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CHAPTER I 

 

PEERS, REGULATORS, AND PROFESSIONS: THE INFLUENCE OF 

ORGANIZATIONS IN INTENSIVE INSULIN THERAPY ADOPTION 

 

Introduction 

In 2001 the Leuven study demonstrated morbidity and mortality improvements in 

surgical intensive care patients as a result of tight glycemic control achieved through an 

intensive insulin therapy (IIT) protocol [1].  Professional organizations heralded the 

results of the single-site randomized trial as the new standard of care for diabetics and 

non-diabetics alike, and health care organizations adopted IIT protocols.  To 

accommodate IIT, hospitals and health systems enacted considerable changes to 

organizational structure—the formal policies that dictate roles, responsibilities, and 

standard operating procedures—involving clinical workflow, nurse workload, blood 

glucose testing, evidence-based medicine, and, in some approaches, computerization [2].  

However, a 2008 meta-analysis of randomized IIT trials showed no mortality benefit for 

patients treated with IIT as well as an increased risk of hypoglycemia [3].  The 

expenditure of labor and capital to provide IIT without corresponding outcome 

improvements suggests the adoption of IIT produces inefficiency in organizations. 

Such widespread change in the absence of conclusive benefit can be explained 

through the lens of institutional theory, a sociological view that examines the way in 

which organizations in a field interact, define behavioral norms and expectations, and 

evaluate each other [4].  Institutionalists posit that organizations are evaluated by 



9 
 

legitimacy, the social view that an organization is “appropriate, rational, and modern,” 

more so than efficiency [5].  To enhance their prospects of survival, organizations 

establish and maintain legitimacy by adopting the “prevailing rationalized concepts of 

organizational work” endorsed by successful peer organizations, regulatory agencies, and 

professional societies [5].  This results in organizations becoming more similar but not 

necessarily more efficient, a process called institutional isomorphism [6].  In this article, 

we use institutional isomorphism to examine the role of organizational influence in 

intensive insulin therapy’s adoption and effect on organizations.  By understanding the 

role of peers, regulators, and professions in organizational change, health care leaders can 

make informed decisions concerning the adoption of innovations. 

 

Theoretical Background 

Institutionalization is a process in which social behavior is established as a formal 

structure that serves as a means to an end for an organization and signals to other 

organizations that an organization is legitimate [5, 7].  Suchman defines legitimacy as “a 

generalized perception or assumption that the actions of an entity are desirable, proper, or 

appropriate within some socially constructed system of norms, values, beliefs, and 

definitions” [8].  When an organization adopts institutionalized forms, its personnel and 

other organizations are more likely to view it as legitimate, which enhances the 

organization’s prospects of survival [5].  However, efficient organizational practice may 

require divergence from institutionalized forms, a move which threatens legitimacy.  In 

response, organizations become loosely coupled, or “[build] gaps between their formal 

structures and actual work activities” [5].  The struggle between adherence to 
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institutionalized forms and real world practice results in ceremonial conformity to 

maintain legitimacy and reduced overall organizational efficiency [5]. 

Institutional isomorphism functions through mimetic, coercive, and normative 

mechanisms.[6]  Mimetic isomorphism occurs when an organization copies the practices 

of another organization it perceives to be successful, particularly for problems “with 

ambiguous causes or unclear solutions” [6]. Hospitals’ adoption of Continuous Quality 

Improvement as a comprehensive management program is an example of mimetic 

isomorphism [9].  An organization experiences coercive isomorphism when another 

organization on which it depends requires it to adopt a structure.  An example of coercive 

isomorphism is in U.S. hospitals’ adoption of practices required by the Joint Commission 

for Medicare reimbursement eligibility.  Normative isomorphism involves the diffusion 

of organizational norms through training and socialization as well as the networks 

professionals develop through practice societies, educational activities, and common 

knowledge bases.  Examples include physicians who complete fellowships in critical care 

approaching clinical issues and strategic decisions similarly, and hospitals voluntarily 

complying with Leapfrog Safe Practices in order to meet professionally defined levels of 

acceptable clinical care.  Through each of the three isomorphic mechanisms, 

organizations conform to institutionalized structures and attain legitimacy. 

 

Organizational Changes Required for Intensive Insulin Therapy 

Before examining the role of organizational influence in intensive insulin therapy 

adoption, it is important to first understand the changes to organizational structure 

necessary for IIT.  Whether transitioning to IIT from continuous insulin infusion or 
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sliding scale subcutaneous insulin therapy, a health care organization introduces a 

substantial practice change.  Compared to its predecessors, IIT has a lower blood glucose 

threshold for therapy initiation, which results in patients receiving insulin therapy sooner, 

and requires different titration logic to maintain euglycemia.  Clinicians and managers 

must develop an IIT protocol, gain staff buy-in through education and training, and 

modify workflow.  Nurses experience an increase in workload in terms of increased 

frequency of blood draws, dosing calculations, insulin rate adjustments, and 

corresponding documentation.  Laboratories increase their testing capacities in terms of 

devices, testing supplies, maintenance, and training.  Pharmacies dispense more insulin 

and infusate.  If computerized clinical decision support systems are used, informatics 

personnel must support software that is either developed internally or purchased from a 

vendor.  All of these changes require labor and capital expenditures. 

 

Organizational Influence in the Adoption of Intensive Insulin Therapy 

Following the landmark Leuven study, health care organizations have become 

more similar but not necessarily more efficient in their efforts to implement intensive 

insulin therapy.  Organizational influence has played a role in the adoption of IIT, and the 

mechanisms of institutional isomorphism provide a framework for understanding how 

“individual efforts to deal rationally with uncertainty and constraint often lead, in the 

aggregate, to homogeneity in structure” and inefficiency [6].  It is important to note that 

the mechanisms are analytical: they may overlap in practice but provide valuable 

perspective concerning the causes and consequences of organizational change.  The 

following sections explain the mechanisms of institutional isomorphism and the 
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organizations involved in the adoption of intensive insulin therapy.  Table 1 presents a 

summary. 

 

Table 1. Mechanisms of institutional isomorphism and organizations involved in IIT adoption 

Mimetic Coercive 

• Leuven study • Joint Commission  

Normative 

Professional societies 

• American Association of Critical-Care Nurses 

• American College of Chest Physicians 

• American College of Emergency Physicians 

• Canadian Critical Care Society 

• European Society of Clinical Microbiology and Infectious 
Diseases 

• European Society of Intensive Care Medicine 

• European Respiratory Society 

• International Sepsis Forum 

• Japanese Association for Acute Medicine 

• Japanese Society of Intensive Care Medicine 

• Society of Critical Care Medicine 

• Society of Hospital Medicine 

• Surgical Infection Society 

• World Federation of Societies of Intensive and Critical Care 
Medicine 

• German Sepsis Society  

• Latin American Sepsis Institute 
 

Practice councils 

• Institute for Healthcare Improvement 

• Volunteer Hospital Association 

• Michigan Health and Safety Coalition 

• American Association of Clinical Endocrinologists 

• American Diabetes Association 

 

Mimetic isomorphism 

As indicated by its high citation count, the Leuven study captured the critical care 

community’s attention and prompted practitioners and researchers to attempt to replicate 

the findings in myriad settings.  Organizations tend to imitate other successful 

organizations’ approaches when facing ambiguity and uncertainty in technologies, 

problems, and solutions [6].  Intensive insulin therapy provided a promising possible 
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solution to the problem of mortality in the critically ill [3], and the techniques described 

in the single-site randomized Leuven study served as the model for hospitals to copy en 

masse.  On an individual hospital level, the results of local pilot site studies may have 

spurred other hospital units to copy the pilot site’s IIT approach [10].  Because of its 

novelty, the Leuven approach and its effects may not have been fully understood by 

imitators.  Although mortality reduction is a clear goal, the steps to achieve it are 

ambiguously defined in the Leuven protocol [11].  A large number of confounding 

variables in clinician behavior and patient demographics also can complicate IIT 

delivery.  Furthermore, metrics for understanding protocol performance and comparing 

study sites are not widely accepted [12].  Although it lacked external validity, the single-

site Leuven study “[served] as a convenient source of practices”[6] for organizations to 

adopt in order to respond to problems and attain legitimacy. 

 

Coercive isomorphism 

Regulatory requirements resulting from the Leuven study may explain adoption of 

intensive insulin therapy.  U.S. hospitals depend on the Joint Commission for 

accreditation for Medicare reimbursement eligibility and certification for quality 

reporting purposes.  According to the Joint Commission website, certification provides 

“the best signal” of effective care to a hospital’s patients and peer organizations [13].  

Among the requirements for Inpatient Diabetes Certification are the use of protocol-

based approaches for blood glucose management and collection of blood glucose 

performance data [13].  Because of the Joint Commission’s status as a legitimacy-

conferring organization, hospitals adopt organizational changes to accommodate 
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intensive insulin therapy.  Similar to hospitals’ dependence on JCAHO, units in a hospital 

and hospitals in a health system rely on upper management for resources and must enact 

management’s policies.  One large commercial health system has implemented IIT in 

over 100 hospitals presumably because of health system policy, not because of hospitals 

volunteering [14]. 

 

Normative isomorphism 

The participation of physicians, nurses, and administrators in continuing 

education, workforce socialization, and professional societies may explain the 

proliferation of Leuven-inspired intensive insulin therapy.  Published in a high impact 

factor journal, the Leuven study reached a broad audience of health care professionals.  

Sixteen professional societies and five practice councils, including the American 

Diabetes Association, endorsed the use of intensive insulin therapy following publication 

of the Leuven study [3].  IIT has become the standard of critical care because of the 

influence of individuals and professional societies in shaping the definition of their work 

[6].  Healthcare organizations have responded to the prevailing critical care norms 

reflected by their clinicians through implementation of IIT.  Within a health care 

organization, IIT diffusion among hospital units may be due to local patterns of 

socialization amongst clinicians as reported at one institution [11].  It is conceivable that 

a faculty member may present the results of a local IIT study at grand rounds, which 

prompts other faculty members to consider implementation in their care units. 
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Discussion 

Examining the adoption of intensive insulin therapy using institutional theory can 

help researchers, practitioners, and managers reconsider the evidence thresholds and 

motivations for implementing clinical measures of this magnitude.  Regulators and 

professional societies should consider the external validity of studies as well as the scope 

of their influence before endorsing particular practices, and hospital decision makers 

should recognize that practice changes require organizational changes beyond the 

boundaries of a pilot unit.  Although organizations may indicate their conformity to an 

institutionalized form like intensive insulin therapy, actual work processes may differ 

substantially and explain the variation in intensive insulin therapy trial results following 

the Leuven study.  Institutional theory provides a useful analytical framework for health 

care decision makers to understand past events and approach future scenarios. 

 

Specific Aims 

 As established in this chapter, this research draws from social theory to frame a 

quantitative and qualitative investigation of factors affecting computer-based intensive 

insulin therapy.  The following chapters address three specific aims, one of which has 

two parts: 

1. A literature review and case study of intensive insulin therapy clinical decision 

support systems (IIT CDSS) to demonstrate underreporting of social, 

organizational, and contextual characteristics affecting IIT CDSS performance 

2. A quantitative analysis of IIT CDSS performance with respect to workflow 

features including 
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a. The effects of data mismatches 

b. The characteristics and effects of nurse overrides 

3. A naturalistic study of IIT CDSS informed by the previous aims to identify 

sociotechnical interactions affecting IIT CDSS performance 

The analysis concludes with a summary of findings along with recommendations for 

future work. 
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CHAPTER II 

 

SOCIAL, ORGANIZATIONAL, AND CONTEXTUAL CHARACTERISTICS OF 

CLINICAL DECISION SUPPORT SYSTEMS FOR INTENSIVE INSULIN 

THERAPY: A LITERATURE REVIEW AND CASE STUDY 

 

Introduction 

The U.S. National Research Council recently endorsed the use of clinical decision 

support systems (CDSS) and “organizational systems-level research” of health 

information technology to help drive healthcare transformation [15].  Historically 

evaluations of CDSS have focused on practitioner performance [16] rather than social, 

organizational, and contextual factors [17, 18].  Kaplan noted that CDSS evaluation 

studies measure CDSS effects on clinical performance, use experimental study designs or 

randomized controlled trials, disregard naturalistic study methods, ignore contextual 

issues surrounding system usage, investigate the perspectives of physicians rather than 

other clinical roles, and consider only the CDSS intervention, not other clinical 

information systems in use [17].  The reporting of findings in the literature reflects a 

rationalist scientific orientation [17] and shows clinical and medical informatics 

investigators’ preferences toward  objectivist rather than subjectivist approaches to 

evaluation [19].  Although subsequent reviews have identified dimensions of workflow 

integration as critical to CDSS success [20], researchers have yet to fully embrace the 

National Research Council’s directives or address the gaps identified by Kaplan. 
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Studies of clinical decision support systems for intensive insulin therapy (IIT), a 

treatment combining frequent blood glucose monitoring and insulin drip adjustments to 

maintain tight glucose control [1], follow the general CDSS evaluation trend.  

Investigations using experimental designs have demonstrated improved clinician protocol 

adherence and achievement of target glucose levels using computer-based IIT protocols 

instead of paper-based versions [2, 10, 14, 21-29].  However, these evaluations have paid 

little attention to the context of interventions, including the complex interaction between 

staff, testing devices, and computers that may result in inefficiency and error.  Nurses use 

computer-based IIT advisors to document care and calculate insulin doses, but 

investigations mostly rely on anecdotal feedback to understand nurse perspectives of 

CDSS and rarely consider CDSS usage with respect to other care processes and clinical 

information systems.  The literature describes paper-based IIT protocol implementation 

barriers [30] and effects on nurse work [31] but does not explore the complexity and 

organizational change related to computer-based IIT approaches. 

Understanding the mechanisms of effective intensive insulin therapy CDSS is 

important because IIT is the standard of care for critically ill patients [32].  In 2001 the 

Leuven study demonstrated morbidity and mortality improvements through an intensive 

insulin therapy protocol [1], and subsequent studies at other institutions have produced 

similar results [33, 34].  However, a 2008 meta-analysis of randomized trials raised 

concerns about the therapy’s mortality benefit and safety [3].  Differences in care 

protocols ranging from nutrition provisions [11] to target blood glucose ranges [11, 35], 

insulin administration [36], and intended patient populations [37] may explain variation 
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in IIT outcomes, but researchers have not determined comprehensive solutions, especially 

ones that address computer-based approaches.   

Although care protocols define the decision-making behavior clinicians should 

exhibit under certain conditions [38] and represent the evidence-based, formal structure 

of healthcare organizations, actual work activities usually differ from official practice 

definitions [5].  In patients treated with computer-based intensive insulin therapy in the 

surgical intensive care unit at Vanderbilt University Hospital, researchers found fourteen 

percent of blood glucose measurements were not taken on time [39].  Significant 

relationships between late blood glucose measurements and episodes of hyper- and 

hypoglycemia [39] as well as blood glucose variability and mortality [40] suggest that 

workflow may be a factor in computer-based IIT performance and patient outcomes [39].  

In sociology and organizational studies, institutional theory [4, 5, 7, 41-43] examines the 

way rules, policies, and procedures affect and are affected by “assumptions, norms, 

values, choices, and interactions” [43].  This approach has informed investigations of 

information technology in law [44], banking [45], and research workplaces [46], and 

informatics researchers have focused on similar issues to influence system design [47-

49].  To improve intensive insulin therapy protocol performance and patient outcomes, 

researchers and practitioners can use institutional theory to address care process 

execution issues related to human behavior. 

This paper takes a subjectivist approach [18] to the study of computer-based 

intensive insulin therapy and illustrates the need for additional research in two parts: 1) a 

literature review, which uses institutional theory to take inventory of formal structure and 

social organization [42] reported in computer-based IIT evaluations, and 2) a case study 
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that builds on the literature review and emphasizes social, organizational, and contextual 

aspects typically absent from computer-based IIT evaluations.  The literature review can 

potentially serve as a source for other CDSS evaluators interested in social, 

organizational, and contextual elements, and the case study shares the experience of 

computer-based IIT at one institution so other institutions can make informed decisions.  

Overall the analysis shows a gap in the computer-based IIT literature concerning 

complexity of protocol execution, opportunity for error in staff-device-CDSS interaction, 

effects on other workflow and care processes, and the magnitude of organizational 

change necessary for implementation. 

 

Literature Review of Computer-based Intensive Insulin Therapy Evaluations 

In May 2008 we searched ISI Web of Science for articles citing the Leuven study 

(1,783 articles) and containing the keyword “protocol” (129 articles).  Because the 

Leuven study played a significant role in IIT protocols becoming the standard of critical 

care, we used it to focus our search.  From the “protocol” corpus we identified fifteen 

evaluations of computer-based IIT protocols.  Fourteen evaluations used experimental 

designs or randomized trials, and one was a practice report.  The studies examined 

eighteen intensive care units in twelve healthcare organizations excluding the hundreds of 

sites evaluated in a longitudinal study of a commercial product [14].   

One of the authors (TRC) reviewed the studies through the lens of institutional 

theory [4, 5, 7, 41-43] to identify aspects of computer-based intensive insulin therapy’s 

formal structure—the prescribed, written policies established to govern and evaluate 

behavior—and social organization of computing—the interaction of people, process, and 
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technology across different locations and over time [42].  Researchers have used these 

dimensions to understand the interdependence of technology and human behavior in 

shaping organizational activity in banking [45], legal [44] and university research settings 

[46].  For example, through the implementation of a locally hosted digital legal library, a 

metropolitan court system sought to improve attorneys’ legal research and limit cost [44].  

Formal structure, manifested in system policies, defined access according to professional 

role and discouraged use of expensive remote subscription services in favor of the local 

digital library [44].  The social organization of computing was critical to effective digital 

library usage: convenient terminal access, workflow integration, favorable attitudes 

toward computing, separate computer work areas for competitive attorney groups, 

individualized training, and the emergence of social norms regarding digital library usage 

in courts [44]. 

Kling describes three main components of the social organization of computing: 

equipment configurations, skills and roles, and support infrastructure [42].  Equipment 

configurations involve the locations of hardware, software, functionality modules within 

software, and peripherals; skills and roles encompass the various members of an 

organization who use, supply, or affect an information system’s data; and support 

infrastructure concerns the ways that system stakeholders (e.g. users and managers) 

obtain assistance and direction [42].  Additionally, temporal aspects of system use, such 

as periodic (e.g. morning vs. evening) and long-term change over time (e.g. initial vs. 

established patterns of usage), are salient for analysis [42].   
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Formal structure of computer-based intensive insulin therapy 

 Formal structure, defined as the codified procedures intended to govern and 

evaluate behavior, is well-documented in the computer-based intensive insulin therapy 

literature.  Researchers frequently reported protocol algorithm details as well as 

evaluation measures in terms of practitioner and patient outcomes, which have been 

previously defined [16]. 

