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Chapter 1

Introduction: The Flavor Puzzle

Fifty years into its existence, the Standard Model remains largely untarnished. All

known particles are accounted for and sorted neatly into irreducible representations (irreps)

of Lie groups. Three out of the four fundamental forces have been explained elegantly as

a consequence of the gauge invariance of the Standard Model Lagrangian. Particle masses

arise from spontaneous symmetry breaking via the Higgs mechanism. With all this in mind,

what is there left to do in particle physics? Perhaps most obviously there is still no complete

quantum theory of gravity; this problem falls outside the scope of this dissertation and will

be left for other works. Just as ambitious a goal is grand unification, i.e. can we formulate

a complete theory in which the three fundamental forces of the Standard Model are the low

energy residues of one unified force? The quest for a grand unified theory dates back one

hundred years but became more tangible with the advent of quantum gauge symmetries.

The task at hand is to find a master gauge group which can spontaneously break to the

standard model gauge groups, the canonical example of this being Georgi and Glashow’s

SU(5) theory [1]. But this task is not as simple as it may seem, the precise structure

of the grand unified theory, i.e. its particle representations, symmetry breaking patterns,

scalar sector, etc. all have far reaching consequences for measurables like decay processes,

conservation laws, particle masses and mixing angles. For example, the continued absence

of proton decay has ruled out Georgi and Glashow’s SU(5) theory.

There are innumerable options for grand unified theories, spanning different choices of

gauge groups and representation structures and proposing new mechanisms such as super-

symmetry and string theory. It is a monumental task to even begin building a unified model.

One often fruitful approach is to work from the “bottom up”, i.e., to search for hints of na-

ture’s high energy structure in the physics that is currently accessible via experiment. The

1



goal of this approach is not necessarily to formulate a complete grand unified theory but to

describe physics at the next higher energy scale. If a given formulation is proven correct,

models can be built iteratively at higher and higher energy scales until a theory of physics

at the GUT scale is reached. An advantage of this approach is that the model’s low energy

structure is built in; the model is built on top of existing physics which avoids having to

reconcile with known results after the fact. Another advantage is that via this approach the

theory is much more likely to have predictions that are experimentally testable presently

or in the near future. This will ensure that incorrect theories can be ruled out relatively

quickly and that not too much time is spent going down the wrong path.

It is in this context that we examine what is known as the flavor puzzle. The phe-

nomenon of flavor is one of the strongest hints of physics beyond the Standard Model.

Electrons, up quarks, and down quarks form the basis of ordinary matter, the four vector

bosons mediate the fundamental forces, and the Higgs boson interacts with all particles to

give them mass. Other particles arise from gauge invariance: The electron neutrino is the

result of an SU(2) gauge rotation of the electron, positron and anti-quarks are U(1) (Elec-

tromagnetic) gauge rotations, and blue, green and red quarks are the result of SU(3) gauge

rotations. All of these particles are required to exist by the rules of the Standard Model.

Absent from this discussion is flavor. Under the standard model there are three distinct

families of fermions: the electron, electron neutrino, up and down quark being the lightest,

with the others successively heavier (see Figure 1.1 below).

2



Figure 1.1: The Standard Model of Particle Physics

This structure is suggestive of a flavor symmetry, a gauge symmetry in addition to that

of the Standard Model that rotates between different flavored particles. This would give a

reason for the different flavors to exist, they would be particles with different charges under

a flavor force. Unfortunately, at observable energy scales there is no such force; different

flavors of particles are identical save for their increased masses.

This however does not preclude the existence of a flavor force at a higher energy scale.

The mass difference between particles of different flavors can be seen as a residue of the

theory’s high energy structure. This is analogous to electroweak (EW) symmetry break-

ing, which gives fermions mass values proportional to the EW breaking scale and renders

the weak force nearly undetectable at low energies. A review of spontaneous symmetry

breaking in the Standard model can be found in Section 2 below. A key ingredient in flavor

models are the scalar particles that facilitate the spontaneous breaking of the flavor gauge

symmetries. The existence of new scalars is an important prediction of flavor models and

can be used as an experimental signature to test the veracity of a given model. Section 3

will outline a systematic approach to breaking gauge symmetries via the Higgs mechanism,

and carry out this approach for many different example breaking patterns. Predictions and

3



mass bounds are given for the scalar multiplets involved in each breaking.

In addition to mass differences, particles of different flavors are allowed to mix un-

der the weak interaction. For example, an up quark usually couples to the down quark in

decay interactions, but flavor changing decays can also occur where the up is coupled to

the strange or bottom quark instead. A brief overview of flavor mixing in the quark and

lepton sectors will be given in Section 4. It is by examining these mixing patterns that

the use of discrete symmetries for model building became popularized. In contrast to the

Standard Model, where SUL(2) × UY (1) breaks to the continuous group UEM(1), flavor

models often will take a continuous flavor force at high energies and have it spontaneously

break to a discrete group such as A4 or T ′. One can then derive mixing matrices compat-

ible with experimental results by considering a Lagrangian that has the specified discrete

symmetry. Lastly, Section 5 will describe a specific model in which an SU(2) flavor sym-

metry breaks to T ′, quark and lepton mixing matrices are derived, and predictions for new

particles required to complete the SU(2) theory and cancel anomalies are given.
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Chapter 2

Standard Model Symmetry Breaking

2.1 Spontaneous Symmetry Breaking in the Standard Model

This section will provide a brief overview of Spontaneous Symmetry Breaking (SSB)

in the Standard Model. We will first construct the Lagrangian above the electroweak scale,

then we carry out SSB for the breaking pattern SU(2)L×UY (1)→ UEM(1) and review the

resulting scalar and vector mass states.1 From these steps we will develop a prescription

for symmetry breaking that we will follow for more complex breaking patterns later in this

work.

2.1.1 Gauge Invariant Lagrangian

We begin with the lepton sector [2–4] . For each generation of lepton (e,µ,τ ) we have a

left handed doublet ΨL(x) = (ν(x), l(x)) and a right handed singlet for the neutrino νR(x)

and charged lepton lR(x) fields. We can write down the lepton Lagrangian Ll:

Ll = i[Ψ
L
(x) /DΨL(x) + lR(x) /DlR(x) + νR(x) /DνR(x)] (2.1)

We define the covariant derivativeD to ensure invariance under SU(2)L×UY (1) gauge

transformations:

DµΨL(x) = [∂µ +
1

2
igτjW

µ
j (x)− 1

2
ig′Y Bµ(x)]ΨL(x)

DµlR(x) = [∂µ − ig′Y Bµ(x)]lR(x)

DµνR(x) = ∂µνR(x)

(2.2)

Where g and g′ are coupling constants, τj are the Pauli spin matrices, and Y is the hyper-

1The derivations in this chapter are adapted from chapters 17-19 of [78]
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charge of the appropriate fermion. We have four vector bosons: Bµ(x) is the generator

and force carrier associated with the UY (1) (hypercharge) symmetry and W µ
i (x) (where

i = 1, 2, 3) are the generators and force carriers of the SU(2)L (weak) symmetry.

Next we detail the quark sector. For each quark generation we have a left-handed

doublet QL(x) = (u(x), d(x)) where u(x) and d(x) represent the up type and down type

quark fields respectively. In addition we have right-handed singlets for the up type and

down type fields, uR and dR. Our quark Lagrangian is:

Lq = i[QL(x) /DQL(x) + uR(x) /DuR(x) + dR(x) /DdR(x)] (2.3)

With covariant derivatives:

DµQL(x) = [∂µ +
1

2
igτjW

µ
j (x)− 1

2
ig′Y Bµ(x)]QL(x)

DµuR(x) = [∂µ − ig′Y Bµ(x)]uR(x)

DµdR(x) = [∂µ − ig′Y Bµ(x)]dR(x)

(2.4)

Next we examine the vector boson sector. Their gauge invariant Lagrangian is:

LB = −1

4
Bµν(x)Bµν(x)− 1

4
Giµν(x)Gµν

i (x) (2.5)

WhereBµν = ∂νBµ(x)−∂µBν(x) andGiµν = ∂νW µ
i (x)−∂µW ν

i (x)+gεijkW
µ
j (x)W ν

k (x)

At this scale, all non-scalars must be massless because typical mass terms of the form:

mlψ(x)ψ(x)

mbW
†
iµ(x)W µ

i (x)

(2.6)

are not gauge invariant2. Masses will be introduced below the EW breaking scale via the

Higgs Mechanism.

2This is actually not true for right-handed neutrino field, but since these fields are not included in the
Standard Model we delay discussion until Chapter 4
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2.1.2 Higgs Mechanism

We now introduce the Higgs into the model in order to spontaneously break SU(2)L ×

UY (1)→ UEM(1). The Standard Model Higgs is a complex scalar SU(2)L doublet:

Φ(x) =

φa(x) + iφb(x)

φc(x) + iφd(x)

 (2.7)

Physically, this means that above the electroweak scale there are four spin-0, particles

with degenerate mass. We construct the scalar Lagrangian LH :

LH = [DµΦ(x)]†[DµΦ(x)]− V (Φ)

V (Φ) = µ2Φ†(x)Φ(x) + λ[Φ†(x)Φ(x)]2

µ2 < 0

(2.8)

Where V is the potential energy part of the Lagrangian. In order to preserve gauge

invariance, we define the covariant derivative Dµ by:

DµΦ(x) = [∂µ +
1

2
igτjW

µ
j + ig′Y Bµ(x)]Φ(x) (2.9)

The potential has a set of minima defined by:

Φ†0Φ0 =
−µ2

2λ
(2.10)

We then spontaneously break the SU(2)L × UY (1) symmetry by choosing the particular

ground state, also known as a Vacuum Expectation Value (VEV):

Φ0 =

 0

v√
2

 (2.11)
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Where

v =

√
−µ2

λ
(2.12)

We show below that this choice of vacuum is still invariant under a general UEM(1) gauge

transformation if we define the hypercharge of the Higgs doublet to be Y = 1
2
:

e−i(Q)ef(x)Φ0 = e−i(Y+IW3 )ef(x)Φ0 = Φ0 (2.13)

Where Q is the electromagnetic charge, IW3 is the third component of weak isospin, and

f(x) is an arbitrary function of x. Thus for this vacuum alignment we have preserved

UEM(1) gauge symmetry below the breaking scale. We can now express Φ(x) in terms of

deviations from its minimum, Φ0:

Φ(x) =
1√
2

 η1(x) + iη2(x)

v + σ(x) + iη3(x)

 (2.14)

We can then simplify this expression by gauging away the fields η(x):

Φ(x) =
1√
2

 0

v + σ(x)

 (2.15)

Which is allowed due to the gauge invariance of Φ(x). Transforming Φ(x) in this way is

known as going to the ”unitary gauge”. Inserting this form into the scalar Lagrangian (2.8)

will produce a term
1

2
m2
Hσ

2 where m2
H =

√
−2µ2 (2.16)

Thus giving a mass mH to the scalar boson σ, which can now be identified as the Higgs

particle. Additionally we will have terms like m2
WW

†
µW

µ, with mW proportional to the

breaking scale v, which are identified as mass terms for the gauge bosons. We will see that

three of the four gauge bosons gain a mass while one remains massless, as is to be expected
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from the breaking pattern.

One recognizes that the three massive gauge bosons will be theW+, W− and Z while

the massless particle is the photon. There is an additional wrinkle in that these are not just

the low energy equivalents of the B and Wi but are actually linear combinations defined

by:

W+
µ (x) =

1√
2

[W1µ(x)− iW2µ(x)]

W−
µ (x) =

1√
2

[W1µ(x) + iW2µ(x)]

Zµ(x) = cos(ΘW )W3µ(x)− sin(ΘW )Bµ(x)

Aµ(x) = cos(ΘW )Bµ(x) + sin(ΘW )W3µ(x)

(2.17)

Where ΘW is a free parameter known as the weak mixing angle. Making these substi-

tutions into Equations (2.8) and (2.5) we obtain the full boson Lagrangian:

LB + LH = −1

4
FµνF

µν − 1

2
F †WµνF

µν
W −

1

2
ZµνZ

µν +m2
WW

†
µW

µ +
1

2
m2
ZZµZ

µ

+
1

2
∂µσ∂µσ −

1

2
m2
Hσ

2 + interaction terms
(2.18)

with:

mW =
1

2
vg, mZ =

mW

cosΘW

, mH =
√
−2µ2 (2.19)

Where the first three terms are the field strength tensors of the newly defined photon, W+−,

and Z bosons, respectively.

In addition to boson mass terms, we have interaction terms between fermions and Φ(x).

E.g. for the charged leptons we have:

YlΨ
L
(x)lR(x)Φ(x) + hermitian conjugate (2.20)

Terms of this form are known as Yukawa terms, with constants (e.g. Yl) known as Yukawa

couplings. The existence of these terms dictate that when Φ(x) obtains a VEV below the
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breaking scale v√
2
, all fermions in the theory obtain a mass proportional to this scale via

their interactions with Φ.

With that we have carried out the full process for spontaneous breaking of the elec-

troweak symmetry. To summarize, above the breaking scale we have a theory that is sym-

metric under SU(2)L, which gives rise to the weak force mediated by its 3 associated mass-

less bosons Wj . It is also symmetric under UY (1), which gives rise to an additional force

mediated by the massless B boson. We also have four scalar particles that form a complex

doublet Φ(x). We break this symmetry by giving a vacuum expectation value to Φ(x), so

that below the scale of the VEV we have a UEM(1) symmetric theory with one associated

massless gauge boson, the photon. We are left with one heavy scalar σ which is identified

as the Standard Model Higgs, the remaining three scalars become extra degrees of freedom

of the now massive W±, and Z gauge bosons. These bosons are now heavy, so at energies

below the breaking scale they must be produced off shell by interacting fermions. This

leads to the weak force being exponentially weaker below the breaking scale and explains

why it so much weaker than the electromagnetic force at low energies.

In the following chapter we will build on this relatively simple example by constructing

a general framework for the spontaneous breaking of gauge groups.
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Chapter 3

Spontaneous Breaking of Gauge Symmetries to Discrete Groups

3.1 Introduction

In the following chapter, we treat cases where a flavor gauge group breaks to a discrete

group at an energy far above the electroweak scale, and examine the phenomenology of the

scalar sector needed to carry out these breakings. Before we dive into the specifics of these

breaking patterns, it is worth explaining why discrete symmetries are used in flavor model

building. The Standard Model does not explain quark and lepton masses, nor does it ex-

plain how quarks and leptons mix. All of these values are treated as free parameters of the

theory, i.e. the model provides no predictions as to their magnitude. These parameters can

be constrained by imposing a discrete symmetry Γ on the Lagrangian. Particles are then as-

signed into irreducible representations (irreps) of Γ and predictions for masses and mixings

can be derived from symmetry constraints. Many choices of this discrete flavor symmetry

have been tried. As expected, larger groups can typically provide a fuller description of

flavor physics, but there are examples of relatively small nonabelian discrete groups like

A4 and T ′ that are somewhat more economical. Here we take an agnostic approach as to

the choice of discrete group and study a representative set of examples that have been used

in model building.

Notable early extensions of the standard model with discrete symmetries include the

work of Pakvasa and Sugawara [5] who used Γ = S3 and focused on the quark sector, as

well as Ma and collaborators [6, 7] who used Γ = A4 to describe the lepton sector. Many

other choices for Γ have been used in model building, several of which will be discussed

below. For an early brief review of possible discrete groups that can be used for SM exten-

sions see [8]. Recent extensive reviews with more complete and up to date bibliographies

are also available. See for instance [9–12].
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We have thus far framed discrete extensions of the Standard Model as residues of a high

energy flavor gauge theory. Although this provides an elegant explanation for the origins

of the discrete symmetry, there are also more practical reasons for having it arise in this

way. Global discrete symmetries are violated by gravity [13], the discrete group can be

anomalous [14], unwanted cosmic defects can be produced [15], etc. To avoid as many of

these problems as possible the most expedient approach is to gauge the discrete symmetry,

i. e., extend the SM by a continuous group G in such a way that no chiral anomalies are

produced. Then one breaks this gauge group to the desired discrete group, G → Γ, where

now Γ is effectively anomaly free and avoids problems with gravity.

Various examples of gauge groups breaking to discrete groups have been discussed in

the literature, but only in a few cases have the details of the minimization of the scalar

potential and the extraction of the scalar spectrum been investigated. Here we plan to in-

clude these important details for many of the discrete groups of interest via the following

procedure:

(i) First we provide irreps of G that contain trivial Γ singlets. These results are summarized

in Appendix A.

(ii) Next we set up scalar potentials V with scalars in one of these irreps.

(iii) Then we find a vacuum expectation value (VEV) via the Reynolds operator [16] (sim-

ilar to the perhaps more familiar Molien series [17]) that can break G to Γ.

(iv) Next we minimize V to show that the VEV indeed does properly break the symmetry.

(v) Finally, we provide the spectrum of scalar masses at the Γ level after the breaking. Our

calculations are carried out with Mathematica and checked by hand where practical.

Many of the methods we employ were developed in work by Luhn [18] and by Merle

and Zwicky [19], where some of the results summarized here can be found. We believe

our results will be of interest to many model builders, since it will allow them to include

the minimal set of scalars necessary to break a gauge symmetry to a discrete symmetry of

interest. A few examples that go beyond the minimal set of scalars are also included, where
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the symmetry breaking is carried out from a nonminimal G irrep or a non-minimal G.

3.2 Lie Group Invariant Potentials

Our task in this section is to construct Higgs potentials invariant under Lie groups G

for specific irreps. But first we must see which irreps are suitable for spontaneous sym-

metry breaking (SSB), i.e., irreps whose decompositions include a trivial singlet of the

desired subgroup Γ ⊂ G to which we hope to break. Using the Mathematica package de-

composeLGreps [20] along with GAP to generate the groups [21], one can easily produce

tables of branching rules from Lie group irreps to subgroup irreps and find such singlets.

We have done this for a number of cases and have included them in a short appendix for

convenience.

3.2.1 Gauge Group Representations Containing Discrete Gauge Singlets

The discrete groups Γ we will discuss and the gauge groups where they can be mini-

mally embedded areA4, S4, A5 ⊂ SO(3);Q6, T
′, O′, I ′ ⊂ SU(2); and T7,∆(27), PSL(2, 7) ⊂

SU(3).

These discrete groups can also be embedded non-minimally. For example, we include

the case A4 ⊂ SU(3). Minimal and non-minimal embedding of other discrete groups can

be handled in a way similar to what is discussed here, and we hope that the examples we

discuss are sufficiently informative to aid in other cases.

To spontaneously break G to Γ with some irrep R of G, it is necessary that R contains

a trivial Γ singlet. It is straightforward to look at the decomposition of R from G to Γ

to make this determination. The decomposition can be carried out by standard techniques

starting from character tables. Since it is the character tables that are usually provided in

the literature, we here provide an appendix with the tables of decompositions of the first

few irreps of SO(3), SU(2), and SU(3) to discrete groups of interest. For example, as

one can see in Table A.1 of the Appendix, the 7 and 9 dimensional irreps of SO(3) have
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trivial A4 singlets, therefore these irreps are candidates for the scalar potential that allows

the spontaneous symmetry breaking SO(3)→ A4.

3.2.2 SO(3) Potentials

We will begin our study of SSB by starting with relatively simple examples and then

proceed to more sophisticated cases. But first, a note on cubic terms in the potential;

a general renormalizable potential has quadratic, cubic, and quartic terms, but the cubic

terms tend to significantly complicate the analysis. We exclude these terms for simplicity

by imposing a Z2 symmetry (or, like in some cases, they vanish upon summation), so the

following potentials are actually SO(3)× Z2 invariant. (The Z2 symmetry can be avoided

by including the cubic terms or by gauging it too.) The effect of including the cubic terms

is studied for some cases where the analysis is tractable in Section 3.4. We now proceed to

our first example, the breaking pattern SO(3)→ A4.

