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INTRODUCTION

This dissertation explores the emergence of ideas among eight high school students as they
participated in a classroom teaching experiment addressing statistical concepts. Instruction aimed
to move students toward embedding statistical inference within the foundational idea of sampling
distributions—the distributional structure of a collection of a sample statistic’s values that one
conceives as emerging in the long run, under repeated random sampling. This embedding is deep
and the connections are important, yet both are rarely a subject of instruction in statistics. In
contrast, instruction in this teaching experiment engaged students with the inner logic of
statistical inference, pushing them to explore its deep structure.

Given the study’s exploratory nature, the central aim of this dissertation is to gain insight into
what students understood of the ideas addressed in instruction in relation to their engagement
with that instruction. The method employed to develop such insight is the retrospective analysis
(Cobb, 2000; Steffe & Thompson, 2000). That is an after-the-fact systematic and coordinated
examination of the data generated in the teaching experiment.' In this particular case, my
examination is directed at characterizing students’ understandings in terms of plausible
underlying imagery and conceptual operations.

My examination of these data takes a multi-pronged approach: I characterize instructional
activities, instructional interactions and student engagements, and students’ emergent and stable
understandings. Moreover, my analyses attempt to capture the emergent and dynamic interplay
among these components. This results in a characterization of the teaching experiment as a
sequence of interrelated instructional activities unfolding in synergy with the emergence of
students’ ideas.

The dissertation is divided into two broad parts distinguished by their content and structure.
Chapters I through IV constitute the first part. Chapter I develops a directed analysis of previous
research, highlighting issues of relevance for this study. Chapter II provides the background and
context for the teaching experiment, detailing its important aspects and situating it within the
prior relevant research. Chapter III elaborates the theoretical lenses employed in my analyses,

taking into consideration the perspectives that underlay the design and implementation of the

! My role as research assistant in conducting this teaching experiment (NSF Grant No. REC-9811879; P.I. Patrick
Thompson) enabled me to position myself as a co-investigator in this analysis. The narrative in this dissertation is
thus spun from the perspective of a member of the research team attempting to communicate with nonmembers.



teaching experiment. Chapter IV details the procedures and methods employed in my analyses of
the data.

In the dissertation’s second part analyses and results are distributed across Chapters V
through IX. Instructional interactions are characterized as unfolding in a sequence of four
interrelated phases and students’ conceptions that emerged within them are detailed. Each of
Chapters V through VIII addresses one distinct phase of instruction. Chapter IX gives a summary
overview of the teaching experiment and elaborates conclusions.

Looking ahead, much of this study focuses on students’ experiences and thinking as they
worked with collections of a sample statistic’s values, organizing them in ways that could
provide a basis for making statistical inferences. The study indicates that in exploring the deep
structure of statistical inference, students grappled with that structure. Conceiving a collection of
a sample statistic’s values as a sampling distribution entails the coordination of multiple objects
and actions in a hierarchical structure. Students experienced significant difficulties developing
this coordination, even when individual objects and actions seemed unproblematic for them to
envision. This suggests that developing a coherent understanding of sampling distributions is
non-trivial and may be rooted in abilities to navigate with facility among hierarchically

structured objects and processes.



PART I



CHAPTER 1

LITERATURE ANALYSIS

In this chapter I develop a directed analysis of prior research relevant to this study. The
studies considered here are drawn from a broad base of research in stochastic reasoning,
specifically research on understanding ideas related to sampling and statistical inference. Some
of these research studies were purely psychological investigations, while others explored
students’ performance and learning in contexts involving designed instruction. My analysis of
this research highlights and develops particular issues that are relevant for understanding the
rationale for the design of the teaching experiment and this study. Explicit connections between

these issues and this study will be elaborated throughout the second chapter.

§

In American cognitive psychology Kahneman and Tversky (1972) spearheaded research on
understanding sampling when, on the basis of empirical evidence, they hypothesized that people
often base judgments of the probability that a sample will occur on the degree to which they
think the sample “(i) is similar in essential characteristics to its parent population; and (ii)
reflects the salient features of the process by which it is generated” (ibid., p. 430). This
hypothesis suggests that Kahneman and Tversky’s subjects’ focused their attention on individual
samples.

In later research, Kahneman and Tversky (1982) conjectured that people, indeed, tend to take
a singular rather than a distributional perspective when making judgments under uncertainty. In
the former, one focuses on the causal system that produced the particular outcome and assesses
probabilities “by the propensities of the particular case at hand” (ibid., p. 517). In contrast, the
distributional perspective relates the case at hand to a sampling schema and views an individual
case as “an instance of a class of similar cases, for which relative frequencies of outcomes are
known or can be estimated” (ibid., p. 518).

Konold (1989) found strong empirical support for Kahneman and Tversky’s (1982)
conjecture. He presented compelling evidence that people, when asked questions that are

ostensibly about probability, interpret such questions as asking to predict with certainty the



outcome of an individual trial of an experiment. The participants in Konold’s study often based
their predictions of random sampling outcomes on causal analyses instead of information
obtained from repeating an experiment. Konold (ibid.) referred to these combined orientations as
the outcome approach. Moreover, he noted that this approach was quite robust among
participants' in his experiments; they were not easily swayed to abandon causal analyses and to
consider patterns in the outcomes of a repeated experiment as a basis for prediction, even in the
face of evidence designed to impel them to do so. Decades earlier, Piaget and Inhelder (1951)
documented similar robust orientations among young children who participated in their
experiments involving prediction under uncertainty.

The distinction between singular and distributional perspectives of probability was discussed
by the mathematician Richard von Mises (1957). Von Mises’ defined probability as the relative
frequency of a repetitive event in a reference class (collective) of such events. In his, strong
frequentist, view it is nonsensical to pose probability questions about single events if all one
really has in mind is a single event unrelated to a repetitive scheme and a collection of such
events. The historian of probability lan Hacking (1975) traced this duality between frequentist
and singular interpretations of probability back to the time of Pascal and Fermat. On the one
hand, at that time probability had cultural connotations having to do with degrees of belief or
opinion warranted by authority. On the other hand probability had ties to observed frequencies,
such as the co-occurrences between fever and disease, the number of comets, and the deaths of
kings. By Hacking’s account the development of a mathematically coherent formulation of the
quantification of uncertainty is a story of the transition from the former to the latter as a
prevalent perspective among key players in its development. This transition was rife with
struggles to shed the former, deeply culturally entrenched, perspective.

Gigerenzer and his colleagues (Gigerenzer, 1998; Gigerenzer, 1994; Hertwig & Gigerenzer,
1999) used the distinction between frequentist and singular interpretations of probability as the
basis of a framework for understanding people’s decision-making strategies under uncertainty.
Arguing from a position in evolutionary psychology which claims that the human perceptual
systems and mind are hard-wired to attend to “natural frequencies” in the environment,

Gigerenzer (1998) proposed that in many cases people’s non-normative responses to probability

! Participants were psychology undergraduates at a major comprehensive university in the U.S.
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questions can be attributed to their non-frequentist interpretations of the questions, especially in
questions not couched in the language of frequencies. Some of Gigerenzer’s work relates to
sampling. In an important meta-study, Sedlmeier and Gigerenzer (1997) analyzed thirty years of
research on understanding the effects of sample size in people’s statistical predictions. They
argued compellingly that subjects in a diverse spectrum of studies who incorrectly answered
tasks involving a distribution of sample statistics may have interpreted task situations and

questions as being about individual samples.

§

Analyses of the meanings and interpretations of probability have been reiterated often in the
psychological, historical, and educational research literature. Analyses of what it can mean to
understand sampling and inference, however, are more rare.

Rubin, Bruce and Tenney (1991) proposed that the central idea of statistical inference is that
a sample provides some information about its parent population. This idea implies that we should
place bounds on what can be inferred from a sample to the underlying population. In their view,
this line of reasoning entails balancing two ideas which, from a deterministic perspective, may
appear contradictory: sampling representativeness— ‘“‘the idea that a sample taken from a
population will often have characteristics similar to those of its parent population”, and sample
variability—“the contrasting idea that samples from a single population are not all the same and
thus do not all match the population” (ibid., p. 314). Rubin et al. (ibid.) asserted that the
integration of these two ideas is key to developing a coherent understanding of statistical
inference. Moreover, their investigation of statistically naive high school students’ responses on
sampling and inference tasks suggested that students did not integrate these ideas to reason about
distributions of sample outcomes. Instead, students tended to focus on one or the other idea,
depending on the task; in some situations ideas of sample representativeness were more salient in
their mind, in others they focused on ideas of sampling variability.

Two recent investigations of school students’ understandings of sampling (Schwartz et al.,
1998; Watson and Moritz, 2000) drew on conceptual analyses of sampling and statistical
inference. The authors of both studies characterized sampling essentially as a method of
indirectly obtaining information about a larger population by directly obtaining information from

only a relatively small subset of the population.



Schwartz et al. (ibid., pp. 240-242) described the structure of a statistical inference as having
the following components: a population, a random procedure for selecting a sample from the
population, a resulting sample, and an inference from the sample back to an estimate of the
population. Schwartz et al. (1998) proposed that a coherent understanding of sampling and
inference is difficult for students because it entails thinking about collections of cases instead of
individual cases, and because interpreting certain everyday contexts (e.g., opinion survey
situations) in terms of sampling and inference entails navigating tensions between causal and
random perspectives. Schwartz et al.’s (ibid.) analysis and research with elementary school
students focused on the problematicity of integrating two images or schemas that may appear as
incongruent to statistically naive people; that is, selecting only a part of a population, yet
obtaining reliable information about the entire population.’

Watson and Moritz (2000) studied a large cross section of Australian school students’ ideas
about samples and sampling. By characterizing students’ ideas and evaluating their relative
sophistication, they constructed a developmental model of conceptions of sampling. The authors
cited the following characterization as encompassing aspects of sampling that were most
important for their study: “ [...] a subset of the population called a sample is selected. Although
data are then collected only from or about the sample, conclusions are drawn (generalized) to the
larger population as well ... What is the essential nature of a sample? In a word, a sample should
be ‘representative’. This means that, effectively, a sample should be a small-scale replica of the
population from which it is selected, in all respects that might affect the study conclusions” (Orr,
in Watson and Moritz, 2000, p. 48).

Together, Schwartz et al.’s and Watson and Moritz’s analyses of sampling and inference
highlight the following important aspects:

1) The goal of sampling: to reliably obtain information about a population, whose entirety is

inaccessible. Thus, such information must be obtained indirectly;

2) The method for attaining this goal: selecting a subset of the population in such a manner

(called “random”) that information obtained directly from it will provide similar reliable

information about the larger population;

* Stigler (1986, pp. 161-169) gave an insightful discussion of Laplace’s and Quetelet’s intellectual struggles with the
idea of using only a subset of the population to conduct a national census. His discussion suggests that there is a
historical basis for thinking that the integration of these two schemas is conceptually non-trivial.
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3) The desired relationship between the sample and population: the subset of the population
should have the “representativeness” property —it should be a small-scale replica of the
population;

4) The inference: generalizing from the sample to the larger population.

This characterization describes aspects and images presumably entailed in a coherent
understanding of sampling and inference. A significant feature of this characterization is that one
could arguably be mindful of its aspects and still be unable to make judgments about a sampling
outcome’s relative unusualness. A thought experiment will help drive this point home: assume
the perspective of a statistically naive person and suppose one selects a random sample from a
very large population having unknown composition. In the absence of any other information,
there is no reason to doubt the “representativeness” of the sample and an inference about the
unknown population is made on the basis of the sample’s composition. This lack of doubt can
only be based on faith that the random selection process will produce a sample that reflects the
sampled population. Now suppose that the random sampling process is repeated: one draws
another sample of the same size from the same population and observes that it has a different
composition than the first sample. On the basis of this sample alone one will reach a different
conclusion about the population’s composition. How does one reconcile these differences? How
does one ascertain which sample is more representative? Is one or the other sample unusual? One
can imagine repeating this thought experiment many times and asking similar questions about
the resulting collection of samples we end up with.

The point here is that the expected variability among outcomes of randomly drawn samples
necessarily makes sample “representativeness” a problematic notion. Without recourse to images
of what is expected to occur in the long run when a sampling process is repeated many times,
students will have little hope of building a coherent image of what it means for a sample to be
“representative”. Schwartz et al.’s (ibid.) and Watson and Moritz’s (ibid.) conceptual analyses do
not problematize the notion of sample representativeness, nor do they entail images of the
repeatability of the sampling process and of the expected variability among sample outcomes.
Consequently, students who develop this characterization as their encompassing image of
sampling and inference are arguably disabled from judging whether a sample outcome is unusual
and from understanding the deep connections between statistical inference and distributions of

sample statistics. In this sense, the characterization of sampling and inference elaborated by



Schwartz et al. (ibid.) and Watson and Moritz (ibid.) cannot help students move beyond a
singular view of sampling. Indeed, a literal reading of the characterizations given by these
authors suggests that they were referring to individual samples. Put differently, Schwartz et al’s.
and Watson and Moritz’s conceptual analyses leave ideas that are foundational to sampling and
inference unpacked. As such, I argue that their analyses do not characterize a sufficiently rich
conception of sampling to target for instruction.

Rubin et al. (1991) hinted at the problematicity of sample representativeness when they
pointed out that the variability among sample statistics forces us to place bounds on what we can
infer from a sample to its underlying population. They suggested that integrating sample
representativeness and sampling variability into a coherent conception of inference rests on
having a relative frequency interpretation of “likelihood”. Thus, from this frame a representative
sample is one whose statistic (say, a proportion) is /ikely to be close to that of the underlying
population, in the sense that we expect a relatively large proportion of statistics calculated from
numerous repetitions of the sampling process to lie within some “close” distance of the
population parameter. Similarly, sampling variability leads us to believe that some samples are
likely to differ from the population parameter, in the sense that we expect some proportion of
statistics calculated from numerous repetitions of the sampling process to lie beyond some

“close” distance of the population parameter.

§

As the above discussion highlights, sampling variability is a central idea in statistics. Despite
its centrality, however, students’ understandings of sampling variability and our comprehension
of variability’s role as a central organizing idea in statistics instruction has received little
research attention (Shaughnessy et al., 1999).

Shaughnessy et al. (ibid.) investigated school students’ ideas that might be related to
sampling variability. After students had observed a repeated sampling experiment, these
researchers focused on what students predicted as the most likely range of outcomes to occur in
a small number of randomly selected samples. The range of a set of values gives the distance
(i.e., the absolute value of the difference) between extreme values of the data set (sample

proportions, in this case).



Thompson (personal communications, 2000-2002) proposed that it is not productive to think
of sampling variability without having an underlying mental image of the repeatable process that
produces sample outcomes. He argues that one must have such a dynamic process in mind about
which it makes sense to ask “what is varying?” Without such imagery, he argues, sampling
variability is essentially reduced to “differences in sample outcomes”. In Thompson’s view, a
powerful conception of statistical/sampling variability should be tied to developing a sense of
sampling distribution; it should enable students to move beyond mere differences in sample
statistics and toward structuring a collection of statistics in terms of the proportion of them that
lie within certain sub-ranges of the entire collection’s range. Thompson’s view of variability,
thus, appears to resonate with Rubin et a.l’s (1991) elaboration. The difference is that Thompson
emphasizes having in mind the dynamic imagery of the repeatable sampling process, whereas
Rubin et al. (ibid.) did not.

From Thompson’s perspective, variability and range are not one and the same, as
Shaughnessy et al. (1999) seemed to suggest. Because an infinite number of collections of a
sample statistic’s values can have the same range, the range tells us nothing more about such a
collection’s distributional structure. As such, the range of a collection of sample statistics is
arguably the crudest measure of its variability. Although a student’s predicted range may indicate
her sense of expected extreme outcomes, it need not suggest anything about her ideas of
variability and distribution in the sense elaborated by Thompson. While range is sometimes used
as a measure of a distribution’s spread, as the above analysis indicates this use pre-supposes that
one has already conceptualized distribution in the sense elaborated by Thompson.

As this discussion makes clear, it is possible to have different kinds of statistical variability in
mind. This points to a need to problematize statistical and sampling variability in the research
literature. For instance, it would be productive to research

1) what students may have in mind by “variability”’; 2) possible meanings of statistical
variability and relationships between them; 3) conceptualizations of variability that may support

the development of coherent reasoning about distributions.

§

In the research literature, most investigations of people’s understanding of ideas related to

sampling have been purely psychological. Some studies already discussed here, however,



involved an instructional component whose aim was to promote the development of students’
understanding of particular ideas related to sampling. The effects of instruction on students’
thinking were then assessed by comparing their performance on pre and post-instruction test
questions.

Shaughnessy et al.’s (1999) instructional intervention consisted of having school students
observe a repeated sampling experiment in a classroom: a demonstrator drew around 5 samples
of 10 candies from a thoroughly-mixed jar containing red, blue, and yellow candies in known
proportions. The classroom teacher drew students’ attention to the number of red candies in each
sample as she recorded the results on the board for public viewing. Shaughnessy et al. (ibid.)
were interested in knowing how this demonstration would influence students’ predictions about
the range of sample outcomes (i.e., number of red candies in a sample) they expected in a
collection of 5 such candy samples. Although their research report said little about the specific
intent of the activity, the authors presumably hoped that it would impel students to revise their
pre-instructional predictions of the most likely range of red candies in a collection of candy
samples and to re-align their predictions with normative ones. The authors’ intent was also
implied in their concluding hypothesis that the sampling activity had allowed students to “see the
variation” (ibid., p. 20).” Given the previous discussion about meanings of variability, without
more information, however, it is unclear what Shaughnessy et al. (ibid.) meant by this statement.

Shaughnessy et al.’s report did not focus on aspects of student engagement in instructional
interactions. For instance, we do not know whether the classroom teacher highlighted particular
aspects of the sampling experiment and its results for students, nor what kinds of classroom
discussions ensued about aspects of the sampling experiment. In addition, the authors seemed to
have assumed an unproblematic interpretation of the experiment and the sampling outcomes in
particular. Consequently, it remains unclear Zow instruction in Shaughnessy et al.’s study (ibid.)
may have helped student development.

Schwartz et al. (1998) compared their 5™-grade students’ pre and post-instructional test
responses on questions about sampling methods (in both chance contexts and everyday contexts)

in order to see how students’ understanding evolved as a result of their engagement in

? In both pre and posttest Shaugnessy et al. (1999) asked 4th-grade students to predict the most likely range of
possible outcomes (i.e., number of red candies in a sample) in the sampling experiments. They noted that a
significant percentage of students changed their minds and predicted a more normative range of outcomes on the
posttest.
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instruction. Schwartz et al.’s (ibid.) instructional intervention was quite sophisticated: it was
based on a well articulated and integrated design and assessment framework and it employed an
interactive video environment that structured student activity around iterative cycles of
generating and revising their solutions to an “anchor problem”. The anchor problem —T7he Big
Splash—was designed to create a shared context in which students could make their ideas about
sampling public through discussions in a classroom setting. A central assumption of the
instructional design was that the processes of objectifying thought and of negotiating meaning
with one’s peers and more knowledgeable others are fundamental to conceptual development.

Briefly, The Big Splash activity engaged students in the task of designing a sample survey, in
an everyday context, in order to estimate an income.* The aim of the activity was to provide a
context to help students align their various everyday ideas that resemble the part-whole
relationship between sample and population into a coherent view of sampling and statistical
inference.’ The interactive video environment included demonstrations of sampling intended to
promote discussion and reflection on relationships between sample and population (part-whole
and proportional mini replica), on sample representativeness and sampling bias.

