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CHAPTER 1 

The Melanocortin-4 Receptor as an Integral Regulator of Energy 
Homeostasis 

 
The human obesity epidemic  

Globally, obesity prevalence among the population has been rapidly 

increasing and has reached epidemic levels in many developed nations. In the 

United States, as of 2012, greater than one-third of adults and 17% of children 

are obese with a body mass index (BMI) of greater than 30 [1]. Along with 

obesity comes increased risk for a number of comorbidities including type-2 

diabetes, cardiovascular disease, cancer, and stroke [2]. The obesity epidemic 

was responsible for an estimated $147 billion in annual medical costs in the 

United States alone in 2008 [3], suggesting that there are vast public health and 

economic consequences to the epidemic that threaten the nation. These 

harrowing statistics emphasize the importance of investigation into the underlying 

mechanisms that control body weight among individuals so that we may 

understand and eventually treat human obesity and reverse the current trends in 

order to restore a healthy population. 

On an individual level, body weight is controlled by a number of complex 

factors. However, in the simplest sense, energy balance and weight maintenance 

are achieved by adequately balancing energy intake with energy expenditure so 

that there is no caloric excess or deficit. Energy intake is affected solely by 

feeding behaviors and nutrient absorption, which are controlled with vast 

complexity, while energy expenditure is accounted for by physical activity, basal 

metabolic rate, and diet-induced thermogenesis. Normally, our bodies adequately 
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regulate long-term energy balance via a complex network of homeostatic factors. 

A variety of genes are known to play roles in regulation of energy balance and 

serve as useful tools in elucidating the pathophysiologic basis of human obesity. 

A key player in regulating both energy intake and energy expenditure is the 

central melanocortin system [4]. Mutations in components of the central 

melanocortin system are responsible for genetic obesity syndromes. Continuing 

to elucidate the roles of the melanocortin system in energy homeostasis will 

provide valuable insight into the treatment of human obesity. 

 

Overview of the melanocortin system and its components 

The melanocortin receptors consist of five 7-transmembrane (7TM) G-

protein coupled receptors (GPCRs). Of the group of receptors, the melanocortin-

4 receptor (MC4R) has the largest and most integral role in energy homeostasis 

[4]. Loss-of-function mutations causing full or partial haploinsufficiency of the 

MC4R are known to result in the melanocortin obesity syndrome, which is the 

most common monogenic cause of severe human obesity. Sequencing studies 

among cohorts with severe early-onset obesity have identified MC4R mutations 

in up to ~5% of obese individuals. The symptoms of the syndrome include severe 

obesity, hyperphagia, hyperinsulinemia, and increased somatic growth [5]. The 

MC4R is widely expressed with mRNA presence in approximately 150 regions of 

the brain, including expression in a number of brain nuclei that are known to 

regulate feeding behaviors such as the paraventricular nucleus of the 
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hypothalamus (PVN) and the dorsal motor nucleus of the vagus (DMV) [6] 

(Figure 1-1).  

The MC4R neurons receive inputs from pro-opiomelanocortin (POMC) 

neurons and agouti-related peptide/neuropeptide Y (AgRP/NPY) neurons. The 

POMC gene codes for a prohormone whose cleavage products include the 

melanocortin agonists adrenocorticotropin (ACTH), and α-, β-, and γ-melanocyte 

stimulating hormones (MSH) as well as the opioid agonist β-endorphin [4]. The 

prototypical agonist of the central MC4Rs is α-MSH, though ACTH and β-MSH 

have also demonstrated similarly high affinity for the MC4R [7, 8]. Agonism of the 

MC4R by any of the endogenous melanocortins generally leads to anorexic 

behaviors, increased energy expenditure, and ultimately a shift toward negative 

energy balance. Conversely, AgRP acts as the endogenous antagonist for 

melanocortin receptors, with high affinity for both MC3R and MC4R in the central 

nervous system (CNS). Binding of AgRP at central MC4Rs leads to orexigenic 

behaviors, reduced energy expenditure, and a shift toward positive energy 

balance. Interestingly, the MC4R also demonstrates a substantial level of 

constitutive activity in the absence of melanocortin agonists, which is maintained 

by its N-terminal domain. AgRP is capable of blocking this constitutive activity, 

qualifying the peptide as an inverse agonist at the MC4R [9-11]. Predictably, 

mutations causing ectopic CNS expression of the agouti protein (a peripherally-

expressed melanocortin antagonist similar to AgRP)	
  [12], as well as deletion of 

POMC expression [13], result in severe obesity syndromes similar to the 

aforementioned melanocortin obesity syndrome. 
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Figure 1-1: Key brain nuclei involved in central MC4R signaling. MC4R is 
expressed in many brain nuclei that influence feeding behaviors. Yellow nuclei 
represent some MC4R-positive brain regions including bed nucleus of the stria 
terminalis (BST), central amygdala (CEA), paraventricular nucleus of the 
hypothalamus (PVN), lateral hypothalamus (LH), lateral parabrachial nucleus 
(LPB), reticular formation (RET), and dorsal motor nucleus of the vagus (DMV). 
AgRP/NPY cell bodies are found in the arcuate nucleus of the hypothalamus 
(ARC), while and POMC cell bodies (blue nuclei) are in the ARC and the nucleus 
of the solitary tract (NTS). Magenta regions represent circumventricular organs in 
the hypothalamus (median eminence, ME) and brainstem (area postrema, AP). 
Red arrows represent POMC projections; blue arrows represent AgRP 
projections; dashed arrows in the brain represent secondary neuronal 
projections. Proven and putative peripheral inputs to the central melanocortin 
system are indicated below. Figure modified from [4] and [14].  

Adiposity Signals 
Leptin, Insulin 

Gut-Derived Signals 
Ghrelin, CCK, PYY(3-36) 

POMC/AgRP 
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The POMC and AgRP/NPY neurons are heavily concentrated in the 

arcuate nucleus of the hypothalamus (ARC), which lies in close proximity to the 

median eminence (ME), a circumventricular organ that is permeable to hormones 

from the blood that may not normally cross the blood-brain barrier. As a result, 

the POMC and AgRP/NPY neurons are subject to complex regulation by a 

variety of circulating factors that modulate each population’s neuronal activity at 

the target MC4R neurons in various brain nuclei to cause their respective 

downstream effects on food intake or energy expenditure [4]. POMC and AgRP 

neurons in the ARC contain leptin receptors (LEPR) [15] and are differentially 

activated by exogenous administration of leptin, the key adipostatic hormone that 

plays a central role in weight regulation [16, 17]. Furthermore, the growth 

hormone secretagogue receptor (GHSR) is expressed on arcuate AgRP/NPY 

neurons. Ghrelin, a meal-initiating hormone released from P/D1 cells of the 

stomach, rises during the fasted state and binds to the GHSR to activate these 

neurons and promote energy intake. The AgRP/NPY neurons also project to the 

nearby POMC neurons to release inhibitory neurotransmitters including GABA 

and NPY to further reduce POMC neuronal activity [18].  Multiple studies have 

highlighted the importance of the melanocortin system to the efficacy of ghrelin 

on food intake stimulation [19, 20]. Additional hormones are thought to modulate 

these networks via expression of other sensors such as Y1 and Y2 receptors [21] 

(for NPY and PYY) and mu-opioid receptors [22] (Figure 1-2). Adding complexity 

to the system, melanocortin inputs also respond to peripheral signals sensing 

gastric distension and hormone levels via the vagus nerve, which maps to the 
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nucleus of the solitary tract (NTS), a site of high POMC expression. The vagus 

nerve contains expression of the aforementioned GHSR and may serve as an 

additional peripheral sensor of ghrelin levels [23].  Also found on the afferent 

vagal nerves are cholecystokinin receptors (CCK1R)	
  [24], which bind the satiety 

hormone CCK and serve to reduce food intake [25, 26]. Interestingly, the 

anorectic effects of peripheral CCK administration are blunted in MC4R knockout 

mice (MC4R-/-), supporting the importance of the MC4R in CCK action [27]. 

Though simplified here, it is a complex network of interactions that positions the 

central melanocortin system to function as an integral regulator of energy 

homeostasis. While most studies to date have focused on elucidating the 

hypothalamic and brainstem melanocortin networks in the context of energy 

homeostasis, many questions remain regarding the complex and diverse 

contributions of the MC4R to energy homeostasis. 

  



   7	
  

 
Figure 1-2: Schematic of AgRP/NPY and POMC neurons within the arcuate 
nucleus of the hypothalamus (ARC). AgRP/NPY and POMC neurons, the 
primary inputs to melanocortin receptors, contain receptors for various hormones 
that can alter feeding behaviors. The hormones regulate neuronal activity of 
AgRP/NPY neurons, which project to and regulate various melanocortin receptor-
containing target sites, as well as to nearby POMC neurons. POMC neurons also 
project to these target sites to modulate melanocortin receptor activity. 
Abbreviations are as follows: LepR, leptin receptor; Y1R, NPY receptor subtype 
1; Y2R, NPY receptor subtype 2; GHSR, growth hormone secretagogue receptor 
(ghrelin receptor); µ-OR, µ-opioid receptor; MC3R, melanocortin-3 receptor. 
Figure from Cone RD, Nature Neuroscience, 2005 [4]. 
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MC4R defects in feeding behaviors and reward 

A primary phenotype associated with MC4R deficiency involves 

hyperphagia, which is a significant factor in the severe early-onset obesity noted 

in humans [5] and rodents [28] that lack MC4R. Much research has been 

devoted to characterizing the defects associated with feeding behaviors in the 

rodent model, which accurately reflects the human syndrome, including an 

intermediate obese phenotype developing from haploinsufficiency of the MC4R 

[28]. Notably, mice lacking MC4R exhibit severe defects in the acute response to 

dietary fat. More specifically, when MC4R-/- mice are switched from normal low-

fat chow (13.5% kcal/fat) to a moderate fat chow (25.1% kcal/fat) [29] or high fat 

chow (60% kcal fat) [30] they exhibit a severe and sustained hyperphagia that 

lasts for several days. The hyperphagia, in addition to failing to increase energy 

expenditure and fat utilization, results in accelerated weight gain. This 

observation is in contrast to wild-type mice, which exhibit a brief hyperphagia 

which resolves within 2 days followed by a period of isocaloric feeding indicative 

of an intact homeostatic response to increased dietary fat [29]. The mechanism 

that drives the fat-induced hyperphagia in the MC4R-/- mice is not understood, 

however these initial studies warranted more careful investigation of these 

defects in order to understand how the MC4R regulates feeding behaviors and 

food reward.  

Nutrient reward is closely related to energy homeostasis systems. For 

instance, the adipostatic hormone, leptin, is known to have dramatic effects on 

the reward value of nutrients. Leptin regulates adipose mass largely by 
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increasing food intake upon sensing by the brain of decreasing leptin levels, in 

order to restore long-term energy homeostasis [31]. Furthermore, individuals 

lacking leptin report higher liking ratings for food that can be normalized with 

leptin replacement therapy [32]. Studies in mice have demonstrated that food 

restriction increases the reward value of sucrose and that leptin treatment 

decreased it, presenting interesting implications for reward-based resistance to 

weight change [33]. The documented signaling modalities of leptin on AgRP/NPY 

and POMC neurons within the ARC suggest a potential relationship with the 

melanocortin system and leptin-mediated food reward [4]. Furthermore, due to 

the vast central expression of MC4R [6] many studies have also focused on roles 

for the melanocortin system on feeding reward independent of leptin signaling. 

As mentioned above, MC4R-/- mice exhibit hyperphagia in response to dietary 

fat [29]. Furthermore, there are reports of nutrient preference defects in the 

MC4R-/- mice [34] and rats [35], as well as in the lethal yellow agouti mouse. 

Similar melanocortin mediated nutrient specific defects have been noted in 

multiple studies. For example, intracerebroventricular (ICV) administration of the 

endogenous melanocortin antagonist AgRP into rats not only increases food 

intake [36], but also selectively increases intake of high-fat diets [37]. The same 

treatment causes a selective increase in operant responses for fat reinforcers as 

well as in Pavlovian [38] conditioning responses toward fat stimuli, but not toward 

sucrose stimuli [39]. 

Interactions between the central melanocortin system and mesolimbic 

dopaminergic circuits may contribute to these defects in feeding behaviors. In 



   10	
  

particular, there is substantial MC4R expression found in regions frequently 

associated with food based reward and motivation [6], including the central 

amygdala (CeA) and the nucleus accumbens (NAcc)	
  [40, 41]. The function on 

food reward of these areas contrasts with the homeostatic function of the PVN, 

which as mentioned above also relies on MC4R signaling. Dopaminergic 

signaling in the NAcc, which is a major contributor in motivation based reward, 

was shown to rely on α-MSH signaling and could be blocked by pretreatment 

with a MC4R-selective antagonist in the ventral tegmental area (VTA) [42]. 

Similarly, the reinforcing aspects and motivational behaviors of cocaine 

administration in rats are inhibited by pharmacological antagonism of the 

melanocortin receptors in the NAcc. The locomotor responses to cocaine 

exposure are also blocked in MC4R-/- mice, further supporting the importance of 

MC4R in motivational pathways [43]. There is also strong evidence supporting a 

role for the central melanocortin system in mediating opioid effects on food 

intake. Activation of opioid receptors with either morphine or the µ-opioid 

selective agonist DAMGO can cause hyperphagia with a selective increase in 

high-fat diet consumption [44]. The DAMGO mediated fat preference is blocked, 

however, in AgRP knockout mice [45] and also in mice treated with the MC3/4R 

agonist melanotan-II (MTII) [46]. While MC4R in the PVN interacts with opioids to 

regulate feeding behaviors [47], it is likely that MC4R in the CeA is a key site in 

the regulation of fat intake as direct injections of MTII or of SHU9119/AgRP into 

the CeA respectively cause reductions or increases in fat consumption [48]. 

Many of the previous studies lack specific manipulation of the MC4R in that they 
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have utilized non-specific agonists and antagonists of melanocortin receptors 

that exclude the likely important yet poorly understood contributions of MC3R. 

Due to the interconnectivity of brain nuclei involved in complex behaviors such as 

feeding, it is unlikely that MC4R in any single brain region can account for the 

observed defects in feeding preference without also affecting homeostatic 

feeding. Furthermore, these studies exclude any peripheral contributions to such 

behaviors. These limitations warrant further study of the MC4R-/- mouse for 

improving our understanding of the feeding defects associated with this system 

and how they fit into the context of gut-brain axis control of feeding behaviors. 

 

Food intake and the gut-brain axis 

The long-term adipostatic regulation mediated by the fat-derived hormone 

leptin impacts the sensitivity of a wide variety of systems impacting food intake, 

including reward, satiety, and hunger circuits.  One of the critical systems that is 

tonically regulated by leptin is the gut-brain axis that controls meal initiation, meal 

size, and satiety. Importantly, the model of a gut-brain axis emphasizes the 

dramatic importance of communication between the brain and periphery in order 

to control feeding behaviors.  

Prior to food intake, there is a rise in release of ghrelin from P/D1 cells in 

the stomach. The ghrelin levels in plasma gradually rise in fasted animals and 

eventually signal hunger and meal initiation	
  [49, 50]. Upon meal initiation, there 

are early and delayed sensory pathways that communicate the size and content 

of the meal that is being ingested. The early events include smell, texture, and 
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taste of the food, which rapidly signal through craniofacial and vagal neurons for 

processing by the brain. The late events include post-ingestive and post-

absorptive signals. These refer to mechanical changes that signal from the GI-

tract, such as gastric and intestinal distension, as well as early hormonal signals 

from the gastrointestinal system that signal satiety via the vagus nerve and the 

circulation, and later hormonal signals that regulate long-term homeostasis. In 

turn, the brain can then regulate gastric motility, digestive secretions, and meal 

termination [51]. Overall, gut-brain signaling contributes significantly to 

modulation of feeding behaviors. 

Several hormones participate in the cascade of post-ingestive signals that 

circulate in order to communicate meal information. One such hormone, CCK, is 

released from I-cells in the duodenum in response to dietary lipids and protein 

[52]. CCK can then travel through the circulation and bind CCK1 receptors 

located on vagal afferent nerves, which communicate with hypothalamic neurons 

via synaptic connection at the NTS, located within the hindbrain	
  [53]. Notably, 

CCK is capable of inducing satiety as indicated by its ability to reduce meal size 

and initiate the behavioral satiety sequence [54, 55]. Peptide-YY (PYY) is 

another satiety hormone that is released following meal intake and secreted from 

L cells in the ileum and colon. PYY release is potently stimulated by multiple 

factors including intraluminal lipids	
  [56], bile acids, and chyme	
  [57]. The full-

length form of PYY(1-36) is capable of binding peripheral Y1 and Y2 receptors in 

the GI-tract to inhibit gastric functions such as motility and secretions	
  [58, 59]. 

Furthermore, cleavage of PYY yields a truncated PYY(3-36), which also has potent 
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anorectic weight-loss properties through selective binding of central Y2 receptors	
  

[60, 61]. Also co-released with PYY from L cells is glucagon-like peptide 1 (GLP-

1), an incretin hormone that augments glucose-stimulated insulin release and 

also has satiating properties as it can delay gastric emptying and inhibit food 

intake [62]. Additionally, hormones such as glucagon, insulin, amylin, and 

pancreatic polypeptide (released from various pancreatic islet cell populations), 

can act as satiety factors and participate in the complex multi-hormonal cascade 

of changes that occur in the postprandial state to control feeding behaviors [63].  

It is important to note that these postprandial hormone changes play a 

larger role than simply signaling satiety to regulate meal size. They are 

hypothesized to interact with central reward and motivation circuits that serve to 

guide dietary choices and behaviors leading to meal consumption. Ghrelin, when 

administered peripherally or centrally in rats has been shown to enhance operant 

responding for food stimuli, a measure of food-based motivation, in fully fed rats	
  

[64]. Furthermore, it can elicit an enhancement of fat consumption over 

carbohydrates, even in rats that previously preferred a high-carbohydrate diet 

[65]. GLP-1 has also been shown to affect food-directed behaviors. Exendin-4, a 

long acting GLP-1 receptor agonist, can reduce conditioned place preference 

(CPP) for palatable chocolate or sucrose pellets when administered peripherally	
  

[66]. Both PYY and CCK have been shown to affect reward for non-food drugs of 

abuse. Admittedly, such observations are limited by the inability to discern 

between the effects of central or peripheral sources of these hormones, as many 

are produced in both the brain and the gut. Regardless, nutritional status-driven 
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alterations in the cascade of gut hormones appear likely to promote 

neurobiological changes that alter complex behaviors [67]. 

 

Roles of the MC4R in gut-brain communication 

 Gut-brain communication is a crucial element of energy homeostasis, and 

is characterized by intricate sensory and motor connections between the 

gastrointestinal system and the central nervous system. The numerous roles of 

MC4R in the brain are well established and research continues to elaborate on 

the importance of the central melanocortin system. As mentioned previously, the 

AgRP/NPY and POMC neurons of the ARC, in close association with the median 

eminence (ME), respond in varying levels to peripheral homeostatic signals such 

as leptin, ghrelin, and PYY [4]. POMC neurons are also found in the NTS within 

the brainstem and adjacent to the area postrema (AP), providing another site of 

peripheral hormone sampling. Through these interactions, ghrelin and leptin act 

in opposite manners on the central melanocortin system to promote or inhibit 

food intake, respectively [19, 20]. Alternatively, dependence on melanocortin 

signaling was not observed with PYY(3-36). Indeed, peripheral injection of PYY(3-36) 

causes activation of some POMC neurons in the ARC [60]. However, this 

network is not essential for the hormone’s effect, as PYY(3-36) was fully capable of 

reducing food intake in MC4R-/- mice [68]. More study is needed to determine if 

the absence of the response is due to developmental defects inherent in 

knockout mouse models, or if the effects of PYY(3-36) on POMC neurons were 

simply not detectable by the assays used [14]. Furthermore, brainstem sites of 
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MC4R have been shown to be important for the integration of some sensory 

vagal signals, as evidenced by the requirement of brainstem MC4R signaling for 

the meal size-reducing effects of peripheral CCK injection [27]. The interactions 

of these hormones with MC4R do not fully illustrate the complexity of the roles of 

MC4R in the brain, as it is so widely expressed centrally and likely has functions 

that are currently unknown. 

 More recently, the roles of MC4R have expanded to include neuronal 

communication with the GI tract. The DMV, a site of high central MC4R 

expression, is an essential brain nucleus for vagal control of the stomach. 

Microinjections of the MC3/4R agonist MT-II into the DMV decreased phasic 

contractions of the stomach, which could be blocked, with injections of the 

antagonist SHU9119 or vagotomy [69]. Furthermore, MC4R expression was 

identified directly in vago-vagal circuitry in the periphery using a reporter mouse 

that expresses GFP under control of the MC4R promoter. MC4R was found in 

one-third of nodose ganglion neurons innervating the duodenum, as well as in 

cholinergic neurons in the myenteric plexus surrounding the stomach and 

duodenum. Collectively, these sites contribute to sensory signals and motor 

control of the gastrointestinal tract and liver [70] to regulate energy balance and 

glucose homeostasis [71]. More recently, MC4R was identified in 

enteroendocrine P/D1 cell populations as a highly expressed 7-transmembrane 

GPCR that can regulate release of ghrelin in response to stimulation by α-MSH 

[72]. The emerging body of data characterizing peripheral expression of MC4R 

lends intrigue to the potential contributions of peripheral MC4R in the overall 
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context of gut-brain communication, including contributions to the cascade of gut 

hormones that contribute to feeding behaviors. 

 There is additional intriguing data supporting a role for MC4R in the 

efficacy of bariatric surgery, a procedure that dramatically alters the gut-brain 

axis by morphologically changing the gut and its ability to signal to the brain. 

Roux-en-Y gastric bypass (RYGB) surgery is a widely used and highly effective 

means of achieving long-term weight loss in obese patients along with reductions 

in comorbidities, such as diabetes [73, 74]. In mouse models of RYGB, effective 

weight loss can be achieved along with improvements in glucose homeostasis 

and energy expenditure [75-77]. However, the efficacy of bariatric surgery is 

dependent on MC4R signaling, as mice completely lacking MC4R signaling that 

receive RYGB surgery gain weight as rapidly as sham-operated control mice 

when presented with a high-fat diet [76]. Conversely, both mice and humans that 

are heterozygous for MC4R mutations respond normally to bariatric procedures 

[76, 78], suggesting that these surgeries are viable treatments for patients with 

the melanocortin obesity syndrome.  

There is evidence suggesting that gastric restriction alone is not 

responsible for the dramatic and sustained weight loss and improvements in 

metabolic health. In bariatric surgeries that rely largely on restriction, such as 

gastric banding and sleeve gastrectomy, there are milder effects on weight loss 

as compared to RYGB. This observation suggests that there are likely defects in 

restriction as well as a fundamental change in the gut-brain axis. One intriguing 

hypothesis has focused on changes in pre- and postprandial gut hormone 
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release that in turn affect hunger and satiety [79]. There is noted hypertrophy of 

the gut mucosa and L cells that corresponds with rises in PYY and 

preproglucagon expression [80, 81]. While these hormonal changes are not 

solely responsible for the weight-reducing effects of bariatric surgery, they 

represent alterations in the gut-brain axis that occur following these treatments 

that likely contribute to the improvements in metabolic parameters post-surgery. 

Studies of bariatric surgery techniques are continually performed to improve our 

understanding of the mechanistic changes underlying these treatments. 

Overall, adding to our understanding of the roles of the MC4R in gut-brain 

communication can improve the strategies that we use to treat obesity. The 

increasing evidence of the importance of MC4R in this critical axis suggests that 

more comprehensive study must be done to effectively and safely target the 

MC4R for weight-regulating therapies. Furthermore, understanding the 

physiological whole-body significance of the melanocortin system can inform 

researchers and medical professionals about the total implications of 

pharmacologically altering these networks. 

 

MC4R as a drug target 

 With the global prevalence of obesity rising and the documented integral 

role that MC4R plays in energy homeostasis and obesity, it is no surprise that 

MC4R is a prime target for anti-obesity therapeutics. Multiple attempts have 

targeted the MC4R in this way with varying results. While MC4R agonists are 

generally effective at causing weight loss, they also cause a potentially 
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deleterious target-mediated pressor response due to activation of the 

sympathetic nervous system [82] [83]. As a result, blood pressure and heart rate 

must be closely monitored with all studies targeting melanocortin receptors for 

therapeutics. One particular drug, LY2112688, was tested in early clinical trials in 

humans with and without defects in MC4R. The trial was terminated upon 

observing an MC4R genotype dependent rise in blood pressure during treatment 

for 7 days [84]. More recently, another potent orthosteric agonist was developed 

and tested for efficacy and safety in primates. This drug, RM-493 (or BIM-493) 

was demonstrated to potently reduce body weight in diet-induced obese rhesus 

macaques without causing the pressor effects observed with LY2112688 

treatment [85]. Both LY2112688 and RM-493 utilize an orthosteric agonism 

approach, yet interestingly they offer different effects on the cardiovascular 

system that are currently unexplainable. Alternatively, allosteric agonists are 

being identified with high-throughput screening techniques. These small-

molecule compounds do not activate the MC4R alone, but enhance the receptor 

response only in the presence of the endogenous agonist. The reasoning behind 

using this approach is to avoid chronic activation of the MC4R in favor of 

augmenting the receptor activation under the native dynamic control of α-MSH 

[86]. 

 In addition to developing agonists of the MC4R as weight loss drugs, there 

is also interest in developing antagonists of the MC4R in order to increase body 

weight. Such compounds may be beneficial either for agricultural purposes, or for 

the treatment of cachexia, a disease-associated wasting syndrome often seen 
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with cancer and AIDS patients. The symptoms include weight loss, muscle 

atrophy, fatigue, weakness, and loss of appetite. Naturally, blockade of the 

MC4R is a sensible approach for reversing these symptoms. These approaches 

are supported by the observations MC4R-/- mice, as well as mice treated with 

AgRP, resist lipopolysaccharide (LPS)-induced cachexia [87-89]. In summary, 

MC4R antagonists could provide dramatic medical benefits in the enhancement 

of multiple disease outcomes [90]. 

