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CHAPTER I

Thesis Introduction

The state of Meghalaya in NE India is a vibrant landscape where the people are inti-

mately tied to the regional geology and seasonal climate. The east-west oriented Shillong

Massif dominates the topography of Meghalaya with steep cliffs and gorges to the south

and rolling hills to the north. During the summer months, the Indian Summer Monsoon

(ISM) brings immense rainfall, making Meghalaya the rainiest place on earth. In contrast,

the winter months in Meghalaya are dry and often accompanied by water shortages (Bre-

itenbach et al., 2010). The people of Meghalaya rely heavily upon the rainfall associated

with the ISM, and any reduction in summer precipitation can drastically affect crop yields

(Douglas et al., 2009). The ISM has been identified as a large-scale global climate “tip-

ping element” with the possibility of rapid destabilization and reduction in rainfall in the

event of increased planetary albedo due to aerosol forcing and/or land-use change (Lenton

et al., 2008). Predicted changes in ocean-atmosphere climate systems due to anthropogenic

warming, such as increased El Niño amplitude (Guilyardi, 2006), also have the ability to

restrict ISM strength (Kumar et al., 2006). As the global climate continues to warm and

the Indian population continues to grow, there is a strong need to understand how the ISM

will behave in a warming future climate.

The intensity of the ISM in Meghalaya is a direct consequence of the steep orography

and regional elevation, which in turn resultd from active tectonic uplift and deformation.

Such tectonic activity results from Meghalaya’s position at the junction of the Himalayan

frontal arc to the north and the Burma arc to the east. The east-west trending Dauki Fault
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separates Meghalaya from Bangladesh to the south. Tectonic convergence along the Dauki

Fault is responsible for the uplift of the Shillong Massif (Chen and Molnar, 1990; Khattri,

1992) and has resulted in major seismic events such as the 1897 Great Assam Earthquake

with an estimated 8.2 magnitude (Morino et al., 2011). The last major earthquake to affect

Meghalaya was the 8.7 magnitude Assam-Tibet earthquake of 1950. Meghalaya’s position

in this tectonically active region along with the third fastest growing population in India

(MeghalayaPopulation, 2013) renders its human population at risk of future mega earth-

quake events (Saikia, 1981). The current seismic history of NE India is only constrained to

the last 1,500 years and as the regional population continues to grow, a better understanding

of future seismic hazard is necessary (Sukhija et al., 1999; Bilham, 2013).

Along with producing large seismic events, uplift of the Shillong Massif in Meghalaya

has exposed massive limestone deposits along the steep, south-dipping limb of the massif.

These extensive limestone deposits have allowed for intense karstification of the southern

margin of the massif, producing over 1,300 registered caves (Arbenz, 2012). Along with

their intrinsic beauty, caves provide researchers with a unique way to study the physical

processes that have acted upon the region. Secondary cave minerals, otherwise referred to

as speleothems, present researchers with an important archive for studying various physical

processes such as climate induced precipitation variations (Wang et al., 2008), fluctuations

in vegetation history (Dorale et al., 1998), cave inhabitance by ancient hominids (Bischoff

et al., 2007), and records of paleoseismic activity (Becker et al., 2006).

I.1 Overview of Thesis Research

Uranium-thorium (U-Th) dating methods can provide precise radiometric dates on

speleothem carbonate material (Richards and Dorale, 2003). The use of speleothems as
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paleoseismic archives have been applied in numerous regions (Kagan et al., 2005; Forti,

2001; Gilli, 2005; Becker et al., 2006; Panno et al., 2009), but this method has yet to be

applied in NE India. Given the proximity of caves on the Shillong Massif to faults that are

associated with large historic earthquakes, dating broken speleothems in NE India could

expose a currently unexploited archive for paleoseismic events in this region (Kagan et al.,

2005). Current research focuses on validating this method by dating speleothems broken

during observed mega earthquake events to allow for a stronger understanding of how bro-

ken speleothem may used as paleoseismic archives of events prior to the observed historic

record. A stronger understanding of the seismic history of NE India would aid in the eval-

uation of a possible reoccurrence interval for mega earthquakes in this region.

Part I of this thesis describes the outcome of evaluating the use of speleothems in NE

India as recorders of past seismic events along the faults bounding the Shillong Massif. As

part of the current study, fractured stalagmites and collapsed soda straws were collected

and dated using U-Th methods to reveal the ages of breakage events. Results from this

study reveal that speleothems in caves along the southern margin of the Shillong Massif

likely fracture during seismic events and have the potential to extend the seismic record

in this region beyond limited historical accounts. Continued research using speleothems

as paleoseismic archives in NE India will illuminate seismic risks and should hopefully

provide motivation for enforcing stricter building code regulations and safety protocols in

this populous region.

Oxygen isotope ratios (δ 18O) in speleothem carbonate are commonly analyzed as a

proxy for the isotopic composition of rainfall over a given region and can reveal changes

in precipitation moisture source, transport pathway, temperature, and precipitation amount

(Lachniet, 2009). Understanding the connection between speleothem proxy records and re-

gional meteorology is crucial when interpreting speleothem δ 18O as a paleoclimate record.
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Although δ 18O records from NE Indian speleothems have been interpreted as recording

variations in ISM strength over centennial and millennial timescales (Sinha et al., 2011),

seasonal variations in rainfall δ 18O measured over two years in Meghalaya were found

to be most strongly influenced by variation in precipitation source and transport pathway

rather than rainfall amount (Breitenbach et al., 2010). Proxy records from Meghalaya

speleothems that grew recently and can be compared to the meteorologic record could

provide calibration datasets that help to clarify the relationship between oxygen isotopes in

regional precipitation, ISM strength, and global climate change.

Part II of this thesis presents a high resolution oxygen isotope time series from a

speleothem from Mawmluh Cave that is aimed at calibrating the relationship between

speleothem δ 18O and regional climate over the past several decades. This record of sea-

sonal δ 18O variations in an annually laminated aragonite stalagmite covers 1957 to 2011

and can be compared with the instrumental record of meteorological variability in the re-

gion. This record reveals the same seasonal signal observed in NE India rainwater δ 18O

and Mawmluh Cave drip water δ 18O (Breitenbach et al., 2010, 2014). This seasonally

resolved record facilitates comparison between speleothem δ 18O and global indices of cli-

mate variability such as the Niño3 SST index as a proxy for El Niño Southern Oscillation

(ENSO) variability. As such, this research may provide a useful calibration tool to aid in

the interpretation of long-term speleothem records from this region and their relationship

to ISM strength and variability previous to the observed meteorological record. A stronger

understanding of ISM variability during the past will assist in the prediction of ISM vari-

ability for future monsoon seasons.
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CHAPTER II

Paleoseismology of the Shillong Massif, India: Constraints from U-Th dating of

tectonically broken cave deposits

II.1 Introduction

The state of Meghalaya in northeast India has the third fastest growing population in the

country. Over the last decade the population has increased by almost 30% (MeghalayaPop-

ulation, 2013). To the south, Bangladesh, a country no bigger that the state of Iowa, has

a population of over 160 million people making it the most densely populated country in

the world (BanglaPIRE, 2013). The Shillong Massif, within the state of Meghalaya just

north of the Bangladesh-India border, is positioned at the convergence zone of three tec-

tonic plates and juncture of the Himalaya and Burma Arcs (Figure II.1). The Shillong

Massif is separated from northeast Bangladesh by the east-west trending Dauki fault (Fig-

ure II.1). This north dipping thrust fault along the southern margin of the Shillong Massif

is believed to have been active throughout the Quaternary based on uplifted late Tertiary

and Quaternary sediments found along the southern boundary of the Massif (Morino et al.,

2011). Furthermore, tectonic activity along the Dauki fault system is believed to be linked

with several historically documented seismic events including the estimated magnitude 8.2

Great Assam earthquake of 1897 (Morino et al., 2011).