Schwartz et al. (ibid.) coded students’ responses to the pre and post-tests to indicate their
ideas about what constitutes a good sample, whether they understood that a sample was different
from a population, and whether they understood that a sample provides information about a
population. The authors reported their interpretations of students’ understandings of the purpose
of surveys, sampling bias, randomization and stratification. Analyses of these data led Schwartz
et al. (ibid.) to conclude that students’ understanding of the part-whole relationship between

sample and population improved after instruction.® The authors hypothesized that the real-world

* The Big Splash is part of The Adventures of Jasper Woodbury—a series of video-based complex problem scenarios
developed by the Cognition and Technology Group at Vanderbilt [CTGV] (1992). Details about The Big Splash and
its underlying instructional design and assessment framework are also described in Schwartz et al.(1998, p. 250, pp.
262-264).

> In a previous study, Schwartz et al. (1998) concluded that children do not possess an abstract schema that they can
use to understand all statistical situations. Instead, their intuitive statistical understanding is comprised of a
collection of overlapping, and even incongruent, schemas that are differentially evoked depending on the particular
problem context. Moreover, the authors claimed that these are “everyday” schemas that approximate isolated
relationships within the structure of a statistical inference but that share only some features with the overall
structure. The Big Splash activity built on these findings; it was designed to help student integrate the disparate
everyday schemas that they bring into sampling contexts into a more unified and stable conception of sampling.

® Comparison of pre and post-test responses showed relatively large increases in the percentage of students who
viewed a sample as different from the total population and in the percentage who viewed a sample as providing
information about the total population. These results were accompanied by relatively large decreases in percentages
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context of The Big Splash had helped students interpret the world in terms of the mathematical
relationship that allows extrapolation from the sample to the whole population (ibid., p.265). The
authors did not elaborate further on how this may have occurred.

Schwartz et al. (ibid.) reported that their results were less conclusive as to whether students’
understanding of sampling bias improved. The data reportedly suggested that students’
understanding of the part-whole relationship between sample and population was implicated in
their understanding of sampling bias. However, their understanding of the part-whole
relationship did not appear to be sufficient for understanding bias (ibid., pp. 265-266). Schwartz
et al. (ibid.) also concluded that The Big Splash activity helped improve students’ understanding
of stratified random sampling and sampling using a randomizing device.’

In a study of college students’ understanding of the variability of the arithmetic mean, Well,
Pollatsek, and Boyce (1990) used an individualized instructional session in which students
observed computer simulations of random sampling and graphical displays of the distribution of
sample means. Instruction aimed to help students visualize the distribution of sample means and
to distinguish situations involving sample means from those involving the scores within a single
sample.

The instructional session progressed in two phases; first, students used the computer program
to simulate selecting a large number of small samples from a population, and they observed the
distribution of the sample means on screen. The interviewer drew students’ attention to the
difference between this distribution and that of the population (also displayed on screen),
highlighting the difference in their spreads. Students’ intuitions and understandings were then
probed; they were asked to anticipate how variable was the distribution of sample means for
samples ten times as large, both by estimating what proportion of such sample means they
expected would fall beyond a certain cutoff and by sketching what they expected the sampling
distribution to look like. In the second phase, this procedure was repeated with samples ten times
as large. The interviewer drew subjects’ attention to the difference in variability (spread)

between the sampling distributions for the two sample sizes, pointing out that the latter was

of students who did not have these views. Thus, after instruction a much larger fraction of the students seemed able
hold in mind two conceptions about samples that they might previously have considered to be incompatible.

’ The authors based their conclusion on the relatively large increases, from pre to posttest, in the percentage of
students that preferred either of these sampling methods over a biased method, and on the relatively large decreases
in the percentage of students that preferred biased methods.
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dramatically smaller than the former. Students were then asked why they thought the sampling
distributions were so different. The session concluded by having students attempt several transfer
problems (ibid., p. 307).

Well et al. (ibid.) reported that instruction helped students learn to distinguish between
distributions of sample means and distributions of scores within a sample. However, after
instruction many students apparently still did not realize that the distribution of means for large
samples is less variable than that for small samples. The authors thus concluded that students did
not come to understand how sample size influences the variability of the mean.®

Two recent studies (delMas, Chance, & Garfield, 1999; Sedlmeier, 1999) also reported
improvements in college students’ understanding of situations involving sampling distributions
and probability as a result of their engagement in sustained instruction. Both studies extended the
instructional approach used by Well et al. (1990) into a sequence of instructional activities
embedded within technology-intensive environments. Computer simulations of drawing many
samples were employed to help students shift their focus from individual samples to collections
of samples when making judgments involving sample outcomes.

delMas et al.’s (1999) study investigated the role of computer simulations in the development
of college students’ understanding of sampling distributions. Their study progressed in 3
research cycles that were driven by reflexively related developments in two components: 1)
instructional and software refinements, and 2) student performance and understanding. Student
learning in each phase was typically assessed by comparing pre and posttest performance. The
research was conducted over a period of 18 months in technology-intensive statistics classes at
the college level.’

In the first phase of delMas et al.’s study students used the Sampling Distributions micro
world (ibid.) to simulate drawing hundreds of samples of a given size from a population."

Students recorded the sample means for different sample sizes and they described the shape and

¥ Some of the issues raised in the last section with regard to unarticulated meanings of sampling variability also
apply to Well et al.’s study. However, I will not raise these issues again here.

? A total of 283 non-mathematics majors enrolled in introductory statistics courses across three universities
participated in the study.

""The microworld enabled the user to simulate drawing random samples from predefined populations and to control
various parameters such as sample size, number of samples, and shape of a population distribution. The program
provided graphical displays of a population’s distribution and histograms showing the distribution of sample
statistics. The design was intended to facilitate guided exploration and discovery of sampling distributions.
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spread of the resulting sampling distributions." Then they answered questions designed to have
them reflect on ideas related to the central limit theorem: “what is the effect of sample size on the
shape, center and, spread of sampling distributions?”. Students repeated these activities with
normal, skewed, and “unusually shaped” populations. In the first phase posttest, students were
shown a histogram depicting a population’s distribution. Their task was to decide which of a
series of other histograms shown to them best represented a distribution of sample means for
samples of size 500 randomly drawn from that population. They then answered similar questions
for larger sample sizes. Despite a reported significant improvement from pre to posttest,

delMas et al. (ibid.) found that a significant number of students did not seem to understand
basic implications of the central limit theorem. For instance, some believed that as sample size
increases, a sampling distribution approximates the population distribution with respect to both
shape and variability. Accordingly, the researchers redesigned the activity for a second phase of
the study."

The revised activity placed more emphasis on comparisons of shape and spread than on
recording of parameters and statistics. Students were asked to make direct comparisons of their
pretest “predictions” with the sampling distributions produced by the program. The design
rationale was that providing students with opportunities to test their own predictions and
confront possible inconsistencies between their expectations and observed outcomes would
promote conceptual change (Posner et al., 1982). The data reportedly suggested that the second
version group outperformed the initial version group with respect to choosing a correct or good
response for each item (delMas et al., 1999, p. 10). Nevertheless, there were still students who
believed that as sample size increases, the sampling distribution becomes more like the
population with respect to shape and variability. The authors conjectured that these students were
using their knowledge of the distribution of elements within samples and (mis)applying it to the
behavior of sampling distributions.

A third revision of the activity was designed to address this misconception and to help
students distinguish between individual samples and sampling distributions. In this phase of the

research the software was modified to include a “samples” window that allowed students to

" For ease of narration, [ use the term sampling distribution in place of distribution of sample means when
describing delMas et al.’s study.

12 A different sample of 141 college students enrolled in an introductory statistics class participated in this phase of
the study.
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easily compare the distribution of the elements within individual samples and the statistics for
each sample. Other parts of the program were also modified to support thinking proportionally
about sampling distributions."” The actual activity was also embedded within a situational
context: a story problem was created in which students had to make a likelihood decision about
the outcome from either of two different sized samples. The activity took students through a
series of steps culminating in the comparison of two sampling distributions for samples of
different sizes to answer a probability question. delMas et al. (ibid.) reported that overall student
performance in the third phase was compatible with results from the second phase.

delMas et al.’s (ibid.) general conclusions were that neither a straightforward presentation of
information nor the use of technology and activities grounded in learning theory (Posner et al.,
1982) necessarily lead to a sound conceptual understanding of sampling distributions. Indeed, the
researchers found students who, after having participated in the third refinement of the activity,
still believed tenaciously that larger samples produce a sampling distribution that is similar in
shape to the population. This particular finding might point to students’ difficulties in
conceptualizing sampling distributions and their underlying re-sampling scenarios in ways that
entail making distinctions among various interrelated objects and actions (i.e., a population and
its composition, selecting a sample from that population and recording a statistic’s value,
repeating the last action to accumulate a collection of sample statistic’s values, structuring this
collection as a distribution, etc.).

Sedlmeier (1999, pp. 128-139) explored the effects of a “training program” on college
students’ performance on sampling distribution tasks." Instruction used a virtual urn-model to
run repeated simulations of drawing colored (marked) balls. Students were shown how sampling
distribution tasks could be represented by an urn model and solved by analogy to that model. The
design principle of the training was to have students make connections between the urn
simulations and the corresponding sampling distributions generated by the computer. Sedlmeier
conjectured that presenting information to students in frequency formats would facilitate their

making the desired connections.

“For instance, a moveable slider was added to the horizontal axis of the sampling distribution histogram in order to
help students determine what percent of samples’ statistics fall above or below an arbitrary value.

'* Twenty one students from various departments within a German university participated in the study. In the first
session of the study students took a pretest, received training, and took a first posttest. Students were tested a third
and fourth time 1 week and 5 weeks after the first session.
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The training began by having students observe sampling with replacement from an urn
containing 5 red and 5 blue balls. They were then asked to imagine that two samples were drawn
from the urn, one of size 10 and the other of size 40. They were to decide in which sample the
proportion of blue balls would be more likely to deviate by more than 10% from the mean
proportion of 50% blue balls. Students then followed a sampling demonstration: the computer
drew repeated random samples of 10 balls and 40 balls and calculated the proportion of blue
balls in each sample. The computer stacked these proportions in slots placed along a horizontal
axis and students could watch a histogram of each sampling distribution emerge."” In a text
window, the software “explained” that the sampling distribution for the smaller sample size was
flatter around the mean and had a higher variance than that for the larger sample size. The text
presented the conclusion that the smaller sample was more likely to yield proportions that
deviate by 10% or more from the true population proportion (ibid., pp. 130-132). The computer
repeated this demonstration with an extreme case; it compared sampling distributions for
samples of size 10 and 1000.

After the demonstrations, students were invited to freely choose two sample sizes and let the
program create corresponding sampling distributions of the proportions of blue balls. After they
had repeated this several times, the program text window emphasized that with a larger sample
size there would be more sample proportions (or means) near the true value than with a smaller
sample size.

In the next phase of the training, students were shown how to model the Maternity Ward
problem (see Appendix A) with the software by replacing red and blue balls with the labels
“gir]” and “boy”. The computer then created sampling distributions with samples of size n = 15
(smaller hospital) and n = 45 (larger hospital). Students compared the two histograms and were
asked to decide in which hospital there would be more days on which the proportion of boys
would fall between 40% and 60%.

In the last phase of the training, students used the software to construct sampling
distributions for a variant of the Post Office Problem (see appendix). The training concluded
with a discussion of issues that should be considered when making judgments involving the

impact of sample size. Two points were stressed in the discussions: first, samples can come from

!5 The software displayed histograms side-by-side or superimposed them for easy comparison of distributions.
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different urns (e.g., heights of mean and women) and might therefore not be comparable.
Second, one should always check whether the sampling process can be considered random or
whether it might be biased or even deterministic (ibid., p. 135).

The data in Sedlmeier’s study (ibid.) consisted of students’ aggregated response rates on
sampling distribution tasks that appeared on the four tests. Sedlmeier compared correct response
rates across the four tests to measure immediate and long term effects of training, and he
compared results across old and new tasks to measure the transfer effect.'® On the basis of
observed increases on these measures, Sedlmeier concluded that students’ performance improved

as a result of the training they had received.

I close this section by discussing two significant issues with regard to the instructional
interventions and studies described in it. First, instruction was, in general, carefully and
purposefully designed. Much of it was sustained and employed sophisticated environments and
tools. In particular, the use of computer simulations to help students build imagery of sampling
as a repeatable process and to facilitate and structure their exploration of the behavior of
collections of sample statistics is arguably instructionally productive. As suggested by the
publication dates of delMas et al.’s (1999) and Sedlmeier’s (1999) studies, this use of
instructional micro worlds seems to be on the cutting edge of research in statistics instruction.
Although most studies reported improvements in students’ understanding of sampling ideas after
their engagement in instruction—as indicated by the performance measures described —there is
also evidence to suggest that helping students change their perspectives and understandings of
sampling (e.g., singular to distributional reasoning, sampling bias) will continue to pose a
challenge for designers of statistics instruction.

The second significant issue revolves around the methodology employed by these studies to
assess the effectiveness of instructional interventions. Most studies relied heavily, if not
exclusively, on a common approach; comparison of pre and posttest performance measures as
the main indicator of student understanding and development. This research methodology is

canonical. Its merits and drawbacks are well understood and accepted by the research

16 «Qld tasks” were those, such as the Maternity Ward problem (see Appendix A), that students had already
encountered in the training program. “New tasks” were similar in structure to the training tasks but used different
cover stories (ibid. p. 129).
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community, and I will not engage in a debate about its pros and cons here. However, I put that its
predominant use in these studies reflects issues that go beyond practical and efficient ways of
conducting research and touch on what these studies were really interested in capturing.

Consider Sedlmeier’s (1999) training study as a case in point. He emphasized students’
observable performance on particular tasks, but did not fold back from the data to characterize
students’ ways of thinking and understandings that might express themselves in ways consistent
with the observable data. In another sense, also, Sedlmeier (ibid.) de-emphasized the role and
agency of the learner in his study. His description of the instructional activities stressed showing
students a desired connection (e.g., showing them how to map a virtual urn model onto a
situation involving sampling distributions) and having them observe demonstrations and text
produced by the computer environment, but it said little about students’ own mental activity and
reflections as they participated in these activities. In fact, the study generated little information
about students’ experiences; their engagement, interpretations, and understandings, and plausible
interactions among these. These aspects of Sedlmeier’s study suggest that his central aim was to
provide “hard” data on the effectiveness of the training program on performance, not to generate
insight into student understanding and development in relation to their engagement with the
instruction.

Some of these issues also apply to Schwartz et al.’s (1998) and delMas et al.’s (1999) studies,
though to a much lesser degree. Although concern with students’ engagement, reasoning, and
development appears to have been much greater to those researchers, test performance was still
used as the overriding indicator of student understanding and progress. This necessarily
restricted the kind of insights that they were able to generate.

In sum, the issue is that heavy reliance on performance measures is of limited value if
unaccompanied by interpretations that suggest students’ ways of thinking—their interpretations,
their understandings and imagery, and their conceptual difficulties —that ostensibly express
themselves in observable performance. As much as the instructional studies described here might
add to our comprehension of statistics learning, their usefulness is constrained by their almost
exclusive reliance on this research methodology. The information produced by this methodology
provides little insight into what students’ understood as they engaged in instructional activities

and into aspects of their engagement that helped move their thinking in productive directions.
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§

To summarize, ample evidence from research on understanding samples and sampling
suggests that students tend to focus on individual samples and statistical summaries of them
instead of how collections of samples are distributed. There is also evidence that students tend to
base predictions about a sample’s outcome on causal analyses instead of statistical patterns in a
collection of sample outcomes. These orientations are problematic for learning statistical
inference because they arguably disable students from considering the relative unusualness of a
sampling process’ outcome.

The instructional studies discussed here generally suggest that engagement in purposefully
designed instructional activities embedded within technology-intensive environments can
influence students’ understanding of sampling ideas and their performance on tasks in productive
ways. These studies assessed the effects of instruction on student thinking and development
largely by comparing students’ pre and post-instruction test response rates. This methodology
constrained the insights gained into the relationship between the development of students’
thinking and their engagement in instructional activities; analyses’ “grain size” were relatively
course and students’ understanding and development were not characterized in terms of
conceptual schemes that might underlie their observable behavior and performance patterns.

Finally, while various studies have elaborated components of understanding sampling and
inference, these components have not been synthesized to characterize a conception of sampling
as a scheme of interrelated ideas entailing repeated random selection, variability, distribution,

and representativeness.
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CHAPTER 11

BACKGROUND AND EXPERIMENTAL CONTEXT

This study is based on the second in a sequence of two whole-class teaching experiments that
addressed the same mathematical content matter. Both experiments investigated high school
students’ thinking as they participated in classroom instruction designed to support their
conceiving sampling and inference as a scheme of interrelated ideas including repeated random
selection, variability among sample statistics, and distribution.' These teaching experiments are
related to the prior research by their linkages to and disconnections from the issues highlighted in
my analysis of that research. These relations will be explicated as I summarize features of the
experiments.

I begin by summarizing the first experiment and its findings (Saldanha & Thompson, 2002),

as they bear on the second experiment and this study.

The First Teaching Experiment

Twenty-seven 11%- and 12"-grade students participated in a whole class teaching experiment
conducted within in a non-AP semester-long statistics course offered during winter 1999 at a
suburban high school in the Southeastern U.S. (ibid.). The experiment addressed ideas of sample,
inference, sampling distributions, margins of error, and interrelations among them. The aim was
to develop epistemological analyses of these ideas (Glasersfeld, 1995; Steffe & Thompson, 2000;
Thompson & Saldanha, 2000) —ways of thinking about them that are schematic, imagistic, and
dynamic—and hypotheses about their development in relation to students’ engagement in
classroom instruction. Toward this end, students’ thinking about ideas addressed in instruction
was investigated in three ways: by tracing their participation in classroom discussions (all
instruction was videotaped), by examining their written work, and by conducting post-

experiment individual interviews.

" These teaching experiments were designed and conducted by Patrick Thompson, principle investigator and director
of the research project “Investigating the role of multiplicative reasoning in the learning and teaching of stochastic
reasoning” (NSF Grant No. REC-9811879). This project entailed 5 teaching experiments conducted over a 40-
month period, and involving three different groups of participants. My involvement as research assistant on this
project entailed a variety of activities: assisting with the design of instruction and assessment; assisting with
teaching; interacting with and interviewing participants; collecting, organizing, and analyzing data.
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Instruction stressed two overarching and related themes: 1) the random selection process can
be repeated under similar conditions, and 2) judgments about sampling outcomes can be made on
the basis of relative frequency patterns that emerge in collections of outcomes of similar
samples.' These themes were intended to support students’ developing a distributional
interpretation of sampling and likelihood (Kahneman & Tversky, 1982; Konold, 1989, von
Mises, 1957). Though an a priori outline of the intended teaching and learning trajectories
(Simon, 1995) guided the progress of the teaching experiment, adjustments were made to
instruction according to the research team’s interpretation of issues that arose for students in each
lesson.

The first teaching experiment progressed over 9-consecutive lessons and unfolded in three
interrelated phases. It began with directed discussions centered on news reports that mentioned
data about sampled populations and news reports about populations per se (raising the issue of
sampling variability). The experiment then progressed to activities that led to questions of “what
fraction of the time would you expect results like these?”. This entailed having students employ,
describe the operation of, and explain the results of computer simulations of taking large
numbers of samples from various populations with known parameter values. The experiment
ended by examining simulation results systematically, with the aim that students see that
distributions of sample proportions are relatively unaffected by underlying population
proportions’, but are affected in important ways by sample size.

A preliminary report of the teaching experiment (Saldanha & Thompson, 2002) elaborated a
conception of sample and sampling that emerged from analyses of student data. A small number
of student participants, generally those whose performance on instructional tasks was strong and
who were able to hold coherent discourse about ideas highlighted in instruction, had developed a
stable scheme of images centering on repeatedly sampling from a population, recording the value
of a statistic, and tracking the accumulation of these values as they dispersed themselves in an
interval around the sampled population parameter’s value. These students seemed to have a
multiplicative conception of sample (MCS), in which an encompassing image is of a sample as a
quasi-proportional mini-version of the sampled population. Moreover, this conception entails a

salient image of the repeatability of the sampling process and an anticipation of the bounded

* In Chapter VIII I qualify this assertion and I elaborate the design rationale for promoting it as an instructional
endpoint.
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variability among sampling outcomes that supports reasoning about distributions of outcomes.

