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CHAPTER I 

 

I. INTRODUCTION 

 

I.1 Motivation 

America’s highway infrastructure consists of approximately 8.5 million lane-miles of 

public roads and highways (1) and is approximately a 200 billion dollar investment per 

year for the U.S. government. Many states in the U.S., such as California, Illinois, Texas 

and Pennsylvania, have annual highway construction budgets exceeding one billion 

dollars. Monetary needs for improvement, maintenance, and expansion of the current 

highway system near the trillion dollar mark. In addition to the investment of capital by 

the government, the quality of roads nationally has a billion dollar impact on drivers. Lost 

time due to traffic congestion impacts the local and national economy and poor road 

conditions cost drivers in terms of repairs due to wear and road condition-related 

accidents. (2)  

Pavement design has a critical impact on the performance of this billion dollar 

investment, yet typical design and construction processes often neglect impacts of 

uncertainty on predicted pavement performance. Pavement design is heavily influenced 

by variability in material properties, construction tolerances, and traffic and weather 

conditions, yet current design procedures are deterministic. Without appropriately 

accounting for uncertainty in pavement design, pavement design life and reliability level 

predictions can be inaccurate. Accurate predictions are necessary for appropriate 
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inclusion of initial and maintenance construction costs in local and federal budgets. Early 

failure requiring repair and replacement prior to the desired design life strain these 

agencies and can impact the budgets of other sponsored projects. Improvements in 

management of uncertainty in design, such as those proposed by this dissertation, will 

have significant impact on the billion dollar financial investment, both public and private, 

by providing designers tools for decision making. Optimal pavement design that 

incorporates uncertainty will result in more confident predictions of pavement life spans 

and maintenance schedules, reducing unexpected maintenance costs due to early failures. 

The objective of this dissertation is to propose, demonstrate, and verify methods 

for management of uncertainty for pavement design utilizing analytical and probabilistic 

methods. Specifically, this dissertation develops a systematic and comprehensive 

approach to management of uncertainty in pavement design by quantifying model 

uncertainty for the permanent deformation predictive model, addressing computational 

cost of Mechanistic-Empirical (M-E) design by construction of a surrogate model, 

performing uncertainty propagation, and demonstrating risk-based design for flexible 

pavements under warranty.  

In response to the ever growing need for accurate prediction of pavement 

performance, pavement design procedures are progressing from original design methods 

that relied solely on empirical data to M-E methods. Current pavement design practice, 

by numerous states, continues to be based on the AASHTO 1993 (3) empirical method; 

however, interest in M-E design procedures is increasing and many states have adopted 

or are in the process of adopting this method. The Asphalt Institute (4) and Shell Methods 

(5) were some of the earliest M-E methods introduced to the pavement design 
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community. More recently, the National Cooperative Highway Research Program 

(NCHRP) released the Guide for Mechanistic-Empirical Design (MEPDG) (6).  

Implementation of the M-E design process is necessary in providing reliable 

designs. M-E design methods improve accuracy of performance predictions by 

incorporating mechanistic theory and are capable of predicting performance for new, 

novel mix designs. The AASHTO 1993, although a major historical milestone in 

understanding the behavior of highway pavements, is insufficient for the needs of 

pavement design today. The design equations are completely empirical, are based on only 

one type of sub-grade and specific pavement materials, and do not appropriately account 

for environmental effects on pavement performance. Small and Winston (7) and 

Madanat, Prozzi, and Han (8) have also shown that the equations are impacted by 

censoring bias. Furthermore, these design equations have been extrapolated to design for 

inputs far beyond those considered in the road test. As a result of these limitations, many 

pavement sections fail prematurely while other sections far outlive their design lives. M-

E methods address the model error that exists in purely empirical design procedures by 

relating observed distresses to stresses and strains developed in the pavement structure. 

M-E design is being widely pursued because, with appropriate calibrations, M-E methods 

improve the accuracy of predicted pavement performance. This improvement is due to 

the detailed computational models which more realistically capture the physical processes 

through the mechanistic portion of the pavement analysis. 

M-E design methods, although an improvement to purely empirical methods, do 

not eliminate the uncertainty in predicted pavement behavior models. Pavement analysis 

is impacted by uncertainty from a number of sources and this uncertainty must be 
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managed in design. Significant sources of uncertainty such as field variables, uncertainty 

in the predicted behavior models, and errors in these models are not currently accounted 

for, in the pavement design process, in an efficient and comprehensive way. Management 

of uncertainty due to the predictive models is necessary for properly understanding 

propagation of uncertainty and for performing sensitivity analysis, which leads to better 

pavement design decisions and cost effective designs. M-E pavement design considers 

structural and serviceability thresholds limits. The AASHTO M-E design method 

considers six distress modes relating to fatigue cracking, permanent deformation, thermal 

fracture, and smoothness. Calibration and validation of all of these models has been 

performed extensively by researchers. (6)  

While many of the performance models have reached a level of accuracy 

appropriate for design, the permanent deformation models continue to inaccurately 

predict actual performance in the field. These inaccuracies are the result of a complex 

mechanistic behavior of the pavement system as well as the sensitivity of these models to 

variability in loading and climate. Permanent deformation is a highly researched topic; 

yet, the uncertainty of common permanent deformation models has not been quantified.  

Permanent deformation significantly influences maintenance costs and schedules, 

is an easily measured quantity, and significant to the serviceability of a pavement section; 

yet, it has been difficult to accurately predict because the behavior phenomena are not 

extremely well understood. Permanent deformation is a critical distress model and the 

physical behavior of asphalt concrete pavements is very complex, governed by materials, 

climate, and traffic loads. Research focused on capturing the impact of these parameters 

on permanent deformation predictive models includes work by: Deacon et al. (9), Ali et 
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al. (10), El-Basyouny et al. (11), and many others; however, the work has resulted in a 

variety of permanent deformation models which have not converged to a single predictive 

model. The uncertainty in prediction arises from inadequacy of analysis models and lack 

of fit of distress prediction models. Investigation of the impact of model uncertainty on 

the predicted behavior of flexible pavements is necessary to develop a single predictive 

model capable of confidently predicting permanent deformation.  

To date, research has resulted in the development of two primary prediction 

models for permanent deformation based on two different mechanistic behavioral 

theories. One theory, presented by the AASHTO Mechanistic Empirical Pavement 

Design Guide (MEPDG), for permanent deformation focuses on plastic vertical axial 

strains in the asphalt concrete (AC) layer and assumes that deformation is the result of 

axial compression of the AC layer. (6) (11) FIGURE I.1 demonstrates this model of 

deformation. California’s Department of Transportation M-E procedure, CalME, follows 

a second theory, as illustrated in FIGURE I.2, which assumes deformation is the result of 

shear stresses in the asphalt layers. (12) (13) 
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FIGURE I.1:  Axial Strain Theory for Deformation of Asphalt Concrete (14) 

 

 

FIGURE I.2: Shear Theory Deformation of Asphalt Concrete (15) (16) 

 

The M-E design methods offer engineers the opportunity to overcome the deficiencies in 

empirical design methods; still, these models rely heavily on empirical data and 

regression analysis to predict pavement performance. For example, the MEPDG 

prediction equation is based on a non-linear regression analysis of field data obtained 

through the Superpave Models Task C project (17), and the form of the regression 

equations is based on models previously developed by Kaloush (18) and Leahy (19). 

Although regression based on measured pavement behavior is a commonly accepted 

method for predicting model performance, understanding of the underlying physics 
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relating to pavement failure is important to developing accurate predictions of pavement 

performance. Historically, regression-based models based on empirical data provided 

acceptable accuracy in predicting pavement behavior; however, these models may no 

longer be suitable for use with novel mix designs and materials, such as those that 

incorporate polymer modified asphalts. Quantification of uncertainty in the predictive 

capability of these two models of permanent deformation is necessary to demonstrate the 

significance of model uncertainty on predicted pavement performance. Second, 

quantification of model uncertainty for these vastly different predictive models is 

necessary to state overall confidence in prediction of performance.  

Permanent deformation is likely described by a model that incorporates both 

mechanistic theories; however little research exists in this area. A simplified approach to 

developing a model that incorporates both theories is through linear regression. 

Parameters describing the resistance of materials and structure to shear stresses can be 

related to calibration factors within the model that defines deformation by axial strain. 

Although this method may improve predictive capability, a more detailed model is likely 

required that incorporates the physics, through mechanistic equations, of each of these 

models. Models incorporating both mechanistic theories can be easily derived as 

weighted averages, in which the weights for each model are determined through analysis 

of the residuals of the independent models with experimental data. Model validation of 

each individual mechanistic theory and the combined models must be performed to 

determine the confidence in predictive capability of the models. 

While empirically calibrated M-E design procedures reduce model error, their 

detailed models are computationally expensive to evaluate. A single, typical flexible 
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pavement analysis utilizing the MEPDG software requires approximately 30 minutes on a 

typical laptop computer. The computational expense is due to the structural analysis 

utilizing underlying multilayer analytical models and the well developed, yet 

cumbersome, climatic information. The iterative structural analysis is performed in 

hourly increments over the design life until the design satisfies defined threshold limits 

for all failure modes, which is very computationally intensive. Analyses requiring large 

numbers of M-E evaluations become impractical due to the computational expense. 

Recent research focused on highly iterative analyses such as sensitivity analysis and 

reliability analysis focus on implementation of sampling methods such as jack-knifing 

(20), Monte Carlo Simulation (MCS) (21) (22) (23), or Latin Hypercube (24) and ignore 

the computational expense associated with these methods. Use of macros, replacing M-E 

design software with highly complex computations often evaluated by super computers, 

are common methods for disregarding the impact of these methods, but this is not a 

suitable solution for practical applications. Alternatively, simplified prediction models or 

modified sampling techniques have been developed for reduction in computational 

expense; however these methods also result in reduction in model confidence. Simplified 

prediction models introduce approximation errors that can be difficult to quantify and 

reduced sampling techniques do not guarantee accuracy over the entire design space. The 

development of a well-trained surrogate model will address the computational expense of 

the M-E design procedure without reducing model confidence. Accurately trained and 

validated surrogate models provide high quality data because the sampling techniques, 

such as MCS, can be performed in a computationally efficient manner. 



   

9 
      

Propagation of uncertainty through probabilistic methods for pavement design 

within the M-E design procedure has been a widely researched topic; yet the 

computational expense has been a constant hindrance. Uncertainty propagation is 

necessary to overall quantification and management of uncertainty in pavement design. 

Initial recommendations for reliability analysis within the MEPDG prescribed MCS as 

the most appropriate method; however, a closed-form method was chosen due to the 

computational cost (6). Briefly, the MEPDG design process considers only deterministic 

input parameters and calculates a mean distress prediction each failure mode, for each 

month, for the entire design life of the pavement. (FIGURE I.3) The user defines a 

threshold limit for each distress mode, and the reliability is calculated assuming normal 

distribution, based on the calculated mean and variance derived from empirical data (See 

also FIGURE I.4). 

 

 

 

 

 

 

FIGURE I.3: Flow Chart of Current MEPDG Design and Reliability Procedure 
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FIGURE I.4: MEPDG Method for Reliability Analysis for IRI Distress Mode 

 

Several researchers have criticized the current method for reliability analysis in 

M-E design and research continues in search of a more robust method. (23) (25) (26) 

Darter, et al, (23) discuss the impracticality of simulation due to the large number of 

variables required for analysis in the MEPDG and similar M-E procedures. They discuss 

a Monte Carlo Simulation based technique as a less computationally expensive approach 

to reliability analysis for rigid pavement. Darter et al. state that the significant source of 

computational expense is the incremental design procedure that requires structural 

analysis producing “hundreds of thousands of stress and deflection calculations to 

compute monthly damage”. To reduce computational expense, they developed a neural 

network to perform the structural analysis for rigid pavements, but were unsuccessful in 

development of a similar neural network for flexible pavements. Although their technique 

is shown to save computational time for rigid pavements, they indicate that this method is 
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still quite time consuming and allude to future computer hardware improvements as the 

ultimate key in full implementation of their method with flexible pavements.  

Implementation of MCS with a well-trained surrogate model addresses the 

computational expense associated with simulation based methods. Construction of a 

“cheap to evaluate” surrogate model improves computational speed of simulation 

methods, but introduces a model error that must be addressed. An alternative to 

simulation based techniques for performing reliability analysis is analytical 

approximation techniques such as: Mean value First Order Second Moment (MVFOSM) 

(27), First Order Reliability Methods (FORM) (28) (29), Rosenblueth (30), and 

Advanced Mean Value (AMV) (31). These more advanced statistical methods allow 

reliability analysis to be efficiently performed directly in the M-E design procedures, but 

may lose accuracy due to approximations in the limit state equation when searching for 

the most probable point of failure. 

Accurate and efficient methods for reliability analysis are necessary for 

management of uncertainty in M-E pavement design. Comparison of the computational 

expense and accuracy of reliability analysis utilizing a surrogate model with simulation 

and M-E design procedures with analytical methods is necessary to determine the 

computational trade-off between these options. Although a surrogate model will reduce 

computational time, simulation based methods for reliability analysis may still be 

significantly expensive. Similarly, analytical methods are significantly less 

computationally expensive than simulations, yet the M-E design procedure is time 

consuming. Accuracy must also be verified for each method, as the surrogate model or 

the analytical reliability methods are sources of uncertainty. 



   

12 
      

Management of uncertainty is necessary for optimal pavement design and life 

cycle cost analyses. (32) Design optimization is specifically important to quality control 

and assurance (QC/QA) efforts by contractors, which is increasingly important as many 

new construction projects require contractors to provide extended warrantees for 

pavement projects. Optimization over an expected design life provides the information 

necessary for contractors to determine initial construction design and maintenance 

schedules. Several optimization methods for flexible pavement design can be found in 

literature; however, many of the methods are based on empirical analysis methods. Prozzi 

et al. (8) introduce an optimization method; however, they develop performance models 

based on the empirical data obtained from the AASHO Road Test data. This empirical 

approach does not incorporate all input parameters that contribute to pavement 

performance, such as climate and material strengths. As previously discussed, M-E 

design procedures have been developed and improve the accuracy of performance 

predictions and are therefore more appropriate for use in optimal design.  

Optimization of pavement designs, however, is not common practice as it requires 

additional computational expense and requires designers to perform the optimization 

routine outside the framework of M-E procedures. Most literature discussing 

optimization procedures for pavement design focus on the optimization routine and 

incorporate simplified pavement analysis methods. Mamlouk, et al., (33) introduce a 

method for optimization of flexible pavements utilizing dynamic programming in 

conjunction with two pavement design models for use in project-level pavement 

management. The design models were incorporated within the computer program 

specifically developed for optimization and required rewriting a commonly utilized 
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multilayer elastic system model. Implementation of this method utilizing the MEPDG 

outside the framework of the optimization routine would be computationally expensive, 

and rewriting this code would be prohibitive for practical users. Grivas et al. (34) 

completely exclude formal pavement distress models in their optimization method and 

incorporate a simplified approach to determining distress in pavement based on only 

three input parameters: pavement type, traffic volume, and distress measures. Further, 

currently recommended procedures, such as those by (33) (34) (8), do not incorporate 

reliability in the optimization process. Exploiting a well trained surrogate model makes 

design optimization utilizing M-E procedures computationally affordable and provides 

the framework for reliability analysis. 

 

I.2 Summary 

Ultimately, quantification and management of all uncertainty implemented within the M-

E design process is necessary for optimal flexible pavement design. Quantification of 

uncertainty through MCS or other simulation techniques is difficult, primarily due to the 

computational expense of the M-E method. This computational expense must be 

addressed to perform uncertainty quantification utilizing simulation-based techniques, or 

analytical methods must be verified for application with the M-E procedure. Uncertainty 

quantification is necessary in investigating and addressing the sources of uncertainty. 

Further, at the present time, no comprehensive approach to uncertainty management has 

been proposed for M-E pavement design. Past research efforts in reliability analysis have 

been dedicated to only one type of uncertainty or another. 
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Management of uncertainty for M-E pavement design utilizing analytical and 

probabilistic methods requires quantification of model uncertainty, must address the 

computational expense associated with M-E design, and should incorporate reliability 

based design optimization. The permanent deformation model is significantly susceptible 

to errors in predicted performance due to model uncertainty. In addition to model 

uncertainty, input variability has a critical impact on pavement performance. A logical 

approach to incorporating both sources of uncertainty is presented in this dissertation. A 

framework for risk-based design is developed integrating the uncertainty propagation and 

impact of model uncertainty on predicted pavement performance.  

This dissertation develops a systematic and comprehensive approach to 

management of uncertainty by accomplishing four major objectives: address model 

uncertainty for the permanent deformation model, develop a method to reduce 

computational expense, design a framework for incorporation of uncertainty in pavement 

design, and demonstrate a framework for risk-based M-E pavement design. 

Implementation of these four major objectives within the context of M-E pavement 

design is outlined in FIGURE I.5 and further discussed in the following sections. 

 

I.3  Calibration, Selection, and Uncertainty Quantification for Permanent 

Deformation Predictive Models for Flexible Pavement 

The proposed framework for management of uncertainty in flexible pavement design 

begins with investigation of model form error for the performance prediction models. The 

permanent deformation models are particularly susceptible to model form error due to the 
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complexities in mechanistic behavior of the layered pavement structure and 

complications in measurement of deformation for sub-grade and base layers. Chapter III 

of this dissertation investigates both the plastic axial strain theory and shear theory for 

permanent deformation and quantifies the model uncertainty of each of these models. 

Model averaging and model calibration is used to develop models that incorporate both 

theories to determine the impact of modeling permanent deformation utilizing both 

theories.  

 

I.4 Surrogate Model Construction 

Development of a surrogate model allows for computationally efficient probabilistic 

design for flexible pavements, but requires training and verification with respect to the 

model that is it replacing. The AASHTO MEPDG is the most widely utilized M-E design 

procedure in the U.S. and incorporates extensive climatic and empirical performance 

data. Inclusion of such extensive data hinders the computational efficiency of design with 

the MEPDG and likely includes design parameters of little significance to pavement 

performance. Chapter IV includes investigation of the required quantity of input 

parameters necessary to accurately imitate the MEPDG design procedure. Construction 

and verification of the surrogate model is discussed in detail in Chapters V and VIII. 

 

I.5 Uncertainty Propagation for Mechanistic Empirical Pavement Design 

Management of uncertainty from all significant sources is necessary to accurately predict 

pavement performance. Sources of uncertainty such as model form error and input 
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variability turn a deterministic design process into a stochastic design process. A 

systematic approach to uncertainty propagation is lacking in current design procedures 

and is necessary for accurate reliability predictions. Uncertainty propagation in Chapter V 

of this dissertation is performed utilizing two approaches: a surrogate model with a 

simulation based reliability analysis method and M-E predictive models with analytical 

reliability methods. These methods are compared for accuracy and computational effort. 

Additional concepts describing practice-ready procedures are presented in Chapter VII. 

 

I.6 Risk-Based Design for M-E Design of Flexible Pavement Design 

Ultimately, designers are in need of a risk-based design procedure that implements the 

uncertainty management concepts demonstrated by the first major objectives of this 

dissertation. Demonstration of a reliability-based design optimization routine is presented 

in this dissertation in Chapter VIII. This investigation also extends the discussion of 

surrogate model construction by presenting a method for efficiently and effectively 

choosing the quantity and location of training points for construction of the surrogate 

model. 

 

I.7 Organization of Dissertation 

The organization of the dissertation is as follows. The first major objective, addressing 

uncertainty in the permanent deformation models, is presented in Chapter III. A thorough 

calibration process is performed on three prevalent models: a model incorporating shear 

theory, an axial strain model, and a model combining both mechanistic theories. Model 
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validation and comparison is performed to determine the accuracy of these models 

compared to experimental results from the WesTrack experiment. Understanding the 

uncertainty associated with these permanent deformation models is necessary to 

accurately predict pavement performance, but current models are computationally 

expensive. A surrogate model is constructed in Chapters IV, V, and VIII that accurately 

emulates the AASHTO MEPDG. Chapter IV discusses the selection process for training 

data required for construction of surrogate models specific to M-E pavement design. The 

third major objective develops a logical and efficient process for incorporating 

uncertainty into M-E pavement design. A systematic method for uncertainty propagation 

is presented in Chapter V, analytical reliability methods are presented in Chapter VI, and 

a method for developing load and resistance factors for design is presented in Chapter 

VII. Propagation of uncertainty from input variability, the MEPDG prediction models, 

and the surrogate model is demonstrated and a sensitivity analysis is performed. Analysis 

of methods for the selection of the quantity and location of training points for the 

surrogate model is presented. Reliability analysis is performed utilizing probabilistic and 

analytical methods. A method for developing load and resistance factors is presented as a 

practice-ready option for reliable pavement design. The final major objective is addressed 

in Chapter VIII which presents a framework for risk-based design in the context of M-E 

pavement design. Through these four major objectives, this dissertation presents a 

comprehensive framework for management of uncertainty in flexible pavement design. 
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FIGURE I.5: M-E Design Procedure and Proposed Improvements (6) 
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CHAPTER II 

 

II. BACKGROUND 

 

Management of uncertainty for flexible pavement design requires an understanding of 

basic concepts related to pavement design, reliability methods, and design optimization. 

The research presented in this dissertation leverages past work in mechanistic-empirical 

pavement design and accelerated pavement testing. In particular, the American 

Association of State Highway and Transportation Officials’ (AASHTO) Mechanistic 

Empirical Pavement Design Guide (MEPDG) and data from the WesTrack experiment, a 

specific accelerated pavement testing experiment conducted in the late 1990s, are utilized 

in this research. Analytical and probabilistic reliability methods including Mean Value 

First Order Second Moment (MVFOSM), First Order Reliability Methods (FORM), 

Rosenblueth, Advanced Mean Value (AMV), and Monte Carlo Simulation (MCS) are 

utilized and brief summaries of the theory are presented. Ultimately, the dissertation 

presents a method for incorporating design optimization into the pavement design process 

and background information regarding concepts related to problem formulation and 

reliability based design optimization methods are discussed. 
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II.1 AASHTO MEPDG 

The MEPDG is the most comprehensive implementation of the mechanistic-empirical 

pavement design procedure to date. AASHTO released the most recent version of the 

MEPDG document in 2004 and, at the same time, released a software package 

implementing the design methods presented in the documentation. The combination of 

the design guide and software provides an excellent guide to design of flexible pavements 

in accordance with many of the nationally accepted procedures and practices. The 

procedure presented in the MEPDG is a mechanistic-empirical design procedure that 

produces predictions in the performance of a pavement according to standardized 

performance criteria. 

Design inputs for the MEPDG include traffic data, material properties, and 

climatic data. The process has been developed according to three levels of design, each of 

varying levels of refinement relating to the input information. The Level 1 analysis is 

defined specifically for each input family and represents the most thorough understanding 

of the site characteristics. The Level 1 definition for traffic inputs is: “There is a very 

good knowledge of past and future traffic characteristics.” Level 2 analyses represent 

modest knowledge of the characteristics of the input parameters and are defined for the 

material input as those that are “estimated through correlations with other material 

properties that are measured in the laboratory or field”. Level 3 analysis represents the 

level with least confidence in accuracy and is utilized when significant estimation of 

design parameters is necessary. Design for pavements with poor knowledge of the traffic 

conditions or material characterization without sufficient testing constitutes a Level 3 

design level. (6) 
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Significant traffic data is required regardless of the design level selected. Traffic 

data for design includes yearly truck-traffic volume, traffic speed, truck-traffic directional 

and lane factors, vehicle class distributions, axle load and tire information, and traffic 

growth projections. Although databases such as the Long Term Pavement Performance 

(LTPP) database include extensive traffic data, the resulting traffic characterizations may 

not accurately represent the current or future projections for new roads. Additionally, 

many state departments do not have the resources to acquire more current data or data in 

locations not registered in the LTPP. Nationally developed standards for traffic inputs 

have been presented in the MEPDG, but designers are penalized in the reliability analysis 

by the selection of the Level 3 designation which are likely less accurate than Level 1 or 

2 analyses.  

Material inputs for the MEPDG vary between bound and unbound material types, 

but generally include layer thickness, unit weight of the material, tensile and/or 

compressive strength parameters, thermal properties, shrinkage, and, when applicable, 

gradation information. The material characterization in the MEPDG has been specialized 

to allow designers to utilize nationally calibrated models or regionally calibrated models 

for parameters such as the dynamic modulus and viscosity for hot-mix asphalt (HMA). 

The design software provided by AASHTO also includes all information regarding 

Superpave mix designs, one of the most common national standards for mix designs.  

The third major category of MEPDG input parameters is that which describes the 

environmental and climatic data for the pavement site. Climate inputs are detailed by 

month or hour and include: temperature, rainfall, wind, and conditions such as sun and 

freeze. Development of software integrating FHWA’s comprehensive database allows for 
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inclusion of site-specific climatic data in a manner easy to end-users of the MEPDG 

design software. Integration of this database contributes significant amounts of 

information to the design process, improving the accuracy in performance predictions 

through freeze and thaw cycles over the design life of the pavement. 

The MEPDG design process utilizes material properties, traffic data, and climatic 

information to quantify performance in terms of stress, strains, and displacements within 

the pavement. The most critical mechanistic properties include the horizontal tensile 

strain in the HMA layer, compressive vertical stresses and strains at mid-height of all 

layers, and compressive vertical strains and stresses at the top of the sub-grade. These 

values correspond to HMA fatigue cracking, HMA and total depth rutting, and sub-grade 

rutting, respectively. The mechanistic properties are incrementally calculated and 

accumulated over the design life of the pavement. At each increment, the distress models 

are evaluated to determine the performance criteria. 

The design process is an iterative process that requires selection and refinement of 

design parameters until specified performance criteria are met. AASHTO has included 

six significant performance criteria in the design process: permanent deformation 

(rutting) of both the top layer and the entire pavement structure, both bottom-up and top-

down fatigue cracking of the asphalt concrete layer, thermal cracking, and smoothness 

(IRI). These performance criteria have been chosen to best represent both the structural 

and serviceability requirements necessary for acceptable performance of a flexible 

pavement system. 
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The design process requires satisfying all individual performance criteria, or 

distress modes, as a series system, where failure of any criterion is a failure of the 

pavement design. The design process requires the engineer to select both a threshold 

value and reliability level for each of these six performance criteria over a design life. 

Recommended threshold values are given in the AASHTO Guide; however, little 

guidance is given on the required level of reliability. The decision of a predicted design 

life is another very significant decision by the designer that significantly impacts the 

criteria for acceptable pavement performance. 

 Development of the distress models for the MEPDG was performed by AASHTO 

utilizing national LTPP data and laboratory experimental results, constituting the 

empirical basis of the models, and mechanistic theory, typically assuming linear elastic 

behavior of the materials. To be concise, a brief description of the distress models follow; 

additional discussion of the derivation of the distress models is available in the MEPDG. 

 

II.1.1 Terminal International Roughness Index (IRI) (Smoothness) 

The Terminal IRI prediction model quantifies smoothness and is a serviceability 

requirement dependent on the initial as-built profile of the pavement section and the 

progression of structural distresses over the design life. Smoothness of a pavement 

structure is critical not only to driver comfort, but to operating costs and travel times. The 

model uses the predictions from the rutting, bottom-up, and top-down models, as well as 

site parameters (climate, sub-grade properties, etc.) to predict the smoothness over time. 
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 The predictive model for Terminal IRI for new AC pavements over unbound 

aggregate bases is shown in Equation II.1. The empirical model is the result of several 

research studies and incorporates many of the structural distress models. 

 

𝐼𝑅𝐼 = 𝐼𝑅𝐼0 + 0.0463 �𝑆𝐹 �𝑒
𝑎𝑔𝑒
20 − 1�� + 0.00119(𝑇𝐶𝐿)𝑇 + 0.1834(𝐶𝑂𝑉𝑅𝐷) +

0.00384(𝐹𝐶)𝑇 + 0.00736(𝐵𝐶)𝑇 + 0.00115(𝐿𝐶𝑆𝑁𝑊𝑃)𝑀𝐻    (II.1) 

 

Where: 

𝐼𝑅𝐼0:   Initial IRI, m/km. 

𝑆𝐹   :   Site Factor (function of site climatic and sub-grade information). 

𝑒
𝑎𝑔𝑒
20 − 1 : Age Term, (where age is expressed in years).  

𝐶𝑂𝑉𝑅𝐷 : Coefficient of variation of the rut depths, percent. 

(𝑇𝐶𝐿)𝑇 :  Total length of transverse cracks, m/km. 

(𝐹𝐶)𝑇 : Fatigue cracking in wheel path, percent total lane area. 

(𝐵𝐶)𝑇 : Area of block cracking as a percent of total lane area. 

(𝐿𝐶𝑆𝑁𝑊𝑃)𝑀𝐻 : Length of moderate and high severity sealed longitudinal cracks outside 

wheel path, m/km.  

 



   

25 
      

II.1.2 Asphalt Concrete Layer Fatigue Cracking (Alligator Cracking) 

Fatigue cracking in the AC layer of the pavement structure is estimated by the bottom-up 

(alligator cracking) and surface-down (longitudinal cracking) fatigue distress models. 

Both models follow similar form in the MEPDG, defining fatigue as a function of tensile 

strain and mix stiffness (modulus). The bottom-up model evaluates the distress 

considering a critical location at the bottom of the AC layer, resulting in a crack that 

propagates from the bottom towards the top of the layer. The surface-down model 

considers a crack that develops at the surface of the AC layer and grows down through 

the layer.  

Prediction of the fatigue cracking is performed in the MEPDG according to 

Miner’s Law which defines fatigue as an accumulation of damage due to traffic 

repetitions over a design period. Calculation of the fatigue damage according to Miner’s 

law requires prediction of the number of load repetitions to failure, 𝑁𝑓.The common form 

for this calculation is shown in two equivalent formulations, the Asphalt Institute model 

(Eq. II.2) and a nationally calibrated equation (Eq. II.3). 

 

𝑁𝑓 = 𝐶𝑘1 �
1
𝜀𝑡
�
𝑘2
�1
𝐸
�
𝑘3

    (II.2) 

𝑁𝑓 = 𝛽𝑓1𝑘1(𝜀𝑡)−𝛽𝑓2𝑘2(𝐸)−𝛽𝑓3𝑘3   (II.3) 

 

 



   

26 
      

Where: 

𝑁𝑓:   Number of repetitions to fatigue cracking. 

𝜀𝑡   :   Tensile strain at the critical location. (in./in.) 

𝐸 :  Stiffness of the material. (psi) 

𝑘1,𝑘2,𝑘3 : Laboratory regression coefficients. 

𝛽𝑓1,𝛽𝑓2,𝛽𝑓3 :  Calibration parameters. 

𝐶 :  Laboratory to field adjustment factor. 

 

Implementation for the MEPDG incorporates results from the Asphalt Institute model, in 

which the laboratory regression coefficients, 𝑘1,𝑘2, 𝑘3, are taken as 0.00432, 3.291, and 

0.854, respectively. The adjustment factor is defined as a function of asphalt binder 

content (Vb) and air voids (Va) as given in Equation II.4. 

 

𝐶 = 10𝑀     (II.4) 

Where: 

𝑀 = 4.84 � 𝑉𝑏
𝑉𝑎+𝑉𝑏

− 0.69�     (II.5) 
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The nationally calibrated model is described with parameters specific to either fatigue 

model as described in Equations II.6 through II.8. 

 

𝑁𝑓 = 0.00432𝑘′1𝐶 �
1
𝜀𝑡
�
3.9492

�1
𝐸
�
1.281

   (II.6) 

Bottom-Up Cracking:  𝑘′1 = 1
0.000398+ 0.003602

1+𝑒(11.02−3.49ℎ𝑎𝑐)
  (II.7) 

Top-Down Cracking:  𝑘′1 = 1
0.01+ 12

1+𝑒(15.676−2.8186ℎ𝑎𝑐)
  (II.8) 

Where ℎ𝑎𝑐 is the total thickness of the asphalt layer(s) measured in inches. 

 The fatigue cracking models utilized in the MEPDG are given in Equations II.9 

and II.10. 

𝐹𝐶𝑏𝑜𝑡𝑡𝑜𝑚 = � 6000
1+𝑒(𝐶1𝐶′1+𝐶2𝐶′2 log10(𝐷∗100))� ∗ �

1
60
�  (II.9) 

𝐹𝐶𝑡𝑜𝑝 = � 1000
1+𝑒(7.0+3.5 log10(𝐷∗100))� ∗ (10.56)  (II.10) 
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Where: 

𝐹𝐶𝑏𝑜𝑡𝑡𝑜𝑚:  Bottom-Up fatigue cracking, percent lane area 

𝐷:  Bottom-Up fatigue damage by Miner’s Law: 𝐷 = ∑ �𝑛𝑖
𝑁𝑖
�𝐷𝑒𝑠𝑖𝑔𝑛𝐿𝑖𝑓𝑒

𝑖=1  

𝑛𝑖 :   Actual traffic for time period i. 

𝐶1 :  1.0 

𝐶′1 :  -2𝐶′2 

𝐶2 :   1.0 

𝐶′2 :   −2.40874 − 39.748 ∗ (1 + ℎ𝑎𝑐)−2.856 

 

II.1.3 Permanent Deformation 

The MEPDG predicts permanent deformation for the asphalt concrete layer and for the 

total pavement section as the sum of the product of plastic strains and the layer height 

Equation II.11. The equation for plastic strain is calculated as shown in Eq. II.12. 

 

𝑅𝐷 = ∑ 𝜀𝑝𝑖 ℎ𝑖
𝑛𝑠𝑢𝑏𝑙𝑎𝑦𝑒𝑟𝑠
𝑖=1     (II.11) 

𝜀𝑝
𝜀𝑟

= 𝑘𝑧𝛽𝑟110𝑘1𝑇𝑘1𝛽𝑟2𝑁𝑘3𝛽𝑟3    (II.12) 
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Equation II.11 expresses the permanent deformation (RD) as a function of plastic strain 

and layer height where strains accumulate across all sub-layers of the pavement structure. 

In Equation II.12, 𝜀𝑝 and 𝜀𝑟 are plastic and resilient strain respectively, and the k and 𝛽 

values are the regression coefficients and calibration factors. The regression coefficients 

are derived from non-linear regression based on the NCHRP 9-19 Superpave Experiment 

and the national calibration factors are derived from LTPP sections located in 28 different 

states. (6) 

 

II.2 Accelerated Pavement Testing (APT) & WesTrack 

Extensive data regarding material properties, traffic loadings, climate impacts, and 

measurements of performance are necessary for statistical analysis investigating the 

accuracy of prediction models to actual pavement performance. Current flexible design 

procedures rely on accurate empirical data to predict performance. Coupled with 

mechanistic theory, M-E design procedures must be validated to determine the accuracy 

of predictions through the life of the pavement. Typical pavement design life spans 

decades, but experimental data to support the performance of pavement over this length 

of time is difficult. Research facilities rarely have the resources available to evaluate test 

sections for such lengths of time. Further, inaccuracies exist in measurements due to 

changes in equipment and personnel. To address this issue, researchers have developed 

accelerated pavement testing (APT) procedures to expedite the acquisition of 

performance data. Experiments such as WesTrack include extensive data with traffic load 

repetitions nearing those expected over entire design life spans for typical pavement 

structures. 
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APT procedures allow for investigation of pavement performance after significant 

load repetitions in a concise time frame. Numerous facilities exist across the U.S. capable 

of performing APT experiments. Facilities such as those at Caltrans and Kansas State 

University perform experiments on a small scale utilizing specialized simulation 

equipment to imitate traffic loads. Other APT facilities, such as those at MnROADS, 

NCAT, and WesTrack, have constructed full scale pavement test tracks and perform 

experiments utilizing actual vehicles. Each style of APT has its advantages and 

disadvantages. The controlled environment in the simulation facilities reduces impacts of 

climate and improves (reduces) measurement errors. Conversely, test tracks reduce model 

error that may exist due to simulation of traffic and/or climatic effects. 

The WesTrack accelerated pavement testing experiment is one of the most well 

known and well documented pavement performance experiments. Funded by the Federal 

Highway Administration (FHWA), the experiment was performed at a test track 

constructed in Nevada. The 2.9 km oval track (FIGURE II.1) completed constructed in 

1995 and APT was performed from March 1996 to February 1999. The objectives for the 

experiment at this facility were to continue development of performance-related 

specifications for HMA pavements and to provide performance data on Superpave mix 

design procedures. The comprehensive report includes well documented materials, 

traffic, and climate parameters as well as performance data making this experiment an 

excellent source for research related to pavement performance prediction equations. Most 

of the individual testing activities at WesTrack were funded through the National 

Cooperative Highway Research Program and are readily available in published NCHRP 

Reports. 
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FIGURE II.1: WesTrack Test Loop Layout 

 

Trafficking experiments were performed at WesTrack utilizing four triple-trailer 

combinations (FIGURE II.2) utilizing driver-less vehicle technology which provided 

consistency in speed and driving performance as well as job site safety. The trucks 

operated at a speed of 64 kph daily for up to 22 hours per day. Approximately 5 million 

equivalent single-axle loads (ESALs) were measured over the entire experiment. 

Performance monitoring for permanent deformation, fatigue cracking, and smoothness 

was performed throughout the trafficking experiment. Rut depth measurements were 

performed bi-weekly with the “Dipstick” and a laser device developed by NATC. Fatigue 

cracking was recorded by visual inspection surveys every two weeks, typically, and more 

frequently when traffic loading was increased or when rapid development of fatigue 
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cracking was witnessed. Profile measurements were performed to detect distresses such 

as longitudinal cracking and differences in rutting across the width of the track. During 

trafficking, weather data was recorded and post mortem sampling and testing was 

performed after traffic loading ceased. 

 

 

FIGURE II.2: WesTrack Truck Configuration 

 

During the WesTrack experiment, detailed information was obtained regarding 

material properties. Site exploration and laboratory experiments document material data 

for the site soils and sub-grade conditions. Aggregate gradation information for the 

granular base layers and the asphalt concrete mixes was obtained over the entire 

construction and maintenance process. Investigation of various mix designs, and the 

impact on performance of asphalt binder content, aggregate properties, air void content, 

and layer thickness, was performed by developing 26 mix designs for the original 

experiment (FIGURE II.1). Material testing on the various AC mix designs was 
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performed prior and during construction to ensure consistency for accurate experiment 

results. The test sections were designated with respect to these material properties as 

shown in TABLE II.1. The aggregate gradation designations are based on Superpave mix 

design specifications of the same names. The designations of asphalt content refer to 

±0.7% from optimal binder content based on Superpave volumetrics, which includes the 

aggregate classification. (35) 

 

TABLE II.1: Original Test Section Designations at WesTrack Experiment 

Design Air 

Void Content 

Aggregate Gradation Designation 

Fine Fine Plus Coarse 

Asphalt Content (%) 

 Low Opt. High Low Opt. High Low Opt. High 

Low: 4%  04 18  12 09/21  23 25 

Medium: 8% 02 01/15 14 22 11/19 13 08 05/24 07 

High: 12% 03/16 17  10 20  23 06  

 

II.3 Methods for Surrogate Modeling 

Many engineering design problems require expensive computation incorporating a large 

quantity of input data and/or complex mathematical models. These applications have 

recently benefited from surrogate modeling techniques which allow engineers to evaluate 

computationally inexpensive models rather than the computationally expensive models 

from which the surrogates are derived. Construction, validation, and verification are all 

required to demonstrate that the surrogate model well represents the model function, but 

once these steps are completed, the surrogate model can be utilized in many design 

applications such as sensitivity analysis, design optimization, and reliability analyses. 
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A number of surrogate modeling approaches are available, each with advantages 

and disadvantages relating to their success to produce an accurate predictive model. 

Surrogate modeling methodologies vary in complexity in computations which can 

influence the accuracy of the model compared to the true function.  

The simplest surrogate model is a regression model where an output variable (Y) 

is described with respect to input parameters (X) and regression coefficients (β). The 

regression model requires definition of a model form, such as linear or quadratic, where 

the regression coefficients are determined through an analysis of the residuals. Typical 

methods, such as least squared error, define the regression coefficients as those that 

minimize the error in the predictions of the model compared to true output values. 

Although regression models are simple to construct, inaccuracy arises when the model 

form is not close to the true function form. Additionally, functions with many parameters 

can become complex and the improvement in computational speed of the model 

compared to the true function reduces. 

More advanced methods include polynomial chaos (PC) and radial basis functions 

(RBF) improve on simple regression models. PC models improve on regression models 

by replacing the input parameters (x) with Hermite polynomials. An example of a PC 

model can be expressed as: 

 

𝑌(𝑥) = 𝛽0 + ∑ 𝛽𝑖[Γp(𝜉𝑖)]𝑛
𝑖=1      (II.13) 
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The input parameters (x) are expressed in the Hermite terms in the standard normal space 

and are represented as (ξ). The Hermite polynomial term (Γ ) can include any order (p), 

for example: 

Γ1 = 𝜉        

Γ2 = 𝜉2 − 1                   (II.14) 

 

The methods of solving for the regression coefficients (β) are similar to those for the 

simpler regression models, but the inclusion of the Hermite polynomials allows for 

improved model performance. The PC method is highly effective for second and third 

order models with as many as ten input parameters, but the computation expense beyond 

this can be prohibitive.  

Another advanced technique, an RBF model, is expressed mathematically as: 

 

𝑌(𝑥) = ∑ 𝑤𝑖𝜓�𝑥 − 𝑐(𝑖)�𝑛𝑐
𝑖=1    (II.15) 

 

The model output (Y) in an RBF is a weighted sum of the nc basis functions evaluated at 

the Euclidean distances between the input parameter (x) and the centers of the basis 

functions (c(i)). Basis functions (ψ) provide a simplification to the complex model by 

dividing the model into a family of simpler models. Common applications include 

multivariable polynomial models and periodic functions such as Fourier models. The 
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benefit of RBF models is that the estimation of the weights (wi) are computationally 

cheap and yet the model is capable of emulating highly non-linear functions. 

The Gaussian Process (GP) surrogate model is a special form of an RBF model 

and has been shown to be a very powerful surrogate modeling technique for many 

engineering applications. GP models are shown to be capable of fitting data for high 

dimensional problems, on the order of 30-50 input parameters, and are an interpolation 

method that does not follow a specific functional form. GP models are suitable for 

approximating any smooth, continuous function, common in many engineering 

applications. 

Construction of a GP model requires decisions for a correlation function and a 

mean function. The squared-exponential is a commonly utilized correlation function. This 

form utilizes the following equation: 
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   (II.16) 

 

Where iξ  is a scale factor that must be estimated, j
ix  represents the jth training point at 

the ith dimension, and k
ix  represents the new prediction point at the ith dimension. The 

terms are summed over the number of training points, n. The correlation function is 

utilized to construct a correlation matrix, R: 



   

37 
      

















=
),(),(

),(),(

1
1

11
1
1

k
n

j
n

k
n

k
n

jk

xxcxxc

xxcxxc
R







   (II.17) 

 

The covariance function, indicating the covariance between the observed model response 

values of the training data, 𝑌(𝑥𝑗), and the predicted responses, 𝑌(𝑥𝑘), is represented as a 

function of the correlation matrix, R, and variance as shown here: 

 

RxYxYCov kj 2))(),(( σ=     (II.18) 

 

The variance term in Eq. II.18 is another parameter of the GP model that must be 

estimated. A mean function is also required for construction of the surrogate model. A 

common constant function form is shown in Equation II.19. 

 

+++= 22110)( xxx βββµ     (II.19) 

 

The vector, β , is the final parameter that must be estimated to complete the construction 

process. Once the model form has been selected, the model parameters (mean 𝜇, variance 

𝜎2, and correlation length-scale factors 𝜉) must be estimated. The process of parameter 
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estimation is commonly performed utilizing a maximum likelihood estimation method. 

The procedure takes the form of an optimization problem. To avoid common 

complications due to ill-conditioned matrices, the optimization problem is often modified 

to a minimization of the negative log-likelihood function, )](log[ ⋅− L , of the form: 
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 (II.20) 

 

Model verification is required prior to use in design applications. Model 

verification is often based on prediction testing. The values for the prediction points are 

calculated as the mean value of the distribution: 
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   (II.21) 

 

Where r represents a vector of correlations as represented by: 
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II.4 Analytical Reliability Methods for Pavement Design 

The early concepts for reliability analysis in the context of pavement design have been 

summarized by Hudson (36) and Huang (37). Prior to 1965, the safety factor method was 

applied in the design of Portland cement concrete pavements. The safety factor method, 

however failed to properly account for different magnitudes of uncertainties associated 

with the design and load parameters, which can significantly affect the reliability of the 

pavement. Later, Lemer and Moavenzadeh (38) employed the Monte Carlo Simulation 

technique to compute this reliability. In the MCS technique, the uncertainties in the 

random variables are described by appropriate probability distributions. However, a large 

number of iterations requiring very large amounts of computer time were required, 

rendering the technique infeasible for all but the simplest problems to obtain a result with 

a small variance. The approach never gained widespread application until very recently, 

and now only for simplified approaches to pavement design.  

Darter and Hudson (39) characterized the pavement design problem by two 

random variables: NF, the number of allowable axle load applications to failure, and NA, 

the number of actual load applications. The condition of the pavement can then be 

described by the limit state function shown in Equation II.23. 

 

)log()log( AF NNg −=      (II.23) 

 The condition of the pavement is considered to have deteriorated below acceptable limits 

when NA exceeds NF, or equivalently, when 0≤g . By assuming lognormal distributions 

for NF and NA the probability of failure is obtainable as:  
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)( cFP β−Φ=      (II.24) 

 

where (.)Φ  is the cumulative distribution function of the standard normal random 

variable and:  
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where cβ  represents the reliability index. The variables ][gE  and ][gσ  are the mean and 

standard deviation of g, respectively. These moments are calculated by finding the 

moments of the first-order Taylor expansion of the limit state equation, g. The Taylor 

series expansion is truncated at the linear terms, providing the first order approximation 

of the mean and variance of the limit state equation. The result is that the mean is 

calculated by evaluating the limit state function at the mean values of the random, 

dependent variables. Similarly, the variance involves the covariance and mean values of 

the variables, as represented in Equation II.25. This method of using the mean and 

covariance of the random, dependent variables to determine the reliability of the limit 
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state function is known as the Mean Value First Order Second Moment method. Given 

the computational simplicity of this method, subsequent work in probabilistic pavement 

design adopted a similar approach in the procedure used in the determination of the 

moments of NF (40–43). All of these papers apply second-moment reliability methods, 

particularly the MVFOSM method (27, 44).  

