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CHAPTER I 

 

INTRODUCTION 

 

Genome-wide association studies (GWAS) have identified numerous single nucleotide 

polymorphisms (SNP) associated with a variety of clinic traits [1]. Unfortunately, a full 88% of 

significant GWAS findings are in non-coding regions of the genome [2], making the exact 

biological mechanism underlying the association unclear. However, it has been shown that trait-

associated SNPs are more likely to affect gene expression levels than non-trait associated SNPs 

[3] This effect – SNPs associating with differential gene expression levels – is termed expression 

quantitative trait loci or eQTL. There are two primary types of eQTL: cis and trans. Cis-eQTL 

are where the variant is within 500 kilobases (kb) of the gene that is differentially expressed. 

Trans-eQTL, on the other hand, are more than 500kb away from the differentially expressed 

gene, sometimes on entirely different chromosomes [4]. 

Most eQTL studies have focused on cis-eQTL for a variety of reasons. First, cis-eQTL 

have clear potential biological mechanisms. When a variant is located in a cis-regulatory region, 

it stands to reason that an allele change could alter the binding affinity of transcriptions factors 

resulting in differential expression. Other variants in non-coding portions of the gene could affect 

transcript stability again altering expression levels. Second, cis-eQTL are relatively easy to test. 

The relatively limited number of SNP-gene pairs allow for stringent, but not excessive, multiple 

testing penalties. Additionally, the number of tests is computationally tractable, especially 

compared to exhaustive testing for trans-eQTL which requires testing all possible combinations 

of SNPs and gene expression values. Further complicating matters, trans-eQTL have tended to 

have smaller effect sizes that are more variable across different tissue types than cis-eQTL [5]. 

Additionally trans-effects have been shown to replicate across populations less well than cis-

eQTL, thereby requiring large sample sizes in populations of homogenous descent [6].Finally, 

trans-eQTL lack clear biological explanations for mechanisms of effect. Although some have 

proposed that close 3-dimensional contact between SNPs and the differentially expressed gene 

(as measured through chromatin conformation) could explain this effect [7], this hypothesis has 

not been extensively tested and the prevalence of this effect is unclear. We propose an alternate  

A. 
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B. 

 
Figure 1. Study Rationale.  Panel A shows all human chromosomes and illustrates a SNP (blue 

arrow) that has an effect on the expression of the cis-gene (green boxes), and also affects 

expression of four trans-genes on other chromosomes (orange boxes). Panel B demonstrates our 

studies hypothesis that these trans-genes are part of a biological pathway – explaining a potential 

mechanism for the SNP’s trans-effects. 
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explanation that trans-eQTL may be operating through genetic pathways to alter gene 

expression.  

Figure 1 explains our general conceptual framework for this problem. When there is a 

known cis-eQTL (represented by the blue arrow – SNP- and cis-gene – green rectangle), it stands 

to reason that this gene may be connected to trans-genes whose differential expression is 

associated to the SNP in question. If this is the case, it is likely that the SNP may be associated to 

the entire pathway – not just the genes inside the pathway. In this work we selected known cis-

eQTL variants and tested them for association to differential expression of entire pathways. 

Given the general lack of replication and generalization of trans-effects, we performed both 

discovery and replication analyses in multiethnic cohorts. To further determine whether these 

effects act solely through the cis-eQTL gene (as is plausible in the hypothetical example) we also 

perform conditional analysis of each SNP-Pathway association, removing the effect of the 

expression of the cis-eQTL gene. Moreover we fully annotate all of our replicating SNPs with 

functional genomics data to further investigate potential effect mechanisms. 
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CHAPTER II 

 

BACKGROUND 

 

As described in the introduction, numerous single nucleotide polymorphisms have been 

associated with human traits. However to understand the mechanism behind those associations 

one needs to understand potential biological effects that can give rise to a disease state. 

Generically one can think of the following ways disease states can occur:  

1. Improper protein formation or modification (affecting function or stability) 

2. Improper trafficking or location of properly formed proteins 

3. Improper expression of proteins (too much, too little, or inappropriate timing of 

expression).  

To illustrate the first biological mechanism, SNPs in protein coding regions of the 

genome can alter the amino acid sequence of the protein perhaps affecting the proteins function 

or stability. Even intronic SNPs (i.e. non-coding variants) could be part of known splice site 

locations that alter exon arrangements again affecting the function or stability of the final protein 

product. For variants in unannotated regions of the genome, most have unknown function, but 

they likely contribute to the latter two potential molecular mechanisms underlying disease: 

improper trafficking or expression. In this work, we focus our attention on the third mechanism – 

altered gene expression. While some consider gene expression to mean the amount of fully 

functional protein product, in this work we refer to gene expression as the levels of RNA 

transcript in the cell. To better understand how single nucleotide polymorphisms can affect gene 

expression, we first need to understand how gene expression is measured and the basic biology 

behind normal gene expression. 

 

Measuring Gene Expression Levels 

 

RNA transcript abundance can be measured through a variety of experimental techniques. 

For high throughput, genome-wide assays, most experiments use microarray technologies or 

more recently RNA sequencing (RNA-seq). In both methods it is typical to amplify the transcript 
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abundance using either reverse transcription (making complementary DNA or cDNA) or 

antisense RNA amplification (making aRNA also known as complementary RNA or cRNA) [8]. 

Microarrays then hybridize these amplified sequences to labeled, preselected probes that are 

complementary to specific gene transcripts. Abundance of each transcript is measured base on 

the intensity of hybridization where higher intensity means more abundance of transcript. One 

disadvantage of this method is that it only captures transcripts included on the array. 

Additionally, variants located in the probe may artificially alter measured expression levels. In 

RNA sequencing, next generation sequencing technologies are used to sequence the amplified 

cDNA samples. Transcript abundance is usually inferred based on sequencing coverage, or read 

depth (i.e. how many copies of sequence map back to the original gene). Unlike microarrays, 

RNA-seq is agnostic in measuring each transcript, so the experiments are not limited to the 

probes used in the platform. Additionally, RNA-seq can identify specific transcript isoforms 

(differentially spliced transcripts – i.e. those with different numbers or ordering of exons).  

 

Defining Functional Elements and their Role in Mediating Gene Expression 

 

Transforming DNA into a protein product is a complicated process with strict regulation 

and numerous intermediate products. The expression of any single gene is dependent on cell 

type, temporal and biological conditions. For genes that are expressed, first the gene is 

transcribed into heterogeneous nuclear RNA (hnRNA) containing complete 3’ and 5’ 

untranslated regions, introns and exons. This hnRNA is processed into messenger RNA (mRNA) 

for transport outside of the nucleus by intron removal, appending a poly-adenine tail to the 3’ 

end, and addition of a 5’ methylguanosine cap. This mRNA can then be translated into a protein 

product by ribosomes outside of the nucleus. These protein products may be further modified 

into the final functional form of the protein. There are two clear biological routes to altered 

levels of RNA transcript abundance – 1) pre-transcription modifications affecting production of 

RNA products and 2) post-translational modifications that affect stability and therefore 

abundance of RNA transcript. 
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Pre-Transcriptional Regulation of Gene Expression 

There are a number of factors affecting whether and how a gene will be transcribed. First, 

the gene and its regulatory elements must be accessible to transcription machinery. Second, 

alterations to regulatory elements or availability of specific regulatory elements can alter 

transcription levels. The openness of DNA can be accessed experimentally using DNaseI 

hypersensitivity assays [9]. DNaseI is an enzyme that cleaves DNA at pyrimidine bases in both 

single and double stranded DNA. However this enzyme can only act on open regions of DNA 

where the specific nucleotide can be interrogated. Thus identifying locations susceptible to 

DNaseI cleavage is a good proxy for open regions of chromatin. 

Biological determination of DNA sequence availability to transcription machinery is 

primarily determined based on chromatin state. To have efficient packaging of DNA in a cell, 

DNA is wound around histone protein complexes to form a nucleosome. During replication, 

these nucleosomes can be further wound into fibers that are wound, compressed and coiled into 

chromatids. The tighter DNA is wound around the histone complexes, the less accessible the 

DNA sequence is for transcription. The levels of tightness of coiling around histones are 

determined by different types of modifications to the histone proteins. “Chromatin state” is 

therefore a qualitative descriptor of the types of histone modifications present and their effect on 

DNA accessibility.  

Additionally, chromatin state can be indicative of the function of different regions of 

DNA. For instance, a study in 2010 used Hidden Markov Models to identify specific 

combinations of histone modifications that correlated with specific types of functions [10]. This 

analysis found that methylation of various lysine residues on histone 3 was associated with 

promoter elements – the site of RNA transcription initiation. Other histone combinations were 

correlated with different functions in intergenic regions, specifically: enhancers and insulators. 

Enhancers and insulators interact with transcription machinery to increase or decrease 

transcription respectively. 

In regions that are open for transcription, different protein complexes or transcription 

factors bind to DNA to carry out transcription. Each transcription factor has slightly different 

regulatory processes dictating their effect. Thus knowledge of specific transcription factor 

binding sites can give insight into the patterns of expression of the gene. Typically transcription 

factors have a specific consensus sequence of nucleotide base pairs that correspond to the 



7 

 

physical connection between the transcription factor and the DNA sequence [11]. Sequence 

variation or nucleotide modifications in this region can alter the efficacy of transcription factor 

binding and therefore the amount of transcript produced.  

The final type of functional variation that can impact the efficacy of regulatory 

machinery is DNA methylation. Unlike histone methylation that modifies the histone protein, 

DNA methylation involves addition of a methyl group to specific nucleotides. This methylation 

typically occurs in regions enriched for cytosine and guanine content and are termed CpG 

islands. When these nucleotides are methylated they tend to inhibit transcription of the nearby 

gene. These regions can also affect chromatin structure, again impacting relative abundance of 

transcription. 

 

Post-Transcriptional Regulation of Gene Expression 

During post-transcriptional modification, intron regions are removed and exons are 

spliced back together. However, for many genes the precise number or ordering of exons 

retained vary leading those genes to produce multiple different transcripts or isoforms. This 

alternative splicing is known to be highly heritable and common [12]. These splice isoforms are 

expressed at different levels and experience degradation at different frequencies due to nonsense 

mediated decay or other factors impacting transcript stability. These variations can have an 

artificial impact on total mRNA levels for the gene as measured through microarrays because 

some isoforms may bind more or less well to the expression probe. Another post-transcriptional 

modification, polyadenylation of the pre-mRNA, can affect transcript levels through reduced 

transcript stability. 

 

Expression Quantitative Trait Loci 

 

Cis-eQTL , or SNPs associated to the expression of a gene that is within 500-1000kb 

have been widely studied in humans [5,13-19]. Many of these studies have focused on 

characterizing the biological effects of these SNPs while others have focused on associations to 

diseases and human health [20-23]. It has even been shown that many of the disease associated 

variants in the GWAS catalog are known eQTL [3].  
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It is relatively clear how these variants could act to alter gene expression. As described by 

the overview of functional elements, most of the functional elements affecting gene expression 

are located close to the gene being expressed (i.e. within 500-1000kb up or downstream of the 

gene).Given that knowledge, it is likely that the cis-eQTL, or a variant in linkage disequilibrium 

(LD), could disrupt transcription factor binding, CpG methylation signals, splice site junctions or 

the polyadenylation signal sequence. What is less clear is how variants further away (or even on 

a different chromosome) could impact gene expression levels. 

 

Trans-eQTL 

Trans-eQTL are defined as variants associating with gene expression levels of a gene 

more than 1Mb away from the variant. Typically these effects are smaller and replicate less well 

than cis-variants [5,24]. In general these types of association are tested far less commonly, likely 

due to the lack of a clear biological mechanism an the dramatic expansion of statistical tests 

required to detect these effects [25].  However they do account for a significant portion of the 

heritability of gene expression levels and tend to replicate only in similar tissue types [26]. 

Investigation of known trait or disease associated SNPs found enrichment for trans-eQTL and 

cis-eQTL over non-associated common variants. Many variants associated to the same 

phenotypic trait all acted as trans-eQTL for the same trans-gene/s [27]. Trans-eQTL have also 

been directly associated to human disease [28]. 

Interestingly many trans-eQTL co-localize in the genome. These eQTL hotspots were 

initially identified in model organisms [29,30], and have recently been replicated in humans [31]. 

It is hypothesized that these variants may act as master regulators [32,33], though others propose 

that these variants are acting through pathway-based mechanisms [34-37]. In one study of the 

proposed pathway effect, known trans-eQTL for the same SNP were tested using Gene Set 

Enrichment Analysis (GSEA) and found an abundance of known upstream transcriptional 

regulators [34]. Other studies have used pathways and interaction networks to try to determine 

the actual genes being directly regulated by the SNP (i.e. removing those genes whose 

association is mediated through the pathway) [36,37]. One other study has proposed a similar 

approach to our work, performing pathway analysis over all known eQTL for a given SNP using 

Ingenuity Pathway Analysis (IPA) – a proprietary data source. This study was performed on a 

superset of European samples contained in the HapMap project and was not replicated in any 
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other sample or population [35]. Importantly, this study had numerous limitations. The lack of 

replication, generalization and the use of proprietary software/knowledge sources severely limit 

the impact of this work. 

 

Controlling for Population Stratification in eQTL Studies 

Generalizability (i.e. replication of effect across multi-ethnic populations) is important to 

determine the extensibility of the observed effect. However, when performing analyses in 

multiethnic populations, it is important to control for the confounding effect population can play. 

It is well understood that different distributions in minor allele frequency and phenotypic 

outcomes among different populations can decrease power and lead to spurious associations 

[38]. It has been shown that amongst the HapMap II populations, between 17% and 29% of 

genes are differentially expressed when comparing one population to another [6]. Given the 

known allelic differences and this phenotypic difference, it is critical to correct for population 

stratification in expression studies using multiple populations. Many studies perform all quality 

control and analysis steps separately in each population [6]. However this can greatly reduce 

power due to the smaller sample sizes within each population. Other strategies include correcting 

admixed populations gene expression levels with principal components analysis [15]. Still others 

have further corrected the gene expression levels within populations to align all populations to a 

standard (and hence comparable) distribution [14]. This approach allows all populations to be 

combined and analyzed at the same time, thereby increasing power through larger sample size. 

