and exploring the quantum regime of mechanical motion [138]. Finally, by replicating paper art such apply-

ing folds and cuts (origami and kirigami) [34, 139–142] in graphene, we are becoming closer to the goal of

understanding, manipulating, and miniaturizing machinery.
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APPENDIX A

FABRICATION OF 2D MATERIAL DEVICES

Basic fabrication was mentioned in many chapters of this thesis, since it was critical in the design and imple-

mentation of many experiments. In this appendix I discuss in detail the procedures and recipes for construct-

ing two-dimensional material devices.

A.1 Procurement and Transfer of Graphene

There are two main methods of procuring graphene: chemical vapor deposition (CVD) and exfoliation. As

we wish measure the mechanical response of graphene, it is a requirement that the graphene samples are

freely suspended. Therefore various techniques have been developed to remove graphene from the substrate.

Graphene can be transferred onto pre-made pores or subsequent etching of sacrificial layers below graphene

on a substrate. The graphene remains attached to portions of the sample via van der Waals interactions

forming suspended graphene devices.

A.1.1 CVD Graphene

Graphene is one of the easiest materials to grow via CVD and the literature is populated with many different

types of growths of various quality and characteristics. We start by following the early recipe by the Ruoff

group [8] — a low pressure chemical vapor deposition (LPCVD) growth. We use 25 µm thick copper foils.

We have performed the recipe in both 1 inch and 4 inch furnaces with no discernable difference between the

growths. The copper foil is cut up into strips that fit onto the boat in the furnace. If the furnace position cannot

be controlled, it is essential that the boat can be moved during the growth (e.g. with magnets or otherwise).

The foils are cleaned with acetone and IPA for several rinses and then blow dried before being loaded into

the furnace. The foils should be loaded into the center of the furnace as quickly as possible to avoid further

contamination. The vacuum pump is then turned on and allowed to slowly evacuate the chamber. Once

reasonable pressure has been achieved (after 5 minutes or < 100 mTorr), 2 sccm of H2 is introduced for 1

hour with the furnace heating to 1035◦C. This further cleans and removes the copper oxide present on the

foils. Then, in conjunction with the hydrogen flow, 35 sccm of CH4 (methane) is introduced for 30 minutes.

Following this with these two gasses are still flowing, the foils are removed from the center of the furnace to

its edge where they are quickly cooled. After the furnace has cooled to < 200◦C, the H2 and CH4 are turned

off and 300 sccm of Ar is introduced to flush all of the active gases and to subsequently vent the chamber.

This growth will typically yield grain sizes of ∼ 10µm or greater as shown by inspection after partial growth
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a) b) c)

Figure A.1: a) Transfer of graphene onto silicon chip. Top, graphene/PMMA stack on silicon. Bottom,
following acetone and IPA cleaning to remove PMMA. b) Partial LPCVD growth, scale bar 50 µm. c) Partial
APCVD growth. Grain size is ∼ 2.5 mm

Fig. A.1b). This size is sufficient to create electronic devices of < 1µm in size. However, for the larger

mechanical membranes discussed in most of this thesis, larger graphene grain sizes were required.

Before we discuss improved recipes for growth, it is important to mention a number of key factors that

can drastically affect the resulting graphene quality. Foil type and thickness, cleaning procedures and foil

geometry. Firstly, it has been shown that foils with high oxygen content (Alfa Aesar 99.8% 7440-50-8,

oxygen rich ‘OR’) greatly improve the quality of graphene grown with the above recipe [8]. Alternatively

an extremely low flow of oxygen [143] can be introduced during the recipe with regular foils. There is a

risk of oxidizing the foils if you do not have precise control of the oxygen flow. Although thin foils are

more economical in terms of cost and etching time, they can also be crumpled easily and be very rough

microscopically. Therefore it is recommended to use thicker foils for any graphene growth recipe. To the

same end, increased graphene quality is achieved using very smooth foils (e.g. [144]) and can be facilitated by

mechanically flattening or polishing. Rather than using only acetone and IPA to remove surface contaminants,

an overnight etch in glacial acetic acid can remove the copper oxide more effectively. Additionally, acetic acid

is a weak copper etchant meaning that it can smooth irregularities and surface roughness. Upon removing

the copper from the acid, it should be blow dried and taken directly to the furnace and pumped to vacuum

where the growth recipe can continue as normal. Finally, some groups notice that instead of using flat strips

of foils, using copper ‘pockets’ or tubes can improve the quality of graphene by reducing nucleation rate on

the interior [145].

