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CHAPTER I 

 

INTRODUCTION 

 

Chemotaxis and its importance 

 

Chemotaxis is the directed migration of cells up or down a chemical gradient. The term 

was coined by Engelmann and Pfeffer during their observations of directed movement of 

bacterial cells toward certain stimuli (Engelmann, 1883; Lux and Shi, 2004; Pfeffer, 1884) . It is  

critical during many eukaryotic processes including development and wound healing (Frost et 

al., 2009; Schneider et al., 2010; Wood et al., 2006) , numerous disease states including cancer 

(Condeelis and Segall, 2003; Di Gennaro and Haeggstrom, 2012; Muller et al., 2001; Roussos 

et al., 2011; Varani, 1982) and the immune response(Franciszkiewicz et al., 2012; Liu et al., 

2012). 

In fertilization, sperm are attracted toward the egg by the release of chemical factors 

(Kaupp et al., 2008). In wound healing, chemotaxis plays a very important role as well. One of 

the first steps in wound healing is the chemotaxis of different cells such as inflammatory and 

epithelial cells to the wound site (Bennett and Schultz, 1993).  Work on monocytes has shown 

that  under the influence of chemoattractants, they occupy the wound site and become activated 

macrophages.(Kolaczkowska and Kubes, 2013; Singer and Clark, 1999). Chemotaxis toward 

transforming growth factor beta (TGF-beta) has also been shown in monocytes (Smythies et al., 

2006; Wahl et al., 1987). During inflammation, chemokines also provide directional cues for the 

migration of leukocytes (Luster, 1998). The chemotactic response of phagoctyic leukocytes is 

one of the first lines of host defense against invasion by microorganisms (Le et al., 2004; 

Richmond et al., 2009; Schmidt et al., 2013). 
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During metastasis, chemotaxis is thought to be involved in invasion, and 

intra/extravasation  and growth at a distant site (Roussos et al., 2011). Human melanoma cells 

have been shown to chemotax toward thrombospondin  and have also been shown to express 

chemokine receptors (Mueller et al., 1994; O'Boyle et al., 2013; Taraboletti et al., 1987). 

Chemokines  have been shown to influence prostate carcinoma cells (Maxwell et al., 2012; 

Reiland et al., 1999) and are involved in breast cancer metastasis (Hawkins and Richmond, 

2012; Muller et al., 2001; Tang, 2013). Carcinoma cells have also been shown to migrate 

toward epidermal growth factor in vivo using a chemotaxis based in vivo invasion assay 

(Condeelis et al., 2005; Wyckoff et al., 2004).  

Establishment of cell polarity during chemotaxis 

Cells that perform chemotaxis undergo several steps. The first step is sensing of the 

chemoattractant gradient and the transmission of the external signal to the interior of the cells 

via receptors. The second step involves processing and interpretation of the signal. The third is 

to respond to the chemical gradient by activating both signaling and cytoskeletal components 

and to move either toward or away from the gradient (King and Insall, 2009; Weiner, 2002).     

Cell polarity is defined as the presence of a distinct front and back of a cell. It is one of 

the properties displayed by the cell during chemotaxis that enables it to respond to the chemical 

gradient. Cell polarity is important for directional cell movement, and arises due to the 

asymmetric distribution of signaling and cytoskeletal components during chemotaxis (Chung et 

al., 2001a; Devreotes and Janetopoulos, 2003). A cell with a polarized morphology can respond 

robustly to gradients of chemoattractant and also focus its motility machinery in the correct 

direction (Srinivasan et al., 2013b; Swaney et al., 2010). Some of the asymmetrically distributed 

cytoskeletal molecules at the leading edge are actin and actin-binding proteins Scar, WASP, 

filopodin, cofilin, and coronin while myosin II and cortexillin I are found at the trailing edge 

(Devreotes and Janetopoulos, 2003).  
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Signaling molecules are also asymmetrically distributed during polarity and migration. At 

the leading edge, there is localized Ras signaling (Sasaki et al., 2004). There are also 

localizations of PH domain containing proteins such as CRAC (cytosolic regulator of adenylyl 

cyclase), PhdA (PH-domain-containing protein A), and Akt (Parent, 2004). The enzyme  PI3-

kinase phosphorylates PI(4,5)P2 to PI(3,4,5)P3 (Whitman et al., 1988) and is found at the 

leading edge of the cells while the tumor suppressor and phophatase PTEN creates PI(4,5)P2 

from PI(3,4,5)P3 and is found at the  rear of the cells respectively (Comer and Parent, 2002; 

Funamoto et al., 2002; Iijima and Devreotes, 2002). In terms of sensitivity to a chemical 

gradient, the front of the cell is more sensitive than the rear, which could lead to the focusing of 

the actin cytoskeleton at the leading edge (Devreotes and Janetopoulos, 2003).  

Before examining how polarity is established it is crucial to understand how a cell senses 

a chemical gradient and internally amplifies this response. Work from Devreotes and 

Janetopoulos (Devreotes and Janetopoulos, 2003; Parent and Devreotes, 1999) has proposed 

the Local Excitation Global Inhibition (LEGI) Model. In this model, the leading edge of the cell in 

a gradient experiences a rapid local excitation and a slower global inhibition whereas the trailing 

edge experiences the reverse phenomena. This leads to the establishment of an asymmetric 

phosphoinositol gradient (higher levels of PI(3,4,5)P3) at the front of the cell (Devreotes and 

Janetopoulos, 2003; Janetopoulos et al., 2004).  

Chung et al., have examined how a cell initially establishes polarity by suggesting that 

initial activation of PI3-kinase at the leading edge of a cell, downstream from receptor activation, 

could play a role (Chung et al., 2001a; Chung et al., 2001b). Their results indicate that 

amplification of signals mediated by feedback loops at the leading edge while inhibition at the 

lateral sides of the cell could lead to the formation of a polarized morphology. They suggest that 

PI3K partially controls the cytoskeletal components such as myosin II and F-actin that lead to 

axial polarity.  
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Most of the data that links phosphoinositols to cell polarity has been focused on 

PI(3,4,5)P3. Interference with PI3K through different means leads to defects in chemotaxis and 

polarity (Funamoto et al., 2001; Hirsch et al., 2000; Niggli and Keller, 1997). However there is 

work from several laboratories that suggests otherwise (Andrew and Insall, 2007; Hoeller and 

Kay, 2007; Loovers et al., 2006; Takeda et al., 2007).  

 

Dictyostelium as a model system for chemotaxis 

 

One of the most thoroughly used model systems for the study of eukaryotic chemotaxis 

is the social amoeba Dictyostelium discoideum. In the next section, I will describe why it is a 

suitable system for examining directed motility. While there are over a 100 discovered species 

of Dicytostelia (Jowhar and Janetopoulos, 2013), most of the work on Dictyostelium chemotaxis 

has been focused on D. discoideum (Romeralo et al., 2011).  It has been more than 75 years 

since the discovery of this organism by K.B. Raper (Raper, 1935), and there has been a 

tremendous amount of work performed on this genetically and biochemically tractable system to 

understand the different behaviors these social amoeba display in response to chemical signals.  

Non-essential genes in these cells are highly amendable to genetic manipulation, with targeted 

gene disruptions obtainable in a few weeks. It’s relatively small genome is sequenced and RNAi 

and insertional mutagenesis can be used to identify the function of novel genes (Garcia et al., 

2009; Landree and Devreotes, 2004; Parent et al., 1998). Pathways regulating chemotaxis are 

conserved throughout evolution, as was discovered early on when investigations using D. 

discoideum first showed that eukaryotic cells use serpentine receptors coupled to the 

heterotrimeric G proteins to undergo chemotaxis (Devreotes, 1994; Parent et al., 1998). It was 

only after this discovery that a similar signaling cascade was found in mammalian neutrophils 

during directed migration (Franca-Koh et al., 2009; Kim et al., 1996; Suire et al., 2012). There is 
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also an online community known as Dictybase (dictybase.org) that is dedicated to exploring the 

genome, as well as providing tools, strains and plasmids and several other services to fully 

explore biological processes using Dictyostelium (Fey et al., 2006). D. discoideum has been 

very useful in biomedical research and in identifying targets for drugs such as cisplatin (Li et al., 

2000), lithium (Williams et al., 1999) and biphosphonates (Grove et al., 2000). It is also proven 

useful for investigating the mechanisms regulating Legionalla pneumophila infection (Williams, 

2010) and mitochondrial and neurological diseases (Annesley and Fisher, 2009).  

 

Dictyostelium development phases 

 

 

 

Dictyostelium cells undergo different morphological and gene expression phases during 

development, which occurs over a period of about twenty four hours. In the vegetative state, 

cells feed on bacteria, which secrete a number of factors, including folic acid. D. discoideum  

cells can use folic acid as a guidance cue to find their bacterial prey. When food sources start to 

deplete, D. discoideum undergo a developmental processes that culminates in the formation of 

a fruiting body. The chemoattractant cyclic adenosine monophosphate (cAMP) plays a critical 

role in this process and proper management of its secretion and degradation regulates the 

expression of many developmental genes (Hall et al., 1993; Kessin, 1988) . Propagating waves 

of cAMP occur approximately every 6 minutes and recruit surrounding cells. This leads to the 

formation of aggregation centers where hundreds of thousands of cells come together to form 

large structures known as slugs. Slugs have the capability to move toward an environment 

conducive to spore dispersal. Their phototactic properties may help in the distribution of spores 

if the aggregation takes place under a leaf or rock.  Slugs can then differentiate into fruiting 

bodies and can release thousands of spores which remain dormant until favorable 

environmental conditions allow continuation of the life cycle.  
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Differences and similarities between folic acid and cAMP chemotaxis 

 

Receptors 

Dictyostelium have transmembrane cAMP receptors that belong to the G Protein 

coupled receptor superfamily (Strader et al., 1995; Xiao et al., 1997). There are four cAMP 

receptors in Dictyostelium (designated cARs 1 – 4) that are expressed at different stages of the 

developmental program (Klein et al., 1988; Saxe et al., 1991). cAR1 is expressed during early 

development while cAR3 is expressed later during aggregation and reaches maximal 

expression during the mound stage of slug formation (Johnson et al., 1993b). cARs 2 and 4 are 

expressed in the prestalk cells during slug formation, and later fruiting body stages, respectively 

(Insall et al., 1994; Johnson et al., 1993b; Saxe et al., 1991). The affinities of these receptors for 

cAMP are also different with cAR1 having the highest affinity and cAR3 having the least affinity 

(Dormann et al., 2001). cAR3 shares 56% and 69% amino acid sequence identity with cAR1 

and cAR2, respectively (Johnson et al., 1993a). The folic acid receptor has not been isolated as 

to date. 

Signaling after receptor activation 

The binding of chemoattractants to the receptors catalyzes the exchange of guanosine 

diphosphate (GDP) for guanosine triphosphate (GTP) and allows both the GTP bound α-subunit 

and free βγ complexes to signal to downstream effectors (Bourne, 1997; Gilman, 1987).   The 

first in vivo look at G-protein dynamics in response to a stimulus was performed using D. 

discoideum (Janetopoulos et al., 2001).  The α2 and β-subunits rapidly dissociated and 

reassociated upon addition and removal of cAMP, respectively. Interestingly, the G proteins 

appeared to remain in an active conformation in the presence of cAMP, even though responses 

had declined. This suggested that adaptation must be downstream or independent of 

heterotrimeric G protein activation. Upon dissociation of the Gβγ subunit from Gα, indirect 

evidence has shown that Gβγ leads to the activation of the small GTPase Ras (Jin, 2011). Ras 
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proteins serve as molecular switches whose activity is regulated by Ras GEFs (Guanine 

nucleotide Exchange Factor) and GAPS (GTPase activating Proteins) (Boguski and McCormick, 

1993; Bolourani et al., 2006; Bourne et al., 1991). In addition, Ras activity does not increase in 

response to chemoattractants in cells lacking functional heterotrimeric subunits (Kae et al., 

2004; Sasaki and Firtel, 2006).  

Ras is the first marker to show an amplified asymmetric response during migration and 

is followed closely at the plasma membrane by changes in the level of the enzymes that 

synthesize and degrade the phosphoinositides (PIPs) that include PI(3,4)P2, PI(3,4,5)P3 and 

PI(,4,5)P2 (Sasaki et al., 2004; Sasaki et al., 2007; Whitman et al., 1988).  In D.discoideum, PI 

3-kinases and the tumor suppressor PTEN relocate to the front and back of the cell, respectively 

(Iijima and Devreotes, 2002). See Figure 1 for signaling cascade.  
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Figure 1. Phosphoinositol distribution after receptor activation When G protein coupled 
receptors bind cAMP, they become activated. This leads to several downstream events, of 
which one of the earliest is the activation of Ras. Ras activates PI3K and PI(3,4,5)P3 levels 
increase at the leading edge, while its antagonist PTEN converts PI(3,4,5)P3 to PI(4,5)P2 and 
localizes to the trailing edge of the cell. This creates areas of high PI(3,4,5)P3 at the leading 
edge of the cell and may contribute to high PI(4,5)P2 levels at the trailing edge of the cell. 
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Dictyostelium heterotrimeric g proteins and functions 

The putative folic acid receptor and the Dictyostelium cAMP receptors are coupled to 

heterotrimeric G proteins (Gα, β and γ) which mediate the majority of the signaling responses 

(Bagorda and Parent, 2008). To date, 14 Gα subunits, one Gβ (although there is another 

putative Gsubunit of unknown function) and a single G subunit have been identified in the D. 

discoideum genome (Eichinger et al., 2005). The Gα2 subunit couples to the cAR1 receptor and 

is essential for development and chemotaxis toward cAMP, while the Gα4 subunit is critical for 

folic acid-mediated chemotaxis (Hadwiger et al., 1994; Janetopoulos et al., 2001; Kumagai et 

al., 1991). The Gα4 subunit is homologous to the Gα2 subunit and has 41% amino acid 

sequence identity (Hadwiger et al., 1991).   

Cells lacking Gα2 fail to aggregate or display typical chemoattractant induced 

responses. In addition, Gα2 is required for receptor G-protein coupling (Wu et al., 1995). Work 

in the Devreotes lab also investigated the structure and function of the D. discoideum G and 

demonstrated that this subunit is necessary for anchoring Gβto the membrane. Deletion of a 

CSVL motif in the carboxy terminal of G leads to the relocation of G to the cytosol. In addition, 

cells with this truncation were unable to sense a cAMP gradient (Zhang et al., 2001). 

Biophysical approaches including Förster resonance energy transfer (FRET) and fluorescence 

recovery after photobleaching (FRAP) showed that the G protein subunits continuously shuttle 

from a cytosolic pool to the plasma membrane regardless of whether they were active or 

inactive (Elzie et al., 2009).  Interestingly, the G2 subunit demonstrated a longer half time on 

the plasma membrane when cells were in the presence of cAMP. The resident time on the 

plasma membrane of the Gcomplex did not change, showing very strong evidence for the 

complete dissociation of the heterotrimer when in the active state.   

It is still unclear whether the G2, presumably in an active GTP bound state,  is coupled 

to the receptor or another binding partner at the inner leaflet of the plasma membrane when 
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cAMP is present (Elzie et al., 2009).  These data suggest that the Gα-subunit might locally 

activate downstream effectors, whereas diffusible Gβγ subunits could potentially act as 

inhibitory molecules.  This fits a model proposed by Levine  and colleagues (Levine et al., 

2006), which suggested that the G proteins themselves make good candidates for the activator 

and inhibitor molecules that have been proposed to underlie the large gain seen in the 

responses at the leading edge during gradient sensing. The data presented in the Elzie paper 

(Elzie et al., 2009) suggest that the Gα subunit remains local and the Gβγ subunits diffuse 

away. Further support for this idea comes from single-molecule analysis of cAR1-YFP, which 

was shown to have two different receptor populations in the absence of signaling. Some were 

immobile and some were mobile, suggesting that some cAR1 is not precoupled to the G protein 

(de Keijzer et al., 2008). The authors further found that the immobile fraction was almost 

identical in chemotaxing cells to that seen at the leading edge of cells lacking the Gα2 subunit. 