3.2.2.1 A4

We begin by constructing an SO(3) invariant potential 1. As stated above, which irrep

we use depends on the discrete subgroup of interest. For example, if we want to break

to the tetrahedral group A4, which has been used to describe the tri-bimaximal neutrino

mixing pattern [10] [23] and co-bimaximal mixing [24], we look at Table A.1 and see that

the lowest dimensional irrep we can use is the 7. For references to other recent work with

A4 models see [25–27]. In terms of the fundamental 3 of SO(3), we obtain a 7 as a direct

product of three 3s.

3× 3× 3 = 1 + 3 · 3 + 2 · 5 + 7 (3.1)
1Group Theory Comments: The tetrahedral group A4 ⊂ SO(3) has double-valued representations that

correspond to single-valued representations of the binary (double) tetrahedral group T ′ ⊂ SU(2). As SO(3)
is not a subgroup of SU(2), likewise A4 is not a subgroup of T ′ [22]. Hence, besides the irreps of T ′ that are
coincident with those of A4, it has three additional spinor doublet-like irreps. The relationships between S4

and O′ and between A5 and I ′ are similar.
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This product gives a generic rank 3 tensor with 27 independent components. To isolate

the 7, we take only the totally symmetric part, which reduces the number of components

from 27 to 10, giving the symmetric tensor Sijk. Then, using the fact that the Kroenecker

delta δij , is an invariant of the fundamental irrep of SO groups (for a discussion of Lie

group invariant tensors see [28]) we subtract off the three traces,
∑3

j δjkSijk, i=1,2,3 ,

to obtain the traceless symmetric tensor Tijk, which is our 7 dimensional SO(3) irrep.

As mentioned above, the most general renormalizable potential is constructed from the

independent quadratic, cubic, and quartic contractions of this tensor. In this case there are

two quartic terms, but notice that all the cubic terms, which necessarily include the anti-

symmetric Levi-Civita Tensor, εijk vanish upon summation. Hence the potential for the 7

is

V7 = −m2 TijkTijk + λ (TijkTijk)
2 + κ TijmTijnTklnTklm (3.2)

In subsequent sections we find a vector (in a particular basis) pointing in the A4 direc-

tion, then minimize the potential and find the mass eigenstates and show that they can all

be positive which implies the minimum is stable. Minimization implies certain constraints

on the coupling constants must be satisfied as will be discussed. We proceed in analogous

fashion for other G → Γ cases, but first we will collect all the potentials we need for the

purpose.

3.2.2.2 S4

To break to the octahedral group, S4, we see from Table A.2 that the lowest irrep we

can use is the 9. From examining Kroenecker products, we see that we must begin with

the direct product of four 3s. Similar to the results in the previous subsection, we take the

symmetric part of this rank 4 tensor, Sijkl, which reduces the number of components to 15.

We then subtract off the six trace elements,
∑
δklSijkl, to obtain the desired 9-component
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tensor. The associated potential is

V9 = −m2 TijklTijkl + λ (TijklTijkl)
2 + κTijklTijkpTmnopTmnol

+ρ TijklTijopTmnopTmnkl + τ TijklTijmnTkmopTlnop

(3.3)

For examples where the octahedral group has been used to build models see [29, 30].

3.2.2.3 A5

Another subgroup of interest, which has been used in a number of recent models [31–

34], is A5. From Table A.3 we see that the 13 is the lowest irrep that contains a trivial A5

singlet. Again starting from the fundamental SO(3) triplet one can show that the Kroe-

necker product of six 3s is needed to get an irrep of this dimension. The symmetric part

of this rank 6 tensor, Sijklmn has 28 independent components, which is then reduced to 13

by subtracting off the 15 trace elements,
∑
δmnSijklmn. The potential is constructed in a

fashion similar to the A4 case.

V13 = −m2 TijklmnTijklmn + λ (TijklmnTijklmn)2 + κTijklmnTijklmtTopqrsnTopqrst

+ρ TijklmnTijklstTopqrmnTopqrst + τ TijklmnTijkrstTopqlmnTopqrst

(3.4)

3.2.3 SU(2) Potentials

We now proceed in a similar vein to construct SU(2) invariant potentials. In fact, for the

odd dimensional (real) representations, invariants must be constructed from triplets which

furnish an unfaithful representation of SU(2). As such the true symmetry of the theory is

not given by the potential alone and must be determined from the specifics of the model,

i.e., from the full Lagrangian. In the following cases, the omission of the cubic terms means

the potentials have a SU(2) × U(1) symmetry, where the U(1) is a phase. This phase can

also be gauged and then broken if necessary to avoid problems with global symmetries, or

in some cases cubic terms can be added that do not respect the U(1).
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3.2.3.1 Q6

If we want to break to Q6 we see from Table A.4 that the lowest dimensional irrep we

can use is the 5. However, as explained in [35, 36], this irrep will actually break to the

continuous subgroup Pin(2). So we must look at the next lowest irrep with a trivial SU(2)

singlet, the 7. We cannot break with a real 7 as in Eq.(3.2) because there are no triplet

representations ofQ6 that can be used to find a VEV in the unfaithful SO(3) representation.

Thus we must use the complex 7, which has the same potential as needed for the T ′ case

which is given in Eq.(3.5) below.

3.2.3.2 T ′

To break from SU(2) to T ′, the binary tetrahedral group, we see from Table A.5 that

the smallest SU(2) irrep we can use is the 7. Since we must construct it from triplets the

potential is the same as in equation (3.2). The VEVs will also be the same.

Another possibility is to do the breaking to T ′ with a complex 7, which can be thought

of as a pair of real 7s. We can now build our representation out of the fundamental doublets

of SU(2), where we get the 7 by taking the direct product of six 2s and isolating the tensor

symmetric on all indices. The potential is

V7c = −m2 TijklmnT
ijklmn + λ (TijklmnT

ijklmn)2 + κTijklmnT
ijklmtTopqrstT

opqrsn

+ρ TijklmnT
ijklstTopqrstT

opqrmn + τ TijklmnT
ijkrstTopqrstT

opqlmn

(3.5)

where the indices now run from 1 to 2. All cubic terms have vanished upon summation.

T ′ models are economical and have been used to explain both quark and lepton sector

parameters [8, 37–39, 39–43]. A more complete set of recent T ′ model references can be

found in [43].
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3.2.3.3 O′

To break from SU(2) to O′, the binary octahedral group, we see from Table A.6 that

the smallest SU(2) irrep we can use is the 9. As in the S4 example, we can construct our

potential from triplets so the potential is the same as in equation (3.3) and the VEVs will

again be the same.

We can also consider the case of a complex 9 and build the representation out of SU(2)

doublets. We obtain the 9 through the symmetric product of eight 2s. The potential is

V9c = −m2 TijklmnopT
ijklmnop + λ (TijklmnopT

ijklmnop)2 + κTijklmnopT
ijklmnoxTqrstuvwxT

qrstuvwp

+ρ TijklmnopT
ijklmnwxTqrstuvwxT

qrstuvop + τ TijklmnopT
ijklmvwxTqrstuvwxT

qrstunop

+σ TijklmnopT
ijkluvwxTqrstuvwxT

qrstmnop

(3.6)

O′ is maximal in SU(2), so the proper SSB is assured for a VEV that is O′ invariant.

3.2.3.4 I ′

The final SU(2) breaking case we consider is I ′, the binary icosahedral group, which

has been used in both three and four family extensions of the SM [44, 45]. Here the lowest

SU(2) irrep we can use is the real 13, which yields the same potential as we used for A5

(Eq. (3.4)).

Alternatively for the case of a complex 13 we see that it is given by the symmetric

product of twelve 2s. The potential has seven quartic invariants, and the first few terms are

V13c =−m2 TabcdefghijklT
abcdefghijkl + λ (TabcdefghijklT

abcdefghijkl)2

+κTabcdefghijklT
abcdefghijkxTmnopqrstuvwxT

mnopqrstuvwl + ...

(3.7)
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Potentials for higher tensors can be cumbersome to write, so let us introduce a new notation

to deal with them. For instance for the potential for the 13, let us define

T12a · T 12a = TabcdefghijklTabcdefghijkl,

and

(T11a · T 11a)bc(T11a · T 11a)cb = TabcdefghijklT
abcdefghijkxTmnopqrstuvwxT

mnopqrstuvwl,

etc. Specifically we write na for the collection of indices a1a2a3...an, etc. Then the full

potential for the complex 13 takes the form

V13c =−m2 T12a · T 12a + λ (T12a · T 12a)2 + κ(T11a · T 11a)bc(T11a · T 11a)cb

+ρ (T10a · T 10a)2b2c(T10a · T 10a)2c2b + τ (T9a · T 9a)3b3c(T9a · T 9a)3c3b + ν (T8a · T 8a)4b4c(T8a · T 8a)4c4b

+σ (T7a · T 7a)5b5c(T7a · T 7a)5c5b + χ (T6a · T 6a)6b6c(T6a · T 6a)6c6b

(3.8)

This notation is consistent when the tensor T is totally symmetric on all of its indices 2.

Again, since I ′ is maximal in SU(2), the proper SSB is assured for an I ′ invariant VEV.

3.2.4 SU(3) potentials

Similar to the previous section, the omission of cubic terms means that the following

potentials have an SU(3)×U(1) symmetry, where the U(1) can be dealt with as described

above.
2We could write an even more compact notation in generalized dyadic form, e.g., the ν term would be

ν(T :8 T ) :4 (T :8 T ) which again defines how the tensor contractions are to be made, but we find this
form unnecessary here, but it could be useful for expressions involving more complicated group invariants.
Cvitanovic’s “Bird Track” notation[28] can also be useful for this purpose
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3.2.4.1 A4, T7

In addition to SO(3), A4 can originate from a broken SU(3) symmetry. Looking at

Table A.8 we see that the lowest dimensional irrep containing a trivial A4 singlet is the 6,

but as explained in [18], neither the 6, 10, nor 15′ will break SU(3) uniquely to A4, i.e.,

giving these irreps anA4 VEV will necessarily leave a group larger thanA4 unbroken. This

leaves us with the 15 as the smallest irrep that will uniquely break to an A4 subgroup, and

the same logic applies to T7. (A variety of T7 models have been proposed, see [46–49].)

To obtain a useful form of the 15 we first take the product 3 × 3 × 3̄ in SU(3); then by

specifying the part that is symmetric on 2 indices, Skij , we reduce the number of independent

components from 27 to 18. Finally, subtracting off the three traces:
∑3

j δjkS
k
ij, i = 1, 2, 3 ,

gives us the desired 15 component tensor. The associated potential [18] is

V15 =−m2 T kijT
ij
k + λ (T kijT

ij
k )2 + κT ijmT

jn
i T klnT

lm
k

+ ρ T ijmT
jn
i Tmkl T

kl
n + τ Tmij T

ij
n T

n
klT

kl
m + ν T ijmT

j
inT

km
l T lnk

(3.9)

3.2.4.2 ∆(27)

From Table A.10 we see that we can use the 10 to spontaneously break from SU(3) to

∆(27). We can get to this irrep by taking the product of three triplets and specifying the

fully symmetric part of the resulting tensor, which reduces to the desired ten independent

components. The potential is

V10 = −m2 TijkT
ijk + λ (TijkT

ijk)2 + κ TijmT
ijnTklnT

klm (3.10)

where the cubic terms have vanished upon summation. This result can also be found in

[18]. Examples where ∆(27) has been used are [50, 51].
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3.2.4.3 PSL(2, 7)

Another group that has garnered considerable interest as a flavor symmetry is PSL(2, 7)

[52]. Looking at Table A.11 we see that the lowest dimensional irrep of SU(3) we can use

to break to PSL(2, 7) is the 15′, (Dynkin label [4 0]). To get to a 15′ we take the product

of four fundamental triplets

3× 3× 3× 3 = 3 · 3 + 2 · 6̄ + 3 · 15 + 15′ (3.11)

The generic rank 4 tensor has 81 independent components, requiring it be symmetric on all

four indices reduces it to 15′ as required. The associated potential is

V15′ = −m2 TijklT
ijkl + λ (TijklT

ijkl)2

+κTijklT
ijkmTmnopT

lnop + ρ TijklT
ijmnTmnopT

klop

(3.12)

Also of interest is the next lowest irrep suitable for breaking from SU(3) to PSL(2, 7),

the 28. We build this irrep by taking the symmetric product of six triplets, giving a fully

symmetric rank 6 tensor with 28 components. The associated potential is

V28 = −m2 TijklmnT
ijklmn + λ (TijklmnT

ijklmn)2

+κTijklmnT
ijklmtTopqrstT

opqrsn + ρ TijklmnT
ijklstTopqrstT

opqrmn

+τ TijklmnT
ijkrstTopqrstT

opqlmn

(3.13)

3.3 Vaccuum Alignments for Spontaneous Symmetry Breaking

3.3.1 Vacuua for SO(3) Potentials

The invariant tensors from the previous section can be written in terms of a d-dimensional

orthonormal bases, where d is the number of independent tensor components. To illustrate

this consider the 5 of SO(3) which is a second rank symmetric traceless tensor Tij . It has
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a basis

|1〉 =
1√
2

(|11〉 − |22〉)

|2〉 =
1√
6

(|11〉+ |22〉 − 2 · |33〉)

|3〉 =
1√
2

(|12〉+ |21〉)

|4〉 =
1√
2

(|13〉+ |31〉)

|5〉 =
1√
2

(|23〉+ |32〉)

(3.14)

Where |ij〉 is the ijth component of the tensor. Using this basis the matrix form of Tij

is

Tij =


1√
2
|1〉+ 1√

6
|2〉 1√

2
|3〉 1√

2
|4〉

1√
2
|3〉 − 1√

2
|1〉+ 1√

6
|2〉 1√

2
|5〉

1√
2
|4〉 1√

2
|5〉 −

√
2
3
|2〉

 (3.15)

With an explicit basis, it now makes sense to look for a d-component vacuum alignment that

minimizes the potential and is invariant under the desired discrete subgroup. How do we

find this specified direction? First, note that we can express our basis above in polynomial

form, assigning component 1 to x, 2 to y, and 3 to z:

|1〉 =
1√
2

(x2 − y2)

|2〉 =
1√
6

(x2 + y2 − 2z2)

|3〉 =
1√
2

(xy + yx) =
√

2xy

|4〉 =
√

2xz

|5〉
√

2yz

So if we find a polynomial that is invariant under the desired subgroup we can convert it

into a vacuum alignment by expressing it as a vector in terms of these basis functions[19].
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To find a polynomial, I(x, y, z), invariant under a group H , one employs the Reynolds

Operator [16]

I(x, y, z) =
1

|R(H)|
∑

h∈R(H)

f(h ◦


x

y

z

) (3.16)

Where R(H) is a representation of the group, |R(H)| is the number of elements in the

group, and f(h◦


x

y

z

) signifies the result of a group element h acting on the vector (x, y, z)

and then input into a trial function f(x, y, z). Trial polynomials of the form xnymzd−n−m

will typically be most useful in finding invariants of degree d. Note we have specified

polynomials in three variables here, but we can use the same procedure to find invariants

in terms of any number of variables, real or complex. E.g., in two real dimensions we can

find an invariant I(x, y) with a trial function f(x, y).

3.3.1.1 A4

As an initial practical example lets examine the symmetry breaking pattern SO(3) →

A4. The irrep of interest is a 7 which is the symmetric, traceless part of 3× 3× 3. Ex-

pressed in terms of 7 independent components we have:

|1〉 =
1

2
(|111〉 − |122〉 − |212〉 − |221〉) (3.17)

|2〉 =
1√
60

(3 · |111〉+ |122〉+ |212〉+ |221〉 − 4 · |133〉 − 4 · |313〉 − 4 · |331〉) (3.18)

|3〉 =
1

2
(|222〉 − |112〉 − |121〉 − |211〉) (3.19)

|4〉 =
1√
60

(3 · |222〉+ |112〉+ |121〉+ |211〉 − 4 · |233〉 − 4 · |323〉 − 4 · |332〉) (3.20)

|5〉 =
1

2
(|333〉 − |113〉 − |131〉 − |311〉) (3.21)

|6〉 =
1√
60

(3 · |333〉+ |113〉+ |131〉+ |311〉 − 4 · |223〉 − 4 · |232〉 − 4 · |322〉) (3.22)
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|7〉 =
1√
6

(|123〉+ |132〉+ |213〉+ |231〉+ |312〉+ |321〉) (3.23)

(3.24)

Using xyz as a trial polynomial in equation (3.16), (d = 3, n = m = 1) gives us back

xyz as our invariant polynomial. Expressed in terms of this basis our A4 invariant vacuum

alignment is remarkably simple:

v = [0, 0, 0, 0, 0, 0, 1] (3.25)

The VEV for spontaneous breaking will be this unit vector multiplied by a constant

which minimizes the potential. We must show that this VEV is unique to A4. The gauge

group will spontaneously break to the largest subgroup which leaves that VEV invariant. So

Gwill only break to a desired subgroup,H , if there is no other group,H ′, which is invariant

under the specified VEV and satisfies H ⊂ H ′ ⊂ G. It is difficult to systematically

determine which subgroup will be left invariant for a given breaking, and in particular if

there is a higher invariance than the desired discrete group, so each case must be considered

individually. For the present case we start with the fact that the only groups that contain A4

and are subgroups of SO(3) are S4 and A5. Examining the branching rules for both these

groups, one sees that a 7 of SO(3) does not break to a trivial singlet of either S4 or A5, and

thus the largest group left invariant by this VEV must be A4. Hence we have obtained the

desired result for the case at hand.

3.3.1.2 S4

For the 9 of SO(3), it is more convenient to express our basis in terms of spherical

harmonics:
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|1〉 = Y 0
4 ; |2〉 =

i√
2

(Y 1
4 + Y −14 ); |3〉 =

1√
2

(Y 1
4 − Y −14 ); |4〉 =

1√
2

(Y 2
4 + Y −24 );

|5〉 =
i√
2

(Y 2
4 − Y −24 ); |6〉 =

i√
2

(Y 3
4 + Y −34 ); |7〉 =

1√
2

(Y 3
4 − Y −34 );

|8〉 =
1√
2

(Y 4
4 + Y −44 ); |9〉 =

i√
2

(Y 4
4 − Y −44 ).

(3.26)

We find that the polynomial, x4 + y4 + z4 is S4 invariant. Expressed in terms of our

basis this is

v = [

√
7

5
, 0, 0, 0, 0, 0, 0, 1, 0] (3.27)

S4 is also a maximal subgroup of SO(3), so we can be certain our alignment breaks

SO(3) uniquely to S4.

3.3.1.3 A5

As mentioned previously, to break from SO(3) to A5 the irrep of interest is the totally

symmetric traceless tensor with 13 independent components contained in 3× 3× 3× 3× 3× 3.

In this case it is again easier (and yields equivalent results) to express the components in

terms of spherical harmonics3 of degree l = 6, Y m
6 (where m = −6,−5...0...5, 6). In order

to get real basis vectors, we define them as

|1〉 = Y 0
6 ; |2〉 =

i√
2

(Y 1
6 + Y −16 ); |3〉 =

1√
2

(Y 1
6 − Y −16 ); |4〉 =

1√
2

(Y 2
6 + Y −26 );

|5〉 =
i√
2

(Y 2
6 − Y −26 ); |6〉 =

i√
2

(Y 3
6 + Y −36 ); |7〉 =

1√
2

(Y 3
6 − Y −36 );

|8〉 =
1√
2

(Y 4
6 + Y −46 ); |9〉 =

i√
2

(Y 4
6 − Y −46 ); |10〉 =

i√
2

(Y 5
6 + Y −56 );

|11〉 =
1√
2

(Y 5
6 − Y −56 ) |12〉 =

1√
2

(Y 6
6 + Y −66 ); |13〉 =

i√
2

(Y 6
6 − Y −66 ).