Due to rapid population growth in this region, the prevalence of poverty, and lack of

building code and regulations, the people and infrastructure of Bangladesh and northeast

India are not well prepared for mega-earthquake events (Bilham, 2013). The historic record
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Figure II.1: Regional Map of NE India. Mawmluh Cave and Krem Umsyngrang are both located on the
southern margin of the Shillong Massif as symbolized by black dots. The Dauki Fault (thick black line) is
located along the southern limb of the Shillong Massif. Map insert shows the location of the Shillong Massif
(red dot) directly above the NE border of Bangladesh and the epicenter of the estimated 8.7 magnitude
Assam-Tibet earthquake of 1950 (yellow dot)

of seismic events in northern Bangladesh and northeast India extends back to approximately

1500 AD (Sukhija et al., 1999), with major earthquakes in 1548 AD, 1664 AD, and the

Great Assam earthquake of 1897 considered to be associated with seismic activity along

the Dauki fault system (Morino et al., 2011). Primary surface ruptures have been observed

along the Himalayan front, yet the lack of observable ruptures around the Shillong Massif

limits adequate reconstruction of past seismic events in this area (Reddy et al., 2009). Previ-

ous paleoseismic studies of the Meghalaya region have relied upon secondary sedimentary

features such as liquefaction, deformation, and slump zones observed in surface ruptures as

the primary proxies for previous earthquake events (Reddy et al., 2009). Radiocarbon dat-

ing of uprooted plant material found in liquefaction induced sedimentary features has been

used to constrain the ages of paleoseismic events along the Shillong Massif (Sukhija et al.,

1999). Paleoseismic ages from these studies suggest a recurrence interval of 400-600 years

for mega-earthquakes on the massif (Sukhija et al., 1999). However, the lack of observable
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surface ruptures, the inability to date events beyond ∼50,000 years bp, and large errors (±

150 years) associated with radiocarbon dating limit the accuracy and temporal span of this

approach (Sukhija et al., 1999).

The dating of broken speleothems, or secondary cave deposits, provides an alternative

approach to paleoseismology in regions such as Meghalaya where surface ruptures suit-

able for dating are limited and caves are present. Speleothems are comprised of carbonate

material such as calcite, aragonite, or gypsum that form within a cave system upon chem-

ical precipitation of infiltrating drip water. Speleothem carbonate material can be reliably

dated using high-precision uranium-series techniques (Richards and Dorale, 2003). Ura-

nium, which tends to be soluble in oxic environments, is co-precipitated with speleothem

carbonate material and the in-growth of Th can be measured to date speleothem carbonate

material that precipitated over the last 500,000 years (Richards and Dorale, 2003). Bro-

ken speleothems have been used successfully as archives of seismic event ages in several

regions, including the Dead Sea (Kagan et al., 2005), Italy (Forti, 2001), Slovenia (Gilli,

2005), France (Gilli, 2005), Germany (Becker et al., 2006), and the New Madrid Fault

Zone in the Midwestern United States (Panno et al., 2009). Given the close proximity of

Shillong Massif caves to active faults, seismic waves associated with mega-earthquakes

such as the Great Assam of 1897 likely had the ability to fracture speleothems and produce

paleoseismic archives that can be dated precisely. This hypothesis is tested here by con-

straining speleothem breakage event ages using uranium-thorium (U-Th) dating methods

on speleothems collected from caves along the southern margin of the Shillong Massif.
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II.2 Speleothem Paleoseismology

Speleothems undergo various types of damage during large earthquake events such as

fracturing and collapse of stalagmites and fracturing of stalactites and soda straws (Kagan

et al., 2005; Becker et al., 2006). Broken speleothems are not only paleoseismic indicators

of proximal tectonic movements, but may also record more distal tectonic events (Gilli,

1999). Figure II.2 depicts models of speleothem damage due to seismic events and possible

examples of such features from caves in NE India. Figure II.2a depicts a sub-horizontally

sheared stalagmite with secondary growth forming on the newly exposed surface. Previous

research using broken speleothems as paleoseismic archives has indicated that breakages

similar to that shown in Figure II.2a are indicative of being fractured through large earth-

quake events (Forti, 2001). Figure II.2b shows a stalagmite breakdown structure similar to

Figure II.2a taken from Krem Umsynrang, a cave on the southern margin of the Shillong

Massif. The bottom of the secondary growth in Figure II.2b can be dated, as well as the

top of the fractured old growth portion to constrain the age of the causal event. Thin soda

straw stalactites as seen in Figure II.2c are often broken in earthquake events (Panno et al.,

2009). The growing end of broken soda straws can be dated to obtain the most recent age of

soda straw growth before breakage. Figure II.2d is another photo from Krem Umsynrang

where multiple generations of broken soda straws are found around the base of a collapsed

stalagmite with multiple locations of new growth on the collapsed feature.

It should be noted that breakdown of speleothems is not exclusively caused by seismic

events. Other natural processes such as flooding, ice intrusion, and failure of unconsoli-

dated sediments in the cave may also break speleothems (Becker et al., 2006). Furthermore,

human use of caves both historically and for tourism may induce speleothem breakages that

should not be misinterpreted as being produced by seismic events.
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Figure II.2: Examples of broken stalagmite structures used in paleoseismology. (A) and (C) after Kagan,
2005 and Becker, 2006 respectively. (B) and (C) photo credit: Sebastian Breitenbach.

II.3 Study Location

Two caves in NE India, Mawmluh Cave and Krem Umsyngrang, were investigated for

speleothem paleoseismic research. Both caves are positioned on the southern margin of the

Shillong Massif, directly north of the east-west trending Dauki fault (Figure II.1). Although

the central and northern parts of the massif are devoid of karst, the Shella Limestone and

Therria Sandstone formations dominate the southern margin of the Shillong Massif and

have been heavily karstified through Indian summer monsoon (ISM) rainfall (Gogoi et al.,

2009). Over 1,300 caves have been registered along the southern fringe of the Shillong

Massif, making it the highest density region of caves in India (Arbenz, 2012).

Mawmluh Cave and Krem Umsynrang are both contained within the Shella Formation

of the mid-upper Paleocene (Arbenz, 2012). Within the Shella formation, Mawmluh cave
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Figure II.3: Regional geological map of Meghalaya showing main structures, location of the Dauki Fault
Zone, and the Shella Limestone Occurrence. Based in part on Geological Survey of India (1981, 2009)
(Arbenz, 2012).

formed along the contact between the Lakadong Limestone and Therria sandstone units

(Arbenz, 2012). Mawmluh Cave is a 7 km long sub-horizontal system that follows the path

of the Mawmluh River that flows into the caves main entrance 1,160 m above sea level.

Mawmluh Cave is overlain by 30-100 m of host rock consisting of limestone, sandstone,

and a thin coal layer (Breitenbach et al., 2014). Krem Umsynrang is located in the Jaintia

Hills region of NE India, approximately 25 km southeast of Jowai, Meghalaya. Krem Un-

synrang is a sub-horizontal limestone cave approximately 5.6 km in length and is situated

within the Lakadong Limestone unit of the Shella Formation.
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II.4 Methods

II.4.1 Sample Collection

Broken speleothems and new carbonate growth were collected from Mawmluh Cave

and Krem Umsyngrang in February of 2013 and March of 2014. Care was taken while cav-

ing to avoid collecting speleothems from areas where human traffic, loose cave sediments,

or active cave streams clearly might have caused speleothem breakage. The entire broken

speleothem was taken if possible, but in some situations a hammer and chisel were used

to separate the new growth from the fractured surface. When a hammer and chisel were

needed, the interface between the fractured surface and the base of the new growth was

preserved to capture the inception of new growth after the breakage event. In an attempt

to identify structures that may have broken during the well-documented 1950 and 1897

earthquakes, broken speleothems associated with small, actively growing post-breakage

formations (2cm - 10cm) were preferentially sampled. Overall, six breakdown structures

and 18 fractured soda straws were sampled between the two caves over both field seasons.