They interpreted this to mean that there was uncoupling of the receptor from the G proteins in 

response to cAMP. Taken together with the FRAP results, the single molecule results suggest 

that the Gα2 subunits might be interacting with the receptor directly, but binding the membrane 

or proteins on the membrane after receptor activation. This local increase of Gα2 subunits at the 

front of a cell may in turn provide the molecular component for the initial linear amplification that 

occurs during gradient sensing. 

Morphology 

When Dictyostelium cells are starved, they launch a developmental program during 

which cells aggregate and form a multicellular fruiting body. In the early stages of this process, 

starved cells begin to secrete and respond to cAMP, become elongated, and over the course of 

several hours polarize with a distinct front and rear. Vegetative Dictyostelium cells, on the other 

hand, remain very unpolarized, even while migrating up a folic acid concentration gradient. 

While the physiological conditions of these two cellular states are fundamentally different, the 
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signaling mechanisms regulating their directed movement are thought to be very similar 

(Srinivasan et al., 2013b).  

 

 

 

Figure 2. Morphology differences in polarized versus unpolarized cells Unpolarized cells 

which migrate toward folic acid extend random pseudopods and do not have a distinct front and 

back (Left). Polarized cells that migrate toward cAMP have an elongated morphology and have 

a distinct front and back (Right). 

 

I have approached the question of cell polarity from two angles. The first question 

focuses on the difference in migration between polarized and unpolarized cells and the 

advantages of having a polarized morphology. In order to address this question, we used 

unpolarized cells that migrate toward folic acid and polarized cells that migrate toward cAMP 

and compared the mechanisms regulating their motility in an open microfluidic assay. The 

second question regarding polarity was focusing on cells that migrate toward cAMP. Since 

these cells are highly polarized, we wanted to see what events, both cytoskeletal and signaling, 

contributed to the establishment of polarity. To answer these questions, we developed a more 

sophisticated open microfluidic system that allowed me to break down and reestablish the 

polarity of cells expressing known polarity markers. I measured the spatio-temporal localization 
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of these markers to see the sequence of events that lead to the establishment of polarity after 

the chemoattractant gradient was inversed. I will compare these findings with some of the 

currently established models thought to regulate cell polarity. We will also use the findings from 

our experiments to expand on these models.  

 

Current assays for studying chemotaxis and their limitations 

 

The standard method for visualizing chemotaxing eukaryotic cells, including D. 

discoideum, has been to perform a micropipette assay in an open chamber on an inverted 

microscope (Parent et al., 1998). William Pfeffer first used a pipette assay to study the 

chemotaxis of bacteria and flagellates in the late 1880s (Bunning, 1989). Typically, today’s 

devices have a one-micron diameter opening at the tip of a micropipette, which is used to set up 

a diffusion gradient across a microscope coverslip. Cells then crawl on top of the glass and 

make their way toward the micropipette. Other methods used for chemotaxis assays make use 

of devices such as the Boyden chamber (or more recently the Transwell Assay) (Boyden, 1962), 

Zigmond chamber (Zigmond, 1977), or the Dunn chamber (Zicha et al., 1997). While all three 

devices are capable of making linear gradients, these gradients change over time and cannot 

easily be controlled. In addition, only the Zigmond and Dunn chambers allow the viewing of cells 

during their migration. With the advent of microfluidics, numerous groups are making use of 

devices that contain microchannels for generating chemical gradients. These channels are on 

the order of the physical scale of biological cells and have several applications for cell culture as 

well as single cell analysis (Andersson and van den Berg, 2003; El-Ali et al., 2006; Young and 

Beebe, 2010). Such devices can provide cells with three-dimensional environments that may be 

more typical of what they experience in nature (Cukierman et al., 2001; Hegerfeldt et al., 2002; 

Knight et al., 2000; Wolf et al., 2003). 
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Microfluidic cell culture environments have been touted as being uniquely suited for 

achieving a level of quantification and gradient control that is required for correlating observed 

cell responses with specific gradient characteristics. A thorough review on different gradient 

generating devices can be found from reviews by (Wu et al., 2013) and (Keenan and Folch, 

2008). The two broad categories for microfluidic gradient generating devices are flow-based and 

flow-free devices (Wu et al., 2013). While their small size gives them certain advantages, flow 

based devices require constant fluid flow and can often fail to form reproducible gradients in 

circumstances where air bubbles or other obstructions intrude. Fluid flow subjects cells to 

confounding or damaging shear and drag forces, and can cause the gradient upstream to differ 

from the gradient downstream (Keenan and Folch, 2008; Walker et al., 2005). It is possible to 

avoid shear forces by creating microfluidic devices that rely on passive diffusion to establish a 

gradient without flow, and these devices can readily include structural elements designed to 

restrict the motion of cells (Skandarajah et al., 2010). Indeed, several groups have investigated 

a number of cell types using microfabricated channels that responded to passive gradients 

(Butler et al., 2010; Taylor et al., 2005). However, closed microfluidic devices often require a 

complicated cell loading process or are difficult to keep in working condition and free of air 

bubbles.  

Microfluidic devices have also been adapted for the study of Dictyostelium by several 

groups (Amselem et al., 2012; Beta et al., 2007; Fuller et al., 2010; Meier et al., 2011; Wright et 

al., 2012) to name a few. A more recent device (Meier et al., 2011) that is closest to the 

signaling cascade as well as polarity studies presented in this thesis uses a flow based setup to 

study the role of PI3-kinase in cell polarity. The device allows for the generation and switching of 

a stable gradient, as well as a low flow velocity to provide negligible shear stress on the cells. 

However, for polarity studies, cells in this experimental setup could also respond to the new 

gradient either by turning toward it or readjusting their polarity as opposed to completely 

breaking down and reestablishing it.   
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One of the goals of my work on polarity studies is to design and build a microfluidic 

device that allows easy cell loading, generates a stable passive gradient to eliminate shear 

force effects and provides the ability to confine cells to allow for complete breakdown and 

reestablishment of their polarity. As such, the Janetopoulos laboratory has developed the Open 

Microfluidic Device (Jowhar et al., 2010) that uses the combination of both microfluidic and 

micropipette assays to create an experimental platform that is best suited for polarity studies 

and that can be adapted for both Dictyostelium as well as neutrophil chemotaxis.  

 

Thesis focus 

 

The focus of this thesis is on the study of cell polarity and its role during the directed 

migration of eukaryotic cells. In order to accomplish this task, we had to develop a novel 

chemotaxis assay that would allow us to probe the role of polarity in response to chemical 

gradients. In Chapter II, I will describe the materials and methods used for performing 

experiments and analyzing the data. I will focus on the development, design, fabrication and 

analysis of our open microfluidic system for chemotaxis as well as the different quantification 

tools that we have used to analyze the behavior of the chemical gradient and the response of 

the cells such as protein localization, signal increase etc. There will also be a strong argument 

as to how it can be adapted for mammalian chemotaxis. Chapters III and IV will investigate two 

different aspects of polarity during chemotaxis. In Chapter III, I will look at the role of polarity 

during chemotaxis, specifically focusing on the difference between unpolarized cells that 

chemotax toward folic acid and highly polarized cells that chemotax toward cAMP and how 

polarity affects their behavior. I will use the open microfluidic system that I developed in the 

Janetopoulos lab to look at the role of polarity played during chemotaxis.  In Chapter IV, I will 

delve deeper into the role of polarity during chemotaxis, particularly by looking at how polarity is 

established and maintained, the signaling and cytoskeletal components that are responsible for 
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it and the timeline of these processes. This section will reveal the localization of several 

fluorescent biomarkers known to localize to certain regions of the cell that are mentioned in the 

introduction. The molecules and activities that will be focused on are Ras activity, PI(3,4,5)P3 

(also known as PIP3), PTEN (a marker for PI(4,5)P2 (also known as PIP2)), F-actin, and 

labeled tubulin (microtubules). I will examine the role of phosphoinositols in establishing cell 

polarity during chemotaxis and address the role of PIP3 and PIP2 in establishing polarity. 

Experiments performed in the open microfluidic system will break down cell polarity and 

reestablish it. This will allow the observation of the spatiotemporal behavior of these molecules 

and help elucidate their roles during polarity establishment. Chapter V will have the conclusions 

and future directions of this project in order to improve our overall understanding of the polarity 

establishment process during eukaryotic chemotaxis.  

 

 

 

*Work for this introductory chapter has been adapted from the following manuscripts.  

Jowhar, D., and C. Janetopoulos. 2013. The Chemotactic Compass. In Dictyostelids. 
Springer-Verlag Berlin Heidelberg.  
- Jowhar and Janetopoulos wrote manuscript 
 
Jowhar, D., G. Wright, P.C. Samson, J.P. Wikswo, and C. Janetopoulos. 2010. Open 
access microfluidic device for the study of cell migration during chemotaxis. Integrative 
biology : quantitative biosciences from nano to macro. 2:648-658. 
- Janetopoulos and Jowhar devised concept for device. Wikswo and Samson provided 

input for device design.  Jowhar designed and built device. Jowhar, Wright and 
Janetopoulos designed cell experiments. Experiments and data analysis were 
performed by Jowhar and Wright. All authors read manuscript and provided input. 
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CHAPTER II 

 

MATERIALS AND METHODS 

 

In this chapter, I will describe the technical portion of the work on studying cell polarity. 

In the first portion of chapter II, I will describe how the device was designed, built, characterized 

and functionalized for chemotaxis. In the second section, I will show how cells are prepared for 

these assays and convey other technical specifications for this project.  

Device design and production 

 

To accomplish the goals for studying cell polarity, I devised a chemotaxis device that 

makes use of microfluidic and micropipette technology to generate shallow gradients in 

microchannels which can be tailored to the dimensions of cells that are being assayed. For 

simple chemotaxis studies, we used a single micropipette to generate variable gradients. For 

studies involving the breakdown and reestablishment of cell polarity by gradient switching, two 

micropipettes were used to generate opposing gradients. Both of these devices are easy to use 

and can be functionalized to perform a variety of studies.  

 

Open microfluidic device for chemotaxis studies 

 

Open-faced channels are microfabricated in PDMS and then plasma bonded to a glass 

cover slip to form the closed channels (Figure 3A and B). The gradient is formed by a 

micropipette attached to a micromanipulator and pump. The glass surface forms the bottom of 

the device where the cells are attached and viewed. The PDMS structure defines the ceiling and 

the walls of the device. Two devices were created (see Figure 3C–F). One scheme had two 
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very wide channels (100 µm) while the other device was created with a tandem repeat of four 

different widths (6, 8, 10 and 12 µm, respectively). The 100 µm width simulated a region where 

cells could migrate without the confinement of the narrow channels. The ceiling height of both 

devices was approximately 15 µm. The height of the PDMS (2 mm) was less than that of the 

fluid depth. The OMD was designed using the AutoCAD software package (Autodesk, San 

Rafael, CA). Ten channels with an approximate height of 5 µm, width of 6 µm and length of 150 

µm were used for the reversal experiments. These dimensions ensure that the cells do not turn 

when the gradient is reversed but instead break and reestablish their polarity.  

Device fabrication processes 
 

The device design was transferred to a chrome mask using a commercial printing 

process (Advance Reproductions, North Andover, MA). The chrome mask was then used to 

create a three-dimensional mold using photolithography techniques. In short, a silicon wafer 

was coated with the negative photoresist polymer SU-8 2010 (Microchem Corp., Newton, MA) 

which cross-links when exposed to a UV light source. The thickness of the SU-8 coating was 

controlled by spinning the wafer at the speed and duration recommended by the resist 

manufacture in order to create the desired height profile of 15 µm. The chrome mask was then 

placed on top of the coated wafer and exposed to a UV light source (Exfo Novacure 2100 UV). 

This caused the exposed regions on the resist to crosslink, which, in turn, were the only features 

that remained on the silicon wafer after a solvent solution of SU-8 developer removed all of the 

unexposed pre-polymer. The final silicon wafer mold thus consisted of a pattern of 15 µm tall 

raised structures composed of solidified SU-8. This served as the mold to be used in the 

microfabrication process. PDMS (Sylgard 184, Dow Corning, Midland, MI) was poured onto the 

SU-8 and silicon mold and degassed to get rid of air bubbles, and was cured in an oven at a 

temperature of 65 °C overnight (Camelliti et al., 2006). The cured flexible PDMS device was 

peeled from the silicon wafer, and the cell loading port was punched out using a hollow punch. 

The front of the device was cut using a sharp cutter to expose the channels that face the 
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micropipette. A one-well chamber with a glass bottom (Lab-Tek, Rochester, NY), along with the 

PDMS slab containing the channels and the cell port, was placed in a plasma cleaner (Harrick 

Plasma - Plasma Cleaner, Ithaca, NY) for approximately 30 - 40 seconds. After removal from 

the plasma chamber, the side of the PDMS slab with the channel patterns was pressed onto the 

bottom of the one-well chamber where it formed a permanent seal. Immediately after the 

bonding process, the device was wetted using developmental buffer (DB) in order to keep the 

microchannels hydrophilic and allow for loading of cells for the experiment. 

 A new device is made for every experiment. Devices were not reused from one day to 

another. Since experiments that use devices for polarity studies are limited by the number of 

devices that are made, the number of data points is lower when compared to an experiment that 

does not use devices such as a micropipette assay.  
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Figure 3. The open microfluidic device (OMD) for studying gradient sensing and cell 
migration (A) Schematic diagram of an open microfluidic device viewed from the bottom. The 
PDMS block containing cell port and channels is plasma bonded to the glass cover slip of a 
one-well chamber. A micropipette filled with chemoattractant is placed in front of the narrow 
channel region. (B) A side view of the device in 3A depicting cells loaded through the cell port 
and crawling on the glass surface toward the micropipette. Note that entire device is submerged 
in buffer solution so that hydrostatic pressure is essentially equivalent on the inside and outside 
of the device. (C) Magnified cartoon of the narrow channel region with cells crawling between 
the different-sized channels toward the micropipette placed at the center of the device. In the 
actual device, there are 16 channels with each size represented 4 times. The channel widths 
are 6 mm, 6 µm, 8 µm, 8 µm, 10 µm, 10 µm, 12 µm, 12 µm, 6 µm, 6 µm, 8 µm, 8 µm, 10 µm, 10 
µm, 12 µm and 12 µm. (D) A bright field image of the device with the narrow channel region 
described in 1C was obtained using a 10 X objective. (E) Schematic of two wide channel 
regions with a cartoon that depicts cells crawling toward the micropipette. The width of each 
wide channel is 100 µm. The micropipette is placed at the center of the bottom wide channel. 
(F) Bright field image acquired using a 10X objective of the device with the wide channels. 
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Gradient measurements 
 

The OMD provides a more precisely measured gradient profile when compared to those 

measured using a micropipette alone since the gradients that cells encountered in the OMD 

were measured directly without contributions from out-of-focus fluorescence. In an open dish, 

the observed fluorescence represents a projection into the optical plane of out-of-focus light 

from a radially-decaying spherical chemoattractant distribution. Hence in the OMD the gradients 

were approximately linear rather than 1/r2 (Gruver et al., 2008). 

A micropipette supplying Cy3-cAMP resulted in a stable gradient in both the narrow and 

wide channel regions within the microfluidic device. A pumping pressure of 50 hecto Pascals 

(hPa) was applied to the micropipette in these experiments. Using this pressure, a gradient was 

clearly visible (Figure 4A and D). These gradients were measured in the various channels. 

Concentration profiles had similar slopes with different mean concentrations (Figure 4B and D). 