Protocol algorithm details 

Computer-based IIT approaches used two main algorithmic techniques to 

determine insulin dosing: linear equations [14, 21-23, 28, 50] based on the work of Bode 

[51] and White [52] and conditional logic [2, 27, 29, 53].  Other approaches included 

model predictive control [54] and engineering control math [25].  Most researchers 

disclosed the logic of computer-based insulin dosing algorithms [2, 14, 21, 22, 26-29, 50, 

53], and some researchers disclosed previously [21, 22] or concurrently used [25] paper-

based IIT protocols. 

Practitioner outcomes 

 Measures of practitioner outcomes included blood glucose target achievement 

(e.g. time in target range [2, 10, 21, 25, 26, 50, 53], percentage in target range [10, 21-23, 

25, 27], time before reaching target range [10, 14, 22, 23, 25-27, 50]), blood glucose 

mean and median (e.g. overall [2, 22, 23, 25, 28, 29], after 24 hours [10, 26], per day [2, 

21, 50]), total blood glucose measures (e.g. overall [2, 22, 25, 27, 29, 50] and per day [2, 

10, 21, 26]), hyperglycemia [2, 10, 21-23, 26, 27, 50], hypoglycemia [10, 14, 21-23, 25, 

27, 29, 50], insulin administration totals [10, 14], and protocol compliance (e.g. time to 

initiation of protocol [10, 21, 26], measurement and dosing per protocol schedule [10, 27, 
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53], administration of recommended insulin dose [10, 53]).  Evaluation measures and 

clinical performance varied between studies.  Only one study noted a low percentage of 

blood glucose results in target range and high percentage of tests not performed on time 

[27].  Based on rare occurrences of hypoglycemia and reductions in hyperglycemia, most 

studies deemed IIT protocols “safe and effective” for glucose management. 

Patient outcomes 

  Few studies evaluated patient outcomes in addition to practitioner outcomes [22, 

28, 29].  Despite demonstrating improved practitioner outcomes, two studies showed no 

difference in patient outcomes [22, 29] while another showed reduced morbidity and 

length of stay but increased mortality [28].  Most studies were preliminary and lacked 

statistical power to detect patient outcome changes. 

 

Social organization of computer-based intensive insulin therapy 

Compared to formal structure, social organization—the interaction of people, 

process, and technology was less consistently reported in the computer-based intensive 

insulin therapy literature.  Computer-based approaches to IIT involved various levels of 

computer systems integration and interaction with testing devices as well as impact on 

and influence of other care processes and hospital units.  The following reviews the social 

organization of computer-based IIT implementations in terms of equipment 

configurations, skills and roles, and support infrastructure [42].  Table 2 provides a 

summary. 
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Table 2. Social organization of computer-based IIT reported in the literature 

 Equipment Configurations Skills and Roles Support Infrastructure 

CDSS 

location 

Blood glucose 

testing devices 

CDSS-device 

interface 

Nurse 

feedback 

Other care 

process 

Design & 

training 

Diffusion 

Boord [21] Embedded Handheld Manual Easy to use  Workflow 
importance 

 

Davidson [14]   Manual    Other ICUs, units, 
hospitals; created 
organization 

Dortch [22] Embedded Handheld Manual  Steroids, 
nutrition 

Multidisciplinary 
team; workflow 
importance; 
training 

Other ICUs 

Hermayer [50] Calculator   Manual  Disease 
management 
service 

Training Other ICUs 

Juneja [23] Embedded  Manual Increased 
workload 

  Other ICUs, units, 
hospitals 

Meynaar [2] Calculator Handheld Manual     

Plank [54] Embedded/ 
Standalone 

Non-handheld Manual Increased 
workload 

  Created organization 

Rea [55] Calculator Handheld Manual Increased 
autonomy* 

 Multidisciplinary 
team 

 

Rood [53] Embedded Handheld Automatic     

Saager [25]  Handheld      

Shulman [27] Embedded Handheld  Increased 
workload 

Nutrition Multidisciplinary 
team 

 

Thomas [29] Calculator  Handheld and 
non-handheld 

Manual Easy to use Steroids, 
nutrition, 
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Equipment configurations 

Equipment configurations include the placement of computers, software, software 

functionality, and peripherals within large information systems in particular settings 

based IIT, this includes decision support system location and integration, 

blood glucose testing device usage, and device-computer interface.  Figure 1 depicts the 

interaction of these elements in computer-based IIT workflow reported in the literature.

Figure 1. Computer-based intensive insulin therapy workflow reported in the literature

Equipment configurations include the placement of computers, software, software 

functionality, and peripherals within large information systems in particular settings [42].  

location and integration, 

computer interface.  Figure 1 depicts the 

based IIT workflow reported in the literature. 

 

py workflow reported in the literature 
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IIT CDSS location and integration with clinical data repositories 

 Clinicians used three IIT CDSS mechanisms: 1) modules embedded within 

existing primary clinical information systems, including care provider order entry 

(CPOE) systems, that are accessible from hospital workstations and store blood glucose 

and insulin dosing data in clinical data repositories (CDR)  [21-23, 26, 27, 53, 54]; 2) 

“calculators” accessible on a hospital network that do not store data in a CDR [2, 55] and 

may require additional documentation in a clinical information system [29] and/or use of 

a preprinted order set [50]; and 3) applications installed on standalone computers1 [26, 

54].  Few studies reported location of hospital workstations [53], electronic data 

interchange with patient monitoring equipment [53], and use of other clinical information 

systems that are related to or may affect IIT CDSS, workflow, or care processes (e.g. 

nursing documentation) [29]. 

Blood glucose testing device usage 

 Clinicians used handheld glucometers [2, 21, 22, 25, 27, 28, 53, 55], non-

handheld blood gas analyzers [26, 54], and a combination of both [29] to obtain blood 

glucose measurements.  The importance of handheld glucometers was demonstrated by 

additional glucometer investment before implementation [29], shortages during 

implementation [55], and the mechanical failure of a single non-handheld blood gas 

analyzer temporarily halting protocol use [26]. 

Interface between CDSS and blood glucose testing devices 

Clinicians manually transcribed blood glucose values from testing devices to 

CDSS [21-23, 29, 50, 55], automatically transferred test results through docking stations 

in real time [53], or automatically transferred test results from non-handheld blood gas 

                                                 
1In these studies the authors described use of the CDSS in embedded and standalone configurations. 
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analyzers in real time [10, 26].  Depending on clinical information systems integration, 

nurses recorded blood glucose results and insulin rates in both CDSS and nursing 

documentation tools [29].  Continuous monitoring technology was identified as a possible 

alternative in the future [14, 27, 54]. 

Skills and roles 

Skills and roles include the various members of an organization who use, supply, 

or affect an information system’s data [42].  For computer-based IIT, this involves nurses 

as well as care members engaged in other processes that influence system use.  

Nurse feedback 

 Nurse feedback regarding IIT CDSS was mostly positive but evaluation methods 

lacked rigor.  One study used a formal questionnaire to gauge nurse perceptions before 

and after implementation [26], whereas most studies reported anecdotal nurse feedback 

related to the interventions’ ease of use [21, 29] and increased nursing workload [23, 27, 

54].  In one study researchers identified increasing nurse autonomy as a goal of the 

implementation [55].  Although nurses are the primary users of IIT CDSS, nurse 

feedback is not a focus of investigations. 

Other care processes 

Other care processes that may affect IIT and use of IIT CDSS were frequently 

overlooked.  One study reported the concurrent activity of a diabetes disease management 

service [50].  Demands from surgery and imaging occasionally interrupted IIT usage 

[29], and ICU nurses administered steroids [22, 29] and nutrition [22, 26, 27, 29] that 

may have affected patients’ blood glucose levels.  Description of IIT CDSS workflow 
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integration with respect to the disruptive nature of healthcare was not present in the 

literature.   

Support infrastructure 

Support infrastructure concerns the ways in which system stakeholders (e.g. users 

and managers) obtain assistance and direction [42].  For computer-based IIT, this focuses 

on the activities of information technology professionals, care team members, and 

hospital administrators. 

Design and training 

Multidisciplinary teams consisting of physicians, nurses, pharmacists, and 

informaticians were responsible for the creation of IIT care protocols and computer-based 

advisors [22, 27, 29, 55].  Some approaches to computer-based IIT stressed the 

importance of embedding decision support systems in clinical workflow [21, 22, 26].  

Training procedures included pre-implementation multidisciplinary instruction [22, 26] 

and web-based nurse training [22] as well as “continued need for staff instruction and 

compliance regarding the protocol” [50]. 

Diffusion of IIT CDSS 

 All computer-based IIT protocols originated in an ICU setting, and many diffused 

to other ICUs within the same institution [10, 14, 22, 23, 50] as well as medical-surgical 

floors [14, 23, 50], recovery [50], labor and delivery [50], and progressive care units [23].  

Two approaches diffused to multiple hospitals after initial usage [14, 23], and two 

research teams created organizations to advance research and adoption of their respective 

systems [14, 54]. 
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Summary of literature review 

Computer-based intensive insulin therapy studies reported formal structure 

consistently and social organization inconsistently, which reflects the objectivist 

approach predominating CDSS investigations [17] and the norms of the clinical literature.  

Most evaluations provided algorithm details and measurements of practitioner 

performance, but consideration of real world system usage and effects on healthcare 

organizations in terms of equipment configurations, skills and roles, and support 

infrastructure varied.  Although most interventions relied on the use of handheld 

glucometers, none recognized the complexity and capacity for error of nurse-device-

computer interaction.  Studies irregularly described the effect of computer-based IIT on 

other care processes and clinical information systems usage and vice versa.  Although 

nurses were the primary users of computer-based IIT interventions, most evaluations did 

not explicitly evaluate nurse feedback.  Some studies described the importance of 

workflow integration and multidisciplinary cooperation, but the literature lacked a 

comprehensive description of unintended consequences and change management 

strategies.  Evaluations did not address social, organizational, and contextual issues 

related to computer-based intensive insulin therapy. 

 

Case Study: Intensive Insulin Therapy in the Vanderbilt University Hospital SICU 

Intensive insulin therapy represents a set of organizational changes involving the 

recursive relationship between formal structure and actual work practices, a process 

which the following case study demonstrates.  Based on review of the literature, most 

computer-based intensive insulin therapy studies ignore the social, organizational, and 
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contextual aspects that explain the effectiveness of interventions.  By examining the 

transition from ad hoc sliding-scale insulin therapy to standardized intensive insulin 

therapy in the surgical intensive care unit at Vanderbilt University Hospital, this case 

study illustrates aspects usually omitted from evaluations of computer-based IIT: the 

importance of local leadership, the expenditure of labor and capital, the relationship 

between the ICU and other organizational entities, and the influence of technology on 

clinical process and vice versa.  Additionally, the case draws attention to consequences of 

computer-based IIT—staff- device-computer interaction and the therapy’s effect on other 

care processes—that represent opportunities for error and require additional research.  

Rather than treat the research setting as static, we aim to show how its dynamic properties 

change over time and affect and are affected by physicians, nurses, laboratory personnel, 

and informatics personnel. 

We used naturalistic methods [56] to create a three stage chronological narrative 

of insulin therapy in the study site: glycemic regulation before IIT, paper-based IIT, and 

computer-based IIT.  For stage one, we interviewed nurses, physician leadership, and 

laboratory personnel.  For stage two, we reviewed colleagues’ publications [21] and 

interviewed nurses and informatics support staff.  For stage three, we interviewed nurses, 

physician leadership, informatics support staff, and laboratory personnel in addition to  

directly observing workflow and reviewing colleagues’ publications [21].  Preceding the 

narrative stages, we also gathered site background information based on review of 

internal documents and interviews with unit leadership.  The Vanderbilt University 

Institutional Review Board approved this study. 
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Site background 

At Vanderbilt University Hospital (VUH), a large academic urban tertiary care 

center consisting of 501 beds, the surgical intensive care unit (SICU) admits 1,300 

patients each year.  The SICU occupies a single floor of the hospital and has a horseshoe 

layout with a nurse station and supply room in the middle and 21 beds lining the exterior.  

Each patient room contains at least one clinical workstation connected to the hospital 

network.  Additional workstations are located on mobile carts, at the central nurse’s 

station, adjacent to isolation rooms in antechambers, and throughout the corridors.  At 

VUH the use of electronic patient care information systems has a fifteen year history and 

is engrained in clinician culture.  Clinicians use locally developed electronic medical 

record and provider order entry systems in addition to vendor applications for ancillary 

functions and nursing documentation. 

Since 2001 the SICU has been under the leadership of a medical director focused 

on strengthening unit operations as well as promoting collaboration with other hospital 

units.  Efforts include increasing the number of SICU beds from 14 to 21, expanding the 

use of evidence-based guidelines, shifting cardiovascular surgery patients out of the 

SICU into a new intensive care unit, collaborating more closely with trauma ICU, 

creating a full-time SICU critical care service to replace an elective service comprised of 

critical care and anesthesiology faculty, and facilitating the creation of a separate 

emergency general surgery service.  During this period of growth, SICU experienced 

increased patient volume and illness severity compared to pre-2001 levels.  
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Glycemic Regulation Before Intensive Insulin Therapy 

Dependence on clinical judgment, inconsistent care processes, and documentation 

difficulties characterized sliding scale insulin (SSI) therapy, the standard of care for 

SICU glycemic regulation prior to paper-based intensive insulin therapy.  All diabetic 

patients, as well as non-diabetics with blood glucose issues caused by sepsis or 

medications, received SSI treatment.  Although nurses generally contacted physicians 

when a blood glucose measurement exceeded 150-200 mg/dL, no explicit criteria defined 

the threshold of hyperglycemia and when a SICU patient should begin insulin therapy.  

Physicians’ SSI orders defined blood glucose measurement intervals and specific insulin 

doses for blood glucose ranges.  Less experienced nurses adhered to SSI orders whereas 

more experienced nurses would use clinical judgment (e.g. accounting for a patient’s 

glucose-affecting therapies) in determining subcutaneous insulin injection dosing and 

subsequent blood glucose monitoring intervals (e.g. Q1H to Q6H) using LifeScan Basic® 

handheld glucometers.  In addition to subcutaneous sliding scale insulin, patients 

received insulin infusions along with electrolytes as part of total parenteral nutrition.  

This dosing was also non-standardized and relied on physician discretion.  Physicians and 

nurses depended on experience to initiate therapy, adjust subcutaneous insulin doses, and 

monitor blood glucose levels. 

SSI data management was problematic.  Following each blood glucose 

measurement and insulin administration, nurses documented data on the paper ICU 

flowsheet, daily glucose log, and medication administration record.  Once per day a 

carbon copy of each patient’s daily glucose log was transported to the laboratory for entry 

into the laboratory information system (LIS).  Recording blood glucose (BG) results in 
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the LIS enabled the institution to track resource utilization, assess point-of-care testing 

compliance, manage billing, and meet regulatory requirements.  The LIS also interfaced 

with the clinical data repository, which clinicians accessed from hospital workstations to 

view lab results.  However, blood glucose and insulin data appeared in the CDR only 

about 40% of the time: SICU staff were often too busy to transport logs, and the 

laboratory did not routinely send personnel to SICU to check compliance and collect log 

sheets.  Physicians turned to paper charts instead to obtain blood glucose and insulin data. 

A non-protocol-based approach to care, sliding scale insulin permitted variability 

in clinical decision making.  Treatment using SSI was reactive rather than proactive in 

that it treated hyperglycemia instead of attempting to prevent it, which allowed 

fluctuation of blood glucose levels and risk of hyper- and hypoglycemia in patients [57].  

Non-standardized care and workflow breakdowns typified sliding scale insulin in the 

SICU. 

 

Paper-based Intensive Insulin Therapy 

 In August 2003 the VUH SICU implemented a paper-based intensive insulin 

therapy protocol [21] based on the Leuven study [1], but labor requirements, task 

complexity, and workflow integration hindered protocol performance.  The protocol 

increased nurse workload by requiring blood glucose measurements, insulin rate 

adjustments, and subsequent documentation at two hour intervals for both diabetic and 

non-diabetic patients.  Under the new protocol, nurses initiated intensive insulin therapy 

when a patient’s BG level exceeded 110 mg/dL instead of waiting for BG levels to reach 

a discretionary level as under the previous SSI standard of care.  This increased the 
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number of patients treated with insulin.  After performing BG tests at the bedside using 

LifeScan Basic glucometers, nurses consulted the paper medication administration record 

for the protocol’s instructions to manually calculate insulin titrations, a process which 

required nurse interpretation of the protocol (e.g. “increase infusion by 1-2 units/hr” or 

“decrease infusion by 25-50%”).  Nurses then recorded BG and insulin data on the ICU 

flowsheet, daily glucose log, and medication administration record.  Further complicating 

implementation was a local nursing shortage.  Staff disagreed with the protocol, ignored 

recommendations, lacked time to perform calculations, and made mental mistakes.  

Although the purpose of the protocol was to improve care through standardization, 

variability persisted while demands on nurses increased and potential patient safety 

threats emerged.   

The new protocol also created difficulty for the laboratory, which affected SICU 

staff.  Because of the increase in blood glucose tests performed, laboratory personnel 

required more time to transcribe test values into the system, which resulted in a 

processing backlog.  Illegible daily glucose logs caused laboratory personnel to 

occasionally transcribe BG results incorrectly, which caused values in the CDR to not 

match up with paper documentation.  Nurses and physicians became frustrated because 

they were unable to access accurate BG values through the CDR in a timely fashion.   

Overall physicians and nurses were not satisfied with IIT’s impact on work 

processes, and auditing protocol performance was labor intensive due to manual chart 

review.  The average patient blood glucose value, 140-150 mg/dL, exceeded the target of 

80-110 mg/dL.  Despite organizational changes to standardize patient care, nurse work 

processes varied and practitioner outcomes did not meet goals. 
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Computer-based Intensive Insulin Therapy 

A multidisciplinary team implemented a computer-based advisor in the VUH 

SICU that improved intensive insulin therapy performance [21] and produced unintended 

consequences.  In May 2004 an informatics faculty member approached the SICU 

medical director, a surgeon and critical care physician respected by staff, about 

developing a computerized IIT approach to improve protocol adherence and capture of 

process variables for subsequent analysis (e.g. blood glucose values, insulin doses).  The 

SICU medical director commissioned a team of staff nurses, nursing leadership, 

pharmacists, physicians, and informaticians to assess the IIT process and develop the 

functionality and interface for a clinical decision support system.  Because care provider 

order entry usage was a regular part of clinical workflow, the team decided to embed the 

decision support module in the institution’s CPOE system.  The team tested the 

intervention and worked with “super user” nurses to refine the tool’s ease of use, validate 

its effectiveness, and assuage concerns about computer-based dosing recommendations.  

The team also created a training regimen for staff consisting of classroom training for 

nurses, physician training through orientation, pharmacist training through rounds, 

continuous informatics staff support, and ad hoc instruction from a SICU nurse 

practitioner educator. 