(3.28)

3One can also use this method for the A4 case, see [53].
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We find that a degree six invariant polynomial is ( (1+
√
5)2

4
x2−y2)( (1+

√
5)2

4
y2−z2)( (1+

√
5)2

4
z2−

x2) [19]. The associated VEV is proportional to

v = [1, 0, 0,−
√

21

2
, 0, 0, 0,−

√
7, 0, 0, 0,

√
105

22
, 0] (3.29)

Because A5 is a maximal subgroup of SO(3), i.e., there is no group H ′ that nontrivially

satisfies A5 ⊂ H ′ ⊂ SO(3) for any VEV of the 13, and again we can be sure the VEV in

eq. (3.29) breaks SO(3) uniquely to A5.

3.3.2 Vacuua for SU(2) Potentials

3.3.2.1 Q6

For the breaking SU(2) → Q6 we use the same basis as with T ′ above. We find the

polynomial 1
2
(x6 + y6) is left invariant by Q6, and this leads to a VEV proportional to

v = [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] (3.30)

To make sure we have broken to Q6 and not any larger subgroups, we first note that the

7 does not break to any Qn with n > 6 (see page 6 of [36]). The only other larger SU(2)

subgroup that can be spontaneously broken with a 7 is T ′, but we find that T ′ has only one

degree six invariant which is given in the subsection above. Therefore, the VEV in Eq.

(3.30) is the result we were seeking.

3.3.2.2 T ′

Because SU(2) breaks to T ′ from the same real seven dimensional irrep that breaks

SO(3) to A4, the potentials are the same and the basis will be the same as in the A4 section

above. In addition, the Reynolds operator yields the same polynomial invariant xyz, so the

VEV is identical. On the other hand the complex 7 has a different basis, specifically that of

26



the symmetric tensor with 6 indices4.

|1〉 = |111111〉

|2〉 =
1√
6

(|111112〉+ |111121〉+ |111211〉+ |112111〉+ |121111〉+ |211111〉)

|3〉 =
1√
15

(|111122〉+ |111212〉+ |111221〉+ |112112〉+ |112121〉+ |112211〉+

|121112〉+ |121121〉+ |121211〉+ |122111〉+ |211112〉+ |211121〉+

|211211〉+ |212111〉+ |221111〉)

|4〉 =
1√
20

(|111222〉+ |112122〉+ |112212〉+ |112221〉+ |121122〉+ |121212〉+

|121221〉+ |122112〉+ |122121〉+ |122211〉+ |211122〉+ |211212〉+

|211221〉+ |212112〉+ |212121〉+ |212211〉+ |221112〉+ |221121〉+

|221211〉+ |222111〉)

|5〉 =
1√
15

(|112222〉+ |121222〉+ |122122〉+ |122212〉+ |122221〉+ |211222〉+

4Because this is a complex irrep there are actually 14 basis states; the basis states listed are the 7 real parts
of the tensor components, while bases 8 through 14 are the imaginary parts. These conjugate components
have been suppressed here since they will always be set to zero at vacuum in order to have a real VEV. This
will be the case for most of the complex irreps we consider.
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|212122〉+ |212212〉+ |212221〉+ |221122〉+ |221212〉+ |221221〉+

|222112〉+ |222121〉+ |222211〉

|6〉 =
1√
6

(|122222〉+ |212222〉+ |221222〉+ |222122〉+ |222212〉+ |222221〉

|7〉 = |222222〉

We find that the polynomial 1
2
(xy5 − yx5) is left invariant for this representation and

the associated VEV is proportional to

v = [0,−1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] (3.31)

To make sure we have broken to T′ we must show that this VEV does not break SU(2)

to any larger group. The only SU(2) subgroups that contain T′ as a subgroup are I′, the bi-

nary icosahedral group, andO′, the binary octahedral group. Looking at tables of branching

rules we see that the 7 of SU(2) does not contain a trivial singlet of either of these groups,

so we can be sure the breaking is to T ′ as desired.

3.3.2.3 O′

Like the other double cover groups, the basis and vacuum direction for the breaking of

O′ with a real 9 of SU(2) will be the same as its SO(3)→ S4 counterpart above.

The complex 9 arises from the basis of the symmetric tensor with 8 doublet indices:

|1〉 = |11111111〉 ; |2〉 = |22222222〉 ; |3〉 =
1√
8

(|11111112〉+ perms);

|4〉 =
1√
8

(|22222221〉+ perms); |5〉 =
1√
28

(|11111122〉+ perms);

|6〉 =
1√
28

(|22222211〉+ perms); ; |7〉 =
1√
56

(|11111222〉+ perms);

|8〉 =
1√
56

(|22222111〉+ perms); |9〉 =
1√
70

(|11112222〉+ perms),

(3.32)
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where here and in what follows ‘+perms’ means we include all permutations of tensor

indices.

Here theO′ invariant polynomial is x8+y8+14x4y4, which leads to a VEV proportional

to

v = [1, 1, 0, 0, 0, 0, 0, 0,
14√
70
, 0, 0, 0, 0, 0, 0, 0, 0, 0] (3.33)

Where |1〉 = |2〉 and |9〉 = 14√
70
|1〉.

O′ is a maximal subgroup of SU(2), so we can be certain our alignment breaks SU(2)

uniquely to O′.

3.3.2.4 I ′

Similar to the spontaneous symmetry breaking behavior of the T ′ case relative to the

A4 case with a real 7, the basis for the symmetry breaking to I ′ with the real 13 will be the

same as for A5 above. Additionally, both groups have the same invariant polynomial so the

vacuum directions will be the same.

On the other hand, a complex 13 arises from the basis of the symmetric tensor with 12

doublet indices:

|1〉 = |111111111111〉 ; |2〉 = |222222222222〉 ; |3〉 =
1√
12

(|111111111112〉+ perms);

|4〉 =
1√
12

(|222222222221〉+ perms); |5〉 =
1√
66

(|111111111122〉+ perms);

|6〉 =
1√
66

(|222222222211〉+ perms); ; |7〉 =
1√
220

(|111111111222〉+ perms);

|8〉 =
1√
220

(|222222222111〉+ perms); |9〉 =
1√
495

(|111111112222〉+ perms);

|10〉 =
1√
495

(|222222221111〉+ perms); |11〉 =
1√
792

(|111111122222〉+ perms);

|12〉 =
1√
792

(|222222211111〉+ perms); |13〉 =
1√
924

(|222222111111〉+ perms).

(3.34)

Here the I ′ invariant polynomial is x11y + 11x6y6 − y11x, which leads to a VEV pro-
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portional to

v = [0, 0, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0,

√
11

12
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] (3.35)

Where clearly |4〉 = − |3〉 and |13〉 =
√

11
12
· |3〉.

I ′ is a known maximal subgroup of SU(2), so we can be certain our alignment breaks

SU(2) uniquely to I ′.

3.3.3 Vacuua for SU(3) Potentials

First let us show that we can get discrete subgroups from continuous groups in a non-

minimal way. For this purpose we use the example SU(3) → A4 where we break with a

15 of SU(3). Then we find vacuua for the minimal cases discussed above. Then finally, for

PSL(2, 7) we give both a minimal case with a VEV for the 15′ of SU(3) and a nonminimal

breaking via a 28 of SU(3) using the potential given in eq. (3.13).

3.3.3.1 A4

The complex 15 dimensional basis needed to break SU(3) to A4 is that of the traceless

3× 3× 3̄ tensor that is symmetric on the first two indices [18].
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|1〉 =
1√
3

(|111〉 − |122〉 − |212〉)

|2〉 =
1

2
√

6
(2 · |111〉+ |122〉+ |212〉 − 3 · |133〉 − 3 · |313〉)

|3〉 =
1√
3

(|222〉 − |233〉 − |323〉)

|4〉 =
1

2
√

6
(2 · |222〉+ |233〉+ |323〉 − 3 · |211〉 − 3 · |121〉)

|5〉 =
1√
3

(|333〉 − |311〉 − |131〉)

|6〉 =
1

2
√

6
(2 · |333〉+ |311〉+ |131〉 − 3 · |322〉 − 3 · |232〉)

|7〉 = |112〉 ; |8〉 = |113〉 ; |9〉 = |223〉

|10〉 = |221〉 ; |11〉 = |331〉 ; |12〉 = |332〉

|13〉 =
1√
2

(|123〉+ |213〉); |14〉 =
1√
2

(|231〉+ |321〉); |15〉 =
1√
2

(|312〉+ |132〉)

(3.36)

Because this tensor is symmetric on only two indices we find that the invariant should

be of degree 2 in the variables x, y, z and degree 1 in the conjugate variables, x∗, y∗, z∗.

Inputting the trial polynomial xyz∗ into the Reynolds operator produces the invariant:

xyz∗ + yzx∗ + xzy∗. In this basis the VEV is proportional to

v = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] (3.37)

i.e., where |13〉 = |14〉 = |15〉 with all other components zero.

One can examine the generators of A4 and SU(3) to see that this VEV breaks SU(3)

uniquely to A4, see [18].
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3.3.3.2 T7

The invariant tensor object and therefore our basis for T7 is the same as for A4 above.

The invariant polynomial in this case is x2y∗ + y2z∗ + z2x∗ and the corresponding VEV is

proportional to

v = [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] (3.38)

where |7〉 = |9〉 = |11〉.

Similarly to the A4 case, one can verify this VEV uniquely breaks SU(3) to T7 by

examining how the T7 generators operate on v, see [18].

3.3.3.3 ∆(27)

For ∆(27), the relevant invariant tensor is the fully symmetric part of 3× 3× 3 with 10

independent components

|1〉 = |111〉 ; |2〉 = |222〉 ; |3〉 = |333〉

|4〉 =
1√
3

(|112〉+ |121〉+ |211〉); |5〉 =
1√
3

(|113〉+ |131〉+ |311〉)

|6〉 =
1√
3

(|221〉+ |212〉+ |122〉); |7〉 =
1√
3

(|223〉+ |232〉+ |322〉)

|8〉 =
1√
3

(|331〉+ |313〉+ |133〉); |9〉 =
1√
3

(|332〉+ |323〉+ |233〉)

|10〉 =
1√
6

(|123〉+ |231〉+ |312〉+ |321〉+ |213〉+ |132〉)

(3.39)

The invariant polynomial is x3 + y3 + z3, which gives us a VEV proportional to

v = [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] (3.40)

Again explicit forms of the generators can be examined in order to verify the uniqueness

of this VEV for breaking from SU(3) to ∆(27) [18].
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3.3.3.4 PSL(2, 7)

Our basis for the 15′ is that of the fully symmetric 3× 3× 3× 3 tensor

|1〉 = |1111〉 ; |2〉 = |2222〉 ; |3〉 = |3333〉

|4〉 =
1

2
(|1112〉+ |1121〉+ |1211〉+ |2111〉); |5〉 =

1

2
(|1113〉+ |1131〉+ |1311〉+ |3111〉)

|6〉 =
1

2
(|2221〉+ |2212〉+ |2122〉+ |1222〉); |7〉 =

1

2
(|2223〉+ |2232〉+ |2322〉+ |3222〉)

|8〉 =
1

2
(|3331〉+ |3313〉+ |3133〉+ |1333〉); |9〉 =

1

2
(|3332〉+ |3323〉+ |3233〉+ |2333〉)

|10〉 =
1√
6

(|1122〉+ perms); |11〉 =
1√
6

(|1133〉+ perms); |12〉 =
1√
6

(|2233〉+ perms)

|13〉 =
1√
12

(|1123〉+ perms); |14〉 =
1√
12

(|2213〉+ perms); |15〉 =
1√
12

(|3312〉+ perms)

(3.41)

The relevant invariant polynomial is x3z + y3x+ z3y [19], which gives a VEV propor-

tional to

v = [0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] (3.42)

where the nonvanishing vacuum components are |5〉 = |6〉 = |9〉. We can be sure we have

broken to the correct subgroup 5 because PSL(2, 7) is known to be a maximal in SU(3).

Finally, for the 28 of SU(3) we have the basis for the fully symmetric 36 tensor of the

5Luhn [54] has shown that the VEV in eq. (3.42) has a Z28 symmetry and the vacuum of the potential
V15′ in eq. (3.12) is also symmetric under this symmetry. However, other terms in the Lagrangian will violate
this Z28, e.g., the Yukawa terms. As it is a discrete symmetry, its breaking can not lead to a pseudo Goldstone
boson, but there could be other phenomenological consequences of this Z28 that would be interesting to
explore.
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form

|1〉 = |111111〉 ; |2〉 = |222222〉 ; |3〉 = |333333〉 ; |4〉 =
1√
6

(|111112〉+ perms)

|5〉 =
1√
6

(|111113〉+ perms); |6〉 =
1√
6

(|222221〉+ perms)

|7〉 =
1√
6

(|222223〉+ perms); |8〉 =
1√
6

(|333331〉+ perms)

|9〉 =
1√
6

(|333332〉+ perms); |10〉 =
1√
15

(|111122〉+ perms)

|11〉 =
1√
15

(|111133〉+ perms); |12〉 =
1√
15

(|222211〉+ perms)

|13〉 =
1√
15

(|222233〉+ perms); |14〉 =
1√
15

(|333311〉+ perms)

|15〉 =
1√
15

(|333322〉+ perms); |16〉 =
1√
30

(|111123〉+ perms)

|17〉 =
1√
30

(|222231〉+ perms); |18〉 =
1√
30

(|333312〉+ perms)

|19〉 =
1√
20

(|111222〉+ perms); |20〉 =
1√
20

(|111333〉+ perms)

|21〉 =
1√
20

(|222333〉+ perms); |22〉 =
1√
60

(|111223〉+ perms)

|23〉 =
1√
60

(|111332〉+ perms); |24〉 =
1√
60

(|222113〉+ perms)

|25〉 =
1√
60

(|222331〉+ perms); |26〉 =
1√
60
|333112〉+ perms);

|27〉 =
1√
60

(|333221〉+ perms) |28〉 =
1√
90

(|112233〉+ perms)

(3.43)

The necessary invariant polynomial is x5y+ y5z+ z5x−5x2y2z2[19], which gives real

components with VEV proportional to

v =

[
0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−

√
5

3

]
(3.44)

i.e., where |4〉 = |7〉 = |8〉, and |28〉 = −
√

5
3
· |4〉 and where we recall that all conjugate

components (29–56) are set to zero.
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3.4 Vacuum Expectation Values and Mass Spectra

Thus far, we have discussed how to set up potentials corresponding to specific gauge

group representations and then found vacuum alignments that can be used to break the

gauge symmetry to desired subgroups. In this section we minimize the scalar potentials

and show where symmetry breaking in the desired directions are allowed. We will find the

scale of the symmetry breaking and resulting tree level scalar mass states in terms of the

coupling constants of the potential. As usual, the minimization conditions of the potential

will lead to constraints on the values of these constants.

3.4.1 SO(3) Cases

3.4.1.1 A4

We found earlier that a VEV in the direction (3.25) will break SO(3) to A4. The actual

VEV is proportional to this direction vector, with the constant of proportionality being

the scale of the breaking. To determine this scale one must minimize the potential (3.2).

To achieve this we compute the first derivative with respect to each basis state, insert the

alignment from (3.25), and set this equal to zero. This alignment (and all of our alignments

below) will give an equation in terms of one basis state (or one linear combination of basis

states). For the present case we solve for |7〉 and take the positive solution to obtain the

VEV

V =

√
3m2

2(3λ+ κ)
[0, 0, 0, 0, 0, 0, 1] (3.45)

As for any non-trivial stable vacuum, m2 must be positive. To have a real value for our

breaking scale 3λ+κmust also be positive. We find the scalar mass states by calculating the

matrix of second derivatives (the Hessian), inserting the VEV from above, and computing

the eigenvalues of the matrix. The resulting values and their multiplicities are given in

Table 3.1.

Looking at Table A.1 in the Appendix, we see that the multiplicities of the eigenvalues
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Value Multiplicity

0 3

4m2 1

8m2κ
5(3λ+κ)

3

Table 3.1: Scalar mass eigenstates for the SSB pattern SO(3) → A4 using a real 7 of
SO(3).

match up with the branching of the 7 for SO(3) → A4, as expected. We see that there are

three zero eigenvalues as expected corresponding to the three Goldstone bosons from the

breaking of all the generators of SO(3). Constraints on the coupling constants arise from

the requirement that at a minimum of the potential, the eigenvalues must all be positive or

zero. Since m2 and 3λ + κ must be positive, requiring the third eigenvalue to be positive

leads to the constraint κ > 0 in this case.

3.4.1.2 S4

For S4 we minimize the potential from (3.3) using the alignment (3.27). We obtain a

VEV

V =

√
25m2

4(90λ+ 10κ+ 7ρ+ 2τ)
[

√
7

5
, 0, 0, 0, 0, 0, 0, 1, 0] (3.46)

A real value for our breaking scale requires 90λ+ 10κ+ 7ρ+ 2τ > 0.

The scalar mass states are found in Table 3.2 6 and are all non-negative if

5κ+ 8ρ− 2τ > 0.

The three zeros correspond to the broken SO(3) generators.

6In order to normalize the eigenvalues for S4 to those in other cases when we use the spherical harmonic
basis, we have multiplied all quadratic terms by a factor of 1

8 and quartic terms by a factor of 1
64 .

36



Value Multiplicity

0 3

4m2 1

5m2(5κ+8ρ−2τ)
7(90λ+10κ+7ρ+2τ)

3

20m2(5κ+8ρ−2τ)
7(90λ+10κ+7ρ+2τ)

2

Table 3.2: Scalar mass eigenstates for the SSB pattern SO(3) → S4 using a real 9 of
SO(3).

3.4.1.3 A5

For A5, we minimize the potential from (3.4) using the alignment (3.29). We obtain a

VEV

V =

√
1155m2

128(λ+ 140κ+ 84ρ+ 65τ + 14ν + 9σ − 2χ)
[1, 0, 0,−

√
21

2
, 0, 0, 0, , 0, 0, 0,

√
105

22
, 0]

(3.47)

A real value for our breaking scale requires 128λ+140κ+84ρ+65τ+14ν+9σ−2χ > 0.

For the scalar mass states 7 are given in Table 3.3.

We see we have the three zeros corresponding to the broken SO(3) generators and must

satisfy the constraints

105κ+ 196ρ+ 240τ − 14ν − 19σ + 12χ > 0

14ρ+ 45τ + 14ν − 11σ + 18χ > 0.

7Again by expressing our states in terms of spherical harmonics, we obtain different normalizations for
our basis states which lead to a different normalization scale for the VEV scale and scalar mass states. To
correct this for A5 we have multiplied the quadratic term by a factor of 5

352 and the quartic terms by ( 5
352 )

2

so that our states are now normalized the same way as our other breakings.
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Value Multiplicity

0 3

4m2 1

28m2(105κ+196ρ+240τ−14ν−19σ+12χ)
33(420λ+140κ+84ρ+65τ+14ν+9σ−2χ 5

28m2(14ρ+45τ+14ν−11σ+18χ)
33(420λ+140κ+84ρ+65τ+14ν+9σ−2χ 4

Table 3.3: Scalar mass eigenstates for the SSB pattern SO(3) → A5 using a real 13 of
SO(3).

3.4.2 SU(2) Cases

3.4.2.1 Q6

We break the symmetry of the potential given in Eq.(3.5) with the alignment in Eq.(3.30)

to obtain a VEV

V =

√
m2

2(2λ+ κ+ ρ+ τ)
[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] (3.48)

Thus we require κ+ 2λ+ ρ+ τ > 0. The eigenvalues of the Hessian are given in Table

3.4.

The constraints from these mass eigenvalues are

κ > 0

κ > −(ρ+ τ)

2ρ+ 3τ, 6ρ+ 7τ, 8ρ+ 9τ < 0

There are clearly stable minima when λ > 0, κ > 0, ρ < 0 and τ < 0. The extra zero

eigenvalue comes from breaking an accidental U(1) phase symmetry. This gives rise to a

pseudo-goldstone boson that can gain a mass through quantum corrections.
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Value Multiplicity

0 4

4m2 1

2m2κ
3(2λ+κ+ρ+τ)

2

4m2(κ+ρ+τ)
2λ+κ+ρ+τ

1

−3m2(2ρ+3τ)
5(2λ+κ+ρ+τ)

1

−2m2(2ρ+3τ)
5(2λ+κ+ρ+τ)

2

−m2(6ρ+7τ)
5(2λ+κ+ρ+τ)

1

−2m2(8ρ+9τ)
15(2λ+κ+ρ+τ)

2

Table 3.4: Scalar mass eigenstates for the SSB pattern SU(2) → Q6 using a complex 7 of
SU(2).