As would be expected from the radial distribution of label around the micropipette tip, the 

highest fluorescence intensity was measured in the 12 µm channel nearest to the micropipette 

and gradually decreased for those channels farther away (see Figure 5). This made the OMD 

useful in that it provided unique experimental conditions that varied in each channel. To 

demonstrate the differences in gradient profiles that cells might encounter at various points 

along two channels, we measured the relative changes in pixel intensities (Figure 4B) that 30 

µm long cells might encounter in a typical gradient like that depicted in Figure 4A. The change 

from front to rear of both cells early on was similar (about 11%, cells on right) and later (15% for 

cell 1 and 16% for cell 2, both on left). The mean concentration eliciting a response, however, 

was dramatically different (several fold) in the two channels. Yet in our experiments, we 

detected little difference in speed between cells in channels near and far from the micropipette, 

suggesting that cells respond to the relative concentration gradient and not the absolute 

concentration. 
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Figure 4. Gradients and cells in the OMD (A) A Cy3-cAMP image of the narrow channel 
configuration with pumping pressure of 50 hPa. The micropipette was placed in the center of the 
channel region. The number corresponds to the size of the channel, in microns. For instance, 
channels labeled 12b are the two middle channels and are both 12 µm wide. The dotted white 
line drawn across the top 12b channel is representative of where pixel values were obtained for 
the two channels displayed in 2B. (B) Pixel intensity values as a function of distance for 
channels 12a and the top 12b are shown in 2A. The intensities were measured along the length 
of the representative dotted white line as shown in the center of 12b in 2A. Average intensities 
for the other channels are shown in Figure 5. We measured the relative change in 
chemoattractant a cell might see if it were at two different points in two different channels. The 
hypothetical change from front to rear of both cells early on was similar (about 11%, cells on 
right) and later (15% for cell 1 and 16% for cell 2, both on left). The mean concentration eliciting 
a response, however, was dramatically different (several fold) in the two channels, suggesting 
that the mean concentration has little if any effect on migration speeds. (C) Unpolarized and 
polarized cells crawling toward a micropipette containing both cAMP and FA in the narrow 
channel configuration. (D) Cy3-cAMP image of the wide (100 μm) channel with pumping 
pressure of 50 hPa. The micropipette was placed in the center of the wide channel. The white 
line drawn along the center depicts where the intensities were obtained. (E) Pixel intensities as 
a function of distance for the 100 µm wide channel region shown in 4D. The intensities were 
measured along the length of the white line. Five lines were drawn along the wide channel and 
the average 
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Gradient characterization 
 

The gradient characterization was done using 1.0 mM of Cy3-cAMP, which was loaded 

into an Eppendorff femtotip and released in front of the channel structures. Fluorescent images 

were taken of the region. The intensity profile of the Cy3 fluorescence was measured using 

Image J’s Plot profile feature (U. S. National Institutes of Health, Bethesda, MD) and the 

intensity values were plotted as a function of distance using Microsoft Excel (Redmond, WA). To 

measure the gradient in the narrow channels, 1.0 mM Cy3-cAMP was pumped at 50 hPa in 

front of the narrow channels. The intensity was calculated using SlideBook software after 

subtracting the background intensity. Figure 5 shows designations of ‘‘a’’ and ‘‘b’’ after the 

numbers. ‘‘a’’ stands for above and ‘‘b’’ stands for below the micropipette. For example, 6 ‘‘a’’ 

represents the average intensity values of the two 6 µm channels that are at the top of the 

image. The intensities were measured along the same distance for each channel (see Figure 4B 

and Figure 6). The change in Cy3-cAMP across cells in Figure 4B was calculated as:  

Percent difference =   
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Figure 5. Gradient measurements in different channels Pixel intensity values were 
measured for all of the channels depicted in Figure 4A. The intensities were measured along the 
length of the representative dotted white line as shown in the center of 12b in Figure 4A. Each 
curve represents the average of two channels that are the same size, and right next to each 
other. The exception is channel 12a, because the other 12 micron channel was outside the 
captured image and could not be measured. 
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Gradient stability over time  
 

While typical chemotaxis assays generally only last 20–30 min, we did provide data of 

cells chemotaxing for several hours. The time limitation in these experiments is typically 

dependent on the clogging of the micropipette or the channels by the cells. To measure the 

stability of the gradient, 10 mM fluorescein (FITC) was pumped at 50 hPa in front of the wide 

channel region. FITC has a mass similar to cAMP (332.306 g mol-1 versus 329.06 g mol-1, 

respectively). Time lapse images were captured every five minutes for over two hours. The 

gradient was measured by drawing a line and measuring the pixel intensities in the center of the 

channel for all the time points using software provided by SlideBook. These data are provided in 

Figure 6.  
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Figure 6. Gradient stability of open microfluidic device A) The stability of the gradient was 
measured using 10 μM FITC, which was pumped at 50 hPa in front of the wide channel region. 
FITC has a mass similar to cAMP (332.306 grams/mol versus 329.06 grams/mol, respectively). 
Time lapse images were captured every 5 minutes for over two hours. B) The gradient was 
measured by drawing a line and measuring the pixel intensities in the center of the channel for 
all the time points using software provided by SlideBook. 
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Experimental setup for polarity reversal experiments 
 

Polarity reversal experiments make use of two micropipettes filled with cAMP and which 

are connected to a pump. Gradient switching was achieved by turning off the pump that drives 

the first micropipette and turning on the pump that drives the second micropipette. The pumping 

pressure can be increased or decreased in order to adjust the gradient. Cells expressing 

fluorescent biomarkers are lured into microfluidic channels toward the first micropipette. Once 

the cells are in the channels, the gradient is switched by turning off the first micropipette and 

turning on the second micropipette.  

Device surface coating for HL-60 chemotaxis 

In order to functionalize the device for mammalian chemotaxis, I coated the glass portion 

of the device with Fibronectin which was diluted in Hank’s Balanced Salt Solution. Briefly, once 

the PDMS containing the patterns of the microchannels was bonded to the bottom of the one 

well chamber, the fibronectin solution was applied. Once it had been incubated at room 

temperature for an hour, the excess fibronectin was removed by washing with dH2O two to three 

times. The entire device was then filled with Hank’s Balanced Salt Solution (HBSS). The 

protocol can be found from the Santa Cruz Biotechnology website at the following web address: 

(http://datasheets.scbt.com/sc-29011.pdf). 

 

Imaging 

 

Imaging for Chapters III and IV was conducted on a Marianas Workstation equipped with 

a Cool Snap CCD camera and an Extended QE, high-speed cooled CCD camera (Cascade II 

512). We used an inverted, wide-field epifluorescence microscope (Zeiss Axio Observer Z1, 

Thornwood, NY). Images were taken using SlideBook software (Intelligent Imaging Innovations, 
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Inc., Denver, CO). Time lapse images were taken every 15 seconds for approximately 2 hours. 

Confocal Imaging for Chapter IV and V was done on an inverted Nikon spinning disk confocal 

microscope in conjunction with Metamorph software using a 40 X oil objective. All time lapse 

images were acquired with a five second interval between frames. Post acquisition image 

processing was done using FIJI software (Schindelin et al., 2012). Super resolution imaging for 

Chapter IV was conducted using the Bessel Beam setup at the Betzig Lab as described in 

(Habib et al., 2013). 

 

Image quantification 

 

Bleach correction 

All bleach correction was done in FIJI using Image>Adjust>Bleach Correction. The 

Simple Ratio algorithm was used.  This can be found at the following website: 

(http://cmci.embl.de/downloads/bleach_corrector#bleach_corrector). The background noise was 

found by selecting an ROI outside the cell area. The average intensity was measured for the 

ROI in each frame by using Image>stacks>plot z axis profile. The obtained values were fit into 

an exponential curve with offset. The background value was determined from the constant in the 

exponential function.  

Cell selection criteria 

For all data analysis, only fluorescent cells that were able to reverse their polarity in the 

field of view were used. The analyzed cells were also not touching one another. There were 

cells that did not reverse their polarity even though the gradient was switched. These cells were 

not used for analysis.  

 

 

http://cmci.embl.de/downloads/bleach_corrector#bleach_corrector
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Cell speed 

The speed of the cells for Chapter III was measured by manually tracking the pixel 

distance the cells travelled and converting it to microns. The distance was divided by the time it 

took to capture each frame. This was done using SlideBook software.  

Cell length 

The average of the image stacks was taken for each frame. A threshold was defined that 

gave pixel values only to the area defined by the cell. The length of the cell was measured from 

the left most corner to the right most corner. The distance in pixels was converted to microns. 

Kymographs 

Image stacks were resliced using FIJI. The average of the generated images was taken 

to create a kymograph with the Y-axis representing time and the X-axis representing distance. 

Kymographs were quantified by taking the slope of either the leading edge or the trailing edge 

and calculating the speed with which they move. Threshold of the images was determined to 

outline the kymograph and select regions before, during and after polarity reversal were 

measured.  

Signal peak  

Automatic thresholding to find the borders of the cell were used to find the length of the 

cell for each time point. The cell length was divided into 3 equal parts to designate the new cell 

front, cell middle and cell rear. The fluorescence intensity was measured for each section from 

the time point of gradient reversal till the end of the experiment. The maximum signal for each 

time point was plotted as a function of time to measure the peak of signal intensity after gradient 

reversal.  

Cytosol intensity measurement 

The RFP and the GFP channels were corrected for bleaching using the Simple Ratio 

method. A scaling factor between the green and the red channel was found by selecting 

identical Regions of Interest (ROI)s in both channels. By finding the scaling factor, the Red 



29 
 

channel’s pixel values were normalized with the green channel. Three identical ROIs were 

selected for three different cells expressing RBD-RFP and PTEN-GFP and the cytosolic 

intensity in these regions was measured as a function of time. It was normalized on a scale of 1 

- 0. 

Signal at “old” location vs. “new” location 

For Ras activity and PIP3 (old front), the bar graphs generated were measured by taking 

the peak intensity at the old front of the cell at the time point when the gradient was switched. 

For new front, the first time point when the cell moved forward was used. For PTEN (old back) 

represents the signal intensity at the old back of the cell at the time point that the gradient was 

changed. New back represents the signal intensity at the time point where the new back 

retracted toward the high side of the gradient. 

Fold increase 

Fold increase was measured by taking the ratio of the signal intensity at the new front: 

old front at the time points of gradient change and forward movement of the cell front for Ras 

activity and PIP3. For PTEN new back: old back was taken at the time points of gradient change 

and new back retraction. 

Statistical analysis 

Statistical analysis for data points was done using student t test using Microsoft Excel 

(Redmond, WA). To determine if the increase in signal intensity at the new cell front (for Ras 

activation and PIP3) or the new cell back (PTEN) was significant, student’s t-test was used 

(Figure 15). First the cell was divided into three equal portions (Front, Middle and Back). Next, 

for Ras and PIP3, the signal intensity at the back (future front) of the cell was measured at the 

time point when the gradient was switched. The signal intensity was also measured at the same 

location (which is now the new front) at the time point when the cell moved forward. The ratio of 

the two signals were taken to determine the fold increase. For PTEN, the same procedure was 

applied but in this case the signal intensity for the two time points was measured at the future 
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back. Since every polarity reversal experiment requires the fabrication of a new device for each 

day of data collection, the sample numbers are reduced as compared to a micropipette assay in 

a one well chamber.  

Standard error of the mean 

All error bars in this thesis are generated from the standard error of the mean. This was 

calculated by taking the standard deviation of the data points and dividing by the square root of 

the total number of data points.  

Cell reversal 

The time point of cell reversal was determined by finding the first frame after gradient 

reversal where the cell retracted its new back or extended its new front. For Ras activation and 

PIP3 localization, the time point of leading edge extension toward the new gradient was used. 

For PTEN, the time point of cell back retraction toward the new gradient was used. Signal 

intensity at old back/front is measured at the first time point that the gradient is switched 

whereas signal intensity at the new back/front is measured at the time point when the cell’s back 

retracts toward the new gradient or the cell’s front moves forward toward the new gradient. 

 

Cell Line Preparation 

 

Cells lines and plasmids  

Wild-type (AX2) cells expressing fluorescent markers were used. The cells were 

electroporated as described by (Knecht and Pang, 1995). The markers were Raf Ras Binding 

Domain fused to the Red Fluorescent Protein (RBDRaf-RFP) for Ras activity(Kortholt et al., 

2011). PTEN-GFP in PTEN null cells for PTEN as described in (Janetopoulos et al., 2005), 

PTEN GFP in PLC null cells (Kortholt et al., 2007), α-Tubulin GFP for Microtubules (Octtaviani 

et al., 2006), PHCRAC for PI(3,4,5)P3 (Parent et al., 1998), LimE RFP for actin polymerization 

(Clarke et al., 2006), PH CRAC-RFP for PI(3,4,5)P3 from (Chen et al., 2003).  
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Transformation protocols 

Cells were transformed with fluorescent biomarkers using the protocol outlined by 

(Gaudet et al., 2007). Briefly, cells were pelleted by centrifugation followed by washing with ice-

cold H-50 buffer. The cells were pelleted again by centrifugation and resuspended in H-50 

buffer. 100 µl of the cell suspension was transferred to a cold 0.1 cm electroporation cuvette 

containing 10 µg DNA in a volume of approximately 10 µl.  The suspension was pipetted up and 

down to mix the DNA and the cells. Electroporation was done at 0.85 kV and 25 µF twice, 

waiting for about five seconds between pulses. The cells were then transferred out of the 

cuvette by adding a few hundred microliters of HL5 from the dish to the cuvette, pipetting up and 

down to mix and then withdrawing the medium and cells to add them to a Petri dish containing 

HL5 media. On the next day, the old HL-5 media was changed, and drugs were added to select 

the cells that have the plasmids containing the fluorescent biomarkers. 

Media and buffers 
 

HL-5 and SM Agar were purchased from Formedium. For HL-5 liquid media; 22 g of 

Formedium HL-5  powder, 10 g of dextrose were added to 1 L of distilled H20 and then 

autoclaved. For SM media; 41.7 g of Formedium SM agar powder was added to 1 L of distilled 

H2O and autoclaved. Development buffer (DB) contained 5 mM Na2HPO4, 5 mM KH2PO4, 1 mM 

CaCl2, and 2 mM MgCl2. 

cAMP preparation 
 

cAMP was purchased from Sigma. A 10 mM stock solution of cAMP was prepared in 

dH2O. For cAMP development the 10 mM stock solution was diluted in 30 ml of development 

buffer (DB) as described in (http://www.dictybase.org/techniques/media/media.html#DB) to 

make a 2.5 µM cAMP solution. For cAMP chemotaxis, a 1 mM stock solution was diluted 1:100 

in 1 ml of DB to make a 10 µM final concentration.  
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cAMP development 
 

5 ml of ~ 2 x 107 cells / ml of AX2 cells were pulsed with 100 µl of 2.5 µM cAMP every six 

minutes for six hours with constant agitation. For Figure 13e, 10 ml of 2 x 107 cells / ml of AX2 

cells were resuspended in 1 ml of DB after washing three times. The solution was then applied 

to an agar plate and allowed to settle for 30 minutes. Excess DB was removed and the cell was 

placed upside down for approximately 5.5 hours. Cells were then pipetted with DB from the 

plate and placed in the 8 well chamber.  

Latrunculin-A treatment 

Latrunculin-A from Invitrogen dissolved in DB was added to make a final concentration 

of 5 µM in the cell solution 

Uniform cAMP stimulation 

For Figure 13 e, a micropipette containing cAMP was pressurized to deliver a bolus of 

cAMP in the experimental region by using the “clean” feature on the pump that drives the flow 

out of the micropipette. For Figure 5 E, cells were placed in an 8 well chamber and a drop of 

cAMP was applied using a P-200 micropipette to create a final concentration of 1 micro molar 

inside the wells. 

Vegetative cells 
 

500 L of 2 X 106 cells ml-1 PH-GFP expressing AX2 cells were mixed with ~ 1 X 109 

cells ml-1 Klebsiella. aerogenes bacteria from an SM agar plate and the mixture was plated on 

an SM agar plate. The mixture of cells was allowed to incubate at room temperature overnight. 

For experiments, the mixture of cells from the SM plate was washed several times in 

development buffer (DB) to wash off the bacteria. After washing, the D. discoideum cells were 

resuspended in 1 ml of DB. 

