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Chapter 1: Overview

1.1: Abstract

Monitoring quality metrics continuously in breast cancer care can help healthcare
providers and organizations engage with patients, advance the delivery of care, and tackle
financial challenges. In this work, we develop the Pathfinder method to identify treatment
event patterns that relate to quality metrics in breast cancer clinical data. We used manually
curated cancer registry data and administrative data to evaluate our method and compare the
data sources. We aim to demonstrate that we can effectively track quality metrics by
abstracting raw data to the proper level of granularity.

We developed the Pathfinder method that consists of six subtasks: data extraction, data
standardization, vertical abstraction, horizontal abstraction, quality metric querying, and quality
metric generation. We used cancer registry treatment event and administrative CPT data from
Vanderbilt University Medical Center from 2000-2012. We characterized the data sources,
assessed the abstraction process, and measured the quality of the CPT codes. We then used the
data to evaluate three quality metrics: rate of re-excision after initial breast conserving surgery,
radiation therapy after breast conserving surgery, and chemotherapy usage in early stage
disease. Finally, we used an event sequence mining method to identify common treatment
event patterns to characterize and compare our data sources.

Cancer registry and CPT data for 2679 breast cancer patients were used in our study.
The application of our variable abstraction process produced an approximately 12-fold
reduction in the number of unique treatment event sequences from the raw sequence to most
abstracted state. The quality metrics developed from the cancer registry data matched

expected national rates. The CPT data was often aligned with the curated cancer registry



events, but did show gaps with 37% of patients missing at least one CPT code. Despite this, the
CPT data still produced similar surgical quality metrics to the cancer registry data. The CPT and
cancer registry data did occasionally have different rates of frequent event patterns occurring in
the patient population.

This work demonstrates how our temporal abstraction method can enable us to
transform raw clinical data to the level of abstraction necessary to generate the desired quality
metric. We were able to measure a set of quality metrics over a 12-year period with both
manually curated cancer registry data and administrative CPT data that matched expected
national rates. Despite this, near real-time metrics are difficult to achieve given the manual
nature of cancer registry curation and the high frequency of missing CPT data from care
delivered outside the organization. Future work is needed to develop data driven methods that
fit the abstraction framework and can utilize clinical data that is generated during the course of
care. This work can help healthcare providers, organizations, and patients make better

healthcare decisions and assess performance.

1.2: Chapter Summary

The focus of Chapter 2 is aimed at describing how clinical quality metrics can help
healthcare overcome its many challenges, specifically in breast cancer care. Section 2.1 reviews
how continuous quality measurement is important in helping healthcare tackle its financial
challenges, keep up with new advancements, and reduce unnecessary variability. Section 2.2
describes the large footprint of cancer care in the healthcare system and the efforts that have
been made to monitor the quality of care. Section 2.3 specifically discusses how increased

awareness of breast cancer has led to increased efforts to monitor the quality of care. Finally,



section 2.4 describes the challenges of achieving near real time quality metrics and the
opportunities of using electronic medical record data to accomplish it.

Chapter 3 focuses on the methods that have been used to track longitudinal clinical care
patterns. Section 3.1 reviews the importance of identifying care patterns for continuous quality
monitoring. Section 3.2 reviews prior methods used in identifying care patterns in clinical data
including temporal abstraction, data visualization, and event sequence mining. Section 3.3
focuses on reviewing the general components of a temporal abstraction system. Finally, section
3.4 discusses the hypothesis and aim of this study to track quality metrics using components of a
temporal abstraction framework.

Chapter 4 describes our Pathfinder methodology for generating quality metrics using
general temporal abstraction components. Section 4.1 describes where the clinical data used in
this study comes from and how it is stored. Section 4.2 provides an overview of the six subtasks
of the Pathfinder method. Section 4.3 focuses on the extraction and representation of the
clinical data. Section 4.4 describes how quality metrics are generated from cancer registry
treatment event data. Section 4.5 describes how administrative data quality will be assessed
and how quality metrics will be generated using administrative data.

Chapter 5 presents the results of the Pathfinder methodology. Section 5.1 focuses on
characterizing the data that is extracted for our patient cohort. Section 5.2 describes the
distribution of treatment event sequences resulting from the temporal abstraction subtasks.
Section 5.3 presents the resulting quality metrics developed from the cancer registry data.
Section 5.4 describes the quality of the surgical CPT codes by comparing them with the cancer
registry data. Finally, section 5.5 describes the quality metrics developed from CPT data and

compares it to that of the cancer registry data.



Chapter 6 discusses the conclusions that have resulted from this work and the next
steps. Section 6.1 reviews this work’s contributions to the informatics domain and the related

limitations and future directions. Section 6.2 the same for the clinical domain.



Chapter 2: Role of Quality Metrics in Breast Cancer Care

High levels of healthcare spending along with a lack of high quality patient care have
driven interest towards the delivery of high value care. The rapidly shifting healthcare
landscape along with the variability of clinical care has made it challenging to track clinical
quality, especially in near-real time (Section 2.1). This need is especially apparent in the care of
cancer, a high mortality and high cost disease. Registries have focused on tracking cancer cases
through manual reporting and a number of cancer organizations have developed quality
standards. This emphasis on cancer care has driven research and clinical trials that have led to
many new diagnostics and therapeutics (Section 2.2). There have been visible efforts to
increase research and improve care for breast cancer, leading to an increase in the number of
accreditation organizations tracking screening, diagnosis, treatment, and surveillance via quality
metrics (Section 2.3). Measuring quality metrics has been challenging for healthcare
organizations due to the irregular nature of clinical data and the differences in the level of
abstraction of concepts between the data and the quality metrics. Electronic medical record
(EMR) data along with new algorithms and visualizations can enable the near-real time tracking

of clinical quality not only for quality reporting but also for daily care improvement (Section 2.4).

2.1: Imperative for Tracking Clinical Quality Metrics

High levels of healthcare spending in the United States persist without demonstrating a
commensurate return on investment. Health care spending in 2011 was $2.7 trillion and
accounted for 17.9% of gross domestic product (GDP) as well as 15.7% of US workforce (Moses
et al., 2013). Much of the increase in healthcare spending is due to Medicare (and other federal

healthcare spending) that consumed 20% of federal expenditures in 2009 and is a major driver



of structural federal deficits (Chernew, Baicker, & Hsu, 2010; Fuchs, 2013; Moses et al., 2013).
This level of monetary and human capital investment in healthcare is not reflected in the quality
of care delivery. While awareness has improved since two landmark Institute of Medicine (IOM)
reports (“Crossing the Quality Chasm: A New Health System for the 21st Century,” 2001; IOM,
2000) and excellence has been shown for a few quality metrics, the US has been unable to scale
significant improvement across the spectrum of healthcare delivery (Chassin & Loeb, 2011;
McGlynn et al., 2003). There has been increased focus on improving the value in the healthcare
sector instead of the volume of services delivered. Value in healthcare should be centered on
the efficiency in generating outcomes for a patient’s health status, process of recovery, and
sustainability of the achieved health (Porter, 2010). New payment models such as bundled
payments and accountable care organizations (ACO) are being leveraged to shift incentive
structures from services delivered to outcomes achieved (C. Chen & Ackerly, 2014; Cutler &
Ghosh, 2012; Schneider, Hussey, & Schnyer, 2011; Shrank, 2013). In order to monitor our
shifting healthcare landscape and understand the value of delivered care, it is vital to track
important indicators of clinical quality in near real-time.

As best practices in healthcare continue to evolve and advance, it is also important to
track the impact of new clinical knowledge. There have been significant advances in the
development of new diagnostics and therapeutics (Collins, 2011), advancement of genomic
medicine (Hamburg & Collins, 2010), and use of patient-generated data to personalize care (M.
Swan, 2012). In addition, clinical trial research systems are being developed to allow scientists
to generate knowledge at a more rapid pace by lowering barriers to data collection and
dissemination (Etheredge, 2014). However, studies have demonstrated a significant lag
between clinical discovery and widespread implementation in practice (L. W. Green, Ottoson,

Garcia, & Hiatt, 2009; Morris, Wooding, & Grant, 2011). Not only do we need to enhance the



diffusion of new clinical knowledge, but we must also be able to quickly determine the outcome
and value of new interventions. New tools to track progress in near real-time will be necessary
to achieve that goal (Etheredge, 2007, 2014).

Unnecessary variability in clinical care also plays a major role in the quality and value of
clinical care. Variability that stems from poor care processes, improper usage of health IT
systems, or divergence from clear guidelines should be curtailed; institutional efforts to
understand and rectify these issues have been shown to improve the quality and efficiency of
care (Ancker et al., 2014; James & Savitz, 2011). However, it is still important to allow for
flexibility from standardized clinical guidelines to enable patient choice, socioeconomic
considerations, and clinical complexity. In assessing clinical quality, utilization of shared decision
making between patients and providers should be viewed as a positive, even if the patient
makes a choice that deviates from the standard path (Oshima Lee & Emanuel, 2013; Quill &
Holloway, 2012). Additionally, in cases where patients have multiple comorbid conditions,
providers must be empowered to focus on the patient as a whole rather than apply multiple
clinical guidelines (Boyd et al., 2005; Tinetti, Fried, & Boyd, 2012). While many have
concentrated on the role of geography in the variability of patient care, efforts to reform clinical
decision making should still be targeted at where decisions are made: healthcare providers,
organizations, and networks (Newhouse et al.,, 2013). Given both the necessary and
unnecessary variability in healthcare, it is important to understand clinical quality metrics from
the perspective of the individual patient case.

Near real-time tracking of the quality of care will be an essential component of efforts to
improve the value of healthcare by following best-practice and removing unnecessary variability
from the system. Quality metrics that measure the performance and value of care are valuable

for all stakeholders, including patients, providers, administrators, scientists, entrepreneurs, and



policy makers. Continuous measurement of health care quality and efficiency provides a real
opportunity to make rapid improvements and adjustments in health care delivery (Chassin,
Loeb, Schmaltz, & Wachter, 2010; A. Higgins, Veselovskiy, & McKown, 2013; Shrank, 2013). As
more quality metrics are developed, it will be important to guard against misrepresentation of
metrics, while still enabling flexibility for different measurements in various situations that hold
value for the end user (Haut & Pronovost, 2011; A. Higgins et al., 2013; Meyer et al., 2012;
Shahian, Wolf, lezzoni, Kirle, & Normand, 2010). In addition, it will be important to factor how
payment models affect the billing process and understand biases in administrative data sets
(Farmer, Black, & Bonow, 2013). Research on clinical quality metrics is necessary to help all
stakeholders make the best possible decisions in a rapidly changing healthcare environment and

drive continuous quality improvement.

2.2: Importance of Quality Metrics in Cancer Care

Cancer is a highly prevalent set of diseases in which improperly regulated cells divide
and spread. In 2014, there will be an estimated 1.6 million new cancer cases and approximately
0.5 million cancer related deaths in the US (Siegel, Ma, Zou, & Jemal, 2014). Cancer is now the
leading cause of death for men and women between 40 and 79 years of age (Siegel et al., 2014).
As of 2012, there were approximately 13.7 million cancer survivors living in the US and this is
expected to increase to 18 million by 2022 (de Moor et al., 2013). Given the high prevalence,
growing number of survivors, and intensive course of diagnostics and therapeutics, cancer care
is costly and comprises 5% of US health care costs and 10% of Medicare expenditures (Stockdale
& Guillory, 2013; Sullivan et al., 2011). In addition, costs are expected to increase by 27% from
$124 billion in 2010 to $155 billion in 2020 (Mariotto, Yabroff, Shao, Feuer, & Brown, 2011).

Medicare beneficiaries make up 54% of all new cancer cases (Stockdale & Guillory, 2013), and



with the aging US population, cancer costs will continue to be an important part of healthcare
and fiscal policy.

A significant effort to record cases of cancer began with the National Cancer Act of 1971
and the establishment of the Surveillance, Epidemiology, and End Results Program at the
National Cancer Institute (SEER at NCI). SEER collects data on cancer cases from select states
and metropolitan areas. To expand the collection of data, the National Program of Cancer
Registries (NPCR) overseen by the Center for Disease Control (CDC) was established through the
Cancer Registries Amendment Act of 1992 to expand statewide cancer registry programs. While
the development of the registries has led to significant epidemiological research, the curation of
the data has been resource-intensive. There has been significant effort to develop and comply
with data standards developed by SEER and the North American Association of Central Cancer
Registries (NAACCR) (J. Swan et al., 1998; Wingo et al.,, 2003). The curation effort by cancer
centers requires a staff of full time employees (FTE) to review and code a clinical case at an
estimated pace of 5 cases per day per FTE (Kolender, 2009). In addition, central state cancer
registries which collect case data and report on their statistics to state and federal agencies
require an estimated 12.4 FTEs and an annual budget of $1 million (Chapman, Mulvihill, &
Herrera, 2012; Tangka, Subramanian, Beebe, Trebino, & Michaud, 2010). Statistics derived from
cancer registries have enabled stakeholders in healthcare to monitor the incidence of new

cases, outcomes of patients, and identify opportunities for improvement.