3.4.2.2 T ′

The potential and the vacuum alignment of the breaking of of SU(2) to T′ with a real 7

are the same as for SO(3)→ A4. Therefore the breaking scale and the mass states will be

exactly the same, as the two models can only be differentiated by the non-scalar part of the

Lagrangian.

For a the breaking with a complex 7 we minimize the potential in Eq.(3.5) but this time

using the alignment Eq.(3.31) to obtain the VEV

V =

√
3m2

(12λ+ 6κ+ 4ρ+ 3τ)
[0,−1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] (3.49)

which leads to the constraint that 12λ+ 6κ+ 4ρ+ 3τ > 0. The eigenvalues of the Hessian

are shown in Table 3.5.

From the requirement of positive eigenvalues we deduce the constraints

τ > 0
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Value Multiplicity

0 4

4m2 1

12m2τ
5(12λ+6κ+4ρ+3τ)

3

16m2(2ρ+3τ)
5(12λ+6κ+4ρ+3τ)

3

4m2(8κ+8ρ+9τ)
3(12λ+6κ+4ρ+3τ)

3

Table 3.5: Scalar mass eigenstates for the SSB pattern SU(2) → T ′ using a complex 7 of
SU(2).

ρ > −3
2
τ

3
8
τ > κ > −8ρ− 9

8
τ

As in the Q6 example, the extra zero eigenvalue is a result of breaking the accidental

U(1) phase symmetry in the potential.

3.4.2.3 O′

The breaking scale and scalar mass spectrum of SU(2) to O′ with a real 9 is exactly the

same as that for SO(3) to S4, where differences between two models would come from the

non-scalar part of the Lagrangian.

For a complex 9 we minimize the potential in Eq.(3.6) using the alignment Eq.(3.33)

and obtain a VEV

V =

√
25m2

4(60λ+ 30κ+ 20ρ+ 15τ + 14σ)

×[1, 1, 0, 0, 0, 0, 0, 0,
14√
70
, 0, 0, 0, 0, 0, 0, 0, 0, 0]

(3.50)

Thus 60λ+ 30κ+ 20ρ+ 15τ + 14σ must be > 0. The eigenvalues of the Hessian (see

Table 3.6) are all real and positive semidefinite for positive scalar quartic couplings, while
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more detailed constraints on the scalar quartics can clearly be extracted from the individual

mass eigenvalues. There are 3 zeros corresponding to the 3 broken SU(2) generators, as

well as an extra zero from breaking the U(1) phase symmetry.

Value Multiplicity

0 4

4m2 1

−24m2σ
7(60λ+30κ+20ρ+15τ+14σ)

2

5m2(10ρ+15τ+16σ)
7(60λ+30κ+20ρ+15τ+14σ)

3

20m2(10ρ+15τ+16σ)
7(60λ+30κ+20ρ+15τ+14σ)

2

2m2(25κ+25ρ+25τ+24σ)
60λ+30κ+20ρ+15τ+14σ

3

3m2(25τ+32σ)
7(60λ+30κ+20ρ+15τ+14σ)

3

Table 3.6: Scalar mass eigenstates for the SSB pattern SU(2) → O′ using a complex 9 of
SU(2).

We have the additional constraints

σ < 0

10ρ+ 15τ + 16σ > 0

25κ+ 25ρ+ 25τ + 24σ > 0

and

25τ + 32σ > 0.

3.4.2.4 I ′

The breaking of SU(2) to I ′ and SO(3) to A5 with a real 13, are completely analogous

to the breakings of SU(2) and SO(3) to T ′ and A4 respectively with a real 7.
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For a complex 13 we minimize the potential of Eq.(3.7) using the alignment Eq.(3.35)

and obtain a VEV

V = 7

√
6m2

5(420λ+ 210κ+ 140ρ+ 105τ + 84ν + 70σ + 65χ)

×[0, 0, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0,

√
11

7
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

(3.51)

Thus 420λ+ 210κ+ 140ρ+ 105τ + 84ν+ 70σ+ 65χ must be > 0. The eigenvalues of

the Hessian (see Table 3.7) are all real and positive semidefinite for positive scalar quartic

couplings. (More detailed constraints on the scalar quartics can clearly be extracted from

the individual mass eigenvalues.) There are 3 zeros corresponding to the 3 broken SU(2)

Value Multiplicity

0 4

4m2 1

28m2(14ν+35σ+45χ)
33(420λ+210κ+140ρ+105τ+84ν+70σ+65χ)

4

5m2(49σ+72χ)
33(420λ+210κ+140ρ+105τ+84ν+70σ+65χ)

5

14m2(210ρ+315τ+392ν+455σ+480χ)
33(420λ+210κ+140ρ+105τ+84ν+70σ+65χ)

5

m2(980κ+980ρ+882τ+784ν+735σ+720χ)
3(420λ+210κ+140ρ+105τ+84ν+70σ+65χ)

3

4m2(441τ+882ν+1225σ+1350χ)
33(420λ+210κ+140ρ+105τ+84ν+70σ+65χ)

4

Table 3.7: Scalar mass eigenstates for the SSB pattern SU(2)→ I ′ using a complex 13 of
SU(2).

generators, as well as an extra zero from breaking the U(1) phase symmetry.
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3.4.3 SU(3) cases

3.4.3.1 A4

For the nonminimal breaking SU(3)→ A4 we minimize the potential Eq.(3.9) and use

the alignment Eq.(3.37) to get the VEV [18]

V =

√
m2

2(3λ+ η + κ+ ρ+ τ)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

(3.52)

Thus 3λ + η + κ + ρ + τ must be > 0. The eigenvalues of the Hessian are are shown

in Table 3.8.

Value Multiplicity

0 9

4m2 1

m2(−2η+κ−2ρ+4τ)
3λ+η+κ+ρ+τ

2

−3m2η
3λ+η+κ+ρ+τ

6

m2

4(3λ+η+κ+ρ+τ)
(5κ+ 2ρ+ 4τ +

√
(4τ + 2ρ− 3κ)2 + 16(ρ+ κ+ 2η)2) 3

m2

4(3λ+η+κ+ρ+τ)
(5κ+ 2ρ+ 4τ −

√
(4τ + 2ρ− 3κ)2 + 16(ρ+ κ+ 2η)2) 3

m2

2(3λ+η+κ+ρ+τ)
(3κ− 5η − 2ρ+ 4τ + 1

3

√
(9η − 7κ+ 10ρ− 4τ)2 + 8(ρ+ 2κ− 4τ)2) 3

m2

2(3λ+η+κ+ρ+τ)
(3κ− 5η − 2ρ+ 4τ − 1

3

√
(9η − 7κ+ 10ρ− 4τ)2 + 8(ρ+ 2κ− 4τ)2) 3

Table 3.8: Scalar mass eigenstates for the SSB pattern SU(3)→ A4 using a 15 of SU(3).

We expect eight zeros corresponding to the broken generators of SU(3), but again an

extra zero eigenvalue arises from breaking the accidental U(1) phase symmetry. As for

constraints, we can readily see that

η < 0,

5κ+ 2ρ+ 4τ >
√

(4τ + 2ρ− 3κ)2 + 16(ρ+ κ+ 2η)2,
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and

3κ− 5η − 2ρ+ 4τ > 1
3

√
(9η − 7κ+ 10ρ− 4τ)2 + 8(ρ+ 2κ− 4τ)2

are required. An example of where all these constraints can be satisfied is

2ρ = 3κ, ρ+ κ = −2|η|, and 5κ+ 3ρ > 0, where κ, ρ, and τ > 0.

3.4.3.2 T7

For this breaking we again minimize Eq.(3.9), now using the alignment Eq.(3.38) to

obtain the VEV [18]

V =

√
m2

2(3λ+ κ+ ρ+ τ)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

(3.53)

Thus 3λ + κ + ρ + τ must be > 0. The eigenvalues of the Hessian are shown in Table

3.9, where α, β, γ are the three roots of the polynomial 10368η2(ρ− κ− τ) + 3888ηρ2 −

Value Multiplicity

0 9

4m2 1

2(2κ−ρ+2τ)m2

κ+3λ+ρ+τ
2

m2

12(3λ+κ+ρ+τ)
× α 6

m2

12(3λ+κ+ρ+τ)
× β 6

m2

12(3λ+κ+ρ+τ)
× γ 6

Table 3.9: Scalar mass eigenstates for the SSB pattern SU(3)→ T7 using a 15 of SU(3).

15552ηκτ + (648η2 + 972ηκ− 648ηρ− 180ρ2 + 1296ητ + 720κτ)x+ (6ρ− 54η− 21κ−

36τ)x2 + x3. We have the constraints

2κ− ρ+ 2τ > 0
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and

α, β, γ > 0.

The extra zero is once again due to breaking an accidental U(1) symmetry. We cannot

remedy this by including cubic terms this time, because we need the couplings on those

terms to vanish in order to have a stable minimum. Numerical studies show that there is a

range of scalar quartic coupling constant values where the minimum is stable. An example

of such numerical analysis will be discussed below.

3.4.3.3 ∆(27)

Minimizing the potential of Eq.(3.10) with the alignment Eq.(3.40) we obtain a VEV

V =

√
m2

2(3λ+ κ)
[1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] (3.54)

giving the constraint 3λ + κ > 0. The eigenvalues of the Hessian are in Table 3.10, from

Value Multiplicity

0 11

4m2 1

4κm2

3λ+κ
2

κm2

3(3λ+κ)
6

Table 3.10: Scalar mass eigenstates for the SSB pattern SU(3) → ∆(27) using a 10 of
SU(3).

which we see that κ > 0 is required. Again we have an extra zero from an accidental U(1),

and in this case the cubic terms vanish upon summation. The two extra zeros are the result

of an additional ∆(27) singlet within the 10. (For a detailled explanation see [18].)
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3.4.3.4 PSL(2, 7)

Minimizing the potential of Eq.(3.12) with the alignment Eq.(3.42) we obtain a VEV

V =

√
m2

6λ+ 2κ+ ρ
[0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

(3.55)

Thus 6λ + 2κ + ρ > 0. The eigenvalues of the Hessian are found in Table 3.11 from

Value Multiplicity

0 9

4m2 1

(7κ+8ρ)m2

2(6λ+2κ+ρ)
8

2(3−
√
2)ρm2

3(6λ+2κ+ρ)
6

2(3+
√
2)ρm2

3(6λ+2κ+ρ)
6

Table 3.11: Scalar mass eigenstates for the SSB pattern SU(3) → PSL(2, 7) using a 15′

of SU(3).

which we get the constraints

ρ > 0 and 7κ+ 8ρ > 0.

We once again have an extra zero, but this time it is possible to include cubic terms to

break the U(1) phase. The two cubic terms we can include are

εimqεjnrεlptT
ijklTmnopT qrst

and

εimqεjnrεlptTijklTmnopTqrst

(3.56)

which are Hermitian conjugates and are included in the potential with the same real cou-
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pling constant, ζ . The VEV scale for the potential including the cubic is now

−3ζ ±
√

9ζ2 + 4m2(6λ+ 2κ+ ρ)

2(6λ+ 2κ+ ρ)
(3.57)

Notice that there may be two possible solutions. The constraint that must hold in both

cases is 9ζ2 + 4m2(2κ+ 6λ+ ρ) ≥ 0.

Calculating the eigenvalues of the Hessian produces solutions involving the roots of

very large polynomial which is much too large to display, but it is notable that it does pro-

duce 8 zeros rather than 9. Furthermore, following the usual procedure, but this time nu-

merically setting all quartic coupling constants to unity, the quadratic coupling to -1 and the

cubic to 0.001 (these values are selected to ensure a stable minimum) produces a VEV scale

of approximately 0.3335 and eigenvalues whose multiplicities match the branching rules

Value Multiplicity

0 8

4.002 1

.006003 1

0.323647 6

0.125244 6

0.838169 8

Table 3.12: Numerical results where cubic terms are included for the scalar mass eigen-
states of the SSB pattern SU(3)→ PSL(2, 7) using a 15′ of SU(3).

SU(3)→ PSL(2, 7), as shown in Table 3.12. The degeneracy of the pseudo-Goldstone

mass with that of the true Goldstones is lifted as expected, as can be seen in Table 3.12.

Finally note that although we have set all the coupling constants except for the cubic to

integer values, we can easily rescale them to smaller values to be sure we are in the pertur-

bative regime of the theory without disturbing the stability of the result. Specifically, while
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the scalar quartic couplings in the numerical example are not in the perturbative range, we

can rescale all the quartics by a factor s and ζ by a factor
√
s. This leaves the eigenvalues

unchanged and puts us into the perturbative regime.

Moving on to the 28, we minimize the potential in Eq.(3.13) with the alignment Eq.(3.44)

to obtain a VEV

V =

√
9m2

2(42λ+ 14κ+ 7ρ+ 6τ)
[0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0,−
√

5

3
, ...]

(3.58)

Thus 42λ + 14κ + 7ρ + 6τ > 0. The eigenvalues of the Hessian are given in Table 3.13

Further constraints are

Value Multiplicity

0 16

4m2 1

4(7ρ+9τ)m2

5(42λ+14κ+7ρ+6τ)
7

(21κ+20ρ+18τ)m2

42λ+14κ+7ρ+6τ
8

1
200(42λ+14κ+7ρ+6τ)2

× A 6

1
200(42λ+14κ+7ρ+6τ)2

×B 6

1
200(42λ+14κ+7ρ+6τ)2

× C 6

1
200(42λ+14κ+7ρ+6τ)2

×D 6

Table 3.13: Scalar mass eigenstates for the SSB pattern SU(3)→ PSL(2, 7) using a 28 of
SU(3).

7ρ+ 9τ > 0

21κ+ 20ρ+ 18τ > 0
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A, B, C, D > 0

where A, B, C, and D are the roots of a very large quartic polynomial. Numerical work

shows that all four roots can be positive, simultaneously leading to all positive eigenvalues

in Table 3.13 and a stable minimum when the other constraints are also satisfied. We see

that there are eight zeros from the broken generators of SU(3), and one zero from breaking

the broken U(1) phase. But unique to this breaking we have seven extra zeros, which

implies that there are seven more broken generators from an accidental symmetry of the

Lagrangian that we have so far been unable to identify, leading to a total of 8 pseudo-

Goldstone bosons.

3.4.4 Symmetry Breaking Summary

Let us briefly summarize our results. We have shown that we can break from G to Γ

for the gauge and discrete groups listed in the introduction. The minima can be stable since

none of the eigenvalues of the scalars are negative for allowed regions of parameter space.

Zero eigenvalues correspond to Goldstone bosons in each case and to additional pseudo-

Goldstone bosons in several cases. Specifically for the cases we have studied of SO(3)

breaking to a discrete symmetry the results are summarized in Table 3.14. The G subscript

indicates the Goldstones. In each case the masses of the particles in different discrete group

irreps are all different, so the initial degeneracy of the scalar masses is lifted to the extent

allowed by the discrete group. For the cases of SU(2) breaking to discrete symmetries,

SSB pattern decomposition

SO(3)→ A4 7→ 1 + 3
G

+ 3

SO(3)→ S4 9→ 1 + 2 + 3
G

+ 3

SO(3)→ A5 13→ 1 + 3
G

+ 4 + 5

Table 3.14: Scalar mass eigenstates for the SSB patterns SO(3) → A4, S4 and A5 using
real irreps of SO(3).
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the results are summarized in Table 3.15. Again all the discrete group irreps correspond

to different masses except for the zero eigenvalue states where we have indicated the true

Goldstones and the pseudo-Goldstones (by subscripts pGB) due to breaking of the phase

symmetry on the potentials. The subscript c indicates that the irreps are complexified and

the decompositions are written in terms of real components. The results begin to become

more complicated for the SU(3) cases we have investigated, and this can be seen in Table

3.16. Now some irreps masses have become degenerate and we have indicated these cases

by collecting those discrete group irreps with parentheses and labeling the collection with

a deg. subscript. All the cases have a pseudo-Goldstone associated with breaking of phase

invariance. The breaking to T7 with a 10 leads to two additional pseudo-Goldstones as

discussed in [18] and the breaking to PSL(2, 7) with a 28 has seven additional pseudo-

Goldstones. Since the 28 was derived from 36 one could conjecture that the potential has

a Spin(6) ∼ SU(4) accidental symmetry that contains the gauged SU(3), and that the

VEV breaks all 15 SU(4) plus the phase to give a total of 16 massless states. Finally, recall

that for the breaking to PSL(2, 7) with a 15′ we have shown that phase symmetry can be

avoided if we add cubic terms, hence there is no pseudo-Goldstone after SSB in that case,

see Table 3.12.

SSB pattern decomposition

SU(2)→ Q6 7c → 1 + 1′ + (1′ + 2′)
G

+ 2′ + 1
pGB

+ 1′ + 1′ + 2′ + 2′

SU(2)→ T ′ 7c → 1 + 3
G

+ 3 + 1
pGB

+ 3 + 3

SU(2)→ O′ 9c → 1 + 2 + 3
G

+ 3 + 1
pGB

+ 2 + 3 + 3

SU(2)→ I ′ 13c → 1 + 3
G

+ 4 + 5 + 1
pGB

+ 3 + 4 + 5

Table 3.15: Scalar mass eigenstates for the SSB patterns SU(2)→ Q6, T
′, O′ and I ′ using

complexified irreps of SO(3).
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SSB pattern decomposition

SU(3)→ A4 15→ 1 + (1′ + 1′′ + 3 + 3)
G

+ (3 + 3)
deg.

+ 1
pGB

+ (1′ + 1′′)
deg.

+ 3 + 3 + 3 + 3

SU(3)→ T7 15 −→ 1 + (1′ + 1′′ + 3′ + 3′′)
G

+ (3′ + 3′′)
deg.

+1
pGB

+ (1′ + 1′′)
deg.

+ (3′ + 3′′)
deg.

+ (3′ + 3′′)
deg.

SU(3)→ ∆(27) 10→ 1 + 1
pGB

+ (Σ9
n=2)

G
+ 3 + (1 + 1)

pGB
+ (12 + 13)

deg.
+ (Σ9

n=4)
deg.

SU(3)→ PSL(2, 7) 15′ → 1 + 6 + 8
G

+ 1
pGB

+ 6 + 8

SU(3)→ PSL(2, 7) 28→ 1 + 6 + 6 + 7 + 8
G

+ 1
pGB

+ 6 + 6 + 7
pGB

+ 8

Table 3.16: Scalar mass eigenstates for the SSB patterns SU(3) → A4, T7, ∆(27) and
PSL(2, 7) using various complex irreps of SU(3).

3.5 Discussion and Conclusions

The standard model includes 28 unspecified parameters, some of which describe fermion

masses and mixing angles. Consequently, we do not know why the quark and lepton masses

and mixings are what they are. To fix these parameters, a standard approach has been to

extend the SM by a discrete symmetry, but this approach is not without its difficulties as

discussed above. What would seem more natural would be to increase the gauge group to

SU(3) × SU(2) × U(1) × G and extend the scalar sector. Then this model can be of the

same general type as the SM, i.e., an anomaly-free gauge theory with fermions that gets

spontaneously broken by VEVs of scalar fields. If the SSB of G results in a discrete sub-

group Γ then we arrive at a SU(3)×SU(2)×U(1)×Γ via a route that avoids the problems

just mentioned, without choosing an ad hoc discrete group for extending the SM.