A separate laboratory investment decision influenced nurse IIT workflow, CDSS 

design, and project timing.  Independent of the SICU in September 2004, the laboratory 

replaced all glucometers across the institution with Lifescan® SureStep® Pro™ devices 

($550 each) and installed a data infrastructure consisting of docking stations ($300 each) 
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and a software interface ($90,000 5-year contract) to automatically transfer blood glucose 

results from testing devices to the LIS and CDR, thus alleviating the laboratory daily 

glucose log processing problem.  However, test results took up to ten minutes to transfer 

from device to CDR.  Furthermore, devices would not send results until errors were 

resolved, which occasionally lengthened the transfer process.  Data transfer issues 

coupled with the time-sensitive nature of IIT affected CDSS design: nurses would 

manually transcribe the latest blood glucose value from the glucometer to the CDSS.  To 

initiate a blood glucose measurement, a nurse used the SureStep® Pro’s™ integrated 

barcode reader to scan barcodes attached to his name badge and the patient’s bedside.  If 

barcode scanning failed, a nurse manually entered identification numbers for himself 

and/or the patient.  For legal and billing purposes, the laboratory required BG results 

entered directly into the LIS by laboratory personnel or automatic device transfer, not 

manual nurse transcription.  Once per shift nursing assistants collected devices and 

placed them in one of two docking stations to transfer test results and accompanying 

identification information.  After use of SureStep® glucometers became a regular part of 

workflow, the SICU team resumed its CDSS implementation effort in December 2004. 

The computer-based IIT approach introduced a tool to assist nurses with glucose 

maintenance as well as a practice change to increase physician involvement in glycemic 

regulation.  Instead of starting the protocol when a blood glucose reading exceeded 110 

mg/dL, a nurse contacted a physician to initiate therapy using the CDSS module, which 

consisted of two parts [21]: an initiation screen for a physician to specify care and “notify 

house officer” parameters, and an insulin rate adjustment screen for a nurse to manually 

enter blood glucose values (Figure 2).  Following a physician’s one-time use of the 
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initiation screen, the nurse accessed the CDSS module according to the protocol schedule 

(usually Q2H) in order to document blood glucose results and calculate new insulin 

titrations.  The CDSS module utilized a linear equation to determine an insulin titration 

[21], which eliminated the need for nurses to manually calculate insulin infusion rates.  

However, nurses could override the CDSS module’s recommendations and enter an 

insulin titration using their clinical judgment when necessary (e.g. simultaneous 

administration of glucose-affecting medication).  After using the CDSS, nurses manually 

adjusted rates of pharmacy-prepared regular insulin drips (150 units in 150mL normal 

saline solution with a 24 hour expiration) on Alaris® infusion pumps equipped with 

Guardrails® software, which was not configured to transfer infusion data to the CDR.  

Although several years later the institution implemented a barcode medication 

administration system integrated with other clinical software for administering 

intermittent medications, nurses did not use it for infusions. 
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Figure 2. Screenshots of clinical decision support system.  Reproduced from Journal of the American 
Medical Informatics Association, Boord JB et al., 14(3), 278-87, 2007 with permission from BMJ 

Publishing Group Ltd. 
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Compared to its paper predecessor, the SICU computer-based IIT protocol 

increased protocol adherence,  reduced time to initiate treatment, expanded the 

percentage of blood glucose readings in the target range, and simplified record keeping 

[21].  The hospital’s medical, neurological, cardiovascular, and trauma ICUs adopted the 

same computer-based approach to IIT, and the trauma ICU demonstrated glycemic 

regulation improvements using the intervention [22].  Neither the SICU or trauma ICU 

studies were sufficiently powered to detect patient outcome improvements, but in terms 

of glycemic regulation improvements, the computer-based approach to IIT was a success 

at the institution. 

In addition to improving practitioner performance, the intervention produced 

unintended consequences related to workflow and technology.  First, IIT and other 

redesigned clinical activities contributed to increased overall CPOE usage, which resulted 

in clinicians waiting to use terminals in SICU.  In response, the institution purchased 

additional workstations.  Second, the clinical data repository’s blood glucose and insulin 

data appeared in duplicate—one set of values entered manually by nurses into the CDSS 

module, the other captured from the glucometer—with slightly different timestamps and 

occasionally different values.  This resulted in visual clutter in CDR data displays, which 

may have contributed to clinician confusion or cognitive overload.  Third, nurses “double 

documented” blood glucose and insulin values in the CDSS module and an electronic 

nursing documentation system, which was implemented two years after the introduction 

of computer-based IIT and the completion of protocol evaluations in the SICU [21] and 

trauma ICU [22].  This resulted in a third set of values appearing in the clinical data 

repository.  Furthermore, the approach to computer-based IIT assumed nurses never 
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made errors when transcribing blood glucose values to calculate and adjust insulin doses.  

Despite these issues, computer-based IIT remains the standard of care for critically ill 

patients at VUH. 

 

Summary of case study 

In the transition from sliding scale insulin to paper-based IIT to computer-based 

IIT, Vanderbilt University Hospital enacted considerable organizational changes related 

to evidence-based protocol development, nurse workload, physician involvement, blood 

glucose testing and infrastructure, and informatics development and support.  Forces 

beyond SICU control—a local nursing shortage, the laboratory’s decision to upgrade 

glucometers, and the institution’s decision to implement nursing documentation 

software—affected the trajectory of intensive insulin therapy efforts over time, but SICU 

leadership and multidisciplinary cooperation helped ensure the project’s success.  Other 

institutions may experience similar organizational changes as part of their computer-

based IIT efforts.  Changes to glycemic regulation, glucometer usage, and 

computerization occurred gradually over time at VUH, which conceivably enabled 

stakeholders to adapt to process modifications more easily.  In contrast, other institutions 

may face greater change management challenges if abruptly shifting from sliding scale 

insulin to computer-based IIT.  Computer-based intensive insulin therapy is a complex, 

multifaceted organizational undertaking that requires substantial commitment to change 

and presents opportunities for further inefficiency and error reduction. 
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Discussion 

Kaplan’s themes of clinical decision support system evaluation [17] are present in 

evaluations of computer-based intensive insulin therapy.  In order to optimize computer-

based intensive insulin therapy process execution, researchers and practitioners should 

address social, organizational, and contextual issues determining how and why 

implementations are successful.  From our literature review and case study, three aspects 

of computer-based IIT appear particularly salient: (1) the relationship between clinical 

information systems, CDSS, testing devices, users, and error; (2) nurse perspectives; and 

(3) organizational change. 

 

Technology, users, and error 

The interaction of hardware, clinical information systems, clinical decision 

support modules, blood glucose devices, and clinicians is complex, time consuming, and 

susceptible to error, yet most evaluations of computer-based IIT take it for granted.  For 

example, a study of computer-based IIT conducted at Vanderbilt University Hospital 

stated that “[blood glucose] values are downloaded directly from the glucometer to the 

computer order entry system” [39], which misrepresents the reality of manual data entry 

and possibility for error inherent in the process.  Installation of additional docking 

stations at each bedside to facilitate data transfer may be cost prohibitive or hindered by 

slow data transfer times.  The purchase of glucometers that transmit data wirelessly 

across a hospital network to clinical data repositories in a reliable fashion may also be 

cost prohibitive.  Furthermore, controversy surrounds the use of handheld glucometers 

for intensive insulin therapy due to possible inaccurate results [58-61].  Some studies 
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suggest continuous glucose monitoring technologies can replace handheld glucometers 

today [62, 63] while others propose additional refinement [64-66] or recommend against 

their usage [67].  In contrast to computer-based IIT, computer-based anticoagulation 

therapy [68] relies on a central laboratory’s activated partial thromboplastin time results, 

which are processed less frequently [69] and are arguably more accurate than handheld 

glucometer test results.  For computer-based intensive insulin therapy, the optimal 

configuration of testing devices, computers, decision support interfaces, and personnel is 

not yet understood. 

 

Nurse perspectives 

Few studies have focused on nurse perspectives regarding intensive insulin 

therapy, particularly for computer-based approaches, and additional study can potentially 

improve protocols and workflow.  A direct observation study of a paper-based IIT 

protocol showed that nurses required between three and nine minutes (mean 4.72, SD 

1.13, median 4.67) to obtain a testing device, measure blood glucose, and adjust insulin 

[31].  A separate time-motion study found nurses required 20-30 minutes to complete IIT 

tasks and document care [70].  Times varied due to treatment differences for 

hypoglycemia, hyperglycemia, and euglycemia [70] as well as nurses locating devices, 

troubleshooting devices, caring for patients with isolation precautions, and occasionally 

ignoring hygiene and safety requirements [31].  Such issues may also influence provision 

of computer-based IIT, and CDSS and other computer system usage during IIT 

administration may have other unintended consequences that add to nurse work or detract 
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from patient safety.  In a study of computer-based IIT2, nurses indicated the following 

reasons for declining CDSS recommendations: patient blood glucose trends, concurrent 

administration of medications prepared in a glucose solution, nutrition changes, 

concurrent epinephrine administration, hypothermia, agitation, and previously entered 

incorrect data [71].  The results of this study show some of the effects of CDSS on IIT 

and demonstrate the value of nurse-focused evaluation of computer-based IIT in making 

workflow and care barriers explicitly understood.  New dosing algorithms can potentially 

incorporate such factors so that IIT protocols reflect the realities of clinical practice and 

judgment. 

 

Organizational change  

The same computer-based intensive insulin therapy protocol used in two 

hospitals, or two units in the same hospital, might produce variability in social processes 

and clinical performance.  Examining the social organization of computer-based IIT 

evaluations shows that the effects of computer-based IIT implementations on healthcare 

organizations are not explicitly reported.  Our case study demonstrates how a surgical 

intensive care unit with strong leadership and institutional informatics support overcame 

technological and organizational barriers to implement computer-based IIT.  Although 

other ICUs in the institution now use the same computer-based IIT approach, the 

intervention may or may not appropriately match workflow, organizational, and clinical 

needs because it was designed for the SICU.   A recent multi-site IIT trial [72], which 

showed increased mortality for patients treated with IIT versus those treated with 

                                                 
2This study did not meet literature review criteria as it was published in June 2008 (and not yet indexed in 
ISI Web of Science) and did not cite the Leuven study. 
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conventional therapy, used the same computer-based IIT dosing calculator in all sites 

[73].  The researchers did not explore computer-based IIT process execution across sites 

although such issues may have affected clinical performance.  

 

Future research 

To understand computer-based IIT usage, future studies should combine 

quantitative and qualitative methods.  First, by comparing manually entered blood 

glucose data and automatically captured values from glucometers, we can determine the 

frequency and effect of incorrect data on insulin dosing and blood glucose variability.  

Most computer-based IIT studies utilize handheld glucometers and assume the 

transcription of blood glucose values from testing devices to CDSS is error free.  A study 

examining ventilator settings automatically captured from a device versus manually 

entered into a computerized CDSS showed 3.9% of computer-generated 

recommendations contained incorrectly entered data [74].  Blood glucose value errors 

may potentially contribute to blood glucose variability, which has been associated with 

mortality [40].   

Second, investigating the impact of CDSS insulin dose overrides can assess the 

effectiveness of nurses’ clinical judgment.  Studies of medication-related CDSS 

embedded in CPOE systems show physician override rates of computer-based 

recommendations as high as 91% [75, 76], and researchers suggest using quantitative and 

qualitative methods to understand clinician-CDSS interaction [75]. Nurses deviate from 

CDSS suggestions when a clinical situation is more complex than a computer algorithm’s 

parameters [71].  However, little is known about whether nurses’ clinical judgment is 
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appropriate under these circumstances.  Quantifying the frequency and effect of insulin 

dose overrides on blood glucose variability can potentially answer this question.  

Examining medication administration records and clinical documentation corresponding 

to nurse overrides of CDSS recommendations may provide indication of additional 

variables for IIT dosing algorithms to consider (e.g. corticosteroids).   

Third, the use of ethnographic methods to study computer-based intensive insulin 

therapy can potentially lead to software and process enhancements.  An approach from 

anthropology, ethnography has been used in clinical research to improve surgical resident 

handoffs [77] and in informatics research to identify and resolve incorrect software 

design assumptions [47, 78].  Extensive direct observation of clinicians using CDSS for 

IIT in the field can reveal benefits and drawbacks of the current approach with respect to 

computer system usage, care processes, and issues currently unknown.  Additionally, 

ethnographic study of computer-based IIT in multiple ICUs can potentially show site-

specific differences in social organization of the intervention that may affect clinical 

performance.  By understanding the use of computer-based IIT in real world settings, 

researchers and practitioners can make care workflow and protocol modifications to 

potentially achieve the morbidity and mortality improvements demonstrated in the 

Leuven study.   

 

Limitations 

There are limitations to this study.  First, we examined intensive insulin therapy in 

one intensive care unit at a single institution with sophisticated clinical informatics 

systems.  Findings may not generalize to sites with less informatics development.  Future 
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research will examine additional ICUs at Vanderbilt University Hospital and then 

proceed to additional institutions.  Second, other theoretical approaches might be more 

illuminative than institutional theory’s social organization of computing in examining 

computer-based intensive insulin theory.  For example, social interactionism, “fit,” and 

“the 4 C’s” may be potentially useful methods [18]. 

 

Conclusion 

Our analysis contributes to the understanding of computer-based intensive insulin 

therapy’s social, organizational, and contextual aspects.  More broadly, this paper 

addresses the underreported elements explaining how and why clinicians use CDSS 

interventions.  We suggest future IIT CDSS research involve quantifying error, assessing 

clinical judgment in overriding CDSS recommendations, and directly observing nurse use 

of IIT CDSS with respect to other care processes and clinical information systems.  

Researchers and practitioners can use this study to approach computer-based intensive 

insulin therapy and clinical decision support system improvement projects.   
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CHAPTER III 

 

EFFECTS OF BLOOD GLUCOSE TRANSCRIPTION MISMATCHES ON A 

COMPUTER-BASED INTENSIVE INSULIN THERAPY PROTOCOL 

 

Introduction 

 Intensive insulin therapy (IIT) is the standard of critical care but concerns exist 

regarding its effectiveness and safety [79].  In surgical and trauma intensive care unit 

patients treated with a computerized intensive insulin therapy protocol [21, 22], blood 

glucose variability [80] and insulin resistance [81] were associated with mortality, and 

delayed blood glucose measurements were associated with severe hyper- and 

hypoglycemia [10, 39].  These findings suggest that workflow may influence computer-

based IIT performance and patient outcomes [39].  Clinical decision support systems 

(CDSS) for IIT are commonplace [82, 83] and many implementations rely on manual 

transcription of blood glucose values to generate recommendations, a practice that could 

yield unintended consequences including error [82, 83].  CDSS IIT approaches that 

ignore transcription mismatches—when manually entered values do not equal 

corresponding automatically captured device values—implicitly assume differences 

between matched and mismatched data are non-significant and do not affect IIT protocol 

performance.  The purpose of this study was to measure the frequency of blood glucose 

transcription mismatches and their effect on intensive insulin therapy protocol 

performance. 
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Methods 

The cohort included all critically ill or injured mechanically ventilated patients 

treated with the computer-based intensive insulin therapy protocol in the surgical and 

trauma intensive care units at Vanderbilt University Hospital, an urban tertiary care 

facility.  We examined only patients with five or more CDSS IIT values.  Table 3 

presents patient characteristics. 

 

Table 3. Characteristics of study patients. 

 SICU  
n = 1,883 

TICU  
n = 2,152 

Treatment period November 2004-February 2009 October 2005-February 2009 

Number of beds 21 31 

Nurse to patient ratio 2:1 2:1 

Age, years 58.9 ± 14.6 41.5 ± 18.8 

Male sex, no. (%) 1,130 (60%) 1,576 (73%) 

Body mass index, kg/m2 29.6 ± 11.8 26.9 ± 6.9 

Admission service   

Trauma 71 (3.8%) 2044 (95%) 

Liver transplant 342 (18.2%)  

Emergency general surgery 338 (18.0%)  

Vascular surgery 194 (10.3%)  

General surgery 154 (8.2%)  62 (2.9%) 

Cardiac/thoracic surgery 119 (6.3%) 1 (< 0.1%) 

Oncology/endocrine surgery 97 (5.2%) 1 (< 0.1%) 

Urology 83 (4.4%)  

Orthopaedics 76 (4.0%) 20 (0.9%) 

Other 409 (21.7%) 24 (1.1%) 

APACHE II (SICU) 18.9 ± 6.5  

ISS (TICU)  27.7 ± 11.9 

History of diabetes 206 (10.9%) 71 (3.3%) 

Hospital length of stay, days 17.8 ± 16.1 14.1 ± 13.9 

ICU length of stay 9.1 ± 10.6 9.6 ± 10.6 

Mortality 284 (15.1%) 323 (15.0%) 

Data represent mean ± standard deviation unless noted.  SICU, surgical intensive care unit.  TICU, trauma 
intensive care unit.  APACHE, Acute Physiology and Chronic Health Evaluation.  ISS, Injury Severity 

Score. Nurse to patient ratio changes to 1:1 for complex patients. 

 
 

Figure 3 and Table 4 describe CDSS IIT in detail.  CDSS [21, 22, 81, 83] uses a 

linear equation [51] that adjusts a “multiplier” according to current and previous blood 



 

glucose (BG) values.  Slight (e.g. 138 vs. 139) and large differences (e.g. 138 vs. 238) in 

BG value transcription can have major

depending on clinical scenario.

Figure 3.  IIT CDSS workflow.
receive intensive insulin therapy according to a standardized protocol embedded in the institution’s 

computerized order entry system.  A physician (MD) confirms the therapy’s blood glucose 
(usually 80-110 mg/dL) and critical parameters (blood glucose and insulin values) for generating an alert 

for a nurse (RN) to notify a MD (process designated by dashed lines).  A nurse (RN) performs blood 
glucose measurements of arterial blood

testing device.  The system does NOT remind nurses to measure BG.   The device stores each BG value 
along with a patient’s medical record number, which the nurse scans from a barcode or enters manual
nurse can accept a CDSS recommended dose or type in a different dose amount to be administered, which 
the system logs as an override.  A nurse aide (NA) places handheld testing devices in a docking station so 

that blood glucose values, along with ti
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glucose (BG) values.  Slight (e.g. 138 vs. 139) and large differences (e.g. 138 vs. 238) in 

BG value transcription can have major, minor, or no effects on dosing recommendations 

epending on clinical scenario. 

IIT CDSS workflow.  SICU and TICU patients with a blood glucose (BG) value 
receive intensive insulin therapy according to a standardized protocol embedded in the institution’s 

computerized order entry system.  A physician (MD) confirms the therapy’s blood glucose 
110 mg/dL) and critical parameters (blood glucose and insulin values) for generating an alert 

for a nurse (RN) to notify a MD (process designated by dashed lines).  A nurse (RN) performs blood 
glucose measurements of arterial blood when possible using a Lifescan® SureStep® Pro™ handheld 

testing device.  The system does NOT remind nurses to measure BG.   The device stores each BG value 
along with a patient’s medical record number, which the nurse scans from a barcode or enters manual
nurse can accept a CDSS recommended dose or type in a different dose amount to be administered, which 
the system logs as an override.  A nurse aide (NA) places handheld testing devices in a docking station so 

that blood glucose values, along with timestamps and patient identifiers, transfer to the clinical data 
repository (CDR) once per nursing shift. 