To obtain large grain graphene we use a high quality atmospheric growth (APCVD) [146] on 125 µm

thick electropolished (in H3PO4 [147]) copper foils that yields grain sizes > 50 µm as shown in Fig. A.1 c).

In short, the foils are first annealed in a H2-Ar mixture for 30 minutes. Then partial pressures of methane and

hydrogen were controlled by mixing stock gas mixtures, 2.5% of H2 in Ar and 0.1% of CH4 in Ar keeping

the ratio PH2

PCH4
∼ 1800. Total flow was kept at 500 sccm during the growth with partial pressure of H2 ∼ 19
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Torr and CH4 ∼ 10.5 mTorr. After the growth the foils are cooled at an initial rate exceeding 50◦ C/min.

After growth, graphene is transferred from copper. To accomplish this, Microchem 495PMMA A4 pho-

toresist is spin coated onto the copper foils at 1500 RPM. The copper is dissolved in 1M FeCl3 and 3% HCl

solution at which point the graphene-PMMA stack will be floating on the surface of the acid. A fresh silicon

chip is used to ‘fish out’ the film for further processing. The films are first transferred to a 3% HCl solution

and subsequently rinsed in D.I. water by placing them in consecutive baths and allowing them to rest for at

least 5 minutes in each. It is essential to develop a technique to clean the films with enough water other-

wise there will be iron particle contamination. There is certainly a trade-off to consider, the more rinsing

performed, the more you have to handle the membranes which can potentially damage them. An alternative

etchant to use is ammonium sulphate which doesn’t have the iron contamination issue. However, the etching

reaction is slightly more violent and causes bubbles to form under the films which can only be removed by

performing and additional rinse in IPA. It should be noted that the films will not float in an IPA bath, so

you should only dip them in this bath momentarily whilst still holding the fishing chip underneath to take it

out again. The final step, which finishes the transfer, is to fish out the film onto your device substrate such

as a patterned silicon chip which has been O2 plasma cleaned. The chips are left to dry overnight at room

temperature and then baked on a hotplate at 150 ◦C for 5 minutes. The result is a graphene-PMMA film on

your substrate of choice. How to remove the PMMA is discussed in the section below.

A.1.2 Exfoliated Graphene

Next we discuss how to transfer exfoliated graphene rather than CVD graphene. For exfoliated graphene on

arbitrary substrates a co-polymer stamp method is used [148, 149]. The first step is to exfoliate graphene

flakes onto a transfer slide made from a glass side, block of PDMS and transparent scotch tape spin coated

with a copolymer mixture (7.5 g Evlacite powder grade 2550 in 50 ml MIBK) spun at 4000 rpm for 45s and

baked for 5 minutes at 100 ◦C.

The co-polymer layer acts as a sacrificial layer which will be transferred from the slide to your arbitrary

substrate. As such, there is risk of accidently removing the layer whilst exfoliating — this happens in about

1 in 10 slides. It is necessary to modify your exfoliation technique to account for this. Since the co-polymer

is very sticky it is actually easier to find monolayer flakes compared to silicon. Instead of scratching for 1-2

minutes, all you have to do is carefully and gently apply a little bit of pressure so that the flakes are in contact

— this is enough to have lots of candidate flakes remain on the transfer slide. You want to reframe applying

excess pressure since this will increase the chance that you will remove the co-polymer layer accidently.

Once candidate graphene flakes are found and confirmed, the transfer slide is aligned to the sample chip

(e.g. SiNx membrane) with a manual x-y stage, brought into contact and heated to 90 ◦C to melt the co-

67



polymer layer. This usually takes ∼ 5 minutes. You will observe interference fringes spreading as the

co-polmer heats indicating that more and more of the co-polymer is sticking to the substrate. After this, the

transfer slide is removed from the sample chip and the flake-co-polymer stack should remain on the substrate.