HL-60 cell preparation 

Cells were prepared as described in (Sai et al., 2006). For Wortmannin treatment, cells 

were pretreated at a concentration of 50 nM for 30 minutes at 37°C. During the experiments, the 
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buffer that the cells were migrating in had the same concentration of Wortmannin during 

pretreatment. 

HL-60 cell experimental setup 
 

Cells were washed twice and resuspended in serum-free RPMI1640 at 2 x 106 cells/ml. 

Cells were then seeded in the device for 5 min at RT. The medium was replaced with 1% 

BSA/RPMI 1640 medium. The objective used was 40 X oil, with an objective heater set for 37 ° 

C. 

 

*Work for this chapter has been adapted from the following manuscripts and 

collaborations. 

Jowhar, D., G. Wright, P.C. Samson, J.P. Wikswo, and C. Janetopoulos. 2010. Open 
access microfluidic device for the study of cell migration during chemotaxis. Integrative 
biology : quantitative biosciences from nano to macro. 2:648-658. 
- Janetopoulos and Jowhar devised concept for device. Wikswo and Samson provided 

input for device design.  Jowhar designed and built device. Jowhar, Wright and 
Janetopoulos designed cell experiments. Experiments and data analysis were 
performed by Jowhar and Wright. All authors read manuscript and provided input. 

 
Jowhar, Khodadadi, Wright, Rucker, Housman, Wikswo, Chen, Betzig and Janetopoulos, 

(2013). In preparation. 
- Jowhar and Janetopoulos designed concept for experiment setup. Wikswo provided 

input for data analysis and presentation. Chen and Betzig developed Bessel beam 

microscopy setup. Experiments and data analysis were performed by Jowhar, 

Khodadadi, Wright, Rucker, Housman, Chen, Janetopoulos. Janetopoulos, Jowhar 

and Wright are preparing the manuscript. Janetopoulos, Jowhar and Wright are 

preparing the manuscript.  

 

Special note for experiments for Chapter IV: All experiments and quantification were 

performed by Jowhar with the following exceptions. 

Experiment for 13e was performed by Janetopoulos and Jowhar 
Experiments for Figure 16e were performed by Housman 
Experiments and quantification for Figure 19 were performed by Rucker and Khodadadi 
Bessel Beam Microscopy (Figure 18c) was performed by Bi-Chang Chen at the Betzig 
Lab 

 
 

Collaboration with Richmond Laboratory for HL60 Experiments.  
- Dr. Jiqing Sai from the Richmond Laboratory prepared cells and reagents for 

experiments. Jowhar and Sai performed experiments. 
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CHAPTER III 

 

POLARIZED VS. UNPOLARIZED CELLS 

 

Introduction 

 

Chemotaxis is a fascinating cellular behavior characterized by the movement of cells up 

or down a chemical concentration gradient. Directed cell migration plays a critical role in the cell 

movements that take place during embryo development and are necessary for the day-to-day 

function of the immune system (Surmi and Hasty, 2010; Thelen, 2001).  Chemotaxis also 

regulates many pathological conditions, including those that involve allergic inflammation and 

tumor metastasis  (Condeelis et al., 2005; De Paepe et al., 2009; Dorsam and Gutkind, 2007; 

Hansson, 2009; Johnson et al., 2004; Lazennec and Richmond, 2010; Wu et al., 2009). The 

social amoeba Dictyostelium discoideum has played an important role in revealing the 

mechanisms that control directional sensing and migration. These amoeboid cells are 

dependent on this process throughout their life cycle, exhibiting chemotaxis toward folic acid 

during the vegetative state and responding to cyclic adenosine monophosphate (cAMP) during 

their developmental cycle. Growing D. discoideum can feed on folic acid secreted by gram-

negative bacteria such as Escherichia coli and Klebsiella aerogenes. When these amoeboid-

shaped cells are starved, they launch a developmental program during which cells aggregate 

and form a multicellular fruiting body. In the early stages of this process, starved cells begin to 

secrete and respond to cAMP, become elongated, and over the course of several hours polarize 

with a distinct front and rear.  

Vegetative Dictyostelium cells, on the other hand, remain very unpolarized, even while 

migrating up a folic acid concentration gradient. While the physiological conditions of these two 

cellular states are fundamentally different, the signaling mechanisms regulating their directed 
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movement are thought to be very similar. Chemotaxing cells can measure and respond to small 

changes in a chemical gradient, detecting a difference of ~ 5% receptor occupancy over the 

length of a cell (Ueda et al., 2001).  

Studies from a number of research groups have characterized the localization of 

signaling molecules of Dictyostelium cells responding to cAMP gradients. The initial 

components of the cAMP circuit, such as serpentine receptors and heterotrimeric G-proteins, 

remain uniformly distributed along the membrane (Janetopoulos et al., 2001; Jin et al., 2000; 

Xiao et al., 1997). Receptor occupancy and the heterotrimeric G-protein activation mimic the 

gradient of chemoattractant (Janetopoulos et al., 2001; Ueda et al., 2001). The signaling 

molecules that regulate phosphoinositide turnover display early signs of a localized response 

during cAMP gradient sensing (Janetopoulos and Firtel, 2008; Parent et al., 1998).  

The small G-protein Ras is critical at this stage and is enriched at the leading edge and 

promotes the localized activation of key chemotactic effectors, such as PI3-kinase (PI3K) 

(Kortholt and van Haastert, 2008). PI3K, in turn, is recruited to the anterior plasma membrane of 

the cell and interacts with its substrate, PI(4,5)P2 (PIP2) and gives rise to PI(3,4,5)P3 (PIP3) 

(Huang et al., 2003; Merlot and Firtel, 2003). The tumor suppressor PTEN undergoes reciprocal 

movements and is redistributed to the lateral and posterior membrane of the cell (Funamoto et 

al., 2002; Iijima and Devreotes, 2002). Moreover, actin polymerization and pseudopod extension 

preferentially occur in areas where the membrane has high PI3K activity. Positive feedback 

between the cytoskeleton and the regulators of PIP2 and PIP3 production at the rear and front 

of the cell, respectively, amplifies these morphological responses, even in the absence of a 

cAMP gradient (Devreotes and Janetopoulos, 2003; Sasaki et al., 2007). Interestingly, these 

signaling molecules also are highly regulated during cell division (Janetopoulos et al., 2005), 

phagocytosis (Cardelli, 2001; Rupper et al., 2001b) and macropinocytosis (Cardelli, 2001; 

Rupper et al., 2001a). The regulation of the phosphoinositides appears to be a key signaling 

component for numerous cell processes that regulate changes in the cytoskeleton. These 
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critical and diverse morphological changes are regulated by a system, which contains a great 

deal of redundancy, with no one component being required for the circuit to function adequately 

(Hoeller and Kay, 2007; Insall and Andrew, 2007; Veltman et al., 2008). Recent work has shed 

new light on the target of rapamycin complex 2 (TORC2), another part of the signaling pathway 

that is important for D. discoideum chemotaxis (Kamimura et al., 2008; Lee et al., 2005). The 

TORC2 signaling complex is essential for activating mammalian protein kinase B homologs, 

PKBR1 and PKBA. PKBA contains a Pleckstrin homology (PH) binding domain that triggers the 

association of the protein with the plasma membrane when PIP3 levels rise. PKBR1 lacks the 

PH domain and instead has a myristoylation modification and is constitutively localized to the 

plasma membrane. Recently, the PKB substrates were identified and their phosphorylation 

states in response to cAMP were analyzed (Kamimura et al., 2008). PKBR1 activation was 

PIP3-independent and was activated through small G proteins. Recent results suggest that the 

PKB substrates are phosphorylated by folic acid stimulation in a manner similar to those seen 

with cAMP addition (Liao et al., 2010). 

While there is substantial scientific literature describing the mechanisms that regulate 

cAMP-mediated chemotaxis, the actual data describing the cellular movements that take place 

during folic acid-mediated cell migration are quite limited (Korohoda et al., 2002; Laevsky and 

Knecht, 2001; Sameshima et al., 1988; Veltman et al., 2008). Studies have documented the 

responses of cells to uniform increments of folate, but little is known about the morphological 

changes that take place when cells are migrating in a gradient of folic acid (de Wit et al., 1987; 

Janetopoulos et al., 2005; Kuwayama et al., 1993; Malchow et al., 1981; Rifkin and Goldberg, 

2006; Segall, 1988; Wang et al., 1998). 

 Folic acid appears to bind to a putative seven-transmembrane receptor since cells 

lacking the heterotrimeric G4 subunit are unable to respond to folate (Hadwiger et al., 1994). 

To aid in the investigation of the cellular properties of cells migrating in response to a gradient of 

folic acid, a protocol was developed for creating cells that show strong responses to the 
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chemoattractant folic acid (Srinivasan et al., 2013b). This method will also allow the direct 

comparison of chemotactic responses between vegetative cells and developed cells to their 

cognate chemoattractants.  

We developed a novel microfluidic device to aid in these experiments. This device 

allowed the direct, simultaneous observation of both cell types in a highly reproducible and 

quantitative manner.  We wished to compare the relative speeds of cells chemotaxing to either 

folic acid or cAMP and used this device to study the contributions of cell polarity to the ability of 

cells to migrate directionally.  The effects of microfluidic channel widths on migration rates of 

unpolarized cells and of developed cells were observed in the presence of folic acid and cAMP 

respectively. We speculated that the narrow channels might suppress lateral pseudopod 

extension and increase the probability that anterior pseudopods would extend toward the 

gradient of folic acid in the unpolarized cells. This, in turn, would increase the chemotactic 

speed relative to unpolarized cells in wide channels. We also reasoned that the polarized cells 

within the channels would migrate toward the source of attractant faster than the unpolarized 

cells in narrow and wide channels. The results suggest that the narrow channels do partially 

suppress pseudopod extension in unpolarized cells but do not increase the migration speed of 

the cell relative to cells in wide channels. Polarized cells migrate significantly faster than 

unpolarized cells toward their respective chemoattractants. These elongated cells are also 

highly sensitive to chemoattractants at their anterior end. Our experimental results suggest that 

the anterior of the cell, alone, has the capacity to sense the gradient and direct the cell up the 

concentration gradient. 
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Results 

 

Migration speeds of polarized cells versus unpolarized cells within channels  

Chemoattractant delivery using a micropipette pressure of 50 hPa created a 

concentration gradient that can cause cells to migrate rapidly in both narrow and wide channels 

(Figure 4C and F). This delivery setting, in conjunction with the OMD channel geometry, created 

controlled experimental conditions where cells could be ‘‘raced’’ against each other. For these 

assays, wild-type cells expressing PH-GFP, a biosensor for PI(3,4,5)P3, and LimE, a marker for 

actin polymerization (Clarke et al., 2006), were starved and developed for 7 hours and raced 

against wild-type, unpolarized cells expressing PH-GFP alone (Parent and Devreotes, 1999). 

The developed cells were polarized and responded to cAMP, while the unpolarized cells were 

grown in the presence of bacteria and responded to the chemoattractant folic acid. Fluorescent 

cells were mixed and loaded into the cell chamber within the OMD. A single micropipette was 

loaded with a 1:1 ratio of 10 µM cAMP and 10 µM folic acid and was lowered on one side of the 

channels as depicted in Figure 3C. Individual cells were tracked and their migration speed 

determined within the various channels (Figure 7A). The polarized cells migrated to cAMP at 

17.75 µm min-1 (± 1.41 µm min-1) while the vegetative cells moved toward folic acid at 6.79 µm 

min-1 (± 0.67 μm min-1). Thus, the polarized cells migrated significantly faster than the vegetative 

cells in identical gradients of their respective chemoattractants.  
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Figure 7. Analysis of cell migration in the OMD (A) Migration speeds of unpolarized cells 

within narrow channels are significantly slower than polarized cells within narrow channels 

toward the chemoattractant source (p<0.001) (two tailed Student’s t test). The migration speed 

(μm min-1) was measured from a mixture of unpolarized and polarized cells toward a 

micropipette loaded with 10 μM cAMP and folic acid.  The error bars represent the standard 

error of the mean where n = 30. (B) Unpolarized cells in the presence of narrow channels 

migrate slower than folic acid cells in the 100 μm wide channels toward folic acid (p<0.001) (two 

tailed student’s t test). The migration speed (μm min-1) was measured for the vegetative cells in 

a device containing narrow channels and a device containing 100 μm wide channels toward 10 

μM folic acid. n = 30 for folic acid cells with narrow channels and n = 17 for folic acid cells in 

wide channels (2 different days). The error bars represent the standard error of the mean.  (C) 

Representative unpolarized cells within the narrow channels migrate in a relatively straight line 

toward the attractant source. Cells from the two innermost 6 and 12 μm channels in the device 

were analyzed. The cells moved with an average speed of 7 μm min-1 (± 0.6 μm min-1).  (D) 

Representative polarized cells within the narrow channels migrate in a straight line toward the 

attractant source. Cells from the two innermost 6 and 12 µm channels in the device were 

tracked. (E) Representative unpolarized cells in the wide channels migrate in a biased random 

walk toward the attractant source. The unpolarized cells moved at a speed of 11 μm min-1 (± 0.4 

mm min-1).  
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Migration speeds of unpolarized cells within and in the absence of channels  

Unpolarized cells extend random pseudopods quite often even when migrating up a 

concentration gradient of folic acid. To determine whether confinement in the narrow channels 

would affect migration speeds, unpolarized cells were assayed as described above toward folic 

acid in the presence of narrow channels (Figure 7C) and in wide channels (Figure 7E). Cells in 

the wide channels moved at an average speed of 10.95 μm min-1 (± 0.42 µm min-1) while those 

with narrow channels migrated at 6.79 μm min-1 (± 0.67 μm min-1) (Figure 7B). Surprisingly, 

these data indicate that the confinement of the narrow channels did not increase the migration 

speed of the unpolarized cells.  

The migration path of cells under three different conditions was determined by cell 

tracking. Polarized cells moving toward cAMP and unpolarized cells migrating toward folic acid 

were tracked when confined within the middle 12 μm and 6 μm channels (Figure 7C and D). 

These two channels were chosen since the mean concentration and slope most closely 

resembled those of the other device, which had wide channels. The polarized cells migrated in a 

relatively straight line (Figure 7D). The unpolarized cells in narrow channels exhibited a 

migration path with a greater number of lateral movements and more path reversals when 

compared to the polarized cells migrating to cAMP (Figure 7C). Lastly, the unpolarized cells in 

the absence of channels meandered toward the pipette rather than taking a direct route, as 

described above for both the polarized cells and the vegetative cells within the channels (Figure 

7E). Cells in the wide channels clearly strayed off course, yet they migrated faster than cells 

confined to narrow channels.  

We also investigated whether the size of a narrow channel (6 μm versus 12 μm 

channels) would have an effect on the cell migration speed of unpolarized cells. The migration 

speeds of the unpolarized cell in 6 μm and 12 μm channels were measured (Figure 8A). 

Unpolarized cells in the 6 μm and 12 μm channels had an average speed of 8.82 μm min-1 (± 

0.74 μm min-1) and 8.18 μm min-1 (± 0.94 μm min-1), respectively. A time lapse video of polarized 
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cells was also recorded. Cells in each of the channels exhibited similar relative speeds during 

an 18 minute experiment (Figure 8 B–D). These data suggested that the size of the channel did 

not improve or impede relative migration speeds of the cells observed. They also provided 

further evidence that cells respond to the relative change in concentration of chemoattractant 

since the outer channels would have several fold lower mean concentrations.  

