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INTRODUCTION 

The expansion of the universe was discovered during the 1920’s.  Edwin Hubble was the 

first to notice a linear relationship between the velocities of distant galaxies receding from the 

earth and their distances from us, which is an evidence for the expansion of the universe.  From 

charting the velocities of the galaxies against their distances, he discovered Hubble’s law: 

 0v H d , (1) 

where 0H  is now known as the Hubble constant, v zc , z  being the redshift of the light source, 

and d  is the proper distance from the galaxy whose velocity is measured.  The 0 subscript in the 

equation expresses that 0H  is the present–day value of H , the Hubble parameter. 

The Friedmann equation gives the Hubble parameter as a function of the mean density of 

the universe.  In a Friedmann–Robertson–Walker universe,  

 

2

2

2

8

3

a G K
H

a a




 
   
 

, (2) 

where a  is the scale factor, G  is the gravitational constant,   is the energy density, and K  

denotes the curvature of the universe.  The dot indicates derivative with respect to time.  

Observations indicate that 0K  , so we will assume a spatially–flat universe throughout. [1, 2] 

 Consider a barotropic fluid filling the universe.  The equation of state (EoS) of this 

component is 

 w p  , (3) 

where p  represents the pressure of the fluid.  For example, matter has 0w  , and radiation has 

1 3w  .  Assume for now that w  is constant.  The time derivative of the Friedmann equation 

above is  
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  4H G p    . (4) 

The continuity equation is  

  3 0H p    . (5) 

From the eqs. (2), (3) and (5), we derive  

    3 1

0

w
a a 

 
 , (6) 

where   is the present–day energy density of the component that occupies the universe.  Then  

 
 2 3 1 w

a t


 . (7) 

In a matter–dominated universe, 0w  , so 2 3a t .  In a radiation–dominated universe, 1 3w  , 

so 1 2a t .  In both cases, the expansion rate of the universe decelerates. [1, 2] 

 The accelerated expansion of the universe was discovered by the Supernova Cosmology 

Project headed by Saul Perlmutter and the High–Z Supernova Search Team led by Brian Schmidt 

and Adam Riess.  Supernovae were used as standard candles for measuring cosmological 

distances.  The Perlmutter project was started in 1988 to constrain cosmological parameters with 

the magnitude–redshift relation of Type Ia supernovae (SNe Ia).  Methods were developed to 

study these supernovae at high redshift.  By March 1998, more than 75 SNe Ia at redshift 

0.18 0.86z    were discovered and studied by the project.  The study of 33 high–redshift SNe 

Ia resulted in a confidence region that indicated that the universe is expanding with an 

acceleration.  Around the same time, work by Riess et al. (1998) arrived at the same conclusion. 

[3]  Specifically, for a flat cosmology, where 

 1M    , (8) 

it was found that the density parameter of matter, 0.09

0.080.28M



   (1  statistical) 0.05

0.04



  (identified 

systematics), and the data required a non–zero, positive cosmological constant Λ. [3]  These 
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results were confirmed by the High–Z Supernova Search Team led by Adam Riess and Brian 

Schmidt. 

 From the Friedmann and H  equations, we have 

  
4

3
3

a G
p

a


   . (9) 

In order for the expansion of the universe to accelerate, 0a  , resulting in 1 3w  .  The 

component that is named to account for this acceleration is “dark energy”. [1]  Ever since the 

discovery of the universe's accelerated expansion, there have been sundry proposed candidates 

for dark energy, which is one of the greatest unresolved mysteries in science today. 

 Einstein's cosmological constant Λ is a strong candidate for dark energy.  He had 

originally introduced it in 1917 for a static universe, but retracted it after Hubble’s discovery in 

1929 of the expansion of the universe. [1]  It was re–embraced by scientists when the universe 

was discovered to be expanding with an acceleration.  The vacuum in the universe possesses an 

energy density, 0  , that remains constant through time [4, 5], so 1w   .  A model with cold 

dark matter (CDM) and a cosmological constant is called ΛCDM.  For constant  , the Hubble 

rate H  is also constant.  From the Hubble equation, we derive Hta e , which represents the de 

Sitter Universe. [1] 

From the Friedmann equation, (2), the critical energy density c  is found by assuming 

the universe to be flat, ie. 0K   [6]. 

 
23

8
c

H

G



  (10) 

Therefore, the present–day critical density is 
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0
0

3

8
c

H

G



 . (11) 
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The present–day density parameter of each component that the universe comprises is 

0 0 0x x c   , where x  represents the particular component. [1]  Considering the possible 

components of the universe, for one that comprises radiation, matter and the cosmological 

constant, the total energy density is 

 
4 3

0M Ma a       

         . (12) 

However, there remain distinct unresolved issues with the ΛCDM model, one major one 

being the cosmological constant problem.  According to observations, 2

0H  .  From that, we 

derive the energy density, 47 410  GeV 

  .  However, the vacuum energy density computed by 

summing the zero–point energies, 74 410  GeVvac  , which is 121 orders of magnitude greater 

than the observed value. [1, 4]  Another unresolved issue is the coincidence problem.  The matter 

energy density far exceeded the dark energy density in the distant past.  The former decreases 

with time while the latter is constant, such that dark energy density will far exceed matter energy 

density in the distant future.  It appears a coincidence that we are existing during an epoch when 

the energy densities of both components are comparable. 

 As scientists, since we entertain all possibilities related to a particular issue, we consider 

dark energy with a dynamical w , meaning one that changes through time.  Quintessence models 

of the universe which contain a scalar field  , hypothesized to be time–varying dark energy, 

have been proposed. [1] 

 There are alternative scalar field models that have been proposed to accommodate 

observations.  In the k –essence cosmology, modifications to the standard kinetic energy of the 

scalar field results in the universe’s accelerated expansion.  In another model, a rolling tachyon 
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field has an EoS that repeatedly reaches 1 , causing inflation at high energy.  The phantom 

cosmology for dark energy will be explained in the next section. [1] 

Chapter 1 of this dissertation deals with the coincidence problem.  It is ameliorated 

within an alternative model of the universe, the Cyclic Phantom Model.  This chapter has been 

published in Physical Review D [7]. 