II.4.2 Sample Preparation

Sub-samples for U-Th dating were collected from the top of the old growth and the

bottom of the new growth portions of each breakdown structure in an attempt to constrain

the age of the causal breakage event. All stalagmites were slabbed longitudinally along the

growth axis to identify the oldest and youngest layers. ImageJ photo processing software

was used for greyscale layer-counting of the scanned stalagmite images. The layer-counts

were used to confirm the visual interpretation of the youngest and oldest layers and ref-

erence which layers dating samples were taken from. Soda straws were also imaged to
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determine if one of the ends appeared to have been actively growing at the time of break-

age.

Some stalagmites contained calcite-aragonite transitions at the interface between new

and old growth, which is recognized by a change in crystal structure from columnar pal-

isade calcite to acicular aragonite crystals. Aragonite is prone to post-deposition alteration

to calcite in speleothems that are exposed to under-saturated infiltrating water. During arag-

onite to calcite alteration, uranium ions can be mobilized and removed from the carbonate,

making the speleothem unsuitable for U-Th dating (Frisia et al., 2002). Calcite-aragonite

transitions in our samples were examined under plane and cross-polarized light in thin sec-

tion to confirm all dating horizons were composed of primary carbonate material prior to

powder collection for U-Th dating analysis. To determine the amount of dating material

necessary for U-Th analysis, samples for initial U concentrations were collected from the

speleothems surface with a hand drill.

Powders for U-Th dating were collected from the slabbed stalagmites using a CM-

2 micromilling system at Vanderbilt University. The micromill allows for precise sam-

ple collection along a single growth lamination. Powders were collected from 1 cm long

trenches to a depth of 1000 µm. Powders were sampled from speleothem tops using a hand

drill. A one-centimeter square was scoured to a depth of approximately 100 µm from the

speleothem surface to remove any detrital contaminants before the powder was collected

to a depth of approximately 500 µm. Powder samples for dating were also collected from

the fallen soda straws using the hand drill. The growth ends of the soda straws were first

gently abraded with the hand drill to remove detrital material prior to powder collection.
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II.4.3 U-Th Dating

Initial paleoseismic dating efforts have focused on samples from Mawmluh Cave due to

their high initial U concentration (37.6-72.2 ppm) and low detrital 232Th values (0.00157-

0.0251 ppm), making them highly favorable for precise dating of young samples (Table

II.1). U-Th sample preparation and analysis were performed at the Berkeley Geochronol-

ogy Center using a Thermo Neptune Plus Multi-Collector-Inductively-Coupled-Mass-

Spectrometer (MC-ICP-MS). Sample powders were dissolved in 7N HNO3 and equili-

brated with a mixed spike containing 229Th, 233U, and 236U. The spike was calibrated

using solutions of NBL CRM 145 and solutions prepared from a 69 Ma U ore from

Schwartzwalder Mine, Colorado, USA (hereafter, SM) that has been demonstrated to yield

concordant U-Pb ages (Ludwig et al., 1985) and sample-to-sample agreement of 234U/238U

and 230Th/238U ratios. U and Th were separated using two stages of HNO3-HCl cation

exchange chemistry followed by reaction with HNO3 and HClO4 to remove any residual

organic material. U and Th fractions were analyzed separately to reduce tailing effects on

230Th. Measured peak heights were corrected for peak tailing, multiplier dark noise/Fara-

day baselines, instrumental backgrounds, ion counter yields, mass fractionation, interfer-

ing spike isotopes, and procedural blanks. Mass fractionation was determined using the

gravimetrically determined 233U/236U ratio of the spike. The external reproducibility of

234U/238U and 230Th/238U ratios of SM solutions measured during each run was better than

0.2%. Activity ratios and ages were calculated using the half-lives of (Jaffey et al., 1971)

for 238U, (Holden, 1989) for 232Th, and (Cheng et al., 2013) for 230Th and 234U. Correction

for U and Th from detritus was made assuming detritus with activity ratios of (232Th/238U)

= 1.2 ± 0.6, (230Th/238U) = 1.0 ± 0.1, and (234U/238U) = 1.0 ± 0.1, which correspond to

average silicate crust in secular equilibrium. Ages and uncertainties were calculated with

Isoplot 3.75 (Ludwig, 2010). Uncertainties of corrected ages include measurement errors

and uncertainties associated with detritus corrections (Table II.1).
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Figure II.4: Cross section greyscale images of MAW 02-01 on the left and MAW 03-01 on the right. All
ages given are in Common Era (C.E.) and all errors are 2σ . Layer counting transect are shown along the
stalagmite growth axis to quantify the number of annual layers present beneath the lowermost U-Th dating
sample.

II.5 Results

To date, seven fallen soda straws, and two collapsed stalagmites from Mawmluh Cave

have been analyzed for paleoseismic evidence. Broken soda straws collected from Mawm-

luh Cave reveal breakage dates ranging between 1988.7 and 2007.3 (C.E.). Analytical

errors associated with the broken soda straws range between 6.4 and 0.6 years (all errors

reported are 2σ ) (Table II.1). The new-growth portions of the two collapsed stalagmite fea-

tures, MAW 02-01 and MAW 03-01, have been analyzed for evidence of growth initiating

after a seismic event. The MC-ICP-MS was specifically tuned to achieve precise results

from young aragonite samples with high U concentrations. Dating priority was given to the

new-growth portions of the two collapsed stalagmite structures because they are comprised

of aragonite, and both of the old growth portions are comprised of calcite. The lower-most

layers from the two new growth features, MAW 02-01 and MAW 03-01, have been dated

to reveal ages of 1965.7 ± 2.5 years and 1954.7 ± 2.1 years respectively. The top of MAW

02-01, which was collected in February 2013, was dated as a zero-age sample and produced

an age of 2011.1 ± 1.1 years.
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Age clustering among the broken soda straws suggest three separate breakage events oc-

curred in Mawmluh Cave. The soda straws that share similar breakage ages were found ly-

ing next to each other upon collection in 2013, indicating that they likely recorded the same

causal breakage event. Although current data is limited to seven straws, results suggest that

three separate breakage events in Mawmluh Cave occurred during the late 1980s, early

2000, and 2007 (Table II.1). Each of these hypothesized breakage events were recorded by

multiple soda straws except the late 1980s event that was only recorded by MAW 01-03

(Table II.1).

Dating of the lower-most layers of the post-breakage growth on the two collapsed sta-

lagmite structures from Mawmluh Cave produce U-Th ages of 1954.7 ± 2.1 (MAW 03-01)

and 1965.7 ± 2.5 years (MAW 02-01) (Figure II.4). Layer counting results were used to

quantify annual lamina present between the lowermost dating sample and the new growth-

old growth transition. U-Th dating results along with the layer counting analysis has esti-

mated the depositional age of MAW 03-01 and MAW 02-01 and to be 1952.2 ± 2.1 and

1957.2 ± 2.2 respectively (Figure II.4). Previous research in Mawmluh Cave performed

by Sebastian Breitenbach (pers. comm.) has dated a separate small aragonitic stalagmite

(MAW-4) deposited on a flowstone for a modern climate assessment. MAW-4 exhibits

growth morphology similar to MAW 02-01 and MAW 03-01 and has a depositional age of

1954.0 ± 2.0 years (Cetti, 2012).