           The Rosenblueth method (30) is another well known method and is similar to the 

FOSM method in that it calculates reliability from mean and variance of )(xg . However, 

these moments are calculated by evaluating (.)g  at all n2  combinations of the n  random 

inputs, each taken at one standard deviation above and below the mean. The mean of the 

performance function is given by: 

 

∑= ggE n *
2
1][     (II.26) 

 

where n  is the number of variables.  

The variance is calculated as: 

 

22 ])[(][][ gEgEgV −=         (II.27) 
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The probability of failure is determined in the same manner as the FOSM method, by 

calculating the reliability index and evaluating the cumulative distribution function. 

While the MVFOSM and Rosenblueth methods have enjoyed popularity in 

pavement engineering, they have several important limitations. Firstly, more information 

beyond the first and second moments is typically available to the design engineer. In 

practical problems the researcher will likely have data from which higher order moments 

and full probability distributions can be determined. This renders second moment 

methods biased, as a reliability analyst must consider all information available. 

Furthermore, the assumption of a normal distribution for the distribution of the limit state 

function evaluated in the space of the original random variables is not necessarily valid. 

But the most important limitation of the MVFOSM and Rosenblueth methods is that of 

the lack of invariance with respect to equivalent formulations of the limit state equation, 

first explained by Ditlevsen (45). The reliability estimates resulting from different but 

equivalent expressions of the limit state function can be different using these methods. 

Although limit states can be expressed in mechanically equivalent terms, such as stress or 

strength, the statistical results for this method will not be mathematically equivalent. Not 

only is invariance a problem, it makes it impossible to quantify accurate correlations 

among failure modes. For that reason, MVFOSM is not used in system reliability 

calculations. 

The FORM methods are an improvement to the FOSM method, but require 

additional computation. The FOSM method has a number of deficiencies, one of which is 

the absence of the probabilistic distribution properties of the random variables. The 

FORM method utilizes the variable properties, transforms all the variables into equivalent 
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normal variates, and ultimately determines the reliability index by solving for the limit 

state defined by the performance function. There are multiple methods of solving FORM, 

one method, FORM I, (28) requires an iterative approach and a FORM II method (29) 

incorporates an algorithm to solve for the reliability index. A third method, FORM III, 

utilizes a generalized reduced gradient search algorithm and can be implemented with the 

solver function in Microsoft Excel. 

In FORM, a limit state function g(x) is used to characterize the state of the system 

as failed or safe, and failure and safety domains are characterized as: 
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    (II.28) 

 

where {F} and{S} define the failure and safety sets, respectively, and limit state function 

g(x) defines the limit-state or failure surface }0)(:{ == xxx gL  that divides the entire x 

space into the above distinct sets. The limit state functions are derived from the 

individual distresses. The probability of “failure” of the pavement section is defined as: 
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where )(xxf  is the joint probability density of variables x1, x2… xn. The reliability is 

then the probability that the design criteria is not exceeded, or FP−1 . An analytical 

evaluation of the integral in Equation II.29 is possible in only a few special cases, and 

hence numerical integration is necessary. However, the limits of integration become 

intractable whenever the number of random variables exceeds two or three. 

 In FORM, there are four important steps in the calculation of the probability of 

failure for an individual component distress mode. These are: 

 

1. Definition of a transformation from the original x space to the standard 

uncorrelated normal u space. In the case of uncorrelated variables the transform is 

given by  

 

u = Φ-1(F(x))     (II.30) 

 

Convenient transformations are defined in Liu and Der Kiureghian (46) for the 

general case of correlated variables with prescribed marginal distributions. 

2. Calculation of the most probable point of failure (MPP), the solution to the 

constrained optimization problem: 

 

)0)(min(arg* == xuu g     (II.31) 
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3. Calculation of the reliability index β. β is in general equal to αu*, in which α is 

the negative normalized gradient row vector of the limit state surface in the u 

space, pointing toward the failure domain. For most practical problems β is 

greater than zero, in which case β is also equal to *u . The magnitude of the 

elements of the α vector gives information about the sensitivity (relative 

contribution to the variance of the limit state function). (47) 

4. Calculation of the probability of failure. In FORM, the limit state surface is 

approximated by the hyperplane β – αu = 0 to simplify the integration boundary. 

The probability of failure is approximated as PF1 = Φ (-β). 

 

The results of the individual component reliabilities in FORM can also be used to 

estimate system reliability. A pavement is best represented as a serial system of 

components defined by individual limit state functions, for the pavement is considered 

failed if any one of the individual component distresses is exceeded. For pavements in 

general, the serial system failure probability is: 

 


i

iSYSF gPP }0)({, ≤= x     (II.32) 

Let B be the vector of reliability indices for each of the limit states and the elements of 

the matrix R be the dot products of the corresponding α vectors for each distress mode. 

Then for a series system, the system failure probability is given by ),(1 RBΦ− , where 
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),( RBΦ  is the standard normal multivariate CDF with correlation matrix R. For the bi-

variate case it can be shown that  
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If more than two limit states are considered, then one may elect to use bounding formulae 

such as those in Ditlevsen (48) or evaluate the multi-normal CDF using a numerical 

scheme. 

 The FORM I method performs the previously outlined procedure using an 

algorithm introduced by Rackwitz (28). Specifically, the algorithm begins by defining the 

limit state equation, assuming an initial value for the reliability index, and assuming 

initial values for the random variables. The mean and standard deviations of the 

equivalent normal distribution for all the random variables are calculated and used to 

evaluate the partial derivatives of the performance function at each random variable. The 

evaluated partial derivatives and standard deviations of the normal equivalents are used to 

determine the direction cosines. Once these calculations have been performed, a new 

design point can be evaluated for each random variable by the following equation: 
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Where *
ix  represents the new design point, N

Xiµ  and N
Xiσ  represent the mean and standard 

deviation in the equivalent normal space, respectively, iα  is the direction cosine, and β  

is the reliability index. These steps are repeated in this method until the direction cosines 

converge to a pre-determined tolerance. Once the direction cosines converge, a new value 

of β can be calculated by forcing the performance function to zero by treating β as the 

unknown variable, and solving for β. This last step is repeated until the reliability index 

converges. Once the reliability index is determined, the final step is to determine the 

probability of failure by evaluating the cumulative distribution function at the reliability 

index. 

 The FORM II method is a modification to the FORM I method which can be 

cumbersome or impossible if the reliability index cannot be obtained by evaluating the 

performance function equal to zero. This method implements an algorithm that linearizes 

the performance function and performs iterations based on the partial derivatives of the 

performance function. The initial procedure is the same as that for the FORM I method. 

The partial derivatives are calculated and then the partial derivatives in the equivalent 

normal space are evaluated. These partial derivatives represent the components of the 

gradient vector of the performance function in the equivalent standard normal space (47) 

and are calculated by the equation: 
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g  represent the partial derivatives in the original and equivalent 

normal spaces, respectively, and N
Xiσ  is the standard deviation in the standard normal 

space. New design points are determined in the equivalent standard normal space, 

utilizing the Rackwitz-Fiessler formula: 
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where )( '*
kxg∇  represents the gradient vector of the performance function. The reliability 

index can then be calculated as the root sum of the squares of the design variables. The 

new values of the design points should be used to repeat the process until the reliability 

index converges. The probability of failure is determined similar to the method described 

for the FORM I method. 

 A third FORM method, FORM III, determines the probability of failure by 

calculating the cumulative distribution function at the reliability index. The reliability 

index can be evaluated by minimizing β, subject to the performance function equal to 

zero, by modifying all random variables. The reliability index is calculated as the square 

root of the sum product of the equivalent normal values of the design variables, and the 

probability is calculated by evaluating the cumulative distribution function at β. 
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 One final reliability method to be studied in the context of M-E pavement design 

is the Advanced Mean Value Method. This method is similar to the FORM method, but 

the AMV method makes one simplifying assumption. The AMV method assumes that 

when the limit state function approaches zero, that point represents the most probable 

point. Therefore, the limiting function can be forced to zero by changing the β value. This 

method has an advantage over the second moment method in accuracy because it, like 

FORM, uses computation in the rotationally symmetric standard uncorrelated normal 

space. However, while AMV in general is not as accurate as FORM due to the imprecise 

calculation of the MPP, it only needs to evaluate the gradients of the limit state function 

once. Because the u-space gradients, evaluated at the origin in u-space, are used to 

approximate the α vector, system reliability analysis can be performed.  

 

II.5 Reliability Based Design Optimization 

 

II.5.1 Optimization Problem Definitions 

Reliability based design optimization problems are commonly categorized into three 

problems sets: P1 , P2 , and P3 . Additionally, each of these categories is applicable to 

either component or system-level design problems. 

 The P1 optimization problem considers a problem where the objective is to 

minimize the cost of a design subject to the constraint that each component in the design 

maintains a safe reliability level. This can be expressed as follows: 
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𝑃1 = min𝑑{𝑐0(𝑑)|𝑝𝑘(𝑑, 𝑥) ≤ 𝑝̂𝑘}    (II.37) 

 

The objective function is a cost function (co) of stochastic variables (d) and the constraint 

requires evaluation of the probability of failure with respect to both the stochastic and 

deterministic variables (x) for each k constraint function.  

The P2 problem seeks to minimize the failure probability of the component (k) 

with the largest probability of failure, termed the critical component. This formulation 

minimizes the maximum probability of failure, but does not guarantee that the probability 

of failure meet a required threshold. Again, the probability of failure is with respect to 

both stochastic and deterministic variables. 

 

 𝑃2 = min𝑑{max𝑘 𝑝𝑘(𝑑, 𝑥)}    (II.38) 

The third formulation (P3) differs slightly from the P1 problem in that the cost 

function is written with respect to the probability of failure of the components. 

 

𝑃3 = min𝑑{𝑐0(𝑑) + ∑ 𝑐𝑘(𝑑)𝐾
𝑘=1 𝑝𝑘(𝑑, 𝑥)|𝑝𝑘(𝑑, 𝑥) ≤ 𝑝̂𝑘}   (II.39) 

 

These three formulations are easily re-written for system optimization problems. 
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II.5.2 RBDO Problem Formulations 

Various formulations of RBDO methods have been developed and applied to numerous 

engineering applications (49). Solution techniques utilizing First Order Reliability 

Methods have been shown effective for both component and system RBDO problems. 

RBDO using Efficient Global reliability Analysis (EGRA) provides another practical 

design process that has been shown to be accurate and efficient. 

 Two popular formulations for the FORM based optimization method are 

common: single loop direct FORM (also known as the reliability index approach) and 

inverse FORM (also known as performance measure approach). The single loop direct 

FORM based model can be described mathematically as: 

 

min𝒅,𝒙 𝑓(𝒅)       (II.40) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:𝑔(𝒅,𝒙) = 0     (II.41) 

𝒖∗

‖𝒖∗‖
= − ∇ug(𝐝,𝐱)

‖∇ug(𝐝,𝐱)‖
      (II.42) 

‖𝒖∗‖ = 𝛽𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑      (II.43) 

 

Where the objective function, Eq. II.40, is minimized with respect to design parameters 

(d) and random variable input parameters (x). Equations II.41 and II.42 are the constraints 

required to satisfy the Karush-Kuhn-Tucker (KKT) conditions, and Eq. II.43 is the 



   

52 
      

reliability constraint required by FORM. The reliability index (βrequired) is defined as the 

norm of the vector of input parameters transformed to the equivalent standard normal 

space (u). The vector of variables in the transformed space is related to the gradient of the 

limit state equation (g) and its norm. 

 The single loop inverse FORM model can be described as: 

 

min𝒅,𝒙 𝑓(𝒅)       (II.44) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:𝑔(𝒅,𝒙) ≥ 0    (II.45) 

𝒖∗

‖𝒖∗‖
= − ∇ug(𝐝,𝐱)

‖∇ug(𝐝,𝐱)‖
      (II.46) 

‖𝒖∗‖ = 𝛽𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑      (II.47) 

 

Here, the objective function is similar to the direct FORM method, Eq.s II.46 and II.47 

satisfy the KKT conditions, and Eq. II.45 satisfies the inverse FORM optimality 

condition.  The inverse FORM method has numerous advantages, as described by 

McDonald and Mahadevan in (49). 

 FORM methods are efficient with respect to required function evaluations, but 

approximations in these methods can cause them to fail to find the MPP. Methods such as 

the direct FORM method can result in inaccuracies if the approximation to the shape of 

the limit state is poor. The EGRA process is an alternative to these FORM based methods 

that improves accuracy and maintains efficiency, primarily through the use of surrogate 



   

53 
      

modeling. EGRA evaluates the function at a small number of samples, constructs a 

surrogate model for the function, and solves an auxiliary optimization problem finding 

the point of maximum expected feasibility. This point of feasibility is determined through 

an expected feasibility function which searches for potential training points near the limit 

state, the area where accuracy is most important. The process iterates by selecting this 

point as a new training point and re-training the surrogate repeatedly until the expected 

feasibility converges. The final surrogate model can then be used to make predictions of 

reliability for the true function. 

 The EGRA RBDO method can be formulated as a nested, single-loop, or 

sequential optimization problem. The nested loop formulation is the most 

computationally expensive process as each iteration requires full reliability analyses and 

no information from these analyses are shared in later iterations. A single-loop method 

improves the efficiency of the nested method through use of a surrogate model that 

evaluates the reliability across a domain rather than at individual candidate points. The 

potential for model error is introduced with the inclusion of the surrogate, but results are 

easily verified after convergence of the EGRA analysis. Sequential formulation improves 

on the single-loop process by intermittently improving the accuracy of the surrogate 

model to incorporate verification into the iterative process. (50) 

 

II.6 Discussion 

Current flexible pavement design in the United States requires improvements in accuracy 

in pavement predictive models, reduction in computational inefficiency, and practical 
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design optimization methods. The AASHTO MEPDG utilizes an extensive amount of 

experimental data, but many researchers have found inaccuracies in the predictive 

models. Model form error contributes to the inaccuracy, compounded by neglect of input 

parameter variability in the current, deterministic design procedure. Specifically, the 

permanent deformation models have been shown to not perform well compared to field 

measurements. Chapter III of this dissertation investigates multiple permanent 

deformation models and discusses the predictive capability of these models compared to 

experimental data. The current M-E predictive models are computationally expensive to 

evaluate when performing multiple design iterations. Surrogate modeling has been 

demonstrated in Chapters IV,V, and VIII as a solution to reduce the computational 

expense of these models without loss of accuracy. A framework for uncertainty 

propagation is presented in Chapter V, and the two chapters immediately following 

propose methods for analytical and probabilistic reliability analysis within this 

framework. Improvement to the current design procedure is necessary to provide 

designers computationally efficient tools for incorporating initial construction and 

recurring maintenance costs into the design and construction decision process. The risk-

based design optimization framework presented in Chapter VIII is computationally 

efficient, through the use of a well-trained surrogate model, and incorporates all sources 

of uncertainty in pavement design for a more reliable predicted performance.  
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CHAPTER III 

 

III. CALIBRATION, SELECTION, AND UNCERTAINTY 
QUANTIFICATION FOR PERMANENT DEFORMATION 

PREDICTIVE MODELS FOR FLEXIBLE PAVEMENT 
 

III.1 Introduction 

M-E design methods, although an improvement to purely empirical methods, do not 

eliminate the uncertainty in predicted pavement behavior models. One uncertainty that 

currently exists is model form error, which occurs due to a lack of fit between the 

predicted and actual behavior of pavement. The source of this error is primarily due to 

inadequacy of the model in incorporating all the mechanistic properties of the pavement 

behavior. One specific pavement distress model which is highly susceptible to model 

form error is the permanent deformation model for flexible pavements. This Chapter 

investigates the model uncertainty for the permanent deformation distress mode with 

respect to three differing predictive theories. Model calibration is performed and the 

models are validated with experimental data to determine the uncertainty that exists in the 

predicted and actual performance. Management of uncertainty due to the predictive 

models is necessary for properly understanding propagation of uncertainty and for 

performing sensitivity analysis, necessary for better pavement design decisions and cost 

effective designs. Quantification of this model uncertainty will increase reliability of 

predicted performance which is critical to design processes such as design optimization. 
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To date, research has resulted in the development of two primary prediction 

models for the permanent deformation distress mode based on two different mechanistic 

behavioral theories: behavior due to axial strain and shear theory behavior. A third theory 

introduced in this dissertation assumes that permanent deformation is best described by a 

model that combines both shear and axial theories. Accurate predictions for permanent 

deformation require reduction in model form error. Six permanent deformation predictive 

models are investigated in this dissertation to determine the most accurate predictive 

model for use in flexible pavement design. Validation of the models presented within this 

dissertation is achieved utilizing empirical data from the NCHRP WesTrack Project. 

 Permanent deformation is chosen as the distress model for illustrative purposes 

for several reasons. First, permanent deformation is a failure mode that impacts driver 

safety and significantly contributes to maintenance cost over the design life. Second, 

permanent deformation in the bound layers can be repaired by resurfacing. (51) 

Resurfacing alone accounted for $3.8 billion dollars in federal funds in 2009, 

approximately 12% of the total obligation of federal funds on the National Highway 

System for all improvement types. (52) Deep structural rutting requires reconstruction of 

the entire pavement. Most important, many researchers have shown that the current 

models have been shown inaccurate in predicting true asphalt concrete behavior. (10) 

(53) (54) For example, the current models are not capable of accurately predicting 

pavement performance for asphalt concrete with polymer-modified binders. The behavior 

of such binders may increase pavement life spans, which can be contrary to the predicted 

behavior with current permanent deformation models. (55) Lastly, deformation is an easy 
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quantity to measure, therefore it is hypothesized that significant uncertainty comes from 

the predictive models rather than errors in field measurements.  

 

III.2 Background 

The two primary permanent deformation predictive models investigated in this 

dissertation are the MEPDG predictive model and the NCHRP Report 455 WesTrack 

Level 1-B predictive model. Each model assumes that permanent deformation in a 

pavement system is the accumulation (sum) of the permanent deformation through all 

layers of the pavement system. Different models are necessary for describing the 

permanent deformation in bound and unbound layers. Deformation in the unbound layers 

is assumed to be a function of vertical compressive strain by both the MEPDG and 

WesTrack models, though different forms of the mechanistic equations were utilized by 

the two predictive models. Further, the models for the unbound layers were calibrated 

with different empirical data. The MEPDG investigated numerous mechanistic models 

and selected a model derived by El-Basyouny and Witczak. (6) The MEPDG utilized 

LTPP data to calibrate this model. The WesTrack model utilized the Asphalt Institute 

equation and empirical data from the WesTrack project.(4) 

The significant distinction between these two predictive models comes in the 

predictive model for the bound layers which differs due to the underlying assumptions of 

the mechanistic behavior that causes permanent deformation in the asphalt concrete layer. 

The MEPDG model assumes that permanent deformation is the result of axial strain and 

the WesTrack model assumes that shear deformation is the cause of deformation.  
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The MEPDG predictive model for predicting permanent deformation for asphalt 

pavements is derived from empirical data obtained from LTPP data and linear elastic 

analysis of the asphalt layer(s). The model form in the asphalt layer is based on a 

constitutive relationship initially derived from laboratory repeated load permanent 

deformation tests: 

 

𝜀𝑝
𝜀𝑟

= 𝑎𝑇𝑏𝑁𝑐     (III.1) 

 

Where the plastic strain (εp) is expressed as a function of N load repetitions, a pavement 

temperature T, the resilient strain εr, and regression coefficients a, b, and c. This model 

form comes with the assumption that the permanent deformation is a function of vertical 

plastic deformations and not a function of plastic shear deformations. The MEPDG 

discusses three major stages of pavement rutting and concludes that the primary and 

secondary stages describe most practical applications. Previous research indicates that 

these two stages are predominantly impacted by vertical strains and it is only the tertiary 

stage at which shear deformation must be considered for predicted performance. (6) The 

mechanistic model for asphalt deformation is modified with the inclusion of calibration 

regression coefficients (β) (Equation III.2) which are calibrated with LTPP data.  

 

𝜀𝑝
𝜀𝑟

= 𝛽𝑟𝑖𝑎𝑇𝛽𝑟2𝑏𝑁𝛽𝑟3𝑐    (III.2)   
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The MEPDG comments that the form of this predictive model is quite simple as the 

permanent strain is determined by evaluating the resilient strain. The resilient strain is 

defined by a simple equation, assuming elastic behavior, including only the material’s 

elastic modulus, Poisson’s ratio and the state of stress due to the applied traffic loading.  

The calibration process for the model of permanent deformation in the asphalt 

layer is performed by minimizing the error between actual and predicted performance, 

utilizing Equation III.1 where a layered elastic analysis program is used to determine the 

resilient strain. The regression coefficients are derived from non-linear regression based 

on the NCHRP 9-19 Superpave Experiment and the calibration factors are derived from 

LTPP sections located in 28 different states. (6) 

 The NCHRP Report 455 develops a number of permanent deformation models by 

investigating direct regression analyses as well as regression based on mechanistic-

empirical analyses utilizing the data from the WesTrack project. Permanent deformation 

in the asphalt concrete layer for these models is based on the assumption that shear 

deformation governs deformation. One WesTrack formulation, based on M-E analysis, is 

a least squares regression between predicted total permanent deformation and the 

WesTrack rutting data. The regression equation is developed by estimating the rut depth 

of all layers through the procedure shown in FIGURE III.1. The process requires 

evaluating the impact of RSST-CH data on temperature and moduli of elasticity. Stresses 

and strains in the pavement structure are calculated by elastic analysis at key locations 

including: 2 inches below the surface at wheel edges and at the top of the sub-grade layer. 
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The accumulation of these strains is used to estimate rut depths and the regression 

process iterates until the M-E model regression coefficients converge. Regression 

utilizing equivalent single axle loads (ESALs) and mix parameters is then performed 

between the calibrated M-E model and the empirical data from the WesTrack experiment.  

 

 

FIGURE III.1 NCHRP 455 Regression Analysis Procedure 

 



   

61 
      

The WesTrack Level 1-B equation for permanent deformation (rdHMA), derived by 

the regression procedure previously described, is defined as the product of a regression 

coefficient (κ) and the permanent (inelastic) shear strain (γi). 

 

𝑟𝑑𝐻𝑀𝐴 = 𝜅𝛾𝑖     (III.3) 

Where: 

𝛾𝑖 = 𝑎 ∗ exp (𝑏𝜏𝛾𝑒𝑛𝑐)   (III.4) 

 

Permanent (inelastic) shear strain (γi) is defined as a function of elastic shear stress (γe) 

and shear strain (τ), the number of axle load repetitions (n), and regression coefficients a, 

b, and c. The regression coefficient is determined empirically outside the scope of the 

NCHRP project and is defined as a function of HMA thickness. Similar to the MEPDG 

model, layered elastic behavior is assumed and is necessary in calculation of the elastic 

shear stress and corresponding shear strain values in the WesTrack Level 1-B model. The 

elastic analysis utilizes the moduli of elasticity as determined empirically through the 

RSST-CH laboratory results.  

Once the NCHRP M-E model is calibrated, a final regression model is derived 

relating the M-E model to mix parameters. One recommended regression model 

presented by the NCHRP report is shown in Equation III.5 and includes mix parameters: 

percent of asphalt content (Pasp), percent of air void content (Vair), percent of aggregate 

finer than a No. 200 sieve (P200), and ESALs. The terms fine plus and coarse take the 
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value of unity when the mix is equivalent to the corresponding WesTrack mix design and 

zero otherwise. This equation is the formulation chosen for analysis and comparison in 

this dissertation. 

 

ln(𝑟𝑑) = −6.1651 + 0.309941 ln(𝐸𝑆𝐴𝐿) + 0.00294305𝑉𝑎𝑖𝑟2 + 0.0688276𝑃𝑎𝑠𝑝2  −

0.0657803𝑃𝑎𝑠𝑝𝑃200 + 0.600498(𝑓𝑖𝑛𝑒 𝑝𝑙𝑢𝑠) − 1.59167(𝑐𝑜𝑎𝑟𝑠𝑒) +

0.21327 ln(𝐸𝑆𝐴𝐿) (𝑐𝑜𝑎𝑟𝑠𝑒)        (III.5) 

 

III.3 Construction of Predictive Models 

Six permanent deformation prediction models are considered in this chapter. The 

nationally calibrated MEPDG model, herein referred to as the “national” model, is used 

to represent a model based purely on plastic axial strain. Two additional models are 

derived from the MEPDG design method. The first method, also purely based on the 

plastic axial strain, is a locally calibrated model (locally calibrated), and a second, 

combined model modifies the calibration factors through a regression analysis (parameter 

calibrated). A shear theory model utilized in this study is derived from NCHRP Report 

455 (NCHRP). Two final, combined models are constructed as weighted averages 

between the NCHRP and the calibrated axial strain models. 
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III.3.1 MEPDG Rutting Models 

The national, locally calibrated, and parameter calibrated models are constructed within 

the MEPDG design procedure. The MEPDG utilizes calibration factors in the rutting 

performance prediction equation that can be altered from a national average to a local or 

project-specific value. The equation for plastic strain is calculated as shown in Equation 

III.6. 

 

𝜀𝑝
𝜀𝑟

= 𝑘𝑧𝛽𝑟110𝑘1𝑇𝑘1𝛽𝑟2𝑁𝑘3𝛽𝑟3    (III.6) 

 

where 𝜀𝑝 and 𝜀𝑟 are plastic and resilient strain respectively, and the k and 𝛽 values are the 

regression coefficients and calibration factors. 

 For this study, the regression coefficients (k1, k2, k3) are kept at the national values 

of   (-3.35412, 1.5606, 0.4791). The calibration factors (β1, β2, β3) are modified for the 

MEPDG based predictive models as described in TABLE III.1. The national model 

utilizes the nationally derived factors presented in the MEPDG. 

 The locally calibrated factors are derived utilizing the performance data obtained 

at the WesTrack experiment, including climatic data specific to the site, traffic input that 

best represents the actual traffic loadings, and mix properties for the numerous 

experimental pavement test sections. The local calibration process is performed by 

minimizing the sum of the squared residuals between the measured WesTrack permanent 

deformation values and the predicted values from the MEPDG for 17 WesTrack test 
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sections: 1, 4, 7, 9, 11 through 15, and 18 through 25. These specific sections are chosen 

to construct a locally calibrated model that can be compared to the parameter calibrated 

model, which is dependent on experimental results taken from these select test sections.  

The calibration process is performed utilizing the Hooke-Jeeves optimization 

method and is implemented manually through both the MEPDG and the numerical 

computation software program, MATLAB. This method is a pattern search method that 

systematically searches in orthogonal directions for a local minimum. This method of 

optimization is specifically advantageous for this application for a number of reasons. 

First, this optimization method does not require knowledge of the form of the 

optimization problem’s objective function. Additionally, because of compatibility issues 

between the MEPDG and software capable of optimization, the optimization routine 

cannot be automated. The Hooke-Jeeves method is easily adapted to the manual 

procedure required.  

The model calibration problem is stated: 

 

min𝛽1,𝛽2,𝛽3 ∑ ∑ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠𝑖2     ∀ 𝑁 𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑠12
𝑖=1

𝑁
𝑛=1   (III.7) 

 

In Equation III.7, optimal calibration factors are found to minimize the sum of the 

squared residuals for the first 12 months of the WesTrack experiment, for all N test 

sections. To reduce computational effort, two convergence limits are imposed on the 

optimization routine. A solution to the optimization routine is considered converged if the 



   

65 
      

difference between the sums of the squared residuals between iterations is below 0.01. 

The smallest step size for the design variables is 0.125. The parameters of the locally 

calibrated model are given in TABLE III.1. 

The parameter calibration model is considered to include both axial and shear 

theories through modification of the MEPDG calibration factors as a function of material 

properties that describe shear behavior. By modifying the calibration factors with regard 

to shear based parameters, the predictive model will contain both shear and axial 

parameters, incorporating both physics philosophies. Specifically, the shear based 

parameters utilized for this study are two measured values obtained through the Repeated 

Simple Shear Test at Constant Height (RSST-CH) test: repetitions of the test to 5% strain 

(Reps5%) and the resilient (complex) shear modulus (G*). The parameters are related to 

the calibration factors through a linear relationship described as: 

 

𝛽𝑖 =  𝛽𝑖(𝐿𝑜𝑐𝑎𝑙𝑙𝑦𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙) + 𝑚𝑖,1(𝑅𝑒𝑝𝑠5%(𝑛)) + 𝑚𝑖,2(𝐺∗(𝑛))  

 𝑖 ∈ 1,2,3        

∀ 𝑛 ∈ 𝑁              (III.8) 

 

where each of the three calibration factors (β1, β2, β3) is a function of the Reps5% and G* 

parameters for each of the pavement sections and of the calibration factors derived from 

the locally calibrated model (β1(LCM), β2(LCM), β3(LCM)). The coefficients, or slope 

terms, in the linear relationship (m1, m2) are derived through a least squared optimization 
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routine, similar to the locally calibrated model, and are described in TABLE III.1. The 

optimization is considered converged if the difference between the sums of the squared 

residuals between iterations is below 0.01. The smallest step size for the design variable 

is 0.025. 

 

TABLE III.1: Calibration Factors for MEPDG Predictive Models 

Predictive 
Model 

β1 β2 β3 

National 1.0 1.0 1.0 
Locally 
Calibrated 

2.875 1.0 1.0 

Parameter 
Calibrated 

2.875  +  0.15Reps5%  +  
0.175(G*) 

1.0  –  0.075Reps5%  – 
 0.1(G*) 

1.0  +  0.1Reps5%  
+ 0.05(G*) 

 

III.3.2 Shear Theory Model 

A model that relates permanent deformation to shear behavior of the asphalt concrete 

layer(s) is considered, utilizing the “Level 1-B” analysis presented in the NCHRP Report 

455 (35). The derivation of this model is based on both a regression analysis from 

WesTrack pavement performance and M-E analysis as described in the NCHRP Report 

and in Chapter III.2. This model can be utilized for prediction for pavement mixes similar 

to those used at WesTrack, but requires re-calibration for alternative mix designs. 

Calibration may be required for alternative climatic regions and traffic patterns, but the 

concepts presented in the NCHRP indicate that the model should be applicable to all 

other traffic and environmental conditions. Additional experimental validation of this 

model with data other than the WesTrack data is beyond the scope of this dissertation. 
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The prediction model chosen is of the form: 

 

ln(𝑟𝑑) = −6.1651 + 0.309941 ln(𝐸𝑆𝐴𝐿) + 0.00294305𝑉𝑎𝑖𝑟2 + 0.0688276𝑃𝑎𝑠𝑝2  −

0.0657803𝑃𝑎𝑠𝑝𝑃200 + 0.600498(𝑓𝑖𝑛𝑒 𝑝𝑙𝑢𝑠) − 1.59167(𝑐𝑜𝑎𝑟𝑠𝑒) +

0.21327 ln(𝐸𝑆𝐴𝐿) (𝑐𝑜𝑎𝑟𝑠𝑒)                                                                        (III.9) 

 

where the permanent deformation (rd) is a function of equivalent single axle loads 

(ESAL), the percent of aggregates finer than the No. 200 sieve (P200), air void content by 

percent (Vair) and the percent asphalt (Pasp). The terms fine plus and coarse take the value 

of unity when the mix is equivalent to the corresponding WesTrack mix design and zero 

otherwise. 

 

III.3.3 Weighted Models 

Two weighted models are constructed combining the NCHRP model and the calibrated 

models. The weighted average models predict permanent deformation as described by 

Eq. III.10. 

 

𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡𝐷𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = (𝑤)(𝑁𝐶𝐻𝑅𝑃) + (1 − 𝑤)(𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙) (III.10) 

 



   

68 
      

where the permanent deformation prediction is calculated by weighting the prediction 

from each of the models considered. The weights for each model are established through 

a least squares optimization routine utilizing WesTrack data and are described in TABLE 

III.2. 

 

TABLE III.2: Weight Coefficients for Weighted Models 

Model 
Weights (w) 

NCHRP Calibrated Model 
NCHRP and Locally Calibrated 0.61 0.39 
NCHRP and Parameter Calibrated 0.48 0.52 

 

It is important to note that the results from the least squares optimization provide 

information regarding the sensitivity of the predictive model to each of the model types. 

The combination of the NCHRP and locally calibrated models indicates that both models 

contribute information to the rutting prediction. The second model, combining the 

NCHRP and parameter calibrated model demonstrates a nearly equal contribution from 

either model to the sensitivity of prediction of rutting. Further, because the NCHRP 

model does not dominate the weighted average, neither the axial strain or shear theories 

are capturing a dominate amount of predictive power. 

The weighted average coefficients show deformation to be more sensitive to the 

parameter calibrated model than the calibrated model. This is expected because the 

locally calibrated model is a subset of the parameter based model. Recall, the calibration 

factors utilized in the parameter calibrated model are functions of both material shear 
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behavior and the calibration factors derived for the locally calibrated model. 

Interestingly, the weighted coefficients are near equal for the NCHRP and parameter 

calibrated model, indicating that the inclusion of shear related materials parameters in the 

axial strain model improves the significance of this model with respect to predicted 

performance. Permanent deformation for this model is nearly equally sensitive to either 

the shear or axial theory models. 

 

III.4 Model Validation and Comparison 

Model validation is performed for each prediction model and then models are compared 

to determine the most effective predictive model. Model validation herein includes both 

classical and Bayesian techniques. Model validation metrics, including mean squared 

error and the adjusted coefficient of determination, are calculated for each model and the 

results are compared. Additional metrics including the Bayes Factor and the F-test are 

evaluated for direct model comparisons. A brief discussion of the computation required 

for these techniques follows. 

 The data utilized for the model validation and comparison calculations is from the 

WesTrack experiment described in NCHRP Report 455. The limitations of this model 

validation are restricted to the shear theory models which are derived utilizing this same 

data. The NCHRP Report 455 provides detailed commentary related to the applicability 

of this model to data outside the WesTrack experiment and it is assumed that the bias 

towards this data is minimal. Further model validation studies are necessary and should 
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include data outside the WesTrack experiment to quantify and address any bias in the 

validation results presented in this dissertation. 

The mean squared error is a classical method of model validation, which 

incorporates the actual field measurements obtained through the WesTrack project and 

the predicted performance by each model. This metric requires the calculation of the 

residual between the actual and predicted pavement performance. The mean squared error 

is evaluated as the expected value, or mean, of the residuals squared. An additional 

classical metric, the coefficient of determination (R-squared value) relates a correlation 

between the predicted and actual field performance. A value close to one indicates that 

the two values are closely correlated and this is the objective of the calibrated models. 

A Bayes factor is another model validation metric and is used to compare the two 

models’ ability to describe experimental data. The Bayes factor is calculated as a ratio of 

the likelihood of observing the validation data conditioned upon the null and alternative 

hypotheses, as shown in Eq. III.11. (21) (56)  

 

)(
)(

1

0

HdataL
HdataL

B =
    (III.11) 

 

The null hypothesis states that the behavior of the experimental data is well represented 

by the predictive model in the numerator. The alternative does not support the model in 

the numerator as a good predictor of the experimental data in comparison with the model 
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represented in the denominator. Because the hypotheses are continuous functions, the 

likelihood of each hypothesis is proportional to the product of the probability densities of 

all the validation output. Calculation of the Bayes factor for this application can be 

reduced to: 

 

𝐵(𝑥0) = ∏ 𝜙((𝑦𝑖−𝑦�𝑖),𝑚𝑜𝑑𝑒𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛,𝑚𝑜𝑑𝑒𝑙 𝑒𝑟𝑟𝑜𝑟)𝑁
𝑖=1

∏ 𝜙((𝑦𝑖−𝑦�𝑖),𝑚𝑜𝑑𝑒𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛,𝑚𝑜𝑑𝑒𝑙 𝑒𝑟𝑟𝑜𝑟)𝑁
𝑖=1

  (III.12) 

 

where the numerator is the product of the evaluation of the standard normal probability 

density function (PDF) evaluated at the residual error between the predictive model and 

the WesTrack data. The denominator in Eq. III.12 is the product of the PDF evaluated in 

the same manner for a competing model. The mean and standard deviations for the 

normal PDFs are assumed to be functions of the models under investigation. The mean 

and standard deviations for the PDFs are calculated as the mean and standard deviations 

of the model error for each model. 

The regression models’ Bayes factor can be compared to each other, as well as to 

the national or NCHRP model Bayes factors, to determine the most appropriate 

predictive model. Jeffreys (57) provides a standard scale that is commonly used for 

interpretation of Bayes factors. A Bayes factor of 3 gives a substantial measure of support 

for the model in the numerator with respect to the model in the denominator, 10 a strong 

measure of support, 30 a very strong measure of support, and 100 a decisive measure of 

support. 
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The F-test is utilized to evaluate the benefit of incorporating additional model 

parameters. The F-test is a likelihood ratio test, expressed as: 

 

𝐹 =
�𝑅𝑆𝑆1−𝑅𝑆𝑆2𝑝2−𝑝1

�

�𝑅𝑆𝑆2𝑛−𝑝2
�

     (III.13) 

 

where the numerator is the ratio of the difference of residual sum of squares (RSS) for the 

two models divided by the difference in the number of parameters (p). The denominator 

is the ratio of the residual sum of squares for the second model divided by the difference 

between the number of validation points (n) and the number of parameters for the second 

model. This F value will be compared to a critical F, Fcrit, to test the null hypothesis 

against an alternative. The critical F value is calculated as shown in Eq. III.14. 

 

𝐹𝑐𝑟𝑖𝑡 = 𝐹𝛼(𝑝2 − 𝑝1,𝑛 − 𝑝2)    (III.14) 

 

For the formulation shown in Eq.s III.13 and III.14, the null hypothesis states that the 

second model does not provide a better fit to the data than the first model. An additional 

requirement for the test is that the model with fewer parameters be nested within the 

second model for an appropriate interpretation of results. The null hypothesis will be 

rejected if 𝐹 ≥ 𝐹𝑐𝑟𝑖𝑡. (58) 
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III.5 Model Validation and Comparison Results 

Model validation and comparison metrics for the six predictive models are presented in 

TABLE III.3. The F-test is performed only for the parameter calibrated and weighted 

models, with comparison to the locally calibrated model, as these are the only models of 

which the locally calibrated model is nested. The null hypothesis states that the parameter 

calibrated does not provide a better fit to the data than the locally calibrated model and a 

similar hypothesis is taken for the weighted models. The null hypothesis is rejected when 

the F value calculated for the two models under comparison is greater than the critical 

value. Further, if the F value is greater than the critical F value, the model with additional 

parameters provides significantly more information and the inclusion of these additional 

parameters is supported. Similarly, the Bayes factor is only calculated in comparison to 

the national model. The Bayes factor is not dependent on the number of model 

parameters, unlike the F-test, and therefore model comparisons can be made between all 

the models when calculated with respect to only the national model. 
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TABLE III.3: Model Validation and Comparison Results 

Model 

Mean 
Squared 
Error 

Adjusted 
Coefficient of 
Determination 
(R²) 

Bayes Factor 
(Compared to 
National Model) 

F-Test 
(Compared to 
Locally 
Calibrated 
Model) 

Critical F 
Value 
(α=1%) 

National 0.132 0.350  -  - - 

Locally Calibrated 0.085 0.369 7.75E+05 - - 

Parameter Calibrated 0.072 0.471 3.20E+13 6.02 2.90 
NCHRP (Shear 
Theory) 0.075 0.578 5.48E+21 

 -   -  

Weighted: Locally 
Calibrated and 
NCHRP 0.068 0.579 1.57E+20 

12.61 3.42 

Weighted: Parameter 
Calibrated and 
NCHRP 0.058 0.613 4.31E+24 

8.76 2.41 

Note: Dash indicates data is not applicable. 
 

The locally calibrated model has a lower mean squared error and a higher coefficient of 

determination than the national (MEPDG) model. The Bayes factor for the locally 

calibrated model indicates a decisive measure of support for the model over the national 

model. This clearly demonstrates the need for local calibration with regards to climatic 

data and traffic loading patterns; a fact that has been demonstrated repeatedly by other 

researchers (59) (60). 

 The weighted models show significant predictive power with the smallest MSE 

values and largest R² values. These two models reduce the average residual across all 

validation points as well as the standard deviation for the residuals, as shown in FIGURE 

III.2. The parameter weighted model is shown to reduce the error, with a mean nearer to 

zero than the national model. The PDF for the parameter weighted model also 

demonstrates the reduction in variance with a slope steeper than the other models. The 
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incorporation of both mechanistic theories with local calibration is clearly critical in 

optimizing accuracy of rutting predictions. 

 

FIGURE III.2: Probability Density Functions for Model Residuals 

  

 The validation metrics clearly support the models which combine both shear and 

axial theories. The parameter calibrated model, again, is a model which incorporates the 

locally calibrated model and shear material parameters to create a predictive model which 

includes both theories for the mechanistic behavior governing permanent deformation. 

All validation results decisively support this model over the national and locally 

calibrated models. This indicates that calibration incorporating additional mix properties, 

specifically properties that describe the behavior of the mix with respect to shear, further 

improves predictive power. The Bayes factor for the parameter calibrated model indicates 

decisive support of this model over the national and local models. Additionally, the 
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results of the F-test indicate that the inclusion of additional model parameters 

significantly improves accuracy in predicted performance compared to the locally 

calibrated model. 

 FIGURE III.3 provides a visual comparison of the mean squared error and 

adjusted coefficient of determination for all the predictive models. It is clear that the 

performance of the axial strain models improve by calibration processes and the weighted 

models further this improvement. The weighted average models both minimize the error 

and are supported by larger adjusted R² values. The weights associated with each 

weighted model (shown in TABLE III.2) in conjunction with the metrics presented in 

FIGURE III.3 lead to the conclusion that the axial strain model and shear model are both 

contributing significantly to the accuracy in predictions. Although the adjusted 

coefficients of determination are quite low, with a best performing model only achieving 

a 0.613 value, the improvement from the national model value of 0.350 is significant. 

Investigation of an alternative weighted model, such as a quadratic or a form including an 

interaction term may see additional improvement in predictive power. 
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FIGURE III.3: Statistics for Model Validation 

 

III.6 Conclusion 

The MEPDG is a powerful tool for pavement design, but model error, which impacts 

predicted reliability levels for pavement performance, is neglected. The development of 

the MEPDG and the NCHRP design methods have been shown to significantly improve 

the accuracy of prediction of pavement performance over purely empirical methods, but, 

the development of M-E design methods has not eliminated model form error. The 

evolution of two contrasting mechanistic theories defining the behavior of flexible 

pavement with respect to the permanent deformation distress mode clearly indicates the 

need for an improved predictive model. Although models based on each theory have 

significant predictive power, it is clear that neither model fully captures the mechanistic 

behavior of flexible pavements with respect to the permanent deformation failure mode. 

The hypothesis presented herein states that a combined model will better capture the 
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mechanistic behavior and reduce model form error. The results presented here indicate 

that a model which combines both theories does reduce model form error and improves 

accuracy in predictions of permanent deformation. The weights for the weighted models 

indicate that both models contribute to improved model performance.  

 Reliability analysis for pavement structures requires accurate predictions in 

pavement performance and therefore requires accurate predictive models. The models 

presented indicate that calibration of the MEPDG model to incorporate local factors, site 

specific factors, and mix parameters is a critical step in accurate pavement predictions. 

Although the locally calibrated model improved accuracy in model predictions in 

comparison with the national or NCHRP models, additional improvement is found when 

the model incorporates both axial strain and shear theory. The mix parameters describing 

shear strength included in the parameter calibrated model are not currently included as 

design input parameters in axial strain M-E design models. Presented here is a procedure 

to incorporate those parameters through the calibration factors that already exist in the 

MEPDG software, resulting in a model that begins to capture the behavior of the 

pavement with respect to both mechanistic theories. These models improve predictive 

capability for pavement design, which is critical to providing reliable and cost effective 

designs. 

 Reduction of model error in pavement prediction models is necessary, but not 

sufficient, to assume reliable and cost effective pavement designs. The AASHTO 

MEPDG is a comprehensive design procedure, based on the theory that deformation is a 

function of axial strain, that can be enhanced through local and parameter calibration, but 

the computationally expensive model must be replaced if it is to become an efficient tool 
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for design engineers. A well-trained surrogate model can accurately imitate the MEPDG 

design equations and improves the computational time required for single design 

evaluations. The surrogate model combined with the already efficient regression model 

incorporating shear parameters will provide an accurate predictive model that greatly 

improves computational speed. 
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CHAPTER IV 

 

IV. SURROGATE MODEL INITIALIZATION: VARIABLE 
SELECTION PROCESS 

 

IV.1 Introduction 

The AASHTO MEPDG is the most current and comprehensive implementation of M-E 

design in the U.S, but it is computationally expensive to evaluate. The MEPDG design 

process enables engineers to choose a method based on the level of knowledge about the 

input parameters which impacts the computational effort required to design a pavement 

section. Evaluation of the MEPDG at the Level 1 design input level improves accuracy of 

design predictions by incorporating detailed information for input variables believed to 

be most closely linked to pavement performance, but practitioners are faced with a 

complicated data acquisition problem. Complex prediction models and extensive climatic 

data in conjunction with Level 1 input parameters result in a design process that is 

computationally expensive to run for highly iterative analyses such as design 

optimization or sensitivity analyses. Practitioners need a computationally efficient and 

accurate method for performing flexible pavement design. While Level 1 analyses are 

assumed to be more accurate, sensitivity analysis is necessary to determine the true 

impact of these inputs on predicted performance. 

A surrogate model that accurately emulates the MEPDG Level 1 analysis will 

significantly improve computationally efficiency for analyses that require numerous 

iterations, but the efficiency of the surrogate model is dependent on the construction 
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process. Surrogate model construction requires selection of the quantity of training points 

(NTP), the quantity of parameters for each training point (ND), and selection of the 

location of the training points. For clarity, the quantity of training points refers to the 

selection of a point in the design domain space that will be utilized as an input in the 

construction of the surrogate model. The quantity of parameters for each training point 

refers to the dimensions of the model’s inputs. For example, construction of a surrogate 

model can be performed by selecting NTP training points, each of which describes a point 

in the ND dimensions of the design domain. The surrogate model is constructed utilizing 

the [NTP x ND] matrix of input training points. Construction of the surrogate model also 

requires training values provided as a matrix of size [NTP x NY], where each training 

point input has a paired training value (output) for each prediction model (Y). 

The objective of this chapter is to develop an efficient selection process to 

determine the optimal quantity of parameters (ND) for a surrogate model emulating the 

Level 1 MEPDG design procedure. Three selection processes are investigated: a 

correlation matrix method, ANOVA method, and a GP length-scale factor method. 

Sensitivity analysis will provide insight to the most significant design information for 

Level 1 analyses. 