 Chapter 2 examines Inflection Point Quintessence, a model we have developed for a 

dynamical scalar field that rolls near an inflection point in its potential.  This model is found to 

be a satisfactory model for dark energy.  This chapter has been published as a paper in Physical 

Review D [8]. 

 Chapter 3 examines another quintessence model for dark energy, namely the sum of an 

exponential potential and a constant potential.  This model has significant energy density at early 

times, mimicking “extra” neutrinos. 

 The cosmologies explored in all three chapters contain scalar fields.  I hope that these 

three cosmologies presented in my dissertation will further the revelation of dark energy by 

providing ideas for more accurate models of the universe. 
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CHAPTER 1 

COINCIDENCE PROBLEM IN CYCLIC PHANTOM MODELS OF THE UNIVERSE 

 

1.1 Introduction 

Cosmological data [9–12] indicate that approximately 70% of the energy density in the universe 

is in the form of an exotic, negative–pressure component, called dark energy, with roughly 30% 

in the form of nonrelativistic matter (including both baryons and dark matter).  The dark energy 

component can be parametrized by its equation of state parameter, w , defined as the ratio of the 

dark energy pressure to its density: 

 DE DEw p  , (13) 

where 1w    corresponds to a cosmological constant.  For constant w , the energy density of the 

dark energy, DE , scales as 

 

 3 1

0

0

w

DE DE

R

R
 

 

 
  

 
, (14) 

where R  is the scale factor, and 0DE  and 0R  are the density and scale factor, respectively, at the 

present.  (We will use zero subscripts throughout to refer to present–day values).  Observations 

constrain w  to be very close to 1 .  For example, if w  is assumed to be constant, then 1.1 ≾w

≾ 0.9  [13, 14].  Thus, the dark energy density varies relatively slowly with scale factor. 

 The matter density, in contrast, scales as 

 

3

0

0

M M

R

R
 



 
  

 
  (15) 

This leads to the well–known coincidence problem: while the matter and dark energy densities 

today are nearly within a factor of two of each other, at early times M DE  , and in the far 
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future we expect DE M  .  It would appear, then, that we live in a very special time: this is the 

coincidence problem. 

 While it is possible that this coincidence has no deeper explanation, numerous solutions 

have been proposed to explain it.  In the k –essence model of Armendariz–Picon et al. [15], the 

dark energy density tracks the radiation density during the radiation–dominated epoch but 

approaches a constant value during the matter–dominated epoch.  Another proposed solution is a 

universe which experiences an alternation of matter domination and dark energy domination, 

either through a scalar field with oscillatory behavior [16, 17], or as a result of a variety of scalar 

fields with a wide range of energy densities [18].  Another possible solution for the coincidence 

problem is a coupling of the matter and quintessence fields so that energy is transferred between 

them [19, 20].  Garriga and Vilenkin [21] proposed an anthropic solution to the coincidence 

problem.  Scherrer [22] suggested that the coincidence problem could be resolved in the context 

of phantom dark energy models.  In such models, the universe terminates in a singularity at a 

finite time [23, 24], so that the fraction of time for which the dark energy and matter densities are 

relatively close can be a significant fraction of the universe's (finite) lifetime.  Other models in 

which the coincidence problem is resolved by the universe having a finite lifetime were 

examined by Barreira and Avelino [25].  Lineweaver and Egan [26, 27] have proposed that the 

coincidence is related to the formation rate for habitable planets. 

 Here we examine another plausible solution to the coincidence problem, in the context of 

cyclic phantom models, of the type proposed by Ilie et al. [28].  In these models, the universe 

goes through repeated cycles of matter/radiation domination followed by a dark 

energy/inflationary phase.  Ilie et al. indicated that their model cannot address the coincidence 

problem, but we show here that it provides an elegant resolution of this problem.  Within each 
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cycle, there is a significant period in which the dark energy and matter densities are comparable.  

Since these cycles repeat endlessly, it is not surprising that we find ourselves in an epoch in 

which the dark energy and matter densities are of the same order of magnitude.  Similar models 

have been proposed by Creminelli et al. [29] and by Xiong et al. [30]. 

 We make this argument quantitative in the next section.  Rather than confining ourselves 

to the specific model of Ref. [28], we use a toy model which captures the essential features of a 

generic cyclic phantom model.  We also derive a useful approximation to the coincidence 

fraction in the limit where w  is close to 1  (as observations require).  Our results are discussed 

in Sec. 1.3. 

 

1.2 The coincidence fraction in the cyclic phantom model  

 In the cyclic phantom model proposed by Ilie et al. [28], the universe contains radiation, a 

scalar field, and a hidden matter sector.  Inflationary expansion is followed by a reheating phase, 

during which radiation becomes the dominant component.  Eventually the scalar field and hidden 

matter densities both track the radiation density but are subdominant.  At late times, the hidden 

matter and scalar field begin to behave as a phantom field with 1w  , and the universe 

undergoes superaccelerated expansion.  This phase then transitions to de Sitter inflation, and the 

cycle repeats itself. 

 Much of the complexity of the model discussed in Ref. [28] stems from the need to have 

a plausible mechanism for the universe to transition from one phase of the expansion to the next.  

Since we are primarily interested in the behavior of the scale factor as a function of time, we will 

consider a toy model that approximates the general behavior of a cyclic phantom model.  (This is 

also necessitated by the fact that the model introduced in Ref. [28] does not contain a matter 
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component).  The use of such a toy model has the additional advantage of being applicable to 

more general cyclic phantom models than the specific model in Ref. [28]  (As we have already 

noted, a number of similar models have been proposed [29, 30].) 

 In our toy model, the universe undergoes an initial “standard” expansion, consisting of a 

radiation–dominated era, followed by a matter–dominated era.  An additional dark energy 

component is present, which tracks the matter or radiation density, but which is subdominant (so 

that DE M   in the matter–dominated era).  When the dark energy density reaches some lower 

energy scale m  (so that 4

DE m ), the dark energy assumes a phantom behavior, with equation 

of state parameter 1w  , and the universe undergoes superaccelerated expansion.  This 

phantom phase terminates when the dark energy density (which is increasing with the expansion) 

reaches some upper energy scale M , so that 4

DE M .  The universe then enters a de Sitter 

phase, which ends with reheating and a return to the radiation–dominated era. 