II.6 Discussion

Despite the clustering of soda straw breakage around the late 1980s, early 2000, and

2007, NE India experienced no mega earthquakes during these intervals. Lower-magnitude

earthquakes are very common along the southern margin of the Shillong Massif and could
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Figure II.5: Topographic map of the Shillong Massif. Location of Mawmluh Cave is shown with the black
dot located southwest of Shillong as symbolized with the green star. Yellow dots represent the epicenters for
the hypothesized seismic events recorded in the Mawmluh Cave soda straws. Seismic events were chosen
on the criteria that they were the largest earthquakes with epicenters under 25km from Mawmluh Cave and
occurred within analytical error of the clustered soda straw breakage events (Table II.1)

have caused the observed soda straw breakages. The earthquakes associated with the three

soda straw breakage events are low in magnitude (3.8 to 5.1), however the epicenters of

these events occoured within a 25 km radius of Mawmluh Cave (Figure II.5). It is also

possible that soda straws from Mawmluh Cave were broken through human interference,

unconsolidated sediment movement in the cave, or seasonal flooding of cave streams that

were inactive upon collection. However, that latter two mechanisms likely would have

either buried or displaced the soda straws following breakage, and human interference is

likely to have crushed or shattered the straws during breakage. These suppositions, coupled

with the abundance of low magnitude seismic events that occur along the southern margin

of the Shillong Massif, support seismic interference as the most plausible explanation for

the observed clusters of soda-straw breakage (Figure II.5).

The three fractured stalagmite new growth structures that have been analyzed from

Mawmluh Cave have post breakage event depositional ages between 1952.2 ± 2.1 and

1957.2 ± 2.2 years. The evidence that all three of the new growth structures from Mawmluh
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Cave were deposited shortly after 1950 suggests that the fractured stalagmite features from

Mawmluh Cave may have broken during the 1950 Assam-Tibet earthquake. The 1950

Assam-Tibet earthquake was an estimated 8.7 Richter scale magnitude event that brought

widespread destruction to NE India. Although the epicenter of this seismic event was in

Tibet, approximately 365 miles northeast of Mawmluh Cave, the Brahmaputra Valley in

NE India was strongly affected. Considerable structural damage and building collapse

was documented in Shillong just 45 km northeast of Mawmluh Cave (USGS, 2014), and

there were over 1,500 casualties in the area (Chamlagain, 2009). Although the old growth

portions of the MAW 02-01 and MAW 03-01 breakdown features have yet to be analyzed,

there is strong evidence with the new growth depositional ages presented here that broken

speleothems in Mawmluh Cave may record the 1950 Assam-Tibet earthquake.

II.7 Conclusion

Numerous mega earthquakes have affected Northeast India and Bangladesh over the

past ∼500 years of recorded history (Sukhija et al., 1999), but the mechanisms and recur-

rence of such events are not well understood. Due to the rapidly increasing population of

northeast India and Bangladesh, as well as the prevalence of poverty and poor construction

techniques the people living in this area are at risk of future large seismic events. Results

presented here suggest that Mawmluh Cave on the southern margin of the Shillong Mas-

sif holds potential for elucidating the paleoseismic record through continued speleothem

paleoseismology research. With U concentrations as high as 70 ppm, Mawmluh Cave al-

lows for very precise dating of young speleothems (with 2σ errors of ± 0.6 to 6.4 years on

samples 0.5 to 50 years old) which is imperative for accurate dating of structures that were

fractured during the 1897 or 1950 earthquake events (Table II.1). U-Th dates of broken

soda straws collected for this study have displayed clustering of breakage event ages that
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might be associated with small magnitude seismic events in the late 1980s, early 2000, and

2007. U-Th dates from larger collapsed stalagmite features have produced post-breakage

event ages in the early 1950s and that may reflect the Assam-Tibet earthquake of 1950.

This evidence indicates that speleothems from Mawmluh Cave are likely being fractured

in concurrence with regional seismic events.

The young ages and lack of correlation with known mega-earthquakes indicates that

soda straws may be too reactive and break during proximal low magnitude events. Thus, to

focus on large magnitude earthquakes future work should target larger collapsed stalagmite

features for paleoseismic information. Currently, two additional collapsed stalagmite fea-

tures from Mawmluh Cave, and three from Krem Umsynrang are being prepared for U-Th

dating analysis at the Berkeley Geochronology Center. In addition to post-breakage growth

samples already analyzed, dates on the pre-breakage portions of collapsed stalagmite fea-

tures will help constrain the ages of causal seismic events. The additional paleoseismic

dates will also assist in increasing the spatial and temporal resolution of our dataset. Fu-

ture work will involve dating more speleothems from Mawmluh Cave along with numer-

ous other caves along the southern margin of the Shillong Massif to look for evidence of

speleothem breakage during the 1950 or 1897 earthquakes. The ability to extend the seis-

mic record would allow for a more accurate estimate of mega earthquake reoccurrence in

NE India and Bangladesh. As the human population continues to rise in this region, so does

the need for a stronger understanding of the seismic risk and precautions people should be

taking in the event of future mega earthquake events.
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CHAPTER III

A Wavelet Analysis of Speleothem δ 18O and ENSO Frequency

III.1 Introduction

As the human population and water resource demand in India continue to grow at an

unprecedented rate, the strength of the Indian summer monsoon (ISM) has never held such

importance as it does in today’s changing climate. The Indian summer months are domi-

nated by the ISM, which seasonally brings immense rainfall and flooding to the southern,

central, and northeastern parts of India. Droughts in India as a result of weak ISM precip-

itation can have dire consequences on India’s agricultural output (Niranjan Kumar et al.,

2013; Douglas et al., 2009). In 2002, severe drought in India due to weak ISM precipita-

tion produced widespread crop failure and lowered the countrys Gross Domestic Product

by approximately 1% (Gadgil et al., 2002)). As India’s economy and human population

continue to grow, so does the importance of understanding how modern climate change is

affecting ISM dynamics.

The El Niño/Southern Oscillation (ENSO) is the most signficant climatic agent affect-

ing ISM strength on interannual timescales (Kumar et al., 1999). Severe droughts in India

due to weak ISM precipitation are strongly correlated with positive anomalies in ENSO

strength (El Niño years) as recorded in SST indices of the equatorial Pacific Ocean (Kumar

et al., 1999, 2006; Ashok et al., 2001; Krishnamurthy and Goswami, 2000; Shukla et al.,

2011). However, not all strong El Niño events coincide with severe drought in India, such

as the El Niño of 1997 when a strong prediction of weak monsoon rainfall proved false
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(Kumar et al., 2006). In 2002 and 2004, normal monsoon rains were predicted along with

moderate SST anomalies in the eastern tropical Pacific, however severe droughts occurred

in central India (Gadgil et al., 2002, 2005).

One distinction between the 1997 El Niño, which did not correspond with ISM collapse,

and the relatively weaker 2002 and 2004 events that did, is the anomalous location of SST

maximums in the central Pacific Ocean associated with the latter (Yu et al., 2012). In fact,

analysis of historical records indicates that failure of the ISM is more closely linked to

the occurrence of these central Pacific SST anomalies as opposed to those El Niño events

with SST anomalies located over the eastern Pacific (Kumar et al., 2006). The central

Pacific “CP-El Niño” events have been growing in strength and frequency since the 1990s

(Lee and McPhaden, 2010), a trend that could be linked with observed variations in ISM

strength and precipitation trends on the Indian subcontinent. Here we evaluate very-high-

resolution speleothem oxygen isotope δ 18O records from Northeast India that demonstrate

sensitivity to changes in ENSO behavior over the past 53 years, highlighting their potential

use in understanding ENSO-ISM dynamics beyond the historical record.