 
 
Figure 8. Average cell migration speed is 
independent of varying mean concentrations 
and channel widths A) Average cell speed 
(μm/min) of unpolarized cells migrating toward 
folic acid in 6 μm channels (gray column) and in 
12 μm channels (black column). The standard 
error of the mean was determined for each 
column (n=20). Unpolarized cells in the 6 μm and 
12 μm channels had an average speed of 8.82 
μm min-1 (± 0.74 μm min-1) and 8.18 μm min-1 (± 
0.94 μm min-1) (not statistically significant). B) 

Image of polarized cells migrating toward a 
micropipette filled with 10μM cAMP in the OMD at 
t= 0 minutes. C) Image of polarized cells 
migrating toward cAMP within the OMD at t= 9 
minutes. D) Image of polarized cells migrating 
toward cAMP (white asterisk) for 18 minutes. 
Cells migrated through the channels at roughly 
the same speed in the middle, where the mean 
concentration was highest (asterisk indicates 
micropipette tip), and at the top and bottom of the 
device, where the mean concentration would be 
much lower. Scale bar is 12 μm.  
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Spatial gradient sensing occurs primarily at the leading edge 

  Polarized cells moved rapidly toward the micropipette while in the channel and also once 

they exited the channel on the side facing the micropipette. In fact, an interesting observation 

was made that demonstrated that cells could sense the change in the cAMP profile before fully 

exiting the channel (Figure 9A). We determined the percentage of cells that turned toward the 

chemoattractant source while less than 50% of the cell was outside the channel. The thirty cells 

observed were divided into two classes: (1) cells that turned directly toward the attractant 

loaded micropipette with less than 50% of their cell bodies outside of the channels, and (2) cells 

that turned away from, or did not turn directly toward the micropipette with less than 50% of their 

cell bodies outside of the channels. Out of the 30 cells that were analyzed, 21 cells meeting the 

first criteria turned directly toward the cAMP-loaded micropipette (Figure 9B). Additionally, PH-

GFP and LimE-RFP localized to the fraction of the leading edge that was facing the cAMP-

loaded micropipette (Figure 9A). These results demonstrated that the leading edge of the cell 

could sense a change in the concentration gradient across the midline of the cell without the 

help of the rear of the cell. 

 

Discussion 

 

The OMD apparatus was created for studying the migration of cells in response to a 

passive chemical gradient. Two- and three-dimensional patterns within this device can be 

designed to study various properties of migrating cells to further our understanding of gradient 

sensing and the mechanical properties that regulate cell motility up or down a concentration 

gradient. While other groups have shown the migration of cells through channels in response to 

a passive gradient (Butler et al., 2010; Taylor et al., 2005), this device produces stable gradients 

by using a micropipette. In addition, the cell loading and gradient generation in the OMD are 

completely independent of one another. Cells can be readily introduced into this system through 
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an open well. The micropipette is a high-impedance controlled source of chemoattractant whose 

instantaneous position and flow rate can be readily controlled by the experimenter, whereas the 

devices that utilize reservoirs and multiple channels are generally subject to convective flows 

driven by small differences in hydrostatic pressure between the various reservoirs. The device 

by Butler et al. (Butler et al., 2010) avoids the convection problem by using closed channels, but 

this eliminates the possibility of changing the local gradient, for example, at the opening to the 

migration channel, and limits the ability to load cells into the channel from the low side of the 

gradient. While these other devices are not capable of the rapid changes in gradients or 

concentrations that we can achieve, their geometries may be better suited for the study of cells 

that move or grow slowly. The OMD is ideal for rapidly moving cells, and is not subject to the 

hydrodynamic forces associated with flow gradient mixers (Lin et al., 2004; Walker et al., 2005). 

 The OMD generated gradients of varying profiles and mean concentrations and 

quantified the responses of D. discoideum amoebae toward folic acid or cAMP. For these 

biological assays, a mixed population of cells, as well as a combination of the chemoattractants 

cAMP and folic acid, was used to provide a direct comparison of migration rates while cells were 

under identical experimental conditions. The micropipette was positioned at the very center of 

the device and produced a gradient in all of the channels. The concentration of chemoattractant 

entering the channels nearest the micropipette had a mean concentration that was higher than 

those farther away. While the absolute amount of chemoattractant differed between the 

channels, the relative change in concentration that a cell would experience varied very little, and 

the cells migrated with similar speeds. The experimental design allowed us to directly test the 

effects of cell confinement on migration rates, since the channels were alternated and similarly 

sized channels had both low and high mean concentrations. By varying the micropipette 

pumping pressure, different profiles were generated and their effects on chemotaxis were 

observed.  
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The OMD was used to measure the migration speed of unpolarized vegetative cells and 

of polarized developed cells. We hypothesized that the narrow channels within the OMD would 

suppress lateral pseudopod extension in the unpolarized cells and as a result cause the cells to 

migrate toward the source of attractant faster than unpolarized cells in the wide channels. This 

was not observed. The migration speed of the unpolarized cells in the narrow channels was 

significantly less than that seen for both the unpolarized cells in the wide channels and the 

polarized cells responding to cAMP. We speculate that this result occurred because 

pseudopods from unpolarized cells were extinguished if they encountered a wall in the channel. 

Since the cells appeared to bias their pseudopods in the direction of the concentration gradient, 

only those pseudopods that randomly formed directly up the gradient, and in the center of the 

channel, lead to motility. This resulted in an overall decrease in motility to folic acid. This 

explanation was further supported when the cell migration tracks were measured for each of the 

cell conditions. The vegetative and cAMP-developed cells within the channels migrated in a 

relatively straight line. However, the vegetative cells in the absence of channels migrated in a 

much more random fashion. The gradient sensing system regulates the spatiotemporal 

localization of signaling molecules at the front and rear of the cells (Janetopoulos and Firtel, 

2008). With the OMD, the micropipette formed a gradient via radial diffusion. As a consequence, 

the cells were exposed to a gradient vector that was parallel to the channels within the channels 

and a gradient vector that was perpendicular to the channels when the cells exit the channels. 

 Analysis of polarized cells exiting the channels demonstrated that the leading edge of 

the cell was capable, by itself, of sensing a gradient (Figure 9A and B). In addition, the sensing 

mechanism localized PI3K activity, leading to higher PIP3 levels and ultimately actin 

polymerization as shown by cells expressing PH-GFP and LimE-RFP, respectively. This 

demonstrated that the front of the cell could respond to the gradient independent of ligand 

binding at the rear of the cell. This is a unique finding since most reports on gradient sensing 

focus on the differences in attractant concentration and signaling responses between the front 
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and the back of the cell (Janetopoulos and Firtel, 2008; Janetopoulos et al., 2004; Kimmel et al., 

2004; Korohoda et al., 2002).  

 

 
Figure 9. The turning behavior of cells as they exit the narrow channels. (A) The leading 
edge of a cell has the capacity to sense a cAMP gradient across the midline and turn toward the 
attractant source. Depicted is a representative cell that exhibited turning behavior toward the 
cAMP-loaded micropipette. This cell was expressing PH-GFP (green) and LimE-RFP (red). The 
snapshots in A, B and C were three consecutive frames 15 s apart. Scale bar is 10 μm. (B) 70% 

of polarized cells turned their leading edge toward the micropipette as the cells exited the 
channels. Thirty cells (10 cells each from 3 different days) were analyzed. For a positive turning 
result to be scored, the cells were not in contact with other cells and had at least 50% or less of 
the cell body outside of the channel. 
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Previous studies in Dictyostelium have also shown that cells are more sensitive at the 

front than the rear (Devreotes and Janetopoulos, 2003; Parent and Devreotes, 1999), and that 

immobile cells can respond to multiple stimuli simultaneously (Janetopoulos et al., 2004). Cells 

in a gradient will display stable, localized responses, but when given a global stimulus will show 

a uniform response and adapt (Parent et al., 1998). Numerous models, many containing 

feedback mechanisms, have been proposed to help explain these results and the ability of cells 

to amplify their response when in a chemoattractant gradient (Devreotes and Janetopoulos, 

2003; Fuller et al., 2010; Levine et al., 2006). One scheme, the Local Excitation and Global 

Inhibition (LEGI) model, provides a potential mechanism for these spatial temporal sensing 

responses (Devreotes and Janetopoulos, 2003; Janetopoulos et al., 2004; Parent and 

Devreotes, 1999). The LEGI model has two main components, a fast excitation process, and a 

slower global inhibitor. In a uniform stimulus of chemoattractant the fast local excitation 

processes increase proportionally to receptor occupancy. The inhibitory processes increase 

slowly as a function of the average ligand binding and eventually turn off the response. In a 

steady state gradient, the excitatory processes along the length of the cell are higher in the front 

of the cell than the back, while the inhibitory processes are proportional to the mean receptor 

occupancy and exceed excitatory signals in the rear (Janetopoulos and Firtel, 2008; 

Janetopoulos et al., 2004; Ma et al., 2004). This will allow a persistent directional response 

toward a spatial gradient. The results reported here demonstrate that cells can abruptly turn 

toward the chemoattractant source as they are exiting the channels. This suggests that the 

LEGI mechanism is capable of providing localized responses by measuring the gradient 

difference across the leading edge of the cell. This is consistent with previous data which 

showed that a cell can elicit amplified responses at opposing ends (Janetopoulos et al., 2004). 

In this report, however, it is important to note that the rear of the cell does not see a change in 

the gradient concentration across the short axis of the cell. This is quite different from previously 

reported micropipette assays where cells turn and chase the change in gradient concentration.  
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The turning behavior reported here is depicted in Figure 10, where the cartoon also 

displays several paths that the cell could have taken. The majority of cells observed in these 

experiments made an approximate 90° turn toward the micropipette upon exiting the channel. 

These results suggest that the leading edge of a cell, in addition to being more responsive to 

incremental changes in chemoattractant when exposed to a uniform stimulus, is also very 

sensitive to changes in the gradient concentration. In addition to similar questions outlined in 

this report using the model system D. discoideum, the open microfluidic device could be used 

for addressing many biological questions related to directional sensing and cell migration in a 

wide range of prokaryotic and eukaryotic organisms.  

The OMD is very easy to use, with setup times on the order of a few minutes. Cells were 

loaded into an open chamber and allowed to settle. During this time the micropipette was 

loaded and positioned. Since there were no valves, flow or tubing within the PDMS device, there 

was very little that could go wrong, including no leaks, air bubbles or evaporation issues. The 

device allowed cells to chemotax toward a passive gradient without encountering shear forces. 

Future chemotaxis experiments can custom design the PDMS channels and alter the shape and 

size of the channels to observe the migratory properties of cells when confined by a number of 

different surfaces. These devices, combined with imaging techniques such as total internal 

reflection fluorescence microscopy (TIRFM), will help elucidate the basic principles by which 

cells orient and move directionally. 



48 
 

 
 
 
Figure 10. Turning strategy of cells exiting the channel Cells that exited the channels had a 
number of possible directions to follow as they made their way toward the micropipette. Cells 
could have continued in a straight line, turned in the correct direction, or migrated 1801 in the 
opposite direction. They could have also made more shallow turns in the correct or incorrect 
direction. They mostly migrated directly toward the micropipette, even while their trailing edge 
was still not exposed to the gradient that was perpendicular to the cell. Since the cells did not 
make a shallow turn, as might be expected if you averaged the proportion of the cell’s outer 
surface that is normally exposed to the chemoattractant, the rear of the cell contributed little or 
no spatial information to the turning profile of the cell. 
 

*Work for this chapter has been adapted from the following manuscript. 

Jowhar, D., G. Wright, P.C. Samson, J.P. Wikswo, and C. Janetopoulos. 2010. Open 
access microfluidic device for the study of cell migration during chemotaxis. Integrative 
biology : quantitative biosciences from nano to macro. 2:648-658. 
- Janetopoulos and Jowhar devised concept for device. Wikswo and Samson provided 

input for device design.  Jowhar designed and built device. Jowhar, Wright and 
Janetopoulos designed cell experiments. Experiments and data analysis were 
performed by Jowhar and Wright. All authors read manuscript and provided input. 
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CHAPTER IV 
 
 

 
POLARITY REVERSALS REVEAL THE ROLE OF PI(4,5)P2 IN SIGNALING RESPONSES 

AND POLARIZED MORPHOLOGY 
 
 
 

Introduction 

 

Migrating cells typically exhibit a polarized morphology, which includes the development 

of a distinct cell front and rear and the asymmetric distribution of plasma membrane (PM) and 

cytoskeletal molecular components required for both cell signaling and motility (Devreotes and 

Janetopoulos, 2003). This spatial localization occurs when cells are in a chemical gradient, but 

can also occur during a uniform stimulus, where the cells undergo chemokinesis, and migrate 

randomly (Becker, 1977; Bourne and Weiner, 2002; Kriebel et al., 2003; Wilkinson, 1990). A 

polarized morphology permits the cell to respond robustly to gradients of chemoattractant and 

sets up feedback loops that inhibit pseudopodial projections in the wrong direction, and 

reinforce leading edge formation towards the high side of the gradient (Srinivasan et al., 2013a). 

The social amoeba Dictyostelium discoideum has proven to be an excellent model organism for 

understanding the polarity circuits that control polarized morphologies and eukaryotic 

chemotaxis (Bagorda et al., 2006; Devreotes and Janetopoulos, 2003; Janetopoulos and 

Devreotes, 2006; Kay, 2002; Kimmel and Firtel, 2004; King and Insall, 2009).  

The distribution of many of the molecules critical for cell migration has been well 

documented in D. discoideum. The chemoattractant cAMP binds to serpentine receptors that 

are coupled to the heterotrimeric G proteins (Johnson et al., 1992; Louis et al., 1994; Strader et 

al., 1995; Sun and Devreotes, 1991)  and are uniformly localized on the membrane of polarized 

cells (Xiao et al., 1997). The binding of cAMP to the receptor results in the exchange of GDP for 

GTP in the G2 subunit and the complete dissociation of the G2 heterotrimer (Elzie et al., 
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2009). The continuous activation of the heterotrimeric G-proteins in a uniform stimulus suggests 

that heterotrimeric G-protein activity likely mirrors the cAMP gradient (Janetopoulos et al., 2001) 

and experimental evidence supports this premise (Xu et al., 2007). The first documented 

asymmetric response occurring downstream of the heterotrimeric G-proteins is at the level of 

Ras activation (Sasaki et al., 2004), followed shortly by the recruitment of PI3-Kinase (Sasaki et 

al., 2004) which phosphorylates PI(4,5)P2 to PI(3,4,5)P3, and contributes to the polymerization 

of F-actin  (Funamoto et al., 2001; Iijima and Devreotes, 2002; Merlot and Firtel, 2003; Sasaki et 

al., 2004).  A positive feedback loop is thought to occur between F-actin and PI3K which can 

facilitate the extension of the leading edge towards increasing concentrations of cAMP (Sasaki 

and Firtel, 2006; Sasaki et al., 2007).  

The tumor suppressor and phosphatase PTEN regulates PI(3,4,5)P3 and PI(4,5)P2 

levels and does so by another positive feedback loop, since PTEN directly binds to PI(4,5)P2 on 

the plasma membrane (Chen et al., 2003; Iijima and Devreotes, 2002; Iijima et al., 2004). Cells 

lacking PTEN have an extended PI(3,4,5)P3 and F-actin response and are unpolarized. This 

inability to polarize likely occurs since PTEN contributes to the suppression of the formation of 

lateral pseudopods during chemotaxis (Iijima and Devreotes, 2002; Wessels et al., 2007).  The 

PI(4,5)P2 binding motif at the N-terminus of PTEN serves a dual role of localizing PTEN to the 

membrane and regulating its enzymatic activity (Iijima et al., 2004).  The anchoring of PTEN to 

PI(4,5)P2 on the inner leaflet of the plasma membrane (PM) has also been shown in 

mammalian cells, where PTEN redistributed to the cytosol from the PM after PI(4,5)P2 depletion 

by the forced translocation to the PM of a PI(4,5)P2-specific phosphatase, inositol 

polyphosphate-5-phosphatase (Rahdar et al., 2009).  