 

glucose (BG) values.  Slight (e.g. 138 vs. 139) and large differences (e.g. 138 vs. 238) in 

, minor, or no effects on dosing recommendations 

 

SICU and TICU patients with a blood glucose (BG) value ≥ 110 mg/dL 
receive intensive insulin therapy according to a standardized protocol embedded in the institution’s 

computerized order entry system.  A physician (MD) confirms the therapy’s blood glucose target range 
110 mg/dL) and critical parameters (blood glucose and insulin values) for generating an alert 

for a nurse (RN) to notify a MD (process designated by dashed lines).  A nurse (RN) performs blood 
when possible using a Lifescan® SureStep® Pro™ handheld 

testing device.  The system does NOT remind nurses to measure BG.   The device stores each BG value 
along with a patient’s medical record number, which the nurse scans from a barcode or enters manually.  A 
nurse can accept a CDSS recommended dose or type in a different dose amount to be administered, which 
the system logs as an override.  A nurse aide (NA) places handheld testing devices in a docking station so 

mestamps and patient identifiers, transfer to the clinical data 
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Table 4. CDSS IIT algorithm 

Variables 

• BG = manually transcribed blood glucose value (mg/dL)  

• Previous BG = manually transcribed BG value from previous protocol iteration 

• Low = low BG target 

• High = high BG target 

• Multiplier = initially 0.03; never less than 0 

• D50 = intravenous 50% dextrose rounded to nearest 5 (mL) to treat hypoglycemia 

Measurement interval 

• Nurse measures BG every 2 hours.   

• If BG < 60, nurse measures every 1 hour until BG > 60 and then resumes 2 hour interval. 

Initiation  

• Physician specifies therapy parameters (default values shown) 
o Low = 80 
o High = 110 
o Critical threshold values for system to alert nurse to notify physician  

� Critical low BG = 60 
� Critical high BG = 200 
� Critical insulin rate = 22 

• If BG < 60 
o D50 = 0.5 * (100 - BG) 
o Multiplier = 0 

• If BG < Low AND BG > 59 
o D50 = 0.5 * (100 - BG) 
o Multiplier = 0 

• If BG > Low 
o Multiplier = 0.03 

Ongoing titration 

• If BG < 60 
o D50 = 0.5 * (100 - BG) 
o Multiplier = Multiplier - 0.02 
o Measurement interval = 1 hour 

• If BG < Low AND BG > 59 
o D50 = 0.5 * (100 - BG) 
o Multiplier = Multiplier - 0.01 

• If BG <= High AND BG >= Low 
o Multiplier = Multiplier 

• If BG > (1.5 * High) AND Multiplier = 0 
o Multiplier = 0.01 

• If BG > 200 OR BG > High AND Previous BG > High 
o Multiplier = Multiplier + 0.01 

• If BG > High AND BG < 200 AND Previous BG < high 
o Multiplier = Multiplier 

• If Previous BG > (1.25 * High) AND BG >= Previous BG AND Multiplier = 0 
o Multiplier = 0.01 

Formulation calculation 

• Insulin rate (units/hour) = (BG - 60) * Multiplier 

 

For each patient, we retrospectively linked each manually transcribed BG value 

with the device BG value closest to the manually transcribed value’s timestamp within a 
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one hour window—one hour before or one hour after—to accommodate for time 

variations between computers and devices.  Manually transcribed and device captured 

BG value pairs that were equal were designated matched and those unequal mismatched.  

For mismatched instances, we recalculated CDSS recommendations using corresponding 

device BG values.  We assumed nurses transcribed BG values independently; thus, we 

considered previous input to be correct and examined the effect of each manual 

transcription on CDSS output. 

 

Measurements 

The study objective was to determine the frequency of blood glucose mismatches 

and their effect on IIT protocol performance.  We hypothesized (1) manually transcribed 

blood glucose values do not always equal device values; (2) matched and mismatched 

data differ in terms of alerts generated by CDSS; (3) matched and mismatched data differ 

in terms of blood glucose variability; (4) matched and mismatched data differ in terms of 

dosing; and (5) recalculated doses differ from corresponding actual doses but are similar 

to recommended doses generated with matched data. 

To assess alerts, we compared historical CDSS output versus output generated 

from corresponding automatically captured device values.  To measure BG variability, 

we focused on blood glucose excursions in terms of successive device BG change [80], 

hypoglycemia (i.e. current manually transcribed BG ≥ 60 and next manually transcribed 

BG < 60), and hyperglycemia (i.e. current manually transcribed BG < 200 and next 

manually transcribed BG ≥ 200).  Successive BG change reflects both steady and rapid 
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fluctuations in the distribution of BG values [80].  Hypoglycemia3 and hyperglycemia 

measure safety and effectiveness, respectively. 

To evaluate dosing, we examined insulin dose, equation multiplier, and 

intravenous 50% dextrose (D50) dose.  Insulin dose and multiplier have been identified 

as markers for insulin resistance [81].  To control the effect of nurse overrides, we 

excluded override doses and examined recommended doses.  We then compared matched 

doses, mismatched actual doses generated with manually transcribed values, and 

mismatched recalculated doses generated with corresponding device values.  Matched 

recommended doses, free of override bias and mismatched data, served as the reference 

standard of IIT protocol adherence. 

 

Statistical analysis 

To summarize and compare normally distributed continuous variables, we 

determined mean and standard deviation and used two sample t tests for independent 

samples.  To summarize and compare non-normally distributed continuous variables, we 

determined median and interquartile range (IQR) and used the Wilcoxon rank-sum test 

for unpaired data and Wilcoxon signed rank test for paired data.  We used a χ2 test to 

compare differences in proportions.  A two-sided p value less than 0.05 indicated 

statistical significance.  To perform calculations we used STATA 10.1 (STATA Corp., 

College Station, TX).  All patient data was stored in a secure, password-protected 

database and de-identified prior to analysis and reporting.  The Vanderbilt University 

Institutional Review Board approved this study. 

                                                 
3 We defined hypoglycemia as BG < 60 in accordance with National Quality Forum “never event” 
specifications for reporting adverse events in United States hospitals [84]. 
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Results 

Mismatched pairs accounted for 5.3% of IIT data (Figure 4).  Matched and 

mismatched pairs differed in most respects.  Mismatched data caused CDSS to trigger 93 

false alerts and fail to issue 170 alerts for nurses to notify physicians.  Blood glucose 

variability differed between matched and mismatched data in four of six measures.  

Tables 5-7 presents detailed findings. 

 
Figure 4. Categorization of IIT manually transcribed and device captured pairs and subsequent insulin 

doses generated using blood glucose (BG) values.  Gray areas include recommended and override doses 
whereas black areas include only recommended doses to control for effect of overrides.  203,188 IIT 

instances were available for analysis.  11,901 manually transcribed blood glucose values had no 
corresponding device value identified and were excluded.  An additional 1,788 IIT instances (< 1%) 
produced output unequal to historical CDSS recommendations and were excluded.  189,499 pairs of 

manually transcribed and device captured blood glucose values remained for analysis 

 

 

Manually Transcribed and Device Captured 

Blood Glucose Value Pairs for CDSS IIT
n = 189,499

Matched

n = 179,479 94.7%

Recommended

n = 170,377
89.9%

Override

n = 9,102
4.8%

Mismatched

n = 10,020
5.3%

Recommended

n = 9,474
5.0%

Manually 

Transcribed BG
↓

Actual Dose

Device Captured BG 

↓
Recalculated Dose

Override

n = 546
0.3%
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Table 5. Characteristics of matched and mismatched IIT data. 

 Matched 
n = 179,479 

Mismatched 
n = 10,020 

Matched vs. Mismatched 

p < 0.05 

Insulin override 9,102 (5.1%) 546 (5.4%) 0.094 

D50 administration 11,399 (6.4%) 635 (6.3%) 0.076 

BG mg/dL Matched Manually 

Transcribed 

Device 

Captured 

Matched vs. 

Transcribed 

Matched vs. 

Device 

Captured 

Transcribed 

vs. Device 

Captured 

BG > 200, no. (%) 5,298 (3.0%) 571 (5.7%) 629 (6.3%) < 0.001 < 0.001 < 0.001 

BG 150-200 17,734 (9.9%) 1,357 (13.5%) 1,373 (13.7%) < 0.001 < 0.001 < 0.001 

BG 110-150 67,575 (37.7%) 3,451 (34.4%) 3,513 (35.1%) < 0.001 < 0.001 < 0.001 

BG 80-110 76,101 (42.4%) 3,926 (39.2%) 3,466 (34.6%) < 0.001 < 0.001 < 0.001 

BG 60-80 10,654 (5.9%) 579 (5.8%) 858 (8.6%) 0.594 < 0.001 < 0.001 

BG < 60 2,117 (1.2%) 136 (1.4%) 181 (1.8%) 0.092 < 0.001 < 0.001 

BG mean ± SD 117 ± 36 124 ± 48 125 ± 49 < 0.001 < 0.001 < 0.001 

Percentages are based on column n.  Proportions compared using χ2 and mean ± SD compared using t-test.  
Overrides and D50 administrations occurred similarly between matched and mismatched.  Matched mean 

BG was significantly less than manually transcribed and device captured values.  Differences in proportions 
within mismatched pairs show a tendency toward manual transcription of values in the BG 80-110 band.  

Mismatched pairs had smaller proportions of BG 80-110 and 110-150 and greater proportions of BG 150-
200 and >200 compared to matched pairs, which may explain mean BG differences. 

 

Table 6. Alerts generated by CDSS using matched and mismatched data and mismatched data only. 

 Matched and Mismatched  Mismatched Only 

 Recalculated  Recalculated 

Actual 

 Alert No alert 

Actual 

 Alert No alert 

Alert 8,921 93 Alert 439 93 

No alert 170 180,315 No alert 165 9,323 

CDSS alerts nurse to notify physician if BG input or insulin dose equals one of three physician-specified 
values (typically BG ≤ 60, BG ≥ 200, and insulin ≥ 22 U/h).  Specificity, the proportion of alerts correctly 

not issued, was high (0.999).  Sensitivity, the proportion of alerts correctly issued, was high (0.981) for 
matched and mismatched but considerably lower (0.727) when examining mismatched only. 

 

Table 7. Blood glucose variability of matched and mismatched data. 

 Matched Mismatched p < 0.05 

Successive change BGn - BGn+1 (mg/dL) -1.85 ± 33.53 -2.02 ± 37.57 0.574 

Successive change absolute 17 (4.5-29.5) 16 (2-30) < 0.001 

Successive change positive 17 (4.5-29.5) 19 (5-33) < 0.001 

Successive change negative -17 (-29 to -5) -20 (-34.5 to -5.5) < 0.001 

Hypoglycemia 1,948 (1.1%) 125 (1.2%) 0.129 

Hyperglycemia 1,552 (0.9%)  228 (2.3%) 0.016 

Mean ± SD compared using t-test and proportions compared using χ2 test.  Successive change reflects 
steady and rapid fluctuations in BG levels while hypoglycemia (current manually transcribed BG >= 60 and 
next manually transcribed BG < 60) and hyperglycemia (current manually transcribed BG < 200 and next 

manually transcribed BG >= 200) measure potential safety threats and effectiveness, respectively. 

 



55 
 

Compared to matched data, mismatched data generated lower dosing parameters 

overall with some exceptions (Table 8).  Hypoglycemia occurred in 1.1% (n=2,073) of 

total CDSS IIT activity.  6% (n=125) of these instances contained mismatched data, and 

actual dose was 22.9% higher than recalculated (p<0.001).  Additionally, matched 

recommended dose was 37.2% higher than recalculated (p<0.001).  Hyperglycemia 

occurred in 0.9% (n=1,780) of total CDSS IIT activity.  12.8% (n=228) of these instances 

contained mismatched data, and actual dose was 42.4% lower than recalculated (p < 

0.001).  Additionally, matched recommended was 14.6% lower than recalculated 

(p=0.006). 
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Table 8. Dosing parameters for matched and mismatched data including recalculated doses. 

 Total (Recommended & Override) Recommended Only 

 Matched Mismatched 
Matched vs. 
Mismatched 

Matched 
Recommended 

Mismatched 
Actual 

Mismatched 
Recalculated 

Matched 
Recommended 
vs. Mismatched 

Actual 

Matched 
Recommended 

vs. 
Mismatched 
Recalculated 

Mismatched 
Actual vs. 

Mismatched 
Recalculated 

Overall n (%) 179,479 (94.7%) 10,020 (5.3%)  170,377 (94.7%) 9,474 (5.3%)    

Insulin Units/hour (U/hr) 3.8 (2.1-6.5) 3.6 (2.0-6.1) < 0.001 3.9 (2.1-6.5) 3.6 (2.0-6.1)                                                                                              3.7 (2.0-6.2) < 0.001 < 0.001 0.6991 

Multiplier 0.076  
(0.048-0.117) 

0.066  
(0.038-0.109) 

< 0.001 0.760  
(0.048- 0.117) 

0.0650  
(0.038-0.108) 

0.0647  
(0.037-0.107) 

< 0.001 < 0.001 < 0.001 

D50 mL 15 (5-10) 15 (5-10) 0.283 15 (5-10) 15 (5-10) 15 (5-10) 0.251 < 0.001 < 0.001 

Hypoglycemia n (%) 1,948 (1.0%) 125 (0.1%)  1,872 (1.0%) 107 (0.1%)    

Insulin U/hr 4.2 (2.2-7.3) 3.4 (1.7-6.0) 0.012 4.3 (2.25-7.3) 3.5 (1.8-6.0) 2.7 (1.1-5.7) 0.022 < 0.001 < 0.001 

Multiplier 0.079 
(0.050-0.120) 

0.060 
(0.033-0.116) 

0.01 0.080 
(0.051-0.120) 

0.060 
(0.033-0.119) 

0.060 
(0.030-0.120) 

0.008 0.002 < 0.001 

Hyperglycemia n (%) 1,552 (0.8%) 228 (0.1%)  1,411 (0.8%) 214 (0.1%)    

Insulin U/hr 4.1 (2.2-7.0) 3.3 (2.15-4.2) < 0.001 4.1 (2.4-7.1) 3.3 (2.3-4.2) 4.7 (3.8-6.7) < 0.001 0.006 < 0.001 

Multiplier 0.061  
(0.032-0.100) 

0.030  
(0.030-0.059) 

< 0.001 0.060  
(0.031-0.099) 

0.030  
(0.030-0.056) 

0.030  
(0.030-0.056) 

< 0.001 < 0.001 0.317 

Recommended Only controls for effect of override doses.  Matched and mismatched data generated significantly different insulin dosing parameters, especially 
for episodes of hypoglycemia and hyperglycemia.  27.5% of patients (n = 1,110) experienced at least one episode of hypoglycemia (current BG ≥ 60 and next BG 

< 60).  Severe hypoglycemia (current BG ≥ 40 and next BG < 40) occurred in 172 instances (0.09% overall), and six contained mismatched data.  3.9% of 
patients (n = 157) experienced at least one episode of severe hypoglycemia.  Recalculated D50 dose (mean SD: 14 ± 9) was significantly lower than mismatched 
actual (mean SD: 17 ± 8, p < 0.001) and matched recommended (mean SD: 16 ± 5, p < 0.001).  D50 doses in table are skewed because of 5mL dose increments. 
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Discussion 

Manual transcription of blood glucose values is a source of intensive insulin 

therapy process variability associated with patient care changes and affecting clinical data 

and provider workflow.  Manual transcription may affect paper-based IIT, but computer-

based approaches provide detection of mismatches more readily.  In a review of CDSS 

IIT approaches, Eslami et al identified manual transcription of blood glucose values as a 

“critical safety issue” [82].  In our study, overall insulin doses generated with matched 

and mismatched data differed, but recalculated doses were similar to actual doses, 

suggesting that the effect of mismatched data is insignificant overall.  However, in cases 

of hypoglycemia and hyperglycemia, dosing differences caused by mismatched data may 

be clinically significant: the administration of recalculated doses that were less than and 

greater than actual recommendations, respectively, might have prevented “never events” 

[84] from occurring. Other patient-level factors may contribute to blood glucose 

variability, but this study quantifies mismatched data as a parameter to consider for IIT 

improvement. 

Matched and mismatched data exhibited significantly different characteristics and 

may represent distinct populations.  Compared to matched data, mismatched data showed 

a significantly greater mean BG value, lower multiplier, greater magnitude of successive 

BG change, and greater occurrence of hyperglycemia.  Additionally, mismatched data 

generated fewer “notify physician” alerts than would have occurred had transcribed 

values matched device values.  Mismatches occurred about as frequently as three other 

system events—D50 administrations and nurse-initiated insulin overrides, which were 

expected, and manual transcriptions missing device values, which were unanticipated.  



58 
 

Table 9 lists potential reasons for mismatched and missing data [30, 85].  Manual BG 

transcription affects protocol performance, and our future work involves direct 

observation and nurse interviews to understand CDSS IIT usage.   

 

Table 9. Potential reasons for missing data and mismatched data observed in study. 

Missing Data Mismatched Data 

• Testing device malfunction 

• Testing device clock set incorrectly  

• Incorrect medical record number used on testing 
device 

• BG value obtained from testing device not 
integrated with laboratory information system 

• Failure/forgetfulness to check a BG value 

• Deliberate falsification of BG value 

• Device to laboratory information system transfer 
failure 

• Laboratory information system to clinical data 
repository transfer failure 

• Other clinical information system failure (e.g. data 
backup) 

• Chance 

• Nursing workload and human factors [13] 
o Two hour vs. one hour monitoring interval 

• Units of measure (mg/dL vs. mmol/L) 
o A device value of 138 mg/dL may be 

transcribed incorrectly as 238 mg/dL, but it is 
less likely that 7.6 mmol/L (138 mg/dL) 
would be entered as 13.2 mmol/L (238 
mg/dL). 