This correction involves performing a normal quantile transformation to each gene within a 

single population. While there is data loss in terms of the true spacing between relative gene 

expression values, the method reduces the effect of outlier expression values, and sets all 

populations and genes to the same distribution allowing for a combined analysis. 

 

Approaches to Pathway Analysis 

 

There are multiple types of pathway analyses used in bioinformatics. Many studies use 

ontologic approaches to group differentially expressed genes according to their Gene Ontology 

(GO) functions [39]. Others use biological pathways and protein interaction knowledge bases 

such as, Reactome [40,41] or the Kyoto Encyclopedia of Genes and Genomes (KEGG) [42,43]. 
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Statistical analysis tends to use either over-representation analysis (ORA) or gene-set enrichment 

analysis (GSEA) Over-representation analysis essentially tests the hypothesis that there are more 

differentially expressed genes in a pathway or ontology group than expected by chance alone 

(typically determined through permutation testing [44]. Gene-set enrichment analysis is a more 

complicated approach that ranks genes from a given set (biological pathway, physical proximity, 

GO category, etc) based on the correlation of their expression with a particular phenotype. Under 

the null hypothesis that the pathway is unrelated to the phenotypic outcome, correlation values 

would be randomly distributed. GSEA uses a random walk algorithm to calculate an enrichment 

score that measures how overrepresented the set of genes are at either the top or bottom of the 

distribution. The significance of this enrichment score is determined through phenotypic 

permutation testing [45].  

What both ORA and GSEA fail to take into account is the organization of the gene 

sets/pathways and topology features of those networks. Essentially all genes are treated with 

equal weight where in true biological pathways some genes have more impact than others (e.g. 

may impact expression of many genes). Similarly, differential expression of subsets of genes 

may provide more evidence of dysregulation than others. For instance if a set of interacting 

genes are all differentially expressed this is more relevant biologically than if the differentially 

expressed genes are randomly distributed throughout the pathway. It is for these reasons that 

Signaling Pathway Impact Analysis (SPIA) was developed [46].  

 

Project Specific Data Sets and Tools 

 

International HapMap Project and the 1000 Genomes Project 

One hypothesis of genetic influences on complex traits is the common disease common 

variant hypothesis (CDCV). Essentially, if a disease is common within a population, it stands to 

reason that the genetic factors behind that disease would also common. In 2001 it was estimated 

that 10 million bases in the genome had common variation (alternate alleles at >1% frequency in 

the population) across the world human population [47]. While it was possible to interrogate 

some of this variation in regions of known interest, identifying candidate regions in an agnostic 

manner was not feasible due to sequencing cost and the burden of correction for the high number 

of statistical tests needed for single variant association. However, by understanding the process 
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by which genetic variation arises, it was determined that a much smaller subset of variants could 

be used to capture the broader common variation in the genome. 

Variation in the genome typically originates in singular mutation events on a common 

genetic background. Over generations this mutation can propagate through a population and 

become common. This SNP is associated with the other variants from the background sequence. 

This region, called a haplotype, is changed in sequence and length as further mutation or 

recombination events occur. Linkage disequilibrium (LD) describes this phenomenon of co-

inheritance of these alleles. Studies can then use variants that most precisely define the haplotype 

present (thereby tagging other variation in the region) for more efficient interrogation of the 

human genome. This approach has been widely used in genome-wide association studies. 

However, the amounts of LD present and even which SNPs tag the most variation differs by 

population. In 2003 the International HapMap Consortium was formed to create a human 

haplotype map for multiple ancestral populations [48]. 

The first phase of this project developed haplotype maps for four ancestral populations – 

specifically 30 trios (parents and one offspring, 90 individuals total) from the Yoruba in Ibadan, 

Nigeria (YRI), 30 trios from Utah (CEU), 45 unrelated Han Chinese from Beijing (CHB) and 45 

unrelated Japanese in Tokyo (JPT). The first phase genotyped common variation (minor allele 

frequency (MAF) > 5% in the population) every 5 kilobases (kb) [49]. The second phase of this 

project increased the density of variation to one SNP every kilobase, capturing approximately 

25-35% of common SNPs in the human genome [50]. The third phase of the project greatly 

increased the number of individuals and populations (1,184 individuals across 11 populations). 

Importantly, this project phase only captured approximately 1 million variants through 

genotyping technologies compared with the combined Phase I and II sequencing and genotyping 

efforts which measured over 3 million SNPs. The original four populations were included in the 

project (with new samples from these populations). Additional populations included: ASW – 

African Americans from the southwest United States; CHD – Chinese individuals in Denver, 

Colorado; GIH – Gujarati Indians from Houston, Texas; LWK – Luhya in Webuye, Kenya; 

MKK – Maasai in Kinyawa, Kenya; MXL – Mexican ancestry individuals from Los Angeles, 

California; TSI – Tuscans in Italy [51].  

Ultimately the success of the International HapMap Project and the GWAS it enabled, led 

the field to begin examination of low frequency and rare variation (minor allele found in <1% of 
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the population) through the 1000 Genomes Project. This project sought to identify haplotype 

information for all genetic variation (not just common variation as in HapMap) for variants with 

a minor allele frequency > 1%. Additionally the project catalogued rare variation (minor allele 

frequency down to 0.1%) in coding regions of the genome. Like Phase III of the HapMap 

Project, this project studied a larger set of populations pulled from five broad ancestral groups. 

Ultimately the project concluded that it had identified over 95% of all currently accessible 

variation in an individual’s genome [52]. In addition to the genetic data that these two projects 

produced, many of the individuals from the population had lymphoblastoid cell lines (LCLs) 

created through transformation of B-lymphocytes with Epstein Barr Virus (EBV). These cells are 

available for research and have been widely used in other large scale projects. 

 

Functional Variation Databases 

Following the completion of the Human Genome Project, it became obvious that 

identifying the function of the 3 billion bases was the next step forward for the field. This need 

created the Encyclopedia of DNA Elements Project (ENCODE) whose goal was to identify all 

functional elements in the human genome sequence [53]. In 2004, the pilot phase of this project 

started and focused on only 1% of the genome. The pilot phase sought to identify procedures and 

technologies that could be used to eventually interrogate the entire genome – developing new 

technologies where necessary. Ultimately the ENCODE consortium planned to identify the 

following types of functional elements in the genome: 

• Genes • Chromatin Modifications 

• Exons • Sites of Methylation 

• Origins of Replication • DNaseI Hypersensitive Sites 

• Replication Termination Locations • Promoters 

• Transcription Factor Binding Sites • Enhancers 

• Conserved Regions Across Species • Repressors/Silencers 

These features would be measured using a combination of transcript and chromatin 

immunoprecipitation microarray hybridization (ChIP-chip), other array based technologies (for 

methylation), and computational methods. 
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The pilot project of ENCODE was completed and published in 2007. These preliminary 

results showed that the genome is pervasively transcribed and revealed numerous details about 

regulatory elements and sequences affecting gene transcription [54]. With the knowledge and 

tools from the pilot project in hand, the project extended their analysis to the remainder of the 

genome. This vastly expanded analysis culminated in a coordinated release of 30 different 

publications highlighted in a special issue of Nature [55]. In total the final ENCODE project 

evaluated up to seven major types of functional variation (DNA methylation, open chromatin 

regions, RNA binding sites, RNA transcript sequences, ChIP-seq, histone modifications, and 

transcription factor binding sites) in more than 150 cell lines. Not all types of annotation are 

available for every cell line, so there is more work to be completed. 
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CHAPTER III 

 

METHODS 

 

Datasets 

 

Gene Expression  

Given that gene expression offers an important intermediate link between genetic 

variation and disease and is highly heritable, Barbara Stranger and others used the genetic 

variation present in HapMap and the accompanying cell lines to perform studies of eQTL in 

these populations [6]. In 2007, this group measured gene expression of lymphoblastoid cell lines 

from 270 Phase I and II HapMap samples using the Illumina whole-genome expression (WG-6 

version 1) array. This platform measured 47,294 probes, and after filtering probes that map to 

multiple positions in the genome, a total of 14,456 probes representing 13,643 genes remained. 

These data were made publically available through the Gene Expression Omnibus (GEO; Series 

Accession Number GSE6536; ref. 19). These data were further processed by Veyrieras et. al. 

2008 to remove known probe errors (i.e. a SNP was located in the probe leading to spurious 

artifacts). We downloaded these further processed gene expression data from 

(http://eqtnminer.sourceforge.net/). 

Following the successful completion of Phase III of the HapMap project, Stranger and 

colleagues extended their previous study to a more rigorous examination of the influence of 

ancestry on gene expression [15]. In this study, gene expression for lymphoblastoid cell lines 

from 726 individuals in the HapMap III project were measured using Illumina Sentrix Human-6 

Expression BeadChip version 2. The populations measured included CEU, CHG, GIH, JPT, 

LWK, MEX, MKK, and YRI. In the populations overlapping the HapMap II samples, this study 

included a mix of samples from HapMap II and the new individuals added in HapMap III. In 

total, this group measured 47,294 probes, and the data were made freely available at Array 

Express (Series Accession Number E-MTAB-264).  
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Genotypes 

For the 207 individuals from HapMap Phase I and II, genotype data was download from 

release 24 of the International HapMap project. As described in Chapter 2, the third phase of the 

HapMap project did not genotype as many variants as the previous two phases. When comparing 

the SNPs available for the 207 HapMap I and II samples to those available for the 466 Phase III 

HapMap samples, only about ~50% of these had been genotyped. We extract all available 

genotypes from draft release 2 of the International HapMap project for all 466 individuals 

However, 236 of those 466 individuals had also been sequenced as part of the 1000 genomes 

project. Groups have previously performed haplotype phasing (1000G Phase I version 3 MACH 

panels) on those data and have made those data freely available [49,56]. We drew the remaining 

half of the SNPs available in Phase I and II HapMap samples but not Phase III HapMap from this 

resource for the 236 individuals sequenced. 

 

Study Populations 

 

The discovery population consisted of 210 independent multiethnic samples, specifically 

60 CEPH and 60 Yoruba parental samples, 45 Han Chinese and 45 Japanese unrelated 

individuals from the Phase II HapMap Project. Gene expression measures were from Stranger 

et.al. 2007 and genotype data came from release 24 of the International HapMap project. 

The replication set consisted of up to 466 independent multiethnic samples, specifically 

34 Han Chinese, 39 Japanese, 82 Gujarati Indians, 83 Luhya, 134 Maasai, 53 Yoruba and 42 

individuals of Mexican descent in Los Angeles. These were all unrelated individuals from the 

Phase III HapMap Project and although some populations overlapped with our discovery set 

(CHB, JPT & YRI) the individuals tested were independent. Gene expression values were from 

Stranger et. al. 2012, 65 SNPs were draft release 2 of the International HapMap project for all 

466 individuals, and 62 SNPs from 1000G Phase I version 3 MACH panels. Unfortunately, the 

SNPs from the 1000 genomes project only included CHB, JPT, LWK, MXL, and YRI 

individuals giving a total sample size of 236 individuals for those SNPs.  
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A. 

 
B. 

.  

Figure 2. Normal quantile transformation of a single gene across HapMap III samples. 

Lines correspond to the gene expression value for a single individual and gene. Panel A 

shows the original raw gene expression values for each population while Panel B is 

following normal quantile transformation. 

 

Normalization of Gene Expression Values 

 

As part of normal quality control procedures, raw expression levels were normalized with 

quantile normalization within replicates and then median normalized across all samples. These 

quality control methods were performed by Stranger et. al. (2007 and 2012) prior to data 

downloads. However, to be able to combine populations with different distributions of gene 
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expression values, we had to apply additional normalization procedures. We used the normal 

quantile transformation originally proposed by Veyrieras et. al. In this method a single gene’s 

expression value for each individual in a single population is ranked in numerical order. These 

rankings are then transformed by the following equation: 

(     )

 
 

where r is the rank of the gene expression value and n is the number of individuals in the 

population. The value produced by the equation corresponds to the quantile of the standard 

normal distribution that will be assigned as the gene expression value for that gene for that 

individual. Put more simply, this creates a ranking system where the transformed gene 

expression value depends on the relative expression value within the population and the size of 

the population tested. For an example of this transformation in HapMap III only populations, see 

Figure 2  

 

Selection of Single Nucleotide Polymorphisms for Testing 

 

We only chose to investigate SNPs that had a known cis-eQTL effect in lymphoblastoid 

cells lines (as measured in [14]). The original study defined all SNPs within 500kb upstream of 

the transcription start site and 500 kb downstream of the transcription end site as cis-variants. As 

shown in Figure 3, for each of the 744 genes that had at least one significant eQTL (as defined 

by a p-value < 7x10
-6

 which corresponds to a gene-level false discovery rate of 5%) we 

calculated a gene-specific significance threshold using a Bonferroni correction for the number of 

cis-SNPs. Cis-SNPs that met these significance thresholds were further filtered to identify the 

most significant SNP identifying independent loci for each gene. This filtering process relies on 

empirical estimates of linkage disequilibrium as calculated using the clump function in 

PLINK[57]. This algorithm requires four parameters – the significance cutoffs for index and 

clumped SNPs, an LD threshold and a physical distance threshold. We did not set a significance 

threshold for this procedure as all SNPs already met our significance cutoffs. We clumped SNPs 

that were within 250kb of the index SNP that also had an R
2
 of at least 0.5. The most significant 

SNP from each clump was carried forward in the analysis. Any SNP that fell outside of a clump 

were also carried forward for analysis. 
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A. 

 

B. 

 
C. 