 

IV.2 Surrogate Model Construction: Initialization 

Surrogate model construction requires selection of the quantity of parameters for each 

training point (ND). In selecting the training data, one must consider the limitations of 

surrogate models and choose to vary only the most important input parameters, as 
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increasing the number of inputs will require larger amounts of training data to estimate an 

accurate surrogate model. Further, evaluation of the actual function is computationally 

expensive. Utilizing a surrogate model that includes all the parameters for the true 

function may not improve the speed to evaluate the function, negating the purpose of 

construction of the surrogate. The number of input parameters in the surrogate model 

should be reduced to only those variables that contribute significantly to the function 

output, thereby greatly improving speed with a minimal sacrifice in accuracy. Due to the 

large quantity of parameters utilized by the MEPDG, the selection of the variables for the 

MEPDG surrogate model requires determination of the most critical design parameters. It 

is assumed that although the MEPDG utilizes thousands of input parameters, there is a 

limited few with greater influence on the pavement design process than others. 

Experience with pavement analysis and design would suggest that the most important 

parameters would be layer thickness, material properties, and traffic volume. Sensitivity 

studies such as the one undertaken by Ayyala, et al. (61) will allow for identification of 

the most critical design parameters. 

 

IV.2.1 Quantity of Training Point Parameters (ND) 

Fifty three parameters are chosen as candidate input parameters for the surrogate model 

variable selection process. These parameters, excluding the binder viscosity, were chosen 

to vary within specific, typical ranges, partially derived from statistical information 

summarized by Huang (37), Darter et al. (39), and Rada et al. (62), outlined in TABLE 

IV.1.  
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These input parameter values and their ranges were chosen to represent a potential 

pavement design and incorporate variability due to sources such as construction 

tolerances, measurement errors, or variation in traffic. The construction of the surrogate 

model is tailored to a specific design and will be trained and verified according to that 

design application. For each differing application, it is the designer’s responsibility to 

select training points and perform model verification according to the input parameters of 

interest to that application, and this can be performed according to the framework 

presented here. 
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TABLE IV.1: MEPDG Input Parameter Ranges 

Parameter Name Minimum Value Maximum Value 
AADT 1300 1700 
LDF 80 90 
OpSpeed 60 70 
Class4 0.1 10.7 
Class5 2.7 20.1 
Class6 0.2 12.8 
Class7 0 10 
Class8 0.1 15.9 
Class9 55.8 68.2 
Class10 0 14.2 
Class11 0.2 12.4 
Class12 0.1 11.4 
TrafficGrowth 3 5 
MeanWheel 16.2 19.8 
Wander 9 11 
LaneWidth 10.8 13 
AxleSpTand 46.4 56.8 
AxleSpTri 44.3 54.1 
AxleSpQuad 44.3 54.1 
AxleAveSpShort 12 15 
AxleAveSpMed 15 18 
AxleAveSpLong 18 21 
HMAThick 6 10 
EBC 5.3 7 
AV 3 5.5 
UnitWt 135 165 
%Ret34 98 100 
%Ret38 80 93 
%Ret#4 54 76 
%Pass#200 0 6.2 
ThermalCond 0.6 0.74 
HeatCap 0.21 0.25 
Gstar40 4514250 32985750 
Gstar55 3300600 4499400 
Gstar70 234605 3298465 
Gstar85 200015 229985 
Gstar100 25088 199913 
Gstar115 14006 24995 
Gstar130 3505 13995 
delta40 47 55 
delta55 55 57 
delta70 57 63 
delta85 63 67 
delta100 67 70 



   

85 
      

TABLE IV.1, continued 

delta115 70 73 
delta130 73 82 
GBThick 7 9 
GBMod 35502 39998 
GBpois 0.1 0.4 
GBlat 0.5 0.6 
SubMod 12006 23994 
Subpois 0.2 0.3 
Sublat 0.6 0.7 

 

Where: 

AADT:   Average Annual Daily Truck Traffic.  

LDF:   Lane Distribution Factor. (Percent Trucks in the Design Lane.) 

OpSpeed:  Operational Speed (mph). 

Class4 – Class12: AADTT Distribution by Vehicle Class. 

TrafficGrowth: Traffic Growth Rate. 

MeanWheel:  Mean Wheel Location (inches from the lane marking). 

Wander:  Traffic Wander Standard Deviation (in.). 

LaneWidth:  Design Lane Width (ft.). 

AxleSpTand:  Average Axle Spacing for Tandem Axle Trucks. 

AxleSpTri:  Average Axle Spacing for Tridem Axle Trucks. 

AxleSpQuad:  Average Axle Spacing for Quad Axle Trucks. 
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AxleAveSpShort, Med, Long: Average Axle Spacing Wheelbase Distribution. 

HMAThick:  HMA layer thickness (in.). 

EBC:    HMA Effective Binder Content (%). 

AV :   Percent Air Voids in HMA. 

UnitWt:  HMA Total Unit Weight (pcf). 

%Ret34:  Percent of aggregates in AC passing the 3
4 ” sieve. 

%Ret38:  Percent of aggregates in AC passing the 3
8 ” sieve. 

%Ret#4:  Percent of aggregates in AC passing the #4 sieve. 

%Pass#200:  Percent of aggregates in AC passing the #200 sieve. 

ThermalCond:  Thermal conductivity of asphalt (BTU/hr-ft-F°) 

HeatCap:  Heat capacity of asphalt (BTU/lb-F°) 

Gstar40 – Gstar130: Binder Complex Shear Modulus (Pa) at each tested temperature. 

delta40 – delta130: Binder Phase Angle (°) at each tested temperature. 

GBThick:  Granular Base Layer Thickness (in.). 

GBMod:  Granular Base Layer Modulus (psi.). 

GBpois:  Granular Base Layer Poisson’s ratio. 

GBlat:   Granular Base Layer Coefficient of Lateral Pressure (Ko). 
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SubMod:  Sub-grade Layer Modulus. 

Subpois:  Sub-grade Layer Poisson’s ratio. 

Sublat:   Sub-grade Layer Coefficient of Lateral Pressure (Ko). 

 

IV.2.2 Location of Training Points for Evaluation of Selection Processes 

Training points are chosen for the selection process according to a Latin Hypercube 

sampling plan, based on the input parameter ranges, as previously discussed. The 

distribution of the probability over the range was assumed to be uniform for all variables, 

and 1,000 training points were chosen in total. 

 

IV.3 Selection Process Methods 

The variable selection process is important in developing an accurate and efficient 

surrogate model, but investigation of the significance of a sample of nearly fifty of the 

Level 1 input variables is a very large “0-1” optimization problem. Evaluation of all 250 

possible combinations is extremely expensive. The design of experiments for the 

surrogate model requires a more efficient process for variable selection.  

Several classic, heuristic methods such as a correlation matrix or one-way 

analysis of variance (ANOVA) can be utilized as methods to determine the variables to 

be included in the surrogate model. A surrogate modeling parameter, the length-scale 

factor, can also be utilized as a metric for determining the most significant variables to 
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include in the model. These three heuristics do not guarantee construction of the most 

accurate surrogate model, but provide a means for finding a “good” model.  

Each of these three methods will be investigated in terms of computational effort 

and accuracy in the model selection problem. A description of each selection process 

method follows. 

 

IV.3.1 ANOVA 

One way analysis of variance (ANOVA) is a traditional statistical method that can be 

used to compare two populations of data, describing the variability between the two 

populations. For construction of the surrogate model, selection of the input parameter is 

based on improvement in the accuracy of the prediction of the model compared to the 

actual MEPDG model. For the variable selection process, the F-test statistic is utilized as 

a metric to rank the input parameters according to their significance. The ANOVA 

process requires the evaluation of null and alternative hypotheses: 

 

 Ho:  Knowledge of the input parameter gives no information about the value of 

the output value (Y). Therefore, the inclusion of the parameter does not significantly 

improve the accuracy of the GP model. 

 Halt:  Knowledge of the input parameter gives some information about the value 

of the output value (Y). Therefore, the inclusion of the parameter does improve the 

accuracy of the GP model. 
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The formulation of the ANOVA process also requires definition of the f statistic. The F 

test utilizes the F distribution and describes the rejection criteria for the null hypothesis. 

The F statistic can be represented mathematically as: 

 

𝑓 = 𝑆𝑆𝑅

� 𝑆𝑆𝐸
(𝑁−2)�

      (IV.1) 

The SSR is the sum of the squared residuals between the input parameters and the 

MEPDG output which describes the explained variance for all N training points. The SSE 

term is the sum of the errors squared which describes the unexplained variance. These 

two terms are defined as: 

 

𝑆𝑆𝑅 = ∑ ∑ (𝑥̅𝑖. − 𝑥̅..)2𝑁
𝑛=1

𝐼
𝑖=1      (IV.2) 

𝑆𝑆𝐸 = ∑ ∑ (𝑥𝑖𝑛 − 𝑥̅𝑖.)2𝑁
𝑛=1

𝐼
𝑖=1     (IV.3) 

 

The f statistic provides a ranking system where the parameters with the largest f values 

more strongly reject the null hypothesis and are, therefore, more significant to the model 

under investigation. 

 



   

90 
      

IV.3.2 Correlation Matrix 

The Correlation process utilizes a pair-wise, linear correlation between all parameters and 

the model output as a ranking method for determining the most significant parameters. 

The parameters with the greatest correlation with the MEPDG output are assumed to 

contribute more significantly to the predictive power of the GP model. 

 

IV.3.3 Gaussian Process Model Length-Scale Factors 

The Length-Scale Factor (LSF) process requires construction of a Gaussian Process (GP) 

model and selects variables for inclusion in the surrogate model with regard to the length-

scale factor values.  The length-scale factor ( 𝜉 ) is estimated through the GP construction 

process as described in ChapterVIII.2. Each factor is an indication of the correlation 

between the variable and output value. Inclusion of the parameters with the largest 

length-scale factors should, therefore, provide the most significant parameters for 

inclusion in the surrogate model. 

 

IV.4 Selection Process Comparison 

Implementation of each method requires investigation of improvement as a function of 

computational cost to determine the most efficient selection process. The LSF method, 

for example, ranks each input parameter according to significance. Selection of the 

optimal quantity of input variables requires investigation of the improvement in accuracy 

with the addition of another variable. The adjusted R-squared value has been chosen here 

as a verification metric that indicates an improvement in GP accuracy adjusted for the 
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quantity of model parameters (ND). An improvement in the adjusted R-squared (R2
Adj) 

value indicates that the addition of the parameter improves predictive capability and 

should be included in the model. 

 Comparison of the effectiveness of these models is quantified by an R2
Adj 

evaluated between the GP model and the true MEPDG predictions. Evaluation of 1,000 

MEPDG design sites was performed and this data was used in construction and 

verification of the GP model. For each GP construction, 100 randomly selected points 

were defined as verification points and were not utilized as training points. The 

construction of GP models with [900 x ND] was performed for ND equal to one through 

fifty-three parameter dimensions. Model verification is evaluated on the remaining, 

random 100 points. 

  

IV.5 Results 

The three variable selection processes must be compared both computationally and by 

accuracy, described by the R2
Adj statistic. The R2

Adj for each model as a function of ND is 

shown in FIGURE IV.1. All variable selection processes demonstrate an ability to select 

additional parameters in a positive order of significance, consistently improving R2
Adj. 

The correlation matrix method chooses the most significant parameters for all MEPDG 

models in a manner that quickly achieves a large R2
Adj value. The correlation matrix 

ranking procedure is based on a linear relationship between the input parameters and the 

MEPDG prediction outputs. The performance of this method indicates that the behavior 

of the trend of all of the prediction models is likely described well by a linear model. 
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FIGURE IV.1: Adjusted R-Squared Values for the Variable Selection Processes for each 
Prediction Model 
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IV.5.1 Sensitivity Analysis: Quantity of Training Point Parameters 

In addition to the comparison between selection methods, FIGURE IV.1 can be used to 

investigate the sensitivity of the accuracy in predictions for each distress model to the 

quantity of training point parameters. Considering first the Correlation method, each of 

the five distress modes are shown to be highly sensitive to the quantity of parameters for 

approximately the first ten parameters. The R2
Adj values for the models that include more 

than about ten parameters are nearly equal, demonstrating that the addition of parameters 

beyond this quantity provide a minimal amount of improved accuracy in predicted 

performance. The Anova and LSF methods do not perform in the same manner as the 

Correlation method and do not achieve the plateau, or convergence, in the R2
Adj values. 

The lack of convergence in the R2
Adj value indicates that these processes achieve better 

accuracy with the addition of parameters and would require a larger number of 

parameters if a minimum R2
Adj value was required. Further, this lack of convergence in 

the Anova and LSF methods indicates that the Correlation method is selecting the most 

significant parameters in a more efficient manner. 

 

IV.5.2 Method for Selection of Training Point Parameters 

Selection of the minimum quantity of training points for a surrogate can be performed 

with respect to a minimum R2
Adj requirement. Considering a minimum requirement that 

the model achieve an R2
Adj greater than or equal to 0.9, selection of the most significant 

parameters can be made for each distress model. TABLE IV.2 outlines the quantity and 

parameters required to achieve this standard, selected through the correlation matrix 
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method. This method is chosen because, as shown in FIGURE IV.1, this method 

consistently chooses the minimum quantity of training point parameters to quickly 

achieve large R2
Adj values. 

 

TABLE IV.2: Training Point Parameters Using Correlation Matrix 

 Terminal IRI Total Permanent 

Deformation 

AC Bottom-Up 

Cracking 

AC Top-Down 

Cracking 

AC Permanent 

Deformation 

Pa
ra

m
et

er
 N

am
e 

HMAThick HMAThick HMAThick HMAThick TrafficGrowth 
TrafficGrowth TrafficGrowth AV AV HMAThick 
%Pass#200 %Pass#200 %Pass#200 SubMod %Pass#200 
AV SubMod TrafficGrowth TrafficGrowth %Ret#4 
%Ret#4 %Ret#4 SubMod %Pass#200 AADTT 
SubMod AADTT EBC AxleSpTand Wander 
AADTT Wander GBMod EBC EBC 
  %Ret#4   

 

The results in TABLE IV.2 provide insight into the sensitivity of these distress 

modes to the input parameters. Only twelve unique design parameters are necessary to 

adequately model all five pavement distress modes. Parameters describing the asphalt 

layer and material strength for all layers are shown to significantly impact pavement 

performance. The thickness of the HMA layer (HMAthick) is significant to all distress 

modes, which is not unexpected. Improved performance for the permanent deformation 

models relies heavily on the thickness of the HMA layer. The deformation is calculated 

as a sum of the product of strains and thicknesses for each layer in the structure, so 

modifications in the thickness of the HMA layer is significant, especially in the two layer 

pavement system evaluated here. Additional properties such as asphalt air voids (AV) and 

effective binder content (EBC) also are significant to most distress models. The fatigue 



   

95 
      

cracking models are evaluated as a function of strains and stresses in the asphalt layer, 

directly impacted by the asphalt thickness and these material properties. The sub-grade 

modulus is another parameter that is shown to be significant in the distress models. 

Again, the strength of this layer impacts the stresses and strains utilized in all the distress 

functions. The impact of traffic growth is demonstrated to significantly impact all five 

distress modes. The likely cause of this significance is the impact of this projected growth 

on the accumulation of stresses and strains over time. Greater projected traffic growth 

would be expected to increase the rate of accumulation of strains in the pavement. 

 

IV.6 Conclusion 

M-E design methods are computationally expensive to evaluate and hinder highly 

iterative design processes such as design optimization and sensitivity analyses. The 

construction of a surrogate model alleviates this computational expense, but its 

approximation to the true distress models introduces model form error. Minimization of 

this model form error is achieved through appropriate selection of training points for the 

surrogate model.  

Construction of a well-trained surrogate model requires appropriate selection of 

the quantity of training point dimensions (ND) in an efficient manner. The surrogate must 

accurately imitate the true functions, but should incorporate only the most significant 

design parameters. A method for selecting ND should not add significant expense to the 

construction process and should require a minimum number of true model evaluations. 

The computational expense for the ANOVA and Correlation methods are very similar. 
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The standard statistical techniques require few function evaluations and the programming 

is available in most common computational software. The evaluation of the length-scale 

factors is more expensive than the alternate methods as it requires construction of the full 

53-parameter GP model. The LSF method may be more appropriate for sensitivity 

analyses, where the objective is to understand the impact of all parameters under 

investigation, but is not likely computationally effective for construction of GPs for 

practical use. Further, the LSF method is a back-solved problem, where construction of 

the less-parameter GP requires prior construction of larger models. 

 Once selection of the quantity of dimensions for the surrogate model is 

performed, the location and quantity of training points must be determined. Efficiency in 

construction of the surrogate is necessary for practical implementation of surrogate 

modeling for M-E pavement design. Current implementations of the M-E procedure are 

computationally expensive, but a surrogate model can alleviate this expense and provides 

a powerful tool for advanced design processes. 

 Construction of a surrogate model that accurately emulates the M-E design 

procedure allows for computationally efficient evaluation of highly iterative analyses, but 

accurate evaluation must also incorporate uncertainty that impacts flexible pavement 

design. Reliability analysis, design optimization, and sensitivity analyses are necessary to 

provide accurate and reliable performance predictions, but these processes are impacted 

by uncertainty due to model form errors and input parameter variability. A 

comprehensive approach to management of uncertainty from these sources is necessary 

for accurate analyses.  
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CHAPTER V 

 

V. UNCERTAINTY PROPAGATION WITH SURROGATE 
MODELS 

 

V.1      Introduction 

Flexible pavement design is significantly impacted by uncertainty due to input parameter 

variability and model form error. Reduction of model form error and improvements in 

computational speed of M-E design procedures greatly improves the accuracy in 

prediction of flexible pavement performance; however no comprehensive approach to 

uncertainty management has been proposed for the AASHTO MEPDG. This is largely 

due to the computational expense associated with evaluating the MEPDG. Introduction of 

a well-trained surrogate model eliminates this issue and allows for robust methods, such 

as Monte Carlo Simulation (MCS) for incorporating model uncertainty into reliability 

analyses. Calibration of predictive models as demonstrated in Chapter III will reduce, but 

not eliminate, model prediction error. The process of calibration quantifies the model 

form error which can be included in design and analysis processes. 

The development of a comprehensive approach for uncertainty management in 

pavement design is necessary because without accounting for all sources of uncertainty, 

reliability will be incorrectly estimated. The uncertainty in prediction of the model will 

lead to uncertainty in the design life of the pavement, but the variability in the design 

inputs will be a second, additive source of uncertainty in the design life of the pavement. 

As a result, the MEPDG design process will incorrectly state the reliability level of the 
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pavement. Methods of reliability analysis based only on input variability also are subject 

to the same overstatement (or understatement) of reliability because they do not take into 

account a lack of fit of distress prediction equations. Understanding the significance of 

the impact of uncertainty due to these various sources is critical in verification of the 

MEPDG predictive distress models and for reliable pavement design. 

In this chapter, quantification of significant sources of uncertainty is performed, a 

method for uncertainty propagation is demonstrated, sensitivity of the predicted 

performance models to the sources of uncertainty is included, and a reliability analysis is 

demonstrated and discussed. Uncertainty due to the MEPDG predictive model, 

uncertainty introduced through use of a surrogate model, and variability due to the 

stochastic nature of the pavement design parameters all contribute to uncertainty in 

overall pavement design. A method for propagation of these sources of uncertainty is 

outlined in FIGURE V.1. Sensitivity analysis evaluates the sources of uncertainty and 

their impact on accuracy of predicted behavior. The sensitivity analysis presents the 

contribution to overall variance in the predicted values from each source of uncertainty. 

Lastly, results of a simulation-based reliability analysis are presented and the impact on 

the predicted reliability is discussed. 
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FIGURE V.1: Proposed Method of Design to Incorporate All Sources of Uncertainty 
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V.2   Sources of Uncertainty 

Three sources of uncertainty are considered: Input parameter variability, MEPDG model 

uncertainty, and surrogate model uncertainty. The statistical properties for each are 

discussed in the following sections. 

 

V.2.1 Input Parameter Variability 

Input parameters utilized by the MEPDG have inherent variability. Numerous databases 

of empirical data capable of providing statistical properties regarding such input 

parameters as material thicknesses, material strength properties, and traffic loadings are 

available (6). In instances where these distributions are not known, testing should be 

performed or expert opinion should be used. 

  

V.2.2 GP Model Predictive Uncertainty 

Construction of a well-trained surrogate model contributes to predictive uncertainty 

through approximation errors between the surrogate and the true performance function. 

Construction of a surrogate model defines a design domain from which GP predictions of 

pavement performance can be made. The GP function is defined as a Gaussian 

conditional distribution dependent on the training data and the correlations between the 

data and any new point. Design points selected within this domain, but not utilized in the 

training of the surrogate, can be evaluated by the GP. These GP predictions, conditioned 

on the training data, estimate the best expected performance value (GP mean) and a 

corresponding GP variance. Uncertainty from the surrogate model can be quantified 
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using the residual between the GP mean, or predicted GP value, and value of the true 

function, as a random variable characterized by the evaluations of numerous non-training 

points. The standard deviation can be calculated based on the standard deviation of the 

residuals between the true and surrogate functions. The probability distribution is treated 

as Gaussian, making the assumption that the error follows the same Gaussian form as the 

GP prediction function. 

 

V.2.3 MEPDG Predictive Uncertainty 

MEPDG uncertainty arises primarily from model form error that exists in the M-E 

performance prediction models. MEPDG model predictions evaluate a design site at a 

mean value and modify the design prediction utilizing statistical data related to LTPP 

empirical data. The MEPDG “reliability analysis” is similar to a traditional model 

confidence calculation in which empirical data is compared to model predictions and the 

mean and standard deviations of the residuals are used to define the confidence that the 

model is accurately predicting the true behavior. Where the word reliability is used in the 

MEPDG, this dissertation will use the terminology model confidence. The word 

reliability will refer to the probability that the distress prediction is given at a specified 

level of model confidence. The method of incorporating model confidence in the MEPDG 

is implemented by evaluation of a design site at a mean value and modifying the 

predicted performance as a function such as that described by Equation V.1. 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑝 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑚𝑒𝑎𝑛 + 𝑆𝑇𝐷𝑃𝑟𝑒𝑑𝑀𝑜𝑑𝑒𝑙 ∗ 𝑍𝑝  (V.1) 
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The prediction of the performance at a specified “reliability level” (p) is expressed as the 

prediction evaluated at the mean plus the standard deviation multiplied by a standardized 

normal variate corresponding to the reliability level. The standard deviation of the 

prediction model is obtained by regression analysis between measured and predicted 

values utilized in calibration of the MEPDG prediction functions. Predictions are 

therefore penalized as they move away from prediction means where model confidence is 

higher. 

Uncertainty due to the MEPDG is back-solved from the model confidence 

formulation to determine the statistics of the model form error for the specific data set 

chosen. The distribution of the uncertainty is treated as a normal distribution with zero 

mean in accordance with the method developed in the MEPDG. The standard deviation 

of the MEPDG is calculated as a ratio between a margin of safety and the inverse of the 

standard normal cumulative distribution function (CDF) evaluated at the MEPDG-

calculated probability of failure. The procedure for a single distress mode is outlined in 

the following steps: 

 

1. Calculate the MEPDG margin of safety (MS) as the difference between the 

limiting acceptable value for the distress mode, or threshold value, and the predicted 

MEPDG output for the given design input. 

2. Evaluate the inverse of the standard normal distribution at the probability of 

failure. 
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𝑧 = Φ−1(𝑃𝑓)       (V.2) 

3. Calculate the standard deviation of the distress mode. 

 

𝜎𝑀𝐸𝑃𝐷𝐺 = �𝑀𝑆
𝑧
�     (V.3) 

 

V.3  Uncertainty Propagation and Sensitivity Analysis 

Uncertainty propagation incorporating all significant sources of uncertainty is necessary 

for flexible pavement design utilizing M-E design procedures. The following numerical 

experiment demonstrates a procedure for uncertainty propagation utilizing the MEPDG. 

The proposed methodology is implemented to demonstrate the importance of each source 

of uncertainty. 

 

V.3.1 Uncertainty Propagation Method 

An additive model for uncertainty propagation incorporating input variability and model 

form error is considered for application with the MEPDG flexible pavement design 

procedure. Input variability, MEPDG model form error, and surrogate model uncertainty 

are considered the most significant sources of uncertainty. Treating these three sources of 

uncertainty as random variables, MCS can be performed to determine the impact of the 

combined uncertainties on each distress mode, as shown in FIGURE V.1. It is assumed 

that the uncertainty in the terminal distresses is represented by the random variable Dt(x) 

such that: 
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𝐷𝑡(𝑥) = 𝐷�𝑡(𝑥) + 𝑢𝑀𝐸𝑃𝐷𝐺 + 𝑢𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒   (V.4) 

where x is a vector of random design inputs, ( ) tD x  the GP prediction of the distress, 

uMEPDG is a random variable representing the MEPDG predictive uncertainty, and uGP is a 

random variable representing the discrepancy between the MEPDG and GP predictions. 

Each MCS realization of Dt(x) is generated by sampling the random design inputs. 

Four CDF’s can be constructed for each distress mode to understand the 

uncertainty introduced by each source of variability as: 

 

1. Model input variability only, where: 

 

𝐷𝑡(𝑥) = 𝐷�𝑡(𝑥)      (V.5) 

 

2. Model input variability and MEPDG predictive uncertainty, where: 

 

𝐷𝑡(𝑥) = 𝐷�𝑡(𝑥) + 𝑢𝑀𝐸𝑃𝐷𝐺      (V.6) 

 

3. Model input variability, MEPDG predictive uncertainty, and GP 

uncertainty, where: 

  

𝐷𝑡(𝑥) = 𝐷�𝑡(𝑥) + 𝑢𝑀𝐸𝑃𝐷𝐺 + 𝑢𝐺𝑃    (V.7) 
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4. The current MEPDG uncertainty estimate: 

 

𝐷𝑡(𝑥) = 𝐷�𝑡(𝑥̅) + 𝑢𝑀𝐸𝑃𝐷𝐺      (V.8) 

 

where 𝑥̅ is the mean or nominal value of x. 

The resulting family of CDF’s can be used to perform sensitivity analysis for each 

distress mode. Sensitivity analysis provides important information regarding the impact 

of the sources of uncertainty both independently and in combination. The relative 

importance of input variability, MEPDG predictive uncertainty, and GP uncertainty can 

be found by comparing the variances of ( )t xD , uMEPDG, and uGP. Quantifying the relative 

contributions of these uncertainties allow a designer to understand whether the 

uncertainty in the final prediction is reducible through stricter quality control and/or 

gaining more information about the random variables, whether the uncertainty is due to a 

lack of fit of the MEPDG and/or measurement error, or whether the uncertainty could be 

significantly reduced by refining the surrogate model. 

 It should be noted that the MEPDG reliability estimate may not be conservative. 

By neglecting the variability in the input parameters, the distribution of the design life 

may have a smaller variance and a distribution with lighter tails than the distribution most 

representative of the true state of uncertainty. Therefore, the MEPDG estimate of the 

failure probability will be less than what is appropriate, given the overall state of 

uncertainty. The proposed methodology, by contrast, is always conservative. Even if part 

of the reason for the lack of fit of the MEPDG is variability in critical design inputs, the 
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estimate of reliability given by the proposed methodology will be a conservative estimate 

as this uncertainty would be doubly counted. 

 

V.3.2 Numerical Experiment 

In the following sections, a method for uncertainty propagation is demonstrated, 

sensitivity of the predicted performance models to the sources of uncertainty is included, 

and a reliability analysis is demonstrated and discussed. 

 

V.3.2.a Surrogate Model Construction 

Eight variables were chosen to construct the GP necessary to demonstrate this approach 

to uncertainty propagation. The eight variables chosen were: annual average daily truck 

traffic (AADTT), hot-mix asphalt (HMA) thickness, granular base (GB) thickness, 

effective binder content (EBC) of the asphalt layer, air void ratio (AV) of the asphalt 

layer, modulus of subgrade (Esubgrade), modulus of GB (KGB), and one parameter 

representing the binder viscosity, A. These parameters, excluding the binder viscosity, 

were chosen to vary within specific ranges as outlined in TABLE V.1. The potential 

values for the binder viscosity term, for a MEPDG Level 3 analysis, cannot be selected in 

the same manner, but must be selected from a finite set of values associated with one of 

three viscosity grade families. The binder viscosity parameter, A, was chosen randomly 

from a set of six potential values within the “conventional viscosity grade” sub-set. This 

viscosity grading system provides default MEPDG design inputs describing the 
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relationship between viscosity and temperature for the asphalt concrete and is based on 

AASHTO M226. 

The distribution of the probability over the range was assumed to be uniform for 

all eight variables, and 150 training points were chosen in total. An additional 10 points 

were generated randomly for use in verification of the surrogate model. 

 

TABLE V.1: Input Parameter Ranges 

Parameter Name Minimum Value Maximum Value 
AADTT 1300 1700 
HMA Thickness (in.) 6 10 
GB Thickness (in.) 4 12 
EBC 5% 15% 
AV 6.5% 10.5% 
Esubgrade (psi) 13,000 16,000 
KGB (psi) 38,000 42,000 
AADT 1300 1700 

 

V.3.2.b Uncertainty Propagation 

Uncertainty analysis performed in this chapter includes investigation of the impact of 

three major sources of uncertainty, and their effects individually and in combination. 

Monte Carlo Simulation (MCS) is performed and the results are utilized to obtain 

cumulative distribution functions of the various distress modes, incorporating the various 

sources of uncertainty. The impact of uncertainties can be analyzed visually. 

Uncertainty associated with the input parameters is calculated through MCS of 

the GP model, choosing 10,000 samples. Samples of each input parameter are generated 

randomly, from a normal distribution as defined in TABLE V.2, and the GP model is 
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evaluated at all samples. MEPDG model uncertainty is sampled according to the normal 

distribution with zero mean and a standard deviation calculated based on the 

experimental data. The uncertainty due to the GP model is sampled as a random variable, 

similar to the MEPDG uncertainty, with the appropriate distribution and distribution 

parameters.  

 

TABLE V.2: Probability Distributions of Random Variables 

Random Variable Probability Distribution Mean 
Standard 
Deviation 

AADTT Normal Random Variable 1500 150 

HMA Thickness (in.) Normal Random Variable 8 0.78 

GB Thickness (in.) Normal Random Variable 8 1.25 

EBC Normal Random Variable 10% 1% 

AV  Normal Random Variable 8.5%  0.85% 

Esubgrade (psi) Normal Random Variable 14,500 psi 1250 psi 

KGB (psi) Normal Random Variable 40,000 psi 1750 psi 

A  Constant 10.7709  

 

The uncertainty in the predicted pavement performance due to the MEPDG and 

GP is shown in TABLE V.3 for all distress modes. The MEPDG uncertainty was 

calculated by the method previously described, utilizing the MEPDG output values for 

170 design sites. The same 170 design input sets were used in the training and calibration 

of the GP model. To determine the contribution of uncertainty due to a GP model, 160 

training points were used in construction of the GP and the remaining 10 MEPDG 
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evaluations, or verification sets, were utilized to calculate the mean and standard 

deviation of the residual between the MEPDG and the GP. To avoid biases in training 

and verification data, the 160 training points were selected randomly and the entire 

construction process was repeated 10,000 times. The uncertainty in TABLE V.3 

represents the mean and standard deviation values from all 10,000 iterations.  

The data shown supports the use of a GP in uncertainty propagation for these 

prediction performance models. Contrarily, MEPDG model uncertainty significantly 

impacts the uncertainty in predicted behavior. Comparison of the means of the GP and 

MEPDG uncertainties to the commonly accepted threshold values clarifies the 

importance of incorporating these uncertainties into pavement design. For example, the 

Terminal IRI standard threshold value is 200 in./mi., which can be significantly impacted 

by an uncertainty due to model form error of 34 in./mi. The uncertainty due to the GP 

model error is negligible at less than 1. 
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TABLE V.3: MEPDG and GP Model Uncertainty Distribution Parameters 

 MEPDG GP Bias 

Distress Mode Std. Dev. Mean Std. Dev. 

Terminal IRI 34.0220 -0.3081 0.8445 

AC Surface Down 

Cracking 

1821.3 20.6545 105.6707 

AC Bottom Up 

Cracking 

9.4563 0.0371 0.1769 

AC Permanent 

Deformation 

0.0990 -7.7039e-04 0.0013 

Total Permanent 

Deformation 

0.1223 -5.6077e-04 0.0028 

 

The family of CDF’s for all the distress models are shown in FIGURE V.2. The 

Figure visually demonstrates the impact of uncertainty on the predicted performance and 

reliability level for the models. For all models, the CDF of all three sources of uncertainty 

is very similar to that without the GP uncertainty. This confirms that the GP model’s 

uncertainty is negligible compared to that of the MEPDG uncertainty. It is necessary to 

note that the results from the numerical example shown in FIGURE V.2 demonstrate a 

model form error that must be corrected for practical implementation of this method. The 

MCS evaluation results in predicted pavement performance outside the feasible range of 

output values for the two cracking models. This is clearly evident in the AC Surface 

Down Cracking model, for which the CDF plots extend well beyond the minimum 

physically feasible value of zero. The error in these predictions can be attributed to a 

number of sources, but is most likely due to MEPDG model form error. To eliminate this 



   

111 
      

error, the input parameter variability must be verified to exist within the empirical data 

utilized to derive the MEPDG model, accurate field measurements must be utilized to 

calibrate the models at these input parameters, and the GP must be shown to accurately 

emulate this model. 
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FIGURE V.2: Family of CDFs for Distress Modes 
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FIGURE V.2 describes the impact of uncertainty on the predicted pavement 

performance. The impact of uncertainty on the final predicted performance and reliability 

level is demonstrated in the range of predicted distress values between the CDF plots at a 

specified reliability level. While the impact varies across distress modes, concern exists 

when these bands are large relative to the magnitude of the distress. Further, the total 

permanent deformation model presented in this numerical example demonstrates the 

potential of accepting a design that exceeds the threshold value. The band of uncertainty 

overlaps the threshold value at a specified reliability level. A prediction that incorporates 

only input parameter uncertainty is neglecting model form error which, when included, 

indicates that the design does not meet the required threshold limit. A complimentary 

comparison can be made in terms of the required threshold level and required level of 

reliability. A commonly accepted threshold limit for the AC surface-down cracking 

distress mode is 2000 ft./mi. . Disregard of model uncertainty can ultimately result in a 

design that does not perform to the required level of reliability. The prediction for AC 

surface-down cracking disregarding model form error satisfies a higher reliability level 

compared to the prediction incorporating model form error. 

 

V.3.2.c Relative Importance of Sources of Uncertainty 

The three major sources of uncertainty investigated impact pavement design to varying 

degrees. TABLE V.4 shows the percent contribution to overall variance for each distress 

mode. These results indicate that the uncertainty of the input parameters and GP are less 

significant compared to the predictive uncertainty in the MEPDG. The minimal 

contribution to variance by the GP model is expected as the model requires thorough 
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verification during construction. A more robust GP with additional training points and/or 

dimensions would be necessary to reduce this form of epistemic model error.  

Input variability cannot be neglected if accurate reliability estimation is to be 

achieved in M-E design. The contribution of input variability, specifically with the AC 

surface down cracking model, indicates the need to accurately measure and model the 

design parameters and their variability. Quality control and construction processes can 

reduce the variability in the input parameters which will likely reduce the contribution of 

this type of uncertainty to this distress model. 

 

TABLE V.4: Percent Contributions to Overall Variance 

Distress Mode Input Parameter MEPDG GP 

Terminal IRI 1.74% 98.20% 0.06% 

AC Surface Down 

Cracking 28.20% 71.56% 0.24% 

AC Bottom Up 

Cracking 11.00% 88.97% 0.03% 

AC Permanent 

Deformation 14.35% 85.63% 0.01% 

Total Permanent 

Deformation 19.36% 80.60% 0.04% 

 

Sensitivity of the model prediction to these sources of uncertainty can be visualized with 

the contour plots presented in FIGURE V.3. These plots are developed utilizing the 

surrogate models constructed in Chapter III. One thousand MCS points were sampled, 
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holding all parameters at their mean values except AADTT and HMA thickness. The 

plots demonstrate the behavior of the distress modes over the range of parameter values 

and are useful in comparing the impact of the sources of uncertainty on the predicted 

performance of flexible pavement.  

 Model uncertainty due to the MEPDG is another source of uncertainty that 

significantly impacts predicted performance. Pavement design utilizing the MEPDG 

incorporates model uncertainty after evaluation of the distress functions at the means of 

the input parameters. The method for incorporating this model confidence in the M-E 

design functions makes a very significant assumption: that the expectation of the function 

is equal to the function evaluated at the means of the input parameters. Typically, for 

highly non-linear functions, this assumption is incorrect. The contour plots for the total 

permanent deformation and AC bottom up cracking clearly demonstrate that these 

prediction functions are not linear; therefore demonstrating that this assumption is 

incorrect for the distress functions utilized in M-E pavement design. 
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FIGURE V.3: GP Prediction Contour Plots Evaluated at Means of Other Parameters 
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V.3.2.d Reliability Analysis  

Reliability analysis has been performed by MCS with 10,000 samples for the numerical 

example under consideration. Both component and system reliability analyses were 

performed and are reported in TABLE V.5. Component reliability analysis was 

performed by comparing the predicted distress with the threshold values in Eqn. (V.9). 

For the system reliability analysis, the pavement was considered to fail if any of the 

distresses exceeded their threshold values. 

 

( )  :                                      172  . / .t xTerminal IRI D in mi≤    

( )      :               2000  . / .tAC Surface DownCracking D ftx mi≤    

( )      :                      25     t xAC BottomUpCracking D percent lanearea≤   

( )    :                         1000  . / .tACThermal Cracking D ftx mi≤    

( )    :              0.25  .tAC Permanent Deformati D xon in≤     

( )    :          0.75  .tTotal Permanent Deformation xD in≤       (V.9) 

 

Analysis of the results shown in TABLE V.5 indicate that there are significant 

differences in reliability estimates obtained from methods using primarily input 

variability and methods focused on primarily predictive uncertainty. When only input 

variability is considered, the failure probability estimates may be fairly low, as in the first 
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column.  However, neglecting model uncertainty can lead to a very significant 

understatement of the failure probability, and the failure probabilities in the second 

column are much higher as model predictive uncertainty is taken into account. It should 

be recognized that some uncertainty is introduced through the use of surrogate models. 

When this uncertainty is accounted for, there is a slight increase in the failure probability 

estimate. However, this discrepancy is very slight. This result reinforces the point that the 

uncertainty introduced through use of the surrogate models is negligible in comparison 

with the other major sources of uncertainty. The use of GP models has very little 

influence in the results of reliability analysis. 

The fourth column in TABLE V.5 presents reliability results using a method most 

similar to that implemented by the MEPDG. In some cases, this failure probability 

estimate is significantly lower than those obtained in column two, but in others it is 

higher. This is a somewhat counterintuitive result. It would be expected that the MEPDG 

would systematically understate the failure probability, but there is a reason why this is 

not always observed in practice. For nonlinear functions of random variables, the 

expectation of the function of random variables is not equal to the value of the function 

evaluated at the expectations of the random variables. The results of the MEPDG are 

very nonlinear in the inputs, but the reliability analysis procedure in MEPDG has made 

the assumption that the expectation of its output is the output at the expectations of the 

input. As can be seen from the MCS results in FIGURE V.2, the error in this estimate of 

the mean value of the distress function can be large, and the resulting reliability results 

can be very inaccurate.  
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TABLE V.5: Probability of Failure of Distress Modes Including Sources of Uncertainty 

Distress Mode 

Probability of Failure 

Input 

Variability 

Only 

Input and 

MEPDG 

Uncertainty 

Input, 

MEPDG, 

and GP 

Uncertainty 

MEPDG 

Uncertainty 

Estimate 

Terminal IRI 0.00% 8.09% 7.88% 7.64% 

AC Surface Down Cracking 

(Long. Cracking) 16.77% 31.83% 32.20% 20.49% 

AC Bottom Up Cracking 

(Alligator Cracking) 0.02% 2.39% 2.42% 0.97% 

Permanent Deformation (AC 

Only) 79.38% 61.93% 61.63% 75.63% 

Permanent Deformation 

(Total Pavement) 1.68% 16.90% 16.83% 23.26% 

System (All Distress Modes) 79.81% 77.50% 77.39% 86.20% 

 

The inaccuracy in the MEPDG reliability estimates allows for the understanding 

of the true importance of input uncertainty propagation in estimating pavement reliability. 

Although input uncertainty does not account for a large percentage of the variance in the 

predicted design life, the underlying models in the MEPDG are nonlinear. The 

importance of the input uncertainty is in the shifting of the expectation of the output. The 

bias in the MEPDG’s estimate of the mean of the distress causes large errors in the 

estimate of the reliability.  
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V.4   Conclusion 

This chapter has introduced the development of an all-inclusive approach to uncertainty 

management for M-E pavement design in which both predictive uncertainty in the 

MEPDG and the uncertainty in design inputs are taken into consideration. The method 

includes the construction and verification of a surrogate model and uncertainty 

quantification resulting from three major uncertainty sources: input parameter variability, 

MEPDG predictive uncertainty, and surrogate model uncertainty. The numerical 

experiment presented illustrates the effectiveness of the proposed framework for 

uncertainty analysis. The use of a surrogate model to emulate the MEPDG reduces the 

computational expense associated with uncertainty quantification analysis, and has made 

input uncertainty propagation via MCS affordable.  

 The results show that the dominant source of uncertainty exists in the predictive 

uncertainty in the MEPDG. This is in no way an indictment of the models utilized in the 

MEPDG. This uncertainty is large because many factors are responsible for the 

performance of pavement sections upon which the MEPDG is calculated, including 

construction quality and practices; factors not easily captured in the MEPDG. Further, the 

data are subject to measurement errors in both design inputs and field-measured 

distresses. Even if the MEPDG was perfect in its predictions, the incertitude in the 

calibration data represents a major source of predictive uncertainty. 

 Though the contribution to variance of input variability is relatively small, it is not 

an insignificant source of uncertainty. Because the expectation of a nonlinear function of 

random variables is not equal to the function evaluated at the expectation of the random 

variables, the MEPDG is subject to bias in its estimation of the mean value of the distress 
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distribution. This bias is caused by the input variability and can create significant errors 

in reliability estimation.   

 The contribution of surrogate modeling uncertainty is very small in relation to that 

of input uncertainty and model predictive uncertainty. It has shown to cause only small 

effects on reliability estimates. These results show the accuracy and validity of the use of 

surrogate models for pavement reliability analysis while harnessing the predictive power 

of the MEPDG. 

 By combining the effects of the three sources of uncertainty, this chapter has 

presented a unified approach to uncertainty analysis. By use of surrogate models, the 

hurdle of the computational expense of the MEPDG has been eliminated for MCS-based 

reliability analysis. The ability to perform this analysis corrects for biases in the MEPDG 

estimate of the expected value of the distress distribution and reliability estimate. 

Predictive uncertainty in the MEPDG has been accounted for along with the errors 

introduced through use of surrogate models for a comprehensive approach. 

 Reliability analysis is an important aspect of pavement design. Accurate 

prediction of pavement performance is necessary for design optimization, but the method 

must be practical to implement. Although the methods presented in this chapter provide a 

framework for simulation-based reliability analyses, many practicing engineers have not 

been trained in construction of surrogate models. Introduction of a method that 

incorporates the current M-E design equations, rather than replacing them, may be a more 

practical implementation for improvement to reliability analysis. Analytical reliability 

methods have been utilized with success in similar engineering applications and will 
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utilize the true M-E functions. The computational expense of the M-E design process can 

be offset by the efficiency of analytical methods that usually require a small number of 

function evaluations. Ultimately, a comparison in computational efficiency and accuracy 

of simulation-based methods utilizing a surrogate model and analytical methods utilizing 

the true M-E design functions is necessary to determine the best method. 
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CHAPTER VI 

 

VI. ANALYTICAL RELIABILITY METHODS FOR 
MECHANISTIC-EMPIRICAL FLEXIBLE PAVEMENT 

DESIGN 
 

VI.1 Introduction 

Although a trained surrogate model that accurately emulates M-E design equations saves 

computational expense, the construction and verification process is no trivial task. 

Hundreds of evaluations of the true functions may be necessary for the construction and 

verification of an accurate model and model form error, though often minimized, may not 

be eliminated. Surrogate modeling enables designers to use robust simulation-based 

reliability methods, but analytical reliability methods have been shown useful in similar 

engineering applications. Analytical reliability methods reduce the computational 

expense of the reliability analysis, typically by approximations in the behavior of the 

limit state function near the most probably point of failure. These methods often converge 

to a final solution with a relatively small number of function evaluations. 

The purpose of this chapter is to determine the most efficient analytical reliability 

method that incorporates input parameter statistics and provides the most accurate 

probability of failure for flexible pavement design. Once the probabilities of failure are 

evaluated, the accuracy of each reliability method is determined considering the Monte 

Carlo Simulation technique as a baseline index, best representing the probability of 

failure. A simulation process was chosen as a baseline because these processes ultimately 
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produce the statistical properties of a performance function essentially by brute force. 

The performance function is evaluated at many randomly generated simulation points, the 

results of which are used to represent the performance function’s distribution. A large 

number of simulation points must be evaluated to obtain a true representation of the 

performance function. This necessitates the use of a surrogate model to evaluate 

probability of failure, necessary to determine the accuracy of the proposed reliability 

methods.  

Investigation of analytical reliability methods with the M-E design procedure for 

a conventional flexible pavement structure is performed. Four reliability methods 

(MVFOSM, Rosenblueth, FORM, and AMV) are applied to these two distress models to 

determine the probability of failure of these components. Then, these components are 

considered as a system, and reliability analyses for the series system are performed. 

 

VI.2 Distress Models for M-E Pavement Design 

Investigation of these analytical reliability methods requires an understanding of the 

distress models utilized in flexible pavement design. Generally, distress models, or 

transfer functions, are used to calculate the expected number of load repetitions that will 

fail the pavement section. Many distress models have been introduced by various entities. 

The models all follow a general formula, but the difference is introduced in the constants. 

Transfer functions for fatigue cracking generally take the form: 
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3
1

2
1 )()( fEffN tf ε∗=     (VI.1)                                                                                                                                              

 

where Nf is the number of load repetitions until failure by fatigue cracking, εt is the 

tensile strain at the bottom of the hot mix asphalt, E1 is the asphalt concrete modulus of 

elasticity, and f1, f2, and f3 are empirically determined constants. Because the magnitude 

of f2 is generally much larger than that of f3, the effect of the modulus of elasticity is 

negligible, and the expression becomes: 

 

2
1 )( ffN tf ε∗=      (VI.2) 

 

For rutting, transfer functions typically take the form 

 

                   5
4 )( ffN vr

−= ∗ ε      (VI.3) 

where Nr is the number of load repetitions until failure by rutting, εv is the vertical 

compressive strain on the top of the subgrade layer, and f4 and f5 are empirically 

determined constants. 