Figure 2.1 attempts to capture this characterization pictorially:

Population

Sample 1 Samyle 2

Figure 2.1. A multiplicative conception of sample entails a quasi-proportionality relationship between sample and
population. Multiple samples are seen as multiple, scaled quasi mini-versions of the population.

There are two central reasons for highlighting MCS here. The first is to point out that MCS
entails ideas already elaborated in the sampling research literature (Schwartz et al., 1998; Watson
& Moritz, 2000; Rubin et al., 1991; Shaughnessy et al., 1999). However, it entails the
composition of those ideas into an encompassing image that is arguably more empowering than
the characterizations of samples and sampling elaborated in the literature. Because MCS entails
an orientation to variability and the anticipated long-run behavior of a collection of a sample
statistic’s values, it provides a basis for understanding that judgments about particular sampling
outcomes (e.g., confidence in their representativeness) must be made by appealing to
distributions of such outcomes. MCS is therefore a powerful conception to target for instruction
because it potentially enables those who develop it to understand the basis of statistical
inference. Indeed, this speaks to the second reason for highlighting this conception here: it is that
MCS constituted the research team’s attendant vision of a desirable instructional endpoint in the
second teaching experiment. As such, it helped guide the design of instructional activities in that

experiment.
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The Second Teaching Experiment

Purpose and perspectives

The second teaching experiment—the one forming the basis of this study —was conducted in
fall 1999 within a year-long non-AP statistics and probability course given at the same high
school in which the first experiment was conducted. This experiment addressed the same ideas
and used a similar instructional approach as the first one (Saldanha & Thompson, 2002). In
addition, the point of departure for this experiment was shaped by conjectures that the research
team formulated about students’ difficulties in the first experiment. Those conjectures will be
elaborated in Chapter V, in Part II of the dissertation.

The experiment’s aims were consistent with those of the first. The idea was to explore
students’ understandings of interconnections among ideas of sampling, statistical inference, and
sampling distributions. This was done by engaging students in discussion-based classroom
activities designed to support their making particular connections among these ideas that might,
in turn, lead to their developing powerful understandings of them.

I use the word “support”, in this last sentence, in a double sense: on the one hand it refers to
an end of instruction, on the other hand it refers to a means. Both meanings did not carry equal
weight in this teaching experiment. While it was important that instruction attempt to help
students succeed in making particular targeted connections among ideas—indeed, those attempts
are fully elaborated in Part II of this dissertation —achieving such success was of secondary
concern to the research team. The primary concern was in having students engage substantively
with instructional activities, so that interactions that flowed out of that engagement would
support the emergence of significant mathematical behaviors which might constitute rich
pointers to students’ understandings, reasonings, interpretations, and general ways of knowing
with respect to the ideas addressed in instruction.’

I hasten to add that this perspective is distinctly different from those of the prior relevant

instructional studies. One apparent difference is that it places a high premium on gaining insight

? This perspective on research in learning and instruction draws on a metaphor from bio-chemical design
experimentation. In that research paradigm, media are designed and “employed” to support the emergence (and
perhaps development) of particular phenomena among agents interacting within those media. But having the
phenomena of interest emerge is not, per se, the researchers’ overriding interest. Rather it is studying the conditions
and interactions that might or might not give rise to the phenomena’s emergence. The first is a secondary goal, akin
to a means, whereas the second is a primary one, akin to an end.
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into what students understood as they engaged with instruction. As such, it takes both the local
and global unfolding of instructional interactions as a primary data source. A related difference is
that this perspective entails an encompassing orientation to look beyond students’ observable
behaviors, actions, and performance and interpret them as potential expressions of their

underlying understandings, conceptions, and ways of knowing.

Participants and setting

Eight liberal-arts-bound students in Grades 10 through 12 participated in the teaching
experiment. These eight students constituted the entirety of the class, the majority of whom
enrolled in the statistics course without prior knowledge that it would entail experimental
instruction. Students were notified on the first day of class what the experiment would involve;
those students who remained agreed to participate in the study.* All students had completed a
standard Algebra II course which included a short unit on statistics and probability —this was
students’ only known prior formal instruction in statistics.

The high school was located in an upper middle class suburb. The student population was
fairly homogeneous in its racial and socio-economic make-up, consisting largely of white
English-speaking adolescents from upper middle class backgrounds.’ Like all academic courses
offered at the school, assessment in the form of written in-class examinations and periodic
progress reports in the form of quantitative and letter grades were mandatory and were expected
by students, the administration, and parents. However, the research team was not bound to a
particular curriculum and was relatively free to experiment with content and instruction.

Classes at the high school ran on an alternating weekly block schedule. The course usually
met four times per week for periods of approximately 40 or 52 minutes each. The scheduling was
such that on most days another class occupied our classroom during the periods immediately
before and after ours. This constraint, together with the brief time period in which the 3-person

research team had to set up and take down the audiovisual equipment needed to conduct and

* The research team was present and assumed responsibility for the course on the first day of classes. A few students
trickled in and out of the course during the change period, in the first two weeks. 8 students participated beyond this
period.

> One of the 8 student participants in this course was non-American, non-Caucasian, and a non-native English
speaker. The rest were Caucasian Americans.
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record each lesson, made it impossible to change the traditional row-seating arrangement of the

classroom. Figure 2.2 is a schematic of the typical seating arrangement used in the classroom.

FRCHNT EQARD
SCEREEN
INSTEUCTOR FEONT CAMEEA
LAPTOP PEOIECTCE MICROPHONE
STUDENT MICEOPHONE STUDENT
STUDENT STUDENT
STUDENT STUDENT STUDENT
TEACHER STUDENT
BACE CAMERA

Figure 2.2. The typical class arrangement during lessons.

An experienced full-time mathematics teacher, then new at the school, was assigned as
“formal” teacher of the course and was present during all lessons. The teacher had never taught
statistics. He and the research team enjoyed an amicable rapport; he was cooperative, un-
intrusive, and relieved to relinquish responsibility for teaching the beginning of the course to the
research team. The teacher occasionally participated in the classroom discussions; sometimes as

an advanced learner of the mathematics, other times as instructional facilitator.

Classroom culture and instruction

Instructional activities were typically designed and conducted as discussion-based inquiry-
oriented investigations in a spirit consistent with that of Principles and Standards for School
Mathematics (NCTM, 2000). In accordance with the research team’s agenda, the mathematical
content of the teaching experiment was designed to be light on calculations and symbol use and
heavy on explication, description, and connection of ideas.® This instructional agenda was
enacted by the research team members in their on-going interactions with students; they moved
to negotiate a culture of sense-making in the classroom by placing a high premium on and
promoting pro-active participation as listening, reflecting, questioning, and explaining and
describing one’s own and others’ thinking about mathematical ideas under discussion.

Students’ own accounts suggested that this milieu differed markedly from that in their other
mathematics courses. As they indicated, an especially salient distinction for them was the

discussion-based nature of activities and a style of engagement that demanded they attempt to

% The most sophisticated calculations used in the course were proportions.
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carefully describe, explain, and connect ideas. Another reportedly salient distinction for students
was the instructor’s frequent use of computing technology in classroom discussions. These
impressions are consistent with those formed by members of the research team; their interactions
with the mathematics faculty at the school indicated that a traditional lecture-based approach to
teaching mathematics, typically adhering closely to chapter sequences in standard textbooks, was
highly valued.” With one notable exception, this approach seemed to be the norm among the
mathematics faculty in the school. Given these considerations, students likely experienced
tensions between expectations for engagement in this teaching experiment and their history of
engagement in school mathematics.

As I already mentioned, instruction in this teaching experiment was employed both as a
means for supporting the development of students’ understandings and as a tool for advancing
the research agenda. Because the research goal was to explore students’ thinking relative to the
ideas addressed in instruction, instruction was necessarily flexible and allowed for considerable
latitude in classroom interactions. Put simply, instruction followed students to the extent that the
instructor, who was also the team leader, deemed it productive to do so. The flexibility of
instruction is of central importance in this teaching experiment, imbuing it and its products with
emergent features. These features will be elaborated and developed throughout the chapters in
Part IT of the dissertation.

Despite instruction’s emergent features, two overarching themes were stressed in the content
of instruction throughout the teaching experiment: 1) the process of randomly selecting samples
from a population can be repeated under similar conditions, and 2) judgments about a sample’s
outcome (i.e., a statistic’s value) can be made on the basis of relative frequency patterns that
emerge in collections of outcomes of similar samples. The rationale for these themes drew on
prior relevant research that indicates that students tend to base judgments about sampling
outcomes on causal analyses of individual sample outcomes instead of statistical patterns in a
collection of such outcomes. Further, as my analysis of prior research highlights, sampling and
statistical inference are not typically treated as part of a system of interrelated ideas entailing
repeated random selection, variability among sample statistics, and representativeness.

Instruction in this experiment emphasized building connections among these ideas by anchoring

" This is based on anecdotal evidence obtained, in part, from the team’s experience in supervising mathematics
student teachers at this school.
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them on the foundational notion of sampling distributions—that is, patterns of dispersion that

emerge when a sample statistic’s values aggregate over the long run.

Data corpus

The teaching experiment unfolded in a sequence of 17 consecutive classroom lessons over a
period of 28 days. Individualized interviews were conducted with students at mid and post-
experiment. All classroom interactions and interviews were audio-videotaped. Records of
students’ written work on activity-based assignments and on various assessment items given at
different points were also collected. Other artifacts generated or employed in the teaching
experiment include lesson plans, field notes, instructional activities, and computer programs.

This set of materials constitutes the complete data corpus of this study.
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CHAPTER III

THEORETICAL PERSPECTIVES

My analysis of the teaching experiment’s unfolding is guided by a view of a synergistic cycle
between three principle types of activity: the design of instruction, students’ engagement and
emergence of their ideas, and the research team’s interpretation of student behaviors and

conceptions (see Figure 3.1).

—

Eng agement and
students’ ideas

Instruction al design

Resear chers’ interpretations

Figure 3.1. A cycle between 3 types of activity.

This was the typical cycle of activity entailed in the teaching experiment. The research team
would design an instructional activity to address a particular mathematical idea or issue and with
an envisioned mode of student engagement in mind. The instructor would then engage students
with the activity, typically in a whole-class discussion format orchestrated so as to address the
intended ideas and issues and to bring out students’ interpretations and understandings related to
them. Such engagements often led discussions in unanticipated directions, as part of the
instructional agenda was to follow students’ thinking whenever it seemed productive to do so.
The instructor and research assistant would formulate impressions and interpretations of
students’ ideas and understandings that emerged during this engagement. These interpretations
typically formed the bases of the design of more instruction, in conjunction with the overarching
instructional agenda already elaborated in the last chapter.

The re-iteration of this cycle over time constituted a motive force that drove the evolution of

instruction in tandem with the emergence of students’ ideas as they engaged with instruction.
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This image is much like Gravemeijer’s (1994) and colleagues’ (Gravemeijer et al., 2000)
characterization of iterative mini-cycles of research and development that propelled their design
experiments.

The retrospective analysis in this study retraced this cycle of activity as it unfolded over the
course of the entire teaching experiment. Drawing on the data corpus generated in the teaching
experiment, I analyze and describe instructional activities, I characterize students’ ideas and
understandings that emerged as they engaged with activities, and I describe how the research
team’s interpretations of the students’ emerging understandings and conceptual difficulties fed
back into the design of subsequent instruction.

This chapter elaborates three theoretical perspectives that came into play in my descriptions
and analyses of these components:

1. Radical constructivism

2. Quantitative reasoning

3. Didactic objects and didactic models

These perspectives were employed by the research team as interrelated components of a
framework that guided the design and of the teaching experiment. The team’s aim was to
generate conceptual analyses, of ideas addressed in instruction, that took into account students’
experiences and engagement within instructional interactions. Since the aim of this study is
consonant with that goal, I draw extensively on these perspectives in my analyses and therefore
describe them in the coming pages.' Though these perspectives are seen as interrelated, I separate

them here for the purpose of explication.

Radical Constructivism and Conceptual Analysis
Glasersfeld (1995) elaborated Piaget’s genetic epistemology (1971, 1977) into a
psychological theory of knowing that is commonly referred to as radical constructivism. A
central image in radical constructivism is of individual cognizing agents engaging in purposive
goal-directed activity, in which they strive to makes sense of their personal experiences in

environments and social settings. Glasersfeld used the term “radical” in his constructivist theory

" A necessary first part of such a conceptual analysis—perhaps more aptly termed epistemological analysis
(Thompson & Saldanha, 2000)—is a study of this kind that documents the emergence of students’ ideas in relation
to engagement with instruction.
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to highlight its non-representational view of mind, knowledge, and knowing. Two basic tenets of
this epistemological position are:

1) knowledge is not passively received but is built up by the cognizing subject;

2) cognition serves an adaptive function; to organize one’s experiential reality, not to discover
ontological reality (Glasersfeld, 1995, p. 51).

The “experiential reality” that Glasersfeld distinguished from ontological reality is defined
essentially as the structure that a conscious cognitive agent creates in the stream of its otherwise
amorphous experience. The activity of creating this structure—the building up of personal
knowledge by organizing one’s experiential world —is characterized as “operating”. Drawing on
the work of Ceccato (1949) and Piaget (1971, 1977) radical constructivism maintains that these
operations can be explored. The lineage connecting these strands of research is worth elaborating
briefly, as it provides a context for understanding Glasersfeld’s approach to the analysis of
conceptual operations.

Piaget’s genetic epistemology (Piaget, 1971, 1977) was an interdisciplinary approach to
understanding human intellectual, moral, and social development. Genetic epistemology made
deep connections among biology, philosophy, psychology, and logic, and used both structural
and functional approaches to understanding what might constitute human knowledge. The ideas
that knowing is always a dynamic process, always involving mental operations, and that mental
operations are always part of a larger system of operating, were central to Piaget’s work.” On the
other hand, while Piaget described mental structures as being organizations of mental operations,
he emphasized the structural aspect of knowledge over the operational aspect of knowing. But he
always grounded his notion of knowledge firmly in the idea that knowledge is not a copy of
reality, but rather is built from and within a person’s total neural activity (Thompson &
Saldanha, 2000).

Working independently of the Piagetian school, Silvio Ceccato outlined what he called
tecnica operativa, or operational technique, in which one must “consider any mental content
(percepts, images, concepts, thoughts, words, etc.) as a result of operations” (Cecatto, as cited in
Bettoni, 1998). That is, one must describe consapevolezza operativa, or conceptual operations

(translated literally as “operating knowledge™)’ in order to answer the question “which mental

? Later in the chapter I characterize what Piaget meant by “mental operation”.
? Quotations translated by M. Bettoni. Phrases translated by GO Translations, http://translator.go.com./.
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operations do we perform in order to conceive a situation in the way we conceive it?” (Bettoni,
1998; Thompson & Saldanha, 2000).

Glasersfeld combined aspects of Ceccato’s operational analysis and Piaget’s genetic
epistemology to develop an analytic method that he called conceptual analysis. The method’s
aim 1s to create models of concept construction that describe hypothetical conceptual operations
by which one might come to know something in the way one apparently does. Glasersfeld’s
conceptual analysis frames reasoning and communicating as imagistic processes and knowledge
as an emergent aspect of them (Glasersfeld, 1978).

I drew on radical constructivism for my analyses of individual students’ understandings and
ways of knowing in two central ways. First, it functioned as a background epistemological stance
that served to constrain and orient the kinds of descriptions and explanations I proposed of
students’ thinking (Thompson, 2000). For instance, given the first tenet of radical constructivism,
I tended not to presume that because students engaged in instruction that prompted them to
attend to a certain way of thinking about a particular mathematical idea that they in fact
developed a disposition to think about it in the intended way. This constrained me from taking
for granted that students’ understandings were in line with intended instructional endpoints, and
at the same time it oriented me to look for evidence different from instructional actions as a basis
for describing and explaining students’ plausible understandings.

In a similar vein, given radical constructivism’s second tenet, I tended not to presume that
particular objects and inscriptions designed for and employed in instructional activities were
transparent to students. Instead, I was oriented to take them as potentially problematic for
students and perhaps having a variety of possible interpretations.

The second prominent role that radical constructivism played was in orienting me to
characterize students’ thinking in operational terms. Describing and explaining mathematical
behaviors in terms of plausible underlying conceptual operations—the kind that are “near the
surface of consciousness” and therefore “learnable” —provides a useful starting point for
theorizing about ways of thinking and conceiving ideas that are more or less powerful.

Moreover, this starting point can serve as a useful basis for designing instructional activities and
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engagements intended to foster the development of particular ways of thinking about targeted
ideas.*

While radical constructivism functioned as a background theory that served to constrain and
orient the kinds of descriptions and explanations I proposed of students’ thinking, it did not
provide their content such as mathematical conceptions per se. Nor could it provide descriptions
of instructional activities. For this I drew on two foreground perspectives: a theory of

quantitative reasoning (Thompson, 1994) and an instructional design framework (Thompson,

2002).

Quantitative Reasoning

Thompson’s (1994) theory of quantitative reasoning is about people conceiving situations in
terms of quantities (i.e., things having measures or measurable attributes) and relationships
among quantities. A powerful aspect of this theory is its focus on the psychology of
conceptualizing quantity and measurement. In Thompson’s frame, a quantity is not an
ontologically real entity that exists independently of people’s conceptualizations. Rather,
quantity is a conceptual entity that a person constructs when conceptualizing situations: one
thinks of a quantity when conceiving an attribute of an object as measurable. Thompson
described this schematically; “it [quantity] involves an object-image, a conceptualized attribute
of the object, a tacit understanding of appropriate units of measure, and a quantification
process—a process by which one directly or indirectly assigns numerical values to the attribute”
(Cortina, Saldanha, & Thompson, 1999). Key to Thompson’s characterization is the idea that a
coherent conception of quantity entails conceptualizing situations in ways that support
conceiving of attributes embedded within them as measurable.’ For only then can the question of
how to measure and attribute (e.g., to determine “how much of it there is”) be sensibly
addressed.

Thompson’s theory of quantitative reasoning is germane to this study in two salient ways.

First, the theory underlay the research team’s vision of the kinds of reasoning it hoped students

* This idea is fully developed in Thompson (2002).

> Thompson had a ratio scale measure in mind when he defined “conceiving an attribute of an object as measurable”
to mean that one conceives of the attribute as segmentable, and that segmentation is in comparison to some standard
amount of that attribute (Thompson & Saldanha, 2003)
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would develop with respect to the statistical and probabilistic ideas addressed in instruction. As
such, the theory guided the design of particular instructional activities.

The research team often approached particular statistical ideas addressed in instruction from
the perspective of measurement and quantity. For instance, numerical data were often treated as
representing measures of sampling outcomes—that is, attributes of a collection of items selected
from a population. Similarly, a population parameter was treated as a measure of an attribute of
the population of sampled items. Instruction had students work with collections of such data
values in ways that were intended to raise issues having to do with quantifying attributes of
them: “What proportion of a collection of sample statistic’s values are within such and such
range of the sampled population parameter’s value?”, “How can we measure how densely
packed around the population parameter value is a collection of a sample statistic’s values?”,
“How can we quantify how unusual a particular kind of sampling outcome might be?”, “How
can we quantify our confidence or expectation that a particular sample statistic’s value is
representative of the sampled population parameter’s actual value?”