 
Figure 3.  SNP Selection Procedure. Panel A illustrates that for all genes tested for cis-eQTL by 

Veyrieras et. al. we only selected those that had at least one eQTL meeting a gene-level false 

discovery rate of 5% (in green). Panel B summarizes the gene specific Bonferroni correction 

based on how many SNPs were tested for each gene independently.  In Gene 2 there were more 

SNPs tested so the significance threshold was proportionally lowered. All SNPs passing this 

threshold (in green) were considered for the analysis. Finally in Panel C, for all significant SNPs 

in Gene 2 a test of linkage disequilibrium removed variants with a correlation higher than 0.5.  In 

cases of LD the most significantly associate SNP was retained (colored green).  SNPs not in LD 

with other variants were also retained (colored green). 
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Pathway-Based trans-eQTL Analysis 

 

Overview of Signaling Pathway Impact Analysis 

Signaling Pathway Impact Analysis calculates two probability measurements. The first is 

analogous to ORA, in that it calculates the probability of observing the number of differentially 

expressed genes in the pathway compared to the null hypothesis of random differential 

expression. This measure will be referred to as PNDE. The second probability measure relates to 

perturbation of the pathway, essentially taking into account which genes in the pathway are 

differentially expressed. This probability is calculated with respect to a perturbation factor 

defined as: 

  (  )    (  )  ∑   

 

   

 
  (  )

   (  )
 

Here E(gi) is the normalized gene expression log fold change. This value is adjusted by the sum 

of the perturbation factor for each of the upstream genes [PF(gj)] after normalization for the 

number of downstream genes [Nds(gj)]. These summed perturbation factors are weighted based 

on the type of interaction with the current gene (e.g. activation, inhibition, etc). This weighting is 

captured using the βij term. Performing this calculation for each differentially expressed gene 

creates a large set of simultaneous equations that can be solved to calculate the perturbation 

factor value for each gene.  

However, to capture the total true pathway perturbation (i.e. the accumulation of effect 

through the pathway) one cannot use the perturbation factor value alone. This is because the 

perturbation factors include the level of gene expression for each gene in the pathway. Instead 

we want to calculated perturbation accumulation – essentially the excess effects on expression 

that is propagated through interconnected differentially expressed genes. This measure is 

caclculated as: 

   (  )    (  )    (  ) 

This measure is then summed across the pathway creating a total accumulated perturbation 

measure. Using bootstrapping, the probability of observing a total accumulation as extreme or 

more extreme by chance alone is calculated and referred to as PPERT. An visual example of these 

effects are presented in Figure 4.  
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Figure 4. Example of SPIA Perturbation Measure.  In this figure two different 

types of pathway dysregulation are compared. Both pathway (a) and (b) would 

have the same PNDE values as they both have two of seven differentially expressed 

genes. However the perturbation statistic, PPERT will be different.  In pathway (a) 

there is a smaller total pathway expression accumulation because the two 

differentially expressed genes (grey) are not directly connected in the pathway. 

Although neither pathway has significant perturbation factors, pathway (b) has a 

smaller statistic because of the cumulative effects of the differentially expressed 

genes, Gene A and Gene B having direct contact in the pathway. Figure from [46]. 

 

Finally, the two measures, (PNDE and PPERT) are combined into a total probability score, 

PG. For each pathway, i, the total probability score is calculated with reference to ci where ci is 

calculated as the product of PNDE and PPERT [e.g.        ( )       ( )]. The calculate for PG is 

as follows: 

           (  ) 

In all cases, the probability measures are independent of pathway size, which allows for direct 

comparison of values among pathways.  

SPIA can be applied to any pathway database that has interconnected nodes connected 

through directed edges. The original implementation of this approach uses human KEGG 

pathways which include a number of cellular and disease pathways. In total there are more than 
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60 human pathways in KEGG, which means that it is necessary to correct probability measures 

calculated in SPIA for multiple testing. Given that these pathways are highly correlated, 

controlling for a 5% false discovery rate (FDR) [58] is appropriate and implemented in the 

original SPIA R package. This measure will be referred to as PGFDR. 

 

Approach 

For each SNP that passed our filtering process, we analyzed the effect of that SNP on 

differential expression of KEGG pathways using the tool Signaling Pathway Impact Analysis 

(SPIA). [46] To determine the effect of each SNP on the various pathways we first regressed 

gene expression values onto the additively encoded genotype for each SNP independently using 

linear regression. Genes with a regression p-value <0.05 were considered differentially 

expressed. Because of the normalization procedures used to combine our populations, we could 

not use the typical log-fold change in gene expression for this analysis. Instead, we used the raw 

beta value from the SNP regression – essentially representing the per-allele additive effect on 

gene expression.  

 

Significance Thresholds 

As mentioned previously, SPIA examines all KEGG pathways an FDR corrected p-value 

(PGFDR) is presented to account for multiple testing at a pathway level. However, because we are 

performing multiple pathway analyses – one for each SNP tested – we need to perform 

additional correction. Each SNP is independent (due to the linkage disequilibrium filtering), so 

we corrected the PGFDR value using a Bonferroni correction for each of the 2909 SNPs tested 

resulting in a threshold of p < 1.7x10
-5

. All SNP-Pathway associations with a PGFDR below this 

threshold were tested for replication in the replication population. Given that we are only testing 

certain SNP-pathway combinations, we will use the unadjusted global p-value (PG) in our 

replication thresholds. We considered SNP-Pathway combinations with nominally significant 

(p<0.05) PG values as replicated. However, to identify SNP-pathway effects that appear to be 

especially robust, we calculated a Bonferroni corrected threshold for the number of SNP-

pathway combinations tested (n=221) a PG threshold of 2.3x10
-4

.  
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Identification of Possible Mechanisms of Action 

 

Investigating Replication of Known cis-eQTL  

Given that we selected SNPs on the basis of their purported cis-eQTL effects found by 

Veyrieras et. al. in our discovery population, we were interested to see if these primary effects 

were able to be replicated. For each of the SNPs with significant SNP-Pathway replication, we 

tested the effect of the SNP on the cis-gene’s expression. Using linear regression, we associated 

additively encoded SNPs on the gene expression value. For SNPs that had multiple cis-eQTL 

genes in our discovery population, we performed regression for the SNP on each gene. Given 

that this is a replication, we used a liberal, nominally significant threshold (p<0.05).  

 

Removing Effect of cis-eQTL Gene Expression 

To determine whether these pathway-based expression changes are propagated through 

the cis-eQTL gene alone or if there are extra trans-effects by these SNPs, we analyzed all SNP-

Pathway combinations that replicated across both datasets. As with the discovery and replication 

analyses, we regressed the gene expression values onto the additively encoded SNP genotype, 

however this time we included the normalized gene expression value of the cis-eQTL gene as a 

covariate. This should give the relative gene expression change that occurs without the effects of 

the expression of this gene. We took the regression results and processed with SPIA as described 

above. For SNPs that act as cis-eQTL for multiple genes, we performed the conditional analysis 

once for each SNP-gene pair. Similar to the replication analysis, we accepted nominally 

significant PGFDR values (<0.05) as significant associations. 

 

Functional Annotation 

Given the nature of this work, we will focus on the transcription related elements from 

ENCODE. These functional elements are identified with the following experimental procedures: 

ChIP-seq of histone proteins and of transcription factors, and DNaseI hypersensitivity assays. 

ChIP procedures cross-link existing DNA-protein complexes (essentially making the interaction 

more solid). The long pieces of DNA crossed-linked to the proteins are broken into smaller 

fragments, and then the fragments of interest are removed for analysis using antibodies to the 

protein of interest. Following unlinking of the DNA-protein complex of interest, either a 
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microarray chip (ChIP-chip) or sequencing (ChIP-seq) reveal the sequence of the region being 

bound by the protein. When targeting histones this gives valuable information on the chromatin 

state at the region. If transcription factor proteins are targeted, transcription factor binding sites 

(TFBS) are identified. Although the chromatin state implies information on accessible DNA, 

DNaseI hypersensitivity assays actually measure regions of open DNA (implying locations of 

functional elements or active transcription). DNaseI is an enzyme that degrades DNA – in 

regions of accessible DNA, DNaseI will cleave out multiple fragments. Sequencing of these 

fragments and alignment to the reference genome allow for identification of these open DNA 

sites. 

Specifically, in this study we will use chromatin state information (enhancers promoters 

and repressors), regions of open chromatin, and effects of SNPs on regulatory binding motifs 

found in HaploReg [59]. This database uses information from the HapMap project to identify 

whether the SNPs of interest are in linkage disequilibrium with these functional elements. 

Additionally we will examine transcription factor binding sites, and predicted binding locations, 

along with known gene expression regulators (eQTL) found in RegulomeDB [60]. Many of the 

cell lines included in ENCODE and regulation information in these databases are from 

lymphoblastoid cell lines – even in some cases LCLs from the same HapMap samples.  

In summary, for each of the SNPs with replicating SNP-Pathway associations, we 

examined regulatory annotations using HaploReg [59] and RegulomeDB [60]. Specifically we 

annotated each SNP for: 

 Chromatin state information (enhancers promoters and repressors) 

 Regions of open chromatin 

 Effect of SNPs on regulatory binding motifs 

 Transcription factor binding sites (experimentally validated) 

 RegulomeDB Functional Score  

RegulomeDB scores are based on the level of evidence supporting the regulatory function of the 

scored variant. For chromatin states, and effects on regulatory binding motifs we did include 

annotations for variants in strong linkage disequilibrium with our tested SNP. The annotations in 

question have poor resolution and so using nearby SNPs improves the likelihood of identifying 

potential regulatory mechanisms.  
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Annotation of Known SNP and cis-eQTL Gene Effects  

We further examined potential explanations underlying replicating SNP-Pathway 

associations by mapping known associations/functions of both the SNP and its cis-eQTL gene 

using the NCBI catalog. Specifically we annotated SNP effects using dbSNP [61] and genes 

using Entrez Gene [62]. We also investigated whether any of the replicating SNPs had known 

associations from genome-wide association studies. We annotated each SNP using the GWAS 

catalog [1] and the Johnson GWAS Catalog that contains many suggestive associations [63]. 

Finally we completed searches of PubMed for each SNP and gene to investigate prior knowledge 

of SNP and gene function to identify potential explanations for the SNP-pathway association. 
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CHAPTER IV 

 

RESULTS 

 

A total of 853 genes tested in [14] had one or more cis-eQTL SNPs meeting our 

threshold. For these 853 genes, a total of 928,908 SNP-gene pairs were test for cis-eQTL 

activity. After applying a gene-level Bonferroni correction, 22,247 SNP-gene pairs were 

significant. These results contained 21,315 unique SNPs as many SNPs associated with the 

expression of multiple genes. The vast majority (20,482) associated with the expression of a 

single gene. For those associated to multiple genes, 735 associated with two genes, 97 associated 

with three genes, and 1 associated with four genes. Following quality control procedures, 119 

SNPs were removed from analysis as they did not map to the current build of the reference 

genome or were unavailable in the latest version of HapMap genotyping data. For all remaining 

SNPs, we filtered out variants in linkage disequilibrium for each gene set, giving a total of 2909 

SNPs for future analyses. 

 

Discovery and Replication of Pathway-Based trans-eQTL 

 

In the discovery analysis we tested 2,909 SNPs against 137 KEGG pathways.  A total of 

291,257 SNP-pathway combinations had at least one differentially expressed gene in the tested 

pathway. Of these, 240 SNP-Pathway combinations met our Bonferroni-corrected false 

discovery rates and were carried forward for replication. These results represented a total of 135 

SNPs associated with 13 different pathways. Fifty-seven SNPs associated with 2 or more 

pathways. Of these, 23 SNPs associated with 2 pathways, 24 SNPs associated with 3 pathways, 7 

SNPs associated with 4 pathways, 2 SNPs associated with 5 pathways, and 1 SNP associated 

with 6 pathways. A complete listing of these findings can be found in Appendix A.  

Of the 135 SNPs significant in the discovery analysis, 65 were available for all HapMap 

III samples, 65 were available for only a subset of the 1000 Genomes project samples and 5 were 

unavailable for analysis. Those five SNPs accounted for 19 SNP-pathway combinations. Of the 

remaining 221 SNP-pathway combinations, 32 met our nominal significance threshold and 15 

met our Bonferroni corrected global p-value. Result for both the discovery and replication 
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Table 1. Significant Replicating SNP-Pathway Associations 

SNP 
Pathway 

Name 

Discovery Replication 

pSize NDE pNDE tA pPERT pGFdr pSize NDE pNDE tA pPERT pG 

HapMap 3 Samples (n=466) 

rs7586918 

Protein proc. 

in endoplsmc 

reticulum 

105 16 4.56E-09 0.02 0.91 7.66E-06 150 42 3.23E-06 0.57 0.30 1.44E-05 

rs10517012 
Olfactory 

transduction 
67 10 7.40E-04 -7.36 5.00E-06 8.54E-06 361 17 1.00 6.66 5.00E-06 6.60E-05 

rs1162371 
Olfactory 

transduction 
67 28 5.93E-06 9.10 5.00E-06 1.00E-07 361 10 1.00 5.52 5.00E-06 6.60E-05 

rs11104775 
Olfactory 

transduction 
67 36 2.90E-08 11.48 1.00E-03 9.89E-08 361 22 1.00 12.07 5.00E-06 6.60E-05 

rs11104947 
Olfactory 

transduction 
67 25 1.27E-04 10.36 5.00E-06 1.92E-06 361 17 1.00 10.72 5.00E-06 6.60E-05 

1000 Genomes Samples Only (n=236) 

rs6572658 Cell cycle 80 32 8.67E-11 -3.23 0.16 4.78E-08 119 56 7.14E-12 -6.79 0.14 2.84E-11 

rs7681425 
Parkinson's 

disease 
75 29 1.02E-11 0.19 0.83 2.81E-08 105 53 2.41E-09 -4.08 1.50E-02 9.07E-10 

rs7681425 
Huntington's 

disease 
120 33 1.15E-08 0.20 0.89 9.16E-06 163 72 7.09E-09 -0.52 0.56 8.12E-08 

rs11008749 Cell cycle 80 22 9.51E-09 -2.10 0.34 7.95E-06 119 46 2.25E-08 4.43 0.32 1.41E-07 

rs7972875 
Huntington's 

disease 
120 44 4.16E-10 -0.28 0.49 6.32E-07 163 42 3.19E-08 -0.24 0.72 4.27E-07 

rs12475079 
Huntington's 

disease 
120 39 7.02E-09 0.23 0.79 7.23E-06 163 40 3.37E-08 -0.38 0.75 4.64E-07 

rs7867279 
Epstein-Barr 

virus inf. 
128 54 1.40E-07 -1.51 0.10 8.78E-06 177 52 0.03 5.54 5.00E-06 2.58E-06 

rs10131614 RNA trnsprt 84 47 1.60E-11 0.05 0.89 5.07E-08 126 41 4.62E-07 -0.04 0.82 6.01E-06 

rs425437 
Huntington's 

disease 
120 33 8.34E-10 -0.25 0.73 5.91E-07 163 24 2.53E-06 0.00 1.00 3.51E-05 

rs7681425 
Alzheimer's 

disease 
101 29 3.10E-08 0.69 0.37 9.16E-06 148 60 4.04E-06 -0.03 0.99 5.37E-05 

 



27 

 

statistics for the fifteen SNPs passing our Bonferroni correction are presented in Table 1. This 

table contains a few descriptive factors for each association: 

 pSize – the number of genes in the pathway with expression measurements 

 NDE – the number of differentially expressed genes in the pathway 

 pNDE – the probability of observing the number of differentially expressed genes by 

chance alone 

 tA – the total accumulation of expression change through the pathway 

 pPERT – the probability of observing that level of accumulation by chance alone 

 pGFDR – the false discovery rate corrected combined probability of pNDE and pPERT 

 pG – the unadjusted combined probability of pNDE and pPERT 

Additionally the table is broken down by origin of the genotype information as SNPs measured 

by HapMap 3 have nearly double the number of individuals tested as those from the 1000 

Genomes Project. A complete listing of nominally significant replication results can be found in 

Appendix B.  