 The equations utilized for this study incorporate the constants derived by the 

Illinois Department of Transportation (63) for the fatigue model and the Asphalt Institute 

(4) for the rutting model.  
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  36 )()10*5( −
∗

−= tfN ε      (VI.4) 

4477.49 )()10*365.1( −
∗

−= vrN ε      (VI.5) 

 

The asphalt concrete tensile strain and the subgrade compressive strain equations used are 

calculated according to algorithms developed by Thompson and Elliott (64). The 

equations were determined through the use of ILLI-PAVE, a computer program 

developed in 1980. The computer program was utilized to run 168 pavement 

configurations and the resulting algorithms are as follows: 

  

)log(*0408.0)log(**0807.0)log(*1595.0*1289.09496.2)log( 1112
1

1 KEhh
h

ht −−−+=ε

 (VI.6) 

 

1121 *0231.0)log(*3267.0*0334.0*0738.05040.4)log( KEhhc −−−−=ε   (VI.7) 

 

Where h1 represents the HMA thickness, h2 is the base thickness, E1 is the HMA 

modulus, and the K1 is the breakpoint resilient modulus of the subgrade. 
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VI.3 Distributions of the Random Variables 

The asphalt concrete tensile strain and subgrade compressive strain design equations 

incorporate four design variables and the statistical properties of these variables are 

required for the reliability analysis. The variables are represented by statistical means and 

standard deviations from various sources. TABLE VI.1 summarizes the values chosen for 

this investigation. 

 

TABLE VI.1: Probability Distributions of Random Variables 

Random 
Variable Probability Distribution Mean 

Standard 
Deviation 

h1 Normal Random Variable 3.1 in. 0.48 in. 

h2 Normal Random Variable 12.5 in. 1.25 in. 

E1 Normal Random Variable 1,600 ksi 100 ksi 

K1 Normal Random Variable 7.21 ksi 1 ksi 

 

The HMA thickness and subgrade properties are from results presented by Darter et al. 

(39). The resilient modulus for the subgrade is obtained from work by Rada and Witczak 

(62) and represents properties of a crushed stone granular material. The HMA modulus 

mean and standard deviation are both obtained from Shell Nomographs and equations 

from the Asphalt Institute as summarized by Huang (37). The value used for experiment 

here is applicable for a temperature of 70°F and a load frequency of 4 Hz. 
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 The performance functions for fatigue cracking and rutting compare the 

calculated number of load repetitions to an assumed number of load repetitions. This 

assumed number of load repetitions is treated as a constant, however further analysis 

could be performed to incorporate the variance of this term as well. The assumed number 

of load repetitions per year is calculated according to Eq. VI.8 which represents the 

number of equivalent single-axle loads per year. (37) 

 

)365(******)(/18 LDGTTADTYN fo=    (VI.8) 

 

Where ADTo represents the average daily traffic, T is the percentage of trucks in the 

average daily traffic, Tf  is the number of 18-kips single-axle load applications per truck, 

G is a growth factor, D is the directional distribution factor, L represents the lane 

distribution, and Y is the design period. The value for N18 used for analysis assumes an 

average daily traffic count of 2,000 vehicles, 15% of the traffic classified as truck traffic, 

0.2 load applications per truck, a growth factor of 2, distribution factor of 0.5, and a lane 

distribution equal to 1. The resulting number of equivalent single-axle loads per year is 

21,900. 
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VI.4 Numerical Results 

The results of the reliability analyses for the fatigue cracking distress and rutting distress 

components, and the system reliability results for the M-E transfer functions are 

presented in TABLE VI.2. 

 

TABLE VI.2: Probability of Failure of Distress Modes and System according to various 
Reliability Methods 

   Probability of Failure            Error 
Probability 
of Failure Error 

Method Fatigue Rutting Fatigue Rutting System System 
FOSM 0.2678 0.1307 4.46% 10.26% -- NA 
FORM I 0.2304 0.0274 0.72% 0.07% 0.2314 3.66% 
FORM II 0.2304 0.0274 0.72% 0.07% 0.2314 3.66% 
FORM III 0.2304 0.0274 0.72% 0.07% 0.2314 3.66% 
Rosenblueth 0.2036 0.1158 1.96% 8.77% 0.4992 47.25% 
AMV 0.2294 0.0274 0.62% 0.07% 0.2314 3.66% 
              
Monte Carlo 0.2232 0.0280     0.2232   

 

The probability of failure of the components indicates relatively consistent results 

regardless of the reliability method applied. The error, calculated by the root sum of 

squares method, compares the results of each reliability method to the Monte Carlo 

Simulation method. The results indicate that the error for all methods is less than 11%, 

but more impressive, the FORM methods all produce an error less than 1%. Although the 

FOSM method is one of the simplest processes to implement, the deficiencies seem to be 

indicated by the decrease in accuracy. The importance of the minimum error produced by 

a single method should not be overshadowed by the consistency of that error. The 

Rosenblueth method produced an error of only 1.96% for the fatigue cracking 

component, but an error of 8.77% for the cracking component. Consistency of results, 
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along with a reasonably accurate result, indicates that the FORM or AMV methods are 

well suited for pavement design regarding fatigue cracking and subgrade rutting. 

Component reliability is important, but the typical pavement design procedure 

calls for an understanding of the performance of a complete system. System reliability 

analysis was performed and is represented here as the combination of the Failure and 

Rutting components. The FOSM method is inaccurate in quantifying correlations among 

failure modes due to the method’s invariance, and is therefore not included in the system 

based calculations. The analysis of the system, similar to the component analysis, 

produces results that also favor FORM and AMV as suitable reliability methods for 

pavement design. The Rosenblueth method produces a large error for the system analysis, 

but further, the method again seems to be inconsistent in comparison with the component 

Rosenblueth analysis, rendering it less appealing as a reliable method. 

In addition to accuracy, it is of interest to investigate the effort required to 

perform these analytical probability methods compared to the MCS method. The original 

disregard of the MCS method as a method of performing reliability analysis was due, in 

strong part, to the computational effort required to perform the simulation. As previously 

discussed, the FORM I method is an iterative process, but the remainder of methods used 

are closed form. Therefore, computational effort is minor. TABLE VI.3 outlines a 

comparison in computation in terms of computational time and function count. Gradients 

were evaluated using finite differencing with 1+n  function evaluations required to obtain 

the final solution. 
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TABLE VI.3: Computation Effort of Reliability Methods Comparison 

                 Function Count 

Method Fatigue Rutting System 

FOSM 5 5 NA 

FORM I 50 30 1 

FORM II 20 25 1 

FORM III 35 45 1 

Rosenblueth 5 5 5 

AMV 10 15 1 

        

Monte Carlo 100,000 100,000 100,000 

  

TABLE VI.3 verifies the relatively cheap computational cost of all reliability 

methods, in comparison to simulation methods. As anticipated, the FOSM and 

Rosenblueth methods provide the cheapest computational effort. The FORM methods 

range in required power depending on the method implemented. AMV required very little 

computational effort. The FORM methods are more expensive due to the number of 

iterations required to perform the analysis. Although the function counts seem relatively 

reasonable from this experiment, an increase in the number of variables will significantly 

increase the computational effort required because gradient evaluations are more 

expensive and more iterations will be required to achieve convergence, though this is 

likely to be small for most problems in comparison to the effort required for MCS. 
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VI.5 Implementation with the AASHTO MEPDG 

The numerical experiment for the simplified pavement performance transfer functions 

justifies the use of analytical reliability methods for M-E pavement design. Although 

these transfer functions have been well calibrated, the AASHTO MEPDG design 

equations incorporate more extensive climatic, material, and traffic data. Implementation 

of these analytical reliability methods is demonstrated and discussed. 

 

VI.5.1 AASHTO MEPDG Prediction Equations 

The AASHTO MEPDG is one of the most comprehensive M-E design methods available 

to pavement engineers. The MEPDG predicts pavement performance as a function of six 

major distress modes. Total and AC permanent deformation models describe the 

structural performance of the pavement structure as a function of stresses and strains. 

Two fatigue cracking models complete the structural assessment of pavement 

performance and the Terminal IRI metric describes the serviceability of the pavement. 

 The predictive model for Terminal IRI for new AC pavements over unbound 

aggregate bases is a function of: an initial IRI due to inconsistencies in initial 

construction, site factors, and fatigue and cracking distress quantities (Eq. VI.9); see also 

Introduction Section). 
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𝐼𝑅𝐼 = 𝐼𝑅𝐼0 + 0.0463 �𝑆𝐹 �𝑒
𝑎𝑔𝑒
20 − 1�� + 0.00119(𝑇𝐶𝐿)𝑇 + 0.1834(𝐶𝑂𝑉𝑅𝐷) +

0.00384(𝐹𝐶)𝑇 + 0.00736(𝐵𝐶)𝑇 + 0.00115(𝐿𝐶𝑆𝑁𝑊𝑃)𝑀𝐻    (VI.9) 

 

 The MEPDG fatigue cracking models are based on Miner’s Law and are a 

function of calibration factors and traffic loading (Eq.s VI.10  and VI.11). 

 

𝐹𝐶𝑏𝑜𝑡𝑡𝑜𝑚 = � 6000
1+𝑒(𝐶1𝐶′1+𝐶2𝐶′2 log10(𝐷∗100))� ∗ �

1
60
�   (VI.10) 

𝐹𝐶𝑡𝑜𝑝 = � 1000
1+𝑒(7.0+3.5 log10(𝐷∗100))� ∗ (10.56)   (VI.11) 

 

The MEPDG predicts permanent deformation for the AC layer and for the total 

pavement section as the sum of the product of plastic strains and the layer height (Eq. 

VI.12). The equation for plastic strain is calculated as shown in Eq. VI.13. 

 

𝑅𝐷 = ∑ 𝜀𝑝𝑖 ℎ𝑖
𝑛𝑠𝑢𝑏𝑙𝑎𝑦𝑒𝑟𝑠
𝑖=1      (VI.12) 

𝜀𝑝
𝜀𝑟

= 𝑘𝑧𝛽𝑟110𝑘1𝑇𝑘1𝛽𝑟2𝑁𝑘3𝛽𝑟3     (VI.13) 
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VI.5.1.a Reliability Analysis 

The AMV method performed well with the simplified M-E design equations and is 

therefore selected as the reliability analysis method for investigation with the MEPDG 

design process. The accuracy of the AMV method is evaluated by comparing the AMV 

results to a Monte Carlo Simulation, where the MCS evaluation is considered the best 

representation of the actual reliability level.  

While the AMV method is computationally efficient with the MEPDG, the 

computational expense of the MCS evaluation of the MEPDG must be reduced for 

appropriate comparison between methods. Even with the latest release of the MEPDG 

software, Darwin-M-E, which requires approximately 10 minutes for a single pavement 

evaluation, a MCS analysis for 1 million evaluations would require nearly 20 years to 

complete. To reduce the computational expense, the well-trained, accurate surrogate 

model constructed in Chapter IV is utilized for the MCS analysis, replacing the actual 

MEPDG software.  

The AMV analysis is also evaluated with the surrogate model to appropriately 

compare the accuracy of the AMV method to the MCS analysis. The following analysis 

investigates the performance of the AMV method across the range of three standard 

deviations above and below the mean to demonstrate the accuracy of the AMV method 

across the majority of reliability levels. Eight design parameters were considered 

stochastic with the characteristics provided in TABLE VI.4. 

 Accurate prediction of reliability requires inclusion of all sources of uncertainty: 

input variability, surrogate model approximation errors, and model form error. An 
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additive model for uncertainty propagation is considered in this analysis, similar to that 

presented in Chapter V.3. It is assumed that the uncertainty in the terminal distresses is 

represented by the random variable Dt(x) such that: 

 

𝐷𝑡(𝑥) = 𝐷�𝑡(𝑥) + 𝑢𝑀𝐸𝑃𝐷𝐺 + 𝑢𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒   (VI.14)  

 

where x is a vector of random design inputs, ( ) tD x  the GP prediction of the distress, 

uMEPDG is a random variable representing the MEPDG predictive uncertainty, and uGP is a 

random variable representing the discrepancy between the MEPDG and GP predictions.  

The contribution of error from the surrogate and MEPDG is the same for both the 

MCS and AMV reliability methods. Each MCS realization of 𝐷�𝑡(𝑥) in the MCS analysis 

is generated by sampling the random design inputs. The AMV realizations of 𝐷�𝑡(𝑥) are 

evaluated at design inputs that are determined as a function of a specified reliability 

index, β as shown in Equation VI.15. 

 

𝐷�𝑡(𝑥) = 𝐷�𝑡(𝜇𝑖𝑁 − 𝛼𝑖𝛽𝜎𝑖𝑁)    (VI.15) 

 

The direction cosines (𝛼𝑖) in Equation VI.15 are evaluated at the means of the input 

parameters. 
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Two CDF’s can be constructed for each distress mode to understand the 

uncertainty introduced by each source of variability as: 

 

1. Model input variability, MEPDG predictive uncertainty, and GP 

uncertainty, where: 

  

𝐷𝑡(𝑥) = 𝐷�𝑡(𝑥) + 𝑢𝑀𝐸𝑃𝐷𝐺 + 𝑢𝐺𝑃    (VI.16) 

 

2. AMV prediction, MEPDG predictive uncertainty, and GP uncertainty, 

where: 

  

𝐷𝑡(𝑥) = 𝐷�𝑡(𝜇𝑖𝑁 − 𝛼𝑖𝛽𝜎𝑖𝑁) + 𝑢𝑀𝐸𝑃𝐷𝐺 + 𝑢𝐺𝑃   (VI.17) 

 

To construct the AMV CDF, evaluation of Equation VI.15 was performed for six 

reliability indices: -3, -2, -1, 0, 1, 2, and 3. The evaluation at these reliability levels 

allows for construction of a CDF three standard deviations above and below the mean 

which will well represent the true CDF. 
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TABLE VI.4: Probability Distributions of Random Variables 

Random Variable Mean Standard Deviation 

AADTT 1500 150 

HMA Thickness (in) 8 0.8 

GB Thickness (in) 8 0.8 

EBC 0.10 0.01 

AV 0.08 0.008 

Esubgrade (psi) 14500 1450 

Egb (psi) 40000 4000 

A (binder viscosity) 11.15 0.1115 

 

Cumulative distribution functions for the AMV and MCS analyses are presented 

in FIGURE VI.1 . The CDFs demonstrate the impact of probability integration errors 

using this analytical reliability method. The total permanent deformation model and top 

down cracking models are significantly impacted by probability integration errors; 

however, AMV performed well for the remaining three predictive models. The lateral 

shift in the CDFs for the two poor performing functions is likely due to an error in the 

assumption that the mean of the function occurs at a reliability index of zero. A lateral 

shift of the AMV results significantly improves the predictions in both models. 

Additional discussion follows in Chapter VII.4.  
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FIGURE VI.1: CDF Plots for AMV and MCS Results 
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VI.6 Conclusion 

The application of reliability methods based on probabilistic uncertainty propagation is 

under-utilized in pavement design, but it can be of great benefit. Previous codes and 

design guides have depended heavily on empirical data over established reliability 

methods in an attempt to avoid perceived computational costs. However, in exchange for 

cheap computation, pavement designs have been historically over-designed, but more 

importantly, inconsistently designed. The application of mechanistic design procedures 

has increased efficiency of design, but even the most current pavement design procedures 

have forgone use of probabilistic methods due to their perceived high computational 

expense. This is not necessary as advances have been made in both the reliability 

methods and the computational power of design engineers.   

 Reliability methods such as those presented here provide reliability-based design 

that is capable of incorporating both the variability of the parameters of the pavement 

design and uncertainty due to model form error. These reliability methods have been 

shown to be efficient methods of design that require a minimal amount of computational 

time or cost. The FOSM and Rosenblueth methods both prove to be efficient methods 

that significantly sacrifice accuracy of results. The FOSM and Rosenblueth methods are 

also limited to normal and lognormal distributions for the random variables. These 

methods are also less accurate than FORM and AMV. FORM is a reasonably accurate 

method for evaluating the component and system reliability for M-E pavement design. 

However, the FORM method will tend to increase in computational effort as the number 

of variables increases. Further, convergence issues may arise. In particular, the FORM I 

method requests that the designer to perform numerous iterations to verify convergence 
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of the direction cosines and the reliability index. Under certain circumstances, the 

original input parameters, such as the initial reliability index, can cause oscillations, and 

the algorithm will not converge. AMV appears to be the best of all methods studied with 

regard to combined accuracy and efficiency. 

Ultimately, the reliability methods presented here, in particular the AMV method, 

can be used efficiently to perform component and system reliability. The computational 

effort required for all these method is reasonable and obtainable by a majority of design 

engineers. The reliability methods all provided reasonably accurate solutions and avoid 

the intensive computation time required to perform simulation techniques, such as MCS. 

Because these methods are based on the use of distributional information about the 

random variables, these methods can help quantify the benefits of quality control and 

management in the field and can help provide a rigorous justification for pay factors for 

contractors meeting quality control targets. The use of the most accurate probabilistic 

data as input for the design calculations will tend to produce solutions that accurately 

represent the construction conditions. Implementation of either the analytical or 

simulation based reliability analysis processes presented provide designers the ability to 

accurately and efficiently perform design optimization. As liability for pavement 

performance tends to lie towards that of the contractor on many state and federal road 

projects, contractors require appropriate tools for evaluation of pavement design over the 

desired life span. Consideration of construction costs over the life of the pavement allows 

for adequate financial preparation by both the governing body and the construction 

partner. 
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CHAPTER VII 

 

VII. LRFD AND CORRECTION FACTORS FOR ROUTINE 
RELIABILITY ANALYSIS WITH THE MEPDG 

 

VII.1 Introduction 

The previous chapter demonstrates the effectiveness of implementing analytical 

reliability methods. Because the majority of engineers designing flexible pavements do 

not have advanced training in structural reliability theory and/or probabilistic methods of 

engineering analysis, a simplified approach to design is necessary.  

This chapter develops methods for calculating load and resistance factors and 

parameter offsets to use in routine design. These factors and offsets will allow designers 

to make reasonably conservative assumptions for values of the design inputs. The 

proposed methodology includes four primary steps. First, training data must be collected 

through use of a design of experiments and evaluation of the MEPDG. Next, Gaussian 

Process surrogate models are estimated to emulate the response of the MEPDG. The GP 

surrogate models must then be verified to assure that they accurately replicate the 

predictions of the MEPDG. Finally, design offsets and load and resistance factors are 

calculated through the use of first-order reliability methods, particularly inverse FORM. 

This chapter also develops correction factors for the analytical reliability analysis 

method presented in Chapter VI.5, required for accurate reliability analysis in routine use. 

These correction factors improve accuracy in reliability predictions by reducing the bias 
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due to numerical integration errors when applying the AMV method with the MEPDG 

design procedure.  

 

VII.2 Inverse FORM 

Inverse FORM has been chosen as the method for calculation of load and resistance 

factors for the MEPDG because of some key features. An important by-product of FORM 

utilized in the inverse FORM method is the vector of probabilistic sensitivities, defined in 

step 3 (previously discussed in Chapter II.4). 
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The alpha vector is the negative normalized gradient row vector of the limit state function 

in the transformed space. Also, at optimality in the FORM problem, it is important to 

note that the alpha vector is collinear with the MPP vector.  The alpha vector can help 

analysts determine which uncertain parameters are the most important so that information 

gathering efforts are focused on these variables. Random variables with alpha values of 

low magnitude can often be modeled as deterministic at the mean. 
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In this chapter, it desired to design a structural system to perform for a single, 

worst case point that will guarantee that a specified level of reliability is attained. For 

such problems, the inverse FORM approach is often used to determine this point for 

design synthesis purposes.  An example of this approach, to include an existence proof 

for reliably optimal solutions, can be found in (65).  With inverse FORM, a trial design is 

proposed, and then the following problem is solved to determine design checking points: 

 

    u* = argmin( G(u) | ||u|| = βt)    (VII.3) 

 

FIGURE VII.1 depicts the inverse FORM approach as a diagram drawn in the 

standard uncorrelated normal space u. Contours of constant probability density are shown 

as concentric circles. In higher dimensions, they are concentric hyperspheres. In the 

inverse FORM problem, an optimizer searches for the point that minimizes the value of 

G(u) over a sphere with radius βt. At this point, the limit state contour and the sphere 

(with radius equal to β) share a common tangent.  The vector α is collinear with the MPP 

u*.  Therefore, the relationships u* = α∗β and β = α∗·u* hold at MPP. Design offsets are 

determined from the vector u*. The vector u* for an inverse FORM problem is interpreted 

to be the number of standard deviations above or below the mean value of a random 

variable at which the design must be checked in order to assure a reliability level of Φ(βt). 

The u* vector provides progressively more conservative values for design checking 

points as βt increases, as illustrated in FIGURE VII.1.  
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FIGURE VII.1: Geometric Interpretation of Inverse FORM 

 

VII.3 Calculation of Load and Resistance Factors 

Calculation of load and resistance factors improves routine evaluation of predicted 

reliability for pavement design. Though application of reliability methods is 

straightforward for engineers with advanced training in probability and statistical 

methods, relatively few in the highway community have the advanced training required 

to implement these methods in design. Additionally, it is not always desirable to incur the 

expense of using these methods every time a routine pavement section is designed. One 

important benefit of the use of analytical reliability methods in the context of the 

MEPDG is that these methods can provide a rigorous and justifiable basis for finding 

design values for the random variables that can allow design using the MEPDG without 

the end user having to be experienced in reliability methods. 

The objective in this chapter is to offset the random variables from their means so 

that design is done on the basis of only one point at which the pavement is designed and 

computational efforts in reliability analysis are minimized. Equivalently, the designer can 
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determine load or resistance factors by which the mean of an uncertain variable can be 

multiplied in order to determine a design variable. The latter is the uncertainty 

management approach taken in the AISC Steel Design Manual (66) and in the ACI 318 

Concrete Design Manual, (67) where the loads and resistances are factored and the 

structural element is designed to be safe given the factored loads and resistances. Design 

values for the variables can be calculated by solving the inverse FORM problem to find 

u*, the offset for the random variable in terms of standard deviations. Once the u* point is 

determined, it is then transformed to the x space to find the design values of the random 

variables. 

 

VII.3.1  Distributions of the Random Variables 

In the calculation of the load and resistance factors and design offsets, the random 

variable probability distributions are assumed to be normal and independent with means 

and standard deviations as shown in TABLE VII.1. 
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TABLE VII.1: Probability Distributions of Random Variables 

Random Variable Mean Standard Deviation 

AADTT 1500 150 

HMA Thickness (in) 8 0.8 

GB Thickness (in) 8 0.8 

EBC 0.10 0.01 

AV 0.08 0.008 

Esubgrade (psi) 14500 1450 

Egb (psi) 40000 4000 

A (binder viscosity) 11.15 0.1115 

 

VII.3.2  GP Model Construction and Verification 

A GP model is utilized in the derivation of load and resistance factors. The GP model for 

this chapter was constructed with the mathematical platform MATLAB, with a Kriging 

toolbox (68) and model verification was performed. Training data consists of 110 

evaluations of the MEPDG performed at values of the first seven random variables in 

TABLE VII.1, selected randomly from intervals bounded by the means of the random 

variables plus or minus three standard deviations.  The values for A were selected 

randomly from the finite set of default AC binder grades from the MEPDG level 3 data. 

The MEPDG was evaluated for a new flexible pavement section with the input 

parameters based primarily on those found in the “New-HMA.dgp” file available through 
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the MEPDG software (6). The design utilized climatic data for Nashville, TN and a 

desired design life of 20 years.  

Model verification was performed on the surrogate model to verify accuracy with 

respect to the true MEPDG output. The purpose of model verification herein is not to 

investigate potential verification metrics, but to show that the surrogate model 

constructed is acceptable for use in this specific application. For that purpose, verification 

of the surrogate will involve verification of the predictive capability of the GP model at 

points within the domain from which the training points have been selected. 

Two statistical parameters for model verification, predictive coefficient of 

determination (predictive R-square) and Bayes factor, were performed for five major 

distress modes.  These metrics were calculated by selecting ten points randomly from the 

total quantity of training points and designating them as verification points. A surrogate 

model was constructed utilizing the remaining training points and the model was 

evaluated at the verification points. The output from the surrogate model at those 

verification points is compared to the true MEPDG output values as verification of the 

GP accuracy. To avoid potential bias due to the selection of the training points, the entire 

verification process was repeated 10,000 times. The mean and variance values for the 

predictive R-square are reported in TABLE VII.2. The mean of the R-square values for 

each distress mode is high (with two near unity), indicating that the GP prediction is 

closely correlated with the MEPDG.  This statistical method of model verification 

confirms that the GP is suitable for accurately representing the MEPDG. 
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TABLE VII.2: Verification of Predictive Capability of GP Models 

 Predictive Coefficient of Determination (R2) 

Distress Mode Mean Variance COV 

Terminal IRI 0.7442 0.0665 0.3465 

AC Surface Down 
Cracking 

0.8886 0.0225 0.1690 

AC Bottom Up Cracking 0.8200 0.0321 0.2183 

AC Permanent 
Deformation 

0.9881 6.7893e-05 0.0083 

Total Permanent 
Deformation 

0.9871 0.0002 0.0156 

 

The 10,000 samples were also used to calculate Bayes Factors as a second form of 

model verification. The probability that the Bayes Factor is less than a specific 

“threshold” value corresponding to the level of support for the model was calculated for 

each distress mode and the results are shown in TABLE VII.3. The results indicate that 

the selection of the verification points will significantly impact the level of support for 

the model. The surrogate model is strongly supported when the Bayes Factor exceeds 

100. All models were considered strongly supported for at least half of the 10,000 

samples. When all 110 training data points are used, the model is certainly valid.  
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TABLE VII.3: Distribution of Bayes Factors for GP Models 

Distress Mode 
Probability that Bayes Factor is Less than: 

3 10 30 100 

Terminal IRI 25.2% 32.32% 39.27% 46.57% 

AC Surface Down 
Cracking 

12.84% 17.28% 22.64% 29.50% 

AC Bottom Up Cracking 21.29% 27.31% 33.80% 42.22% 

AC Permanent 
Deformation 

0.02% 0.02% 0.04% 0.04% 

Total Permanent 
Deformation 

0.00% 0.01% 0.02% 0.05% 

 

VII.3.3  Calculation and Discussion of Load and Resistance Factors 

Inverse FORM was performed for the five distress modes commonly encountered in 

Tennessee and the computed load and resistance factors, as well as the design offsets, are 

shown in TABLE VII.4 through TABLE VII.8.  In order to compute design values to use 

for analysis with MEPDG, design engineers can use either of the following two 

equivalent equations: 

xdesign = µx + kσx      (VII.4) 

xdesign = φµx        (VII.5)  
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TABLE VII.4: Load and Resistance Factors and Parameter Offset Values for Terminal 
IRI Distress Model 

 

80% Reliability 
(β=0.85) 

90% Reliability (β=1.3) 97.5% Reliability (β=2) 

Variable k φ k φ k φ 

AADTT 0.0294 1.0029 0.0449 1.0045 0.0691 1.0069 

HMA Thickness -0.0135 0.9987 -0.0206 0.9979 -0.0317 0.9968 

GB Thickness -0.0036 0.9996 -0.0055 0.9995 -0.0084 0.9992 

EBC 0.0050 1.0005 0.0077 1.0008 0.0119 1.0012 

AV 0.0146 1.0015 0.0223 1.0022 0.0343 1.0034 

Esubgrade 0.0457 1.0046 0.0699 1.0070 0.1075 1.0107 

Egb 0.0213 1.0021 0.0326 1.0033 0.0502 1.0050 

A -0.8477 0.9915 -1.2965 0.9870 -1.9947 0.9801 

 

TABLE VII.5: Load and Resistance Factors and Parameter Offset Values for AC 
Surface-Down Model 

 

80% Reliability 
(β=0.85) 

90% Reliability (β=1.3) 97.5% Reliability (β=2) 

Variable k φ k φ k φ 

AADTT 0.0926 1.0093 0.1417 1.0142 0.2180 1.0218 

HMA Thickness -0.7976 0.9202 -1.2198 0.8780 -1.8767 0.8123 

GB Thickness -0.1888 0.9811 -0.2887 0.9711 -0.4442 0.9556 

EBC -0.0678 0.9932 -0.1036 0.9896 -0.1594 0.9841 

AV 0.1904 1.0190 0.2912 1.0291 0.4480 1.0448 

Esubgrade 0.0246 1.0025 0.0376 1.0038 0.0579 1.0058 

Egb 0.0080 1.0008 0.0122 1.0012 0.0188 1.0019 

A -0.0251 0.9997 -0.0384 0.9996 -0.0591 0.9994 
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TABLE VII.6: Load and Resistance Factors and Parameter Offset Values for AC 
Bottom-Up Distress Model 

 

80% Reliability 
(β=0.85) 

90% Reliability (β=1.3) 97.5% Reliability (β=2) 

Variable k φ k φ k φ 

AADTT 0.0928 1.0093 0.1419 1.0142 0.2183 1.0218 

HMA Thickness -0.4450 0.9555 -0.6805 0.9319 -1.0470 0.8953 

GB Thickness -0.0980 0.9902 -0.1499 0.9850 -0.2306 0.9769 

EBC -0.0139 0.9986 -0.0212 0.9979 -0.0327 0.9967 

AV 0.7097 1.0710 1.0855 1.1085 1.6699 1.1670 

Esubgrade 0.0246 1.0025 0.0376 1.0038 0.0579 1.0058 

Egb 0.0080 1.0008 0.0122 1.0012 0.0188 1.0019 

A -0.0415 0.9996 -0.0634 0.9994 -0.0975 0.9990 

 

TABLE VII.7: Load and Resistance Factors and Parameter Offset Values for AC 
Permanent Deformation Distress Model 

 

80% Reliability 
(β=0.85) 

90% Reliability (β=1.3) 97.5% Reliability (β=2) 

Variable k φ k φ k φ 

AADTT 0.0929 1.0093 0.1421 1.0142 0.2186 1.0219 

HMA Thickness 0.5718 1.0572 0.8745 1.0874 1.3453 1.1345 

GB Thickness 0.2874 1.0287 0.4395 1.0440 0.6762 1.0676 

EBC 0.1780 1.0178 0.2723 1.0272 0.4189 1.0419 

AV 0.2975 1.0298 0.4551 1.0455 0.7001 1.0700 

Esubgrade 0.0246 1.0025 0.0376 1.0038 0.0579 1.0058 

Egb 0.0080 1.0008 0.0122 1.0012 0.0188 1.0019 

A 0.4283 1.0043 0.6551 1.0066 1.0079 1.0101 
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TABLE VII.8: Load and Resistance Factors and Parameter Offset Values for Total 
Permanent Deformation Distress Model 

 

 

80% Reliability 
(β=0.85) 

90% Reliability (β=1.3) 97.5% Reliability (β=2) 

Variable k φ k φ k φ 

AADTT 0.0929 1.0093 0.1422 1.0142 0.2187 1.0219 

HMA Thickness 0.6102 1.0610 0.9333 1.0933 1.4358 1.1436 

GB Thickness 0.3134 1.0313 0.4793 1.0479 0.7373 1.0737 

EBC 0.1960 1.0196 0.2998 1.0300 0.4612 1.0461 

AV 0.3275 1.0328 0.5009 1.0501 0.7706 1.0771 

Esubgrade 0.0246 1.0025 0.0376 1.0038 0.0579 1.0058 

Egb 0.0080 1.0008 0.0122 1.0012 0.0188 1.0019 

A 0.3114 1.0031 0.4762 1.0048 0.7326 1.0073 

 

Intuitive results for load and resistance factors were observed. Notice that the design 

offsets k become larger in magnitude with higher levels of reliability. IRI predictions 

were found to be highly sensitive to the binder stiffness, and pavements with harder 

binders were more susceptible to developing roughness. Therefore the recommended 

design offsets require that the MEPDG analysis be performed with the A parameter set to 

a value approximately two standard deviations below the mean if 97.5% reliability is 

required. The uncertainty in the asphalt concrete surface down cracking failure mode was 

dominated by the asphalt concrete layer thicknesses. Analysis with the MEPDG should 

be undertaken with a layer thickness of approximately 92 percent of the nominal (mean) 

layer thickness if 97.5% reliability is required. Air voids were also found to be 

detrimental to cracking, and the analysis should be performed with an elevated value of 



   

153 
      

air voids. Similar results were observed for bottom up fatigue cracking. Thicker layers 

were found to be more susceptible to permanent deformation. This is likely because the 

MEPDG accumulates plastic strain through the entire depth of the pavement section. For 

the permanent deformation limit states, soft binders and higher percentages of air voids 

tend to make the pavement more susceptible to deformation. For instance, to design 

against permanent deformation in the asphalt concrete layer, the layer thickness should be 

offset by 1.34 standard deviations above the mean, the A parameter should be offset by 

1.0079 standard deviations above the mean, and the air voids should be offset by 0.7001 

standard deviations above the mean if 97.5% reliability is required. 

 

VII.4 Correction Factors for AMV 

A process similar to the LRFD procedure previously discussed can be implemented to 

correct for errors in the reliability predictions with the MEPDG AMV reliability 

procedure. The results presented in Chapter VI.5 indicate probability integration errors 

and a bias due to approximation errors in the AMV procedure. One method for correction 

of these errors in practical application includes a lateral shift and a correction factor 

multiplier. 

 The bias in the AMV predictions compared to the MCS evaluations is attributed 

to an incorrect assumption that the function evaluated at the means of the input 

parameters has a reliability index equal to zero. Predicted reliability is improved by 

shifting the 50% reliability prediction from the AMV procedure to the value of the MCS 

evaluation at 50% reliability. This lateral shift corrects for the error in the assumption of 
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the value of the reliability index at the mean. The AMV procedure can be repeated at this 

new “checking point” to create a new CDF centered on the MCS CDF. 

 In addition to correcting for bias in the AMV predictions, a correction factor is 

necessary to correct for probability integration errors. A multiplicative factor can be 

applied to the AMV predictions to correct for this type of error. These correction factors 

must be derived for specific reliability levels as the integration error varies at differing 

probabilities of failure. 

 

VII.5 Conclusion 

This chapter has shown the feasibility of implementing an approach to the management 

of uncertainty, similar to that used in LRFD structural design codes, specifically outlined 

for pavement engineering. A method for deriving load and resistance factors and design 

parameter offsets for the MEPDG inputs has been developed for the purpose of assuring, 

to a high level of probability, that the MEPDG predicted distress at any level of model 

confidence does not exceed a given threshold. One salient feature of this approach is that 

the two most significant sources of uncertainty in pavement design, input variability and 

model prediction error, are handled separately. The proposed methodology involves four 

major steps: (1) experimental design, (2) surrogate model estimation, (3) model 

verification, and (4) calculation of load and resistance factors and design offsets through 

the inverse first order reliability method.  

Though the results were intuitive, the contribution of this chapter is the 

quantification of parameter offsets for routine evaluation of a typical flexible pavement 
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design.  Since high computational demand of flexible MEPDG makes the use of Monte 

Carlo impractical, the proposed technique may prove useful. Utilization of these load and 

resistance factors, or parameter offsets, in the context of an analytical reliability analysis 

provides an alternative to a surrogate with a simulation-based process, either of which is 

necessary in performing risk-based design for flexible pavements utilizing M-E design 

procedures. Liability for performance of pavements over the entire design life is 

increasingly shifting to the agency required to construct and maintain the pavement. 

Responsibility for initial construction and reconstruction costs necessitates accurate 

design optimization routines. 
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CHAPTER VIII 

 

VIII. RISK-BASED DESIGN OPTIMIZATION METHOD 
UTILIZING M-E DESIGN EQUATIONS 

 

VIII.1 Introduction 

Optimization of flexible pavement design incorporating uncertainty is dependent on 

reliable pavement design and construction. Accuracy in the predictive models is 

necessary in achieving target reliability levels for the performance of the pavement over a 

specified design life. A practical application where accurate design optimization is 

necessary is warranty-based construction in which contractors are required to perform 

initial construction and provide maintenance over a specified design life for the 

pavement.  Risk-based design optimization, incorporating all sources of uncertainty, is 

critical to bidding and budgeting for pavements designed for these contracts. Decision-

making tools that include the cost as a decision variable aid in the design process for 

contractors who seek to design pavements systems that maximize profit and are reliable 

over the life of the warranty. 

The current implementation of the MEPDG provides a descriptive design process 

that can be utilized to define, or describe, a pavement design that meets a specific 

threshold reliability level within a specified design life, but it is computationally 

ineffective for use in design optimization problems. Uncertainty propagation for 

reliability and sensitivity analyses becomes computationally efficient utilizing simulation 

based methods with an accurate surrogate model replacing the more expensive M-E 
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design equations. A well trained surrogate model is a powerful decision-making tool in 

terms of accuracy of predictions of performance over the design life of the pavement. 

Further, construction of a surrogate provides the designer a tool that can be utilized as a 

prescriptive design tool which can be utilized to consider the optimal solution including 

the design life as a decision variable. Construction of a surrogate model requires a design 

of experiments that determines the quantity of training points required to accurately 

mimic the performance function. Many sampling techniques exist, typically choosing to 

either investigate the entire design space or explore a specific target region of the design 

space. For the flexible pavement design problem, a method that incorporates each of 

these concepts will provide a model that is well trained across the domain space, but 

refined in a region of interest related to overall construction cost. 

To develop a framework for risk-based design optimization for flexible 

pavements, it is necessary to construct a computationally efficient surrogate model that 

emulates the MEPDG pavement prediction models. Estimation with a surrogate model 

requires selection of training data and construction. Model verification of the surrogate is 

also required. This Chapter presents a selection process for determining the quantity of 

training points (NTP) by incorporating an adaptive sampling technique. This method 

simultaneously builds the surrogate model and provides an optimization tool for 

designers; reducing the overall computational expense required for optimization of 

design. 
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VIII.2 Selection of a Surrogate Model Type 

There exist a number of surrogate modeling approaches, each with advantages and 

disadvantages relating to their success to produce an accurate predictive model given 

certain properties regarding the data. The Gaussian Process (GP) surrogate model has 

been chosen for the MEPDG design software for several reasons. First, GP models are 

shown to be capable of fitting data for high dimensional problems, on the order of 30-50 

input parameters, which is appropriate for the MEPDG’s large number of significant 

input parameters. Second, the GP model is an interpolation method that does not follow a 

specific functional form. GP models are suitable for approximating any smooth, 

continuous function. 

Construction of a GP surrogate model requires selection of a correlation function 

and a mean function. The squared-exponential form has been selected as the correlation 

function. This form utilizes the following equation: 
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Where iξ  is a scale factor that must be estimated, j
ix  represents the jth training point at 

the ith dimension, and k
ix  represents the new prediction point at the ith dimension. The 

terms are summed over the number of training points, n. The correlation function is 

utilized to construct a correlation matrix, R: 
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The covariance function, indicating the covariance between the observed MEPDG 

response values of the training data, 𝑌(𝑥𝑗), and the predicted responses, 𝑌(𝑥𝑘), is 

represented as a function of the correlation matrix, R, and variance as shown here: 

 

RxYxYCov kj 2))(),(( σ=     (VIII.3) 

 

The variance term in Eq. VIII.3 is another parameter of the GP model that must be 

estimated. A mean function is also required for construction of the surrogate model. For 

this application, a constant function form is utilized: 

 

+++= 22110)( xxx βββµ     (VIII.4) 

 

The vector, β , is the final parameter that must be estimated to complete the construction 

process. 
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Once the model form has been selected, the model parameters (mean 𝜇, variance 

𝜎2, and correlation length-scale factors 𝜉) must be estimated. The process of parameter 

estimation is commonly performed utilizing a maximum likelihood estimation method. 

The procedure takes the form of an optimization problem. To avoid common 

complications due to ill-conditioned matrices, the optimization problem is modified to a 

minimization of the negative log-likelihood function, )](log[ ⋅− L , of the form: 
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VIII.3 Surrogate Model Construction: Adaptive Training Point Selection 

Process 

To efficiently construct a surrogate model that accurately predicts pavement performance 

across the entire domain space, an adaptive selection technique is presented. The location 

of training points for the surrogate model is determined through an optimization routine, 

combining both an exploration and exploitation optimization process. The exploration 

process improves the predictive accuracy of the GP across the entire domain space and 

guarantees that the GP is accurate within a specified tolerance across the space. The 

exploitation routine refines the GP model around a local optimum to provide greater 

accuracy in a specific area of interest.  
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VIII.3.1 Quantity of Training Points (NTP) 

A Latin Hypercube (LHC) sampling routine is utilized to generate potential training 

points. The development of the potential points is computationally inexpensive. Training 

values (outputs) for the surrogate model are required only when selection of a training 

point has been made and are found utilizing the MEPDG design software, therefore 

selection of the training points does not require evaluation of the MEPDG functions.  

The surrogate model is initialized with randomly chosen points, a sub-set selected 

from the full set of potential training points, and exploration and exploitation routines are 

performed (in parallel) until convergence criteria is reached for both methods. The 

training points not selected in the initialization routine are considered as candidate points 

which can become training points through the exploration and exploitation routines. This 

process of pre-selecting candidate points by the LHC sampling method is not required. 

New training points could be selected as any feasible solution in the domain space. The 

LHC process was utilized here to reduce the computational cost associated with the 

exploration routine. 

 

VIII.3.1.a Exploration Routine 

The Exploration routine explores the design domain and selects additional training points 

that will most significantly improve the accuracy of the model predictions across the 

entire design space. Improvement in accuracy is defined in this routine as a reduction in 

the GP variance. This algorithm selects a new training point in a region of the domain 
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where the GP variance is a maximum, otherwise stated as the maximum distance from all 

other training points.  

This exploration routine chooses the next potential training point based on the 

average GP variance for that candidate point across all distress models. The improvement 

of the GP through the exploration process is quantified by the variance of a set of 

verification points randomly chosen across the domain space. The verification points are 

not utilized as training points or candidate points, therefore maintaining consistency 

throughout the construction process. Additional training points, selected from a pre-

defined candidate pool, are added to the surrogate model at each iteration of the 

exploration routine and are chosen as the points that minimize the average variance for 

the candidate points across all MEPDG distress modes. 

 

VIII.3.1.b Exploitation Routine 

The exploitation routine chooses additional training points for the surrogate model 

utilizing a construction cost function. This process provides model refinement in the 

region of the design space where a local minimum, and potentially a global minimum, 

exists.  

The selection of the next training point for the surrogate can be performed with a 

cost function which includes an initial construction cost and an additive maintenance 

cost, similar to that shown in Equation VIII.6. 
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Minimize ,$20,000* $7,500* $125,000PerLaneMile thick thick f AveCost HMA GB p= + +

(VIII.6) 

Equation VIII.6 defines the initial construction cost per lane mile or road as a function of 

two significant material properties: asphalt and granular base layer thicknesses. The 

maintenance cost is treated as a function of the average probability of failure across all 

distress modes.  

 

VIII.3.1.c Stopping Criteria 

The minimum required quantity of training points (NTP) for the surrogate model is 

determined by the stopping criteria for the exploration and exploitation routines. The 

exploration routine stopping criteria is best defined when the addition of a new training 

point does not significantly improve the accuracy of the surrogate model across the 

domain. The selection routine from the pool of candidate points will not always reduce 

the average GP variance for the remaining candidate points. Although the point of 

greatest GP variance is removed from the candidate points, the mean of the GP variance 

is impacted by the change in quantity. Further, the GP model is retrained at each iteration, 

so the GP variance for each candidate point is likely to change based on the updated GP 

parameters. Therefore, improvement is defined as a significant reduction in GP variance 

for the set of verification points which remains constant through the construction process. 

The verification points will quantify the performance of the model across the domain, 

independent of the location and quantity of the training points. 
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The stopping criterion for the exploitation routine is dependent on the cost 

function utilized. The cost function utilized in this dissertation is a function of two design 

variables and the probability of failure for the design. Additional constraints could limit 

the feasible solutions and provide a stopping criterion for this routine. Stopping criteria 

could include a budgetary constraint, which for this formulation, would also require a 

minimum reliability level. The unconstrained problem in the exploitation routine does not 

restrict the probability of failure for a pavement, which may not be acceptable to some 

agencies. However, the increased use of warranty contracts for pavement construction 

can use this routine as a financial decision-making process. 

For the analysis here, the exploitation routine is left unconstrained, allowing for a 

better investigation into the performance of the exploration routine and impact on 

accuracy in predictions by the GP. The constraints on the exploitation routine will always 

reduce the number of training points, as a function of feasible cost and performance 

requirements, which is an important aspect to the purpose of RBDO. 

 

VIII.4 Verification of the Surrogate Model 

In addition to the exploration and exploitation routines, model verification is required 

prior to use in risk-based design optimization applications. Model verification for this 

application is based on prediction testing. The values for the prediction points are 

calculated as the mean value of the distribution: 
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Where r represents a vector of correlations as represented by: 
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�     (VIII.8) 

 

The predictions for the GP can be compared to the results from the MEPDG to determine 

the validity of the surrogate model at points other than the training data (i.e. verification 

points). One classic verification metric, the adjusted R-squared (R2
Adj) value, can be 

computed, to compare the GP predictions to the actual MEPDG predictions. Values near 

one indicate that the GP is accurately emulating the MEPDG design functions. 

 

VIII.5 Results 

The process developed in the previous discussion is demonstrated for a numerical 

example. A surrogate model is constructed utilizing the exploration and exploitation 

routines to minimize the quantity of training points required to construct the GP while 

simultaneously searching for a feasible solution to a cost optimization problem. 

Verification of the GP is presented, followed by the solution to the RBDO example. 
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VIII.5.1 GP Construction and Verification 

The exploitation and exploration routines implemented in the surrogate model 

construction demonstrate an effective method for minimizing the number of required 

training points while simultaneously solving the design optimization problem. 

Implementation of the construction process requires the selection of a stopping criterion 

to define the level of accuracy for the model. The GP variance at a set of verification 

points has been selected as the ‘statistic’ for stopping criteria. The variance of each 

individual verification point will approach a minimum value of zero with the addition of 

training points, but improvement of the GP variance will likely plateau at an optimal 

quantity of training points. 

A thorough investigation of 1,000 training points was performed for a numerical 

example and the average GP variance for all verification points was calculated for each 

distress mode. 

FIGURE VIII.1 demonstrates a convergence of the model as the number of 

training points approaches 1,000. The improvement with the additional training points 

demonstrates the effectiveness of the method, but also provides a tool to determine the 

minimum number of training points required to capture most of the behavior of the 

design functions. Visual inspection of all the models and an approximation for the system 

prediction indicates that improvement in the reduction of the GP variance converges to a 

near constant value. For the numerical example presented here, the visual inspection is 

performed after evaluating all 1,000 training points, but this is not required in practical 

applications. Convergence criteria can be defined when a minimum change in 

improvement is achieved. It is recommended that this criterion be met considering 
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improvement over a range of training points, rather than a single-step memory system to 

avoid local minima. 