Mawmluh Cave (25◦15’44”N and 91◦52’54”E) in the Indian state of Meghalaya is lo-

cated on the southern edge of the Shillong Massif directly north of the Bangladesh border at

an elevation of 1160 m above sea level (Figure III.1). Meghalaya receives essentially all of

its moisture from rain events during the monsoon season (May to September) (Breitenbach

et al., 2010). Oxygen isotopes in rain and cave drip waters from Mawmluh are sensitive to

changes in the source and transport pathway of monsoon rains (Breitenbach et al., 2010,

2014). Thus, speleothem δ 18O records from Mawmluh Cave should be sensitive to the re-

gional atmospheric circulation response to changing ENSO dynamics over the past several

decades.
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Figure III.1: Regional Map of NE India and Mawmluh Cave located on the southern margin of the Shil-
long Massif. Map insert shows the location of Mawmluh Cave (red dot) directly above the NE border of
Bangladesh. Map insert also shows the seasonal direction of ISM precipitation events over the Indian sub-
continent as illustrated by the black arrows

III.2 Methods

III.2.1 Sample Collection and Preparation

MAW 02-01 was an actively growing speleothem upon collection from Mawmluh Cave

in February 2013. MAW 02-01 is composed of ∼2.2 cm of laminated aragonite that was

deposited on the exposed surface of a fractured calcite stalagmite. A hammer and chisel

were used to remove MAW 02-01 from the fractured stalagmite surface while preserving

the calcite-aragonite interface. MAW 02-01 was precipitating from a soda straw fed drip

1.44 meters above the stalagmite surface. In March 2014 the averaged drip rate from the

soda straw was observed to be approximately 41 seconds per drip.

MAW 02-01 was cut in half longitudinally along the growth axis to reveal growth lami-

nae that are on average 3.8 mm thick. Each lamination consists of a light and dark couplet.
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Petrographic analysis of a thin section from the base of 02-01 was used to characterize the

carbonate material and look for evidence of diagenetic alteration. Five 1-pixel wide tran-

sects were drawn in ImageJ for greyscale layer-counting analysis on a scanned image of

MAW 02-01. Each light colored peak in the layer counting analysis was coupled with an

adjacent darker colored trough and counted as one annual year. Each transect was counted

three times on three separate days to obtain an unbiased layer-count average.

III.2.2 Chronology

MAW 02-01 was mounted on a CM-2 micromill equipped with an Olympus SZX10

microscope and a NSK Volvere Max drill. Two ∼15 mg samples were drilled from MAW

02-01 for U-Th dating. Samples were taken adjacent to the layer counting transect at 0 and

20 mm depth from the top of the stalagmite. Before sampling the uppermost stalagmite

surface, a square centimeter was gently abraded to a depth of 100 µm in order to remove

any detrital material. The uppermost dating powder was collected with a hand drill from

the pre-scoured square to a depth of .5 mm. Sample collection with the CM-2 micromill

incorporated approximately two growth lamination per dating sample.

U-Th sample preparation and analysis were performed at the Berkeley Geochronology

Center using a Thermo Neptune Plus Multi-Collector-Inductively-Coupled-Mass-

Spectrometer (MC-ICP-MS). Sample powders were dissolved in 7N HNO3 and equili-

brated with a mixed spike containing 229Th, 233U, and 236U. The spike was calibrated

using solutions of NBL CRM 145 and solutions prepared from a 69 Ma U ore from

Schwartzwalder Mine, Colorado, USA (hereafter, SM) that has been demonstrated to yield

concordant U-Pb ages (Ludwig et al., 1985) and sample-to-sample agreement of 234U/238U

and 230Th/238U ratios. U and Th were separated using two stages of HNO3-HCl cation
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exchange chemistry followed by reaction with HNO3 and HClO4 to remove any residual

organic material. U and Th fractions were analyzed separately to reduce tailing effects on

230Th. Measured peak heights were corrected for peak tailing, multiplier dark noise/Fara-

day baselines, instrumental backgrounds, ion counter yields, mass fractionation, interfer-

ing spike isotopes, and procedural blanks. Mass fractionation was determined using the

gravimetrically determined 233U/236U ratio of the spike. The external reproducibility of

234U/238U and 230Th/238U ratios of SM solutions measured during each run was better than

0.2%. Activity ratios and ages were calculated using the half-lives of (Jaffey et al., 1971)

for 238U, (Holden, 1989) for 232Th, and (Cheng et al., 2013) for 230Th and 234U. Correction

for U and Th from detritus was made assuming detritus with activity ratios of (232Th/238U)

= 1.2 ± 0.6, (230Th/238U) = 1.0 ± 0.1, and (234U/238U) = 1.0 ± 0.1, which correspond to

average silicate crust in secular equilibrium. Ages and uncertainties were calculated with

Isoplot 3.75 (Ludwig, 2010). Uncertainties of corrected ages include measurement errors

and uncertainties associated with detritus corrections.

III.2.3 Stable Isotopes

Stable isotope powder collection was performed using the CM-2 micromill. Powders

were collected at 50 µm spatial resolution along the layer-counted growth axis. In total 416

stable isotope powders were drilled along the 2.2 cm growth axis yielding seven to eight

stable isotope samples per annual growth lamination.

Samples for stable isotope analysis were measured using a ThermoFinnigan GasBench

II, equipped with a CTC autosampler, and coupled to a ConFlow IV interface and a Delta V

Plus mass spectrometer following the methods described in (Breitenbach and Bernasconi,

2011). An in-house carbonate standard knows as MS2 was used to normalize the data
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against the Vienne Pee Dee Belemnite (VPDB). Twenty-three of the 416 stable isotope

samples were discarded during analysis on the ThermoFinnigan GasBench II due to inade-

quate sample size, resulting in 393 δ 18O samples.

III.2.4 Age-Depth Modeling

An age-depth model for MAW-02-01 was constructed using the MATLAB package,

Constructing Proxy Records from Age models (COPRA) (Breitenbach et al., 2012). CO-

PRA advances upon recently established techniques of anchoring precise time axis U-Th

ages with layer counted chronologies to reduce the age model uncertainties in annually

laminated speleothems (Domı́nguez-Villar et al., 2012). COPRA uses a least squares fit to

estimate the minimum distance between the radiometric age model and the layer counted

age model (Breitenbach et al., 2012). By incorporating the errors associated with the U-Th

ages and the layer counting chronology, COPRA is able to transfer the age model uncer-

tainties to the proxy record through Monte Carlo simulations. COPRA provides either the

mean or median proxy value for every data point along with the associated error. Our

COPRA age model was optimized with a linear interpolation of 2000 Monte Carlo simula-

tions of the median isotope values with proxy confidence bounds and age model confidence

bounds of 2σ .

III.2.5 Wavelet and Cross-Wavelet Analysis

Continuous wavelet transforms (CWT) were used to explore changes in the frequency

of variability in the MAW 02-01 δ 18O record through time. In order to investigate linkages

between the MAW 02-01 δ 18O record and the local climate, CWT analysis was performed

on monthly rainfall anomalies recorded at the Cherrapunji meteorological station (coor-
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dinates: 25◦30’N, 91◦70’E, 1313 m) and accessed online at http://climexp.knmi.nl/data-

/t42515.dat. In addition, the following ENSO indicies were analyzed with CWT analysis

to investigate possible linkages with the MAW 02-01 δ 18O record. The Oceanic Niño in-

dex (www.cpc.ncep.noaa.gov), Niño3 SST anomaly index (www.cpc.ncep.noaa.gov), and

Niño4 SST anomaly index (www.cpc.ncep.noaa.gov) are indicies of sea-surface temper-

ature (SST) anomalies in the equatorial pacific, specifically in the Niño-3.4, Niño-3 and

Niño-4 regions respectively. The Southern Oscillation Index (www.cpc.ncep.noaa.gov/)

measures sea level pressure differences between Tahihi and Darwin, Australia. The Western

Hemispheric Warm pool (www.esrl.noaa.gov) measures a region of anomously warm SST

off the western coast of Central America. The Pacific Decadal Oscillation (jisao.washington-

.edu/pdo) is the leading empirical orthogonal function of monthly SST over the northern

Pacific Ocean, and the Indian Ocean Dipole (www.jamstec.go) measures the east-west os-

cillation of SST anomalies in the Indian ocean. A cross-wavelet transform (XWT) and

wavelet coherence transform (WCT) were performed with the individual CWT outputs to

confirm the expected time-frequency relationships. A XWT analysis will expose areas in

the two individual CWTs where a high common power is shared and define the phase rela-

tion shared over that interval. The WTC can be used to supplement the XWT by detecting

locally phase locked behavior in the two CWTs that may not share high common power.