How to remove the co-polymer is discussed in the section below. Sometimes the region of the flake is stuck

to the substrate, but the co-polymer stretches and doesn’t separate from the slide. At this point it is okay to

carefully use tweezers or a blade to separate the excess co-polymer from the slide.

If you replace the transparent tape and spin some fresh co-polymer the slides are re-usable. However, if

you need to transfer onto fragile substrates (e.g. < 200 nm thick nitride membranes) there is an extra step

required during transfer. Prior to loading the transfer slide into the x-y stage a blade is used to cut a very

small square (smaller than substrate size) around the flake. The excess PDMS and tape is removed. The

transfer proceeds as normal. Then, when you raise up the transfer slide, the PDMS square will remain on

top of the substrate/ It can then be carefully removed. This procedure is much more gentle and allows the

co-polymer to separate with relative ease, however it comes with the downside of the transfer slides not being

reusable. Finally, to transfer onto thick substrates (such as polypropylene) the heater stage will not raise the

temperature of the top surface enough to melt the co-polymer. Therefore, a simple solution is to use a heat

gun aimed at the sides of the stack during transfer. Again, the rest of the transfer procedure is the same as

described above.

A.1.3 Identifying Monolayer Graphene

It is important to know how to distinguish monolayer graphene from bulk or even bilayer specimens. There

are typically a number of complimentary techniques such as optical contrast measurements, AFM for height

measurements or Raman spectroscopy. Raman spectroscopy is by far the easiest and most reliable method to

identify monolayer samples, even though over time you will become confident identifying monolayer flakes

by eye.

Here I discuss briefly how Raman is used to confirm monolayer samples. Figure A.3 shows typical Raman

spectra of graphene on a variety of substrates that are encountered during fabrication. The Raman spectrum

of freestanding graphene is similar to that supported on silicon. Graphene on copolymer is encountered when

using transfer slides (as discussed above). Finally, there graphene on copper is following CVD growths. From

the Raman spectrum it is hard to tell the quality of graphene on metal due to the additional scattering from

the surface but it is a least possible to confirm whether or not it is present.

There are a three key characteristics which should be noted to confirm high quality monolayer samples.

The first is peak position. The 2D peak should be situated∼ 2700 cm−1 (depends on laser excitation) and the

G peak should be ∼ 1580 cm−1. The second is 2D peak shape. For bulk samples the 2D peak is asymmetric
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Figure A.2: Example of a device fabricated with the co-polymer stamp method: a) Sketch of prepared trans-
fer slide b) 50x objective optical image showing candidate transfer flake. e) Sketch of transfer set-up d)
Reference image taken during transfer — the interference fringes confirm the flake is in intimate contact
with the substrate. The red lines are drawn in software to act as guides during the procedure since the flake
on co-polymer is almost invisible due to the reflection from the substrate. e) Successful transfer of flake to
device, scale bar 10µm.
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Figure A.3: Characteristic Raman spectra of graphene. a) Bulk and monolayer specimins on Silicon (from
[150]) b) Expected spectra on copolymer (transfer slide) where there are lots of spurious peaks not related to
graphene c) Spectra of CVD growth on top of copper.
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and has an extra feature. For monolayer, the 2D peak should be perfectly Lorentzian. Third is peak intensity.

Here it should be checked that the intensity of the 2D peak, I(2D), is much greater than the intensity of the

G peak, I(G), and specifically the ratio between them should be I(2D)
I(G) ∼ 3.

A.1.4 Cleaning Samples

To remove the PMMA or co-polymer (if present), the samples are left in acetone for up to 1 hour before being

dipped in IPA and gently blow dried with N2. At no point during this cleaning procedure are the samples

rinsed from the squeeze bottle — this risks the removal of graphene from the substrate. The likelihood of this

is high especially for for transferred flakes.

There are primarily two methods to remove excess polymer residues after the wet cleaning step. The first

is vacuum annealing. It is only suitable for chip-based devices that can withstand high temperature. The

samples are placed inside a furnace in a Ar-H2 environment and heated to 350 ◦C for 1 hour. The second

is current annealing which is only suitable for electrical ribbon based devices that can be placed in vacuum.