Although the visual inspection of the GP variance plots implies a potential 

minimum number of training points, verification of the GP compared to the actual 

function is also necessary. For application herein, the GP model is considered to 

accurately emulate the MEPDG when the minimum of the R2
Adj values for a verification 

dataset compared to true MEPDG data is greater than 0.8. Construction with 500 training 

points, chosen by the GP variance plots, was shown to be acceptably accurate. The GP 

and MEPDG are well correlated with R2
Adj values presented in TABLE VIII.1. All 

models achieve the specified minimum value for the R2
Adj statistic. Additional 

improvements could be made to the GP by choosing additional training points in the 

same systematic way until the verification for each model reaches the approved minimum 

value. 

 

TABLE VIII.1: GP Verification Results 

Distress Mode Adjusted R² 
Terminal IRI (in./mi.) 0.837 
Total Permanent Deformation (in.) 0.857 
AC Bottom Up Cracking 0.821 
AC Surface Down Cracking (ft./mi.) 0.884 
AC Permanent Deformation (in.) 0.820 
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FIGURE VIII.1: Improvement in Average GP Variance for Verification Points  
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VIII.5.2 RBDO Solution 

The optimal solution for the numerical experiment presented here occurs with mean 

design parameters presented in TABLE VIII.3. The means of the random variables 

utilized in the GP model are presented in TABLE VIII.2. Analysis incorporating 

uncertainty from the GP and MEPDG, and input parameter uncertainty results in a design 

that will cost approximately $211,200. The optimal pavement meets a minimum 

reliability level of 70% which occurs in the AC permanent deformation distress mode 

(excluding the AC top down cracking model). (TABLE VIII.4) The AC top down 

cracking model is significantly impacted by model uncertainty and the solution presented 

in this numerical experiment results in a very high probability of failure for this distress 

model. It is assumed that use of an improved model would increase the reliability level 

for this distress mode without significantly impacting the optimal solution. 

 From the results of this numerical example, it is clear that the reliability level 

achieved is strongly influenced by the reconstruction cost term in the objective function. 

For appropriate life-cycle cost assessments, design engineers should perform cost 

optimization over a design life to determine the cost over the entire life of the pavement, 

incorporating yearly maintenance budgets as a function of the probability that the 

pavement does not meet a specified threshold value. The MEPDG is a powerful tool, but 

the current design process described in the Design Guide merely defines the performance 

of a pavement design as a function of a deterministic design life and target reliability. 

Implementation of the GP construction and optimization process presented here improves 

the MEPDG design process and provides a powerful infrastructure management tool. 

Design engineers implementing this procedure can make decisions for acceptable 



   

170 
      

reliability levels based on the cost over the life-time of the system which matches the 

practical maintenance process. 

 

TABLE VIII.2: Random Variable Statistics for Design Optimization Problem 

Parameter Name Mean Standard Deviation 
AADTT 1500 115.53 
Traffic Growth Rate 4.0 0.58 
Percent Retained (#4) 65.00 6.35 
Percent Passing (#200) 3.10 1.79 
Esubgrade (psi) 18000 3466 

 

TABLE VIII.3: Design Optimization Results 

Design Parameter Name Optimal Value 
HMA Thickness (in.) 6.03 
EBC (%) 5.61 
AV (%) 3.34 
GB Thickness (in.) 7.11 

 

TABLE VIII.4: Design Optimization Results: Distress Modes 

Distress Mode Threshold Value Reliability Achieved @ 
Threshold Value 

Terminal IRI (in./mi.) 275 79.13% 
Total Permanent Deformation (in.) 1.25 86.43% 
AC Bottom Up Cracking 25% 87.3% 
AC Surface Down Cracking (ft./mi.) 2000 16.24% 
AC Permanent Deformation (in.) 0.75 69.58% 
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VIII.6 Conclusion 

Risk-based design optimization utilizing the framework presented here is necessary for 

accurate and reliable pavement design and construction. The construction of a surrogate 

model with the routines presented provides a computationally efficient method for 

evaluation of RBDO applications. The method presented can be adapted to consider 

alternative optimization problem formulations such as those described in Chapter II.5, the 

surrogate model can be trained utilizing additional parameters, and the method could be 

utilized with alternate M-E design procedures.  
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CHAPTER IX 

 

IX. CONCLUDING REMARKS 

 

This dissertation has presented methods for management of uncertainty utilizing 

analytical and probabilistic methods in the context of M-E pavement design. A 

systematic and comprehensive approach to management of uncertainty in pavement 

design has been presented, incorporating uncertainty from input parameters, surrogate 

models, and the MEPDG prediction models. 

A systematic and comprehensive approach to management of uncertainty by has 

been achieved by accomplishing four major objectives:  

1. Address model uncertainty for the permanent deformation model 

2. Develop a method to reduce computational expense. 

3. Design a framework for incorporation of uncertainty in pavement design 

4. Demonstrate a framework for risk-based M-E pavement design. 

The methods presented demonstrate a comprehensive framework for performing accurate 

and reliable pavement performance predictions in a practical and computationally 

efficient way. Current M-E design procedures are computationally inefficient due to the 

inclusion of extensive quantities of design input parameters. Although these models are 

robust, surrogate modeling has been demonstrated to accurately emulate the M-E design 

equations while reducing computational expense. Surrogate modeling for the M-E 
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procedure increases computational speed allowing designers to perform highly iterative 

analyses that are otherwise too time-consuming in practice. Design optimization and 

reliability analysis can be performed in a fraction of the time, without significant loss of 

accuracy. 

Quantification of model uncertainty for the permanent deformation predictive 

model has been presented and analysis performed to determine the most accurate model 

form. A predictive model that incorporates parameters that describe the pavements ability 

to resist shear and axial deformations has been demonstrated to improve accuracy in 

predictions over the more commonly utilized models that do not simultaneously consider 

these mechanistic behaviors. The weighted average models provide a computationally 

efficient means for developing predictive performance models without the 

computationally expensive evaluation of more advanced mechanistic concepts. Advanced 

theoretical developments are necessary, but require highly complicated non-linear 

evaluations of non-homogenous materials. Though these methods would improve 

theoretical knowledge, the M-E design equations presented are shown to achieve highly 

accurate predictive capability. 

The construction and verification of a surrogate model accurately emulating the 

MEPDG flexible pavement design process was performed to reduce computational 

expense of current M-E design procedures. Specifically, a GP model was shown to 

accurately emulate M-E pavement design models and minimize computational expense. 

The GP model is a powerful tool that allows for additional investigation of the M-E 

prediction models. This model was exploited and sensitivity analyses were performed to 

determine the impact on predicted performance by Level 1 input parameters, quantity of 
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training data, and location of training points. A framework for selection of training points 

utilizing a correlation matrix between input parameters and predicted performance was 

shown to be an efficient method for selection of the quantity of training point parameters 

for the GP model. 

A design framework for M-E flexible pavement design has been presented, 

incorporating all sources of uncertainty, to provide a design procedure that is accurate 

and computationally efficient. Reliability analysis is a critical design procedure impacted 

by the computational burden of M-E design procedures. Surrogate modeling improves 

computational speed allowing for robust reliability methods such as Monte Carlo 

Simulation. Analytical reliability methods have also been shown to provide accurate 

reliability estimates in a computationally efficient way. The GP model developed in this 

dissertation was shown to contribute only a minimal amount of uncertainty to predicted 

performance relative to MEPDG uncertainty and input parameter variability. Analytical 

reliability methods, specifically FORM and AMV were shown to be powerful reliability 

methods capable of accurate and computationally efficient evaluations. In addition, 

FORM and AMV provide a basis for development of LRFD factors and correction 

factors for routine reliability-based design optimization. 

An exploration and exploitation GP construction process was demonstrated as an 

efficient algorithm for performing risk-based design optimization for flexible pavements. 

Design optimization is a critical design step that cannot be implemented efficiently in 

current M-E procedures. Contractors and design engineers need computationally efficient 

tools to perform design optimization within the constraints of rapid construction 

schedules and restricted budgets. To satisfy the final objective of the dissertation, it was 
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necessary to construct a surrogate model that emulates the MEPDG pavement prediction. 

Estimation with a surrogate model requires selection of training data and construction. 

Model verification of the surrogate is also required. This dissertation presented a 

selection process for determining the number of training points, NTP, for construction of 

an accurate surrogate model by an adaptive sampling technique. The method 

simultaneously provides an optimization tool for designers reducing the overall 

computational expense required for optimization of design. 

The methods presented here are critical to accuracy in predicted pavement 

performance, reliability analysis for flexible pavements, sensitivity analysis regarding 

design parameters and their significance to the design equations, and pavement design 

optimization. 
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CHAPTER X 

 

X. FUTURE WORK 

 

Although the accomplishments in this dissertation include a comprehensive method for 

management of uncertainty in flexible pavement design, research beyond the topics 

presented will further improve pavement design and analysis with M-E methods. 

Suggested research includes expansion of this work to alternative types of pavement 

structures such as rigid pavements and inverted pavements. Model form error should be 

quantified for M-E distress models in addition to the permanent deformation models 

investigated in this dissertation. Improvements to practical implementation of M-E design 

procedures, inclusion of additional empirical data, and additional verification and 

validation of continually evolving M-E models are all necessary for appropriate routine 

use by design engineers. 

Four specific research topics related to the work presented in this dissertation are 

discussed in the following sections. These topics are not listed in any priority and 

additional research is not limited to the topics discussed. 

 

X.1  Pay Factors and Performance Related Specifications 

Further work related to this dissertation is necessary to develop a framework for 

implementation of these methods into computation of pay factors for contractors, 
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performance-related specifications for design agencies, and QC/QA guidelines to 

improve construction practices. Reliability analysis based on probabilistic or analytical 

methods as presented in this dissertation would provide significant benefits to the 

highway community. It would aid highway agencies by providing a basis for quantifying 

the benefits of quality control and quality assurance and providing a technically sound 

basis for computation of pay factors to be awarded to contractors for meeting certain 

quality control standards. The combination of these methods also enables the design 

engineer to account for uncertainty in the design parameters and to design pavements 

accordingly. 

 

X.2  Genetic Algorithms for GP Parameter Selection Process 

While the selection process methods for construction of the surrogate models performed 

well in Chapter IV of this dissertation, genetic algorithms may also be investigated as a 

selection process. The more robust optimization procedure may provide insight into the 

impact of the Level 1 input parameters on predicted pavement performance and may 

prove to be a more efficient method for selecting the quantity of parameters to accurately 

predict performance. 

 

X.3  Additional MEPDG Distress Models & Various Pavement Structures 

In addition to the permanent deformation model, investigation into all distress models is 

necessary to accurately evaluate reliability for pavement performance at a system level. 

The procedures presented in this dissertation can be applied to any of the distress models. 
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 Rigid pavements can also be evaluated with the procedures demonstrated in this 

dissertation. Similar to flexible pavements, the MEPDG design procedure requires local 

calibration and is susceptible to model uncertainty. 

 New pavement types such as inverted pavement systems and flexible pavement 

using recycled asphalt pavement (RAP) require development of design equations that 

accurately predict performance. The process of model calibration presented in this 

dissertation may be applicable to RAP pavement design. The analytical reliability 

methods presented in this dissertation should be evaluated for inverted pavement systems. 

 

X.4  Optimization Routine Improvement for Model Calibration 

Future work is recommended to improve the optimization routine for deriving the 

calibrated performance models for the MEPDG. One possibility is investigation for, or 

development of, software that would be capable of automating the optimization routine 

with the MEPDG software. A second possibility is the use of a surrogate model. A well 

trained surrogate model, such as demonstrated by Retherford and McDonald (69), can 

accurately approximate the results of the MEPDG and can be implemented utilizing 

software capable of highly efficient optimization methods. For this application, the 

surrogate model must be trained including the calibration factors, in addition to all other 

significant design parameters. Future work also includes sensitivity analysis of the slope 

terms included in the parameter calibrated model to investigate the impact of the shear-

based mix properties. A quadratic model could also be constructed and included in the 

sensitivity analysis to examine the impact of the interaction terms and higher order terms. 
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A sensitivity analysis of this kind would provide important information influencing mix 

design. Validation utilizing experimental data such as the results of test tracks at 

MnROADS and ALF would provide additional support for the approaches for permanent 

deformation prediction models presented. 

Implementation of any of the aforementioned recommendations could improve 

accuracy in the prediction of permanent deformation performance in flexible pavement 

structures. Improved accuracy in predictions leads to optimal performance and reliable 

design life. 
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APPENDIX A: GP Training Data Generation 
 

The training data utilized to construct the GP for the MEPDG was generated by Latin 
Hypercube Sampling. The sample Matlab code herein describes the method of generating 

this data. 

clear all; clc; 
  
%----------------------------------------------------------------------
---- 
%% Notes for Robust GP Procedure/m-files 
%----------------------------------------------------------------------
---- 
% Run 'LatinHypercubeSamplingPlan' to obtain LHC training points for 
most 
% GP parameters;  
%  
% output = 'RobustGPInputs.mat'; matrix of 54 parameters 
%  
% Run 'TensileandCreep' to obtain remaining GP parameters; these are 
the 
% ave. indirect tensile strength and creep compliance calculations that 
% MEPDG/Darwin-ME do not calculate for Level 1 or 2 Binder inputs 
%  
% output = 'RobustGPInputsFull.mat'; matrix of 76 parameters 
%  
% Run 'RGPDarwinFiles' to create xml files for use in Darwin-ME 
%  
% output = xml files located in 'Tempfiles' folder 
%  
% Import into Darwin-ME and evaluate; 
  
%----------------------------------------------------------------------
---- 
%----------------------------------------------------------------------
---- 
%% Define Input Parameter Ranges 
n = 1000; %Define number of LHC samples 
p =45; %Define number of Input Parameters 
  
LHCperms = lhsdesign(n,p, 'smooth', 'off'); 
  
%% Traffic Category 
  
%----------------------------------------------------------------------
---- 
% Traffic 
%----------------------------------------------------------------------
---- 
AADTT       = (400  * LHCperms(:,1)) + 1300; %Uniform Range [1300 1700] 
LDF         = (10  * LHCperms(:,2)) + 80; %Uniform Range [0.8 0.9] 
OpSpeed     = (10   * LHCperms(:,3)) + 60; %Uniform Range [60 70] 
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Traffic = [round(AADTT), round(LDF * 10) / 10, round(OpSpeed * 10) / 
10]; 
%----------------------------------------------------------------------
---- 
% Traffic Volume 
%----------------------------------------------------------------------
---- 
DistVehClass3ave = [0.9, 11.6, 3.6, 0.2, 6.7, 62, 4.8, 2.6, 1.4, 6.2]; 
DVC3min = 0.9 * DistVehClass3ave; 
DVC3max = 1.1 * DistVehClass3ave; 
m = 10; %Used for rounding for use in mepdg  
for j = 1:n 
    for i = 1:size(DistVehClass3ave,2) 
        RandNumDVH(1,i) = LHCperms(j,4); 
    end 
    for i = 1:size(DistVehClass3ave,2) 
        DVC3RandO(1,i) = ((DVC3max(1,i) - DVC3min(1,i)) * 
RandNumDVH(1,i))... 
            + DVC3min(1,i); 
    end 
  
    DVCCheck1(j,1) = sum(round(DVC3RandO * m)) / m; 
    DVCresid(j,1) = 100 - DVCCheck1(j,1); 
     
    %Adjust one value to force sum = 100; do not allow adjustment of 
    %Class 9 vehicle -> maintain LHC for this vehicle class 
    RandDVCadjust = round(random('uniform',1,10)); 
    while (RandDVCadjust > 6 && RandDVCadjust < 6) 
        RandDVCadjust = round(random('uniform',1,10)); 
    end 
    DVC3Rand = DVC3RandO; 
    DVC3Rand(1,RandDVCadjust) = DVC3RandO(1,RandDVCadjust) + 
DVCresid(j,1); 
     
    DVCCheck1(j,1) = sum(round(DVC3Rand * m)) / m; 
    DVCresid(j,1) = 100 - DVCCheck1(j,1); 
    DVCmin(j,1) = min(DVC3Rand(1,:)); 
     
    while (DVCmin(j,1) < 0) 
        DVCCheck1(j,1) = sum(round(DVC3RandO * m)) / m; 
        DVCresid(j,1) = 100.0 - DVCCheck1(j,1); 
  
        RandDVCadjust = round(random('uniform',1,10)); 
        while (RandDVCadjust > 6 && RandDVCadjust < 6) 
            RandDVCadjust = round(random('uniform',1,10)); 
        end 
        DVC3Rand = DVC3RandO; 
        DVC3Rand(1,RandDVCadjust) = DVC3RandO(1,RandDVCadjust)... 
            + DVCresid(j,1); 
         
        DVCCheck1(j,1) = sum(round(DVC3Rand * m)) / m; 
        DVCresid(j,1) = 100 - DVCCheck1(j,1); 
        DVCmin(j,1) = min(DVC3Rand(1,:)); 
    end 
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    DVC(j,:) = DVC3Rand; 
end 
DVCmepdg = round(DVC * m) / m; 
%Check that sum(DVCCheck1) = n * 100; Check should = 0; 
%Check that minimum value is positive; Check should be >= 0; 
%Check that rounded values for medpg = 100; Check should = 100; 
%Check that min and max for mepdg = same value; Check should = 0; 
Check(1,1) = sum(DVCCheck1) - (n * 100);  
Check(2,1) = min(min(DVC));  
Check(3,1) = sum(sum(DVCmepdg,2))/n;  
Check(4,1) = max(sum(DVCmepdg,2)) - min(sum(DVCmepdg,2)); Check 
  
TrGrowth    = (2 * LHCperms(:,5)) + 3; %Uniform [3% 5%] 
  
TrafficVol = [DVCmepdg, round(TrGrowth * 10)/10]; 
%----------------------------------------------------------------------
---- 
% General Traffic 
%----------------------------------------------------------------------
---- 
MeanWheel       = (3.6  * LHCperms(:,6))  + 16.2; %Uniform [16.2 19.8] 
WanderSD        = (2    * LHCperms(:,7))  + 9; %Uniform [9 11] 
LaneWidth       = (2.2  * LHCperms(:,8))  + 10.8; %Uniform [10.8 13] 
% TirePress       = (12   * LHCperms(:,18)) + 114; %Uniform [114 126] 
AxleTand        = (10.4 * LHCperms(:,9))  + 46.4; %Uniform [46.4 56.8] 
AxleTri         = (9.8  * LHCperms(:,10)) + 44.3; %Uniform [44.3 54.1] 
AxleQuad        = (9.8  * LHCperms(:,11)) + 44.3; %Uniform [44.3 54.1] 
AveAxleShort    = (3    * LHCperms(:,12)) + 12; %Uniform [12 15] 
AveAxleMed      = (3    * LHCperms(:,13)) + 15; %Uniform [15 18] 
AveAxleLong     = (3    * LHCperms(:,14)) + 18; %Uniform [18 22] 
  
GenTraffic = [round(MeanWheel*10)/10, round(WanderSD*10)/10,... 
    round(LaneWidth*10)/10, round(AxleTand*10)/10, 
round(AxleTri*10)/10,... 
    round(AxleQuad*10)/10, round(AveAxleShort*10)/10,... 
    round(AveAxleMed*10)/10, round(AveAxleLong*10)/10];  
  
%----------------------------------------------------------------------
---- 
%----------------------------------------------------------------------
---- 
AllTraffic = [Traffic, TrafficVol, GenTraffic]; 
%----------------------------------------------------------------------
---- 
%% Material Parameters 
%----------------------------------------------------------------------
---- 
%Asphalt Layer 
%----------------------------------------------------------------------
---- 
HMAthick     = (4      * LHCperms(:,15)) + 6; 
EBC          = (1.7    * LHCperms(:,16)) + 5.3; 
AV           = (2.5    * LHCperms(:,17)) + 3; 
UnitWt       = (30     * LHCperms(:,18)) + 135; 
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%Percent Passing: (modified 10142011 to reflect passing, not retained) 
AggGrad34    = 100 - (2      * LHCperms(:,19)); %modify for Darwin-ME 
AggGrad38    = 100 - ((13     * LHCperms(:,20)) + 7); 
AggGrad4     = 100 - ((22     * LHCperms(:,21)) + 24); 
%Percent Passing: 
AggGrad200   = (6.2    * LHCperms(:,22)); 
  
ThermCond    = (0.14   * LHCperms(:,23)) + 0.6; 
HeatCap      = (0.04   * LHCperms(:,24)) + 0.21; 
  
  
for i = 1:n 
    Gstar130(i,1) = ((14-3.5)     * LHCperms(i,25) + 3.5)  * 1000; 
%[3.5 14] kPa 
    Gstar115(i,1) = ((25-14)      * LHCperms(i,26) + 14)   * 1000; %[14 
25] 
    Gstar100(i,1) = ((200-25)     * LHCperms(i,27) + 25)   * 1000; %[25 
200] 
    Gstar85(i,1)  = ((230-200)    * LHCperms(i,28) + 200)  * 1000; 
%[200 230] 
    Gstar70(i,1)  = ((3300-230)   * LHCperms(i,29) + 230)  * 1000; 
%[230 3300] 
    Gstar55(i,1)  = ((4500-3300)  * LHCperms(i,30) + 3300) * 1000; 
%[3300 4500] 
    Gstar40(i,1)  = ((33000-4500) * LHCperms(i,31) + 4500) * 1000; 
%[4500 33000] 
end 
  
%Let deltas vary between [50 85]; increasing with decreasing temps. 
%REVISED: see excel file; decreasing with decreasing temp 
delta130 = 9 * LHCperms(:,32) + 73; %[73 82] 
delta115 = 3 * LHCperms(:,33) + 70; %[70 73] 
delta100 = 3 * LHCperms(:,34) + 67; %[67 70] 
delta85  = 4 * LHCperms(:,35) + 63; %[63 67] 
delta70  = 6 * LHCperms(:,36) + 57; %[57 63] 
delta55  = 2 * LHCperms(:,37) + 55; %[55 57] 
delta40  = 8 * LHCperms(:,38) + 47; %[47 55] 
  
%Verify Superpave requirements are met 
for i = 1:n 
    SP130(i,1) = Gstar130(i,1) / sind(delta130(i,1)); 
    SP115(i,1) = Gstar115(i,1) / sind(delta115(i,1)); 
    SP100(i,1) = Gstar100(i,1) / sind(delta100(i,1)); 
    SP85(i,1) = Gstar85(i,1) / sind(delta85(i,1)); 
    SP70(i,1) = Gstar70(i,1) / sind(delta70(i,1)); 
    SP55(i,1) = Gstar55(i,1) / sind(delta55(i,1)); 
    SP40(i,1) = Gstar40(i,1) / sind(delta40(i,1)); 
end 
  
SPmin130 = min(SP130); 
SPmin115 = min(SP115); 
SPmin100 = min(SP100); 
SPmin85 = min(SP85); 
SPmin70 = min(SP70); 
SPmin55 = min(SP55); 
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SPmin40 = min(SP40); 
  
SPmin = min([SPmin130, SPmin115, SPmin100, SPmin85, SPmin70,... 
    SPmin55, SPmin40]); 
  
%Superpave Requirement: Gstar/sin(delta) > 1 kPa  (1000 Pa) 
  
CheckSP = SPmin - 1e3 %If CheckSP > 0 then values of G*, delta OK 
  
AspLayer = [round(HMAthick*10)/10, round(EBC*10)/10, 
round(AV*10)/10,... 
    round(UnitWt), round(AggGrad34*10)/10, round(AggGrad38*10)/10,... 
    round(AggGrad4*10)/10, round(AggGrad200*10)/10,... 
    round(ThermCond*100)/100, round(HeatCap*100)/100, 
round(Gstar40),... 
    round(Gstar55), round(Gstar70), round(Gstar85), round(Gstar100),... 
    round(Gstar115), round(Gstar130), round(delta40*10)/10,... 
    round(delta55*10)/10, round(delta70*10)/10, 
round(delta85*10)/10,... 
    round(delta100*10)/10, round(delta115*10)/10, 
round(delta130*10)/10]; 
%----------------------------------------------------------------------
---- 
%Granular Base Layer 
%----------------------------------------------------------------------
---- 
GBthick     = (2    * LHCperms(:,39)) + 7; 
Kgb         = (4500 * LHCperms(:,40)) + 35500; 
GBPois      = (0.3  * LHCperms(:,41)) + 0.1; 
GBKo        = (0.1  * LHCperms(:,42)) + 0.5; 
  
GBLayer = [round(GBthick*10)/10, round(Kgb), round(GBPois*100)/100,... 
    round(GBKo*1000)/1000]; 
%----------------------------------------------------------------------
---- 
%Unbounded Subgrade Layer 
%----------------------------------------------------------------------
---- 
Esub        = (12000 * LHCperms(:,43)) + 12000; 
SubPois     = (0.1   * LHCperms(:,44)) + 0.2; 
SubKo       = (0.1   * LHCperms(:,45)) + 0.6; 
  
SubLayer = [round(Esub), round(SubPois*100)/100, 
round(SubKo*1000)/1000]; 
%----------------------------------------------------------------------
---- 
%----------------------------------------------------------------------
---- 
Materials = [AspLayer, GBLayer, SubLayer]; 
%----------------------------------------------------------------------
---- 
%% Gaussian Process Surrogate Model Input Parameters 
  
gpInputs = [AllTraffic, Materials]; 
save('RobustGPInputs.mat', 'gpInputs'); 
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%----------------------------------------------------------------------
---- 
%% Various Plots to Show Scatter of Training Points 
%----------------------------------------------------------------------
---- 
% %Choose Input Parameters to View 
% xx = 1; yy = 14; zz = 23; 
%  
% %2-D Plot 
% plot(gpInputs(:,xx), gpInputs(:,yy), 
'LineStyle','none','Marker','.'); 
% axis([min(gpInputs(:,xx)) max(gpInputs(:,xx))... 
%     min(gpInputs(:,yy)) max(gpInputs(:,yy))]); 
% grid 'on' 
%  
% %3-D Plot 
% figure 
% plot3(gpInputs(:,xx), gpInputs(:,yy), gpInputs(:,zz),... 
%     'LineStyle','none','Marker','.'); 
% axis([min(gpInputs(:,xx)) max(gpInputs(:,xx))... 
%     min(gpInputs(:,yy)) max(gpInputs(:,yy))... 
%     min(gpInputs(:,zz)) max(gpInputs(:,zz))]); 
% grid 'on' 
 
clear all; clc; 
  
%Define Ave. Tensile Strength (St) and Creep Compliance (t) for given 
%values of Gstar and delta; For import into RobustGPInputs matrix 
  
%Import RobustGPInputs 
%======================================================================
==== 
%Modify for Climate Region 
GPInputs = importdata('RobustGPInputsSpokane.mat');  
%======================================================================
==== 
  
Gstar = GPInputs(:,34:40); 
delta = GPInputs(:,41:47); 
Vbeff = GPInputs(:,25); %EBC 
Va    = GPInputs(:,26); %AV 
  
Temp = [40, 55, 70, 85, 100, 115, 130]; 
  
%----------------------------------------------------------------------
---- 
%% Find A and VTS 
%----------------------------------------------------------------------
---- 
%Calculate Log(Temp R) 
for i = 1:size(Temp,2) 
    logTempR(1,i) = log10(Temp(1,i) + 459.67); 
end 
  
%Calculate Log(Log(Viscosity)) 
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for i = 1:size(Gstar,1) 
    for j = 1:size(Gstar,2) 
        loglogvis(i,j) = 
log10(log10((Gstar(i,j)/10)*((1/(sin(delta(i,j)*pi/180)))^4.8628)*1000)
); 
    end 
end 
  
%Perform Linear Regression to Obtain A and VTS 
for i = 1:size(loglogvis,1) 
    [r(i), VTS(i,1), A(i,1)] = regression(logTempR(1,:), 
loglogvis(i,:)); 
end 
clear r; 
%----------------------------------------------------------------------
---- 
%% Calculate Average Tensile Strength (St) 
%----------------------------------------------------------------------
---- 
%Regression Parameters 
  
for i = 1:size(Va,1) 
    Vasqd(i,1) = Va(i,1) * Va(i,1); 
    VFA(i,1) = 100 * Vbeff(i,1) / (Vbeff(i,1) + Va(i,1)); 
    VFAsqd(i,1) = VFA(i,1) * VFA(i,1); 
    Pen77(i,1) = 10^(290.5013-
sqrt(81177.288+257.0694*(10^(A(i,1)+2.72973*VTS(i,1))))); 
end 
  
StRegPs = [ones(size(Va,1),1), Va, Vasqd, VFA, VFAsqd, log10(Pen77), 
log10(A)]; 
  
StRegCoeffs = [4976.34, -42.49, -2.73, -80.61, 0.465, 174.35, -
1217.54]; 
  
for i = 1:size(Va,1) 
    St(i,1) = StRegCoeffs * StRegPs(i,:)'; 
end 
  
%----------------------------------------------------------------------
---- 
%% Calculate Creep Compliance 
%----------------------------------------------------------------------
---- 
%Regression Parameters 
  
% T = - 20 C 
D120Cs = [-11.9254, 1.52206, 4.49876, -3.8132]; 
m20Cs = [-1.75987, 1.78187, 0.00089]; 
  
for i = 1:size(Va,1) 
    logVa(i,1) = log10(Va(i,1)); 
    logVFA(i,1) = log10(VFA(i,1)); 
    logA(i,1) = log10(A(i,1)); 
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    Va0203(i,1) = (Va(i,1))^0.0203; 
    Pen7796(i,1) = (Pen77(i,1))^0.9687; 
end 
  
D120Ps = [ones(size(Va,1),1), logVa, logVFA, logA]; 
m20Ps = [ones(size(Va,1),1), Va0203, Pen7796]; 
  
for i = 1:size(Va,1) 
    D120(i,1) = 10^(D120Cs * D120Ps(i,:)'); 
    m20(i,1)  = m20Cs * m20Ps(i,:)'; 
end 
  
% T = - 10 C 
D110Cs = [-10.7656, 1.5196, 3.49983, -2.9987]; 
m10Cs = [-1.8269, 1.94218, 0.00098]; 
  
for i = 1:size(Va,1) 
    Va016(i,1) = (Va(i,1))^0.016; 
    Pen77969(i,1) = (Pen77(i,1))^0.96857; 
end 
  
D110Ps = D120Ps; 
m10Ps = [ones(size(Va,1),1), Va016, Pen77969]; 
  
for i = 1:size(Va,1) 
    D110(i,1) = 10^(D110Cs * D110Ps(i,:)'); 
    m10(i,1)  = m10Cs * m10Ps(i,:)'; 
end 
  
% T = 0 C 
D10Cs = [-9.80627, 1.50845, 2.99, -2.90157]; 
m0Cs = [-2.41043, 2.59093, 0.00199]; 
  
for i = 1:size(Va,1) 
    Va0155(i,1) = (Va(i,1))^0.01547; 
    Pen7797(i,1) = (Pen77(i,1))^0.97247; 
end 
  
D10Ps = D120Ps; 
m0Ps = [ones(size(Va,1),1), Va0155, Pen7797]; 
  
for i = 1:size(Va,1) 
    D10(i,1) = 10^(D10Cs * D10Ps(i,:)'); 
    m0(i,1)  = m0Cs * m0Ps(i,:)'; 
end 
  
Dvalues = [D120, D110, D10]; 
mvalues = [m20, m10, m0]; 
  
for i = 1:size(Va,1) 
    % Loading time = 1 
    creep120(i,1) = Dvalues(i,1) * (1 ^ mvalues(i,1)); 
    creep110(i,1) = Dvalues(i,2) * (1 ^ mvalues(i,2)); 
    creep10(i,1)  = Dvalues(i,3) * (1 ^ mvalues(i,3)); 



   

188 
      

    % Loading time = 2 
    creep220(i,1) = Dvalues(i,1) * (2 ^ mvalues(i,1)); 
    creep210(i,1) = Dvalues(i,2) * (2 ^ mvalues(i,2)); 
    creep20(i,1)  = Dvalues(i,3) * (2 ^ mvalues(i,3)); 
    % Loading time = 5 
    creep520(i,1) = Dvalues(i,1) * (5 ^ mvalues(i,1)); 
    creep510(i,1) = Dvalues(i,2) * (5 ^ mvalues(i,2)); 
    creep50(i,1)  = Dvalues(i,3) * (5 ^ mvalues(i,3)); 
    % Loadint time = 10 
    creep1020(i,1) = Dvalues(i,1) * (10 ^ mvalues(i,1)); 
    creep1010(i,1) = Dvalues(i,2) * (10 ^ mvalues(i,2)); 
    creep100(i,1)  = Dvalues(i,3) * (10 ^ mvalues(i,3)); 
    % Loading time = 20 
    creep2020(i,1) = Dvalues(i,1) * (20 ^ mvalues(i,1)); 
    creep2010(i,1) = Dvalues(i,2) * (20 ^ mvalues(i,2)); 
    creep200(i,1)  = Dvalues(i,3) * (20 ^ mvalues(i,3)); 
    % Loading time = 50 
    creep5020(i,1) = Dvalues(i,1) * (50 ^ mvalues(i,1)); 
    creep5010(i,1) = Dvalues(i,2) * (50 ^ mvalues(i,2)); 
    creep500(i,1)  = Dvalues(i,3) * (50 ^ mvalues(i,3)); 
    % Loading time = 100 
    creep10020(i,1) = Dvalues(i,1) * (100 ^ mvalues(i,1)); 
    creep10010(i,1) = Dvalues(i,2) * (100 ^ mvalues(i,2)); 
    creep1000(i,1)  = Dvalues(i,3) * (100 ^ mvalues(i,3)); 
end 
  
%Matrix of Creep Compliance Values 
CC = [creep120, creep110, creep10, creep220, creep210, creep20,... 
    creep520, creep510, creep50, creep1020, creep1010, creep100, 
creep2020,... 
    creep2010, creep200, creep5020, creep5010, creep500, creep10020,... 
    creep10010, creep1000]; 
  
%check compliance for first training point 
CC1 = [CC(1,1:3); CC(1,4:6); CC(1,7:9); CC(1,10:12); CC(1,13:15);... 
    CC(1,16:18); CC(1,19:21)]; 
%----------------------------------------------------------------------
---- 
%% Save Results 
%----------------------------------------------------------------------
---- 
gpInputs = [GPInputs, St, CC]; 
save('RobustGPInputsFullSpokane.mat', 'gpInputs'); 
clear all; clc; fclose ('all'); 
tin = tic; 
GPInputs = importdata('RobustGPInputsFull.mat'); 
  
%define number of output files to be generated 
numOF = 999; 
  
for i = 100:numOF %***adjust loop***adjust outputname zeros in strcount 
    i 
    %open base file 
    fin = fopen('RGPBaseModel.xml', 'r'); 
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    %create file to write to 
    %---------*******************************************--------------
---- 
    strcount = num2str(i); 
    strcount = strcat('0', strcount); 
    %---------*******************************************--------------
---- 
    outputname = 'C:\Users\Jenny\Documents\Retherford-
Vanderbilt\Fall2011\RobustSurrogateModel\Matlab\RGPTrainingPoints\RGP'; 
    outputname = strcat(outputname, strcount, '.xml'); 
  
    fout = fopen(outputname, 'w'); 
  
    %define counter to see position in execution 
    position = ftell(fin) + 1; 
    %------------------------------------------------------------------
---- 
    %% Initial Lines 
    %------------------------------------------------------------------
---- 
    for position = 1:216566 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    for position = 216567 
        GPIval = strcat('RGP', strcount); 
        fline = fgetl(fin); 
        tline = strcat('    <displayName>',GPIval, '</displayName>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    for position = 216568:216752 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    %% Asphalt 
    %------------------------------------------------------------------
---- 
     
    % 24 thickness 1 
    for position =216753 
        GPIval = num2str(GPInputs(i,24)); 
        fline = fgetl(fin); 
        tline = strcat('        <thickness>',GPIval, '</thickness>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 216754:216803 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
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        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    % 31 pass #200 2 
    for position = 216804  
        GPIval = num2str(GPInputs(i,31)); 
        fline = fgetl(fin); 
        tline = strcat('          <p200>',GPIval, '</p200>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
     
    % Agg. Gradation 
    % 28 pass 3/4" 3 
    for position = 216805 
        GPIval = num2str(GPInputs(i,28)); 
        fline = fgetl(fin); 
        tline = strcat('          <p3_4>',GPIval, '</p3_4>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    % 29 pass 3/8" 4 
    for position = 216806 
        GPIval = num2str(GPInputs(i,29)); 
        fline = fgetl(fin); 
        tline = strcat('          <p3_8>',GPIval, '</p3_8>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    % 30 pass #4 5 
    for position = 216807 
        GPIval = num2str(GPInputs(i,30)); 
        fline = fgetl(fin); 
        tline = strcat('          <p4>',GPIval, '</p4>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 216808:216824 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    % 26 AV 6 
    for position = 216825 
        GPIval = num2str(GPInputs(i,26)); 
        fline = fgetl(fin); 
        tline = strcat('          <airVoids>',GPIval, '</airVoids>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
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    % 27 Unit Wt. 7 
    for position = 216826 
        GPIval = num2str(GPInputs(i,27)); 
        fline = fgetl(fin); 
        tline = strcat('          <totalWeight>',GPIval, 
'</totalWeight>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
     
    % 32 Thermal Cond. 8 
    for position = 216827 
        GPIval = num2str(GPInputs(i,32)); 
        fline = fgetl(fin); 
        tline = strcat('          <thermalConductivity>',GPIval, 
'</thermalConductivity>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
     
    % 33 Heat Cap. 9 
    for position = 216828 
        GPIval = num2str(GPInputs(i,33)); 
        fline = fgetl(fin); 
        tline = strcat('          <heatCapacity>',GPIval, 
'</heatCapacity>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
     
    % 25 EBC 10 
    for position = 216829 
        GPIval = num2str(GPInputs(i,25)); 
        fline = fgetl(fin); 
        tline = strcat('          <binderContent>',GPIval, 
'</binderContent>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 216830:217003 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    % Superpave Binder Info (Gstar, delta, @ T's) 11:24 
    % T = 40 
    for position = 217004 
        GPIval = num2str(GPInputs(i,34)); 
        fline = fgetl(fin); 
        tline = strcat('              <gStar>',GPIval, '</gStar>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
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    end 
    % T = 40 
    for position = 217005 
        GPIval = num2str(GPInputs(i,41)); 
        fline = fgetl(fin); 
        tline = strcat('              <delta>',GPIval, '</delta>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217006:217008 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    % T = 55 
    for position = 217009 
        GPIval = num2str(GPInputs(i,35)); 
        fline = fgetl(fin); 
        tline = strcat('              <gStar>',GPIval, '</gStar>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    % T = 55 
    for position = 217010 
        GPIval = num2str(GPInputs(i,42)); 
        fline = fgetl(fin); 
        tline = strcat('              <delta>',GPIval, '</delta>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217011:217013 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    %T = 70  
    for position = 217014 
        GPIval = num2str(GPInputs(i,36)); 
        fline = fgetl(fin); 
        tline = strcat('              <gStar>',GPIval, '</gStar>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %T = 70 
    for position = 217015 
        GPIval = num2str(GPInputs(i,43)); 
        fline = fgetl(fin); 
        tline = strcat('              <delta>',GPIval, '</delta>'); 
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        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217016:217018 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    %  T = 85  
    for position = 217019 
        GPIval = num2str(GPInputs(i,37)); 
        fline = fgetl(fin); 
        tline = strcat('              <gStar>',GPIval, '</gStar>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %  T = 85  
    for position = 217020 
        GPIval = num2str(GPInputs(i,44)); 
        fline = fgetl(fin); 
        tline = strcat('              <delta>',GPIval, '</delta>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217021:217023 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    %T = 100  
    for position = 217024 
        GPIval = num2str(GPInputs(i,38)); 
        fline = fgetl(fin); 
        tline = strcat('              <gStar>',GPIval, '</gStar>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %T = 100 
    for position = 217025 
        GPIval = num2str(GPInputs(i,45)); 
        fline = fgetl(fin); 
        tline = strcat('              <delta>',GPIval, '</delta>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217026:217028 
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        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    %  T = 115  
    for position = 217029 
        GPIval = num2str(GPInputs(i,39)); 
        fline = fgetl(fin); 
        tline = strcat('              <gStar>',GPIval, '</gStar>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %  T = 115 
    for position = 217030 
        GPIval = num2str(GPInputs(i,46)); 
        fline = fgetl(fin); 
        tline = strcat('              <delta>',GPIval, '</delta>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217031:217033 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    %  T = 130 
    for position = 217034 
        GPIval = num2str(GPInputs(i,40)); 
        fline = fgetl(fin); 
        tline = strcat('              <gStar>',GPIval, '</gStar>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %  T = 130 
    for position = 217035 
        GPIval = num2str(GPInputs(i,47)); 
        fline = fgetl(fin); 
        tline = strcat('              <delta>',GPIval, '</delta>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    %------------------------------------------------------------------
---- 
    for position = 217036:217039 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
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    %------------------------------------------------------------------
---- 
    %55 Indirect Ave. Tensile Strength 25 
    for position = 217040 
        GPIval = num2str(GPInputs(i,55)); 
        fline = fgetl(fin); 
        tline = strcat('            <tensileStrength>',GPIval, 
'</tensileStrength>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
     
    %------------------------------------------------------------------
---- 
    for position = 217041:217051 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    %56: 76 CreepCompliance 26:46 
    for position = 217052 
        GPIval = num2str(GPInputs(i,56)); 
        fline = fgetl(fin); 
        tline = strcat('              <creepCompliance>',GPIval, 
'</creepCompliance>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217053:217056 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217057 
        GPIval = num2str(GPInputs(i,57)); 
        fline = fgetl(fin); 
        tline = strcat('              <creepCompliance>',GPIval, 
'</creepCompliance>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217058:217061 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
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    for position = 217062 
        GPIval = num2str(GPInputs(i,58)); 
        fline = fgetl(fin); 
        tline = strcat('              <creepCompliance>',GPIval, 
'</creepCompliance>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217063:217066 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217067 
        GPIval = num2str(GPInputs(i,59)); 
        fline = fgetl(fin); 
        tline = strcat('              <creepCompliance>',GPIval, 
'</creepCompliance>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217068:217071 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217072 
        GPIval = num2str(GPInputs(i,60)); 
        fline = fgetl(fin); 
        tline = strcat('              <creepCompliance>',GPIval, 
'</creepCompliance>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217073:217076 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217077 
        GPIval = num2str(GPInputs(i,61)); 
        fline = fgetl(fin); 
        tline = strcat('              <creepCompliance>',GPIval, 
'</creepCompliance>'); 
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        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217078:217081 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217082 
        GPIval = num2str(GPInputs(i,62)); 
        fline = fgetl(fin); 
        tline = strcat('              <creepCompliance>',GPIval, 
'</creepCompliance>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217083:217086 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217087 
        GPIval = num2str(GPInputs(i,63)); 
        fline = fgetl(fin); 
        tline = strcat('              <creepCompliance>',GPIval, 
'</creepCompliance>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217088:217091 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217092 
        GPIval = num2str(GPInputs(i,64)); 
        fline = fgetl(fin); 
        tline = strcat('              <creepCompliance>',GPIval, 
'</creepCompliance>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
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    for position = 217093:217096 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217097 
        GPIval = num2str(GPInputs(i,65)); 
        fline = fgetl(fin); 
        tline = strcat('              <creepCompliance>',GPIval, 
'</creepCompliance>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217098:217101 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217102 
        GPIval = num2str(GPInputs(i,66)); 
        fline = fgetl(fin); 
        tline = strcat('              <creepCompliance>',GPIval, 
'</creepCompliance>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217103:217106 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217107 
        GPIval = num2str(GPInputs(i,67)); 
        fline = fgetl(fin); 
        tline = strcat('              <creepCompliance>',GPIval, 
'</creepCompliance>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217108:217111 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
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    %------------------------------------------------------------------
---- 
    for position = 217112 
        GPIval = num2str(GPInputs(i,68)); 
        fline = fgetl(fin); 
        tline = strcat('              <creepCompliance>',GPIval, 
'</creepCompliance>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217113:217116 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217117 
        GPIval = num2str(GPInputs(i,69)); 
        fline = fgetl(fin); 
        tline = strcat('              <creepCompliance>',GPIval, 
'</creepCompliance>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217118:217121 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217122 
        GPIval = num2str(GPInputs(i,70)); 
        fline = fgetl(fin); 
        tline = strcat('              <creepCompliance>',GPIval, 
'</creepCompliance>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217123:217126 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217127 
        GPIval = num2str(GPInputs(i,71)); 
        fline = fgetl(fin); 
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        tline = strcat('              <creepCompliance>',GPIval, 
'</creepCompliance>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217128:217131 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217132 
        GPIval = num2str(GPInputs(i,72)); 
        fline = fgetl(fin); 
        tline = strcat('              <creepCompliance>',GPIval, 
'</creepCompliance>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217133:217136 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217137 
        GPIval = num2str(GPInputs(i,73)); 
        fline = fgetl(fin); 
        tline = strcat('              <creepCompliance>',GPIval, 
'</creepCompliance>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217138:217141 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217142 
        GPIval = num2str(GPInputs(i,74)); 
        fline = fgetl(fin); 
        tline = strcat('              <creepCompliance>',GPIval, 
'</creepCompliance>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
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    %------------------------------------------------------------------
---- 
    for position = 217143:217146 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217147 
        GPIval = num2str(GPInputs(i,75)); 
        fline = fgetl(fin); 
        tline = strcat('              <creepCompliance>',GPIval, 
'</creepCompliance>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217148:217151 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217152 
        GPIval = num2str(GPInputs(i,76)); 
        fline = fgetl(fin); 
        tline = strcat('              <creepCompliance>',GPIval, 
'</creepCompliance>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217153:217158 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
     
    %------------------------------------------------------------------
---- 
    %% Granular Base 
    %------------------------------------------------------------------
---- 
    %  48 Thickness 47 
    for position = 217159 
        GPIval = num2str(GPInputs(i,48)); 
        fline = fgetl(fin); 
        tline = strcat('        <thickness>',GPIval, '</thickness>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
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    end 
    %------------------------------------------------------------------
---- 
    for position = 217160:217199 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    %  50 Poisson 48 
    for position = 217200 
        GPIval = num2str(GPInputs(i,50)); 
        fline = fgetl(fin); 
        tline = strcat('          <poisson>',GPIval, '</poisson>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
     