• Deliberate action 
o Entering lower BG value in order to 

administer less insulin due to “fear of 
hypoglycemia” [14] 

o Entering different BG value to avoid 
triggering alert (e.g. 61 mg/dL vs. 60 mg/dL) 

o Entering different BG value to avoid 
changing multiplier (e.g. 110 mg/dL vs. 111 
mg/dL) 

o Entering different BG value to avoid 
administering D50 (e.g. 80 mg/dL vs. 79 
mg/dL) 

Our time-based approach to linking manually transcribed and device captured BG values for data 
comparison—one hour before to one hour after— might have also produced missing and mismatched data.  
However, the approach is justified given the challenge of examining voluminous retrospective data that is 
only identified by medical record number and timestamp.  Additionally, missing data suggests that 
additional mismatches could have occurred.  See [83] for more detail regarding BG device data 
transmission issues 

 

Results of this study will fuel the debate for replacing handheld glucometers with 

continuous monitoring technology [62, 63].  The rate of insulin doses generated with 

mismatched data exceeds the 3.4 per million events defect rate in industrial Six Sigma 

quality efforts [86] but compares favorably with studies of data entry error and CDSS 

[87, 88].  Although automatic capture of device data can improve CDSS 

recommendations [74], implementing new monitors that automatically measure and 
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record BG data poses challenges related to cost, systems integration, and unintended 

consequences.  Researchers and practitioners can explore incremental variability 

reductions through CDSS interface design, nursing staff education, and electronic 

surveillance. 

This study has strengths and weaknesses.  The large dataset reflects standardized 

care for two intensive care units, and high compliance with computerized 

recommendations shows the protocol is well received by clinicians.  Findings may not 

generalize to sites using different dosing equations or with less informatics development 

and/or organizational commitment.  However, several institutions [82, 83] use the 

equation studied [51, 52].  Because we calculated the multiplier using mismatched 

current but not mismatched previous device BG values, this analysis does not show 

impact over time of improper multiplier adjustments.  This study examined IIT protocol 

performance, not individual patient effects, and showed correlation, not causation, 

between data mismatches and BG changes. 

Mismatched data occurred relatively infrequently, influenced IIT performance, 

appear to have varying clinical impact and etiology, may compromise patient safety, and 

may represent a different population than matched data.  Researchers and practitioners 

should pay greater attention to frequency and effect of mismatched blood glucose data on 

IIT performance. 
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CHAPTER IV 

 

CHARACTERISTICS AND EFFECTS OF NURSE DOSING OVERRIDES ON 

COMPUTER-BASED INTENSIVE INSULIN THERAPY PROTOCOL 

PERFORMANCE 

 

Introduction  

 Intensive insulin therapy (IIT) is the standard of critical care but recent studies 

question the treatment’s mortality benefit and safety [72, 79, 89, 90].  Intensive care units 

commonly employ IIT, a nurse-driven treatment combining frequent blood glucose 

measurements and insulin titrations, to achieve tight control of patients’ blood glucose 

levels.  Factors affecting intensive insulin therapy performance include patient 

populations, blood glucose monitoring techniques, blood glucose target ranges, nutrition 

provisions, nurse staffing ratios, and molecular and cellular features [91].  Institutions 

increasingly use computerized clinical decision support systems (CDSS) to deliver 

protocol-based intensive insulin therapy [82, 83], and computer-based workflow has been 

identified as another source of variability affecting IIT [10, 39, 83, 92].  Researchers have 

shown a relationship between timing of blood glucose measurements and hypo- and 

hyperglycemia [10, 39], and previously we demonstrated the effect of data entry error on 

IIT CDSS recommendations and blood glucose variability [92].  In the present study we 

examined nurse insulin dosing overrides, or deviations from IIT CDSS protocol 

recommendations, to determine if and how the behavior affects intensive insulin therapy 

performance. 



61 
 

Existing studies have quantified the frequency and rationale of nurse overrides, 

but little is known about the quantitative characteristics of IIT CDSS overrides and their 

effect on blood glucose variability and insulin resistance, two measures of IIT CDSS 

protocol performance associated with mortality [80, 81].  Compliance with IIT CDSS 

recommendations varies from 77% [53] to up to 98% [10, 71, 93], and nurse reasons for 

overrides include concerns about hypoglycemia due to data trends, administration of 

glucose-affecting medications, and co-morbidities [71]; disagreement with dose 

recommendations [71, 93]; and workflow issues [71, 93].  The objective of this study was 

to determine the conditions leading to and resulting from nurse override of IIT CDSS 

recommendations.  We compared blood glucose variability and insulin resistance when 

nurses administered recommended and override doses.  We hypothesized that rates of 

hypoglycemia and hyperglycemia would be higher for recommended than override doses. 

 

Methods 

 

Setting 

This study focused on IIT CDSS usage in the 21-bed surgical and 31-bed trauma 

intensive care units (SICU and TICU) at Vanderbilt University Hospital, a 501-bed 

academic urban tertiary care facility in Nashville, Tennessee.  Critical care attending 

physicians from the Division of Trauma and Surgical Critical Care oversee unit 

management and patient care decisions using evidence-based protocols intended to 

standardize care and reduce practice variability.  Although clinicians in other intensive 

care units at the institution treat patients using IIT CDSS, we focused our investigation on 
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SICU and TICU due to the units’ common management and care processes.  The ratio of 

patients to nurses is 2:1 overall and 1:1 for complex patients.  All patients admitted to the 

SICU and TICU receive standardized nutrition through D5, D10, enteral, or parenteral 

sources.   

SICU piloted IIT CDSS in November 2004 and required nurses to treat all eligible 

patients using IIT CDSS starting in December 2005 [21].  In June 2005 IIT CDSS was 

modified to require nurses to identify a patient’s nutrition source and automatically 

trigger an order for intravenous 10% dextrose if a patient had no nutritional support and a 

current BG less than 80 mg/dL.  The intent of the change was to limit hypoglycemia.  

TICU implemented IIT CDSS as the standard of care in October 2005 [22].  The IIT 

CDSS recommendation algorithm has remained unchanged since project inception, and 

SICU and TICU researchers have demonstrated effective hyperglycemia control with 

limited hypoglycemia [21, 22].  We investigated all SICU and TICU IIT CDSS 

recommended and override doses over time. 

 

IIT CDSS description 

Critically ill or injured mechanically ventilated patients with a blood glucose 

value above 110 mg/dL receive intensive insulin therapy according to a protocol 

embedded in the institution’s computerized order entry system.  As described elsewhere 

[21, 22, 83, 92], a physician confirms the initial protocol order, which directs a nurse to 

measure a patient’s blood glucose and administer insulin according to CDSS 

recommendations at two hour intervals by default or one hour intervals due to 

hypoglycemia risk.  IIT CDSS instructs a nurse to administer an intravenous 50% 
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dextrose dose and recheck the patient’s blood glucose in one hour if BG < 80 mg/dL.  For 

BG < 60 mg/dL, the protocol additionally instructs a nurse to stop insulin administration 

for one hour.  All other protocol iterations occur at two hour intervals.  IIT CDSS does 

not remind nurses to measure BG, and timing of BG measurements can vary in practice 

[39]. 

Based on Bode [51] and White [52]’s dosing equation, IIT CDSS adjusts a 

coefficient “multiplier,” an estimate of a patient’s insulin resistance according to current 

and previous blood glucose measurements, for use in this formula: insulin dose 

(units/hour) = (blood glucose in mg/dL - 60) * multiplier [21].  Initially set to 0.03, the 

multiplier increases by 0.01 when BG levels indicate hyperglycemia, decreases by 0.01 

or 0.02 depending on degree of hypoglycemia, and cannot fall below zero [21].  A greater 

multiplier value reflects increased insulin resistance.  After the initial order sets the 

multiplier, IIT CDSS obtains the previous multiplier by solving the dosing formula using 

the previous BG and insulin rate stored by the order entry system as inputs. 

IIT CDSS calculates recommendations after a nurse manually transcribes, or 

enters via keyboard, a blood glucose value obtained from a handheld testing device, 

selects a patient’s nutrition source, and clicks the “calculate recommendations” button 

[21, 22, 83, 92].  Upon reviewing the CDSS dose recommendation, a nurse can either 

accept or override it by replacing the recommended dose value in the IIT CDSS interface 

via keyboard.   After a nurse confirms IIT CDSS activity in the interface, the order entry 

system updates the existing order and logs the insulin rate, multiplier, override status, 

blood glucose value, nutrition source, and timestamp along with patient and nurse 

identifiers.  The nurse then adjusts the intravenous insulin pump to use the IIT CDSS 
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insulin rate.  There is no electronic interface between intravenous insulin pumps and 

clinical information systems.  Handheld testing devices store each BG value with a 

timestamp as well as a nurse identifier and patient medical record number; nurses input 

these identifiers by scanning barcodes or entering them manually.  At the beginning of 

each twelve hour nursing shift, a nursing assistant collects handheld BG testing devices 

and places them in docking stations so data transfer to the clinical data repository [83].   

 

Data collection 

We retrospectively collected order entry and handheld blood glucose testing 

device data from the institution’s clinical data repository for all SICU and TICU patients 

with more than five IIT CDSS values between November 2004 and February 2009.  We 

stored study data in a secure, password-protected database and de-identified it prior to 

analysis and reporting.  The Vanderbilt University Institutional Review Board approved 

this study. 

Because IIT CDSS logs both recommended and override doses that nurses 

administered but not calculated doses nurses elected to override, we recreated the 

conditions for each insulin administration in order to determine calculated doses.  For 

each patient, we processed blood glucose values and insulin rates to determine multiplier 

and recommendations per the IIT CDSS dosing algorithm.  If the care team discontinued 

and later reinitiated the protocol for a patient, we treated these as separate runs of IIT 

CDSS to assure correct calculation of recommendations and comparison of blood glucose 

values.  We identified instances that did not recreate multipliers and/or recommended 

insulin doses in the log data.  To control for the effect of keystroke error of BG values 
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contributing to override decisions, we linked each IIT CDSS blood glucose value with a 

corresponding device BG value and identified pairs of mismatched values as well as IIT 

CDSS values lacking a device value [92]. 

 

Data analysis 

We determined the frequency, blood glucose variability, and insulin resistance 

associated with recommended and override doses.  We divided overrides into greater than 

recommended (GTR) and less than recommended (LTR) doses.  Additionally, for each 

override dose, we computed the degree of deviation of an actual dose from a calculated 

dose by determining the absolute value of the difference of the actual dose and the 

calculated dose divided by the actual dose [94].  We identified three types of deviations: 

“small” as ≤ 25%, “medium” as 26% to 49%, and “large” as ≥ 50% [94]. 

Previous studies have associated blood glucose variability and insulin resistance 

with mortality in SICU and TICU patients treated with IIT CDSS [40, 81].  To assess 

blood glucose variability, we examined blood glucose values before (BGn-1), during 

(BGn), and after (BGn+1) each insulin administration (n) for both recommended and 

override doses.  We assessed successive blood glucose change, which reflects both 

regular and abrupt fluctuations in the distribution of BG values [40], as well as 

hypoglycemia and hyperglycemia, which measure IIT safety and effectiveness, 

respectively.  We defined hypoglycemia4 [84] as BGn ≥ 60 mg/dL at time of dose 

followed by subsequent BGn+1 < 60 mg/dL and hyperglycemia5 as BGn < 200 mg/dL at 

time of dose followed by subsequent BGn+1 ≥ 200 mg/dL.  We assumed nurses performed 

                                                 
4 We used the National Quality Forum “never event” definition of hypoglycemia as BG < 60 mg/dL [84] 
5 We defined hyperglycemia as BG ≥ 200 mg/dL as specified in our protocol 
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IIT CDSS iterations independently; thus, we considered blood glucose input to be correct 

and examined each dose instance BG value along with immediately preceding and 

succeeding dose BG values.  Although timing of IIT CDSS iterations varied [39], we 

assumed nurses made a good faith effort to adhere to the protocol, and we evaluated 

records chronologically for each patient.  To assess insulin resistance [81], we compared 

insulin dose and multiplier between recommended, greater than recommended, and less 

than recommended doses.  For override instances, we compared actual versus calculated 

insulin doses.  To assure quality, we examined only recommended and override instances 

with successfully recreated output and matching BG values so that we could reliably 

determine calculated doses in the event of override. 

 

Statistical analysis 

We summarized and compared normally distributed continuous variables using 

mean ± standard deviation and two sample t tests for independent samples.  For non-

normally distributed continuous variables, we summarized and compared data using 

median and interquartile ranges (IQR) and used the Wilcoxon rank-sum test for unpaired 

data and Wilcoxon signed rank test for paired data.  To compare differences in 

proportions, we used a χ2 test.  Data represent grand summaries of IIT data and do not 

address repeated measures within patients.  A two-sided p value less than 0.05 indicated 

statistical significance.  We used STATA version 10.1 (STATA Corp., College Station, 

TX) to perform calculations. 
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Results 

203,188 IIT CDSS and 423,463 blood glucose testing device values w

shows the IIT CDSS instances included and excluded from dose 

analysis.  IIT CDSS misidentified 27 instances as overrides that had actual doses equal to 

calculated doses.  We analyzed dosing for the remaining 179,452 IIT CDSS values

IIT CDSS instances excluded and included for analysis.  Data sources (black), instances excluded 
from dose analysis (gray), and instances included for dose analysis (white).  To reliably determine doses 

that nurses elected not to administer, we excluded 23,736 (11.7%) of 203,188 IIT CDSS doses.

Overrides accounted for 5.1% of IIT CDSS activity of which 83.4% of override doses 

were LTR and the remainder GTR (Table 10).   The majority of GTR doses differed from 

calculated doses by a small deviation whereas the plurality of LTR doses differed from 

calculated doses by a large deviation.   

 

203,188 IIT CDSS and 423,463 blood glucose testing device values were 

shows the IIT CDSS instances included and excluded from dose 

analysis.  IIT CDSS misidentified 27 instances as overrides that had actual doses equal to 

calculated doses.  We analyzed dosing for the remaining 179,452 IIT CDSS values. 
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Table 10.  Frequency and direction of nurse overrides 

N % 

Orders (N = 179,452) 

Recommended 170,377 94.9% 

Override 9,075 5.1% 

Direction of override doses (N = 9,075) 

Greater than recommended 1,505 16.6% 

Less than recommended 7,570 83.4% 

Degree of deviation for override doses 

Greater than recommended (N = 1,505) 

Small deviation (≤ 25%) 1,188 78.9% 

Medium deviation (26% - 49%) 202 13.4% 

Large deviation (≥ 50%) 115 7.6% 

Less than recommended (N = 7,570) 

Small deviation 2,778 36.7% 

Medium deviation 1,347 17.8% 

Large deviation 3,445 45.5% 

Total (N = 9,075) 

Small deviation 3,966 43.7% 

Medium deviation 1,549 17.1% 

Large deviation 3,560 39.2% 

Nurses chose to override 5.1% of IIT CDSS recommended insulin doses, and more than four out of five 
override doses were amounts less than recommended by IIT CDSS. 

 

When examining insulin administration by BG band (Table 11), nurses administered the 

highest proportion of recommended doses when BG < 60 mg/dL and the lowest 

proportion when BG was 60-80 mg/dL.  The number of LTR doses exceeded the number 

of GTR doses in every BG band, including when BG exceeded 110 mg/dL, except when 

BG was less than 60 mg/dL and the protocol instructs nurses not to administer insulin.   
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Table 11.  Blood glucose (BG) values by band at the time of insulin administration 

 BG < 60 BG 60-80 BG 80-110 BG 110-150 BG 150-200 BG >200 

Recommended, 

n (%) 

2,113 
(99.8%) 

9,262 
(87.0%) 

73,045 
(96.0%) 

64,543 
(95.5%) 

16,521 
(93.2%) 

4,893 
(92.4%) 

Greater than 

Recommended 

4  
(0.2%) 

66  
(0.6%) 

411  
(0.5%) 

489  
(0.7%) 

336  
(1.9%) 

199  
(3.8%) 

Less than 

Recommended 

0  
(0%) 

1,321 
(12.4%) 

2,639 
(3.5%) 

2,531 
(3.7%) 

873  
(4.9%) 

206  
(3.9%) 

Percentages are based on column total and BG values ranges are presented in mg/dL.  The protocol 
specifies nurses to not administer insulin when BG < 60 mg/dL. 

 

Nurses administered the highest proportion of LTR doses when BG 60-80 mg/dL and 

GTR doses when BG > 200 mg/dL.  However, the number of LTR doses exceeded the 

number of GTR doses when BG > 200 mg/dL.  

Blood glucose values differed before, during, and after each insulin administration 

for recommended, greater than recommended, and less than recommended doses (Table 

12).  As shown in Figure 6, recommended doses showed a gradual trend of BG values 

toward the protocol target range, and the BG value following a recommended dose was 

lower than those following GTR and LTR doses.  GTR doses showed a pronounced 

downward blood glucose trend with hyperglycemic BG levels preceding and at the time 

of dose followed by a continued downward trend. 

 

Table 12. Blood glucose variability for recommended (R), greater than recommended (GTR), and less than 
recommended (LTR) insulin doses 

 Recommended Greater than 

Recommended 

Less than 

Recommended 

R vs. 

GTR 

R vs. 

LTR 

BG (mg/dL), mean ± SD before (BGn-1) 118 ± 37 150 ± 55 103 ± 32 < 0.001 < 0.001 

BG mean ± SD during (BGn) 117 ± 36 143 ± 54 115 ± 38 < 0.001 < 0.001 

BG mean ± SD after (BGn+1) 115 ± 33 132 ± 46 122 ± 35 < 0.001 < 0.001 

BG change before (BGn-1 - BGn)  -2.43 ± 32.92 -9.91 ± 36.05 11.09 ± 42.24 < 0.001 < 0.001 
BG change after (BGn - BGn+1) -2.17 ± 33.19 -10.96 ± 37.47 7.19 ± 38.53 < 0.001 < 0.001 
Hypoglycemia, n (%) 1,872 (1.1%) 12 (0.8%) 64 (0.8%) 0.257 0.033 

Hyperglycemia 1,411 (0.8%)  23 (1.5%) 118 (1.6%) 0.003 < 0.001 

Blood glucose variability differed for nearly every measure, including blood glucose change before and 
after insulin administration for recommended (p < 0.001) and LTR (p < 0.001) but not GTR (p=0.621). 
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GTR insulin administration appears to have reduced elevated BG levels on average and at 

the high end (Figure 6, panels A and B) and maintained levels in the target range at the 

low end (Figure 6, panel C).  BG values following administration of a GTR dose were 

mostly higher than those following recommended and LTR doses.  LTR doses showed a 

pronounced upward trend with lower BG values preceding and at time of dose compared 

to recommended and GTR doses.  A continued upward trend followed and resulted in BG 

values both out of range (Figure 6, panels A and B) and in range (Figure 6, panel C).  BG 

values following LTR doses were higher than those following recommended doses. 

Nearly all measures of blood glucose variability differed between recommended, 

greater than recommended, and less than recommended doses (Table 4).  Additionally, 

successive blood glucose change before and after each insulin administration differed for 

recommended (p < 0.001) and LTR doses (p < 0.001) but not for GTR doses (p = 0.621).  

The proportion of hypoglycemia was significantly greater for recommended doses than 

for LTR doses (p = 0.033); however, the proportion of hypoglycemia was not 

significantly greater for recommended doses than for GTR doses (p = 0.257).  The 

proportion of hyperglycemia was significantly lower for recommended doses compared 

to GTR doses (p = 0.003) and LTR doses (p < 0.001). 