Given the significant impact cancer care has on healthcare delivery and federal budgets,
there has recently been a significant focus on the quality of cancer care. In the 1980s, many
cancer centers worked to exempt themselves from the Medicare quality reporting efforts citing
the complexity of cancer care. In 1999, significant quality improvement efforts in cancer care

began with the landmark IOM publication Ensuring Quality Cancer Care (Hewitt & Simone,



1999), which defined ten cancer-specific quality recommendations. The IOM reports To Err is
Human (Kohn, Corrigan, & Molla, 2000) and Crossing the Quality Chasm (“Crossing the Quality
Chasm: A New Health System for the 21st Century,” 2001) only added to this push. While the
original exemptions led to a delay in the development of cancer-specific quality measures, the
awareness generated by the IOM reports and new quality reporting standards have led to the
ongoing effort to develop quality metrics (Spinks et al., 2011). A number of national
organizations such as the National Comprehensive Cancer Network (NCCN), American Cancer
Society (ACS), American Society of Clinical Oncology (ASCO), Quality Oncology Practice Initiative
(QOPI), Commission on Cancer of the American College of Surgeons (CoC), College of American
Pathologists (CAP), and American College of Radiology (ACR) are dedicated to quality
improvement in cancer care by developing best-practice guidelines, engaging patients, and
aggregating data for research (Winchester, Stewart, Phillips, & Ward, 2010). There have also
been efforts by policymakers to derive more value from care by adjusting the incentive
structures and developing new guidelines (Newcomer, 2012; Smith & Hillner, 2011). However,
when done without engaging other stakeholders, value-driven changes can have unintended
consequences (Jacobson, Earle, Price, & Newhouse, 2010). The recent efforts to generate
cancer specific quality measures, guidelines, and patient engagement will enable the push
towards high quality and value driven care.

While under the spotlight, advances in cancer research are making a positive impact on
diagnostics, therapeutics, and clinical workflows. Approximately 20,000 cancer patients are
enrolled in clinical trials each year by 14,000 investigators at more than 2,100 institutions and
efforts are being made to streamline this process (Nass, Patlak, & Forum, 2013). In addition,
there is a growing trend to expand the use of large simple and other pragmatic trials that focus

on learning from real world care (Grossmann, Sanders, & English, 2013). Many of these trials,
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spurred by whole genome and other next generation sequencing methods, are enabling
scientists to understand the alterations that define cancer genomes (Meyerson, Gabriel, & Getz,
2010). This work is leading to progress in the use of genomic testing for cancer diagnostics
(Meldrum, Doyle, & Tothill, 2011). In addition, this research has enabled the development of
numerous FDA approved drugs that are targeted against specific molecular mechanisms instead
of being cytotoxic to all cells (Vanneman & Dranoff, 2012). There have also been advances in
the study of nanomaterials which could lead to advances in imaging and therapeutics (Barreto et
al.,, 2011). New knowledge is being developed at such a rapid pace, that it will require near real-
time quality metrics to evaluate the impact of the shifting cancer care landscape.

Traditional quality metrics have aimed to measure adherence to standard guideline
based care. With new research on personalized diagnostics and therapeutics in addition to a
greater role for patients in a shared decision making model, guidelines will become more
complex. The clinical community will need robust quality metrics to represent the complexity of

care while still promoting high quality, high value care.

2.3: Importance of Quality Metrics in Breast Cancer Care

Breast cancer is the most common cancer among women in the United States with an
estimated 232,670 new cases diagnosed and 40,000 breast cancer related deaths in 2014.
Women in the United States have a 12.3% lifetime risk of developing breast cancer, but benefit
from a very high median 5-year survival rate of 89.2% (Siegel et al., 2014). Breast cancer
accounts for 14% of all cancer cases in the US, and 13.2% of total cancer costs. With the
increasing number of survivors, including 3.46 million women in 2010, and an aging population,

the estimated 2010 cost of $16.5 billion is expected to increase 24% over the following decade
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(Mariotto et al., 2011). Breast cancer will continue to be one of the primary areas of care

delivery, especially as the number of survivors continues to grow.

With the large population affected by breast cancer, efforts to promote awareness of
the disease and fund research have grown. Despite the awareness raised by the “War on
Cancer” by the National Cancer Act of 1971, breast cancer was still a very private disease
through the 1970s and into the 1980s. From the founding of the Susan G. Komen foundation in
1982 through the National Breast Cancer Coalition in 1991, organizations and many individuals
have raised awareness for the stories and issues faced by patients and their families. These
organizations have led efforts to increase public and private investment in research, leading to
federal research funding increasing from $81 million to more than $400 million in the 1990s. In
addition, advocates have pushed for quality standards in clinical care, resulting in measures such
as the Mammography Quality Standards Act in 1994. Finally, the numerous corporate
partnerships that have been developed demonstrate how breast cancer advocacy has become
mainstream (Braun, 2003; King, 2001; Sharf, 2001). This effort to raise awareness has led to
significant research investment and focus on clinical quality.

With strong research efforts in breast cancer combined with a high level of patient
engagement, knowledge of best practices is rapidly changing. Continuing advances in
sequencing cancer genomes and understanding molecular pathways have enabled new
diagnostics and therapeutics, with breast cancer tumors having been shown to have a median of
33 nonsynonymous mutations per tumor (E. D. Green & Guyer, 2011; Olopade, Grushko, Nanda,
& Huo, 2008; Vogelstein et al., 2013). Advances have impacted diagnostics with commercial
tests that range from detecting a single nucleotide variant (SNV) to full multiplex tests that
utilize next generation sequencing methods to identify all major forms of gene alterations (C.L.,

Berger, & Pao, 2014; Domchek, Bradbury, Garber, Offit, & Robson, 2013). In addition, targeted
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therapies are utilizing new knowledge to affect genetic alterations and signaling pathways with,
for example, 10 FDA approved targeted therapies for breast cancer and 51 current NCI-
sponsored clinical trials for breast cancer involving a targeted therapy (“Clinical Trials Search
Results - National Cancer Institute,” n.d., “Targeted Therapies for Breast Cancer Tutorial -
National Cancer Institute,” n.d.; Cortazar et al., 2012; M. J. Higgins & Baselga, 2011). In addition
to genomic data, patient generated health data has the potential to inform clinical decision-
making. As more breast cancer patients use mobile devices and become engaged with their
care on digital platforms, patient generated data has the potential to inform the clinical
decisions of the patient and their providers (Howie, Hirsch, Locklear, & Abernethy, 2014).
Genomic and patient generated data have the potential to add to the body of knowledge
around breast cancer, and continuous evaluation of quality metrics will be necessary to track
changes in clinical practice.

With advances in breast cancer research and the trend towards shared decision-making,
there is growing tension between personalized and pathway driven care. Evidence behind the
NCCN guidelines has shown that only 6% of the guidelines are based off category | evidence,
such as randomized controlled trials (RCTs). In breast cancer, staging guidelines have 100% of
the content based on level IIA evidence (lower level evidence with consensus); initial therapy
guidelines have 42% of content based on level I, 42% on level IIA, 11% on level IIB (lower level
evidence without uniform consensus but no major disagreement), and 5% on level Il evidence
(major disagreements); salvage therapy guidelines have 100% of the content based on level IIA
evidence; surveillance guidelines have 67% of the content based on level IIA and 33% on level IIB
evidence (Poonacha & Go, 2011). The appropriate level of adherence to guidelines in
comparison to deviation from the pathway in order to personalize care is uncertain given the

varying levels of evidence behind the guideline (R. C. Chen, 2013). As quality reporting becomes
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tied to reimbursement and the value of personalized diagnostics and therapeutics are
determined by payers (Weldon, Trosman, Gradishar, Benson, & Schink, 2012), the strength of
evidence behind guidelines is another important factor to determine the balance between
pathway-based and personalized care.

The initial diagnosis, staging, and tissue biomarker analysis of breast cancer is an
important process in determining subsequent therapy. A suspected case of breast cancer is
typically evaluated through breast imaging studies such as mammography, followed by a biopsy
of the suspicious tissue which confirms the diagnosis (Smart, Hartmann, Beahrs, & Garfinkel,
1993). Clinical and pathologic tumor staging evaluates the tumor size, the lymph node status,
and metastasis (TNM) using the American Joint Committee on Cancer (AJCC) (SB, DR, & CC,
2010) staging system. Histopathology represents the tumor cell origin while the grade
represents the irregularity of the cancer cells. Standard tissue biomarker analysis includes
evaluation of estrogen receptor (ER) expression, progesterone receptor (PR) expression, and
human epidermal growth factor receptor 2 (HER2) expression or amplification. Receptor status
informs both prognosis and opportunities for targeted therapies (Foulkes, Smith, & Reis-Filho,
2010).

Breast cancer has three primary modes of treatment that are administered based on the
stage, tumor biology, and patient’s preferences. In the curative setting (stages I-lll), surgery is
used to excise the tumor and regional lymph nodes. Surgical options include breast conserving
surgery or mastectomy with or without reconstruction. Radiation therapy is used as an adjuvant
therapy to surgery to provide local control at the tumor site through use of ionizing radiation to
damage of tumor. Systemic drug therapy treats both the breast and the rest of the body. There
are three types of systemic therapy used to treat breast cancer: chemotherapy, hormone

therapy for hormone receptor positive disease, and anti-HER2 therapy for HER2 positive

14



disease. The choice and sequencing of these complex multi-modal treatments depends upon
both tumor and patient features.

Since the 1970’s, the number of breast cancer centers delivering complex care has
increased. In order to externally validate the quality of these centers, accreditation bodies have
been instituted that enable breast centers to voluntarily participate in trusted quality assurance
programs. External accreditation began with the Joint Commission on Accreditation of
Healthcare Organizations (JCAHO) in 1951 and a number of cancer-specific accreditation bodies
have been instituted since three major IOM reports were released in 1999-2001 (Edge, 2013).
Breast cancer specific accreditation programs include the National Accreditation Program for
Breast Centers (NAPBC) and the National Quality Measures for Breast Centers (NQMBC). Many
professional organizations also have breast cancer quality components as part of their
accreditation including The Quality Oncology Practice Initiative (QOPI), National Quality Forum
(NQF) Breast Quality Measures, the College of American Pathology (CAP), the American College
of Radiology (ACR), and the Commission on Cancer (CoC). The most common method of
accreditation among these organizations is through quality reporting. Complying with the
quality audits is costly and time consuming, with overall hospital accreditation and licensure
costs are estimated to be $8.6 billion annually (Conover, 2012). Because of the high costs, the
quality reporting is periodic and not continuous which limits its value. In addition, there are
mixed results in analyzing the success that accreditation programs have on improving the quality
of care (Greenfield & Braithwaite, 2008; Merkow, Chung, Paruch, Bentrem, & Bilimoria, 2014).
The growth of accreditation for cancer care has increased the pressure on cancer centers to
track quality and on the accreditation programs to demonstrate their value in improving care.

Quality metrics play a major role in assessing quality for accrediting organizations and

for new quality and population-oriented payment models. Three major categories of quality
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metrics include clinical metrics that assess the quality of clinical decision-making, process
metrics that measures the operational execution of a clinical decision, and outcome metrics that
evaluates the clinical outcome for the patient. An analysis of breast cancer specific quality
metrics from the NQMBC, NAPBC, NQF, and QOPI revealed 71 unique quality metrics, some of
which are overlapping across organizations. Of these metrics, 38 are clinical metrics, 30 are
process metrics, and 3 are outcome metrics. Of the 71 metrics, 26 involved temporal features
for the patterns of care. In this study, we chose to focus on clinical metrics that involved
patterns of care. These metrics assess the patterns of care with regard to systemic therapy,
surgery, and radiation therapy usage. Quality metrics are a vital component for improving the
quality of breast cancer patients.