    %  51 Coeff. Lat. 49 
    for position = 217201 
        GPIval = num2str(GPInputs(i,51)); 
        fline = fgetl(fin); 
        tline = strcat('          <k0>',GPIval, '</k0>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217202:217275 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    %  49 Modulus 50 
    for position = 217276 
        GPIval = num2str(GPInputs(i,49)); 
        fline = fgetl(fin); 
        tline = strcat('              <unbValue>',GPIval, 
'</unbValue>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217277:217470 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
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    %------------------------------------------------------------------
---- 
    %% Sub-Base 
    %------------------------------------------------------------------
---- 
     
    %  53 Poisson 51 
    for position = 217471 
        GPIval = num2str(GPInputs(i,53)); 
        fline = fgetl(fin); 
        tline = strcat('          <poisson>',GPIval, '</poisson>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
     
    %  54  Coeff. Lat. 52 
    for position = 217472 
        GPIval = num2str(GPInputs(i,54)); 
        fline = fgetl(fin); 
        tline = strcat('          <k0>',GPIval, '</k0>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217473:217546 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
        %  52 Modulus 53 
    for position = 217547 
        GPIval = num2str(GPInputs(i,52)); 
        fline = fgetl(fin); 
        tline = strcat('              <unbValue>',GPIval, 
'</unbValue>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 217548:218121 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
     
    %------------------------------------------------------------------
---- 
    %% TRAFFIC 
    %------------------------------------------------------------------
---- 
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    % 1:aadt 54 
    for position = 218122 
        GPIval = num2str(GPInputs(i,1)); 
        fline = fgetl(fin); 
        tline = strcat('    <aadt>', GPIval, '</aadt>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218123:218124 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
  
    % 2 lane distribution 55 
    for position = 218125 
        GPIval = num2str(GPInputs(i,2)); 
        fline = fgetl(fin); 
        tline = strcat('    <percentTrucksDesignLane>', GPIval, 
'</percentTrucksDesignLane>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
  
    % 3 operating speed 56 
    for position = 218126 
        GPIval = num2str(GPInputs(i,3)); 
        fline = fgetl(fin); 
        tline = strcat('    <trafficSpeed>',GPIval, '</trafficSpeed>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218127 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    % 15 mean wheel 57 
    for position = 218128 
        GPIval = num2str(GPInputs(i,15)); 
        fline = fgetl(fin); 
        tline = strcat('    <meanWheelLocation>', GPIval, 
'</meanWheelLocation>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
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    % 16 wander st dev 58 
    for position = 218129 
        GPIval = num2str(GPInputs(i,16)); 
        fline = fgetl(fin); 
        tline = strcat('    <trafficWander>', GPIval, 
'</trafficWander>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
  
    % 17 lane width 59 
    for position = 218130 
        GPIval = num2str(GPInputs(i,17)); 
        fline = fgetl(fin); 
        tline = strcat('    <laneWidth>',GPIval, '</laneWidth>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218131:218132 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    % 14 traffic growth 60 
    for position = 218133 
        GPIval = num2str(GPInputs(i,14)); 
        fline = fgetl(fin); 
        tline = strcat('    
<allClassGrowthrate>',GPIval,'</allClassGrowthrate>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218134:218137 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    % 18 axle sp. - tandem 61 
    for position = 218138 
        GPIval = num2str(GPInputs(i,18)); 
        fline = fgetl(fin); 
        tline = strcat('    <dualAxleSpacing>',GPIval, 
'</dualAxleSpacing>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
  
    % 19 axle sp. - tridem 62 
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    for position = 218139 
        GPIval = num2str(GPInputs(i,19)); 
        fline = fgetl(fin); 
        tline = strcat('    <tripleAxleSpacing>',GPIval, 
'</tripleAxleSpacing>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
  
    % 20 axle sp. - quad. 63 
    for position = 218140 
        GPIval = num2str(GPInputs(i,20)); 
        fline = fgetl(fin); 
        tline = strcat('    <quadAxleSpacing>',GPIval, 
'</quadAxleSpacing>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
  
    % 21 ave. axle sp. - short 64 
    for position = 218141 
        GPIval = num2str(GPInputs(i,21)); 
        fline = fgetl(fin); 
        tline = strcat('    <shortAxleSpacing>',GPIval, 
'</shortAxleSpacing>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
  
    % 22 ave. axle sp. - med 65 
    for position = 218142 
        GPIval = num2str(GPInputs(i,22)); 
        fline = fgetl(fin); 
        tline = strcat('    <mediumAxleSpacing>',GPIval, 
'</mediumAxleSpacing>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
  
    % 23 ave. axle sp. - long 66 
    for position = 218143 
        GPIval = num2str(GPInputs(i,23)); 
        fline = fgetl(fin); 
        tline = strcat('    <longAxleSpacing>',GPIval, 
'</longAxleSpacing>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218144:218182 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
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    %------------------------------------------------------------------
---- 
  
    % 4:13 distribution of vehicle classes 67:76 
    for position = 218183 
        GPIval = num2str(GPInputs(i,4)); 
        fline = fgetl(fin); 
        tline = strcat('          <percentTrucksPerClass>', GPIval, 
'</percentTrucksPerClass>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218184:218186 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218187  
        GPIval = num2str(GPInputs(i,5)); 
        fline = fgetl(fin); 
        tline = strcat('          <percentTrucksPerClass>', GPIval, 
'</percentTrucksPerClass>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218188:218190 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218191 
        GPIval = num2str(GPInputs(i,6)); 
        fline = fgetl(fin); 
        tline = strcat('          <percentTrucksPerClass>', GPIval, 
'</percentTrucksPerClass>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218192:218194 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218195 
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        GPIval = num2str(GPInputs(i,7)); 
        fline = fgetl(fin); 
        tline = strcat('          <percentTrucksPerClass>', GPIval, 
'</percentTrucksPerClass>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218196:218198 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218199 
        GPIval = num2str(GPInputs(i,8)); 
        fline = fgetl(fin); 
        tline = strcat('          <percentTrucksPerClass>', GPIval, 
'</percentTrucksPerClass>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218200:218202 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218203 
        GPIval = num2str(GPInputs(i,9)); 
        fline = fgetl(fin); 
        tline = strcat('          <percentTrucksPerClass>', GPIval, 
'</percentTrucksPerClass>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218204:218206 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218207 
        GPIval = num2str(GPInputs(i,10)); 
        fline = fgetl(fin); 
        tline = strcat('          <percentTrucksPerClass>', GPIval, 
'</percentTrucksPerClass>'); 
        fprintf(fout, '%s\n', tline); 
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        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218208:218210 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218211 
        GPIval = num2str(GPInputs(i,11)); 
        fline = fgetl(fin); 
        tline = strcat('          <percentTrucksPerClass>', GPIval, 
'</percentTrucksPerClass>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218212:218214 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218215 
        GPIval = num2str(GPInputs(i,12)); 
        fline = fgetl(fin); 
        tline = strcat('          <percentTrucksPerClass>', GPIval, 
'</percentTrucksPerClass>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218216:218218 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218219 
        GPIval = num2str(GPInputs(i,13)); 
        fline = fgetl(fin); 
        tline = strcat('          <percentTrucksPerClass>', GPIval, 
'</percentTrucksPerClass>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218220:218388 
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        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
  
    for position = 218389 %77:86 
        GPIval = num2str(GPInputs(i,14)); 
        fline = fgetl(fin); 
        tline = strcat('    
<percentGrowthRate>',GPIval,'</percentGrowthRate>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218390:218393 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218394 
        GPIval = num2str(GPInputs(i,14)); 
        fline = fgetl(fin); 
        tline = strcat('    
<percentGrowthRate>',GPIval,'</percentGrowthRate>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218395:218398 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218399 
        GPIval = num2str(GPInputs(i,14)); 
        fline = fgetl(fin); 
        tline = strcat('    
<percentGrowthRate>',GPIval,'</percentGrowthRate>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218400:218403 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
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    %------------------------------------------------------------------
---- 
    for position = 218404 
        GPIval = num2str(GPInputs(i,14)); 
        fline = fgetl(fin); 
        tline = strcat('    
<percentGrowthRate>',GPIval,'</percentGrowthRate>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218405:218408 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218409 
        GPIval = num2str(GPInputs(i,14)); 
        fline = fgetl(fin); 
        tline = strcat('    
<percentGrowthRate>',GPIval,'</percentGrowthRate>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218410:218413 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218414 
        GPIval = num2str(GPInputs(i,14)); 
        fline = fgetl(fin); 
        tline = strcat('    
<percentGrowthRate>',GPIval,'</percentGrowthRate>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218415:218418 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218419 
        GPIval = num2str(GPInputs(i,14)); 
        fline = fgetl(fin); 
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        tline = strcat('    
<percentGrowthRate>',GPIval,'</percentGrowthRate>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218420:218423 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218424 
        GPIval = num2str(GPInputs(i,14)); 
        fline = fgetl(fin); 
        tline = strcat('    
<percentGrowthRate>',GPIval,'</percentGrowthRate>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218425:218428 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218429 
        GPIval = num2str(GPInputs(i,14)); 
        fline = fgetl(fin); 
        tline = strcat('    
<percentGrowthRate>',GPIval,'</percentGrowthRate>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218430:218433 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    %------------------------------------------------------------------
---- 
    for position = 218434 
        GPIval = num2str(GPInputs(i,14)); 
        fline = fgetl(fin); 
        tline = strcat('    
<percentGrowthRate>',GPIval,'</percentGrowthRate>'); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
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    %------------------------------------------------------------------
---- 
    %% Remainder of inputs 
    %------------------------------------------------------------------
---- 
    for position = 218435:219317 
        tline = fgetl(fin); 
        fprintf(fout, '%s\n', tline); 
        position = position + 1; 
    end 
    fclose('all'); 
end 
tout = toc(tin); 
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APPENDIX B: Matlab Numerical Computation Sample Codes 
 

Sample Matlab codes demonstrating the computational work presented in this dissertation 
are included herein. 

 

Chapter III 

Calculation of Validation Metrics 

clear all; clc; 
RegressionResults = importdata('C:\Users\Jenny\Documents\Retherford-
Vanderbilt\Fall2010\WesTrack\EXCELwestrack\TRB91FinalModels.xlsx'); 
  
  
%----------------------------------------------------------------------
---- 
%%   Westrack Results 
%----------------------------------------------------------------------
---- 
%Build Matrix of Westrack Measurements 
WestrackResultsAll = RegressionResults.data.Westrack; 
%Remove columns from Westrack that do not have Shear parameter results 
WestrackResults = RegressionResults.data.Westrack; 
WestrackResults(:,[2:3,5:6,8,10,16,17,26]) = []; 
%Modify matrix to single column vector for validation analyses 
WestrackResults = tocol(WestrackResults); 
  
  
%----------------------------------------------------------------------
---- 
%%  National Model 
%----------------------------------------------------------------------
---- 
National = RegressionResults.data.National; 
National = National(1:12,1:26); 
National(:,[2:3,5:6,8,10,16,17,26]) = []; 
National = tocol(National); 
  
  
%----------------------------------------------------------------------
---- 
%%  NCHRP Model 
%----------------------------------------------------------------------
---- 
NCHRP = RegressionResults.data.NCHRPRegEqn; 
NCHRP = NCHRP(1:12,1:26); 
NCHRP(:,[2:3,5:6,8,10,16,17,26]) = []; 
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NCHRP = tocol(NCHRP); 
  
  
%----------------------------------------------------------------------
---- 
%%  Locally Calibrated    (Optimal where Betas = [2.875, 1, 1])   
%----------------------------------------------------------------------
---- 
LocallyCalibrated = RegressionResults.data.LocalAll; 
LocallyCalibrated = LocallyCalibrated(1:12,1:26); 
LocallyCalibrated(:,[2:3,5:6,8,10,16,17,26]) = []; 
LocallyCalibrated = tocol(LocallyCalibrated); 
  
  
%----------------------------------------------------------------------
---- 
%%  Parameter Calibrated    (Linear Regression from Locally Calibrated) 
%----------------------------------------------------------------------
---- 
ParamCalibrated = RegressionResults.data.LocalRegBased; 
ParamCalibrated = ParamCalibrated(1:12,1:26); 
ParamCalibrated(:,[2:3,5:6,8,10,16,17,26]) = []; 
ParamCalibrated = tocol(ParamCalibrated); 
  
%----------------------------------------------------------------------
---- 
%%  WeightedON    (Weighted NCHRP with Locally Calibrated) 
%----------------------------------------------------------------------
---- 
WeightedON = RegressionResults.data.WeightedON; 
WeightedON = WeightedON(1:12,1:26); 
WeightedON(:,[2:3,5:6,8,10,16,17,26]) = []; 
WeightedON = tocol(WeightedON); 
  
%----------------------------------------------------------------------
---- 
%%  WeightedRN    (Weighted NCHRP with Parameter Calibrated) 
%----------------------------------------------------------------------
---- 
WeightedRN = RegressionResults.data.WeightedRN; 
WeightedRN = WeightedRN(1:12,1:26); 
WeightedRN(:,[2:3,5:6,8,10,16,17,26]) = []; 
WeightedRN = tocol(WeightedRN); 
  
  
%----------------------------------------------------------------------
---- 
%%  Mean Square Error 
%----------------------------------------------------------------------
---- 
for i = 1:size(WestrackResults,1) 
    ErrorNat(i,1) = WestrackResults(i,1) - National(i,1); 
    ErrorLoc(i,1) = WestrackResults(i,1) - LocallyCalibrated(i,1); 
    ErrorParam(i,1) = WestrackResults(i,1) - ParamCalibrated(i,1); 
    ErrorNCHRP(i,1) = WestrackResults(i,1) - NCHRP(i,1); 
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    ErrorWON(i,1) = WestrackResults(i,1) - WeightedON(i,1); 
    ErrorWRN(i,1) = WestrackResults(i,1) - WeightedRN(i,1); 
end 
ModelError = ... 
    [ErrorNat, ErrorLoc, ErrorParam, ErrorNCHRP, ErrorWON, ErrorWRN]; 
  
  
%----------------------------------------------------------------------
---- 
%Scatter plot to show residuals 
  
figure 
xplot = (1:1:204); 
scatter(xplot, abs(ErrorNat),'.r'); 
ylabel('Abs. Value of Residuals (in.)'); 
xlabel('Test Sections'); 
title('National Model Residuals'); 
  
figure 
hold on 
scatter(xplot, abs(ErrorNat),'.r'); 
scatter(xplot, abs(LocallyCalibrated),'.g'); 
legend('National','Local'); 
ylabel('Abs. Value of Residuals (in.)'); 
xlabel('Test Sections'); 
title('National and Local Model Residuals'); 
hold off 
  
figure 
hold on 
scatter(xplot, abs(ErrorNat),'.r'); 
scatter(xplot, abs(LocallyCalibrated),'.g'); 
scatter(xplot, abs(ErrorWRN),'.b'); 
legend('National','Local','WeightedParam'); 
ylabel('Abs. Value of Residuals (in.)'); 
xlabel('Test Sections'); 
title('National, Local, and Parameter Weighted Residuals'); 
hold off 
% figure 
% hold on 
% scatter(WestrackResults, National, '.'); 
% scatter(WestrackResults, LocallyCalibrated,'.'); 
% scatter(WestrackResults, ParamCalibrated, '.'); 
% scatter(WestrackResults, NCHRP, '.'); 
% scatter(WestrackResults, WeightedON, '.'); 
% scatter(WestrackResults, WeightedRN, '.'); 
% 
legend('National','Local','Parameter','NCHRP','WeightedLocal','Weighted
Param'); 
% hold off 
  
for i = 1:size(WestrackResults,1) 
    SqErNat(i,1) = (ErrorNat(i,1))^2; 
    SqErLoc(i,1) = (ErrorLoc(i,1))^2; 
    SqErParam(i,1) = (ErrorParam(i,1))^2; 
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    SqErNCHRP(i,1) = (ErrorNCHRP(i,1))^2; 
    SqErWON(i,1) = (ErrorWON(i,1))^2; 
    SqErWRN(i,1) = (ErrorWRN(i,1))^2; 
end 
  
MSENat      =   mean(SqErNat,1); 
MSELoc      =   mean(SqErLoc,1); 
MSEParam    =   mean(SqErParam,1); 
MSENCHRP    =   mean(SqErNCHRP,1); 
MSEWON      =   mean(SqErWON,1); 
MSEWRN      =   mean(SqErWRN,1); 
  
MSE = [MSENat; MSELoc; MSEParam; MSENCHRP; MSEWON; MSEWRN]; 
  
MSENatStd      =   std(SqErNat,1); 
MSELocStd      =   std(SqErLoc,1); 
MSEParamStd    =   std(SqErParam,1); 
MSENCHRPStd    =   std(SqErNCHRP,1); 
MSEWONStd      =   std(SqErWON,1); 
MSEWRNStd      =   std(SqErWRN,1); 
MSEstd = [MSENatStd; MSELocStd; MSEParamStd; MSENCHRPStd; MSEWONStd; 
MSEWRNStd]; 
  
clear f xi 
%mean  = E(Residuals) 
%stdev = Std(Residuals) 
for i = 1:size(ModelError,2) 
%     [f(:,i), xi(:,i)] = ksdensity(ModelError(:,i)); 
xi(:,i) = (-1:0.01:1); 
f(:,i) = normpdf(xi(:,i), mean(ModelError(:,i)), std(ModelError(:,i))); 
end 
  
for i = 1:size(ModelError,2) 
    figure 
    plot(xi(:,i), f(:,i)); 
end 
  
%----------------------------------------------------------------------
---- 
%PDF plot to show residuals: Figure III.2 
figure  
hold on 
for i = 1:size(ModelError,2) 
    if i == 1 
        Line = 'r'; 
    elseif i == 2 
        Line = 'g'; 
    elseif i == 3 
        Line = 'b'; 
    elseif i == 4 
        Line = 'c'; 
    elseif i == 5 
        Line = 'm'; 
    else Line = 'k'; 
    end 
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    plot(xi(:,i),f(:,i), Line); 
  
    if i == size(MSE,1) 
        clear xlabel ylabel 
        xlabel('Residuals'); 
        ylabel('PDF(Residuals)'); 
        legend('National','Locally Calibrated','Parameter 
Calibrated','NCHRP (Shear Based)','Weighted: Local and 
NCHRP','Weighted: Parameter and NCHRP', 'Location', 
'SouthEastOutside'); 
    end 
end 
hold off 
  
  
  
%----------------------------------------------------------------------
---- 
%%  Coefficient of Determination (R^2) 
%----------------------------------------------------------------------
---- 
MeanWestrack = mean(WestrackResults,1); %This is ybar 
  
for i = 1:size(WestrackResults,1) 
    SSWestrack(i,1) = (WestrackResults(i,1) - MeanWestrack)^2;%These 
are yi 
end 
SStot = sum(SSWestrack); 
  
for i = 1:size(WestrackResults,1) 
    SSerrN(i,1) = (WestrackResults(i,1) - National(i,1))^2; 
    SSerrL(i,1) = (WestrackResults(i,1) - LocallyCalibrated(i,1))^2; 
    SSerrP(i,1) = (WestrackResults(i,1) - ParamCalibrated(i,1))^2; 
    SSerrNC(i,1) = (WestrackResults(i,1) - NCHRP(i,1))^2; 
    SSerrWO(i,1) = (WestrackResults(i,1) - WeightedON(i,1))^2; 
    SSerrWR(i,1) = (WestrackResults(i,1) - WeightedRN(i,1))^2; 
end 
SSerrNat = sum(SSerrN,1); 
SSerrLoc = sum(SSerrL,1); 
SSerrParam = sum(SSerrP,1); 
SSerrNCHRP = sum(SSerrNC,1); 
SSerrWON = sum(SSerrWO,1); 
SSerrWRN = sum(SSerrWR,1); 
  
RsqdNat = 1 - (SSerrNat / SStot); 
RsqdLoc = 1 - (SSerrLoc / SStot); 
RsqdParam = 1 - (SSerrParam / SStot); 
RsqdNCHRP = 1 - (SSerrNCHRP / SStot); 
RsqdWON = 1 - (SSerrWON / SStot); 
RsqdWRN = 1 - (SSerrWRN / SStot); 
  
Rsquared = [RsqdNat; RsqdLoc; RsqdParam; RsqdNCHRP; RsqdWON; RsqdWRN]; 
%----------------------------------------------------------------------
---- 
%% Adjusted R squared 
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Natregstats = regstats(WestrackResults, National, 'linear', 
{'rsquare','adjrsquare'}); 
Locregstats = regstats(WestrackResults, LocallyCalibrated, 'linear', 
{'rsquare','adjrsquare'}); 
Paramregstats = regstats(WestrackResults, ParamCalibrated, 'linear', 
{'rsquare','adjrsquare'}); 
NCHRPregstats = regstats(WestrackResults, NCHRP, 'linear', 
{'rsquare','adjrsquare'}); 
WONregstats = regstats(WestrackResults, WeightedON, 'linear', 
{'rsquare','adjrsquare'}); 
WRNregstats = regstats(WestrackResults, WeightedRN, 'linear', 
{'rsquare','adjrsquare'}); 
  
AdjRsquared = [Natregstats.adjrsquare; Locregstats.adjrsquare;... 
    Paramregstats.adjrsquare; NCHRPregstats.adjrsquare; ... 
    WONregstats.adjrsquare; WRNregstats.adjrsquare]; 
%----------------------------------------------------------------------
---- 
%%  Bayes Factor 
%----------------------------------------------------------------------
---- 
  
%Evaluate residuals for normal pdf with  
%mean = mean of the model error; stdev = stdev of the model error 
MeanNat = mean(ErrorNat,1); 
MeanLoc = mean(ErrorLoc,1); 
MeanParam = mean(ErrorParam,1); 
MeanNCHRP = mean(ErrorNCHRP,1); 
MeanWON = mean(ErrorWON,1); 
MeanWRN = mean(ErrorWRN,1); 
  
Means = [MeanNat, MeanLoc, MeanParam, MeanNCHRP, MeanWON, MeanWRN]; 
  
StDevNat = std(ErrorNat,1); 
StDevLoc = std(ErrorLoc,1); 
StDevParam = std(ErrorParam,1); 
StDevNCHRP = std(ErrorNCHRP,1); 
StDevWON = std(ErrorWON,1); 
StDevWRN = std(ErrorWRN,1); 
  
Stdevs = [StDevNat, StDevLoc, StDevParam, StDevNCHRP, StDevWON, 
StDevWRN]; 
  
for i = 1:size(ModelError,1) 
    for j = 1:size(ModelError,2) 
        EvalPDF(i,j) = normpdf(ModelError(i,j),Means(1,j),Stdevs(1,j)); 
    end 
end 
Products = prod(EvalPDF,1); 
  
%Calculate Bayes Factor all compared to National Model 
for i = 1:size(Products,2); 
    Bayes(i,1) = Products(1,i) / Products(1,1); 
end 
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%----------------------------------------------------------------------
---- 
%%  F-Test 
%----------------------------------------------------------------------
---- 
%Define Number of Model Parameters 
pNat = 3; 
pLoc = 3; 
pParam = 9; 
pNCHRP = 4; 
pWON = pNCHRP + pLoc; 
pWRN = pNCHRP + pParam; 
  
pAll = [pNat; pLoc; pParam; pNCHRP; pWON; pWRN]; 
  
nTestPoints = size(WestrackResults,1); 
  
%Create vector of Sum Sqd Residuals for use in F-test 
Rss = [SSerrNat; SSerrLoc; SSerrParam; SSerrNCHRP; SSerrWON; SSerrWRN]; 
  
%Calculate F-Test with respect to Local Model 
for i = 1:size(pAll,1) 
    Ftest(i,1) = ((Rss(2,1) - Rss(i,1)) / (pAll(i,1) - pAll(2,1))) / 
... 
        (Rss(i,1) / (nTestPoints - pAll(i,1))); 
end 
  
%Find Critical F 
Falpha = 0.01; fP = 1 - Falpha; 
%Second and third terms for finv 
for i = 1:size(pAll,1) 
    v1(1,i) = pAll(i,1) - pAll(2,1); 
    v2(1,i) = nTestPoints - pAll(i,1); 
end 
  
for i = 1:size(pAll,1) 
    Fcrit(i,1) = finv(fP,v1(1,i), v2(1,i)); 
end 
  
  
%----------------------------------------------------------------------
---- 
%%  Validation Metrics Summary Matrix 
%----------------------------------------------------------------------
---- 
ValidationMatrix = [MSE, AdjRsquared, Bayes, Ftest, Fcrit]; 
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Chapter IV 

Evaluation for Adjusted R-Square Values for Variable Selection Method Comparisons 

clear all; clc; 
addpath('C:\Users\Jenny\Documents\Retherford-
Vanderbilt\Fall2011\RobustSurrogateModel\Matlab\accre\accreInput'); 
addpath('C:\Users\Jenny\Documents\Retherford-
Vanderbilt\Fall2011\RobustSurrogateModel\Matlab\accre\accreOutput'); 
  
% Import Training Points 
% pnts = inputs 
% vals = output from Darwin-ME 
%% 
=======================================================================
= 
%  Import Training Data 
%  
=======================================================================
= 
InitRGP = RGPinitializerOrig; 
RGP_vals = InitRGP{1,1}; 
RGP_pnts = InitRGP{1,2}; 
RGP_pntnames = InitRGP{1,3}; 
  
%Import Data: GPDiscrepency values for each selection process 
%Number of Models 
num_Models = 5; 
for MEPDGmodel = 1:num_Models 
    Modelnum = num2str(MEPDGmodel); 
    DiscNameA = strcat('RGPanovaAllmodel_', Modelnum, '.txt'); 
    NameAixs  = strcat('RGPanovaAllmodel_', Modelnum, 'ParamsIX.txt'); 
    DiscNameF = strcat('RGPforcorrAllmodel_', Modelnum, '.txt'); 
    NameFixs  = strcat('RGPforcorrAllmodel_', Modelnum, 
'ParamsIX.txt'); 
    DiscNameS = strcat('RGPslfAllmodel_', Modelnum, '.txt'); 
    NameSixs  = strcat('RGPslfAllmodel_', Modelnum, 'ParamsIX.txt'); 
  
    AnovaResults(:,:,MEPDGmodel)   = importdata(DiscNameA); 
    AnovaPmIXs(MEPDGmodel,:)     = importdata(NameAixs); 
     
    clear Forcorrholder; 
    Forcorrholder                  = importdata(DiscNameF); 
    ForcorrResults(:,:,MEPDGmodel) = Forcorrholder;  
    clear Forcorrholder; 
    Forcorrholder                  = importdata(NameFixs); 
    ForcorrPmIXs(MEPDGmodel,:)     = Forcorrholder(MEPDGmodel,:); 
     
    clear SLFholder; 
    SLFholder                    = importdata(DiscNameS); 
    SLFsResults(:,:,MEPDGmodel)  = SLFholder; 
    clear SLFholder; 
    SLFholder                    = importdata(NameSixs); 
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    SLFPmIXs(MEPDGmodel,:)       = SLFholder(MEPDGmodel,:); 
end 
  
%Report Parameter Names according to Rankings 
clear ForcorrResultsParams SLFResultsParams AnovaResultsParams 
for i = 1:size(ForcorrPmIXs,1) 
    for j = 1:size(ForcorrPmIXs,2) 
        AnovaResultsParams(i,j)   = RGP_pntnames(1, AnovaPmIXs(i,j)); 
        ForcorrResultsParams(i,j) = RGP_pntnames(1, ForcorrPmIXs(i,j)); 
        SLFResultsParams(i,j)     = RGP_pntnames(1, SLFPmIXs(i,j)); 
    end 
end 
%% 
=======================================================================
= 
%Choose Best Parameters for each model 
% close all; clear YpF; 
% Xp = (1:size(AnovaResults,1)); Xp(1) = []; 
% for MEPDGmodel = 1:num_Models 
%     YpF(:,MEPDGmodel) = diff(ForcorrResults(:,2,MEPDGmodel)); 
%     Opt_Nd(:,MEPDGmodel) = interp1(Xp, YpF(:,MEPDGmodel), 32); 
% end 
% Opt_Nd 
% zz(1:33.9,1) = 4; zz(34:52,1) = -16; 
% figure 
% plot([YpF, zz]) 
% title('Reduction in Ave % Error vs. Nd') 
  
%Plot Only Adj. Rsquared for All Modes 
Xn = (1:size(AnovaResults,1));  
figure 
for MEPDGmodel = 1:num_Models 
  
    subplot(2,3,MEPDGmodel)        
    plot(Xn, AnovaResults(:,5,MEPDGmodel), 'r', Xn, 
ForcorrResults(:,5,MEPDGmodel), 'b', Xn, SLFsResults(:,5,MEPDGmodel), 
'k'); 
    %[Discrepency Term, Ave %Error, Stdev %Error, Rsqd, Adj Rsqd]; 
  
    suptitle('Adjusted Rsqd vs Quantity of Training Point Parameters'); 
     
    if MEPDGmodel <= 1 
        title('Terminal IRI') 
     
        elseif MEPDGmodel <= 2 && MEPDGmodel > 1 
        title('Total Permanent Deformation') 
     
        elseif MEPDGmodel <= 3 && MEPDGmodel > 2 
        title('AC Bottom Up Cracking') 
     
        elseif MEPDGmodel <= 4 && MEPDGmodel > 3 
        title('AC Top Down Cracking') 
     
        elseif MEPDGmodel >= 5 
        title('AC Permanent Deformation') 
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        xlabel('Number of Training Point Parameters') 
        legend('Anova Process', 'Correlation Matrix', 'GP Scale Length 
Factors', 'Location', 'EastOutside'); 
    end 
end 
  
%locate point where AR2 > 0.9 
for MEPDGmodel = 1:num_Models 
    ARsANOVA(:,MEPDGmodel) = AnovaResults(:,5,MEPDGmodel); 
    ARsCorr(:,MEPDGmodel) = ForcorrResults(:,5,MEPDGmodel); 
    ARsSLFs(:,MEPDGmodel) = SLFsResults(:,5,MEPDGmodel); 
end 
for MEPDGmodel = 1:num_Models 
    for i = 1:max(Xn) 
        if ARsANOVA(i,MEPDGmodel) < 0.9 
            ARsANOVA(i,MEPDGmodel) = 0; 
        end 
        if ARsCorr(i,MEPDGmodel) < 0.9 
            ARsCorr(i,MEPDGmodel) = 0; 
        end 
        if ARsSLFs(i,MEPDGmodel) < 0.9 
            ARsSLFs(i,MEPDGmodel) = 0; 
        end 
    end 
end 
  
%Search only in Correlation Matrix Method 
BestQTPind = ones(1,num_Models); 
for MEPDGmodel = 1:num_Models 
    BestQTPind(1,MEPDGmodel) = find(ARsCorr(:,MEPDGmodel),1,'first') 
end 
clear BestQTP1corr BestQTP2corr BestQTP3corr BestQTP4corr BestQTP5corr 
BestQTP1corr = ForcorrResultsParams(1,(1:BestQTPind(1,1)))'; 
BestQTP2corr = ForcorrResultsParams(2,(1:BestQTPind(1,2)))'; 
BestQTP3corr = ForcorrResultsParams(3,(1:BestQTPind(1,3)))'; 
BestQTP4corr = ForcorrResultsParams(4,(1:BestQTPind(1,4)))'; 
BestQTP5corr = ForcorrResultsParams(5,(1:BestQTPind(1,5)))'; 
  
BestQTPcorrUnique = unique([BestQTP1corr; BestQTP2corr; BestQTP3corr; 
BestQTP4corr; BestQTP5corr]); 
  
for MEPDGmodel = 1:num_Models 
    figure 
        
    plot(Xn, AnovaResults(:,5,MEPDGmodel), 'r', Xn, 
ForcorrResults(:,5,MEPDGmodel), 'b', Xn, SLFsResults(:,5,MEPDGmodel), 
'k', [min(Xn), max(Xn)], [0.9, 0.9], '--'); 
    %[Discrepency Term, Ave %Error, Stdev %Error, Rsqd, Adj Rsqd]; 
    xlabel('Number of Training Point Parameters', 'FontSize', 
18,'FontName','Times New Roman') 
    ylabel('Adjusted R-squared', 'FontSize', 18,'FontName','Times New 
Roman') 
    legend('Anova Process', 'Correlation Matrix', 'GP Scale Length 
Factors', 'Location', 'SouthEast'); 
    if MEPDGmodel <= 1 
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        title('Terminal IRI', 'FontSize', 18,'FontName','Times New 
Roman') 
     
        elseif MEPDGmodel <= 2 && MEPDGmodel > 1 
        title('Total Permanent Deformation', 'FontSize', 
18,'FontName','Times New Roman') 
     
        elseif MEPDGmodel <= 3 && MEPDGmodel > 2 
        title('AC Bottom Up Cracking', 'FontSize', 18,'FontName','Times 
New Roman') 
     
        elseif MEPDGmodel <= 4 && MEPDGmodel > 3 
        title('AC Top Down Cracking', 'FontSize', 18,'FontName','Times 
New Roman') 
     
        elseif MEPDGmodel >= 5 
        title('AC Permanent Deformation', 'FontSize', 
18,'FontName','Times New Roman') 
    end 
end 
  
  
  
%% 
=======================================================================
= 
%Plot Results: Discrepency(SSR) 
for MEPDGmodel = 1:num_Models 
    figure 
for i = 1:size(AnovaResults,2) 
    Xn = (1:size(AnovaResults,1)); 
    subplot(2,3,i)        
    plot(Xn, AnovaResults(:,i,MEPDGmodel), 'red', Xn, 
ForcorrResults(:,i,MEPDGmodel), 'green', Xn, 
SLFsResults(:,i,MEPDGmodel), 'blue'); 
    %[Discrepency Term, Ave %Error, Stdev %Error, Rsqd, Adj Rsqd]; 
    if i == 1 
        title('SSR: Want Minimum'); 
    elseif i == 2 
        title('Ave. % Error: Want Minimum'); 
    elseif i == 3 
        title('% Error Std Dev: Want = 0'); 
    elseif i == 4 
        title('Ave Rsqd: Want = 1'); 
    else 
        title('Adjusted Rsqd: Want = 1'); 
        legend('Anova Process', 'Correlation Matrix', 'GP Scale Length 
Factors', 'Location', 'EastOutside'); 
    end 
     
    if MEPDGmodel <= 1 
        suptitle('Terminal IRI') 
     
        elseif MEPDGmodel <= 2 && MEPDGmodel > 1 
        suptitle('Total Permanent Deformation') 
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        elseif MEPDGmodel <= 3 && MEPDGmodel > 2 
        suptitle('AC Bottom Up Cracking') 
     
        elseif MEPDGmodel <= 4 && MEPDGmodel > 3 
        suptitle('AC Top Down Cracking') 
     
        elseif MEPDGmodel >= 5 
        suptitle('AC Permanent Deformation') 
    end 
end 
end 
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Chapter V 

Calculation of Uncertainty Distribution Parameters for MEPDG and GP Models 

Evaluation for Family of CDF Plots 

Calculation of Contribution to Overall Variance 

Evaluation for Contour Plots 

Reliability Analysis Calculation 

clear all; clc; close all; 
  
training_pointsCOMPLETE; 
r=size(train_pntsCOMPLETE); 
s=size(train_valsCOMPLETE); 
MEPDGPoints = train_valsCOMPLETE; 
  
%Run only some MEPDG models 
num_Models = 5; 
  
%Evaluate each training point as a potential test point to produce 
%"Optimal" GP model 
for num_point = 1:r(1) 
    num_point 
    num_test = 1; 
    num_train = r(1) - num_test; 
  
  
    %Define Training Point Matricies 
     
    %zscore returns "centered and scaled" version of the training 
points 
    %(inputs), as well as the mean and std. var. 
    [train_pntsFULL,train_mean,train_std]=zscore(train_pntsCOMPLETE); 
  
    train_pnts = removerows(train_pntsFULL,num_point); 
    train_vals = removerows(train_valsCOMPLETE,num_point); 
     
    %Normalize training values (outputs) 
    yoffset = mean(train_vals); 
    for i=1:size(train_vals,1) 
        for j=1:size(train_vals,2) 
            train_vals0(i,j) = train_vals(i,j) - yoffset(1,j); 
        end 
    end 
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    %Define Test Point Matricies 
    test_pnts = train_pntsFULL(num_point,:); 
    test_vals = train_valsCOMPLETE(num_point,:); 
     
    %Construct and Evaluate GP 
    for MEPDGmodel = 1:num_Models 
  
        %Train Model 
        nsams = size(train_pnts,1); 
        ndims = size(train_pnts,2); 
        theta0 = ones(1,ndims); lob = 0.01*ones(1,ndims); upb = 
10*ones(1,ndims); 
        [GPmodel(MEPDGmodel), GPModelInfo(MEPDGmodel)] = 
dacefit(train_pnts, train_vals0(:,MEPDGmodel), @regpoly1, @corrgauss, 
theta0, lob,upb); 
         
        %Evaluate GP model for GP Uncertainty Quantification 
        gptest(:,MEPDGmodel) = 
predictor(test_pnts,GPmodel(MEPDGmodel)); 
    end 
     
    for i=1:size(gptest,1) 
        for MEPDGmodel=1:num_Models 
            GPtest(i,MEPDGmodel) = gptest(i,MEPDGmodel) + 
yoffset(1,MEPDGmodel); 
        end 
    end 
         
    for i=1:size(gptest,1) 
        for MEPDGmodel = 1:num_Models 
            Residuals(num_point,MEPDGmodel) = (test_vals(i,MEPDGmodel)-
GPtest(i,MEPDGmodel)); 
            ResidualsSquared(num_point,MEPDGmodel) = 
Residuals(i,MEPDGmodel)^2; 
        end 
    end 
end 
  
  
clear train_pnts train_vals test_pnts test_vals 
clear yoffset train_vals0 
clear GPmodel GPModelInfo gptest GPtest 
  
%Utilize Residuals to determine "Best" GP; This method will not provide 
%the optimal GP, but is a quick solution to finding one of the best 
GP's. 
%A better GP is possible; however, for this application, we only 
require 
%that the GP introduce minimum uncertainty 
%Later, will verify that this GP contributes only a small amount of 
%uncertainty compared to MEPDG and Input Parameters 
  
%Sort Residuals 
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for j=1:num_Models 
    [ResSort(:,j),ResInd(:,j)] = sort(abs(Residuals(:,j)),'descend'); 
end 
  
%Construct GP utilizing Residuals information to choose test/train 
points 
for MEPDGmodel=1:num_Models 
    %Take bottom 10 (lowest residuals) as test points;  
    %The remainder will be used as training points 
    train_pnts = 
removerows(train_pntsFULL,[ResInd(161:170,MEPDGmodel)]); 
    train_vals = 
removerows(train_valsCOMPLETE,[ResInd(161:170,MEPDGmodel)]); 
  
    %Normalize training points 
    yoffset = mean(train_vals); 
    for i=1:size(train_vals,1) 
        for j=1:size(train_vals,2) 
            train_vals0(i,j) = train_vals(i,j) - yoffset(1,j); 
        end 
    end 
     
    %Define Test Point Matricies 
    test_pnts = removerows(train_pntsFULL,[ResInd(1:160,MEPDGmodel)]); 
    test_vals = 
removerows(train_valsCOMPLETE,[ResInd(1:160,MEPDGmodel)]); 
  
    %Construct and Evaluate GP 
  
    %Train Model 
    nsams = size(train_pnts,1); 
    ndims = size(train_pnts,2); 
    theta0 = ones(1,ndims); lob = 0.01*ones(1,ndims); upb = 
10*ones(1,ndims); 
    [GPmodel(MEPDGmodel), GPModelInfo(MEPDGmodel)] = 
dacefit(train_pnts, train_vals0(:,MEPDGmodel), @regpoly1, @corrgauss, 
theta0, lob,upb); 
  
    %Evaluate GP model for GP Verification Process 
    gptest(:,MEPDGmodel) = predictor(test_pnts,GPmodel(MEPDGmodel)); 
  
  
    for i=1:size(gptest,1) 
            GPtest(i,MEPDGmodel) = gptest(i,MEPDGmodel) + 
yoffset(1,MEPDGmodel); 
    end 
     
    %Calculate Residuals for "Best" GP trained w/160 points: 
Residuals160 
    %This will be used for Uncertainty Quantification 
    for i=1:size(gptest,1) 
            Residuals160(i,MEPDGmodel)=(test_vals(i,MEPDGmodel)-
GPtest(i,MEPDGmodel)); 
            
ResidualsSquared160(i,MEPDGmodel)=Residuals(i,MEPDGmodel)^2; 
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    end 
end 
  
%% Uncertainty Quantification: MEPDG and GP 
    %Calculate Uncertainty due to "Best" GP 
    mean_Res = mean(Residuals160); 
    std_Res = std(Residuals160); 
    var_Res = var(Residuals160); 
  
     
    %Threshold Limits 
    ThresholdLimits = [172 2000 25 0.25 0.75]; 
    %Calculate Uncertainty due to MEPDG 
    %Calculations involves MEPDG output and threshold values 
for MEPDGmodel = 1:num_Models 
    for i=1:size(train_valsCOMPLETE,1) 
        MS(i,MEPDGmodel) = ThresholdLimits(1,MEPDGmodel) - 
train_valsCOMPLETE(i,MEPDGmodel); 
        Z(i,MEPDGmodel) = norminv(1-
(PercentFailuresMEPDG(i,MEPDGmodel)/100)); 
    end 
  
    for i=1:size(train_valsCOMPLETE,1) 
        Sigma(i,MEPDGmodel) = MS(i,MEPDGmodel)/Z(i,MEPDGmodel); 
    end 
    %Umepdg = Standard Deviation of MEPDG Uncertianty 
    Umepdg(1,MEPDGmodel) = abs(mean(Sigma(:,MEPDGmodel))); 
end 
UncertaintyResults = [Umepdg',mean_Res',std_Res']; 
  
%% Family of CDF Plots 
%Evaluate GP for many points to incorporate input uncertainty 
     
%MCS: Generate sample input vectors 
N=10000; 
AADTx = random('norm',1500,150,N,1); 
HMAthickx = random('norm',8,0.78,N,1); 
GBthickx = random('norm',8,1.25,N,1); 
EBCx = random('norm',0.1,0.01,N,1); 
AVx = random('norm',0.085,0.0085,N,1); 
Esubgradex = random('norm',14500,1250,N,1); 
Kgbx = random('norm',40000,1750,N,1); 
Ax(1:N,1) = 10.7709; 
  
for i=1:N 
    
Xs(i,:)=[AADTx(i),HMAthickx(i),GBthickx(i),EBCx(i),AVx(i),Esubgradex(i)
,Kgbx(i),Ax(i)]; 
end 
  
for i=1:N 
    for j=1:size(Xs,2) 
        XsS(i,j)=((Xs(i,j)-train_mean(1,j)))./train_std(1,j); 
    end 
end 
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for MEPDGmodel = 1:num_Models 
    %Evaluate GP model for Uncertainty Analysis 
    gp_eval(:,MEPDGmodel) = predictor(XsS,GPmodel(MEPDGmodel)); 
end 
  
for i=1:N 
    for MEPDGmodel=1:num_Models 
        GPeval(i,MEPDGmodel) = gp_eval(i,MEPDGmodel) + 
yoffset(1,MEPDGmodel); 
    end 
end 
  
for MEPDGmodel=1:num_Models 
     
    %Input Parameter Only 
    [cdf_G1(:,MEPDGmodel),xi_G1(:,MEPDGmodel)] = 
ksdensity(GPeval(:,MEPDGmodel),'function','cdf'); 
    Reliability90G1(MEPDGmodel) = 
interp1q(cdf_G1(:,MEPDGmodel),xi_G1(:,MEPDGmodel),0.9); 
     
    %Input Parameters + MEPDG 
    for i=1:N 
        R(i,MEPDGmodel) = random('norm',0,Umepdg(1,MEPDGmodel)); 
        G2(i,MEPDGmodel) = GPeval(i,MEPDGmodel) + R(i,MEPDGmodel); 
    end 
    
[cdf_G2(:,MEPDGmodel),xi_G2(:,MEPDGmodel)]=ksdensity(G2(:,MEPDGmodel),'
function','cdf'); 
    
Reliability90G2(MEPDGmodel)=interp1q(cdf_G2(:,MEPDGmodel),xi_G2(:,MEPDG
model),0.9); 
     
    %Input Parameters + MEPDG + GP 
    for i=1:N 
        R2(i,MEPDGmodel) = 
random('norm',mean_Res(1,MEPDGmodel),std_Res(1,MEPDGmodel)); 
        G3(i,MEPDGmodel) = GPeval(i,MEPDGmodel) + R(i,MEPDGmodel) + 
R2(i,MEPDGmodel); 
    end 
    
[cdf_G3(:,MEPDGmodel),xi_G3(:,MEPDGmodel)]=ksdensity(G3(:,MEPDGmodel),'
function','cdf'); 
    
Reliability90G3(MEPDGmodel)=interp1q(cdf_G3(:,MEPDGmodel),xi_G3(:,MEPDG
model),0.9); 
  
    %Plot Means + MEPDG + GP 
    X_means = [1500 8   8   0.1 0.085   14500   40000   10.96142]; 
  
    for j=1:size(train_mean,2) 
        X_meansS(1,j)=(X_means(1,j)-train_mean(1,j))./train_std(1,j); 
    end 
  
    for j=MEPDGmodel 
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        gp_meansS(j) = predictor(X_meansS,GPmodel(j)); 
    end 
     
    GPmeansS(1,MEPDGmodel) = gp_meansS(1,MEPDGmodel) + 
yoffset(MEPDGmodel); 
  
    for i=1:N 
        G4(i,MEPDGmodel) = GPmeansS(1,MEPDGmodel) + R(i,MEPDGmodel); 
    end 
    
[cdf_G4(:,MEPDGmodel),xi_G4(:,MEPDGmodel)]=ksdensity(G4(:,MEPDGmodel),'
function','cdf'); 
    