 Research into understanding the overall physiological context in which the 

MC4R operates in the whole body and the gut-brain axis will continue to advance 

the prospects of utilizing the MC4R as a drug target. Development of assays to 

measure changes in body weight, food intake, and energy expenditure, as well 

as in cardiovascular parameters will be helpful in monitoring the efficacy and 

safety of melanocortin receptor drugs. Furthermore, in the era of high-throughput 

screening many potential drugs may be identified. This necessitates the ability to 

efficiently and accurately screen MC4R drugs in vivo to determine the most 

appropriate candidates for further development.  
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CHAPTER 2 

Materials and Methods 

Methods used for “Melanocortin-4 receptor mutations paradoxically reduce 

preference for palatable foods” 

Experimental animals  

All studies used adult (aged 3–7 months) male WT, MC4R+/−, and 

MC4R−/− sibling mice derived from the original MC4R-null colony [28] and 

backcrossed onto a C57BL/6J background for 20+ generations. db/db mice 

lacking the leptin receptor were from The Jackson Laboratory (stock no. 00697). 

Mice were raised on a 12-h light, 12-h dark cycle and given ad libitum access to 

standard chow (Laboratory Rodent Diet 5001) and water. All experiments were 

approved by the Animal Care and Use Committee of Vanderbilt University. 

 

Body weight, food, and liquid intake measurements  

Daily measurements of body weight, food intake, and fluid intake were 

taken by hand. Food intake measurements were obtained by weighing food 

every 24 h at around 1400 hours and subtracting the difference to obtain the 

amount consumed. The cage was inspected daily for fragments of food that fell 

from the hopper, which were then accounted for in the measurements. Fluid 

intake was obtained by providing a pre-weighed water bottle with a gravity-fed 

sipper tube. The difference in weight in grams is presented as a fluid 

consumption equal to that value in milliliters. 

Dietary preference studies  
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For preference studies, mice were single-housed and subjected to daily 

handling for up to 1 week before the experimental start to reduce experimental 

stress known to affect feeding behaviors [91]. Baseline measurements of SC 

intake were taken for multiple days before a petri dish containing a measured 

amount of a second diet was added to the floor of the cage. The diets used were 

as follows: SC (LabDiet 5L0D/5001: 58% carbohydrate (by energy content), 

28.5% protein, 13.5% fat, 3.02 kcal/g); HFD (Research diets D12492i: 20% 

carbohydrate, 20% protein, 60% fat, 5.24 kcal/g); and HSD (Kellogg’s Froot 

Loops: 88.2% carbohydrate, 3.6% protein, 8.2% fat, and 3.79 kcal/g). To test for 

locational preference, the positions of the diets were switched between the 

hopper and the dish with no notable effect. Preference ratios were calculated by 

taking the intake of the diet in question, by mass or caloric value, and dividing it 

by total intake. 

 

Methods used for “The melanocortin-4 receptor is expressed in 

enteroendocrine l cells and can regulate the release of peptide YY and 

glucagon-like peptide 1 in vivo” 

Fluorescence-assisted cell sorting (FACS) and qPCR 

Single cell suspensions were made by mechanic and enzymatic disruption 

of small intestinal tissue from reporter mice and separated into fluorescence 

positive cells and fluorescence negative cells using previously described 

methods – for CCK-eGFP mice [92], GIP-venus mice [93], and GLP-1-venus 

mice [94]. The CCK-eGFP cells were from the first four centimetres after the 
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pyloric sphincter, the GIP-venus and GLP-1 venus cells were from the first ten 

centimetres. cDNA from the FACS purified cells were used to examine the 

expression of melanocortin receptors using custom designed 384 well qPCR 

plates from Lonza (Copenhagen, DK) as described in Engelstoft et al. [72].  

 

Immunohistochemistry 

MC4R-Sapphire (MC4R-Sapp) mice at the colony at Vanderbilt University 

Medical Center were backcrossed >20 generations onto a C57Bl/6 background 

were used to detect MC4R expressing cells by fluorescent labeling of GFP. 

Males aged 8-10 weeks were subjected to a daytime fast of 4 hours in order to 

minimize the presence of intestinal food matter. The mice were deeply 

anesthetized using inhaled isoflurane and sacrificed by cervical dislocation. The 

peritoneal cavity was exposed and the gastrointestinal tract was removed from 

the stomach to the rectum. A 1 cm tube-like segment was removed from the 

glandular stomach (distal end) and its contents were cleared by flushing with a 

syringe full of ice-cold PBS. Also removed were a segment of duodenum 

adjacent to the pyloric sphincter, a segment of jejunum halfway between the 

pyloric sphincter and the ileocecal valve, a segment of ileum 3 cm above the 

ileocecal valve, and a segment of colon halfway between the cecocolic junction 

and anus. All segments were 1 cm in length, left in tube shapes, and cleared by 

flushing with ice-cold PBS using a syringe and 12g needle until clean. After all 

segments were clean, they were transferred to individual 15ml tubes filled with 

4% PFA, pH 7.2, in PBS and left for 24 hours at 4°C. After fixation, the tissues 
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were transferred to 20% sucrose in PBS for 48 hours at 4°C. The tissues were 

then dabbed of excess fluid, laid flat, and frozen in a base mold with O.C.T. 

compound (Tissue-Tek #4583). The tissue blocks were sliced in 10 µM sections 

and placed on glass slides. The sections were stained using the following 

primary antibodies: Mouse anti-GFP (1:5000, Millipore, MAB3580), Rabbit anti-

GLP-1 (1:500, Phoenix Pharmaceuticals, H-028-13), Rabbit anti-PYY (1:500, 

Abcam, ab22663). The sections were then fluorescently labeled using the 

following secondary antibodies: Donkey anti-Rabbit Alexa Fluor 594 (1:500, 

Invitrogen, A21207), and Donkey anti-Mouse Alexa Fluor 647 (1:500, Invitrogen, 

A31571). The slides were mounted in ProLong Gold antifade reagent with DAPI 

(Life Technologies, P36931), coverslipped, and visualized on a compound light 

microscope (AxioImager Z1, Zeiss, NY). Controls without primary antibodies 

were used to test for specificity of secondary antibodies. 

 

Hormone release from primary cultures 

Ghrelin and GLP-1 release experiments have been described in detail 

previously [72, 94]. Acyl-ghrelin was measured using “Acyl-ghrelin EIA” from SPI-

Bio (AH Diagnostics). GLP-1 was measured according to the protocol Total GLP-

1 version 2 from Meso Scale Discovery. 

 

 

 

Measurement of ISC 
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GI-tissue from C57BL/6J, MC4R+/+ or MC4R-/- mice or clinical specimens 

were dissected free of overlying smooth muscle and mucosae placed between 2 

halves of Ussing chambers exposing an area of 0.14cm2. Mucosae were bathed 

both sides with Krebs-Henseleit (KH) buffer of following composition (in mM: 117 

NaCl, 24.8 NaHCO3, 4.7 KCl, 1.2 MgSO4, 1.2 KH2PO4, 2.5 CaCl2 and 11.1 D-

glucose) aerated with 95% O2/5% CO2 (pH 7.4) and voltage-clamped at 0 mV as 

described in detail previously [95, 96]. Resultant changes in ISC were measured 

as µA/cm2 once preparations had stabilized (15 min). Mouse mucosae (from 

selected areas of small or large intestine) were pretreated with secretagogue, 

VIP (10 nM, basolateral) and once elevated ISC had stabilized, α-MSH was added 

to either the apical or basolateral reservoir to determine the sidedness of these 

peptide responses. Subsequently a concentration of 1 µM α-MSH (basolateral) 

was selected as the MC4R stimulus because it elicited near-maximal responses 

in mouse colon. Responses were compared to those of GPR119 agonist 

PSN632408 added to either surface, as well as to other MC4R agonists added 

basolaterally. To ascertain the endogenous peptide mechanisms stimulated by 

basolateral α-MSH, mouse and human colonic mucosa were pretreated with the 

Y1 antagonist (BIBO3304, 300 nM), Y2 antagonist (BIIE0246, 1 µM) or MC4R 

antagonist (HS014, 30 nM) each added basolaterally, and 20-min later PYY (10 

nM) was added as a control Y1/Y2 receptor stimulus.  

 To test glucose-sensitivity of α-MSH (1 µM) responses, mouse colon was 

bathed with KH buffer containing glucose (11.1 mM) in one reservoir and 

mannitol (11.1 mM) in place of glucose in the other. PYY (10 nM) responses 
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were measured 15-min after α-MSH addition and apical SGLT1 inhibitor, 

phloridzin (50 µM, apical) was added (15-min after PYY) to confirm the 

requirement of glucose for this inhibitory activity. 

 ISC responses in µA are expressed as the mean ±SEM per unit area (cm2). 

Single comparisons were performed using Student's unpaired t-test while 

multiple comparisons utilized 1-way ANOVA with Dunnett's post-test and P ≤ 

0.05 were considered statistically significant. 

 

Colonic transit measurement in vitro 

Measurement of fecal pellet movement down the entire colon isolated 

from WT mice, involved recording photographically the position of pellets (at t=0 

min). Tissue was then placed in aerated KH buffer (at 37˚C) with drug (1 µM α-

MSH, 100 nM LY2112688 or 10 µM PSN632408) or vehicle for 20 min and the 

colons then re-photographed. The distances of remaining pellets from the rectum 

were measured and colonic transit was calculated as the mean distance travelled 

relative to the total colon length (as % colonic transit). 

 

Plasma hormone measurements 

Except when indicated, the experimental mice were acclimated to 

handling and injections for up to 7 days prior to blood collection. The mice were 

scruffed, then injected with 100-200 µL of saline, or vehicle, each day in order to 

minimize stress during final blood collection. The experimental mice included 

MC4R+/+, +/-, and -/- mice backcrossed >20 generations onto a C57Bl/6J 
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background and maintained in the animal colony at Vanderbilt University Medical 

Center, as well as wild-type C57Bl/6J ordered from The Jackson Laboratory. On 

the day of blood collection, all mice were subjected to a 4-hour daytime fast to 

reduce postprandial hormones to baseline levels. At the conclusion of the fast, 

mice were injected with the indicated dose according to body weight of 

LY2112688, α-MSH, or vehicle (saline). The injection volumes would fall between 

100-200 µL depending on body weight. Following the indicated time of 10 

minutes, 25 minutes, or 60 minutes, blood was collected from the mice either by 

decapitation under deep anesthesia from inhaled isoflurane or by submandibular 

bleeding in conscious mice. Any repeated sampling by submandibular bleeding 

was done at least 2 weeks apart allow for complete recovery from blood loss. All 

blood samples were collected into tubes containing appropriate volumes of EDTA 

(Mediatech, Inc, Cat. No. 46-034-Cl), Protease Inhibitor Cocktail (Sigma, P8340), 

and DPP-IV Inhibitor (Millipore, Cat. No. DPP4) and kept on ice. Upon 

completion of blood collection, the tubes containing blood, EDTA, and protease 

inhibitors were spun at 3000 X G at 4°C for 30 minutes. The resulting plasma 

was removed and spun at 10000 x G at 4°C for 1 minute to pellet any remaining 

red blood cells. The plasma was removed and frozen at -80°C until use in 

hormone assays. All plasma hormones were assayed using the MilliplexMAP 

Mouse Metabolic Hormone - Magnetic Bead Panel Immunoassay (Millipore 

MMHMAG-44K), which utilized 10 mL, samples of undiluted plasma in duplicate 

to detect any combination of hormones including PYY (total), GLP-1, ghrelin, 

amylin (active), GIP, insulin, and leptin. The assay was read on a Luminex 100 
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analyzer and values were determined by comparing to known values on a 

standard curve. Values were plotted in GraphPad Prism and statistical analyses 

were conducted using ANOVA with Bonferroni post-test between all experimental 

groups, or by t-test when only 2 groups were available. 

 

Materials 

BIBO3304 and BIIE0246 (from Tocris Bioscience, Bristol, UK) were 

dissolved in 10% DMSO (at 1 mM) and stored at -20˚C. Peptide stocks of 

LY211688 (from Bachem Laboratories, St Helen's, UK), α-MSH (Abcam, 

Cambridge, UK), HS014 (Tocris Bioscience, Bristol, UK), NDP-α-MSH, ACTH 

and MT II (Phoenix Pharmaceuticals, Burlingame CA, USA), VIP and PYY 

(Cambridge Bioscience, Cambridge UK) were dissolved in water, aliquots were 

stored at -20˚C and underwent one freeze-thaw cycle only. PSN632408 (Cayman 

Chemical, Ann Arbor, MI) was dissolved in 95% ethanol. All other compounds 

were of analytical grade from Sigma-Aldrich (Poole, UK). 

 

Methods used for “Development of in vivo techniques for the validation of 

drugs targeting the melanocortin-4 receptor” 

Chronic treatment with LY2112688 and RM-493 

 Chronic treatment studies were done in adult male MC4R+/+, +/-, and -/-

mice derived from the MC4R-null [28] mouse colony on the Vanderbilt University 

Medical Center campus. The animals were backcrossed >20 generations onto a 

C57BL/6J background. At 12 weeks of age, the animals were single-housed and 
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given ad libitum access to high-fat diet (D12451; 45% kcal/fat, 35% 

carbohydrate, 20% protein; Research Diets, Inc.) while being acclimated to daily 

handling, including body weight and food intake measurements. After acclimation 

for 1 week, the MC4R+/+ and +/- animals were transferred to individualized 

metabolic monitoring cages (Promethion, Sable Systems International). Due to a 

limited number of monitoring cages, the MC4R-/- animals were monitored for 

food intake and body weight changes by hand. Beginning on day 3 of 

measurements, all mice were surgically implanted in the subcutaneous region 

posterior to the scapula with an osmotic minipump (Alzet model 1002, 100 µL 

total volume infused over 14 days). The surgeries were performed over a 2 day 

period in the Vanderbilt Mouse Metabolic Phenotyping Center (MMPC). The 

pumps contained individualized weight-appropriate doses of LY2112688, RM-

493, or vehicle (saline). After implantation, monitoring continued for up to 2 

weeks to assess effects of drug treatment. Body weight changes were analyzed 

for statistical significance between groups by 1-way ANOVA with Bonferroni post-

test. 

 

Cardiovascular measurements by tail cuff and echocardiogram 

 The cardiovascular measurements were performed by the Cardiovascular 

Pathophysiology and Complications Core within the Vanderbilt MMPC. The 

measurements were performed in MC4R+/+, +/-, and  -/- mice that were under 

chronic minipump infusion of LY2112688. Blood pressure and heart rate 

measurements were measured using non-invasive tail cuff plethysmography (BP-
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2000, Visitech Systems, Inc.). Additionally, heart rate was measured by low-

resolution echocardiography (Sonos 5500, Agilent) in conscious mice, which 

required shaving of mouse fur to properly transmit thoracic images. Mice were 

trained for 3 days prior to baseline measurements in order to minimize acute 

stress during the procedures. Mice were then measured again on day 4 and day 

11 post-implantation with no additional training. Differences in cardiovascular 

parameters were analyzed using 1-way and 2-way ANOVA between treatments 

and genotypes to examine statistical significance. 

 

Carotid artery catheterization and blood pressure measurements 

 Male mice aged 16 weeks were allowed a one week acclimation time 

following implantation of carotid artery catheters (implanted by the Vanderbilt 

MMPC). The carotid artery catheters were used to directly monitor pressor 

activity and heart rate following acclimation. A Micro-Med Blood pressure 

analyzer was used to measure all effects.  Saline was used as the compound 

solvent and vehicle. Blood pressure and heart rate readings were taken using a 

single day protocol with before and after drug treatment readings. Mice were 

injected subcutaneously with either LY2112688 (9mg/kg) or NN2-0453 (9 mg/kg). 

Basal measurements were made for 30 minutes prior to drug injection and 

recordings continued for 1.5 hours after injections. Data represent the mean 

effect of LY or vehicle over time. 

 

Acute PYY assays following MC4R drug treatment 
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 All animals used for PYY measurements were adult male C57BL/6J mice 

aged 12-20 weeks that were obtained at 9 weeks of age from The Jackson 

Laboratory (www.Jax.org, Bar Harbor, ME) and maintained in the Vanderbilt 

University Medical Center barrier mouse facility. Prior to treatment, all mice were 

subjected to a 4-hour daytime fast to minimize baseline PYY levels. After the 

fast, mice were injected intraperitoneally (IP) with the indicated dose of 

LY2112688 in a volume of 100 µL/mouse. Whenever the mice were given a dose 

of antagonist (Shu9119), PAM (VU63663), or NAM (VU0029075), that injection 

was given as a pretreatment immediately prior to LY injection. The PAM and 

NAM were dissolved in 100% DMSO and given in a volume of 20 µL/mouse with 

no vehicle-associated complications. At a time point 10 minutes after the 

injections, approximately 150 µL of whole blood was obtained from each mouse 

by submandibular bleeding using a 5 mm Goldenrod animal lancet (Medipoint, 

Inc.). The blood was collected into a tube containing EDTA and Protease 

Inhibitor Cocktail for mammalian tissues (P8340, Sigma) to prevent proteolytic 

breakdown of PYY. Plasma was obtained by pelleting red blood cells using 

centrifugation for 30 minutes at 3000xG t at 4°C. PYY levels were assessed 

using Milliplex Mouse Metabolic Hormone Magnetic Bead Panel (MMH-MAG44K, 

Millipore). Samples were run in duplicate and read in a Luminex 100 or Magpix 

system (Millipore). PYY concentrations in pg/mL were derived from known values 

on a standard curve and analyzed for statistical significance between groups by 

1-way ANOVA with Bonferroni post-test.  
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Abstract 

Haploinsufficiency of the melanocortin-4 receptor (MC4R) results in 

melanocortin obesity syndrome, the most common monogenic cause of severe 

early onset obesity in humans. The syndrome, which produces measurable 

hyperphagia, has focused attention on the role of MC4R in feeding behavior and 

macronutrient intake. Studies show that inhibition of MC4R signaling can acutely 

increase the consumption of high-fat foods. The current study examines the 

chronic feeding preferences of mice with deletion of one or both alleles of the 

MC4R to model the human syndrome. Using two-choice diet paradigms with 

high-fat or high-carbohydrate foods alongside normal chow, we show, 

paradoxically, that deletion of one allele has no effect, whereas deletion of both 

alleles of the MC4R actually decreases preference for palatable high-fat and 

high-sucrose foods, compared with wild-type mice. Nonetheless, we observed 

hyperphagic behavior from increased consumption of the low-fat standard chow 

when either heterozygous or homozygous mutant animals were presented with 

dietary variety. Thus, decreased MC4R signaling in melanocortin obesity 

syndrome consistently yields hyperphagia irrespective of the foods provided, but 

the hyperphagia appears driven by variety and/or novelty, rather than by a 

preference for high-fat or high-carbohydrate foodstuffs. 
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Introduction 

Food preference in humans is highly complex, involving cultural, 

sociological, psychological, and physiological factors. Physiological inputs to food 

preference include both homeostatic and hedonic drives, with the latter referring 

to the effects of sensory and reward pathways that control the desire to consume 

highly palatable energy-dense foods [97]. Profound hyperphagia has been 

demonstrated in several of the monogenic obesity syndromes [98], and it is 

important to determine the mechanisms that drive hyperphagia, including the 

relative contributions of homeostatic versus hedonic drives and their impact on 

food preference. 

Melanocortin obesity syndrome, resulting from null or hypomorphic 

mutations in one allele of the melanocortin-4 receptor (MC4R), is the most 

common monogenic cause of severe early onset obesity in humans [5, 28]. The 

obese phenotype is due in large part to hyperphagia, which has been 

documented in humans [5] and in mouse [28] [99] and rat [35] models of the 

syndrome. Data also suggest that central melanocortin signaling may specifically 

regulate the consumption of dietary fats. The lethal yellow (Ay/a) agouti mouse, 

in which ectopic expression of the agouti protein is presumed to block the central 

melanocortin-3 receptor (MC3R) and MC4R, shows a preference for fat 

consumption that is not seen in wild-type (WT) C57BL/6J mice on a three-choice 

macronutrient diet of carbohydrate, fat, or protein [100]. Intracerebroventricular 

(ICV) administration of agouti-related protein (AgRP), an endogenous CNS 

antagonist of the MC3R and MC4R, preferentially increases acute consumption 
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of high-fat chow in a two-choice paradigm providing high-fat and low-fat chow in 

Long–Evans rats [37]. Similar experiments in the mouse demonstrate that the 

MC3R/MC4R agonist MTII acutely decreased intake of fat, but not carbohydrate 

or protein, in a three-choice diet model [34]. The consumption of dietary fat in a 

two-choice model may also be increased by administration of MC3R/MC4R 

antagonists AgRP or SHU9119 directly into the central nucleus of the amygdala 

(CeA) [48]. The amygdala has been demonstrated to play a role in emotion, 

reward, and motivation [101], and several studies link the amygdala to 

macronutrient preference and intake [48, 102, 103]. Indeed, behavioral studies 

demonstrate that ICV injection of AgRP increases the appetitive response to a 

fat, but not to a carbohydrate, stimulus in both operant and Pavlovian 

conditioning paradigms [39]. 

Previous studies have also characterized a significant stimulation of 

hyperphagia, persisting for up to 2 weeks, in the MC4R−/− and +/− mice, 

following a switch from normal rodent chow (13.5% of kilocalories from fat) to a 

high-fat diet (HFD) (45–60% of kilocalories from fat) [29] [30]. In contrast, WT 

mice return to isocaloric intake within ∼4 d after the switch to HFD. The reports 

described above show that inhibition of melanocortin signaling stimulates an 

increase in consumption of dietary fat. This could be valuable information for the 

design of specific dietary recommendations for children with melanocortin obesity 

syndrome. However, the majority of these model systems do not mimic human 

melanocortin obesity syndrome in two regards. First, most studies have used 

broad agonists or antagonists that act at both MC3R and MC4R. Second, most 
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studies involve acute treatment, whereas the syndrome results from a chronic 

deficit in MC4R activity. In this report, we use WT, MC4R+/−, and MC4R−/− mice 

to characterize chronic macronutrient preference in melanocortin obesity 

syndrome. 

 

Results 

MC4R−/− Mice Underconsume Palatable Sucrose Solutions in an ad Libitum 

Access Paradigm.  

To determine if the previously described high-fat hyperphagia in the 

MC4R−/− and +/− mice was specifically due to fat content rather than to caloric 

density, we studied feeding behavioral responses to added sucrose in adult male 

WT mice or littermates with MC4R-null mutations (+/− and −/−) on a C57BL/6J 

background. We replaced the cage water with a sapid 5% (wt/vol) sucrose 

solution and monitored feeding and drinking behavior in single-housed mice 

before and after the switch (Fig. 3-1). Because plain water was not left as an 

option, a 5% sucrose solution was chosen to elicit elevated drinking without 

causing excessive thirst (as would be seen with higher concentrations). Body 

weights were inversely related to the number of WT MC4R alleles, as shown 

previously (Fig. 3-1A). Intake of standard chow (SC) (Fig. 3-1B) and fluid (Fig. 3-

1C) were also measured daily before and after water was replaced with 5% 

sucrose. 

Food and fluid intake were further analyzed as daily averages of the 

period before and following the presentation of 5% sucrose. WT and MC4R+/− 
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mice significantly decreased food intake after 5% sucrose was given, whereas 

MC4R−/− mice did not significantly adjust food intake (Fig. 3-1 B and D). All mice 

increased fluid intake dramatically when given 5% sucrose, although MC4R−/− 

mice consumed significantly less than WT and MC4R+/− littermates. 

Surprisingly, WT and MC4R+/− consumed fluid amounts nearly equal to their 

body weights (Fig. 3-1E). During the 5-d period when mice had SC and 5% 

sucrose, there was a MC4R gene dose-dependent increase in total caloric 

intake. However, the portion of intake coming from sucrose was smaller in the 

MC4R−/− animals compared with WT and MC4R+/− (Fig. 3-1F). The sucrose 

preference ratio was also significantly decreased in MC4R−/− mice compared 

with WT and MC4R+/− littermates. 
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Figure 3-1: MC4R−/− mice underconsume sucrose and have low sucrose 
preference. Three-month-old male WT, MC4R+/−, and MC4R−/− mice were 
singly housed for dietary studies. Daily measurements of (A) body weight, (B) SC 
intake, and (C) fluid intake were taken while the mice were given SC and water 
(days −4–0) or SC and 5% sucrose (days 1–5). Water was replaced with sucrose 
solution immediately after the measurement on day 0 as indicated by the gray 
bar on each graph. (D) Average daily SC intake for each genotype during days 
−4–0 (Left) and days 1–5 when 5% sucrose is given (Right). Statistical 
significance for each genotype is compared with its own baseline. (E) Average 
daily fluid intake of water for each genotype during days −4–0 (Left) and of 5% 
sucrose during days 1–5 (Right). (F) Total caloric consumption during days 1–5 
including a breakdown of calories obtained from either SC or 5% sucrose 
solution. Statistical significance is for total kilocalorie value from both diets 
compared with that of WT mice. (G) Sucrose preference ratios, calculated as the 
ratio of sucrose calories consumed divided by total calories consumed. Statistical 
significance is compared with that of WT mice. WT: n = 10; MC4R+/−: n = 14; 
MC4R−/−: n = 7. Results are expressed as mean ± SEM, and statistical analyses 
were done by unpaired t-test. *P < 0.05, ***P < 0.001. 
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MC4R −/− and WT Mice Exhibit Equivalent Consumption of Calorie-Free 

Sucralose-Sweetened Water in an ad Libitum Access Paradigm. 

 To determine if defective sweet-taste sensation was responsible for 

underconsumption of sucrose solution in MC4R−/− mice, we tested whether 

naive WT, MC4R+/−, and MC4R−/− mice would consume a solution containing a 

nonnutritive sweetener, sucralose. Body weight, SC intake, and fluid intake (Fig. 

3-2 A–C) were measured daily to assess changes in consumption after sucralose 

presentation. MC4R−/− consistently consumed the largest amount of SC before 

and after 2 mM sucralose was provided. For all genotypes, sucralose 

presentation caused no large changes in total SC intake, although a modest 

reduction was deemed to be significant for the MC4R+/− (Fig. 3-2 B and D). 

Sucralose presentation did cause significant but modest increases in fluid 

consumption; however, sucralose was consumed equally by all genotypes (Fig. 

