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CHAPTER I

INTRODUCTION

This dissertation consists of three studies on game theory. In the �rst study, we

examine a sequential matching problem. In particular, we study preference restrictions

to implement stable matchings in the equilibrium. In the second study, we propose a

solution concept for the roommate problem. In the third study, we analyze the e¤ects of

transportation costs on regional and multilateral trade agreements.

On Subgame Perfect Implementation of Stable Matchings

This study investigates subgame perfect implementation of stable matchings in

a sequential matching mechanism. We identify some "ring" conditions on the domain

of preferences that are necessary and su¢ cient for the unique, men and women optimal

stable matchings to be implementable in the subgame perfect equilibrium (SPE) of the

sequential mechanism. We also investigate how these ring conditions are related to the

Eckhout (Econ Lett, 2000) and �M (Suh and wen, 2008) conditions.. We introduce the No-

ring-by-which-stable-matching-partners-are-swapped condition, which is weaker than the

Eeckhout condition, and show that it is not only su¢ cient as the Eeckhout condition, but

also necessary for the existence of a unique stable matching and for the unique stable

matching to be in the SPE. We propose the No-ring-by-which-men-swap-optimal-partners

condition and prove that it is both necessary and su¢ cient for the men-optimal stable

matching to be in the SPE of the mechanism when men move �rst. Moreover, it is equivalent

to the �M condition. Hence, we prove that the �M condition is not only su¢ cient but also
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necessary for the men-optimal stable matching to be the SPE outcome of the mechanism

when men move �rst.

A Solution for the Roommate Problem and A Sequential Matching
Mechanism

The study has two parts: In the �rst part, we propose a solution concept for the

roommate problem, and in the second part, we focus on a sequential roommate problem.

The solution concept is related to the P � stability concept (Inarra et al, 2008) and is

called RP � stability (reduced preference pro�le P � stability). Similar to P � stability,

an RP � stable matching always exists. Moreover, whenever a Pareto improvement is

possible in a P � stable matching, RP � stable matching provides a Pareto improvement.

Furthermore, the number of matched individuals in an RP � stable matching is always

greater than or equal to the number of those in any P � stable matching. We introduce a

procedure, which is called the RP procedure, to obtain the set of RP � stable matchings.

In the second part, we focus on a sequential roommate problem and analyze the subgame

perfect equilibrium (SPE) of this problem. First, we show that the set of all potential SPE

outcomes can be identi�ed by the RP procedure. Second, we identify a su¢ cient condition

to guarantee the pairwise stability of the SPE outcome of the sequential game regardless

of the order of individuals in solvable roommate problems, i.e., roommate problems with

stable solutions.

Regional versus Multilateral Trade Agreements: A Welfare Analysis

Why are trade agreements mostly regional? By making a welfare analysis, we

show that the existence of transportation costs may be a possible reason. In particular,

2



we set up a model of N countries by considering the e¤ects of transportation costs on the

welfare of each country. We also consider the relative size of the countries in our analysis

together with measures of comparative advantage. We �rst show that the optimal tari¤

rates are decreasing in transportation costs; i.e., closer countries tend to have higher tari¤

rates between each other, which implies a potential gain from regional agreements. After

that, we make a welfare analysis by using a stationary dynamic tari¤ game approach and

show that it is harder to make an agreement for countries if the transportation cost is

higher; i.e., countries tend to sustain regional agreements to maximize their welfare.
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CHAPTER II

ON SUBGAME PERFECT IMPLEMENTATION OF STABLE MATCHINGS

Introduction

A two-sided matching problem considers, in general, two sets of agents, X and Y,

and the allocation of X among Y "and" Y among X. For example, a hospital-intern problem

is a matching problem that allocates open positions in hospitals among interns and interns

among hospitals. If an intern is matched to a hospital, then the hospital is matched to the

intern. Hence, the exchange in the problem is naturally bilateral. In this paper, we focus

on what is known as the marriage problem, in which two sets of agents are said to be men

and women, and each individual can be matched (i.e., married) at most one individual of

the opposite sex.1

A matching is individually rational if there is no individual who prefers to be

unmatched (i.e., being single or alone) rather than being matched to the his or her partner

under the matching. Two individuals block a matching if they prefer to be matched to

each other rather than being matched to their partners under the matching. A matching is

stable if it is not blocked by any individual or pair of individuals. Gale and Shapley (1962)

proved the existence of a stable matching in a marriage problem through the deferred

acceptance algorithm, which always �nds a stable matching. They also showed that when

men propose in their algorithm, every man likes the resulting matching as much as any other

stable matching; this matching is called the men-optimal stable matching, �M . Similarly,

1See Roth and Sotomayor (1990) for a comprehensive review on two-sided matching problems.
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when women propose in the deferred acceptance algorithm, every woman likes the resulting

matching as much as any other stable matching; this matching is called the women-optimal

stable matching, �W . Hereafter, we will state de�nitions and results only for men as similar

de�nitions and results can be obtained by switching men and women�s roles.

In this paper, we focus on the implementation of �M and the unique stable match-

ing (when there is one) as the Subgame Perfect Equilibrium (SPE) outcomes of a sequential

matching mechanism. Hereafter, we refer to this mechanism as the sequential matching

mechanism (SM-mechanism). In a SM-mechanism, men and women move sequentially ac-

cording to a previously speci�ed order. An individual can choose one of three possible

actions when it is his or her turn to move: (i) Accept a proposal which has been made to

himself or herself at a previous stage, or (ii) propose to a potential partner who moves at

a later stage, or (iii) choose to remain single. The mechanism in which men move before

women is called the men-move-�rst mechanism.

One may expect that the SPE outcome of the SM-mechanism is a stable matching

regardless of the order of individuals�moves. However, the stability of the equilibrium

outcome is not guaranteed without further restrictions on the preference domain. This paper

is motivated by such restrictions to implement stable matchings in the SPE. In particular,

this paper aims to answer two questions: 1) Under which conditions are �M , �W , and the

unique stable matching implementable in the SPE of the SM-mechanism regardless of which

order the individuals move in, and 2) how are these conditions related to other conditions

such as the Eeckhout condition (Eeckhout, 2000) and the alpha conditions (Suh and Wen,

2008), which are previously considered in the context of implementing �M , and the unique

stable matching?
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First, we explain our motivation for the �rst question and highlight the related

literature. Our objective regarding the �rst question is to �nd necessary and su¢ cient

conditions to implement �M and the unique stable matching. We are particularly interested

in �nding "ring" conditions. An ordered set of men and women is a (strict) ring if they

can be arranged in a circle with men-women couples alternating such that each individual

prefers the next person in the circle (e.g., clockwise) to the one who precedes him or her.

We are interested in ring conditions (i.e., condition that are de�ned in terms of certain types

of rings in the preference pro�le) because there is a close relation between stable matchings

and rings in a preference pro�le. For example, in a more general matching problem, which is

called the roommate problem, a stable matching may not exist. The relation between stable

matchings and rings become more obvious in roommate problems because the existence of

stable matching is directly related to the existence of some certain type of rings. We observe

that the close relation between rings and stable matchings also play an important role in

implementing stable matchings context. By exploring this relation, we are able to identify

two ring conditions: The No-ring-by-which-stable-matching-partners-are-swapped (NRS)

condition, and the No-ring-by-which-men-swap-optimal-partners (NRMO) condition. A

preference pro�le satis�es the NRS condition if and only if there is no ring such that each

man and the woman who precedes him are partners in a stable matching or each woman and

the man who precedes her are partners in a stable matching . A preference pro�le satis�es

the NRMO condition if and only if there is no ring such that each man and the woman who

precedes him are partners in the men-optimal stable matching. The �rst objective of this

paper is to show that the NRS condition is a necessary and su¢ cient condition for there

to be a unique stable matching and for the unique stable matching to be implementable as

the SPE outcome of the SM-mechanism regardless of the order of individuals. Similarly,
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we show that the NRMO condition is necessary and su¢ cient to implement �M as the SPE

outcome of the SM-mechanism regardless of the order of individuals in the men-move-�rst

mechanism.

Now, we explain our motivation for the second question. Our objective is to

understand how our ring conditions are related to Eeckhout�s condition (Eeckhout, 2000),

which we refer as the Eeckhout condition hereafter, and the alpha-men (�M ) and alpha-

women (�W ) conditions (Suh and Wen, 2008). A preference pro�le satis�es the Eeckhout

condition if and only if men and women can be ordered such that each man (woman) prefers

the woman (man) with the same index to all women (men) with higher indices. A preference

pro�le satis�es the �M condition if and only if men and women can be ordered such that

each man prefers the woman with the same index to all women with higher indices, and if

a man prefers a woman with a lower index to the woman with the same index as himself,

then he must be preferred less by the woman with the lower index to the man with the

same lower index. We focus on the Eeckhout condition and the �M condition because, as

far as we know, these are the only conditions that are previously considered in the context

of implementing stable matchings. We show that the NRMO condition is an equivalent

ring condition of the �M condition. Hence, we also prove that the �M condition is not

only su¢ cient (Suh and Wen, 2008), but also a necessary condition for �M to be the SPE

outcome of the men-move-�rst mechanism regardless of the order of moves. Furthermore,

we analyze how the NRS condition and the Eeckhout condition are related. We show that

the NRS condition is weaker then the Eeckhout condition.

The reason for our interest in ring conditions is the close relation between stable

matchings and rings in a preference pro�le. There are very important studies in the litera-

ture which show particular interest in the relation between rings and stable matchings. For
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example, Chung (2000) identi�es a condition, called the �no odd rings�condition, that is

su¢ cient for the existence of a stable matching when preferences are not necessarily strict

in the roommate problems.2 Another study is by Irving and Leather (1986) who propose an

algorithm to compute all stable matchings in a marriage problem. In this algorithm, a sta-

ble matching is obtained by breaking a marriage in another stable marriage and satisfying

a subset of identi�ed agents that form a cycle.3 Rings play an important role in Gale�s Top

Trading Cycles algorithm (Shapley and Scarf, 1974) which is used to �nd the unique core

allocation in the context of housing markets, in the YRMH-IGYT (you request my house-I

get your turn) mechanism (Abdulkadiroglu and Sonmez, 1999) which is a generalization of

Gale�s Top Trading Cycles algorithm, and in the Top Trading Cycles and Chains mechanism

(Roth, Sonmez, and Unver, 2004) which is used to solve the kidney exchange problem.

In terms of implementation of stable matchings, one close study is by Suh and Wen

(2008). In their paper, Suh and Wen show that the condition proposed by Eeckhout (2000),

which guarantees the uniqueness of the stable matching as Eeckhout proves, is a su¢ cient

condition for the unique stable matching to be implementable in the SPE for any order

of individuals�moves. They also prove that the uniqueness of the stable matching is not

su¢ cient to implement the unique stable matching in the SPE for any order of individuals�

moves. The �M condition is proved to be a su¢ cient condition for the men-optimal stable

matching to the in the SPE of any men-move �rst mechanism by Suh and Wen (2008).

They also note that the Eeckhout condition implies the �M and �W conditions, but the

reverse is not true.
2A roommate problem is a one-sided matching problem, i.e, there is only one set of agents. A marriage

problem is a special case of a roommate problem. In a roommate problem, the existence of a stable matching
is not guaranteed.

3Irving and Leather (1986), Abulkadiroglu and Sonmez (1999), and Roth, Sonmez, and Unver (2004) use
the term "cycle" instead of the term "ring".
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Another close study is Alcalde and Romero-Medina (2005) who study the imple-

mentation of the student-optimal stable matching in the SPE. In their study, they pro-

pose the students-sequentially-propose-and-colleges-choose mechanism and show that the

student-optimal stable matching is the SPE outcome when colleges�preferences are substi-

tutive.4 Their mechanism is equivalent to the men-move-�rst mechanism with a capacity

constraint imposed on women. Alcalde and Romero-Medina (2005) also argue that a sym-

metrical result would hold for the marriage problem (i.e., each college can accept only one

student) when the role of students and colleges are exchanged. However, as Suh and Wen

noted and as our example shows that their argument does not hold without further restric-

tions imposed on a preference domain. Alcalde and Romero-Medina (2000) and Sotomayor

(2003) show that the core correspondence and/or the set of stable solutions of the college

admissions are implementable in the SPE when colleges�preferences are substitutable.5 All

the mechanisms considered are two stage mechanisms such that agents on one side propose

or choose a set of potential partners simultaneously in the �rst stage and agents on the other

side choose whom to be matched simultaneously in the second stage. In the mechanism

employed by Sotomayor (2003), agents of one side who move in the �rst stage choose a

set of acceptable partners. However, in Alcalde and Romero-Medina (2000), the choice set

of each agent who move in the �rst stage is restricted to be a singleton set. Because the

mechanisms considered are di¤erent from the SM-mechanism in the sense that agents who

are active, (i.e. agents who move in the �rst stage) do not decide sequentially, our results

cannot be seen as a consequence of those obtained by Alcalde and Romero-Medina (2000)

4In college admissions problems, when colleges have preferences over sets of students rather than individ-
ual students, a stable solution may not exist unless colleges�preferences satisfy substitutability. Colleges�
preferences satisfy substitutability if and only if for any two students s 6= s0 and for any subset of students
A with s; s0 2 A, if s is in Chc (A), then s is also in Chc (An fs0g) where Chc (A) is de�ned as the most
prefered set of students by c among all subsets of A (including A).

5It is known that for a college admissions problem, the core of a college admissions problem coincides
with the set of pairwise stable solutions under subsitutable preferences (Roth and Sotomayor, 1990).
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and Sotomayor (2003).

Some other important studies that are interested in the implementation of stable

solutions or the core of the problem are Alcalde (1996), Shin and Suh (1996), and Kara and

Sonmez (1996). Alcalde (1996) has employed and compared two mechanisms one of which

is the Gale-Shapley algorithm to analyze the possibility of implementing stable outcomes

for marriage markets. Shin and Suh (1996) have considered a stable matching mechanism

that implements the stable rule that selects all of the stable matchings in a strong Nash

equilibrium. Kara and Sonmez (1996) have shown that all rules by which Pareto optimal

and individually rational matchings are implementable as supersolutions of the stable rule.

This work is organized as follows. In section 2, we introduce the marriage model

and some useful de�nitions and preliminary results. We present the Eeckhout and �M con-

ditions, and present the results of Eeckhout (2000) and Suh and Wen (2008) that are used

and analyzed throughout the paper. In section 3, we introduce our ring condition. First, we

introduce the NRMO condition and show the equivalency of the NRMO and �M conditions.

Second, we present our results regarding the NRS condition. In section 4, we focus on the

SM-mechanism, and give some preliminary results. In Section 5, we �rst prove that the

NRMO condition is the necessary and su¢ cient condition to implement �M in the SPE of

the men-move-�rst mechanism regardless how individuals move. Next, we prove that the

NRS condition is necessary and su¢ cient to have a unique stable matching and to have the

unique stable matching as the SPE outcome of the Suh-Wen sequential matching game no

matter how individuals move. Section 6 concludes. All proofs are in the Appendix.
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The Model

The one-to-one matching problem that we consider is interpreted as a marriage

problem. In a marriage problem, there are two disjoint �nite sets of individuals, men and

women, denoted by M and W . Each individual has preferences over the individuals of the

opposite sex and being unmatched. A matching is a function � :M [W �!M [W such

that each man is matched at most one woman or remains unmatched, and each woman is

matched to at most one man or remains unmatched. Individual i is unmatched, we write

� (i) = i.

We assume that there are equal number of men and women, jM j = jW j = n.

Individuals�preferences are complete, irre�exive, transitive, and strict. Let �i represents

individual i�s preferences. Individual j is acceptable to i if i prefers to be matched to j rather

than being unmatched, j �i i. Given a preference pro�le �= (�i)i2M[W , a matching � is

individually rational if � (i) is acceptable to i for all i 2M [W . A pair of man and woman

(m;w) blocks � if w �m � (m) and m �w � (w). A matching � is stable if it is individually

rational and if there is no blocking pair for �. A stable matching �M is the men-optimal

stable matching if every man likes �M as much as any other stable matching. The existence

of optimal stable matchings is due to Gale and Shapley (1962).

Preliminary Results

In this section, we present some preliminary results that we bene�t throughout the

paper. The �rst of these results is related to the condition considered by Eeckhout (2000).

Eeckhout Condition. It is possible to rename the individuals such that (i) for all mi 2 M ,
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wi �mi wj for all j > i and (ii) for all wi 2W , mi �wi mj for all j > i.

Eeckhout (2000) shows that the Eeckhout condition is a su¢ cient condition for

there to be a unique stable matching. The following example shows that the Eeckhout

condition is not necessary.