Much attention was given, in instruction, to engaging students in activities that might provide
them with an experiential basis for thinking about these issues and addressing such questions
more generally. The specifics of such instructional activities and the particular issues discussed
within them with them will become clear throughout Chapters V through VIII. My aim here is to
orient the reader to the significance of Thompson’s theory for the design and implementation of
instruction in the teaching experiment.

Second, Thompson’s theory is also directed toward explicating the conceptual operations by
which people come to conceive situations quantitatively, both developmentally (over time) and
in specific settings. In its application to the analysis of conceptualizing statistical ideas, the frame
was a useful tool in the retrospective analysis in this study. It provided a point of reference for
characterizing students’ mathematical reasoning and understandings in comparison with those
targeted in instruction. More specifically, it oriented my descriptions of what students did and
what difficulties they experienced in thinking of the statistical concepts in terms of ideas related
to measurement and quantity. Thompson’s theory draws heavily on Piaget’s ideas of image,
scheme, mental operation, and reflective abstraction to describe the emergence of quantitative
ideas in terms of schemes of mental operations. The next three subsections elaborate these ideas,

as my analyses of students thinking and understandings draw on them.
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Action scheme, assimilation and accommodation

As I mentioned earlier, the idea of goal-directed action was central to constructivism and
hence to Piaget’s theory of knowing and genetic epistemology. Action, as Piaget thought of it,
was always purposive and undertaken by an agent in the context of attaining some goal. But an
action is not the same as an observable behavior. To Piaget, actions could range in complexity
from the most basic, and directly observable, sensorimotor actions (e.g., the rooting reflex) to the
most sophisticated imaginative actions (e.g., the group transformations of the square) that need
not be expressible in any observable behavior (Thompson, 1994). Furthermore, actions are tied,
to varying degrees, to experience —whether those experiences be largely concrete and sensori-
motor or mental and reflective.’®

Piaget (1971, p. 42) defined a “scheme” as “whatever is repeatable and generalizable in
action”. However, this characterization is deceptively simple for a construct that was such a
unifying component of his theory. Glasersfeld (1995, p. 65) elaborated this into action
scheme—a framework that posits a global structure of goal-directed action that, together with the
processes of assimilation and accommodation, explains how an agent might come to know
whatever is repeatable and generalizable in action. An action scheme consists of a three-part
pattern:

1) Recognition of a certain situation (i.e., an internal state that is necessary for the activation

of actions composing it);

2) a specific activity associated with that situation (i.e., the actions themselves);

3) an expectation that the activity produces a certain previously experienced result (i.e., an

imagistic anticipation of the result of acting).

Glasersfeld (ibid., p. 65) explained that the “recognition” in part 1 is always the result of an
assimilation, by which he meant that an agent “always reduces a new experience to already
existing sensorimotor or conceptual structures”. The process of accommodation is characterized
very nicely in Glasersfeld’s description of the workings of actions schemes:

“An experiential situation is recognized as a starting-point of a scheme if it satisfies

the conditions that have characterized it in the past. From an observer’s point of view,

it may manifest all sorts of differences relative to past situations that functioned as

% Piaget’s idea of action was broader than I cast it here, entailing ideas of emotion and affect as well (Piaget, 1967).
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trigger, but the assimilating organism (e.g., the child) does not take these differences
into account. If the experiential situation satisfies certain conditions, it triggers the
associated activity [...] The activity, part 2, then produces a result which the
organism will attempt to assimilate to its expectation part 3. If the organism is unable
to do this, there will be a perturbation (Piaget, 1974, p. 264). The perturbation, which
may be either disappointment or surprise, may lead to all sorts of random reactions,
but one among them seems likely: if the initial situation 1 is still retrievable, it may be
reviewed, not as a compound triggering situation, but as a collection of sensory
elements. This review may reveal characteristics that were disregarded by
assimilation. If the unexpected outcome of the activity was disappointing, one or
more of the newly noticed characteristics may effect a change in the recognition
pattern and thus in the conditions that will trigger the activity in the future.
Alternatively, if the unexpected outcome was pleasant or interesting, a new
recognition pattern may be formed to include the new characteristic, and this will
constitute a new scheme. In both cases there would be an act of learning and we
would speak of an ‘accommodation’. The same possibilities are opened, if the review
reveals a difference in the performance of the activity, and this again could result in

an accommodation.” (Glasersfeld, 1995. pp. 65-66).

Thus, accommodation is the altering of one’s existing conceptual structure(s) impelled by
one’s efforts to assimilate situations. In this sense, accommodation is an operation that enables
an agent’s continued assimilation of encountered situations. But as Glasersfeld’s description
implies, the relationship is not unidirectional. Instead, assimilative and accommodative actions
are reflexively related —either type can underlie and lead to the other type. Moreover, when
taken together as a system of reflexively related operations, they have a generalizing effect in

that they drive an agent’s ability to engage in repeated and progressive goal-directed action.’

7 Piaget distinguished among three related types of assimilations. (1) Functional or reproductive assimilation
consists of repeating an action and of consolidating the action by this repetition; (2) recognitive assimilation consists
of discriminating the assimilable object in a given scheme, and (3) generalizing assimilation consists of extending
the field of this scheme (Piaget, 1977, pp. 70-71)
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Imagery

The parenthesized statements appearing next to Glasersfelds’ elaboration of the parts of an
action scheme are Thompson’s (1994) restatement of them. His language emphasizes that an
agent’s recognitive capacities are due to internal states that are the result of its own activity and
actions. Furthermore, Thompson’s restatement of part 3 relates schemes to imagery. Indeed,
Piaget’s notion of imagery was broad and tightly bound up with action schemes, this is one
reason why it isn’t easily explicated or comprehended.

Consistent with his non-representational view of mind, to Piaget images were not like static
mental pictures, nor were they data structures produced by perceptual processes (Kosslyn, 1980).
Instead, Piaget thought of images as dynamic and reconstitutive of experiences, and as entailing
vestiges of the mental operations that constituted them. “Piaget focused on images as the product
of acting [...] To Piaget, images are residues of coordinated actions, performed within a context
with an intention” (Thompson, 1996, p. 270). Piaget distinguished among three types of images
according to the level of abstraction and development of the image’s constituent operations:

1. An “internalized act of imitation ... the motor response required to bring action to bear on

an object ... a schema of action.”

2. “In place of merely representing the object itself, independently of its transformations, this
image expresses a phase or an outcome of the action performed on the object ...[but] the
image cannot keep pace with the actions because, unlike operations, such actions are not
coordinated one with the other.”

3. ‘““An image that is dynamic and mobile in character ... entirely concerned with the
transformations of the object ... the image is no longer a necessary aid to thought, for the
actions which it represents are henceforth independent of their physical realization and
consist only of transformations grouped in free, transitive, and reversible combination”.

(Piaget, quoted in Thompson, 1994, p. 181)

Abstractions of sorts

Internalization and interiorization refer to the reconstruction of actions, at different levels of
abstraction, that can enable mental imagery of situations involving the actions (Piaget, 1977,
Thompson, 1994; Vuyk, 1981). Actions are internalized if they can be carried out in

thought—that is, if the actions’ execution and its result can be imagined without having to be
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physically carried out. But internalization is the result of an initial abstraction and the resulting
imagistic reconstruction may still be heavily constrained by aspects of the concrete experience.
For instance, the reconstruction may occur only in real-time and feel like a mental replay of an
experience. Interiorization is a further abstraction—“a progressive reconstruction and
organization of actions” (Thompson, 1994, p.181)—that further emancipates the imagined
actions from the initial concrete experience. For instance, an interiorized sequence of actions and
its result may be imagined in an accelerated time frame and understood without the need to
mentally play out each step of the composition.®

As Piaget’s comments on imagery, above, imply, he thought of a mental operation as an
internalized or interiorized system of coordinated actions.” Furthermore, he implied that while
mental operations are always implemented in images, an image need not be tied directly to the
origins of the operation (Thompson, 1994).

Piaget distinguished two broad types of abstractions that drive the reconstructions and
reorganizations in internalization and interiorization. He spoke of simple or empirical
abstractions as deriving directly from objects: “... it is one thing to extract a character, x, from a
set of objects and to classify them together on this basis alone, a process which we shall refer to
as ‘simple’ abstraction and generalization ...” (Piaget, quoted in Glasersfeld, 1995, p. 103).
However, this characterization can be misleading to a reader who takes a realist interpretation
and doesn’t keep in mind that Piaget thought of objects as constructions. Moreover, Piaget was
speaking from the perspective of a cognizing agent still unaware of the role of his own actions on
his experiential reality. With this in mind, Glasersefeld (1995) more aptly called an abstraction
“empirical” if it abstracts properties directly from sensorimotor experiences. For example, a child
may abstract from his or her basic visual and tactile experiences with apples the rule “all apples
are green and smooth”. Such a child might be surprised when presented with the possibility of

considering russet apples as apples.

¥ An example of interiorization, suggested by Pat Thompson (personal communication, 1997), is when one is able to
imagine running through values in the domain of the function f(x) = 3x - 2 and generating a subset of its range
without having to mentally perform the indicated mathematical operation for each value one runs through. Rather,
this is an imagistic anticipation of the target set corresponding to a subset of the function’s domain.

? Another property of operation not stressed in this characterization is reversibility. That is, an internalized system of
coordinated actions is a mental operation for someone if one can imagine its decomposition and a corresponding
change in state of affairs (situation or object).
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The second type of abstraction—reflective abstraction—is derived from a cognizing subject’s
own activity and coordination of actions. Piaget (1971) illustrated reflective abstraction with an
account of how a young child discovered the commutativity of addition by placing ten pebbles in
various configurations (in a line and then in a circle) and then noticing that he always got ten
pebbles regardless of whether he counted them from right to left or from left to right in a line, or
clockwise or counterclockwise in a circle: * It is true that the pebbles, as it were, let him arrange
them in various ways; he could not have done the same with drops of water. So in this sense
there was a physical aspect to his knowledge. But the order was not in the pebbles; it was he, the
subject, who put the pebbles in a line and then in a circle. Moreover, the sum was not in the
pebbles themselves; it was he who united them. The knowledge . . . was drawn from, then, not
from the physical properties of the pebbles, but from the actions that he carried out on the
pebbles” (Piaget, 1971, p. 17)."

In a broad sense, Piaget formulated a theory of the development of human cognitive actions
from the most basic to the most sophisticated. The internal mechanisms that he posited as driving
this development were themselves described as sophisticated high-level actions that cognizing
subjects need not be conscious of. Indeed, Piaget’s theory characterizes cognitive development
as a recursive, self-referential, and self-modifying process that is necessarily diachronic; a
cognitive agent’s constructive efforts and constructions are always constrained by its current
organizational state and by a history of its constructive efforts. This was clear in the following
quote: “... no behavior, even if it is new to the individual, constitutes an absolute beginning. It is
always grafted onto previous schemes and therefore amounts to assimilating new elements to
already constructed structures (innate, as reflexes are, or previously acquired” (Piaget, quoted in
Glasersfeld, 1995, p. 62). The emergence, from this process, of relatively stable constructions
and organizations of images are what underlie people’s understandings or ways of knowing in
specific settings. This view resonates strongly with Johnson’s (1987) characterization:

“Grasping a meaning is an event of understanding. Meaning is not merely a fixed

relation between sentences and objective reality, as Objectivism would have it. What

we typically regard as fixed meanings are merely sedimented or stabilized structures

that emerge as recurring patterns in our understanding” (Johnson, 1987, p. 174).

' Piaget further distinguished among three types of reflective abstractions that depended on the developmental level
of the cognizing agent’s actions (Glasersfeld, 1995). I do not describe these here.
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The language of conceptual schemes, imagery, and mental operations can be a powerful tool
to describe students’ understandings of situations they encounter in instruction and to describe
the development of rich, connected, coherent understandings of mathematical ideas. It is also
useful in both the design and analysis of instruction aimed at having those understandings

emerge from students’ engagement and reflection.

Didactic Objects and Didactic Models

The design of instruction in the teaching experiment was organized around the ideas of
didactic objects and didactic models (Thompson, 2002). These ideas are grounded in the research
team’s interest in Glaserfeld’s (1995) style of conceptual analysis. In Thompson’s (2002) view,
conceptual analyses of mathematical ideas and understandings cannot be carried out abstractly,
but rather must be given in terms grounded in people’s conceptual experience. Doing conceptual
analyses entails imagining students having something in mind in the context of discussing that
something. (ibid., 2002). Toward this end, instructional activities were designed with two central
aims in mind: 1) to create opportunities for students and the instructor to discuss particular
things, objects, or ideas that needed to be understood and to discuss how to imagine such things,
and 2) to create opportunities for the instructor-researcher to ensure that specific conceptual
issues would arise for students as they engaged in discussions with him.

When goals 1 and 2 above are realized with regard to a particular idea, they can end up
producing instructional conversations (interactions) around that idea. Put simply, then, the
overarching design rationale for instructional activities in the teaching experiment was grounded
in the research team’s desire to engineer situations that would engage students in instructional
conversations that might support building psychological models of their understandings.

At the core of this design rationale, then, is an image of students purposively participating in
conversations engineered and choreographed to foster reflection on some mathematical
thing—an object, an idea, or a way of thinking. The term didactic object refers to “a thing to talk
about that is designed to support reflective mathematical discourse involving specific
mathematical ideas or ways of thinking.” (Thompson, 2002; p. 210). The instructional activities
employed in the teaching experiment were typically designed to entail such things. For example,

the experiment’s opening instructional activity engaged students in a sampling activity in which
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they generated collections of a sample statistic’s values. These collections of data values were
then represented in frequency tables by the instructor. These tables organized the collections in a
way intended to support having reflective conversations about how to construe and structure
these collections so as to be able to compare them, for instance. These conversations turned out
to be productive in a number of ways. But the frequency tables themselves did not constitute a
didactic object. Rather, the way in which they were used by the instructor in the total activity
made them a didactic object. Indeed, a didactic object is akin to a tool. But just as a hammer is
not a tool unless conceived as such, an object is not in and of itself didactic. Rather, an object can
become didactic in the “hands” of someone who conceives using it in ways that enable student
engagements and conversations that foster productive reflection on specific mathematical
things."

Didactic objects are useful tools for helping develop conceptual analyses; when employed in
teaching experiments to produce environments that foster reflective mathematical discourse, they
help generate observable information. As such, they facilitate researchers’ formulation of
hypotheses about students’ understanding and development in relation to their engagement with
instruction.

The term didactic model (Thompson, 2002) refers to a model that an instructor or
instructional designer has of “what they intend students will understand and how that
understanding might develop” (ibid., p.211). This is their “image of all that needs to be
understood for someone to make sense of the didactic object in the way he or she intends” (ibid.,
p. 221)—that is, an image that guides the designer or user’s decisions concerning how the
didactic object will be used, such as what conversations to have around them and what issues to
raise in those conversations.

In this study the ideas of didactic objects and didactic models are reflected in my descriptions
and analyses of instructional activities, which typically entail elaborating their design rationales

and issues they aimed to address.

To summarize, the interrelated perspectives of radical constructivism, quantitative reasoning,

and didactic objects and didactic models formed a framework that guided the design and

' Several examples of didactic objects are discussed at length in Thompson (2002).
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implementation of the teaching experiment analyzed in this study. The framework was rooted in
the idea of extending Glasersfeld’s (1995) style of conceptual analysis to statistical and
probabilistic ideas in the context of instructional interactions.

These frames helped texture this study in a number of ways: radical constructivism played
the role of background theory, serving to constrain and orient the fypes of descriptions and
explanations I developed of students’ understandings and ways of knowing. Thompson’s (1994)
frame of quantitative reasoning was applied to statistical and probabilistic notions, casting them
in terms of ideas of measurement and quantity, and providing the mathematical content of my
descriptions and explanations of students’ understandings. The ideas of didactic objects and
didactic models (Thompson, 2002) are reflected in my descriptions and analyses of the

instructional activities with which students engaged in the teaching experiment.
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CHAPTER IV

ANALYTICAL PROCEDURES

With the interrelated frames of radical constructivism, quantitative reasoning, and didactic
objects and didactic models in mind, in this chapter I describe the methods I employed to analyze
the data generated in the teaching experiment. I do so on two levels. First, I give an overview of
my approach, characterizing it in terms of a basic procedure consistent with the grounded-theory
approach to conducting qualitative analysis. I then describe the specific procedures enacted that

were tailor-made for guiding my analysis of the teaching experiment’s data.

Analytical Approach from a Global Perspective

From a global perspective, the method I employed to generate descriptions, hypotheses, and
explanations is consistent with grounded theory’s (Glaser & Strauss 1967; Strauss & Corbin,
1990) procedures of continual review, constant comparison, and regeneration, as elaborated by
Cobb and Whitenack (1996). This method can be characterized operationally as iterating a basic
three-step procedure:

1. Search available data with an eye toward conceptualizing episodes and sequences of
engagement that are suggestive of students’ conceptions and understandings related to
ideas addressed in instruction. Formulate initial impressions (e.g., descriptions and
hypotheses) about students’ understandings in particular contexts.

2. Test viability of initial impressions by searching data for supporting or contradictory
evidence, as in step 1.

3. Adjust initial impressions on the basis of evidence obtained in step 2; refine, elaborate,
abandon, or reconstruct initial impressions.

Analyses were generated by reiterating this procedure with the aim of developing
increasingly stable and viable hypotheses and models of students’ conceptions in relation to their
engagement in instruction. A particular heuristic that guided my analyses at all levels was to
search for evidence of relative stability/robustness and instability/non-robustness in students’
thinking, imagery, and ways of operating. This heuristic oriented me to comprehend the limits of

students’ thinking and understanding and the situations that taxed those limits. In addition I
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relied on a two other guiding principles. One is akin to a law of momentum: a conjecture lives
until substantial contradictory evidence emerges, and its viability is strengthened as evidence in
support of it accrues from the various data sources. The other principle is akin to a law of
parsimony: I resisted attributing more understanding to a student than was necessary to account
for a behavior I was trying to explain. Together, these principles helped constrain and guide my
interpretation of the data.

The videotaped classroom lessons were examined first to formulate initial impressions
concerning students’ engagement in instruction and their conceptions related to ideas of
sampling and distributions addressed in instruction. In subsequent examinations, I triangulated
with the other data sources —students’ written work and individual interviews —searching for
evidence to test which of my initial impressions were robust enough to become potentially viable
conjectures and which were refuted or needed revision and refinement. In iterating this
procedure, the information I created from increasingly extensive cross referencing of the data
sources served to increasingly constrain and orient my hypotheses and theory-building. As this
regenerative process unfolded, my theory-building activity became increasingly directed,
evolving from a state of relatively unstable initial hunches to one of relatively stable hypotheses
supported by evidence from several sources. This process unfolded in a sequence of identifiable

levels of analytic activity described in the next section.

Data Analysis from a Local Perspective: Procedural and Organizational Details
In this section I describe the procedural details of the analytic method mechanistically and

reiteratively to impart a sense of how my analyses developed from the most basic to the most
sophisticated levels. The data corpus generated in the teaching experiment is listed below in
decreasing order of abundance:

* 17 videotaped classroom lessons;

* Numerous instructional artifacts: lesson plans, activity sheets, computer softwares;

* 14 documents of students’ written work: 12 in-class activities and/or take home

assignments;

e 2 formal in-class evaluations;
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* 2 individual student interviews (one conducted at mid-experiment, the other at post-
experiment).'

The analytical procedure consisted of conducting repeated passes over the collection of
lesson videotapes —that is, directed viewing and examinations of the videotaped classroom
lessons in chronological order.” In these examinations, I did not consider students’ behavior and
ideas as disembodied from instruction. Rather, I took classroom instruction and instructional
interactions (e.g., engagements and conversations) as a focal point of my examinations and
anchored my analyses around them. In this way, descriptions and analyses of students’

understandings were grounded in their participation in instruction.