3-2 C and E), suggesting that the differential response to sucrose in the 

MC4R−/− group (Fig. 3-1) was dependent on the caloric value of the 

macronutrient. 
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Figure 3-2: MC4R−/− and +/− mice exhibit normal taste-mediated sucralose 
consumption. Four-month-old male WT, MC4R+/−, and MC4R−/− mice were 
singly housed for dietary studies. (A) Body weight, (B) SC intake, and (C) fluid 
intake were measured daily before (days −4–0) and after (days 1–5) 2 mM 
sucralose was given following measurement on day 0 as indicated on the graphs. 
(D) Average daily SC intake for each genotype during baseline days −4–0 (Left) 
and after sucralose presentation days 1–5 (Right). (E) Average daily fluid intake 
of water on days −4–0 (Left) and 2 mm sucralose on days 1–5 (Right). Statistical 
significance for each genotype is calculated compared with baseline period in D 
and E. WT: n = 5; MC4R+/−: n = 17; MC4R−/−: n = 6. Results are expressed as 
mean ± SEM, and statistical analyses were done by unpaired t-test. *P < 0.05, 
**P < 0.01, ***P < 0.001. 
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MC4R−/− Mice Have Low Preference for a Palatable High-Sucrose Solid Diet 

Under an ad Libitum Two-Choice Paradigm.  

We next used a solid high-sucrose diet (HSD) in a two-choice paradigm to 

allow us to comprehensively study macronutrient preference while avoiding the 

potential limitations of fluid consumption, including polyuria and saturation of 

consumption levels. In addition to SC, mice were provided with HSD for 2 wk 

while body weight and intake of both diets were monitored daily. During the final 

three study days (days 17–19), SC was removed and one-choice HSD 

consumption was measured to contrast feeding responses to each diet with or 

without choice (Fig. 3-3). As expected, body weights were dependent on the 

MC4R genotype and increased steadily during two-choice diet presentation (Fig. 

3-3A). The daily SC intake measurements showed that, although both diets were 

presented simultaneously, all genotypes continued to consume some amount of 

SC. However, the MC4R−/− mice consistently consumed more SC than their WT 

and MC4R+/− littermates (Fig. 3-3B). Following the initial presentation of HSD, it 

took several days for all mice to reach a steady state of consumption, which 

seemed to be unaffected by a brief removal of HSD on day 8. By the second 

week of the two-choice diet (days 10–16), all mice consumed steady daily levels 

of HSD. Interestingly, upon switching from a two-choice diet to a one-choice HSD 

paradigm, MC4R−/− mice went from consuming the smallest amount of the HSD 

to the largest amount (Fig. 3-3 C and F). 

Further analyses of feeding behaviors on these diets were conducted by 

averaging daily intake values during steady-state consumption on the two-choice 
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diet (days 10–16) and the one-choice diet of HSD (days 17–19) (Fig. 3-3 D–F). 

Total caloric intake increased as MC4R signaling was decreased. However, the 

portion of caloric intake coming from the HSD was notably smaller in the 

MC4R−/− group (Fig. 3-3D). Furthermore, the HSD preference ratio was 

significantly reduced in the MC4R−/− group compared with both the WT and 

MC4R+/− littermate groups. There appears to be an intermediate reduction in 

HSD preference in the MC4R+/− group, although the difference is not significant 

(Fig. 3-3E). 
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Figure 3-3: MC4R−/− mice exhibit low preference for HSD in a two-choice 
diet. Seven-month-old male WT, MC4R+/−, and MC4R−/− mice were singly 
housed for dietary studies. (A) Body weight, (B) SC intake, and (C) HSD intake 
were measured daily. Mice were given SC, HSD, or both diets simultaneously as 
indicated by the lines above each graph. The HSD presentation was temporarily 
disrupted on day 8, but resumed normally afterward. (D) Average caloric 
consumption during the second week of the two-choice diet when steady 
consumption behavior is reached. Caloric contributions from each diet provided 
are included. Statistical significance is calculated for total intake of both diets. (E) 
HSD preference ratios by kilocalories (Left) and by mass (Right) for each 
genotype during the second week of the two-choice diet (days 10–16). (F) 
Average daily one-choice HSD intake during the final 3-d period when SC is 
removed. WT: n = 8; MC4R+/−: n = 8; MC4R−/−: n = 8. Statistical significance is 
tested against the corresponding WT values by unpaired t-test. *P < 0.05, **P < 
0.01, ***P < 0.001. 
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High-Sucrose Diet Consumption Does Not Cause Hyperphagia or Fasting 

Hyperglycemia in MC4R−/− Mice.  

The previous studies of high-fat–induced feeding behaviors included a 

dietary switch that induced a brief and universal novelty hyperphagia followed by 

a sustained hyperphagia in MC4R−/− and +/− mice. Using this paradigm, we 

sought to determine if these behaviors would occur following a similar switch 

from standard chow to HSD. Because the MC4R−/− and +/− groups consumed 

more HSD than their WT counterparts when the other choice was removed (Fig. 

3-3F), we expected that this dietary switch might elicit hyperphagia similar to that 

seen previously with HFD [30]. We raised WT, MC4R+/−, and MC4R−/− mice on 

SC and switched them to HSD while measuring body weight and food intake 

every 24 h (Fig. 3-4). Although there was the expected MC4R gene dose-

dependent effect on baseline body weight across groups, the weights remained 

steady through the study (Fig. 3-4A). In contrast with a dietary switch to HFD, the 

dietary switch to HSD alone had no effect on steady-state consumption in any 

genotype (Fig. 3-4B). When daily consumption levels are averaged between SC 

consumption (days −6–0) and HSD consumption (days 1–7), all genotypic groups 

appear to maintain isocaloric dietary behavior across diets. For both diets, the 

MC4R−/− mice consume significantly more calories than their WT littermates 

(Fig. 3-4C). These isocaloric dietary behaviors are very different from the 

dramatic hyperphagia noted during the HFD studies in MC4R−/− and +/− mice	
  

[29, 30]. Because MC4R−/− mice are severely obese, we questioned whether the 

lack of preference and hyperphagic behaviors was due to potential diabetic side 
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effects exacerbated by excessive sucrose consumption. Following the 7 d of 

HSD consumption, we measured blood glucose following a 6-h daytime fast and 

noted no significant difference in fasting blood glucose between the WT and 

MC4R−/− groups (Fig. 3-4D). 

 

  



   45	
  

 
Figure 3-4: Switch to a HSD without choice does not cause hyperphagia or 
fasting hyperglycemia in MC4R−/− mice. Four-month-old male WT, MC4R+/−, 
and MC4R−/− mice were singly housed and studied under a diet-switch 
paradigm described previously (16). (A) Body weight and (B) food intake were 
measured daily as the mice were switched from a one-choice SC to a one-choice 
HSD, as indicated above these graphs. (C) Average daily consumption of each 
diet by genotype with SC consumption (Left) and HSD consumption (Right). (D) 
Blood glucose measurements taken from the tail vein following a 6-h daytime 
fast. Each blood glucose data point shown is the value for a single mouse. WT: n 
= 9; MC4R+/−: n = 9; MC4R−/−: n = 9. All graphs indicate mean ± SEM, and 
statistical significance is tested against the corresponding WT values by unpaired 
t-test. *P < 0.05, ***P < 0.001. 
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MC4R−/− Mice Exhibit Low Preference for Palatable High-Fat Diet Under an ad 

Libitum Two-Choice Paradigm.  

Having shown that MC4R deficiency confers reduced dietary preference 

for sucrose-rich food, we sought to test whether MC4R deficiency causes dietary 

fat preference consistent with the high-fat hyperphagia noted previously [29, 30]. 

To study these feeding behaviors, we used groups of WT, MC4R+/−, MC4R−/−, 

and severely obese, leptin receptor deficient db/db mice (Fig. 3-5). All mice were 

raised on SC and then given a choice of SC and HFD for 2 wk. The cage position 

of the two diets was then switched for a period of 3 d to control for positional 

preferences. For the final 3 d of study, the SC was removed and only HFD was 

provided. The body weights increased steadily during the study and were as 

expected according to MC4R genotypes. The db/db mice, although close in age, 

were much heavier than even the MC4R−/− mice, consistent with expectations 

(Fig. 3-5A). Following the initial period of novelty associated with the HFD 

presentation, all groups reached a steady level of intake of both SC and HFD by 

the second week of the two-choice diet (days 16–22). The intake levels for both 

diets also remained unchanged after the position of each was switched (days 

23–25), suggesting that the feeding preferences are not dependent upon location 

of the diets within the cage (Fig. 3-5 B and C). 

Further analyses were done by averaging daily intake values during the 

steady-state consumption period of the second week of the two-choice diet (days 

16–22). Total caloric intake was elevated in MC4R−/− and +/− animals as 

functional MC4R alleles were lost, whereas the db/db group consumed the 
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largest total amount calories (Fig. 3-5D). Contrary to our expectations, removal of 

MC4R signaling caused a significant decrease in preference for HFD whereas 

the WT and db/db groups maintained a very strong preference for the diet. 

Analysis of preference by intake mass showed that MC4R−/− mice exhibited only 

a mild (∼0.6) preference for HFD compared with a nearly full preference (∼1.0) in 

WT and db/db mice (Fig. 3-5E). Although the preference for HFD was low in 

MC4R−/− mice in a two-choice diet paradigm, the one-choice intake of HFD 

following removal of SC was still higher in the MC4R−/− mice compared with WT 

(Fig. 3-5G), much like the baseline intake of SC or HSD in a one-choice 

paradigm (Figs. 3-3F and 3-5F). 
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Figure 3-5: MC4R−/− mice exhibit low preference for HFD in a two-choice 
diet. Five-month-old male WT, MC4R+/−, MC4R−/−, and Db/Db mice were singly 
housed for dietary studies. (A) Body weight, (B) SC intake, (C) and HFD intake 
were measured daily. All mice were given SC, HFD, or both diets simultaneously 
as indicated above each graph. (D) Average daily caloric consumption during the 
second week of the two-choice diet (days 16–22) for each genotype. 
Contributions from each diet are included. Statistics are calculated from the total 
two-diet caloric values. (E) HFD preference ratios for each genotype during the 
second week of the two-choice diet. Preference ratios are calculated by 
kilocalories (Left) and by mass (Right). (F) Average daily intake of SC under one-
choice paradigm (days 2–8). (G) Average one-choice daily intake of HFD during 
the final 3 d after SC is removed (days 26–28). WT: n = 9; MC4R+/−: n = 9; 
MC4R−/−: n = 9; Db/Db: n = 3. Statistical significance is tested against the 
corresponding wild-type values, unless otherwise indicated, by unpaired t-test. 
**P < 0.01, ***P < 0.001. 
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Dietary Variety Drives Hyperphagia in MC4R−/− Mice Under Multiple Diet 

Regimens.  

Using the data gathered from our one-choice and two-choice diet studies, 

we were able to more closely examine the changes in total caloric intake 

conferred by the presentation of multiple dietary choices (Fig. 3-6). When mice 

were given 5% sucrose in place of cage water, genotype-dependent effects on 

caloric regulation were evident in that MC4R−/− mice became hypercaloric 

whereas WT mice remained isocaloric (Fig. 3-6A). There was a gene dose-

dependent increase in caloric difference with MC4R−/− mice exhibiting the 

largest caloric change when given 5% sucrose (Fig. 3-6B). This effect is 

mimicked when the mice are given the two-choice diet of SC and HSD (Fig. 3-

6C). The WT mice, when given both solid diets, remain isocaloric, whereas the 

MC4R+/− and −/− mice increase their total caloric intake (Fig. 3-6D, left side). 

Furthermore, removal of SC causes hypophagia on a one-choice HSD paradigm 

(compared with baseline), although MC4R−/− mice maintain a significantly 

smaller drop in caloric intake compared with their WT littermates (Fig. 3-6D, right 

side). It should be noted that the hypophagia on the one-choice HSD paradigm 

was seen only after removal of SC following a two-choice diet. When mice were 

switched from SC to HSD without choice, all genotypes remained isocaloric (Fig. 

3-4C). 

Upon presentation of a two-choice SC and HFD, all genotypes exhibited 

hyperphagia in that they maintained a caloric intake higher than SC alone under 

both HFD regimens (two-choice and one-choice, Fig. 3-6 E and F). Interestingly, 
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the greatest level of hyperphagia was still evident in the MC4R−/− mice. 

Whereas WT and db/db mice had the smallest caloric increase when switched to 

diet regimens containing HFD, MC4R+/− and MC4R−/− mice incrementally 

exhibited the highest increases (Fig. 3-6F). 
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Figure 3-6: Two-choice diets drive additional hyperphagia in MC4R−/− mice. 
A, C, and E display the total caloric intake under diet regimens using (A) SC + 
5% sucrose liquid, (C) SC + HSD, and (E) SC + HFD. One-choice and two-
choice intake totals are shown for each diet and genotype used. B, D, and F 
display the caloric differences obtained by subtracting baseline caloric intakes 
from the caloric intakes under two-choice diets in A, C, and E, respectively. (B) 
Caloric differences caused by SC + 5% sucrose diet compared with SC alone. 
(D) Caloric differences caused by two-choice SC + HSD and one-choice HSD, 
compared with SC alone. (F) Caloric differences caused by two-choice SC + 
HFD and one-choice HFD, compared with SC alone. Statistical significance of 
caloric differences (B, D, and F) is compared with caloric differences in 
corresponding WT mice using unpaired t-test. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Discussion 

Developing a clear understanding of the mechanism driving the 

hyperphagia in melanocortin obesity syndrome may be important for treatment of 

the disease [5]. Our initial studies demonstrated significant increases in 

hyperphagia, relative to WT mice, following exclusive presentation of high-fat 

chow, suggesting an increased preference for high-fat foods [29, 30]. In this 

report, we describe a paradoxical loss in preference for energy-dense palatable 

foods, enriched with either fat or carbohydrates, in mice lacking both alleles of 

the MC4R and no increase in preference in heterozygotes. Interestingly, although 

long-term preference for palatable diets decreased in MC4R knockout mice, total 

caloric intake increased whenever MC4R+/− or MC4R−/− mice were presented 

with multiple types of foods. Under a chronic two-choice diet model, WT mice 

developed strong preferences for HSD and for HFD when either diet is measured 

against SC consumption. These preferences developed quickly upon 

presentation of the diets and persisted for the duration of study. In our 

observations with WT mice, we noted an ∼80% preference for HSD and an 

∼100% preference for HFD compared with SC. MC4R−/− mice, when placed 

under the same feeding paradigms, showed a temporary preference for HSD or 

HFD over SC. However, after the period of dietary novelty ended and feeding 

behavior reached a steady state during week 2, the MC4R−/− displayed a distinct 

lack of preference for either the HSD or the HFD. This lack of preference was 

characterized by the continued consumption of SC, which drove the preference 

ratio for HSD and HFD to a level lower than that in WT mice. No increased 
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preference for HSD or HFD over chow could be observed in the MC4R+/− mice, 

despite their hyperphagia lending additional relevance of these results to human 

MC4R haploinsufficiency. 

The divergent results of this study compared with previous studies 

necessitate a careful comparison of the experimental methods. In general, many 

previous studies have concluded that loss of melanocortin signaling results in an 

elevated preference for fat and a decreased preference for carbohydrates. 

Ubiquitous overexpression of agouti, as in the Ay/a mouse, was shown to cause 

elevated fat consumption at the expense of carbohydrate consumption in a 

chronic three-choice diet through blockade of MC3R and MC4R signaling [100]. 

Furthermore, ICV administration of AgRP, the endogenous antagonist of MC3R 

and MC4R, also acutely increases fat consumption in Long–Evans rats [37]. 

Although these models addressed food preference in chronic and acute models 

of inhibition of central melanocortin signaling, they can be assumed to be models 

of dual MC3R and MC4R inhibition. ICV administration of a variety of nonspecific 

MC3R/MC4R agonists such as MTII has also been shown to specifically 

decrease fat intake [104]. These studies are generally interpreted to argue that 

inhibition of MC4R stimulates preference for, or the reward value of, dietary fat 

and that this plays a role in the hyperphagia seen in MC4R-deficiency states. 

However, in contrast with previous pharmacological models of dual MC3R/MC4R 

inhibition, MC4R−/− mice on a mixed genetic background on a chronic three-

choice diet showed no clear preference for fat, protein, or carbohydrate [34]. This 

observation most closely aligns with our results, although the latter study may be 
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confounded by potential stress-induced anorexia from handling [91]. Recently, 

shRNA blockade of MC4R signaling in the nucleus accumbens was shown to 

prevent stress-mediated anhedonia, measured as a lack of sucrose preference 

[105]. Although this result seems to conflict with our findings, we must note that 

our studies involved acclimatized, rather than stressed, animals. Furthermore, we 

focused our studies on the global deletion of one or both alleles of the MC4R to 

model the human melanocortin obesity syndrome. We noted significant 

hyperphagia in the MC4R−/− and MC4R+/− mice contemporaneous with the low 

preference for palatable diets, ruling out a generalized stress-induced anorexia. 

Melanocortin signaling in the amygdala is suspected to be at least partially 

responsible for the effects on fat preference. MC4R expression is relatively high 

in the CeA, a brain region involved in food reward and macronutrient selection. 

Stereotaxic injections of the MC3R/MC4R antagonists AgRP or SHU9119 into 

the CeA have been shown to acutely increase fat consumption and overall food 

consumption in rats. Conversely, MTII injections had the opposite effect [48]. 

These effects on dietary reward are supported by evidence that ICV AgRP 

injections in rats increased fat-associated motivation in behavioral tests. Although 

motivation for sucrose reinforcers was not affected in a progressive ratio test, the 

Pavlovian response to macronutrient paired stimuli switched from sucrose to fat 

following AgRP injection [39]. However, just like agonism or antagonism of MC3R 

and MC4R, site-specific modulation of melanocortin receptors also may not 

replicate the biology of hyperphagia in humans with global MC4R 

haploinsufficiency. 
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In previous reports, a clear and sustained gene dose-dependent 

hyperphagic response to a high-fat diet was noted when MC4R−/− and +/− 

animals were switched from SC to HFD in a one-choice study [30]. In the current 

study, we still observed this fat-induced hyperphagia during the first few days of 

novel fat presentation and also whenever the SC choice is removed from the 

cage after the mice become accustomed to both diets. We consistently observed 

MC4R−/− mice eating the most of any single diet under one-choice studies; 

however, the ratio of calories from either HFD or HSD consumed by MC4R−/− 

mice is significantly reduced whenever there are two dietary choices. Although 

this finding is paradoxical considering the tendency for MC4R−/− and +/− to 

overeat, we consistently observed an exaggerated gene dose-dependent 

hyperphagia in MC4R−/− and +/− caused by the introduction of dietary variety 

(Fig. 3-6). Although WT mice were generally resistant to chronic hyperphagia 

under two-choice diet regimens, the MC4R−/− mice consistently exhibited the 

most dramatic increases in calorie intake when given dietary variety. This 

increase was even greater than that seen in db/db mice under a high-fat/SC 

choice diet. 

Several potential explanations may underlie the unique observations in 

this study, relative to the prevailing model. MC3R signaling, which is also 

affected by treatment with nonspecific melanocortin agonists and antagonists, 

may play a role in dietary preference that confounds results previously attributed 

to MC4R. Second, the current study uses a palatable solid two-choice model that 

has not been used previously in the study of dietary preference. In using HSD 
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and HFD as the alternative choice from standard chow, we use diets that are 

both high in their respective macronutrient contents and highly palatable to WT 

mice, as evidenced by the observed prolonged preference. The low palatability 

for WT mice of the high-fat and high-carbohydrate diets used in previously 

reported studies may also have confounded tests of the effects of the MC4R 

genotype. By studying feeding behavior in a chronic model, we were able to 

isolate the effects of MC4R deficiency on preference from the influence of dietary 

novelty and stress. Finally, ICV administration of melanocortin 

agonists/antagonists may not produce the organism-wide diminution of MC4R 

signaling present in the human haploinsufficiency syndrome. Outside of the 

brain, MC4R expression has been described in the gastrointestinal tract, 

including in vagal nerves and myenteric ganglia [106], which also play a role in 

dietary behaviors. 

In summary, the findings presented here highlight an important phenotype 

that may hold particular relevance to the human melanocortin obesity syndrome. 

Although aspects of reward and hedonic drive can clearly be modulated by 

administration of nonspecific melanocortin compounds intracerebroventricularly 

or into specific brain regions, our data demonstrate that global loss of MC4R in 

an animal does not cause hyperphagia by increasing preference for palatable 

high-carbohydrate or high-fat foods [97]. Although these studies did not 

specifically measure the reward value of the given food choices, they imply that 

hyperphagia in this model is not driven by an increased reward value attached to 

palatable foods. 
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Abstract 

The melanocortin-4 receptor (MC4R) is expressed in the brainstem and 

vagal afferent nerves, and regulates a number of aspects of gastrointestinal 

function. Here we show that the receptor is also expressed in dispersed epithelial 

cells of the gastrointestinal system, from duodenum to descending colon. 

Furthermore, MC4R is the second most highly expressed GPCR in peptide YY 

(PYY) and glucagon-like peptide one (GLP-1) expressing enteroendocrine L 

cells. When vectorial ion transport is measured across mouse or human intestinal 

mucosa, administration of a-MSH induces a MC4R-specific PYY-dependent anti-

secretory response consistent with a role for the MC4R in paracrine inhibition of 

electrolyte secretion. Finally, MC4R-dependent acute PYY and GLP-1 release 

from L cells can be stimulated in vivo by intraperitoneal administration of 

melanocortin peptides to mice. This suggests physiological significance for 

MC4R in L cells, and indicates a previously unrecognized peripheral role for the 

MC4R complementing vagal and central receptor functions. 
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Introduction 

The Melanocortin-4 Receptor (MC4R) is a 7-transmembrane (7TM) Gαs-

coupled receptor that plays an integral role in energy homeostasis. Mutations 

causing loss-of-function of the MC4R result in severe obesity with hyperphagia, 

hyperinsulinemia, and increased somatic growth [28]. The melanocortin obesity 

syndrome is caused by MC4R haploinsufficiency and is known to be the most 

common monogenic cause of severe human obesity occurring in up to 5% of 

individuals with early-onset obesity [5].  

 The MC4R is expressed in up to 150 brain regions, with particularly high 

expression in the paraventricular nucleus of the hypothalamus (PVN) as well as 

in the dorsal motor nucleus of the vagus (DMV) within the hindbrain [6]. Within 

these brain regions, the MC4R responds to its endogenous agonist, alpha-

melanocyte stimulating hormone (α-MSH), and its endogenous antagonist, 

Agouti-Related Protein (AgRP), which are released from POMC neurons and 

AgRP/NPY neurons respectively. These inputs to MC4R neurons respond to a 

cascade of homeostatic cues either from the circulation or through vagal signals 

in order to regulate MC4R activity [4]. Activation of the MC4R by α-MSH, or any 

of its synthetic analogues, generally leads to weight reducing effects [107], 

including a reduction in caloric intake as well as an increase in energy 

expenditure. Conversely, blockade of MC4R by AgRP results in robust increases 

in feeding as well as decreases in energy expenditure [108, 109]. The MC4R 

knockout mouse (MC4R-/-) expectedly exhibits severe obesity and hyperphagia 

[28] with notable defects in acute responses to dietary fat [29, 30], as well as 
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alterations in macronutrient preference [110]. Study of the MC4R has thus often 

focused on the underlying mechanisms behind these centrally mediated effects 

of MC4R on feeding behaviors. 

 The MC4R also regulates gastrointestinal (GI) function indirectly. The 

highest site of expression of the MC4R is in the DMV in the brainstem [6], the site 

of the preganglionic parasympathetic vagal efferent nerves that regulate the 

gastrointestinal system. Moderate levels are also seen at the primary site of 

receipt of vagal afferents in the nucleus of the solitary tract (NTS). Indeed, a third 

of all vagal afferents in the nodose ganglion express MC4R, and stomach and 

duodenum are innervated by MC4R positive vagal afferents and efferents [70]. 

While details of the neuroanatomy and function of the MC4R in the brainstem 

remain to be determined (e.g. see [69]), caudal brainstem administration of 

melanocortin agonists inhibit food intake [111, 112], and more recently, injection 

of melanocortin agonists into either the DMV or NTS decreased phasic gastric 

contractions [69]. Stereotaxic injections of melanocortin agonists, MT-II or α-MSH 

into either the DMV or the NTS can modulate gastric activity via vagal outflow to 

the stomach. This effect was blocked by administration of melanocortin 

antagonist SHU9119, vagotomy, or knockout of the MC4R [69]. Thus, the 

melanocortin system is likely to affect food intake not only through effects on 

behavioral centers in the CNS, but also secondarily through MC4R signaling 

involved in the postprandial functions of the enteric nervous system (ENS) [70].  

 In relation to food intake, the gastrointestinal (GI) tract functions in part by 

releasing a number of hormones that signal information about gut nutrient 
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content to other peripheral organs and the brain. These hormones also function 

within the GI tract to regulate nutrient and electrolyte absorption. Prior to meal 

intake, P/D1 cells in the fundus of the stomach release ghrelin, a hormone that 

acts to initiate a feeding bout. Following a meal, several key peptides rise, 

including cholecystokinin (CCK) released from I-cells in the duodenum [113], 

gastric inhibitory peptide (GIP) released from K-cells in the duodenum and 

jejunum [114], glucagon-like peptide 1 (GLP-1), and peptide YY (PYY) both 

released from L cells that predominate in the ileum and colon [114, 115]. Both 

CCK and PYY3-36, an active cleavage product of PYY, act as potent satiety 

factors that can reduce meal size acutely [60, 115]. Interestingly, CCK, which is 

known to bind vagal afferent CCK1 receptors and signal through the NTS, 

requires brainstem MC4R signaling in order to reduce meal size [27]. While 

PYY3-36 mediated inhibition of food intake is not dependent on central MC4R 

signaling [68], the contributions of MC4R to gut hormone release remain largely 

uncharacterized and may constitute an additional contribution to feeding 

behaviors.   

 Control of GI hormone release from enteroendocrine cells is mediated by 

a variety of signals, either apically from luminal nutrients or basolaterally through 

stimulation by the ENS or from the circulation. A large number of G protein-

coupled receptors (GPCRs), for example, are expressed by enteroendocrine 

cells [94, 116]. PYY secretion has been shown to be affected by GPCR 

activation, including the acylethanolamine receptor GPR119, which is expressed 

on enteroendocrine L cells. Apical or basolateral administration of a GPR119 
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agonist to mouse or human colon mucosa suppresses electrolyte secretion via 

endogenous PYY release and its subsequent binding to nearby epithelial Y1 

receptors [117]. Similarly, ghrelin secretion from P/D1 cells may also be 

regulated by a number of GPCRs. A previous study detected MC4R mRNA by 

PCR in a mouse enterocyte preparation. In this study, reduced intestinal 

expression of microsomal triglyceride transfer protein (MTP) was seen in db/db 

and MC4R-/- mice [118].  These data, along with the absence of effect of 

vagotomy on intestinal MTP expression, were used to infer functional activity of 

leptin and melanocortin signaling in intestinal epithelial cells.  More recently, 

gastric ghrelin positive cells were shown to highly express several GPCRs, 

including the MC4R, with the potential to modulate hormone secretion in 

response to neural or endocrine signals [72]. The enrichment of GPCR 

expression in gastric ghrelin-positive cells suggests that the MC4R may also 

contribute directly to the regulation of hormone release via enteroendocrine cells. 