 



 

Figure 6. Blood glucose (BG) levels (mean ± SD) before, during, and after insulin administration for 
recommended, greater than recommended (GTR), and less than recommended (LTR) doses
all comparisons (p < 0.001).  Shaded area indicates BG 

average case (mean values), Panel B the high end (+SD), Panel C the low end (

 

 Table 13 summarizes insulin resistance parameters.  Comparing overall calculated 

insulin dose, recommended differed significantly from GTR (p < 0.001) and LTR (p = 

0.002) doses.  Hypoglycemia and hyperglycemia occurred infrequently, and some insulin 

parameters differed for these conditions between recommended, GTR, and LTR doses.  

When nurses administered LTR doses overall and in the event of hyperglycemia, the 

multiplier was significantly elevated compared to recommended doses.
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. Blood glucose (BG) levels (mean ± SD) before, during, and after insulin administration for 
recommended, greater than recommended (GTR), and less than recommended (LTR) doses
all comparisons (p < 0.001).  Shaded area indicates BG target range of 80-110 mg/dL.  Panel A shows the 

average case (mean values), Panel B the high end (+SD), Panel C the low end (-SD), and Panel D all 
combined. 

summarizes insulin resistance parameters.  Comparing overall calculated 

ecommended differed significantly from GTR (p < 0.001) and LTR (p = 

0.002) doses.  Hypoglycemia and hyperglycemia occurred infrequently, and some insulin 

parameters differed for these conditions between recommended, GTR, and LTR doses.  

tered LTR doses overall and in the event of hyperglycemia, the 

multiplier was significantly elevated compared to recommended doses. 

 

. Blood glucose (BG) levels (mean ± SD) before, during, and after insulin administration for 
recommended, greater than recommended (GTR), and less than recommended (LTR) doses differed across 

110 mg/dL.  Panel A shows the 
SD), and Panel D all 

summarizes insulin resistance parameters.  Comparing overall calculated 

ecommended differed significantly from GTR (p < 0.001) and LTR (p = 

0.002) doses.  Hypoglycemia and hyperglycemia occurred infrequently, and some insulin 

parameters differed for these conditions between recommended, GTR, and LTR doses.  

tered LTR doses overall and in the event of hyperglycemia, the 
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Table 13.  Insulin parameters for recommended (R), greater than recommended (GTR), and less than 
recommended (LTR) doses overall and in the event of subsequent hypoglycemia and hyperglycemia 

 Recommended Greater than 

Recommended 

Less than 

Recommended 

R vs. 

GTR 

R vs. 

LTR 

Overall, n (%) 170,377 (94.94%) 1,505 (0.84%) 7,570 (4.22%)   

Actual dose 
3.9 (1.7-6.1) 

6.0 (3.1-9.0) 2.5 (0.4-4.6) < 0.001 < 0.001 

Calculated dose 4.8 (2.3-7.4) 3.7 (0.8-6.7) < 0.001 0.002 

Multiplier 0.068 (0.042-0.110) 0.066 (0.029-0.102) 0.080 (0.043-0.118) < 0.001 < 0.001 

      

Hypoglycemia, n (%) 1,872 (1.04%) 12 (0.01%) 64 (0.04%)   

Actual dose 
5.1 (1.8-6.8) 

5.1 (2.4-7.8) 2.0 (0-4.5) 0.696 < 0.001 
Calculated dose 3.3 (1.1-5.5) 2.45 (0-5.0) 0.164 0.001 

Multiplier 0.080 (0.045-0.115) 0.065 (0.024-0.106) 0.057 (0.030-0.084) 0.461 0.004 

      

Hyperglycemia, n (%) 1,411 (0.79%) 23 (0.01%) 118 (0.07%)   

Actual dose 
4.1 (1.8-6.5) 

5.0 (2.8-7.3) 2.25 (0-5.3) 0.741 < 0.001 
Calculated dose 3.0 (1.1-4.9) 4.55 (0-8.9) 0.024 0.625 

Multiplier 0.060 (0.026-0.095) 0.030 (0.019-0.041) 0.085 (0.053-0.116) < 0.001 < 0.001 
Percentages reflect total number of insulin doses as denominator.  Actual and calculated doses differed in 

all comparisons (p < 0.002). 

 
 

Discussion 

By administering less than recommended doses in 83% of IIT CDSS overrides, 

critical care nurses encouraged hypoglycemia prevention at the expense of hyperglycemia 

control, reflecting the “fear of hypoglycemia” in intensive care units [30].  For override 

doses, the rate of hypoglycemia was lower and the rate of hyperglycemia higher 

compared to recommended doses.  When nurses administered LTR doses overall, patients 

required more insulin as estimated by the multiplier than when nurses administered 

recommended and GTR doses.  This suggests that nurses considered the amount of a 

recommended dose, not the trend of past insulin resistance, when overriding IIT CDSS 

with LTR doses.  The effect of LTR doses on BG levels was mostly favorable.  At the 

low end (Figure 6, Panel C), blood glucose levels increased into the protocol target range; 

in the average case (Figure 6, Panel A), BG increased within an acceptable range.6  

                                                 
6 Some researchers advocate a high blood glucose target of 140 to 150 mg/dL instead of 110 mg/dL [91] 
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However, at the high end (Figure 6, Panel B), BG levels following LTR doses continued 

above 150 mg/dL after increasing prior to the dose.  Both recommended and LTR doses 

at the high end occurred when BG was 153 mg/dL, which was greater than the BG level 

for GTR doses in the average case.  Administration of greater than recommended doses 

lowered BG levels (Figure 6, Panel D), and administration of recommended doses in lieu 

of LTR when BG exceeded 150 mg/dL and increased from the previous dose might have 

improved hyperglycemia control. 

Nurse education, interface modification, and algorithm changes may potentially 

improve hyperglycemic control while limiting hypoglycemia.  Current IIT CDSS 

recommendations may be sufficient and require user training to encourage nurses to more 

frequently administer recommended doses instead of LTR doses when BG increases from 

below to above 150 mg/dL.  Additionally, a passive text alert encouraging users to 

administer a recommended insulin dose instead of a LTR dose when BG increases from 

below to above 150 mg/dL may help improve protocol compliance and hyperglycemia 

control.  Implementing these changes may be challenging given hypoglycemia concerns.  

Showing the multiplier value on screen might also provide another form of decision 

support regarding patients’ insulin resistance and prevent nurses from administering LTR 

doses as frequently.  However, displaying this parameter may also create visual clutter 

and confusion.  This investigation has focused on IIT CDSS using a linear equation [51, 

52], and more sophisticated quadratic or model-based approaches might lead to better 

performance [25, 95].  However, the algorithm studied may be tweaked to incorporate 

LTR doses in the average case and on the low end. 
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This study has strengths and limitations.  We analyzed a large dataset that reflects 

actual practice in an institution with cultural acceptance of clinical information systems.  

Several institutions [14, 23, 28, 50] use a similar dosing equation [51, 52] to the one 

studied, so results may be generalizable to similar critical care unit settings.  Limitations 

include conclusions not being generalizable to other settings due to high clinical 

informatics commitment at the study institution; the unit of analysis being the data point, 

not the patient; and results showing correlation, not causation, between insulin doses and 

blood glucose levels.  Additionally, we excluded almost 12% of IIT CDSS instances from 

dose analysis and recognize the override rate could be greater than reported.  Missing 

data, failure to reproduce log data, and incorrectly marked system overrides can occur 

due to device malfunction, data transfer failure, undocumented code changes, and other 

process errors inherent to the ecology of clinical information systems.  Mismatched BG 

data affects IIT CDSS recommendations [92], and we encourage investigators to 

similarly control for data discrepancies when conducting clinical research.  Our current 

work, informed by this and previous studies [39, 92], uses qualitative methods to 

understand how IIT CDSS affects and is affected by other care processes, clinical 

information systems, and personnel.  Future work will examine override trends over time. 

 

Conclusion 

 Nurse override of clinical decision support system dosing recommendations is a 

source of intensive insulin therapy variability in critical care settings.  Nurses elected to 

override 5.1% of dosing recommendations generated using a commonly adopted 

algorithm, and 83.4% of override doses were less than recommended by CDSS; 45.5% of 



75 
 

these doses were ≥ 50% less than recommended.  Nurse overrides encouraged 

hypoglycemia prevention but occasionally interfered with hyperglycemia control.  

Administration of recommended doses instead of less than recommended doses when 

blood glucose is greater than 150 mg/dL could lead to tighter blood glucose control and 

reduced risk of infection.  IIT CDSS nurse education, interface design, and dosing 

algorithm modifications can potentially improve hyperglycemia control while limiting 

hypoglycemia.  Qualitative study of IIT CDSS is necessary to understand why nurses 

override recommendations, how IIT CDSS functions in clinical practice, and whether 

other workflow features affect intensive insulin therapy.   
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CHAPTER V 

 

BARRIERS AND FACILITATORS TO THE USE OF COMPUTER-BASED 

INTENSIVE INSULIN THERAPY 

 

Introduction 

Intensive insulin therapy (IIT) is the standard of critical care, but recent studies 

raise questions about the therapy’s mortality benefit and risk to patients [72, 79, 89, 90].  

To maintain tight blood glucose (BG) control, the treatment requires nurses to perform 

frequent BG measurements, usually using handheld testing devices [91], and adjust 

insulin infusion pumps according to protocol logic [1].  Increasingly nurses deliver IIT 

using computerized clinical decision support systems (CDSSs) [82], which studies have 

deemed effective for controlling hyperglycemia and safe for achieving low rates of 

hypoglycemia [83].  Researchers have identified sources of variability affecting IIT 

performance—patient populations, blood glucose target ranges, nutrition sources, nurse 

staffing, and genetic factors [91]—and the impact of paper-based IIT protocols on nurse 

workflow [31, 70].  However, few investigations have formally assessed the workflow 

complexity introduced by IIT CDSS [83] or how nurses perceive the technology’s role in 

patient care [26, 71]. 

 Previous studies have quantified the effect of nurse workflow on IIT CDSS 

performance.  Researchers have identified relationships between late timing of BG 

measurements and hyper- [39] and hypoglycemic episodes [10, 39] as well as between 

blood glucose variability and mortality [40].  In a prior investigation, we showed that 
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5.3% of blood glucose values manually transcribed to IIT CDSS did not match 

corresponding source values from handheld testing devices, which affected CDSS alerts 

and dosing recommendations as well as blood glucose variability [92].  Investigators 

have reported rates of nurse IIT CDSS override, or deviation from system 

recommendations, ranging from 2% to 23% [10, 53, 71, 93, 96].  Previously we 

demonstrated that 83.9% of IIT CDSS override doses were less than recommended [96], 

quantifying nurse “fear of hypoglycemia” [30].  Additionally, categorization of IIT CDSS 

free text comments at one institution showed that nurses chose to override system 

recommendations due to fear of hypoglycemia [71], dose disagreement [71, 93], and 

workflow factors [71].  Timing, mismatched data, and overrides affect IIT CDSS 

performance. 

 Although these findings describe IIT CDSS use, they do so using system log data 

that may not fully capture the “assumptions, norms, values, choices, and interactions” 

involved in decision making [43].  Computer-based intensive insulin therapy is a 

combination of people, process, and technology, and examining social, organizational, 

and contextual characteristics of IIT CDSS can potentially lead to process and algorithm 

improvements [83].  In particular, few studies of IIT CDSS [83], and CDSS in general 

[17], have evaluated interventions with respect to other clinical information systems and 

care processes.  A descriptive, exploratory approach is appropriate for investigating these 

types of issues [97].  Using naturalistic methods [97], the goal of this study was to 

illuminate barriers and facilitators to use of IIT CDSS.   
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Methods 

We conducted a qualitative study of IIT CDSS by directly observing and 

interviewing clinical personnel in the 21-bed surgical intensive care unit (SICU) and 31-

bed trauma intensive care unit (TICU) at Vanderbilt University Hospital, an urban 

tertiary care academic facility in Nashville, Tennessee.  For nearly two decades, 

researchers and staff at Vanderbilt University Hospital have developed, tested, and 

implemented clinical information systems to facilitate quality improvement (Figure 7).  

As a result, use of clinical information systems has become an established part of 

clinician culture.  Although other intensive care units at the institution treat patients using 

IIT CDSS, we focused our study on SICU and TICU due to common management by 

Division of Trauma and Surgical Critical Care faculty.  35.1% (n=1,883) SICU patients 

and 26.3% (n=2,152) TICU patients received IIT CDSS between 11/2004 and 2/2009 

[92]. 

  



 

 

 

 

 

 

 
Figure 7. Timeline of clinical information systems development and implementation

Vanderbilt University Hospital.
required to remain compliant, and red for non

CDSS and [98] for dashboard.  Workstations connected to the hospital network are located on mobile carts, 
at nursi
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. Timeline of clinical information systems development and implementation for SICU and TICU at 
Vanderbilt University Hospital.  Dashboard indicators include green for compliant, yellow for action 
required to remain compliant, and red for non-compliant.  For implementation details, see 

for dashboard.  Workstations connected to the hospital network are located on mobile carts, 
at nursing stations, and in patient rooms at the bedside. 

 

 

for SICU and TICU at 
Dashboard indicators include green for compliant, yellow for action 

compliant.  For implementation details, see [83] for IIT 
for dashboard.  Workstations connected to the hospital network are located on mobile carts, 
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IIT CDSS description 

After a patient’s blood glucose level exceeds 110 mg/dL and a physician initiates 

the intensive insulin therapy protocol, a nurse uses IIT CDSS embedded in the provider 

order entry system to maintain tight glucose control between 80 and 110 mg/dL by 

default (Figure 8).  IIT CDSS requires a nurse to enter a blood glucose value obtained 

from a handheld testing device via keyboard, select a dextrose source, and specify the site 

and method of blood draw in order to calculate a recommendation.  IIT CDSS calculates 

insulin rates using a linear equation [51, 52] based on current and previous BG input as 

well as current insulin rate.   
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Figure 8. IIT CDSS interface used by nurses.  Similar to interfaces of other decision support modules in the 
provider order entry system, IIT CDSS displays colorful numbers to guide users through a sequence of 

operations. 
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To control hyperglycemia, nurses perform IIT CDSS every two hours, but timing can be 

early or late in practice [39].  Blood glucose values less than 80 mg/dL trigger an order 

for 50% dextrose (D50W) and checking of blood glucose in thirty minutes [21].  

Additionally, BG values less than 60 mg/dL generate instructions for nurses to suspend 

insulin administration for thirty minutes [21].  A nurse can view IIT CDSS’s rationale by 

clicking the “Explain Recommendations” button.  If a nurse wishes to override an insulin 

recommendation, he or she replaces the numerical figure next to “New Insulin Infusion 

Rate” with a different sum.  IIT CDSS logs all on screen input including designation of 

override doses.  Using the values recorded by IIT CDSS, a nurse adjusts an Alaris 

infusion pump and/or administers D50W via injection.  Infusion pumps are capable of 

exporting data electronically but the feature was not enabled during the study.  IIT CDSS 

does not remind nurses to perform blood glucose tests or administer insulin. 

Under certain circumstances the care team may wish to temporarily regulate a 

patient’s blood glucose through other means (e.g. during an operating room procedure 

according to surgery protocol) but not discontinue orders for IIT CDSS.  When a patient 

returns to BG control through IIT CDSS, a nurse clicks the “Patient Has Been Off 

Protocol” checkbox and provides a reason as well as the previous BG and current insulin 

infusion rate used in the alternate BG regulation strategy.  IIT CDSS then uses these 

figures and a current BG value to calculate recommendations. 

 

Data collection 

 A researcher trained in ethnographic methods (TRC) collected data by observing 

nurse workflow and conducting unstructured interviews with nurses and other clinicians 
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between 2/16/2010 and 3/18/2010.  Prior to observations and interviews, the researcher 

briefly explained the project and obtained verbal assent from clinicians, patients, and 

families as necessary.  Participation was voluntary and responses were confidential.  The 

Vanderbilt University Institutional Review Board approved this study. 

The researcher recorded de-identified notes using a pen and paper before 

transcribing them electronically for further analysis.  Notes consisted of narrative text 

describing observations as well as direct quotes from clinical personnel.  Data collection 

started in SICU because it was the original IIT CDSS implementation site, moved to 

TICU, and then shifted between the two as needed.  Informed by pilot study experience 

[83], a typical data collection session lasted two-to-three hours to account for nurses 

performing IIT CDSS at two hour intervals by default.  The goal of each session was to 

follow one nurse who performed at least two IIT CDSS iterations.  In some sessions the 

researcher followed multiple nurses.  The researcher observed nurses on weekdays 

between 9:00am and 7:00pm as well as on one weeknight and one weekend day.  In total 

the researcher observed 49 hours of SICU and TICU workflow in which nurses used IIT 

CDSS 47 times (Table 14).  As described elsewhere [92], we also had access to a 

database of 38 months of retrospectively collected IIT CDSS records for quantitatively 

examining trends seen in observations. 

 

Table 14. Characteristics of study observations. 

 SICU TICU 

Time 25 hours 25 minutes 23 hours 35 minutes 

Sessions 11 9 

Nurses observed (unique) 16 (13) 14 (12) 

Patient:nurse ratio 2:1 (1:1) 11 (1) 8 (1) 

Nurses interviewed but not observed  2 5 

Patients observed (on IIT CDSS) 25 (16) 21 (16) 

IIT CDSS iterations observed 22 27 
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 The scope of study was intentionally broad to account for interactions between 

people, process, and technology in IIT CDSS delivery.  In conducting observations, the 

researcher examined all activities encountered by a nurse: direct patient care; computer 

use; supply retrieval; laboratory specimen transport; new patient admission; and 

interactions with families, nursing assistants, resident physicians, fellows, attending 

physicians, medical students, respiratory therapists, nutritionists, imaging personnel, 

nurse practitioners, charge nurses, and medical receptionists.  The researcher performed 

unstructured interviews to clarify observations and in response to prompts volunteered by 

clinicians.  The protocol interval provided an opportunity to explore the breadth of 

clinical activities influencing and influenced by each IIT CDSS iteration. 

 

Data analysis 

Informed by grounded theory [99], the researcher inductively examined 

observation and interview notes using the constant comparative method to allow themes 

to emerge from data.  Using NVivo 8, a software package for qualitative analysis, the 

researcher scrutinized, or coded, transcribed notes line-by-line by labeling concepts, 

distinguishing the properties and dimensions of concepts, comparing and relating 

concepts, and questioning associations between concepts.  As part of the analysis process, 

the researcher recorded memos to reflect on observations, the coding process, and 

emergent themes.  Coding and memoing occurred immediately following each data 

collection session.  Concepts that emerged from data analysis informed the direction of 

future data collection sessions, a process called theoretical sampling.  Through an 

iterative process, data analysis developed concepts and the relationships between them 
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while also addressing the variation across observations.  Data collection and analysis 

ceased when no new data emerged, a point called data saturation. 