Level I: Preliminary examination of videotaped lessons

Pass 1

Analyses began by making a chronological pass over the entire collection of videotaped
classroom lessons to identify times during which a topic related to sampling and sampling
distributions was discussed (either explicitly or implicitly). For each lesson, I created a 30-
second time sample of when such discussions happened and I identified rough starting and
ending times of individual instructional activities.’ In addition, for each lesson I created two
files: a “students” file in which I recorded notes (theoretical and other kinds) that occurred to me
about students’ reasoning and engagement; a “lesson” file for notes about instruction and
activities. The notes constituted a form of loose coding during the preliminary examination of the
classroom data. Figure 4.1 displays the computer environment in which I worked to create these

documents.

" All of this information was organized according to the chronological order of its production prior to my formal
analysis of it.

* All video was digitized and transferred to CD ROM. There were two video images for most lessons: one captured
all participants and the front board and projection screen, another captured students and a sideboard.

? This was a relatively low-level analysis in which I simply made a check mark, on a running time chart, in every 30-
second interval that the discussion addressed a seemingly related topic (e.g., sampling, distribution, (un)usualness,
(un)likelihood, expectation, rare results, variability, etc.).
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Figure 4.1. The computer environment in which I conducted preliminary analyses of the videotaped lessons.

Pass 2

The time sample files created in the first pass enabled me to make a second, and more
directed, pass of the classroom lesson videos. In this pass I focused on filling out my initial
rough identification of distinct instructional activities. This was done by building on the Lesson
notes created in the first pass; I elaborated on what individual activities seemed to entail and
what issues instruction raised, for instance. In addition, I began to triangulate with the other
artifacts in the data corpus: I included in the Lesson file a copy of any relevant activity items
such as guides and handouts. In the same pass, I also elaborated on the “Students” notes by
adding whatever thoughts occurred to me concerning their utterances as they participated in the
activities. The product of this second pass was a more elaborated set of notes about lessons and
students.

By the end of the second pass I anticipated a need to move toward creating verbatim
transcripts of segments of each lesson during which particular activities unfolded. This was
necessitated by the nature of the classroom interactions; they were intricate, messy and
protracted, and not easily analyzed without having captured their fine details. This decision

precipitated a move to a second level of analysis, which I refer to as “transcription as analysis”.
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Level II: Transcription as analysis

Working in the same technological environment that I employed in the first level of analysis
(see Figure 4.1), the second level focused on transcribing lesson segments that centered on the
instructional activities identified earlier. This stage of the analysis was much more intense and
protracted than the first; I did not merely transcribe to capture participants’ utterances, I also
used this activity as an opportunity to reflect more deeply on what was said and done among
participants in the classroom. This stage consisted of two passes over the videotaped lessons. The
first pass produced annotated lesson transcripts and copious theoretical notes about instruction
and about students’ ideas and engagement. In the second pass, I completed the lesson transcripts
by including in them all textual information (e.g., activity guides and handouts, video screen
shots, sketches, etc) employed in the classroom lessons.

This second level of activity produced a set of more elaborated notes about the lessons and
about students’ engagement and ideas. More importantly, it produced 17 lesson transcripts
sufficiently detailed to code without need for further sustained video viewing. This precipitated

the start of a third level of analysis, in which I worked largely with this new textual data.

Level III: Transcript coding

At this level of the analysis I conducted two passes over the lesson transcripts, each one
entailing more directed and elaborate coding of instruction and of students’ engagement and
ideas. In the first pass, each lesson transcript was coded for: 1) characteristics of individual
instructional activities, such as their purpose and underlying rationale, and the issues they sought
to raise and engage students with; 2) characteristics of students’ interpretations and
understandings of these issues that emerged as they engaged in the individual instructional
activities. The codes and descriptions developed for the instructional activities drew on the other
forms of data such as lesson plans, activity handouts, and field notes generated during the
experiment’s progress.”

In addition, I coordinated the coding of students’ ideas that emerged in classroom discussions
in particular activities with analyses of their written work on tasks relevant to those activities

(i.e., homework activities and in-class assessment questions).

* This activity occasionally entailed consultations with the team leader to clarify issues related to the intent of
aspects of particular instructional activities.
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Analyses of students’ written work on such tasks entailed characterizing salient features of
their responses and explanations. I also considered students’ written responses and explanations
in terms of their degree of consistency with “model” responses and explanations—those I
imagined expressed interpretations and understandings targeted in instruction. Moreover,
whenever a task was also explored in the individual interviews, those segments of the interviews
were analyzed for additional insight into students’ interpretations and understandings of the
issue(s) and idea(s) at hand.

I should mention that analyses of students’ relevant written work and interview segments
were not conducted separately from the coding of the lessons transcripts. Instead they were
conducted in tandem, whenever such data was produced in the chronological unfolding of the
lessons. In this way, analyses of students’ written work and interview items were sensitive to the
unfolding of instruction and students’ participation in it.

In the second pass of this stage of the analysis, I studied the codes created for individual
activities and made connections across them. By coordinating my analyses of instructional
activities with my developing sense of issues that arose for students as they engaged in the
activities, I was able to aggregate instructional activities into sequences of them. This occurred
with my identification of shifts in instruction (e.g., changes in approach or in the “big ideas”
addressed) that I related to significant classroom developments and the research team’s

interpretation of them.

Level IV: Narrative construction

What emerged from my coding activities in the third stage of analysis was a rough outline for
the structure of a descriptive narrative of the teaching experiment. The outline conceptualized
four broad phases in which instruction unfolded. Using this outline as an organizational tool, I
then constructed a narrative describing how instruction progressed from the start to the end of the
teaching experiment in tandem with characterizations of students’ understandings and
interpretations that emerged as they engaged with instruction. Moreover, the narrative was
designed to highlight the interdependence and co-evolution of instruction with students’
engagement and salient understandings, thereby reflecting a central feature of the teaching
experiment. The narrative construction occurred over a series of successive refinements and

drew extensively on the notes and codes developed in the previous stages of analysis. At the
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same time constructing the narrative constituted a form of analysis itself, providing a space for
elaborating and refining descriptions and relations generated in previous stages that now served
to refine the unfolding narrative itself.

This constructive process converged to the narrative that constitutes Chapters V through IX
of the dissertation. The narrative intertwines descriptions and analyses of various aspects of the

teaching experiment. These are elaborated in the overview of Part II of the dissertation.
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PART II



OVERVIEW

In the introduction to this dissertation, I briefly described the teaching experiment as
having unfolded in a sequence of interrelated instructional phases. In this part I describe
these phases in detail and situate my analyses of students’ conceptions and development
within them.

I view the unfolding of instruction as giving rise to an emergent instructional
trajectory because the evolution of instruction was driven by complex interactions
between a priori designed instruction, the instructor’s reflective interactions with students
within particular instructional settings, and adjustments made to instruction on the basis
of those reflective interactions.

As I mentioned in Chapter II, the instructional methodology used in the experiment
was flexible to the point of allowing classroom interactions to “veer” in unanticipated
ways from planned instructional agendas. The general aim in allowing relatively wide
latitude in these interactions was to occasion their rich development, in particular to
optimize the possibility of capitalizing on serendipitous events in the classroom. Thus,
adjustments to instruction were made on a variety of scales relative to that of the overall
experiment. This feature of the instructional design brings into question what, in my
analysis, constitutes a unit called a phase of instruction. I addressed this problem by
considering the “big mathematical ideas” that instructional activities and interactions
centering on those activities aimed to broach and develop. Framing instructional activities
in terms of their attendant design rationales enabled me to then relate activities in terms
of these rationales and to thus aggregate activities into sequences. This approach also
enabled me to consider critical shifts in the big ideas addressed within sequences of
activities or critical shifts in the way instruction aimed to engage students with the big
ideas. These shifts typically constitute the boundaries of what I call phases of instruction.

The first four chapters in this part describe instructional interactions as occurring in
four phases and they elaborate shifts that suggest their evolution into an emergent
instructional trajectory:

Phase 1: Orientation to statistical prediction and distributional reasoning

Phase 2: Move to conceptualize probabilistic situations and statistical unusualness
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Phase 3: Move to conceptualize variability and distribution
Phase 4: Move to quantify variability and extend distribution
Figure Ila displays a time-line of the unfolding of this trajectory over the

experiment’s duration.

Phase d
I |
I 1
Phase 3
f |
Phase 2
| |
Phase 1
e
>
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D17 Lessons (09/14)

Figure Ila. Time-line of instructional phases across the duration of the teaching experiment.

Each phase is named with a thematic descriptor that suggests the central direction in
which instruction aimed to move students. Each of Chapters V through VIII is devoted to
events that unfolded in a single phase, and each elaborates four distinct yet interrelated
levels of description and analyses; activities and sequences thereof, discussions and
student conceptions embedded within them. Chapter IX gives a summary overview of the
findings and elaborates conclusions.

Just as the entire experiment is characterized as unfolding in a sequence of phases, so,
too, are individual phases seen as unfolding in a sequence of activities. Similarly,
activities within phases are seen as unfolding in a sequence of instructional discussions,
each of which often unfolded in phases. It is useful to keep this nested and fractal-like
structure of the experiment in mind as an orienting perspective, as it can help the reader
distinguish and coordinate these levels. The figure below depicts these levels and the
bottom-up unfolding of interactions that drove the experiment’s emergent structure to

increasingly macro levels.
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Figure IIb. A hierarchy of levels of description and analysis. The broken lines denote analyses of students’
thinking extended to broader levels.

Although evidence of students’ conceptions emerged largely in the “bottom”
levels—within local classroom interactions centering around particular activities —
analyses of these conceptions are not circumscribed within these levels. Instead, analyses
are extended throughout higher levels. This feature enables conceptualizing the entire
experiment as a structured whole emerging out of interrelations between the various
levels of analysis.

The coming chapters culminate with rather compelling evidence, emerging near the
conclusion of Phase 3 (Chapter VII), of students’ profound difficulties in conceiving a
distribution of sample statistics. That students experienced this difficulty is a surprise,
especially after Chapters V and VII show their apparent ability to structure collections of
sample statistics in ways that would seem to support their coming to think of them as

distributions.
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CHAPTER V

PHASE 1: ORIENTATION TO STATISTICAL PREDICTION AND
DISTRIBUTIONAL REASONING

This chapter describes the first three instructional activities of the teaching experiment as
they unfolded in a sequence over Lessons 2 through 4 (see Figure 5.1). Broadly speaking, these
activities engaged students in exploring collections of sample statistics with the aim that they
move toward making inferences about the composition of an underlying population on the basis

of the make up of those collections.

Phase 1:  Orientation to statistical prediction & distributional reasoning

Lesson | Activity (A) Duration
2 (08/17) | Al: Sampling tangible objects, Part 1 and Part 2 (Discussion 1) 11 m.
3(08/18) | Al, Results from Part 2 revisited (Discussion 2) 16 m.

3 A1, Part 3: Transitions to A2 (Discussion 3) 10 m.

a) Part 2 repeated and new results discussed

b) Focus on result of 2™ trial of candy-sampling experiment
3 A2: Investigating unusualness with Prob Sim 10 m.

4 (08/19) | A3: Assessment activity 18 m.

Figure 5.1. Chronological overview of activities in Phase 1.'

The chapter begins by elaborating the rationale for the design and implementation of Activity
1, drawing on conjectures that emerged from the research team’s analyses of a previous teaching
experiment. The chapter then characterizes discussions that unfolded around Activities 1 and 2,
typically following their temporal order and highlighting instructional interactions and students’
thinking that emerged within them. The final part of the chapter focuses on students’ written
work in Activity 3, supplemented with highlights from subsequent classroom discussions that
serve to elaborate students’ thinking.

Analyses highlight critical shifts in the class’s foci of attention and discourse that delineate
broad phases in instructional interactions, the whole of which gave rise to a hypothetical

classroom developmental trajectory.

" The symbol “A1” in Figure 5.1 denotes Activity 1. In similar figures appearing at the beginning of each chapter, an
analogous symbol denotes each of the other activities.
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Prelude to Phase 1

The point of departure for instruction in this experiment was motivated by two conjectures
that emerged from the research team’s analyses of the first teaching experiment.” Instructional
activities in that experiment centered on having students explore and interpret the results of
computer simulations of drawing many samples from populations having known proportions
(Saldanha & Thompson, 2002). Activities were intended to help students develop a sense for
how a sample proportion’s values get distributed around the underlying population proportion.
My analyses of the experiment’s data suggested that many students experienced two significant
difficulties:

1) students could not reconcile the idea of sampling repeatedly from a population having a
known proportion with the idea that we typically draw a single sample from a population to learn
about its unknown proportion. The unresolved tension that students experienced between these
two ideas seemed to have a lasting and significant impact on their ability to develop a coherent
sense of sampling distributions.

2) students had no experiential basis for understanding what the sampling simulations were
simulations of, and the activity of trying to make sense of the simulations lacked a concrete
grounding for them. This, in turn, had a significant effect on their ability to engage with
instruction.

In planning this—the second —experiment, the research team surmised that these difficulties
might be circumvented were students to first engage in selecting samples of physical objects
from populations, with the aim of inferring the underlying population proportion’s unknown
value. These considerations motivated the design of Activity 1 (see Figure 5.2), the experiment’s

opening instructional activity”.

* A brief description of the first teaching experiment is provided in Chapter II.

? Activity 1, which was introduced in the first substantive lesson of the experiment, was immediately preceded by a
whole-class discussion centered on a simulated sampling demonstration that broached the ideas of random sample,
population, and making an inference from the former to the latter.
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Activity 1: Rationale and Description

Sampling Activity
In this activity we will try to get a sense of populations of objects by investigating how
the samples drawn from those populations are distributed. The populations cons st of:
red and vellow toothpicls, pennies and nickel s, red and white candies.

1. Mix up the objects and, without leoking, draw a sample of 5 cbjects from the bag.
Fecord the number of yellow toothpicks, melels, or red candies in your sample.
Consider what ffus sample suggests about the population of objects in the bag.

2. Put the sample back in the bag and mix thoroughly.
3. Repeat this random sampling process 10 times.

Keep track of the number of yellow toothpicks, nickels, or red candies in each sample.
Record your results in a table.

4. Interpret your results in terms of what they suggest about the contents of the bag,

Figure 5.2. Written guide for Activity 1.

The general aim of Activity 1 was to engage students in a concrete sampling experiment as a
basis for having them draw conclusions about a population. The activity’s first part (Question 1)
asked students to make a prediction about the proportion of objects in a collection on the basis of
the composition of a single sample randomly drawn from that collection. The style of reasoning
that instruction intended to have emerge among students was consistent with the logic of
statistical inference: “given that a sample is randomly selected from a population, we assume that
it is a representative sample. Thus, under the assumption that the underlying population is like
the sample, we can then hypothesize the population parameter’s value”. This line of reasoning
had been explicated by the instructor in a pre-activity discussion (see footnote 1); he highlighted
it again during the first part of this activity, which was conducted in a whole-class discussion
format.

The activity’s second part (Questions 3 and 4) had students repeat the sampling experiment
10 times with the aim that they keep track of and record the 10 sample outcomes of interest.
Students were then asked to interpret their collection of outcomes in terms of what it suggests
about the proportion of items in the sampled population. Thus, whereas students had previously
made an inference on the basis of a single sampling outcome, this part of the activity oriented
them toward making an inference on the basis of a collection of sampling outcomes. A central

aim of this part was to provide students with an experiential basis for building imagery of the
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repeatability of the sampling process, the variability among sampling outcomes, and the
aggregation of individual sample outcomes into a collection of outcomes.

Students engaged in the activity in small groups, each of which randomly selected samples of
5 objects, without replacement, from one of the collections of objects.4 Students knew that each
collection was composed of two classes of objects—red and white candies, red and yellow
toothpicks, and nickels and pennies, respectively. The proportions in each collection, however,
were unknown to them.

Activity 1 unfolded in three parts over Lessons 2 and 3, each part entailing substantive
discussions centering on a main idea of the part. The activity progressed through Question 1
during the last 11 minutes of Lesson 2, at which time a first discussion focusing on that question
occurred. The activity also advanced into the second part (Questions 3) during Lesson 2, but no
substantive discussions occurred then due to a lack of time.

The activity was revisited at the start of Lesson 3 (the next day), whereupon a second
discussion focusing on students’ sampling results in Questions 3 and 4, obtained during Lesson
2, occurred during the first 16 minutes. Immediately following this, the second part of the
activity was repeated and students selected a second collection of samples from their respective
populations. A third discussion focusing largely on one group of students’ sampling results then
unfolded over approximately 10 minutes. This third discussion served as a transition into
Activity 2. The next three sections highlight instructional interactions and student conceptions

that emerged within each of these discussions, respectively.

Discussion 1

The transition between the two parts of the sampling activity —Question 1 and Questions 3
and 4—developed within the context of a discussion in which the instructor sought to implicitly
make the variability among sample outcomes a rationale for selecting more samples. He did this
by raising the possibility that the any individual sampling outcome might be unusual. The
instructional aim was to have students view the selection of multiple samples and the
consideration of their outcomes as a natural strategy for investigating the possibility of

unusualness and for obtaining more information about the underlying population proportion. The

* Bach collection contained approximately 500 items in an opaque sack.
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following discussion excerpt, lasting 2 minutes during the first part of the activity (Lesson 2),
illustrates interactions that drove this transition.’
Episode 1, Lesson 2:

1. I: Now, based on what you just took if you had to make a guess about what’s

in the bag, besides toothpicks or coins or whatever, the relative amounts of

things in the bag. Based on the amounts you took, what would you say is in
the bag?

Peter: A lot more yellow ones.

I: A lot more yellow ones. Ok. If in fact that were representative of what’s in

the bag, what would you say is in the bag?

Peter: Toothpicks?

I: Ok, what did you get? What did you get?

Peter: I got four yellow ones...four yellow toothpicks and one red toothpick.

I: So if the population looked just like that sample, then four fifths of it is

yellow. Right?

Cathy: Right.

9. I: So that’s the idea. That if the population looked just like what you picked in
terms of the relative amounts, then four fifths of the toothpicks in there would
be yellow. All right?

10. Peter: I gotcha.

11. I: So now, if you were to judge what’s in that bag according to what you
picked, what would you say (points to Sarah)?

12. Sarah: Four-fifths pennies.

13. I: So you had four pennies and one nickel. So you would say four fifths of
everything ... if the contents of the bag looked just like what you picked. Four
fifths of the coins in there are pennies. All right? And you got four whites and
one pink, candy (points at Cathy). Boy, four and one is, is it. How likely do
you suppose that is, that you got four and [one]?

14. Peter: I guess pretty good.

15. Nicole: It depends on what’s in the bag.

16. I: That’s right. It depends on what’s in the bag. So, how would you uhh, how
would you start getting more information about whether or not that in fact
what you picked is an anomaly?

17. Peter & Kit: Take more samples.

18. I: Take more samples. All right. So that’s the idea.

19. Nicole (inaudible)

20. Peter: Is that what we should do?

w

Nk

*

The excerpt illustrates the instructor’s attempt to push students toward explicitly elaborating
the inferential line of reasoning (lines 1-13), and to make that reasoning an object of classroom

focus and discussion (Thompson, 2002; Cobb, 1998). The issue of unusualness arose out of a

5 “I” denotes the instructor’s utterances. All other utterances are students’.
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serendipitous event: each group’s sample, drawn from its respective population, turned out to
have the same proportion of objects. The instructor used this event as a natural occasion to raise
the question of the sampling outcome’s likelihood (line 13). Nicole’s response, in line 15,
suggests that she had a strong sense that a sampling outcome depends on the sampled
population’s composition. The instructor, in turn, raised the issue of the outcome’s unusualness
and in doing so seemed to set up conditions that impelled some students to propose selecting
multiple samples as a natural strategy for investigating this issue (line 17).