Given the discovery of MC4R in both vagal neurons and ghrelin cells, and the 

suggestion of broader MC4R expression along the length of the intestine in the 

GI system, we sought to characterize MC4R expression and function in 

enteroendocrine cells of the GI tract, a crucial site in gut-brain communication 

and a crucial site of gut-brain communication and energy homeostasis.  
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Results 

MC4R mRNA expression is enriched in some enteroendocrine cell populations 

CCK-eGFP, GIP-venus, and GLP-1-venus positive cells were FACS-

purified from single cell preparations of mucosal cells generated from the 

proximal small intestine of transgenic CCK-eGFP [92], GIP-venus [93] or GLP-1-

venus reporter mice [94], respectively. cDNA from each of the purified 

enteroendocrine cell populations was analysed for melanocortin receptor 

expression by a qPCR array targeting 379 non-odorant 7TM receptors (Figure 4-

1) as previously reported for gastric ghrelin cells [72].  Among the five 

melanocortin receptors, the MC4R was the only receptor expressed above 

background levels in CCK (Figure 4-1A) and GLP-1 cells, whereas none of the 

melanocortin receptors were expressed above background levels in GIP cells 

(Figure 4-1B). MC4R mRNA was enriched 430-fold in the GLP-1 cells, thus being 

the second most enriched receptor expressed in GLP-1 cells (Figure 4-1C). In 

CCK cells, MC4R mRNA was enriched 9-fold. Thus, MC4R is highly expressed 

and highly enriched in particular in the GLP-1 enteroendocrine cells.  
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Figure 4-1: Expression of melanocortin receptors in enteroendocrine cells. 
Scattergrams exhibiting qPCR expression of the five melanocortin receptors 
(annotated green dots) among 379 7TM receptors (grey plus green dots) 
examined in FACS-purified cells from the proximal small intestine from 
transgenic (A) CCK-eGFP, (B) GIP-Venus, and (C) GLP-1-Venus reporter mice 
(Y-axis) versus expression in non-fluorescent mucosal cells (X-axis). The 45°-
angled lines indicate the enrichment of expression in the fluorescent FACS-
purified enteroendocrine cells versus the neighboring enterocytes. The grey 
shaded area in each of the scattergrams is considered as noise level. 
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α-MSH stimulated PYY response in intestinal mucosa is mediated by MC4R 

Efforts to detect functional MC4R responses in semi-purified ex vivo 

preparations were met with some limited success. FACS-purified ghrelin-GFP 

cells were previously demonstrated to express MC4R [69], and melanocortin 

agonists induced ghrelin release from gastric mucosal preparations (Figure 4-2). 

However, melanocortin agonists, such as a-MSH or LY2112688 were unable to 

induce GLP-1 release from mouse colonic crypt preparations (Figure 4-2). In 

contrast, GLUTag cells, a cell line derived from a GLP-1 positive L cell tumor 

[119], did exhibit a clear functional MC4R response to multiple melanocortin 

ligands, as measured using a phospho-ERK assay (Figure 4-3).  
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Figure 4-2: Hormone release from mouse GI organotypic preparations. (A) 
Ghrelin release from primary gastric mucosal cells (B) GLP-1 release from 
primary colonic crypts treated with the MC4R agonist LY2112688, a-MSH or 
IBMX at concentrations shown (with n numbers in parenthesis).  
 
 

 
Figure 4-3: MC4R ligand induced ERK phosphorylation in GLUTag cells. 
Western blot analysis of phosphorylation of ERK in GLUTag cells treated with 
GIP, NDP-a-MSH, a-MSH or the MC4 specific agonist LY2112688 
(concentrations in nM) for five minutes. The MC4R specific antagonist HS014 
was added prior to NDP-a-MSH, a-MSH or LY2112688 (each at 10 nM) in the 
experiments shown in the last column for each ligand.  
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 To further examine whether MC4R expression in L cells has functional 

significance, we next investigated murine intestinal mucosae from MC4R+/+ and 

MC4R-/- mice pharmacologically. α-MSH was applied either apically or 

basolaterally to different regions of the intestinal mucosae and luminally-directed 

Cl- secretion was measured. Anion secretion was stimulated first by basolateral 

application of vasoactive inhibitory peptide (VIP) which binds its epithelial 

receptor, VPAC, and via Gas-coupling propagates an increase in short-circuit 

current (ISC). Anti-secretory effects after VIP pretreatment were measured as 

reductions in ISC and can result from locally released PYY (or NPY) stimulating 

Gαi-coupled epithelial Y1 receptors and reducing Cl- secretion [95, 117, 120]. 

Basolateral application of α-MSH reduced ISC levels to a significantly greater 

degree than apical peptide addition (Figure 4-4A) and consistently so in each of 

the four areas tested from the mouse GI tract (Figure 4-4B). The remaining ISC 

was abolished by subsequent addition of PYY as indicated in the representative 

traces (Figure 4-6A). The anti-secretory response profile to α-MSH exhibited a 

similar regional distribution to that described for L cell distribution in mice [121]. 

Furthermore, the α-MSH responses were of similar magnitude to those elicited by 

PSN632408 (PSN) mediated GPR119 activation in the mouse jejunum and 

descending colon (dashed lines, Figure 4-4B), an effect described previously 

[117]. When α-MSH was applied basolaterally to intestinal mucosa from MC4R-/- 

mice, the anti-secretory response was absent. Importantly, responses to 

exogenous PYY (data not shown) and PSN were present in these tissues, and 

were not significantly different from agonist responses in MC4R+/+ mucosae, 
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suggesting otherwise normal mucosal transport and L cell function (Figures 4-4 

C-D).  

 Concentration-response curves were constructed using a variety of 

basolaterally applied melanocortin receptor synthetic peptide agonists including 

NDP-α-MSH, MT-II, LY2112688, and the endogenous agonists α-MSH and 

ACTH, as well as apically and basolaterally applied GPR119 agonist PSN. All of 

the tested melanocortin receptor agonists exhibit between ~10 and ~1000 fold 

higher potency than PSN (Figure 4-4E). EC50 values (in nM) were; 2.0, 2.1, 23.9, 

459.1 and 684.8, for MT-II, NDP-α-MSH, LY2112688, α-MSH and ACTH 

respectively, compared with 4.8 µM and 4.2 µM for apical and basolateral PSN. 

The rank order of potency of melanocortin peptides in the mucosal assay 

paralleled that seen in tissue culture expression systems [6]. Furthermore, 

pharmacological blockade of MC4R using the MC4R selective antagonist HS014 

[122] indicates a concentration-dependent attenuation of a-MSH responses 

(Figure 4-4F). Taken together, these results suggest that MC4R expression in 

the GI tract is functional, and has the potential to regulate epithelial Cl- secretion 

in a similar manner to that described for GPR119 agonism. Interestingly, this 

response appears to exhibit species-dependence, since melanocortin-induced 

PYY and GLP-1 release could not be detected in the rat, using either ISC analysis 

from isolated mucosal preparations, or perfused intestinal preparations (Figure 4-

5). 
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Figure 4-4: α-MSH activity in mouse GI mucosae occurs via MC4R 
A: Representative α-MSH (1 µM) responses in MC4R+/+ mouse descending 
colon mucosa to apical (ap) or basolateral (bl) addition. Basal short-circuit current 
(ISC) values (in µA) are indicated to the left of each trace and the exposed 
mucosal area was 0.14 cm2. Mucosae were pre-stimulated with vasoactive 
intestinal polypeptide (VIP, bl, 10 nM) after which bl α-MSH partially inhibited the 
VIP-elevated ISC and subsequent bl addition of peptide YY (PYY, 10 nM) 
inhibited the remaining elevated ISC. B: Sensitivity to α-MSH (1 µM) added to bl 
(black bars) or ap (grey bars) compartments bathing WT mucosae from different 
GI areas. Mucosae were prepared from jejunum, terminal (Term.) ileum, 
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ascending (Asc.) colon and descending (Desc.) colon. The horizontal dashed 
lines represent responses to the GPR119 agonist PSN632408 (10 µM, ap) in 
jejunum (jej) and desc. colon. * P<0.05, ** P<0.01, *** P<0.001 comparing bl α-
MSH with ap responses using 1-way ANOVA with Dunnett’s post-test. C: 
Representative traces showing loss of α-MSH response in MC4R-/- colon 
mucosa but normal GPR119 activity. Additions were in order, VIP (bl, 10 nM) α-
MSH (bl, 1 µM) or GPR119 agonist PSN632408 (ap, 10 µM) and finally PYY (bl, 
10 nM). D: Regional GI sensitivity to α-MSH and PSN632408 in MC4R-/- colon 
mucosa. Responses to α-MSH (1 µM) were absent while PSN632408 (ap, 10 
µM) were normal. Statistical differences, + P<0.05, ++ P<0.01, +++ P<0.001 
compare bl α-MSH responses in MC4R-/- with those in MC4+/+ colon (in B). E: 
Concentration-response curves in WT descending colon for NDP-α-MSH, MT-II, 
LY2112688, α-MSH and ACTH (all bl additions only) and for comparison 
PSN632408 added either ap (grey) or bl (black). EC50 values are quoted in 
Results text. F: MC4R antagonist HS014 inhibited α-MSH (1 µM) responses in 
WT mouse descending colon. Tissues were pre-treated with HS014 (at the 
concentrations shown) 20 min prior to α-MSH (bl, 1 µM). Bars and points are the 
mean ±1SEM with n values shown in parenthesis. * P<0.05, ** P<0.01, *** 
P<0.001 compare data points with control α-MSH responses using 1-way 
ANOVA with Dunnett’s post-test. 
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Figure 4-5: Mucosal responses to α-MSH, PSN632408 and PYY, and GLP-1 
release following melanocortin ligand infusion are not detectable in the rat 
intestine. (A-D) Regional sensitivity to basolateral (bl) or apical (ap) α-MSH (1 µM, 
in A) or GPR119 agonist, PSN632408 (10 µM, in B) in duodenum, jejunum, terminal 
(Term.) ileum, ascending (Asc.) and descending (Desc.) colon. Subsequent 
reductions in Isc to PYY (10 nM bl) after either α-MSH (in C) or PSN632408 (in D). 
Values are the mean - 1SEM with n numbers in parenthesis. (E) GLP-1 release from 
perfused rat small intestine. The small intestine was perfused via the artery, and 
infusions of 10 nM bombesin, 10 nM α-MSH, 1 µM α -MSH, 10 nM LY2112688 or 1 
µM LY2112688 were conducted for five minutes. The concentration of GLP-1 was 
measured in the venous effluent. In A-D, values are the mean - 1SEM with n 
numbers in parenthesis. In B, * P < 0.05 compares apical PSN632408 responses 
with those from more proximal intestinal areas as shown, while in C, ** P < 0.01 for 
comparisons as shown and in both one-way ANOVA with Bonferroni post-test was 
performed.  
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Anti-secretory effects of α-MSH are Y1 receptor-mediated and glucose-sensitive 

in mouse and human colon 

In order to determine the mechanism by which MC4R activation causes 

anti-secretory activity in the GI tract, α-MSH responses were measured in the 

presence of additional pharmacological manipulations. In mouse colon, α-MSH 

responses were not tetrodotoxin (TTX) sensitive, suggesting that the response to 

α-MSH is mediated directly at the epithelial cells and not via submucosal neuron 

stimulation (Figure 4-6A). In addition, pretreatment with the Y1 receptor 

antagonist BIBO3304 (BIBO) alone as well as in conjunction with Y2 receptor 

antagonist BIIE0246 (BIIE) almost completely blocked the effects of α-MSH 

(Figure 4-6A). Furthermore, testing of human colonic mucosa replicated the 

effects of basolaterally applied α-MSH on ISC and separately shows blockade by 

BIBO but not by BIIE alone (Figure 4-6B), consistent with the previous 

knowledge that Y2 receptors mediate neuronal inhibitory mechanisms in mouse 

and human colon [123]. The same Y1 receptor-mediation was seen for the more 

potent a-MSH agonists MT-II, NDP-a-MSH and LY2112688 (Figure 4-7). To 

ensure the specificity of MC4R in the effect seen in human tissues, pretreatment 

with HS014 virtually abolished the anti-secretory effects of α-MSH (Figure 4-6B). 

HS014 also antagonized MT-II, NDP-α-MSH and LY2112688 responses in 

C57BL/6J mouse colon, while not affecting PYY activity (Figure 4-7). Taken 

together, these results suggest that basolateral α-MSH reduces ISC via MC4R-

stimulated release of PYY, which binds local epithelial Y1 receptors and inhibits 
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anion secretion as a consequence, and this mechanism is consistent in mouse 

and human colon. 

 We further sought to characterize the glucose-sensitivity of this MC4R 

response by replacing glucose with mannitol on either the apical or basolateral 

side of mouse colonic mucosa. Responses to a-MSH were significantly inhibited 

when glucose was removed from the basolateral surface only, in contrast with 

PYY responses, which were not glucose-dependent (Figure 4-6C). Phloridzin 

inhibits the co-transport of Na+ and glucose across apical membranes via SGLT1 

(i.e. it reduces ISC by inhibiting apical-to-basolateral Na+ movement) and thus 

replacing apical glucose only with mannitol rendered phloridzin significantly less 

active (Figure 4-6C).  
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Figure 4-6: α-MSH activity in mouse and normal human colon mucosa is 
Y1- and MC4R-mediated, and is glucose-sensitive. 
A: α-MSH (bl, 1 µM) in C57BL/6J mouse descending colon mucosa after vehicle 
(Control), tetrodotoxin (+TTX, bl, 100 nM) or the Y1 antagonist, BIBO3304 
(+BIBO; bl, 300 nM) alone or in combination with the Y2 antagonist, BIIE0246 
(BIIE; bl, 1µM), added 20 min prior to α-MSH. B: In human colon mucosa α-MSH 
responses (1 µM, bl) are also basolaterally-targeted (ap responses in grey), 
BIBO3304- and HS014- sensitive but not BIIE0246-sensitive (+BIBO; 300 nM, 
+BIIE; 1 µM, or +HS014; 100 nM, each added 30 min prior to bl α-MSH). C: 
Responses to α-MSH (1 µM, bl) are glucose-dependent in WT mouse 
descending colon mucosa. In controls, KH buffer containing 11 mM glucose 
bathed mucosa on both sides, whereas 11 mM mannitol (Mann) replaced 
glucose on either ap or bl surface, and in the first histogram resultant α-MSH 
responses (bl, 1 µM) are shown. In the subsequent histograms, PYY (10 nM, bl) 
responses 20 min after α-MSH and finally the SGLT1 inhibitor, phloridzin (50 µM, 
ap, grey bars) was added 15 min after PYY. Ap mannitol only reduced apical 
SGLT1 activity and thus sensitivity to apical phloridzin. Each bar is the mean -
1SEM with n values in parenthesis. * P<0.05, compared to respective controls 
using 1-way ANOVA with Dunnett’s post-test. 
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Figure 4-7: MC4R agonism in C57BL/6J mouse colon mucosa are Y1 
receptor-mediated. MC4R responses activated by basolateral MT-II (3 nM in A) 
or NDP-α-MSH (3 nM in B) or LY2112688 (30 nM in C) with subsequent PYY 
responses (10 nM, bl). Pooled agonist responses (mean -1SEM) are shown after 
vehicle (Controls) or Y1 receptor blockade (+BIBO (BIBO3304); bl, 300 nM), or 
MC4R antagonism (+HS014; bl, 30 nM). * P < 0.05, ** P < 0.01, *** P < 0.001 
compare data points with control α-MSH responses using 1-way ANOVA with 
Dunnett’s post-test. 
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 Tissue resistances were the same in MC4R+/+ and MC4-/- mucosa, 

however basal ISC levels were significantly elevated in MC4R-/- colon (P < 0.05) 

indicating loss of a mucosal anti-secretory agent but otherwise normal mucosal 

barrier function (Figure 4-8). Additionally, we observed that the competitive 

MC4R antagonist HS014 alone increased basal ISC levels in MC4R+/+ colon (3.6 

± 0.4 µA/cm2, n=31, at 30 nM) and in human colon (6.0 ± 2.4 µA/cm2, n=4, at 100 

nM), indicating a degree of MC4R specific melanocortinergic tone in both tissues. 

 As a prelude to in vivo assays, we monitored fecal pellet transit in isolated 

colon from C57BL/6J mice in order to establish whether L cell activation results in 

slower colonic transit. In the presence of either a-MSH, LY2112688 or GPR119 

agonist PSN at the same concentrations used in mucosal assays, colonic transit 

was inhibited significantly (Figure 4-9) suggestive of endogenous PYY (and 

possibly GLP-1) release resulting in slower colonic motility [124]. 
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Figure 4-8: Basal ISC levels are elevated in MC4R-/- colon mucosa.  Basal ISC 
(in A) are observed in colon preparations from MC4R-/- compared with MC4R+/+ 
mice.  Basal resistances from the same preparations are unchanged. Bars are 
the mean + 1SEM with n numbers in parenthesis (* P < 0.05, Student’s unpaired 
t-test). 
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Figure 4-9: C57BL/6J mouse colon transit is attenuated by MC4R activation 
in vitro. Descending fecal pellet movement (as a % of colon length) in A: the 
presence of KH (Vehicle), α-MSH (1 µM) or LY2112688 (100 nM) and in B: 
Vehicle (95% ethanol) or GPR119 agonist, PSN632408 (10 µM). Values are the 
mean +1SEM with n numbers in parenthesis. * P < 0.05, ** P < 0.01, Student’s 
unpaired t-test. 
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MC4R activation produces acute release of PYY and GLP-1 in vivo 

Because MC4R expression was found to be present in L cells, and the 

MC4R is functional in the in vitro assays described above, we sought to 

determine if the MC4R could function to regulate L cell secretion in vivo. To test 

this, we first administered a MC4R selective agonist of intermediate potency, 

LY2112688, to activate the MC4R, and then assay acute changes in levels of 

circulating PYY. Since PYY is a satiety hormone that is normally released 

postprandially, we studied mice that were fasted for a minimum of 4 hours to 

ensure that PYY levels were at their baseline. Furthermore, due to potential 

effects of stress, the mice were acclimated to handling with 7 days of vehicle IP 

injections prior to the study day. In order to assess the contribution of the MC4R 

to this response, we studied adult male MC4R+/+, MC4R+/-, and MC4R-/- mice. 

Animals were given IP injections of LY2112688 at a dose of 3 mg/kg of body 

weight, or an equal volume of saline (vehicle). At specific time points after the 

injection, blood was collected in the presence of EDTA and protease inhibitors in 

order to assay plasma levels of PYY. At 10 minutes post-injection, there was a 

statistically significant 3-fold rise in plasma PYY in MC4R+/+ mice compared to 

saline controls, however that rise was blunted in MC4R+/- and MC4R-/- groups 

(Figure 4-10A). A similar rise was apparent in a different cohort at 25 minutes 

post-injection while the effect was blunted again in the MC4R+/- and MC4R-/- 

mice (Figure 4-10B). Lastly, in a cohort measured at 60 minutes post-injection, 

the PYY levels had returned towards normal, although a statistically significant, 

though lower rise still existed in MC4R+/+ compared with saline controls (Figure 
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4-10C). Taken together, these results suggest that activation of the MC4R 

promotes a robust and acute PYY release that is measurable as little as 10 

minutes after IP injection of an MC4R agonist. No increase in GIP or ghrelin 

could be detected at 10 minutes post-LY injection, although there were 

decreases in GIP levels specifically in MC4R+/+ and MC4R+/- mice, these were 

not statistically significant (Figure 4-10 D and E). 
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Figure 4-10: Intraperitoneal injection of LY2112688 (LY) increases 
circulating PYY in an MC4R dependent manner. Fasting plasma PYY was 
assayed in adult male MC4R+/+, MC4R+/-, and MC4R-/- mice at A) 10 minutes, 
B) 25 minutes, and C) 60 minutes post IP injection of either vehicle or 3 mg/kg 
LY (A-C). The 10 minute samples were also analyzed for differences in D) 
Ghrelin and E) GIP across all genotypes. Closed symbols denote vehicle 
treatment; open symbols denote LY treatment. Statistical significance was 
analyzed between treatments at each genotype using 1-way ANOVA with 
Bonferroni post-test. *** P<0.001, *P<0.05. 
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Pharmacological and physiological properties of MC4R-stimulated GI peptide 

release in vivo 

In order to determine the importance of acclimation and acute stress in the 

detection of this response, PYY levels were measured in cohorts of adult male 

C57BL/6J mice that were acclimated to handling and vehicle injections for up to 7 

days, and in age-matched mice that were not subjected to prior handling. In the 

group that was acclimated prior to the study day, there was a statistically 

significant 3-4 fold rise in fasting plasma PYY at 10 minutes post-injection of 3 

mg/kg LY2112688 compared to vehicle injected controls (Figure 4-11A). This rise 

was expectedly consistent with that seen previously in the MC4R+/+ group 

(Figure 4-10A). In the group that was not handled prior to study, there was still a 

greater than 2 fold elevation in fasting plasma PYY following the injection of 

LY2112688 compared to the control group (Figure 4-11C). Taken together, these 

findings suggest that the rise in fasting PYY levels in the circulation are only 

modestly affected by animal handling and the expected HPA axis activation. We 

also sought to determine if the release of PYY reflects overall L cell activation by 

MC4R agonism. In addition to release of PYY, L cells also co-secrete the incretin 

GLP-1. Using plasma samples from acclimated mice, we also measured plasma 

GLP-1 levels in the circulation. Despite the presence of DPP4 inhibitors to 

prevent GLP-1 degradation, the fasting levels of the hormone remained very low. 

However, while GLP-1 levels in vehicle injected samples were mostly 

undetectable by the assay, the LY2112688 treated samples rose to detectable 

levels, suggesting a concurrent but fleeting rise in GLP-1 (Figure 4-11B). 
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 To further elaborate on MC4R-mediated gut peptide release, a dose-

response experiment was conducted in which animals were injected with 0 

(vehicle), 0.003, 0.03, 0.3, 3, or 10 mg/kg doses of LY2112688 following a 

protocol with no acclimation period and a 4 hour fast (Figure 4-11D). 

Interestingly, the rise in plasma PYY at 10 minutes post-injection was still robust 

at a dose as low as 0.3 mg/kg. Otherwise, the rise in PYY followed a dose-

response relationship. The low doses of 0.03 and 0.003 mg/kg did not appear to 

have an effect on basal PYY levels (Figure 4-11D). These results suggest that 

the release of PYY is sensitive to a wide range of MC4R agonist concentrations 

including those used in prior pharmacological studies of the efficacy of 

melanocortin peptides in weight loss [85]. Further, we tested the activity of the 

endogenous MC4R agonist, a-MSH, at a dose of 10 mg/kg. Treatment with α-

MSH also produced a statistically significant rise in plasma PYY relative to saline 

treatment (Figure 4-11E). Notably, the fold increase, at less than 2X, was 

reduced compared to the more potent synthetic a-MSH analogue LY2112688. 

Overall, these results do suggest that in vivo PYY release can be stimulated by 

the native agonist of the MC4R and lends further support to a potential 

physiological relevance of this peripheral mechanism (for a schematic see, 

Figure 4-12). 
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Figure 4-11: Injection of LY2112688 increases plasma PYY in a dose-
dependent and stress-independent manner and also affects circulating 
GLP-1. Fasting levels of plasma PYY and GLP-1 were assayed in adult male 
C57BL/6J mice that were either acclimated or unacclimated to handling and IP 
injections. A-B) Mice acclimated to daily handling and IP injections exhibit a 
significant increase in plasma PYY levels (A) and GLP-1 levels (B) 10 minutes 
after injection of 3 mg/kg LY compared to vehicle injected mice. C) IP injections 
to unacclimated mice exhibit a significant increase in plasma PYY levels 10 
minutes after injection of 3 mg/kg LY. D) Naïve mice exhibit a dose-dependent 
increase in plasma PYY with injections of vehicle, 0.003 mg/kg LY, 0.03 mg/kg 
LY, 0.3 mg/kg LY, 3 mg/kg LY and 9 mg/kg LY. A near-maximal response was 
observed at a dose as low as 0.3 mg/kg LY. E) Fasting PYY levels exhibit a 
statistically significant rise in response to the endogenous melanocortin ligand a-
MSH (10 mg/kg) in unacclimated mice at 10 minutes post-IP injection. Statistical 
significance was analyzed between groups using Student’s t-test. * P < 0.05, *** 
P < 0.001. 
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Figure 4-12: Regulation of GI epithelial function by MC4R activation. L cells 
receive basolateral regulatory input from enteric neurons, circulatory factors, and 
paracrine agents. MC4R, targeted primarily to the basolateral surface of L cells 
(as opposed to GPR119 which appears present on both domains), is capable of 
inducing release of PYY and GLP-1 in response to melanocortin peptides. The 
PYY release, up to 2-4 times above basal levels in vivo, is sufficient to decrease 
local intestinal epithelial Cl- secretion, shown here, and inhibit motility (an 
example of another peripheral effect). The physiological source of ligand remains 
to be determined but could be α-MSH or another POMC melanocortin derivative. 
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Discussion 

Understanding the physiological functions of peripheral as well as central 

MC4R has important implications for our understanding of energy homeostasis, 

and potentially for the development of therapeutics for obesity. MC4R expression 

is found in many brain nuclei important in feeding behaviors and metabolic 

control [6], and a large body of data supports the role of these central MC4R 

sites in the control of multiple facets of energy homeostasis, from the regulation 

of food intake [125], to the control of sympathetic outflow regulating metabolism 

via actions on brown fat [126], pancreatic function [127], and liver [70, 128]. 

Central melanocortin signaling has also been implicated in the actions of 

peripheral adipostatic, hunger, and satiety factors such as ghrelin [129], leptin 

[130], and CCK [27]. Additionally, data now show that the central melanocortin 

system may also regulate GI function. Recent reports of MC4R expression in 

vago-vagal circuitry responsible for sensory and motor control of the GI tract [70] 

suggest that peripheral MC4R functions deserve interrogation. In this study we 

demonstrate significant enrichment and localization of MC4R in L cells of the 

duodenum, ileum, and colon, including a high degree of consistent expression in 

the L cells of the colon. Indeed, MC4R was the most highly expressed GPCR in 

the GLP-1/PYY positive L cells, second only to the GPR119 receptor. This high 

level of enrichment of MC4R lead to the hypothesis that peripheral MC4R may 

play an important role in the regulation of intestinal functions such as mucosal ion 

transport and motility and that release of these intestinal peptides may thus 
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influence energy homeostasis in a manner complimentary to previously 

characterized central MC4R mechanisms.  