PI(4,5)P2 levels are also regulated by the activity of phospholipase C (PLC), which 

hydrolyzes PI(4,5)P2  to create the secondary messengers inositol triphosphate (IP3) and 

 diacylglycerol (DAG) (Berridge and Irvine, 1984; Van Dijken et al., 1994; Van Haastert and 

Devreotes, 2004). PLC null cells can still display a polarized morphology during aggregation and 
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PTEN dissociates from the membrane upon uniform stimulation with cAMP, with kinetics similar 

to those seen in wild type cells (Srinivasan et al., 2013a). However, PTEN does localize more 

strongly to the PM in cells lacking PLC and fails to redistribute to the cytosol when stimulated 

with the weaker chemoattractant folic acid. Furthermore, cells overexpressing PLC have less 

PTEN on the PM (Kortholt et al., 2007; Srinivasan et al., 2013a). This data suggests that PLC is 

not necessary for the regulation of PTEN, but can regulate PI(4,5)P2 levels which in turn directly 

influence PTEN localization. The activity of these enzymes likely creates an asymmetric 

distribution of phospholipids and effector molecules at the front and rear of the cell.  

 Interestingly, the role of PI(4,5)P2 has mostly taken a back seat to understanding how 

or if PI(3,4,5)P3 generates actin polymerization and contributes directly to motility (Ganesan et 

al., 2006; Hoeller and Kay, 2007; Vedham et al., 2005; Xu et al., 2003). After over 15 years of 

being in the limelight, there are very few pieces of evidence directly linking PI(3,4,5)P3 to actin 

polymerization and in fact numerous papers suggesting that it does not link to PI(3,4,5)P3 

(Andrew and Insall, 2007; Park et al., 2008). 

The role of microtubules has also been examined during chemotaxis in D. discoideum by 

imaging GFP tagged tubulin in normal and drug-treated cells. Both trimethyltin and nocodazole 

treatment, which disrupt microtubules, caused an inhibition of chemotaxis (Sroka et al., 2001). 

D. discoideum contain a nucleus-associated centrosome that serves as the microtubule-

organizing center (MTOC). Microtubules appear to serve as anchoring structures for the 

nucleus, and are largely absent from pseudopods (Rubino et al., 1984) and the location of the 

nucleus and the MTOC during cell migration likely plays a role in determining the stability of the 

pseudopod in random motility (Ueda et al., 1997), but there has been limited work showing the 

role that microtubules play in overall polarity of the cell.  

In this study, we were able to observe the redistribution of signaling and cytoskeletal 

components during the complete reorganization of a cell’s morphological polarity. We reset the 

cell’s polarity 180º using a microfluidic device and protocol, so that the old front became the new 
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rear of the cell and vice versa. This gave us the unprecedented opportunity to watch the 

breakdown of the cell’s polarity and the emergence of polarity in the opposite direction. During 

these events, we visualized and performed the quantification of a number of signaling and 

cytoskeletal markers. We have previously developed several “open” microfluidic devices 

(OMDs) that permitted the quantitative analysis of cell migration in confined channels using a 

passive gradient under the control of a micropipette (Jowhar et al., 2010; Wright et al., 2012). 

The system described here uses a similar platform; however a pair of micropipettes allows the 

gradient to be rapidly reversed once the cells enter the channel. We observed the localization of 

several polarity markers which include a Ras activity biomarker, the Ras binding domain fused 

to the red fluorescent protein (RBD-RFP) (Sasaki et al., 2004); a PI3-kinase activity marker, the 

Pleckstrin Homology domain fused to green fluorescent protein (PH-GFP) that monitors 

PI(3,4,5)P3 levels (Parent et al., 1998); the tumor suppressor and phosphatase PTEN fused to 

GFP (PTEN-GFP, which is also a marker for PI(4,5)P2) (Iijima and Devreotes, 2002; Iijima et 

al., 2004; Rahdar et al., 2009); LimE-RFP, a marker for F-actin polymerization (Clarke et al., 

2006); and Tubulin-GFP, which marks microtubules (Octtaviani et al., 2006) and quantified the 

time it takes for redistribution of these fluorescently tagged molecules during polarity reversal. 

When highly polarized cells are exposed to a gradient at their rear, they typically do a U-

turn (Devreotes and Janetopoulos, 2003; Srinivasan et al., 2013a). The assay described here 

confines individual cells in 3 dimensions (3D) to prevent U-turns when the gradient of 

chemoattractant is reversed 180º. This gave us the unique ability to visualize the collapse of 

cellular polarity and the reestablishment of polarity in the new gradient direction. We also gained 

insight from stimulating cells at metaphase to further support our model for the role of PI(4,5)P2 

in signaling responses. These results show the dominant role that PI(4,5)P2 and  “backness” 

plays in polarity and also elucidate the interactions of signaling molecules and cytoskeletal 

elements with one another.  
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Results 

 

Experimental design  

We developed a procedure that used passive cAMP gradients to direct cells into confined 

channels (Figure 11a). This cell migration device was developed based on a previous OMD that 

used a micropipette to produce passive chemical gradients and polydimethylsiloxane (PDMS)-

based technology to form the 3D channels (Jowhar et al., 2010). The device is essentially a wall 

with channels running through it that are adjacent to the coverslip. The channels open to 

reservoirs that both contain a cAMP-filled micropipette. Polarized cells migrate through the 

channel and toward one of the micropipettes. The gradient can be reversed by removing the 

first pipette and lowering a second pipette at the rear of the cells (Figure 11b).The dimensions of 

the channels were designed so that they were small enough that cells had to invert their polarity 

and were prevented from making U-turns (Figure 11c).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Experimental Setup for polarity reversal experiments. A) Actual setup of 
experiment. Top image shows a top down view of device chamber mounted on a microscope 
stage flanked by two micropipettes that secrete cAMP. Bottom image shows a side view of the 
same setup. 40 X oil objective was used for these experiments.  B) Cells expressing fluorescent 
biomarkers are lured into microfluidic channels toward a gradient of cAMP secreted from a 
micropipette. Once the cells are in the channels, the micropipette is removed and a second 
micropipette containing cAMP is introduced at the rear of the cell. The changes in cell 
morphology and protein localization are measured while the cell reverses its polarity in response 
to the change in gradient direction. C) DIC Image of a highly polarized cell undergoing the 
polarity reversal process while in the microfluidic channels (*) indicates the location of the 
micropipette. 
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Ras activation occurs as the leading edge forms and only does so where PI(4,5)P2 levels 

are low 

Highly polarized cells expressing RBD-RFP, one of the first signaling components known 

to be activated, were lured into channels and were observed during the reversal process (Figure 

12). It takes approximately one minute for a cell to have overall net movement in the opposite 

direction when the gradient is reversed. Some cells responded quickly and switched directions 

faster, while others continued moving without ever reversing. Kymograph analysis and intensity 

quantification revealed that Ras activation occurred at the new front of the cell prior to an 

increase in PI(3,4,5)P3 levels (Figure 12a and see below). In addition, in 8/11 cases, new 

pseudopod extension only occurred when levels of Ras activation were higher at the new 

leading edge than the residual activity at the old front (Figure 12b, 12c). In some instances, Ras 

activity could be visualized moving along the periphery of the cell to the other end of the cell 

(see Figure 13a). 

The kymograph analysis also revealed that back retraction could occur prior to front 

extension. We quantified the length of these cells immediately before and just after the gradient 

reversal and found a vast majority of cells (>70%) shortened prior to changing directions. The 

decrease in cell length can also be visualized in the two kymographs below. PI3K activity was 

monitored by measuring PH-GFP (Figure 12d-f).  PI3K activity was present at the old leading 

edge prior to gradient reversal, and appears again after pseudopod extension at the new 

leading edge.   Cells were unable to extend a new front and move forward until the PTEN-GFP 

levels dropped substantially from the “old” back (see Figure 12g, h). Interestingly, it was not 

necessary for there to be PI(3,4,5)P3 or PTEN at the new front or rear, respectively, for new 

front or rear extension to occur (Fig 12d,g, time zero).  A drop in leading edge PTEN levels 

corresponds with a dramatic increase in front extension and a rapid increase in PTEN levels at 

the new rear. In some instances, PTEN or PH-GFP were present on both ends of the cell 

simultaneously during the polarity reversal (Figure 12c and see Figure 14). When this occurred, 
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the cells appeared to be “locked” in place. The presence of PI(3,4,5)P3 at the “old” leading edge 

was not sufficient for the cell to continue extending in the “old” direction. 

 Quantification of signal increases by taking ratios of the new cell fronts to old cell fronts 

indicates that Ras activity is the first marker to increase after gradient reversal (Figure 15a).  

Ras activity also reaches a maximal level before both PI(3,4,5)P3 and PI(4,5)P2 (Figure 15b). 

However, Ras activity by itself was also not sufficient to produce pseudopod extension.  PTEN 

redistributes both through the cytosol and along the periphery of the cell during polarity 

reversals (see Figure 12h). Once PTEN levels rise at the rear, they are stable, whereas RBD 

and PI3K activity oscillate as the cell migrates. 
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Figure 12. Ras activation, PIP3 and PIP2 localization during polarity reversal a) 
Kymograph indicating polarity reversal of a representative cell. Areas of Ras activity are shown 
by arrow heads. Solid block arrows indicate the high side of the gradient. Dashed line indicates 
time point of gradient switch (0 seconds). b) Still images of the cell in A as it undergoes polarity 
reversal. There is Ras activity at the leading edge of the cell as indicated by solid arrows. c) 
Signal intensity of RBD RFP as measured at the new front and old back of the cell indicates that 
in 5/11 cases Ras activity is higher at the new front than the old front when the cell starts to 
move forward. d) Kymograph indicating polarity reversal of a representative cell. Areas of PI3K 
activity are shown by arrow heads. Pseudopod extension is indicated by solid arrows. e) Still 
images of the cell in A as it undergoes polarity reversal. There is PI3K activity at the leading 
edge of the cell which increases after the cell has reversed as indicated by solid arrows. f) 
Signal intensity of PH-RFP as measured at the new front and old back of the cell indicates in 8/9 
cases PIP3 is higher at the old front than the new front when the cell starts to move forward. g) 
Kymograph indicating polarity reversal of a representative cell. Areas of PTEN localization are 
shown by arrow heads. Solid arrows indicate front extension after PTEN dissociates from the 
new front of the cell. Dashed arrows indicate back retraction while PTEN is still at the old back 
of the cell. h) Still images of the cell in g) as it undergoes polarity reversal. There is PTEN 
localization at both the front and the rear of the cell (Time Point 170 seconds). PTEN also 
appears to be moving along the sides of the cell as indicated by arrow heads. h) Signal intensity 
of PTEN-GFP as measured at the old from and new back indicate that in all cases (8/8), PTEN 
is higher at the old back than the new back (old front of the cell) when the cell begins to retract 
its new back. Bar graphs are for individual cells. (11 cells for Ras activity (4 different days), 9 
cells for PI(3,4,5)P3 (2 different days) and 8 cells for PTEN (2 different days)). Scale bar in cell 
images is 10 µm.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 



59 
 

To examine the relationship between Ras activity and PI(4,5)P2 levels, we examined 

cells that co-expressed RBD-RFP and PTEN-GFP (Figure 13). Ras activity and PI(4,5)P2 levels 

did not co-localize during cell migration. Furthermore, new pseudopod extension only occurred 

when PI(4,5)P levels dropped and PTEN dissociated from the membrane (Figure 13a). To 

determine if the actin cytoskeleton influenced the localization of these two markers, we 

examined cells responding to a moving cAMP-filled micropipette in the absence of an actin 

cytoskeleton and again found Ras activity and PI(4,5)P2 levels to be reciprocally regulated 

(Figure 13b). We also monitored RBD-RFP and PTEN-GFP in highly polarized cells stimulated 

with a uniform stimulus of cAMP. Interestingly, we again did not see the co-localization of Ras 

activity in areas where PI(4,5)P2 was high (Figure 13c). To examine this localization at higher 

spatial and temporal resolution, we performed Bessel Beam microscopy of cells expressing 

these two biomarkers (Habib et al., 2013). This gave us the unprecedented ability to monitor the 

plasma membrane of the entire cell with 300 nm x, y, and z resolution. These 3D volumes again 

show the reciprocal regulation of Ras activity and PI(4,5)P2 (Figure 13d).  Since Ras activity 

has been shown to occur prior to PI3K activity, we speculated that RBD-RFP should translocate 

to the PM prior to PTEN-GFP moving to the cytosol in cells that were unpolarized. Ras activity 

reached a maximum within a few seconds after uniform cAMP stimulus, whereas PTEN-GFP 

moved to the cytosol a few seconds later.  Therefore, Ras activity can occur while PI(4,5)P2 

levels are high if cells are exposed to a rapid increase in saturating cAMP, but Ras activity 

diminishes as PTEN-GFP returns to the PM and PI(4,5)P2 levels reach prestimulus levels 

(Figure 13 e,f). 
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Figure 13. Ras activity occurs in regions that have low PIP2 levels a) A polarized cell 
undergoing a polarity reversal after a gradient switch has Ras activation at the new front of the 
cell, but is not able to extend a pseudopod until PTEN GFP comes off the new front of the cell 
(Time point 30 seconds). Arrow heads indicate Ras activity moving along the edges of the cell 
b) Cells treated with Latrunculin A do not show colocalization between Ras activity and PTEN in 
the absence of polymerized actin. Star indicates location of micropipette. Arrow heads indicate 
areas of Ras activity and PTEN localization c) Polarized cells exposed to a uniform dose of 
cAMP do not sow colocalization between Ras activity and PTEN as observed in time point 15 
and 30 seconds. Arrows indicate areas of Ras activation that do not have PTEN localization. d) 
Super Resolution Bessel Beam image of cells expressing both RBD and PTEN. Arrows indicate 
regions where Ras activity is present while PTEN is absent. e) Cells that have been starved for 
5.5 hours are treated with a uniform dose of cAMP as shown in time point 8 seconds. Image is 
of a representative cell. Ras activity is shown by solid arrows. f) Quantification of Ras activity 
and PTEN intensity (PIP2 localization) measured in the cytosol of cells shown in (e). Graph is 
an average of 3 different cells in the same field of view. Ras activity starts to go down 
immediately prior to PIP2 levels increasing at the membrane. cAMP stimulus was added at 8 
seconds as indicated by the dotted line. Solid circle shows PTEN peak, while white star shows 
lowest Ras activity peak in the cytosol due to the recruitment of Ras activity to the cell 
membrane. Scale bar is 10 µm. 
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Figure 14. PIP3 is not sufficient to direct actin polymerization A cell expressing the PIP3 
marker (PH-GFP) has its crescent at the leading edge of the cell during migration. When the cell 
senses the new gradient, it localizes PIP3 at the new front (old back) at time point 25 seconds. 
Even though there are high levels of PIP3 at the old front (new back) of the cell, it moves 
towards the new gradient. Eventually, the new front of the cell has high PIP3 levels compared to 
the new back. Scale bar is 10 µm. 
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Figure 15. Ras activation increases significantly and quickly at the leading edge of a cell 
a) When measuring the ratio of Ras activation, and PIP3 at the new front vs. the old back) and 
PIP2 (old back vs. new front), we find that Ras activity has a significantly higher fold change. 
There were 11 cells used for Ras activity (4 different days), 9 cells for PIP3 (2 different days)and 
8 cells for PTEN (2 different days). A one tailed student t test with type two sample unequal 
variance was used to determine if the fold increases for Ras, PIP3 and PTEN were statistically 
different from each other. It was determined that Ras activity increase was statistically 
significant than PIP3 (p value < 0.012) at the new front and PTEN ( p value <.00809) at the new 
back. b) The time it takes for Ras activity to reach its peak at the new front of the cell is smaller 
compared to PIP3 (new front) and PIP2 (new back) of the cell. 9 cells were used for Ras activity 
(3 different days), 10 cells for PIP3 (2 different days), 9 cells for PTEN (2 different days), and 10 
cells for PTEN plc null (3 different days). 
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PLC null cells still reverse polarity and PTEN forms vesicles at the rear of the cell when 

cells reverse. 