Thus, the transition from the first to the second part of the activity developed out of a pattern
of interactions (Bowers & Nickerson, 2001) that seemed to impel members of the class to
consider re-sampling as a natural solution to a problem. Moreover, these interactions were
strongly orchestrated by the instructor who coordinated a priori and emergent instructional
agendas. This approach of steering classroom interactions so as to facilitate and enable the
emergence of key ideas among participants of the group was a hallmark of the instructional
method employed in the experiment (Davis & Simmt, 2003). Though the particulars of such
classroom instructional interactions were generally not pre-determined, having such interactions
emerge was very much a designed feature of this experiment.

Episode 1 of Lesson 2 also provides glimpses of students’ thinking with regard to inferential
reasoning in the early part of the experiment. In particular, I draw the reader’s attention to Peter’s
two highlighted utterances (lines 2 and 14).° I interpret the first utterance as suggesting his
orientation to making gross quantitative inferences (Steffe, 1991), and I take the second utterance
as suggesting a pre-quantitative conception of likelihood. That is, I hypothesize that at this early
stage of engagement in the experiment, for Peter the relationship between a sample proportion
and the sampled population’s composition was not yet operationalized into a precise quantity.
Instead, the relationship seemed focused on a rather gross comparison of the relative amounts of
two colors of toothpicks in his sample. Similarly, I hypothesize that Peter’s idea of likelihood
was more like a good hunch (“I guess pretty good”) that, while perhaps based on an unarticulated
sense of frequency, did not entail a full-fledged quantification of expectation. Responses like

Peter’s, above, were not uncommon among students in the early phases of the experiment,

% Peter was somewhat of a leading figure in the class. In addition to having a prominent social profile within the
class, Peter was vocal, he was engaged, and he readily shared his ways of reasoning with others. By virtue of his
pro-active engagement, Peter was an important force in helping to crystallize the participatory norms and in driving
instructional interactions like those exemplified in this excerpt.
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especially in the absence of instructional scaffolding like that exemplified in lines 6-12 of this
episode.

Concerning Nicole’s sense (line 15) that the likelihood of an outcome of 4/5™ depends on the
sampled population proportion, her response does not suggest that ideas of variability among
outcomes were at the foreground of her imagery. That is, there is no reason to believe that at that
time Nicole was mindful of a loose dependence between sample and population composition;
hers did not appear to be a schematized image entailing an anticipation of patterns in outcomes
that might emerge over the long-run were one to re-sample frequently, and entailing a sense that
the variability among outcomes is bounded and thus leads one to expect a fuzzy resemblance

between sample and population.

Discussion 2

The transition from the first to the second part of the activity forced a shift in the classroom
discourse and attention away from individual sample outcomes and toward collections of
outcomes. The ensuing discussions in Lesson 3 then centered on how to look at collections of
sampling outcomes — that is, how to structure such collections —in order to claim something
about the composition of the underlying population. The instructor steered these discussions so
as to occasion student reflections on interrelations among the ideas of re-sampling, variability
among sampling outcomes, and aggregation of individual outcomes into a collection of
outcomes. The instructional aim was to support students’ construing these collections as
distributions of sample proportions (amounts). This section draws on excerpts from the
beginning of Lesson 3 to highlight ideas that emerged within these discussions.

The instructor began Lesson 3 by organizing students’ collections of 10 sampling outcomes,
obtained in the previous lesson, in frequency tables on the board (see Figure 5.3). The
organizational structure of the tables was suggested by the instructor, who filled in their entries
as each group of students called out its results. The tables’ structure was intended to highlight
two quantities: 1) all possible values of the sample statistic of interest (e.g., the number of red
candies in a sample, listed in a table’s top row) and, 2) the number of samples in a collection
having each of those values (listed in a table’s bottom row). This representational format was

intended to facilitate partitioning the data collection in ways that support seeing it as a
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distribution of outcomes and to thus suggest something about the underlying population
proportion.

Discussions of the sampling outcomes typically centered on these tables and are suggestive
of students’ ways of interpreting them and what their contents might indicate about the sampled
population. The following excerpt, comprised of two contiguous segments, lasted approximately
4 minutes during the beginning of Lesson 3.

Episode 2, Lesson 3:

Segment 1
1. I: Uhh, then I had you repeat taking the samples about ten times. Roughly ten
times for each group. What did you notice about the samples? Were they all

alike?
2. Peter: Nope!
3. 1(points to Peter & Lesley): Ok, were all of yours 4/5"™ yellow?
4. Peter: No.
5. 1. All right. So if you got one that was, say 3/5"™ yellow, then if you generalize

from that one you would say “3/5™ of the toothpicks in this bag are yellow”.
Ok, clearly they’re not both correct. Ok, so you take more samples. You can’t,
ok, so any time you took a sample could you predict with certainty what you
were going to get?

6. Nicole: No.

7. Peter: No.

8. I: No. But, did the samples that you took start to follow a pattern?

(3-second silence)

9. Nicole: No.

10. I: Not at all? Ok, let’s put your re—uhh results back up. Did any of you, ok do
any of you have a different answer to that question—“did your samples start
to follow a pattern?”

11. Cathy: Sort of.

12. I: Sort of, Cathy (motions to Cathy as though expecting elaboration)

13. Cathy: I mean, they were mainly like four to one but some of them are
different

14. I: but some of them were off?

15. Cathy: Yeah.

In this segment, the instructor drew on students’ experience in the second part of the
sampling activity to raise the issue of uncertainty. The explicit issue was that sampling outcomes
vary and therefore make predictions uncertain (lines 1-5). There seemed to be general consensus
among students that this is true. The instructor’s implicit issue was that variability among

outcomes makes it problematic to infer a population proportion on the basis of individual
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sampling outcomes. His idea was to use this problematicity to motivate students to consider
multiple sampling outcomes in terms of suggestive patterns (lines 5 and 8).

At this point there is evidence of different orientations among students: Nicole (line 9) did
not recollect there being any pattern in her outcomes. That is, her sense of pattern—whatever it
may have been—did not admit seeing her sampling results as having a pattern. Cathy (lines 11-
15), on the other hand, had a sense that most of her outcomes being 4/5"™ (“mainly four to one,
but some are different”) suggests a pattern. It would seem that Cathy was considering, albeit with
trepidation, her collection of sampling outcomes in a way that entailed partitioning it into two
classes of outcomes: those having a value of 4/5™, which constituted the majority, and those
having other values. I put that her sense was, therefore, of a relatively gross pattern that entailed
a blurring of the distinctions among individual outcomes and a re-consideration of these
distinctions relative to the entire collection. There is evidence, in the next segment, that Nicole’s
perspective was qualitatively different from this.

The next segment is a continuation of the first and provides more information about students’
ideas of pattern and ways of construing a collection. The discussion centers on the results of the
toothpick-sampling experiment, which were presented on the board in the following frequency

table:

# of yellow toothpicks 0 1 2 3 4 5
# of samples O 0 1 1 5 3

Figure 5.3. Results of the toothpick-sampling experiment: selecting 10 samples of 5 toothpicks each from a large
collection of red and yellow toothpicks.

Episode 2, Lesson 3:

Segment 2

16. I: Now, does this (Figure 5.3) look like there was any pattern?

17. Nicole: No.

18. I: No? We might have to reinterpret that word “pattern”, but in some sort of
general way. Nicole?

19. Nicole: What are you asking?

20. Peter: A pattern of, like, four and one going five times

21. 1 (to Nicole): A pattern in the samples (points to table in Figure 5.3)

22. Peter (continues): I mean, that’s a pattern.

23. I: Uhh, right.

24. Nicole: I don’t see any pattern there.
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25. I: Ok, now patterns, uh the thing about patterns is they allow you to make
predictions. That’s why, that’s what makes a pattern a pattern. You can say
“oh, it’s gonna repeat”.

26. Nicole: Yeah, but nothing is repeating!

27. 1: Suppose that we did this ten more times. Could you make any predictions
about what might happen?

28. Peter: Yeah

29. Nicole: If you got the same numbers!

30. I: Uhh

31. Peter: Yeah, I could say you’re gonna get maybe the majority of them are four
to one, yellow toothpicks!

32. I: Alright, so, so it’s not uhh, you’re not gonna say that you’re gonna get 1, 1,
5, 3, are you Peter?

33. Peter: No.

34. I: Ok, but you are saying something else, that’s almost like that. You’re saying
that you’re gonna get mostly fours and fives. All right? So this is called a
statistical pattern. See, it’s how things work out in the long run. That’s what
makes statistics different from most mathematics: it’s not exact in that sense
that “oh yeah, on the fourth sample, if we do this again, on the fourth sample
here’s what we get”. We can’t do that, we can’t make that kind of prediction.
But we can make a prediction about what’s going to happen over the long run.
We may be off, but at least we can say “yes, that suggests a pattern”, a pattern
that most samples will have more than three of yellow toothpicks. Ok, does
that make more sense now, Cathy, I mean uhh Nicole?

35. Nicole: Yes.

The colored text highlights Nicole and Peter’s utterances. The excerpt illustrates that Nicole,
as before, still did not see a “pattern” in the data. Her conviction is steadfast, despite suggestions
from the instructor to extend her idea of pattern (line 18) and suggestions from Peter on how to
interpret a pattern in the data (lines 20 and 22). The interchange between the instructor and
Nicole (lines 25-29) offers hints of her notion of pattern: it appears that Nicole had in mind that a
pattern ought to be a sequence of elements/outcomes sufficiently definitive to allow one to make
an almost certain prediction on its basis. When implored to anticipate what might happen if the
sampling experiment were repeated (line 27), Nicole responded as though she believed that the
second set of outcomes would have to be identical to the first ones in order to say that a pattern
had emerged (lines 26 and 29). In other words, Nicole seemed to have understood the instructor,
in lines 25 and 26, to be speaking of a deterministic pattern—that is, of repetition as

identicalness.
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The instructor’s intended meaning was, however, quite different. In line 25 the instructor
characterized a pattern as that which allows one to make predictions about what might be
repeated. His elaboration in line 34, however, clarifies that he had in mind a repetition of
outcomes in a statistical rather than a deterministic sense. That is, the instructor’s was a notion of
relatively gross patterns that emerge in sampling outcomes over the long run. This conception
entails a sense of repetition tempered by a consideration of the expected variability among
outcomes and is thus qualitatively different from a sense of repetition as identicalness. Rather,
this statistical sense of repetition is more like an expectation that a certain class of outcomes
might occur with similar frequency in the future under similar conditions (e.g., we expect that
“most samples will have more than three yellow toothpicks”).

It is worth noting that the instructor’s elaboration (line 34) was highly consistent with Peter’s
notion of pattern in this segment (lines 20, 22, 28, and 31), and also with Cathy’s sense of pattern
elaborated in segment 1. Indeed, the instructor offered the characterization in line 34 as an
explication of Peter’s sense of pattern (lines 31-33). His aim was to publicly unpack Peter’s line
of reasoning and to share it with Nicole to the extent that she might begin to “see” his sense of
pattern—one which entailed a blurring of the individual outcomes and a refocus instead on the
relative frequency with which a class of outcomes occurred.

Nicole eventually succeeded in construing a collection of sampling outcomes in terms of a
statistical pattern as characterized above.’ I imagine that her engagement in the discussion
highlighted in segment 2 of Episode 2 was instrumental in helping her do so. The question
remains as to how Nicole was able to make a shift from her previously and steadfastly held sense
of pattern to a statistical sense of pattern. I would speculate that she was able to assimilate
Peter’s sense of pattern and the instructor’s detailed elaboration of it by accommodating the
conceptual operations of blurring distinctions among individual outcomes and reconstituting the
collection as classes of outcomes.

The way of operating on the data collections exemplified by Peter and Cathy in these
discussion excerpts verges on a proportional line of reasoning. The discussion immediately
following segment 2 of Episode 2 turned to examining relationships between the data collections

and the underlying population proportion. The next episode is drawn from that discussion; it

" In the next section I present evidence of this in a subsequent discussion excerpt.

62



illustrates issues raised in students’ investigation of the results of the coin-sampling experiment
(see Figure 5.4). The excerpt, comprised of 3 contiguous segments, lasted approximately 3

minutes.

# of Pennies 0 1 2 3 4 5
# of samples 0o 0 2 3 7 3

Figure 5.4. Results of the coin sampling experiment: selecting 15 samples of 5 coins each from a large collection of
Pennies and Nickels.

Episode 3, Lesson 3:*

Segment 1

36. I: All right. So what does that suggest to you, the two of you—Sarah and uhh
Nicole?

37. Nicole: Nicole!

38. I: you did it together?

39. Nicole (affirms): Hmm hmm

40. I: Ok. What does this suggest to you about what’s in that bag?

41. Nicole: More Pennies than Nickels.

42. Sarah: More Pennies than Nickels.

43.I: And uhh, does this suggest anything to you—?

[...]

Segment 2

44.1: Now, what, what was that, what is your prediction about what’s in the bag?
Ok. Uhh, any, do you feel safe making any guess about the fraction of
Pennies?

(2-second pause)

45. I: What percent of those coins might, if you had to make a guess, what
percentage of coins might--?

46. Sarah: Like 4/5™

47.1: Like 4/5™. So, 4/5™ would certainly fit this (points at data table, see Figure
5.4). Right?

48. Nicole (affirms): Hmm hmm

¥ The symbol “[...]" signifies text that has been omitted from the transcript. The central reason for text omission is
to improve the readability of already very messy classroom discussions. Omitted text typically consists of a small
number of utterances within a segment of a discussion excerpt. Occasionally, however, entire intervening
discussions between analytically interesting segments are omitted because they are not of interest to the issue and
analysis at hand. In any case, text omission occurs only if it does not compromise the nature of the data and
analyses.
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Segment 3

49.1: Would uhh, would 5/5™ fit?

(3 second silence)

50. I: 5/5™ of the coins being Pennies.

51. Nicole: No.

52. I: No, it wouldn’t fit at all because we’re in fact getting Nickels. Right?

53. Nicole: Yeah.

54. 1: Uhh, would 2/5™ fit this?

(3 second silence)

55. I: (inaudible) do you understand what I’'m asking, Kit?

56. Kit: No.

57.1: Would the assumption that 2/5™ of the Pennies in that bag, the coins in that
bag are Pennies, would that uhh, they’re saying that wouldn’t fit this. In what
way would that not fit this data? (points to data table in Figure 5.4)

58. Sarah: There’s more than half (inaudible)

59. Cathy: Yeah.

60. I: Ok. Uhh, now here’s a way to answer questions like that: we would—uhh,
if in fact there are, 2/5™ of the coins are Pennies, then results like that would
be pretty unusual (points to table). We wouldn’t expect that to happen very
often when we took 15 samples. (4 second pause) Does that, does that make
sense?

Nicole and Sarah’s responses (lines 41 and 42) to the instructor’s call for an inference to the
population suggests their being oriented, as was Peter in an earlier episode, to making gross
quantitative inferences. That is, at this point Nicole and Sarah were willing to claim only that the
sampled population might contain more Pennies than Nickels. They did not provide justification
for their claim. In the second segment we see that the move to making a specific quantitative
inference required some prompting from the instructor. When asked to give a plausible specific
percentage, Sarah inferred that the population might contain 4/5™ Pennies. Here again Sarah did
not elaborate her line of reasoning, but she might have based her estimate on the most frequent
outcome in the data set: 7 of the 15 samples selected contained 4 Pennies (and 1 Nickel)—a
result consistent with a population proportion of 4/5™.

It is productive to speculate as to why students seemed disinclined to make specific claims
about the sampled population in this phase of the activity. On further reflection their
disinclination seems quite sensible at that early stage of engagement: I suspect that students were
then grappling with how to integrate statistical considerations—a sense of the variability and
uncertainty among outcomes — with making a prediction in the way they might have been

accustomed. The single-outcome-based inference style of reasoning elaborated in the first part of
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the sampling activity was relatively unproblematic for students once it became accepted as
normative. But when the activity entails making collection-based inferences, that line of
reasoning can become problematic for several reasons. First, the “thing” upon which one is
expected to base an inference is a very different kind of animal; it is not a single sampling
outcome, but rather a collection of such outcomes. It conceivably entails learning how to
construe a collection so as to infer a population proportion. A Second, and related, reason is that
even if one learns how to structure such a collection, say, into classes having such and such
outcomes (proportions), there remains the problem of deciding which class an inference should
be based upon.

Thus, in my view, students’ apparent disinclination to making quantitative inferences at this
stage is consistent with their struggling with how to structure a collection of sampling outcomes
so as to make an inference to the sampled population.

As an afterthought to this point, it is worth considering whether the development of
collection-based inference might be facilitated by shifting one’s perspective to reason in reverse.
That is, in order to answer the question “what does this set of outcomes suggest about the
sampled population?”, it might be productive to first address the question “what population
proportion might be reasonably consistent with the particular set of outcomes obtained?”. Indeed,
this was the instructor’s rationale for conducting the questioning in the third segment of Episode
3 of Lesson 3. Sensing that students had little intuition about what sampling outcomes one might
reasonably expect from a population having a given proportion, he set out to structure the
discussion so as to occasion the development of some intuition. In lines 57-59 (third segment) it
is Sarah who had a sense, apparently echoed by Cathy, that the sampling outcomes in Figure 5.4
are inconsistent with a population proportion of 2/5"™ Pennies because, as I interpret her
utterance in line 58, more than half of the samples contained over 2/5" Pennies.’

The discussion in the third segment of Episode 3 of Lesson 3 concluded with the instructor
again raising the issue of unusualness, but this time he referred to the unusualness of a collection
of sampling outcomes relative to an assumption about the sampled population (line 60). He

proposed this issue as an equivalent way to address the question raised in line 57: how to

° In my interpretation, the most coherent referent for Sarah’s utterance (“There’s more than half (inaudible)”) was
the collection of sample outcomes shown in Figure 5.4. It makes little sense to interpret this utterance as referring to
the population proportion of 2/5".
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determine whether a particular collection of outcomes is consistent with a presumed population
proportion? These questions moved the discussion toward statistical hypothesis testing. Indeed,
the sequence of discussions described above as having unfolded from Activity 1 eventually led to
other discussions that centered on testing a hypothesis. Those discussions are significantly
different, in their focus and objects of discourse, from those in Activity 1 that I take them to

constitute a second distinct activity: Activity 2 of the instructional sequence in Phase 1.

Discussion 3: Transitions to Activity 2

Before turning to Activity 2, I first describe some transitional discussions and issues raised
within them that motivated its emergence. Immediately following the discussion in the third
segment of Episode 3 of Lesson 3, the instructor had students repeat the second part of the
sampling activity. After each group of students had selected another 10 samples of 5 objects
from their respective populations and recorded their results, these results were presented on the
blackboard in frequency tables that also displayed the group’s first results. This section focuses
on discussions centered on the outcomes of the candy-sampling experiments.

The instructor orchestrated these discussions in an effort to move students toward comparing
the two collections of outcomes, raising these issues: their consistency or inconsistency, the
plausible reasons for their differences, and the inferences one might make on the basis of each
collection. The following illustrative excerpt, lasting approximately 2 minutes, is drawn from the

beginning of these discussions.

# of red candies 0 1 2 3 4 5
# of samples (Result 1) 0 5 3 1 0 1
(Result 2) 0O 1.7 2 0 0

Figure 5.5. Results of two iterations of the candy-sampling experiment: selecting 10 samples of 5 candies each
from a large collection of red and white candies.