Reliability90G4(MEPDGmodel)=interp1q(cdf_G4(:,MEPDGmodel),xi_G4(:,MEPDG
model),0.9); 
     
end 
%Plot CDFs 
for MEPDGmodel=1:num_Models 
    figure 
  
    clear MinX MaxX MinY MaxY 
    MinX(MEPDGmodel) = 
min(min(min(xi_G4(:,MEPDGmodel)),min(min(xi_G3(:,MEPDGmodel)),min(min(x
i_G2(:,MEPDGmodel)),min(xi_G1(:,MEPDGmodel))))),0); 
    MaxX(MEPDGmodel) = 
max(max(xi_G4(:,MEPDGmodel)),max(max(xi_G3(:,MEPDGmodel)),max(max(xi_G2
(:,MEPDGmodel)),max(xi_G1(:,MEPDGmodel))))); 
    MinY = 
min(min(min(cdf_G4(:,MEPDGmodel)),min(min(cdf_G3(:,MEPDGmodel)),min(min
(cdf_G2(:,MEPDGmodel)),min(cdf_G1(:,MEPDGmodel))))),0); 
    MaxY = 
max(max(cdf_G4(:,MEPDGmodel)),max(max(cdf_G3(:,MEPDGmodel)),max(max(cdf
_G2(:,MEPDGmodel)),max(cdf_G1(:,MEPDGmodel))))); 
  
    
plot(xi_G1(:,MEPDGmodel),cdf_G1(:,MEPDGmodel),'r',xi_G2(:,MEPDGmodel),c
df_G2(:,MEPDGmodel),'o--g',... 
        xi_G3(:,MEPDGmodel),cdf_G3(:,MEPDGmodel),'.-b', 
xi_G4(:,MEPDGmodel),cdf_G4(:,MEPDGmodel),'+-m',... 
        [MinX(MEPDGmodel) MaxX(MEPDGmodel)],[0.9 0.9],'--
k',[ThresholdLimits(MEPDGmodel) ThresholdLimits(MEPDGmodel)],[MinY 
MaxY],'--k',... 
        [Reliability90G1(MEPDGmodel) Reliability90G1(MEPDGmodel)],[MinY 
MaxY],':k',[Reliability90G4(MEPDGmodel) Reliability90G4(MEPDGmodel)], 
[MinY MaxY],':k'); 
    axis([MinX(MEPDGmodel) MaxX(MEPDGmodel) 0 1]) 
    set(gca,'FontSize', 14,'FontName','Times New Roman'); 
    ylabel('Reliability (F(Dt(x)))', 'FontSize', 18,'FontName','Times 
New Roman'); 
    xlabel('Distress Value (Dt(x))', 'FontSize', 18,'FontName','Times 
New Roman'); 
    legend('Input Variability','Input + MEPDG','Input + MEPDG + 
GP','Current MEPDG Method','Threshold Limits') 
        if MEPDGmodel <= 1 
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        title('Terminal IRI', 'FontSize', 18,'FontName','Times New 
Roman') 
     
    elseif MEPDGmodel <= 2 && MEPDGmodel > 1 
        title('AC Surface Down Cracking', 'FontSize', 
18,'FontName','Times New Roman') 
     
    elseif MEPDGmodel <= 3 && MEPDGmodel > 2 
        title('AC Bottom Up Cracking', 'FontSize', 18,'FontName','Times 
New Roman') 
     
    elseif MEPDGmodel <= 4 && MEPDGmodel > 3 
        title('AC Permanent Deformation', 'FontSize', 
18,'FontName','Times New Roman') 
     
    elseif MEPDGmodel >= 5 
        title('Total Permanent Deformation', 'FontSize', 
18,'FontName','Times New Roman') 
        end 
end 
  
%% Contributions to Variance 
for i=1:num_Models 
    VarXs(1,i) = var(GPeval(:,i)); 
    VarMEPDG(1,i) = Umepdg(1,i) * Umepdg(1,i); 
    VarGP(1,i) = var_Res(1,i); 
end 
  
for i=1:size(VarXs,2) 
    TotalVariance(1,i) = VarXs(1,i) + VarMEPDG(1,i) + VarGP(1,i); 
    InputParamVar(1,i) = VarXs(1,i) / TotalVariance(1,i); 
    MEPDGVar(1,i) = VarMEPDG(1,i) / TotalVariance(1,i); 
    GPVar(1,i) = VarGP(1,i) / TotalVariance(1,i); 
end 
  
%Values are given as percentages 
PercentContributions = [InputParamVar'*100,MEPDGVar'*100,GPVar'*100]; 
  
%% Reliability Analysis 
  
    for i=1:N 
        %Calculate Number of failures: Input Parameter Uncertainty Only 
        %(GPeval) 
            for j=1:size(GPeval,2) 
                if GPeval(i,j)>ThresholdLimits(1,j); 
                    failure1(i,j) = 1; 
                else failure1(i,j) = 0; 
                end 
            end 
                %System Reliability: Input Parameter Uncertainty Only 
                if sum(failure1(i,:))>0 
                    SystemFailure1(i,1) = 1; 
                else SystemFailure1(i,1) = 0; 
                end 
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        %Calculate Number of failures: Input Parameters + MEPDG (G2) 
             for j=1:size(GPeval,2) 
                if G2(i,j)>ThresholdLimits(1,j); 
                    failure2(i,j) = 1; 
                else failure2(i,j) = 0; 
                end 
             end 
                %System Reliability 
                if sum(failure2(i,:))>0 
                    SystemFailure2(i,1) = 1; 
                else SystemFailure2(i,1) = 0; 
                end 
                 
       %Calculate Number of failures: Input Parameters + MEPDG + GP 
(G3) 
              for j=1:size(GPeval,2) 
                if G3(i,j)>ThresholdLimits(1,j); 
                    failure3(i,j) = 1; 
                else failure3(i,j) = 0; 
                end 
              end 
                %System Reliability 
                if sum(failure3(i,:))>0 
                    SystemFailure3(i,1) = 1; 
                else SystemFailure3(i,1) = 0; 
                end 
                 
        %Calculate Number of failures: MEPDG Estimate (G4)  
              for j=1:size(GPeval,2) 
                if G4(i,j)>ThresholdLimits(1,j); 
                    failure4(i,j) = 1; 
                else failure4(i,j) = 0; 
                end 
              end 
                %System Reliability 
                if sum(failure4(i,:))>0 
                    SystemFailure4(i,1) = 1; 
                else SystemFailure4(i,1) = 0; 
                end 
    end 
  
ProbabilityOfFailure1=[(sum(failure1))/N,(sum(SystemFailure1))/N]; 
ProbabilityOfFailure2=[(sum(failure2))/N,(sum(SystemFailure2))/N]; 
ProbabilityOfFailure3=[(sum(failure3))/N,(sum(SystemFailure3))/N]; 
ProbabilityOfFailure4=[(sum(failure4))/N,(sum(SystemFailure4))/N]; 
%Values given as percentages 
POF_Table=[ProbabilityOfFailure1'*100,ProbabilityOfFailure2'*100,Probab
ilityOfFailure3'*100,ProbabilityOfFailure4'*100]; 
%----------------------------------------------------------------------
---- 
%----------------------------------------------------------------------
---- 
%% Output for Plot for pdf and cdf plots (Response to Reviewer 
comments) 
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clear pdf_MEPDG xi_MEPDG cdf_MEPDG xicdf_MEPDG pdf_Inputs xi_Inputs 
pdf_GP xi_GP xi_InputsN xi_MEPDGN xi_GPN 
[pdf_MEPDG(:,1),xi_MEPDG(:,1)] = ksdensity(R(:,1),'function','pdf'); 
figure 
plot(xi_MEPDG,pdf_MEPDG); set(gca,'yticklabel',[]); 
set(gca,'xticklabel',[]); 
  
[cdf_MEPDG(:,1),xicdf_MEPDG(:,1)] = ksdensity(R(:,1),'function','cdf'); 
figure 
plot(xicdf_MEPDG,cdf_MEPDG); set(gca,'yticklabel',[]); 
set(gca,'xticklabel',[]); 
%% Create Plots for Variance of Sources (Response to Reviewers 
Comments) 
[pdf_Inputs(:,1),xi_Inputs(:,1)] = 
ksdensity(GPeval(:,1),'function','pdf'); 
[pdf_GP(:,1),xi_GP(:,1)]=ksdensity(R2(:,1),'function','pdf'); 
xi_InputsN = zscore(xi_Inputs); 
xi_MEPDGN = zscore(xi_MEPDG); 
xi_GPN = zscore(xi_GP); 
pdf_InputsN = zscore(pdf_Inputs); 
pdf_MEPDGN = zscore(pdf_MEPDG); 
pdf_GPN = zscore(pdf_GP); 
figure 
plot(xi_InputsN(:,1), pdf_Inputs(:,1), 'r', xi_MEPDG(:,1), 
pdf_MEPDG(:,1), '--b', xi_GP(:,1), pdf_GP(:,1), '--g');  
%set(gca,'yticklabel',[]); set(gca,'xticklabel',[]); 
legend('Inputs','MEPDG','GP') 
 
clear all; clc; close all; 
addpath('C:\Users\Jenny\Documents\Retherford-
Vanderbilt\Summer2010\TRB90\Matlab\dace'); 
  
training_pointsCOMPLETE; 
num_Models = size(train_valsCOMPLETE,2); 
  
r=size(train_pntsCOMPLETE); 
s=size(train_valsCOMPLETE); 
num_test = 10; 
yy = randperm(r(1)); 
tstidx = sort(yy(1:num_test)); 
trnidx = setdiff([1:r],tstidx); 
  
train_pnts=train_pntsCOMPLETE(trnidx,:); 
train_vals=log(train_valsCOMPLETE(trnidx,:)); 
  
%Train Model 
ndims = size(train_pnts,2); 
theta0 = 1*ones(1,ndims); 
lob = 0.01*ones(1,ndims); 
upb = 100*ones(1,ndims); 
clear GPmodel GPModelInfo 
for MEPDGmodel = 1:num_Models 
    MEPDGmodel 
    [GPmodel(1, MEPDGmodel), GPModelInfo(1, MEPDGmodel)] =... 
    dacefit(train_pnts, train_vals(:,MEPDGmodel),... 
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    @regpoly1, @corrgauss, theta0, lob, upb); 
end 
  
%% Predict with the GP models 
%MCS: Generate 100 sample input vectors 
N=500; 
clear AADTsa HMAthicksa GBthicksa EBCsa AVsa Esubgradesa Kgbsa 
AADTsa = random('norm',1500,150,N,1); 
HMAthicksa = random('norm',8,0.78,N,1); 
GBthicksa = random('norm',8,1.25,N,1); 
EBCsa = random('norm',0.1,0.01,N,1); 
AVsa = random('norm',0.085,0.0085,N,1); 
Esubgradesa = random('norm',14500,1250,N,1); 
Kgbsa = random('norm',40000,1750,N,1); 
  
InputMeans = [1500, 8, 8, 0.1, 0.085, 14500, 40000, 10.7709]; 
  
%MEPDG evaluation at means: fx(mux) 
MEPDG_valsMeans = [121.7, 334, 2.7, 0.28, 0.62]; 
Asa(1:N,1) = 10.7709; 
  
for i=1:N 
    
Xsa(i,:)=[AADTsa(i),HMAthicksa(i),GBthicksa(1),EBCsa(1),AVsa(1),Esubgra
desa(1),Kgbsa(1),Asa(1)]; 
end 
  
  
close all; clear XsaS 
for MEPDGmodel = 1:num_Models 
    MEPDGmodel 
    %Evaluate all Combinations of AADT and HMAthickness 
    clear GPsa_response 
    XsaS(:,1) = sort(AADTsa(:,1)); 
    XsaS(:,2) = sort(HMAthicksa(:,1)); 
    for i = 1:N 
        for j = 1:N 
            GPsa_response(j,i) = 
predictor([XsaS(i,1),XsaS(j,2),InputMeans(1,3:8)],GPmodel(1,MEPDGmodel)
); 
        end 
        i 
    end 
    GPsa_response = exp(GPsa_response); 
    %Create contour plots of GP 
    clear C1 h1 
     
    figure 
    hold on 
    [C1,h1]=contourf(XsaS(:,1),XsaS(:,2),GPsa_response()); 
    clabel(C1,h1,'FontSize', 14,'FontName','Times New Roman'); 
    set(gca,'FontSize', 14,'FontName','Times New Roman'); 
%     plot([InputMeans(1,1), InputMeans(1,1)], [min(Xsa(:,2)), 
max(Xsa(:,2))], 'k', [min(Xsa(:,1)), max(Xsa(:,1))], [InputMeans(1,2), 
InputMeans(1,2)], 'k','LineWidth',2); 
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    xlabel('Average Annual Daily Traffic', 'FontSize', 
18,'FontName','Times New Roman') 
    ylabel('HMA Thickness (in.)', 'FontSize', 18,'FontName','Times New 
Roman') 
    if MEPDGmodel <= 1 
        title('Terminal IRI', 'FontSize', 18,'FontName','Times New 
Roman') 
     
    elseif MEPDGmodel <= 2 && MEPDGmodel > 1 
        title('AC Top Down Cracking', 'FontSize', 18,'FontName','Times 
New Roman') 
     
    elseif MEPDGmodel <= 3 && MEPDGmodel > 2 
        title('AC Bottom Up Cracking', 'FontSize', 18,'FontName','Times 
New Roman') 
     
    elseif MEPDGmodel <= 4 && MEPDGmodel > 3 
        title('AC Permanent Deformation', 'FontSize', 
18,'FontName','Times New Roman') 
     
    elseif MEPDGmodel >= 5 
        title('Total Permanent Deformation', 'FontSize', 
18,'FontName','Times New Roman') 
    end 
    hold off 
end 
  
%----------------------------------------------------------------------
---- 
clear XsaS; 
for MEPDGmodel = 1:num_Models 
    MEPDGmodel 
    %Evaluate all Combinations of HMAthickness and GBthicksa 
    clear GPsa_response 
    XsaS(:,1) = sort(HMAthicksa(:,1)); 
    XsaS(:,2) = sort(GBthicksa(:,1)); 
    for i = 1:N 
        for j = 1:N 
            GPsa_response(j,i) = 
predictor([InputMeans(1,1),XsaS(i,1),XsaS(j,2),InputMeans(1,4:8)],GPmod
el(1,MEPDGmodel)); 
        end 
        i 
    end 
    GPsa_response = exp(GPsa_response); 
    %Create contour plots of GP 
    clear C1 h1 
     
    figure 
    [C1,h1]=contourf(XsaS(:,1),XsaS(:,2),GPsa_response()); 
    clabel(C1,h1); 
  
    xlabel('HMA Thickness (in.)', 'FontSize', 18,'FontName','Times New 
Roman') 
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    ylabel('GB Thickness (in.)', 'FontSize', 18,'FontName','Times New 
Roman') 
    if MEPDGmodel <= 1 
        title('Terminal IRI', 'FontSize', 18,'FontName','Times New 
Roman') 
     
    elseif MEPDGmodel <= 2 && MEPDGmodel > 1 
        title('AC Top Down Cracking', 'FontSize', 18,'FontName','Times 
New Roman') 
     
    elseif MEPDGmodel <= 3 && MEPDGmodel > 2 
        title('AC Bottom Up Cracking', 'FontSize', 18,'FontName','Times 
New Roman') 
     
    elseif MEPDGmodel <= 4 && MEPDGmodel > 3 
        title('AC Permanent Deformation', 'FontSize', 
18,'FontName','Times New Roman') 
     
    elseif MEPDGmodel >= 5 
        title('Total Permanent Deformation', 'FontSize', 
18,'FontName','Times New Roman') 
    end 
end 
  
%----------------------------------------------------------------------
---- 
clear XsaS; 
for MEPDGmodel = 1:num_Models 
    MEPDGmodel 
    %Evaluate all Combinations of HMAthickness and EBCsa 
    clear GPsa_response 
    XsaS(:,1) = sort(HMAthicksa(:,1)); 
    XsaS(:,2) = sort(EBCsa(:,1)); 
    for i = 1:N 
        for j = 1:N 
            GPsa_response(j,i) = 
predictor([InputMeans(1,1),XsaS(i,1),InputMeans(1,3),XsaS(j,2),InputMea
ns(1,5:8)],GPmodel(1,MEPDGmodel)); 
        end 
        i 
    end 
    GPsa_response = exp(GPsa_response); 
    %Create contour plots of GP 
    clear C1 h1 
     
    figure 
    [C1,h1]=contourf(XsaS(:,1),XsaS(:,2),GPsa_response()); 
    clabel(C1,h1); 
    xlabel('HMA Thickness (in.)', 'FontSize', 18,'FontName','Times New 
Roman') 
    ylabel('Effective Binder Content (in.)', 'FontSize', 
18,'FontName','Times New Roman') 
    if MEPDGmodel <= 1 
        title('Terminal IRI', 'FontSize', 18,'FontName','Times New 
Roman') 
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    elseif MEPDGmodel <= 2 && MEPDGmodel > 1 
        title('AC Top Down Cracking', 'FontSize', 18,'FontName','Times 
New Roman') 
     
    elseif MEPDGmodel <= 3 && MEPDGmodel > 2 
        title('AC Bottom Up Cracking', 'FontSize', 18,'FontName','Times 
New Roman') 
     
    elseif MEPDGmodel <= 4 && MEPDGmodel > 3 
        title('AC Permanent Deformation', 'FontSize', 
18,'FontName','Times New Roman') 
     
    elseif MEPDGmodel >= 5 
        title('Total Permanent Deformation', 'FontSize', 
18,'FontName','Times New Roman') 
    end 
end 
  
%----------------------------------------------------------------------
---- 
clear XsaS; 
for MEPDGmodel = 1:num_Models 
    MEPDGmodel 
    %Evaluate all Combinations of HMAthickness and AVsa 
    clear GPsa_response 
    XsaS(:,1) = sort(HMAthicksa(:,1)); 
    XsaS(:,2) = sort(AVsa(:,1)); 
    for i = 1:N 
        for j = 1:N 
            GPsa_response(j,i) = 
predictor([InputMeans(1,1),XsaS(i,1),InputMeans(1,3:4),XsaS(j,2),InputM
eans(1,6:8)],GPmodel(1,MEPDGmodel)); 
        end 
        i 
    end 
    GPsa_response = exp(GPsa_response); 
    %Create contour plots of GP 
    clear C1 h1 
     
    figure 
    [C1,h1]=contourf(XsaS(:,1),XsaS(:,2),GPsa_response()); 
    clabel(C1,h1); 
    xlabel('HMA Thickness (in.)', 'FontSize', 18,'FontName','Times New 
Roman') 
    ylabel('Air Voids (in.)', 'FontSize', 18,'FontName','Times New 
Roman') 
    if MEPDGmodel <= 1 
        title('Terminal IRI', 'FontSize', 18,'FontName','Times New 
Roman') 
     
    elseif MEPDGmodel <= 2 && MEPDGmodel > 1 
        title('AC Top Down Cracking', 'FontSize', 18,'FontName','Times 
New Roman') 
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    elseif MEPDGmodel <= 3 && MEPDGmodel > 2 
        title('AC Bottom Up Cracking', 'FontSize', 18,'FontName','Times 
New Roman') 
     
    elseif MEPDGmodel <= 4 && MEPDGmodel > 3 
        title('AC Permanent Deformation', 'FontSize', 
18,'FontName','Times New Roman') 
     
    elseif MEPDGmodel >= 5 
        title('Total Permanent Deformation', 'FontSize', 
18,'FontName','Times New Roman') 
    end 
end 
  
%----------------------------------------------------------------------
---- 
clear XsaS; 
for MEPDGmodel = 1:num_Models 
    MEPDGmodel 
    %Evaluate all Combinations of HMAthickness and Esubgrade 
    clear GPsa_response 
    XsaS(:,1) = sort(HMAthicksa(:,1)); 
    XsaS(:,2) = sort(Esubgradesa(:,1)); 
    for i = 1:N 
        for j = 1:N 
            GPsa_response(j,i) = 
predictor([InputMeans(1,1),XsaS(i,1),InputMeans(1,3:5),XsaS(j,2),InputM
eans(1,7:8)],GPmodel(1,MEPDGmodel)); 
        end 
        i 
    end 
    GPsa_response = exp(GPsa_response); 
    %Create contour plots of GP 
    clear C1 h1 
     
    figure 
    [C1,h1]=contourf(XsaS(:,1),XsaS(:,2),GPsa_response()); 
    clabel(C1,h1); 
    xlabel('HMA Thickness (in.)', 'FontSize', 18,'FontName','Times New 
Roman') 
    ylabel('Subgrade Modulus(in.)', 'FontSize', 18,'FontName','Times 
New Roman') 
    if MEPDGmodel <= 1 
        title('Terminal IRI', 'FontSize', 18,'FontName','Times New 
Roman') 
     
    elseif MEPDGmodel <= 2 && MEPDGmodel > 1 
        title('AC Top Down Cracking', 'FontSize', 18,'FontName','Times 
New Roman') 
     
    elseif MEPDGmodel <= 3 && MEPDGmodel > 2 
        title('AC Bottom Up Cracking', 'FontSize', 18,'FontName','Times 
New Roman') 
     
    elseif MEPDGmodel <= 4 && MEPDGmodel > 3 
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        title('AC Permanent Deformation', 'FontSize', 
18,'FontName','Times New Roman') 
     
    elseif MEPDGmodel >= 5 
        title('Total Permanent Deformation', 'FontSize', 
18,'FontName','Times New Roman') 
    end 
end 
  
%----------------------------------------------------------------------
---- 
clear XsaS; 
for MEPDGmodel = 1:num_Models 
    MEPDGmodel 
    %Evaluate all Combinations of HMAthickness and Kgbsa 
    clear GPsa_response 
    XsaS(:,1) = sort(HMAthicksa(:,1)); 
    XsaS(:,2) = sort(Kgbsa(:,1)); 
    for i = 1:N 
        for j = 1:N 
            GPsa_response(j,i) = 
predictor([InputMeans(1,1),XsaS(i,1),InputMeans(1,3:6),XsaS(j,2),InputM
eans(1,8)],GPmodel(1,MEPDGmodel)); 
        end 
        i 
    end 
    GPsa_response = exp(GPsa_response); 
    %Create contour plots of GP 
    clear C1 h1 
     
    figure 
    [C1,h1]=contourf(XsaS(:,1),XsaS(:,2),GPsa_response()); 
    clabel(C1,h1); 
    xlabel('HMA Thickness (in.)', 'FontSize', 18,'FontName','Times New 
Roman') 
    ylabel('GB Modulus (in.)', 'FontSize', 18,'FontName','Times New 
Roman') 
    if MEPDGmodel <= 1 
        title('Terminal IRI', 'FontSize', 18,'FontName','Times New 
Roman') 
     
    elseif MEPDGmodel <= 2 && MEPDGmodel > 1 
        title('AC Top Down Cracking', 'FontSize', 18,'FontName','Times 
New Roman') 
     
    elseif MEPDGmodel <= 3 && MEPDGmodel > 2 
        title('AC Bottom Up Cracking', 'FontSize', 18,'FontName','Times 
New Roman') 
     
    elseif MEPDGmodel <= 4 && MEPDGmodel > 3 
        title('AC Permanent Deformation', 'FontSize', 
18,'FontName','Times New Roman') 
     
    elseif MEPDGmodel >= 5 
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        title('Total Permanent Deformation', 'FontSize', 
18,'FontName','Times New Roman') 
    end 
end 
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Chapter VI 

CDF Plots for AMV and MCS Results 

clear all; clc; close all; 
addpath('C:\Users\Jenny\Documents\Retherford-
Vanderbilt\Spring2012\OptimizationProblems\Matlab\accre\accreInput'); 
addpath('C:\Users\Jenny\Documents\Retherford-
Vanderbilt\Spring2012\OptimizationProblems\Matlab\accre\accreOutput'); 
  
%% Import Data 
Inputs = importdata('Year20SetUp.mat'); 
FF = 'Rev20Full'; 
%----------------------------------------------------------------------
---- 
%Initializing Data 
  
ParamNamesTrain = Inputs.ParamNamesTrain; 
RGP_pntsYear = Inputs.RGP_pntsYear; 
RGP_valsYear = exp(Inputs.RGP_valsYear); 
  
%Stats 
num_Models = size(RGP_valsYear,2); 
  
%----------------------------------------------------------------------
---- 
%Data From ACCRE 
  
% Name1 = strcat(FF, 'VV_GPsize.txt'); 
% Name2 = strcat(FF, 'VV_varModels.txt'); 
% Name3 = strcat(FF, 'VV_holder.txt'); 
% Name4 = strcat(FF, 'MaxCandVar.txt'); 
% Name5 = strcat(FF, 'Init_pntsTrain.txt'); 
% Name6 = strcat(FF, 'Init_valsTrain.txt'); 
% Name7 = strcat(FF, 'RGP_pntsTrain.txt'); 
% Name8 = strcat(FF, 'RGP_valsTrain.txt'); 
  
% VV_GPsize      = importdata(Name1); 
% VV_varModels   = importdata(Name2); 
% VV_holder      = importdata(Name3); 
% MaxCandVar     = importdata(Name4); 
% Init_pntsTrain = importdata(Name5); 
% Init_valsTrain = importdata(Name6); 
% RGP_pntsTrain  = importdata(Name7); 
% RGP_valsTrain  = importdata(Name8); 
  
%----------------------------------------------------------------------
---- 
  
mean_Res = [-0.3081, -5.6077e-4, 0.000371, 20.6545, -7.7039e-4]; 
std_Res =  [0.8445, 0.0028, 0.0001769, 105.6707, 0.0013]; 
Umepdg = [34.022, 0.1223, 0.094563, 1821.3, 0.099]; 
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%Threshold Limits 
% DistressModes = 
% ['TermIRI', 'RuttingTotal', 'ACBottomUp', 'ACTopDown', 'RuttingAC']; 
% ThresholdLimits = [250, 0.75, 0.25, 2000, 0.50]; 
  
%% Build GP 
%From plots, typically need only Nopt training points to have 'good' GP 
%which TPs: 
Ind = randperm(size(RGP_pntsYear,1)); 
Nopt = 500; 
gp_pntsTrain  = RGP_pntsYear(Ind(1:Nopt),[1:4, 17, 18, 20]); 
gp_NamesTrain = ParamNamesTrain(1,[1:4,17,18,20]); 
gp_valsTrain  = RGP_valsYear(Ind(1:Nopt),:); 
  
TPmeans = mean(gp_pntsTrain); 
TPstdev = std(gp_pntsTrain); 
TPlb    = min(gp_pntsTrain); 
TPub    = max(gp_pntsTrain); 
  
TPstats = [TPmeans; TPstdev; TPlb; TPub]; 
  
ndims = size(gp_pntsTrain,2); 
clear GPmodel GPModelInfo 
theta0 = 1*ones(1,ndims); 
lob = 0.1*ones(1,ndims); 
upb = 100*ones(1,ndims); 
for MEPDGmodel = 1:num_Models 
    MEPDGmodel 
    [GPmodel(1, MEPDGmodel), GPModelInfo(1, MEPDGmodel)] =... 
    dacefit(gp_pntsTrain, gp_valsTrain(:,MEPDGmodel),... 
    @regpoly1, @corrgauss, theta0, lob, upb); 
end 
  
%Evaluate Mean 
N_opt = 100; 
Opt_pntsMeans = TPmeans; 
clear MCSpointsOpt 
for i = 1:ndims 
    MCSpointsOpt(:,i) = random('norm', Opt_pntsMeans(1,i), 
TPstdev(1,i), [N_opt,1]); 
end 
  
clear gp_evalMCS 
for MEPDGmodel = 1:num_Models 
    %Evaluate GP model for Uncertainty Analysis 
    gp_evalMCS(:,MEPDGmodel) = 
predictor(MCSpointsOpt,GPmodel(MEPDGmodel));       
end 
  
    %Transform from log space 
%     gp_evalMCS = exp(gp_evalMCS); 
  
for MEPDGmodel=1:num_Models 
    %Input Variability Only 
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[cdf_G1(:,MEPDGmodel),xi_G1(:,MEPDGmodel)]=ksdensity(gp_evalMCS(:,MEPDG
model),'function','cdf'); 
    %MEPDG Uncertainty 
    R(:,MEPDGmodel) = random('norm',0,Umepdg(1,MEPDGmodel), [N_opt,1]); 
    %GP Uncertainty 
    R2(:,MEPDGmodel) = 
random('norm',mean_Res(1,MEPDGmodel),std_Res(1,MEPDGmodel), [N_opt,1]); 
  
    %Input Parameters + GP 
    for i=1:N_opt 
  
        G3(i,MEPDGmodel) = gp_evalMCS(i,MEPDGmodel) + R2(i,MEPDGmodel) 
+ R(i,MEPDGmodel); 
    end 
    [cdf_MCS(:,MEPDGmodel),xi_MCS(:,MEPDGmodel)] = 
ksdensity(gp_evalMCS(:,MEPDGmodel),'function','cdf'); 
    [cdf_G3(:,MEPDGmodel),xi_G3(:,MEPDGmodel)] = 
ksdensity(G3(:,MEPDGmodel),'function','cdf'); 
end 
  
  
%%=====================================================================
==== 
%% Darwin-ME output 
BetaVector = [1, 2, 3, -1, -2, -3]; 
  
Probf = normcdf(BetaVector); 
  
  
% Direction Cosines 
Alphas = [ 
-0.2263 -0.1567 -0.1878 -0.2201 -0.2412 -0.1753 -0.1915 
-0.1943 0.2914  0.0000  -0.1943 -0.1943 0.1943  0.0000 
-0.0208 0.1508  0.0312  0.0416  -0.0624 0.0156  0.0416 
-0.0450 0.4239  0.1095  0.0727  -0.1866 -0.1117 0.1222 
-0.1843 0.1229  -0.0614 -0.1843 -0.2457 0.0000  -0.0614 
]; 
  
AMVstats = [ 
1500    8   8   0.1 0.08    14500   40000 
150 0.8 0.8 0.01    0.008   1450    4000]; 
  
for i = 1:6 
    for j = 1:7 
        Darwin_pntsTermIRI(i,j) = AMVstats(1,j) - Alphas(1,j) * 
BetaVector(1,i) * AMVstats(2,j); 
        Darwin_pntsTotPD(i,j)   = AMVstats(1,j) - Alphas(2,j) * 
BetaVector(1,i) * AMVstats(2,j); 
        Darwin_pntsACBU(i,j)     = AMVstats(1,j) - Alphas(3,j) * 
BetaVector(1,i) * AMVstats(2,j); 
        Darwin_pntsACTD(i,j)    = AMVstats(1,j) - Alphas(4,j) * 
BetaVector(1,i) * AMVstats(2,j); 
        Darwin_pntsACPD(i,j)    = AMVstats(1,j) - Alphas(5,j) * 
BetaVector(1,i) * AMVstats(2,j); 
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    end 
end 
  
gp_evalDarwin(:,1) = predictor(Darwin_pntsTermIRI(:,1:7),GPmodel(1,1)); 
gp_evalDarwin(:,2) = predictor(Darwin_pntsTotPD(:,1:7),GPmodel(1,2)); 
gp_evalDarwin(:,3) = predictor(Darwin_pntsACBU(:,1:7),GPmodel(1,3)); 
gp_evalDarwin(:,4) = predictor(Darwin_pntsACTD(:,1:7),GPmodel(1,4)); 
gp_evalDarwin(:,5) = predictor(Darwin_pntsACPD(:,1:7),GPmodel(1,5)); 
  
% gp_evalDarwin = exp(gp_evalDarwin); 
  
for MEPDGmodel = 1:num_Models 
    for i=1:6 
        G4(i,MEPDGmodel) = gp_evalDarwin(i,MEPDGmodel) + 
R2(i,MEPDGmodel) + R(i,MEPDGmodel); 
    end 
    [cdf_AMV(:,MEPDGmodel),xi_AMV(:,MEPDGmodel)] = 
ksdensity(gp_evalDarwin(:,MEPDGmodel),'function','cdf'); 
    [cdf_G4(:,MEPDGmodel),xi_G4(:,MEPDGmodel)] = 
ksdensity(G4(:,MEPDGmodel),'function','cdf'); 
end 
%%=====================================================================
==== 
%% Plot CDFs 
MinRel = 0.9; %Target threshold; not included in opt. routine 
close all; 
for MEPDGmodel = 1:num_Models 
    figure 
  
    clear MinX MaxX MinY MaxY 
    MinX(MEPDGmodel) = min(min(min(min(xi_G1(:,MEPDGmodel)), 
min(min(xi_G3(:,MEPDGmodel)), min(xi_G4(:,MEPDGmodel))))), 0); 
    MaxX(MEPDGmodel) = max(max(max(max(xi_G1(:,MEPDGmodel)),max( 
max(xi_G3(:,MEPDGmodel)), max(xi_G4(:,MEPDGmodel))))), 0); 
    MinY = 0; 
    MaxY = 1; 
     
  
    plot(xi_G3(:,MEPDGmodel),cdf_G3(:,MEPDGmodel),'.-r',... %CDF Input 
Variability + GP + MEPDG 
        xi_G4(:,MEPDGmodel),cdf_G4(:,MEPDGmodel),'.-b'); %AMV     
     
    axis([MinX(MEPDGmodel) MaxX(MEPDGmodel) 0 1]) 
    set(gca,'FontSize', 14,'FontName','Times New Roman'); 
    ylabel('Probability of Failure (F(Dt(x)))','FontSize', 
18,'FontName','Times New Roman'); 
    xlabel('Distress Value (Dt(x))','FontSize', 18,'FontName','Times 
New Roman'); 
    legend('Input Variability + GP + MEPDG','AMV + GP + MEPDG') 
        % DistressModes = ['TermIRI', 'RuttingTotal', 'ACBottomUp', 
'ACTopDown', 'RuttingAC']; 
    if MEPDGmodel <= 1 
        title('Terminal IRI','FontSize', 18,'FontName','Times New 
Roman') 
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    elseif MEPDGmodel <= 2 && MEPDGmodel > 1 
        title('Total Permanent Deformation','FontSize', 
18,'FontName','Times New Roman') 
     
    elseif MEPDGmodel <= 3 && MEPDGmodel > 2 
        title('AC Bottom Up Cracking','FontSize', 18,'FontName','Times 
New Roman') 
     
    elseif MEPDGmodel <= 4 && MEPDGmodel > 3 
        title('AC Top Down Cracking','FontSize', 18,'FontName','Times 
New Roman') 
     
    elseif MEPDGmodel >= 5 
        title('AC Permanent Deformation','FontSize', 
18,'FontName','Times New Roman') 
    end 
end 
  
% for MEPDGmodel = 1:num_Models 
%     figure 
%  
%     clear MinX MaxX MinY MaxY 
%     MinX(MEPDGmodel) = min(min(min(min(xi_G1(:,MEPDGmodel)), 
min(min(xi_G3(:,MEPDGmodel)), min(xi_G4(:,MEPDGmodel))))), 0); 
%     MaxX(MEPDGmodel) = max(max(max(max(xi_G1(:,MEPDGmodel)),max( 
max(xi_G3(:,MEPDGmodel)), max(xi_G4(:,MEPDGmodel))))), 0); 
%     MinY = 0; 
%     MaxY = 1; 
%      
%  
%     plot(xi_MCS(:,MEPDGmodel),cdf_MCS(:,MEPDGmodel),'.-r',... %CDF 
Input Variability + GP + MEPDG 
%         xi_AMV(:,MEPDGmodel),cdf_AMV(:,MEPDGmodel),'.-b'); %AMV     
%      
%     axis([MinX(MEPDGmodel) MaxX(MEPDGmodel) 0 1]) 
%     ylabel('Probability of Failure (F(Dt(x)))'); 
%     xlabel('Distress Value (Dt(x))'); 
%     legend('Input Variability + GP + MEPDG','AMV + GP + MEPDG') 
%         % DistressModes = ['TermIRI', 'RuttingTotal', 'ACBottomUp', 
'ACTopDown', 'RuttingAC']; 
%     if MEPDGmodel <= 1 
%         title('Terminal IRI') 
%      
%     elseif MEPDGmodel <= 2 && MEPDGmodel > 1 
%         title('Total Permanent Deformation') 
%      
%     elseif MEPDGmodel <= 3 && MEPDGmodel > 2 
%         title('AC Bottom Up Cracking') 
%      
%     elseif MEPDGmodel <= 4 && MEPDGmodel > 3 
%         title('AC Top Down Cracking') 
%      
%     elseif MEPDGmodel >= 5 
%         title('AC Permanent Deformation') 
%     end 
% end 
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% %% System Reliability 
%  
% %generate random points from AMV cdf 
% Nmcs = 100; 
% yy = randperm(100); 
% for i = 1:Nmcs 
%     for MEPDGmodel = 1:num_Models 
%         AMV_relpnts(i,MEPDGmodel) = 
random('unif',min(xi_AMV(:,MEPDGmodel)), max(xi_AMV(:,MEPDGmodel))); 
%     end 
% end 
%  
% %generate MCSpoints 
% for MEPDGmodel=1:num_Models 
%     clear mcsIndsA mcsIndsR 
%     mcsIndsR = 
(random('normal',mean(cdf_G3(:,MEPDGmodel)),std(cdf_G3(:,MEPDGmodel)), 
[Nmcs,1])); 
%     mcsIndsA = 
(random('normal',mean(cdf_G4(:,MEPDGmodel)),std(cdf_G4(:,MEPDGmodel)), 
[Nmcs,1])); 
%     for i = 1:Nmcs 
%         if mcsIndsR(i,1) < 0; 
%             mcsIndsR(i,1) = min(cdf_G3(i,MEPDGmodel)); 
%         end 
%         if mcsIndsR(i,1) > 1; 
%             mcsIndsR(i,1) = max(cdf_G3(i,MEPDGmodel)); 
%         end 
%         if mcsIndsA(i,1) < 0; 
%             mcsIndsA(i,1) = min(cdf_G4(i,MEPDGmodel)); 
%         end 
%         if mcsIndsA(i,1) > 1; 
%             mcsIndsA(i,1) = max(cdf_G4(i,MEPDGmodel)); 
%         end 
%     end 
%     for i=1:Nmcs 
%         RGPreliability(i,MEPDGmodel) = interp1q(cdf_G3(:,MEPDGmodel), 
xi_G3(:,MEPDGmodel), mcsIndsR(i,1)); 
%         AMVreliability(i,MEPDGmodel) = interp1q(cdf_G4(:,MEPDGmodel), 
xi_G4(:,MEPDGmodel), mcsIndsA(i,1)); 
%     end 
% end 
%  
%  
% %% System Reliability 
% %--------------------------------------------------------------------
------ 
% % CASE 1 
% ThresholdLimits = [250, 0.75, 0.30, 2000, 0.50]; 
% for MEPDGmodel = 1:num_Models 
%     %Calculate Reliability @ Threshold Limit 
%     ProbRGP(:,MEPDGmodel) = 1 - interp1q(xi_G3(:,MEPDGmodel), 
cdf_G3(:,MEPDGmodel), ThresholdLimits(1,MEPDGmodel)); 
%     if max(xi_G3(:,MEPDGmodel)) < ThresholdLimits(1,MEPDGmodel) 
%         ProbRGP(:,MEPDGmodel) = 0; 
%     end 
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%     if min(xi_G3(:,MEPDGmodel)) > ThresholdLimits(1,MEPDGmodel) 
%         ProbRGP(:,MEPDGmodel) = 1; 
%     end 
%     ProbAMV(:,MEPDGmodel) = 1 - interp1q(xi_G4(:,MEPDGmodel), 
cdf_G4(:,MEPDGmodel), ThresholdLimits(1,MEPDGmodel)); 
%     if max(xi_G4(:,MEPDGmodel)) < ThresholdLimits(1,MEPDGmodel) 
%         ProbAMV(:,MEPDGmodel) = 0; 
%     end 
%     if min(xi_G4(:,MEPDGmodel)) > ThresholdLimits(1,MEPDGmodel) 
%         ProbAMV(:,MEPDGmodel) = 1; 
%     end 
% end 
%  
%  
% for MEPDGmodel = 1:num_Models 
% for i = 1:size(xi_G4,1) 
%     %Calculate Number of Failures 
%     if AMVreliability(i,MEPDGmodel) > ThresholdLimits(1,MEPDGmodel) 
%         SystemFailAMV(i,MEPDGmodel) = 1; 
%     else SystemFailAMV(i,MEPDGmodel) = 0; 
%     end 
%     %System Reliability 
%         if sum(SystemFailAMV(i,:))>0 
%             SystemFailure1(i,1) = 1; 
%         else SystemFailure1(i,1) = 0; 
%         end 
%     if RGPreliability(i,MEPDGmodel) > ThresholdLimits(1,MEPDGmodel) 
%         SystemFailRGP(i,MEPDGmodel) = 1; 
%     else SystemFailRGP(i,MEPDGmodel) = 0; 
%     end 
%     %System Reliability 
%         if sum(SystemFailRGP(i,:))>0 
%             SystemFailure2(i,1) = 1; 
%         else SystemFailure2(i,1) = 0; 
%         end 
% end 
% end 
%  
% AMVsysRel = sum(SystemFailure1) / Nmcs; 
% RGPsysRel = sum(SystemFailure2) / Nmcs; 
% [ProbAMV',ProbRGP'] 
% [AMVsysRel', RGPsysRel'] 
%  
% %--------------------------------------------------------------------
------ 
% % CASE 2 
% ThresholdLimits = [200, 0.75, 0.30, 2000, 0.50]; 
% for MEPDGmodel = 1:num_Models 
%     %Calculate Reliability @ Threshold Limit 
%     ProbRGP(:,MEPDGmodel) = 1 - interp1q(xi_G3(:,MEPDGmodel), 
cdf_G3(:,MEPDGmodel), ThresholdLimits(1,MEPDGmodel)); 
%     if max(xi_G3(:,MEPDGmodel)) < ThresholdLimits(1,MEPDGmodel) 
%         ProbRGP(:,MEPDGmodel) = 0; 
%     end 
%     if min(xi_G3(:,MEPDGmodel)) > ThresholdLimits(1,MEPDGmodel) 
%         ProbRGP(:,MEPDGmodel) = 1; 
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%     end 
%     ProbAMV(:,MEPDGmodel) = 1 - interp1q(xi_G4(:,MEPDGmodel), 
cdf_G4(:,MEPDGmodel), ThresholdLimits(1,MEPDGmodel)); 
%     if max(xi_G4(:,MEPDGmodel)) < ThresholdLimits(1,MEPDGmodel) 
%         ProbAMV(:,MEPDGmodel) = 0; 
%     end 
%     if min(xi_G4(:,MEPDGmodel)) > ThresholdLimits(1,MEPDGmodel) 
%         ProbAMV(:,MEPDGmodel) = 1; 
%     end 
% end 
%  
%  
% for MEPDGmodel = 1:num_Models 
% for i = 1:size(xi_G4,1) 
%     %Calculate Number of Failures 
%     if AMVreliability(i,MEPDGmodel) > ThresholdLimits(1,MEPDGmodel) 
%         SystemFailAMV(i,MEPDGmodel) = 1; 
%     else SystemFailAMV(i,MEPDGmodel) = 0; 
%     end 
%     %System Reliability 
%         if sum(SystemFailAMV(i,:))>0 
%             SystemFailure1(i,1) = 1; 
%         else SystemFailure1(i,1) = 0; 
%         end 
%     if RGPreliability(i,MEPDGmodel) > ThresholdLimits(1,MEPDGmodel) 
%         SystemFailRGP(i,MEPDGmodel) = 1; 
%     else SystemFailRGP(i,MEPDGmodel) = 0; 
%     end 
%     %System Reliability 
%         if sum(SystemFailRGP(i,:))>0 
%             SystemFailure2(i,1) = 1; 
%         else SystemFailure2(i,1) = 0; 
%         end 
% end 
% end 
%  
% AMVsysRel = sum(SystemFailure1) / Nmcs; 
% RGPsysRel = sum(SystemFailure2) / Nmcs; 
% [ProbAMV',ProbRGP'] 
% [AMVsysRel', RGPsysRel'] 
%  
% %--------------------------------------------------------------------
------ 
% % CASE 3 
% ThresholdLimits = [150, 0.75, 0.30, 2000, 0.50]; 
% for MEPDGmodel = 1:num_Models 
%     %Calculate Reliability @ Threshold Limit 
%     ProbRGP(:,MEPDGmodel) = 1 - interp1q(xi_G3(:,MEPDGmodel), 
cdf_G3(:,MEPDGmodel), ThresholdLimits(1,MEPDGmodel)); 
%     if max(xi_G3(:,MEPDGmodel)) < ThresholdLimits(1,MEPDGmodel) 
%         ProbRGP(:,MEPDGmodel) = 0; 
%     end 
%     if min(xi_G3(:,MEPDGmodel)) > ThresholdLimits(1,MEPDGmodel) 
%         ProbRGP(:,MEPDGmodel) = 1; 
%     end 
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%     ProbAMV(:,MEPDGmodel) = 1 - interp1q(xi_G4(:,MEPDGmodel), 
cdf_G4(:,MEPDGmodel), ThresholdLimits(1,MEPDGmodel)); 
%     if max(xi_G4(:,MEPDGmodel)) < ThresholdLimits(1,MEPDGmodel) 
%         ProbAMV(:,MEPDGmodel) = 0; 
%     end 
%     if min(xi_G4(:,MEPDGmodel)) > ThresholdLimits(1,MEPDGmodel) 
%         ProbAMV(:,MEPDGmodel) = 1; 
%     end 
% end 
%  
%  
% for MEPDGmodel = 1:num_Models 
% for i = 1:size(xi_G4,1) 
%     %Calculate Number of Failures 
%     if AMVreliability(i,MEPDGmodel) > ThresholdLimits(1,MEPDGmodel) 
%         SystemFailAMV(i,MEPDGmodel) = 1; 
%     else SystemFailAMV(i,MEPDGmodel) = 0; 
%     end 
%     %System Reliability 
%         if sum(SystemFailAMV(i,:))>0 
%             SystemFailure1(i,1) = 1; 
%         else SystemFailure1(i,1) = 0; 
%         end 
%     if RGPreliability(i,MEPDGmodel) > ThresholdLimits(1,MEPDGmodel) 
%         SystemFailRGP(i,MEPDGmodel) = 1; 
%     else SystemFailRGP(i,MEPDGmodel) = 0; 
%     end 
%     %System Reliability 
%         if sum(SystemFailRGP(i,:))>0 
%             SystemFailure2(i,1) = 1; 
%         else SystemFailure2(i,1) = 0; 
%         end 
% end 
% end 
%  
% AMVsysRel = sum(SystemFailure1) / Nmcs; 
% RGPsysRel = sum(SystemFailure2) / Nmcs; 
% [ProbAMV',ProbRGP'] 
% [AMVsysRel', RGPsysRel'] 
  
  
%----------------------------------------------------------------------
---- 
% Correction Factors for AMV values 
  