In order to investigate the role of PI(4,5)P2 during polarity break down and 

reestablishment, we expressed PTEN-GFP in PLC null cells. Cells lacking PLC have been 

shown to influence PI(4,5)P2 levels (Kortholt et al., 2007; Srinivasan et al., 2013b) and also 

have trouble responding during chemorepellant stimulation (Keizer-Gunnink et al., 2007).  Prior 

to the reversal, cells were polarized and migrating towards the high side of the gradient. As 

seen in wild-type cells, high levels of PI(4,5)P2 at the old back blocked the establishment of 

“frontness” and pseudopod extension (Figure 16a). On the other hand, rear retraction clearly 

begins before the redistribution of PTEN-GFP to the new back. Much of the PTEN in PLC  null 

cells appeared to redistribute to the back of the cell by diffusing along the plasma membrane, 

but there was also PTEN diffusion through the cytosol (Figure 16b). These PTEN-GFP 

decorated vesicles appeared to break away from the rear of the cell in small patches and 

reassociate with the new rear side of the cell (Figure 16 a,b). Similar vesicular structures were 

also present when PLC nulls were imaged during random migration (Data not shown). On 

average, cells lacking PLC retracted their “new” rear more quickly than wild-type cells after 

gradient switching (Figure 16c) but there no detectable difference in the ability of cells to ramp 

up the PI(4,5)P2 levels in the new backs (Figure 17). 

It has been suggested that other regulators that use PI(4,5)P2 as a substrate, should 

also influence overall PI(4,5)P2 levels (Kortholt et al., 2007; Srinivasan et al., 2013a).  To test 

the ability of cells to regulate PI(4,5)P2 levels in the absence of PI3K activity, PLC nulls were 

stimulated in the absence and presence of the PI3K inhibitor LY 294002. Untreated cells 

showed a very strong redistribution of PTEN-GFP to the cytosol in response to a uniform 

stimulus of cAMP (Data not shown). Treated cells had very little loss of PTEN-GFP on the 

plasma membrane (Figure 16e).  Wild-type cells in the same field expressing PH-GFP and a 

marker for actin polymerization, showed no increase in PI(3,4,5)P3 levels, but displayed a very 
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strong actin response.  These results show that PI3K activity contributes to the lowering of 

PI(4,5)P2 levels, but there is still yet another regulator of PI(4,5)P2 levels. Interestingly, these 

cells were still able to move in the direction of the micropipette, and lowered their PI(4,5)P2 

levels on the pseudopods that were extending outward. It is worth noting that the wild-type cell 

also extended an actin-filled projection in the absence of PI3K activity (Figure 16e) (Housman).  
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Figure 16. plc-/PTEN-GFP cells can reverse their polarity after a gradient switch a) 
Kymograph indicating polarity reversal of a representative cell. PTEN enrichment is shown by 
arrows. Back retraction before PTEN localization at the new rear is indicated by dashed arrows. 
b) Still images of the cell in A as it undergoes polarity reversal. There is an enrichment of PTEN 
at the rear of the cell as indicated by solid arrows. Vesicles containing PTEN GFP are also 
observed. c) Comparison of the time it takes to extend the new front and retract the new back 
between wild type and plc null cells. 8 cells (2 different days) were used for Wild type data set 
and10 cells (3 different days) were used for PLC null data set. See text for actual values. Error 
bars show standard error of the mean. See Chapter II for Methods.  d) Signal intensity of PTEN 
GFP measured at the new back of the cell at the time point of gradient change and at the time 
point of initial back retraction shows that in 8/10 cells, PTEN is higher at the old back of the cell 
when the back starts to retract. Bars represent data for each individual cell. Experiments are 
from 3 different days. e) plc- cells expressing PTEN GFP are exposed to cAMP at time point 12 
seconds (solid arrow). Cell Labeled C is a control cell that expresses both PH-GFP (top panel) 
and LimE RFP (bottom panel). Star indicates micropipette location. Solid Arrow indicated the 
time point of the uniform stimulation (12 seconds). Arrow heads indicate pseudopod extensions 
that do not have PTEN (78 seconds). Dashed arrow indicates pseudopod extension with LimE 
(bottom panel). Scale bar is 10 µm. 
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Figure 17. PLC null cells take longer to accumulate PTEN at the new rear of the cell 
compared to wild type cells The intensity of PTEN-GFP at the old back and new back were 
measured. The graph indicates the average time it takes for the new back of the cell to have 
more PTEN than the old back of the cell after the cell has started to retract its new back. The 
average time was taken for 6 cells (2 different days) for wild type and 9 cells for PLC null cells (3 
different days). Error bars are for standard error of the mean.  
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Microtubule interaction with the plasma membrane at the poles is inversely correlated 

with the presence of F-actin. 

We monitored the dynamic localization of microtubules during D. discoideum chemotaxis 

toward a gradient of cAMP and after gradient reversal. Microtubules initially at the rear of the 

cell, maintained their positioning at the new front of the cell until a new leading edge formed and 

a pseudopod extended (Figure 18 a and 18 d). Once the cell extended these pseudopods, 

microtubules were excluded from this region. We speculated that F-actin filled projections were 

somehow excluding the microtubules from these regions. To test this, we examined cells that 

were expressing both GFP-tubulin and LimE-RFP, a marker for actin polymerization. As can be 

seen from Figure 18B, the GFP-tubulin and LimE-RFP do not co-localize. To explore this 

localization further, this phenomenon was also confirmed in cells undergoing random migration 

using Bessel Beam microscopy (Figure 18c). There is a complete lack of GFP-tubulin from F-

actin filled pseudopods and macropinosomes, while in areas where there is little LimE-RFP 

signal, GFP-tubulin can often be seen interacting with the plasma membrane. As has been 

previously been reported, we found that the nucleus oriented towards the front, with the MTOC 

at the rear during directed migration. Microtubules originating from the MTOC were found mainly 

on the sides and the rear of the cell and were absent from the leading edge (Figure 18b and c).  

Cells expressing GFP-tubulin were also observed during the reversal process. Microtubules 

reach the new rear of the cell, prior to a PIP3 crescent at the new front of the cell (Data not 

shown). In cells treated with Latrunculin-A, it was also found that the microtubules are very 

active and can be seen interacting with the inner portion of the plasma membrane for short 

periods of time. During these time periods, the MTOC/nucleus also appears to move slightly as 

if it is temporarily connected to the plasma membrane via the microtubules (Figure 18d). 
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Figure 18. Areas of actin and microtubule polymerization are mutually exclusive a)The 
extension of a pseudopod at the new front of the cell dislodges microtubules b) Microtubules 
and polymerized actin are spatially segregated. c) Similar segregation was found during random 
movement by Bessel Beam microscopy d) Cells treated with Latrunculin-A to dissociate the 
actin cytoskeleton have microtubules present all over the cell and can sense the gradient 
indicated by the PH-CRAC signal as indicated by arrows. The migrating cell has not fully 
depolymerized its actin cytoskeleton.  N - Nucleus, MTOC – Microtubule Organizing Center. 
Projection Images of 5 planes. Scale bar is 10 µm. 
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To pursue the role that high levels of PI(4,5)P2 have on chemoattractant-mediated 

responses, we decided to stimulate cells at the onset of metaphase.  Cells typically round up at 

the onset of metaphase prior to cell division. It has been shown in D. discoideum that the PM 

levels of PI(4,5)P2 are uniformly high along the entire periphery of the PM at metaphase 

(Janetopoulos et al., 2005).  This mirrors the localization of myosin II and presumably cortexilln 

I, which also binds to PI(4,5)P2.  Presumably, the cell resets it’s polarity prior to anaphase when 

the spindle re-establishes asymmetry (Janetopoulos and Firtel, 2008). Vegetative cells 

expressing PH-GFP were stimulated with the chemoattractant folic acid at metaphase. These 

cells showed no response, while surrounding control cells in other stages of the cell cycle 

showed robust PI(3,4,5)P3 responses (Figure 19a and 19b).  When we stimulated cells 

expressing PTEN-GFP at metaphase, PTEN did not redistribute to the cytosol (data not shown). 

Presumably, the feedback loops that maintain the high levels of PI(4,5)P2 at metaphase are 

hard to break at this stage of the cell cycle  

We wondered whether cells were incapable of responding to chemoattractants during 

metaphase, so we stimulated metaphase cells expressing RBD-GFP. To our surprise, cells 

gave a strong response, suggesting that the upstream components were intact (Figure 19b). 

This finding suggested that PI(3,4,5)P3 responses were inhibited due to the large amount of 

PTEN on the PM. To test this, we stimulated PTEN null cells expressing PH-GFP with folic acid.  

Metaphase cells gave a very robust PI(3,4,5)P3 response (Figure 19c). The PI(3,4,5)P3 

response was largely confined to the poles of the dividing cell and persisted through the latter 

stages of cytokinesis.  Interestingly, the response of PTEN null cells at metaphase and at other 

stages of the cell cycle were completely the opposite of wild-type cells at metaphase or at other 

stages of the cell cycle. PTEN null cells gave strong responses at metaphase, while wild type 

cells showed no response (Figure 19b).  PTEN null cells at other stages of the cell cycle 

showed little or no response since their PMs were already highly decorated with PH-GFP as 

vegetative cells are highly sensitive to stochastic signaling fluctuations (Srinivasan et al., 
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2013b).  Wild-type cells at other stages of the cell cycle in the same field had robust PI(3,4,5)P3 

responses. Note that PTEN null cells have very little PI(3,4,5)P3 at the furrow.  This is not 

surprising given that migrating PTEN null cells only have PI(3,4,5)P3 on the side of the cell 

facing the higher concentration of chemoattractant (Iijima and Devreotes, 2002)  and suggests 

that other regulators maintain elevated PI(4,5)P2 levels in the furrow of dividing and in the rear 

of migrating PTEN null cells. Lastly, the PI(3,4,5)P3 response in metaphase  PTEN null cells 

display kinetics similar to those seen to wild-type cells.  

Given that RBD was active, but PTEN did not redistribute in metaphase cells, we 

examined cells expressing PI3K2-GFP (Janetopoulos et al., 2005) and LimE-RFP (Clarke et al., 

2006) to see whether they responded to folic acid stimulation.  PI3K2 and LimE responded 

rather weakly, while control cells showed robust responses (Figure 19e) (Rucker and 

Khodadadi).  We stimulated cells at metaphase and also again later at anaphase. Responses at 

metaphase were uniform, while those at anaphase were limited to the poles, as has been 

previously described (Janetopoulos et al., 2005). Cells at metaphase were still activating Ras, 

PI3K and had an actin response, yet the cells hardly showed any morphological change as 

compared to cells in other phases of the cell cycle (Data not shown). 
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Figure 19. High PIP2 levels reduce response after uniform stimulation by 
chemoattractant a) Cells undergoing mitosis do not have PH-GFP membrane localization 
under uniform stimulus of folic acid. b) pten-/PH-GFP cells undergoing mitosis have low PH-
GFP at the membrane after uniform FA stimulation (6 seconds) and also have low PH-GFP at 
the furrow. c) Cells that express LimE RFP and PI3K GFP have weak PI3K localization after 
uniform folic acid stimulus. d) Quantification of PH-GFP in dividing cells vs. control cells shows 
that the PH-GFP signal does not change in dividing cells after stimulation. The p-value for this 
data set is 1.48E-06. e) RBD localization before and after stimulation with Folic Acid at 
Metaphase shows that Ras activity localizes to the membrane after uniform stimulation. +FA = 

10 m uniform Folic Acid. 
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DISCUSSION 

 

Advantages of using the open microfluidic system for cell polarity studies 

There have been many studies performed using D. discoideum cells to look at the 

responses of cells exposed to rapidly shifting gradients by moving a micropipette filled with 

chemoattractant to either the front or the rear of the cell in order to induce cells to change 

directions (Chen et al., 2003; Dalous et al., 2008; Devreotes and Janetopoulos, 2003; 

Srinivasan et al., 2013a). Microfluidic experiments in a flow based bidirectional gradient 

generator that changed the gradient of unconfined cells have also looked at cells in varying 

gradients (Meier et al., 2011). Here, we described a protocol that uses two micropipettes 

eliciting passive cAMP gradients and confines cells to individual channels to prevent the cells 

from doing U-turns and which forces them to invert their polarity and completely reorganize their 

cytoskeleton. This technique allowed us to study individual cells as well as quantify the spatial 

and temporal redistribution of signaling and cytoskeletal components during polarity loss and 

reestablishment in the opposite direction.   

Kymograph analysis reveals distinct features of polarity establishment 

As can be seen from the kymographs in (Figures 12 a,d,g and Figure 16a), the rear of 

the cell typically begins retracting before front extension.  Front extension did not occur until 

redistribution of PTEN from the PM of the old rear. Measurement of PI(4,5)P2 and PI(3,4,5)P3 

accumulation during polarity reversals indicate that PI(4,5)P2 accumulation is slightly slower at 

the new rear of the cell compared to PI3K activity at the new front of the cell. The generation of 

PI(3,4,5)P3 likely occurs rapidly since Ras activity is upregulated very quickly. On the other 

hand, PTEN-GFP has to make its way across the length of the cell before it can set up a 

feedback loop in the developing rear.  

Interestingly, our data shows that neither “frontness” nor “backness” seems sufficient for overall 

cell motility.  Net movement of the cell requires the proper balance of the two. Additionally, cells 
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having PTEN on both ends do not retract on both ends and shorten, while cells having high PM 

levels of PI(3,4,5)P3 do not have two leading edges and do not stretch out and elongate. The 

latter case is reminiscent of dividing cells, where there is some extension in opposite directions 

of PI(3,4,5)P3-labeled poles, but has one critical difference since there is still polarity driven by 

the developing furrow, which contains high levels of PI(4,5)P2 during cytokinesis (Janetopoulos 

et al., 2005).  

Relationship between microtubules and the actin cytoskeleton 

The role of microtubules during chemotaxis has been studied in various cell types such 

as D. discoideum and mammalian cells. Early work showed that microtubules in moving cells 

are excluded from the leading pseudopod (Rubino et al., 1984). Moreover, the microtubule 

network is associated with the MTOC and helps maintain the nucleus in a fixed position. In 

migrating amoebae, it was shown that nuclei can be found in the frontal region of the cell but 

more preferentially following the MTOC (Schliwa et al., 1999). Our experiments indicate that 

front extension as well as back retraction during polarity re-establishment was observed prior to 

MTOC and nucleus repositioning. These results suggest that the initial positions of the MTOC 

and nucleus are not mandatory for initially establishing cell polarity during chemotaxis but are 

likely important for the maintenance of polarity as it is being established. The position of the 

MTOC could determine where the microtubules are localized in the cell. Molecules transported 

along the microtubules may contribute to reinforcement of “backness” and may also interact with 

PI(4,5)P2 (Klopfenstein et al., 2002).  

Interestingly, cells naturally disassemble their entire microtubule cytoskeleton at 

metaphase. Based on the localization of the microtubules during motility, one would expect 

PI(4,5)P2 levels to drop, yet they rise along the entire PM and the cells become all “back”. Then, 

during anaphase, astral microtubules extend and contribute to activation at the poles, which has 

components analogous to the leading edge of the cell. This suggests either that microtubules 

have no role in establishing membrane asymmetry or that the microtubules during cytokinesis 
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interact differently with the PM than they do during the rest of the cell cycle.  Our work at 

metaphase shows that an intact microtubule network is not necessary for signaling responses or 

actin polymerization. Interesting questions persist: Does the loss of polymerized microtubules 

contribute to the rise in PI(4,5)P2 levels and backness?. In any case, understanding the 

mechanism at this stage should be of high priority since it would potentially make a very good 

drug target for silencing overactive cells such as those seen during metastasis.  

Antagonistic role between PI(4,5)P2 and Ras 

While the reciprocal relationship between PTEN and PI3K has been well documented, 

this is the first report showing the antagonistic spatial localization of Ras activity and PM 

PI(4,5)P2 levels.  There was no colocalization of activated Ras and PTEN in both migrating 

polarized cells as well as in Latrunculin treated cells that were exposed to rapidly changing 

cAMP gradients.  