The solution to the coincidence problem in this model arises because the universe 

naturally spends a significant fraction of the time in a state in which the densities of the dark 

energy and the matter are of the same order of magnitude.  Conceptually, then, this solution 

resembles that of Dodelson et al. [16], in which the ratio of dark energy density to the density of 

the matter/radiation component oscillates with time.  Mathematically, however, it more closely 

resembles the discussion in Ref. [22] for models with a single phantom phase terminating in a 

big rip, and it is this latter approach which we will follow in analyzing the cyclic phantom 

model. 

 Our goal is to derive the fraction of the time that the universe spends in a coincidental 

state, defined to be a state for which the ratio of the density of dark energy to the density of 
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matter lies within some fixed range close to 1.  More specifically, let DE  be the dark energy 

density, and M  be the nonrelativistic matter density, and define the ratio r  as in Ref. [22]: 

 DE

M

r



 . (16) 

We will then define a coincidental state to be one for which r  lies in the range 

 1 2r r r  , (17) 

where the values for 1r  and 2r  that define a “coincidence” are, of course, somewhat arbitrary. 

 We assume a flat Friedman–Robertson–Walker model, so that the evolution of the scale 

factor is given by 

 

2

8

3

R
G

R
 

 
 

 
. (18) 

At late times, the expansion of the universe is dominated by matter and dark energy.  To simplify 

matters, we assume throughout that w  is constant.  Then we can use Eqs. (14) and (15) to give 

 

 3 3 12

0 0

0 0

8

3

w

M DE

R R R
G

R R R
  

       
      
       

. (19) 

The time the universe takes in expanding from scale factor 1R  to 2R  is 

 

 
2

1

1

3 3 1 2

1

12 0 0

0 0

8

3

w
R

M DE
R

R R
t R G dR

R R
  


  



      
      
       

 , (20) 

and the time the universe takes to complete one cycle is 

 

 
1

3 3 1 2

1

0 0
0

0 0

8

3

max

w
R R

cycle M DE
R

R R
t R G dR

R R
  


  






      
      
       

 , (21) 
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where maxR  is the scale factor at which the dark energy density reaches its maximum value of 

4M  and the de Sitter phase begins.  Note that the integrand in equation (21) is valid only after 

the dark energy begins to behave as a phantom, but the error involved in extrapolating it back to 

0R   is negligible. 

 The fraction of time in each cycle that the universe spends in expanding from 1R  to 2R  is 

12 cyclef t t .  As in Ref. [22], we can rewrite 12t  and 
cyclet  in terms of r .  Taking 1r  to be the 

value of r  at the beginning of the period of coincidence and 2r  as that at the end, the fraction of 

time in each cycle that the universe spends in a coincidental state is 

 

2

1

4

2 1

2

2 1

2

0

1

1
Mmax

w
r

w

r

w
r M

w

r rdr
f

r rdr

















, (22) 

where 
maxM  is the value of the matter density at maxR .  Since the cycles are identical and repeat 

indefinitely, f  is also the fraction of the entire universe’s lifetime that is spent in a coincidental 

state. 

 This coincidence fraction is at least as large as in the case of a future big rip singularity 

[22], and in principle it can be even larger, since the upper limit in the denominator of equation 

(22) is finite in the case considered here.  This upper limit is enormous, but the integral 

converges very slowly for w  near 1 , so it is useful to see how small 4M  needs to be in order 

for the result to diverge significantly from the case investigated in Ref. [22].  We have 

 

 3 1

4

0

0

w

max
DE

R
M

R


 

 
 

 
. (23) 

Therefore, the matter density at maxR  can be expressed as 
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1
3

4 1

0 0

0 0
max

w
max

M M M

DE

R M

R
  




   

    
   

  (24) 

This allows us to express the upper limit of integration in the denominator of Eq. (22) as 

 
4 4 1

0

0 0max

w

w
DE

M M DE

M M
r



  

  
    

  
. (25) 

At the present, we have 0 0M DE  .  Using this in Eq. (25), we can rewrite Eq. (22) as 

 
   

2

1

4 1

0

2 1

2

2 1

2

0

1

1
w w

DE

w
r

w

r

w
r M E

w

r rdr
f

r rdr

















, (26) 

where the present–day energy scale of the dark energy is 3

0 10  eVDEE  , and 4

0 0DE DEE  .  

The denominator in Eq. (26) can be expressed as 
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



  
  

  





 
  

   
              

    
 

  

, (27) 

where we have used the fact that 0 1DEM E  to simplify the second term on the right–hand 

side. 

 We now use the constraint that observations require w  to be close to 1 .  (Note that we 

do not take 1w   , as this would imply 4

0DEM   and invalidate the entire model.  However, a 

value of w  even slightly less than 1  allows for a phantom model with 4

0DEM  .)  In the 

limit where 1w , the numerator in Eq. (26) can be approximated as 
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2

1

2 1

2
2 2

1 1

1
2ln

1 1

w

wr

r

r rr
dr

r r r




 


  
 . (28) 

Further, we can simplify Eq. (27) in the limit where w  is close to 1  (note that   1z z  as 

0z  ), to give 

 
 

 4 1

0

2 1
2

2

0
0

2
1

11

w w

DE

w

wr M E

DE

r M
dr

w Er




 

   
   

    
 , (29) 

and our final expression for the coincidence fraction becomes 

  
2

2 2

01 1

1
1 ln 1

1 DE

r r M
f w

Er r

    
     

     

. (30) 

The corresponding expression for the case of a phantom model with a future singularity is 

identical to Eq. (30) without the  
2

0DEM E


 in the denominator.  This difference is negligible as 

long as 0DEM E , as it must be in any reasonable cyclic phantom model.  This is just another 

way of saying that the time needed for the universe to expand from the energy scale M  to a 

future singularity is negligible compared to the time for the expansion up to M .  Thus, the value 

for f  in the cyclic phantom models is nearly identical to its value in models with a future 

singularity, and both are given (for w  close to 1 ) by 

   2 2

1 1

1
1 ln

1

r r
f w

r r

 
  

 
. (31) 

Equation (31) is our main result. 