This study ensured analytical rigor by employing standard techniques of 

naturalistic inquiry [100].  Throughout the study the researcher confirmed observations 

and emerging concepts through opportunistic interviews with nurses in the study sites, a 

process called member checking.  Additionally, the researcher met with a peer debriefer, 

an informatician trained in ethnography who was not involved in the study, to confer on 

data emergence and alternative approaches to data collection and analysis.  The 

researcher also triangulated data sources—the multiple nurses observed across two ICUs; 

critical care personnel not observed including a nurse manager, an attending, a fellow, 

and a pharmacist; and retrospective database records—and methods—direct observation, 

unstructured interviews, and database queries—in order to verify IIT CDSS findings from 

multiple perspectives.  Finally, the researcher maintained reflexivity, or awareness of self 

and bias in collecting data, through regular journaling exercises in order to limit 

interference with data collection and analysis. 

 

Results 

 We identified four barriers and four facilitators to IIT CDSS use based on analysis 

of observation and interview data.  Examination of retrospective database records 

confirmed observations when needed. 
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Barrier 1: workload tradeoffs between computer use and direct patient care 

Time and effort demands of electronic nursing documentation 

Nurses expressed concern about the amount of time required for documentation in 

HED, the electronic nursing documentation system, and cited system use as an occasional 

detriment to patient care.  Depending on patient acuity, nurses prioritized patient care 

ahead of computer system usage.  However, nurses recognized HED usage as a necessary 

activity for regulatory and legal purposes but questioned the utility of perfunctory 

documentation.  Nurses spent a considerable amount of time “backcharting” care they 

provided in the past due to ongoing patient care demands.  HED hindered nurse 

efficiency by requiring double documentation of data points unrelated to IIT within and 

across individual flow sheets, a source of complaints from nurses.  Although infusion 

pumps and pulmonary artery catheter monitors were capable of electronic data output, 

nurses manually entered values from these devices into HED, which increased time spent 

documenting.  Nurses appreciated the automatic data transfer of vital signs from bedside 

monitors to HED; the safety provided by Admin-Rx, the barcode medication 

administration system, despite additional time required; and the display of hour-by-hour 

medications in Care Organizer, the medication scheduling tool. 

Nurse suspicion of dashboard 

The dashboard is a desktop screensaver displaying color-coded protocol 

compliance indicators based on nursing documentation system and electronic medical 

record data.  Initially well-received by nurses, the dashboard became viewed as a 

managerial surveillance tool promoting documentation compliance at the occasional 

expense of patient care.  Skepticism of the dashboard increased after the addition of falls 
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prevention parameters to the display.  Complaining of alert fatigue, one nurse said, “we're 

near the breaking point where people stop paying attention to [the dashboard] and it loses 

its functionality.”  Nurses felt the benefit of the dashboard accrued to unit and hospital 

management rather than nurses and patients.  Instead of the system providing beneficial 

reminders, nurses said the dashboard prompted charge nurses to constantly monitor 

compliance and urge floor nurses to complete tasks to avoid being “in the red” on the 

dashboard.  Over time nurse perceptions of the dashboard as a platform for care 

reminders changed from helpful to intrusive. 

Time and effort demands of IIT CDSS 

Occurring at two hour intervals or less, computer-based intensive insulin therapy 

occupied a significant portion of nurses’ time.  Treating hypoglycemia required more 

time from nurses to administer D50W and monitor patients.  While preparing to 

administer D50W and recheck BG in thirty minutes according to IIT CDSS 

recommendations following a blood glucose level of 79 mg/dL, a nurse remarked “I’ll 

soon enough be chasing my tail the other way” when the protocol would resume its 

regular schedule and focus on hyperglycemia control.  With care tasks adding up, nurses 

often remarked, “I wish someone would do my sugars!”  On several occasions we 

observed an idle nurse offer to help another nurse with blood glucose testing for IIT 

CDSS.  Additionally, when nurses deemed other care needs more pressing than blood 

glucose regulation (e.g. for patients with stable blood glucose levels), IIT CDSS usage 

became less of a priority.  Nurses attempted to balance direct patient care with electronic 

nursing documentation and IIT CDSS usage. 
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Double documentation in electronic nursing documentation and IIT CDSS 

IIT CDSS stored blood glucose, insulin, D50W, and dextrose source data in the 

electronic medical record for each therapy iteration based on nurse input, but nurses also 

manually recorded these parameters in HED, a form of double documentation.  

Furthermore, nurses recorded insulin data twice in HED—once for rate and once for 

volume. 

 

Barrier 2: lack of IIT CDSS reminders 

Insulin and D50W doses generated by IIT CDSS appeared in Care Organizer after 

their administration because Care Organizer used the most recently processed medication 

orders to populate the list.  In its current configuration, Care Organizer displays 

medications scanned using the Admin-Rx barcode medication administration system.  

Nurses scan intravenous infusions, like the insulin infusions used for IIT, only when they 

are first administered.   

Table 15 presents a case where Care Organizer did not accurately display IIT 

CDSS orders.  In this example, nurse resilience maintained intensive insulin therapy 

compliance despite clinical information system rigidity.  However, the researcher also 

observed a nurse almost forget to recheck a patient’s blood glucose 30 minutes after 

administering D50W and another nurse nearly fail to check BG after three hours, the 

definition of overdue for the standard two hour interval [39].  Both times the researcher 

inquired about IIT CDSS to jog the nurses’ memory, which led the nurse to carry out the 

therapy. 
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Table 15. Example demonstrating lack of reminders through Care Organizer configuration 

After using IIT CDSS at 10:02am, an order for insulin for the amount recorded by IIT CDSS 
appeared in Care Organizer.  When the nurse checked Care Organizer at 10:59am for 11:00am medications 
to administer, the nurse acknowledged the 10:02am IIT CDSS order because it had already been given, 
removing it from the list.  At 11:55am the nurse accessed Care Organizer to check the list of medications to 
administer at 12:00pm.  An order for heparin injection appeared but not insulin.  Knowing the two hour 
interval for intensive insulin therapy required a 12:00pm dose, the nurse used IIT CDSS at 12:05pm and 
generated insulin and D50W orders due to the patient’s blood glucose falling slightly below 80 mg/dL.  
The nurse immediately administered D50W and planned to perform IIT CDSS in thirty minutes per 
protocol for hypoglycemia risk.  At 12:37pm the nurse performed IIT using CDSS and the patient’s BG had 
increased above 80 mg/dL.  At 1:00pm the nurse accessed Care Organizer and acknowledged insulin orders 
from 12:05pm and 12:37pm as well as the 12:05 D50W dose because they had already been given.  IIT 
CDSS use at two hour intervals resumed at 2:00pm.   

 

Barrier 3: user interface design assumptions 

Unintended use of “off protocol” functionality 

In one instance, the researcher observed unintended and potentially harmful use of 

IIT CDSS’s “Patient Has Been Off Protocol” functionality (Box 16).  Review of IIT 

CDSS database records from 11/2004 through 2/2009 indicated that other nurses may 

have similarly used IIT CDSS to incorrectly administer overrides in less than one percent 

of cases. 

 

Table 16. Example demonstrating improper use of patient off protocol functionality 

 Uncomfortable with a current high insulin rate for a patient treated with IIT, a nurse clicked the 
“Patient Has Been Off Protocol” checkbox and entered the current BG result and an insulin rate of his 
choosing less than that currently being administered.  Asked to explain this behavior, the nurse described 
his intent to override, which led the researcher to describe the override procedure he had seen in previous 
observations of replacing the recommended rate text.  The nurse stated he was unaware that administering 
an override via the “Patient Has Been Off Protocol” functionality was incorrect and continued to administer 
the dose in this fashion.   

 

Dextrose source selection 

Although IIT CDSS required nurses to select a dextrose source in order to 

calculate recommendations, patients frequently received dextrose from multiple sources 

simultaneously.  This led nurses to select the greatest of dextrose sources to satisfy IIT 
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CDSS requirements and then fully document multiple dextrose sources in HED.  Despite 

partial double documentation, IIT CDSS log data did not fully reflect patient nutrition. 

Blood draw source selection 

Most of the blood tests we observed used blood drawn from capillary sources 

(e.g. finger stick) rather than arterial sources that yield more accurate results [91].  

“Arterial” is the default blood source selection in IIT CDSS, and we observed instances 

where nurses performed a test using capillary blood but did not select “capillary” in the 

system.  Review of retrospectively collected IIT CDSS data indicated that nurses selected 

“capillary” for 39% of blood sources, and we suspect that the percentage might 

underestimate the true occurrence of tests performed using capillary blood.  Use of 

capillary blood may prevent IIT CDSS from using accurate blood glucose readings to 

calculate recommendations, and the IIT CDSS interface may facilitate incorrect 

documentation of blood sources. 

 

Barrier 4: potential for error in operating medical devices 

Insulin infusion pump adjustment 

IIT CDSS recommends insulin infusion rates and allows nurses to override 

recommendations, but the protocol relies on a nurse to manually adjust a patient’s 

infusion pump.  Although infusion pumps can transfer insulin adjustment data to other 

systems, this feature was not enabled during the study.  In one instance we observed a 

nurse enter a rate of 2.6 units per hour on the pump after accepting IIT CDSS’s 

recommendation of 2.7 units per hour.  We are unsure whether this occurred deliberately 

or by chance.  In another instance a nurse failed to adjust an infusion pump after 
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accepting IIT CDSS recommendations due to an emergent patient care situation at 

another bedside. 

Handheld testing device use and physical layout 

When treating patients under isolation precautions, nurses did not bring handheld 

testing devices into patient rooms in order to prevent device contamination according to 

hospital policy.  Instead nurses leaned through doorways to conduct tests on devices 

positioned on nearby surfaces.  In one instance, a nurse conducted the test outside the 

patient room before returning to a computer workstation at the isolation patient’s bedside 

to enter the value into IIT CDSS and administer care.  She did not use a paper sheet to 

keep notes and instead relied on memory.  The value entered by the nurse, 224, did not 

equal the value from the testing device, 226.  In another instance, we observed a nurse 

caring for a non-isolation patient located in an isolation room conducting blood glucose 

tests outside the patient room although the device could have been used at the bedside.  

One nurse stated a preference for conducting BG testing and computer usage in the 

patient room in order to avoid making mistakes.   

 

Facilitator 1: trust in IIT CDSS combined with clinical judgment 

Nurses said they trusted IIT CDSS because it was evidence-based and made 

appropriate recommendations.  Nurses recognized the cumulative impact of blood 

glucose and insulin data on IIT CDSS output, and one respondent said he needed to trust 

the previous shift nurse’s use of IIT CDSS in order to feel comfortable using the system.  

Usually nurses transcribed BG values, selected other required parameters, clicked the 

calculate button, and accepted recommendations quickly and without argument.  
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However, when electing to override, nurses appeared sensitive (e.g. wincing facial 

expressions) to recommended insulin rates, which were generally high (e.g. ten units per 

hour), and subsequently administered doses less than recommended.  Asked to explain 

these decisions, nurses cited blood glucose trends, nutrition sources, general intuition, 

and a desire to prevent patients’ blood glucose levels from “bottoming out” in 

hypoglycemia.  One nurse said, “I would never give more [insulin]; I would only give 

less.  I wouldn't feel comfortable giving more.  I don't want [patients] becoming 

hypoglycemic.”  Nurses accepted 94.9% of recommended insulin doses between 11/2004 

and 2/2009, and BG values following override doses were within acceptable ranges in 

most cases [96].  Nurses appear to have appropriately exercised clinical judgment by 

compensating for glycemia-influencing factors beyond IIT CDSS algorithm parameters. 

Despite trust in recommendations, nurse understanding of IIT CDSS’s dosing 

algorithm varied.  Several nurses described the system as a “black box” that “learns the 

patient,” and nurse explanations of IIT CDSS algorithm inputs—current blood glucose 

and dextrose source; the average of two blood glucose values; and a combination of 

patient’s height, weight, blood glucose, previous insulin, and dextrose source—were not 

accurate.  One nurse stated that he or she clicked the “Explain Recommendations” once 

but found the description confusing and closed the window.  Regardless of their reported 

IIT CDSS algorithm understanding, nurses’ “feel” for IIT CDSS recommendations 

appeared appropriate. 
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Facilitator 2: IIT CDSS adds value to blood glucose data entry 

 IIT CDSS added value to the otherwise rote documentation of blood glucose 

values through the calculation of insulin and D50W doses.  Prior to HED 

implementation, IIT CDSS also reduced documentation requirements compared to a 

paper-based protocol.  Overall the system prevented nurses from making mathematical 

errors in drug dosing.  IIT CDSS data also populated a view in StarPanel helpful for 

examining blood glucose and insulin trends.  In contrast to IIT CDSS, documentation of 

blood glucose values in HED provided nurses with legal assurance rather than immediate 

value for patient care. 

 

Facilitator 3: nurse resilience 

 Nurses adapted to myriad changes in order to perform IIT CDSS.  Without any 

systematic reminders, nurses remembered to perform IIT CDSS at two hour intervals.  In 

the event of hypoglycemic events, nurses successfully altered their work schedules to 

obtain D50W doses and recheck blood glucose measurements in thirty minutes before 

reverting to the default two hour interval.  Despite competing care tasks and workplace 

interruptions, nurses diligently adjusted insulin pumps after using IIT CDSS.  

Additionally, nurses regularly dismissed insulin and D50W doses that no longer applied 

from Care Organizer in order to clarify medication scheduling. 

 

Facilitator 4: paper documentation 

For most nurses paper served as the conduit between bedside readings and HED 

and IIT CDSS.  Although this practice amounted to triple documentation, the majority of 
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nurses would have relied solely on memory in a disruptive work environment and 

potentially forgotten or misremembered data points critical to patient care (Barrier 4).  

Nurses used blank paper sheets, pre-specified forms of their or a colleague’s creation, or 

improvised scraps and bandage wrappers to record parameters from devices, physical 

assessments, and computer systems.  Nurses frequently recorded BG measurements on 

paper sheets and referred to these notes when using IIT CDSS. 

 

Discussion 

 This investigation is the first field study of IIT CDSS and reveals sociotechnical 

interactions affecting protocol performance not addressed by previous research.  The 

relationship between IIT CDSS and nursing documentation and reminder systems 

implemented after IIT CDSS shows how the whole of clinical information systems, 

greater than the sum of its parts, affects computer-based intensive insulin therapy.  Use of 

and attitudes toward the systems studied suggest opportunities for IIT CDSS 

improvement that other institutions may find useful. 

A tradeoff in critical care nurse workload exists between direct patient care and 

computer system use, and attitudes toward IIT CDSS and HED underscore the 

importance of adding value to clinical documentation.  Nurses often felt that nursing 

documentation system requirements hindered their ability to administer patient care but 

regarded IIT CDSS, which recommended drug doses based on nurse data input, as a 

clinical process benefit.  Both activities occupied significant portions of nurses’ time.  

Researchers have recognized the opportunity to provide decision support through 

electronic documentation systems, and provision of such “Smart Forms” [101] for ICU 
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documentation may improve nurse perception, data quality, workflow, and patient 

outcomes.  Figure 9 depicts a possible workflow improvement leveraging streamlined 

documentation for dosing recommendations and drug safety.  Future study can 

investigate the change’s impact on data accuracy, safety, and nurse satisfaction.  

Capturing more parameters in IIT CDSS could also facilitate use of more sophisticated 

dosing algorithms that incorporate dextrose sources [95].  Due to the varying degrees of 

algorithm understanding expressed by nurses in this study, changes to the underlying 

dosing algorithm may go unnoticed, which can be of potential value in a blinded study.  

However, changing the dosing algorithm without notifying nurses could also have 

deleterious effects on nurses’ mental models of IIT CDSS and thus their clinical 

judgment and patients’ safety. 



 

 

Figure 9. Current and future IIT CDSS documentation workflow.
protocol iteration in IIT CDSS 
could then transfer the data to HED t

transfer of infusion pump data to HED could also save time and help nurses dou
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. Current and future IIT CDSS documentation workflow.  Currently nurses record data for each 
protocol iteration in IIT CDSS and HED.  In the future, nurses could record these data in IIT CDSS, which 
could then transfer the data to HED to eliminate double documentation and save nurses time.  Automatic 

transfer of infusion pump data to HED could also save time and help nurses double check that administered 
insulin rates match orders to improve safety. 

Currently nurses record data for each 
and HED.  In the future, nurses could record these data in IIT CDSS, which 

o eliminate double documentation and save nurses time.  Automatic 
ble check that administered 
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Timing of IIT CDSS affects protocol performance [10, 39], and some 

implementations actively remind nurses to perform IIT CDSS using popup alerts [23, 53].  

Alert fatigue is a concern in clinical informatics [102], and the passive alerts observed in 

this study, provided through the nurse medication scheduling tool and dashboard, 

appeared effective to varying degrees for non-IIT nursing tasks.  However, due to a 

limitation in the medication scheduling tool’s current configuration, insulin and D50W 

did not appear correctly alongside other hourly medications.  A code change can likely 

improve the display.  Alternatively, color-coded indicators for blood glucose and insulin 

administration timing could fit the existing dashboard motif and remedy the situation, but 

staff attitudes toward the dashboard may pose a barrier to general system use.  

Regardless, the absence of reminders for IIT and presence of reminders for all non-IIT 

tasks may adversely affect nurses’ perception of IIT compliance necessity, which in turn 

can worsen protocol performance and outcomes.  Additional research is needed. 

Developers’ software design assumptions can profoundly impact user behavior 

and effectiveness of clinical software interventions [47].  Assumptions in the IIT CDSS 

design process did not bear out as evidenced by users improperly overriding 

recommendations by using functionality intended for patients off protocol, relying on the 

default instead of selecting the correct blood source, and improperly transcribing blood 

glucose values from handheld testing devices to IIT CDSS.  Interface changes including 

explicit language describing intended use, dropdown menus presenting multiple options 

without default selections, and larger data input fields may potentially alleviate these 

issues, respectively.  Regular IIT CDSS data auditing and nurse training may also reduce 
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unintended use.  Accuracy of IIT CDSS data collection can affect secondary research 

uses as well as new dosing algorithms that rely on parameters beyond blood glucose. 

Patterson [103], Militello [104], and Saleem [102] previously identified barriers 

and facilitators to use of computerized reminders in outpatient settings, and we have 

extended this line of inquiry to intensive care units for IIT CDSS.  Scholars have noted 

the paucity of theory in biomedical informatics research [18], but the common themes 

identified by previous studies and this investigation—limiting the number of reminders, 

reducing the perception that management benefits more from system use than end users, 

eliminating double documentation, and integrating CDSS into workflow—may indicate 

the beginning of an empirically derived theory for computerized clinical decision support 

systems to promote high performance of clinical protocols.  Additional research is 

required. 