 

Enrichment of MC4R Expression in L cells 

To further characterize MC4R expression in the gut, we focused on MC4R 

expression in enteroendocrine L cells within the GI tract. L cells, which are 

responsible for simultaneous secretion of PYY and GLP-1, express a high level 

of MC4R mRNA as evidenced by qRT-PCR analysis of 379 7TM receptors of 

FACS-purified L cell populations marked by a GLP-1 driven reporter mouse line 

(Figure 4-1C). Among the populations resulting from dissociation and FACS 

sorting of mouse GI tract, MC4R expression was highest in the GLP-1 positive 

cells with a several-hundred-fold enrichment relative to non-GLP-1 cells (Figure 

4-1). These results indicated a potential functional role for MC4R in L cell 

function. Similarly, it may be of importance to identify non L cell types in the GI 

tract that express MC4R. 

 

Functional activity of the MC4R in L cells 

Multiple approaches were taken to test the potential function of MC4R in L 

cells, including studies in isolated intestinal cell preparations, in a representative 

enteroendocrine cell line, in mucosa from mouse intestine and human colon, and 

in mice in vivo. In isolated preparations of murine intestinal mucosae, we 

observed robust MC4R anti-secretory responses upon stimulation with 

melanocortin agonists including α-MSH and LY2112688 (Figures 4-6 A-B). This 
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primarily basolateral response was indicative of paracrine PYY signaling as it 

was mediated by Y1 receptors, which are expressed on epithelial cells [131]. 

Importantly, a similar basolaterally-directed, Y1-dependence of MC4R anti-

secretory activity was revealed in human colon mucosa (Figure 4-8B), 

demonstrating conservation of this regulatory pathway in human large bowel, but 

not in rat intestine or colon. Application of TTX in murine preparations was 

ineffective in blocking the anti-secretory a-MSH response, suggesting that 

functional contributions from putative neuronal MC4R were not mediating the 

response to exogenous α-MSH.  

 Replacement of basolateral glucose by mannitol significantly reduced the 

anti-secretory effects of a-MSH (Figure 4-8C). Apical glucose removal had no 

effect on MC4R activity, and PYY responses were glucose-

insensitive.  Phloridzin's dependence on apical glucose for apically-targeted 

SGLT1 activity was evident.  Thus, intestinal glucose-sensitive MC4R agonism 

appears to be similar to that observed for glucose-sensitive intestinal GPR119 

agonism [117] and compounds with clinical potential targeted at these receptors 

should therefore exhibit a reduced risk of hypoglycemia.  

 Notably, MC4R activation also attenuated colonic transit time and to the 

same degree as GPR119 agonism, indicating the potential that endogenous PYY 

and GLP-1 mediate more extensive inhibition within the intestine and colon. 

Additionally, we showed that these intestinal mechanisms were operative in vivo, 

by treating mice with a number of peripherally delivered MC4R agonists. IP 

injections of LY2112688 or α-MSH were able to induce statistically significant, 
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rapid rises in fasting plasma PYY and GLP-1 levels (Figures 4-12 and 4-13). 

Rises in plasma PYY traditionally occur in the post-prandial state and correlate 

with the activated cleavage product, PYY3-36, a potent satiety factor that acts to 

reduce meal size. While our assay did not distinguish between PYY and PYY3-36, 

the functional relevance of both peptides has the potential to alter food intake 

either through intestinal control or central action on satiety and reward [60]. 

Similarly, the a-MSH induced GLP-1 release would be expected to exert an 

incretin effect. Both the in vitro and the in vivo assays demonstrate the 

requirement of MC4R for peripheral stimulation of L cells, as melanocortin 

agonists were ineffective in MC4R-/- tissues (Figures 4-6 C-D) as well as in the 

MC4R-/- animal studies (Figures 4-12 A-C). Taken together our data argues for 

melanocortin mediated PYY/GLP-1 release that is MC4R specific and L cell 

derived. The possibility exists that the IP injections used to cause PYY and GLP-

1 release in our in vivo studies may also be acting via central MC4R by crossing 

the blood-brain barrier or penetrating circumventricular organs. However, our 

evidence supports the likelihood that the MC4R response is direct on L cells and 

without any enteric neuronal influence (Figure 4-14).  

 

Physiological relevance of MC4R in L cells 

Our studies highlight a robust hormonal response to MC4R activation that 

has several downstream implications for behavioral and dietary control that are 

separate but complimentary to the roles of MC4R in the brain. Thus, a-MSH 

acting directly on the GI system could be expected to enhance the incretin 
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response, inhibit GI functions such as ion transport and motility, and enhance the 

release of satiety factors acting both on vagal nerves and directly in the CNS. 

Our studies used exogenously applied MC4R agonists to activate this response, 

however analysis of the basal function of MC4R+/+ versus MC4R-/- colonic 

mucosa supports the notion of endogenous activators of this MC4R system as 

revealed by the higher basal ISC level of MC4R-/- mucosa (Figure 4-10) and the 

acute pro-secretory effect of the MC4R antagonist, HS014 in mouse colon. 

However, the important question remains regarding the source and identity of the 

endogenous ligand that might activate MC4R in L cells and other 

enteroendocrine cells. Furthermore, once this ligand is identified, understanding 

its regulation is paramount to determining the physiological role of this system. 

Our studies indicate that MC4R is targeted to the basolateral domain of L cells 

located in the small and large intestine, arguing that the endogenous agonist is 

unlikely to activate the receptor from the intestinal lumen (Figure 4-14). There are 

a few possible sources for the endogenous ligand including hormones in the 

circulation, paracrine factors from the GI epithelium, and neuronal stimulation 

from the enteric nervous system. The most prominent circulating melanocortin 

agonist is ACTH, which is released from the pituitary gland and is capable of 

binding and activating MC4R in addition to MC2R. ACTH rises acutely with stress 

and therefore may activate L cell MC4R to induce PYY release and cause stress-

mediated changes in feeding behaviors as well as regulate L cell tone. In the GI 

tract there have also been reports of immunoreactivity of POMC-derived proteins 

including γ-MSH, β-endorphin and ACTH within the gastric mucosa [132], and 
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these may activate mucosal MC4R as indicated in Figure 4-14.  In contrast to a 

model invoking serum ACTH as a source of ligand, POMC expressing cells or 

neurons in the GI-tract would provide a local source of MC4R ligand to L cells 

without causing detectable rises in circulating melanocortin peptide levels. Future 

studies should focus on immunohistochemical characterization of POMC 

expressing cells throughout the GI-tract and enteric nervous system, which may 

ultimately uncover a new MC4R-mediated pathway that originates outside of the 

CNS to regulate feeding behaviors. 

 

Pharmacological relevance of peripheral MC4R expression 

Due to its integral role in energy homeostasis and its proven relevance to 

human obesity, the MC4R is a well-validated drug target. Orthosteric peptide 

agonists of the MC4R developed as clinical candidates, including the peptide 

LY2112688, have failed in clinical trials due to deleterious target-mediated 

pressor effects despite successful reduction in body weight in multiple animal 

models [84]. Interestingly, a near maximal PYY response was noted at 

LY2112688 doses as low as 0.3 mg/kg (Figure 4-13), which is similar to doses of 

melanocortin peptides previously shown to be sufficient to induce weight loss in 

primates [85]. More recently, the peptide agonist RM-493 has been described 

that causes significant weight loss in primate studies without causing any rise in 

blood pressure or heart rate following peripheral administration [85]. A 

speculative hypothesis is that the latter compound may have reduced brain 

penetrance, and that development of melanocortin agonists that lack extensive 
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penetration of the blood-brain barrier may allow weight loss without unwanted 

pressor side-effects. If stimulation of MC4R in L cells and other peripherally 

located MC4R can mediate effects on energy homeostasis, this is an important 

shift in current thinking about the melanocortin system, and may also have 

important implications for drug development.  

 Finally, the rapid and robust in vivo release of PYY also represents a 

useful biomarker for MC4R receptor occupancy in vivo. At a time point only 10 

minutes after injection of LY2112688, we consistently observed an average 2-4 

fold increase in plasma PYY that was MC4R dependent and acclimation 

independent. By simply assaying PYY levels, we could determine if MC4R is 

being activated in vivo without the time or expense associated with typical 

readouts like food intake and body weight changes. Furthermore, we expect that 

additional modifications of this assay, such as a greater length of food restriction 

and/or intravenous, rather than IP administration of ligand may further decrease 

the variability of response.  Such facile bioassay is particularly useful for in vivo 

screening approaches that seek to rapidly verify receptor occupancy of MC4R 

targeted drugs.  

 In conclusion the signaling pathway we have elucidated in mouse and 

human intestinal preparations reveals a potentially significant peripheral MC4R 

activity on GI function.  Given the importance of MC4R function in a mouse 

model of bariatric surgery [76] it is even possible that MC4R expression in L cells 

may contribute to the beneficial effects of Roux-en-Y gastric bypass on weight 

reduction and glucose homeostasis [133]. The MC4R may thus be included in 
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the growing group of highly enriched GPCRs expressed, particularly by L cells 

[92] and with therapeutic anti-obesity potential [134]. 
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Abstract 

 The melanocortin-4 receptor (MC4R) is a key regulator of energy 

homeostasis that controls both food intake and energy expenditure. Furthermore, 

mutations causing haploinsufficiency of the melanocortin-4 receptor (MC4R) are 

the most common monogenic cause of severe human obesity, accounting for up 

to 5% of cases of early onset obesity. For several years, research has focused 

on creating potent MC4R agonists to help treat human obesity. While many 

MC4R drugs have effectively reduced body weight, they have also revealed 

potentially deleterious target-mediated effects on the cardiovascular system. As a 

result, drug design and testing must account for these challenges in order to 

safely target the MC4R for anti-obesity therapeutics. In this chapter, I describe 

the development of methods to efficiently test the efficacy and safety of MC4R 

drugs following acute and chronic treatment, including a new rapid way to test 

receptor occupancy using plasma PYY as a biomarker. 

  



   98	
  

Introduction 

 The melanocortin-4 receptor (MC4R), a 7-transmembrane G-protein 

coupled receptor (GPCR), plays an integral role in energy homeostasis and is 

viewed as an ideal drug target for the treatment of obesity. Agonists of the 

MC4R, including the endogenous agonist alpha-melanocyte stimulating hormone 

(α-MSH), cause negative energy balance and subsequent weight loss through 

effects on food intake and energy expenditure. Conversely, antagonists, such as 

the endogenous centrally expressed agouti-related peptide (AgRP), effect 

positive energy balance by increasing food intake and reducing energy 

expenditure [4]. Pharmacological manipulation of the MC4R with exogenously 

applied synthetic agonists and antagonists has been progressing, with one 

compound, RM-493, currently in clinical trials, though no drugs have successfully 

reached the market as weight-regulating therapeutics. 

 In addition to treating obesity, there is additional clinical importance for 

antagonists of the MC4R. By blocking MC4R signaling, food intake may be 

initiated and energy expenditure may be reduced, which can promote weight 

gain. Such therapeutics may enhance outcomes for treatments of anorexia 

nervosa and disease cachexia. It has been shown that blockade or knockout of 

the MC4R ameliorates muscle-wasting induced by lipopolysaccharide (LPS) 

administration or tumor growth [88, 89], validating MC4R antagonism as a 

potentially effective strategy for reversing cachexia.  

 A primary challenge with targeting the MC4R for anti-obesity drug 

development involves interactions of the melanocortin system with the autonomic 
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nervous system.  The MC4R is located in multiple regions of the brain that 

contribute to autonomic tone, including the paraventricular nucleus of the 

hypothalamus (PVN), the dorsal motor nucleus of the vagus (DMV), and the 

ventral portion of the nucleus ambiguous (AMB) [6]. A likely result of these 

interactions is that agonism of the MC4R with potent ligands often results in 

deleterious increases in blood pressure. In fact, central α-MSH administration 

increases blood pressure and heart rate acutely in wild-type mice in an MC4R 

dependent manner [82]. A similar observation was made with chronic 

intracerebroventricular (ICV) infusion of melanotan-II (MT-II), which caused a rise 

in heart rate and blood pressure along with a decrease in food intake and body 

weight [135]. These effects were subsequently blocked by peripheral intravenous 

infusion of adrenergic antagonists, highlighting the importance of altered 

adrenergic tone resulting from changes in melanocortin activity [83]. A reduction 

in adrenergic tone was documented in MC4R haploinsufficient humans, which 

exhibited decreased levels of norepinephrine and epinephrine as well as low 

prevalence of hypertension and decreases in systolic and diastolic blood 

pressure [84]. 

 Despite these findings, more compounds have been developed in hopes 

of identifying a drug that is both effective at weight loss, yet lacking the 

cardiovascular effects. A peptide selective for MC4R, LY2112688 (LY), was 

developed as a derivative from β-MSH that was potent and effective and 

producing weight loss in rodents [136]. However, when LY was administered in 

human trials it rapidly caused a dose dependent rise in blood pressure from 
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placebo-injected controls, rendering the drug unsafe for medicinal use [84]. An 

analogous potent MC4R-selective peptide, RM-493 (or BIM-22493), was 

developed that was able to produce significant weight loss in diet-induced obese 

rhesus macaques without causing an acute pressor response [85]. The 

mechanism underlying the cardiovascular differences between these drugs is 

currently unknown, though it does suggest that varying drug characteristics may 

differentially alter physiological effects of treatment.  

 Our laboratory decided on a different approach to attempt to circumvent 

the pressor effects of potent orthosteric agonists of the MC4R.  We hypothesized 

that allosteric modulators might be effective for weight loss yet lack pressor 

activity, particularly if the pressor response was a consequence of non-

physiological overstimulation of the melanocortin system.   This approach would 

enhance the native physiological temporo-spatial patterns of receptor activity 

without aberrantly affecting MC4R’s that should remain inactivated [86].  

 With the impending arrival of multiple potential MC4R compounds, both 

peptides like RM-493 and small molecule allosteric modulators, in vivo testing will 

be necessary to characterize the physiological effects of the various drugs. Such 

testing must also include investigating potential efficacy and safety in MC4R 

haploinsufficient subjects [84], which represent a significant portion of the obese 

population [5]. 

 Unfortunately, testing for MC4R drug efficacy can be time-consuming and 

complex. The desired results of weight loss and reduction in food intake often 

take days to weeks in order to produce significant results. Furthermore, the panel 
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of behavioral and metabolic changes that one would expect with MC4R require a 

battery of physiologic tests to determine which changes are likely to be producing 

the observed weight loss. Lastly, safety measures must also be taken to 

determine the effects of the drugs on cardiovascular health. The current study 

seeks to develop assays for the simultaneous measurement of several metabolic 

and behavioral parameters, including the effects on heart rate and blood 

pressure. We also identified and developed methods for rapid testing of MC4R 

activation in vivo using plasma PYY as a biomarker, which may prove to be a 

superior tool for testing drug occupancy of the receptor. 

 

Results 

MC4R+/- mice exhibit intermediate response to MC4R drug treatment. 

To determine if MC4R haploinsufficient humans are a viable treatment 

group for drugs targeting the MC4R, we utilized MC4R+/+, +/-, and -/- mice to 

study in vivo drug efficacy. Male mice aged 12 weeks were acclimated to 

individual housing and handling, and given a high-fat diet (HFD, 45% kcal fat) to 

induce rapid weight gain and hyperphagia. After acclimation, the MC4R+/+ and 

+/- groups were placed into Promethion monitoring cages, which tracked food 

and water intake, activity, metabolic rate, respiratory exchange ratio, and body 

weight. MC4R-/- control mice were not placed in these cages due to limited 

space and the expectation of no effects due to treatment. These mice instead 

had food intake and body weight monitored by hand in parallel. After acclimation 

to the system, the mice were implanted with a subcutaneous minipump delivering 
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1200 nmol/kg/day of the potent MC4R-selective agonist, RM-493, or vehicle 

(saline). Body weight was measured daily with weight loss peaking at 9 days 

after minipump implantation, at which point the RM-493 treated mice seemed to 

regain weight (data not shown). Because of the weight regain, cumulative weight 

loss was calculated after the first 9 days post-implant. In all saline treated groups, 

there was a clear pattern of weight gain over that period, reflecting the mouse 

growth while on HFD. However, in MC4R+/+ mice treated with RM-493 there was 

modest weight loss while MC4R+/- and -/- gained weight. Notably, the MC4R+/- 

mice gained less weight when treated with RM-493 than they did when given 

saline, while there was similar weight gain between both treatments in the MC4R 

-/- mice (Fig. 5-1A). The cumulative weight changes between the RM-493 treated 

groups of each genotype exhibited a MC4R gene dose dependent response. The 

wild-type MC4R+/+ mice lost weight during treatment, while the MC4R-/- mice 

gained weight. Interestingly, the MC4R +/- mice seemed to exhibit a drug 

response that was intermediate by gaining only a small amount of weight under 

the HFD regimen (Figure 5-1B). Because the weight gain in the saline treated 

groups was higher than normal under the HFD regimen, it was also necessary to 

determine what weight changes were associated specifically with RM-493 

treatment and not with the HFD challenge. Thus, we subtracted the change in 

weight during saline treatment from the change in weight during RM-493 

treatment to establish how each genotype group deviated from the HFD-induced 

weight gain under saline treatment. Again, it was evident that MC4R+/+ mice 

exhibited the largest RM-493 mediated drop in weight. The MC4R-/- mice 
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predictably did not respond to RM-493 treatment, supporting the notion that RM-

493 effects on body weight are mediated by the MC4R. Lastly, the MC4R+/- mice 

exhibited an intermediate RM-493 mediated change in body weight (Fig. 5-1C). 

While there were consistent and clear differences in cumulative weight changes 

among treatment groups, there were no notable differences in food intake or 

energy expenditure (data not shown). Taken together, these results suggest that 

MC4R haploinsufficient mice do respond to exogenous agonism of the MC4R, 

albeit the response is smaller than that seen in their MC4R+/+ littermates. 

Furthermore, these results indicate that RM-493 exerts its weight-reducing 

effects via the MC4R since there is no improvement in HFD-induced weight gain 

in MC4R-/- mice. 
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Figure 5-1: Intermediate efficacy in MC4R+/- mice treated with RM-493. Male 
MC4R+/+, +/-, and -/- mice aged 12 weeks were infused with 1200nmol/kg/day of 
RM-493, or vehicle (saline), for 14 days using an implanted subcutaneous 
minipump. Body weight measurements were performed daily with peak changes 
occurring by the ninth day after implantation. A) Overall before and after body 
weights comparing day 0 (pre-implant) to day 9 (post-implant) among all 
treatment groups. B) Cumulative 9-day weight change among all RM-493 treated 
groups. Each symbol represents a single test animal’s change in body weight. C) 
RM-493 mediated 9-day weight change compared to saline treated groups. 
These values are calculated by subtracting the body weight change in saline 
treated groups from the body weight change in RM-493 treated groups 
(ΔRM493-ΔSaline). A treatment that causes no change compared to saline 
would be represented by a weight difference of zero. Statistical significance 
between groups is calculated using 1-way ANOVA with Bonferroni post-test. *P < 
0.05; **P < 0.01. 
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Obese MC4R-/- mice exhibit low basal heart rate and blood pressure compared 

to MC4R+/+ littermates. 

 In order to establish baseline cardiovascular measurements for use in 

pressor response assays, we measured MC4R +/+, +/-, and -/- mice in a panel of 

cardiovascular parameters prior to drug treatments. The mice were acclimated to 

the equipment and then measured in a single test day prior to minipump 

implantations. Heart rate was measured either using rodent blood pressure tail 

cuffs, or by echocardiogram, which yielded similar results. The MC4R-/- 

appeared to have a reduced heart rate that was not statistically significant due to 

low animal numbers (Fig. 5-2A). Similar trends are evident in tail cuff 

measurements of systolic, diastolic, and mean arterial blood pressure. The 

MC4R-/- mice appear to have slightly lower blood pressure despite being 

severely obese (Fig. 5-2B). Taken together, these preliminary results indicate a 

reduced basal heart rate in MC4R deficient mice, which supports similar findings 

noted in MC4R haploinsufficient humans [84]. More study animals will be 

required to reach statistical significance. 
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Figure 5-2: MC4R-/- mice exhibit low basal heart rate and blood pressure. 
Male MC4R+/+, +/-, and -/- mice aged 12 weeks were acclimated to 
measurement procedures and then assessed for cardiovascular differences prior 
to treatment with LY2112688 infusion. A) Heart rates were measured separately 
using tail cuff and echocardiogram. B) Blood pressure was monitored with a tail 
cuff to obtain systolic, diastolic, and mean arterial blood pressure. Statistical 
significance was not reached from these measurements. 
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Pressor response to chronic LY2112688 treatment was not measurable by tail-

cuff monitoring. 

 Additionally, we also tested the pressor response in these mice during 

chronic treatment with LY2112688, an MC4R selective peptide agonist that has 

been previously shown to cause a rise in blood pressure in humans [84]. The 

mice were provided with either 1200nmol/kg/day LY2112688 (LY), or saline, by 

an implanted subcutaneous minipump. Measurements were taken prior to 

implantation (baseline), as well as on day 4 and day 11 post-implantation. During 

treatment at day 4 and day 11, there were no clear differences between the 

animals treated with drug or saline in any of the MC4R genotypes (Fig. 5-3 A - 

E). Any potential differences were likely masked by low animal numbers and high 

variability in the measurements obtained by tail cuff monitoring. These findings 

suggest that measurements of blood pressure and heart rate in response to 

MC4R agonist treatment by the methods used require too large of animal 

numbers to be done efficiently and non-invasively. Alternatively, direct 

measurements of blood pressure by carotid catheterization seemed to provide 

more accurate readings of mean arterial blood pressure. Using this method, we 

observed acute an acute rise in blood pressure following injection with LY, but 

not with injection of NN2-0453 [137] (Novo) (Figure 5-4). This data served both to 

highlight a key difference in the physiological effects of these compounds and to 

demonstrate a useful approach to measuring the cardiovascular safety of drugs 

targeting the MC4R. 
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Figure 5-3: Cardiovascular measurements during chronic treatment with 
LY2112688 in MC4R+/+, +/-, and -/- mice. Male MC4R+/+, +/-, and -/- mice 
aged 12 weeks were acclimated to measurement procedures, then subjected to 
cardiovascular measurements prior to subcutaneous implants containing either 
LY2112688 (LY) or vehicle (saline). Measurements were also conducted on Day 
4 and on Day 11 post-implantation. A) Heart rate by echocardiogram. B) Heart 
rate by tail cuff. C) Systolic blood pressure. D) Diastolic blood pressure. E) Mean 
arterial blood pressure. All readings were done using rodent tail cuff monitors, 
except for additional heart rate measurements obtained using echocardiogram. 
There are no statistically significant changes between treatment groups or time 
points. 
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Figure 5-4: Measurements of mean arterial blood pressure by carotid 
catheterization. Male mice aged 16 weeks were surgically catheterized in the 
carotid artery. After a week of recovery, baseline measurements were taken 
during a 30 minute period prior to injection. Following baseline measurements, 
they were injected with 9 mg/kg doses of either LY or Novo subcutaneously. After 
30 minutes, direct measurements of mean arterial blood pressure (MAP) were 
taken every 5 minutes to assess changes mediated by drug treatment.  
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Altered plasma peptide YY levels in response to MC4R agonism serve as an in 

vivo biomarker for MC4R activation 

 In order to identify an acute readout of drug efficacy, we utilized plasma 

PYY levels, which rapidly rise in response to acute treatment with MC4R 

agonists. Furthermore, this effect was shown to be mediated by the peripheral 

MC4R located in L cells (see Chapter 4). We had previously determined that 

there is a dose-dependent rise in plasma PYY levels in response to treatment 

with LY. Utilizing this dose-response, we identified a dynamic PYY response 

range between doses of 0.03 mg/kg and 0.3 mg/kg of LY at a time point 10 

minutes after intraperitoneal (IP) injection of drug (Fig. 5-5A). A dose of 3 mg/kg 

LY was consistently able to elicit a maximal rise in plasma PYY levels. However, 

another peptide analog, Novo, was unable to cause PYY release at a molar 

matched dose of 6.9 mg/kg, indicating a distinct physiological difference in 

signaling between the two compounds (Fig. 5-5B).  

Doses in the dynamic response range were subsequently used for 

studying how the LY2112688-stimulated PYY response is affected by co-injection 

of MC4R allosteric modulators, a new subset of small molecule drugs targeting 

the MC4R [86]. We first sought to prove that we could inhibit the LY-induced PYY 

response pharmacologically with a MC3/4R antagonist, SHU9119. Pre-treatment 

by IP injection of 3 mg/kg SHU9119 had no effect on the basal PYY levels, 

however it did attenuate the rise in PYY after subsequent injection with 0.15 

mg/kg LY. This reduction in plasma PYY was statistically significant and 

suggested that we may also be able to affect the PYY response with allosteric 
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modulators (Fig. 5-5C). Due to assay variability, we utilized multiple LY 

concentrations (0.03 mg/kg and 0.1 mg/kg) to increase our likelihood of finding 

an appropriate dose to augment the PYY response with VU63663 (5 mg/kg). 

VU63663 is a positive allosteric modulator (PAM) identified in a high-throughput 

screen that had not yet been verified for in vivo activity. In this preliminary study, 

we observed a rise in plasma PYY in response to 0.03 mg/kg LY when pre-

treated with VU63663 compared to vehicle (DMSO). Though this rise was not 

statistically significant (p=0.12), it was a promising observation that warrants 

further study and optimization (Fig. 5-5D). We also conducted preliminary tests 

on a negative allosteric modulator (NAM) identified in a high-throughput 

screening assay, VU0029075. To our surprise, a dose of 5 mg/kg VU0029075 

was able to cause a statistically significant reduction (p=0.0057) in basal plasma 

PYY in the absence of LY stimulation. Such an observation suggests that 

endogenous melanocortinergic tone regulates basal fasting PYY levels. 