 

 

Figure 5. Summary of Effect of Cis-eQTL and Cis-Gene on SNP-Pathway Association. For both 

the populations we have three types of data: the cis-eQTL, our SNP-pathway association, and the 

association adjusted for expression level of the cis-gene. Green coloring indicates a statistically 

significant result, while red represents none significant associations. The yellow component 

represents the singular case where the cis-eQTL association for rs7972875 is significant but in 

the opposite direction of effect. From these labels we can group SNPs into different patterns with 

different interpretations on potential effect mechanism.  
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Table 2. Cis-gene Adjusted SNP-Pathway Associations 

Cis-eQTL 
Pathway 

Name 
Population pSize NDE pNDE tA pPERT pG 

Cis-eQTL/Gene Pattern 1 

rs425437 

MOSC2 

Huntington's 

disease 

Discovery 120 56 7.76E-09 -0.03 0.87 1.34E-07 

Replication 163 55 2.44E-04 0.32 0.47 1.15E-03 

rs7586918 

DTNB 

Protein 

processing 

in 

endoplasmic 

reticulum 

Discovery 105 65 7.63E-07 0.60 0.28 3.44E-06 

Replication 150 135 6.88E-13 -0.22 0.78 1.58E-11 

rs7867279 

ZNF510 

Epstein-Barr 

virus inf. 

Discovery 128 92 2.36E-06 -0.17 0.80 2.67E-05 

Replication 177 160 1.83E-13 3.42 0.02 1.31E-13 

Cis-eQTL/Gene Pattern 2 

rs6572658 

L2HGDH 
Cell cycle 

Discovery 80 66 3.02E-06 -1.56 0.29 1.32E-05 

Replication 119 107 2.13E-12 -10.17 0.01 9.60E-13 

rs7681425 

STIM2 

Parkinson's 

disease 

Discovery 75 51 9.32E-07 -0.24 0.73 1.03E-05 

Replication 105 79 1.95E-11 -4.30 9.00E-03 5.32E-12 

Huntington's 

disease 

Discovery 120 70 4.01E-05 -0.10 0.61 2.84E-04 

Replication 163 116 3.07E-13 -0.34 0.71 6.58E-12 

Alzheimer's 

disease 

Discovery 101 58 3.18E-04 0.50 0.33 1.06E-03 

Replication 148 92 2.13E-06 -1.02 0.48 1.50E-05 

rs10131614 

EIF2S1 

RNA 

transport 

Discovery 84 73 3.23E-14 -0.01 0.97 1.00E-12 

Replication 126 121 7.42E-18 -0.11 0.77 2.34E-16 

rs11008749 

ARHGAP12 
Cell cycle 

Discovery 80 68 1.62E-05 -3.06 0.25 5.34E-05 

Replication 119 104 6.05E-10 10.78 6.00E-03 9.93E-11 

rs12475079 

IMMT 

Huntington's 

disease 

Discovery 120 100 2.66E-06 -0.29 0.22 8.88E-06 

Replication 163 133 4.99E-08 -1.02 0.25 2.37E-07 

rs7972875 

VPS33A 

Huntington's 

disease 

Discovery 120 98 2.98E-07 -0.12 0.60 2.94E-06 

Replication 163 134 2.62E-16 -1.04 6.80E-02 7.04E-16 

Cis-eQTL/Gene Pattern 3 

rs1162371 

CEP290 

Olfactory 

transduction 

Discovery 67 43 0.09 2.38 0.23 0.11 

Replication 361 205 1.00 -15.56 5.00E-06 6.60E-05 

rs11104775 

CEP290 

Olfactory 

transduction 

Discovery 67 47 0.36 -1.04 0.63 0.56 

Replication 361 220 1.00 -59.93 5.00E-06 6.60E-05 

rs11104947 

CEP290 

Olfactory 

transduction 

Discovery 67 44 0.37 2.34 0.33 0.38 

Replication 361 209 1.00 -34.49 5.00E-06 6.60E-05 

rs425437 

C1orf115 

Huntington's 

disease 

Discovery 120 48 1.96E-06 -0.01 0.96 2.67E-05 

Replication 163 20 0.26 0.01 0.48 0.39 

Cis-eQTL/Gene Pattern 4 

rs10517012 

TMEM33 

Olfactory 

transduction 

Discovery 67 24 1.00 1.80 0.27 0.62 

Replication 361 205 1.00 24.88 5.00E-06 6.60E-05 
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Figure 6. Cis-eQTL Associations for SNPs with Effect Pattern 1. Genotypes are coded based on 

the number of copies of the minor allele (with respect to the discovery population).  Regression 

lines are presented summarizing direction of effect. Green regression lines indicate associations 

meeting our p-value threshold while red are not statistically significant.  

 

Identification of Potential Mechanisms of Action 

 

For each SNP-Pathway association we identified the cis-eQTL gene for which the SNP 

was originally selected. One SNP, rs425437, was a cis-eQTL for two genes, MOSC2 and 

Clorf115 (open reading frame). Both genes were tested independently in these analyses. 

Following testing of both cis-eQTL effect and adjustment for effect of cis-gene expression on the 

SNP-pathway association, a number of combinations/patterns of effects emerged. A summary of 

the types of patterns observed are presented in Figure 5. In this figure, green boxes represent 

significant associations, while red boxes represent associations that were not statistically 

significant. Importantly, the SNP with two cis-eQTL, rs425437, had divergent patterns based on 

each eQTL gene. Also one SNP, rs7972875, had a significant cis-eQTL in the replication cohort, 

but the opposite direction of effect and was therefore grouped with the other associations that 

lacked cis-eQTL significance in the replication population.  
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Figure 7. Cis-eQTL Associations for SNPs with Effect Pattern 2. Genotypes are coded based on 

the number of copies of the minor allele (with respect to the discovery population).  Regression 

lines are presented summarizing direction of effect. Green regression lines indicate associations 

meeting our p-value threshold while red are not statistically significant. 
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Figure 8. Cis-eQTL Associations for SNPs with Effect Pattern 3. Genotypes are coded based on 

the number of copies of the minor allele (with respect to the discovery population).  Regression 

lines are presented summarizing direction of effect. Green regression lines indicate associations 

meeting our p-value threshold while red are not statistically significant. 

 

The results of the SNP-Pathways associations adjusted for the expression level of the cis-

gene, are presented in Table 2. SNP-gene-pathway combinations are grouped according to the 

effect pattern described in Figure 5. The same statistical measures presented in the unadjusted 

analyses are included in this table. Figures 6-9 are plots of each cis-eQTL in the discovery and 

replication cohorts grouped by their respective effect pattern. Each diagram includes a scatter 

plot of individual expression measurements by genotype, the mean, first and third quantiles for 

expression by genotype (numbers are count of minor allele copies), as well a linear regression 

line. The colors of the line indicate statistical significance based on the gene-specific Bonferroni 

correction in the discovery population and nominal p-value in the replication population.  
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Figure 9. Cis-eQTL Associations for SNPs with Effect Pattern 4. Genotypes are coded based on 

the number of copies of the minor allele (with respect to the discovery population).  Regression 

lines are presented summarizing direction of effect. Green regression lines indicate associations 

meeting our p-value threshold while red are not statistically significant. 

 

Complete results of the functional annotation of variants using HaploReg and 

RegulomeDB are available in Appendix C. We curated these results based on relevance to the 

pathway implicated and the cis-eQTL gene. These filtered results are presented in Table 3 again 

grouped by effect pattern. This table contains a variety of information. DNaseI sensitivity reports 

cell line types for which the SNP is found in open chromatin. Chromatin State includes the 

interpreted chromatin function for the given cell type/s (in parentheses). Transcription Factor 

Binding Sites (TFBS) annotate the transcription factor and the cell line tested while Altered 

Regulatory Motif indicates the relative affinity level of the given transcription factor for the 

minor allele compared to the reference allele. The final data presented is the RegulomeDB score. 

This score is determined based on the level of evidence supporting regulatory function. A score 

of “1f” indicates evidence for an eQTL and either transcription factor binding or a DNase 

hypersensitivity peak. A score of “5” only requires either transcription factor binding or a DNase 

hypersensitivity peak at the variant. Scores of 6 are used as an “other” category that indicates 

minimal binding evidence. Given that these results are only a subset of all the annotations for 

each SNP, there are some types of data available that are not relevant to the SNP-pathway 

association. In these cases the boxes are left blank with no background shading. However, when 

annotation types for variants are not available at all, the entry is shaded with a grey diagonal 

pattern. 

It is important to note that the annotations presented in both Appendix C and Table 3 are 

only for the listed SNP. However, for annotations from HaploReg we did search on all SNPs in 
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Table 3. Relevant SNP Functional Annotations 

SNP / Gene 

Pathway 

DNaseI Sensitivity Chromatin State TFBS Altered Regulatory Motif Regulome

DB Score 

Cis-eQTL/Gene Pattern 1 

rs425437 / MOSC2 

Huntington’s Disease 
 LCL 

 Glioblastoma 

Enhancer (temporal 

lobe, angular gyrus) 

 Increased affinity  for HIF1 1f 

rs7586918 / DTNB 

Protein processing in ER 
 LCL Strong Enhancer 

(LCL) 

  1f 

rs7867279 / ZNF510 

Epstein-Barr virus inf. 
 RPEC   Reduced affinity for NF-1 5 

Cis-eQTL/Gene Pattern 2 

rs6572658 / L2HGDH 

Cell cycle 

   Increased affinity for EVI-1 

and HDAC-2 

No Data 

rs7681425 / STIM2 

Hunt., Park., Alz. Disease 
 Prostate adeno-

carcinoma 

Weak Enhancer 

(adult liver) 

  5 

rs10131614 / EIF2S1 

RNA transport 

   Reduced affinity for Nanog, 

and SOX2 

6 

rs11008749 / ARHGAP12 

Cell cycle 
 Epidermal 

keratinocytes 

  Increased affinity for OCT-1 1f 

rs12475079 / IMMT 

Huntington's disease 
 Choroid plexus 

epithelial cells 

Active enhancer 

(anterior caudate) 
 CTCF (brain, 

muscle) 

Reduced affinity for LUN1s 1f 

rs7972875 / VPS33A 

Huntington's disease 
 LCL   Reduced affinity for NF-1 5 

Cis-eQTL/Gene Pattern 3 

rs1162371 / CEP290 

Olfactory transduction 

 Weak enhancer (cortex)  Reduced affinity for STAT3 6 

rs11104775 / CEP290 

Olfactory transduction 

   Reduced affinity for Dlx2 6 

rs11104947 / CEP290 

Olfactory transduction 

    6 

rs425437 / C1orf115 See entry for rs425437 in Pattern 1.  

Cis-eQTL/Gene Pattern 4 

rs10517012 / TMEM33 

Olfactory transduction 

   Reduced affinity for HNF4 6 
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linkage disequilibrium with our variant (R
2 

> 0.8, European descent population). In only one 

variant did a relevant coding SNP emerge. For rs11104775, cis-eQTL for CEP290 is in moderate 

LD (R
2
 = 0.81, European Descent Population) with rs79705698 a missense variant (Asp→Gly) 

in CEP290. This variant has been deposited into ClinVar – a repository of variants 

used/discovered in clinical genomic testing – by two individuals. Neither group described the 

patient’s phenotype. Only one provided an assessment of pathogenicity and labeled it as a benign 

variant.   

Following annotation for known phenotypic associations using the GWAS Catalog other 

GWAS results, only one SNP had a direct pleiotropic association: rs11104947 (Olfactory 

Transduction). This variant was also associated with vitiligo in a Taiwanese population [64]. 

Two more variants, rs7972875 and rs12475079 were in LD with variants associated with other 

disorders. The first SNP, rs7972875, is in moderate LD R
2
=0.87) with rs11058789 which is 

associated to Type II diabetes [65]. The second SNP, rs12475079, is in high LD (R
2
= 0.96, and 

1.0) with two variants (rs715334 and rs4422155) associated to Parkinson’s disease [66] . It is 

also in high LD (R
2
 = 0.961) to a variant associated with both Rheumatoid Arthritis and 

Parkinson’s disease [65].  
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CHAPTER V 

 

DISCUSSION 

 

This study investigated the hypothesis that a single SNP may affect expression levels of 

distant genes by acting through a biological pathway. To test this hypothesis we performed 

signaling pathway impact analysis of SNPs known to be cis-eQTL on two independent, multi-

ethnic populations. In total we identified 15 highly significant replicating SNP-pathway 

associations.  