Example 1 The preference pro�le � is given by:

m1 m2 m3 w1 w2 w3
w1 w1 w2 m3 m2 m3

w3 w2 w3 m1 m3 m1

w2 w3 w1 m2 m1 m2

The unique stable matching for � is

� =

�
m1 m2 m3

w1 w2 w3

�
:

The pro�le does not satisfy the Eeckhout Condition because there is no pair of man and
woman who mutually rank each other �rst.

Eeckhout (2000) also shows that a preference pro�le that satis�es the Eeckhout

condition contains no ring of a certain order. An ordered set of men and women is a (strict)

ring if they can be arranged in a circle with men-women couples alternating such that each

individual prefers the next person in the circle (e.g., clockwise) to the one who precedes

him or her. The formal de�nition of a ring is as follows.

De�nition 1 A ring is an ordered list of men and women (x1; x2; : : : ; xk), (k � 3), such
that xi+1 �xi xi�1, 8i = 1; : : : ; k (mod k).

Observe that there must be at least two men and two women in a ring (in a

marriage problem), and each individual in the ring must be the opposite sex of the preceding

and succeeding individuals.

Lemma 1 (Eeckhout, 2000, Lemma 2) A preference pro�le � that satis�es the Eeck-
hout condition contains no ring of type (rk; sk; rl; sl; : : : ; rp; sp), (k � 2), where ri 2 M for
all i = k; : : : ; p, if and only if si 2W for all i = k; : : : ; p such that k < l < � � � < p.
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We should highlight two points about this lemma. First, the lemma does not say

that when the Eeckhout condition is satis�ed, a preference pro�le does not contain a ring.

The rings that are considered here are a certain type of rings. Second, the converse of the

lemma is not true. For example, the pro�le considered in 1 does not contain any such ring,

but it does not satisfy the Eeckhout condition.

Another condition that we consider in this paper is the �M condition that is

introduced by Suh and Wen (2008). They identify �M with the �M condition.

The �M Condition. A preference pro�le � satis�es the �M condition if it is possible to

rename the individuals such that (i) for all mi 2 M , wi �mi wj for all j > i and (ii)

for all mi 2M , if wj �mi wi for all j < i, then mj �wj mi.

Proposition 1 (Suh and Wen, 2008, Proposition 2) Under the �M condition, the men-
optimal stable matching is ��, where �� (mi) = wi for all i 2 f1; : : : ; ng.

The Ring Conditions

The NRMO and �M conditions

In this section, we identify a ring condition, which we call the No-ring-by-which-

men-swap-optimal-partners (NRMO) condition. We analyze the �M condition, which Suh

and Wen (2008) introduce, and its relation to the NRMO condition. We show that the

NRMO and �M conditions are equivalent. Now, the de�nition of the NRMO condition is

introduced.

The NRMO condition. A preference pro�le � satis�es the NRMO condition if and only if

there is no ring (wk;mk; : : : ; wt;mt), such that �M (wi) = mi for all i = k; : : : ; t.
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Observe that if a preference pro�le satisfy the �M condition, then it is possible

to order the individuals such that for any man, all women with higher indices are less

preferred than the woman who has the same index as the man. Such an ordering would

not be possible is there is a ring of type (wk;mk; : : : ; wt;mt), such that �M (wi) = mi for

all i = k; : : : ; t because eventually there is at least one man who prefers a woman with a

higher index to the woman with the same index due to the nature of a ring.

Lemma 2 If a preference pro�le � satis�es the NRMO condition, then there is at least one
man who is matched to his top choice in �M .

Proposition 2 A preference pro�le � satis�es the �M condition if and only if it satis�es
the NRMO condition.

The Eeckhout and NRS conditions

In this section we focus on the Eeckhout condition. We introduce the No-ring-

by-which-stable-matching-partners-are-swapped (NRS) condition, and show that the NRS

condition is weaker then the Eeckhout condition, yet it is su¢ cient for there to be a unique

stable matching. The NRS condition focuses on rings in which each man in the ring and

the woman who precedes him or each woman in the ring and the man who precedes him

are stable matching partners. The condition requires the nonexistence of such rings.

NRS Condition. A preference pro�le � satis�es the NRS condition if and only if there is

no ring (r1; s1; : : : ; rk; sk) such that � (ri) = si where � is a stable matching ri 2M if

and only if si 2W for all i = k; : : : ; t .

The preference pro�le in Example 1 satis�es the NRS condition. This is because

for any individual ri 2M [W , if � (rj) �ri � (ri), then we have � (rj) �rj � (ri). Hence, a

ring which contains a group of individuals and their partners in a stable matching cannot be

formed. The following example shows a preference pro�le which violates the NRS condition.
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Example 2 The following preference pro�le violates the NRS condition.

� 1

m1 m2 m3 w1 w2 w3
w3 w3 w2 m2 m1 m3

w1 w2 w3 m1 m2 m1

w2 w1 w1 m3 m3 m2

The two stable matchings are

�M =

�
m1 m2 m3

w1 w2 w3

�
and �W =

�
m1 m2 m3

w2 w3 w1

�
.

A ring by which the NRS condition is violated is (w2;m2; w3;m3).

Notice that the NRS condition focuses on rings that make it possible for a group

of the same sex individuals to be better o¤ by swapping their stable matching partners in

the sequential matching mechanism. That is, the NRS condition suggests that rings by

which a group of same sex individuals swap their stable matching partners are relevant to

the uniqueness and implementation of stable matchings and all other rings are irrelevant.

Observe that the Eeckhout condition is stronger than the NRS condition. This is because if

there is a ring by which the NRS condition is violated, then for any ordering of individuals,

we always have rj �ri si with j > i, for some individuals rj ; ri; si. Hence, whenever the NRS

condition is violated, the Eeckhout condition is also violated. Furthermore, if we let the

stable matching in the de�nition of the NRS condition be �M and si = mi, the de�nition

becomes the de�nition of the NRMO condition. Hence, the NRS condition implies the

NRMO condition. Next, we show that the NRS condition is a su¢ cient condition for there

to be a unique stable matching in the following proposition.

Proposition 3 If a preference pro�le � satis�es the NRS condition, then there is a unique
stable matching for �.
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A sequential Matching Mechanism

The sequential matching mechanism (SM-mechanism) considered in this paper is

a 2n stage extensive form game of perfect information. The order of moves is given by

a surjective function � : f1; : : : ; 2ng �! M [W , where � (k) denotes the individual who

moves in the kth stage of the mechanism.

In stage 1, � (1) either proposes to a potential mate or chooses to be single.

In stage k, 1 < k < 2n, after observing the history of the game up to stage k, � (k)

either (i) accepts one potential mate who has proposed to him or her in a previous stage,

(ii) proposes to a potential mate who will move in a subsequent stage, or (iii) chooses to

remain single.

In stage 2n, � (2n) either accepts one potential mate who has proposed to him or

her in a previous stage, or chooses to remain single.

There is a di¤erent sequential mechanism for every order of moves. A mechanism

in which all men move before women is called a men-move-�rst mechanism. A women-

move-�rst mechanism is de�ned similarly.

Given an order of moves, the outcome of this mechanism is a matching. This is

because an individual cannot accept more than one proposal, and by making a proposal or by

deciding to remain single, he or she must reject all proposals that has been received. Because

preferences are strict, the SPE outcome of the SM-mechanism for a given an order of moves

is unique. Moreover, the SPE outcome of the game is an individually rational matching.

This is because an individual i would choose to remain single rather than proposing to or

accepting a proposal from someone who is not acceptable for i.

Suh and Wen (2008) show that the Eeckhout condition is also a su¢ cient condition

to implement the unique stable matching as the SPE outcome of the SM-mechanism for any
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order of moves. They also show that the �M condition is a su¢ cient condition to implement

�M in the SPE of the men-move-�rst sequential matching mechanism regardless of which

order the individuals move in.
Proposition 4 (Suh and Wen, 2008, Theorem 3) Under the �M condition, the SPE
outcome of the men-move-�rst mechanism is the men-optimal stable matching �M .

The men-optimal and the unique stable matchings in the equilibrium

The men-optimal stable matching in the equilibrium

In this section, we investigate the men-move-�rst mechanism. In particular, we

focus on the conditions under which �M is the SPE outcome of the men-move-�rst mecha-

nism. Our main purpose is to show that the NRMO condition is a necessary and su¢ cient

condition for �M to be the SPE outcome of the men-move-�rst mechanism for any order of

moves. By Propositions 2 and 4, we already know that the NRMO condition is a su¢ cient

condition for �M to be the SPE of any men-move-�rst mechanism. Hence, we only need to

prove that the NRMO condition is also necessary for �M to be the SPE of any men-move-

�rst mechanism. The next proposition is used to prove the necessity and su¢ ciency of the

NRMO condition.

Proposition 5 There is no men-move-�rst mechanism such that a man is matched to a
woman worse than his �M partner in the SPE.

Proposition 6 A preference pro�le � satis�es the NRMO condition if and only if the SPE
outcome of the men-move-�rst mechanism is �M regardless the order of moves.

We �nish this section by the following corollary and Figure 1 which summarizes

our results of this section.

Corollary 1 Given a preference pro�le �, the SPE outcome of the SM-mechanism for any
order of moves is �M if and only if � satis�es the NRMO condition if and only if � satis�es
the �M condition.
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Figure 1. The NRMO and �M Conditions

The unique stable matching in the equilibrium

In this section, we are interested in identifying a necessary and su¢ cient condition

to guarantee the stability of the SPE outcome of any sequential mechanism. We show that

the NRS condition serves the purpose of this section. First, we prove that if a preference

pro�le satis�es the NRS condition, not only there is a unique stable matching, but this

matching is also the unique SPE outcome of the SM-mechanism for any order of moves. We

present two lemmas that are used throughout the paper. Before we present these lemmas,

we need to introduce new notation and de�nitions that are useful. A preference pro�le � and

a SM-mechanism is given. Set P tk (� (i)), i = 1; 2; : : : ; 2n, is de�ned as the set of individuals

who have proposed to individual � (i) between the beginning of stage k until the beginning

of stage t and set T k (� (k)) is de�ned as f� (l) 2 M [W : l > k; ��1 (� (� (l))) < k, and
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� (k) ��(l) u, for all u 2 P k1 (� (l))g. A strategy pro�le s� = (s�1; : : : ; s�2n), where s�j denotes

the strategy for an individual j, and stable matching � pair, (s�; �), is de�ned as follows:

s��(1) = �(� (1))

...

s��(k) =

8>>>>>><>>>>>>:

accept v if v ��(k) w, for all w 2 P k1 (� (k)) [ T k (� (k))

propose v if v ��(k) w, for all w 2 P k1 (� (k)) [ T k (� (k))

stay single otherwise

...

s�2n =

8>><>>:
accept v if v 2 P 2n1 (� (2n)) and v ��(2n) w, for all w 2 P 2n1 (� (2n))

stay single otherwise

Before we comment on s�, let us explain set T k (� (k)). Each individual � (l)

in T k (� (k)) moves after � (k), � (� (l)) moves before � (k), and � (l) has not received

a proposal from someone whom � (l) prefers to � (k) until stage k. If s� is played, the

individual who moves in stage 1, � (1), can only propose to his or her � partner. In stage

k, 1 < k < 2n, the individual who moves in stage k, � (k), can either accept individual

v�s proposal or propose to individual v, if v is the most preferred individual among those

who have proposed to � (k) and among those whose � partners have moved before v and

who like � (k) as much as anyone who has proposed them until stage k. Otherwise, � (k)

stays single. The individual who moves in the last stage, � (2n), can either accept the best

proposal in hand or stays single. Now we present the lemmas.

Lemma 3 Given a preference pro�le � and a SM-mechanism, if each individual i plays
s�i in this mechanism, the matching induced by s

� is the stable matching is �, for any pair
(s�; �).

Lemma 4 Given a preference pro�le � and a SM-mechanism, for any pair (s�; �), s� is the
SPE strategy, if � does not contain a ring as (ri; � (ri) ; ri+1; � (ri+1) ; : : : ; rk; � (rk)) where
ri+1 = �

0 (� (ri)) for some matching �0 6= �.
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Figure 2. The Eeckhout and NRS Conditions

Proposition 7 If a preference pro�le � satis�es the NRS condition, the SPE outcome of
the SM-mechanism is a stable matching for any order of moves.

So far, only the su¢ ciency of the NRS condition has been considered. Our next

step is to show that when there is a unique stable matching for a preference pro�le, the

NRS condition is also a necessary condition to implement this stable matching as the SPE

outcome of the sequential matching game regardless of how individuals move.

Proposition 8 For a preference pro�le �, if there is a unique stable matching � and � is
the SPE outcome of the SM-mechanism for any order of moves, then the preference pro�le
� satis�es the NRS condition.

Figure 2 summarizes the results that are considered this section.
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Conclusion

One may suppose that the subgame perfect equilibrium outcome of the sequential

matching mechanism considered in this paper is a stable matching regardless of the order

of individuals. However, as we show in our �rst example, the stability of the equilibrium

outcome is not guaranteed under unrestricted preference domain assumption. Motivated

by this fact, we search for "ring" conditions that a preference pro�le should satisfy to

implement stable matchings. The reason for our interest in ring conditions is the relation

between rings (or cycles) in a pro�le and stable allocations, which has gained considerable

attention in many di¤erent contexts in the literature. We also investigate the conditions

previously considered for implementation of stable matchings, and explain these conditions

in terms of rings.

In this paper, we answer two questions: 1) Under which "ring" conditions are �M ,

�W , and the unique stable matching implementable in the SPE of the SM-mechanism re-

gardless of which order the individuals move in, and 2) how are the ring conditions related

to other conditions such as the Eeckhout condition (Eeckhout, 2000) and the alpha condi-

tions (Suh and Wen, 2008) that are previously considered in the context of implementing

�M ,�W , and the unique stable matching?

We introduce the NRS and NRMO conditions to answer the �rst question. The

NRS condition is used to guarantee the existence of a unique stable matching and to im-

plement the unique stable matching. That is, we prove that the NRS condition is both

necessary and su¢ cient for there to be a unique stable matching and for this matching to

be implementable in the SPE independent of the order of individuals�moves. The NRMO

condition is introduced to implement �M and is shown that it is a necessary and su¢ cient

condition for �M to be the SPE outcome of the men-move-�rst mechanism.
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In order to answer the second question, we �rst show that the NRMO condition

is an equivalent ring condition of the �M . Second, we show that the NRS condition is a

weaker condition for both the existence and implementation of the unique stable matching.

As a future research project, we plan to propose a more general ring condition to

implement all stable matchings in the SPE. Our conjecture for such a ring condition is the

following: If a preference pro�le does not contain a ring such that an unstable matching

can be obtained from a stable matching � through this ring when a group of same sex

individuals switch their partners in �, then the SPE outcome of the sequential mechanism

is a stable matching no matter which order individuals move in. A future research topic

may be to show that such a ring condition is a necessary and su¢ cient condition to have a

stable matching in the SPE.

Another question that we want to ask is the following: Is there any the relation

between the order of individual and the equilibrium outcome? In particular, we want to

focus on the order of moves of individuals and search for a certain rule to order individuals

to implement speci�c stable matchings.

Appendix.

Lemma 2. If a preference pro�le � satis�es the NRMO condition, then there is at least

one man who is matched to his top choice in �M .

Proof. On the contrary, suppose that no man is matched to his top choice in �M .

We show that � does not satisfy the NRMO condition.

Take an arbitrary man and rename him as m1. Note that w �m1 �
M (m1) = w1

for some w 2W by assumption. Let w2 be m1�s top ranked woman and let �M (m2) = w2.

By assumption, w �m2 w2 for some w 2 W . If m2�s top ranked woman is w1, we have a
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ring (w1;m1; w2;m2) and � does not satisfy the NRMO condition. Otherwise, let m2�s top

ranked woman be w3 and let �M (m3) = w3. By assumption, w �m3 w3 for some w 2W . If

m3�s top listed woman is in fw1; w2g. Then, we have a ring of type (w1;m1; w2;m2; w3;m3)

if m3�s top listed woman is w1 or (w2;m2; w3;m3) if m3�s top listed woman is w2. The

NRMO condition is violated in either case. In an arbitrary step k of this process, we either

have a ring by which the condition is violated or mk�s top ranked woman wk+1 is not in

fw1; : : : ; wkg. Because there is a �nite number of individuals, the process must eventually

terminate a ring. Hence, the NRMO condition is violated.

Proposition 2. A preference pro�le � satis�es the �M condition if and only if it satis�es

the NRMO condition.

Proof. First we prove the su¢ ciency of the NRMO condition. Suppose that �

satis�es the NRMO condition. By lemma 2, there is at least one man who is matched to his

top choice in �M . Rename all men who are matched to their top choices in �M arbitrarily

as m1; : : : ;mk, 1 � k � n, and let M1 = fm1; : : : ;mkg. Moreover, rename all women in

�M (M1) such that �M (mi) = wi for all i 2 f1; : : : ; kg.