Furthermore, VU0029075 caused a near-significant (p=0.0761) reduction in LY-

stimulated (0.2 mg/kg) plasma PYY (Fig. 5-5E). This finding suggests that 

VU0029075 has antagonism activity in vivo. While further optimization and study 

is required, these findings together validate that the measurement of plasma PYY 

levels after acute melanocortin drug treatment may serve as a rapid in vivo test 

for MC4R receptor occupancy. 
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Figure 5-5: Circulating PYY changes following acute MC4R drug 
treatments. Adult male C57Bl/6J mice aged 12-20 weeks were treated acutely 
with intraperitoneal (IP) injections of melanocortin drugs or vehicle (saline or 
DMSO). Plasma PYY is then measured 10 minutes post-injection to determine 
MC4R activation. A) Dose response curve of plasma PYY levels after treatment 
with saline, 0.003 mg/kg, 0.03 mg/kg, 0.3 mg/kg, 3 mg/kg, and 9 mg/kg 
LY2112688. Dynamic range for pharmacological modulation is indicated in gray 
box. B) PYY response following 3 mg/kg LY2112688 and molar equivalent 6.9 
mg/kg Novo (NNC-0453). C) Blockade of PYY response to sub-maximal dose of 
LY2112688 (0.15 mg/kg LY) using 3 mg/kg SHU9119, a MC3/4R antagonist. D) 
Augmentation of PYY response to low doses of LY2112688 (0.03 mg/kg and 0.1 
mg/kg) using positive allosteric modulator of MC4R, VU63663 (5 mg/kg). E) 
Reduction in basal and LY2112688 stimulated plasma PYY levels using negative 
allosteric modulator of MC4R, VU0029075 (5 mg/kg). Statistical significance 
between treatment groups was calculated using 1-way ANOVA with Bonferroni 
post-test. *P < 0.05; ***P < 0.001. 
  

LY2112688 Dose Response

0.0
00

01

0.0
00

1
0.0

01 0.0
1 0.1 1 10

0

100

200

300

Dose of LY2112688 (mg/kg)

P
la

sm
a 

P
Y

Y
 (p

g/
m

L)

PYY Stimulation with LY and Novo

Veh
icle

3 m
g/k

g L
Y

6.9
 m

g/k
g N

ov
o

0

100

200

300

400

500 ***

Pl
as

m
a 

PY
Y 

(p
g/

m
L)

Positive Allosteric Modulation
VU63663 (5mg/kg)

Sali
ne

 + 
DMSO

Salin
e+

PAM

0.0
3m

g/k
g L

Y + 
DMSO

0.0
3m

g/k
g L

Y+P
AM

0.1
mg/k

g L
Y+D

MSO

0.1
mg/k

g L
Y+P

AM

3m
g/k

g L
Y+D

MSO
0

100

200

300

400

500
p=0.12 * ***

Pl
as

m
a 

PY
Y 

(p
g/

m
L)

Inhibition of PYY release w/ SHU9119

Veh
icle

SHU91
19

 (3
mg/k

g)

0.1
5m

g/k
g L

Y

0.1
5m

g/k
g L

Y + 
3m

g/k
g S

HU91
19

3 m
g/k

g L
Y

0

100

200

300

400

500

p=0.0335

***

Pl
as

m
a 

PY
Y 

(p
g/

m
L)

Negative Allosteric Modulation
VU0029075 (5mg/kg)

Sali
ne

 + 
DMSO

Sali
ne

 + 
NAM

0.2
mg/k

g L
Y+D

MSO

0.2
mg/k

g L
Y+N

AM

3m
g/k

g L
Y

0

200

400

600

p=0.0057

p=0.0761

Pl
as

m
a 

PY
Y 

(p
g/

m
L)

A

ED

CB



   113	
  

Discussion 

 Utilizing in vivo testing of MC4R agonists and antagonists, we have made 

progress in the development of protocols for both acute and chronic measures of 

drug efficacy. Measurements were performed during chronic subcutaneous 

infusion with RM-493, a drug currently undergoing clinical testing in patients. Use 

of a comprehensive and non-invasive cage monitoring system (Promethion, 

Sable Systems International) allowed for the continuous measurement of food 

intake, water intake, energy expenditure, and body weight. While changes in food 

intake and energy expenditure were not large enough to reach statistical 

significance, there was still a statistically significant reduction in body weight. 

This reduction was dependent on the genotype at MC4R, as there was no effect 

in MC4R-/- mice and an intermediate effect in MC4R+/- mice (Figure 5-1). While 

we could not detect significant changes in food intake or energy expenditure on a 

daily basis, it is likely that these factors cumulatively contributed to the weight 

loss. While the designated dose of RM-493 was only intermediately effective in 

the MC4R+/- mice, the result was not surprising considering that loss of MC4R 

gene copies often displays a gene-dose dependent phenotype in feeding 

behaviors [30, 110], severity of obesity [28], and blood pressure [84]. Displaying 

an effect, albeit intermediate, in MC4R+/- mice offers promise to the possibility of 

treating MC4R haploinsufficiency. Because these individuals exhibit relative 

hypotension [84], they may be resistant to unsafe rises in blood pressure upon 

treatment with MC4R agonists. This demographic is not insignificant in number 

due to the high frequency of MC4R mutations in the obese population [5]. 
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Furthermore, proven safety in a population of individuals with the melanocortin 

obesity syndrome may provide justification for proceeding to the eventual 

treatment of common obesity. 

 We also sought to measure cardiovascular effects on mice treated with 

LY2112688, an orthosteric peptide agonist of MC4R that previously displayed a 

clear pressor response in human trials [84]. The goal of this study was develop a 

method to non-invasively monitor mouse cardiovascular parameters before and 

after treatment with a drug with a known pressor effect. Baseline readings of 

heart rate and blood pressure revealed a consistent reduction in all 

cardiovascular parameters in the MC4R-/- mice compared to their normal 

littermates (Figure 5-2). While this reduction was not statistically significant due 

to low sample sizes, it aligned with previous observations in MC4R-deficient 

rodents [138] and humans [84]. Unfortunately, upon treatment with LY by chronic 

subcutaneous infusion, we were unable to observe the expected change in any 

genotype group compared to their vehicle-injected controls (Figure 5-3). This 

inconsistency is likely due to acute stress associated with the measurement 

protocols, which caused higher variability during days 4 and 11 post-implantation. 

While the animals were trained for 3 days prior to the first measurement 

(baseline), they were not trained additionally leading up to the subsequent 

measurements, which may have allowed the return of novelty stress associated 

with the procedures. This limitation suggests that alternative procedures may be 

necessary to effectively obtain reliable cardiovascular measurements. As shown, 
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at this time we are dependent upon carotid catheterization to measure the 

pressor response to melanocortin agonists and allosteric modulators. 

 Lastly, we utilized our recent discovery that peripheral MC4R regulates 

PYY release from enteroendocrine L cells to develop an additional measure of in 

vivo receptor occupancy. We showed that PYY levels rapidly rise in a dose 

dependent manner following IP injections of LY. From this dose response curve, 

we identified a dynamic response range of LY doses that could be utilized to 

demonstrate augmented or attenuated release of PYY with co-injections of 

experimental MC4R drugs. We proved the applicability of this protocol by 

reducing LY mediated PYY with SHU9119, a full antagonist of MC3/4R. Using 

this technique, we displayed changes in LY mediated PYY release when the 

animals were given a PAM, VU63663, or a NAM, VU0029075, in conjunction with 

submaximal doses of LY. These observations are the first in vivo demonstrations 

of efficacy for these newly discovered compounds. Interestingly, we also noted a 

reduction in baseline plasma PYY when treated with VU0029075. While we do 

not know the mechanism by which this compound antagonizes the MC4R, it 

suggests that basal PYY levels may be regulated by MC4R via endogenous 

melanocortinergic tone, perhaps via POMC expression in the enteric nervous 

system. Further research must be conducted to determine the physiological 

significance of this observation. 

 Using our assay of plasma PYY levels, we also observed a surprising lack 

of PYY release upon treatment with a 6.9 mg/kg dose of Novo, a peptide agonist 

of the MC4R that was presumed to function in a similar manner to other 
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orthosteric agonists like LY and RM-493. The high dose of Novo matched the 

molar level given with 3 mg/kg LY injections that elicited a robust rise in plasma 

PYY. Because L cells secrete PYY in response to increased intracellular cyclic-

AMP [139], we presume this to be the mechanism by which the MC4R, a Gαs 

coupled receptor, regulates PYY release. The lack of PYY release following 

Novo injection suggests that this compound may bind MC4R and exert its effects 

independent of the cyclic-AMP pathway. Indeed, pharmacological data on NOVO 

[137] show that this peptide is a weak agonist of MC4R Gαs coupling, with a lower 

EC50 than α-MSH. This difference may contribute to the unique physiological 

profile of Novo as an MC4R drug and suggests that it may act as a biased 

agonist. 

 In conclusion, we have determined that MC4R haploinsufficient patients 

represent a valid target population for MC4R agonist drugs. Furthermore, we 

have replicated the observation that loss of function of the MC4R confers 

hypotension using non-invasive monitoring techniques in mice. However, these 

monitoring techniques are insufficient for measuring the acute cardiovascular 

effects of drugs due to the acute stress associated with the measurements. 

Lastly, we identified and developed a rapid measure for in vivo drug efficacy of 

MC4R agonists and antagonists. The measurement of PYY represents a 

measurable MC4R biomarker that is robust and highly replicable, and further was 

capable of providing evidence of biased agonism of the MC4R with an 

experimental drug. 
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CHAPTER 6 

Conclusions and Future Directions 

A shifted view of how MC4R contributes to feeding behaviors sheds new 

light on the receptor’s roles in the whole organism. 

 Prior to our investigations, loss of MC4R in mice [29], rats [35] and 

humans [5] was known to affect feeding behaviors. The defects in rodents were 

largely thought to affect fat-specific feeding due to evidence of melanocortin-

mediated regulation of dietary fat preference. Central injections of AgRP have 

been shown to selectively increase fat intake [37], as well as shift motivation 

toward fat consumption and away from carbohydrates [39]. Interactions of 

melanocortin receptors with reward systems of the brain have been implicated as 

contributing to this response [45-48], though significant gaps in the knowledge of 

neuroanatomical networks lead to a failure to explain complex feeding behaviors 

in models of melanocortin obesity syndrome. Furthermore, insensitivity of MC4R 

-/- mice to the meal-reducing effects of CCK [27], a gut hormone released 

following dietary fat ingestion, provided a promising mechanistic explanation for 

the high-fat hyperphagia. However, the CCK knockout mouse actually exhibits a 

resistance to diet-induced obesity [140], suggesting that defective CCK signaling 

is not responsible for the noted fat-preference. When further characterizing the 

fat-specific hyperphagia in MC4R-/-, we also investigated potential dysregulation 

of N-acylphosphatidylethanolamine (NAPE), an anorexigenic signaling lipid 

induced by high-fat diet consumption [141]. In these studies, we identified a 

hypersensitivity to the meal-reducing effects of NAPE administration, effectively 
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ruling out NAPE signaling as a factor contributing the fat-specific hyperphagia in 

MC4R-/- mice [30]. 

 After the previous failed attempt to explain fat-induced hyperphagia in 

MC4R-/- mice, we instead sought to more comprehensively study dietary 

preferences in our mouse models in hopes of unveiling new knowledge about 

feeding behaviors resulting from deletion of the MC4R. In Chapter 3 (also, see 

[110]), we described studies that employed chronic multi-choice feeding assays 

involving standard rodent chow offered in combination with palatable high-fat or 

high-sucrose diets. Using these techniques, we invariably observed a reduced 

preference for both palatable diets whenever they were presented alongside 

standard chow. In agreement with previous studies [29, 30], we did observe high-

fat hyperphagia. However, this only occurred whenever the mice were given no 

other choice. In two-choice diets, wild-type (MC4R+/+) displayed strong 

preferences for both palatable diets whereas the MC4R-/- littermates ate both 

diets nearly evenly by mass. To compound this lack of preference, loss of MC4R 

signaling also resulted in exaggerated hyperphagia under multi-choice diets, 

suggesting that dietary variety also drives hyperphagia in these mice. Such a 

defect, if translated to humans, would confer rapid weight gain, especially in the 

obesogenic environment that many humans inhabit. 

 These findings may have multiple implications regarding the prior theories 

of reward, anxiety, and motivation in relation to energy homeostasis (which have 

been discussed in Chapter 3). However, prior to establishing this general defect 

in palatable food preference irrespective of macronutrients, these interpretations 
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were thinly scoped in brain-nuclei specific manipulations that were insufficient for 

explaining how the MC4R regulates normal feeding behaviors. My interpretation 

of these results is that MC4R-deficiency confers vast multiple organ defects that 

contribute to abnormal feeding behaviors. Further, the feeding behaviors of the 

MC4R-/- mouse seems to paint the picture of an animal that is incapable of 

sensing and integrating the macronutrient content of the food that it ingests, but 

rather is focused on increasing total caloric intake. As a result, the mouse 

exhibits reduced macronutrient-specific preferences. In a normal system, meal 

information such as meal size and macronutrient content is relayed to the brain 

by an intricately connected gut-brain axis that relies on a cascade of neuronal 

and hormonal signals for communication [51]. Defects in gut-brain 

communication have to an extent been described in animals with suppressed 

MC4R signaling. For example, the dependence of CCK [27] and ghrelin [18] on 

the melanocortin system each represents a dimension of improper function. More 

recent studies have even described central melanocortin receptor mediated 

control of gastric motility [69]. However, each of these elements alone cannot 

account for the complete MC4R-/- feeding phenotype, supporting an expanded 

role for the melanocortin system. In support of this notion, it was recently 

discovered that MC4R signaling was required for the efficacy of RYGB surgery 

[76]. The surgery, which significantly alters the anatomy and function of the gut to 

propagate weight loss, appears to rely at least partially on altered gut-brain 

signaling. For example, following RYGB there is elevated pre- and post-prandial 

release of gut hormones that have the potential to regulate glucose tolerance and 
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satiety through their central and peripheral targets [79]. Thus, the distinct 

possibility exists that MC4R signaling may regulate some aspect of these 

changes in gut-brain communication that occur after bariatric surgery. I believe 

that our evidence for reduced dietary preference in MC4R-/- mice and the 

evidence for the requirement of MC4R signaling in RYGB-mediated success are 

related phenomena that implicate an integral role for MC4R in gut-brain 

signaling. Furthermore, I believe that removal of MC4R from this axis disrupts the 

intricate communication networks that relay meal information and digestive 

control between the gut and the brain. Our studies illustrated in Chapter 4 

characterize a new role for MC4R in the gut-brain axis that may indirectly 

contribute to the control of feeding behaviors in concert with central and vagal 

MC4R signaling. 

 While our focus is on roles for the MC4R in gut-brain communication, we 

cannot eliminate the potential for altered feeding behaviors in MC4R-/- mice to be 

controlled solely by central pathways. There is ample evidence for MC4R’s 

importance in central systems regulating reward and homeostasis [4]. Our 

observations may support a model of decreased reward for palatable foods (or a 

heightened reward for less palatable foods) with a simultaneous increased drive 

for homeostatic feeding. A negative energy state, such as that of a fasted animal, 

would normally promote a heightened reward state. By assuming that MC4R-/- 

mice, by way of altered homeostatic signaling from the PVN, exhibit feeding 

behaviors of an animal that is in negative energy balance, we may be able to test 

such a hypothesis by examining changes in macronutrient preference in fasted or 
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fed animals. Furthermore, macronutrient associated reward and motivation 

should be investigated in MC4R-/- mice. In using behavioral assays such as 

progressive ratio tests to measure motivation for palatable food stimuli, we can 

determine if macronutrient-specific reward is dampened in this model. 

 Many of the prior studies of meal preference in relation to the melanocortin 

system have implicated heightened fat-reward as a driver of hyperphagia and 

obesity. Our observations directly refute these notions, instead suggesting that 

there is a distinct reduction in macronutrient preference in the MC4R-/- mice in 

conjunction with hyperphagia. While complex behaviors such as such as food 

intake may be regulated by MC4R in several key brain nuclei, there are also 

many aspects of gut-brain communication that are known to contribute as well. 

Thus, we also sought to characterize how MC4R may contribute to peripheral 

aspects of feeding behaviors. 

 

The physiological and anatomical reach of the MC4R is vaster than 

previously thought. 

The MC4R is widely expressed in over 100 different brain nuclei [6]. With 

high expression in the PVN and in the DMV, and moderate expression in sites 

such as the lateral hypothalamus and lateral parabrachial nucleus, it has plenty 

of potential to significantly alter feeding behaviors via the CNS. Nearly all 

research into the MC4R has focused on the significance of brain sites of MC4R 

expression. Despite reports of MC4R mRNA in several peripheral sites in rodents 

[142], it was only recently that researchers began to focus attention on the 
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potential functional significance of peripheral MC4R. Significant expression of 

MC4R has been found in vago-vagal circuitry, including the nodose ganglion and 

myenteric ganglion, which contribute to motor and sensory control of the GI-tract 

[106]. Gastric ghrelin cells were also found to highly express several GPCRs, 

including the MC4R, which was shown to stimulate ghrelin release [143]. Along 

the same lines, our collaborator, Dr. Thue Schwartz, identified the MC4R as the 

2nd most highly expressed GPCR in L cells from among 379 candidate GPCRs. 

The L cells, which co-secrete GLP-1 and PYY postprandially, are located in the 

intestinal epithelium with a higher concentration of cells in the ileum and colon 

[121]. As we have demonstrated here (Chapter 4) and recently submitted for 

publication, this cell population represents a new site of MC4R expression in the 

periphery. Using ex vivo and in vivo assays, we demonstrated a clear functional 

role in the regulation of PYY release. In fasted mice treated with MC4R agonists, 

we could consistently stimulate a rapid (<10 minutes) 3-4 fold rise in plasma PYY 

in a MC4R-dependent manner. These rises in PYY are capable of altering food 

intake in multiple ways. Rises in PYY also correlate with increases in the cleaved 

PYY(3-36), which can bind central Y2 receptors, thereby initiating satiety and 

reducing meal size [60, 144]. Additionally, PYY can act on vagal circuitry to 

initiate the ileal/colonic brake and halt gut motility [145]. Our collaborator, Dr. 

Helen Cox, showed that in an isolated GI-tract, fecal pellet movement was 

significantly slowed upon bath application of α-MSH. Furthermore, as also noted 

previously and in our study, PYY can bind Y1 receptors in GI epithelium in order 

to inhibit intestinal secretions and slow digestion [96, 120]. We also observed a 
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fleeting induction of GLP-1 release from L cells upon stimulation with an MC4R 

agonist. This concordant rise has important implications for insulin signaling as 

part of the incretin response, as well as separate central effects on satiety [63]. 

We have demonstrated clear evidence that MC4R is expressed on the 

basolateral surface of L cells in the GI-tract and that those receptors are 

functionally capable of potently stimulating PYY and GLP-1 release in vivo. 

However, our understanding of how MC4R functions in the GI-tract is in its 

infancy. Additional research is required in order to determine the physiological 

importance of MC4R in the GI-tract, and to identify potential sources of MC4R 

agonist acting on this system. Cre-lox technology can be used to create site-

specific removal or rescue of MC4R in the GI-tract to determine its relative 

importance in whole animal physiology. A floxed-MC4R mouse has been 

characterized [146] that may be crossed with a villin-cre (Jax #004586) mouse to 

remove MC4R signaling from the gut mucosa. If this mouse were to develop a 

partial obese phenotype, it would suggest a direct physiological requirement of 

MC4R in the GI-tract. Conversely, a loxTB-MC4R mouse [71], which contains a 

floxed transcriptional blocker of the MC4R, may be crossed with the villin-cre 

mouse to restore MC4R only to the GI-tract. This cross would allow us to 

determine if gut MC4R is sufficient to partially rescue obesity in the otherwise 

MC4R-deficient animal. 

Additional important questions lie beyond the interrogation of the overall 

importance of L cell MC4R in obesity phenotypes. For example, a primary 

objective is to identify source of ligand for gut MC4R, and further, to determine 
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the mechanisms regulating ligand release. In Chapter 4, we highlighted potential 

sources of ligand as endocrine melanocortin peptides from the circulation (ACTH 

or α-MSH), from the enteric nervous system via enteric POMC neurons, or via 

paracrine signaling from nearby POMC-positive cells in the GI-tract. Prior 

research has described widespread ACTH-like immunoreactivity in the rat small 

intestine [147] and in secretory granules of the stomach [148]. While these 

studies are quite dated, they suggest that the potential presence of POMC within 

GI-tract warrants careful anatomical study in the context of our discoveries. 

These studies should focus on in situ hybridization mapping of peripheral POMC 

mRNA levels, or immunohistochemical mapping of POMC cleavage products like 

ACTH or α-MSH with particular focus on mucosal neurons which project into 

mucosal villi and synapse with enteroendocrine cells. An anatomical relationship 

between POMC neurons and MC4R receptors in enteroendocrine cells would 

provide an ideal system for regulating both basal and stimulated gut-hormone 

levels in response to multiple stimuli. 

While identifying a regulated source of ligand is important for 

understanding the role of this system in gastrointestinal physiology and gut-brain 

communication, there is the possibility that POMC expression may not be 

present in the GI tract and may not reach significant enough levels in the 

circulation to stimulate PYY release via MC4R in L cells. However, it is well 

known that the MC4R uniquely exhibits high constitutive levels of activity in the 

absence of its endogenous ligands and that AgRP acts as an inverse agonist to 

block the constitutive activity [9, 149]. This constitutive activity is hypothesized to 
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be mediated by the MC4R N-terminal domain, acting as a tethered ligand on 

itself [10]. With such a mechanism, MC4R is fully capable of independently 

providing a basal cAMP tone to regulate secretion from L cells. Using this model, 

we would hypothesize that blocking MC4R constitutive activity with AgRP would 

alter basal PYY levels in our model. In addition, the similar agouti signaling 

peptide (ASIP) is expressed peripherally and may contribute to inverse agonism 

as well [150]. These peptides may provide an additional element of control to this 

fascinating system. In Chapter 5, we preliminarily described reduction in basal 

PYY using VU0029075, a negative allosteric modulator of MC4R (by a yet 

unknown mechanism) that may alter constitutive activity. This reduction was not 

evident after treatment with SHU9119, a traditional antagonist, though both 

compounds successfully blocked LY-stimulated PYY release (Figure 5-4). 

Furthermore, measurements of ISC in MC4R-/- tissues revealed altered baseline 

ion currents indicative of reduced basal PYY (Figure 4-13). These observations 

supported the possibility that MC4R constitutive activity contributes to basal PYY 

release, and/or that an endogenous melanocortinergic tone does exist in the 

system. 

Along with identification of the endogenous ligand source for MC4R in L-

cells, studies must also identify the context in which this system is regulated. One 

can certainly envision a role for these MC4R sites in post-prandial satiety 

hormone release and subsequent meal size reduction in response to meal intake 

and acute hyperglycemia. Such a model would provide a potential mechanism by 

which MC4R mediates the overall success of RYGB surgery [76]. Additionally, 
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this response may be stress mediated, thus providing a mechanism for stress-

induced anorexia by way of peripheral MC4R signaling. 

Our data provide a novel avenue by which MC4R can control energy 

homeostasis. In the context of gut-brain communication, MC4R has been known 

to contribute to integration of peripheral homeostatic and hormonal signals [4]. 

More recently, it has also been implicated in vagal circuitry that contributes to 

motor and sensory control of the gut [106]. Our studies indicate that MC4R can 

also potently regulate hormonal secretion of PYY and GLP-1, and possibly other 

enteroendocrine hormones that haven’t been studied. Though future studies 

have yet to determine the physiological context in which this machinery exists, it 

is unlikely that the high MC4R expression and potency in this system is purely a 

coincidence. Nonetheless, even if L cell MC4R expression only has a minor 

physiological role, it remains an interesting pharmacological avenue to induction 

of either the incretin response and/or satiety via the action of multiple gut 

peptides released by the cells. 

 

A plasma biomarker of MC4R activity questions the dogma of MC4R 

pharmacology. 

 While the physiologic characterization of MC4R within L-cells is in its 

infancy, our findings have uncovered some key questions regarding the use of 

MC4R as a drug target for the control of energy homeostasis. As we described in 

Chapter 5, the MC4R is the target of several peptide molecules that have 

displayed varied success in reducing body weight in obese individuals. The 
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primary readout for efficacy and safety of these drugs is weight loss without 

causing a potentially harmful pressor response. MC4R signaling is intricately 

connected to the autonomic nervous system [4, 71, 146], and indeed, this 

pressor response has been demonstrated to be target specific. This relationship 

provides an inherent challenge associated with using MC4R as a drug target. 

Treatment with a potent peptide agonist, LY2112688, was effective in causing 

weight loss in rodents [136] but upon clinical testing in humans revealed a 

familiar acute rise in heart rate and blood pressure [84]. A related peptide, RM-

493, was also able to produce weight loss in diet-induced obese rhesus 

macaques without causing a pressor response [85], thus lending credibility to the 

concept of a safe MC4R peptide agonist. While these compounds share similar 

properties, the mechanism by which they can produce divergent effects on the 

cardiovascular system while producing similar effects on weight loss is unknown. 

One thing that MC4R peptide agonists have in common is that they are 

administered peripherally, often by subcutaneous injection or infusion [84, 85]. 

However, the MC4R sites that they were designed to target are located within the 

brain [4], requiring these compounds to cross the blood-brain barrier in order to 

access central MC4R. While studies on differential brain penetrance of these 

compounds have not yet been performed, an intriguing hypothesis is that the 

compounds exhibit different abilities to cross the blood-brain barrier, and thus 

target distinct sets of central MC4R sites. This difference could account for how 

well the compound propagates weight loss versus how potently the compound 

stimulates cardiovascular effects. 
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 In Chapters 4 and 5, we observed that peripherally located MC4Rs within 

the gastrointestinal tract can potently stimulate gut-hormone release in vivo. Our 

studies identified a wide range of concentrations that were capable of creating 

significant rises in circulating PYY. Furthermore, our studies utilized peripheral 

injections of MC4R agonist at concentrations similar to those used in previous 

pharmacological studies that produced significant weight loss [85, 136]. Our 

observations of PYY release raise the distinct possibility that the weight reducing 

effects of peripherally administered MC4R agonists may be mediated, at least in 

part, by peripheral MC4R. The potent rise in plasma full length PYY(1-36) likely 

correlates with a rise in the cleaved fragment PYY(3-36), which has been shown 

previously to act as a satiety factor in the CNS and to reduce food intake [60, 

151, 152].  