 

Interpretation of Possible Mechanisms of Action 

 

Given our requirement that all SNPs needed to be cis-eQTL, it was possible that the 

expression of the cis-eQTL gene could be acting as a confounding variable. In this scenario the 

association between the SNP and pathway may be in fact solely due to effect of the SNP on the 

cis-gene and the cis-gene effect on the pathway. This confounding possibility is shown in Figure 

10. We can test the effect of the potential confounder statistically by adjusting our model for 

expression levels of the cis-gene. Additionally, given that our SNPs were selected as cis-eQTL in 

our discovery population it was possible that some of those cis-effects may not have replicated in 

our second population. This natural experimental condition removes the biological impact of the 

SNP on the gene (and therefore removes the confounding pathway). After testing both scenarios, 

four combinations of these effects were 

identified. Each has its own interpretation 

and as such will be covered individually. 

 

Cis-eQTL/Gene Pattern 1 

In the first pattern, SNP-pathway 

associations in both the discovery and 

replication population were robust to 

expression of the cis-gene when 

controlled for statistically. Visually this is  

 

Figure 10. Example of Association Confounding. 

This figure shows that although a SNP may be 

associated with expression of a pathway (indicated 

by an arrow) it may actually be associating through 

a common factor – the cis-gene.  
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represented in relation to the confounding 

effect in Figure 11. In this group of SNPs, 

the eQTL did replicate so we are unable to 

conclude the impact of removal of the cis-

eQTL on the SNP-pathway association. 

However, given our statistical removal of 

the cis-gene effect we hypothesize that loss 

of the cis-eQTL would not impact the 

association. 

 

Cis-eQTL/Gene Pattern 2 

In the second pattern, SNP-pathway 

associations in both the discovery and replication population were robust to expression of the cis-

gene when controlled for statistically. Additionally, the cis-eQTL did not replicate in the 

replication population. Given that the SNP-pathway association replicated in the unadjusted 

analysis we can conclude that the cis-eQTL effect is not driving for the SNP-pathway 

association. A summary of this result is shown in Figure 12.  

 

Cis-eQTL/Gene Pattern 3 

In the third pattern, the SNP-

pathway association was not robust to 

removal of the cis-gene expression in 

only one population. Figure 13 displays 

this effect. If this were observed in both 

populations there would be stronger 

evidence to suggest that the SNP-

pathway associate is being mediated by 

the expression of the cis-gene. However, 

given that we only see this in a single 

population at a time, a different 

explanation is needed. Unfortunately 

 
Figure 11. Removal of Confounding by 

Statistical Correction. This diagram shows that 

by controlling for expression levels of the cis-

gene, we remove the effect of that gene on the 

pathway and therefore remove the confounding 

effect. If the pathway is still associated we are 

measuring an effect independent of the cis-gene 

(shown as green arrow). 

 
Figure 12. Removal of Confounding by Statistical 

and Biological Correction. This example shows the 

scenario where the SNP no longer is associated 

with the cis-gene (i.e. the eQTL fails to replicate) 

and where the expression of the cis-gene has been 

adjusted for statistically. This indicates a SNP-

pathway association independent of the cis-gene 

(shown as green arrow). 
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without more experimentation it is not clear 

what these results precisely indicate. 

 

 

Cis-eQTL/Gene Pattern 4 

The fourth pattern is the most 

difficult to interpret. For this SNP, the 

eQTL does not replicate in the replication 

population, additionally adjustment for 

expression of the cis-gene does not affect 

the SNP-pathway association (as previously 

shown in Figure 12). However, in the 

discovery population, adjusting for expression of the cis-gene does remove the SNP-pathway 

association (Figure 13). It is hard to reconcile these two results; it is possible that there is some 

other, unmeasured factor/s, that are confounding the association between the SNP and the 

pathway. These factors may be different between our two populations thereby explaining the 

difference in observed effect. 

 

Plausible Biological Interpretations of Functional Annotations 

 

A number of the pathways identified were associated to multiple SNPs. Ignoring 

biological heterogeneity, we assume that similar mechanisms underlie each pathway type. For 

that reason we will discuss the relevant SNP functional annotations and possible mechanisms of 

action for each pathway individually. Unfortunately for one association, Alzheimer’s disease, 

there were no relevant annotations found for the associated SNP (rs7681425). 

 

Cell Cycle Pathway 

Two SNPs, rs6572658 and rs11008749, were associated with the Cell Cycle KEGG 

pathway. While this is a fairly broad phenotype, there were a number of functional elements for 

these SNPs that support this association. First, it was found through DNaseI sensitivity assays 

that the chromatin region around rs11008749 was open in epidermal keratinocytes. This cell type 

 
Figure 13. Example of Confounder Driving 

Association. In this example, when the 

expression of the cis-gene was accounted for 

the statistical model, the SNP-pathway 

association was no longer significant (red X), 

indicating that the cis-gene is somehow 

mediating the association (green arrow). 
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is the outermost layer of the skin and has very unique cell cycle patterns that are not fully 

understood [67]. Although both SNPs have annotations for predicted chromatin state, none were 

particularly compelling for the given pathway. However, both SNPs alter interesting and 

potentially relevant regulatory motifs. The first SNP, rs6572658, is predicted to have increased 

affinity for EVI-1 a known oncogene [68]. This SNP also has increased affinity for HDAC-2 

which, when abnormally regulated, has been shown to deregulate expression important cell cycle 

proteins [69]. Finally, rs11008749 has increased affinity for the OCT-1 transcription factor. 

OCT-1 is required for arresting the cell cycle in the G1 phase of mitosis [70]. 

 

Epstein-Barr Virus Infection Pathway 

Only one SNP, rs7867279 was associated with the Epstein-Barr Virus (EBV) infection 

pathway. Interesting the region surrounding this SNP is in open chromatin in retinal pigment 

epithelial cells (RPEC). This cell type has been shown to not be easily infected by EBV [71]. 

Additionally, this SNP has reduced affinity for nuclear factor 1 (NF-1). In HeLa cells is was 

found that a distal NF-1 consensus site enhanced known promoters responsible for triggering the 

replicative cycle of EBV [72].  It is conceivable that part of the reduced susceptibility of RPEC 

cells to EBV infection may be related to altered function of NF-1 regulatory regions. 

 

Huntington’s Disease Pathway 

This pathway was associated with four different SNPs: rs425437, rs7681425, 

rs12475079, and 7972875. The region surrounding rs425437 and rs7972875 is open chromatin in 

multiple lymphoblastoid cell lines (LCL) from our HapMap population. Additionally rs7586918 

is in a strong enhancer in these cell lines.  Rs425437 is in an enhancer in temporal lobe and 

angular gyrus tissues. Huntington’s patients have been found to have significant loss of neurons 

in the angular gyrus [73,74]. Other chromatin state annotations include rs7681425 in a weak 

enhancer in liver tissue.  Interestingly, mouse models of Huntington’s have been observed to 

have dysfunctional hepatic transcription factors [75].  

The most interesting result, however, is rs12475079.  This SNP is in open chromatin in 

choroid plexus epithelial cells.  In mouse models of Huntington’s disease transplants of choroid 

plexus epithelial cells have been found to protect against neuron damage. Phenotypically the rats 

displayed fewer defects in motor function compared to the control animals [76]. Additionally, in 
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the anterior caudate, rs12475079 is in an active enhancer region. Previous imaging studies have 

identified concentrated deceased in grey matter in the anterior caudate region for individuals 

affected by Huntington’s. The severity of this atrophy was significantly associated with the 

number of CAG repeats each patient inherited [77]. It had been hypothesized that the 

transcription factor CTCF may impact the number of repeats seen in Huntington’s as it is 

associated with many unstable repeat loci.  While this was not found in two fibroblast cultures 

from Huntington’s patients, it is possible that in brain tissue this transcription factor may be 

involved in Huntington’s pathogenesis [78]. This background becomes more interesting in light 

of the fact that rs12475079 is in a CTCF binding site in both brain and muscle tissues.  

 

Olfactory Transduction Pathway 

Olfactory transduction was also associated to four SNPs: rs1162371, rs11104775, 

rs11104947, and rs10517012. The first three of these variants are cis-eQTL for CEP290 – 

centrosome protein 290kDA. This gene plays a crucial role in the function of cilia and is 

associated with numerous ciliopathies [79,80]. Malformations of cilia often impact sensory 

systems, for example, patients with CEP290 mutations causing Leber congenital amaurosis 

exhibited severely abnormal olfactory function [81]. One SNP, rs11104775, is in moderate LD 

with a missense variant in CEP290, though it has not been associated to a particular phenotype. 

While the association may be driven by the missense variant, this SNP also alters a regulatory 

motif for Dlx2 reducing affinity for this transcription factor. Dlx2 is essentially required for 

neurogenesis of all olfactory bulb interneurons [82]. One other interesting altered regulatory 

motif is rs1162371 and STAT3. Phosphorylated STAT3 has been associated with olfactory 

neuroblastomas, but is not typically observed in normal olfactory tissue [83].  

 

Parkinson’s Disease Pathway 

Only one SNP was associated with Parkinson’s disease, rs7681425. While the most 

interesting annotations for this variant are for its association to Huntington’s disease, this SNP is 

in open chromatin regions in prostate carcinoma tissue. This is interesting because in a large 

pedigree study, it was observed that there is a high co-occurrence of prostate cancer and 

Parkinson’s disease. However there has been some indication that this co-occurrence may be due 
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to drug side effects of certain treatments for Parkinson’s symptoms [84].  Our results could 

perhaps provide an alternative explanation. 

 

Protein Processing in the Endoplasmic Reticulum Pathway 

The SNP associated with protein processing in the ER, rs7586918, is in open chromatin 

in HapMap lymphoblastoid cell lines and is in a strong enhancer region.  While there are 

numerous transcription factors that bind this region, it is not clear how these transcription factors 

could be specifically related to this very broad pathway. 

 

RNA Transport Pathway 

One SNP, rs10131614, was associated with RNA transport. While there is not much 

functional data available for this variant, it is predicted to alter regulatory motifs and reduce 

affinity for Nanog and SOX2 transcription factors. Both transcription factors have been shown to 

interact with and regulate long noncoding RNAs in human cells [85,86].   

 

Limitations 

 

Paradoxically, one of this study’s strength is also a significant limitation.  The use of 

multiethnic populations in both the discovery and replication assures for generalizability of 

results, but also reduced our power to detect true associations.  Many associations that are 

population specific would not be identified in this analysis as we used not only multiethnic 

populations, but also we used a different mix of populations in the discovery and replication 

populations.  This reduction in power is only amplified by the required expression normalization 

procedure that allowed us to perform this analysis.  As described in the background, this 

normalization reduces variance in the measured gene expression values. This transformation also 

limits the interpretation of the gene expression values in our analyses as they are not raw 

measurements, but rather standardized values without meaning (for instance it is hard to interpret 

the meaning of a negative gene expression value).   

Another limitation is the use of gene expression measurements from lymphoblastoid cell 

lines.  The cell lines have been immortalized, changing their basic cellular properties in the 

process. While they are widely used is these types of analyses (and results from studies using 
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these cell lines do generalize to tissue), it is important to recognize that these are not 

measurements of a natural environment. The final limitation is the use of the KEGG database.  

While this too is commonly used, due to changes in licensing, this resource has not been updated 

in a number of years. While there is no evidence that the source is inaccurate, if the resource 

were to be updated it likely would contain more (and more detailed) information. 

 

Conclusions and Future Directions 

 

This study identified 32 SNP-Pathway associations that replicated across multiple ethnic 

cohorts. Fifteen of these SNP-Pathway associations were especially robust and were investigated 

more deeply.  In these 15 associations, 4 potential patterns of action with respect to cis-eQTL 

function were identified and interpreted. Finally, functional annotation provided further insight 

into the validity and possible mechanism of action underlying these associations. Future work 

should try to replicate these results in primary tissue samples and investigate potential 

phenotypic associations of the variants identified by this approach. 
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APPENDIX A 

 

COMPLETE DISCOVERY ASSOCIATION RESULTS 

 

This table contains all of the significant discovery SNP-Pathway association results. For 

each SNP-pathway combination we report the following measures: 

 pSize – The number of genes in the pathway with gene expression values available 

 NDE – The number of differentially expressed genes in the pathway 

 pNDE – The probability of observing the number of differentially expressed genes by 

chance alone. 

 tA – The total accumulation of effect from differentially expressed genes in the pathway 

 pPERT – The probability of observing the total accumulation value by chance alone 

 pGFDR – The false discovery rate adjusted combined probability of pNDE and pPERT. 

Results are provided in no particular order, though SNPs with associations to multiple pathways 

have their SNP-Pathway statistics grouped together. 