Here, based on the techniques of Luhn[18] and Merle and R. Zwicky[19], we have

demonstrated that we can carry out the G → Γ SSB in many cases of interest, specifically

breaking to A4, S4, A5, Q6, T
′, O′, I ′, T7,∆(27) and PSL(2, 7). Other cases can be han-

dled by the same techniques. Many other discrete groups have been occasionally used to

extend the SM, e.g., D4, D5, D7, D14,∆(54),∆(96), and Σ(81) have all appeared in the

literature [55–57]. For a discussion of breaking SO(3) to dihedral groups see [53]. Further

information about the classification of the discrete subgroups of SU(3) can be found in
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[19, 58–60]. In addition products of discrete groups are often employed, where the prod-

ucts often contain Zn factors. To gauge these cases we can start with a product gauge group

and break to the desired discrete group, G1 × G2 × ... → Γ1 × Γ2 × .... As long as there

are no cross terms in the scalar potential, then we can proceed as above. In some cases the

cross terms can destabilize the minima, so they must either be eliminated, or dealt with by

other means. If the fundamental charge of a U(1) gauge group is q, then by breaking a U(1)

with scalar particle of charge nq one arrives at Zn. Results given here could be applied to

extend recent work on gauging two Higgs doublet models [61]. Using our results to extend

models currently in the literature can solve some existing problems, and the inclusion of

new scalars in the spectrum may be of interest since some may be detectable either directly

or indirectly depending on the details of the model. Such phenomenological investigations

need to proceed on a model by model basis, and we plan to look at some specific examples

in future work.
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Chapter 4

Flavor Mixing in the Standard Model

As stated above, one of the motivating factors for the study of discrete symmetries

are their utility in describing flavor mixing. In this section we will derive forms for the

Cabbibo-Kobayashi-Maskawa (CKM) and Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

matrices, which parameterize flavor mixing in the quark and lepton sectors, respectively.

We start by listing all fermions (with the addition of right-handed neutrinos) in their repre-

sentations under standard model gauge groups, (see Table 4.1 below).

4.1 Quark Mixing

As stated in Section 2, all fermions listed in Table 4.1 will have masses generated via

Yukawa terms, and we will soon see that the Yukawa couplings determine the form of the

mixing matrices. We begin with the quark sector1. Strictly speaking, since we have three

left handed doublets and six right handed singlets, there are 18 separate Yukawa terms.

We can write these more compactly by using the vectors Q = ((u, d)L, (c, s)L, (t, b)L)),

ur = (uR, cR, tR), and dr = (dR, sR, bR) defined above equation 2.3 so that the quark

sector Yukawa terms are:

LQuarkY = −Y d
ij Q

i
Φ djR − Y

u
ij Q

i
Φ̃ ujR + h.c. (4.1)

Where indices i and j are summed over the three quark generations and Φ̃ ≡ iτ2Φ
∗ is

defined in order to preserve the gauge invariance of the up-type Yukawa terms. We see that

we have eighteen free parameters contained in two 3x3 Yukawa matrices Y d and Y u. After

symmetry breaking, Φ obtains a VEV and the SU(2) doubletsQ split into uL = (uL, cL, tL)

1The following derivation is adapted from Chapter 29 of [79]
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Table 4.1: Fermionic content of Standard Model plus right-handed neutrinos

Particles SU(3) SU(2) U(1) Charge
((νe, e), (νµ, µ), (ντ , τ))L 1 2 -1

ecR 1 1 2
µcR 1 1 2
τ cR 1 1 2

(N1, N2, N3)R 1 1 0
(u, d)L 3 2 1

3

(c, s)L 3 2 1
3

(t, b)L 3 2 1
3

ucR 3 1 −4
3

dcR 3 1 2
3

ccR 3 1 −4
3

scR 3 1 2
3

tcR 3 1 −4
3

bcR 3 1 2
3

and dL = (dL, sl, bL). Equation (4.1) becomes:

LQuarkY = − v√
2
Y d
ij d

i

L d
j
R−

v√
2
Y u
ij u

i
L u

j
R + h.c. = − v√

2
[dL Y

d dR + uL Y
u uR] + h.c.

(4.2)

Where we have rewritten our Lagrangian in matrix form. We still have 18 separate mass

terms. To recover the six physical masses we must change basis by diagonalizing the

Yukawa matrices Y u and Y d. First note that we can diagonalize the hermitian squares of

these matrices with unitary transformations Vu and Vd:

V †d Yd Y
†
d Vd = M2

d V †u Yu Y
†
u Vu = M2

u (4.3)

Where Mu,d are diagonal matrices with terms corresponding to the up and down quark

masses. From the above relation we can write an expression for the Yukawa matrices in

terms of Mu,d, Vu,d and one more pair of unitary transformations Ku,d:

Yd = VdMdK
†
d, Yu = VuMuK

†
u (4.4)
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Substituting this relation into Equation (4.2):

LQuarkY = − v√
2

[dLVdMdK
†
ddR + uLVuMuK

†
uuR] + h.c. (4.5)

Now we see that changing to the mass basis requires redefining our quark fields by:

dR ≡ K†ddR

uR ≡ K†uuR

dL ≡ VddL

uL ≡ VuuL

(4.6)

So that finally our Lagrangian in the mass basis is:

LMass basis = − v√
2

[dLMddR + uLMuuR] + h.c. (4.7)

Our redefinition of the quark fields will change other terms in the quark Lagrangian

(2.3), specifically it will alter terms that couple the W± bosons to the left handed quarks.

After symmetry breaking, but before the basis change these terms are:

e√
2sinΘW

[uL /W
+
dL + dL /W

−
uL] (4.8)

In the flavor basis there should be no mixing between quark generations and we see

that indeed there is no mixing involved in either of these terms, i.e. the up only couples to

the down, the charm only couples to the strange, etc. But after making the transformations

(4.6) we find that Equation (4.8) becomes:

e√
2sinΘW

[uiL /W
+
V †uVdd

i
L + d

i

L
/W
−
V †d Vuu

i
L] (4.9)

We now see that there is a mixing between up and down quark generations induced by
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the matrix VCKM = (V †uVd)ij . Physically, the square of each element of this matrix gives

the probability of the ith up-type quark coupling to the jth down type quark. Explicitly:

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (4.10)

The magnitudes of the CKM matrix elements depend solely on the 18 Yukawa cou-

plings mentioned above, (although unitarity and other constraints reduce the number of

independent parameters in the matrix to four). Because these couplings are free param-

eters, so too are the elements of the CKM matrix, their values are not predicted by the

Standard Model and can only be measured experimentally. The latest measured values are

[72]:


0.97446± 0.0001 0.22452± 0.00044 0.00365± 0.00012

0.22438± 0.00044 0.97359± 0.00011 0.04214± 0.00076

0.00896± 0.00024 0.04133± 0.00074 0.999105± 0.000032

 (4.11)

We see that there is very little mixing in the quark sector. We will show below that the

neutrino sector is a different story.

4.2 Neutrino Mixing

We now return to the lepton sector, we introduce the vectors for the left handed leptons

L = ((νe, e), (νµ, µ), (ντ , τ)), right handed charged leptons lR = (eR, µR, τR) and right

handed neutrinos NR = (N1, N2, N3). We note that in the standard model neutrinos were

massless and thus right handed components were not necessary. But because we now know

neutrinos do in fact have mass we include the right handed components as a mechanism for
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mass generation. The Yukawa part of the lepton Lagrangian is then:

LleptonY = −Y l
ij L

i
Φ ljR − Y

ν
ij L

i
Φ N j

R + h.c. (4.12)

If these were the only mass terms, the analysis would proceed more or less identically

to the last section, with the caveat that the Yukawa couplings would need to be tuned

to incredibly small values to reflect the near vanishing masses of the neutrinos. A more

“natural” reason for the smallness of neutrino mass comes from what is known as the ”see-

saw mechanism”, which we will detail here2. If the right handed neutrinos are taken to be

“sterile” i.e., singlets under SU(2)L × UY (1), the Majorana mass term:

−iMRij(N
i
R)cN j

R (4.13)

(Where (NR)c = NT
Rτ2) is gauge invariant and thus remains part of the Lagrangian. The

left-right neutrino mass term in Eq.(4.12), and the above Majorana mass term combine to

give a mass matrix:

Mν =

 νLνL νLNR

(νLNR)T NRNR

 =

 0 MD

MT
D MR

 (4.14)

Where each entry in Eq.(4.14) is a 3 × 3 block matrix and the matrix of Yukawa cou-

plings Y ν ≡ MD is called the Dirac mass matrix. To illustrate how a matrix of this form

naturally generates small neutrino masses we examine a model with one sterile neutrino

and one standard model type “active neutrino”. In this case our neutrino mass Lagrangian

is:

−Yν

νe
e


L

Φ NR − iMR (NR)c NR (4.15)

After symmetry breaking, Φ obtains a VEV and the neutrino gains a Dirac mass m =

2The following derivation is adapted from [80]
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Yν
v√
2

which is on the order of the electroweak scale 102−3 GeV (assuming O(1) Yν).

Because the right handed neutrinos are sterile we expect their mass term M to be on the

order of some higher breaking scale, which we can take to be the grand unified or even the

Planck scale, i.e. 1010−19 GeV. Our mass matrix is then just 2× 2:

 0 m

m M

 (4.16)

Similarly to the quark sector, we must diagonalize this matrix in order to find the phys-

ical mass eigenstates. We find eigenvalues:

m1 =
M −

√
M2 + 4m2

2
≈ m2

M
≈ 10−1 to −15GeV

m2 =
M +

√
M2 + 4m2

2
≈M ≈ 1010−19GeV

(4.17)

We see now why this is called the see-saw, the heavier m1 is, the lighter the observable

neutrino state m2 is.

In our case we have three generations of neutrinos, so that diagonalizing Mν will yield

a 6× 6 block diagonal matrix: M1 0

0 M2

 (4.18)

Where M1,2 are 3× 3 matrices. M1 and M2 can then each be diagonalized to obtain the

light and heavy neutrino mass states respectively. In other words, the unitary transformation

that diagonalizes M1 transforms the light neutrino flavor basis into the light neutrino mass

basis, this is precisely the definition of the PMNS matrix. Our task now is to find an explicit

form for M1 so that we can specify the precise form of the PMNS matrix. We start with the
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diagonalization condition:

M1 0

0 M2

 = UT

 0 MD

MT
D MR

U (4.19)

We take U to be a generic unitary transformation:

 C1 S†2

−S1 C†2

 (4.20)

with the ansatz that the magnitude of the entries of the C matrices are much larger than

the entries of the S matrices. From the unitarity constraint and the fact that we can ignore

terms quadratic in S,MD that do not include MR one can show:

M1 ≈ −CT
1 MDM

−1
R MT

DC1

M2 ≈ C∗2MRC
†
2

(4.21)

We can further simplify these expressions by noting that in the limit of vanishing MD,

we may specify C1, C2 → I , with I being the identity matrix. Then we have

M1 ≈ −MDM
−1
R MT

D

M2 ≈MR

(4.22)

Now that we have an explicit form for M1 we can diagonalize the hermitian squares of

the neutrino and charged lepton mass matrices in the same way we did for the quark sector:

V †l YlY
†
l Vl = M2

l V †νM1M
†
1Vν = M2

ν (4.23)

This redefinition of lepton fields will alter other terms in the lepton Lagrangian (2.1),
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with those terms again involving W bosons. This time the terms coupling left handed

charged leptons to left handed neutrinos are altered. After symmetry breaking, but before

the basis change these terms are:

− g√
2

[eL /WνLe + µL /WνLµ + τL /WνLτ + h.c.] (4.24)

Prior to redefinition there is no mixing between lepton generations. After making the

appropriate basis transformations our Lagrangian becomes:

− g√
2
V ij
PMNS[l

i

L
/WνLj + h.c.] (4.25)

Where VPMNS = V †l Vν and νLj, j = 1, 2, 3 are now neutrino mass eigenstates, not

neutrino flavor eigenstates. Each charged lepton couples to each neutrino mass eigenstate

with probability equal to the square of the corresponding element of the PMNS matrix.

VPMNS =


Ve1 Ve2 Ve3

Vµ1 Vµ2 Vµ3

Vτ1 Vτ2 Vτ3

 (4.26)

Just as in the quark sector, PMNS matrix values are not predicted by the Standard

Model and can only be measured experimentally. The present 3σ experimental ranges of

the magnitudes of the matrix elements are given below [63, 71, 72]:


0.799↔ 0.844 0.516↔ 0.582 0.141↔ 0.156

0.242↔ 0.494 0.467↔ 0.678 0.639↔ 0.774

0.284↔ 0.521 0.490↔ 0.695 0.615↔ 0.754

 (4.27)

One sees that in contrast to the quark sector, there is significant mixing between lepton

generations. This has led to explorations of specific patterns in the mixing matrices, and
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how imposing discrete symmetries on the lepton Lagrangian can reproduce these patterns.

Historically experimental data was compatible with the form of the PMNS matrix

known as tribimaximal (TBM) mixing (see [68]) shown below, this form is often used

as a starting point for estimations of PMNS matrix elements:

UTBM =


√

2
3

√
1
3

0

−
√

1
6

√
1
3
−
√

1
2

−
√

1
6

√
1
3

√
1
2

 . (4.28)

The relatively simple form of this matrix can be elegantly derived from theories sym-

metric under various discrete groups (e.g. A4, S4, A5). TBM mixing has been ruled out

by more recent experiments, but it is still useful as a first order approximation to the PMNS

matrix. In the following section we detail a particular model with the discrete symmetry

T ′. We initially use the model to derive the TBM matrix but we then augment the theory to

obtain experimentally compatible predictions for both the PMNS and CKM matrices.

61



Chapter 5

A Gauged Model of Quarks and Leptons

5.1 Introduction

Flavor models of elementary particles have had to evolve as new data becomes avail-

able. As the data becomes more precise, the models become more sophisticated. The usual

model building practice is to extend the standard model (SM) with a discrete symmetry

which is used to fit the data. But variations abound, from extending a supersymmetric SM,

to discrete group extended grand unified models (For reviews see [8–12]), to top-down fully

gauged theories where the gauge group is sufficiently large to accommodate both the GUT

and flavor symmetries [62]. Here we take a minimalist approach and look for the smallest

fully gauged model that can explain all the data.

One of the simplest and most natural flavor models is the SM extended by the discrete

group T ′ [8, 37–43], where the one and two dimensional irreducible representations (irreps)

accommodate the quarks, while the leptons fit naturally into one and three dimensional ir-

reps. For a phenomenological discussion and recent summary of the data, see e.g., [63].

The current challenge is to fit the most recent neutrino data with a T ′ model. A shortcom-

ing of nearly all discrete flavor models is their lack of compliance with gravity [13], i.e.,

gravity breaks discrete global symmetries. But since gravity does not interfere with gauge

symmetries, gauging a discrete symmetry by embedding it in a gauge group is a way to

avoid this problem. But one still has to contend with discrete [14, 20, 64–66] or continuous

chiral gauge anomalies. Our minimalist approach then leads us to gauge T ′ flavor. The

smallest continuous group that contains T ′ is SU(2), so this is what we will attempt below.

Various complications arise, but we will be able to deal with them as we go along.

We take the simplified renormalizable T ′ extension of the standard model of [40] and
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augment it in two ways. First, we add scalar singlets, that will acquire VEVs and shift the

predictions of tribimaximal (TBM) mixing and of the Cabibbo angle from previous models

to be more in line with current experimental values. Second, after adding a few fermions,

the T ′ group is embedded into a gauged SU(2) group we will call SU(2)T ′ . This averts

problems with gravity and chiral anomalies that can arise from adding discrete groups to

the standard model. It also provides an elegant description of the discrete symmetry as a

residue of a gauge group acting at higher scale. Finally we summarize how SU(2)T ′ can

be broken directly to T ′ with a VEV for a particular scalar multiplet.

The next section contains the lepton sector particle assignments, plus the assignments

for the scalar fields that enter the lepton Yukawa Lagrangian at the T ′ scale. Section 5.3

contains similar information for the quark sector; in Section 5.4 we discuss tribimaximal

(TBM) mixing, where a T ′ triplet Higgs gets a vacuum expectation value (VEV). Since

there is currently tension between the data and TBM predictions, we add T ′ scalar singlets

with VEVs to shift TBM predictions in Section 5.5, where we show our new fit is in agree-

ment with all lepton data. Section 5.6 focuses on the quark sector, where the new scalar

singlet VEVs now contribute to quark mixing.

It is the above described T ′ model we gauge to SU(2)T ′ , and describe in Section 5.7,

where various additional particles need to be added to avoid all chiral anomalies. Section

5.8 describes the spontaneous symmetry breaking (SSB) from SU(2)T ′ to T ′, and Section

5.9 contains our conclusions and plans for further work. Appendix B collects all the T ′

group theory needed for this analysis.

5.2 Lepton Sector Lagrangian at the T ′ Scale

We begin by reviewing the lepton sector just above the T ′ scale. Because none of

the leptons will be in even dimensional irreducible representations (irreps), this sector is

equivalent to an A4 model [6, 7]. We have also given the model a Z2 symmetry in order to

disallow certain terms in the Lagrangian. This Z2 will also be gauged.
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The standard model leptons are assigned to the following irreps [40] of T ′×Z2 (and of

A4 × Z2):  ντ

τ−


L νµ

µ−


L νe

e−


L



LL(3, 0)

τ−R (11, 1)

µ−R (13, 1)

e−R (12, 1)

N
(1)
R

N
(2)
R

N
(3)
R

NR(3, 0) (5.1)

where NR is a T ′ triplet of right handed neutrinos. In addition, we will need the following

scalars to construct T ′ singlet Yukawa terms:

H3(3, 0) = (H1
3 , H

2
3 , H

3
3 )

H ′3(3, 1) = (H1
3′ , H

2
3′ , H

3
3′)

H11(11, 0)

H12(12, 0)

H13(13, 0)

(5.2)

Where the subscripts correspond to the T ′ irrep where the scalars live.

Aside: Note that here and and below we use a different notation from [40] which used

a multiplicative form for the Z2 charges, i.e., ±1. Since we will be concerned with discrete

and continuous chiral gauge anomalies, we use additive Z2 charges, i.e., integers mod 2, to

be consistent with most of the literature. When we later embed Z2 in a U(1) we will use

integer charges.

With the above content, the most general lepton sector Yukawa Lagrangian is:

Ll = YτLLτRH3′+YµLLµRH3′+YeLLeRH3′+LLNR(YxH12+YyH13+YzH11+YTBH3)+mNNRNR

(5.3)
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The proper choice of VEVs for H3 and H3′ lead to values for the charged masses and the

TBM mixing matrix. Giving VEVs to the singlets will break T ′ to Q, the group of unit

quaternions, and shift the TBM matrix closer to experimentally compatible values.

5.3 Quark Sector Lagrangian at the T ′ Scale

The main advantage of a T ′ flavor model is that it is the discrete group of smallest order

with a sufficiently diverse set of irreps that can be used to model both the quark and lepton

sectors. Specifically, it has even-dimensional irreps that can also be used to economically

describe the quark sector, as we will now summarize [40]. The standard model quarks are

assigned to the following irreps:

 t

b


L

QL (11, 0)

 c

s


L u

d


L


QL (21, 0)

tR (11, 1)

bR (12, 1)

cR

uR

 CR (23, 1)

sR

dR

SR (22, 0).

(5.4)

In addition to the scalars listed above, we add three morT ′ singlets:

H1′1
(11, 1)

H1′2
(12, 1)

H1′3
(13, 1)

(5.5)

Hence the most general quark sector Yukawa Lagrangian is then:

Lq = YtQLtRH1′1
+YbQLbRH1′3

+QLCR(YCH3′ +YC′H1′2
)+QLSR(YSH3+YS′H13) (5.6)
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We see that a constraint on our model is that the VEVs of H3, H3′ , and H13 must have

values that are simultaneously compatible with the experiment data for both the quark and

lepton sector.