Obtain a reduced preference pro�le �1 by eliminating all individuals in M1 [

�M (M1) from the original pro�le �. Observe that �1satis�es the NRMO condition because

if �1does not satisfy the NRMO condition due to a ring, then � violates the NRMO

condition by the same ring. By lemma 2, there is at least one man who is matched to

his top choice in �M for �1. Rename all men who are matched to their top choices in

�M in the reduced pro�le �1 arbitrarily as mk+1; : : : ;mm, k + 1 � m � n. Let M2 =

fmk; : : : ;mmg. Also rename all women in �M (M2) such that �M (mi) = wi for all i 2

fk + 1; : : : ;mg, and obtain a reduced preference pro�le �2 by eliminating all individuals inS2
i=1

�
Mi [ �M (M2)

�
. The process eventually stops after step t when all individuals are
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renumbered and eliminated from �t. After individuals are renumbered, we have wi �mi w

for all w 2Wn fwig, for all i 2 f1; : : : ; kg. Moreover, any reduced pro�le �k coincides with

� in terms of preference ordering of all individuals in (M [W ) n
Sk
i=1

�
Mi [ �M (Mi)

�
,

k = 1; : : : ; t. Thus, for all mi 2M , we have wi �mi wj , for all j > i. Furthermore, if there

is a woman wj such that wj �mi wi for some j < i, then mj �wj mi by the stability of �M ,

for all mi 2M . Thus, � satis�es the �M condition.

Now, we prove the necessity of the NRMO condition. Suppose that � satis�es

the �M condition. By Proposition 1, wi = �M (mi) for all i 2 f1; : : : ; ng. Now, assume

to the contrary that � does not satisfy the NRMO condition. Consider an arbitrary ring

(wa;ma; wb;mb; : : : ; wk;mk) and wi = �M (mi) for all i 2 fa; : : : ; kg. By the �M condition,

a < k because wa �mk
wk. By similar logic, we have k < � � � < b < a; this contradicts

a < k.

Proposition 3. If a preference pro�le � satis�es the NRS condition, then there is a unique

stable matching for �.

Proof. Suppose that there are multiple stable matchings for the preference pro�le

�. So, the men and women optimal matchings, �M and �W , are distinct. Let M 0 �M be

the set of all men such that �M (m) 6= �W (m) for all m 2M 0. By optimality, �M (m) �m

�W (m) for all m 2M 0. That is, for any m 2M 0, we have �W (m) = �M (m0) for some m0 2

Mn fmg with � (m0) 6= �0 (m�) for any m� 6= m. Because M 0 is �nite, there exists a group

of men fmi; : : : ;mkg 2M 0 who form a ring
�
�M (mi) ;mi; �

M (mj) ;mj ; : : : ; �
M (mk) ;mk

�
.

Proposition 5. There is no men-move-�rst mechanism such that a man is matched to a

woman worse than his �M partner in the SPE.
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Proof. Suppose to the contrary that there exists a men-move-�rst mechanism

such that a man is matched to a woman worse than his men-optimal partner in the SPE

outcome of this mechanism. Let the SPE outcome be a matching � 6= �M . Consider the �rst

man who is matched to a woman worse than his men-optimal partner in this mechanism.

Let this man be m1 and �M (m1) be w1. When it�s m1�s turn to move, the reason for m1�s

not proposing to w1 is that w1 rejects m1 in favor of a man whom she likes more than m1

if m1 proposes to w1. Consider the subgame starting with m1�s proposal to w1. By the

stability of �M , the man who proposes to w1 in the subgame where m1 proposes to w1 likes

his �M partner more than w1. Hence, in the subgame where m1 proposes to w1, there is

at least one man who proposes to a woman worse than his �M partner according to his

equilibrium strategy, and this man moves after m1, by assumption. Let the �rst man who

proposes to a woman worse than his �M partner according to his equilibrium strategy in

the subgame where m1 proposes to w1 be m2. Let � (m2) be w2. Note that m2 is the �rst

man who proposes to a woman worse than w2 and is not necessarily the man who proposes

to w1. Hence, every man who moves after m1 and before m2 has either proposed to his �M

partner or a more preferred woman according to his equilibrium strategy in the subgame

where m1 proposes to w1. Thus, when it is m2�s turn to move, if w2 has already a proposal

from another man, it must be from a man to whom w2 prefers m2. Consider the subgame

starting with m2�s proposal. Similarly, in this subgame, when it is m2�s turn to move, the

reason for m2�s not proposing to w2 is that if he does so, w2 rejects m2 in favor of another

man, whom she likes more than m2. By the stability of �M , the man who proposes to w2

likes his �M partner better than w2. Hence, there exists at least one man who proposes to a

woman worse than his mate under �M according to his equilibrium strategy in the subgame

where m1 proposes w1 and m2 proposes to w2. In any step j of this process, we pick the
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�rst man who proposes to a woman worse than his �M partner, and rename him as mj .

Then mj proposes to �M (mj) = wj instead of proposing to a woman worse than wk.

Consider an arbitrary step k of the process which starts with mk�s proposal. Ob-

serve that wk has not received a proposal from a man whom she prefers to mk. If wk has

already an o¤er in her hand, then it must be from a man to whom she prefers mk.

Because there are �nite number of men, this process must eventually end in a step,

say t, in which mt proposes to �M (mt) = wt, and there is no other man who moves after

mt and proposes to a woman worse than his �M partner. On the other hand, we know that

mt is the �rst man who would propose to a woman worse than �M (mt) = wt after step t�1

according to his equilibrium strategy. Hence, it must be the case that if he mt proposes to

wt, he will be rejected in favor of another man, contradiction.

Proposition 6. A preference pro�le � satis�es the NRMO condition if and only if the SPE

outcome of the men-move-�rst mechanism is �M regardless the order of moves.

Proof. By Proposition 4, the �M condition is a su¢ cient condition for �M to

be the SPE outcome. By Proposition 2, the NRMO condition is also a su¢ cient condition

for �M to be the SPE outcome. Hence, we only need to show the necessity of the NRMO

condition.

Suppose that � does not satisfy the NRMO condition. Hence, � contains a ring

(wk;mk; : : : ; wt;mt) such that �M (wi) = mi 8i = k; : : : ; t. We show that there is an order

of moves such that SPE outcome of the mechanism is not �M .

Let (w1;m1; : : : ; wt;mt) be a ring such that �M (wi) = mi 8i = 1; : : : ; t. If there is

more than one ring of the same type, consider the ring (wk;mk; : : : ; wt;mt) with wi+1 �mi w

for all w 2 fwk; : : : ; wtg, for every man mi in fmk; : : : ;mtg. Such a ring exists because if

26



wj �mi wi+1 for some wj 2 fwk; : : : ; wtg, then we can obtain another ring of the same type

by eliminating individuals wi+1;mi+1; : : : ; wj�1;mj�1 from the original ring.

Let M1 = fm1; : : : ;mtg be the set of all men in the ring. Suppose that all men

in MnM1 move before all men in M1 and each man mi in M1 is followed by mi+1, i =

1; : : : ; t; (mod t). In the �rst case that we need to consider, there exists a man m0 2MnM1

who proposes to a woman w00 6= �M (m). So, the SPE outcome is not �M , and the proof is

done.

In the second case that we need to consider, each man in MnM1 proposes to his

�M partner. We claim that that each man m in M1 proposes to a woman in �M (M1).

This is because if a man m in M1 proposes to a woman w0 in Wn�M (M1), w0 refuses

m in favor of �M (w0) because �M (w0) �w0 m by the stability of �M . Hence, each man

m in M1 proposes to a woman in �M (M1). Suppose that each man mi in M1 proposes

to wi+1; i = 1; : : : ; k; (mod k). We claim that no man can do better by proposing to another

woman. Because wi+1 �mi w for all w 2 �M (M1), mi cannot do better by proposing

to another woman if wi+1 accepts mi�s proposal. Moreover, because the only proposal in

wi+1�s hand is from mi, wi+1 accepts mi�s o¤er. Hence, mi cannot do better by proposing

to another woman. So, the SPE outcome is not �M . The proof is complete.

Lemma 3. Given a preference pro�le � and a SM-mechanism, if each individual i plays s�i

in this mechanism, the matching induced by s� is the stable matching is �, for any

pair (s�; �).

Proof. We use an induction proof. Suppose that each individual plays s�i . We

show that each individual i is matched with � (i), i.e., proposes to � (i) and is accepted or

accepts � (i)�s proposal when i plays s�i . Individual � (1) proposes to �(� (1)) according to

s��(1). Assume that in stage k, � (k) plays s
�
�(k) and is matched with �(� (k)). Consider step
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k + 1. We know that � (k + 1) has not received a proposal from an individual � (j) with

j < k and � (j) 6= �(� (k)), because every � (j) with j < k and � (j) 6= �(� (k)) is matched

with � (� (j)). Now, we consider all potential partners who move in subsequent stages.

According to s��(k+1), if � (k + 1) prefers �(� (k + 1)) more than all potential partners who

move in subsequent stages, then � (k + 1) should be matched with �(� (k + 1)). Consider

an arbitrary individual � (l) such that � (l) ��(k+1) � (� (k + 1)) and l > k. For � (l) to be

a potential partner of � (k + 1), � (l) must be in T k+1 (� (k + 1)). That is, � (� (l)) must

move before � (k + 1) and � (k + 1) ��(l) u for all u 2 P k1 (� (l)). By our initial assumption,

� (� (l)) must have already proposed to � (l), hence, � (k + 1) 6��(l) u for all u 2 P k1 (� (l)).

Because � (l) is chosen arbitrarily, we conclude that T k+1 (� (k + 1)) n f� (� (k + 1))g is

empty. That is, � (k + 1) should be matched with �(� (k + 1)) if he or she play s��(k+1).

Lemma 4. Given a preference pro�le � and a SM-mechanism, for any pair (s�; �), s� is the

SPE strategy, if � does not contain a ring as (ri; � (ri) ; ri+1; � (ri+1) ; : : : ; rk; � (rk))

where ri+1 = �0 (� (ri)) for some matching �0 6= �.

Proof. Given a preference pro�le � and a SM-mechanism, we know that the

matching induced by s� is the stable matching � by lemma 3. We show that if s� is

not the SPE strategy, then there is a ring (ri; � (ri) ; ri+1; � (ri+1) ; : : : ; rk; � (rk)) where

ri+1 = �0 (� (ri)) for some matching �0 6= �. Suppose that s� is not the SPE strategy.

Hence, there exists a subgame in which when an individual v 2 M [W is the �rst one to

move, v deviates from s�v and can be matched to an individual ranked higher than � (v)

in v�s preference list when all i 2 M [ Wn fvg plays s�i . Given the order of moves of

individuals, assume without loss of generality that m1 is the person who deviates from s�

and let the matching outcome when m1 deviates be �0. Let � (m1) = w1 and �0 (m1) = w2.

Because each individual i who moves before m1, plays s�i , each individual i who moves
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before m1 proposes to or accepts an o¤er from � (i) by lemma 3. Hence, w2 cannot be

one of those individual who move before m1 because otherwise she would have proposed

to m2. That is, w2 moves after m1. Because w2 is matched to m1, it must be the case

that the best that w2 can do according to s�w2 is to accept m1�s o¤er. Hence, m1 must

be the best man among those in P �
�1(w2)

1 (w2) [ T �
�1(w2) (w2). This is possible only if

� (w2) = m2 has moved before w2 and has not proposed to w2. Hence, there is a women in

P �
�1(m2)

1 (m2)[T �
�1(m2) (m2), say w3, such that w3 �m2 w2, and m2 must be the best man

among those in P �
�1(w3)

1 (w3) [ T �
�1(w2) (w3). If w3 = w1, this procedure terminates in this

step and we have a ring (w1;m1; w2;m2) with w2 = �0 (m1) and w1 = �0 (m2), hence, the

proof is done. If w3 6= w1, there is a women in P �
�1(m3)

1 (m3) [ T �
�1(m3) (m3), say w4, such

that w4 �m3 w3. andm3 must be the best man among those in P �
�1(w4)

1 (w4)[T �
�1(w4) (w4).

If w4 2 fw1; w2g, the procedure terminates in this step, and we have a ring which is

(w1;m1; w2;m2; w3;m3) with w2 = �0 (m1), w3 = �0 (m2), and w1 = �0 (m3) if w4 = w1, or

(w2;m2; w3;m3) with w3 = �0 (m2), and w2 = �0 (m3) if w4 = w2. In either case, the proof

is done.

This procedure must either terminate in some step where wk is considered or there

exists a woman wj+1 with wj+1 = �0 (mj). If the procedure terminates, we obtain a ring

(wi; � (wi) ; : : : ; wk; � (wk)) with wj+1 = �0 (� (wj)) for all j = i; : : : k,(mod j). By the fact

that there are �nite number of individuals, the procedure must eventually terminate and we

obtain a ring (wi; � (wi) ; : : : ; wk; � (wk)) with wj+1 = �0 (� (wj)) for all j = i; : : : k,(mod j).

Hence, the proof is done.

Proposition 7. If a preference pro�le � satis�es the NRS condition, the SPE outcome of

the SM-mechanism for any order of moves is a stable matching.

Proof. Suppose that � satis�es the NRS condition. By Proposition 3, we know
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that there exists a unique stable matching �. By lemma 4, strategy s� is the SPE strategy

for this mechanism given the pair (s�; �). By lemma 3, this SPE outcome is �. Because the

SPE outcome of any SM-mechanism is unique, we conclude that the unique stable matching

� for � is the SPE outcome of the SM-mechanism.

Proposition 8. For a preference pro�le �, if there is a unique stable matching � and � is

the SPE outcome of the SM-mechanism for any order of moves, then the preference

pro�le � satis�es the NRS condition.

Proof. Suppose that the preference pro�le � does not satisfy the NRS condition.

If there are multiple stable matchings, then the proof is complete.

Suppose that there is a unique stable matching �. Hence, � = �M = �W . Because

� does not satisfy the NRS condition, there exists a ring of type (wl;ml; : : : ; wt;mt) or

(ml; wl; : : : ;mt; wt), and � (mi) = wi where � is the unique stable matching. Without loss

of generality, suppose that the ring is of type (wl;ml; wm;mm; : : : ; wt;mt). Hence, � does

not satisfy the NRMO condition. By Proposition 6, we know that there exists an order of

moves in the men-move-�rst mechanism such that the SPE outcome is matching �0 such

that �0 �M 0 � for a nonempty subset of men M 0. Hence, the proof is complete.
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CHAPTER III

A SOLUTION FOR THE ROOMMATE PROBLEM AND A SEQUENTIAL
MATCHING MECHANISM

Introduction

In a roommate problem, there is a set of individuals and each individual has a

preference over all other individuals, including oneself. A roommate problem is the problem

of identifying pairs (i.e., individuals who share a room) and singletons (i.e., individuals who

stay alone). The outcome is referred as a matching. A matching is individually rational

if there is no individual who would stay alone rather than sharing a room with his mate

in the matching. Two individuals block the matching if they prefer sharing a room with

each other rather than sharing the room with their current mates in the matching. A

matching is (pairwise) stable if it is individually rational and it is not blocked by a pair.

A roommate problem may not have a stable solution. A roommate problem has a solution

or is solvable if there is a stable matching, unsolvable otherwise. Tan (1991) shows that a

roommate problem has a stable matching if and only if there is a stable partition without

an odd ring. A stable partition is a partition of the set of individuals such that each set in a

stable partition is either a ring, or a pair of mutually acceptable individuals, or a singleton,

and the partition satis�es stability between sets and also within each set. A ring is an

ordered subset of individuals such that each individual prefers the subsequent individual to

the preceding individual. A ring is an odd (even) ring if there is an odd (even) number of

people in the ring.

Inarra et al (2008) introduce P � stability as a solution concept such that the
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existence of a P � stable matching is guaranteed. The P � stability concept is based on

Tan�s (1991) stable partitions. For a stable partition P , a P � stable matching is one that

matches each individual to his subsequent or preceding individual in any set of the stable

partition P , and one individual is unmatched (i.e., stays alone) if the set is an odd ring or

singleton.

The paper has two parts: In the �rst part, we focus on a solution concept for

the roommate problem, and in the second part we study a sequential matching mechanism

for the roommate problem and analyze the subgame perfect equilibrium (SPE) of this

mechanism. In the �rst part, we propose a solution concept, which is called RP � stability

(reduced preference pro�le P�stability). We introduce a procedure, which is called the RP

procedure, and we de�ne an RP�stablematching as the outcome of the RP procedure. Our

motivation for introducing the RP � stability is that the number of matched individuals

in any RP � stable matching is always greater than or equal to the number of those in

any P � stable matching. Moreover, whenever a Pareto improvement is possible based

on a P � stable matching, there is an RP � stable matching which Pareto dominates the

corresponding P � stable matching.