 As noted in Ref. [22], the exact values of 1r  and 2r  are not well–defined, since the 

definition of a coincidence is somewhat arbitrary.  However, if we require, for example, that the 

dark energy and dark matter densities be within an order of magnitude of each other, then  
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1 1 10r   and 2 10r  , yielding  1.56 1f w   .  In this case, a coincidence fraction as large as 

0.1f   can be obtained for 1.06w  .  Thus, even for w  quite close to 1 , the oscillating 

phantom model provides a solution to the coincidence problem. 

 

1.3 Discussion 

The cyclic phantom model provides an attractive solution to the coincidence problem, 

since the universe spends an appreciable fraction, f , of each cycle in a state for which the dark 

energy and matter densities are of the same order of magnitude.  For the models considered here, 

we have shown that this fraction is essentially identical to the corresponding fraction in phantom 

models with a big rip.  However, the cyclic phantom model provides a more credible solution to 

the coincidence problem, in the sense that it does not entail a future singularity.  The cyclic 

phantom model has the further advantage of unifying inflation and dark energy.  (Indeed, that 

was the original motivation for this model.)  Although we have analyzed a generic toy model, 

these results apply, for example, to the model discussed in Ref. [28], as long as this model is 

modified to include a matter component with the appropriate density.  In Ref. [28], the upper and 

lower energy scales were taken to be 1 meVm  and 1510  GeVM , but as we have shown, the 

value for f  is actually independent of m  and M  as long as 0DEM E . 

 In the observationally allowed limit where 1 1w , the coincidence fraction f  is 

 1 w   times a constant of order unity.  Current constraints on w  allow for a nonnegligible 

value for f .  However, if future observations force 1 w  to be sufficiently close to zero, this 

scenario for resolving the coincidence problem (along with that outlined in Ref. [22]) will be 
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ruled out.  Of course, these results assume a constant value for w .  If one assumes a time–

varying w , then the value for f  can be larger than in constant w  models [31]. 
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CHAPTER 2 

INFLECTION POINT QUINTESSENCE 

 

2.1 Introduction 

While a model with a cosmological constant and cold dark matter (ΛCDM) is consistent 

with current observations, there are many realistic models of the universe that have a dynamical 

equation of state.  For example, one can consider quintessence models, with a time–dependent 

scalar field,  , having potential  V   [36–39].  (See Ref. [1] for a review.) 

 In order to produce a present–day value of w  close to 1 , we require p   , so that 

 2 V   at present.  One way to achieve this is for   to be located in a very flat portion of the 

potential, so that 

 

2

1
1

dV

V d

 
 
 

. (32) 

Several previous papers have investigated such models in which equation (32) is satisfied when 

the potential is close to linear [40, 41] or close to a local maximum [42] or minimum [43]. 

 Here we examine the next higher–order extension of this idea: quintessence with a scalar 

field evolving near an inflection point of the potential.  Scalar field models with an inflection 

point in the potential have been investigated previously in connection with inflation [44–58] and 

have been dubbed “inflection point inflation”.  The major difference between these inflation 

models and the inflection point quintessence models we examine here is that inflation takes place 

in a scalar–field–dominated universe, while for the case of dark energy, we are interested in the 

evolution of the quintessence field at low redshift, when the Friedman equation must include 
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both the scalar field and nonrelativistic matter.  Thus, results from inflection point models for 

inflation will not necessarily carry over into inflection point quintessence. 

 In investigating the evolution of inflection point quintessence, there are two important 

questions to address.  The first is whether the scalar field rolls slowly enough near the inflection 

point to generate the observed value of w  near 1 , for consistency with the observations.  The 

second issue is whether   evolves to a constant value at the inflection point, generating a model 

for which 1w  asymptotically, and yielding a model essentially indistinguishable from a 

cosmological constant, or whether   rolls through the inflection point, so that w  deviates away 

from 1  eventually.  The latter possibility would produce a transient stage of acceleration, rather 

than an asymptotic de Sitter evolution.  This is of interest because an eternally accelerating 

universe presents a problem for string theory, inasmuch as the S–matrix in this case is ill–defined 

[59, 60].  Consequently, some effort has gone into the development of models in which the 

observed acceleration is a transient phenomenon [61–70].  Our model represents another 

example of this sort of transient acceleration for the case in which   evolves through the 

inflection point. 

 In the next section, we present the general models under discussion.  Unlike the linear 

and quadratic potentials examined in Refs. [40–43], the simplest version of inflection point 

quintessence, with a cubic term in the potential, does not yield a simple analytic expression for 

the evolution, so we solve it numerically in Sec. 2.2.1 and determine the regions in parameter 

space for which the model produces transient or eternal acceleration.  We also determine the 

range of parameters for which 1w    at all times up to the present.  In Sec. 2.2.2, we examine 

other inflection point models, demonstrating that some of these do have analytic descriptions for 

their behavior.  Our conclusions are summarized in Sec. 2.3. 
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2.2 The inflection point quintessence model 

 We assume that the dark energy is given by a minimally coupled scalar field, with 

equation of motion 

 3 0
dV

H
d

 


   , (33) 

where the dot indicates the derivative with respect to time, and H  is the Hubble parameter, 

given by 

 

2

2

3

Ma
H

a

  
  
 

, (34) 

where we assume a flat universe and consider only times sufficiently late that the expansion is 

dominated by matter and dark energy.  (We take 8 1c G    throughout.)  In Eq. (34), the 

scalar field energy density is 

  21

2
V    , (35) 

and the matter energy density is 

 3

0M M a   . (36) 

The scalar field pressure is 

  21

2
p V    , (37) 

and the equation of state parameter, w , is given by Eq. (13). 

 We will consider the general case of potentials with an inflection point in the potential.  

The simplest example of such a model is a potential of the form 

    
3

0 3 0V V V     , (38) 
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which has an inflection point with 0dV d   at 0  .  This is the potential that we will 

investigate in the next section.  It is not only the simplest inflection point quintessence model, 

but as we shall see, it also produces some of the most interesting behavior. 

 The potential in Eq. (38) can be generalized in several ways.  For instance, one can add 

linear and quadratic terms to obtain 

        
2 3

0 1 0 2 0 3 0V V V V V             . (39) 

It is also possible to consider more general inflection points produced by models with other 

powers of   in the potential, i.e., potentials of the form 

    0 0

n

nV V V     . (40) 

We will examine the models given by Eqs. (39)–(40) in Sec. 2.2.2. 