All wavelet analyses were performed using a wavelet MATLAB package provided by the

National Oceanography Centre of the Natural Environment Research Council (Grinsted

et al., 2004).

Because CWT requires a constant sampling interval, our speleothem δ 18O time-series,

which has varying time-steps ranging from .07 to .58 years, was interpolated to a monthly

time-step in MATLAB. A linear, nearest neighbor, and shape preserving piecewise cubic

Hermite interpolation (PCHIP) interpolation was performed on our speleothem δ 18O time-

series and all yielded similar results. The simplest linear interpolation was chosen as our
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age-model interpolation method for wavelet analysis.

All the indices used in our wavelet analysis were sufficiently close to a Gaussian dis-

tribution to not warrant further transformation of the data. The Morlet wavelet was used in

all wavelet analyses. Indices were padded with the average dataset value on both sides of

the series to bring the total length N up to the next highest power of two, thus increasing

the Fourier transform time and reducing edge effects and uncertainties associated with the

cone of influence (Grinsted et al., 2004).

III.3 Results

III.3.1 Chronology and δ 18O

Petrographic analysis of MAW 02-01 revealed clean and fibrous aragonite needles with

no birefringence under cross-polarized light, which is indicative of primary aragonite ma-

terial (Martı́n-Garcı́a et al., 2009). U-Th analysis of MAW 02-01 has yielded an uppermost

age of 2011.1(C.E.) ± of 1.1 years (2σ ). The lowermost dating sample produced a U-Th

age of 1965.7 (C.E.) ± 2.5 years (2σ ). Layer-counting results of MAW 02-01 revealed

54 distinct layers between the top of the sample and the start of aragonite deposition, with

a calculated standard error of 1.04 years averaged over the three recounts. MAW 02-01

δ 18O ranges from -3.33‰to -6.05‰(average -4.84‰) with an average external standard

deviation of .056‰.

The COPRA age model assigns the bottommost δ 18O sample with an age of 1957.11

(C.E) ± 0.0031 years (2σ ) and the uppermost sample an age of 2011.03 (C.E.) ± 0.0052

years (2σ ). The average 2σ uncertainty on the age model is 0.005 years. The average 2σ
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error associated with the median isotope values is 0.009‰. Based on U-Th chronology,

MAW 02-01 grew at an average rate of 0.41 mm per year between 1957.11 and 2011.03.

III.3.2 Wavelets

Figure III.2 shows the continuous wavelet transformation (CWT) analyses above their

associated time series for MAW 02-01 δ 18O, and the Niño3 SST anomaly index. Unlike the

traditional Fourier analysis that is used to determine stationary frequency patterns in a time

series, the wavelet analysis fits the time series into time-frequency space where localized

and non-stationary frequencies can be observed (Grinsted et al., 2004).

A visual interpretation of the MAW 02-01 δ 18O time series reveals an increasingly

negative trend in the average δ 18O signature from 1957 through 1962 (Figure III.2a). Af-

ter 1962 the average δ 18O signature shows as increasingly positive trend through 1988,

at which point the values become increasingly negative through 2011. A noticeable fre-

quency change in the δ 18O time series can be observed beginning in 1975 and persisting

through 1992. During this 17 year interval the δ 18O signature shows a significant annual

periodicity, which is less pronounced prior to 1975 and after 1992. The MAW 02-01 CWT

confirms these visual observations (Figure III.2a). Between 1975 and 1986 this annual fre-

quency dominates the variability in the time series. The mid 1990s are defined by a strong

four to six year frequency that is maintained through the end of the time series as well as

a strong ten to twelve year frequency between 1995 and 2000. Prior to 1975 the four year

frequency can also be observed, but not at the strength that is present in the mid 1990s.

Multiple ENSO indices that were evaluated using wavelet analysis (Niño3 SST Index

, Niño4 SST Index, Oceanic Niño Index, Southern Oscillation Index, Pacific Decadal Os-
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Figure III.2: Continuous wavelet transforms of MAW 02-01 δ 18O (A), and the Niño 3 SST anomaly index
(B). CWTs are shown above their associated time series from 1957 through 2010. (B) Strong El Niño and
La Niña years are shown in red and blue respectively and defined by a positive (El Niño) or negative (La
Niña) SST departure from the mean of at least 1.0◦C. Filled (empty) stars above the El Niño seasons denote
the presence of a CP El Niño (EP El Niño) event as defined by (Yu et al., 2012). Cross-wavelet transforms
are shown between MAW 02-01 δ 18O and Niño3 SST anomalies (C), and MAW 02-01 δ 18O and Niño4
SST anomalies (D). Color of the wavelet output define the time-frequency relationship with red depicting
the strongest correlation, and blue the weakest. Areas within the black contour represent a shared frequency
relationship above the 95% confidence interval. Arrow direction defines the phase relationship between the
two indices for a given time and frequency. Right facing arrows represent an in-phase relationship, left facing
represents anti-phase, and arrows pointing either up or down represent a lag or lead between the indices of
90◦ or 270◦.
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cillation, Western Hemispheric Warm Pool), showed similar period fluctuations. In this

case Niño3 was chosen as our ENSO index for wavelet analysis due to its widespread use

in ENSO related climate studies (Kawamura et al., 2005; Yeh et al., 2009; Kumar et al.,

1999). Specifically, the Niño3 index tracks monthly resolved SST anomalies in the Niño

3 region of the eastern Pacific basin (5◦North-5◦South, 150◦West-90◦West), which differs

from the Niño4 and Oceanic Niño Index that measure SST anomalies in the western and

central Pacific Ocean. Throughout the Niño3 dataset the CWT shows significant periods

between one and six years (Figure III.2b). Between 1965 and 2003 the Niño3 CWT dis-

plays a dominant four-year signal with a slowly increasing period. Between 2003 and the

end of the time-series the Niño3 CWT frequency decreases to a dominant two year period.

The cross-wavelet transformation (XWT) between the MAW 02-01 and the Niño3 data

sets (Figure III.2c) reveals a significant six-year period that is shared between both data sets

from the late 1980s through 2010. The phase relationship during this interval is primarily

anti-phase with a slight lag in MAW 02-01 behind Niño3 at the beginning of this interval,

as signified by the slight variation in the phase angle arrows. The XWT between the MAW

02-01 and Niño4 data set (Figure III.2d) show the same frequency relationship seen in the

Niño3 XWT in addition to a strong ten to twelve year frequency between the late 1980s

and 2010.

III.4 Discussion

Historically, anomalies in Indian summer monsoon rainfall (ISMR) display a strong

negative correlation with ENSO events (Krishna Kumar 1999, Ashok 2001, Krishnamurthy

2000, Shukla, 2011), with severe Indian droughts occurring during strong El Niño events

(Krishna Kumar, 2006). The ENSO-ISM relationship fluctuates on interdecadal timescales,
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varying between modes of stronger and weaker correlation (Ashok 2001, Kawamura, 2005).