The RP procedure starts with a stable partition1 in a roommate problem. A

reduced preference pro�le is obtained by cutting an odd ring in the stable partition, i.e., by

eliminating each individual in an arbitrary pair of succeeding and preceding individuals in

the odd ring from each other�s preference list. A stable partition with respect to a reduced

pro�le is called a reduced stable partition. Once an odd ring is cut and a reduced pro�le

is obtained, the procedure continues cutting one odd ring in each reduced pro�le stable

partition until a pro�le for which there is no stable partition with an odd ring is reached.

1The procedure chooses odd rings according to a protocol which is explained in details when the protocol
is presented.
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Such a reduced pro�le is called a �nal reduced pro�le. A stable partition with respect to a

�nal reduced pro�le is a �nal stable partition. When a �nal reduced pro�le is reached, the

procedure considers the most recent step where there is an odd ring in which there are still

some individuals who have not been used to cut the odd ring, and the procedure continues

by cutting that odd ring. The procedure eventually stops when there is no such step to

consider. An RP � stable matching is a P � stable matching with respect to a �nal stable

partition that is obtained through the procedure.

Given a pro�le, when there is a stable partition with an odd ring, there is always an

individual i in the odd ring who is not matched to one of his neighbors (the succeeding and

the preceding individuals) in any matching. The RP procedure cuts odd rings to capture

the idea that an individual cannot be matched to either of his neighbors in an odd ring.

In all P � stable matchings in which individual i is not matched to one of his neighbors in

the odd ring, i would be unmatched. But, individual i should not be unmatched if there

is another individual j such that both i and j prefer being matched to each other rather

than being unmatched. In such a situation, i and j would be matched in an RP � stable

matching and observe that matching i and j would be a Pareto improvement, and the

number of matches is greater when i and j are matched.

Obviously, if there is no partition with an odd ring, then the set of RP � stable

matchings is equal to the set of P � stable matchings. Hence, when the roommate problem

is solvable, RP � stability and P � stability are equivalent. Moreover, because the set

of P � stable matchings and the set of stable matchings are equivalent when the problem

is solvable (Inarra et al 2008), RP � stability and stability are also equivalent concepts

for solvable roommate problems. However, P � stability and RP � stability concepts are

unrelated, i.e., neither of them implies the other, for unsolvable roommate problems.
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We focus on a roommate problem when individuals move sequentially according

to a previously speci�ed order in the second part of the paper. In the mechanism, an

individual can choose one of the three possible actions when it is his turn to move: (i)

Accept an o¤er from another individual who has proposed to him at a previous stage, or

(ii) propose to a potential individual who moves at a later stage, or (iii) choose to remain

single. We are interested in analyzing the subgame perfect equilibrium the (SPE) outcome

of the sequential matching mechanism2.

In the second part, our �rst objective is to show that the RP procedure can be

used to identify the set of all potential SPE outcomes. Our second objective is to identify

a su¢ cient condition which guarantees the stability of the SPE outcome regardless of the

order of individuals.

Odd rings play an important role in the sequential game as they do for the existence

of stable matchings in roommate problems. Because of an odd ring, an individual may not

be matched to either of his neighbors. The same individual may not be matched to his best

alternative after his neighbors just because i and his next best alternative, too, are in an

odd ring. Obviously, an odd ring, which contains i and his next best alternative, would

only appear in a reduced stable partition, but not appear in the original stable partition.

Because the RP procedure captures such odd rings, too, by considering the reduced pro�les,

it is able to identify all potential SPE outcomes. By analyzing the relation between the SPE

and RP � stability, we are able to identify a su¢ cient condition to guarantee the stability

of the SPE outcome regardless of the order of moves in solvable roommate problems.

The roommate problem was introduced by Gale and Shapley (1962). They show

that a stable matching may not exist in a roommate problem, but there is a stable matching

2Hereafter, when we say the SPE outcome, we mean the SPE outcome of the sequential mechanism.
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for every marriage problem, which is a special case of the roommate problem. There are

many studies that investigate stable matchings in both roommate and marriage problems

and the conditions that can guarantee the existence of a stable matching in roommate

problems.3 Tan (1990) proposes a necessary and su¢ cient condition for the existence of a

stable matching in roommate problems with strict preferences. Chung (2000) introduces the

"no odd ring" condition and proves that the no odd ring condition is a su¢ cient condition

for the existence of a stable matching in roommate problems with weak preferences. Abeledo

and Isaak (1991) show that the set of mutually acceptable pairs can be viewed as a graph,

and a stable matching exists under any preference pro�le if and only if the acceptability

graph is bipartite.

Because the existence of a stable matching is not guaranteed in a roommate prob-

lem, one may ask whether we can �nd matchings which always exist when we relax the

stability concept. Tan (1990) proposes an algorithm that �nds a maximum stable match-

ing : A matching with maximum number of disjoint pairs of persons such that these pairs are

stable among themselves. Abraham et al. (2005) focus on �nding almost stable matchings:

Matchings that admit fewer blocking pairs. In Klaus et al. (2008), it is shown that the

set of stochastically stable matchings coincides with the set of absorbing matchings. They

assert that the set of absorbing matchings is the only solution concept that is core consis-

tent and shares the stochastic stability characteristic with the core. Inarra et al. (2008,

2010) focus on solution concepts in unsolvable roommate problems such as P�stability and

absorbing sets. They prove that absorbing sets always exist and if a stable matching exists,

the absorbing set coincides with the set of stable matchings. Moreover, an absorbing set

satis�es the outer stability ; i.e., all matchings that are not in the solution set are dominated

3Gale Shapley (1962), Irving (1985), Roth and Sotomayor (1990) have also investigated the stability
concept in marriage problems.
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by matchings in the solution set. They also show that the solutions that Tan (1990) and

Abraham et al. (2006) propose do not satisfy the outer stability property.

In this paper, we also study a sequential matching game. All existing studies

focus on the implementation of stable matchings in solvable matching problems, which is

reasonable, because the existence of a stable matching in roommate problems is guaranteed.

Yet, these studies do not provide much intuition about the characteristics of the equilibrium

outcome in a sequential game in a broader context, i.e., the roommate problem. As far as

we know, this is the �rst study that focuses on a sequential game in a roommate problem.

In terms of implementation of stable matchings, two important studies are by Alcalde and

Romero-Medina (2000, 2005) and Sotomayor (2003), who study the implementation of the

core correspondence and/or the set of stable solutions of the college admissions problem.

Suh and Wen (2008) identify su¢ cient conditions to implement stable matchings in the

equilibrium of a sequential marriage problem, which we mimic in this paper. Some other

important studies that are interested in the implementation of stable solutions or the core

of the problem are Alcalde (1996), Shin and Suh (1996), and Kara and Sonmez (1996).

In section 2, we introduce the roommate problem. We also present the concepts

of stable partition and P � stability, and provide some preliminary results in section 2.

In section 3, we introduce the RP procedure and RP � stability. We discuss the stable

partition, P � stability and RP � stability concepts, and show how these concepts are

related. In Section 4, we introduce the sequential game and prove our results. Section 5

concludes.

The roommate problem

The set of individuals is de�ned by a �nite set I = fi1; : : : ; ing. A roommate
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problem is a pair
�
I; (�i)i2I

�
where for each individual i 2 I, �i denotes i�s complete and

transitive preference relation de�ned over I. A preference pro�le is the collection of all

individuals�preferences, i.e., �= (�i)i2I . We denote the strict preferences of i 2 I with �i.

A matching is a function � : I �! I such that each individual is matched to at most one

individual. If � (i) = j, then � (j) = i, and we say that i is matched to j in �. If � (i) = i,

then i is unmatched in �.

In this paper, we assume that individuals have strict preferences. When j �i k, i

strictly prefers j to k if i 6= j 6= k 6= i. Individual i prefers being alone rather than being

matched to k, that is, k is unacceptable for i if i = j 6= k. Individual j is acceptable for

i if i = k 6= j. A matching � is individually rational if no individual i blocks �, i.e., � (i)

is acceptable to i. A pair fi; jg � I blocks � if j �i � (i) and i �j � (j). A matching �

is stable if it is individually rational and if there is no pair fi; jg � I that blocks �. For a

set of individuals S � I, and any two matchings � and �0, we say that each individual in S

prefers � to �0 if � �S �0. For two matchings � and �0, � Pareto dominates �0 if � �I �0

and � �S �0 for a nonempty set S � I.

A stable matching in a roommate problem may not exist. A roommate problem

is solvable if a stable matching exists; otherwise it is unsolvable. A marriage problem is a

special case of a roommate problem. Gale and Shapley (1962) show that a stable matching

always exists in a marriage problem. Hence, a marriage problem is considered as a solvable

roommate problem.

Preliminaries

This section presents the de�nitions of stable partitions (Tan, 1991) and P �

stability (Inarra et al., 2008). We also present some preliminary results that we bene�t
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throughout the paper. The �rst result is related to solvable roommate problems.

Theorem 1 (Roth) In a marriage problem with strict preferences, the set of people who
are single is the same for all stable matchings.4

Given a roommate problem
�
I; (�i)i2I

�
, an ordered subset of individuals A =

fa1 : : : ; akg � I is a ring if k � 3 and ai+1 �ai ai�1 �ai ai for all i = 1; : : : ; k (mod k).5 A

ring is an odd ring if the number of individuals in the ring is odd, and is an even ring if

the number of individuals in the ring is even. The set A is a pair of mutually acceptable

individuals if k = 2 and ai�1 �ai ai for all i = 1; 2. Set A is a singleton if k = 1. When we

say that a set is an odd set, we mean that the number of individuals in the set is odd, i.e.,

the set is either a singleton or an odd ring. A partition P of a set S � I is a collection of

disjoint subsets of S.

A stable partition P of I is such that

(i) For all A 2 P , the set A is a ring or a mutually acceptable pair of individuals or a

singleton, and

(ii) For any set A = fa1; : : : ; akg 2 P and B = fb1; : : : ; blg 2 P , if bj �ai ai�1 with

bj 6= ai+1, then bj�1 �bj ai for all i = 1; : : : ; k and j = 1; : : : ; l.

In the de�nition above, we do not necessarily have A 6= B. The case where A 6= B

can be thought as the stability between sets in the stable partition. The case where A = B

can be thought as the stability within the set. The second condition can also be written as

follows: For any ai 2 I, if there exists an individual aj such that aj 6= ai+1 and aj �ai ai�1,

then aj�1 �aj ai for all i = 1; : : : ; n and j = 1; : : : ; n.

The following results are by Tan (1991). The �rst three of these results are about

the characteristics of stable partitions. The last result provides a necessary and su¢ cient
4Theorem 2.22 in Roth and Sotomayor, 1990.
5Hereafter we omit modulo k.
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condition to have a stable matching in a roommate problem with strict preferences. Then,

we introduce the P � stability concept proposed by Inarra et al. (2008).

Theorem 2 For any roommate problem (I; (�i)i2I),

1. There exists at least one stable partition.

2. Any two stable partitions have exactly the same odd sets.

3. Each even ring of a stable partition can be broken into pairs of mutually acceptable
individuals preserving stability.

4. There is no stable matching if and only if there exists a stable partition with an odd
ring.

De�nition 2 Given a stable partition P , � is a P � stable matching if for each A =
fa1; : : : ; akg 2 P , �(ai) 2 fai+1; ai�1g for all i = 1; : : : ; k except for a unique j such that
�(aj) = aj if A is an odd set.

Because a stable partition exists for any roommate problem, a P�stable matching

exists, too. By the second result of Theorem 2, without loss of generality, we only consider

stable partitions which do not contain even rings throughout the paper.

In a P � stable matching �, exactly one individual in every odd set is unmatched.

Hence, the number of unmatched individuals in a P�stablematching is equal to the number

of odd sets, i.e., the total number of odd rings and singletons. Suppose that an individual ai

in an odd ring is not matched to either of his neighbors in the ring in a P �stable matching

�, whereas all other individuals in the odd ring are matched to their neighbors. In such a

case ai�1 and ai would prefer each other to their current mates in �, but fai�1; aig is not

considered as a blocking pair in term of P � stability. We provide an example about stable

partitions and P � stability.

Example 3 A preference pro�le with 6 people is given below:

1 2 3 4 5 6
� � � � � �
2 3 1 2 6 5
3 1 2 4

4 6
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Figure 3. Stable Partition

The only stable partition is P = ff1; 2; 3g ; f4g ; f5; 6gg where A1 = f1; 2; 3g is an odd ring,
A2 = f4g is a singleton set, and A3 = f5; 6g is a pair of mutually acceptable individuals.
Figure 3 represents the stable partition P .The P � stable matchings are:

�1 = ff1; 2g ; f3g ; f4g ; f5; 6gg
�2 = ff1g ; f2; 3g ; f4g ; f5; 6gg
�3 = ff1; 3g ; f2g ; f4g ; f5; 6gg

In example 3, for any P � stable matching, there are two individuals in the odd

ring who block the matching. For example, f2; 3g block �1, f1; 3g block �2, and f1; 2g

block �3. Consider the P � stable matching �3 in example 3. Pairs f1; 2g and f2; 4g are

not considered as blocking pairs for �3 in terms of P � stability. Individuals 1 and 2 are

in an odd ring in P , but 2 and 4 are not. Moreover, matching 2 and 4 is a Pareto im-

provement. Consider matching �0 = ff1; 3g ; f2; 4g ; f5; 6gg. The only blocking pair for �0

is f1; 2g. Moreover, the number of individuals who are matched is greater in �0 than that

in �3. Matching �
0 is an RP � stable matching. As in this example, two individuals who

do not involve in an odd ring cannot form a blocking pair in terms of RP � stability. We

introduce the RP � stability concept in the next section and show how RP � stability is

di¤erent from P � stability.

40



The RP procedure and RP-stability

We introduce the RP procedure and RP � stability. We show that P � stability,

and RP � stability are not related unless the problem is solvable. Moreover, the number

of matched individuals in an RP � stable matching is greater than or equal to the number

of matched individuals in any P � stable matching. It is also true that if the problem is

solvable, stability, P � stability, and RP � stability are equivalent.

First, we introduce additional de�nitions. Given a pro�le � and a stable partition

P , when we cut an odd ring A = fa1; : : : ; akg by leaving ai out, we erase ai in ai�1�s

preference lists and ai�1 in ai�s list. When we cut an odd ring A = fa1; : : : ; akg by leaving

ai out, we say "we cut A by ai" or "we cut ai 2 A".

After an odd ring is cut, we obtain a reduced preference pro�le �0. We obtain a

stable partition P 0 with respect to the reduced preference pro�le �0.6 Such a stable partition

is called a reduced stable partition. A reduced preference pro�le for which no reduced stable

partition has an odd ring is called a �nal preference pro�le. A stable partition with respect

to a �nal pro�le is called a �nal stable partition.

An odd ring in a stable partition P may not appear in a reduced stable partition.

An odd ring A = fa1; : : : ; akg in a stable partition is an independent odd ring if for all ai

in A, if bi �ai ai�1 for some bi 2 I, then bi is not in an odd ring in P .78 If, for some ci 2 I,

we have ci �bi�1 bi or bi�1 and bi are neighbors in an odd ring A0 with ci 2 A0, then ci is

not in an odd ring in P . Eventually, we have an individual hi, who is not in an odd ring in

P , and there is no li 2 I with li �hi�1 hi, or hi�1 and hi are neighbors in an odd ring A00

with li 2 A00. An odd ring which is not independent is a dependent odd ring. We discuss
6Hereafter, we say a stable partition P 0 whenever it is clear that the partition P 0 is stable with respect

to �0.
7Note that the subscript i is not necessarily the same number when used as the subscript of di¤erent

letters. For example, for two individuals ai and bi, if ai is a1, bi is not necessarily b1.
8Note that, by the stability of P , bi�1 �bi ai, and so on so forth.
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some properties of independent odd rings after we introduce the RP procedure. Consider

the following example:
Example 4

1 2 3 4 5 6
� � � � � �
4 3 1 5 6 4
2 1 2 6 5 5
3 1

The unique stable partition is P = ff1; 2; 3g ; f4; 5; 6gg. The odd ring f4; 5; 6g is an inde-
pendent odd ring, whilef1; 2; 3g is dependent because 4 �1 3 and 4 is in an odd ring.

We introduce a procedure, the RP procedure, to obtain RP �stable matchings. A

reduced pro�le is obtained in each step of the procedure by cutting an odd ring in a stable

partition that is obtained in the previous step. In each step, if there is an independent ring in

a reduced stable partition, the procedure ignores the dependent rings in that partition, i.e.,

the procedure cuts only the independent rings in that partition. If there is no independent

ring, then the procedure cuts dependent rings.

The RP Procedure Given a pro�le �, let P = fA; : : : ;Hg be a stable partition.