 More experiments are now necessary to determine the pharmacological 

importance of MC4R within enteroendocrine cells of the GI tract versus those in 

the CNS. Using the site-specific genetic removal of MC4R mentioned above, we 

can administer MC4R agonists peripherally to determine if CNS or 

gastrointestinal MC4R is required to produce drug-mediated weight loss. Further, 

we can utilize rescue of MC4R signaling to each site to determine if those sites 

are sufficient to propagate drug-mediated weight loss. Such studies would go a 

long way in establishing a new viewpoint on how MC4R drugs cause weight-loss 

in vivo, and would shatter the previous assumption that these drugs must act 

centrally in order to produce their effects. 
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 Secondary to the pharmacological implications of peripheral MC4R in 

weight loss, our observations unveiled a novel method for assaying receptor 

activity. Previously, chronic measurements were often used to detect any 

significant changes in food intake or weight loss. Due to high variability, these 

assays required training of mice, single-housing, and multiple days of 

measurements. While we utilized such protocols, including non-invasive 

automated readings in our study of chronic RM-493 infusion, we were unable to 

detect significant drug-mediated changes in any parameter other than cumulative 

weight loss after several days. While studies like this will remain a necessity for 

further in vivo testing of compounds, they are costly and inefficient for studying 

activity of a drug at the MC4R in a living animal. Alternatively, by assaying 

circulating PYY levels in the serum or plasma, we can rapidly obtain information 

on drug occupancy at the MC4R. Following bolus injection of a melanocortin 

compound, we observed a 3-4 fold increase in PYY within 10 minutes. Utilizing 

submandibular bleeding techniques, we could quickly obtain a small (~150 µL) 

blood sample that would then be assayed for PYY in the plasma. This technique 

was highly robust and reproducible, and due to the acute nature of the assay it 

could be performed multiple times in a single mouse after a short recovery of at 

least 1 week. As a tool, this assay would be highly useful due to its ease and 

ability to efficiently produce dramatic results. Because the assay also exhibited a 

dose-response, it may also be used as a tool assay for testing positive or 

negative allosteric modulators of the MC4R. By selecting submaximal doses of 

LY2112688, we could positively or negatively influence the PYY response using 
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novel drug screen hits. This concept was supported by our modulation of the 

MC4R-mediated PYY response using VU63663 and VU0029075. These results 

represented the first in vivo evidence in rodents of allosteric modulation of MC4R 

activity. Using our measurements of plasma PYY, we also uncovered a 

surprising lack of PYY release following treatment with an experimental 

orthosteric MC4R agonist we referred to as Novo (NN2-0453). This compound 

was very successful in producing long-acting MC4R-mediated weight loss 

without causing a pressor response in mice, rats, and mini-pigs [137], but 

interestingly it did not stimulate PYY release in our assay when injected 

peripherally. This result suggested that the Novo drug was capable of promoting 

weight loss by cAMP-independent signaling methods, and, parenthetically, 

without stimulating the L cell. While MC4R is known to act via Gαs mediated rises 

in cAMP (the same signaling pathways that stimulated secretion from L-cells 

[139]), there is emerging evidence that MC4R may also couple to alternative 

signaling pathways such as inward-rectifying potassium channels to exert its 

effects [146]. While this interpretation of the pharmacological action of Novo is 

speculative, it could provide in vivo support of biased agonism of the MC4R. To 

conclude, our discovery of MC4R in the L cell as a pathway for regulation of PYY 

release has been very useful as a drug assay that has provided clues in 

pharmacology and physiology of the receptor. However, caution must also be 

used when characterizing efficacy of a drug according to a single physiological 

readout, as one drug that exhibited clinical potential did not elicit a PYY response 

and would therefore have been mistakenly labeled as a negative result. Further 
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optimization of these assays should establish this readout as a useful method for 

early and possibly high-throughput in vivo MC4R drug testing, especially in drugs 

screened for their ability to enhance cAMP via the MC4R. 

  

The emerging roles of MC4R in gut-brain communication reveal new 

therapeutic tactics to be investigated. 

 Our studies of the roles of MC4R in gut-brain communication have 

unveiled an expanded role of MC4R in energy homeostasis. By establishing an 

overall lack of preference for high-fat or high-sugar foods caused by MC4R 

deficiency, we have identified a potential role of MC4R in the macronutrient-

mediated gut-brain signaling, which could underlie the formation of dietary 

preference behaviors. Furthermore, we then established a new role of MC4R in 

the control of gut-hormone release, particularly with PYY. This role complements 

the previously established roles for MC4R in the CNS [4] and vagal circuitry [69, 

106] and in that it also may promote weight loss through receptor-mediated 

release of post-prandial satiety signals such as PYY and GLP-1. A summary of 

the roles of MC4R in gut-brain communication is provided in Figure 6-1. 

 An important question to consider is whether or not these two 

observations are related. While we have not yet tested this hypothesis directly, 

the potential for a relationship between PYY/GLP-1 release and macronutrient 

preference is clear. Postprandial macronutrient information communicated via gut 

hormone signaling is essential for relaying meal information to the brain for 

higher-order processing such as food reward and motivation [51]. Furthermore, 
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we have not studied the entire cascade of gut hormones that influence feeding 

behaviors, leaving the potential for MC4R control of multiple hormonal signals. 

Our immunohistochemical studies in Chapter 4 indicated several MC4R-positive 

cells within the GI-tract that were not labeled as L cells, leaving the potential for 

other unidentified cell populations to be regulated by MC4R. By removing MC4R 

signaling from the CNS, vagus, and GI-tract as in our mouse models and in the 

melanocortin obesity syndrome, several aspects of gut-brain communication 

become deregulated. Cumulatively, multi-nodal defects in these signaling 

mechanisms, coupled with a defective central homeostatic system that drives 

hyperphagia, leads to rapid onset of obesity in MC4R-deficient rodents and 

humans.  
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Figure 6-1: Roles of the melanocortin-4 receptor in gut-brain 
communication. MC4R expression has been found in several brain nuclei, as 
well as in vago-vagal circuitry (nodose ganglion and myenteric ganglion, ND/MG) 
connecting the gut and brain. We have discovered functional MC4R in L-cells 
that regulates PYY and GLP-1 release. These hormones can act both centrally 
and peripherally to affect the CNS and the GI-tract. In turn, signals from the brain 
contribute to a variety of feeding behaviors and GI-tract activity. The MC4R can 
be found in multiple nodes of the gut-brain axis and plays several roles in gut-
brain communication.  
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 In humans lacking normal MC4R signaling, the most effective approach to 

the reversal or prevention of obesity would likely be to strictly control portions, 

especially in diets containing variety and novelty, which in our models seemed to 

exacerbate hyperphagia. Our observation of MC4R-drug efficacy in MC4R 

haploinsufficient mice may also provide the groundwork for the eventual 

pharmacological treatment of the melanocortin obesity syndrome. 

 Our findings also have important implications for the eventual treatment of 

common obesity in patients with intact MC4R signaling. A clear physiological 

response to treatment with MC4R agonists injected peripherally has been 

established. The PYY/GLP-1 response on its own may have weight loss 

implications, as have been described in multiple prior studies [63, 67]. By 

understanding and subsequently harnessing this response, we may be able to 

better design MC4R agonists and understand the physiological function by which 

they operate in the whole body. Such design manipulations may include 

optimizing or limiting the brain penetrance of peripherally administered 

compounds, or tailoring drugs to act as biased agonists. The data generated in 

this thesis argues that by utilizing the appropriate manipulations, it should 

ultimately be possible to create small molecule MC4R agonists that safely 

promote weight loss without affecting the cardiovascular system. 
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Abstract 

Defective melanocortin signaling causes hyperphagic obesity in humans 

and the melanocortin-4 receptor knockout mouse (MC4R−/−). The human 

disease most commonly presents, however, as haploinsufficiency of the MC4R. 

This study validates the MC4R+/− mouse as a model of the human disease in 

that, like the MC4R−/−, the MC4R+/− mouse also exhibits a sustained 

hyperphagic response to dietary fat. Furthermore, both saturated and 

monounsaturated fats elicit this response. N-acylphosphatidylethanolamine 

(NAPE) is a signaling lipid induced after several hours of high-fat feeding, that, if 

dysregulated, might explain the feeding behavior in melanocortin obesity 

syndrome. Remarkably, however, MC4R−/− mice produce elevated levels of 

NAPE and are fully responsive to the anorexigenic activity of NAPE and 

oleoylethanolamide. Interestingly, additional differences in N-acylethanolamine 

(NAE) biochemistry were seen in MC4R−/− animals, including reduced plasma 

NAE levels and elevated hypothalamic levels of fatty acid amide hydrolase 

expression. Thus, while reduced expression of NAPE or NAE does not explain 

the high-fat hyperphagia in the melanocortin obesity syndrome, alterations in this 

family of signaling lipids are evident. Analysis of the microstructure of feeding 

behavior in response to dietary fat in the MC4R−/− and MC4R+/− mice indicates 

that the high-fat hyperphagia involves defective satiation and an increased rate of 

food intake, suggesting defective satiety signaling and enhanced reward value of 

dietary fat. 
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Introduction 

The melanocortin-4 receptor (MC4R) is involved in coordinated regulation 

of both energy intake and energy expenditure. Prior analyses of effects of central 

melanocortin signaling on energy intake showed that administration of 

melanocortin agonists in rodents reduces intake of normal chow by decreasing 

meal size [1, 2]. Additionally, the MC4R appears to have a specific role in 

regulating homeostatic responses to dietary fat. MC4R knockout (MC4R−/−) mice 

exhibit a profound fat-induced hyperphagia [3, 4]. When wild-type (WT) mice are 

switched to a high-fat chow, they actually reduce the volume of intake to retain a 

daily intake that is nearly isocaloric. In contrast, the MC4R−/− mouse actually 

increases the volume of intake [3]. MC4R−/− also exhibit a defective thermogenic 

response to dietary fat [3, 5] and a defective satiety response to cholecystokinin 

(CCK) [6], a gut peptide released in response to dietary fat and protein. 

Pharmacological inhibition of the MC4R increases the reward value of fat but not 

carbohydrate rich foods [7], and injection of the MC4R agonist melanotan II into 

the amygdala of rats reduces preference for high-fat chow in a meal preference 

paradigm [8]. Little is known, however, regarding the mechanisms by which 

central melanocortin circuits sense dietary fat ingestion. Defective sensing of 

CCK demonstrated in the MC4R knockout might have some impact on 

homeostatic responses to dietary fat, because CCK release is induced primarily 

by fat and protein [9, 10]. However, CCK and CCK receptor knockout animals do 

not exhibit the high-fat hyperphagia seen in the MC4R−/− animal [11, 12]. Thus, 
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the mechanisms by which the central melanocortin circuitry senses dietary fat 

remain to be determined. 

N-acylphosphatidylethanolamines (NAPEs) are lipid signaling molecules 

secreted into circulation from the small intestine in response to ingested fat, and 

administration of C16:0 NAPE decreases food intake in rodents [13]. Hydrolysis 

of NAPEs by NAPE phospholipase D (NAPE-PLD) produces a family of N-

acylethanolamines (NAEs) [14], including the well-known endocannabinoid 

anandamide, and its derivative oleoylethanolamide (OEA), that regulate a variety 

of physiological processes including food intake [15]. Thus, derivatives of NAPE, 

such as anandamide, may either be orexigenic [16] or anorexigenic, as in the 

case of OEA [17]. In this study, we also tested the hypothesis that the high-fat 

hyperphagia of MC4R−/− mice may attributable to dysregulation of NAPE and/or 

NAE expression or response, by testing the expression and response to NAPE 

and OEA. Enzymes involved in processing these lipids are also implicated in 

energy homeostasis. For example, deletion of fatty acid amide hydrolase 

(FAAH), the enzyme required for hydrolyzing acid ethanolamides such as 

anandamide and OEA, causes obesity and increases the reward value of fat in 

mice [18]. Thus, we also examined expression of FAAH, and NAPE-PLD, an 

enzyme involved in the synthesis of NAEs from NAPEs, which is also expressed 

in the central nervous system [19]. 
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Materials and Methods 

Animals 

Aged-matched melanocortin 4 receptor knockout (MC4R−/−), heterozygous 

(MC4R+/−), and WT mice derived from the original colony [20] on a C57BL/6J 

genetic background were obtained from breeding colonies maintained at 

Vanderbilt University (Nashville, TN). The strain had previously been 

backcrossed onto the C57BL/6J background for more than 10 generations. 

MC4R-τ-Sapphire transgenic (MC4R-GFP) male mice [21] from the Vanderbilt 

colony were used for immunohistochemistry (IHC). All animals had ad libitum 

access to food and water in 12-h light, 12-h dark cycle under controlled 

temperature and humidity. Sim1 heterozygous and WT control animals were 

maintained in the Yale Animal Resources Center (YARC) and had ad libitum 

access to Harlan 2018S chow (Harlan, Indianapolis, IN). Experiments were 

approved by the Animal Care and Use Committee of Vanderbilt University and 

Yale University. 

 

Diets 

Purina rodent diet 5001(LabDiet, PMI Nutrition International Inc., 

Brenwood, MO) or Picolab rodent diet 20 (LabDiet, PMI Nutrition International 

Inc.) were used as control diets for D12492; 60% Kilocalorie (Kcal) from fat 

(Research Diets, New Brunswick, NJ) as indicated. The Purina 5001 diet and the 

PicoLab 20 diet are nutritionally very similar (see Table 1), and this change was 

only initiated because of a change in availability in the housing facility. Custom 
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made isocaloric high-saturated fatty acid (SFA, 45% Kcal from fat) and high-

monounsaturated fatty acid (MUFA, 45% Kcal from fat) diets were purchased 

from Research Diets (Research Diets). D12328 low-fat diet (Research Diets) was 

used as a control diet for the custom made high-fat diets. Macronutrient 

composition of all diets is listed in Table 1. 

 

 

Food intake and body weight 

To determine whether the hyperphagic response to dietary fat could be 

observed in MC4-R+/−, daily food intake and weekly body weight were measured 

in 6-month-old female WT, MC4R+/−, and MC4R−/− mice housed in groups (four to 

five per cage) and maintained on Purina 5001 for 2 wk before being switched to 

high-fat D12492 for 2 wk. Food intake was measured at 1300 h by collecting the 

weight of food remaining in the stainless steel feeder in the roof of the cage and 

adjusting for spillage. 
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To evaluate effects of different types of fatty acids on food intake and body 

weight, 6- to 7-wk-old female WT, MC4R+/−, and MC4R−/− mice were housed 

individually and given free access to D12328 and water for 1 wk before the start 

of the experiment. Food intake was measured daily at 1300 h for 1 wk of D12328 

and 1 wk of either SFA or MUFA diets. Food spillage was counted and daily food 

intake was rectified by that amount. Body weight before and after the experiment 

was measured. Food efficiency is ratio of body weight gain per food intake 

consumed during 1-wk period of low-fat and high-fat diet feeding. 

 

Meal pattern analysis 

 Meal pattern was evaluated in 3-month-old male WT, MC4R+/−, and 

MC4R−/− mice fed Picolab rodent diet 20 and D12492 using a comprehensive lab 

animal monitoring system (CLAMS, Columbus Instruments, Columbus, OH). 

Mice were acclimated to the monitoring chambers for 2 d followed by data 

collection for 24 h. Both diets were presented in powder form. Meal size was 

determined for any feeding bout of greater than 0.02 g. A meal was said to be 

terminated when a bout of feeding was followed by 10 min with no measurable 

intake. The food bout was an episode of uninterrupted feeding of at least 0.02 g. 

 

Intraperitoneal injection of C16:0 NAPE 

 Individually housed animals maintained on Picolab rodent diet 20 were 

injected ip once daily for 1 wk with 0.9% sodium chloride (Hospira, Inc., Lake 

Forest, IL) to acclimate them to the experimental protocol. Immediately before 
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lights off, free feeding 7-wk-old weight-matched female WT, MC4R+/−, and 

MC4R−/− littermates were injected ip with vehicle (0.9% sodium chloride with 

solutol HS 15, 12:1 ratio) or 100 mg/kg C16:0 NAPE dissolved in vehicle. Food 

intake was monitored at 6 and 16 h after injection. The same dose of NAPE was 

injected ip into 4-month-old female WT and MC4R−/− mice maintained on D12492 

for 3 wk, and food intake was measured at 4, 6, 12, and 24 h. 

 

Intraperitoneal injection of OEA 

 Before dark phase, ad libitum–fed age- and weight-matched animals 

maintained on Picolab rodent diet 20 were injected ip with vehicle solution (sterile 

saline with solutol HS 15) or 50 mg/kg OEA (Cayman Chemical, Ann Arbor, MI) 

dissolved in the vehicle solution. Food intake was monitored for 24 h. All animals 

were acclimated to handling and injection protocol before the day of experiment. 

 

Intraperitoneal injection of NAPE in Sim1+/- mice. 

 WT or Sim1+/− male mice were fasted overnight and treated with vehicle 

(physiological saline with 5% Tween 80 and 5% polypropylene glycol) or 250 

mg/kg C16:0 NAPE. Overnight food intake was then recorded at the indicated 

intervals. 

 

Double label IHC 

 Nine-wk-old MC4R-GFP male mice maintained on Purina 5001 were 

injected ip once daily with 0.9% sodium chloride for 1 wk before the start of the 
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experiment to acclimate them to the experimental protocol. Overnight fasted mice 

were injected ip either with vehicle or 500 mg/kg C16:0 NAPE. Three transgenic 

mice were used in each group. At 60 min after injection, animals were deeply 

anesthetized by 0.2% Avertin, injected ip, and transcardially perfused with 0.9% 

saline with heparin and then followed by ice-cold 4% paraformaldehyde in 0.1 m 

PBS (pH 7.4). Brains were removed and postfixed in 4% paraformaldehyde for 6 

h at room temperature. Brains were immersed in 30% sucrose in PBS at 4 C. 

Free-floating 30-µm coronal brain sections were cut and rinsed three times with 

PBS and blocked with 5% nonfat dry milk in PBS containing 0.05% Triton (PBST) 

for 1 h at room temperature with shaking, and then incubated with 1:10,000 

polyclonal rabbit anti c-fos antibody (Ab-5; Calbiochem, EMD Bioscience Inc, La 

Jolla, CA) in 5% milk in PBST overnight at 4 C and followed with 1:500 Alexa 

Fluor 594 donkey antirabbit (Invitrogen, Molecular Probes, Eugene, OR). The 

sections were rinsed with PBS and then incubated in 1:500 goat anti-GFP FITC 

antibody (ab6662–100, ABcam, Inc., Cambridge, MA) for 30 min at room 

temperature. Anatomical parameters were defined according to the Franklin and 

Paxinos mouse brain atlas. All images were acquired using a fluorescent 

microscope (Zeiss Imager Z1, Carl Zeiss MicroImaging, LLC, Thornwood, NY). 

Double labeled neurons were defined as those cells exhibiting red nuclear 

fluorescence above background, conforming to the shape of the GFP positive 

cell bodies. 
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Gene expression analysis. 

 Animals were maintained on Picolab rodent diet 20 and water. Whole 

hypothalamus was dissected from free feeding 19- to 20-wk-old female WT and 

MC4R−/− littermates at 1300–1500 h, quickly frozen in dry ice, and kept at −80 C. 

Hypothalamic blocks were outlined rostrally by the decussation of the optic 

chiasma, caudally by the mammillary bodies, laterally by the optic tract, and 

dorsally by the apex of the third ventricle. Total RNA was extracted from 

hypothalamic tissues using a RNAeasy lipid mini kit (Qiagen Sciences, Inc., 

Germantown, MD) according to the manufacturer's instruction. The total RNA 

was treated with RNase-free DNase (Qiagen Sciences, Inc.). cDNA synthesis 

from 1 µg of total RNA was performed according to manufacturer's instruction 

using Iscript cDNA synthesis kit (Bio-Rad laboratories). 

The following TaqMan gene assays (Applied Biosystems, Inc, Foster City, 

CA) were used: Assay ID, Mm00724596_m1 for mouse NAPE-PLD; Assay ID, 

Mm00515684_m1 for mouse FAAH; and Assay ID, Mm00607939_s1 for mouse 

β-actin. Samples were run in a 20-µl reaction volume containing 10 µl of 2 × 

TaqMan Universal PCR Master Mix (Applied Biosystems), 0.5 µl Taqman gene 

expression assay, 0.5 µl Rnase-free water, and 9 µl cDNA solution. Duplicate 

measurements of each sample were performed in a 96-well plate. Thermal 

cycling conditions for real-time PCR were set as follows: 95 C, 10 min, after that 

95 C, 15 sec for denaturing step and 60 C, 1 min for annealing step for 40 cycles 

using a Stratagene Mx3000p (Stratagene, La Jolla, CA). The PCR efficiency for 
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each individual sample was determined by using the LinRegPCR quantitative 

PCR data analysis program as described previously [22]. 

 

Western blotting for NAPE-PLD and FAAH protein. 

 To confirm the real time PCR results, we performed Western blotting. 

Whole hypothalamus from WT and MC4R−/− mice was homogenized on ice in an 

ice-cold RIPA buffer [(150 mm NaCl, 50 mm Tris, 1 mm EDTA, 1% triton × 100, 

0.1% SDS, 0.5% sodium deoxycholate (pH 8.0)] with protease inhibitor 

(Complete EDTA-free protease inhibitor cocktail tablets, Roche Diagnostics 

GmbH, Mannheim, Germany) and centrifuged at 20,000 × g for 30 min at 4 C. 

Supernatants were diluted 1:10 in the lysis buffer, and a BCA protein assay was 

performed (Pierce Chemical, Rockford, IL) according to company protocol to 

determine protein concentration. BSA (A9647-100G, Sigma-Aldrich, Co., St. 

Louis, MO) was used to generate the standard curve. Fifty micrograms of total 

protein suspended in 20 µl of loading buffer containing NuPAGE 4 × LDS Sample 

buffer (Cat No. NP007, Invitrogen, Carlsbad, CA) in lysis buffer, boiled 10 min at 

95 C, was electrophoresed at 200 V in a 10% Tris-glycine sodium dodecyl sulfate 

polyacrylamide gel (PAGEr Gold Precast gels, cat No. 58502, Lonza, Rockland, 

ME) and electroblotted onto pure nitrocellulose membrane (PROTRAN, 

PerkinElmer life and Analytical Sciences, Boston, MA) at 200 mA for 1.5 h at 4 C. 

Precision Plus dual color ladder (Bio-Rad, Madrid, Spain) was included on each 

gel. FAAH Western ready control (Cat No. 10010182, Cayman Chemical, Ann 

Arbor, MI) was used as positive control for FAAH antibody. The membranes were 
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blocked in 50:50 Odyssey blocking buffer (LI-COR Biosciences, Lincoln, NE) in 

0.1 m PBS for 1 h at room temperature. Immunoblotting was performed with 

1:1000 polyclonal rabbit NAPE-PLD antibody (ab77474, ABcam, Inc., 

Cambridge, MA) or 1:500 polyclonal rabbit FAAH antibody (Cat No. 101600, 

Cayman Chemical) in blocking buffer with 0.05% Tween20 at 4 C overnight on a 

shaking platform. Monoclonal mouse β-tubulin IgG1 (E7, Developmental Studies 

Hybridoma Bank at University of Iowa, IA City, IA) at a final concentration of 

1:5000 was used as loading control. The blots were rinsed three times for 2 min 

each with TTBS [(20 mm Tris base, 137 mm NaCl, 0.1% Tween 20 (pH 7.6)] and 

probed with IRDye 680 infrared secondary antibody, donkey antimouse IgG at a 

final concentration of 1:15,000, and IRDye 800CW donkey antirabbit IgG at a 

final concentration of 1:15,000 (LI-COR Biosciences, Lincoln, NE) for 1 h at room 

temperature. The blots were rinsed six times with TTBS for 5 min each and last 

two times for 5 min each with 0.1 m PBS buffer. The blots were scanned on a 

LiCor Imaging System and analyzed using Odyssey software. To determine 

changes in NAPE-PLD and FAAH protein levels between WT and MC4R−/− mice, 

targeted protein levels were normalized to β-tubulin levels within the same lane. 

 

FAAH enzyme activity assay. 

 FAAH activity assays were performed according to published methods 

[23]. Briefly, hypothalamii were homogenized in 20 mm HEPES (pH 7.8) 

containing 10% glycerol, 150 mm NaCl, and 1% triton X-100 on ice, centrifuged 

at 13,000 × g, 4 C for 10 min. Supernatant was collected. Five micoliters of 
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sample in 15 µl of lysis buffer were added to 175 µl of reaction buffer; 125 mm 

Tris (pH 9.0), and 1 mm EDTA containing 1 µm FAAH substrate Arachidonoyl m-

nitroaniline (Cat No. 90059, Cayman Chemical, Ann Arbor, MI) in a 96-well plate. 

The measurements were performed in duplicate. A standard curve generated 

from duplicate measurement of serial dilutions of human recombinant FAAH (Cat 

No. 10010183, Cayman Chemical, Ann Arbor, MI) in homogenizing buffer was 

included in every plate. The plate was incubated at 37 C for 30 min. The 

reactions were measured at absorbance 410 nm and normalized to protein 

concentration as determined by BCA protein assay. 

 

Liquid chromatography tandem mass spectrometry (LC/MS/MS) analysis. 

 Plasma samples from 3-month-old female MC4R−/− and WT littermates 

were used to evaluate level of NAPE and NAE species. Samples were collected 

from free-feeding mice maintained on Picolab rodent diet 20 and D12492 for 48 

h. Animals were anesthetized with 2% Avertin. Blood was collected by 

decapitation. Plasma was separated by centrifuging at 5,000 × g, 4 C for 5 min. 

All LC/MS/MS methods and analyses were performed as described previously 

[13]. 

 

Statistical analysis. 

 All values were expressed as means ± sem. An unpaired two-tailed 

Student's t test was used to compare two test groups. One-way ANOVA followed 

by a Tukey post test was used for multiple comparisons. Statistical analysis was 
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performed using Graphpad PRISM 5 software (GraphPad Software Inc., San 

Diego, CA). Differences were considered significant at P < 0.05. 

 

 

Results 

Effect of MC4R haploinsufficiency on dietary fat intake. 