In this project, we study the following breast cancer quality metrics: 1) the rate of
mastectomy vs. breast conserving surgery as the first surgical event; 2) the rate of re-excision
after breast conserving surgery; 3) the rate of radiation therapy after breast conserving surgery;
and 4/5) the rate of pre-operative or post-operative chemotherapy usage (Figure 1). The rate of
breast conserving surgery compared to mastectomy as the first surgical event provides a
window into the downstream effects based on the potential resulting treatment paths. Re-
excision of cancerous tissue occurs after a breast conserving surgery results in inadequate
surgical margins, and can lead to psychological, physical, and economic stress for patients.
Furthermore, it can delay adjuvant therapies and even lead to the need for full mastectomy. As
a result, the re-excision rate after a breast conserving surgery has been an important indicator
of surgical quality (McCahill et al., 2012). Radiation therapy can reduce local recurrence rates
when delivered after a breast conserving surgery. As a result, it has been a valuable quality
metric to track the clinical protocols in place at cancer centers (Korah, Sener, & Tripathy, 2012;

Vinh-Hung & Verschraegen, 2004). Finally, we assess two chemotherapy usage quality metrics.
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First, patients with hormone-receptor negative tumors have been shown to respond to neo-
adjuvant chemotherapy, and thus we assess the rates of neo-adjuvant chemotherapy (Carey et
al., 2007; Liedtke et al., 2008; von Minckwitz & Martin, 2012). The second assessment focuses
on provider decision-making in response to the results of the Oncotype DX diagnostic test. The
Oncotype DX test can predict recurrence in lymph node negative, estrogen receptor positive
patients, and thus would affect the decision to administer chemotherapy (Asad et al., 2008;
Dabbs et al., 2011; Flanagan, Dabbs, Brufsky, Beriwal, & Bhargava, 2008). This broad set of
quality metrics will require patient treatment event sequences to be represented in many forms

based on the specific quality metric being calculated.
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Figure 1: Patterns of breast cancer quality metrics

Top: 4 primary modalities of breast cancer therapy - surgery, chemotherapy, hormone
therapy, radiation therapy

Bottom: Represents the quality metrics assessed in this work and a simple example of the
event pattern that encodes the quality metric.
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2.4: Challenges and Opportunities for Quality Metrics in Breast Cancer Care

Generating quality metrics from clinical data is a challenge due to the unstructured and
irregular nature of the content. Curated databases, such as cancer registries, contain manually
structured, standardized data that makes it easier to assess for quality. However, the
maintenance of the data requires significant time and manpower investments. In addition,
cancer registries are often missing important information as they do not include the entire
clinical population due to their inclusion criteria and do not contain all the clinical data due to
the limited reporting requirements. Even with structured clinical data, understanding the
information at the proper level of abstraction is a major challenge. However, data stored in the
registry or medical record is often not at the level of abstraction posed by the quality metric or
clinical question. NAACCR, SEER, the NCI Thesaurus, and others work to meet this challenge by
developing hierarchical ontologies and dictionaries to represent clinical data. Understanding
the abstraction of clinical data is important in representing terms at the proper level on a

hierarchy as well as representing terms that represent a pattern of care over time.

The need for variable and dynamic abstraction is demonstrated by the breast conserving
surgery event which is a part of both the re-excision rate and radiation therapy quality metrics.
First, the “is-a” relationship allows a lumpectomy event to also be represented as a breast

“«

conserving surgery and surgery event. Maintaining this “is-a” hierarchy allows for clinical
concepts to be vertically abstracted to a certain level on the hierarchy depending on the quality
metric being evaluated. Figure 2 represents this vertical abstraction from a subsection of the
NCI Thesaurus. Second, the sequence of surgical events over time also determines how the
event and a patient’s course of care should be classified. For example, if two breast conserving

surgeries occur during the course of care, the second surgery could be understood as a re-

excision event because a second invasive surgery was required. This requires that a sequence of
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events be defined through a set of horizontal abstractions that can represent the temporal
nature of event sequences. Figure 2 demonstrates the set of horizontal abstractions that help
define the consolidation of surgical events into representing either a breast conserving surgery
or mastectomy based on the presence of a mastectomy in the surgical sequence. These vertical
and horizontal abstractions are necessary to organize patient cohorts by treatment event
sequence in order to calculate clinical quality metrics.

Finally, delivering quality metrics to stakeholders effectively in a continuous fashion is a
major challenge. The development of these metrics is only useful if they have a tangible impact
on the quality of care. This will require study of how best to visualize and communicate this
information to providers, patients, and administrators. As cancer providers continue to adopt
electronic medical record (EMR) systems, it may become possible to track clinical care in real
time as information is aggregated digitally. New algorithms will be required that can learn from
data, identify patterns, and abstract the data accordingly. In addition, we will need new ways to
communicate this information to healthcare stakeholders to allow the system to learn from

every clinical encounter.
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Figure 2: Example of vertical and horizontal abstraction for linking clinical data with quality

metrics

Top: Vertical abstraction for the concept Breast Conserving Surgery demonstrates how
concepts can be organized hierarchically using “is-a” relationships.

Bottom: Horizontal abstraction that demonstrates how the interpretation of events can be

determined by the temporal sequence of events.

In this case, the second breast

conserving surgery can be considered a re-excision event while the full set of events is
defined by the resulting mastectomy.
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Chapter 3: Tracking Clinical Care Patterns

Tracking clinical care in near real time requires multiple subtasks to convert raw clinical
data to reportable quality metrics (Section 3.1). Temporal abstraction has the potential to
enable this process as it allows for the representation of clinical data at varying levels of
granularity based on its usage. The use of formal, knowledge-based models to represent
temporal concepts with clinical data began in the 1980s and have since grown. Visualization
methods have allowed clinical experts to identify clinical patterns from the abstracted
information. In addition, event sequence mining methods have helped automate the pattern
identification process (Section 3.2). Temporal abstraction frameworks consist of basic
components which define how to encode the clinical knowledge and the inputs and outputs of
various data transformation subtasks (Section 3.3). This study will aim to utilize vertical and
horizontal abstraction methods to generate clinical quality metrics for breast cancer treatment

by using cancer registry and billing code data (Section 3.4).

3.1: Imperative for Tracking Clinical Care Patterns Over Time

Tracking clinical care metrics in near real-time requires the ability to dynamically
abstract clinical data and identify complex clinical care patterns. Clinical data entered into the
medical record system is often not at the level of vertical abstraction necessary to answer
various clinical questions about quality. Furthermore, clinical data can be missing, unevenly
spaced over time, and unstructured. As a result, methods to identify the optimal set of
abstractions for clinical data elements are vital for generating clinical quality metrics.
Additionally, many quality metrics require an understanding of the patient’s treatment pathway.

Effective horizontal abstraction and pattern recognition of clinical events is important in
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understanding the patient’s treatment course. Methods that can incorporate clinical context
across time to aid in clinical data interpretation are required to abstract clinical data horizontally

and vertically to generate quality metrics (Figure 3).

Abstraction Clinical
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€ Breast Conserving Re-Excision
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Figure 3: Converting raw event sequences to information for quality metrics

Generating complex clinical quality metrics requires that raw event sequences be
abstracted to understand the series at the proper level of granularity necessary to
generate the desired quality metric.

3.2: Methods for Tracking Clinical Care Patterns

Prior methods for tracking clinical care patterns have included heuristic, knowledge
based, or probabilistic approaches. Temporal abstraction methods aim to use knowledge-based
and heuristic processes to organize clinical events at a higher level and elicit useful information
from the abstractions. Data visualization has been utilized for empowering clinical experts to
identify patterns from longitudinal clinical data of both individual patients and clinical
populations. Finally, data mining approaches, including event sequence mining methods, can
aid in the discovery of temporal associations from clinical data. Temporal abstraction methods
are valuable in representing data on multiple levels; they can help improve human cognition
through the incorporation of data visualization methods and can be made more scalable

through the use of data mining methods.
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Methods for temporal representation and reasoning in medicine have been extensively
reviewed (Adlassnig, Combi, Das, Keravnou, & Pozzi, 2006; Augusto, 2005; Combi & Shahar,
1997; M. G. Kahn, Fagan, & Sheiner, 1991; Orphanou, Stassopoulou, & Keravnou, 2014; Stacey &
McGregor, 2007). Of those, the Knowledge Based Temporal Abstraction (KBTA) method
developed by Yuval Shahar and colleagues, remains the central foundation for a knowledge-
level framework for formalizing the requirements for an abstraction ontology and methodology
(Y Shahar, Tu, & Musen, 1992; Yuval Shahar & Musen, 1996; Yuval Shahar, 2013). The
representation of and relationships between temporal events and intervals were originally
formally defined in the 1980s to represent time series data in the field of artificial intelligence
(Allen, 1984; Kowalski & Sergot, 1989; Mcdermott, 1982; Shoham, 1987). Original clinical
knowledge based systems such as MYCIN (Shortliffe, 1977) and Internist-l (RA, HE, & JM, 1982)
focused on representing clinical domain knowledge and used their symbolic structures to
represent temporal features along with the clinical ontology in a post-coordinated manner
without dynamically abstracting the temporal data. The first system to utilize temporal
abstraction was Fagan’s ventilator management system that tracked context-specific rules for
clinical parameters (Fagan & Kunz, 1984). Early systems that handled time series data did not
use a temporal ontology and used simple abstraction hierarchies (i.e., summarization program
(Downs, Walker, & Blum, 1986), IDEFIX (de Zegher-Geets, Freeman, Walker, Blum, &
Wiederhold, 1988)) or maintained simple relationships (i.e., TCS (Russ, 1995)). The TOPAZ
system had a temporal interpretation scheme with a management and query system, however it
was domain-specific and lacked generalizability (M. G. Kahn, Fagan, & Sheiner, 1991; M. G.
Kahn, Fagan, & Tu, 1991; M. G. Kahn, 1991; M. Kahn, Tu, & Fagan, 1991). The TrenDx system
used specific pre-defined clinical event patterns and had the ability to fit partial patterns, while

avoiding a more data-driven approach (l. J. Haimowitz & Kohane, 1993; I. Haimowitz & Kohane,
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1993; Kohane & Haimowitz, 1993). Temporal abstraction systems have advanced from
developing temporal representation structures to developing the ability to organize medical
record data temporally.

The original KBTA implementation was the RESUME system that implemented the
temporal abstraction platform and has been tested on a variety of clinical domains including
oncology, AIDS, and insulin-dependent diabetes (Y Shahar & Musen, 1992; Yuval Shahar &
Musen, 1996). An ecosystem of tools was developed around the RESUME system in order to
operationalize it: CAPSUL is a temporal pattern language that was developed and integrated
with RESUME to allow complex pattern creation and querying (S Chakravarty & Shahar, 2001;
Shubha Chakravarty & Shahar, 2001); EON extended its capabilities to therapy planning (Musen,
Tu, Das, & Shahar, 1996); TZOLKIN contained the database architecture and enabled the
querying of the data based on their abstraction goals (Nguyen, Shahar, & Tu, 1999); Asbru was
developed as a method of representing skeletal guideline plans (Miksch, Shahar, & Johnson,
1997) which was a part of the Asgaard project involved with utilizing those plans in the clinical
domain (Yuval Shahar, Miksch, & Johnson, 1998); ALMA (Balaban, Boaz, & Shahar, 2003) and
IDAN (Boaz & Shahar, 2005), the updated versions of RESUME and TZOLKIN, use a distributed
architecture and can be linked to various knowledge bases and ontologies; Momentum allows
the system to handle streaming data as information is entered into the clinical record (Spokoiny
& Shahar, 2003). A large complement of tools was shown to be necessary to implement,
maintain, and scale a temporal abstraction system in the clinical setting.

Learning patterns of care from abstracted clinical data can be improved through
effective data visualization and allowing technology to augment human reasoning (Friedman,
2009; Miller & Masarie, 1990; Spence, 2006). A 1994 article was one of the earliest to propose

using graphs to summarize patient data from multiple sources (Powsner & Tufte, 1994). Since
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then, the two most published tools for temporal data visualization have been the Lifelines
(Plaisant, Milash, Rose, Widoff, & Shneiderman, 1996)/LifeFlow (Krist Wongsuphasawat, 2011)
systems by Plaisant and Shneiderman as well as the KNAVE (Yuval Shahar, Goren-Bar, Boaz, &
Tahan, 2006)/VISITORS (Klimov, Shahar, & Taieb-Maimon, 2010) tools by Shahar which are a
part of the RESUME KBTA ecosystem. Plaisant and Shahar both initially focused on generating
graphs for the clinical data of a single patient and have progressed to visualizing the trends of
care across thousands of patients. These and other systems have been used to help clinical
experts more effectively understand clinical records of individual patients and patterns of care
across clinical populations (K. Wongsuphasawat & Gotz, 2012; Zhang, Wang, Ahmed, &
Ramakrishnan, 2013). Of fifteen articles between 1996 and 2013 that discuss temporal clinical
data visualization, 13 focused on clinical decision support while only two focused on quality
improvement (West, Borland, & Hammond, 2014). With a growing number of quality metrics
and increasing cost of care, data visualization across a medical record system can allow for more
effective analysis of the quality of clinical practice (“Advancing Meaningful Use: Simplifying
Complex Clinical Metrics Through Visual Representation,” 2010). Data visualization can help
clinical experts to identify treatment patterns across clinical populations and effectively deliver
quality metrics to various stakeholders.