High levels of PM PI(4,5)P2 put the brakes on actin polymerization and contribute to 

“backness” 

We have recently expanded on what was apparent to some in the motility and polarity 

fields. Signaling molecules that translocate to the plasma membrane in response to a 

chemoattractant stimulus largely localize to the front of a migrating cell or to the poles of a 

dividing cell. Conversely, signaling molecules that interact with PI(4,5)P2 are largely on the 

plasma membrane prior to a stimulus, and redistribute to the cytosol. Such PI(4,5)P2 markers 

like PTEN or cortexillin I are also localized to the rear of a migrating cell and furrow of a dividing 

cell.  

The link between the actin cytoskeleton and the phosphoinositols has not been shown 

directly. One of the best pieces of evidence to show this link used cells that have a disruption in 

the PTEN gene. These cells are expected to have high PI(3,4,5)P3 levels due to the absence of 

PTEN. Experiments have shown that the PIP3 response as well as the actin response is 

elongated and also highly coordinated in the absence of PTEN (Iijima and Devreotes, 2002; 
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Janetopoulos and Firtel, 2008). This has been used as a premise to link PI(3,4,5) levels to actin 

polymerization. However, it may be that is not just because of high PI(3,4,5) levels, but also 

because of low PI(4,5)P2 levels that actin polymerizes. It may be that PI(3,4,5)P3 does support 

the generation of actin polymerization (Ganesan et al., 2006; Vedham et al., 2005; Xu et al., 

2003). However, we speculate that it is also critical for PI(4,5)P2 levels to be lowered. PI3-

kinase activity contributes to lower levels by using PI(4,5)P2 as a substrate, as does PLC. Both 

are activated in response to chemoattractants. Loss of PTEN means both a sustained level of 

PI(3,4,5)P3 and lower PI(4,5)P2 levels after a uniform stimulus. We propose that it is these low 

levels of PI(4,5)P2 that provide access to effector molecules that drive F-actin polymerization 

(Figure 20).  This model would explain why there can often be F-actin polymerization in the 

absence of PI3K activity.  Work in the mammalian system has also shown that lowering of 

PI(4,5)P2 levels is critical for cofilin activation, and thus a similar mechanism is likely at work in 

higher eukaryotes (Bravo-Cordero et al., 2013), although we would speculate that there is much 

evidence to suggest that other mechanisms also regulate the polymerization of actin filaments 

during migration (Chen and Pollard, 2013; Choi et al., 2013; Insall et al., 2001).  
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Figure 20. Model for defining “frontness” and “backness” via PI(4,5)P2 Once a cell senses 
a cAMP gradient, it activates the G protein coupled receptors which lead to other events 
downstream such as Ras activation followed by PI3K activity at the leading edge to convert 
PI(4,5)P2 to PI(3,4,5)P3. PI(4,5)P2 is also converted to IP3 + DAG by PLC. The combined 
efforts of PI3K and PLC help to lower PI(4,5)P2 levels at the leading edge of the cell which 
allows for the leading edge to form by enabling F-actin based protrusion. The sides and rear of 
the cell have high PI(4,5)P2 levels which promote actomyosin and rear constriction. The 
balance between high and low PI(4,5)P2 levels determines “frontness” and “backness” 
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What else supports this model? PLC overexpressing cells lower PI(4,5)P2 levels, and 

morphologically resemble PTEN null cells in a cAMP gradient. These cells also trigger very 

strong PI(3,4,5)P responses when given a uniform stimulus (Kortholt et al., 2007). It may be that 

in both cases, lower PI(4,5)P2 levels initiate positive feedback loops which allow “frontness” and 

branched F-actin polymerization to occur. We suggest that just the opposite occurs at 

metaphase where the cell membrane becomes quiescent prior to the taking over of cell polarity 

by the spindle apparatus.   Metaphase cells have a high PI(4,5)P2 levels and a higher threshold 

to activate branched F-actin polymerization. 

We propose a model where high PI(4,5)P2 levels can block membrane protrusion and 

contributes to “backness”, which helps maintain and stabilize the rear or furrow of the cell. While 

careful measurements of the PM levels of PI(4,5)P2 have not been done, the loss of PTEN (and 

cortexillin I) from the PM in response to uniform stimulation of chemottractants in wild-type cells 

suggests that PI(4,5)P2 levels drop considerably and then rapidly rise as the PI(3,4,5)P3 

response terminates.  We suggest that it is a possibility that the low levels of PI(4,5)P2 provide 

access of GEFs to excitatory components (like activated heterotrimeric G proteins and small 

GTPases). When PI(4,5)P2 levels are high, the local environment favors activators of 

“backness” and blocks excitatory signaling molecules like Ras.  This rise in PI(4,5)P2 may be 

the elusive “inhibitor” that several models have proposed as regulating chemoattractant-

mediated responses (Janetopoulos et al., 2004), and many other modeling papers (Levchenko 

and Iglesias, 2002; Meinhardt, 1999). We would not say PI(4,5)P2 is actually an inhibitor, but 

more specifically is associated with “backness”, which is typically the quiescent state of a cell. 

However, several pieces of data argue against such a simple model.  First of all, PI3K 

and Ras would be predicted to have extended time courses in PTEN nulls, but their time 

courses are normal (Iijima and Devreotes, 2002; Sasaki et al., 2004). In addition, it would be 

predicted that since PTEN nulls lack phosphatase activity, PI(,4,5)P2  levels in these cells would 

take longer to recover. Expression of a phosphatase dead PTEN (ptenG123E) construct in a 
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PTEN null background might be expected to result in PTEN staying in the cytosol.  This 

phosphatase dead PTEN displays normal kinetics and moves back onto the PM after a uniform 

stimulus. Interestingly, PTEN null cells still have “backness”, suggesting that PI(4,5)P2 levels 

still increase in the rear of the cell.  

PTEN null cells stimulated during cytokinesis demonstrate that PI(4,5)P2 levels still 

regulate cytokinesis even in the absence of PTEN.  PI(3,4,5)P3 responses at metaphase in 

wild-type cells resembles the lack of a folic acid response in PLC nulls. These data all suggest 

that another regulator, possibly a kinase (PI4 and 5-kinase), is active in the furrow and during 

the adaptation phase of the response. Evidence for their activity is well documented (Mao and 

Yin, 2007; Sorensen et al., 1998; Sorensen et al., 1999; Zhu et al., 2013). This can be tested by 

treating the cells with drugs such as Wortmannin to inhibit PI4-kinase activity and monitoring the 

response. 

Polarized morphologies manifest themselves during migratory processes in many cell 

types and throughout the lifecycle of metazoan organisms. The spatial and temporal regulation 

of signaling molecules and the cytoskeletal rearrangements that occur are highly conserved 

across species and also display themselves during random cell motility and cytokinesis  

(Janetopoulos and Devreotes, 2006; Janetopoulos and Firtel, 2008; Muthuswamy and Xue, 

2012; Panbianco and Gotta, 2011; Vorotnikov, 2011). The studies described here have 

elucidated key signaling events and have given us insight into the regulation that occurs during 

the establishment and maintenance of cellular polarity in response to chemoattractant gradient 

switching. Similar studies can be conducted that investigate other proteins or lipids to generate 

a detailed time line of the sequence of events that lead to polarity establishment, gradient 

sensing and motility. This system has also been adapted for mammalian cell chemotaxis and 

can be used as a powerful tool to observe cell polarity establishment as well as other cellular 

interactions that were formerly not possible to observe using standard chemotaxis assays. 
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*Work for this chapter is adapted from the following manuscript currently in preparation.  

Jowhar, Khodadadi, Wright, Rucker, Housman, Wikswo, Chen, Betzig and Janetopoulos, 

(2013). In preparation. 
- Jowhar and Janetopoulos designed concept for experiment setup. Wikswo provided 

input for data analysis and presentation. Chen and Betzig developed Bessel beam 

microscopy setup. Experiments and data analysis were performed by Jowhar, 

Khodadadi, Wright, Rucker, Housman, Chen, Janetopoulos. Janetopoulos, Jowhar 

and Wright are preparing the manuscript.  

 

Special note for experiments for Chapter IV: All experiments and quantification were 

performed by Jowhar with the following exceptions. 

Experiment for 13e was performed by Janetopoulos and Jowhar 
Experiments for Figure 16e were performed by Housman 
Experiments and quantification for Figure 19 were performed by Rucker and Khodadadi 
Bessel Beam Microscopy (Figure 18c) was performed by Bi-Chang Chen at the Betzig 
Lab 
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CHAPTER V 

 

FUTURE DIRECTIONS 

 

The study of cell polarity in model organisms provides us with a valuable tool to 

understand the mechanisms and pathways regulating cell migration and provide insight into the 

migratory processes in higher organisms, particularly those involved in disease states. In this 

work, we have looked at cell polarity from two different angles. The first was the role of polarity 

during cell migration and the second was the mechanism of polarity establishment. It was 

shown in Chapter III that cells that are polarized are very efficient in chemotaxis as measured by 

their higher chemotactic speed. In addition, the leading edge of a polarized cell can not only 

sense a chemical gradient but also mobilize its cytoskeleton to respond to the gradient, all 

without input from the rear of the cell. In Chapter IV, we elucidated the process of polarity 

establishment by forcing polarized cells to extinguish their polarity and reestablish it in the 

opposite direction. We looked at several known markers of polarity and the spatial and temporal 

response that takes place during polarity establishment. We have found that polarity, as defined 

by the presence of a distinct front and back, is established by the coordinating efforts of both 

signaling and cytoskeletal components. 

      Our results show that PI(4,5)P2 levels at the plasma membrane serve as inhibitors to 

several downstream events after receptor activation and specify “backness”. By lowering 

PI(4,5)P2 levels using PI3K, PLC and potentially other regulators, the cell can activate Ras (and 

likely other GTPases) which drive actin polymerization at the leading edge of the cell. While our 

measurements and studies by others (Sasaki et al., 2004) have shown that Ras activation is 

one of the first events downstream of receptor activation that leads to polarity establishment, we 

find that PIP2 levels have to be lowered in these regions for Ras activity to initiate the leading 

edge of the cell. Ras activity is closely followed by the activity of PI3K to increase PI(3,45)P3 
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levels (while simultaneously lowering PI(4,5)P2 levels) to lower membrane PTEN levels. This 

will allow for pseudopod extension via actin polymerization at the side of the cell facing the 

chemoattractant. At the same time, there is an accumulation of PIP2 toward the sides and rear 

of the cell which serves as a binding site for PTEN. This allows for the prevention of lateral 

pseudopods at the side and rear of the cell and also helps to create a defined cell rear.  

Using our cell polarity reversal assay, we have been able to clearly observe that cell rear 

retraction can initiate in the absence of PTEN. We speculate that levels of PI(4,5)P2 may rise in 

the absence of PTEN while PTEN is “tied up” at the old rear. Once PI(4,5)P2 levels drop in the 

old rear, they rapidly rise in the new rear. We have observed this in both wild type and PLC null 

cells. We have not seen colocalization with activated Ras and PTEN in both polarized and 

Latrunculin-A treated cells which indicates that Ras activation typically only happens when  

plasma membrane levels of PI(4,5)P2 are low.   

In addition, we have seen that regions that have actin polymerization are devoid of 

microtubules.  We speculate that either the actin filaments block the interaction of the 

microtubules with the plasma membrane or that the microtubules have a higher affinity for the 

new back. We favor the latter mechanism. The microtubules may then transport molecules that 

support “backness”.  We have also observed that the positioning of the nucleus and the MTOC 

is not a prerequisite to the establishment of cell polarity.  

These observations were possible using our polarity reversal assay which creates a 

highly quantifiable and reproducible platform for understanding the mechanisms involved in the 

establishment of cell polarity. Even though our focus was on known regulators of cell polarity in 

D. discoideum chemotaxis, this system could be applied to study several other processes 

involved in chemotaxis. 

While other groups have attempted to reestablish cell polarity or look at cellular 

responses in the absence of an actin cytoskeleton using a micropipette assay, the Open 

Microfluidics Method provides a controlled environment for examining signaling responses. This 
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setup coupled with the analysis method outlined in Chapter II, can provide a useful platform to 

screen for mutants as well as correlate localization of biomolecules and their effects on cell 

chemotaxis. For example, there have been several microtubule associated proteins that have 

certain functions during cell migration. By observing the relocalization of movement of these 

motors or their cargo, their role in biasing transport toward the rear of the cell can be observed 

and measured. The sensitivity of the front or rear of the cell can also be assayed using this 

setup by generating gradients of different steepness and correlating it to the response time of 

the cell. This assay can also be used to study the polarity establishment during the chemotaxis 

of neutrophils and other mammalian cells. 
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Figure 21. HL-60 cells during polarity reversal a) A representative cell expressing fluorescent 
PH-Akt can reverse polarity after the gradient is switched. The white block arrows indicate the 
direction of the high side of the gradient. The small white arrows show PH-Akt localization at the 
leading edge of the cell. b) Kymograph of the cell shown in “a”. PH-Akt can be seen at the 
leading edge of the cell and once the cell reverses its polarity, it can be visualized at the new 
leading edge (white arrows). 
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We have shown previously (Rachakonda et al., 2010) that microfluidic systems that have 

maze designs can be used to study the migration of cancer cells, particularly as they migrate 

through tight spaces. This can be coupled with fluorescent biomarkers to delineate the roles 

played by different cellular components in gradient sensing and mobilization of the cytoskeleton. 

We have already used this setup to study the migration of HL-60 cells. By pre-coating the 

device with fibronectin, which provides a suitable substrate for cell migration, we have been able 

to observe the migration and reversal of cell polarity of these cells and have determined the 

appropriate channel dimensions that allow this process to occur.  

 

Figure 22. Polarity reversal of Hl-60 cells treated with Wortmannin a) A representative cell 
treated with the PI3K inhibitor Wortmannin migrating toward the high side of the gradient. PH-
Akt is localized to the leading edge of the cell. These cells can perform chemotaxis, but have 
defects in reversing after a gradient switch. b) Kymograph of the same cell indicates that 
chemotaxis is toward the high side of the gradient, but once the gradient is switched (dotted 
line) the cell cannot move toward the new direction indicating that cell polarity reversal behavior 
is inhibited. 
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Since these cells migrate in small regions that are on the order of or smaller than the 

size of our microfluidic channels, this type of assay can be used to observe and quantify the 

localization and redistribution of molecules involved in gradient sensing and cell polarity 

establishment. For example, we have been able to test the effects of Wortmannin, a PI 3K 

inhibitor, on the turning behavior of Hl-60 cells. Cells that have not been treated with the 

inhibitor can respond to the gradient by extending a pseudopod and moving toward the new 

side of the gradient (Figure 21), whereas cells treated with Wortmannin have difficulty 

responding to the new gradient and cannot mobilize their cytoskeleton (Figure 22).  

This setup can be used to study the chemotaxis of mutant cell lines as well as cells 

treated with different drugs/inhibitors to assay the effect it has on chemotaxis, cell polarity and 

gradient sensing. The width of the microchannels can be modified and the surface of the 

channels can be treated with different proteins to create an ideal and more realistic 

microenvironment than conventional experimental setups that use only micropipette systems. In 

addition, the confined channels allow the complete reversal of polarity.  Our finding using D. 

discoideum has led to a major breakthrough in our understanding of cell polarity. We expect to 

elucidate the functions of signaling molecules in mammalian cells that might have been missed 

or overlooked using conventional assays.  

This experimental setup can help improve our understanding of the mechanism 

regulating mammalian gradient sensing and may elucidate pathways which can be affected or 

targeted by therapeutics to alter the chemotaxis process. There are an unlimited number of 

combinations that can be tested using the biomarkers that are already available or new ones as 

they come along. These can be tested in mutant backgrounds or in cell lines treated with 

various signaling or cytoskeletal inhibitors. This system has a lot of potential to identify and 

measure the behavior of cells and their spatiotemporal response in defined and highly 

reproducible chemical gradients . 
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* Experiments for this chapter were performed in collaboration with the Richmond Laboratory 
and the Janetopoulos laboratory. Sai prepared cells and provided reagents. Jowhar and Sai 
performed experiments. 
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