Step 1 If there exists an independent odd ring in P , choose an arbitrary independent

odd ring. Choose an arbitrary dependent odd ring otherwise. Let the chosen

odd ring be A. Obtain a reduced preference pro�le �1 by cutting a1 2 A 2 P .9

If �1 is a �nal pro�le (a pro�le for which there is no stable partition with an

odd ring), obtain all P 1 � stable matchings for any �nal stable partition P 1 and

continue step k. Otherwise, continue step 2.

Step 2 Obtaining the reduced pro�le �2 by cutting

a11 2 A1 =
�
a11; a

1
2 : : : ; a

1
j

	
2 P 1:

9Note that in each step j of the procedure, all individuals are renumbered according to how they are
partitioned in some partition that is obtained in step j. We use superscript j for individuals, sets, partitions,
and pro�les to indicate step j.
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Repeat step 1.

. . .

Step k Let step k be the �rst step that a �nal pro�le �k is reached by cutting

ak�11 2 Ak�1
n
ak�11 ; ak�12 ; : : : ; ak�1j

o
2 P k�1:

Obtain all P k � stable matchings for any �nal stable partition P k.

Step k + 1 Let j be the most recent step where an odd ring Aj in which there are

still some individuals who have not been used to cut the odd ring is cut. Repeat

step 1 by cutting Aj .

. . .

Step t The process stops when we cut all individuals in any odd ring that is obtained

in any step of the procedure (excluding the dependent odd rings if there is an

independent odd ring in the same reduced stable partition).

De�nition 3 Given a preference pro�le, a matching � is RP � stable if � is obtained by
the RP procedure, i.e., is a P � stable matching with respect to a �nal reduced pro�le in the
RP procedure.

We provide an example in the Appendix to show how to obtain RP � stable

matchings by the RP procedure. Note that an RP � stable matching can be obtained more

than once in di¤erent steps of the procedure. Because the purpose of the paper is not to

come up with an e¢ cient algorithm to obtain all RP � stable matchings, but to de�ne

RP � stability, a modi�cation to overcome this problem is not considered in this paper.10

We now discuss some properties of independent rings. An independent odd ring

A 2 P can also be de�ned as an odd ring that appears in any reduced stable partition in

10McVitie and Wilson (1971) imposes further rules on the breakmarriage operation to overcome the
problem of obtaining the same stable solution many times.
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any step of the procedure until a 2 A 2 P j is cut in some step of the procedure. That is,

starting from P , no matter how and which odd ring except A is cut in any reduced stable

partition, A always appears as an odd ring in any reduced stable partition until a 2 A is

cut for some a 2 A in some step of the procedure. No individual ai in the independent odd

ring A, would have neighbors other than ai�1 and ai+1 unless A is cut. Independent rings

are "independent" of other odd rings in this sense.

Because an independent odd ring appears in any reduced stable partition no matter

how other odd rings are cut (until the independent odd ring is cut), if there are more

independent odd rings in some step of the procedure, it does not matter which independent

ring is chosen to cut. If there is no independent odd ring, it does not matter which dependent

odd ring is chosen to cut because as the procedure considers the most recent step where

an odd ring in which there are still some individuals who have not been used to cut the

odd ring, the procedure cuts all other dependent odd rings at any step of the procedure.

Furthermore, because any two stable partitions have the same odd rings by result 2 in

Theorem 2, the choice of the stable partition does not matter in any step of the procedure,

either.

One should note that neither P � stability nor RP � stability implies the other

in an unsolvable roommate problem. In Example 3, �3 = ff1; 3g ; f2g ; f4g ; f5; 6gg is a

P � stable matching, but not an RP � stable matching. On the other hand, matching

�4 = ff1; 3g ; f2; 4g ; f5; 6gg is an RP � stable matching, but not a P � stable matching.

Although, there is no relation between P � stability and RP � stability in unsolvable

roommate problems, it is obvious that P � stability and RP � stability are equivalent in

solvable roommate problems. Because the set of P �stable matchings coincides with the set

of pairwise stable matchings in solvable roommate problems (Inarra et al, 2008), pairwise
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stability and RP � stability, too, are equivalent in solvable roommate problems.

As Example 3 shows, there may be more matched individuals in an RP � stable

matching compared to a P�stable matching. Before we prove that an RP�stable matching

matches more individuals than a P � stable matching, we introduce some new notation.

Let A (�) represent the set of all individuals in an odd ring in a partition, B (�) represent

the set of all individuals who involve in a set of mutually acceptable pair in a partition or

the set of matched individuals in a matching, and C (�) represents the set of all individuals

in singleton sets in a partition or the set of all unmatched individuals in a matching. Let

O (�) represents the set of all odds sets in a partition.

For an RP � stable matching �, let P k be the �nal reduced pro�le that � is

obtained, that is, �k = �. Moreover, P j is a reduced stable partition in an arbitrary

step j in the procedure through P k, and �j is an arbitrary P j � stable matching for any

j = 1; : : : ; k � 1. We make an assumption to simplify the analysis. We assume that for

any fai; ai�1g = B 2 P j for some pair B 2 P j , we keep fai; ai�1g as a pair in P j+1 if

possible while preserving stability in the partition. We make such an assumption because

we want individuals in even rings (if an even ring exists) to be partitioned in the same

way in adjacent steps. Without this assumption, the individuals in an even ring may be

partitioned di¤erently in P j and P j+1, but the number of matched individuals is the same.

Hence, our analysis is not a¤ected. So, without loss of generality, we assume a pair in P j is

kept as a pair in P j+1 while preserving stability, if possible. The following lemma is used

to prove our claim.

Lemma 5 For a stable partition P and an RP �stable matching �, the number of odd sets
in P j is greater than or equal to the number of odd sets in P j+1 for all j = 1; : : : ; k � 1.

Proof. Suppose that P j+1 is obtained by cutting aji 2 Aj 2 P j . There are three

possible cases to consider: (i) aji 2 C
�
P j+1

�
or (ii) aji 2 A

�
P j+1

�
, or (iii) aji 2 B

�
P j+1

�
.
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Case (i): When we cut aji 2 Aj in P j , a
j
i involves in a singleton in the reduced

stable partition P j+1. Note that for all bi 2 In
n
aji�1; ai

o
, bi�s preference ordering in step

j is preserved in step j + 1. Moreover, no new odd set which has aji and some other

individuals is formed; the partition of individuals in InAj in P j+1 and P j is the same

(by our assumption). Hence, there is one less odd ring and one more singleton in P j+1;��O �P j��� = ��O �P j+1���.
Case (ii): When we cut aji 2 Aj in P j , a

j
i involves in an odd ring in the reduced

stable partition P j+1. Let Aj+1 2 P j+1 be the odd ring such that aji 2 Aj+1. We claim

that Aj+1 =
n
aji ; b; b

0; : : : c; c0
o
with fi; i0g is a pair in P j for all i = b; : : : ; c. That is,

i and i0 cannot be from di¤erent sets in P j for all i = b; : : : ; c. This is because there

is stability among pairs in P j , and when the stable partition P j+1 is obtained from P j ,

preference orderings of individuals in In
n
aji�1; a

j
i

o
do not change. Hence, if two individuals

in a pair of P j involve in an odd set in P j+1, they appear as a pair in that odd set of

P j+1. Now, because when an individual i 2 B
�
P j
�
involves in an odd ring in P j+1,

his partner in the pair also involves in that odd ring; there is no individual i such that

i 2 B
�
P j
�
and i 2 A

�
P j+1

�
[C

�
P j+1

�
. Hence, no odd set other than Aj+1 is formed, i.e.,��O �P j��� = ��O �P j+1���.

Case (iii): When we cut aji 2 Aj in P j , a
j
i involves in a pair in the reduced stable

partition P j+1. Let
n
aji ; bi

o
2 P j+1. Suppose that bi 2 C

�
P j
�
[ A

�
P j
�
. Now, because bi

is in a pair in P j+1, the odd set that contains bi in P j , say Sj 2 P j , does no longer an odd

ring in P j+1. In fact, we have either Sjn fbig = ; or the individuals in Sjn fbig form pairs.

Hence, no new odd set is formed, and we have
��O �P j��� > ��O �P j+1���. If bi 2 B �P j�, then

an individual ci 2 B
�
P j
�
(not necessarily ci = bi�1) appears either in a singleton in P j+1

or in an odd ring in P j+1. Hence,
��O �P j��� = ��O �P j+1���.
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We consider each possible case and conclude that
��O �P j��� � ��O �P j+1���. The

proof is complete.

Proposition 9 Given a stable partition P and an RP � stable matching �, the number of
matched individuals in � is greater than or equal to the number of matched individuals in
any P 0 � stable matching �0 for any stable partition P 0.

Proof. If there is no odd ring in P , then there is no odd ring in P 0 either by

Theorem 2. Hence, �0 and � are stable matchings. By Theorem 1, the set of matched

individuals in � and �0 are the same; we are done.

Now, consider the case where there is an odd ring in P . We know that for any

stable partition P �, the number of unmatched individuals in a P ��stable matching is equal

to the number of odd sets in P �Hence, the number of unmatched individuals in �k = � is

equal to the number of odd sets in the �nal stable partition P k. Similarly, the number of

unmatched individuals in �0 is equal to the number of odd sets in P 0. Hence, in order to

show that the number of matched individuals in � is greater than that in �0, it is enough

to show that O j(P 0)j � O
���P k���.

By Theorem 2, O (P ) = O (P 0). By lemma 5,

jO (P )j � jO (P1)j � : : : � jO (Pk)j :

Hence, jO (P 0)j � jO (Pk)j.

A sequential matching mechanism

In this section, we introduce a sequential matching mechanism and analyze the

SPE outcome of this mechanism. We show that the RP procedure can be used to identify

all potential SPE outcomes of the mechanism for any order of individuals�moves.
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For an RP � stable matching �, let �0 be a matching which is preferred to � by

a set of individuals S. Moreover, each individual in set S is matched to an individual in

� (S) under �0 and each individual not in S is matched to his � partner under �0. That is,

for any RP � stable matching �, let �0 be such that �0 �S �, �0 (S) = � (S) for some S � I

with S 6= ;, and �0 (i) = � (i) for all i 2 In (S [ �0 (S)). Matching �0 is said to be obtained

from � by favoring set S. We argue that the SPE outcome of the sequential game is either

an RP � stable matching or a matching that is obtained from an RP � stable matching by

favoring some set S � I.

The sequential matching mechanism considered in this paper is an n stage extensive

form game of perfect information. The order of moves is given by a surjective function

� : f1; : : : ; ng �! I, where � (k) denotes the individual who moves in the kth stage of the

mechanism.

In stage 1, � (1) either proposes to a potential roommate or chooses to be single.

Whenever � (1) is indi¤erent between proposing to a roommate and choosing to remain

single, he chooses to remain single.

In stage k, 1 < k < n, after observing the history of the game up to stage k, � (k)

either (i) accepts one potential roommate who has proposed to her in a previous stage, or

(ii) proposes to a potential roommate who will move in a subsequent stage, or (iii) chooses to

remain single. Whenever � (k) is indi¤erent between proposing to a roommate and choosing

to remain single, he chooses to remain single.

In stage n, � (n) either accepts one potential roommate who has proposed to her

in a previous stage, or chooses to remain single.

There is a di¤erent sequential mechanism for every order of moves. Given an

order of moves, the outcome of the mechanism is a matching. This is because an individual
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cannot accept more than one proposal, and by making a proposal or by deciding to remain

single, she must reject all proposals that have been received. Because preferences are strict,

the SPE outcome of the mechanism for a given an order of moves is unique. Observe that

the SPE outcome of the game is an individually rational matching. This is because an

individual i would choose to remain single rather than proposing to or accepting a proposal

from someone who is not acceptable for i.

We know that odd rings play an important role for the existence of a stable match-

ing in roommate problems. In this section, we focus on the role of odd rings in the sequential

mechanism. The following example is an example of the role that odd rings play on the

equilibrium path of any mechanism (the preference pro�le in this example is the same with

the one that is used in Appendix).
Example 5 Consider the preference pro�le below:

1 2 3 4 5
� � � � �
2 3 1 5 2
3 1 2 2 4

4
5

The unique stable partition is P = ff1; 2; 3g ; f4; 5gg. The unique odd ring in P is A =
f1; 2; 3g. Depending on the order of individuals� moves, an individual in f1; 2; 3g is matched
to someone not in the ring or is unmatched in the SPE. The individual in f1; 2; 3g who is
matched to someone not in the ring or is unmatched in the SPE may involve in other odd
rings with other individuals. For example, consider the following order of moves: 1; 2; 3; 4; 5.
On the equilibrium path, we observe that 2 never receives a proposal from 1 and cannot
propose to 3. This is because if 1 proposes to 2, he will be rejected in favor of 3. Then,
1 proposes to 3. Hence, 2 will be rejected in favor of 1 if he proposes to 3. When we cut
2 2 f1; 2; 3g, we obtain another stable partition P 1 = ff1; 3g ; f2; 4; 5gg. That is, individual
2 involves in another odd ring f2; 4; 5g. In this odd ring, 4 never receives a proposal from
2 and cannot propose to 5 by the same logic. When we cut 4 2 f2; 4; 5g, we obtain P 2 =
ff1; 3g ; f2; 5g ; f4gg. Because there is no odd ring in P 2, we obtain all P 2�stable matchings.
Thus, �2 = ff1; 3g ; f2; 5g ; f4gg is an RP � stable matching. Matching �2 is also the SPE
outcome of the sequential mechanism.
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Consider a sequential mechanism and suppose that there is an odd ring A =

fa; : : : ; kg such that a is the �rst one to move. On the equilibrium path, suppose that a

cannot propose to b because if he does so, b is matched to c, d is matched to e, and so

on so forth. In such a situation, we say that a and b face an odd ring. Obviously, when

two individuals face an odd ring on the equilibrium path, they cannot be matched in the

SPE. Let fa1; a2g be a pair in some set A of a stable partition P . By the stability of P ,

for any bi 2 I such that a1 �bi bi�1 and for any ci such that a2 �ci ci�1, we have a2 �a1 bi

and a1 �a2 ci, respectively. Hence, if a1 and a2 do not face an odd ring on the equilibrium

path, then they are not matched in the SPE only if one of them gets an opportunity to be

matched to someone more preferred. This is equal to say that if a1 and a2 are not matched

in the SPE, then either they face an odd ring on the equilibrium path or one of them gets

an opportunity to be matched to someone more preferred. By using this logic, we prove the

following lemma, which is used to prove our main result in this section.

Proposition 10 For any odd ring A = fa1; : : : ; akg 2 P , if A is an independent odd ring,
then ai never receives a proposal from or proposes to an individual b such that b �ai ai�1
and b 6= aj+1 when everybody plays his equilibrium strategy in the sequential mechanism for
all ai 2 A.

Proof. Suppose there is an independent odd ring A = fa1; : : : ; akg 2 P . On the

contrary, suppose that for some ai 2 A, ai rejects ai�1 in favor of an individual bi 6= ai+1

when ai�1 proposes to ai in a sequential mechanism. Because bi �ai ai�1, we must have

bi�1 �bi ai by the stability of P . Then, bi can only be available for ai either because bi�1

and bi are in an odd ring, or bi�1 gets an opportunity to be matched with someone whom

he prefers to bi. Hence, there is an individual ci 2 I such that either ci �bi�1 bi or ci 2 A0

with A0 being an odd ring and fbi�1; big being a pair in A0. Because A is an independent

odd ring, A0 62 P by the de�nition of an independent odd ring. The fact that A0 62 P implies

that ci becomes available for someone less preferred than ci�1. By a similar argument, this
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is possible only if ci�1 and ci are in an odd ring, or ci�1 gets an opportunity to be matched

with someone whom he prefers to ci. Hence, there is an individual di 2 I such that either

di �ci�1 ci or di 2 A00 with A00 being an odd ring and fci�1; cig being a pair in A00. By

repeating the same argument, in any step of the argument that is considered, there must be

an individual li, who becomes available for someone less preferred than li�1, because either

li�1 and li are in an odd ring, or li�1 gets an opportunity to be matched with someone

whom he prefers to li. Hence, the argument continues. However, because there is a �nite

number of people, the argument must have �nite steps, contradiction.

Proposition 10 implies that if there is an independent odd ring in a stable partition,

then everyone except one person in the odd ring is matched to one of his neighbors in the

independent odd ring, and one person is matched to someone worse than his preceding

individual.