There is no set recipe since the current will depend on the geometry of the device, contact resistance and

other components in the circuit (like protective resistors), but the general idea is to pass high current through

the device which locally heats the sample. The polymer can re-flow with the thermal gradient (from center

of device to the edges which act as heat sinks) but mainly, since the device is in vacuum, the polymer can

volatilize and leave the sample. The procedure can be lengthy and is associated with a risk of destroying

devices. Typically an as-fabricated graphene ribbon will have poor electrical quality, even when suspended,

as evidenced by resistance vs gate voltage (Vg) measurements. The source drain voltage (Vsd) is increased

gradually whilst measuring device resistance. Whenever a sudden jump occurs in resistance the Vsd should be

held constant until the changes stop. Then a Vg sweep is performed to monitor the quality. The procedure is

continued (to higher current or alternate Vsd polarity) until a high quality gate sweep is seen with a Dirac point

close to 0 V. This indicates a very clean sample. For special samples that cannot be cleaned with either of the

above methods, it is possible to use laser illumination with increasing power to locally heat the sample. This

method is not typical, less reliable and harder to reproduce than either of the previously discussed techniques.

A.2 Circular graphene drums on Silicon Nitride (SiNx) membranes

300 nm thick single crystal silicon (100) double-side polished wafers were used as a starting material. Low-

stress silicon-rich silicon nitride (∼ 100 − 1000 nm) was deposited on both sides using LPCVD. Two pho-

tolithography patterning steps were successively performed using a contact aligner as follows. First, the front

side of each wafer was patterned to define the pores over which graphene will be eventually suspended (typi-

cally 5− 30 µm). For this purpose, positive photoresist 955 CM 2.1 spun at 3000 RPM for 45 s was exposed

70



for 11 s on the contact aligner and developed for 1 min in CD 26. Although not strictly required, a post-bake

for 1 min 30 seconds was performed to further harden the resist.

The pattern in the resist can be transferred into the silicon nitride in one of two ways: by applying an

anisotropic reactive ion etch in a mixed C4F8:SF6 plasma or a ICP sputter etch (Oxford Plasma Technology

Plasma Pro 100 tool). The RIE was timed until all the silicon nitride in the pore regions was completely

removed. To achieve reproducible etch rates, whenever small regions of the wafer are exposed (such as the

front side pattern), small chips of bare silicon are attached to the wafer. The area dependance of the etch rate

is usually only important for reactive recipes, but it was found to be important for the sputter recipe also.

After stripping the remaining resist in NMP at 70 ◦C, etch windows and cleaving lines were defined on the

back side of each wafer using back side optical alignment to the front side pattern. The same resist, exposure

time, resist development conditions and RIE recipe were used for the front and back side lithography. After

resist removal, wafers with patterned silicon nitride layers on both sides were transferred into a beaker with

30% KOH solution for the bulk silicon etching. The silicon nitride acts as a mask for the silicon. To ensure

the wafers are as clean as possible after the etch, a surfactant in the form of ∼ 10 ml of IPA was added to

the KOH before etching. During the etch KOH solution was maintained at 80− 85 ◦C while the beaker was

covered with a condenser. The etching was carried out until no silicon was remaining in the square regions

behind silicon nitride membranes (determined by visual inspection under back illumination). The etching

typically takes ∼ 4 − 5 hours, since IPA reduces the etch rate. After completing the KOH etch, the wafers

were thoroughly rinsed with copious amounts of DI water and carefully blow dried. If there are any residues

after the etch, this means that the wafers were not cleaned enough beforehand. The residues were found

to decrease the adhesion of transferred graphene even with additional O2 plasma cleaning afterwards. If an

electrode is required for gating (e.g. chapter 3). Evaporation of 30 nm Au layer on 10 nm of Ti was carried

out at a rate of 0.1 nm/s in a Thermionics dual e-gun evaporator.
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Figure A.4: Fabrication of suspended silicon nitride membranes with pores: a) Process flow including front
and backside patterning with photolithography and sputter etching, KOH etching and graphene transfer. b)
KOH etching setup allowing a full cassette of wafers to be etched at high temperatures. The condenser
consists of a coil of tubing with cold water flowing through it to ensure the concentration of the KOH doesn’t
change significantly over the course of the etch. c) A finished wafer viewed from the backside. You can
clearly see the trenches formed by the KOH — in this case there are four trenches per chip. The wafer is
easily broken up into the respective chips by applying a small amount of pressure with tweezers to the defined
cleaving boundary.
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APPENDIX B

AFM FORCE MEASUREMENTS

AFM nanoindentation is a very important method to characterize the mechanical properties of membranes.