Understanding how speleothem archives in northeast India record these interdecadal fluc-

tuations will allow for a better understanding of ISM variability prior to the instrumental

record and assist in monsoon prediction and preparedness in the presence of a warming

global climate.

III.4.1 MAW 02-01 δ 18O Signature

As long as cave air temperature remains somewhat constant, the δ 18O of speleothem

carbonate should primarily record changes in the δ 18O of the drip water from which it grew,

and this should reflect rainwater above the cave modified by evaporation and mixing of

waters in the epikarst (Lachniet, 2009). Using (i) the aragonite-water fractionation equation

of Kim et al. 2007, (ii) cave air temperature recorded at the site of speleothem collection in

March and September of 2011 (18 to 22.5◦C respectively), and (iii) the most recent (2010)

MAW 02-01 δ 18O maximum and minimum (-5.97 to -4.61), we estimate δ 18O MAW 02-

01 drip water values of -5.56 to -5.16‰. These values fall within the range of measured

drip water δ 18O collected between 2011 and 2012 (-7.25 to -5.0‰)(Breitenbach et al.,

2014). These results indicate that MAW 02-01 precipitated close to isotopic equilibrium

with its drip water, and therefore the δ 18O variations documented from MAW 02-01 should

primarily reflect changes in the δ 18O signature of rainwater and reflect changes in ISM

moisture source and transport pathway.

The δ 18O values of 68 rainfall events sampled between March 2007 and October 2008

in Cherrapunji approximately 7.25 km southwest of Mawmluh Cave show no correlation

with precipitation amount, nor do they indicate any influence of evaporative effects in the

atmosphere. Rather, rainwater δ 18O in Meghalaya appears to vary primarily with the loca-
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tion of source water and changes in moisture transport pathway (Breitenbach et al., 2010).

The ISM moisture source source is known to vary seasonally from northwestern continen-

tal India into the open Indian Ocean and Arabian Sea at the onset of the ISM, and later

into the Bay of Bengal during the late ISM season (Zhou and Yu, 2005; Breitenbach et al.,

2010). The ISM influenced change in moisture source and transport pathway along with the

freshening on the Bay of Bengal surface waters in the late summer and fall due to monsoon

season runoff most strongly effect the annual changes in rainwater δ 18O in Cherrapunji

(Breitenbach et al., 2010).

Drip water sampled from Mawmluh Cave in the same passage from which MAW 02-

01 was collected reveals a strong seasonal pattern in δ 18O similar to that observed in NE

India rainfall δ 18O (Breitenbach et al., 2014). This similar relationship suggests that the

lag between a precipitation event on the surface and the water infiltrating into the cave

system is quite short, on the order of a few weeks (Breitenbach et al., 2014). Thus, drip

water, and therefore speleothem δ 18O in Mawmluh Cave should primarily reflect changes

in precipitation moisture source and transport pathways, which are controlled by seasonal

ISM variations. Additionally, we observe no correlation between MAW 02-01 δ 18O and the

Cherrapunji Precipitation Index which measures anomalous monthly precipitation recorded

in Cherrapunji between 1957 and 2010 (R2 = 0.00005), further indicating that MAW 02-01

δ 18O does not primarily reflect Cherrapunji rainfall amount, but rather is representative of

seasonal changes in moisture source as observed in local rainwater δ 18O variations (Breit-

enbach et al., 2010).
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III.4.2 Frequency Observations in MAW 02-01 δ 18O

The first major transition observed in the MAW 02-01 δ 18O CWT is the change from

a dominant frequency of four to six years between 1957 and 1975 to a strong annual fre-

quency that persists from 1976 to 1985 (Figure III.2a). A widely noted change in the

frequency of ENSO variability occurred during the 1976-77 Pacific Ocean climate shift

(Trenberth and Stepaniak, 2001; Krishnamurthy and Goswami, 2000; Kawamura et al.,

2005; Kumar et al., 1999). The anomalously strong northern hemisphere winter of 1976-

77 led to a deepened Aleutian low in the north Pacific region, which contributed to the

transport of anomalously cool water into the central middle Pacific Ocean (Miller et al.,

1994). The north Pacific ocean-atmosphere climate remained in this state for an additional

ten years after 1976 and contributed to the decrease in ENSO frequency over this interval

(Trenberth, 1990; Trenberth and Stepaniak, 2001). Analysis of ENSO SST indices and

the ISMR index reveals that the negative correlation between ENSO and monsoon rainfall

in central India weakened after 1976 (Kumar et al., 1999; Ashok et al., 2001). However,

precipitation amounts in NE India are not always strongly correlated with the precipitation

in central India, which is used to construct the ISMR (Parthasarathy et al., 1995), but are

better represented by the meridional thermal gradient (MTG).

The MTG is a large-scale monsoon circulation index that represents the difference in

area-averaged upper tropospheric (200-500 hPa) thickness between the Tibetan Plateau and

the Indian Ocean (Kawamura et al., 2005). The MTG incorporates precipitation observed

over the entire Indian subcontinent, and has been found to be a better indicator of precip-

itation in NE India (Kawamura et al., 2005)). The ISMR, MTG, and Niño3 index are all

strongly correlated until 1975 (Kawamura et al., 2005), but after 1975, correlation of ISMR

with both Niño3 and MTG weakens (Kawamura et al., 2005). Interestingly, the correlation

between the MTG and Niño3 remains strong after 1975, indicating that the loss of ENSO-
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ISM correlation at the 1976 Pacific Ocean climate shift may represent a shift in ISM spatial

correlation from northwest-central India to northeast India (Kawamura et al., 2005).

This documented decrease in ENSO frequency between 1976 and 1986 due to the Pa-

cific Ocean climate shift along with the hypothesized shift in ISM spatial correlation is ev-

ident in the MAW 02-01 δ 18O continuous wavelet transform (Figure III.2a). The absence

of a strong four to six year frequency in the MAW 02-01 δ 18O CWT between 1976 and

1986 likely reflects the suppressed ENSO activity during this period. Prior to 1976 there

is a one to two year seasonal signal present in the MAW 02-01 δ 18O CWT, however the

power associated with the seasonal signal significantly increases during the 1976 to 1986

period. The shift to higher power associated with a seasonal signal in our δ 18O record

between 1976 and 1986 likely reflects the loss of the four to six year ENSO frequency over

this interval. As seen in the Niño3 time series, only the 1982-1983 El Niño occurred be-

tween 1975 and 1985, and there were no strong La Niña events during this interval (Figure

III.2b). The suppressed ENSO frequency and lack of strong El Niño events, along with the

shift in ISM spatial correlation over NE India between 1976 and 1986 likely accounts for

the loss of the four to six year ENSO frequency and the prominence of the seasonal signal

in our δ 18O record during this time.

III.4.3 A Modern change in El Niño Character

From 1985 until the end of the record in 2011, the four to six year ENSO frequency is at

its strongest in the MAW 02-01 δ 18O CWT. The cross-wavelet transform between MAW

02-01 and the Niño3 index (Figure III.2c) indicates that the region of strongest ENSO

frequency in the MAW 02-01 CWT (1990 to 2010) corresponds with a region of shared

high common power with four to six year periodicity between MAW 02-01 and Niño3.
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The phase relationship over the region of shared high common power is locked in an anti-

phase state with the Niño3 index leading the MAW 02-01 time-series. We would expect

the two time series to be phase locked over the interval of shared high common power

if a cause and effect relationship is predicted (Grinsted et al., 2004). The phase locked

relationship in the MAW 02-01-Niño3 cross-wavelet transform reaffirms that MAW 02-01

δ 18O variations are intimately related to ENSO frequency variations between 1990 and

2010. The high strength of the signal after 1985 might reflect the change in ISM spatial

correlation over NE India, or it may be related to a different shift in El Niño behavior.