 Nurses and healthcare institutions in the aggregate expend considerable time and 

resources to perform intensive insulin therapy [105] while debate continues about the 

treatment’s effectiveness and safety.  IIT may not deliver the benefits observed in the 

landmark Leuven study, but controlling hyperglycemia while limiting hypoglycemia 

remain important goals [89, 91].  We recognize the capacity for human error in manually 

transcribing blood glucose values from testing devices to IIT CDSS [92] and in adjusting 

insulin pumps.  However, given the controversy surrounding IIT, we do not advocate 

replacing these technologies with integrated devices that measure blood glucose and 

adjust insulin due to cost concerns and unexplored unintended consequences. 
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Limitations 

 This study has limitations.  In 49 hours of observation we did not observe 

protocol initiation or patient travel to the operating room, MRI, or x-ray.  We conducted 

this study at a single academic medical center with high informatics commitment that 

may not exist in other settings.  We also did not examine IIT CDSS in other intensive 

care units, operating rooms, or other units at the study site.  As a result, findings may not 

transfer to other settings.  Due to resource constraints, a single researcher conducted 

observations, interviews, and data analysis.  However, ethnographic studies conducted by 

single researchers have previously contributed to informatics [106-108].  The 

researcher’s presence during observations may have affected clinicians’ actions [109], 

but prolonged engagement [100] in the study sites may have mitigated this behavior. 

 

Conclusion 

 By evaluating a clinical decision support system for intensive insulin therapy with 

respect to other clinical information systems and care processes, we identified nurse 

attitudes, data processing gaps, design assumptions, and nurse resilience that affected 

system use.  Findings suggest opportunities for improvement involving documentation, 

reminders, and user interface changes.  Researchers and practitioners of clinical decision 

support systems should consider these oft overlooked aspects in system design and 

evaluation. 
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CHAPTER VI 

 

CONCLUSION 

 

Summary of Research Findings 

 The critical care community is in a state of flux due to concerns about the safety 

and effectiveness of intensive insulin therapy [89, 91].  Although previous studies of 

intensive insulin therapy recognized the additional effort required of nurses to implement 

the treatment [91], few investigated workflow as a source of computer-based IIT 

variability [10, 39], and none fully addressed the “assumptions, norms, values, choices, 

and interactions” [43] affecting computer-based intensive insulin therapy.  This research 

used a mixed methods approach informed by institutional theory to investigate social, 

organizational, and contextual factors influencing adoption and everyday use of 

computer-based IIT. 

This dissertation makes two primary contributions: 1) identification of novel 

sociotechnical interactions affecting computer-based intensive insulin therapy and 2) 

demonstration of the value of an informatics evaluation approach combining social 

theory, quantitative methods, and qualitative methods.  The explicit understanding of 

computer-based IIT workflow generated by this research provides opportunities to 

improve existing implementations in order to potentially yield outcomes observed in the 

Leuven study and prevent investment in costly and unproven replacement technologies.  

Researchers and practitioners of biomedical informatics and implementation science may 
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find the approach used in the dissertation helpful for managing and evaluating other 

interventions. 

 This research began with an organizational analysis of intensive insulin therapy 

adoption using institutional isomorphism [6] as a lens of inquiry.  This portion of the 

dissertation examined assumptions and norms at the macro-level of the critical care 

community to position the research within a larger context.  Through the influence of 

peers, regulators, and professions, healthcare organizations implemented intensive insulin 

therapy and became more similar but not necessarily more efficient: although critical care 

settings implemented IIT, the organizational changes required might not have produced 

intended effects as safety and effectiveness concerns increased [105].  The organizational 

analysis identified the problem investigated in this dissertation—that rules, policies, and 

procedures of IIT were disseminated without consideration of people, process, and 

technology interactions—as well as the hypothesis—that understanding IIT’s people, 

process, and technology interactions will help hospitals achieve the benefits of the 

Leuven study.   

 The dissertation proceeded with a literature review and case study of clinical 

decision support systems for intensive insulin therapy [83].  Using institutional theory as 

a guide, the literature review demonstrated the inconsistent reporting of workflow and 

care process execution across published investigations, and the case study showed how 

the implementation of computer-based IIT required considerable organizational change 

and produced complexity as well as unintended consequences.  From this analysis, three 

unexplored sources of variability emerged: opportunity for error involved in manually 

transcribing blood glucose values from testing devices to IIT CDSS, nurse perspectives 
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of system use, and the influence of site-specific clinical information systems and care 

processes on IIT CDSS.  These three areas informed the remainder of the research. 

 The next phase of the dissertation involved a quantitative analysis of IIT CDSS in 

two parts.  Objectives were to quantify the frequency and effect of blood glucose data 

mismatches and determine the characteristics and effects of nurse overrides on IIT CDSS 

performance.  As identified in the literature review and case study, most IIT CDSS 

implementations assume the blood glucose value entered by a clinician into a computer to 

generate a protocol recommendation matches the corresponding value on a testing device 

[83].  This portion of the dissertation tested that assumption.  After gathering 51 months 

of retrospective IIT CDSS and laboratory system data for two intensive care units at one 

teaching hospital, system output was recalculated for each IIT CDSS instance.  

Surprisingly, of the 189,499 IIT CDSS instances available for analysis, 11,901 lacked a 

device value and 1,788 failed to reproduce log output.  Manual process error, 

undocumented code changes, and other technical and process issues may explain the 

discrepant data and illustrate the need for investigators to scrutinize clinical information 

system data for research and operational purposes.  After excluding these data, 10,020 

(5.3%) of 179,479 pairs of BG values were mismatched [92].  Overall insulin dosing 

appeared to not have been affected by mismatched data, but instances of hypo- and 

hyperglycemia may have been prevented had BG mismatches not occurred.  Expert panel 

chart review is required to determine whether these instances represent preventable 

adverse events.  Regardless, this analysis supported the claim that BG data entry is a 

“critical safety issue” for IIT [82] and established mismatched blood glucose data as a 

source of variability in IIT CDSS. 
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 Using the same data set, the second part of the quantitative analysis examined a 

nurse’s decision to accept or override an insulin dose recommended by IIT CDSS.  Per 

the literature review and case study, nearly all published approaches assume nurses 

appropriately elect to override system recommendations.  This part of the dissertation 

tested the assumption and evaluated nurse choices.  Of the 179,452 IIT CDSS instances 

evaluated, 9,075 (5.1%) were overrides.  More than four out of five overrides were less 

than recommended by IIT CDSS, and these doses usually differed by ≥25% from system 

recommendations.  In contrast, greater than recommended doses were likely to differ by 

≤25%.  The decision to administer recommended and override doses resulted in 

appropriate changes in BG levels except for less than recommended administrations 

following BG increases from below to above 150 mg/dL.  Findings indicated nurses used 

IIT CDSS recommendations and overrides to effectively treat hyperglycemia and prevent 

hypoglycemia.  However, nurse “fear of hypoglycemia” [30] occasionally interfered with 

blood glucose control.  Together these findings quantified nurse overrides as a source of 

IIT CDSS variability. 

 To understand why data mismatches and overrides occurred and how non-IIT 

CDSS activities affected and were affected by IIT CDSS, the final phase of the 

dissertation was an ethnographic study of nurses using IIT CDSS in two intensive care 

units at one academic medical center.  This part of the dissertation investigated 

“…norms, values, choices, and interactions” [43] involved in system use.  Objectives of 

the ethnography were to evaluate IIT CDSS with respect to other clinical information 

systems and processes and identify barriers and facilitators to system use.  Notes from 49 

hours of direct observation and interviews were analyzed inductively for themes to 
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emerge.  Barriers included a tradeoff between computer use and patient care, especially 

related to use of a separate nursing documentation system; a lack of IIT CDSS reminders; 

user interface design assumptions; and potential for error in using medical devices.  

Facilitators included nurse trust in IIT CDSS combined with clinical judgment; value 

added to BG data entry by IIT CDSS; nurse resilience; and paper documentation.  

Together findings show that IIT CDSS is greater than the sum of its parts: systems and 

processes added before and after IIT CDSS affected protocol performance and directions 

for future improvement.  Additionally, results corroborated findings from other CDSS 

studies and may contribute toward an empirically derived theory of CDSS. 

As the debate over intensive insulin therapy’s effectiveness and safety continues, 

researchers and practitioners can use the results of this dissertation to better define 

delivery of computer-based approaches.  This research evaluated IIT CDSS use in two 

intensive care units, and results of this dissertation may not generalize to other 

institutions due to organizational and technological factors.  Future work should address 

IIT CDSS use in other ICUs and non-ICU settings including imaging and surgery as well 

as alternative blood glucose regulation strategies in and patient transfer techniques 

between these sites.  Data mismatches, override behavior, and IIT CDSS’s relationship 

with other systems and care processes suggest that systematic improvements are possible 

through algorithm and interface changes. 

 

Algorithm Changes 

Similar to many institutions, the algorithm studied in this dissertation is based on 

a linear equation developed by Bode and White [51, 52] that uses blood glucose values as 
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input.  Dissertation findings suggest the algorithm can be adjusted or replaced to improve 

glycemic control.  In the quantitative analysis, nurses appropriately overrode IIT CDSS 

recommendations with the exception of administering less than recommended doses 

when BG increased from <150 mg/dL to >150 mg/dL prior to dosing.  An adjusted 

algorithm can issue an alert encouraging users to administer the recommended dose in 

order to encourage glycemic control.  In the ethnography, nurses cited nutrition sources 

as a reason to override IIT CDSS recommendations.  Salience of nutrition sources 

suggests that the Bode and White linear equation might be at its limit and that algorithms 

incorporating nutrition sources, such as model predictive control [95], may be superior.  

Future work should address the development, validation, and implementation of next 

generation IIT CDSS algorithms that incorporate parameters beyond blood glucose 

values and nutrition sources.  Machine learning techniques can be potentially helpful in 

identifying factors predicting hypoglycemia and new models for dosing based on a 

patient’s genotype and phenotype.  Basic science discoveries may also influence the 

future course of IIT CDSS algorithms, and translation of these findings into practice 

through informatics and workflow adjustment will be necessary.  Regardless of the 

algorithm used, dissertation findings underscored the importance of allowing nurses to 

exercise clinical judgment and override system recommendations due to parameters 

falling outside the purview of computerized models. 

 

Interface Changes 

This dissertation established blood glucose data mismatches between handheld 

testing devices and manual entry as a source of IIT CDSS variability.  Mismatched data 
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may have contributed to hypo- and hyperglycemic episodes [92], and several workflow 

modifications can potentially reduce the likelihood of data mismatches.  Institutions can 

require two nurses to enter BG values into IIT CDSS for each instance to provide 

reliability.  Such a change may overburden nurses in an already stressful environment.  

Glucometers capable of wirelessly transferring data to IIT CDSS may also be of benefit.  

However, in addition to the cost of replacing existing devices, ensuring a correct BG 

value transfers to the correct computer for the correct patient in a timely fashion may be a 

challenge.  Installing docking stations at each patient bedside or nurse workstation would 

provide a direct link between BG testing devices and computers.  Issues of transfer time 

across the hospital network initially led to the decision for nurses to manually enter blood 

glucose values [83], and the tradeoff of time for manual entry versus accuracy for 

automatic transfer demonstrates the real world advantage of manual transcription of BG 

values.  In addition to mismatches, missing device BG data noted in this study suggests 

that docking may not always result in data transfer.  Improved device and docking 

usability by manufacturers may improve the likelihood of transferring data from devices 

to clinical data repositories.  The field of human computer interaction may also provide 

insight for designing user interfaces for manual transcription that reduce the likelihood of 

data entry error.  One might argue that manual transcription is worth the risk until chart 

review can confirm mismatched data caused adverse drug events.  At present, the overall 

benefit of IIT CDSS versus paper protocols—timelier, more accurate recommendations—

appears to ultimately outweigh the risk of data mismatches caused by manual 

transcription. 
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By automatically capturing and storing insulin rates from infusion pumps in 

clinical data repositories, institutions can potentially monitor compliance between IIT 

CDSS and actual dosing to improve patient safety.  The ethnography showed that IIT 

CDSS insulin rates may occasionally not be entered into pumps due to emergent care 

situations, typographical error, and nurse forgetfulness.  Alerts based on pump-CDSS rate 

mismatch may help clinicians ensure proper insulin dosing.  Although devices that 

constantly measure blood glucose and suggest insulin infusion rates are entering the 

market, they are costly and require integration with existing clinical information systems 

and workflow.  Findings of this dissertation indicate that existing combinations of 

technology be adjusted before investing in replacement technology. 

Intensive insulin therapy patient care and documentation consumes a considerable 

portion of a nurse’s time, and IIT CDSS approaches should minimize time spent 

documenting while ensuring data accuracy.  In the ethnography, nurses identified double 

documentation of IIT data between IIT CDSS and an electronic nursing documentation 

system as an unnecessary expenditure of effort.  Transfer of data between systems or 

integration of decision support capabilities in nursing documentation systems can 

alleviate this concern.  The ethnography also showed unintended and inaccurate use of 

interface features.  Some nurses provided overrides using an interface portion intended 

for returning patients to the protocol after a temporary stoppage.  To reduce the risk of 

improper use, interfaces should clearly identify the purpose of functions intended for 

occasional use (e.g. return from being off protocol, routine override).  Although patients 

often received nutrition from multiple sources, the system only allowed nurses to select 

one source.  Expected choices for blood glucose testing site and method were the 
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system’s default selections, and nurses occasionally failed to change system selections 

when using alternate techniques.  To ensure accurate collection of IIT CDSS data for 

secondary research and next generation algorithms, interfaces should enable selection of 

multiple nutrition sources and remove default site and method selections in favor of rapid 

pick lists (Figure 10). 

 

 

Figure 10. IIT CDSS interface modification enabling selection of multiple dextrose sources and removing 
blood glucose testing site and method in favor of rapid selection. 

 

Improved visualization of blood glucose and insulin trend data may assist 

clinicians in making decision for IIT CDSS.  As demonstrated in the quantitative analysis 

and ethnography, nurses appeared to administer less than recommended doses due to the 

dose amount and independent of the multiplier, an estimate of insulin resistance.  

Displaying the multiplier and other insulin resistance trends on screen is an area of future 

research.  Additionally, displaying BG variability data such as number of hypoglycemic 

and hyperglycemic events may also assist clinical decision making.  Interface changes, 

especially those involving new insulin resistance and blood glucose variability displays, 

will require appropriate training of nurses. 

 

 

 



109 
 

Dissertation Value for Different Stakeholders 

 This investigation of social, organizational, and contextual characteristics of 

computer-based intensive insulin therapy has implications for nurses, patients, healthcare 

institutions, informaticians, researchers, and managers.  Nurses stand to benefit from 

software improvements based on dissertation findings that streamline workflow, save 

time, provide better decision support, and potentially increase job satisfaction.  Through 

improved work processes, patients may receive better care as well as experience more 

time with care givers at the bedside instead of documenting on computers.  For healthcare 

institutions, the effect of workflow modifications can potentially improve protocol 

compliance, care outcomes, and return on investment.  Findings also provide guidance 

for informaticians developing IIT CDSS and point to data quality concerns that all 

clinical investigators should consider.  For informaticians, researchers, and managers, 

explicit consideration of “assumptions, norms, values, choices, and interactions” [43] in 

planning, implementing, and evaluating clinical information systems can provide a 

perspective that improves the likelihood of project success.  Social, organizational, and 

contextual interactions are critical to the success and failure of other clinical decision 

support systems and electronic medical record applications [17, 18].  Researchers and 

practitioners can use the approach from this dissertation for a variety of clinical 

interventions.   

This research identified evidence of institutional isomorphism—the tendency for 

organizations to become more similar but not necessarily more efficient—in intensive 

insulin therapy adoption [105], and we have separately investigated the phenomena in the 

adoption of provider order entry, barcode medication administration, and health 
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information exchange [110].  Coercive forces through the American Recovery and 

Reinvestment Act will speed adoption of health information technology in the United 

States [110], and consideration of workflow, unintended consequences, and process 

changes related to new technologies in individual care settings [111] will be critically 

important for providers to achieve meaningful use of systems and taxpayers to receive 

return on investment. 

A June 2010 study by the Leapfrog Group showing the continued prevalence of 

medication errors in 214 hospitals with provider order entry underscored the need for 

“monitoring and improvement at implementation and on a long-term basis” [112].  

Prospective evaluation of clinical interventions using quantitative process measurement 

and qualitative workflow analysis has the potential to help institutions achieve intended 

efficiencies of IT-driven organizational changes and prevent ceremonial conformity to 

institutionalized forms that unintentionally have adverse operational effects [5].  

Rigorous analysis and publication of findings from prospective mixed methods studies 

can fill a gap in the literature for detailed implementation strategies of clinical inventions 

that improve patient outcomes.  The following illustrates this concept using computer-

based intensive insulin therapy.   

 Explicit understanding of computer-based IIT workflow produced by this 

dissertation and nascent studies from other institutions can provide a blueprint for 

healthcare institutions with varying degrees of informatics resources.  Institutions with 

robust informatics initially implementing computer-based intensive insulin therapy 

should prospectively monitor process variability (e.g. data mismatches and overrides) and 

outcomes (e.g. blood glucose variability, achievement of target ranges, mortality, 



111 
 

morbidity) through electronic dashboards in order to determine improvements to therapy 

delivery and overall care value.  In order to rapidly identify and respond to protocol 

execution issues related to other systems and processes not detected by quantitative 

measurement, institutions should simultaneously perform qualitative analysis of the 

intervention using direct observation of workflow and clinician interviews.  The 

combination of methods enables practitioners and researchers to identify discrepancies in 

data and work processes and to understand whether they interfere with intended care 

delivery (e.g. determining if data entry error appears to adversely affect insulin dosing).  

If after extensive workflow modifications an institution does not meet intended outcome 

goals, the organization should consider other options. 

 Institutions without the ability to rapidly audit clinical performance may choose to 

wait for new randomized studies and meta-analyses showing therapy effectiveness before 

implementing necessary process changes.  Healthcare organizations lacking solid 

informatics foundations should guide IIT CDSS implementation with respect to process 

variability sources, user interface issues, and nurse workflow concerns identified in this 

research.  If development of quantitative measurement tools is too expensive in certain 

settings, qualitative analysis of workflow impact may suffice by providing a means to 

identify and resolve workflow issues interfering with intended care delivery.  For clinical 

process changes mandated by government and other oversight agencies, ongoing 

qualitative analysis and process refinement is critical.  Sources of coercive influence, 

such as government, should consider the availability of detailed process understanding 

before requiring other organizations to adopt new therapies. 
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Closing Words 

 Workflow is an often taken-for-granted assumption in clinical investigations, and 

this dissertation demonstrated the importance of considering workflow as a dynamic 

rather than as a static entity for computer-based intensive insulin therapy.  Detailed 

description in the literature of the methods of computer-based intensive insulin therapy—

or any intervention—can help healthcare organizations achieve the results of exemplar 

institutions.  
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