In order to prove that the SPE outcome of a sequential game is either an RP �

stable matching or a matching that is obtained from an RP � stable matching by favoring

a set of individuals, we focus on the RP � stable matchings that are obtained by following

a particular path in the procedure. That is, we choose an RP � stable matching that can

be obtained by breaking odd rings in a speci�c order which is consistent with the sequential

mechanism considered, i.e., the order in which individuals move. Consider the following

example:

Example 6 Consider the preference pro�le given in example 4:

1 2 3 4 5 6
� � � � � �
4 3 1 5 6 4
2 1 2 6 4 5
3 1
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The unique stable partition is P = ff1; 2; 3g ; f4; 5; 6gg. The RP � stable matchings are:

�1 = ff1; 4g ; f2; 3g ; f5; 6gg
�2 = ff1g ; f2; 3g ; f4; 6g ; f5gg
�3 = ff1; 3g ; f2g ; f4; 6g ; f5gg
�4 = ff1; 2g ; f3g ; f4; 6g ; f5gg
�5 = ff1g ; f2; 3g ; f4; 5g ; f6gg
�6 = ff1; 3g ; f2g ; f4; 5g ; f6gg
�7 = ff1; 2g ; f3g ; f4; 5g ; f6gg

Because f4; 5; 6g is an independent ring, we start cutting f4; 5; 6g. In the RP procedure,
when we cut 4, f1; 2; 3g, which is a dependent ring in P , disappears in the reduced pro�le,
and we obtain the �nal partition ff1; 4g ; f2; 3g ; f5; 6gg. Hence, we obtain �1. When we
continue the procedure by cutting 5 or 6, f1; 2; 3g appears as an independent ring (the only
ring) in any reduced stable partition. Hence, we continue cutting f1; 2; 3g by each individual
in it.

In any sequential mechanism, because f4; 5; 6g is an independent ring, there is
no individual i 2 f4; 5; 6g such that � (i) �i i� 1, and exactly one individual in f4; 5; 6g is
matched to someone else other than his neighbors. Observe that if 4 is the one who cannot be
matched to one of his neighbors, then 4 becomes available for 1, and 4 and 1 are matched in
the SPE. The ring f1; 2; 3g is not e¤ective, i.e., no individual in the ring f1; 2; 3g is left out
because of the ring f1; 2; 3g. Hence, the way that 1, 2, and 3 are ordered is irrelevant. This
is similar to the fact that f1; 2; 3g disappears in the reduced pro�le when we cut 4. If either
5 or 6 is cut in a mechanism, then the order of 1, 2, and 3 matters. Those individuals who
are matched and the one who is unmatched depend on order of 1, 2, and 3. This is similar
to the fact that when we cut 5 or 6 in the procedure, f1; 2; 3g appears as an independent
ring (the only ring) in any reduced stable partition, and we continue cutting f1; 2; 3g by each
individual in it.

On the equilibrium path in a sequential mechanism, there is a particular order in

which the odd rings become e¤ective. To prove our main result, we construct a particular

order of cutting odd rings in the procedure that is consistent with the particular order

in which the odd rings become e¤ective in the sequential mechanism considered, by using

Proposition 10. The outline of the proof is as follows: We start with showing how to

construct that particular order of cutting rings. Moreover, we show that the pro�le that we

reach by cutting the odd rings according to that particular order is a �nal pro�le that can

be obtained by the procedure. Hence, if the SPE outcome is a P � stable matching with

respect to that �nal pro�le, it is an RP � stable matching. We �nish the proof by showing
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that if the SPE outcome is not a P � stable matching with respect to that �nal pro�le,

then it is a matching that is obtained from an RP � stable matching by favoring a set of

individuals. Now, we prove our main result.

Theorem 3 Given a preference pro�le �, the SPE outcome of any sequential matching
mechanism is either an RP � stable matching or a matching that is obtained from an
RP � stable matching by favoring a set of individuals.

Proof. Consider an order of individuals and let �� be the SPE outcome of the

game. Let P be a stable partition. By Proposition 10, we know that if there is an inde-

pendent odd ring A = fa1; : : : ; akg in P , then no individual aj in A gets an opportunity to

be matched to an individual b such that b �aj aj�1 and b 6= aj+1. Moreover, there is one

individual ai 2 A who cannot be matched to ai�1 and becomes available for other individ-

uals who prefer ai more than their preceding individuals in some sets of P (if there is any

such individual). Hence, we eliminate ai and ai�1 from each other�s preference pro�le and

obtain a reduced stable partition P 1. Observe that no individual�s actions are a¤ected on

the equilibrium path when we eliminate ai and ai�1 from each other�s preference pro�le. In

order to see this, observe that each individual plays only once in the sequential mechanism.

Hence, once ai�1 cannot propose to ai (or ai cannot propose to ai�1) on the equilibrium

path because of the odd ring A, ai can no longer be a thread for a possible partnership of

ai�1 with another individual on the equilibrium path. That is, on the equilibrium path,

when taking an action, each individual takes the fact in to account that ai and ai�1 cannot

be matched. Hence, there is no individual b in In fai�2; ai�1; aig such that ai�1 rejects b in

favor of ai or ai does not propose to b because he has an o¤er from ai. We can conclude

that no individual�s actions are a¤ected on the equilibrium path when we eliminate ai and

ai�1 from each other�s preference pro�le.
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Similarly, if there is an independent odd ring in a reduced pro�le, we can continue

the process by cutting the independent odd ring by the individual who cannot be matched

to his preceding or succeeding individuals in the ring. By the same logic, as we continue the

process by cutting the independent odd rings accordingly, no individual�s actions are a¤ected

on the equilibrium path when we eliminate two successive individuals in the independent

odd ring from each other�s preference pro�le.

Consider an arbitrary step j of the procedure. Suppose that step j is the �rst step

such that there is no independent odd ring in any stable partition. If there are dependent odd

rings, then the procedure cuts an arbitrary dependent odd ring by an arbitrary individual

in step j. The choice of the dependent odd ring does not matter because after a �nal

stable partition is reached, the procedure considers the most recent pro�le with an odd ring

such that not all individuals in the odd ring is used to cut the ring. Hence, all dependent

rings in step j are cut one by one by each individual in the ring. As a result, any ring

(whether independent or dependent) that individuals face on the equilibrium path is cut by

the procedure. The particular order of cutting rings that is consistent with the sequential

game must be one of those paths that the procedure reaches. That is, the �nal pro�le that is

reached when we cut the odd rings in a way that is consistent with the order of individuals

is one of the �nal pro�les that is reached by the procedure.

On the path that is consistent with the order of individuals, consider the �nal step

k, where we obtain the �nal pro�le �k. For any individual ai 2 I, if b is eliminated from

ai�s list, then b and ai involve in an odd ring in some step j and cannot be matched because

of the odd ring in ��. Hence, �� (ai) is in ai�s list in �k. Let P k be a �nal stable partition

with respect to �k and �k be an P k�stable matching. If �� = �k, then �� is an RP�stable

matching, and hence, the proof is done. Now, suppose that �� 6= �k. We aim to show that
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�� is such that �� �S �k, �� (S) = �k (S) for a nonempty set S � I, and �� (i) = �k (i) for

all i 2 In (S [ �� (S)).

Let S be the set of all individuals who prefer �� to �k. First, we show that S 6= ;.

Let ai 2 I be such that �� (ai) 6= �k (ai). If �� (ai) �ai �k (ai), then ai 2 S, and S 6= ;. If

�k (ai) �ai �� (ai), then we know that either ai and �k (ai) are in an odd ring in P k or �k (ai)

gets an opportunity to be matched with someone whom he prefers to ai. Because P k is a

�nal stable partition, there is no odd ring in P k. Hence, we must have ��
�
�k (ai)

�
��k(ai) ai,

which implies that �k (ai) 2 S 6= ;. Second, we show that �� (S) = �k (S). If �k (S) 6=

�� (S), there exists an individual a 2 S such that �� (a) 62 �k (S). Note that �� (a) 62 �k (S)

implies �k (�� (a)) 62 S. Because a 2 S, �� (a) = a� �a �k (a). By the stability of P k,

�k (a�) �a� a. Because there is no odd ring in P k and because a� is matched with someone

worse than �k (a�), �k (a�) must get an opportunity to be matched with someone whom he

prefers to a� in ��. That is, ��
�
�k (a�)

�
��k(a�) a�. Hence, �k (a�) 2 S, contradiction. We

conclude that �� (S) = �k (S).

Because S is the set of all individuals who prefer �� to �k, by the stability of

P k, �k (S) (or �� (S)) must the set of all individuals who prefer �k to ��. Then, for all

i 2 In (S [ �� (S)), we have �k (i) = �� (i). Thus, if �� 6= �k, then �� is such that �� �S �k

for a nonempty set S � I, and �� (i) = �k (i) for all i 2 In (S [ �� (S)). The proof is

complete.

A matching that is obtained from an RP�stable matching by favoring a nonempty

set of individuals is not necessarily RP � stable. Suppose that �� is obtained from an

RP�stable matching �0 by favoring a nonempty set of individuals S, and is not RP�stable.

As it can also be seen in the proof of Theorem 3, there is no fa; �0 (a)g 2 �0 such that

fa; �0 (a)g blocks ��. That is, only certain types of blocking pairs can be observed in the
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SPE. Hence, if we can rule out only these certain types of blocking pairs, the SPE outcome

�� is an RP�stablematching. In other words, if we can rule out only the unstable matchings

that are obtained from RP � stable matchings by favoring some set of individuals, we can

guarantee the stability of the SPE outcome. By taking this fact into account, we introduce

a su¢ cient condition to guarantee the stability of the SPE outcome regardless of the order

of individuals in a solvable roommate problem in the next section.

A su¢ cient condition to implement pairwise stable matchings

In this section, we focus on solvable roommate problems and on the pairwise

stability concept. Our purpose is to introduce a su¢ cient condition to guarantee the pairwise

stability of the SPE outcome of the mechanism for any order of individuals�moves in solvable

roommate problems. Before we focus on the stability of the SPE, we want to explore the

relation between pairwise stability, P � stability, and RP � stability.

Given a preference pro�le, there is no odd ring in a stable partition if and only

if there exists a stable matching by Theorem 2. Hence, for a solvable roommate problem,

each P �stable matching is a stable matching. Moreover, for a solvable roommate problem,

because there is no odd ring in any stable partition for the given preference pro�le, RP �

stability and P � stability, and hence, pairwise stability are equivalent by de�nition.

Now, we focus on implementing stable matchings in the SPE. Although a stable

matching exists for any solvable roommate problem, the SPE outcome may not be stable

for some order of individuals�moves as shown in the following example.

56



Example 7

1 2 3 4 5 6
� � � � � �
6 6 5 1 2 3
4 5 6 2 3 1
5 4 4 3 1 2
1 2 3 4 5 6

There is a unique stable partition P = ff1; 4g ; f2; 5g ; f3; 6gg and hence, the unique P �
stable and also RP � stable and pairwise stable matching is � = ff1; 4g ; f2; 5g ; f3; 6gg.
Consider matching �� = ff1; 4g ; f2; 6g ; f3; 5gg, which is unstable because it is blocked by
the pair f1; 6g. Observe that �� can be obtained from � by favoring S = f2; 5g. Furthermore,
observe that the SPE outcome of the mechanism when the individuals move as 1; 2; 3; 4; 5; 6
is �� = ff1; 4g ; f2; 6g ; f3; 5gg.

As in the above example, the SPE outcome may not be RP � stable and hence,

may not be stable in a solvable roommate problem. Consider a solvable roommate problem.

Let �� be in the SPE. We know by Theorem 3 that if �� is not RP � stable, then �� can

be obtained from an RP � stable matching by favoring a group of individuals. Hence, a

su¢ cient condition to guarantee the stability of the SPE outcome in a sequential mechanism

would then require that any matching that is obtained from an RP � stable matching by

favoring a set of individuals S � I is stable. We formally present our result in the following

theorem.

Theorem 4 Consider a solvable roommate problem. Let � be a stable matching. If any
matching that is obtained through an RP � stable matching by favoring a set of individuals
S � I is stable, then the SPE outcome of the sequential game is stable regardless of the
order of individuals.

In the previous section, we show that the SPE outcome for a given mechanism is

either an RP�stablematching or can be obtained from an RP�stablematching by favoring

a group of individuals. However, not all RP � stable matchings are implementable in the

SPE. In fact, not all pairwise stable matchings are implementable in the SPE. We provide

an example of a solvable roommate problem and show that there exists a pairwise stable
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matching such that there is no order of moves for which this pairwise stable matching is in

the SPE. By doing so, we also prove that not all RP�stablematchings are implementable in

the SPE because pairwise stability and RP � stability are equivalent in solvable roommate

problems.

Example 8 Consider the following preference pro�le:

1 2 3 4 5 6
� � � � � �
4 5 6 2 3 1
5 6 4 3 1 2
6 4 5 1 2 3
1 2 3 4 5 6

The pairwise stable matchings are �1 = ff1; 4g ; f2; 5g ; f3; 6gg, �2 = ff1; 5g ; f2; 6g ; f3; 4gg,
and �3 = ff1; 6g ; f2; 4g ; f3; 5gg. In any given mechanism, whoever moves �rst always
proposes to his or her top ranked person. Observe that for any i 2 f1; 2; 3; 4; 5; 6g, i is the
last ranked person in the preference list of his top ranked person, and i is the second ranked
person in the preference list of his second ranked person. Because individuals are symmetric
in this sense, if we prove that 1 proposes to 4 in any mechanism with 1 being the �rst person
to move, we show that whoever moves �rst always proposes to his top ranked person. If 1
proposes to 4, then 6 misses the opportunity to be matched to his top ranked choice 1. The
best 6 can do is to be matched to 2. Thus, the worst 2 can do is to be matched to 6. Hence,
4 never gets the opportunity to be matched to 2. Then, the best 4 can do is to be matched
to 3, and the worst 3 can do is to be matched to 4. Hence, 5 never gets the opportunity to
be matched to 3. Because 1 has proposed to 4, 4 is not available for 5, either. Thus, the
best 5 can do is to be matched to 2. Hence, 2 cannot do worse than matching to be 5, which
implies that 6 cannot be matched to 2. Then, the only individual whom 6 can be matched
is 3. So, if 1 proposes 4, the SPE outcome is ff1; 4g ; f2; 5g ; f3; 6gg. We conclude that
in any mechanism, whoever moves �rst always proposes to his top ranked person. Hence,
the pairwise stable matching �2 in which everybody is matched to his or her second ranked
choice, is not the SPE outcome for any order of individuals�moves.

Conclusion

We introduce RP � stability concept such that an RP � stable matching allows

more individuals to be matched compared to a P � stable matching and is blocked by only

a certain type of a blocking pair. In particular, if two individuals block an RP � stable
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matching, then they must involve in an odd ring. We propose a procedure, which is called

RP procedure, to obtain RP � stable matchings.

We also employ a sequential matching mechanism to understand the characteristics

of the SPE outcome of this mechanism in a roommate problem. We show that the RP

procedure can be used to identify the SPE outcomes of the sequential mechanism for any

order of individuals�moves. By analyzing the characteristics of the RP � stability and the

relation between the procedure and the sequential game, we are able to propose a su¢ cient

condition to guarantee the stability of the SPE outcome regardless of the order of individuals

in the mechanism.

We plan to investigate how the RP � stability concept is related to other solution

concepts that are proposed for roommate problems. We also plan to investigate if the set

of RP � stable matchings are absorbing sets or not and whether the set of RP � stable

matchings satis�es the outer stability or whether there is a random path from an unstable

matching to an RP � stable matching.

Appendix

Example: How to obtain MP � stable matchings. Consider the preference pro�le below:

1 2 3 4 5 6

� � � � � �

2 3 1 2 6 4

3 1 2 5 4 5

4 6 6

There is a unique stable partition P = ff1; 2; 3g ; f4; 5; 6gg. Let A = f1; 2; 3g, and

B = f4; 5; 6g. Observe that A is the only independent ring. Hence, we cut 1 2 A.
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The preference pro�le obtained �1 is shown below:

1 2 3 4 5 6

� � � � � �

2 3 2 2 6 4

1 6 5 4 5

4 6

The unique stable partition is P 1 = ff1g ; f2; 3g ; f4; 5; 6gg. The odd ring B =

f4; 5; 6gis the unique odd ring in P 2. We cut 4 2 B and obtain �2:

1 2 3 4 5 6

� � � � � �

2 3 2 2 6 5

1 6 5 4

4

The unique stable partition is P 2 = ff1g ; f2; 3g ; f4g ; f5; 6gg. There is no odd ring

in P 2. Hence, P 2 is a �nal stable partition and �1 = ff1g ; f2; 3g ; f4g ; f5; 6gg is an

RP � stable matching. We turn back to the most recent step in which there is an odd

ring such that not all individual are considered in the cutting process, yet. Hence, in

the third step, we consider �1 again. We cut 5 2 B and obtain �3 as below:

1 2 3 4 5 6

� � � � � �

2 3 2 2 6 4

1 6 6 5

4 5
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The unique stable partition is P 3 = ff1g ; f2; 3g ; f4; 6g ; f5gg and P 3 is a �nal stable

partition. We obtain an RP � stable matching �2 = ff1g ; f2; 3g ; f4; 6g ; f5gg. We

continue with P 1 and cut 6 2 B to obtain �4:

1 2 3 4 5 6

� � � � � �

2 3 2 2 4 4

1 6 5

4 6

The unique stable partition is P 4 = ff1g ; f2; 3g ; f4; 5g ; f6gg and P 4 is a �nal stable

partition. We obtain an RP � stable matching �3 = ff1g ; f2; 3g ; f4; 5g ; f6gg. The

most recent step in which there is an odd ring such that not all individual are con-

sidered in the cutting process is step 1. We continue with A and cut 2 2 A to obtain

�5:

1 2 3 4 5 6

� � � � � �

3 3 1 2 6 4

4 2 5 4 5

6 6

The unique stable partition is P 5 = ff1; 3g ; f2; 4g ; f5; 6gg and P 5 is a �nal stable

partition. We obtain an RP � stable matching �4 = ff1; 3g ; f2; 4g ; f5; 6gg. We
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continue with odd ring A and cut 3 2 A to obtain �6:

1 2 3 4 5 6

� � � � � �

2 1 1 2 6 4

3 4 6 5 4 5

6

The unique stable partition is P 5 = ff1; 2g ; f3g ; f4; 5; 6gg. We cut 4 2 B and

obtain �5 = ff1; 2g ; f3g ; f4g ; f5; 6gg. In the following two steps we cut 5 2 B

and obtain �6 = ff1; 2g ; f3g ; f4; 6g ; f5gg, and we cut 6 2 B and obtain �7 =

ff1; 2g ; f3g ; f4; 5g ; f6gg.