5.4 TBM Mixing from T ′

Before we derive our experimentally compatible PMNS matrix [67], we show that just

below the T ′ energy scale where only T ′ triplets have VEVs, the neutrinos exhibit the

familiar TBM mixing pattern [68]. Using the Clebsch-Gordan coefficients for T ′ detailed

in Appendix B, we find that the term mNNRNR from equation (5.3) gives a mass matrix

for right handed neutrinos:

MN =


mN 0 0

0 0 mN

0 mN 0

 (5.7)

Similarly, we construct the Dirac mass matrix associated with the term YTBLLNRH3

of the lepton Lagrangian:

MD =


eN1 eN2 eN3

µN1 µN2 µN3

τN1 τN2 τN3

 = YTB


v2 −v1 0

−v3 0 v1

0 v3 −v2

 (5.8)

Where (v1, v2, v3) is the VEV of the scalar H3. The Majorana mass matrix is given by:

Mν = MDM
−1
N MT

D (5.9)

The rows of the Majorana mixing matrix are the normalized eigenvectors of this mass

matrix, we find that for a VEV of < H3 >= V (1, 1,−2), (where V is some constant), we
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recover the TB mixing matrix in the form

UTBM =


√

2
3

√
1
3

0

−
√

1
6

√
1
3
−
√

1
2

−
√

1
6

√
1
3

√
1
2

 . (5.10)

Currently TBM is excluded at the 5σ level. For a different perspective see [69].

5.5 Shifted TBM Mixing

OOur next step is to augment this matrix using VEVs for the additional scalars H11 ,

H12 and H13 . (For an alternative perturbation theory approach see [70].) Including these

in the model introduces the terms LLNR(YxH12 + YyH13 + YzH11) into the Lagrangian.

These terms have a mass matrix:

Mxyz =


−x z y

−y x z

z −y −x

 (5.11)

Where x, y, and z represent Yx < H12 >, Yy < H13 >, and Yz < H11 > respectively. Our

Dirac mass matrix is now

MD′ = MD +Mxyz = YTB


1− x′ −1 + z′ y′

2− y′ x′ 1 + z′

z′ −2− y′ −1− x′

V (5.12)

where x′ = x
YTBV

, y′ = y
YTBV

and z′ = z
YTBV

. The Majorana mixing matrix, U, is obtained

the same way as before. The fit parameters x′, y′ and z′ can now be varied to shift the

entries of U from their TBM mixing values closer to current experimental values. The

present 3σ experimental ranges of the magnitudes of the matrix elements are given below
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[63, 71, 72]:


0.799↔ 0.844 0.516↔ 0.582 0.141↔ 0.156

0.242↔ 0.494 0.467↔ 0.678 0.639↔ 0.774

0.284↔ 0.521 0.490↔ 0.695 0.615↔ 0.754

 (5.13)

The next step we can take is to vary the parameters x′, y′, and z′ from -1 to 1 (within a

reasonable precision), and find the values for which the least accurate elements’ error is

minimized. We find that to the nearest hundreth, this minimum is obtained at (x′, y′, z′) =

(0.32,−0.26,−.40) with the least accurate element being 1.922 standard deviations away

from experimental value. Explicitly, these values correspond to a mixing matrix:


−0.829 0.539 0.148

0.289 0.640 −0.712

0.478 0.548 0.686

 (5.14)

which can be compared to the experimental numbers above.

The errors are given below in terms of standard deviations away from experimental

value: 
1.029 0.910 0.228

1.882 1.919 0.224

1.922 1.313 0.083

 . (5.15)

In addition to minimizing the error of the least accurate entry we can minimize the

average error of the matrix elements.

Looping over all possible values of x′, y′, and z′ (again to the nearest hundredth) min-

imizes the mean error at (0.32,−0.27,−.045), with a value of 0.870 standard deviations.
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Our mixing matrix is now


−0.822 0.549 0.149

0.298 0.638 −0.710

0.485 0.539 0.688

 , (5.16)

with errors


0.090 0.0351 0.199

1.671 1.869 0.151

2.091 1.558 0.167

 . (5.17)

From both these perspectives on error analysis, our T ′ model extended with a pair

of scalar singlets agrees with the current experimental data which provides a significant

improvement over the simple TBM model.

We can also examine our fitting with a contour plot. Our error values are the most

sensitive to changes in x′ so we hold it constant at 0.32 and allow our parameters y′ and z′

to vary between -1 and 0 as shown in the plots below: (The parameter range (y′, z′) > 0

gives very high error values so it is not shown.)
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Figure 5.1: Contour plot with x′ fixed at 0.32 of maximum mixing matrix error relative to
experimental data, where values are in units of standard deviation.
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Figure 5.2: Contour plot with x′ fixed at 0.32 of average mixing matrix error relative to
experimental data, where values are in units of standard deviation.

We see from these plots that there are relatively small ranges, but still without fine

tuning beyond an order of magnitude, for our parameters that give us maximum error and

average error less that 2σ and 1σ respectively.

5.6 Quark Mixing

As shown in [40], one can derive a reasonable prediction for the Cabbibo angle from the

Lagrangian in equation (5.6). We rederive this result here for our basis and then augment

the value when an additional scalar has a VEV. We also find the mass matrices for the

first two generations of up and down type quarks from the terms QLCR(H3′ + H1′2
) and
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QLSR(H3 + H13) respectively. From the discussion above we know that H3 must have a

VEV of the form V (1, 1,−2). To give masses to the charged leptons H3′ gets a VEV:

< H3′ >=

(
mτ
Yτ
, 0, 0

)
(5.18)

.

Note that if the Yukawa couplings on the Dirac mass terms for the charged leptons are

of the same order of magnitude this will give approximately degenerate masses. Therefore

some tuning or the introduction of an additional U(1) flavor symmetry is necessary to

get correct mass values (see [77]). Using these values along with the Clebsch-Gordan

coefficients found in the Appendix, we obtain a mass matrix U for the up-type quarks:

U = YC

0 0

0 −
√
2mτ
Yτ

 (5.19)

.

This gives a charm quark mass on the order of the tau mass but a zero mass for the up

quark. We can correct this by giving a VEV to H1′2
, which will give an up-type matrix:

U ′ = YC

 0 1√
2

YC′<H1′2
>

YC

− 1√
2

YC′<H1′2
>

YC
−
√
2mτ
Yτ

 . (5.20)

Setting
YC′<H1′3

>
√
2YC

= .05875× mτ
Yτ

and taking the hermitian square of U ′ gives:

U ′U ′† = Y 2
C

0.00345156(mτ
Yτ

)2 −0.083085(mτ
Yτ

)2

−0.083085(mτ
Yτ

)2 2.00345(mτ
Yτ

)2

 . (5.21)

with eigenvalues m1 = Y 2
C 2.0069(mτ

Yτ
)2 and m2 = Y 2

C 5.93617 × 10−6(mτ
Yτ

)2 which give

the squares of the charm and up masses respectively. With these values, the ratio mu
mc

=
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0.00171985 closely approximates the measured value of mu
mc

= 0.00171875

For our down-type mass matrix, D we obtain:

D = YS

 √
2 2 +

YS′<H13>

YSV

2− YS′<H13>

YSV

√
2

V (5.22)

.

We find that setting the factor YS′<H13>

YSV
= 2.3815 will give the best values for the

Cabibbo angle and for the down and strange quark masses. Making this substitution, we

have:

DD† = Y 2
S

 21.1975 5.65685

−5.65685 2.14554

V 2 (5.23)

with eigenvalues m1 = Y 2
S 22.7506V 2 and m2 = Y 2

S .592523V 2 which give the squares

of the strange and down masses respectively. With these values, the ratio md
ms

= 0.161382

only roughly approximates the measured value of md
ms

= 0.0489583.

The mixing matrix for the first two quark generations, (the upper left corner of the

CKM matrix) is W = K†uKd. Where Ku and Kd are the unitary matrices that diagonalize

the Hermitian squares of U and D respectively. We find:

Kd =

 0.964319 0.264742

−0.264742 0.964319

 (5.24)

Ku =

 0.999141 0.0414355

−0.0414355 0.999141

 (5.25)

W = K†uKd =

 0.974461 0.224558

−0.224558 0.974461

 (5.26)
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This gives an expression for the Cabibbo angle Θ

tan(2Θ) =

(
√
2
3

)
→ sin(Θ) = .224558 (5.27)

The values for Wud and Wus, and thus the prediction for the Cabibbo angle, are almost

identical to those found from the latest experimental fit [72]:

|W | =

0.97446± 0.00010 0.22452± .00044

0.22438± 0.00044 0.97359+0.00010
−0.00011

 . (5.28)

Specifically, our errors are (again in units of σ):

0.008 0.085

0.404 7.917

 . (5.29)

We see the Wcd prediction is also well within 1σ. The prediction for Wcs is quite a bit off,

but this is to be expected, or at least not surprising, given our neglect of third family mixing

effects.

We could adjust our predictions for Wcs and md
ms

via third family mixing by adding the

following terms to the Lagrangian in equation (5.6):

L′q = YtcuQLCRH23 + YbsdQLSRH22 + YcutQLtRH21 + YsdbQLbRH23 , (5.30)

but this introduces at least six more free parameters into the theory, significantly compli-

cating the analysis. Hence these terms are left for a future study.

Finally we note that from the relations YS′<H13>

YSV
= 2.3815 and Yy<H13>

YTBV
= −.26 we

have the constraint Yy
YTB

= −.109175
YS′
YS

.
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5.7 T ′ Embedding in SU(2)

As explained in the Introduction, it is often desirable to embed discrete symmetries into

continuous gauge groups at higher energy scales. The remainder of this paper will focus

on generalizing our T ′ model to a gauged SU(2)T ′ flavor theory.

There are three main tasks needed for our gauge group embedding. First, we must

identify which SU(2)T ′ representations our T ′ particles can fall into. This is easily ac-

complished by examining the branching rules from Table A.5. New particles will have to

be introduced to fill out these SU(2)T ′ irreps, as a full theory cannot contain incomplete

group representations. Second, we must ensure our theory is anomaly free. This involves

checking that our representations satisfy certain sum rules on their quantum numbers (see

e.g., [73]). Again we will see we must add more particles to the theory in order to cancel

all anomalies. Finally, we formulate a scalar Lagrangian where we can find a particular

vacuum expectation value that breaks SU(2)T ′ down stepwise to T ′ [18, 19, 74], then to Q,

etc. and eventually to nothing.

5.7.1 SU(2) Multiplets

Table I shows the results of embedding the T ′ irreps of equations (5.1) and (5.4) into

SU(2)T ′ . Each row shows the particle in their SU(2)T ′ multiplet, and each column gives the

representation of the constituent particles under the specified gauge group.
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Table 5.1: Fermionic content of SU(2)T ′ gauge theory

Particles SU(3) SU(2) U(1) Charge SU(2)T ′

((ντ , τ), (νµ, µ), (νe, e))L 1 2 -1 3

τ cR 1 1 2 1

(A,B,C)L 1 1 -2 3

(µ, e, A,B,C)cR 1 1 2 5

(N1, N2, N3)R 1 1 0 3

((c, s), (u, d))L 3 2 1
3

2

(t, b)L 3 2 1
3

1

tcR 3 1 −4
3

1

(X, b, α, β, γ)cR 3 1 2
3

5

XL 3 1 −2
3

1

(α, β, γ)L 3 1 −2
3

3

(c, u, i, j)cR 3 1 −4
3

4

(s, d, k, l)cR 3 1 2
3

4

iL 3 1 4
3

1

jL 3 1 4
3

1

kL 3 1 −2
3

1

lL 3 1 −2
3

1

In order to complete the various irreps of SU(2)T ′ we have to include a number of new

particles. Specifically we have added three new leptons: (a, b, c), and eight new quarks:

X,α, β, γ, i, j, k, l.

Our next step is to check our theory for anomalies. With the current irreps, the only

anomaly that does not cancel is SU(2)T ′ × SU(2)T ′ × U(1)Y . To cancel this anomaly and

avoid disrupting other cancellations, we add the multiplets listed in Table II to the theory.
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Note that this is not the only way to do the embedding, but it is the most straightforward

and economical embedding we have found.

Table 5.2: Additional particles needed for cancellation of chiral anomalies

Particles SU(3)C irrep SU(2)L irrep U(1)Y charge SU(2)T ′ irrep

(a1, a2, a3, a4, a5) 1 1 -2 5

(n1, n2) 1 1 2 2

m1 1 1 2 1

m1′ 1 1 2 1

m1′′ 1 1 2 1

With that we have a complete fermion sector for the theory. Although we have had to

add many new particles, all of them can be made sufficiently heavy such that they are only

relevant at very high energy scales.

Let us recall that the current [72] b′ (charge -1/3) quark mass limit is ≥ 1,530 GeV

CL=95.0% and the t′ (charge +2/3)-quark mass limits is≥ 1,160 GeV CL=95.0% with less

stringent bounds ≥ 110 GeV for leptons. For the most part the BSM particles in Table

1 are designed to form vector-like pair and become massive once SU(2)T ′ is broken but

before the EW symmetry breaking. This keeps the SM particles massless while the BSM

particles are massive and unobserved as long as we require the SU(2)T ′ breaking scale to

be a few TeV. E.g., (A,B,C)L in the third line of the table pair up with (A,B,C)R from

(µ, e, A,B,C)R once SU(2)T ′ is broken. Hence A, B and C can have relatively large

masses compared to SM particles. (Note that at this stage µ and e must remain massless at

least until SU(2)L is broken.) α, β and γ behave in a similar way, as do X and i, j, k and

l. (The same holds for the new particles introduced in Table 2.)
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5.7.2 Z2 Anomaly Cancellation

In the above formulation we have canceled all anomalies that come about due to the

addition of the T ′ symmetry to the standard model. However, recall that we also included

an extra Z2 symmetry in order to forbid certain unwanted Lagrangian terms. This Z2 can

be embedded in an extra U(1)Z2 symmetry that breaks at an arbitrary scale independent

of the SU(2)T ′ breaking. We detail the charge assignments for an example anomaly-free

SU(3)×SU(2)L×U(1)Y ×SU(2)T ′ ×U(1)Z2 theory below in Table III. Notice we have

added an SM singlet SU(2)T ′ 4 with Z2 charge −1 and fourteen fermions that are trivial

singlets under everything but U(1)Y × U(1)Z2 . Five of them, the Es have charge (2,1) and

the other five, the F s have charge (−2,0) under this group, the remaining four have U(1)Y

charge ±10 and U(1)Z2 charge 0, 1 or -1.

There is significant freedom in assigning U(1)Z2 charges to existing particles as they

reduce to particles with identical Z2 charges modulo 2. So even though this example has

involved adding many extra particles, a less baroque model may be possible. The discus-

sion of the masses for the additional particles (from the line (a1, a2, a3, a4, a5) onward) in

Table 3 needed to cancel the U(1)Z2 anomaly is similar to the discussion of Table 1. We

find that once U(1)Z2 is broken the five Es pair with the five F s and g1 and g2 pair with h1

and h2. Once both SU(2)T ′ and U(1)Z2 are broken the five states (a1, a2, a3, a4, a5) pair

with (n1, n2), m1, m1′ and m1′′ . At this stage all the SM particles are still massless since

the EW symmetry is not yet broken. Hence, the Table 3 additions are not as bad as they

may seem at first sight.
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Table 5.3: Example charge assignments for U(1)Z2 anomaly cancellation [64, 65]

Particles SU(3)C irrep SU(2)L irrep U(1)Y charge SU(2)T ′ irrep U(1)Z2
charge

((ντ , τ), (νµ, µ), (νe, e))L 1 2 -1 3 0

τ cR 1 1 2 1 1

(A,B,C)L 1 1 -2 3 0

(µ, e, A,B,C)cR 1 1 2 5 -1

(N1, N2, N3)R 1 1 0 3 0

((c, s), (u, d))L 3 2 1
3

2 0

(t, b)L 3 2 1
3

1 0

tcR 3 1 −4
3

1 1

(X, b, α, β, γ)cR 3 1 2
3

5 1

XL 3 1 −2
3

1 -1

(α, β, γ)L 3 1 −2
3

3 0

(c, u, i, j)cR 3 1 −4
3

4 -1

(s, d, k, l)cR 3 1 2
3

4 0

iL 3 1 4
3

1 -1

jL 3 1 4
3

1 0

kL 3 1 −2
3

1 0

lL 3 1 −2
3

1 0

(a1, a2, a3, a4, a5) 1 1 -2 5 0

(n1, n2) 1 1 2 2 0

m1 1 1 2 1 1

m1′ 1 1 2 1 1

m1′′ 1 1 2 1 1

(b1, b2, b3, b4) 1 1 0 4 -1

5× E 1 1 2 1 1

5× F 1 1 -2 1 0

g1 1 1 -10 1 1

g2 1 1 -10 1 -1

h1 1 1 10 1 0

h2 1 1 10 1 0
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5.8 Spontaneous Symmetry Breaking

Our final step is to provide the spontaneous breaking of SU(2)T ′ → T ′. We have

already performed this analysis in Chapter 3, so will only summarize the results here. To

have this spontaneous symmetry breaking we must include a scalar multiplet of SU(2)T ′

that contains a trivial singlet of T ′. Looking at the branching rules of table A.5, we see

the smallest avalable irrep for this purpose is the 7. The 7 can be real or complex, but for

simplicity we choose a real multiplet with scalar potential 3

V7 = −m2 TabcTabc + λ (TabcTabc)
2 + κ TabdTabeTfgeTfgd, (5.31)

where T is a traceless, symmetric, 3× 3× 3 tensor, λ and κ are the scalar quartic coupling

constants, and the indices a, b, ... run from 1 to 3.

Spontaneous breaking to T ′ occurs when the potential is minimized and the scalar is

given a Vacuum Expectation Value (VEV) in a particular direction. For the real 7 this VEV

is [74]:

V =

√
3m2

2(3λ+ κ)
[0, 0, 0, 0, 0, 0, 1]. (5.32)

After breaking SU(2)T ′ the 7 real scalars reduce to their T ′ irreps with mass eigenvalues

given by

Value Multiplicity

0 3

4m2 1

8m2κ
5(3λ+κ)

3

which contains the three requisite Goldstone bosons that get eaten by the SU(2)T ′ gauge
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bosons. To ensure a stable minimum the coupling constants must satisfy the constraints

3λ + κ > 0 and κ > 0. Clearly there is a substantial region of parameter space where this

pattern of SSB is the stable minimum of the potential in eq.(5.31).

This 7 is obviously not the only scalar in the theory as more scalars are needed to

construct Yukawa terms at the SU(2)T ′ scale. However, we omit the full scalar Lagrangian

in this paper because we will not be exploring its complete phenomenology at present. We

are assuming that the coupling of the 7 to the other scalars is sufficiently weak that the

breaking to T ′ is not destabilized. The analysis of a specific example of this type of VEV

stability can be found in [74].

5.9 Discussion and Conclusions

We have extended the basic T ′ flavor model to fit the current best available quark and

lepton mass and mixing angle data. More specifically, we have constructed an extended but

fairly simple, renormalizable T ′ model that predicts neutrino mixing parameters within 2σ

of experiment, as well as a Cabibbo angle well within 1σ. This has required the addition of

T ′ scalar singlets with VEVs. Once our new T ′ model was fixed, we then extended it further

by embedding it in SU(2)T ′ such that the entire model was fully gauged. This avoided all

problems with gauge and gravity mixed anomalies at the expense of adding a number of

new fermions to the lepton and quark sectors. The additional fermions were not necessarily

the minimal set, as there are many possible choices, so what we have provided is a proof

of principle that fully gauged flavor models can be found to fit all current flavored data. It

still remains quite challenging to find a full gauge unification of flavor, but it is perhaps

not unreasonable to hope that one could eventually find a top-down GUT flavor model that

reduces to a product gauge model of the type we have discussed here.

Besides the T ′model discussed here, gaugedA4 models [23, 75, 76] have also appeared,

but there remains a long list of discrete groups S4, A5, Q6, O
′, I ′, T7,∆(27) and PSL(2, 7)

that are easy to obtain from breaking SU(2) or SU(3). So it appears possible to gauge

81



some if not all of the models based on these groups [44–52].