Data mining and statistical approaches can also help identify treatment patterns from
longitudinal clinical data. Association rule mining is a method for identifying association
patterns between categorical variables and was often used in analysis of customer transaction
data (Rakesh Agrawal, Imielinski, & Swami, 1993). Event sequence mining, an extension of
association rule mining, has aimed since its introduction (R. Agrawal & Srikant, 1995) to identify
temporal event patterns based on time stamped data (Bellazzi, Ferrazzi, & Sacchi, 2011; Bellazzi,

Sacchi, & Concaro, 2009). In addition to customer transaction data, event sequence mining
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methods have been applied to identifying plan failures and network alarms and research has
focused on developing more efficient algorithms (Zaki, 2001). These methods have also been
applied to clinical data in Karmalego (Moskovitch & Shahar, 2009) (part of RESUME KBTA
ecosystem) and ChronoMiner (Raj, O’Connor, & Das, 2007) (ontology-based pattern mining), as
well as to administrative data (Norén, Hopstadius, Bate, Star, & Edwards, 2009). Karmalego
uses event sequence mining methods in the context of its KBTA framework to identify time
interval related patterns (TIRPs). It was demonstrated on a set of diabetes patient data and was
used to discover and classify patient subgroups. Chronominer is another pattern mining system
that searches for patterns simultaneously at multiple levels of abstraction and was tested on HIV
patient data to assess genetic mutations acquired during therapy. Event sequence mining can
be an effective method for identifying common event patterns in clinical data in the context of a
temporal abstraction framework.

Generating quality metrics for clinical care in near real-time is challenging and often
requires the abstraction of clinical data and the use of event patterns. Temporal abstraction
and data mining methods will be necessary to align raw clinical data with quality metrics. Breast
cancer treatment is multimodal and variable. As a result, efforts to study clinical quality have
been slow and required manual review. We plan to develop a temporal abstraction framework

to develop clinical quality metrics for breast cancer care that require event pattern sequences.

3.3: Temporal Abstraction of Clinical Care Patterns

Formal models describing the input and output, relations between entities, and context
and domain specificity for the abstraction process are an important part of operationalizing and
generalizing the temporal abstraction framework. The KBTA framework and other temporal

abstraction systems have delineated this set of definitions. The KBTA framework consists of five
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parallel subtasks: temporal context restriction, vertical temporal inference, horizontal temporal
inference, temporal interpolation, and temporal pattern matching. This framework enables the
interpretation of raw clinical data via a higher-level descriptive terminology. These features are

vital in developing and visualizing clinical quality metrics.

The transition from a large set of raw clinical data to an easily interpretable quality
metric requires a formal understanding of the input and output entities and how they relate.
Main ontological entities include clinical parameters (i.e., laboratory values and other
continuous variables), events (i.e., surgery and other discrete events), abstraction goals (i.e.,
complex, context-sensitive objective), clinical patterns (i.e., patterns of clinical parameters with
time and value constraints), and interpretation contexts (i.e., clinical context for abstraction
process). The input to the system consists of time stamped clinical parameters and events along
with the set of abstraction goals. The output is a temporally dependent, context-specific
parameter that is at the same or higher abstraction level depending on, in our case, the desired
quality metric. The logical proposition of an abstraction includes the value of a parameter in a
specific clinical context in a specific time interval.

There are four defined groups of domain-based relations: structural knowledge,
classification knowledge, temporal-semantic knowledge, and temporal dynamic knowledge.
Structural knowledge denotes relationships between different clinical entities, such as is-a, and
part-of relations. Classification knowledge demonstrates how clinical entities are grouped based
on, for example, the value of a clinical parameter or the temporal pattern of a clinical event
series. Temporal semantic knowledge indicates how the time intervals for different clinical
entities are abstracted and interpreted based on the entity and clinical context. Finally,
temporal dynamic knowledge guides how clinical parameters and events persist and can be

represented at times when their value is not measured. These four types of knowledge enable
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the five subtasks of a formal abstraction methodology.

The first of five primary subtasks is temporal context restriction that identifies the
clinical context under which to limit the scope of inference. The interpretation context for
clinical data serves as a temporal frame of reference and can be prospective, retrospective, or
for the current time interval. The second subtask is vertical temporal inference that identifies
higher-level concepts that occur in the similar time interval. Horizontal temporal inference is
the third subtask and represents inference across multiple clinical entities from different time
intervals using context and interval-based logic. The fourth subtask is temporal interpolation
that focuses on filling the gaps between disjoint clinical entities using context-specific truth
persistence functions to understand how clinical parameters change over time. The final
subtask is temporal pattern matching which identifies a clinical pattern over a disjoint set of
intervals and creates a new entity and interval based on predefined patterns.

Temporal abstraction methodologies have been primarily implemented to tackle issues
facing clinical decision support (CDS). We believe these principles can also be used to surmount
the challenge of generating near real-time clinical quality metrics. Ontological entities such as
clinical events, parameters, patterns, abstraction goals, and interpretation contexts are
important for verifying whether the desired patterns of care occur in a specific context. The
four categories of knowledge (structural, classification, temporal semantic, temporal dynamic)
can be used with the input (events, parameters, abstraction goals) to run the primary subtasks
(temporal context restriction, vertical temporal inference, horizontal temporal inference,
temporal interpolation, temporal pattern matching). This process can allow for the
identification of patterns from clinical data and linkage with quality metric patterns that exist at

different levels of abstraction.
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3.4: Hypothesis and Aims

We believe that temporal abstraction principles can be utilized to generate near real-
time clinical quality metrics. The goal of this work is to develop a method to continuously
monitor clinical quality metrics that have a temporal component for breast cancer treatment in
near real time. Our objective is to develop a scalable framework to identify and visualize
patterns of care at multiple levels of abstraction and use it to generate clinical quality metrics.
We hypothesize that a framework that consists of vertical and horizontal abstraction methods

can help generate these quality metrics.

Aim 1: Develop a scalable framework to identify and visualize patterns of care at
multiple levels of abstraction

Aim 2: Evaluate framework using registry data to characterize breast cancer patterns of
care and evaluate quality metrics

Aim 3: Evaluate potential use of administrative data for near-real time metrics
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Chapter 4: The Pathfinder Framework

This chapter describes the Pathfinder method and its application to determining breast
cancer quality metrics. The data for this study is derived from the Vanderbilt University Medical
Center (VUMC) cancer registry system and administrative data (Section 4.1). The Pathfinder
method consists of six sub-tasks including data extraction, data standardization, vertical
abstraction, horizontal abstraction, quality metric querying, and generating/visualizing quality
metrics (Section 4.2). We extracted cancer registry treatment events and CPT codes, mapped
them to the NCI Thesaurus, and implemented our vertical and horizontal abstraction methods
(Section 4.3). We next calculated our specified breast cancer clinical quality metrics on the
abstracted cancer registry event data (Section 4.4). Finally, we compared the CPT codes against
the cancer registry events and ran the surgical quality metric on the administrative data (Section

4.5).

4.1: Clinical Setting and Patient Data Sources

This study used data collected from the cancer registry and clinical information systems
at Vanderbilt University Medical Center (VUMC) and Vanderbilt-Ingram Cancer Center (VICC).
The identifiable patient data used in this study included information on demographics,
treatments, billing codes, outcomes, and providers. This study has been reviewed and approved
by the VUMC Institutional Review Board (IRB) as expedited and minimal risk health sciences

study #130957.

VUMC is a tertiary care academic medical center with 906 beds for general medical and

surgical purposes, and approximately 49,000 admissions, 22,000 inpatient surgeries, 30,500
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outpatient surgeries, and 108,000 emergency room visits annually. The cancer registry at
VICC/VUMC is a manually curated, structured source of data on cancer patients’ demographics,
diagnosis, treatments, and survival outcomes. A team of specially trained nurse registrars
maintains the database using the METRIQ cancer registry data management system from Elekta.
The registry nurses use the NAACCR cancer registry data dictionary, the Facility Oncology
Registry Data Standards (FORDS) manual from the Commission on Cancer (CoC), and the AJCC
staging standards to codify information from the VUMC medical record system and external
information sources. Based on CoC guidelines, patients are required to be entered into the
cancer registry when their “class of case” indicates that at least the initial diagnoses or all or part
of the first course of therapy are conducted at the home institution. Reportable cases must be
entered into the system no later than six months after they are deemed eligible. The cancer
registry at VICC has been certified by the Commission on Cancer, which designates the system’s
high performance in case identification and annotation. The cancer registry is a highly curated
and structured data source that represents a subset of the cancer patients seen at VUMC.

In addition to the data from the tumor registry system, we also leveraged clinical and
administrative data from the VUMC Research Derivative (RD) (Danciu et al., 2014). The RD is a
database of clinical and related data derived from VUMC clinical information systems,
restructured for research, and stored on a Netezza (“IBM Netezza Data Warehouse Appliances —
The Simple Data Warehouse Appliance for Serious Analytics,” 2014) system. The medical record
number and other identifiers are preserved within the database. Data types include
reimbursement codes, clinical notes and documentation, nursing records, medication data,
laboratory data, encounter and visit data, among others. Output may include structured data
points, such as ICD-9-CM (International Classification of Disease) codes, CPT (Current Procedural

Terminology) codes, encounter dates, semi-structured data such as laboratory tests and results,
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or unstructured data such as physician progress reports.

4.2: Pathfinder Framework for Generating Clinical Quality Metrics

The general methodology for this study consists of six major subtasks: data extraction,
data standardization, vertical abstraction, horizontal abstraction, quality metric filtering, and
generation/visualization of quality metrics (Figure 4). Data extraction involves the collection of
the raw, time-stamped treatment event data. The data standardization subtask involves
structuring and mapping the information from the data extraction subtask to a set of one or
more formal ontologies. The vertical abstraction subtask involves utilizing the hierarchies of the
ontologies in use to identify higher-level abstractions for concepts representing the treatment
events. The horizontal abstraction subtask uses clinical and temporal patterns to consolidate
events over time to simplify the treatment event sequences. The quality metric filtering subtask
pulls the event sequences in the context of the desired quality metric by utilizing the clinical
pattern of the quality metric and identifying the proper level of vertical and horizontal
abstraction to use. Finally, the quality metric generation and visualization subtask involves using
the final set of treatment events to calculate and visualize the desired information regarding the
metric. This series of six subtasks converts raw data to a form that can generate a variety of

clinical quality metrics.

This methodology was implemented on a local secure server. The raw data to be read
for the data extraction subtask was pulled from the RD. The data standardization, vertical
abstraction, and horizontal abstraction subtasks are implemented in a perl environment (“The
Perl Programming Language - www.perl.org,” n.d.) and the treatment event sequences and their
abstractions were stored on the Netezza appliance. The visualizations were generated using the

Google Charts JavaScript platform Visualizations will utilize the Google Charts JavaScript
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platform (Google, 2014).
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Figure 4: The six subtasks of the Pathfinder methodology
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The Pathfinder methodology aims to transform raw data to a state that can be utilized to
generate clinical quality metrics. This method involves six subtasks: data extraction, data
standardization, vertical abstraction, horizontal abstraction, filtering, and quality metric
generation/visualization. The inputs and outputs in this study are listed and an example of
a treatment event sequence for a patient with multiple re-excision events, chemotherapy,

and a mastectomy is provided.
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4.3: Extraction and Representation of Patient Data

The data extraction subtask consisted of selecting treatment records for adult women
diagnosed with breast cancer between 2000 and 2012 from the cancer registry. Treatment
event data on chemotherapy, immunotherapy, surgery, hormone therapy, and radiation therapy
were extracted from the cancer registry while surgical CPT codes were extracted from the
administrative data. We also converted experimental therapies, listed in the cancer registry as
event type “0”, to their therapy type (i.e., chemotherapy). Women who had bilateral breast
cancer, had a recurrence of breast cancer, or were on their second course of therapy were
excluded from this study. Additionally, women were only included if they were on a curative
course of therapy (Stage I-lll breast cancer) and had at least one surgical, chemotherapeutic,
immunotherapeutic, radiation, or hormone therapy event. Only the treatment paths from the
first occurrence of disease and first course of care were included. Of the selected patients, 10%
were randomly set aside as a holdout set for future use. We characterized the patient cohort by
the patients’ age at diagnosis, race, primary cancer site, histology, and clinical stage.

The data standardization subtask involved the mapping of treatment events from the
cancer registry and administrative data to the NCI Thesaurus in order to maintain a common,
formal ontology (Figure 5). The NCI Thesaurus is a specialized ontology for cancer and has
hierarchies that focus on cancer specific procedures, unlike other ontologies such as SNOMED-
CT. The linkage between the cancer registry procedure terms and CPT terms with NCI thesaurus
concepts was conducted manually by an MD/PhD student and overseen by a medical oncologist.
This was necessary because linkages between the NCI Thesaurus and both CPT and FORDS codes
are not publically available due to copyright restrictions from the American Medical Association
(AMA) and CoC, respectively. The conversion to the NCI thesaurus allows for a more formalized

abstraction process and for comparison between different data sources.
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Data Standardization

UMLS Treatment
cul Description

NCI Thesaurus Concepts

C0851238 | Lumpectomy
C0024886 |Total Mastectomy

) 2
Data Extraction
Surgical Treatment
Code Description
Cancer Registry FORDS Surgical Codes
22 Lumpectomy or excisional biopsy
Total mastectomy w/out

41 removal uninvolved tralateral breast

Administrative CPT Surgical Codes

19301 |Mastectomy, partial

19180 | Mastectomy, simple, complete

Figure 5: Example of the Data Extraction and Standardization subtasks

Examples of FORDS manual surgical codes (i.e., 22) and CPT codes (i.e., 19301) extracted
from the cancer registry and administrative data, respectively, are shown in the data
extraction step. A manually derived mapping to NCI Thesaurus concepts (i.e., C15755) was
used to implement the data standardization step.