Since we are interested in the behavior of the scalar field near the inflection point, we 

will take Eqs. (38)–(40) to refer only to the behavior of  V   in the region near the inflection 

point and make no assumptions about what the rest of the potential looks like.  Thus, our results 

will be more general than if we had assumed that these were the exact forms for the potential for 

all values of  .  Furthermore, the fact that these potentials are not bounded from below as 

   is not pathological, since we do not assume that Eqs. (38)–(40) apply in this limit. 

 

2.2.1 The cubic inflection point model 

Consider first the potential given by Eq. (38).  Equation (33) becomes 

  
2

3 03 3 0H V       . (41) 

The evolution of   is specified by four parameters, namely the initial values of   and  , and the 

values of 0V  and 3V .  However, some simplifications are possible. 
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 We first note that the value of 0  has no effect on any physically observable quantities, 

so we can redefine the field to take 0 0  , and equation (41) becomes 

 2

33 3 0H V     , (42) 

with H  given by 

 2 3 2 3

0 0 3

1 1

3 2
MH a V V   

    
 

. (43) 

In order for the models examined here to be consistent with current observations, they must 

closely resemble ΛCDM, which is possible only if 0V  corresponds to the observed present–day 

dark energy density.  Having fixed 0V , we can completely specify the models by the value of 

3 0V V .  We will further assume for simplicity that 0i  , i.e., the field is initially at rest.  For 

many models of interest the damping term in Eq. (33) will tend to drive   to 0  at early times, 

giving the initial condition we consider here. 

 Hence, we are left with a model that is completely specified by 3 0V V  and by the initial 

value of the scalar field, i .  We have numerically integrated Eqs. (42) and (43) to determine the 

behavior of  t  as a function of 3 0V V  and i .  We find two distinct possible behaviors for  : 

the field can either evolve past the inflection point at 0  , or else it can evolve smoothly to 

0   as t  .  These two different types of behavior are shown in Fig. 1.  The two  t  

trajectories in this figure both have 3 0 1V V  , but slightly different initial values of  , resulting 

in nearly identical evolution until the field approaches the inflection point, where the trajectories 

diverge to give very different asymptotic behaviors. 
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We find that for fixed i , a sufficiently large value of 3 0V V  causes the scalar field to 

evolve through the inflection point, while for smaller values of 3 0V V  the field evolves 

asymptotically to 0   as t  .  This is illustrated in Fig. 2.  The region above the black 

(solid) curve gives a field that evolves through the inflection point, while the region below this 

curve has 0   as t  .  Note, however, that for sufficiently small values of 3 0V V , the field 

never transitions through the inflection point for any value of i  so the black curve becomes a 

horizontal line for large i .  We can define a critical value,  3 0 c
V V , below which evolution 

through the inflection point becomes impossible.  Our numerical results indicate that 

 3 00.77 0.78
c

V V  . 

0 100 200 300 400 500 600
0.01

0.00

0.01
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0.03

t

Fig. 1.  The evolution of the scalar field   as a function of time t  for the 

potential   3

0 3V V V   , with 3 0 1V V  .  Black (solid) curve is for 1.76i  ; 

red (dashed) curve is for 1.78i  . 
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Note that a similar study was undertaken by Itzhaki and Kovetz [52], who explored the 

asymptotic evolution of the scalar field in inflection point inflation.  Their study differs from 

ours in that we include nonrelativistic matter, which alters the evolution of H  in equation (42).  

However, we find that matter is subdominant as 0   for the model parameters lying along the 

transition regime defined by the black curve in Fig. 2.  Hence, we would expect our results to 

agree with Ref. [52] with regard to the existence of a critical value of 3 0V V  below which the 

field can never cross the inflection point, and Itzhaki and Kovetz do, indeed, observe such 

0.0 0.5 1.0 1.5 2.0 2.5

0

5

10

15

20

i

V3 V0

  3

0 3V V V  Fig. 2.  For the scalar field potential , the curves divide regions 

 iwith different behaviors for  as a function of the initial value of the field, , 

3V 0Vand the ratio of to .  Above and to the right of the black (solid) curve, the 

0 field evolves through the inflection point at , while below and to the left of 

0  t this curve,  as .  The regions below the green (dashed) and red 

(dotted) curves closely mimic ΛCDM.  The region below the green curve has an 

 1 0.95w   equation of state parameter for  satisfying  at all times up to 

1 0.9w   the present, while the region below the red curve corresponds to . 
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behavior.  They find  3 0 0.7744
c

V V  , in agreement with our results for the quintessence 

model. 

 The results displayed in Figs. 1–2 show that the inflection point quintessence model can 

lead to two very different future evolutionary paths for the universe.  When   asymptotically 

goes to zero, we are left with a model essentially identical to ΛCDM, with a de Sitter evolution.  

However, the second possibility, in which   evolves through the inflection point, yields a model 

in which the accelerated expansion of the universe is a transient phenomenon.  As noted earlier, 

we make no assumptions about  V   far from the inflection point, so the future evolution of the 

universe in this case will depend on the particular form for  V   with 0  . 

Clearly the first possibility can be made consistent with the observations, since the 

current observational data is well–fit by ΛCDM.  A more interesting question is whether the 

models with transient acceleration, in which   passes through the inflection point, can be made 

consistent with the observations.  Here we demonstrate a stronger result: models with transient 

acceleration can mimic ΛCDM at all times up to the present.  In our model, 1w    initially, 

since the field begins with 0  .  As the field begins to roll down the potential, w  increases 

away from 1 .  In Fig. 2 we have mapped out the regions in parameter space for which 

1 0.95w     at all times up to the present (which we take to correspond to 0.7  ); this is 

the region below the green (dashed) curve.  The region below the red (dotted) curve defines the 

set of parameters for which 1 0.9w     at all times up to the present.  Thus, the region 

between the black curve and the green curve is essentially indistinguishable from ΛCDM on the 

basis of current observations, and yet it results in an evolution in which the current accelerated 

phase of the expansion will eventually come to an end. 
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2.2.2 Other inflection point models 

 Although the simplest inflection point potential is the cubic potential considered in the 

previous section, more general models of the form 

 
 

   

0

0

,  odd

sgn ,  even

n

n

n

n

V V V n

V V V n

 

  

 

 
  (44) 

are also possible.  Models of this sort were discussed briefly in Ref. [52] in the context of 

inflation. 