SNP 

Pathway 

Name pSize NDE pNDE tA pPERT pGFdr 

rs10012092 

Huntington's 

disease 120 59 4.00E-12 -0.93 9.70E-02 1.49E-09 

rs10012092 

Parkinson's 

disease 75 43 4.63E-12 1.63 2.97E-01 2.53E-09 

rs10012092 RNA transport 84 44 1.55E-10 0.87 2.40E-02 4.41E-09 

rs1004579 RNA transport 84 31 4.60E-09 0.29 3.68E-01 4.59E-06 

rs10131614 RNA transport 84 47 1.60E-11 0.05 8.89E-01 5.07E-08 

rs10264186 

Alzheimer's 

disease 101 45 4.13E-16 -1.27 2.66E-01 1.77E-13 

rs10264186 

Huntington's 

disease 120 59 1.89E-23 -0.62 3.15E-01 2.08E-20 

rs10264186 

Parkinson's 

disease 75 46 6.20E-24 1.99 1.56E-01 6.96E-21 

rs10517012 

Olfactory 

transduction 67 10 7.40E-04 -7.36 5.00E-06 8.54E-06 

rs1060435 Cell cycle 80 31 2.33E-09 2.31 1.60E-01 5.25E-07 

rs1060435 

Huntington's 

disease 120 46 5.00E-13 0.42 4.34E-01 8.11E-10 
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SNP 

Pathway 

Name pSize NDE pNDE tA pPERT pGFdr 

rs1060435 

Parkinson's 

disease 75 28 3.60E-08 1.44 1.51E-01 4.51E-06 

rs1061338 

Alzheimer's 

disease 101 39 5.35E-11 -0.93 3.20E-01 2.04E-08 

rs1061338 

Huntington's 

disease 120 44 2.42E-11 -0.23 7.20E-01 2.04E-08 

rs1061338 

Parkinson's 

disease 75 37 1.83E-14 0.74 5.74E-01 4.73E-11 

rs10788823 Cell cycle 80 23 2.01E-11 -1.97 3.95E-01 2.72E-08 

rs10794021 Cell cycle 80 21 8.03E-09 2.46 1.22E-01 2.54E-06 

rs10850838 RNA transport 84 39 3.82E-12 -0.57 4.30E-02 6.44E-10 

rs10998219 

Protein 

processing in 

endoplasmic 

reticulum 105 26 1.67E-12 -2.41 6.50E-02 4.06E-10 

rs11008749 Cell cycle 80 22 9.51E-09 -2.10 3.39E-01 7.95E-06 

rs11104775 

Olfactory 

transduction 67 36 2.90E-08 11.48 1.00E-03 9.89E-08 

rs11104947 

Olfactory 

transduction 67 25 1.27E-04 10.36 5.00E-06 1.92E-06 

rs11164929 Cell cycle 80 42 1.92E-11 4.84 2.20E-02 1.64E-09 

rs11164929 RNA transport 84 39 9.96E-09 0.11 8.82E-01 1.13E-05 

rs11230687 

Alzheimer's 

disease 101 28 1.01E-11 -1.25 3.07E-01 3.38E-09 

rs11230687 

Huntington's 

disease 120 35 4.53E-15 -0.40 7.00E-01 6.49E-12 

rs11230687 

Parkinson's 

disease 75 29 2.25E-16 -1.26 4.33E-01 4.39E-13 

rs1162371 

Olfactory 

transduction 67 28 5.93E-06 9.10 5.00E-06 1.00E-07 

rs11704195 

Alzheimer's 

disease 101 32 9.60E-13 2.01 3.71E-01 4.58E-10 

rs11704195 

Huntington's 

disease 120 39 1.15E-15 0.74 5.61E-01 1.51E-12 

rs11704195 

Parkinson's 

disease 75 31 4.46E-16 -1.93 5.19E-01 1.11E-12 

rs1179434 RNA transport 84 36 1.57E-09 -0.02 8.54E-01 3.91E-06 

rs11888 

Parkinson's 

disease 75 25 7.16E-12 0.74 4.08E-01 9.74E-09 

rs1208077 

Huntington's 

disease 120 51 5.47E-09 -0.38 4.88E-01 3.79E-06 

rs1208077 

Parkinson's 

disease 75 40 5.89E-11 -0.32 8.10E-01 1.62E-07 



51 

 

SNP 

Pathway 

Name pSize NDE pNDE tA pPERT pGFdr 

rs12150997 

Huntington's 

disease 120 38 1.67E-08 -0.24 5.54E-01 7.57E-06 

rs12150997 

Parkinson's 

disease 75 33 7.25E-12 -0.74 4.10E-01 1.03E-08 

rs12150997 RNA transport 84 31 5.97E-09 0.25 3.28E-01 2.60E-06 

rs12200420 

Protein 

processing in 

endoplasmic 

reticulum 105 41 5.71E-09 -0.85 5.03E-01 8.07E-06 

rs12238713 

Parkinson's 

disease 75 47 4.00E-09 2.33 3.16E-01 3.72E-06 

rs12274436 RNA transport 84 35 1.06E-08 0.38 5.85E-01 1.66E-05 

rs12475079 

Huntington's 

disease 120 39 7.02E-09 0.23 7.85E-01 7.23E-06 

rs12475079 RNA transport 84 33 4.13E-10 -0.29 2.91E-01 3.76E-07 

rs12511773 Cell cycle 80 45 9.23E-11 -1.97 3.53E-01 3.63E-08 

rs12511773 

Epstein-Barr 

virus infection 128 56 1.04E-07 -2.58 1.80E-02 1.05E-06 

rs12511773 

Huntington's 

disease 120 60 5.55E-11 -0.61 1.93E-01 1.87E-08 

rs12511773 

Protein 

processing in 

endoplasmic 

reticulum 105 52 1.63E-09 -0.89 2.80E-01 3.42E-07 

rs12511773 RNA transport 84 52 1.49E-14 0.62 3.50E-02 2.51E-12 

rs12517057 Cell cycle 80 38 8.15E-14 -5.45 2.70E-02 9.79E-12 

rs12517057 RNA transport 84 35 8.13E-11 0.23 7.79E-01 9.92E-08 

rs12574149 

Protein 

processing in 

endoplasmic 

reticulum 105 26 2.54E-11 -0.53 4.21E-01 3.20E-08 

rs1265163 

Protein 

processing in 

endoplasmic 

reticulum 105 44 1.37E-14 -0.07 9.29E-01 5.66E-11 

rs12800372 

Alzheimer's 

disease 101 43 8.19E-14 -1.46 2.93E-01 5.01E-11 

rs12800372 

Huntington's 

disease 120 41 1.17E-09 -1.03 3.90E-02 4.85E-08 

rs12800372 

Parkinson's 

disease 75 37 1.51E-14 0.10 9.50E-01 5.01E-11 

rs12817892 RNA transport 84 33 4.45E-08 -1.77 5.00E-06 8.92E-10 



52 

 

SNP 

Pathway 

Name pSize NDE pNDE tA pPERT pGFdr 

rs13013390 RNA transport 84 39 1.69E-09 -0.01 9.44E-01 4.54E-06 

rs13191247 

Protein 

processing in 

endoplasmic 

reticulum 105 38 8.26E-14 0.02 9.79E-01 3.25E-10 

rs1378162 Cell cycle 80 31 3.75E-10 2.35 2.86E-01 3.31E-07 

rs1388970 Cell cycle 80 50 1.22E-12 2.91 2.07E-01 4.98E-10 

rs1388970 RNA transport 84 55 4.83E-15 0.70 7.20E-02 1.67E-12 

rs1395259 

Mineral 

absorption 31 6 9.30E-04 -0.34 5.00E-06 1.13E-05 

rs1609798 

Alzheimer's 

disease 101 31 3.16E-09 -1.11 1.57E-01 4.71E-07 

rs1609798 

Huntington's 

disease 120 41 1.70E-13 -0.27 5.61E-01 1.87E-10 

rs1609798 

Parkinson's 

disease 75 33 8.77E-15 0.01 9.90E-01 3.68E-11 

rs1634761 RNA transport 84 36 4.20E-11 -0.03 7.24E-01 1.04E-07 

rs175006 Cell cycle 80 29 4.25E-09 2.49 2.19E-01 2.70E-06 

rs17605444 RNA transport 84 43 5.95E-16 0.02 9.13E-01 2.49E-12 

rs17643917 Cell cycle 80 28 3.46E-10 -2.39 2.44E-01 2.68E-07 

rs1790807 RNA transport 84 44 5.27E-08 0.64 4.00E-02 6.01E-06 

rs1792285 RNA transport 84 32 5.50E-07 -0.98 1.00E-02 1.48E-05 

rs1806294 

Protein 

processing in 

endoplasmic 

reticulum 105 33 1.59E-19 -0.25 7.62E-01 5.52E-16 

rs1878014 

Protein 

processing in 

endoplasmic 

reticulum 105 24 1.64E-08 0.59 2.64E-01 1.01E-05 

rs1885499 

Protein 

processing in 

endoplasmic 

reticulum 105 41 3.64E-08 1.29 9.50E-02 9.57E-06 

rs1903262 

Huntington's 

disease 120 32 1.42E-10 -0.01 9.80E-01 3.79E-07 

rs1903262 

Parkinson's 

disease 75 24 5.02E-10 0.58 5.51E-01 3.79E-07 

rs1947457 Cell cycle 80 36 3.11E-11 3.92 2.35E-01 2.63E-08 

rs2073734 

Alzheimer's 

disease 101 35 5.60E-08 3.10 1.76E-01 8.69E-06 
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SNP 

Pathway 

Name pSize NDE pNDE tA pPERT pGFdr 

rs2073734 

Huntington's 

disease 120 43 5.21E-10 0.55 8.43E-01 6.73E-07 

rs2073734 

Parkinson's 

disease 75 35 3.54E-12 -1.70 5.90E-01 7.93E-09 

rs2074774 

Dopaminergic 

synapse 78 12 1.38E-03 -1.46 5.00E-06 1.69E-05 

rs210280 Cell cycle 80 16 1.84E-09 -3.00 6.60E-02 2.43E-07 

rs2114647 

Protein 

processing in 

endoplasmic 

reticulum 105 37 1.17E-18 -0.20 8.49E-01 5.54E-15 

rs2184334 

Protein 

processing in 

endoplasmic 

reticulum 105 25 2.61E-09 -0.13 7.81E-01 5.04E-06 

rs2203712 

Parkinson's 

disease 75 21 1.31E-09 0.09 8.01E-01 2.59E-06 

rs2239705 

Alzheimer's 

disease 101 44 4.63E-08 -1.15 3.49E-01 1.37E-05 

rs2239705 

Huntington's 

disease 120 54 3.26E-10 -0.42 4.95E-01 5.02E-07 

rs2239705 

Parkinson's 

disease 75 39 5.19E-10 0.85 6.32E-01 5.02E-07 

rs2290507 

Alzheimer's 

disease 101 39 5.23E-11 1.23 2.32E-01 4.22E-08 

rs2290507 

Parkinson's 

disease 75 32 1.34E-10 -0.02 9.85E-01 2.09E-07 

rs2298581 

Protein 

processing in 

endoplasmic 

reticulum 105 19 1.12E-10 0.44 3.73E-01 1.03E-07 

rs2303115 Cell cycle 80 24 1.62E-09 -2.84 4.50E-02 2.20E-07 

rs2332496 

Huntington's 

disease 120 45 2.95E-08 0.44 1.83E-01 4.83E-06 

rs2332496 

Parkinson's 

disease 75 34 5.50E-09 -0.02 9.68E-01 4.83E-06 

rs2332496 RNA transport 84 39 1.72E-10 -0.70 2.00E-02 1.26E-08 

rs2428521 

Olfactory 

transduction 67 27 6.46E-04 -9.60 5.00E-06 9.09E-06 

rs243324 Cell cycle 80 38 9.00E-11 -2.15 1.79E-01 2.69E-08 

rs243324 

Fanconi 

anemia 

pathway 25 17 1.29E-08 0.23 2.55E-01 1.74E-06 
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SNP 

Pathway 

Name pSize NDE pNDE tA pPERT pGFdr 

rs243324 

Huntington's 

disease 120 54 1.64E-13 -0.23 4.70E-01 3.10E-10 

rs243324 

Parkinson's 

disease 75 37 3.91E-11 0.30 6.83E-01 2.91E-08 

rs243324 RNA transport 84 38 5.37E-10 0.35 9.30E-02 3.98E-08 

rs252646 Cell cycle 80 21 8.10E-12 -3.87 3.30E-02 9.77E-10 

rs2526478 Cell cycle 80 30 1.75E-09 -2.21 1.43E-01 3.62E-07 

rs2526478 

Huntington's 

disease 120 38 3.44E-09 -0.24 4.51E-01 1.37E-06 

rs2526478 RNA transport 84 33 6.29E-11 0.10 9.53E-01 1.84E-07 

rs266805 

Huntington's 

disease 120 57 9.95E-12 -0.21 5.50E-01 2.00E-08 

rs266805 RNA transport 84 42 7.22E-10 0.51 7.10E-02 8.60E-08 

rs2668427 

Epstein-Barr 

virus infection 128 75 1.08E-08 0.72 6.07E-01 5.95E-06 

rs2668427 

Huntington's 

disease 120 76 5.02E-11 -0.48 4.02E-01 3.54E-08 

rs2668427 

Parkinson's 

disease 75 49 3.13E-08 1.50 2.97E-01 6.21E-06 

rs2668427 RNA transport 84 67 9.30E-18 0.74 8.00E-03 4.59E-16 

rs2688590 RNA transport 84 49 1.03E-15 -0.11 7.94E-01 3.86E-12 

rs2695317 

Protein 

processing in 

endoplasmic 

reticulum 105 34 2.41E-18 0.19 8.09E-01 1.08E-14 

rs2746029 

Huntington's 

disease 120 30 3.51E-12 0.20 8.04E-01 9.18E-09 

rs2746029 

Parkinson's 

disease 75 21 6.65E-10 -0.67 4.01E-01 3.63E-07 

rs277384 

Protein 

processing in 

endoplasmic 

reticulum 105 39 8.18E-11 -0.27 7.11E-01 1.77E-07 

rs277384 RNA transport 84 30 3.52E-08 0.27 3.55E-01 1.49E-05 

rs2915228 

Viral 

myocarditis 35 5 1.08E-03 -0.92 5.00E-06 1.17E-05 

rs2967359 

Alzheimer's 

disease 101 39 2.56E-09 -0.92 2.04E-01 5.22E-07 

rs2967359 

Huntington's 

disease 120 45 4.74E-10 -0.33 4.10E-01 4.73E-07 

rs2967359 

Parkinson's 

disease 75 33 8.26E-10 -0.80 3.73E-01 4.73E-07 
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SNP 