The vertical abstraction subtask involved the parsing of the ontological hierarchy as well
as consolidating similar events that occur simultaneously. A subset of the NCI Thesaurus
hierarchy generated the vertical abstractions for surgical treatment events (Figure 6). We used
three levels of vertical abstraction to represent the specific mastectomy and breast conserving
surgical terms. Base level VO the most granular level, represents the specific type of surgical

procedure such as a lumpectomy or subcutaneous mastectomy. Level V1, the next level of
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abstraction, represents the event subtypes Mastectomy and Breast Conservation Treatment.
Level V2, the final generalization, consolidates both terms to the concept “Surgery”. In addition
to the surgical term hierarchy, similar treatment events occurring on the same day were
consolidated to a single event. For example, two chemotherapy events listed on the same day
for two separate medications (i.e., doxorubicin and cyclophosphamide) would be vertically
abstracted into one chemotherapy event. The vertical abstractions are stored for use by the

quality metric querying and visualization subtasks.
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Figure 6: Example of Vertical Abstraction subtask for surgical breast cancer treatment

The NCI Thesaurus ontology tree for breast cancer therapeutic procedure is displayed.
There are three vertical levels of abstraction represented in this hierarchy with the top tier
(V2) representing a surgical procedure, the middle tier (V1) representing mastectomy
versus breast conserving surgery, and the last, most granular tier (VO) representing the
specific type of surgery.

The horizontal abstraction subtask simplifies the representation of the sequence of
treatment events (Figure 7). Base level HO, shows the sequence of treatment events as they

occurred. The first level of abstraction, level H1, removes sequentially repeating treatment
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events. This allows for the representation of the sequence of treatment event types. For
example, a single surgical event could represent a series of re-excision surgeries. Level H2, the
final level of horizontal abstraction, represents the order of the first time any treatment event
takes place. This is valuable in cancer care where the terms adjuvant (after the primary therapy)
and neoadjuvant (before the primary therapy) refer to the sequence of chemotherapy with
respect to surgery. As with the vertical abstractions, all horizontal abstractions are stored for

quality metric querying and visualization.

Level H2

Abstraction
(retain first occurance
of each event)

Surgery Chemotherapy

Level H1 [

Abstraction Surgery Chemotherapy Surgery
(remove contiguous
repeating events)

Level HO Base [ [
Abstraction
(full treatment
event sequence)

Surgery Surgery Surgery Chemotherapy Surgery

Figure 7: Example of Horizontal Abstraction subtask for treatment event sequences

The horizontal abstraction process represents treatment ordering on three levels. The
original treatment order (HO) represents every treatment event in order at any level of
vertical abstraction. The first level of abstraction (H1) removes any immediately adjacent
repeating treatment events. The final level of abstraction (H2) represents only the first
type of treatment event in the sequence.

After conducting the first four subtasks of our methodology, we sought to characterize
the treatment event sequences for stage I-lll breast cancer patients by evaluating the
abstraction subtasks, visualizing the treatment paths, and searching for common treatment

patterns. To evaluate abstraction process we assessed the reduction in complexity of the
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treatment event sequences by using three metrics: 1) we counted the number of unique
treatment event sequences at each abstraction level (VOHO, V1HO, V1H1, V1H2, V2HO, V2H1,
V2H2); 2) we calculated the number of treatment events per event sequence at the highest
(V2H2) and lowest (VOHO) levels of abstraction to understand how the method reduces
complexity; and 3) we measured how the horizontal abstraction subtask consolidated the
number of treatment events from the V2HO to V2H1 and V2H2 abstractions. We also focused
on visualizing the treatment event sequences by generating a set of Sankey diagrams(Schmidt,
2008) using Google Charts. The Sankey visualization technique is ideal for representing the
magnitude of flow between sequential nodes that represent treatment events. We represented
each treatment event as a node in the Sankey diagram to show the number of patients that
were represented by the various event sequences. We developed Sankey diagrams at the V1HO,
V1H1, V1H2, V2HO, V2H1, and V2H2 levels of abstraction to provide a visual representation of
the abstraction subtasks and quantified the changes in number of nodes and links. Finally, we
used the SPADE event sequence mining method in the aRules package (Hahsler & Chelluboina,
2011; Zaki, 2001) in the R statistical computing environment (R Core Team, 2013). We identified
the set of event sequence patterns that had a support value greater than 0.002 from the set of
treatment event sequences of stage I-lll breast cancer patients without using specific time
ranges. We identified these frequent event patterns for abstraction levels VOHO, V1HO, V1H1,
V1H2, V2HO, V2H1, and V2H2. We ranked the event sequence patterns by their support value
and calculated the number of treatment event sequences and patients the most frequent event
pattern was present in. Further, we calculated the cumulative treatment event sequence and
patient coverage by the frequent event patterns for additional patterns. This analysis will allow
for a comparison on how well frequent event patterns abstract the complexity of treatment

event sequences across the population. These three characterization steps enable the
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assessment of the results through the prism of the treatment event sequences.

4.4: Generating Quality Metrics from Abstracted Cancer Registry Data

The quality metric filtering subtask involves the use of a clinical pattern that represents
the quality metric in order to identify the optimal vertical and horizontal abstraction levels. In
this study, we focus on re-excision rates, rate of radiation therapy after breast conserving
surgery, and rates of chemotherapy usage.

Querying for the re-excision rate quality metric requires the definition of a clinical
pattern that can identify a re-excision event. A re-excision event occurs anytime there is a
breast conserving surgery after an initial breast conserving surgery event. This clinical pattern
was queried against surgical events at abstraction level V1HO for stage I-lll patients (Figure 8).
We also produced a Sankey diagram for the re-excision rate quality metric in order to provide a
visual representation of the patients’ treatment event sequences. The second metric we assess
is the rate of radiation therapy after breast conserving surgery for stage I-lll patients. The
clinical pattern is a radiation treatment event that occurs after one or more breast conserving
surgeries. This metric utilizes level VIHO abstraction for surgical events and level V2H1
abstraction for radiation treatment events. All surgical procedures must be breast conserving,
and never advance to a total mastectomy. On the other hand, only the first radiation therapy
event of a sequence is required to determine if it took place after a breast conserving surgery.

The final set of quality metrics focus on chemotherapy usage. First, we assessed the
rate of neo-adjuvant chemotherapy for stage II-lll patients with hormone-receptor negative
tumors. The clinical pattern is a chemotherapy event that takes place before a surgery event in
a patient who has no hormone therapy events. As a result, a level V2H2 abstraction that shows

the order of events is used. The final metric focuses on the rate of chemotherapy hormone
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receptor positive, HER2 receptor negative, lymph node negative, stage I-Il breast cancer
patients. This metric also utilizes the level V2H2 abstraction to identify if a chemotherapy event
occurred or not. In addition, we used the presence of hormone therapy and lack of
immunotherapy as a predictor of receptor status. Clinical patterns representing quality metrics

can enable the proper usage of vertical and horizontal abstractions.

Progression
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Mastectomy

Re-Excision
Event

Breast Breast Abstraction
Conserving Conserving Mastectomy

Surgery Surgery Level V1HO

Select
Surgical
Events

Abstraction

< 5 S S Level V2HO

Figure 8: Querying for the re-excision rate quality metric

The process of filtering for and generating quality metrics involves the application of a
quality metric pattern to a set of abstracted treatment event sequences. For the re-
excision quality metric, the surgical events are selected at the V2HO level of abstraction
and the first type of surgical event is assessed at the V1HO level of abstraction. If itis a
breast conserving surgery, the following surgeries are interpreted as either a re-excision
event or progression to mastectomy (depending on the type of surgery at the V1 level).

The final subtask of generating and visualizing the quality metrics involve defining the
format for presenting the results. We calculated the rate of the metric-specific clinical patterns’
presence in the designated abstraction level for the patient cohort for each year of diagnosis

from 2000 to 2012. A 95% confidence interval was generated for all proportions for each year
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of diagnosis using the exact method. We also used the Chi-square test for trends to determine if

there was a statistically significant difference between different quality metric rates over time.

4.5: Characterizing Abstracted CPT Data and Generating Quality Metrics

Surgical CPT codes from the VUMC clinical information system were extracted and used
to assess the potential for using non-registry data to measure clinical quality in near real time.

Our first objective was to analyze the number of CPT codes that were missing or
misaligned with surgical events in the cancer registry. We first extracted any breast surgical CPT
code (CPT=19***) that occurred within one day of a cancer registry surgical event. We counted
the number of times that a CPT code was present for surgical events in the cancer registry that
took place or did not take place at VUMC. We repeated this analysis with only CPT codes that
specifically represented a mastectomy or breast conserving surgery. We also used the specific
mastectomy and breast conserving surgery codes to measure the fraction of codes that were
missing in various positions of the surgical event sequence. We calculated the number of CPT
codes that were improperly aligned with the type of surgery represented in the cancer registry.
Finally, we counted the number of patients with at least one missing mastectomy or breast
conserving surgery CPT code in their surgical event sequence.

Our second objective was to compare the surgical event sequences for our
patient cohort. We extracted all mastectomy and breast conserving surgery CPT codes for stage
I-1ll breast cancer patients and used the codes that occurred within two years of the patients’
first CPT code to generate our surgical event sequences. We re-calculated the re-excision
quality metric based on CPT data. For this, we selected all mastectomy and breast conserving
surgery CPT codes for stage I-1ll breast cancer patients. As with the cancer registry analysis, we

used the V1HO level abstraction. The rates of breast conserving surgery and mastectomy as well
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as the rate of re-excision was calculated using abstracted CPT codes and compared to the similar
analysis conducted for the cancer registry. We used the Chi-square test for trends to compare
the CPT rates against the cancer registry rates. We also directly compared surgical event
sequences for stage I-lll breast cancer patients that originated from CPT and the cancer registry.
We measured the fraction of surgical event sequences that were equivalent at abstraction levels
VOHO, V1HO0, V1H1, V1H2, and V2HO. Because we are only assessing surgical events, abstraction

levels V2H1 and V2H2 would over-consolidate the sequence and were not assessed.

Our final objective was to compare the rate at which frequent event patterns occur in
CPT and cancer registry derived surgical event sequences. We used the same surgical event
sequences extracted for the second objective of this section. We implemented the same event
sequence mining method used previously but instead used the surgical event sequences at the
V1HO abstraction level. For each frequently occurring event pattern, we calculated the number
of patients that the pattern occurred in from the CPT and cancer registry derived surgical
sequences. We compared the number of patients with or without the pattern using the Chi-
square test. This analysis provides a view into the opportunities and challenges for using

administrative data for quality metrics in real time.
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Chapter 5: Results of the Pathfinder Methodology

This chapter describes the results of the Pathfinder method implementation and
evaluation. We extracted the treatment event records for 2679 patients that were diagnosed
with breast cancer between 2000-2012 and met our inclusions criteria from the VUMC cancer
registry (Section 5.1). We next characterized the results of the vertical and horizontal
abstraction process and demonstrated the 12-fold reduction in number of unique treatment
event sequences from raw abstraction to level V2H2 (Section 5.2). Section 5.3 reviews the re-
excision rate, radiation after breast conserving surgery, and chemotherapy usage quality metrics
resulting from the cancer registry data analysis. We then characterized the CPT data by
measuring the amount of missing data and their alignment with the cancer registry treatment
event data (Section 5.4). Finally, section 5.5 presents the re-excision quality metric resulting

from the CPT analysis and compares its performance to the cancer registry data.

5.1: Data Extraction from Cancer Registry for Breast Cancer Patient Cohort

We originally extracted the records of 4378 breast cancer patients diagnosed between
2000-2012 from the VUMC cancer registry that had undergone some diagnostic or treatment
event. We set aside 453 records for our holdout set. Out of the remaining 3925 records, 2679
had fully reported NAACCR records, met our inclusion criteria, and were thus utilized for this
study (Figure 9). These 2679 cases had 8023 treatment events and 72 experimental treatment
events recorded in the tumor registry. Of the 72 experimental treatment events, 68 were
classified as chemotherapy events and 4 as hormone therapy events. The demographic
characteristics for this population are presented in Table 1. The patient population selected

appears representative of the national breast cancer population, although seems to
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underrepresent the African-American population (DeSantis, Ma, Bryan, & Jemal, 2014). Finally,
Figure 10 illustrates the distribution of stage I-lll breast cancer patients in our cohort across their
year of diagnosis. The number of patients diagnosed per year at VUMC and included in the

cancer registry has grown from 73 in 2000 to 226 in 2012.