This method is described in detail in Refs. [25, 57] and supporting information. In short, a sharp tip on the end

of an AFM cantilever of known spring constant and radius is pushed into the center of a suspended sample of

known dimensions. The deflection response of the AFM cantilever reveals the deformation of the membrane

under the applied forces. Therefore one can accurately extract key parameters about the membrane such as

in-plane stiffness and built-in stress. An advantage of this method is that one can also load the membranes

to their breaking point which allows characterization of yield strength. In this appendix I discuss these

measurements.

B.1 Preparation of samples

Exfoliated or CVD graphene is transferred onto silicon nitride (SiNx) membranes with holes of varied size

described in appendix A — this will create graphene membranes that are suspended and circular. Typically

the SiNx membranes were at least 300 nm thickness and < 500 µm in lateral size so that there was no chance

of the SiNx itself deforming under load. Hole sizes for the graphene membranes are often 1− 10 µm. Unless

you have extremely high quality graphene and very good transfer techniques, membranes beyond 10µm can

break very easily. An easy way to determine candidate graphene membranes is to view them in a SEM —

this avoids the pain of trying to find samples with AFM imaging which is very slow in comparison.

B.2 Data collection

The standard tips used for these experiments were Budget Sensors Multi75Al. They offer good tapping

and indentation response. Candidate membranes are first imaged in tapping mode. Initially a quick low

resolution scan is performed to very roughly center the membrane in the field of view which is followed by a

high resolution scan. The high resolution scan is used to minimize the uncertainty of finding the center point

of the membrane which is essential since the indentation models are designed assuming perfect center load.

For example, if your field of view is 10 × 10 µm2 and you scan size is 256 × 256 lines, the uncertainty in

your center point determination is ∼ 40 nm. Once the center is found accurately, you should make a note of

the x-y co-ordinates so you can return to it precisely.

Prior to indentation, the cantilever spring constant (k ∼ 3 N/m) is measured via thermal tuning when

the cantilever is far from the sample. This will allow determination of the force applied to graphene. The

73



deflection sensitivity of the cantilever (∼ 100 nm/V) is obtained by pushing it against a hard substrate far

from the graphene membranes, which allows you to disentangle the difference in cantilever response from

pure bending and actually indenting a sample. These parameters should be checked before every indentation

test. The tips should be changed frequently.

Finally, the sample is indented in contact mode at the determined center point co-ordinates. A good rule

of thumb is to indent to at least 500 − 1000nN of force, often set by having a deflection set-point (this is

discussed in the next section). It is critical to properly set the ramp speed and data density to have enough

points in the range where graphene is being indented because the cantilever will start many microns above the

sample meaning a large portion of the measurement will be deadspace with no response. Many indentations

can be performed within a matter of seconds which allows for easy collection of statistics and comparing

multiple runs. The raw data collected is piezo voltages corresponding to ramp distance z and cantilever

deflection δ from photodetector differential voltage, which is often automatically converted to distances. It is

good practice to periodically check these calibrations. An indentation test consists of a loading and unloading

cycle. The data you should use to determine the mechanical properties of the membrane is the loading curve.

The unloading curve will be hysteric due to graphene adhering to the AFM tip and exhibit a large retraction

spring back that can be mistaken for the indentation zero point.

B.3 Analysis of indentation curves

Equations B.1 and B.2 show the most common models for AFM indentation of thin materials:

F = σ0πh+ E2Dq
3h

3

a2
(B.1)

F =
σ02πh

ln a/r
+ E2Dq

3h
3

a2
(B.2)

where a is membrane radius, r is AFM tip radius, σ0 is built-in stress, E2D is in-plane stiffness, h indentation

depth and constant q = 1.02 is related to the Poisons ratio of graphene. For the large membranes used in the

majority of this thesis there is no significant difference by fitting to either of these expressions. An example

of successful analysis is shown in Figure B.1.