We have argued that all the extra beyond the standard model particles can be made

heavy enough to avoid bounds from the LHC. While our model lacks elegance, it is a viable

model and it does teach us quite a lot. (i) First, it provides a proof in principle that a good

candidate for a discrete group extension of the SM that gives reasonable values for the quark

and lepton masses and mixing angles, namely SU(3)C × SU(2)L × U(1)Y × SU(2)T ′ ×

U(1)Z2 , can be gauged and survive experimental constraints. (ii) A major lesson is that

extra U(1)s complicate the model considerably and their elimination appears necessary

if a simpler model is to be found. We plan to pursue this line in future work. (iii) The

present model has interesting implications for cosmological defects and provides another

interesting topic for the future. Domain walls that result from breaking discrete symmetries

can be destabalized if the discrete symmetry is embedded in a local gauge group leading to

a model more likely to be viable.

Finally we need to comment on the LHC constraints on extra Higgs masses. Searches

for a Higgs Boson with Standard Model couplings with massm ≥ 122 GeV find nothing in

the range 128 – 1000 GeV at CL = 95%, while searches for charged Higgses H± provide

weaker bounds and give mass m ≥ 80 GeV, CL = 95%. (These current generally accepted

mass bounds are quoted from the Review of Particle Properties Tanabashi:2018.) There

are numerous scalars in our model and in fact they are the most likely aspect of the model

to lead to testable predictions given a full phenomenological analysis. This would require

the study of the complete scalar potential which is well beyond what we had set out to

accomplish in this paper. (Note that the full scalar potential contains over a dozen terms,

including many cross terms between the various irreps, so it would require a considerable

amount of work to do a complete analysis.) However, we would still like to comment

on what we would expect from such an analysis. First, the real 7 scalar breaks SU(2)T ′

to T ′ at a high scale–above 100 TeV. Three component of the 7 are eaten by the Higgs

mechanism and the other 4 should be near the breaking scale, well above current bounds.
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Similar comments hold for the scalar that breaks U(1)Z2 to Z2. The electroweak doublets

on the other hand, should naturally be near the EW scale. Besides the Higgs at 125 GeV

and the three components eaten by the W± and the Z, what remains are charged scalars

which need to be above MW which should take a small amount fine tuning and a number

of neutral scalars. To keep the neutrals at or above the current LHC bounds will most likely

take some fine tuning. The less tuning the closer they will be to the bounds. Hence the

neutrals need to be at least a factor of 4 heavier than their natural scale if we set it to be the

EW VEV scale 246 GeV. So the tuning needed is rather mild, but we could expect scalar

to show up soon if the model is correct.

There is still more to explore within our present model. Examples include the phe-

nomenology of the additional fermions required for anomaly cancellation and a study of

cosmological defects. The phenomenology of the scalar sector would clearly benefit from

further study. Beyond this specific model, it would be preferable to avoid Zn factors by

either reassigning irreps of SM states, or by using different initial non-abelian discrete

groups. This would simplify the anomaly cancellation and hence minimize the introduc-

tion of extra fermionic states. We plan to search for such models in the future.
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Chapter 6

CONCLUSION

Thus completes our study of methods in flavor model building. We began in Chapter 2

with an introduction to spontaneous symmetry breaking, detailing electroweak symmetry

breaking via the Higgs mechanism. Chapter 3 outlined a systematic approach to symmetry

breaking for use in gauged flavor models. Chapter 4 moved to a derivation of flavor mixing

in the quark and neutrino sectors, and showed how small neutrino masses can arise via the

see-saw mechanism. Finally, in Chapter 5 we constructed a gauged flavor model of quarks

and leptons. We showed how one can use a discrete symmetry to derive fermion mixing

patterns consistent with experimental predictions.

While making these predictions for the CKM and PMNS matrices required a fairly sim-

ple model, in promoting the model to SU(2) it became quite messy, requiring the inclusion

of many new particles. Therefore a next step may be to develop a discrete flavor model

in which chiral anomaly cancellation requires fewer particles while still maintaining accu-

rate predictions at the electroweak scale. This may involve tweaking the present model by

changing particle irreps, or developing a model with a different discrete symmetry. An-

other problem not fully addressed is fine tuning of the Yukawa couplings. We were able to

attribute much of the standard model mass hierarchy to symmetry breaking but there still

remained some mass differences, e.g. among the charged leptons, that require significant

tuning. Again a deeper search of discrete models will be required to find a more predictive

theory.

In summary, the study of flavor physics is an often fruitful approach to the development

of theories beyond the Standard Model. Discrete symmetries can help explain the values of

Standard Model free parameters, while embedding the symmetry in a gauge group connects

to physics above the electroweak scale. These insights bring us closer to a complete theory
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of flavor which would be a significant step towards a theory of physics at the unification

scale.
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Appendix A

Branching Rules

In this Appendix we present the branching rules for the embeddings of discrete groups

into Lie groups used in Chapter 3. The vertical axes label the dimensions of the Lie Group

reps, and the horizontal the dimensions of the discrete group representations.

Table A.1: SO(3)→ A4

Dimension 11 12 13 3

2 0 0 0 0

3 0 0 0 1

4 0 0 0 0

5 0 1 1 1

6 0 0 0 0

7 1 0 0 2

8 0 0 0 0

9 1 1 1 2

10 0 0 0 0

11 0 1 1 3

Table A.2: SO(3)→ S4

Dimension 11 12 2 31 32

2 0 0 0 0 0

3 0 0 0 1 0

4 0 0 0 0 0

5 0 0 1 0 1

6 0 0 0 0 0

7 0 1 0 1 1

8 0 0 0 0 0

9 1 0 1 1 1

10 0 0 0 0 0

11 0 0 1 2 1
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Table A.3: SO(3)→ A5

Dimension 1 3 3 4 5
2 0 0 0 0 0
3 0 0 1 0 0
4 0 0 0 0 0
5 0 0 0 0 1
6 0 0 0 0 0
7 0 1 0 1 0
8 0 0 0 0 0
9 0 0 0 1 1

*10 0 0 0 0 0
11 0 1 1 0 1
12 0 0 0 0 0
13 1 0 1 1 1

Table A.4: SU(2)→ Q6

Dimension 11 12 13 14 21 22

2 0 0 0 0 1 0
3 0 1 0 0 0 1
4 0 0 1 1 1 0
5 1 0 0 0 0 2
6 0 0 1 1 2 0
7 1 2 0 0 0 2
8 0 0 1 1 3 0
9 2 1 0 0 0 3
10 0 0 2 2 3 0
11 1 2 0 0 0 4

Table A.5: SU(2)→ T ′

Dimension 11 12 13 21 22 23 3
2 0 0 0 1 0 0 0
3 0 0 0 0 0 0 1
4 0 0 0 0 1 1 0
5 0 1 1 0 0 0 1
6 0 0 0 1 1 1 0
7 1 0 0 0 0 0 2
8 0 0 0 2 1 1 0
9 1 1 1 0 0 0 2

10 0 0 0 1 2 2 0
11 0 1 1 0 0 0 3

Table A.6: SU(2)→ O′

Dimension 11 12 21 22 23 31 32 4
2 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 1 0
4 0 0 0 0 0 0 0 1
5 0 0 1 0 0 1 0 0
6 0 0 0 0 1 0 0 1
7 0 1 0 0 0 1 1 0
8 0 0 0 1 1 0 0 1
9 1 0 1 0 0 1 1 0
10 0 0 0 1 0 0 0 2
11 0 0 1 0 0 1 2 0

Table A.7: SU(2)→ I ′

Dimension 11 22 23 31 32 41 42 5 6
2 0 1 0 0 0 0 0 0 0
3 0 0 0 0 1 0 0 0 0
4 0 0 0 0 0 0 1 0 0
5 0 0 0 0 0 0 0 1 0
6 0 0 0 0 0 0 0 0 1
7 0 0 0 1 0 1 0 0 0
8 0 0 1 0 0 0 0 0 1
9 0 0 0 0 0 1 0 1 0

10 0 1 0 0 0 0 1 0 1
11 0 0 0 1 1 0 0 1 0
12 0 1 0 0 0 0 1 0 1
13 1 0 0 0 1 1 0 1 0

Table A.8: SU(3)→ A4

Dimension 11 12 13 3
3 0 0 0 1
6 1 1 1 1
8 0 1 1 2

10 1 0 0 3
15 1 1 1 4
15′ 2 2 2 3
21 1 1 1 6
24 2 2 2 6
27 3 3 3 6

87



Table A.9: SU(3)→ T7

Dimension 11 12 13 31 32

3 0 0 0 1 0
6 0 0 0 1 1
8 0 1 1 1 1
10 1 0 0 1 2
15 1 1 1 2 2
15′ 1 1 1 2 2
21 1 1 1 3 3
24 1 1 1 4 3
27 1 1 1 4 4

Table A.10: SU(3)→ ∆(27)

Dimension 11 12 13 14 15 16 17 18 19 31 32

3 0 0 0 0 0 0 0 0 0 1 0
6 0 0 0 0 0 0 0 0 0 0 2
8 0 1 1 1 1 1 1 1 1 0 0

10 2 1 1 1 1 1 1 1 1 0 0
15 0 0 0 0 0 0 0 0 0 5 0
15′ 0 0 0 0 0 0 0 0 0 5 0
21 0 0 0 0 0 0 0 0 0 0 7
24 0 0 0 0 0 0 0 0 0 0 8
27 3 3 3 3 3 3 3 3 3 0 0

Table A.11: SU(3)→ PSL(2, 7)

Dimension 1 32 32 6 7 8
3 0 1 0 0 0 0
6 0 0 0 1 0 0
8 0 0 0 0 0 1

10 0 0 1 0 1 0
15 0 0 0 0 1 1
15′ 1 0 0 1 0 1
21 0 1 1 0 1 1
24 0 1 0 1 1 1
27 0 0 0 2 1 1
28 1 0 0 2 1 1
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Appendix B

Useful Information About the Binary Tetrahedral Group T ′

B.1 T ′ Character Table

Dimension C1 C2 4C3 6C4 4C5 4C6 4C7

11 1 1 1 1 1 1 1

12 1 1 ω2 ω4 1 ω2 ω4

13 1 1 ω4 ω2 1 ω4 ω2

21 2 -2 -1 -1 0 1 1

22 2 -2 ω5 ω 0 ω2 ω4

23 2 -2 ω ω5 0 ω4 ω2

3 3 3 0 0 -1 0 0

Where ω = e
2πi
6 .

B.2 Kronecker Products of T ′ Irreps

Dimension 11 12 13 21 22 23 3

11 11 12 13 21 22 23 3

12 12 13 11 22 23 21 3

13 13 11 12 23 21 22 3

21 21 22 23 11 + 3 12 + 3 13 + 3 21 + 22 + 23

22 22 23 21 12 + 3 13 + 3 11 + 3 21 + 22 + 23

23 23 21 22 13 + 3 11 + 3 12 + 3 21 + 22 + 23

3 3 3 3 21 + 22 + 23 21 + 22 + 23 21 + 22 + 23 11 + 12 + 13 + 3 + 3
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B.3 T ′ Clebsch-Gordan Coefficients

For our basis we take the tensor products in section 5 of [9] with p = i, p1 = −1, and

p2 = 1.

 x1

x2


2(2′)

⊗

 y1

y2


2(2′′)

=

(
x1y2 − x2y1√

2

)
1

⊕


−1√
2
(x1y2 + x2y1)

−x1y1

x2y2


3

, (B.1)

 x1

x2


2′(2)

⊗

 y1

y2


2′(2′′)

=
(
x1y2−x2y1√

2

)
1′′
⊕


x1y1

x2y2

1√
2
(x1y2 + x2y1)


3

, (B.2)

 x1

x2


2′′(2)

⊗

 y1

y2


2′′(2′)

=
(
x1y2−x2y1√

2

)
1′
⊕


x2y2

−1√
2
(x1y2 + x2y1)

x1y1


3

, (B.3)


x1

x2

x3


3

⊗


y1

y2

y3


3

= [x1y1 + x2y3 + x3y2]1

⊕ [x3y3 − (x1y2 + x2y1)]1′ ⊕ [(x2y2 − (x1y3 + x3y1)]1′′

⊕


2x1y1 − x2y3 − x3y2)

−2x3y3 − x1y2 − x2y1

−2x2y2 − x1y3 − x3y1


3
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⊕


x2y3 − x3y2

x1y2 − x2y1

x3y1 − x1y3


3

, (B.4)

 x1

x2


2,2′,2′′

⊗


y1

y2

y3


3

=

 −√2x2y2 + x1y1

−
√

2x1y3 − x2y1


2,2′,2′′

⊕

 √
2x2y3 + x1y2

−
√

2x1y1 − x2y2


2′,2′′,2

⊕

 −√2x2y1 + x1y3
√

2x1y2 − x2y3


2′′,2,2′

, (B.5)

(x)1′(1′′) ⊗

 y1

y2


2,2′,2′′

=

 xy1

xy2


2′(2′′),2′′(2),2(2′)

, (B.6)

(x)1′ ⊗


y1

y2

y3


3

=


xy3

xy1

−xy2


3

, (x)1′′ ⊗


y1

y2

y3


3

=


xy2

−xy3

xy1


3

. (B.7)
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Appendix C

Example Mathematica Notebooks

C.1 Symmetry Breaking Notebook

Below is a walk through of the Mathematica notebook used to examine the symmetry

breaking pattern SO(3)→ A4 in Chapter 3. Outputs have been suppressed except in cases

where they are useful for explanation.

We begin by defining the seven dimensional basis representing the 7 of Higgs particles

above the breaking scale:

Basis = Table[a[i], {i, 7}]Basis = Table[a[i], {i, 7}]Basis = Table[a[i], {i, 7}]

Next we define a generic 27 dimensional 3× 3× 3 array.

F = Array[f, {3, 3, 3}]F = Array[f, {3, 3, 3}]F = Array[f, {3, 3, 3}]

We now express this array in terms of the seven dimensional basis defined above. We

constrain the array to be symmetric and traceless and thus only have seven degrees of

freedom it is then SO(3) invariant by construction.

F [[1, 1, 1]] =
(
3
/(

2 ∗ 151/2
))
∗ Basis[[5]]− (1/2)Basis[[1]]F [[1, 1, 1]] =

(
3
/(

2 ∗ 151/2
))
∗ Basis[[5]]− (1/2)Basis[[1]]F [[1, 1, 1]] =

(
3
/(

2 ∗ 151/2
))
∗ Basis[[5]]− (1/2)Basis[[1]]

F [[2, 2, 2]] = (1/2)Basis[[2]] +
(
3
/(

2 ∗ 151/2
))

Basis[[6]]F [[2, 2, 2]] = (1/2)Basis[[2]] +
(
3
/(

2 ∗ 151/2
))

Basis[[6]]F [[2, 2, 2]] = (1/2)Basis[[2]] +
(
3
/(

2 ∗ 151/2
))

Basis[[6]]

F [[3, 3, 3]] =
(
−2
/(

101/2
))

Basis[[7]]F [[3, 3, 3]] =
(
−2
/(

101/2
))

Basis[[7]]F [[3, 3, 3]] =
(
−2
/(

101/2
))

Basis[[7]]

F [[1, 3, 3]] = F [[3, 1, 3]] = F [[3, 3, 1]] =
(
−2√
15
∗ Basis[[5]]

)
∗ 3−1/2F [[1, 3, 3]] = F [[3, 1, 3]] = F [[3, 3, 1]] =

(
−2√
15
∗ Basis[[5]]

)
∗ 3−1/2F [[1, 3, 3]] = F [[3, 1, 3]] = F [[3, 3, 1]] =

(
−2√
15
∗ Basis[[5]]

)
∗ 3−1/2
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F [[2, 3, 3]] = F [[3, 2, 3]] = F [[3, 3, 2]] =
(
−2√
15
∗ Basis[[6]]

)
∗ 3−1/2F [[2, 3, 3]] = F [[3, 2, 3]] = F [[3, 3, 2]] =

(
−2√
15
∗ Basis[[6]]

)
∗ 3−1/2F [[2, 3, 3]] = F [[3, 2, 3]] = F [[3, 3, 2]] =

(
−2√
15
∗ Basis[[6]]

)
∗ 3−1/2

F [[3, 2, 2]] = F [[2, 3, 2]] = F [[2, 2, 3]] =
(√

1
6
Basis[[3]] +

√
1
10

Basis[[7]]
)
∗ 3−1/2F [[3, 2, 2]] = F [[2, 3, 2]] = F [[2, 2, 3]] =

(√
1
6
Basis[[3]] +

√
1
10

Basis[[7]]
)
∗ 3−1/2F [[3, 2, 2]] = F [[2, 3, 2]] = F [[2, 2, 3]] =

(√
1
6
Basis[[3]] +

√
1
10

Basis[[7]]
)
∗ 3−1/2

F [[1, 2, 2]] = F [[2, 1, 2]] = F [[2, 2, 1]] =
(

1
2
√
15

Basis[[5]] + (1/2)Basis[[1]]
)
∗ 3−1/2F [[1, 2, 2]] = F [[2, 1, 2]] = F [[2, 2, 1]] =

(
1

2
√
15

Basis[[5]] + (1/2)Basis[[1]]
)
∗ 3−1/2F [[1, 2, 2]] = F [[2, 1, 2]] = F [[2, 2, 1]] =

(
1

2
√
15

Basis[[5]] + (1/2)Basis[[1]]
)
∗ 3−1/2

F [[2, 1, 1]] = F [[1, 2, 1]] = F [[1, 1, 2]] =
(
−(1/2)Basis[[2]] + 1

2
√
15

Basis[[6]]
)
∗ 3−1/2F [[2, 1, 1]] = F [[1, 2, 1]] = F [[1, 1, 2]] =

(
−(1/2)Basis[[2]] + 1

2
√
15

Basis[[6]]
)
∗ 3−1/2F [[2, 1, 1]] = F [[1, 2, 1]] = F [[1, 1, 2]] =

(
−(1/2)Basis[[2]] + 1

2
√
15

Basis[[6]]
)
∗ 3−1/2

F [[3, 1, 1]] = F [[1, 3, 1]] = F [[1, 1, 3]] =
(
−
√

1
6
Basis[[3]] +

√
1
10

Basis[[7]]
)
∗ 3−1/2F [[3, 1, 1]] = F [[1, 3, 1]] = F [[1, 1, 3]] =

(
−
√

1
6
Basis[[3]] +

√
1
10

Basis[[7]]
)
∗ 3−1/2F [[3, 1, 1]] = F [[1, 3, 1]] = F [[1, 1, 3]] =

(
−
√

1
6
Basis[[3]] +

√
1
10

Basis[[7]]
)
∗ 3−1/2

F [[1, 2, 3]] = F [[1, 3, 2]] = F [[2, 1, 3]] = F [[2, 3, 1]] = F [[3, 1, 2]] = F [[3, 2, 1]]F [[1, 2, 3]] = F [[1, 3, 2]] = F [[2, 1, 3]] = F [[2, 3, 1]] = F [[3, 1, 2]] = F [[3, 2, 1]]F [[1, 2, 3]] = F [[1, 3, 2]] = F [[2, 1, 3]] = F [[2, 3, 1]] = F [[3, 1, 2]] = F [[3, 2, 1]]

=
(
−
√

1
6
Basis[[4]]

)
∗ 6−1/2=

(
−
√

1
6
Basis[[4]]

)
∗ 6−1/2=

(
−
√

1
6
Basis[[4]]

)
∗ 6−1/2

We define the potential as all independent quadratic, cubic, and quartic terms involving

this array. As noted in equation (3.2), the cubic terms vanish upon summation:

V7 = −m2 ∗ Sum[F [[i, j, k]] ∗ F [[i, j, k]], {i, 1, 3}, {j, 1, 3}, {k, 1, 3}]+V7 = −m2 ∗ Sum[F [[i, j, k]] ∗ F [[i, j, k]], {i, 1, 3}, {j, 1, 3}, {k, 1, 3}]+V7 = −m2 ∗ Sum[F [[i, j, k]] ∗ F [[i, j, k]], {i, 1, 3}, {j, 1, 3}, {k, 1, 3}]+

λ ∗ Sum[F [[i, j, k]] ∗ F [[i, j, k]], {i, 1, 3}, {j, 1, 3}, {k, 1, 3}]∗λ ∗ Sum[F [[i, j, k]] ∗ F [[i, j, k]], {i, 1, 3}, {j, 1, 3}, {k, 1, 3}]∗λ ∗ Sum[F [[i, j, k]] ∗ F [[i, j, k]], {i, 1, 3}, {j, 1, 3}, {k, 1, 3}]∗