All Breast Cancer Patients
in Cancer Registry with
Year of Diagnosis from 2000-2012
(n=4378)

Patient Records Set Aside
for Holdout Set
> (n=453)

Y

Patient Records Checked
Against Electronic Data Warehouse
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(n=3925)
Patients Without Full
> NAACCR Record in EDW
v (n=226)
Check Patients Against
Exclusion Criteria
(n=3699) Applied Exclusion Criteria
Child (n=1)
> | Male (n=26)
Not on First Course of Treatment (n=422)
V Case of Recurrance (n=577)
Did Not Recieve a Primary Therapy (n=91)
Bilateral Breast Cancer (n=87)
Final Patient Cohort

(n=2679)

Figure 9: Breast cancer patient cohort selection process using cancer registry data

Patient cohort selection involving the application of exclusion criteria, confirming the
presence of corresponding NAACCR records in the electronic data warehouse (EDW), and
the setting aside of the holdout set. The various exclusion criteria did overlap leading to
the removal of 1020 patients (instead of 1204).
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Figure 10: Number of stage I-lll breast cancer patients diagnosed at Vanderbilt and

included in the cancer registry from 2000-2012

The number of stage I-lll breast cancer patients diagnosed per year and included in the
cancer registry has grown from 73 in 2000 to 226 in 2012.
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Table 1: Demographic characteristics of breast cancer patient cohort

Characteristic Median 1st Quartile 3rd Quartile Min Max
Age at diagnosis
(N=2679) 55 47 64 21 99
Characteristic Category Count
Total 2679
Race White 2301 (85.9%)
(top 3) Black 304 (11.3%)
Other Asian, including Asian or Oriental, NOS 22 (0.8%)
Total 2679
€500, Nipple 29 (1.1%)
C501, Central portion of breast (subareolar) 159 (5.9%)
C502, Upper inner quadrant 248 (9.3%)
Primary Site C503, Lower inner quadrant 167 (6.2%)
(all) C504, Upper outer quadrant 1038 (38.7%)
C505, Lower outer quadrant 176 (6.6%)
C506, Axillary tail 8 (0.3%)
C508, Overlapping lesion of breast 541 (20.2%)
C509, Not otherwise specified (NOS) 313 (11.7%)
Total 2679
8500/3, Infiltrating duct carcinoma, NOS 1326 (49.5%)
) 8010/3, Carcinoma, NOS 339 (12.7%)
Histology 8500/2, Intra-ductal carcinoma, non-infiltrating,
(top 5) ’ ’ ’ 186 (6.9%)
NOS
8520/3, Lobular carcinoma, NOS 183 (6.8%)
8522/3, Infiltrating duct and lobular carcinoma 123 (4.6%)
Total 2679
0 379 (14.1%)
Clinical stage ! 853 (31.8%)
(all) 2 503 (18.8%)
3 171 (6.4%)
4 122 (4.6%)
Unknown/Not documented 651 (24.3%)

Demographic characteristics are provided for the 2679 patient records in the breast cancer
patient cohort. Characteristics derived from the cancer registry include age, race, primary
tumor site, histology, and clinical stage.

5.2: Data Standardization and Abstraction from Cancer Registry Data

We carried out the data standardization subtask for cancer registry treatment events by
utilizing our mapping of FORDS surgical codes and NCI Thesaurus concepts. Treatment events
were placed in temporal order for each patient to develop the set of treatment event
sequences. We next carried out the vertical and horizontal abstraction subtasks using our

ontology hierarchy.
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We next characterized the treatment event sequences for the 1528 stage I-lll breast
cancer patients. We first counted the number of unique treatment event sequences for patients
from 2000-2012 at varying levels of vertical abstraction for surgical events and horizontal
abstraction for all events. The vertical and horizontal abstraction process led to a 12-fold
reduction in the number of unique treatment strings from the least abstracted (VOHO) to most
abstracted (V2H2) representation (Table 2). We also counted the number of most frequently
occurring treatment event sequences that represented 90% of the patient population. This
demonstrated how higher levels of abstraction consolidated the number of event sequences
reduced the amount of variability. While 62.7% of event sequences were necessary to
represent 90% of the population at the VOHO level of abstraction, only 35.5% of the event
sequences were necessary at the V2H2 level. This trend persisted as most treatment event
sequences were consolidated through the abstraction process (Figure 11). This represents the
simplification of treatment pathways leading to variable sizing of patient cohorts for study and
analysis. The data standardization subtask (raw data to level VOHO) reduced the number of
sequences due the post-coordination of cancer registry event names (i.e., concept for
mastectomy with or without reconstruction). Finally, we graphed the number of patients per
treatment event sequence at the V2H1 level of abstraction (Figure 12). The treatment event
sequences exhibit an exponential distribution when ranked by the number of patients
represented by the sequence. The top 10 most frequent treatment event sequences begin with

a surgery while the next nine event sequences begin with chemotherapy.
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Table 2: Number of unique treatment event sequences for each abstraction level

. # of unique treatment event | # of unique treatment event sequences
Level of abstraction )
sequences to cover 90% of population
Raw data from data extraction 632 480 (75.8%)
Level VOHO abstraction 391 245 (62.7%)
Level V1HO abstraction 265 126 (47.5%)
Level V1H1 abstraction 154 54 (35.1%)
Level V1H2 abstraction 73 28 (38.4%)
Level V2HO abstraction 205 79 (38.5%)
Level V2H1 abstraction 97 26 (26.8%)
Level V2H2 abstraction 45 16 (35.5%)

The number of unique treatment event sequences for each level of abstraction. There is a 12-
fold reduction in number of sequences from the raw event sequence to the level V2H2
abstraction. The number of most frequently occurring event sequences needed to cover 90%
of the patient population is also presented.
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Figure 11: Fraction of treatment event sequences that are consolidated through

abstraction

Most treatment event sequences are consolidated through the abstraction process. From
ther raw/VOHO to V2H2 level of abstraction, the fraction of treatment event sequences
necessary to cover themajority (90%) of the population decreases.
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Figure 12: Distribution of treatment event sequences across patients at abstraction level
V2H1

The number of patients per treatment event sequence demonstrates an exponential
distribution . The first 10 most frequent sequences begin with a surgical treatment event.
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To assess the complexity of the treatment event sequences and extent of the horizontal
abstraction process, we calculated the number of treatment events per sequence over time for
stage I-lll patients (Figure 13). The level VOHO event sequences consistently had almost one
additional treatment event in comparison to the level V2H2 treatment string representation.

There is no major difference in the average number of treatment events per plan over time.
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Figure 13: Number of treatment events per event sequence for highest and lowest levels of
abstraction

The number of treatment events per treatment plan represents the impact of the
horizontal abstraction process. The average number of treatment events per treatment
event sequence from 2000-2012 has stayed relatively constant.

We also assessed how the horizontal abstraction process affected the treatment event
sequence length based on the number of events in the unabstracted event sequence. We
calculated the difference in number of events for the V2H1 and V2H2 levels of horizontal
abstraction in comparison to the V2HO level. The mean and standard deviations at each original

event sequence length is presented in Figure 14. The V2H1 level of abstraction appears to
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contribute significantly to the consolidation of event sequences in the horizontal abstraction

process.

1st Level Horizontal Abstraction
Reduces the Majority of
Treatment Event Sequence Complexity

=== \/2H2 Abstraction
== \/2H1 Abstraction

# of Consolidated Events
N

L] L] I 1

0 2 4 6 8
# of Events in Level V2HO Treatment Event Sequence

Figure 14: Number of consolidated events in Horizontal Abstraction subtask

Distribution of number of events that were consolidated through the horizontal
abstraction process based on length of the original V2HO0 level event sequence. Error bars
denote standard deviations.

We also developed Sankey diagrams for stage I-lll breast cancer patients using our three
horizontal abstraction levels to demonstrate visually how treatment plans for a patient
population can be organized more compactly at a more abstracted level (Figure 15). Of the
1528 stage I-1ll patients, 1147 began their course of care with surgery, 321 with chemotherapy,
50 with hormone therapy, and 10 with radiation therapy. The bottom of Figure 15 represents
the V1HO abstraction level that shows the full event sequence with separate mastectomies and

breast conserving surgeries; the middle of Figure 15 represents the V2HO abstraction level that

52



shows the full event sequences while consolidating mastectomies and breast conserving
surgeries; the top of Figure 15 represents the V2H2 abstraction level that only shows the first
occurrence of each treatment event type. The transition from top to bottom of Figure 15
demonstrates the consolidation of treatment event sequences to simplify the treatment plan
representation while providing a different clinical meaning. We also counted the number of
nodes and linkages in the Sankey diagrams when including all treatment event positions in event
sequence (Table 3). There appears to be a linear relationship across the various levels of
vertical and horizontal abstraction (Figure 16). This indicates that for every new node in a
Sankey diagram, there are a stable number of added linkages across abstraction levels. The
abstraction process reduces the number of nodes by a factor of 6 and linkages by a factor of 8.
The largest decrease in number of nodes and linkages comes in the first horizontal and first

vertical abstraction subtask.

53



Abstraction Level:
K V2 - treatment type
H2 - first event only
Surgery e
"l
Chemotherapyj. :
Hormone g = ~—
Abstraction Level:
V2 - treatment type
Surgery - HO - all events
" '_ ! = ]
Chemotherapy . [ Iz I o
Hormone [ ; I, -
Breast ‘
Conserving ™ - Abstraction Level:
Surgery i V1 - surgical subtype
HO - all events
Mastectomy e I._ I ”I —
Chemotherapyf. “ It I s
Hormone ¢ I""’”' — o
:‘ p:: Waxoors -
Figure 15: Sankey diagrams for stage I-lll breast cancer patients’ event sequences at the

V1HO, V2HO, & V2H2 levels of abstraction

Sankey diagrams visually representing the distribution of treatment event sequences of
1528 stage I-lll breast cancer patients at three abstraction levels. Each vertical line
represents a subsequent treatment event with the left-most line representing the patient
population. The thickness of the grey bars represents the fraction of the population in that
section of the treatment event path.
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Figure 16: Relationship between number of nodes and links in Sankey diagrams at various
abstraction levels

The number of nodes and linkages in the Sankey diagrams at various levels of abstraction
demonstrate a linear relationship.

Table 3: Number of nodes and links in Sankey diagrams at various abstraction levels

Abstraction Level Number of Nodes Number of Linkages
Horizontal Abstraction
V1HO 65 190
V1H1 41 109
V1H2 21 49
V2HO 58 154
V2H1 33 76
V2H2 16 33
Vertical Abstraction
VOHO 98 291
V1HO 65 190
V2HO 58 154

Number of nodes and linkages in Sankey diagrams representing the treatment event
sequences of 1528 stage I-1ll breast cancer patients at various levels of abstraction.

Our final step in characterizing the treatment event sequences was to use the CSPADE
event sequence mining method on our treatment event sequences for stage I-lll breast cancer

patients at the VOHO, V1HO, V1H1, V1H2, V2HO, V2H1, and V2H2 levels of abstraction. This
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method yielded 355 frequent event patterns of at least two events at the VOHO level and 45
patterns at the V2H2 level. When limited to event patterns of at least three events, the VOHO
event sequences resulted with 305 patterns and V2H2 had 30. The list of top frequent event
patterns at the V1HO abstraction level are presented in Table 4 and do include overlap across
the patterns. The most frequent event pattern of at least two events is breast conserving
surgery followed by a radiation therapy. This shows how event sequence mining could be used
to generate the clinical patterns that serve as an input of quality metrics in our Pathfinder
method. Additionally, a number of adjuvant and neo-adjuvant event patterns present in the list
and show how this can be another valuable method for consolidating patient subgroups. In
Figure 17, we show the distribution of treatment event sequences and frequent event patterns
at the V1HO abstraction level. The top 32 event patterns of at least two events cover 90% of the
patient population in comparison to the top 126 event sequences. This shows how the event
sequence mining method could be used to identify larger patient subgroups. After sorting the
event patterns by their support value (frequency), we determined the cumulative fraction of
treatment event sequences and patients (Figure 18) that each additional event pattern was
present in. The top of Figure 16 demonstrates that the top 50 event patterns of at least two
events cover 90% to 97% of all treatment event sequences at all levels of abstraction. The
bottom of Figure 16 shows that patient coverage reaches approximately 90% for patterns of at

least 2 events.