All RP � stable matching are given below:

�1 = ff1g ; f2; 3g ; f4g ; f5; 6gg

�2 = ff1g ; f2; 3g ; f4; 6g ; f5gg

�3 = ff1g ; f2; 3g ; f4; 5g ; f6gg

�4 = ff1; 3g ; f2; 4g ; f5; 6gg

�5 = ff1; 2g ; f3g ; f4g ; f5; 6gg

�6 = ff1; 2g ; f3g ; f4; 6g ; f5gg

�7 = ff1; 2g ; f3g ; f4; 5g ; f6gg
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CHAPTER IV

REGIONAL VERSUS MULTILATERAL TRADE AGREEMENTS: A WELFARE
ANALYSIS

Introduction

The lack of a forcing authority in trade relations of world countries makes it dif-

�cult to achieve a trade agreement that increases world welfare. This creates a structural

problem of rules in trade agreements that will self-enforce the trading countries to achieve

a more liberal trade. In this paper, we study these self-enforcing rules with asymmetric

countries from the perspective of regional and multilateral trade agreements. In particu-

lar, we attempt to �nd an answer to the question of "Why are trade agreements mostly

regional/preferential rather than multilateral?". By employing a welfare analysis, we show

that the existence of transportation costs may be a possible reason.

We present an N -good-N -country partial equilibrium model by generalizing the

2-good-2-country model in Bond and Park (2002) through considering transportation costs.

For simplicity, we assume that the downward-sloped demand curve and upward-sloped sup-

ply curve of each good in each country are linear in price of the good. We allow asymmetries

between countries in terms of country sizes and comparative advantages. We show that in-

ternational trade between any two countries is achieved through di¤erences in supply and

demand structures of the countries. After considering transportation cost between any two

countries, it follows that the equilibrium autarky price (for each good) in any country de-

pends on the individual country speci�c demand and supply structure, while the equilibrium

price (for each good) under international trade depends on the demand and supply struc-
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tures of all countries together with country-speci�c tari¤ rates and transportation costs.

According to the model, national welfare is de�ned as the sum of consumer surplus, pro-

ducer surplus and tari¤ incomes. We let each country to receive all the tari¤ income for

the good that the country imports.

In order to analyze the optimal tari¤ setting behavior of each country, we employ

the following approach in the theoretical analysis: First, we �nd the Nash tari¤ rates

and best response functions. Each country maximizes its welfare given the tari¤ rate of

other countries. We show that the Nash tari¤ rates are decreasing in transportation costs;

i.e., closer countries tend to have higher tari¤ rates between each other, which lead to

lower trade volume across them. This suggests that there is a potential gain from a trade

agreement between closer countries in the short run. Moreover, while smaller countries set

lower optimal tari¤ rates to larger countries, larger countries set higher optimal tari¤ rates

to smaller countries. Then, we compare regional and multilateral trade agreements when

countries involve a stationary dynamic tari¤ game, i.e., countries play a repeated game for

tari¤ rates. The repeated structure of the game gives more �exibility to our model in terms

of incorporating the self-enforcement agreements. In this game, each country is able to

compare future payo¤s out of a possible collusion (cooperation) with future payo¤s out of a

possible deviation from the agreement. In order to sustain collusion in a trade agreement,

the trade-o¤ between the gains from deviating from an agreed-upon tari¤ policy and the

discounted expected future gains from collusion must be balanced in a way that the latter

should keep away countries from deviating. We show that it is harder to make an agreement

for any country if the transportation cost is higher; i.e., countries tend to sustain regional

agreements to maximize their long-run welfare.

The relation between geography and trade agreements has been previously studied
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in the literature starting with Viner (1950) who has mentioned departures from the Most

Favored Nation (MFN) principle between countries within Europe going as far back as the

nineteenth century.1 Nevertheless, instead of explaining these agreements through trade

costs, Viner has reasoned them to "close ties of sentiment and interest arising out of ethno-

logical, or cultural, or historical political a¢ liations". Other earlier studies such as Meade

(1955) and Lipsey (1957) haven�t mentioned about a possible e¤ect of transportation costs

on regional trade agreements either.

Recently, Wonnacott and Wonnacott (1981), Wonnacott and Lutz (1989), Krug-

man (1991, 1993), Summers (1991), Frankel, Stein and Wei (1995), and Bhagwati and

Panagariya (1996) have attempted to �nd whether or not proximity between countries have

made regional agreements more bene�cial compared to non-regional agreements. In par-

ticular, Wonnacott and Wonnacott (1981) assign an important role to transportation costs

in their analysis, but their study has been criticized by Berglas (1983) and Panagariya

(1998) in the sense that the transportation costs have to be too high in order to talk about

the e¤ect of transportation costs on regional trade agreements. Besides, following Krug-

man (1991), other studies such as Frankel (1997), Frankel, Stein and Wei (1995), Frankel

and Wei (1997) have also advocated for the e¤ect of transportation costs on regional trade

agreements. However, building on the earlier critique in Bhagwati (1993) and Bhagwati and

Panagariya (1996), Panagariya (1997) has shown that transportation costs are not di¤erent

than any other costs and hence should not deserve any special attention in explaining the

regional trade agreements.

In terms of methodology, the common question in the literature asked is whether

1As Panagariya (2000) states, MFN is the centerpiece of the General Agreement on Tari¤s and Trade
(GATT) that governs the international trade in goods. In particular, MFN refers to the trade policy in
which each World Trade Organization (WTO) member grants to all members the same advantage, privilege,
favor, or immunity that it grants to any other country.
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tari¤ reductions with nearby partners are welfare improving. Krugman (1991), Frankel

Sten and Wei (1995), and Bhagwati and Panagariya (1996) have examined this particular

question by considering whether exogenously given preferential tari¤ reductions are welfare

improving in a model where there are di¤ering levels of transport costs between trading

partners. This approach has been extended by Bond (2001) who concentrates on preferential

tari¤ reductions by self-enforcing agreements in a four-country world.

In particular, Bond (2001) assumes that the world is divided into two continents,

with two countries located on each continent. There is a per unit cost on any good imported

from a country on the other continent, but zero transportation cost on goods coming from

the country on the same continent. He shows that Nash equilibrium tari¤s on regional

trading partners are higher than those on the distant partners. As Bond (2001) claims in

the conclusion of his paper, one might anticipate that this fact would make it more di¢ cult

to support trade liberalization with nearby countries, because the incentive to deviate at

a given agreement tari¤ would be higher. However, he shows that this e¤ect is o¤set by

the fact that the welfare level under regional free trade agreements is higher than that

with a distant partner (with given internal tari¤s). This is due to the fact that free trade

agreements with distant partners have higher external tari¤s against all countries, which

leads to lower world welfare under distant free trade agreements. In sum, Bond (2001)

shows that the equilibrium with regional trade agreements yields higher welfare.2 This

paper follows a similar approach with Bond (2001), but our analysis di¤ers from his paper

by considering an N -country model. In Bond�s notation, instead of comparing the Nash

equilibrium tari¤ rates within and across continents under transportation costs, we directly

measure the e¤ect of transportation costs on the Nash equilibrium tari¤ rates ofN countries.
2Most recently, by working out optimal tari¤s with transport costs, Zissimos (2007) also shows that trade

based gains to a block with countries of the same region are higher than gains to an agreement involving
(distant) countries from di¤erent regions.
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Another topic that has been studied in the literature is the relation between pref-

erential and multilateral agreements. Common questions that have been investigated are

whether the trade liberalization is achieved through preferential agreements or multilateral

agreements, whether preferential agreements are building blocks or stumbling blocks for

multilateral agreements, and whether bilateralism or multilateralism is a better strategy

for countries. Bagwell and Staiger (1999) study a competing exporters model with three

countries to identify the di¤erent circumstances under which the preferential agreements

can lead to multilateral agreements or block them. Other studies that investigate the re-

lation between preferential and multilateral agreements in di¤erent settings are Bagwell

and Staiger (1997a,b) (1999), Bond and Syropoulos (1995), Bond Syropoulos and Winters

(2001). All of these studies assume that countries can commit tari¤ rates under prefer-

ential agreements, hence, only the multilateral agreements must be self-enforcing. In our

paper, we do not make such an assumption about preferential agreements, i.e., preferen-

tial agreements must be self-enforcing, too. A recent study which also aims to explain

the tendency toward regionalism is Freund (2000). Freund analyzes the relation between

preferential and multilateral agreements in a model of imperfect competition, and argues

that a multilateral tari¤ agreement creates the incentives to form a preferential agreement

with a higher probability that the preferential agreement is self-enforcing. Limao (2007)

investigates the e¤ects of preferential trade agreements on global free trade when countries

are also motivated by cooperation in non-trade issues. Limao argues that the preferential

agreements motivated by cooperation in non-trade issues increase the cost of multilateral

tari¤ reductions and, hence, decrease the likelihood of a multilateral free trade agreement.

Another recent study, Saggi and Yildiz (2010), focus on the comparison of bilateralism and

multilateralism through trade liberalization. They employ a competing exporters model in
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which tari¤ rates are determined endogenously. They argue that when countries have sym-

metric endowments, both bilateralism and multilateralism yield global free trade, but when

countries are asymmetric in terms of endowments, global free trade is stable (for a large set

of parameters) only through bilateral agreements. In our model, countries do not compete

over the goods that they export because each country exports only one good. Hence, in our

model, when two countries involve in a bilateral agreement, the non-member countries do

not face discriminatory tari¤s in export markets.3

The rest of the paper is organized as follows. Section II introduces the N -country

model. Section III �nds the optimal tari¤ rates and the best response functions. Section IV

extends the analysis by considering the stationary dynamic tari¤ game approach. Section

V concludes.

The Model

We extend the international trade model of Bond and Park (2002) by increasing the

number of countries to N in order to investigate possible regional and multilateral trade

agreements. In particular, our model is a N -good-N -country partial equilibrium model

where transportation costs are considered. In terms of notation, C = f1; : : : ; Ng represents

the set of countries and Hji is related to variable H in terms of good i 2 f1; :::; Ng in

country j 2 f1; :::; Ng.

The demand for good i in country j is given as follows:

Dji = �j (A�Bpji)

where we assume that the demand curve is downward-sloping and linear in price of the

3For a futher discussion on the relationship between preferential and multilateral liberalization see also
Bhagwati et al. (1999), Saggi (2006), and Karacaovali and Limao (2007).
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good.4 Similarly, the upward-sloping supply curve of good i in country j, which is also

linear in price of the good, is given as follows:

Xji = �j (�ji + �pji)

where pji is the price of good i in country j, and �j � 1 is a parameter by which we measure

the size of country j. Note that in a special case of �j = 1 for all j, we have N symmetric

countries with the same size.

Each country can impose speci�c tari¤s on its importables, with tjk denoting the

tari¤ rate imposed by country j for goods imported from country k (where tjj = 0 for all

j). Moreover, trade between any two countries is up to an exogenous symmetric iceberg

transportation cost, with � jk denoting the cost from j to k (where � jj = 0 for all j).

According to the supply and demand functions in each country, the autarky price

of good i in country j, pji (a), is given by the following expression:

pji(a) =
A� �ji
� +B

We assume that �ji � 0 for all i and j; hence, the autarky price is positive for each

good in any country, i.e., pji(a) > 0. Moreover, in order to ensure that there is a single

exporter of each good k, we assume that �kk � �jk > (� +B) (tjk + � jk). That is, because

country k is the lowest cost supplier (including trade costs) of good i for all countries (i.e.,

pji(a) > pki(a) + tjk + � jk when i = k for all j 2 Cn fkg where Cn fkg is the set of all

countries excluding country k), country k is the single exporter of good i. Therefore, when

4See Gehrels (1956-1957) and Lipsey (1957) for early theoretical models that compare the implications
of zero elasticity of demand and non-zero elasticity of demand. Also see Panagariya (2000) for a recent
discussion on the implications of downward-sloped demand and upward-sloped supply.
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trade is achieved, we can write the price of good k in country j by the following expression:

pjk = min
i
pik + tji + � ji

= pkk + tjk + � jk

Note that if j = k, then trade costs are zero (i.e., tjk = � jk = 0), so that the price of the

domestically produced good is pkk = pjk in such a case.

The market clearing condition for good i can be written as follows:

NX
m=1

�m (�mk + �pmk) =

NX
m=1

�m (A�Bpmk)

By using pmk = pkk+ tmk+ �mk for all m 2 f1; : : : ; Ng, we can �nd the source (i.e., factory

gate) price of good i in country k as follows when i = k:

pkk =

NX
m=1

�m (A� �mk � (� +B) (tmk + �mk))

NX
m=1

�m (� +B)

By the assumptions of the model introduced above, pkk is positive.

The volume of the imports of country j from country k is then given by the

following expression:

Mjk(pjk) = �j (A� �jk � (B + �) pjk)
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where

pjk = pkk + tjk + � jk

=

NX
m=1

�m (A� �mk)

NX
m=1

�m (� +B)

+

(tjk + � jk)
NX
m=1

�m �
NX
m=1

�m (tmk + �mk)

NX
m=1

�m

=

NX
m=1

�m

�
A��mk
�+B + tjk + � jk � tmk � �mk

�
NX
m=1

�m

Note that the derivative of pjk with respect to tjk or � jk is positive since �j > 0 for all j;

i.e., destination prices increase in trade costs, and thus the volume of imports decreases in

trade costs (and source prices) and increases in country sizes.

In order to go one step further in our analysis, we need an objective function

for each country. The natural choice is, for sure, the national welfare function. Following

Bond and Park (2002), national welfare is de�ned as the sum of consumer surplus, producer

surplus and tari¤ incomes. As in the existing literature, we let each country to receive all

the tari¤ income for the good that the country imports. In particular, national welfare for

country j can be expressed as follows:

Wj =
X
k

"Z A=B

pjk

Djk (u) du+

Z pjk

��jk=�
Xjk (u) du

#
+
X
k

tjkMjk(pjk) (IV.1)

where
R A=B
pjk

Djk (u) du is the consumer surplus for good k in country j;
R pjk
��jk=� Xjk (u) du

is the producer surplus for good k in country j; and tjk = 0 if k = j, as before.

In order to analyze the optimal tari¤ setting behavior of each country, we �rst �nd

the optimal tari¤ rates and best response functions, then we employ a stationary dynamic
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tari¤ game. The details of the approach is given in the following sections.

Analytical Results and Best Response Functions

In this section, we show the implications of each country�s maximizing its welfare

given the tari¤ rate of the other countries. We provide a closed-form solution to the maxi-

mization problem of a country. Country j chooses the optimal tari¤ rate for good k for all

k 2 f1; : : : :Ng by

max
tjk

Wj =
X
k

"Z A=B

pjk

Djk (u) du+

Z pjk

��jk=�
Xjk (u) du

#
+
X
k

tjkMjk(pjk):

The �rst order conditions of the above problem gives us the best response function

of country j for good k. Given the tari¤ rates of countries other than j on good k, the best

response of j for good k is:

tBjk =

�j

0@ NX
m2Cnfjg

�m(�mk��jk)
(B+�) � � jk

NX
m2Cnfjg

�m +
NX

m2Cnfj;kg
�mtmk +

NX
m2Cnfj;kg

�m�mk

1A
0@ NX

m=1

�m

!2
� �2j

1A
(IV.2)

Therefore, the optimal tari¤ of each country for a good depends on the tari¤ rates of all

other countries for the same good. The closed-form solution is discussed in the next section.