 Consider first the case 2n  .  The evolution of a quintessence field in a potential of the 

form 

   2

0 2V V V   , (45) 

was analyzed in Ref. [43], based on the results of Ref. [42], for a universe containing both matter 

and a scalar field, in the limit where 

 
1

1
dV

V d
. (46) 

In this limit, two behaviors are possible, based on the value of   2 21 V d V d  at the minimum 

of the potential.  When   2 21 3 4V d V d   at the minimum of the potential, the scalar field 

asymptotically approaches 0 , while for   2 21 3 4V d V d  , the field oscillates around the 

minimum [43]. 

 The 2n   case of Eq. (44) is identical to Eq. (45) for 0  , so the results of Ref. [43] 

carry over directly to the inflection point case: for   2 21 3 4V d V d   the scalar field will 
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never cross the inflection point, while for   2 21 3 4V d V d   the field will evolve across the 

inflection point and the accelerated expansion will be transient. 

 In terms of the parameters 0V  and 2V  in Eq. (44), the condition for evolution through the 

inflection point becomes 

 2

0

3

8

V

V
 . (47) 

Conversely, when Eq. (47) is not satisfied, the scalar field evolves to 0   asymptotically.  The 

“slow–roll” condition for the results of Ref. [43] to be valid (Eq. (46)) will be satisfied for 

 2

0

2
1

V

V


. (48) 

Note, however, that as 0  , Eq. (48) is always eventually satisfied, so Eq. (47) provides the 

correct condition for evolution through the inflection point for arbitrary initial values of  ; we 

have verified this result numerically. 

 Thus, the evolution of   for the 2n   case of Eq. (44) qualitatively resembles the results 

shown in Fig. 2 for the cubic inflection point potential when the latter has large i , albeit with a 

different critical value for 0nV V .  Thus, while the 2n   case is somewhat unnatural, it does 

provide insight into the qualitative behavior of the more interesting 3n   case. 

However, the behavior of these two models is quite different for small i .  In this case, 

transition through the inflection point for 3n   requires increasingly large values of 3 0V V  as 

0i  , while for 2n   the critical value for 2 0V V  remains constant for all i . 

 Now consider larger values of n .  The evolution of scalar field potentials of the form 

   n

nV V   (49) 
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for the case of a matter–dominated expansion was previously examined in Ref. [38]: for 6n  , 

the field evolves smoothly to 0   as t  .  (See also the discussion in Ref. [71].)  In the 

case considered here, we have an additional contribution to H  in Eq. (33): the contribution of 

the scalar field energy density, which now also includes the additional constant term, 0V , in the 

scalar field potential.  However, this additional contribution to the friction term in Eq. (33) can 

only serve to decrease   as the scalar field rolls toward the inflection point, making it more 

difficult for the field to reach 0  .  Thus, we can conclude from the results of Ref. [38] that 

inflection point potentials of the form given in Eq. (44) with 6n   never transition through the 

inflection point. 

 The cases 4,  5,  6n   are neither as interesting as 3n   nor as amenable to analytic 

solution as 2n   or 6n  , so we will not discuss them in detail here.  However, numerical 

integration indicates that, like the 3n   case, they can yield either evolution of the scalar field 

through the inflection point, or attraction to the inflection point, depending on the model 

parameters. 

 The simple cubic inflection point model given by Eq. (38) can also be generalized by 

adding linear and quadratic terms as in Eq. (39).  Note that the quadratic term can be eliminated 

by a suitable translation of  , and we can set the corresponding (new) value of 0  to zero as in 

the previous section, to yield 

   3

0 1 3V V V V     . (50) 

 

The evolution of   will then depend on the sign of 1V .  For 1 0V  , the potential has no local 

minima, and the field will always transition through the inflection point at 0  .  However, for 
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sufficiently small 1V , one can still have a model arbitrarily close to ΛCDM.  Thus, in this variant 

of inflection point quintessence, the accelerated expansion of the universe is always a transient 

phenomenon. 

 On the other hand, if 1 0V  , the potential develops a local minimum at 1 33V V    

and a local maximum at 1 33V V    .  Depending on the parameter values and initial 

conditions for  , it is possible for the field to transition through the local maximum, so that the 

accelerated expansion of the universe is transient, or to get trapped in the local minimum, 

producing eternal acceleration.  This behavior resembles the evolution of the scalar field in the 

Albrecht–Skordis model [72], in which the potential is given by the product of an exponential 

and a polynomial, producing local minima in  V  .  In the Albrecht–Skordis model, the 

accelerated expansion of the universe can be either permanent or transient, depending on the 

model parameters [61]. 

 

2.3 Conclusions 

 Inflection point quintessence represents an interesting new model for the dark energy that 

drives the accelerated expansion of the universe.  Even the simplest form of this model, with the 

potential given by Eq. (38) and the scalar field initially at rest, displays a variety of intriguing 

behaviors.  For large initial values of  , the asymptotic behavior of   becomes independent of 

i  and depends only on 3 0V V , while for small i , the behavior depends on both 3 0V V  and i .  

In either case, it is possible to have asymptotic evolution for which 0  , and the universe 

undergoes eternal de Sitter expansion, or, conversely, for   to transition through the inflection 

point, leading to transient acceleration. 
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 It is interesting to note that this potential can yield an attractor at 0   despite the fact 

that  V   has an inflection point, rather than a local minimum, at 0  .  On the other hand, it is 

possible to construct models very close to ΛCDM today which nonetheless evolve away from 

accelerated expansion in the future. 