Pathway 

Name pSize NDE pNDE tA pPERT pGFdr 

rs3095250 

Alzheimer's 

disease 101 43 5.82E-14 -0.68 4.66E-01 3.82E-11 

rs3095250 

Huntington's 

disease 120 50 1.48E-15 -0.46 2.19E-01 7.78E-13 

rs3095250 

Parkinson's 

disease 75 42 3.58E-19 1.22 3.40E-01 7.11E-16 

rs329312 

Protein 

processing in 

endoplasmic 

reticulum 105 19 3.21E-09 -0.13 7.92E-01 4.60E-06 

rs3747956 Cell cycle 80 23 3.90E-09 -2.20 1.00E-01 1.06E-06 

rs3750131 RNA transport 84 47 6.02E-10 0.04 8.73E-01 1.57E-06 

rs3750132 RNA transport 84 42 3.72E-09 0.14 6.05E-01 6.31E-06 

rs3823943 

Huntington's 

disease 120 38 5.05E-10 0.21 5.73E-01 4.45E-07 

rs3823943 

Parkinson's 

disease 75 29 2.86E-10 -0.05 9.36E-01 4.45E-07 

rs3910384 

Parkinson's 

disease 75 26 2.18E-09 -0.40 7.42E-01 4.39E-06 

rs4144887 Cell cycle 80 38 1.84E-12 -5.87 7.00E-03 2.86E-11 

rs4144887 RNA transport 84 40 4.31E-13 0.75 1.60E-02 2.86E-11 

rs425437 

Alzheimer's 

disease 101 29 2.97E-09 -1.06 2.00E-01 5.91E-07 

rs425437 

Huntington's 

disease 120 33 8.34E-10 -0.25 7.25E-01 5.91E-07 

rs425437 

Parkinson's 

disease 75 27 3.37E-11 -1.38 2.23E-01 2.64E-08 

rs4281907 RNA transport 84 42 4.73E-09 -0.29 2.42E-01 3.28E-06 

rs4346637 

Alzheimer's 

disease 101 44 1.35E-13 -1.00 2.22E-01 4.27E-11 

rs4346637 

Huntington's 

disease 120 56 1.22E-18 -0.52 2.28E-01 1.62E-15 

rs4346637 

Parkinson's 

disease 75 41 4.04E-17 -1.78 9.70E-02 1.07E-14 

rs4346637 RNA transport 84 30 2.43E-07 0.76 7.00E-03 1.20E-06 

rs4489748 Cell cycle 80 28 1.59E-11 0.33 8.88E-01 4.54E-08 

rs4626725 Cell cycle 80 58 3.06E-10 -2.81 3.68E-01 1.84E-07 

rs4626725 RNA transport 84 61 9.46E-11 0.89 1.90E-02 6.91E-09 

rs4674297 

Alzheimer's 

disease 101 48 7.33E-09 2.30 5.10E-02 2.82E-07 

rs4674297 

Huntington's 

disease 120 61 1.79E-12 0.43 3.24E-01 1.12E-09 
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SNP 

Pathway 

Name pSize NDE pNDE tA pPERT pGFdr 

rs4674297 

Parkinson's 

disease 75 44 3.91E-12 0.36 7.75E-01 3.70E-09 

rs4674297 RNA transport 84 53 3.00E-16 -0.86 1.20E-02 1.97E-14 

rs4750935 

Alzheimer's 

disease 101 46 1.79E-11 -2.30 1.03E-01 2.29E-09 

rs4750935 

Huntington's 

disease 120 60 6.19E-17 -0.40 5.97E-01 9.55E-14 

rs4750935 

Parkinson's 

disease 75 46 6.80E-18 0.90 6.24E-01 2.31E-14 

rs4750935 RNA transport 84 34 2.70E-07 1.37 4.00E-03 7.77E-07 

rs4899667 RNA transport 84 27 3.60E-09 -0.02 9.61E-01 9.14E-06 

rs5743030 Cell cycle 80 31 5.75E-13 1.53 5.71E-01 1.22E-09 

rs6073555 

Alzheimer's 

disease 101 41 1.95E-08 -1.01 4.03E-01 6.83E-06 

rs6073555 

Huntington's 

disease 120 47 7.16E-09 0.06 8.96E-01 6.83E-06 

rs6073555 

Parkinson's 

disease 75 39 4.87E-12 -0.55 7.68E-01 1.36E-08 

rs6075348 RNA transport 84 38 6.74E-15 -0.50 4.00E-02 1.27E-12 

rs6469265 RNA transport 84 28 2.46E-08 -0.46 2.70E-01 1.63E-05 

rs6572658 Cell cycle 80 32 8.67E-11 -3.23 1.63E-01 4.78E-08 

rs6683015 

Protein 

processing in 

endoplasmic 

reticulum 105 21 2.26E-09 0.03 9.27E-01 5.59E-06 

rs6687042 Cell cycle 80 27 3.36E-08 -4.66 7.10E-02 3.11E-06 

rs6687042 RNA transport 84 30 1.25E-09 0.28 7.08E-01 2.41E-06 

rs675679 

Huntington's 

disease 120 50 2.56E-08 1.10 1.38E-01 9.85E-06 

rs6964421 Melanogenesis 67 7 6.76E-04 -6.16 5.00E-06 6.24E-06 

rs6967487 

Protein 

processing in 

endoplasmic 

reticulum 105 37 2.79E-09 0.08 9.30E-01 7.12E-06 

rs7014589 Cell cycle 80 28 1.87E-11 -2.56 4.19E-01 2.64E-08 

rs7015262 Cell cycle 80 21 1.50E-10 -1.32 4.19E-01 1.71E-07 

rs7093644 

Huntington's 

disease 120 61 1.36E-09 0.59 2.08E-01 8.84E-07 

rs7116631 

Alzheimer's 

disease 101 48 2.56E-09 0.65 5.14E-01 9.26E-07 

rs7116631 Cell cycle 80 41 2.21E-09 2.79 1.85E-01 4.04E-07 
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SNP 

Pathway 

Name pSize NDE pNDE tA pPERT pGFdr 

rs7116631 

Huntington's 

disease 120 55 9.78E-10 0.59 2.50E-01 3.71E-07 

rs7116631 

Parkinson's 

disease 75 39 3.16E-09 0.00 9.96E-01 1.70E-06 

rs7116631 

Protein 

processing in 

endoplasmic 

reticulum 105 48 1.26E-08 0.56 5.30E-01 2.88E-06 

rs7116631 RNA transport 84 44 2.28E-10 -0.39 1.91E-01 1.42E-07 

rs7209818 

Alzheimer's 

disease 101 31 9.03E-09 -1.28 2.25E-01 2.71E-06 

rs7209818 

Parkinson's 

disease 75 29 5.49E-11 -1.55 3.20E-01 5.75E-08 

rs725229 Cell cycle 80 60 1.19E-12 -2.57 5.27E-01 1.25E-09 

rs725229 RNA transport 84 65 9.82E-15 0.70 1.62E-01 7.64E-12 

rs7260668 

Huntington's 

disease 120 41 1.78E-09 -0.05 6.91E-01 1.70E-06 

rs7260668 

Parkinson's 

disease 75 35 9.64E-13 0.67 5.75E-01 2.09E-09 

rs7351086 

Protein 

processing in 

endoplasmic 

reticulum 105 23 1.50E-16 0.07 8.64E-01 3.99E-13 

rs735738 RNA transport 84 34 2.71E-13 -0.45 1.04E-01 1.19E-10 

rs7422930 RNA transport 84 51 7.01E-18 -0.30 3.42E-01 1.33E-14 

rs752239 Cell cycle 80 36 3.34E-08 1.81 3.79E-01 1.63E-05 

rs752239 RNA transport 84 41 1.71E-10 -0.42 1.19E-01 6.99E-08 

rs7539844 

Alzheimer's 

disease 101 23 1.12E-08 -1.39 1.81E-01 1.56E-06 

rs7539844 

Huntington's 

disease 120 31 8.69E-13 -0.40 7.31E-01 2.01E-09 

rs7539844 

Parkinson's 

disease 75 24 2.22E-12 -0.90 5.81E-01 2.01E-09 

rs7586918 

Protein 

processing in 

endoplasmic 

reticulum 105 16 4.56E-09 0.02 9.09E-01 7.66E-06 

rs7616874 

Protein 

processing in 

endoplasmic 

reticulum 105 28 7.43E-11 0.21 7.28E-01 1.65E-07 

rs7621332 

Huntington's 

disease 120 49 1.46E-09 2.34 3.69E-01 7.83E-07 
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SNP 

Pathway 

Name pSize NDE pNDE tA pPERT pGFdr 

rs7621332 

Parkinson's 

disease 75 34 2.11E-08 0.00 9.99E-01 1.71E-05 

rs7621332 RNA transport 84 40 1.91E-10 -0.64 5.04E-01 3.01E-07 

rs7632176 RNA transport 84 53 3.75E-17 -0.30 3.45E-01 7.07E-14 

rs7651414 

Protein 

processing in 

endoplasmic 

reticulum 105 29 5.24E-13 0.39 5.45E-01 8.79E-10 

rs765256 

Alzheimer's 

disease 101 33 2.04E-09 0.59 4.23E-01 1.18E-06 

rs765256 

Huntington's 

disease 120 36 5.19E-09 0.20 7.57E-01 3.33E-06 

rs765256 

Parkinson's 

disease 75 29 2.09E-10 -1.06 2.82E-01 1.81E-07 

rs7675985 Cell cycle 80 44 1.02E-09 -0.57 7.76E-01 1.18E-06 

rs7675985 RNA transport 84 56 3.72E-17 0.30 3.99E-01 8.03E-14 

rs7681425 

Alzheimer's 

disease 101 29 3.10E-08 0.69 3.68E-01 9.16E-06 

rs7681425 

Huntington's 

disease 120 33 1.15E-08 0.20 8.91E-01 9.16E-06 

rs7681425 

Parkinson's 

disease 75 29 1.02E-11 0.19 8.29E-01 2.81E-08 

rs7739002 

Alzheimer's 

disease 101 32 1.14E-09 0.70 6.26E-01 1.04E-06 

rs7739002 

Parkinson's 

disease 75 29 2.95E-11 1.07 5.60E-01 5.63E-08 

rs7780322 RNA transport 84 32 4.17E-09 -0.66 9.50E-02 1.15E-06 

rs7794040 RNA transport 84 27 5.59E-09 -0.29 6.03E-01 9.06E-06 

rs7844633 

Alzheimer's 

disease 101 26 1.67E-10 0.58 3.42E-01 1.62E-07 

rs7844633 

Parkinson's 

disease 75 21 1.84E-09 0.80 3.40E-01 7.98E-07 

rs7867279 

Alzheimer's 

disease 101 46 7.57E-08 -1.07 1.75E-01 8.78E-06 

rs7867279 

Epstein-Barr 

virus infection 128 54 1.40E-07 -1.51 9.60E-02 8.78E-06 

rs7867279 

Huntington's 

disease 120 62 4.49E-13 -0.51 2.26E-01 4.30E-10 

rs7867279 

Parkinson's 

disease 75 42 9.47E-11 -0.41 6.92E-01 1.10E-07 

rs7972875 

Huntington's 

disease 120 44 4.16E-10 -0.28 4.90E-01 6.32E-07 
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SNP 

Pathway 

Name pSize NDE pNDE tA pPERT pGFdr 

rs8077875 

Parkinson's 

disease 75 27 9.01E-10 2.05 4.48E-01 1.22E-06 

rs8107491 

Alzheimer's 

disease 101 24 5.96E-10 -1.36 3.60E-02 3.43E-08 

rs8107491 

Huntington's 

disease 120 26 9.90E-10 0.00 1.00E+00 8.96E-07 

rs8107491 

Parkinson's 

disease 75 25 6.32E-14 -0.85 3.80E-01 9.71E-11 

rs8436 

Alzheimer's 

disease 101 54 2.77E-10 -1.59 1.02E-01 2.43E-08 

rs8436 

Huntington's 

disease 120 69 7.33E-15 -0.39 3.61E-01 4.14E-12 

rs8436 

Parkinson's 

disease 75 53 3.10E-17 1.18 2.55E-01 4.34E-14 

rs8436 RNA transport 84 55 1.56E-15 0.61 2.40E-02 9.85E-14 

rs9263966 

Huntington's 

disease 120 37 1.11E-10 -0.36 8.14E-01 2.88E-07 

rs9263966 

Parkinson's 

disease 75 27 7.93E-10 1.27 4.60E-01 5.47E-07 

rs9299013 

Huntington's 

disease 120 51 1.09E-08 -0.82 4.70E-02 1.57E-06 

rs9374118 

Protein 

processing in 

endoplasmic 

reticulum 105 25 6.97E-09 0.42 5.21E-01 9.20E-06 

rs9398120 

Alzheimer's 

disease 101 36 6.37E-08 -1.32 1.68E-01 6.78E-06 

rs9398120 

Huntington's 

disease 120 51 4.28E-14 -0.33 4.60E-01 4.19E-11 

rs9398120 

Parkinson's 

disease 75 43 4.23E-18 0.94 4.98E-01 1.15E-14 

rs9398120 RNA transport 84 32 5.66E-08 0.61 4.50E-02 2.31E-06 

rs9601213 

Alzheimer's 

disease 101 28 1.31E-14 -0.37 5.52E-01 2.25E-11 

rs9601213 

Huntington's 

disease 120 26 5.46E-11 -0.19 8.67E-01 3.64E-08 

rs9601213 

Parkinson's 

disease 75 24 3.05E-14 -0.22 7.49E-01 3.44E-11 

rs986475 

Alzheimer's 

disease 101 37 2.04E-10 -1.47 2.13E-01 4.57E-08 

rs986475 

Huntington's 

disease 120 48 8.05E-15 -0.47 4.41E-01 7.73E-12 
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Name pSize NDE pNDE tA pPERT pGFdr 

rs986475 

Parkinson's 

disease 75 39 5.45E-17 0.33 8.83E-01 2.36E-13 

rs9896436 Cell cycle 80 24 4.16E-09 2.26 1.09E-01 1.21E-06 

rs9901660 

Huntington's 

disease 120 27 2.86E-08 -0.75 2.00E-02 6.87E-07 

rs9901660 

Parkinson's 

disease 75 23 4.92E-10 -1.06 4.43E-01 5.47E-07 

 

 



61 

 

APPENDIX B 

 

COMPLETE REPLICATION ASSOCIATION RESULTS 

 

This table contains all of the significant replication SNP-Pathway association results. For 

each SNP-pathway combination we report the following measures: 

 pSize – The number of genes in the pathway with gene expression values available 

 NDE – The number of differentially expressed genes in the pathway 

 pNDE – The probability of observing the number of differentially expressed genes by 

chance alone. 

 tA – The total accumulation of effect from differentially expressed genes in the pathway 

 pPERT – The probability of observing the total accumulation value by chance alone 

 pG – The combined probability of pNDE and pPERT. 