According to this best response function, when a country increases its tari¤ for a particular

good, the optimal tari¤of other countries for that particular good also increases; i.e., there is

tari¤ complementarity. Furthermore, when a country changes its tari¤ rate for a particular
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good, the tari¤ rates of any country on other goods are not a¤ected.

Analytical solution: Nash Tari¤Rates

In this section, we provide a closed-form solution to a country�s welfare maximizing

problem. By substituting demand, supply, price, and import expressions into Equation IV.1

and solving for optimal Nash tari¤s for each country, we obtain the Nash tari¤ of country

j on good k (imported from country k) as follows:

tNjk =

8>>>>>><>>>>>>:
qjk � qjk

jC�nfj;kgjX
i=1

0@(i� 1) X
Si�Cnnfj;kg

 Q
t2Si

t

!1A
+
j
�j

0@ X
m2C�nfj;kg

�mqkm

0@1 + jC�nfj:k;mgjX
i=1

0@ X
Si�C�nfj:k;mg

 Q
t2Si

t

!1A1A1A

9>>>>>>=>>>>>>;8>>>>>><>>>>>>:
1�

0@jC�nfj;kgjX
i=1

0@(i� 1) X
Si�C�nfj;kg

 Q
t2Si

t

!1A1A
�j

0@jC�nfj;kgjX
i=1

0@i X
Si�jC�nfj;kgj

 Q
t2Si

t

!1A1A

9>>>>>>=>>>>>>;

(IV.3)

where

qjk =

 
NX
m=1

j�m (�mk � �jk)
�j (B + �)

!
�

0BBBBB@
�j� jk

�j +
NX
m=1

�m

1CCCCCA+
0@ NX
m2Cnfj;kg

�
j�m�mk

�j

�1A

and

j =
�2j 

NX
m=1

�m

!2
� �2j

for all t
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and Si refers to an arbitrary subset of countries with i countries.5 Set C� is de�ned as the

set of countries which are not involved in a free trade agreement. By Equation IV.3, we

can �nd the optimal tari¤ rate of any country for any good, given the tari¤ rates of other

countries. By substituting Equation IV.3, in the welfare function, the welfare function of

any country can also be obtained as a function of exogenous variables.

Comparative Statics for The Case with No Agreement

In order to understand comparative statics of optimal tari¤s, without loss of gener-

ality, we use the following benchmark parametrization of �jj = �0:9, �jk = �1, B+� = 0:2,

� jk = 0, N = 3, and �j = 1 for all j. Although the scale of these parameters is not im-

portant, they are restricted in a way that is consistent with the assumptions of the model

introduced above. Nevertheless, for robustness, we consider di¤erent values of each para-

meter (that still satis�es the assumptions of the model), below.

The relation between optimal tari¤ rates and the relative size of country 1 (i.e.,

�1), ceteris paribus, is given in Figure 4. As is evident, as country 1 gets larger (i.e., as

�1 increases), its tari¤ on other two symmetric countries increases, tari¤ rates of other two

symmetric countries on country 1 decreases, and bilateral tari¤between other two symmetric

countries decreases as well. This result is mostly connected to increasing imports of country

1 and decreasing imports of other two symmetric countries which are important parts of

welfare through tari¤ income.

The relation between optimal tari¤ rates and remoteness of country 1 (i.e., �1j =

5For example, when we write

n�2X
i=1

X
Si�Cnfj:kg

: : :

we mean that the summation is for any subset of Cn fj:kg with i elements for all i = 1; : : : n� 2.
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� j1 > 0), ceteris paribus, is given in Figure 5. As is evident, as country 1 gets remoter (i.e.,

as �1j = � j1 increase), its tari¤ on other two symmetric countries decreases, tari¤ rates of

other two symmetric countries on country 1 decrease, and bilateral tari¤ between other two

symmetric countries increases. In other words, as transportation costs increase between

country 1 and the rest of the world, other two symmetric countries become relatively closer,

and they apply higher tari¤ rates to each other compared to what they apply on the remote

country.

The relation between optimal tari¤ rates and comparative advantage of each coun-

try in the good that it exports (i.e., �jj�s), ceteris paribus, is given in Figure 6. As is evident,

as the degree of comparative advantage increases, all symmetric countries apply higher bi-

lateral tari¤ rates. This is again mostly due to increasing tari¤ incomes through increasing

volumes of trade.

Finally, the relation between optimal tari¤ rates and the slope of excess supply

with respect to price (i.e., B+�) , ceteris paribus, is given in Figure 7. As is evident, there

is a negative relation between tari¤ rates of symmetric countries and the slope of excess

supply, mostly because of potential gains from additional tari¤ income through increasing

exports (and thus imports).

Figures 4-7 re�ect the trade-o¤ between many variables in terms of optimal tari¤s

because of their e¤ects on the volume of trade: (i) when Figures 4 and 5 are compared,

putting a tari¤ on a remote country has similar e¤ects as putting a tari¤ on a smaller

country; (ii) when Figures 6 and 7 are compared, increasing the number of countries has

similar e¤ects as decreasing comparative advantage of each country in the product that

it exports; (iii) when Figures 6 and 8 are compared, increasing the number of countries

has similar e¤ects as increasing the slope of the excess supply with respect to price. In
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other words, just like Engel and Rogers (1996) measure the international border in terms of

distance, one can measure the international border in terms of country sizes, comparative

advantages, or transportation costs using the model of this paper when Nash tari¤s are in

charge. Such an exercise can be handled through an elasticity approach, i.e., by measuring

the e¤ects of country sizes, comparative advantages, or transportation costs on the elasticity

of demand and supply.

The results in Figures 4-7 are not a¤ected when we change transportation costs

(i.e., � jk�s), comparative advantages (�jj�s), absolute country sizes (�j�s) or the slope of

excess supply with respect to price (i.e., B + �), but the positions and magnitudes of

comparative statics change.

Comparative Statics for The Case with Trade Agreements

In this section, we analyze how the welfare of a country changes under possible free

trade agreements with di¤erent countries. Figures 4-7 re�ect that countries apply higher

tari¤ rates to countries that they have higher imports from. Although there can be many

di¤erent reasons to have high import volumes, in the context of regional trade agreements,

highest tari¤ rates would be applied on imports coming from closer countries, since the

volume of trade is higher with such countries due to low transportation costs.

We consider the benchmark parametrization of �jj = �0:9, �jk = �1, B+� = 0:2,

N = 3, and �j = 1 for all j, and we change the remoteness of country 1 through its

transportation costs (i.e., � j1 and �1j) which is used as a measure of distance. By using this

parametrization, we compare the welfare of country 2 when it makes an agreement with

country 1 (a remote region with a transportation cost of �21 = �12 > 0) with its welfare

when it makes an agreement with country 3 (a close region with a transportation cost of
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�23 = �32 = 0). Formally, welfare gains of country j from a trade agreement between

country 2 and country 3 compared to an agreement between country 1 and country 2 is

given by the following expression:

�j =Wj

�
tA23; t

A
32; t

B
(�i)3; t

B
(�i)2

�
�Wj

�
tA12; t

A
21; t

B
(�i)1; t

B
(�i)2

�
where tAmn represents the agreed tari¤ rate between countries m and n, which is set equal to

zero for simplicity, and tB�(i)n represents the optimal tari¤ rates of other countries on good

n given the agreed tari¤ rates.

The welfare gains of a regional trade agreement between country 2 and country

3 compared to an agreement between country 1 and country 2 (i.e., �j �s) are depicted in

Figure 8. As country 2 is the one for which we make the comparison, we should focus on its

welfare gains: as is evident, as country 1 gets remote, the welfare gain of country 2 increases.

This is true mainly because of two reasons: 1) Increasing transportation costs between

country 1 and country 2 decreases country 2�s welfare from having an agreement with

country 1, and 2) As country 1 gets remote, the tari¤ rate between country 2 and country

3 increases (Figure 5) and hence, the welfare of country 2 from having an agreement with

country 3 increases. This result is true for alternative parameterizations as well, although

the magnitude of welfare gains are di¤erent in alternative cases. When transportation

costs decrease (i.e., if countries are closer to each other), the welfare gains from a regional

trade agreement increase. As is also evident, the welfare gain of the world (i.e., the sum

of the welfare gains of all countries) also increases when transportation cost decreases. As

expected, welfare gains of country 1 are negative (and increasing with transportation costs),

while welfare gains of country 3 are positive (and decreasing with transportation costs).
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The Stationary Dynamic Tari¤Game

It is well known that repeated interactions between parties can be used to support

payo¤s that Pareto dominate those obtained in the one shot game. In this section, following

the lead of Bond (2001), countries play a repeated game for tari¤ rates. The repeated

structure of the game gives more �exibility to our model in terms of incorporating the

self-enforcement agreements.

In this game, each country is able to compare future payo¤s out of a possible col-

lusion (cooperation) and out of a possible deviation from a free trade agreement.6 Country

j�s welfare when j makes an agreement with k is represented by Wj

�
tAjk; t

A
kj ; t

B
(�i)j ; t

B
(�i)k

�
where tAjk and t

A
kj are the agreed tari¤ rates for good j and k, respectively, and t

B
(�i)j (t

B
(�i)k)

is the optimal tari¤ rates of all other countries on good j (resp., k). If country j cheats on

country k, j sets its optimal tari¤ rate on good k, tBjk, given t
A
kj , t

B
(�i)j and t

B
(�i)k. In this

game, countries follow a grim trigger strategy, i.e., if country j cheats on country k, then

both countries set their optimal tari¤ rates in the future and no agreement can be formed

in the future.

In order to sustain collusion in a trade agreement, the trade-o¤ between the gains

from deviating from an agreed-upon tari¤ policy and the discounted expected future gains

from collusion must be balanced in a way that the latter should keep away countries from

deviating. That is,

1
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6Although this paper investigates free trade agreements, the model of this paper can easily be used to
investigate custom unions.
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where �j is the discount factor of country j. Hence, country j cooperates if and only if

�
�j

1� �j

�
	j � 
j � 0 (IV.4)

or equivalently

�j �

j

	j +
j

where 	j is the one-period value of cooperation for country j, i.e.,

	j =Wj
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�
and 
j is the welfare gain of country j from cheating to country k, i.e.,


j =Wj
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In other words, for country j to have a cooperation, the minimum discount factor of country

j should be:

�j =

j

	j +
j

In our analysis, we calculate �j values under di¤erent transportation costs to connect the

model to regional trade agreements.7

Trade Agreements in a Stationary Dynamic Tari¤Game

Consider the benchmark parametrization of �jj = �0:9, �jk = �1, B + � = 0:2,

N = 3, and �j = 1 for all j, and we change the remoteness of country 1 through its

transportation costs (i.e., � j1 and �1j) which is used as a measure of distance. By using this

7Note that both the welfare function and the minimum discount factor can be written as closed form
expressions because we already know the closed form expression of the best response tari¤.
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parametrization, we compare the minimum discount factor of country 2 when it cooperates

with country 1, say, �12 (i.e., a bilateral trade agreement) with its minimum discount factor

when it cooperates with country 3, say, �32 (i.e., another bilateral trade agreement), and

its minimum discount factor when it cooperates with countries 1 and 3, say, �1;32 (i.e., a

multilateral trade agreement among all countries). Such a comparison helps us understand

the di¤erences in sustainability between regional and multilateral trade agreements in a

stationary dynamic tari¤ game.

From Country 2�s point of view, the relation between the minimum discount factor

of country 2 �2 and the relative size of country 1 �1 is given in Figure 9. Independent of

alternative parameterizations, it is seen that when countries are symmetric in size (i.e.,

�j = 1 for all j), a multilateral trade agreement is harder to sustain for country 2, while

a bilateral trade agreement is easier. However, as country 1 gets larger, ceteris paribus, it

is easier for country 2 to sustain an agreement with country 1 (i.e., the larger country),

while it becomes relatively harder to sustain an agreement with country 3 (i.e., the smaller

country). Nevertheless, as country 1 gets large enough, the minimum discount factor of

country 2 in the case of an agreement with country 1 gets very close to the one in the case

of a multilateral agreement with all countries. This is mostly due to country 1 having a

larger share in the world economy as it gets larger.

From Country 2�s point of view, the relation between the minimum discount factor

of country 2 �2 and the relative size of country 2 �2 is given in Figure 10. As seen in

Figure 10, as country 2 gets larger, both a bilateral trade agreement and a multilateral

trade agreement become harder to sustain for country 2. Moreover, as country 2 gets

larger, a cooperation in a multilateral agreement becomes relatively more di¢ cult to sustain

compared to a cooperation in a bilateral agreement.
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When countries are asymmetric in terms of their sizes, in order the check whether

a collusion is sustainable between asymmetric countries in general, we need to use the

maximum of the minimum discount factors of countries involving in an agreement; i.e., we

need to calculate max f�j ; : : : ; �kg where j; :::; k are the countries involving in an agreement.

Such an analysis is achieved in Figure 11. As is evident, when country 1 gets larger, a

multilateral or a bilateral agreement involving country 1 (i.e., the large country) is harder

to sustain, because the gains in terms of reduced tari¤s get smaller for country 1.

Figure 12 investigates the possible implications of transportation costs in trade

agreements: It shows how the minimum discount factor of country 2 and the remoteness of

country 1 are related. As country 1 gets remote, cooperation in a regional or a multilateral

agreement becomes harder to sustain for country 2. A regional agreement with country 3

is still relatively easier to sustain for country 2. In fact, the degree of sustainability of a

regional agreement with country 3 is the least to be a¤ected by the remoteness of country

1. This is due to the fact that as country 1 gets remoter, trade volume between countries

2 and 3 increases, and hence, the gains from an agreement also increases. The degree of

sustainability of a multilateral agreement is still higher than that of a regional agreement

even when the regional agreement is with a remote country. This is the second main result

of this paper: Lower transportation costs play an important role in sustaining regional trade

agreements.

In Figures 13 and 14, we see that the comparative advantage of country 2 and

the slope of the excess supply, respectively, have no e¤ect on the minimum discount factor

of country 2. Nevertheless, a multilateral agreement is always more di¢ cult to sustain

compared to a bilateral agreement.
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Conclusion

This paper has shown that the existence of transportation costs may be a possible

reason for explaining why trade agreements are mostly regional by introducing anN -country

international trade model with di¤erent country sizes and comparative advantages. In a case

with no agreements, we show that the optimal tari¤ rates are decreasing in transportation

costs; i.e., closer countries set higher tari¤s to each other in equilibrium. If such high

tari¤s are reduced between closer countries, the welfare gain is shown to be much higher

compared to reducing tari¤ rates with a remote country; i.e., countries tend to make regional

agreements to maximize their welfare. Moreover, according to the best response functions

of countries, (i) as a country gets larger, other countries apply lower optimal tari¤ rates to

that country; (ii) as a country gets remoter from others, other countries become relatively

closer, and they apply higher optimal tari¤ rates to each other compared to what they

apply on the remote country; (iii) as the degree of comparative advantage increases across

countries, all symmetric countries apply higher optimal bilateral tari¤ rates; (iv) there is a

negative relation between tari¤ rates of symmetric countries and the slope of their excess

supply.

After that, we make a welfare analysis by using a stationary dynamic tari¤ game

approach and show that, for an individual country, (i) it is harder to sustain multilateral

trade agreements (compared to a regional one) when country sizes are close to each other;

(ii) it is more di¢ cult to sustain a regional trade agreement with a relatively small country

than a multilateral agreement when a relatively big country gets involved in the multilateral

agreement; (iii) it is harder to sustain a trade agreement when the country itself gets

larger; (iv) it is harder to sustain a multilateral trade agreement (compared to a regional

one) when a country gets larger; (v) lower transportation costs play a signi�cant role in
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sustaining regional trade agreements compared to sustaining multilateral trade agreements.

The results hold under alternative cases, which further support the analysis.
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Figure 4. Nash Tari¤ Rates versus the Relative Size of Country 1
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Figure 5. Nash Tari¤ Rates versus the Remoteness of Country 1
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Figure 6. Nash Tari¤ Rates versus Comparative Advantage
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Figure 7. Nash Tari¤ Rates versus the Slope of Excess Supply
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Figure 8. Welfare Gains of a Regional Trade Agreement
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Figure 9. Minimum Discount Factor of Country 2 versus the Relative Size of Country 1
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Figure 10. Minimum Discount Factor of Country 2 versus the Relative Size of Country 2
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Figure 11. Minimum Discount Factor for Collusion versus the Relative Size of Country 1

91



Figure 12. Minimum Discount Factor of Country 2 versus the Remoteness of Country 1
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Figure 13. Minimum Discount Factor of Country 2 versus Comparative Advantage
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Figure 14. Minimum Discount Factor of Country 2 versus the Slope of Excess Supply
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