 Inflection point quintessence shows, within the context of a very simple model, that 

current data may never be sufficient to determine whether the universe will accelerate forever or 

simply pass through a transient period of acceleration.  While we have not explored in similar 

detail the more general inflection point models given by Eq. (50), these models, too, can give rise 

to either eternal de Sitter expansion or transient acceleration, but in this case the asymptotic 

behavior depends strongly on the sign of the linear term. 
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CHAPTER 3 

A MODIFIED EXPONENTIAL POTENTIAL FOR QUINTESSENCE 

 

3.1 Introduction 

One of the earliest quintessence models to be investigated is the exponential potential, 

   0V V e   . (51) 

(We work in units for which 8 1c G    throughout.)  This potential arises naturally in the 

context of Kaluza–Klein theories, as well as in a variety of supergravity models (see, e.g., Ref. 

[73] for a discussion).  It was first explored in connection with inflation, where it produces a 

power–law expansion [74–76]. 

 Later this potential was examined as a possible model for quintessence [36, 73, 77, 78].  

The exponential potential has the interesting property of generating tracking solutions, i.e., for an 

appropriate choice of  , the quintessence field evolves like radiation during the radiation–

dominated era, and like matter in the matter–dominated era.  This held the promise of resolving 

the coincidence problem, since the quintessence field can evolve as a relatively large and 

constant fraction of the matter density up to the present.  However, it was soon realized that such 

models cannot generate the observed accelerated expansion of the universe at late times, and 

they were largely abandoned. 

 Later, Barreiro et al. [79], attempted to resurrect the exponential quintessence model by 

introducing a scalar field with a potential given by a sum of exponentials.  Here we investigate a 

simpler mechanism to allow the exponential potential to serve as a quintessence field: an 

exponential potential with a nonzero offset in the potential, so that: 

    0 1V V e    . (52) 
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In the next section, we explore the evolution of this scalar field, and show that it gives behavior 

consistent with an accelerating universe.  In Sec. 3.3, we examine observational constraints on 

this model.  Our conclusions are discussed in Sec. 3.4. 

 

3.2 Evolution of the scalar field 

The equation of motion for a scalar field   in the expanding universe is 

 3 0
dV

H
d

 


   , (53) 

where the dot indicates the derivative with respect to time, and H  is the Hubble parameter, 

given by 

 

2

2

3

a
H

a

 
  
 

, (54) 

where   is the total density, and we assume throughout a spatially flat universe.  The scalar field 

energy density and pressure are given, respectively, by 

  21

2
V     (55) 

and 

  21

2
p V    , (56) 

and the equation of state parameter, w , is given by Eq. (13). 

 In the standard cosmological model (without quintessence), the density in Eq. (54) is 

dominated at early times by radiation, with a density scaling as 

 4

0R R a   , (57) 

while at late times it is dominated by matter, with a density given by 
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 3

0M M a   . (58) 

In general, if the universe is dominated by a component with equation of state parameter, 

w , then the density will scale as 

    3 1

0

w
a a 

 
 .  (59) 

We can therefore define a “background” equation of state parameter, bw , which is given by 

1 3bw   during the radiation–dominated era, and 0bw   during the matter–dominated era. 

 Now consider the evolution of   for the exponential potential given by Eq. (51).  For this 

case, Eq. (53) has no analytic solution.  However, it is possible to show that there is an 

“attractor” toward which the solution evolves.  For 

  2 3 1 bw   , (60) 

this attractor is characterized by an equation of state 

 bw w  , (61) 

and a density, relative to the total density, of 

 
 

2

3 1 b

b

w







  


  


, (62) 

where b  represents the background energy density.  (See Refs. [73] and [78] for the derivation 

of these results).  Thus, during the radiation–dominated era, the scalar field evolves like 

radiation, with 1 3bw   and 
24   , whereas during the matter–dominated era it evolves like 

matter, with 0bw   and 
23   .  When Eq. (60) is not satisfied, the attractor is instead 

inflationary: the scalar field comes to dominate and 1w  . 
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 Clearly, this model cannot account for the dark energy, since observations indicate that 

1w    at the present [9–11, 32–35].  Therefore, we modify the potential as in Eq. (52).  In this 

model, 0V  must be fixed to give the correct present–day dark energy density, leaving only a 

single free parameter,  . 

 Using the results of Refs. [73–78], it is possible to derive an approximate analytic 

prediction of the evolution of   in this case.  At early times, the exponential term in the potential 

dominates, so we have tracking behavior, with the field evolving like radiation during the 

radiation–dominated era, and like matter during the matter–dominated era.  At late times, the 0V  

term begins to become important.  To estimate the evolution in this case, we can represent the 

scalar field as the sum of a constant–density part (with potential 0V ) and a new field,  , which 

evolves in the pure exponential potential given by Eq. (51).  In essence, our model is identical to 

a quintessence field with a purely exponential potential evolving in a ΛCDM background. 

 Thus, at late times,   tracks bw  as bw  evolves from 0  to 1 .  However, note that at the 

same time Eq. (62) implies that 0


   as 1bw  .  The result is that   scales first like 

matter, and then like a cosmological constant, but the evolution is not identical to simply adding 

an additional dark matter component at early times and a cosmological constant at late times.  In 

our model, the dark energy density decays slowly toward a constant at late times. 

 To see the exact evolution, we have numerically integrated Eq. (53) with the potential 

given by Eq. (52) for the sample cases 10  , 13 and 15 .  Since we are interested in the late–

time evolution relevant for quintessence, we do not include the radiation component.  We allow 

the evolution to attain the tracker solution evolution at early times, and then integrate forward to 

the present day, which we define to be the scale factor at which 0.7  . 
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 Fig. 3 shows the evolution of w  as a function of the scale factor a , where 1a   at the 

present.  Note that our solution is incorrect during the radiation–dominated era ( a≾ 310 ), but we 

extend the curves all the way back to 0a   for simplicity.  As expected, the equation of state 

parameter evolves smoothly from 0w   to 1w    at the present, but the details of the 

evolution depend on the actual value of  . 
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Fig. 3.  The evolution of the scalar field equation of state w  as a function of 

the scale factor a , where 1a   at the present.  Blue (dotted) curve is for 

10  ; green (solid) curve is for 13  ; red (dashed) curve is for 15  . 
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In Fig. 4, we show the density parameter for the quintessence field,  , as a function of 

a .  At small a , the curve is nearly horizontal, as   is nearly constant and equal to its tracker 

value, while at late times the curve evolves toward its present–day value of 0.7  . 