Results are provided in order of increasing global p-value. SNPs with multiple pathway 

associations are not grouped together. 

SNP Pathway Name pSize NDE pNDE tA pPERT pG 

rs6572658 Cell cycle 119 56 7.14E-12 -6.79 0.14 2.84E-11 

rs7681425 
Parkinson's 

disease 
105 53 2.41E-09 -4.08 0.02 9.07E-10 

rs7681425 
Huntington's 

disease 
163 72 7.09E-09 -0.52 0.56 8.12E-08 

rs11008749 Cell cycle 119 46 2.25E-08 4.43 0.32 1.41E-07 

rs7972875 
Huntington's 

disease 
163 42 3.19E-08 -0.24 0.72 4.27E-07 

rs12475079 
Huntington's 

disease 
163 40 3.37E-08 -0.38 0.75 4.64E-07 

rs7867279 
Epstein-Barr 

virus infection 
177 52 0.03 5.54 5.00E-06 2.58E-06 

rs10131614 RNA transport 126 41 4.62E-07 -0.04 0.82 6.01E-06 

rs7586918 

Protein 

processing in 

endoplasmic 

reticulum 

150 42 3.23E-06 0.57 0.30 1.44E-05 

rs425437 
Huntington's 

disease 
163 24 2.53E-06 0.00 1.00 3.51E-05 
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rs7681425 
Alzheimer's 

disease 
148 60 4.04E-06 -0.03 0.99 5.37E-05 

rs10517012 
Olfactory 

transduction 
361 17 1.00 6.66 5.00E-06 6.60E-05 

rs1162371 
Olfactory 

transduction 
361 10 1.00 5.52 5.00E-06 6.60E-05 

rs11104775 
Olfactory 

transduction 
361 22 1.00 12.07 5.00E-06 6.60E-05 

rs11104947 
Olfactory 

transduction 
361 17 1.00 10.72 5.00E-06 6.60E-05 

rs2688590 RNA transport 126 38 4.39E-05 -0.37 0.48 2.48E-04 

rs6967487 

Protein 

processing in 

endoplasmic 

reticulum 

150 27 1.54E-04 0.36 0.53 8.48E-04 

rs8436 
Alzheimer's 

disease 
148 18 1.52E-03 1.64 0.06 9.41E-04 

rs735738 RNA transport 126 34 9.41E-04 -0.32 0.16 1.46E-03 

rs6687042 Cell cycle 119 23 1.66E-03 4.52 0.17 2.63E-03 

rs425437 
Parkinson's 

disease 
105 14 8.46E-04 0.00 1.00 6.83E-03 

rs7780322 RNA transport 126 18 1.14E-03 0.00 1.00 8.87E-03 

rs2526478 Cell cycle 119 25 0.57 3.21 3.00E-03 0.01 

rs3750131 RNA transport 126 29 4.40E-03 -0.16 0.52 0.02 

rs6687042 RNA transport 126 22 7.39E-03 -0.44 0.36 0.02 

rs425437 
Alzheimer's 

disease 
148 16 3.51E-03 0.08 0.88 0.02 

rs1388970 Cell cycle 119 8 4.33E-01 1.58 0.01 0.03 

rs4626725 RNA transport 126 23 6.46E-03 -0.43 0.77 0.03 

rs1634761 RNA transport 126 33 0.01 -0.10 0.49 0.03 

rs4626725 Cell cycle 119 21 0.01 2.36 0.46 0.04 

rs329312 

Protein 

processing in 

endoplasmic 

reticulum 

150 18 0.29 -0.87 0.03 0.04 

rs8436 
Huntington's 

disease 
163 16 0.02 -0.33 0.42 0.05 
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APPENDIX C 

 

COMPLETE FUNCTIONAL ANNOTATION RESULTS 

 

This table contains all of the functional annotation results for each of the SNP-Gene-

Pathway associations. This table contains a variety of information: 

 DNaseI sensitivity: Cell line types for which the SNP is found in open chromatin.  

 Chromatin State: Interpreted chromatin function for the given cell type/s. 

 Transcription Factor Binding Sites (TFBS): The transcription factor and the cell line 

tested. 

 Altered Regulatory Motif: The relative affinity level of the given transcription factor for 

the minor allele compared to the reference allele.  

 RegulomeDB score:  Level of evidence supporting regulatory function.  

o 1f: evidence for an eQTL and either transcription factor binding or a DNase 

hypersensitivity peak.  

o 5: Either transcription factor binding or a DNase hypersensitivity peak at the 

variant.  

o 6: “Other” category indicating minimal binding evidence 

When an annotation type is not available, the entry is shaded with a grey diagonal pattern. 
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SNP / Gene 

Pathway 

DNaseI Sensitivity Chromatin State TFBS Altered Regulatory 

Motif 

Regulome

DB Score 

rs425437 / MOSC2, 

C1orf115 

Huntington’s Disease 

 LCL 

 Glioblastoma 

 Prostate 

adenocarcinoma 

 Primary tracheal 

epithelial cells 

 Enhancer  

― Brain Inferior Temporal 

Lobe 

― Brain Angular Gyrus 

 Weak Enhancer 

― H1 Derived 

Mesenchymal Stem Cells 

― Pancreas 

― Spleen 

 Transcription Enhancer-like 

―  Gastric 

 Transcription Enhancer-like 

(short gene) 

―  H1 BMP4 Derived 

Trophoblast Cultured 

Cells 

  Increased 

affinity: 

― HIF1 

1f 

rs7586918 / DTNB 

Protein processing in 

ER 

 LCL 

 Primary Th1 and Th2 

T cells 

 Chronic lymphocytic 

leukemia 

 Medulloblastoma 

 Osteoblasts 

 Urothelial cells 

 CD4+ cells 

 B cells 

 hematopoietic 

progenitor cells 

 Strong Enhancer 

― LCL 

 Active Enhancer  

― Mobilized CD34 Primary 

Cells 

 Enhancer 

― Spleen 

 Weak Enhancer 

―  Mobilized CD34 

Primary Cells 

― CD34 Primary Cells 

― CD3 Primary Cells 

― CD8 Naïve & Memory 

Primary Cells 

― CD19 Primary Cells 

 LCL 

― PBX3 

― POL2 

― POL24H8 

― PU1 

― SIN3AK20 

― SRF 

― TBP 

― TCF12 

 

1f 
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SNP / Gene 

Pathway 

DNaseI Sensitivity Chromatin State TFBS Altered Regulatory 

Motif 

Regulome

DB Score 

rs7867279 / ZNF510 

Epstein-Barr virus 

inf. 

 Retinal pigment 

epithelial cells 

 Fibroblasts, 

Hutchinson-Gilford 

progeria syndrome 

 Weak Enhancer 

― Fetal Heart 

 

  Reduced affinity: 

― NF-1 
5 

rs6572658 / 

L2HGDH 

Cell cycle 

  Weak Enhancer 

― Fetal Heart 

  Reduced affinity: 

― Evi-1_2 

― HDAC2_disc6 

No Data 

rs7681425 / STIM2 

Hunt., Park., Alz. 

Disease 

 Prostate adeno-

carcinoma 

 Weak Enhancer 

― Adult Liver 

  

5 

rs10131614 / EIF2S1 

RNA transport 

    Reduced affinity: 

― COMP1 

― FAC1 

― Foxa 

― Foxd3 

― Foxk1 

― Foxo_2 

― Foxp1 

― Nanog 

― Sin3AK-

20_disc3 

― Sox_13 

― Sox_2 

― Sox_6 

― ZFP105 

― P300_disc5 

 Increased 

affinity: 

― HMG-IY_2 

― RREB-1_2 

6 
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SNP / Gene 

Pathway 

DNaseI Sensitivity Chromatin State TFBS Altered Regulatory 

Motif 

Regulome

DB Score 

rs11008749 / 

ARHGAP12 

Cell cycle 

 Epidermal 

keratinocytes 

 Active Enhancer 

― CD4+ CD25- IL17+ 

PMA-Ionomcyin 

stimulated Th17 Primary 

Cells  

 Weak Enhancer 

― CD4+ CD25- CD45RA+ 

Naive Primary Cells 

― CD8 Naive Primary Cells 

― CD4 Memory Primary 

Cells 

 Transcription Enhancer-like 

―  CD4+ CD25- Th 

Primary Cells 

― CD4+ CD25- IL17- 

PMA-Ionomycin 

stimulated MACS 

purified Th Primary Cells 

― CD4+ CD25- CD45RO+ 

Memory Primary Cells 

― Mesenchymal Stem Cell 

Derived Adipocyte 

Cultured Cells 

― CD15 Primary Cells 

― CD4 Naive Primary Cells 

― Colon Smooth Muscle 

― Penis Foreskin 

Melanocyte 

― CD8 Memory Primary 

Cells 

― CD3 Primary Cells 

 

 

 

  Increased 

affinity: 

― OCT-1 

― ZFP187 

1f 
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SNP / Gene 

Pathway 

DNaseI Sensitivity Chromatin State TFBS Altered Regulatory 

Motif 

Regulome

DB Score 

rs12475079 / IMMT 

Huntington's disease 

 Choroid plexus 

epithelial cells 

 LCL 

 epithelial cell line 

from lung carcinoma  

 embryonic stem cells 

 hepatocellular carc. 

 leukemia 

 mammary gland, 

adenocarcinoma 

 epid. keratinocytes 

 fetal buttock/thigh 

fibroblast 

 gingival fibroblasts 

 promyelocytic 

leukemia cells 

 blood microvascular 

endothelial cells, lung 

 neonatal blood 

microvascular 

endothelial cells, 

dermal 

 renal cortical 

epithelial cells 

 T lymphoblastoid  

 acute promyelocytic 

leukemia 

 malignant pluripotent 

embryonal carcinoma 

 renal proximal tubule 

epithelial cells 

 primary Th2 T cells 

 Active Promoter 

― HepG2  

 Weak Promoter 

― LCL; NHLF; HMEC; 

Huvec; NHEK; HSMM; 

H1  

 Strong Enhancer 

― K562  

 Active Enhancer 

― CC.TPC; R.MUC31; 

CCCRA.NP; 

CCC.TREGP; 

CCIP.LSTP; 

CD34.MBP1536; 

LNG.FE; BN.FE2; 

BN.AC; SPL; ST.MUC; 

CD19.P; CCCRO.MP 

 Enhancer 

― ESO; CCC.TMP; 

H1.DMSC 

 Weak Enhancer 

― CD4.NP; CD8.NP; 

CD34.MBP1480; 

H1.BMP4DM; PANC; 

H1; H9 

 Transcription Enhancer-like 

― GAS  

 Transcription Enhancer-like 

(short gene) 

― PFK.3; HD.CD56MESC 

 TSS-Flanking more 

upstream 

― PFK.2; PFF.1; 

ADI.MSC; MSC.ADIPC; 

 CTCF  

― BJ 

― Caco-2 

― LCL 

― HBMEC 

― HCPEpiC 

― HSMM 

tube 

― HepG2 

― K562 

― MCF-7 

― NHDF-Ad 

― NHEK 

― Osteobl 

 Reduced affinity: 

― LUN1 

 

1f 
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SNP / Gene 

Pathway 

DNaseI Sensitivity Chromatin State TFBS Altered Regulatory 

Motif 

Regulome

DB Score 

HRT.FE; NCC.GED2; 

CD34.MBP1508; 

CCIP.LSMPTP; 

MUS.SC; CD3.P; 

CD34.MBP1562; 

CD34.C; PFM.1,2,3; 

BR.H35; BN.GM2; 

ES.I3; LV; BM.MSC; 

CHON.BMMSC; PAN.I; 

CD4.MP; R.MUC29; 

SK.MUS63; CD15.P; 

NCC.COR2; ADI.NUC; 

CD8.MP; DUO.SMUS 

 TSS Active 

― PFF.2  

 TSS Weak 

― HD.CD184EC 

 TSS Flanking more 

downstream 

― IMR90; R.SMUS; 

SK.MUS; BN-FEO; 

CD34.P; BN.FE1; 

IPS.20; ST.SMUS28; 

COL.SMUS; KID.FE; 

BN.HM150; BN.AG 

DUO.MUC61; BN.CC; 

BN.ITL; BN.MFL; 

BN.SN; HUES48; 

HUES64; HUES6, 

IPS.15; CD34.MBP1549; 

LIV.A; BR.MYO; 

COL.MUC32 
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SNP / Gene 

Pathway 

DNaseI Sensitivity Chromatin State TFBS Altered Regulatory 

Motif 

Regulome

DB Score 

rs7972875 / VPS33A 

Huntington's disease 
 LCL    Reduced affinity: 

― NF-1 
5 

rs1162371 / CEP290 

Olfactory 

transduction 

  Enhancer 

― BN.GM2 

 Weak Enhancer 

― NCC.COR2; 

NCC.GED2; 

BN.MFL; BN.FE1 

  Reduced affinity: 

― STAT3 

6 

rs11104775 / CEP290 

Olfactory 

transduction 

  Enhancer 

― MSC.ADIPCl; 

PFF.2 

 Weak Enhancer 

― Huvec; NHLF; 

ADI.MSC; PFF.1 

  Reduced affinity: 

― CDP_4 

― Dlx2 

 Increased 

affinity: 

― Bsx 

6 

rs11104947 / CEP290 

Olfactory 

transduction 

  Active Enhancer 

― PFF.1 

 Weak Enhancer 

― PFF.2; ADI.MSC 

  

6 

rs10517012 / 

TMEM33 

Olfactory 

transduction 

  Poised Enhancer 

― PFF.1; 

MSC.ADIPC 

 Weak Enhancer 

― LIV.A; ADI.MSC 

  Reduced affinity: 

― HNF4_disc4 

6 

 