The hardest part of analysis is the transformation of ramp distance z and deflection δ to force and inden-

tation, even though the equations are trivial: F = −kδ and h = z − δ. The reason is the difficulty in finding

the zero point of indentation. This issue is covered in great detail in the supplementary information of Ref.

[25]. The zero point is the instance on the force vs. deflection curve where the tip just touches the membrane.

Small inaccuracies in finding this point can lead to large uncertainties in the end results. The most common

method to determine zero point is to is to find the flat region in the derivative of force vs. time plots dF
dt (t).
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a) b)
E2D=320±2 N/m

σ0=0.02±0.01 N/m

3

Figure B.1: AFM indentation of graphene membrane. a) High resolution (512 × 512) tapping mode image.
Red star shows location of indentation test. Scale bar :2 µm. b) Results of indentation including fit parameters
than are in agreement with monolayer graphene measurements. Inset shows log-log of data approaching a
slope of 3 at high h

This allows the best guess of where the forces between the cantilever and membrane are in equilibrium. It is

for this reason that decreasing ramp speed and increasing data point density can be of great help. Once you

know the time, and from known ramp speed, you know exactly at what point during the z ramp you should

designate h = 0. Another subtle aspect is ensuring that you indent the membranes enough to reach the regime

of cubic response. The cubic term in Eq. B.1 and B.2 is important for fitting for Youngs modulus. A way

to check this is to plot the F (h) data as a log-log plot and confirm a slope that approaches 3 as shown in the

inset of Fig. B.1b . For a given size of membrane, you will then know the typical force you will have to apply

to reach this and the corresponding deflection that you can use in your measurements. These issues have been

investigated deeply and the accuracy of the AFM indentation method for thin materials has recently been

called into question [100].

Often during loading, especially when using forces 1− 3 µN, the membrane will break. This allows us to

determine the breaking stress of our membranes. From a tip loading model you can estimate the maximum

stress from Eq. B.3:

σmax =

(
FE2D

4πr

)
. (B.3)

The tips used here have a documented tip radius of 10 nm but to get more accurate results you may have to

use specialized tips or measure the tip radius (which can be time consuming and challenging). Here we found

the breaking stress 40− 50 N/m, which again is in good agreement with other works [25].
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APPENDIX C

STRAIN ENGINEERING TECHNIQUES

Strain engineering is important in the mechanics of 2D materials. Many schemes require specialized setups or

complicated fabrication. Here I present some new ways to control strain that are very simple to achieve on a

silicon chip with no more than three layers of lithography, including graphene patterning. The first technique

is ‘controlled collapse’ where the 2D material is allowed to be pulled down to an underlaying substrate. The

second technique is MEMS actuators, where the 2D material is suspended between two cantilevers that can

be moved. With either approach we can engineer strain up to 0.2 %.

C.1 Controlled Collapse

One prominent mode of failure of suspending 2D material devices during fabrication is ‘collapse’. Instead

of the membrane freely suspending as shown in Fig. C.1a, it touches down and adheres to the underlaying

substrate (Fig. C.1b). We suggest using this effect to create controllable strain in 2D materials.

To suspend micron-sized devices on silicon, a very careful critical point dry (CPD) is typically performed.

Controllably collapsed devices on the other hand are fabricated by a faster CPD procedure or none at all. To

create strain engineered devices on SiNx suitable for mechanics measurements as used in chapter 4, they must

be suspended over open holes in SiNx. To accomplish this, we patterned an additional ∼ 50− 100 nm deep,

5 µm wide recess in the SiNx around the edges of the holes in SiNx. Then, when graphene is transferred it is

pulled into the recess by Van der Waals forces. From geometrical considerations, this process is expected to

impart ≤ 1 % strain on graphene. A comparison of standard and strain-engineered devices is shown in Fig.