 

 

 

 

 

3.3 Observational constraints 

Observational data place strong constraints on models with significant early dark energy, 

like the one presented here.  Prior to precision Cosmic Microwave Background (CMB) 

experiments, the best limits came from upper bounds on the energy density during big–bang 
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Fig. 4.  The evolution of the scalar field energy density parameter,  , as a 

function of the scale factor a , where 1a   at the present.  Blue (dotted) 

curve is for 10  ; green (solid) curve is for 13  ; red (dashed) curve is 

for 15  . 
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nucleosynthesis (BBN).  However, these limits have been superseded by constraints from the 

CMB, so the CMB constraints are the limits we will use here. 

 We first note that while the density of the quintessence field evolves as radiation during 

the radiation–dominated era, and as matter during the matter–dominated era, its clustering 

behavior is not identical to either radiation or matter during these epochs.  The reason is that 

scalar fields are characterized by a sound speed of 2 1sc  .  In contrast, cold dark matter has 

2 0sc   and radiation has 2 1 3sc  .  This difference is most noticeable during the matter–

dominated era.  Because of its large sound speed, the scalar field does not cluster, so even a 

small admixture of the scalar field can produce a distinct imprint on the CMB.  

 CMB limits on additional energy density have been discussed, e.g., by Calabrese et al. 

[80], Samsing et al. [81], and Hojjati et al. [82].  The most useful limits for our purposes come 

from Hojjati et al., who provide upper bounds on additional energy density as a function of both 

redshift and sound speed, using data from Planck and the Nine–Year Wilkinson Microwave 

Anisotropy Probe (WMAP9) observations.  They parametrize the change in the expansion rate 

from an additional component in terms of a parameter  , defined by 

  
 

 
2

1
3

standard a
H a a


    , (63) 

where standard  is the energy density in the standard ΛCDM model. 

 In either the matter–dominated  or radiation–dominated eras, the relation between   in 

our model and   in Ref. [82] is given by 

 
1






 


, (64) 

so that 
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1

1k


 
  

 
, (65) 

where  3 1 bk w  .  Therefore,  3k   during the matter–dominated era, and 4 during the 

radiation–dominated era. 

 For 2 1sc  , the constraints on   as a function of redshift from Ref. [82] are 

 4.50.036   10a   , (66) 

 3.80.050   10a   , (67) 

 3.40.160   10a   , (68) 

 3.00.095   10a   , (69) 

 1.40.018   10a   . (70) 

The tightest constraints on   occur at the lowest redshift z  ( 1 1z a  ) examined in Ref. [82], 

namely at 1.410a  , for which 0.018  .  This contrasts sharply from the 2 0sc   case, for 

which there is essentially no constraint during the matter–dominated era (since the additional 

component in this case simply gets absorbed into the definition from the cold dark matter 

density), and the tightest constraints come from the radiation–dominated era.  Taking 0.018   

in Eq. (65) gives 13  .  Thus, the regions in parameter space above the solid curves in Figs. 3 

and 4 are ruled out.  In terms of  , this bound translates into: 

 0.018  , matter–dominated era (71) 

 0.024  , radiation–dominated era (72) 

 While the quintessence field does not behave exactly like extra radiation during the 

radiation–dominated era (because it has 2 1sc   rather than 1 3 ) it is nonetheless instructive to 

see what energy density our limit corresponds to in the radiation era in terms of the effective 
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number of additional neutrinos.  In the radiation–dominated era, the number of additional 

neutrinos is related to   as [80] 

 7.44
1

effN





 


. (73) 

Then our limit in Eq. (72) corresponds to 0.18effN  . 

 

3.4 Discussion 

 It is clear from Fig. 3 that our modified exponential potential can provide a plausible 

model for the accelerated expansion of the universe, with an evolution for w  that differs from 

that of ΛCDM.  However, that evolution diverges only slightly from standard ΛCDM’s.  For the 

observational bound 13  , the value of the equation of state parameter at a redshift of 

1 ( 0.5)z a   is w≾ 0.95 , which then declines toward 1w    at present.  In the terminology 

of Caldwell and Linder [83], these are “freezing” models. 

 While it will be very difficult to distinguish these models from ΛCDM using, e.g., 

supernova determinations of the cosmic equation of state, these models, rather unusually for 

quintessence, will actually be more strongly constrained (or confirmed) with improved CMB 

data.  As noted in the previous section, a large region of parameter space is already ruled out by 

the Planck and WMAP9 data, so additional CMB data will either drive the allowed valued of   

to such a large number that the model becomes essentially indistinguishable from ΛCDM, or else 

show anomalies due to additional energy density at early times. 

 Now consider the issue of the coincidence problem, which was one of the original 

motivations for introducing quintessence with an exponential potential.  Does our modified 

model provide an amelioration for the cosmic coincidence?  The coincidence problem can be 
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stated in two different ways.  One is the fact that the dark energy density is of the same order of 

magnititude as the matter density today: M DE  .  This is odd because the matter density scales 

as 3a , while a dark energy component derived from, e.g., a cosmological constant, has a 

constant energy density.  Thus, we expect M DE   at early times, and M DE   in the far 

future, therefore it is peculiar to find that M DE   today.  This leads to a second statement of 

the coincidence problem: the “why now?” issue.  Why do we happen to live at a special epoch 

when the dark energy density is beginning to dominate the expansion? 

 Our model does, to some extent, ameliorate the coincidence problem when it is expressed 

in terms of energy densities.  At early times, the quintessence density tracks the radiation and 

matter densities, so there is a long period of time in the universe for which these quantities are 

not separated by many orders of magnitude.  (Although the bounds quoted in the previous 

section imply DE ≾ ,0.02 M R .)  On the other hand, the model does nothing to answer the 

question of “why now”?  The model parameters must still be tuned so that the 0V  term in Eq. 

(52) begins to dominate the 0V e 
 term at around the present day.  Perhaps the most interesting 

result is that this model shows that these two ways of expressing the coincidence problem may 

not be, as is usually assumed, entirely equivalent.  It is possible to construct a model (i.e., this 

one) for which the densities of the dark energy and matter are not widely separated over much of 

the early universe, but which still retains the need for us to live in a “special” epoch, when the 

acceleration is just beginning. 
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