%Shift mean of AMV to MCS 
% for MEPDGmodel = 1:num_Models 
%     xi_MCS50(1,MEPDGmodel) = interp1q(cdf_MCS(:,MEPDGmodel), 
xi_MCS(:,MEPDGmodel), 0.5); 
%     xi_AMV50(1,MEPDGmodel) = interp1q(cdf_AMV(:,MEPDGmodel), 
xi_AMV(:,MEPDGmodel), 0.5); 
%     Mean_diff(1,MEPDGmodel) = xi_MCS50(1,MEPDGmodel) - 
xi_AMV50(1,MEPDGmodel); 
%      
%     for i = 1:size(xi_AMV,1) 
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%         xi_AMVmm(i,MEPDGmodel) = xi_AMV(i,MEPDGmodel) + 
Mean_diff(1,MEPDGmodel); 
%     end 
% end 
% close all; 
% for MEPDGmodel = 1:num_Models 
%     figure 
%  
%     clear MinX MaxX MinY MaxY 
%     MinX(MEPDGmodel) = min(min(min(min(xi_G1(:,MEPDGmodel)), 
min(min(xi_MCS(:,MEPDGmodel)), min(xi_AMV(:,MEPDGmodel))))), 0); 
%     MaxX(MEPDGmodel) = max(max(max(max(xi_G1(:,MEPDGmodel)),max( 
max(xi_MCS(:,MEPDGmodel)), max(xi_AMV(:,MEPDGmodel))))), 0); 
%     MinY = 0; 
%     MaxY = 1; 
%      
%  
%     plot(xi_MCS(:,MEPDGmodel),cdf_MCS(:,MEPDGmodel),'.-r',... %CDF 
Input Variability + GP + MEPDG 
%         xi_AMVmm(:,MEPDGmodel),cdf_AMV(:,MEPDGmodel),'.-b',... %AMV  
%         xi_AMV(:,MEPDGmodel), cdf_AMV(:,MEPDGmodel)); 
%      
%     axis([MinX(MEPDGmodel) MaxX(MEPDGmodel) 0 1]) 
%     ylabel('Probability of Failure (F(Dt(x)))'); 
%     xlabel('Distress Value (Dt(x))'); 
%     legend('MCS','AMV Mean Moved') 
%         % DistressModes = ['TermIRI', 'RuttingTotal', 'ACBottomUp', 
'ACTopDown', 'RuttingAC']; 
%     if MEPDGmodel <= 1 
%         title('Terminal IRI') 
%      
%     elseif MEPDGmodel <= 2 && MEPDGmodel > 1 
%         title('Total Permanent Deformation') 
%      
%     elseif MEPDGmodel <= 3 && MEPDGmodel > 2 
%         title('AC Bottom Up Cracking') 
%      
%     elseif MEPDGmodel <= 4 && MEPDGmodel > 3 
%         title('AC Top Down Cracking') 
%      
%     elseif MEPDGmodel >= 5 
%         title('AC Permanent Deformation') 
%     end 
% end 
%  
% for MEPDGmodel = 1:num_Models 
%     X_AMV85(1,MEPDGmodel) = interp1q(cdf_AMV(:,MEPDGmodel), 
xi_AMVmm(:,MEPDGmodel), 0.85); 
%     cdf_MCS85(1,MEPDGmodel) = interp1q(xi_MCS(:,MEPDGmodel), 
cdf_MCS(:,MEPDGmodel), X_AMV85(1,MEPDGmodel)); 
%     if isnan(cdf_MCS85(1,MEPDGmodel)) > 0; 
%         if X_AMV85(1,MEPDGmodel) > max(xi_MCS(:,MEPDGmodel)) 
%             cdf_MCS85(1,MEPDGmodel) = 0.999; 
%         else cdf_MCS85(1,MEPDGmodel) = 0.001; 
%         end 
%     end 
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%     CF85(1,MEPDGmodel) = norminv(cdf_MCS85(1,MEPDGmodel)) / 
norminv(0.85); 
%      
%     X_AMV90(1,MEPDGmodel) = interp1q(cdf_AMV(:,MEPDGmodel), 
xi_AMVmm(:,MEPDGmodel), 0.90); 
%     cdf_MCS90(1,MEPDGmodel) = interp1q(xi_MCS(:,MEPDGmodel), 
cdf_MCS(:,MEPDGmodel), X_AMV90(1,MEPDGmodel)); 
%     if isnan(cdf_MCS90(1,MEPDGmodel)) > 0; 
%         if X_AMV90(1,MEPDGmodel) > max(xi_MCS(:,MEPDGmodel)) 
%             cdf_MCS90(1,MEPDGmodel) = 0.999; 
%         else cdf_MCS90(1,MEPDGmodel) = 0.001; 
%         end 
%     end 
%     CF90(1,MEPDGmodel) = norminv(cdf_MCS90(1,MEPDGmodel)) / 
norminv(0.90); 
%      
%     X_AMV95(1,MEPDGmodel) = interp1q(cdf_AMV(:,MEPDGmodel), 
xi_AMVmm(:,MEPDGmodel), 0.95); 
%     cdf_MCS95(1,MEPDGmodel) = interp1q(xi_MCS(:,MEPDGmodel), 
cdf_MCS(:,MEPDGmodel), X_AMV95(1,MEPDGmodel)); 
%     if isnan(cdf_MCS95(1,MEPDGmodel)) > 0; 
%         if X_AMV95(1,MEPDGmodel) > max(xi_MCS(:,MEPDGmodel)) 
%             cdf_MCS95(1,MEPDGmodel) = 0.999; 
%         else cdf_MCS95(1,MEPDGmodel) = 0.001; 
%         end 
%     end 
%     CF95(1,MEPDGmodel) = norminv(cdf_MCS95(1,MEPDGmodel)) / 
norminv(0.95); 
%      
%     X_AMV97(1,MEPDGmodel) = interp1q(cdf_AMV(:,MEPDGmodel), 
xi_AMVmm(:,MEPDGmodel), 0.975); 
%     cdf_MCS97(1,MEPDGmodel) = interp1q(xi_MCS(:,MEPDGmodel), 
cdf_MCS(:,MEPDGmodel), X_AMV97(1,MEPDGmodel)); 
%     if isnan(cdf_MCS97(1,MEPDGmodel)) > 0; 
%         if X_AMV97(1,MEPDGmodel) > max(xi_MCS(:,MEPDGmodel)) 
%             cdf_MCS97(1,MEPDGmodel) = 0.999; 
%         else cdf_MCS97(1,MEPDGmodel) = 0.001; 
%         end 
%     end 
%     CF97(1,MEPDGmodel) = norminv(cdf_MCS97(1,MEPDGmodel)) / 
norminv(0.975); 
%      
%     X_AMV99(1,MEPDGmodel) = interp1q(cdf_AMV(:,MEPDGmodel), 
xi_AMVmm(:,MEPDGmodel), 0.99); 
%     cdf_MCS99(1,MEPDGmodel) = interp1q(xi_MCS(:,MEPDGmodel), 
cdf_MCS(:,MEPDGmodel), X_AMV99(1,MEPDGmodel)); 
%     if isnan(cdf_MCS99(1,MEPDGmodel)) > 0; 
%         if X_AMV99(1,MEPDGmodel) > max(xi_MCS(:,MEPDGmodel)) 
%             cdf_MCS99(1,MEPDGmodel) = 0.999; 
%         else cdf_MCS99(1,MEPDGmodel) = 0.001; 
%         end 
%     end 
%     CF99(1,MEPDGmodel) = norminv(cdf_MCS99(1,MEPDGmodel)) / 
norminv(0.99); 
% end 
% CF_all = [CF85; CF90; CF95; CF97; CF99] 
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%  
% CF_all 
%  
% X_AMVall = [X_AMV85; X_AMV90; X_AMV95; X_AMV97; X_AMV99];  
%  
%  
%  
%  
% Betas = [norminv(0.85); norminv(0.90); norminv(0.95); norminv(0.975); 
norminv(0.99)]; 
%  
%  
% for i = 1:5 
%     for j = 1:7 
%         CF_pntsTermIRI(i,j) = AMVstats(1,j) - Alphas(1,j) * 
CF_all(i,1) * Betas(i,1) * AMVstats(2,j); 
%         CF_pntsTotPD(i,j)   = AMVstats(1,j) - Alphas(2,j) * 
CF_all(i,2) * Betas(i,1) * AMVstats(2,j); 
%         CF_pntsACBU(i,j)     = AMVstats(1,j) - Alphas(3,j) * 
CF_all(i,3) * Betas(i,1) * AMVstats(2,j); 
%         CF_pntsACTD(i,j)    = AMVstats(1,j) - Alphas(4,j) * 
CF_all(i,4) * Betas(i,1) * AMVstats(2,j); 
%         CF_pntsACPD(i,j)    = AMVstats(1,j) - Alphas(5,j) * 
CF_all(i,5) * Betas(i,1) * AMVstats(2,j); 
%     end 
% end 
%  
% gp_CFAMV(:,1) = predictor(CF_pntsTermIRI, GPmodel(1,1)); 
% gp_CFAMV(:,2) = predictor(CF_pntsTotPD, GPmodel(1,2)); 
% gp_CFAMV(:,3) = predictor(CF_pntsACBU, GPmodel(1,3)); 
% gp_CFAMV(:,4) = predictor(CF_pntsACTD, GPmodel(1,4)); 
% gp_CFAMV(:,5) = predictor(CF_pntsACPD, GPmodel(1,5)); 
%  
%  
% for MEPDGmodel = 1:num_Models 
%  
%     xi_CFAMV(:,MEPDGmodel) = xi_AMVmm(:,MEPDGmodel); 
%  
%     yy85 = find(cdf_MCS(:,MEPDGmodel) < 0.859); 
%     Inds_CF(1,MEPDGmodel) = yy85(end); 
%      
%     yy90 = find(cdf_MCS(:,MEPDGmodel) < 0.901); 
%     Inds_CF(2,MEPDGmodel) = yy90(end); 
%      
%     yy95 = find(cdf_MCS(:,MEPDGmodel) < 0.951); 
%     Inds_CF(3,MEPDGmodel) = yy95(end); 
%      
%     yy97 = find(cdf_MCS(:,MEPDGmodel) < 0.976); 
%     Inds_CF(4,MEPDGmodel) = yy97(end); 
%      
%     yy99 = find(cdf_MCS(:,MEPDGmodel) < 0.999); 
%     Inds_CF(5,MEPDGmodel) = yy99(end); 
% end 
%  
% for MEPDGmodel = 1:num_Models 
%     for i = 1:5 
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%         pred_CFAMV(i,MEPDGmodel) = gp_CFAMV(i,MEPDGmodel)+ 
Mean_diff(1,MEPDGmodel); 
%     end 
% end 
%  
%  
% %Predict from CDFs to include uncertainty in prediction 
% for MEPDGmodel = 1:num_Models 
% %     pred85(1,MEPDGmodel) = interp1q(cdf_AMV(:,MEPDGmodel), 
xi_CFAMV(:,MEPDGmodel), 0.85); 
% %     pred90(1,MEPDGmodel) = interp1q(cdf_AMV(:,MEPDGmodel), 
xi_CFAMV(:,MEPDGmodel), 0.90); 
% %     pred95(1,MEPDGmodel) = interp1q(cdf_AMV(:,MEPDGmodel), 
xi_CFAMV(:,MEPDGmodel), 0.95); 
% %     pred97(1,MEPDGmodel) = interp1q(cdf_AMV(:,MEPDGmodel), 
xi_CFAMV(:,MEPDGmodel), 0.975); 
% %     pred99(1,MEPDGmodel) = interp1q(cdf_AMV(:,MEPDGmodel), 
xi_CFAMV(:,MEPDGmodel), 0.99); 
%      
%     mcs_vals85(1,MEPDGmodel) = interp1q(cdf_MCS(:,MEPDGmodel), 
xi_MCS(:,MEPDGmodel), 0.85); 
%     mcs_vals90(1,MEPDGmodel) = interp1q(cdf_MCS(:,MEPDGmodel), 
xi_MCS(:,MEPDGmodel), 0.90); 
%     mcs_vals95(1,MEPDGmodel) = interp1q(cdf_MCS(:,MEPDGmodel), 
xi_MCS(:,MEPDGmodel), 0.95); 
%     mcs_vals97(1,MEPDGmodel) = interp1q(cdf_MCS(:,MEPDGmodel), 
xi_MCS(:,MEPDGmodel), 0.975); 
%     mcs_vals99(1,MEPDGmodel) = interp1q(cdf_MCS(:,MEPDGmodel), 
xi_MCS(:,MEPDGmodel), 0.99); 
% end 
%  
% pred_CFAMVall = pred_CFAMV%[pred85; pred90; pred95; pred97; pred99]; 
% mcs_valsAll   = [mcs_vals85; mcs_vals90; mcs_vals95; mcs_vals97; 
mcs_vals99];  
%  
% clear DissResultsTable DissTableFormat 
% for MEPDGmodel = 1:num_Models 
%     DissResultsTable(:,:,MEPDGmodel) = [X_AMVall(:,MEPDGmodel),... 
%         CF_all(:,MEPDGmodel),... 
%         pred_CFAMVall(:,MEPDGmodel)... 
%         mcs_valsAll(:,MEPDGmodel)]; 
% end 
%          
% DissTableFormat = [DissResultsTable(:,:,1),... 
%     DissResultsTable(:,:,2),... 
%     DissResultsTable(:,:,3),... 
%     DissResultsTable(:,:,4),... 
%     DissResultsTable(:,:,5)]; 
%  
% for MEPDGmodel = 1:num_Models 
%     figure 
%  
%     clear MinX MaxX MinY MaxY 
%     MinX(MEPDGmodel) = min(min(min(min(xi_CFAMV(:,MEPDGmodel)), 
min(min(xi_MCS(:,MEPDGmodel)), min(xi_AMV(:,MEPDGmodel))))), 0); 



   

255 
      

%     MaxX(MEPDGmodel) = max(max(max(max(xi_CFAMV(:,MEPDGmodel)),max( 
max(xi_MCS(:,MEPDGmodel)), max(xi_AMV(:,MEPDGmodel))))), 0); 
%     MinY = 0; 
%     MaxY = 1; 
%      
%  
%     plot(xi_MCS(:,MEPDGmodel),cdf_MCS(:,MEPDGmodel),'.-r',... %CDF 
Input Variability + GP + MEPDG 
%         xi_CFAMV(:,MEPDGmodel),cdf_AMV(:,MEPDGmodel),'.-g'); %AMV   
%      
%     axis([MinX(MEPDGmodel) MaxX(MEPDGmodel) 0 1]) 
%     ylabel('Probability of Failure (F(Dt(x)))'); 
%     xlabel('Distress Value (Dt(x))'); 
%     legend('Input Variability + GP + MEPDG','AMV + GP + MEPDG', 
'Corrected AMV') 
%         % DistressModes = ['TermIRI', 'RuttingTotal', 'ACBottomUp', 
'ACTopDown', 'RuttingAC']; 
%     if MEPDGmodel <= 1 
%         title('Terminal IRI') 
%      
%     elseif MEPDGmodel <= 2 && MEPDGmodel > 1 
%         title('Total Permanent Deformation') 
%      
%     elseif MEPDGmodel <= 3 && MEPDGmodel > 2 
%         title('AC Bottom Up Cracking') 
%      
%     elseif MEPDGmodel <= 4 && MEPDGmodel > 3 
%         title('AC Top Down Cracking') 
%      
%     elseif MEPDGmodel >= 5 
%         title('AC Permanent Deformation') 
%     end 
% end 
%  
%  
% close all; 
  
%%---------------------------------------------------------------------
---- 
%% Contour Plots for ACTD 
  
% %Generate a bunch of points 
% N=1000; 
% clear Xsa 
% Xsa = ones(N,7); 
% for i = 1:N 
%     for j = 1:7 
%         Xsa(i,j) = Xsa(i,j) * AMVstats(1,j); 
%     end 
% end 
%  
% AADTsa = sort(random('norm',1500,150,N,1)); 
% HMAthicksa = sort(random('norm',8,0.8,N,1)); 
%  
% Xsa(:,1) = AADTsa; 
% Xsa(:,2) = HMAthicksa; 
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%  
% for MEPDGmodel = 4 
%     MEPDGmodel 
%     %Evaluate all Combinations of AADT and HMAthickness 
%     clear gp_eval 
%     for i=1:N 
%         for j=1:N 
%             gp_eval(i,j) = 
predictor([Xsa(i,1),Xsa(j,2),Xsa(1,3:7)],GPmodel(MEPDGmodel)); 
%         end 
%     end 
% %     %Transform from log space 
% %     gp_eval = exp(gp_eval); 
%  
%     %Create contour plots of GP 
%     clear C1 h1 
%     figure 
%     [C1,h1]=contourf(AADTsa,HMAthicksa,gp_eval()); 
%     clabel(C1,h1); 
%     xlabel('Average Annual Daily Traffic') 
%     ylabel('HMA Thickness (in.)') 
%     if MEPDGmodel <= 1 
%         title('Terminal IRI') 
%      
%     elseif MEPDGmodel <= 2 && MEPDGmodel > 1 
%         title('Total Permanent Deformation') 
%      
%     elseif MEPDGmodel <= 3 && MEPDGmodel > 2 
%         title('AC Bottom Up Cracking') 
%      
%     elseif MEPDGmodel <= 4 && MEPDGmodel > 3 
%         title('AC Top Down Cracking') 
%      
%     elseif MEPDGmodel >= 5 
%         title('AC Permanent Deformation') 
%     end 
% end 
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Chapter VII 

Verification of Predictive Capability of GP Models 

Distribution of Bayes Factors for GP Models 

clear all; clc; close all; 
  
training_pointsCOMPLETE; 
r=size(train_pntsCOMPLETE); 
s=size(train_valsCOMPLETE); 
  
%Run numerous iterations 
num_iters = 10; 
%Run specific number of MEPDG models;  
%need to revise BayesFactor if eval only some MEPDGmodels (Lines 178-
182) 
num_Models = 5; 
  
%Perform Verification: MSE, Rsquared, and Bayes with chosen number of 
%training points 
     
for y=1:num_iters 
y 
    num_test = 10; 
    num_train = r(1) - num_test; 
    %Randomly generate which terms are selected as training vs. testing 
    m(:,y)=(randperm(r(1)))'; 
%     m(:,y) = (1:r(1))'; 
  
    %Define Training Point Matricies 
    [train_pntsFULL,train_mean,train_std]=zscore(train_pntsCOMPLETE); 
    for i=1:num_train 
        train_pnts(i,:)=train_pntsFULL(m(i,y),:); 
        train_vals(i,:)=train_valsCOMPLETE(m(i,y),:); 
    end 
  
    yoffset = mean(train_vals); 
    for i=1:size(train_vals,1) 
        for j=1:size(train_vals,2) 
            train_vals0(i,j) = train_vals(i,j) - yoffset(1,j); 
        end 
    end 
    %Define Test Point Matricies 
    for i=1:num_test 
        test_pnts(i,:)=train_pntsFULL(m(num_train+i,y),:); 
        test_vals(i,:)=train_valsCOMPLETE(m(num_train+i,y),:); 
    end 
  
    %Construct and Evaluate GP 
    for MEPDGmodel = 1:num_Models 
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        %Train Model 
        nsams = size(train_pnts,1); 
        ndims = size(train_pnts,2); 
        theta0 = ones(1,ndims); lob = 0.01*ones(1,ndims); upb = 
10*ones(1,ndims); 
        [GPmodel(MEPDGmodel), GPModelInfo(MEPDGmodel)] = 
dacefit(train_pnts, train_vals0(:,MEPDGmodel), @regpoly1, @corrgauss, 
theta0, lob,upb); 
     
        %Evaluate GP model for Verification Process 
        gptest(:,MEPDGmodel) = 
predictor(test_pnts,GPmodel(MEPDGmodel)); 
    end 
     
    for i=1:num_test 
        for MEPDGmodel=1:num_Models 
            GPtest(i,MEPDGmodel) = gptest(i,MEPDGmodel) + 
yoffset(1,MEPDGmodel); 
        end 
    end 
         
    for i=1:num_test 
        for j=1:num_Models 
            Residuals(i,j)=(test_vals(i,j)-GPtest(i,j)); 
            %Calculate R^2 value using Matlab function; linear 
regression WITH 
            %intercept; first beta value will be the y-intercept => 
representing the 
            %systematic bias of the underlying (MEPDG) function 
            stats(y,j) = 
regstats(test_vals(:,j),GPtest(:,j),'linear',{'rsquare', 'beta'}); 
            %Calculate the slope of a generalized linear model 
            %desired slope = 1 want X = y (MEPDG = GP) 
            %glmslope(y,j) = 
            
%glmfit(GPtest(:,j),test_vals(:,j),'normal','link','identity','constant
','off'); 
        end 
    end 
  
    for i=1:size(Residuals,2) 
        ResidualsStdDev(1,i)=std(Residuals(:,i)); 
    end 
  
%============================================================== 
%Caclulate Predictive Coefficient of Determination (R^2) 
%============================================================== 
clear meanTestVals diff diff2 SStotal SSerror 
    for i=1:num_test 
        for j=1:num_Models 
            RsquaredMTLB(y,j) = stats(y,j).rsquare; 
        end 
    end 
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%====================================================================== 
%Calculate Bayes Factor 
%====================================================================== 
%Number of Testing Points 
        q=size(test_pnts,1); 
        for i=1:q 
            for j=1:num_Models 
                
posteriorPDF(i,j)=normpdf(Residuals(i,j),0,ResidualsStdDev(1,j)); 
            end 
        end 
        
        %Construct PDF's for each GP Evaluated at Test Values 
        for j=1:num_Models 
            
[pdfGPtest(:,j),xiGPtest(:,j)]=ksdensity(GPtest(:,j),'function','pdf'); 
        end 
  
        %Construct PDF's for each MEPDG Evaluated at Test Values 
        for j=1:num_Models 
            
[pdfMEtest(:,j),xiMEtest(:,j)]=ksdensity(test_vals(:,j),'function','pdf
'); 
        end 
         
        for i=1:q 
            for j=1:num_Models 
                
pdfGP(i,j)=interp1q(xiGPtest(:,j),pdfGPtest(:,j),test_vals(i,j)); 
            end 
        end 
  
          P = prod(posteriorPDF); 
          Prod = prod(pdfGP); 
  
            for j=1:num_Models 
                BayesFactor(y,j)=P(1,j)/Prod(1,j); 
            end 
end 
  
posteriorPDF; 
pdfGP; 
BayesFactor; 
%Remove Nan values; 
%Nan values occur when pdfGP is interpolated at test points outside the 
%GP results 
  
i = find(~isnan(BayesFactor(:,1))); B1 = BayesFactor(i,1); 
i = find(~isnan(BayesFactor(:,2))); B2 = BayesFactor(i,2); 
i = find(~isnan(BayesFactor(:,3))); B3 = BayesFactor(i,3); 
i = find(~isnan(BayesFactor(:,4))); B4 = BayesFactor(i,4); 
i = find(~isnan(BayesFactor(:,5))); B5 = BayesFactor(i,5); 
  
%Calculate Average Values for Verification Metrics 
AveRsquaredMTLB = mean(RsquaredMTLB,1); 
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AveB = [mean(B1);mean(B2);mean(B3);mean(B4);mean(B5)]; 
%Aveglmslope = mean(glmslope,1); 
  
%Calculate Variance Values for Verification Metrics 
VarRsquaredMTLB = var(RsquaredMTLB,1); 
VarB = [var(B1);var(B2);var(B3);var(B4);var(B5)]; 
%Varglmslope = var(glmslope,1); 
  
%Calculate Coefficient of Variation (COV) for Verification Metrics 
clear COVRsquared COVB 
for i=1:num_Models 
    COVRsquared(i,1) = sqrt(VarRsquaredMTLB(1,i)) / 
AveRsquaredMTLB(1,i); 
    COVB(i,1) = sqrt(VarB(i,1)) / AveB(i,1); 
end 
%Calculate Probability that Bayes Factor is Less than 3 
for i=1:size(B1,1) 
    if B1 < 3 
        CountB1(i,1) = 1; 
    else 
        CountB1(i,1) = 0; 
    end 
end 
ProbB1LessThan3 = sum(CountB1,1)/(size(B1,1)); 
  
for i=1:size(B2,1) 
    if B2 < 3 
        CountB2(i,1) = 1; 
    else 
        CountB2(i,1) = 0; 
    end 
end 
ProbB2LessThan3 = sum(CountB2)/(size(B2,1)); 
  
for i=1:size(B3,1) 
    if B1 < 3 
        CountB3(i,1) = 1; 
    else 
        CountB3(i,1) = 0; 
    end 
end 
ProbB3LessThan3 = sum(CountB3)/(size(B3,1)); 
  
for i=1:size(B4,1) 
    if B4 < 3 
        CountB4(i,1) = 1; 
    else 
        CountB4(i,1) = 0; 
    end 
end 
ProbB4LessThan3 = sum(CountB4)/(size(B4,1)); 
  
for i=1:size(B5,1) 
    if B5 < 3 
        CountB5(i,1) = 1; 
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    else 
        CountB5(i,1) = 0; 
    end 
end 
ProbB5LessThan3 = sum(CountB5)/(size(B5,1)); 
  
ProbBFLessThan3 = 
[ProbB1LessThan3;ProbB2LessThan3;ProbB3LessThan3;ProbB4LessThan3;ProbB5
LessThan3]; 
  
%Columns = Metric; Rows = MEPDGmodel 
ValidationResults =[AveRsquaredMTLB',VarRsquaredMTLB',COVRsquared, 
AveB,VarB, COVB]; 
%GLMSlopeResults = [Aveglmslope',Varglmslope']; 
  
% %% ACCRE Output Files 
% %Output Verification Results 
% VerificationResults = fopen('VerificationResults.txt','a'); 
% for k=1:size(ValidationResults,1) 
%     for i=1:size(ValidationResults,2) 
%         fprintf(VerificationResults,'%G\t',ValidationResults(k,i)); 
%     end 
%     fprintf(VerificationResults,'\n',ValidationResults(k,i)); 
% end 
  
BayesFactorProb = fopen('BayesFactorProb.txt','a'); 
for k=1:size(ProbBFLessThan3,1) 
    fprintf(BayesFactorProb,'%G\t',ProbBFLessThan3(k,1)); 
end 
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Chapter VIII 

GP Verification Results 

Improvement in Average GP Variance for Verification Points 

Design Optimization Results 

clear all; clc; close all; 
  
%% 
=======================================================================
= 
%  Import Training Data 
%  
=======================================================================
= 
InitRGP = RGPinitializerOrig; 
RGP_valsYear = InitRGP{1,1}; 
RGP_pntsYear = InitRGP{1,2}; 
ParamNamesTrain = InitRGP{1,3}; 
%Initializing Data 
  
%Choose only most significant 8 parameters 
RGP_pntsYear(:,[2:12,14:22,26:28,31:46,48:50,52:53]) = []; 
ParamNamesTrain(:,[2:12,14:22,26:28,31:46,48:50,52:53]) = []; 
  
  
  
ndims = size(RGP_pntsYear,2); 
num_Models = size(RGP_valsYear,2); 
  
%Verification Points 
Ver_pntsYear = importdata('RGPVerificationInputs.mat'); 
Ver_valsYear = importdata('RGPVer_vals.mat'); 
Ver_pntsYear(:,55:76)=[]; Ver_pntsYear(:,13) = []; 
Ver_pntsYear(:,[2:12,14:22,26:28,31:46,48:50,52:53]) = []; 
Ver_valsYear(:,4) = []; 
  
TPmeans = mean(RGP_pntsYear); 
TPstdev = std(RGP_pntsYear); 
TPlb    = min(RGP_pntsYear); 
TPub    = max(RGP_pntsYear); 
  
TPstats = [TPmeans; TPstdev; TPlb; TPub]; 
%======================================================================
==== 
%% Initialize; Build GP with 'n' Training Points; Selected Randomly 
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%======================================================================
==== 
Note = 'Select Initial GP Training Points' 
%Construct Initial GP 
% Select Random TPs 
  
num_trainInit = 100; 
IXinit = randperm(size(RGP_pntsYear,1)); 
  
  
Init_pntsTrain = RGP_pntsYear(IXinit(1:num_trainInit),:); 
Init_valsTrain = RGP_valsYear(IXinit(1:num_trainInit),:); 
  
clear InitCand_pnts InitCand_vals 
InitCand_pnts = 
RGP_pntsYear(IXinit(num_trainInit+1:size(RGP_pntsYear,1)),:); 
InitCand_vals = 
RGP_valsYear(IXinit(num_trainInit+1:size(RGP_valsYear,1)),:); 
  
theta0 = 1*ones(1,ndims); 
lob = 0.01*ones(1,ndims); 
upb = 100*ones(1,ndims); 
clear GPmodel GPModelInfo 
for MEPDGmodel = 1:num_Models 
    MEPDGmodel 
    [GPmodel(1, MEPDGmodel), GPModelInfo(1, MEPDGmodel)] =... 
        dacefit(Init_pntsTrain, Init_valsTrain(:,MEPDGmodel),... 
        @regpoly1, @corrgauss, theta0,lob,upb); 
end 
  
for MEPDGmodel = 1:num_Models 
    [Ver_preds(:,MEPDGmodel), VV_var(:,MEPDGmodel)] = 
predictor(Ver_pntsYear, GPmodel(:,MEPDGmodel)); 
    [fitobject, gof] = 
fit(Ver_valsYear(:,MEPDGmodel),Ver_preds(:,MEPDGmodel), 'poly1'); 
    Ver_ARsqd(1,MEPDGmodel) = gof.adjrsquare; 
end 
  
Ver_ARsqd 
%%=====================================================================
==== 
%Calculate Ave GP Variance at Verification Points 
  
VV_varModels = mean(VV_var); 
VV_varMean = mean(mean(VV_var)); 
  
%======================================================================
==== 
%% Perform Design Optimization According to P3 Formulation; Use MCS 
%======================================================================
==== 
Note = 'Add TPs to GP Construction Until Stopping Criterion Achieved' 
  
%Initialize 
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clear RGP_pntsTrain RGP_valsTrain Cand_pnts Cand_vals 
clear VV_holder VV_GPsize 
RGP_pntsTrain = Init_pntsTrain; 
RGP_valsTrain = Init_valsTrain; 
  
Cand_pnts = InitCand_pnts; 
Cand_vals = InitCand_vals; 
VV_holder = VV_varMean; 
VV_GPsize = size(RGP_pntsTrain,1); 
Iter = size(RGP_pntsTrain,1); 
MaxCandVar = [0]; 
  
num_trainMax = 998; 
num_train = size(Init_pntsTrain,1); 
while num_train < num_trainMax 
  
    %Exploit = Cost Function 
    NextTPexploit = PrimaryExploitP3(GPmodel, Cand_pnts, 
ParamNamesTrain, TPstats); 
    %Explore = GP Variance Search 
    NextTPexplore = PrimaryExploreP3(GPmodel, Cand_pnts, Cand_vals); 
    MaxCandVar = [MaxCandVar, NextTPexplore{1,2}]; 
  
    %Re-train using Opt Point at New Training Point 
    New_pnts = [NextTPexplore{1,1},NextTPexploit{1,1}]; 
    New_pnts = unique(New_pnts); %unique function sorts in ascending 
order 
     
    clear EE_pnts EE_vals 
    for i = 1:size(New_pnts,2) 
        EE_pnts(i,:) = Cand_pnts(New_pnts(i),:); 
        EE_vals(i,:) = Cand_vals(New_pnts(i),:); 
    end 
    RGP_pntsTrain = [RGP_pntsTrain; EE_pnts]; 
    RGP_valsTrain = [RGP_valsTrain; EE_vals]; 
    New_pntsDescend = sort(New_pnts, 'descend'); 
    for i = 1:size(New_pntsDescend,2) 
        Cand_pnts(New_pntsDescend(i),:) = []; 
        Cand_vals(New_pntsDescend(i),:) = []; 
    end 
    %Build New GP 
    clear GPmodel GPModelInfo 
    for MEPDGmodel = 1:num_Models 
    [GPmodel(1, MEPDGmodel), GPModelInfo(1, MEPDGmodel)] =... 
        dacefit(RGP_pntsTrain, RGP_valsTrain(:,MEPDGmodel),... 
        @regpoly1, @corrgauss, theta0,lob,upb); 
    end 
     
    %Calculate Ave GP Variance at Verification Points 
    clear VV_var 
    for MEPDGmodel = 1:num_Models 
        [Ver_preds(:,MEPDGmodel), VV_var(:,MEPDGmodel)] = 
predictor(Ver_pntsYear,GPmodel(MEPDGmodel)); 
        [fitobject, gof] = 
fit(Ver_valsYear(:,MEPDGmodel),Ver_preds(:,MEPDGmodel), 'poly1'); 
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        RGP_ARsqd(1,MEPDGmodel) = gof.adjrsquare; 
    end 
    VV_varModels = [VV_varModels; mean(VV_var)]; 
    VV_holder = [VV_holder; mean(mean(VV_var))]; 
    VV_GPsize = [VV_GPsize; size(RGP_pntsTrain,1)]; 
     
    num_train = size(RGP_pntsTrain,1) 
end 
  
%======================================================================
==== 
%Improvement 
for MEPDGmodel = 1:num_Models 
    figure 
     
    Xplot = VV_GPsize; Xplot(1) = []; 
    Yplot = diff(VV_varModels(:,MEPDGmodel)); 
    plot(Xplot, Yplot); 
    xlabel('Number of Training Points'); 
    ylabel('GP Variance @ Verification Points'); 
    if MEPDGmodel <= 1 
        title('Terminal IRI') 
     
    elseif MEPDGmodel <= 2 && MEPDGmodel > 1 
        title('Total Permanent Deformation') 
     
    elseif MEPDGmodel <= 3 && MEPDGmodel > 2 
        title('AC Bottom Up Cracking') 
     
    elseif MEPDGmodel <= 4 && MEPDGmodel > 3 
        title('AC Top Down Cracking') 
     
    elseif MEPDGmodel >= 5 
        title('AC Permanent Deformation') 
    end 
end 
  
% 
%======================================================================
==== 
% %% Save Workspace Variables 
% 
%======================================================================
==== 
Note = 'Saving Workspace' 
ClockName = clock; 
File = ClockName(1,1)*100000000000 + ClockName(1,2)*1000000000 + 
ClockName(1,3)*10000000 + ClockName(1,4)*100000 + ClockName(1,5)*1000 + 
round(ClockName(1,6)); 
FileName = num2str(File); 
FileName = strcat('C:\Users\Jenny\Documents\Retherford-
Vanderbilt\Spring2012\OptimizationProblems\Matlab\ChapterVIII\', 
FileName, 'GPModelVerification.mat'); 
save(FileName); 
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close all; 
%======================================================================
==== 
%Optimization Problem Solution 
mean_Res = [-0.3081,-5.6077e-4,0.0371,20.6545,-7.7039e-4]; 
std_Res =  [0.8445,0.0028,0.1769,105.6707,0.0013]; 
Umepdg = [34.022, 0.1223, 9.4563, 1821.3, 0.0990]; 
  
%Threshold Limits 
% DistressModes = 
% ['TermIRI', 'RuttingTotal', 'ACBottomUp', 'ACTopDown', 'RuttingAC']; 
ThresholdLimits = [275, 1.25, 25, 2000, 0.75]; 
  
  
%% Build GP 
%From plots, typically need only Nopt training points to have 'good' GP 
%which TPs: 
Nopt = 500; 
Optimal_pntsTrain = RGP_pntsTrain(1:Nopt,:); 
Optimal_valsTrain = RGP_valsTrain(1:Nopt,:); 
  
clear GPmodel GPModelInfo 
for MEPDGmodel = 1:num_Models 
    MEPDGmodel 
    [GPmodelOpt(1, MEPDGmodel), GPModelInfoOpt(1, MEPDGmodel)] =... 
    dacefit(Optimal_pntsTrain, Optimal_valsTrain(:,MEPDGmodel),... 
    @regpoly1, @corrgauss, theta0, lob, upb); 
end 
clear Xplot Yplot 
Xplot = Ver_valsYear; %MEPDG 
clear Ver_preds fitobject gof RGP_ARsqd RGP_sse 
for MEPDGmodel = 1:num_Models 
    clear Yplot 
    Yplot = predictor(Ver_pntsYear, GPmodelOpt(:,MEPDGmodel)); %GP 
  
    Ver_preds(:,MEPDGmodel) = Yplot; 
    [fitobject, gof] = 
fit(Ver_valsYear(:,MEPDGmodel),Ver_preds(:,MEPDGmodel), 'poly1'); 
    RGP_ARsqd(1,MEPDGmodel) = gof.adjrsquare; 
end 
  
%======================================================================
==== 
%Find Optimal Soln by MCS 
%Vary Design Parameters: HMAThick EBC AV GBThick   [3,4,5,8] 
%Keep all other variable parameters at mean 
N_mcs = 10000; 
  
OptCand_pnts = ones(N_mcs,ndims); 
for MEPDGmodel = 1:ndims 
    for i = 1:N_mcs 
        OptCand_pnts(i,MEPDGmodel) = OptCand_pnts(i,MEPDGmodel) * 
TPmeans(1,MEPDGmodel); 
    end 
end 
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for i = 1:N_mcs 
    OptCand_pnts(i,3)  = random('unif',TPlb(1,3), TPub(1,3)); 
    OptCand_pnts(i,4)  = random('unif',TPlb(1,4), TPub(1,4)); 
    OptCand_pnts(i,5)  = random('unif',TPlb(1,5), TPub(1,5)); 
    OptCand_pnts(i,8) = random('unif',TPlb(1,8), TPub(1,8)); 
end 
N_opt = 100; 
for iter = 1:size(OptCand_pnts,1) 
  
    Opt_pntsMeans = OptCand_pnts(iter,:); 
    clear MCSpointsOpt 
    for i = 1:ndims 
        MCSpointsOpt(:,i) = random('norm', Opt_pntsMeans(1,i), 
TPstdev(1,i), [N_opt,1]); 
    end 
  
    clear gp_evalMCS 
    for MEPDGmodel = 1:num_Models 
        %Evaluate GP model for Uncertainty Analysis 
        gp_evalMCS(:,MEPDGmodel) = 
predictor(MCSpointsOpt,GPmodelOpt(MEPDGmodel));       
    end 
  
    for MEPDGmodel=1:num_Models 
        %Input Variability Only 
        
[cdf_G1(:,MEPDGmodel),xi_G1(:,MEPDGmodel)]=ksdensity(gp_evalMCS(:,MEPDG
model),'function','cdf'); 
        %MEPDG Uncertainty 
        R(:,MEPDGmodel) = random('norm',0,Umepdg(1,MEPDGmodel), 
[N_opt,1]); 
        %GP Uncertainty 
        R2(:,MEPDGmodel) = 
random('norm',mean_Res(1,MEPDGmodel),std_Res(1,MEPDGmodel), [N_opt,1]); 
     
        %Input Parameters + GP 
        for i=1:N_opt 
            G2(i,MEPDGmodel) = gp_evalMCS(i,MEPDGmodel) + 
R2(i,MEPDGmodel); 
            G3(i,MEPDGmodel) = gp_evalMCS(i,MEPDGmodel) + 
R2(i,MEPDGmodel) + R(i,MEPDGmodel); 
        end 
        [cdf_G2(:,MEPDGmodel),xi_G2(:,MEPDGmodel)] = 
ksdensity(G2(:,MEPDGmodel),'function','cdf'); 
        [cdf_G3(:,MEPDGmodel),xi_G3(:,MEPDGmodel)] = 
ksdensity(G3(:,MEPDGmodel),'function','cdf'); 
    end 
    for MEPDGmodel = 1:num_Models 
        %Calculate Reliability @ Threshold Limit 
        ProbFailure(:,MEPDGmodel) = 1 - interp1q(xi_G3(:,MEPDGmodel), 
cdf_G3(:,MEPDGmodel), ThresholdLimits(1,MEPDGmodel)); 
        if max(xi_G3(:,MEPDGmodel)) < ThresholdLimits(1,MEPDGmodel) 
            ProbFailure(:,MEPDGmodel) = 0; 
        end 
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    end 
    PfAve(iter,1) = mean(ProbFailure); 
end 
  
%% Evaluate Cost Function for All Potential (Candidate) Training Points 
indHMA = 0; indGB = 0;  
TF_HMA = zeros(0,ndims); TF_GB = zeros(0,ndims);  
InitConCost = zeros(size(OptCand_pnts,1),1); 
ReconCost = zeros(size(OptCand_pnts,1),1); 
CandCost = zeros(size(OptCand_pnts,1),1); 
for i = 1:ndims 
    TF_HMA(i) = strcmp(ParamNamesTrain(1,i),'HMAThick'); 
    indHMA = indHMA + TF_HMA(i) * i; 
    TF_GB(i) = strcmp(ParamNamesTrain(1,i),'GBThick'); 
    indGB = indGB + TF_GB(i) * i; 
end 
for i = 1:size(OptCand_pnts,1) 
    HMAthick = OptCand_pnts(i,indHMA); 
    GBthick  = OptCand_pnts(i,indGB); 
     
    InitConCost(i,1) = 20000*HMAthick + 7500*GBthick; 
     
    ReconCost(i,1) = 125000 * PfAve(i,1); 
     
    CandCost(i,1) = InitConCost(i,1) + ReconCost(i,1); 
end 
  
[OptMean, OptCostInd] = min(CandCost); 
  
OptimalCost = OptMean 
  
%======================================================================
==== 
%Re-evaluate optimal solution 
Opt_pntsMeans = OptCand_pnts(OptCostInd,:); 
Opt_pntsWORD = Opt_pntsMeans(1,[3,4,5,8]); 
clear MCSpointsOpt 
for i = 1:ndims 
    MCSpointsOpt(:,i) = random('norm', Opt_pntsMeans(1,i), 
TPstdev(1,i), [N_opt,1]); 
end 
  
clear gp_evalMCS 
for MEPDGmodel = 1:num_Models 
    %Evaluate GP model for Uncertainty Analysis 
    gp_evalMCS(:,MEPDGmodel) = 
predictor(MCSpointsOpt,GPmodelOpt(MEPDGmodel));       
end 
  
  
for MEPDGmodel=1:num_Models 
    %Input Variability Only 
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[cdf_G1(:,MEPDGmodel),xi_G1(:,MEPDGmodel)]=ksdensity(gp_evalMCS(:,MEPDG
model),'function','cdf'); 
    %MEPDG Uncertainty 
    R(:,MEPDGmodel) = random('norm',0,Umepdg(1,MEPDGmodel), [N_opt,1]); 
    %GP Uncertainty 
    R2(:,MEPDGmodel) = 
random('norm',mean_Res(1,MEPDGmodel),std_Res(1,MEPDGmodel), [N_opt,1]); 
  
    %Input Parameters + GP 
    for i=1:N_opt 
        G2(i,MEPDGmodel) = gp_evalMCS(i,MEPDGmodel) + R2(i,MEPDGmodel); 
        G3(i,MEPDGmodel) = gp_evalMCS(i,MEPDGmodel) + R2(i,MEPDGmodel) 
+ R(i,MEPDGmodel); 
    end 
    [cdf_G2(:,MEPDGmodel),xi_G2(:,MEPDGmodel)] = 
ksdensity(G2(:,MEPDGmodel),'function','cdf'); 
    [cdf_G3(:,MEPDGmodel),xi_G3(:,MEPDGmodel)] = 
ksdensity(G3(:,MEPDGmodel),'function','cdf'); 
end 
for MEPDGmodel = 1:num_Models 
    %Calculate Reliability @ Threshold Limit 
    ProbPlot(:,MEPDGmodel) = interp1q(xi_G3(:,MEPDGmodel), 
cdf_G3(:,MEPDGmodel), ThresholdLimits(1,MEPDGmodel)); 
    if max(xi_G3(:,MEPDGmodel)) < ThresholdLimits(1,MEPDGmodel) 
        ProbPlot(:,MEPDGmodel) = 1; 
    end 
end 
  
OptimalRelThresh = ProbPlot*100 
MinRel = 0.9; %Target threshold; not included in opt. routine 
for MEPDGmodel = 1:num_Models 
     figure 
  
    clear MinX MaxX MinY MaxY 
    MinX(MEPDGmodel) = min(min(min(min(xi_G1(:,MEPDGmodel)), 
min(min(xi_G2(:,MEPDGmodel)), min(xi_G3(:,MEPDGmodel)))), 
ThresholdLimits(:,MEPDGmodel)), 0); 
    MaxX(MEPDGmodel) = max(max(max(max(xi_G1(:,MEPDGmodel)),max( 
max(xi_G2(:,MEPDGmodel)), max(xi_G3(:,MEPDGmodel)))), 
ThresholdLimits(:,MEPDGmodel)), 0); 
    MinY = 0; 
    MaxY = 1; 
  
    plot(xi_G1(:,MEPDGmodel),cdf_G1(:,MEPDGmodel),'.-b',... %CDF Input 
Variability 
         xi_G2(:,MEPDGmodel),cdf_G2(:,MEPDGmodel),'.-g',... %CDF Input 
Variability + GP 
         xi_G3(:,MEPDGmodel),cdf_G3(:,MEPDGmodel),'.-r',... %CDF Input 
Variability + GP + MEPDG 
        [MinX(MEPDGmodel) MaxX(MEPDGmodel)],[MinRel MinRel],'--k',... 
%Reliability Constraint 
        [ThresholdLimits(MEPDGmodel) ThresholdLimits(MEPDGmodel)], 
[MinY MaxY],'--k',... %Threshold Constraint 
        [MinX(MEPDGmodel) MaxX(MEPDGmodel)], [ProbPlot(MEPDGmodel) 
ProbPlot(MEPDGmodel)], ':k'); % Reliability at Threshold 
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    axis([MinX(MEPDGmodel) MaxX(MEPDGmodel) 0 1]) 
    ylabel('Reliability (F(Dt(x)))'); 
    xlabel('Distress Value (Dt(x))'); 
    legend('Input Variability','Input Variability + GP','Input 
Variability + GP + MEPDG','Threshold Limits', 'Reliability @ Threshold 
Value') 
        % DistressModes = ['TermIRI', 'RuttingTotal', 'ACBottomUp', 
'ACTopDown', 'RuttingAC']; 
    if MEPDGmodel <= 1 
        title('Terminal IRI') 
     
    elseif MEPDGmodel <= 2 && MEPDGmodel > 1 
        title('Total Permanent Deformation') 
     
    elseif MEPDGmodel <= 3 && MEPDGmodel > 2 
        title('AC Bottom Up Cracking') 
     
    elseif MEPDGmodel <= 4 && MEPDGmodel > 3 
        title('AC Top Down Cracking') 
     
    elseif MEPDGmodel >= 5 
        title('AC Permanent Deformation') 
    end 
end 
  
% 
%======================================================================
==== 
% %% Save Workspace Variables 
% 
%======================================================================
==== 
Note = 'Saving Workspace' 
ClockName = clock; 
File = ClockName(1,1)*100000000000 + ClockName(1,2)*1000000000 + 
ClockName(1,3)*10000000 + ClockName(1,4)*100000 + ClockName(1,5)*1000 + 
round(ClockName(1,6)); 
FileName = num2str(File); 
FileName = strcat('C:\Users\Jenny\Documents\Retherford-
Vanderbilt\Spring2012\OptimizationProblems\Matlab\ChapterVIII\', 
FileName, 'GPModelVerification.mat'); 
save(FileName); 
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