C.2a. By transferring onto these pre-defined insets, graphene is pulled-in by Van der Waals forces thereby

Figure C.1: High angle SEM of graphene drums. a) A large graphene sample suspended by HF etching
and the subsequent CPD b) Similar collapsed samples fabricated by drying quickly, allowing graphene to
‘collapse’ and adhere onto the underlying substrate.
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Figure C.2: a) Top row: Cartoon views of standard and strain-engineered devices. Bottom row: scanning
electron microscopy (SEM) images of representative samples (scale bar is 5 µm) b) Strain of standard and
strain engineered samples for P = 0 determined from Raman spectroscopy (described in chapter 4). Here,
ε = 0 is defined as the average of all standard devices. The strain-engineered devices, on average, show
higher levels of built-in strain.

creating strained samples. A comparison of the built-in strain of standard and strain-engineered devices is

shown in Fig. C.2b. Strain engineered devices show significantly higher built-in strain on average, up to a

max strain of ∼ 0.2 %. The effectiveness of strain engineering depends on many factors including: whether

the membranes stay perfectly intact, if there is slipping during transfer and if the inset is large enough to

unravel the hidden area present in graphene prior to transfer.

Overall, this method will require more research into 2D material adhesion to enable engineering a specific

amount of strain. For now, patterns with large insets allow creating flat/strained suspended graphene.

C.2 MEMS actuators

A more elaborate way to strain 2D materials is with the help of MEMS actuators. This is another piece of

microfabricated machinery to apply forces or extension to graphene in real time. Such devices can be actuated

thermally (heater lines) and electrically (comb drive and piezo’s) and typically consist of many moving parts

[23].

Here, we created our own very simple MEMS actuators fabricated with only a few layers of lithography.

The mechanism behind the design is simple. The MEMS actuators induce strain by suspending graphene

between two movable cantilever supports. When the cantilever supports are bent downwards, the distance

between the support edges increase and the graphene between them is stretched. To fabricate such structures,

we design a typical suspended graphene sample with thin metal electrodes (Fig. C.3). The design was made

so that the width of the electrodes was< 600 nm so that etching away the underlaying 300 nm of SiO2 would

also suspend the electrodes forming cantilever actuators. The thickness of the cantilever was chosen to be

∼ 90 nm, 3 times thicker than typical electrical contacts so they would be stiff enough to support themselves.
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Figure C.3: MEMS actuators to strain graphene a) 2-probe and b) 4-probe schemes. False color: green is
graphene, yellow is the movable gold supports. For the 4-probe device red is actuation electrodes and blue is
an additional gate electrode.

Critical point drying allowed the fabrication of up to∼ 3 µm long cantilevers. The longer the cantilevers, the

more strain that can be induced via bending. These cantilevers can be bent electrostatically with a gate voltage

between the cantilevers and electrodes underneath or pushed downwards with another manipulator e.g. AFM

tip. From FEA simulations we expect to achieve 0.5 % strain for ∼ 10 V (Fig. C.4a). In experiment, we saw

repeatable modulation of strain up to ∼ 0.05 % strain as measured from Raman spectroscopy in the 2-probe

device for 0 − 40 V as shown in Fig. C.4b. We attribute the difference between experiment and FEA to

imprecise knowledge of the Young’s modulus and built-in stress of the gold supports.

We also demonstrate the successful fabrication of a 4-probe device geometry shown in Fig. C.3b. This

may be useful for more detailed transport measurements or studying strain induced pseudomagnetic fields

[30]. In this geometry, strain is induced along two, instead of one direction. Graphene that is patterned into

a cross shape is suspended between four movable supports, with the same design considerations as discussed

above. As the supports are bent downwards, the graphene between them is stretched. In experiment, the

graphene ruptured before any modulation of strain could be observed. The failure was likely due to the edges

in the cross pattern of graphene. A reasonable step forward would be using Si or SiNx cantilevers in a 2-

probe geometry to be actuated by AFM since electrostatic actuation is not desirable if electronic properties

are going to be measured due to unwanted gating.
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a)

b)

graphene

cantilever

Figure C.4: Modelling and experiment in 2-probe MEMS actuators used to strain graphene. a) Cross-section
of COMSOL model for deflecting cantilevers at 10 V with graphene in between. Color is electric potential,
dark blue is 0V. 0.5 % strain is obtainable with 10 V of actuation on the cantilevers. This model also confirms
that there should be no doping effect due to applied voltage since graphene is sufficiently far away. b) Strain
induced Raman shift of a graphene nanoribbon by actuating gold electrodes by 40 V.
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