Table 4: Frequent event patterns at abstraction level V1HO

Frequent Event Pattern # of Patients % of Patients
H 918 60.1%
BCS 895 58.6%
R 881 57.7%
C 816 53.4%
Mastectomy 695 45.5%
BCS,R 681 44.6%
C,R 502 32.9%
BCS,H 501 32.8%
CH 440 28.8%
Mastectomy,H 395 25.9%

56



H,R 365 23.9%
Mastectomy,C 318 20.8%
BCS,C 317 20.7%
BCS,H,R 266 17.4%
BCS,C,R 247 16.2%

R,H 206 13.5%
C,Mastectomy 188 12.3%
Mastectomy,R 183 12.0%
Mastectomy,C,H 178 11.6%
CH,R 174 11.4%
BCS,C,H 166 10.9%
BCS,R,H 164 10.7%
C,BCS 142 9.3%
C,BCS,R 119 7.8%
C,RH 114 7.5%
C,Mastectomy,R 101 6.6%
Mastectomy,C,R 97 6.3%
BCS,C,H,R 78 5.1%
Mastectomy,H,R 76 5.0%
C,Mastectomy,H 71 4.6%
BCS,C,R,H 63 4.1%
C,BCS,H 60 3.9%
H,Mastectomy 45 2.9%
H,BCS 45 2.9%

H,C 44 2.9%
C,BCS,H,R 34 2.2%
H,BCS,R 34 2.2%
Mastectomy,C,H,R 33 2.2%
C,Mastectomy,H,R 33 2.2%
R,C 33 2.2%
Mastectomy,R,H 30 2.0%
Mastectomy,C,R,H 24 1.6%
C,BCS,R,H 19 1.2%
C,H,Mastectomy 19 1.2%
H,C,R 19 1.2%

R,BCS 17 1.1%
H,Mastectomy,R 14 0.9%
C,Mastectomy,R,H 13 0.9%
R,Mastectomy 13 0.9%
BCS,H,C 13 0.9%
C,H,BCS 12 0.8%
C,H,BCS,R 11 0.7%
C,R,Mastectomy 11 0.7%
BCS,R,C 11 0.7%
Mastectomy,H,C 10 0.7%
R,C,H 10 0.7%
C,H,Mastectomy,R 9 0.6%
H,Mastectomy,C 9 0.6%
C,R,BCS 8 0.5%
H,C,BCS 7 0.5%
BCS,H,C,R 7 0.5%
H,C,BCS,R 6 0.4%
R,BCS,H 5 0.3%
H,C,Mastectomy 4 0.3%
R,Mastectomy,H 3 0.2%
C,R,Mastectomy,H 3 0.2%

The number and fraction per frequent event patterns at the level VIHO abstraction level
ranked by frequency.
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Figure 17: Distribution of treatment event sequences (left) and frequent event patterns

(right) at abstraction level V1HO
Left: The number of patients per treatment event sequence demonstrates an exponential

distribution . Of the 265 unique treatment event sequences, the top 126 are able to cover

90% of the patient population.
Right: The number of patients per frequent event pattern demonstrates that the 144 most
frequent event patterns (of at least 2 events) can cover 90% of the patient population.
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Figure 18: Coverage of frequently occurring event pattern across all treatment event
sequences (top) and patients (bottom) at various abstraction levels

The cumulative fraction of treatment event sequences (top) and patients (bottom)
represented by each subsequent frequently occurring event pattern at various levels of
abstraction. Frequently occurring event patterns are ranked by their frequency and the

top represents patterns of at least two events.
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5.3: Breast Cancer Treatment Quality Metrics from the Cancer Registry

We next conducted our quality metric querying and generation/visualization subtasks to
assess our re-excision event, radiation after breast conserving surgery, and chemotherapy usage
quality metrics.

Our first task was to assess the rate of the type of a patients’ first surgery at the V1HO
level of abstraction to elucidate the presence of a breast conserving surgery or mastectomy.
Figure 19 illustrates the rate of patients initially having either a breast conserving surgery or
mastectomy over time. There were 892 patients that received a breast conserving surgery and
592 patients that underwent a mastectomy. The error bars represent the 95% confidence
intervals. This analysis demonstrates how rates for mastectomy are increasing compared to

breast conserving surgery for a patients’ initial surgery.
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Figure 19: Rate of breast conserving surgery and mastectomy as the first surgical treatment
in 1484 stage I-lll breast cancer patients

Comparison of patients that begin their surgical course with mastectomy or a breast
conserving surgery with error bars denoting the 95% confidence interval. Rates of
mastectomy have been increasing over time.
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We next assessed the quality of care for patients that began their surgical course with a
breast conserving surgery. From this group, Figure 20 represents the rates of patients who
required a re-exicision event, progressed to a full mastectomy, or did not require any re-excision
at all. Of 890 patients, 608 patients (68%) did not require any following surgery, 181 patients
(20%) required a re-excision, and 101 patients (11%) advanced to receive a mastectomy. The
error bars represent the 95% confidence intervals. Over time, the need for re-excision or
escalation to a mastectomy has decreased with approximately 80% of patients requiring no re-
excision or mastectomy. In addition to assessing the rates of additional surgical events after an
initial breast conserving surgery, we developed Sankey diagrams at the abstraction level 1VOH
(Figure 21). This Sankey diagram illustrates the progression of the surgical course for patients

who have a breast conserving surgery.

Re-Excision Rate for Breast Conserving Surgery

1.0

0.8+

0.6+
=8~ No Re-Excision Required
1 I =B~ Re-Excision Required
0.4+ T I =4~ Mastectomy Required

Rate of Future Surgical Intervention After
Initial Breast Conserving Surgery

0.0

1 L] L]
2000 2005 2010
Year of Diagnosis

Figure 20: Re-Excision rate for stage I-lll breast cancer patients after an initial breast
conserving surgery

Rate of re-excision for patients with stage I-lll breast cancer that received a re-excision
event as their first surgery. The re-excision rate over time is statistically significantly
different.
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Figure 21: Sankey diagram of re-excision rate after breast conserving surgery

This Sankey diagram visually illustrates the re-excision rate quality metric by
demonstrating the need for additional surgical intervention following a breast conserving
surgery in 890 stage I-lll breast cancer patients. The 890 patients are represented by the
height of the left-most vertical blue line. The thickness of the grey bars represents the
fraction of those patients that undergo the subsequent segments of the treatment event
sequence.
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We next analyzed the rate at which patients received radiation therapy after undergoing
breast-conserving surgery (Figure 22). The rate appears to have increased from nearly 60% in
2000 to approximately 90% in the mid to late 2000s. In total, 666 patients had radiation therapy
after their BCS while 123 did not. The error bars represent the 95% confidence intervals. The
rate of radiation therapy after breast conserving surgery has increased and stabilized between

2000 and 2012.
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Figure 22: Rate of radiation therapy after breast conserving surgery

Rate at which patients undergoing a breast conserving surgery also receive radiation
therapy. The rate of patients receiving radiation therapy over time is statistically
significant.
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Finally, we assessed the usage of chemotherapy. First we analyzed the rates of neo-
adjuvant and adjuvant chemotherapy for stage Il and stage Il breast cancer patients who are
presumably hormone receptor negative as they were not on hormone therapy. Figure 23
indicates the rates at which patients are receiving no chemotherapy, adjuvant chemotherapy,
neo-adjuvant chemotherapy, or only chemotherapy. Out of 278 patients, 135 patients (49%)
underwent neo-adjuvant chemotherapy, 90 patients (32%) had adjuvant chemotherapy, 32
patients (11%) did not undergo chemotherapy, and 21 patients (8%) had only chemotherapy.
The error bars generated via Fisher’s exact test represent the 95% confidence intervals. The Chi-
square test did not show any statistically significant differences between any combination of the

rates of adjuvant, neo-adjuvant, and no chemotherapy over time.

Bl Neo-Adjuvant Chemotherapy
Bl Adjuvant Chemotherapy

3 No Chemotherapy

[ Only Chemotherapy

Total=278

Figure 23: Rate of adjuvant and neo-adjuvant chemotherapy

Fraction of patients that undergo neo-adjuvant chemotherapy (surgery after
chemotherapy) in comparison to adjuvant chemotherapy (surgery before chemotherapy)
for Stage Il and Stage Ill breast cancer. The rates were not statistically significantly
different over time.
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We finally looked at hormone receptor positive, HER2 receptor negative, lymph node
negative, stage I-Il breast cancer patients to determine if the OncotypeDX test had altered the
usage of chemotherapy (Figure 24). Out of 695 patients, 419 patients (60%) did not receive
chemotherapy while 276 (40%) did. The error bars represent the 95% confidence intervals.

Chemotherapy usage seems to have declined only slightly since 2005.

Stage I-ll, NO, on Hormone Therapy, no Immunotherapy
1.0~
- -#- No Chemotherapy
T =o— Received Chemotherapy
2 0.8+
o
)
£
B 0.6+
£
o
3
= 0.4~
8
©
X 0.2+
OG 1 | ] | |
2000 A A 2005 2010
Yeﬁ' of Diagnosis
OncotypeDx
OncotypeDx included in NCCN
launched guidelines
OncotypeDx
TAILORx Trial . .
_ included in ASCO
begins -
guidelines
Figure 24: Rate of patients receiving chemotherapy due to the OncotypeDx test
Chemotherapy usage for hormone receptor positive, HER2 receptor negative, lymph node
negative, stage |-l breast cancer patients. A timeline of OncotypeDx usage is included to
demonstrate how OncotypeDx was launched in 2002 and incorporated into guidelines in
2005-2006. The rate of chemotherapy over time was statistically significant.
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5.4: Breast Cancer Treatment Plan Abstraction from Surgical CPT Codes

Our next objective was to assess the viability of using surgical CPT codes in the
abstraction and quality metric process. Breast surgical CPT codes were extracted that occurred
within one day of a cancer registry surgical event. We defined breast surgical CPT codes as CPT
codes between 19000 and 19999; they represent events such as mastectomies and breast
conserving surgeries as well as other breast events (i.e., aspirations, cyst excisions, breast
localization device placements). Of the 2679 patients in our cohort, 2524 patients had 3208
surgical events in the cancer registry. We first assessed the number of cancer registry surgical
events that did not have an associated breast surgical CPT code in the VUMC clinical information
system (Figure 25, Table 5). Of the 2420 surgeries that took place at VUMC, 97.9% had a breast
surgical CPT code and 92.5% had a breast conserving surgery or mastectomy CPT code occurring
within one day of the surgical event in the VUMC system. Of the 788 surgeries that took place
elsewhere, only 13.7% had a breast surgical CPT code present and only 10.5% had a specific
mastectomy or breast conserving surgery CPT code; many of the CPT codes present were from

Williamson County, a local community hospital affiliate where some VUMC providers practice.
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Table 5: Number of missing CPT codes for surgical events in the cancer registry

Breast Surgical CPT Code

At Vanderbilt Not at Vanderbilt Total

CPT Present 2369 108 2477
CPT Not Present 51 680 731
Total 2420 788 3208

Mastectomy or Breast Conserving Surgery CPT Code

At Vanderbilt Not at Vanderbilt Total

CPT Present 2238 83 2321
CPT Not Present 182 705 887
Total 2420 788 3208

Number of cancer registry surgical events conducted at or outside of Vanderbilt where a CPT
code was or was not present within one day of the surgical event. The top table focuses on all
breast cancer surgical CPT codes while the bottom table looks at specific breast conserving
surgery and mastectomy CPT codes.

887 CPT
Codes
Missing

2238 CPT
Codes
Present

83 CPT
Codes
Present

Surgeries at
Vanderbilt

Figure 25: Fraction of missing CPT codes for surgical events in the cancer registry

Top: Fraction of cancer registry surgical events that had corresponding CPT codes present
in the administrative data. The corresponding CPT code for a mastectomy or breast
conserving surgery was required to take place within 1 day of the registry event date.
Bottom: Same figure as on top but with the 2420 surgeries that took place at Vanderbilt
and 788 surgeries that were conducted externally.
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Of the 887 missing mastectomy and breast conserving surgery CPT codes, the largest
fraction of missing codes were for the first surgery in the event sequence 87% (771), followed by
12% (108) in the second and 1% (8) in the third (Table 6, Figure 26). We then analyzed missing
surgical CPT codes on a per person basis by measuring the number of patients that had a specific
mastectomy or breast conserving surgery CPT code present for every surgical treatment event
(Figure 27). Of the 2524 patients, 793 patients (31.4%) were missing at least one CPT code while
1731 patients (68.6%) did not have any missing codes. Finally, we measured how well the CPT
codes aligned with the cancer registry codes (Table 7) using a per-event and per-patient
analysis. For the per-event analysis, we calculated the alignment of the 2321 cancer registry
surgical events with their respective breast conserving surgery or mastectomy CPT codes at the
VO, V1, and V2 levels of abstraction. When represented at the VO level of abstraction, 57% of
registry codes aligned with CPT codes at their granular level. The level of alignment increased to
97% at the V1 and 99% at the V2 levels of abstraction. A similar trend exists with per-patient
alignment indicating that the codes are well aligned when comparing breast conserving surgery

and mastectomy.