Episode 4, Lesson 3:

61.1: [...] Let’s talk about potential explanations for why the difference (motions
with hand back and forth between two results in data table, see Figure 5.5
above). Now this would, ok, this would suggest that there are fewer reds than
whites (points to Result 1 in table). Correct? Uhh, that’s what we said. Would
this suggest that there are fewer reds than white (points to Result 2 in table)?
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62. Cathy: Hmm hmm (shakes head up and down as though affirming)

63. Kit: Hmm, yeah, sort of.

64. I: Let’s see, this is, that’s two, two reds (points to “7” in second row of data),
correct?

65. Cathy: Hmm hmm (affirms)

66. I: All right. Does it suggest it as strongly as that (points to “3” in first row of
data)?

67. (Kit & Cathy shakes heads from side to side, as though to mean “no”)

68. Female student: More

69. I: Pardon me?

70. Female student: More so.

71. I: Uhh, more so?

72. Female student: Yeah

73. Cathy: No.

74. I: Ok, well here’s the question: how can we investigate whether or not this
(points to Result 2 in table Figure 5.5) is inconsistent, uhh this in fact suggests
that there are fewer reds than whites, or this (points to first row of data in
table) suggests that there are fewer reds than whites?”. That, that’s the
question—my question is about a question! How do we investigate that
question? Ok? That’s what, that’s the issue that I’'m raising: how do we
investigate whether or not this suggests (points to last row of data in table)
that there are fewer reds than whites?

The excerpt begins with the instructor first reiterating a previously accepted inference, drawn
on the basis of Result 1, that the sampled population contains fewer red than white candies. He
then asked students to reflect on whether they would conclude similarly on the basis of Result 2.
Two students (line 62-63) had a sense that Result 2 also suggests fewer red than white candies in
the population, but they did not justify their conclusions. Kit seemed unsure of this conclusion,
appearing to waiver in her conviction. The uncertainty of students’ responses incited the
instructor to pose the question in line 66: his aim was to prompt students to reflect on, and
articulate, their reasons for claiming that one or the other result suggests something about the
sampled population.

The responses of Kit and Cathy in line 67 suggest that they viewed Result 1 as a stronger
indicator that the population contained fewer red than white candies. Here again, however, they
offered no justification for their conclusion. Though there is scant evidence of student’s thinking
in this excerpt, let me nevertheless elaborate a way of thinking about each sampling outcome that
is consistent with Kit and Cathy’s response: perhaps they were considering the number of

samples in each collection that contained at most 2 red candies —the boundary value between a
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majority and minority of red candies. In the first outcome, 5 of the 8 samples that contained at
most 2 red candies contained only 1 red candy. In the second outcome, 8 of the samples also
contained at most 2 red candies, but only 1 of those 8 contained 1 red candy. Thus, one might
view Result 1 as more strongly suggesting fewer red candies in the population because it is more
heavily weighted than Result 2 toward samples having only 1 red. This perspective might
explain the responses of Kit and Cathy.

On the other hand, if one focuses on the number of samples containing exactly 2 red candies
in each collection, then Result 2 is more heavily weighted toward such samples and it might be
taken as stronger evidence that the population contains fewer red than white candies. This line of
reasoning might have been at the root of the response of the unidentified female student in lines
68-72.

I reiterate my earlier caveat that there is little evidence of any such reasoning having
occurred. However, my point in this analysis is not to make hard claims about the psychological
reality of these conjectured ways of reasoning. Rather, my point is to raise the issue that there are
diverse ways of structuring these collections of outcomes that might express themselves in
students drawing different conclusions about the sampled population. Two additional and equally
important points are: 1) at this stage of the experiment there was no consensus among students
on how to structure these collections, and 2) there is a lot of evidence to suggest that students
were generally not inclined to articulate their ways of reasoning. Concerning the second point, I
attribute this to more than a mere insensitivity to the participatory and socio-mathematical norms
(Cobb & Yackel, 1996; Cobb, 1998) that the instructor was trying to institute within this
classroom. Rather, I take it also as an expression of students having been, as yet, insufficiently
mindful of their own reasoning so as to operationalize it. Put slightly differently, students had not
yet reflectively abstracted their ways of structuring these collections so as to be able to mentally
“step back”, as it were, to reflect on and describe these ways coherently (Glasersfeld, 1995).

In the last paragraph of Episode 4 of Lesson 3, the instructor raised what was to become a
central issue in the next activity: how to investigate whether one or the other sampling result
suggests that the sampled population contains fewer red than white candies. This question was
followed by his briefly explaining the idea of sampling bias to the class and proposing it as a
potential reason for differences in the sampling results. The instructor then divulged the sampled

population proportion to the class: the bag contained 50% red candies and 50% white candies.
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The following excerpt highlights developments that unfolded from this divulgence. The excerpt
consists of 3 contiguous segments lasting a total of approximately 4.5 minutes.
Episode 5, Lesson 3:

Segment 1

[...]

75. I: Half and half. Ok? They’re in fact half and half.

(4-second pause)

76. I: Now, so this result (points to Result 1 in Figure 5.5), with that knowledge,
that they’re half and half, is this surprising?

77. Cathy: Hmm hmm, yeah (shakes head up and down in acknowledgment)

78. (Kit, Sarah, & Peter, all shake heads up and down in acknowledgment)

[...]

As the first segment of Episode 5 of Lesson 3 indicates, a good number of students were
surprised to learn that Result 1 was obtained from an evenly split population of candies. The
source of their surprise was, presumably, their previous inference that the population contained
fewer red than white candies (see Episode 4).

The instructor continued the discussion, in the second segment, by first asking for potential
explanations of the surprising result other than sampling bias.

Episode 5, Lesson 3:

Segment 2

79. But, so let’s come back here (points back to Result 1 in data table). Ok, that
seems surprising now that we know that the split is half and half. (3 second
pause) [...] Let me ask you to speculate how this might have happened. Of
course one is selection bias. There may have been something about the way
that you selected the candies. Any thing else?

80. Peter: How the candies were placed in the bag. Like whether they were shook
up enough, or something.

81. I: Ok. And that would introduce, so that would again introduce a selection
bias. Right? So that that would be something about the process of the
selection, not shaking them up enough. Ok. So, another example of a selection
bias that might’ve happened?

(16-second silence)

82. I: What do you guys think? (motions to Group 1 members) Do you know, can
you think of anything that you did that might’ve led to a bias toward picking
more white?

83. Peter: (inaudible)

84. Cathy: Not really. We put them in there, we didn’t separate ‘em, and we
shook it up every time.

85. I: You didn’t separate them and you shook them thoroughly every time. So
you can’t think of anything.
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86. Peter (under his breath): Whatever!
87. (Nicole chuckles at Peter’s comment).
88. Cathy: No.

89. I: So it might just be luck of the draw.
90. Peter: Could be.

I note that students’ explanations in the second segment of Episode 5 of Lesson 3 were
restricted to sampling bias. The fact that no student ever raised the possibility that Result 1 was
just “luck of the draw” —a perhaps rare, yet possible, outcome suggests that this was not a salient
possibility for the students. That is, I take the second segment as an indication that at this point in
their engagement, students had not yet developed a sense of distribution that entailed anticipating
a range of possible outcomes and frequencies for a collection of sampling results. Upon
reflection, this is not surprising, given the relative complexity of the object they now
confronted —a collection of sample outcomes, rather than an individual sample
outcome — together with the fact that instruction had only just begun to engage students in
developing a sense of the possibilities for such outcomes.

The third segment of Episode 5 of Lesson 3 represents a turning point in the class toward a
more systematic investigation of these possibilities.

Episode 5, Lesson 3:

Segment 3

91. I: All right. So the question is how could, uhh, how could we test whether or
not something is the luck of the draw? (points to first row in data table)

92. Cathy: Test it a lot.

93. I: Sorry?

94. Cathy: Test it over and over again?

95. I: Test it over and over again, and see if, in fact, you get something like this
(points to Result 1 in data table)—1I mean, we wouldn’t expect it a lot, but
suppose that we got something like this three out of ten times. Would that then
make this less surprising? (points to Result 1 in data table in Figure 5.5)

Cathy’s suggestion to “test it over and over” (lines 92-95 of Segment 3) provided a direct
segue into the second activity of Phase 1. Her idea prompted the instructor to suggest selecting
multiple collections of 10 sample outcomes with the aim that students take the resulting

collection of collections as a basis for determining whether outcomes like Result 1 (Figure 5.5)
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are unusual, given that they were obtained from an evenly-split population.'’ This development

ushered in the start of Activity 2.

Activity 2: Rationale and Description

The instructor’s suggestion (line 97 of Segment 3) amounts to an operationalization of his
interpretation of Cathy’s idea, which he employed as a didactic strategy to move the discussion
along an overarching instructional agenda. That agenda was to have students internalize and
operationalize a method that might enable them to conceive expectation as a statistically
quantifiable attribute. It is worth noting that though this was an a priori agenda, the instructor’s
decision to move the discussion in this particular direction at this juncture was unforeseen and
momentary. The decision was based on his taking students’ widespread surprise that Result 1
was obtained from an evenly split population as an opportune occasion to enact his agenda.
Thus, the emergence of Activity 2 as an identifiably distinct entity from antecedent discussions
was occasioned by complex interactions between a priori designed instruction, serendipitous
classroom developments, and improvised adjustments to instruction."'

The underlying logic of the instructor’s suggestion is as follows: if outcomes like Result 1
occur relatively infrequently under essentially identical sampling conditions, then this suggests
that an outcome like Result 1 is statistically unusual under a given assumption about the sampled
population proportion. In addition to articulating the logic of this method a priori, the instructor
also reiterated it as the activity unfolded. The activity consisted of applying this method
repeatedly: select 10 samples and obtain a collection of 10 outcomes; compare each collection of
10-sample outcomes with Result 1 to determine whether the two are similar or dissimilar; record

the similarity decision. After a number of similarity decisions had accumulated, the class could

' T note, however, that the “it” that Cathy had in mind was never explicated. It remains questionable whether Cathy
had a well- articulated image of what she meant to test repeatedly. Given her history of apparent engagement in the
activity thus far, it is plausible that Cathy had, by this point, bought into the idea of repeating a random sampling
process many times to collect many outcomes. However, it is unclear how Cathy was, at this juncture, structuring
the selection process. Was she mindful that the unit of selection and aggregation was 10 samples, or did she have in
mind selecting individual samples to aggregate a collection of 10 outcomes? In other words, it is unclear what
experiment Cathy envisioned repeating. This contention is elaborated further in footnote 11.

' As mentioned in an earlier chapter, such interactions were enabled by the fact that the instructor and the
instructional designer were one and the same person.
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then draw a conclusion about Result 1°s unusualness on the basis of the collection of similarity
decisions."

Instead of having students repeatedly draw actual samples from the population of red and
white candies, at this point the instructor proposed using the sampling simulator Prob Sim
(Konold & Miller, 1994) as an efficient way to simulate this repeated experiment. Figure 5.6
shows the program interface that was projected in class during the activity. The left-hand
windows show the program parameter values set for simulating the experiment of randomly
drawing 10 samples of 5 items each, without replacement, from a population consisting of 216
red and 216 white items."’ The Data Record window (top right-hand side) lists the 10 sampling

outcomes obtained in one iteration of the experiment.
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Figure 5.6. Prob Sim input (left) and output (right) windows corresponding to the candy-sampling experiment.

The Analysis window (bottom right-hand side) lists all possible unordered outcomes in the

experiment’s sample space (Event U column). Next to each outcome of the sample space is

"> The doubt I expressed earlier (see footnote 8), concerning what process Cathy hand in mind, is rooted in her
having been unclear on what to record and keep track of in this activity. After the instructor explicated the method to
the class and assigned Cathy to be the official record keeper, she asked “what do you want me to keep track of, like,
how many times we get five ones?”. She thus seemed fixated on “sample containing 4/5"™ red candies” as the event
of interest. This raises the possibility that she was oriented to a particular sample outcome rather than a collection of
outcomes as a salient object of focus.

" This information, which was entered into the program by the instructor, was represented by the symbols “R” and
“W”, respectively, in the Element Labels field, and by 216 in each of the corresponding How Many slots. Prob Sim
was chosen for several of its intended affordances: the program can function as a calculator in that it automates the
selection of multiple samples and the presentation and analyses of a large number of sampling outcomes. The
program’s presentation format, as shown in the Analysis window, supports building imagery of distributions of
sampling outcomes. Prob Sim uses the idea of a “Mixer” containing elements that can be labeled and that are
randomly deposited into “Sample bins” when the program is run. This idea is intended as the basic metaphor for
thinking about and modeling probabilistic situations in terms of a relationship between a population of items and
randomly drawn samples of those items. This metaphor was first shared with students in a demonstration activity
immediately preceding Activity 1.
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shown the absolute number (Count column) of samples in the experiment having that outcome.
The count of each outcome is expressed as a proportion of the total number of samples drawn in
the experiment (Proportion column), and as a histogram bar’s length (right-most column). With
each iteration of the experiment, the information in these output windows is automatically
updated to reflect the experiment’s outcome.

Using Prob Sim, the instructor repeated the simulation of the sampling experiment five times.
Each time, he time drew students’ attention to the updated information displayed in the Analysis
window. He encouraged individual students to share their interpretations of this information and
to compare each outcome with Result 1, asking them “is this outcome like Result 1?”. Each time,
he took a class vote asking students to decide whether the outcome displayed in the Analysis
window was similar (“Yes”) or dissimilar (“No”) to Result 1."* Cathy kept track of these
decisions.

The outcome of each of the 5 iterations of the sampling experiment, as displayed in the

Analysis window, occurred in the order shown in Figure 5.7:"

Figure 5.7. The sequence (from left to right) of approximate outcomes of the simulated candy-sampling
experiments.

# of red candies 0O 1 2 3 4 5
# of samples (Result 1) 0O 5 3 1 0 1

Figure 5.8. The reference result against which students compared outcomes of the simulated sampling experiment.

Outcome # 1 2 3 4 5
Similar ? No | No | Yes| Yes| Yes

Figure 5.9. The class’s similarity decisions made in response to the question: “’Is this outcome like Result 1?”.

" Result 1 remained displayed on the board as Activity 2 unfolded.

% Each result shown here is a very close approximation to the actual result. These approximations are used only for
the sake of clarity. The actual results were only recorded in the classroom videotapes, screenshots of which are
barely discernible.
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Activity 2 discussion highlights

The discussions that unfolded from Activity 2 centered on deciding whether each simulated
sampling outcome was similar or dissimilar to Result 1. Although individual students voiced
their vote in these decisions, the group discussions did not expose each and every student’s
underlying rationale and reasoning at every turn. Instead, with each iteration of the simulated
sampling experiment, different students were invited to share their ideas or some students
volunteered their ideas. Thus, these discussions do not allow for a systematic inquiry into each
and every student’s thinking. However, the discussions do offer a cross section of ideas that
emerged in the class. Despite these limitations, it has been possible to get a sense of certain
individual students’ development because of the prominence of their participation relative to
other member of the class.

Perhaps the most important occurrence in these discussions was the emergence of a decision
rule—a criterion for deciding whether a 10-sample outcome was similar or dissimilar to Result 1.
In some sense, the criterion followed naturally from the last discussions in Activity 1 in which
the instructor began moving students toward comparing collections of outcomes. However, its
explicit introduction by the instructor within these discussions was inspired by his interpretation
of a Prob Sim histogram as depicting a distribution of sampling outcomes that indicates where
the collection’s weight is concentrated. The criterion amounted to an informal characterization of
Result 1 as “heavy toward white” —meaning that the collection was weighted more heavily
toward samples containing more white than red candies.

More explicitly, the instructor characterized Result 1 as “heavy toward white” because a
majority of that collection’s samples contained a majority of white candies. This characterization
of Result 1 can be understood if one considers its compliment. In Figure 5.8, Result 1 is
expressed in terms of numbers of red candies: it shows that 8 of the 10 samples contained at most
2 red candies. But this is equivalent to saying that 8 of the 10 samples contained 3 or more white
candies, and so a majority of the samples contained a majority of white candies. Thus, Result 1
was characterized as “heavy toward white”.

Though the decision rule was mentioned only by the instructor, in the classroom interactions
students seemed to readily accept the rule; they behaved as though they understood it and were
able to apply it unproblematically. This is illustrated in discussion Episode 5 that follows. The

episode is comprised of 3 segments, each highlighting a discussion that occurred around a
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particular iteration of the simulated sampling experiment. These discussions occurred in the
order presented here, but only the first two segments are contiguous. The episode took up part of
the last 9 minutes of Lesson 3.

Episode 5, Lesson 3:

Segment I: first iteration

305.1: [...] well, let’s do it again and, and I'll ask questions to make sure that
we’re all together (moves Data Record window so that all windows are fully
visible as in Figure 5.6). All right, what does this window show, that I just
moved?

306. Peter: The-uhh 10 samples.

307.1: Ok, the 10 samples that I just did! What does this window show us?
(activates Analysis window, see Figure 5.10)
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Figure 5.10. Outcome of the first iteration of the simulated candy-sampling experiment.

308. Peter: All together how many —

309. Nicole (utters something inaudible and laughs, presumably at Peter’s
aborted explanation)

310. I: Numbers of samples that have this many of the different colors (points to
list of entries in Event column in Analysis window).

311. Peter: Yeah.

312. I: All right. This “3” tells us what? (points to the “3” in the Count column in
the Analysis window)

313. Peter: There’s—

314. I: Kit?

315. Peter (continues): three times two red came out.

316. I: Ok. Kit, what does “3” tell us? (points to “3” in window on screen)

317. Kit: Three times it came out with two reds and three white.

318. I: Two reds and three whites (points to corresponding row in Event column).
Ok. All right, so, now is this one, is this outcome, set of 10 samples similar
to this? (points to Result 1 displayed on board, see Figure 5.8)

319. Nicole: No.

320. I: Ok, why? Because the re--it seems kind of loaded to the reds rather than
the whites. Correct? All right. So let’s do it again.

Segment 1 suggests that some students had an unproblematic interpretation of the

information shown in the window (lines 306, 308, 315, and 317). I note that Nicole was
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definitive in her decision that the outcome was not similar to Result 1, and that her response
came before the instructor’s characterization of the outcome (line 320: “it seems kind of loaded
to the reds rather than the white”). This suggests that Nicole was already able to compare
collections of outcomes and to determine whether they were similar. In line 320 the instructor
second-guessed Nicole’s presumable justification and offered a characterization of the outcome
that touched on the decision rule “loaded to the whites”. His intention was to share with the class
a presumable and useful way of characterizing each collection of outcomes. Though, there is no
evidence that this characterization was indeed consonant with Nicole’s perspective.

The second segment of Episode 5 of Lesson 3 highlights discussions occurring around the
second iteration of the simulated sampling experiment.

Episode 5, Lesson 3:

Segment 2: second iteration
321.1 (runs second iteration): Is that set of 10 samples (see Figure 5.11) like this
one? (points to Result 1 displayed on board, as in Figure 5.8)
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Figure 5.11. Outcome of the second iteration of the simulated candy-sampling experiment.

322.Cathy: No.

323. Peter: No.

324.1: Sarah?

325.Sarah: Uhh

326.Cathy: It’s like the second one (referring to Result 2)

327.Sarah (to I): No.

328.1: Ok

329. Sarah: uhh well, yeah

330.1: You think it might be like this (referring to Result 1)

331.Cathy (?): Uhh it’s not. It’s—

332. Peter: No (shakes head from side to side)

333.1: Ok, this one’s a little heavy toward the white (points to Result 1). Correct?

334.Sarah: (nods head in presumable agreement)

335.1 (continues): This one is (points to outcome shown in Analysis window), is
it-- if it’s heavy, it’s heavy toward what?

336.Cathy: Red

337.Peter: Red!
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338.1: The red. Alright, so likeness will be when it’s heavy to the white (points to
Result 1)

339. Peter: Hmm hmm.

340.1: So, on this one then (points to histogram in Analysis window) now what
would you say, Sarah? Ok this one’s a little heavier toward the red. All right,
so let’s do it again. So we’ve done it twice and both times we said__?

341. Peter: No.

342.Female student: No.

343.1: Not similar.