Sum[F [[l,m, n]] ∗ F [[l,m, n]], {l, 1, 3}, {m, 1, 3}, {n, 1, 3}]+Sum[F [[l,m, n]] ∗ F [[l,m, n]], {l, 1, 3}, {m, 1, 3}, {n, 1, 3}]+Sum[F [[l,m, n]] ∗ F [[l,m, n]], {l, 1, 3}, {m, 1, 3}, {n, 1, 3}]+

κ ∗ Sum[Sum[F [[i, j,m]] ∗ F [[i, j, n]], {i, 1, 3}, {j, 1, 3}]∗κ ∗ Sum[Sum[F [[i, j,m]] ∗ F [[i, j, n]], {i, 1, 3}, {j, 1, 3}]∗κ ∗ Sum[Sum[F [[i, j,m]] ∗ F [[i, j, n]], {i, 1, 3}, {j, 1, 3}]∗

Sum[F [[k, l, n]] ∗ F [[k, l,m]], {k, 1, 3}, {l, 1, 3}], {m, 1, 3}, {n, 1, 3}]Sum[F [[k, l, n]] ∗ F [[k, l,m]], {k, 1, 3}, {l, 1, 3}], {m, 1, 3}, {n, 1, 3}]Sum[F [[k, l, n]] ∗ F [[k, l,m]], {k, 1, 3}, {l, 1, 3}], {m, 1, 3}, {n, 1, 3}]

Next we import matrix representations ofA4 from GAP[21] using the package, Discrete

(NEED CITATION HERE) and select the three dimensional representation:

AppendTo[$Path,NotebookDirectory[]];AppendTo[$Path,NotebookDirectory[]];AppendTo[$Path,NotebookDirectory[]];

Get[“GroupList1̀”]Get[“GroupList1̀”]Get[“GroupList1̀”]

A4 = DiscretèModelBuildingTools̀PrivatèGroup$12134[“RepMatrices”]A4 = DiscretèModelBuildingTools̀PrivatèGroup$12134[“RepMatrices”]A4 = DiscretèModelBuildingTools̀PrivatèGroup$12134[“RepMatrices”]
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A4Triplet = A4[[4]]A4Triplet = A4[[4]]A4Triplet = A4[[4]]

{{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}, {{0, 1, 0}, {0, 0, 1}, {1, 0, 0}}, {{−1, 0, 0}, {0, 1, 0}, {0, 0,−1}},

{{−1, 0, 0}, {0,−1, 0}, {0, 0, 1}}, {{0, 0, 1}, {1, 0, 0}, {0, 1, 0}}, {{0, 1, 0}, {0, 0,−1}, {−1, 0, 0}},

{{0,−1, 0}, {0, 0, 1}, {−1, 0, 0}}, {{1, 0, 0}, {0,−1, 0}, {0, 0,−1}}, {{0, 0,−1}, {−1, 0, 0}, {0, 1, 0}},

{{0, 0, 1}, {−1, 0, 0}, {0,−1, 0}}, {{0,−1, 0}, {0, 0,−1}, {1, 0, 0}}, {{0, 0,−1}, {1, 0, 0}, {0,−1, 0}}}

We now use the triplet representation in the Reynolds operator: The first step is to apply

all group transformations to a generic vector (x, y, z):

reynolds = Table[A4Triplet[[i]].{x, y, z}, {i, 12}]reynolds = Table[A4Triplet[[i]].{x, y, z}, {i, 12}]reynolds = Table[A4Triplet[[i]].{x, y, z}, {i, 12}]

{{x, y, z}, {y, z, x}, {−x, y,−z}, {−x,−y, z}, {z, x, y}, {y,−z,−x},

{−y, z,−x}, {x,−y,−z}, {−z,−x, y}, {z,−x,−y}, {−y,−z, x}, {−z, x,−y}}

Now we sum the output of a trial function (We have chosen x1y1z1) over the above list.

Sum [reynolds[[i, {1}]]1 ∗ reynolds[[i, {2}]]1 ∗ reynolds[[i, {3}]]1, {i, 12}]/ 12//ExpandSum [reynolds[[i, {1}]]1 ∗ reynolds[[i, {2}]]1 ∗ reynolds[[i, {3}]]1, {i, 12}]/ 12//ExpandSum [reynolds[[i, {1}]]1 ∗ reynolds[[i, {2}]]1 ∗ reynolds[[i, {3}]]1, {i, 12}]/ 12//Expand

{xyz}

We see that the Reynolds operator has returned xyz as the invariant polynomial. Next

we define a vector of first derivatives of the potential:

OneD = D [V7, {{a[1], a[2], a[3], a[4], a[5], a[6], a[7]}}]OneD = D [V7, {{a[1], a[2], a[3], a[4], a[5], a[6], a[7]}}]OneD = D [V7, {{a[1], a[2], a[3], a[4], a[5], a[6], a[7]}}]

To restrict the minimum, we impose the A4 invariant vacuum alignment found from

the Reynolds operator (note that in section 3.3.1.1) the nonzero basis state was a[7] but we

have defined it here as a[4] due to how we set up the invariant tensor above):

VEV = OneD/.{a[1]→ 0, a[2]→ 0, a[3]→ 0, a[4]→ a[4], a[5]→ 0, a[6]→ 0, a[7]→ 0}VEV = OneD/.{a[1]→ 0, a[2]→ 0, a[3]→ 0, a[4]→ a[4], a[5]→ 0, a[6]→ 0, a[7]→ 0}VEV = OneD/.{a[1]→ 0, a[2]→ 0, a[3]→ 0, a[4]→ a[4], a[5]→ 0, a[6]→ 0, a[7]→ 0}{
0, 0, 0,−1

3
m2a[4] + 1

27
κa[4]3 + 1

9
λa[4]3, 0, 0, 0

}
Setting all components of the vector equal to zero and solving for a[4] gives us an

expression for the breaking scale (the physical value is the positive solution):
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Solve[VEV[[4]] == 0, a[4]]Solve[VEV[[4]] == 0, a[4]]Solve[VEV[[4]] == 0, a[4]]{
{a[4]→ 0},

{
a[4]→ − 3m√

κ+3λ

}
,
{
a[4]→ 3m√

κ+3λ

}}

Finally, we determine the masses of the scalars below the breaking scale. We first define

the matrix of second derivatives:

Hess = D [V7, {{a[1], a[2], a[3], a[4], a[5], a[6], a[7]}, 2}]Hess = D [V7, {{a[1], a[2], a[3], a[4], a[5], a[6], a[7]}, 2}]Hess = D [V7, {{a[1], a[2], a[3], a[4], a[5], a[6], a[7]}, 2}]

Then we impose the minimization condition derived above:

VEV2 = Hess/.
{
a[1]→ 0, a[2]→ 0, a[3]→ 0, a[4]→ 3m√

κ+3λ
, a[5]→ 0, a[6]→ 0, a[7]→ 0

}
VEV2 = Hess/.

{
a[1]→ 0, a[2]→ 0, a[3]→ 0, a[4]→ 3m√

κ+3λ
, a[5]→ 0, a[6]→ 0, a[7]→ 0

}
VEV2 = Hess/.

{
a[1]→ 0, a[2]→ 0, a[3]→ 0, a[4]→ 3m√

κ+3λ
, a[5]→ 0, a[6]→ 0, a[7]→ 0

}

Now we take the eigenvalues of the resulting matrix and tally the mass states:

Eigenvalues[VEV2]//TallyEigenvalues[VEV2]//TallyEigenvalues[VEV2]//Tally{
{0, 3},

{
8m2κ

15(κ+3λ)
, 3
}
,
{

2m2

3
, 1
}}

We are left with three massless scalars (which are eaten by gauge bosons) and a triplet

and singlet of massive Higgs bosons.
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C.2 PMNS Notebook

The following notebook derives an experimentally compatible PMNS matrix from the

model in Chapter 5. We begin by defining the right-handed neutrino mass matrix:

Mn = {{m, 0, 0}, {0, 0,m}, {0,m, 0}}Mn = {{m, 0, 0}, {0, 0,m}, {0,m, 0}}Mn = {{m, 0, 0}, {0, 0,m}, {0,m, 0}}

We then define a function h(x,y,z), (with x,y,z from below Equation (5.12)) that outputs

the PMNS mixing matrix, i.e. the transformation which diagonalizes the Majorana mass

matrix (5.9):

h[x , y , z ]:=h[x , y , z ]:=h[x , y , z ]:=

Apply[Normalize,Apply[Normalize,Apply[Normalize,

{{Eigenvectors[{{0 + z,−2− x,−1− y}, {2− x, 0 + y, 1 + z}, {1− y,−1 + z, 0 + x}}.Inverse[Mn].{{Eigenvectors[{{0 + z,−2− x,−1− y}, {2− x, 0 + y, 1 + z}, {1− y,−1 + z, 0 + x}}.Inverse[Mn].{{Eigenvectors[{{0 + z,−2− x,−1− y}, {2− x, 0 + y, 1 + z}, {1− y,−1 + z, 0 + x}}.Inverse[Mn].

Transpose[{{0 + z,−2− x,−1− y}, {2− x, 0 + y, 1 + z}, {1− y,−1 + z, 0 + x}}]][[3]]},Transpose[{{0 + z,−2− x,−1− y}, {2− x, 0 + y, 1 + z}, {1− y,−1 + z, 0 + x}}]][[3]]},Transpose[{{0 + z,−2− x,−1− y}, {2− x, 0 + y, 1 + z}, {1− y,−1 + z, 0 + x}}]][[3]]},

{Eigenvectors[{{0 + z,−2− x,−1− y}, {2− x, 0 + y, 1 + z}, {1− y,−1 + z, 0 + x}}.Inverse[Mn].{Eigenvectors[{{0 + z,−2− x,−1− y}, {2− x, 0 + y, 1 + z}, {1− y,−1 + z, 0 + x}}.Inverse[Mn].{Eigenvectors[{{0 + z,−2− x,−1− y}, {2− x, 0 + y, 1 + z}, {1− y,−1 + z, 0 + x}}.Inverse[Mn].

Transpose[{{0 + z,−2− x,−1− y}, {2− x, 0 + y, 1 + z}, {1− y,−1 + z, 0 + x}}]][[2]]},Transpose[{{0 + z,−2− x,−1− y}, {2− x, 0 + y, 1 + z}, {1− y,−1 + z, 0 + x}}]][[2]]},Transpose[{{0 + z,−2− x,−1− y}, {2− x, 0 + y, 1 + z}, {1− y,−1 + z, 0 + x}}]][[2]]},

−{Eigenvectors[{{0 + z,−2− x,−1− y}, {2− x, 0 + y, 1 + z}, {1− y,−1 + z, 0 + x}}.Inverse[Mn].−{Eigenvectors[{{0 + z,−2− x,−1− y}, {2− x, 0 + y, 1 + z}, {1− y,−1 + z, 0 + x}}.Inverse[Mn].−{Eigenvectors[{{0 + z,−2− x,−1− y}, {2− x, 0 + y, 1 + z}, {1− y,−1 + z, 0 + x}}.Inverse[Mn].

Transpose[{{0 + z,−2− x,−1− y}, {2− x, 0 + y, 1 + z}, {1− y,−1 + z, 0 + x}}]][[1]]}}, {1}]Transpose[{{0 + z,−2− x,−1− y}, {2− x, 0 + y, 1 + z}, {1− y,−1 + z, 0 + x}}]][[1]]}}, {1}]Transpose[{{0 + z,−2− x,−1− y}, {2− x, 0 + y, 1 + z}, {1− y,−1 + z, 0 + x}}]][[1]]}}, {1}]

We check that with no additional scalar singlets, this function returns the tri-bi-maximal

mixing matrix:

h[0, 0, 0]h[0, 0, 0]h[0, 0, 0]{{
− 1√

6
,− 1√

6
,
√

2
3

}
,
{

1√
3
, 1√

3
, 1√

3

}
,
{

1√
2
,− 1√

2
, 0
}}

In order to tune the parameters x,y,z we must define the experimental values and one

sigma errors appropriately:

stddeverr = Transpose[{{.237, .205, .139}, {.252, .211, .135}, {.045, .066, .015}}]/6stddeverr = Transpose[{{.237, .205, .139}, {.252, .211, .135}, {.045, .066, .015}}]/6stddeverr = Transpose[{{.237, .205, .139}, {.252, .211, .135}, {.045, .066, .015}}]/6
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Exper = Transpose[{{“0.4025”, “0.5925”, “0.6845”}, {“0.368”, “0.5725”, “0.7065”},Exper = Transpose[{{“0.4025”, “0.5925”, “0.6845”}, {“0.368”, “0.5725”, “0.7065”},Exper = Transpose[{{“0.4025”, “0.5925”, “0.6845”}, {“0.368”, “0.5725”, “0.7065”},

{“0.8215”, “0.549”, “0.1485”}}]{“0.8215”, “0.549”, “0.1485”}}]{“0.8215”, “0.549”, “0.1485”}}]

Next we define two functions. AvgErrors takes a predicted PMNS matrix as input and

outputs the average error of its nine parameters, MaxErrors outputs the error value of the

parameter with the highest error. Both outputs are in units of standard deviations from

experimental value:

AvgErrors[X ]:=Mean[Mean[(Abs[Abs[X]− Exper])/stddeverr]]AvgErrors[X ]:=Mean[Mean[(Abs[Abs[X]− Exper])/stddeverr]]AvgErrors[X ]:=Mean[Mean[(Abs[Abs[X]− Exper])/stddeverr]]

MaxErrors[X ]:=Max[Max[(Abs[Abs[X]− Exper])/stddeverr]]MaxErrors[X ]:=Max[Max[(Abs[Abs[X]− Exper])/stddeverr]]MaxErrors[X ]:=Max[Max[(Abs[Abs[X]− Exper])/stddeverr]]

Next we loop over all values in the parameter space between -1 and 1 with a precision

of .01, appending the max and average error values associated with each set of parameters

to separate lists. Note that this may take a very long time depending on the type of machine

the code is run on:

MaxErrorslist = {};MaxErrorslist = {};MaxErrorslist = {};

count = 0;count = 0;count = 0;

MaxErrorslist =MaxErrorslist =MaxErrorslist =

Flatten[ParallelTable[MaxErrors[h[x, y, z]], {x,−1, 1, .01}, {y,−1, 1, .01}, {z,−1, 1, .01}]]Flatten[ParallelTable[MaxErrors[h[x, y, z]], {x,−1, 1, .01}, {y,−1, 1, .01}, {z,−1, 1, .01}]]Flatten[ParallelTable[MaxErrors[h[x, y, z]], {x,−1, 1, .01}, {y,−1, 1, .01}, {z,−1, 1, .01}]]

ClearSystemCache[]ClearSystemCache[]ClearSystemCache[]

AvgErrorslist = {};AvgErrorslist = {};AvgErrorslist = {};

count = 0;count = 0;count = 0;

AvgErrorslist =AvgErrorslist =AvgErrorslist =

Flatten[ParallelTable[AvgErrors[h[x, y, z]], {x,−1, 1, .01}, {y,−1, 1, .01}, {z,−1, 1, .01}]]Flatten[ParallelTable[AvgErrors[h[x, y, z]], {x,−1, 1, .01}, {y,−1, 1, .01}, {z,−1, 1, .01}]]Flatten[ParallelTable[AvgErrors[h[x, y, z]], {x,−1, 1, .01}, {y,−1, 1, .01}, {z,−1, 1, .01}]]

Additionally we create a list of all possible parameters:

ClearSystemCache[];ClearSystemCache[];ClearSystemCache[];
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Parameterlist = {};Parameterlist = {};Parameterlist = {};

count = 0;count = 0;count = 0;

Parameterlist = Flatten[ParallelTable[{x, y, z}, {x,−1, 1, .01}, {y,−1, 1, .01}, {z,−1, 1, .01}], 2]Parameterlist = Flatten[ParallelTable[{x, y, z}, {x,−1, 1, .01}, {y,−1, 1, .01}, {z,−1, 1, .01}], 2]Parameterlist = Flatten[ParallelTable[{x, y, z}, {x,−1, 1, .01}, {y,−1, 1, .01}, {z,−1, 1, .01}], 2]

Next we find the positions which give the minimum error value in each list and then

search for them in the parameter list:

Position[MaxErrorslist,Min[MaxErrorslist]]Position[MaxErrorslist,Min[MaxErrorslist]]Position[MaxErrorslist,Min[MaxErrorslist]]

{{3016267}}

Position[AvgErrorslist,Min[AvgErrorslist]]Position[AvgErrorslist,Min[AvgErrorslist]]Position[AvgErrorslist,Min[AvgErrorslist]]

{{2975861}}

Parameterlist[[3016267]]Parameterlist[[3016267]]Parameterlist[[3016267]]

{−0.26, 0.32,−0.4}

Parameterlist[[2975861]]Parameterlist[[2975861]]Parameterlist[[2975861]]

{−0.27, 0.32,−0.45}

We see that the values (x,y,z)=(-0.26,0.32,-0.4) minimize the max error and

(x,y,z)=(-0.27,0.32,-0.45) minimize the average error.

Finally we show how to create the contour plots (5.1), (5.2) ] that display the maximum

and average error values as a function of parameter space:

ContourPlot[MaxErrors[h[x, .32, z]], {x,−1, 0}, {z,−1, 0},FrameLabel→ {x′, z′},ContourPlot[MaxErrors[h[x, .32, z]], {x,−1, 0}, {z,−1, 0},FrameLabel→ {x′, z′},ContourPlot[MaxErrors[h[x, .32, z]], {x,−1, 0}, {z,−1, 0},FrameLabel→ {x′, z′},

PlotLegends→ Automatic,Contours→ {1, 2, 3, 4, 5},PlotLegends→ Automatic,Contours→ {1, 2, 3, 4, 5},PlotLegends→ Automatic,Contours→ {1, 2, 3, 4, 5},

FrameTicks→ {Table[i, {i,−1, 1, .1}],Table[j, {j,−1, 1, .1}]},PlotLabel→ “Max Errors”,FrameTicks→ {Table[i, {i,−1, 1, .1}],Table[j, {j,−1, 1, .1}]},PlotLabel→ “Max Errors”,FrameTicks→ {Table[i, {i,−1, 1, .1}],Table[j, {j,−1, 1, .1}]},PlotLabel→ “Max Errors”,
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ContourShading→ {White,Yellow,Orange,Red,Purple,Blue}]ContourShading→ {White,Yellow,Orange,Red,Purple,Blue}]ContourShading→ {White,Yellow,Orange,Red,Purple,Blue}]

ContourPlot[AvgErrors[h[x, .32, z]], {x,−1, 0}, {z,−1, 0},FrameLabel→ {x′, z′},ContourPlot[AvgErrors[h[x, .32, z]], {x,−1, 0}, {z,−1, 0},FrameLabel→ {x′, z′},ContourPlot[AvgErrors[h[x, .32, z]], {x,−1, 0}, {z,−1, 0},FrameLabel→ {x′, z′},

PlotLegends→ Automatic,Contours→ {1, 2, 3, 4, 5},PlotLegends→ Automatic,Contours→ {1, 2, 3, 4, 5},PlotLegends→ Automatic,Contours→ {1, 2, 3, 4, 5},

FrameTicks→ {Table[i, {i,−1, 1, .1}],Table[j, {j,−1, 1, .1}]},PlotLabel→ “Average Errors”,FrameTicks→ {Table[i, {i,−1, 1, .1}],Table[j, {j,−1, 1, .1}]},PlotLabel→ “Average Errors”,FrameTicks→ {Table[i, {i,−1, 1, .1}],Table[j, {j,−1, 1, .1}]},PlotLabel→ “Average Errors”,

ContourShading→ {White,Yellow,Orange,Red,Purple,Blue}]ContourShading→ {White,Yellow,Orange,Red,Purple,Blue}]ContourShading→ {White,Yellow,Orange,Red,Purple,Blue}]
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