Table 6: Fraction of missing CPT codes per surgical event position in the cancer registry

Total Number Number of Fraction of
Position in Surgical Sequence Missing CPT Missing Codes in
of CPT Codes "
Codes Position
1 2830 771 27.2%
2 612 108 17.6%
3 135 8 5.9%
4 17 0 0.0%
5 1 0 0.0%

Number of missing specific breast conserving surgery and mastectomy CPT codes at different
positions in the surgical event sequence. A CPT code was present if it occurred within one day
of a cancer registry surgical event. The highest fraction of missing codes is for the first surgery
of a surgical sequence.
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Figure 26: Fraction of missing surgical CPT codes per surgical event position in cancer
registry

The majority of missing CPT codes are from the first surgical event in the event sequence.

Patients With at Least One Missing CPT Code
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3 No Missing CPT Codes
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Figure 27: Fraction of breast cancer patients with at least one missing surgical CPT code

Fraction of patients that have a CPT code within one day of a cancer registry surgical event
for each event in a patient’s surgical event sequence.

70




Table 7: Fraction of surgical CPT codes aligned the cancer registry surgical codes

Per Event
Vo Vi V2
Aligned 1322 (57.0%) 2257 (97.2%) 2320 (99.96%)
Misaligned 999 (43.0%) 64 (2.8%) 1(0.04%)
Per Person
Vo Vi V2
Aligned 1063 (53.0%) 1941 (96.8%) 2004 (99.95%)
Misaligned 942 (47.0%) 64 (3.2%) 1(0.05%)

Number of cancer registry surgical events that aligned with their respective matched CPT
codes. The top table counts the number of surgical events that were misaligned while the
bottom table counts the number of patients with at least one misaligned CPT code.

5.5: Breast Cancer Treatment Quality Metrics from Surgical CPT Codes

We finally used the surgical CPT codes and their NCI Thesaurus mapping to reassess two
surgical quality metrics. Of the 1528 stage I-lll breast cancer patients with a surgical event in our
patient cohort, 1282 had at least one CPT code for a breast conserving surgery or mastectomy.
We selected CPT codes within 2 years of the original breast surgery code for each patient in the
cohort. The year of diagnosis was chosen as the year of the first surgery in the sequence. We
first analyzed the rate of breast conserving surgery and mastectomy and overlaid them against
the rates generated from the cancer registry data (Figure 28). The error bars represent the 95%
confidence intervals. This indicates, like with the cancer registry data, that not only are the
rates between breast conserving surgery and mastectomy statistically significantly different, but

also that there is a significant linear trend over time.
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Figure 28: Rate of breast conserving surgery and mastectomy in breast cancer patients
from CPT codes and the cancer registry

Comparison of patients that begin their surgical course with mastectomy or a breast
conserving surgery using both CPT and cancer registry data. CPT data is bolded. Error bars
denote the 95% confidence interval and show no statistically significant difference
between rates for CPT and cancer registry data. Rates of mastectomy have been increasing
over time.

We also assessed the re-excision rate using CPT data for patients that began their
surgical course of care with a breast conserving surgery (Figure 29). The error bars represent
the 95% confidence intervals. These findings are similar to the cancer registry data. Over
time, the need for re-excision or escalation to a mastectomy has decreased with approximately

75% of patients requiring no re-excision or mastectomy.
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Re-Excision Rate from CPT and Cancer Registry Data
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Figure 29: Re-Excision rate in breast cancer patients from CPT codes and the cancer registry

Comparison of patients that begin their surgical course with mastectomy or a breast
conserving surgery using both CPT and cancer registry data. CPT data is bolded. Error bars
denote the 95% confidence interval and show no statistically significant difference
between rates for CPT and cancer registry data. Rate of no re-excision events have been
increasing over time.

The alignment of the cancer registry and CPT code abstractions was assessed by
comparing surgical event sequences at multiple levels of abstraction (Table 8). The alignment
improved at higher levels of abstraction as the amount of treatment event sequence variability
was reduced. The largest impact on alignment was on the VO to V1 and HO to H1

transformations. The VO to V1 abstraction primarily involves the conversion of specific surgery

73



types to either a breast conserving surgery or mastectomy. The HO to H1 abstraction removes

directly adjacent repeating events.

Table 8: Comparison of surgical event sequences from CPT codes and the cancer registry at
various abstraction levels

Abstraction Level Equivalent Abstraction Different Abstraction
VOHO 587 (45.8%) 695 (54.2%)
V1HO 915 (71.4%) 367 (28.6%)
V2HO 940 (73.3%) 342 (26.7%)
V1H1 1166 (91.0%) 116 (9.0%)
V1H2 1172 (91.4%) 110 (8.6%)

Comparison of surgical event sequences generated from CPT and cancer registry event data at
various levels of abstraction.

Finally, we used the event sequence-mining package to identify frequent event patterns
from CPT and cancer registry surgical event sequences. We then assessed the number of
patients that had each event pattern using both the CPT and cancer registry data (Table 9). We
then compared the resulting antecedent and consequent pairs. Three of the five identified
event sequence patterns were shown to be statistically significantly different between the two

sets despite relatively similar rates.

Table 9: Comparison of the occurrence of frequent surgical event sequences in CPT codes and
the cancer registry

% of Patients with Surgical Event Sequence

Frequent Event Pattern Cancer Registry CPT Data p-value
BCS - BCS 14.1% 10.9% 0.017*
Mastectomy - Mastectomy 0.2% 2.5% <0.0001*
BCS - Mastectomy 7.1% 4.8% 0.0151*
BCS — BCS - Mastectomy 1.2% 1.3% 0.9982
BCS — BCS - BCS 0.9% 0.9% 0.830

Fraction of patients with frequent event pattern using both cancer registry and CPT event
data. The BCS-BCS, Mastectomy-Mastectomy, and BCS-Mastectomy patterns were shown to
be statistically significantly different between the CPT and cancer registry event data.
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Chapter 6: Conclusions and Discussion

This study showed how the six subtasks of the Pathfinder temporal abstraction
framework could be used to represent treatment event paths and generate clinical quality
metrics. We assessed and visualized how our abstraction process could simplify and consolidate
our set of treatment event paths. We also demonstrated how administrative data could be used
to generate clinical quality metrics in a more near-real time fashion in comparison to cancer
registry data. We describe our contributions to the informatics (Section 6.1) and clinical (Section

6.2) domains as well as their corresponding limitations and future directions.

Limitations &

Contributions Future Directions

Generate Near-Real Time Quality Metrics Develop Decision Aid Visualizations
& Visualize &
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a Formal Ontology
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Data Mapping from FORDS & CPT SR8 AR A

Raw Data to

[Standardization
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Data Ad inistrati
Extraction ministra .IVE
1\ Data Quality Utilize Clinical Data from EMR

Figure 30: Contributions, limitations, and future directions across our six subtasks
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6.1: Informatics Contributions, Limitations, & Future Directions

We have developed a data abstraction framework to map raw treatment events to the
level of abstraction necessary to answer a variety of desired quality metrics. We represented
the treatment events at multiple levels of abstraction simultaneously and studied the patterns
of care across our breast cancer patient population.

In the data extraction and standardization steps, we placed treatment events in order to
generate treatment event sequences and mapped the FORDS registry and administrative CPT
event codes to their corresponding NCI Thesaurus concepts. We manually developed a mapping
between the FORDS and CPT codes for mastectomy and breast conserving surgery because the
mappings were not robust in the UMLS and were not present in the NCI Metathesaurus (due to
the proprietary nature of FORDS and CPT). Our work was limited because we only used
treatment event ordering and we relied on a manually derived mapping. The treatment event
sequences were atemporal and did not represent time intervals. This prevented users from
querying for event time intervals or understanding length of time in treatment event paths.
Furthermore, the manual mapping limited this work to focus specifically on the domain of
surgical events that were mapped. In the future we will need to represent time in our
framework and develop scalable methods to develop mappings from treatment events to a
formal ontology. We could utilize symbolic temporal logic to track time stamps and intervals for
various event-based data. We could potentially use natural language processing and existing
mapped events to generate any required mappings in a more scalable fashion.

In the vertical and horizontal abstraction steps, we managed treatment event sequences
at multiple levels of vertical and horizontal abstraction. We managed the sequences at multiple
levels of abstraction simultaneously in order to be able to query them based on the clinical

question that was asked. Our work to represent the events at multiple levels of representation
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differentiates this work from Shahar’s Knowledge Based Temporal Abstraction (KBTA)
framework. The KBTA system primarily focused on a direct abstraction path that was focused
on a single clinical question. Out system is limited by anomalies in ontology hierarchies and the
manual development of clinical patterns. Our vertical abstraction step utilized a subset of the
NCI Thesaurus hierarchy that focused on breast conserving surgery. As we expand our
treatment event mappings, we will have to deal with the various complexities of ontology
hierarchies (i.e., concepts in multiple trees, unnecessary concepts in layers). In the future, we
will have to be able to not only develop our treatment mappings in a scalable way but also
efficiently extract the hierarchy we need. Finally, we used three simple clinical patterns for our
horizontal abstraction step that were relevant to cancer care. In the future, we can incorporate
more complex clinical event patterns that we generate from various data mining methods such
as process mining.

In the quality metric filtering and generation steps, we dynamically queried our set of
abstracted treatment event sequences to generate and visualize various quality metrics. We
also showed how administrative data could serve as a data source for generating near-real time
quality metrics. This has the potential to allow for clinical quality metrics to be measured on
larger patient populations without the labor-intensive manual review process or the six-month
delay for the manual curation of cancer registry data. This will allow for quality metrics and
other analysis to be delivered to providers, administrators, and patients in near real-time for a
larger segment of the patient population. This work is limited by lack of information present in
cancer registry and administrative data. Information on complications or adverse events might
only be present in the clinical record and will need to be extracted from medical record data. In

the future, patients, providers, administrators, and other stakeholders should be able to explore
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quality metrics and treatment paths on an interactive, dynamic, and query-able interface which

utilizes a temporal abstraction framework.

6.2: Clinical Contributions, Limitations, & Future Directions

We demonstrated that our system could generate a variety of clinical quality metrics
from cancer registry data without the need for any additional manual review.

In the data extraction and standardization steps, we assessed the quality of our
administrative data in comparison to the cancer registry for breast conserving surgeries and
mastectomies. We were able to measure the fraction of missing and misaligned CPT codes. Our
efforts are limited by missing data in the Vanderbilt system and by the kind of data stored in the
registry and CPT codes. In the future, we need to be able to detect events from the record (i.e.,
pathology reports, clinical notes) that occurred outside of Vanderbilt. Furthermore, we will
need to use additional data sources from the electronic medical record system to reduce the
risk of misidentifying events. Another potential data input could include national cancer registry
data sets,that while limited in the information they contain would provide a larger nationwide
patient population.

In the vertical and horizontal abstraction steps, we abstracted treatment event
sequences to many different levels of clinical relevance and significance. We were able to
represent treatment paths across the patient population at many levels of abstraction. Our
abstraction process was able to consolidate the treatment event sequences of a majority of
patients while the long tail of the sequence distribution is not simplified through the abstraction
process. We also visually represented the simplification that results from the abstraction

process through Sankey diagrams. In the future, additional analysis will be necessary to assess
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the relationships between complexity and quality of care, assess outcomes including adverse
events, and develop methods to effectively group similar treatment event paths.

In the quality metric filtering and generation steps, we showed that we could generate
quality metrics that mirrored national and institutional rates. We also started to develop
visualizations of treatment paths and quality metrics. By appropriately querying our abstraction
framework, we were able to generate metrics on re-excision rates, radiation after breast
conserving surgery, and chemotherapy usage. Our calculated quality metrics showed Vanderbilt
matching or surpassing previously reported quality studies. For example, prior studies report a
~22.9% re-excision rate (McCahill et al., 2012) and 25% chemotherapy usage rate for patients
who received the OncotypeDX test(Asad et al., 2008). These were similar to Vanderbilt re-
excision rate as well as chemotherapy usage rates in patients suspected of recieveing the
OncotypeDX test. Additionally, our rate of radiation therapy after breast conserving surgery is
slightly under the rate identified by a review of the Vanderbilt cancer registry for patients
diagnosed in 2011. We have also demonstrated how we can incorporate data visualization into
the temporal abstraction framework. We demonstrated how a quality metric such as the re-
excision rate could be visualized as a Sankey diagram to show the progression of patients
through their treatment. Given the focus on population health management, providing
additional visual context for treatment event sequences can be beneficial in comparison to a
single quality metric rate. Sankey diagrams and other visual representations could be utilized to
serve as a decision aid for patients and can serve as real-time quality feedback for providers.
The integration of an interactive visualization system into a real-time quality metric generation

temporal abstraction framework could help improve communication and feedback.
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