A change in the character of El Niño events in the equatorial Pacific has been observed

since the early 1990s (Lee and McPhaden, 2010). Traditional El Niño events are distin-

guished by anonymously high SSTs in the eastern equatorial Pacific during northern hemi-

sphere winters. Beginning in the early 1990s, El Niño events increasingly show maximum

SSTs in the central equatorial Pacific with cooler water to the east and west (Ashok and

Yamagata, 2009; Yeh et al., 2009). The atmospheric teleconnections associated with this

central pacific El Niño (CP-El Niño) are different from those that act during eastern Pacific

El Niño (EP-El Niño) events. Although CP-El Niño events have been occurring since 1953

(Yu et al., 2012), the frequency and strength of El Niño events occurring in the CP region

have been increasing since the early 1990s (Figure III.2b) (Lee and McPhaden, 2010).

Historical records indicate that CP-El Niño is more strongly correlated with ISM droug-

hts in central India than EP- El Niño (Kumar et al., 2006). This observation is supported

by global circulation model experiments that suggest that CP-El Niño events are much

more effective at forcing drought like conditions in India by shifting the descending arm

of the Walker circulation over the Indian subcontinent. This westward shift of Walker cell

circulation decreases ISM strength by weakening the thermal gradient between the Indian

subcontinent landmass and the Indian Ocean (Kumar et al., 2006). CP-El Niño events are
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Figure III.3: Air mass back trajectories using NOAAs HYSPLIT model. Trajectories are computed 72 hours
before the air mass reaches Mawmluh Cave for individual days between July 6th, and July 31st at a height of
1,500 meters above ground level. El Niño years were distinguished as EP or CP by Yu et al. 2012.

better represented by SST anomalies in the Niño4 region of the equatorial Pacific (160◦E-

150◦W, 5◦S- 5◦N) than the Niño3 region, which is more representative of EP-El Niño

events (Lee and McPhaden, 2010). MAW 02-01 δ 18O shows a stronger relationship with

SST anomalies in the Niño4 versus the Niño3 region between the late 1980s and 2010

(Figure III.2c,d). This indicates that MAW 02-01 δ 18O is more directly related to frequency

variations in CP-El Niño rather than EP-El Niño events.

The precipitation moisture source for NE India moves into the open Indian Ocean and

Arabian Sea during peak ISM season (Breitenbach et al., 2010). However, the Walker cir-

culation shift observed during a CP- El Niño is likely to modify this moisture source by

suppressing oceanic moisture advection over the Indian Ocean. Hysplit back trajectory

models suggest there is a distinct change in CP-El Niño moisture source trajectories during

peak ISM season. Back trajectories for the month of July (peak monsoon season in Cher-

rapunji) during CP-El Niño years tend to originate more locally over the Bay of Bengal
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Figure III.4: Observed monthly precipitation in Cherrapunji India (http://climexp.knmi.nl/data/t42515.dat)
averaged over all CP-El Niño or EP-El Niño years between 1957 and 2010 as defined by Yu et al., 2012.
Annual precipitation averages of 8889 mm and 11732 mm for all EP-El Niños and CP-El Nios respectively
between 1957 and 2010. Cherrapunji recives on average 32% more precipitation annually during CP-El
Niños compared to EP-El Niños.

in comparison to the back trajectories for EP- El Niño events that tend to originate further

west over the Indian peninsula (Figure III.3). This implies that during CP- El Niño years,

a larger proportion of the moisture reaching NE India is sourced in the Bay of Bengal dur-

ing peak ISM season, which is not observed until the late ISM season during EP- El Niño

events (Breitenbach et al., 2010).

The Bay of Bengal experiences massive freshwater fluvial runoff from the Ganges-

Brahmaputra river system during the ISM season (Breitenbach et al., 2010). An isotope

mass balance box model estimates 20% to 50% of the δ 18O depletion observed in NE In-

dia precipitation is a result of the δ 18O depleted freshwater input into the Bay of Bengal

through the Ganges-Brahmaputra river system (Breitenbach et al., 2010). Since 1957 Cher-

rapunji has received on average 32% more precipitation annually in years characterized by
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CP- El Niño events compared to those characterized by EP-El Niño events (Figure III.4).

The increased precipitation over NE India during a CP-El Niño should increase the fresh-

water runoff into the Bay of Bengal, which should provide a more depleted δ 18O source

for subsequent precipitation. The strong correlation between ISM strength and CP-El Niño

events, along with the early shift in NE India moisture source into the Bay of Bengal and

increased δ 18O depletion of Bay of Bengal surface waters likely controls the strong four to

six year ENSO frequency and negative δ 18O trend between 1990 and 2010.

III.5 Conclusion

Wavelet analysis of δ 18O variations in an annually laminated speleothem from Mawm-

luh Cave in NE India documents ENSO influenced frequency variations between 1957 and

2010. Since ISM rainfall data became available in 1871, severe droughts in central India

due to weak ISM rainfall are coincident with strong El Niño events (Kumar et al., 2006).

However, NE India where MAW 02-01 was located has been shown to receive normal pre-

cipitation amounts while central India is experiencing drought like conditions, making NE

India a good location to study ENSO induced changes in ISM moisture source and transport

pathway (Gadgil et al., 2005). MAW 02-01 has recorded ISM fluctuations due to ENSO

strength and frequency variations as seen in the loss of the four to six year frequency be-

tween 1975 and 1985 when ENSO variability was suppressed after the 1976 Pacific Ocean

climate shift (Figure III.2a)

CP-El Niño events which have been increasing in strength and amplitude since the early

1990s have a stronger influence on ISM failure in central India as compared to traditional

EP-El Niño events (Kumar et al., 2006). The increase in strength and amplitude of CP- El

Niño events since 1990 is evident in the strong four to six year frequency between 1990 and
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2010 in the MAW 02-01 δ 18O CWT (Figure III.2a). Increased precipitation over NE India

during a CP-El Niño and depletion of δ 18O in the Bay of Bengal, along with an earlier ISM

season moisture source shift into the Bay of Bengal during a CP event is likely the cause

for the strong four to six year frequency and increasing negative trend in the MAW 02-01

δ 18O signature starting in 1990 (Figure III.2a).

The ability of NE Indian speleothems to record ENSO strength and frequency variations

through rainwater δ 18O fluctuations has numerous implications for future speleothem pale-

oclimate work in NE India, as well as Indian monsoon preparedness. Although it is unclear

how Pacific SST anomalies and El Niño behavior will be modified in a warming global cli-

mate, it is clear that CP-El Niño events have the ability to greatly affect precipitation over

the Indian subcontinent. We have shown that speleothem δ 18O in Mawmluh Cave clearly

records the change in El Niño character that began in the early 1990s. This connection

between the terrestrial record and El Niño induced ISM fluctuations can be exploited in

future NE Indian paleoclimate records to infer the ISM-ENSO relationship in the past. A

stronger understanding of how CP-El Niño events have disrupted ISM precipitation over

central India in the past will have pronounced societal impacts on ISM failure preparedness

for CP-El Niño events in the future.
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J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., et al. (2013). Improvements in¡ sup¿
230¡/sup¿ th dating,¡ sup¿ 230¡/sup¿ th and¡ sup¿ 234¡/sup¿ u half-life values, and u–th
isotopic measurements by multi-collector inductively coupled plasma mass spectrome-
try. Earth and Planetary Science Letters, 371:82–91.

Domı́nguez-Villar, D., Baker, A., Fairchild, I. J., and Edwards, R. L. (2012). A method to
anchor floating chronologies in annually laminated speleothems with u–th dates. Qua-
ternary Geochronology, 14:57–66.

Dorale, J. A., Edwards, R. L., Ito, E., and González, L. A. (1998). Climate and vegetation
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