Segment 2 shows that three students initially considered the outcome of the second
experiment to be unlike Result 1. Cathy seemed to think the outcome was similar to Result 2,
instead.'® All but one student adhered to her/his initial assessment; Sarah was uncertain but did
not share the reasons for her uncertainty. Sensing that Sarah was having difficulty deciding, the
instructor invoked the “heaviness” metaphor as a way to help her think about and compare the
two outcomes. He reiterated his characterization of Result 1 as “heavy toward the white” (line
333), with which Sarah seemed to agree. He then moved to engage students with this metaphor
by asking them to characterize the current outcome in terms of its “heaviness” (line 335).
Cathy’s and Peter’s responses (lines 336-337) were consistent with their initial assessments and
suggest that, for them, thinking about the collection of outcomes in terms of its “heaviness” was
unproblematic. The instructor then reminded students of the decision rule—two results are alike
if they are both heavy toward white—and he re-emphasized that the current outcome is heavier
toward the red. This sequence of interactions converged to the instructor pointing out, to Sarah in
particular, why the decision should be “no” in this case.

Although Segment 2 contains little hard evidence of individual students’ cognitions, it
suggests that students’ responses to the instructor’s questions were, nevertheless, not inconsistent
with their thinking of the collections in terms of the heaviness metaphor. Indeed, the central idea
I draw from the first two segments in Episode 5 of Lesson 3 is that under heavy scaffolding by
the instructor, students increasingly warmed up to the discourse of a collection’s weight or

“heaviness”. Without any commitment, on my part, that students had common interpretations of

'® Here again, there is no evidence of Cathy’s underlying rationale for her claim. My only guess as to why she might
have considered this outcome to be similar to Result 2 is that, as shown in the Prob Sim window, 7 of the 10 samples
contained 3 or more red candies. The table displaying Result 2 (see Figure 5.5) showed that 8 of the 10 samples
contained 3 or more white candies. Perhaps Cathy only eyeballed Result 2 and based her assertion on a mistaken
interpretation of it.
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the “heaviness” metaphor or that they shared ways of construing the collections, I take the group
as a unit of analysis and speculate that this metaphor functioned much the same way that taken-
as-shared (Cobb, Wood, & Yackel, 1992) meanings function; it helped generate a discursive
space that enabled students’ continued productive participation in the activity."

A final observation I make about Segment 2, and indeed about all discussions in Activity 2,
is that students were comparing the two collections across different representational formats:
Result 1 was only ever presented in the tabular form shown in Figure 5.8, while the simulated
sampling outcomes were presented as shown in the Prob Sim Analysis windows. This raises the
possibility that however students were construing the collections, those ways were sufficiently
robust to withstand these cross-representational comparisons.

The next and final segment of the discussion in Activity 2 illustrates Nicole’s way of
interpreting the information in the Analysis window. It suggests that her thinking developed,
relative to an early part of the lesson, on how to construe collections of sampling outcomes.

Episode 5, Lesson 3:

Segment 3: fifth iteration
344.1: Let’s do it again (runs fifth iteration, results immediately appear on screen
as in Figure 5.12)
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Figure 5.12. Outcome of the fifth iteration of the simulated candy-sampling experiment (left), and
a close approximation of it (right).

345.1: All right. What does it show us? (points to Analysis window on screen)
Nicole?

346.Nicole: Uhh “yes”!

347.1: Ok. Before you answer “yes”, what is this showing us? (points to
information displayed in Analysis window on screen)

"1 should emphasize that the notion “taken-as-shared meaning” was developed as a participatory rather than a
cognitive explanatory construct. Cobb et al. (1992) devised the construct to explain how communal mathematical
discussions could proceed seemingly productively, or at least non-dysfunctionally, without committing themselves
to asserting that participants actually share meanings and understandings of the objects of discourse.
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348. (others laugh at Nicole’s jumping the gun)
349. Nicole (to others): No, because--
350. Peter: Yeah

351. Nicole (continues): well there’s like (1 second pause) 6 times you have, HKEH

352.1: Ok, that’s what I wanted to know. All right, so is this a “yes, similar” or
“no, not similar”?

353.Nicole: Yes

354.Peter: Yes

355.1: Ok. Everyone—if uhh, anyone uhh feel otherwise?

356. (no one responds)

357.1: Ok, so it’s another “yes”. What do we have so far (points to Cathy)

358. Cathy: Uhh three “yes”s and two “no’’s.

359.1: Three “yes’s, two “no”’s. So we have, so even though we thought this was
really, this might be rare (points to Result 1 on board), so far we got three
times out of five where we said “well yeah, what we got in those 10 samples
is sort of like this”

360. Female student: Yeah.

The utterance highlighted in blue and red in Segment 3 above is Nicole’s justification of her
decision that the sampling outcome of the fifth iteration was similar to Result 1 (highlighted in
grey). Nicole evidently interpreted the information in the Analysis window as being about a
number of outcomes (white candies) in a number of times that a sample was selected. By way of
a semantic analysis, I parse Nicole’s utterance into two parts, each having a distinct referent: in
saying “6 times you have, like, 3 whites”, Nicole was mindful, on one level, of a number of
samples containing, on another level, a number of sampled items of interest (white candies).
Nicole thus appeared to have construed the collection of sampling outcomes in a way that
entailed quantifying two different attributes —the composition of a collection of samples and the
composition of individual samples —and coordinating these quantities so as to not confound
them.

Figure 5.13 illustrates this analysis, highlighting the correspondence between Nicole’s
utterance and her presumed objects of discourse as they were displayed in the Prob Sim window

in class:
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‘“well there’s like, 6 times you have, like, SfHites.”’

Level 1: number of r't;ms in a sample. Level 2: number ot:;ampfes.

Sample Aggregate (samples)
< < )
-
;:A < Q/:ZI‘CX
= <
[=-]

sampled items from pop Samples

Figure 5.13. A semantic analysis of Nicole’s utterance.

I should point out that Nicole’s reasoning, from the perspective of this analysis, is consistent
with the reasoning that the instructor had been promoting in the discussions. Though Nicole’s
utterance was not couched in the language of a distribution’s weight or a collection’s heaviness,
it can be re-formulated in those terms and the two characterizations shown to be highly

compatible:

“6 times you have, like, SISHites

1

6 out of 10 samples contain Jivitelcandies

1

In 6 out of 10 samples. ot of S candiesare white

$

A majority of the samples contain Aiiiajority of white candies

The collection of samples is “heavy toward white’

Figure 5.14. A sequence of re-formulations that suggests the compatibility between Nicole’s and the instructor’s
characterizations. Each double-sided arrow links equivalent statements
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In sum, I consider Nicole’s way of construing the collections of sampling outcomes to be
quite compatible with the line of reasoning that the instructor was trying to promote as normative
in the classroom. I should also add that other students exhibited ways of reasoning about these
collections that were consistent with Nicole’s reasoning.'® Though, no other student provided me
with such a clear-cut illustration of having developed a way to construe a collection of sampling
outcomes.

I conclude this commentary about the discussions of Activity 2 by reminding the reader of
the agenda underlying the activity in the first place. On the one hand, there was the official
agenda that was shared with students: the aim of the activity was to determine whether sampling
outcomes like Result 1 are rare or statistically unusual. On the other hand, there was also an
unofficial instructional agenda not explicitly shared with students: to use the activity of
investigating a collection’s possible unusualness as a context for orienting students toward
thinking of collections as distributions. Once the activity was well under way and the discussions
focused on how to interpret and construe the collections of sampling outcomes, the once pressing
question that initially motivated the activity was overshadowed by the group’s engagement in
these discussions. Very shortly after the class had voted on the fifth and final collection of
outcomes, the class dismissal bell sounded and students immediately began to disengage and
depart. Unfortunately, the discussion did not continue beyond the instructor’s summarizing
comment (line 359 of segment 3), which was intended to suggest that outcomes like Result 1
might not be rare after all. Thus, it is uncertain whether this ultimate conclusion was salient for

students."’

Activity 3: Rationale and Description
This final section of the chapter discusses a third activity that was designed as follow-up to
the activities described so far. Activity 3 built directly on Activity 1 and was created to probe
what students “took away” from their engagement in the classroom activities. From the

perspective of this analysis, Activity 3 is distinct in that it occasions an unprecedented

"® In the final section of this chapter I present and discuss evidence of this that emerged in the next (fourth) lesson.

"% Activity 2 was revisited several lessons later, in a slightly different guise, and was followed through to its intended
completion. Then, students agreed overwhelmingly, on the basis of a relatively high proportion of “yes” decisions,
that outcomes like Result 1 were not at all rare, but were instead common.
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opportunity to assess students’ thinking, as it might have occurred outside of the classroom
instructional interactions.

Activity 3 was assigned as a take-home activity near the end of Lesson 3. The instructor then
conducted a whole-class discussion during the first 18 minutes of Lesson 4 focusing on students’
ideas that emerged out of their engagement with the take-home activity.” In this section the
descriptions of classroom discussions around Activity 3 are less extensive than those around
prior activities. One of the aims in the previous sections was to delineate the tone of instructional
interactions and engagements that characterize the teaching experiment in general. The central
aim here is to present additional evidence of student thinking and engagement with respect to
particular ideas and issues already highlighted in previous sections.

Figure 5.15 shows the Activity 3 guide from which students worked. As already mentioned,
Activity 3 was designed as an extension of Activity 1. Question 1 amounts to a reformulation of
Activity 1; part a) asks to make an inference to the population on the basis of an individual
sampling outcome, and part b) asks to make an inference on the basis of the entire collection of
outcomes. Rather than having students actually select samples, as in Activity 1, here they were
presented with sampling outcomes (10 samples of 5 candies each) that the research team wanted
them to understand as having been drawn from a large population of well-mixed red and white

candies. The boxed statement in the activity guide expressed this intent.

* Couched in a more traditional discourse, I could simply say that “students were asked to complete a homework
assignment and their responses were then discussed in class”. However, I carefully choose a discourse that
highlights my interest in student engagement and thinking. My occasional slippage into the traditional discourse
should not create confusion about my interest.
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Stat assignment 1

Answer these questions on a separate sheet of paper. Copy the question above your answer.
Pleass write comple e sentences and explain your thoughts fully.

A large jar is full of red and white jellybeans thatare evenly mixed. Ten samples of 5 jellybeans
each were selected at random from the jar, the samples had the following outcomes:

red white red white white
white white white red white
red white white white red
white red white white white
red red white red red
white white white red white
red white white white white
red red red white white
red white white white red
white white white white red

== - - B I - L 1 B T A

-

1. Examine how these samples are distributed with regard to the number of red jellybeans in
them.

a) Does any individual sample lead you to believe anything about what fraction of the jar’s
jellybeans are 1ed? Please explain (ie ., if so, sy what and why. Otherwise, say why not).

b) Does the distribution of the ten samples lead you to believe anything about what fraction
of the jar’s jellybeans are 1ed? Please explain your answer.

L3

Tomorrow you will randomly draw ten smples from this same jar of jellybeans and record
fhe color of each jellybean as you draw it. However, your samples will contain 8 jellybeans
nstead of 5. Make a list of 10 samples you can 1easonably expect to diaw. (Use “E™ for
‘Ted™ancd “W for “white™.)

w

In malding your list of 10 samples, did something occur to you that will be different about 8-
bean samples than was the case with 5-bean samples ? If so, describe it

Figure 5.15. Written guide for Activity 3.

Question 2 of Activity 3 was intended to engage students in a sampling thought-experiment.
The idea was to have students anticipate sampling outcomes that they might reasonably expect to
draw from the same population of candies. Students’ responses might then provide the research
team with information about what ideas had been salient for them in the classroom sampling
activities. In particular, the responses might shed light on the bases for students’ predicted
outcomes and on whether students were oriented to making connections between their

anticipated outcomes and the population inference they made in Question 1.*'

*! The third question in the activity aimed to query students’ intuitions and ideas that might relate to sampling
variability. The question was not addressed in the class discussion in this phase of the experiment, nor will I address
it here.
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Activity 3 results and analyses
The next three subsections of the chapter each address one of the Activity 3 questions,
analyzing students’ responses in terms of what they suggest about their conceptions and

elaborating this with evidence drawn from corresponding discussions in Lesson 4.

Question la
Table 5.1 shows students’ responses for Question 1a: “Does any individual sample lead you

to believe anything about what fraction of the jar’s jellybeans are red?

Table 5.1. Students’ written responses to Activity 3, Question la.
Student | Response

Nicole No, because one individual sample does not prove a lot.

Sue No, it doesn’t because individual sample might be a rare sample; if so, a fraction of the red
jellybeans will be different from the actual fraction.

Kit Yes, if you just look at any one sample (example sample 4), it would lead you to believe there
is about a 1:4 ratio (red:white).

Sarah Yes, I would normally say the jellybeans are about 3/5 white. Most of the time there are
either 3 or 4 white jellybeans out of 5.

Peter No, not any sample leads you to believe anything about the fraction of red jellybeans. By just
looking at one sample, can one be led to believe anything about the jellybeans? It could just
be an unusual sample.

Lesley Most samples, 8 out of 10, had fewer white than red jellybeans. Only 2 out of 10 times would
you think there were more red than white jellybeans in the jar

Only Kit responded in the affirmative and employed the single-outcome inferential line of
reasoning raised in the discussion surrounding the first part of Activity 1.

Three students— Sarah, Sue, and Peter—answered the question in the negative, implying that
they thought individual outcomes don’t provide enough information about the sampled
population to make a trustworthy inference. Two of those students, Sue and Peter, appealed
explicitly to the idea that an individual outcome could be unusual. Sue explicitly mentioned the
possibility of making an erroneous or unreliable inference as a consequence.

Sarah’s and Lesley’s responses show that they were focused on the collection of outcomes as
a whole; both referred to what happened in most of the samples as a basis for what might be true
of the population. Sarah ventured to give a specific numerical estimate of the population
proportion, thus making a full-fledged quantitative inference. Lesley fell just short of doing so,

but her response suggests that she thought it obvious that the population contained a majority of

84



red candies. I might add that both Sarah’s and Lesley’s explanations are consistent with Nicole’s
way of construing a collection, as I proposed earlier (see Figure 5.13), and thus consistent with
seeing the collection of sampling outcomes in terms of its “heaviness”.

The difference in their degrees of elaboration notwithstanding, all but Kit’s responses to
Question la are consistent with their thinking that collections of sampling outcomes provide a

useful, if not preferable, basis for making an inference to the underlying population.

Question 1b

Students’ responses to Question 1b—*“Does the distribution of the ten samples lead you to
believe anything about what fraction of the jar’s jelly beans are red?” —are displayed in Table
5.2. By virtue of their compatibility with Nicole’s, these responses suggest that her structuring of

the collection (see Figures 5.13 and 5.14) might not have been uncommon among students.

Table 5.2. Students’ written responses to Activity 3, Question 1b.
Student | Response

Nicole I’d say no more than 3/5 of the jellybeans are red because only one of the samples have
more than that.

Sue Yes it does. Count out the number of red jellybeans in each sample, and make a list which
indicates how many samples in each O through 5 possible number of jellybeans. The list
shows us which number will occur more likely. Then we can see a fraction.

Kit It leads you to believe that the ratio would be less reds to more whites.

Sarah Yes. Most of the time there are 2 or 1 red jellybeans out of five, meaning either 2/5 or 1/5 are
red.

Peter Yes it does. It leads me to believe that the majority of the bag is white and not red. In all

samples except one a majority of white beans were taken.

Lesley One might think that there are fewer reds than whites. Only 2 out of 10 (20%) of the sample
have more red than white. Only 36% of the total samples

Lesley and Sue’s responses, when considered in tandem with their discussion in the
classroom, suggest interesting hypotheses about their perspectives. Consider the first sentence of
Lesley’s response: “One might think that there are fewer reds than whites. Only 2 out of 10
(20%) of the sample have more red than white”. This is precisely what I claimed she was
implying in Question 1a, but had fallen short of explicitly saying so. The next sentence of her
response — “Only 36% of the total samples”—is, if taken at face value, perplexing because it
seems to contradict her claim in the first sentence. However, a closer look at Lesley’s copy of the

Activity 3 guide revealed that she had enumerated the numbers of red and white candies drawn
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in each sample and determined that there were a total of 18 red candies selected out of 50 candies

(see Figure 5.16). That is, Lesley found that 36% of the total number of candies drawn—not

samples —were red. She thus evidently mistakenly wrote “sample” instead of “candies” in her

response.

red
white
red
white
red
white
red
red
red
white
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white
white
white

red

red
white
white

red
white
white

Figure 5.16. A reconstruction of Lesley’s work
samples containing “more red than white”.
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, written on her copy of the activity guide. The asterisks denote

Lesley’s mistake, per se, is of little interest to me. What is interesting, however, is her idea to

enumerate the number of candies: it suggests her having had an alternative way to structure the

sampling outcomes as a collection of candies. Indeed, Lesley’s strategy is further elaborated in

the following brief discussion excerpt that ensued between her and the instructor (I).

Episode 1, Lesson 4:

1.
2
3.
4.
5
6

7. I: Did you just eyeball it? Or did you summarize it somehow?

I: Lesley? Did you summarize this? How, how was it that you looked at the
whole set of all 10 samples?

Lesley: Do you want to me to read what I wrote down, or--?

I: No. I'm asking a different question
Lesley: Ok, well ask again ‘cause I wasn’t paying attention

Nicole chuckles

I: Ok. Uhh, what did you do to look at all 10 samples to uhh as one collection?
(3 second silence)

8. Lesley: Oh, well I added up all the reds and all the whites,
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9. I: Ok, so you count—

10. Lesley: and looked at the percentage

11. I (continues): so you looked at the numbers of each.
12. Lesley: Right.

Thus, in summing the total number of candies selected and looking at what percentage of
them were red, Lesley evidently treated the collection of sampling outcomes as though it
constituted one large sample. That is, Lesley seemed to collapse the collection of distinct
samples into one large collection of candies. I presume that she took the 36% not as the sole
basis for her assertion that the population contained fewer red than white candies, but rather as
additional and supporting evidence for it.

Lesley’s novel and apparently non-normative approach raises questions about what sense she
had made of the classroom discussions leading up to this juncture. Those discussions had
promoted partitioning a collection into classes of sampling outcomes as a basis for making an
inference. As my analysis of Nicole’s strategy asserts (Figure 5.13), this structuring entails
coordinating two levels of imagery of the sampling process in a way that distinguishes sampled
items from samples of items. Lesley’s response to Question 1 clearly indicates that she was able
to enact such a partitioning, but it also suggests that when left to her own devices she was
inclined to take a perspective that seems to ultimately smudge over these distinctions.
Accordingly, I pose two related questions: 1) what did Lesley think was the aim of selecting
multiple samples, and 2) did Lesley view re-sampling predominantly as a way to amass one large
sample?

These questions will, unfortunately, remain unanswered.”> However, I reformulate question 2
as a conjectured schema that may have underlay Lesley’s strategy: re-sampling as a method for
growing a sample. Putting aside the issue of this conjecture’s un-testability, such a schema
entails a view of sampling that departs significantly from the multiplicative conception of
sampling (MCS) already elaborated in an earlier chapter. Blurring over individual samples as
distinct units of selection and quantification, and dissolving them into sampled items that amass
into one large sample is a structuring that is almost antithetical to the imagery that supports
conceiving a collection of sampling outcomes as a distribution. Figure 5.17 attempts to depict

each of these conceptions pictorially.

* Lesley transferred out of the course two lessons later.
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! One large sample

Figure 5.17. Multiplicative conception of sample (left) versus “grow a sample” schema (right).

The other student response to Question 1b that interests me is Sue’s (Table 5.2). Note that
Sue responded to the question affirmatively, but unlike the other students she did not conclude
anything about the population. Instead, her response describes the general steps of the process by
which one could come to make a conclusion about the population. Thus what appeared to be
most salient for Sue was the method enacted in class, especially the tabular format used to
represent sampl