 When fed standard laboratory chow (Purina 5001) 6-month-old female 

MC4R−/− mice had significantly greater average daily food intake relative to age 

and sex-matched WT mice, while MC4R+/− mice exhibited an intermediate 

phenotype (Fig. 1A). Switching to a high-fat chow (60% Kcal from fat, D12492) 

produced an acute spike in intake in all genotypes, followed by a sustained 

hyperphagic response to the increased dietary fat in MC4R+/−, and MC4R−/− mice 

but not in WT. Energy intake of MC4R+/− mice was intermediate to WT and 

MC4R−/− levels. This phenomenon did not appear to be age- or gender-

dependent, as the same effect of the 60% diet was observed in 15- to 18-wk-old 

male mice (Supplemental Fig. 1A published on The Endocrine Society's Journals 

Online web site at http://endo.endojournals.org/). To determine whether fatty acid 

types play a role in the high-fat hyperphagia phenotype, we examined high-fat 

diets formulated to contain primarily monounsaturated or saturated fats. Both 

high-fat diets caused sustained hyperphagia in MC4R+/− and MC4R−/− mice, 

although the initial burst of hyperphagia was not observed with high-SFA diet 

(Fig. 1, B and C). Hyperphagia in response to the high-MUFA and SFA chows 

was also observed using 15- to 18-wk-old male mice MC4R−/− but was not as 
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robust as the effect seen in older female mice (Supplemental Fig. 1, B and C). 

Low-fat control diet (Purina 5001) fed MC4R−/− mice but not MC4R+/− mice 

gained significantly more body weight relative to WT during the study period (Fig. 

1D). However, a significant difference in % body fat was apparent in MC4R+/− vs. 

WT mice on low-fat control diet (Supplemental Fig. 2). High-fat chow feeding 

produced an increase in adipose mass and % body fat in WT and MC4R+/− mice 

but did not increase lean mass significantly in either genotype over the study 

period body (Supplemental Fig. 2). Furthermore, weight gain during high-fat diet 

feeding was affected by genotype, with an intermediate effect of 

haploinsufficiency of the MC4R on the high-fat (60% Kcal from fat; D12492) and 

MUFA diets (Fig. 1, D–F). Significant but less striking weight gain was seen in 

the MC4R+/− mice on the SFA diet. Food efficiency of MC4R−/− mice was 

significantly greater than those of WT on all diets but further increased on the 

MUFA and SFA diets. The MUFA diet feeding significantly increased food 

efficiency of all genotypes relative to low-fat diet group (Fig. 1G). The SFA diet 

significantly increased food efficiency in the MC4R−/− and slightly increased food 

efficiency of MC4R+/− mice (Fig. 1G). 
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Appendix Figure 1. Characterization of high-fat hyperphagia attributable to 
loss of one or more alleles of the MC4R. A) Means of daily energy intake from 
group housed WT (n = 6), MC4R+/− (n = 16), and MC4R−/− (n = 4) female mice 
demonstrated a gene dosage effect in response to high-fat diet feeding. Food 
intake of (B) individually housed female mice fed high-fat diets containing 
primarily MUFA (*, P < 0.05 vs. WT, one-way ANOVA, WT = 7, MC4R+/− = 6, 
MC4R−/− = 7) and (C) individually housed female mice fed high-fat diets 
containing primarily SFA (*, P < 0.05 vs. WT, one-way ANOVA, WT = 8, MC4R+/− 
= 6, MC4R−/− =10). D12328 was used as low-fat control. Graphs show body 
weight gain of (D) 6-month-old female animals for 2 wk, (E) 6- to 7-wk-old female 
mice fed MUFA diet, and (F) 6- to 7-wk-old female mice fed SFA diet for 7 d (*, P 
< 0.05; **, P < 0.01; ***, P < 0.001). G) Feed efficiency of 6- to 7-wk-old female 
mice maintained on low-fat D12328, MUFA, or SFA for 1 wk. (a, P < 0.05 vs. WT; 
b, P < 0.05 vs. same genotype fed low-fat diet; c, P < 0.05 vs. same genotype fed 
MUFA, one-way ANOVA). Data are expressed as mean ± sem. Statistical 
analysis is not available for data in A as animals were group housed. 
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Effect of the MC4R on the microstructure of food intake. 

 Loss of the MC4R caused an increase in 24-h food intake in response to 

high-fat diet (60% Kcal from fat; D12492) that was inversely proportional to gene 

dosage in 3-month-old male mice used to study the microstructure of meals (Fig. 

2A). This effect did not appear to be affected by age or gender, as it was 

observed in 7- to 8-wk-old female mice as well (Supplemental Fig. 3); indeed 

high-fat chow did not produce any significant increase in 24-h intake in WT 7- to 

8-wk-old females. Surprisingly, in light of the profound high-fat hyperphagia in 

MC4R−/− and MC4R+/− mice, high-fat diet significantly decreased food bout times 

(Fig. 2B) and meal times (Fig. 2C) in all genotypes, regardless of age or gender 

(Supplemental Fig. 3) compared with low-fat chow (PicoLab 20). High-fat diet 

also significantly prolonged the intermeal interval in all genotypes, with the 

exception of the MC4R−/− 7- to 8-wk-old females (Supplemental Fig. 3), although 

the increase was comparably smaller in MC4R−/− and MC4R+/− mice, relative to 

WT mice, suggesting defective satiation in both MC4R−/− and MC4R+/− mice (Fig. 

2D). Indeed, when average satiety ratios were calculated (intermeal interval in 

min. per meal size) using meal size in either kcals or grams (Supplemental 

Tables 1 and 2), the satiating value of calories from fat is proportionate to MC4R 

gene dosage. 

 On a low-fat diet, MC4R+/− and MC4R−/− mice displayed normal meal 

number per day, and high-fat diet significantly reduced meal number in all 

genotypes (Fig. 2E). Remarkably, eating rate was significantly increased in high-

fat diet–fed MC4R+/− and MC4R−/− mice compared with WT (Fig. 2F), irrespective 
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of gender or age (Supplemental Fig. 3). High-fat–fed WT mice significantly 

increased energy per meal compared with low-fat diet–fed group (Fig. 2G) but 

showed reduced meal size (in grams) in response to high-fat feeding (Fig. 2H). 

Furthermore, MC4R−/− mice showed significantly greater meal size compared 

with WT in both low-fat and high-fat diet–fed groups. MC4R+/− mice exhibited 

larger meal size compared with WT only in high-fat diet–fed group (Fig. 2, G and 

H), and only in the older male mice (compare Figs. 2, G and H with Supplemental 

Fig. 3, G and H). The data in Fig. 2 are also displayed as percent change in each 

parameter as a function of chow (Supplemental Fig. 4). As can be seen, despite 

the reduced length of feeding bouts or meals and the increased intermeal 

intervals in response to high-fat feeding, heterozygous or homozygous loss of the 

MC4R results in increased energy intake, both by mass and total Kcals, as a 

consequence of an increased rate of eating during each individual feeding bout 

or meal and a decreased satiating effect of calories from fat (Fig. 2; 

Supplemental Figs. 3 and 4; Supplemental Tables 1 and 2). 
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Appendix Figure 2. Effect of dietary fat on the microstructure of food intake 
in WT, MC4-R+/−, and MC4-R−/− mice. A) Twenty-four–hour food intake of 3-
month-old male mice fed Picolab rodent diet 20 (LF) or D12492 (HF) was 
monitored by CLAMS (*, P < 0.05; ***, P < 0.001, one-way ANOVA, WT LF = 7, 
WT HF = 8, MC4R+/− LF = 8, MC4R+/− HF = 8, MC4R−/− LF = 7, MC4R−/− HF = 9). 
B) Average duration of each feeding bout. C) Duration that animals consumed 
each meal. Animals (B) and (C) were evaluated during 6 h after light off (*, P < 
0.05; **, P < 0.01; ***, P < 0.001, one-way ANOVA). D) Intermeal interval. E) 
Number of meals. Data in D and E were obtained from the 24-h period on d 3 
(***, P < 0.001; *, P < 0.05; **, P < 0.01). F) Eating rate, indicated as gram food 
consumed per second, was significantly higher in HF-fed MC4R+/− and MC4R−/− 
mice vs. WT (*, P < 0.05; ***, P < 0.001, one-way ANOVA). G) Meal size, in Kcal, 
was greater in MC4R−/− vs. WT (*, P < 0.05; **, P < 0.01; ***, P < 0.001, one-way 
ANOVA). H) Meal size, in g, was significantly decreased in WT animals switched 
to HF diet, whereas MC4R+/− and MC4R−/− mice increased meal size in response 
to HF diet (*, P < 0.05; ***, P < 0.001, one-way ANOVA). All data were 
represented as mean ± sem.  



   169	
  

NAPE and NAE levels in the MC4R-/- mouse. 

 Because MC4R−/− mice exhibit high-fat hyperphagia and reduced satiation 

in response to a high-fat meal (Fig. 2D; Supplemental Tables 1 and 2), we tested 

the hypothesis that these mice may exhibit either defective production or 

defective response to NAPE. To characterize the contributions of MC4R to 

control of NAPE and NAE production, we used LC/MS/MS to quantitate these 

families of lipids in plasma from animals maintained on Picolab rodent diet 20 or 

switched for 48 h to the 60% Kcal fat diet D12492. Total plasma NAPE was 

similar in both genotypes on low-fat chow. Total plasma NAPE was elevated in 

both WT and MC4R−/− mice after high-fat feeding, and the increase in NAPE was 

greater in the MC4R−/− mice (Table 2). Plasma NAE levels were not regulated by 

diet in WT or MC4R−/− mice and were reduced markedly in MC4R−/− mice (Table 

3). Taken together, these data suggest that MC4R plays a role in regulation of 

peripheral NAPE and NAE levels. 
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MC4R knockout mice are fully sensitive to exogenous NAPE administration 

 Because the MC4R−/− mice increased plasma NAPE levels after 48 h of 

high-fat feeding, we next tested to see whether these mice had a defective 

anorexigenic response to NAPE. For this experiment, we examined the effect of 

NAPE administration on food intake of age- and weight-matched 7-wk-old female 

mice maintained ad libitum on a low-fat diet (PicoLab 20). We found that MC4R−/− 

mice were fully sensitive to anorexigenic effects of an ip injection of NAPE 

relative to MC4R+/− (Fig. 3A). Total 16-h food intake after NAPE injection of 

MC4R−/− mice was dramatically decreased (65.4 ± 2.203%) compared with 

vehicle group. NAPE induced reduction of food consumption in WT (31.5 ± 8.9%) 

and MC4R+/− (38.2 ± 2.3%) mice were statistically equivalent (Fig. 3B). We 

further investigated effect of NAPE administration on food intake of high-fat diet–

fed female MC4R−/− mice. NAPE reduced food intake in both high-fat diet (60% 

Kcal from fat; D12492) fed WT and MC4R−/− mice (Fig. 3C). However, effect of 

NAPE on 16-h food intake was significantly greater in MC4R−/− mice compared 

with WT (Fig. 3D). Indeed, dose–response analysis of the ability of NAPE to 

reduce 24-h food intake in WT and MC4R−/− mice showed a trend toward 
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increased responsiveness of MC4R−/− mice to the compound (Supplemental Fig. 

5). 

 

Heterozygous sim1 mutant mice are hypersensitive to exogenous NAPE 

administration. 

 Heterozygous sim1 (SIM1+/−) mutant mice have been previously shown to 

share phenotypic similarities with MC4R−/− mice [24]. We also tested to see 

whether SIM1+/− mice were responsive to the anorexigenic effects of NAPE. As 

with the MC4R−/− mice, SIM1+/− mice were more sensitive to ip injection of NAPE 

than WT at 21 h after injection (Fig. 3E). 
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Appendix Figure 3. Response to exogenous NAPE administration in 
MC4R−/− and SIM-1+/− mice. A) NAPE decreased food intake in age- and weight-
matched female mice as compared with vehicle groups on normal chow (***, P < 
0.001 vs. NAPE injected same genotype group; *, P < 0.05 vs. vehicle injected 
WT, t test, WT = 7, MC4R+/− = 7, MC4R−/− = 10). B) Percent reduction of food 
intake from data in A. At 16 h, MC4R−/− mice showed greater cumulative 
reduction of food intake after 100 mg/kg NAPE injection compared with WT and 
MC4R+/− mice (***, P < 0.001, one-way ANOVA). C) 100 mg/kg NAPE ip injection 
reduced food intake in high-fat diet–fed 4-month-old female mice (***, P < 0.001; 
*, P < 0.05 vs. NAPE injected group, t test WT = 7, MC4R−/− = 8). D) Cumulative 
food intake at 16 h after injection from C. High-fat diet–fed MC4R−/− mice showed 
hypersensitivity to NAPE at 16 h after injection (***, P < 0.001; *, P < 0.05, t test). 
E) Age- and weight-matched male SIM-1+/− mice showed greater reduction of 
cumulative food intake at 21 h after 250 mg/kg NAPE injection compared with 
vehicle-injected group (***, P < 0.001, t test, WT vehicle = 6, WT NAPE = 7, SIM-
1+/− vehicle = 5, SIM-1+/− NAPE = 5). All data are presented as mean ± sem.  
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MC4R-/- mice are more sensitive to exogenous OEA administration. 

 NAPE is a precursor for NAE. To determine whether MC4R−/− mice also 

are hypersensitive to NAE, we injected MC4R−/− mice ip with OEA, a species of 

NAE known to cause reduction in food intake in mice. We found that OEA 

reduced food intake in both WT and MC4R−/− mice (Fig. 4A). OEA-injected 

MC4R−/− mice exhibited a 48.6% ± 3.6 decrease in food intake, whereas WT 

mice exhibited a 37.8% ± 2.1 decrease in food intake (Fig. 4B). 
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Appendix Figure 4. Response to OEA administration in MC4R−/− mice. A) At 
19 h after OEA injection, MC4R−/− mice showed greater reduction of cumulative 
food intake compared with WT (**, P < 0.01, t test, WT = 7; MC4R−/− = 10). B) 
Percent reduction of food intake from A is shown as mean ± sem (*, P < 0.05, t 
test). 
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NAPE administration enhances activity of a small population of MC4R expressing 

neurons. 

 To determine whether NAPE administration affects neuronal activity of 

MC4R expressing neurons in the paraventricular nucleus (PVN) of the 

hypothalamus, we performed IHC to examine c-fos as an indirect marker for 

neuronal activity. MC4R-positive PVN neurons, known to be critical for the 

regulation of energy homeostasis [25], were identified using a transgenic mouse 

strain with GFP under the control of the MC4R promoter [21]. NAPE increases c-

fos–positive cells in PVN as previously shown [13] (Fig. 5, A–C). Double GFP 

and c-fos IHC analyses on PVN from MC4R-GFP mice treated with either vehicle 

or NAPE (n = 3 per group) showed that, in NAPE-injected mice, there were 8.9% 

± 1.2 of GFP neurons (269 cells from three mice) expressing c-fos, and 4.6% ± 

0.6 of detectable c-fos cells (513 cells from three mice) expressed GFP, 

indicating MC4R expressing neurons (Fig. 5, D–I). In vehicle-injected mice, no 

GFP neurons expressed c-fos (c-fos 81 cells, GFP 158 cells from three mice). 

These data show that NAPE activates only a small subpopulation of MC4R 

expressing neurons in PVN. 
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Appendix Figure 5. Activation of MC4R-GFP neurons by exogenous C16:0 
NAPE administration. IHC of c-fos (red) in the PVN of overnight fasted male 
MC4R-GFP mice followed by either (A) vehicle or (B) 500 mg/kg C16:0 NAPE ip 
injection. Scale bar, 100 µm. C) NAPE increased c-fos–positive cells (***, P < 
0.001, t test). GFP (green; D) and c-fos (red; E) positive cells and (F) double 
immunostaining of GFP and c-fos in the PVN are displayed. Scale bar, 50 µm. 
Panels G–I show higher-magnification images of double-fluorescent IHC for 
MC4R-GFP and c-fos. Scale bar, 10 µm. Arrows point to neurons showing 
double immunostaining. 
 

  



   177	
  

Disruption of MC4R gene alters FAAH expression and activity in hypothalamus. 

 NAPE-PLD and FAAH enzymes are known to mediate the production and 

degradation of endogenous NAEs. Given the altered serum levels of NAE in the 

MC4R−/− mice, we tested for aberrant expression of these enzymes. We first 

investigated gene expression of NAPE-PLD and FAAH in hypothalamus using 

quantitative real-time PCR. The data showed that free feeding 19- to 20-wk-old 

female MC4R−/− mice showed a significant increase of FAAH mRNA compared 

with WT (Fig. 6A). Nevertheless, there was no significant difference in NAPE-

PLD mRNA expression between WT and MC4R−/− mice (P = 0.8) (Fig. 6A). 

 To confirm the quantitative real-time PCR data, we further performed 

Western blot analysis. Levels of NAPE-PLD and FAAH protein in hypothalamus 

of age-matched animals were assessed. We found that FAAH protein was 

significantly higher in hypothalamus of MC4R−/− mice compared with WT, yet 

level of NAPE-PLD protein was not significantly different between WT and 

MC4R−/− mice (Fig. 6B). Based on detected elevation of FAAH mRNA and 

protein in hypothalamus of MC4R−/− mice, we then hypothesized that activity of 

FAAH enzyme was higher in hypothalamus of MC4R−/− mice compared with WT. 

As expected, MC4R−/− mice displayed significantly increased FAAH enzyme 

activity compared with wild-type control (Fig. 6C). 
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Appendix Figure 6. Disruption of MC4R altered FAAH expression and 
activity in hypothalamus. A) Graphs show relative NAPE-PLD and FAAH 
mRNA expression in hypothalamus determined by quantitative real-time PCR (**, 
P < 0.01, t test, WT = 9, MC4R−/− = 13) and (B) NAPE-PLD and FAAH protein 
levels, normalized to WT (*, P < 0.05, t test, WT = 7, MC4R−/− = 9). C) FAAH 
enzyme activity was determined in hypothalamus (*, P < 0.05, t test, WT = 4, 
MC4R−/− = 6). All data are mean ± sem. 
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Discussion 

 In the first publication on the phenotype of the MC4R knockout mouse, it 

became apparent that, in contrast to most GPCRs, deletion of the MC4R 

exhibited a gene dosage effect, with heterozygotes exhibiting an intermediate 

rate of weight gain and an intermediate rate of increase in linear growth [20]. The 

discovery that haploinsufficiency caused early onset morbid obesity in humans 

demonstrated the physiology of the system to be conserved [26, 27]. MC4R 

haploinsufficiency causes up to 5% of severe early onset obesity in children, and 

with an allele frequency in the general population of 0.1% may be one of the 

most common Mendelian disorders in humans. Remarkably, although many 

different physiological functions have now been ascribed to the MC4R using the 

mouse as a model system [28], the vast majority of these have been 

characterized in the homozygous knockout mice. As a consequence of the 

human disorder resulting from haploinsufficiency, characterization of the 

physiological consequences of melanocortin haploinsufficiency in the mouse may 

be of more direct medical relevance. 

The melanocortin obesity syndrome in the mouse produces both 

hyperphagia and metabolic defects that lead to obesity. Multiple metabolic 

defects have been characterized in the mouse, and recently reduced autonomic 

tone has been observed in humans as well [29]. Indeed, mild obesity is still 

observed when MC4R−/− mice are pair fed to WT levels of food intake [30]. 

Nonetheless, the melanocortin obesity syndrome is characterized in mouse [20] 

and human [26, 27] by a readily measurable hyperphagia. In the mouse, this 
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hyperphagia appears to be particularly triggered by dietary fat, and the animals 

exhibit multiple defective homeostatic responses to dietary fat. These include 

defects in intake [3] and diet-induced thermogenesis [3, 31], even when fat 

content is only increased from 12 to 25 Kcal %. Because of the potential 

opportunity for nutritional intervention in melanocortin obesity syndrome in 

children, we characterized the hyperphagic response to dietary fat in the MC4R 

haploinsufficient mouse. 

In the C57BL/6J mouse strain used for the studies in this report, animals 

exhibit an acute 24 h hyperphagia when switched high-fat chow (60% of Kcal 

from fat; D12492) and return to near isocaloric intake by d 6 (Fig. 1A). Loss of 

one or both alleles of the MC4R also produces the acute 24 h hyperphagia, but in 

contrast to WT mice loss of one MC4R allele produces a hyperphagia sustained 

for up to 14 d, and loss of two alleles produces approximately twice the degree of 

hyperphagia. The fat in the D12492 chow is constituted primarily with lard and 

thus represents a mixture of saturated and monounsaturated fats. We also tested 

high-fat diets formulated primarily with saturated fats and monounsaturated fats 

(Fig 1, C–G). Both saturated and monounsaturated diets produced significant 

hyperphagia in 6-month-old female MC4R−/− and MC4R+/− mice. The 

hyperphagia in the haploinsufficient mouse was not as profound with these diets 

as the lard-based diet, however the latter formulations were 45% fat vs. 60%, so 

it is not possible to determine whether either of these fat types produce less 

hyperphagia than a lard-based diet. 
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Interestingly, the purified low-fat chow (D12328), matched for protein 

content to the formulated high-fat chows, did not produce any significant increase 

in weight gain or increase in food efficiency over the 7-d study period in MC4R+/− 

mice compared with WT mice (Fig. 1G). In contrast, all three high-fat diets 

increase weight gain in MC4R+/− mice. Weight gain in the heterozygous animals 

appears intermediate between WT and MC4R−/− mice with the high-fat 60% Kcal 

fat diet and MUFA diet but appears less pronounced in the MC4R+/− mice on the 

SFA diet. However, because there are also high levels of saturated fat in the 

60% fat diet, this difference may be attributable to reduced palatability and intake 

of saturated fats derived from coconut oil in the SFA diet. In summary, the MC4R 

haploinsufficient mouse exhibits hyperphagia and rapid weight gain in response 

to a variety of dietary fats yet remains relatively normophagic over this short 

study period on a isocaloric low-fat diet. 

Based on the observation that MC4R−/− mice exhibit resistance to the 

satiety factor CCK, a protein and fat-induced satiety factor, we anticipated that 

MC4R−/− and MC4R+/− mice would exhibit signs of defective satiety and/or 

satiation, such as larger size of meals or a decreased intermeal interval when 

hyperphagia was induced by high-fat feeding. We were surprised to observe that 

feeding bouts and meals were reduced in length, and intermeal intervals were 

increased in length in MC4R+/− and MC4R−/− animals, as animals were switched 

from low-fat (Picolab rodent diet20) to high-fat (D12492) chow. MC4R+/− and 

MC4R−/− animals actually eat fewer meals when placed on high-fat chow. 

However, the intermeal interval increases less in MC4R+/− and MC4R−/− animals 
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than WT, and in concert with the increased intake in MC4R+/− and MC4R−/− this 

yields a significant drop in the satiety ratio, the ability of food to maintain 

satiation. These data argue that while some aspects of satiety and satiation 

remain intact in the MC4R+/− and MC4R−/− animals, the MC4R mediates a critical 

gene dosage effect on the satiating effects of dietary fat. Remarkably, the 

MC4R+/− and MC4R−/− animals also eat faster than WT mice, but only on high-fat 

chow. For example, WT, MC4R+/−, and MC4R−/− animals eat 29.1, 86.8, and 

52.63 percent faster, respectively, when placed on high-fat chow. Thus, these 

animals have a compound defect in that they rapidly consume more calorie 

dense food and are less sensitive to its satiating properties. 

Because the primary difference in food intake in response to high-fat diets 

in the MC4R+/− and MC4R−/− animals relative to WT occurs after a shared acute 

hyperphagia of 24 h, we were quite intrigued with the discovery of NAPE as a 

potential factor regulating the response to dietary fat in that NAPE is not 

produced acutely after fat intake but rather peaks in the serum after 4 h in the 

mouse [13]. 

Consistent with the data from microstructural analysis of food intake in 

response to high-fat diet, however, we observed that MC4R−/− mice produced 

NAPE in response to high-fat feeding and exhibited an anorexigenic response to 

NAPE. Rather than exhibiting a WT response, however, the MC4R−/− exhibited a 

greater production of total NAPE in response to high-fat feeding, perhaps 

attributable to the increased consumption of fat. Furthermore, the MC4R−/− mice 

exhibited a full anorexigenic response to ip administration of NAPE and even 
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trended toward enhanced sensitivity. Interestingly, we also observed a 

decreased serum concentration of total NAE, a lipid species derived from NAPE, 

and enhanced sensitivity to anorexigenic activity of OEA, a species of NAE. NAE 

is hydrolyzed by FAAH. Reduction in serum NAE levels was consistent with 

levels of hypothalamic FAAH mRNA, protein, and enzyme activity, which were all 

increased in the MC4R−/−. The responsiveness of MC4R−/− to NAPE was 

supported by studies of the activity of PVN MC4R neurons to NAPE 

administration. Only a very small percentage of MC4R neurons in the PVN 

exhibited c-fos immunoreactivity in response to NAPE, and this could be 

interpreted to mean that NAPE is not dependent on activation of MC4R signaling 

for its anorexigenic activity. 

A growing body of literature supports a role for melanocortin signaling in 

reward and food preference. The MC4R and MC3R are expressed in brain 

regions involved in reward, such as the amygdala, accumbens, and ventral 

tegmental area [32, 33]. Several observations suggest that blockade of 

melanocortin signaling stimulates fat intake [34–36], increasing the reward value, 

preference, and consumption of high-fat vs. high-carbohydrate–containing food. 

In rats, intracerebroventricular administration of the MC4R/MC3R antagonist, 

AgRP, increased operant responding for a fat but not a sucrose reinforcer in a 

progressive ratio paradigm [7]. Preference for high-fat chow stimulated by 

administration of a µ opioid receptor agonist is blunted in the AgRP knockout 

mouse [37]. Finally, stimulation of high-fat feeding in satiated rats by µ agonist 
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injection into the accumbens is blunted by lateral ventricle administration of the 

MC3R/MC4R agonist, MTII [38]. 

These data, along with data presented here showing normal or even 

enhanced anorexigenic action of NAPE, and data on the microstructure of meals 

indicating a reduction in meal length and increase in intermeal interval in 

MC4R+/− and MC4R−/− animals in response to dietary fat argue for additional 

mechanisms of hyperphagia in these animals. While previous data had 

previously demonstrated a defect in satiety resulting from MC4R blockade [4, 6], 

we propose that the hyperphagia resulting from loss or haploinsufficiency of the 

MC4R is compounded by an enhanced reward response to fat. Because µ 

opioids have been well documented to stimulate preference for palatable foods 

and fat intake [39, 40], a simple model might involve dysregulation of the normal 

signal provided by the µ agonist β-endorphin, and the MC4R agonist α-MSH, 

coreleased throughout the CNS by POMC nerve terminals. In this model, loss of 

the α-MSH signal through deletion of the MC4R removes a critical 

counterbalance to the β-endorphin signal, producing high-fat hyperphagia, as 

described here. 

Because these findings also pertain to MC4R haploinsufficient mice, these 

data also have potential implications for treatment of MC4R haploinsufficient 

children. Because these children may present with obesity as young as 6 months 

of age, nutritional interventions involving significantly reducing calories from fat 

may have a significant impact on the rate of weight gain. 
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