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Chapter I 

 

INTRODUCTION 

Staphylococcus lugdunensis 

S. lugdunensis is a coagulase negative Staphylococcus (CNS) that is often found as 

part of the normal skin flora and has the potential to cause aggressive infections similar 

to those caused by S. aureus. S. lugdunensis is emerging as an important human 

pathogen with characteristics that make it stand out from other CNS, including its 

increased level of virulence [1, 2]. Unlike other CNS, S. lugdunensis has the capacity to 

cause a wide array of serious infections such as acute endocarditis, brain abscesses, 

meningitis, prosthetic joint infections, pneumonia, toxic shock and necrotizing fasciitis [3, 

4]. The mortality rate associated with S. lugdunensis endocarditis can reach 50% [5] 

which presents a serious public health problem considering the propensity of S. 

lugdunensis to infect the heart. This is in striking contrast to the 14.5% mortality rate 

associated with S. aureus endocarditis, and the 20% mortality rate associated with 

Staphylococcus epidermidis endocarditis [5]. The ability of S. lugdunensis to cause 

necrotizing fasciitis has only recently been documented and exemplifies an alarming trend 

for pathogenic bacteria to develop greater degrees of virulence. Additionally, the majority 

of infections caused by S. lugdunensis occur in healthy adults, primarily in the outpatient 

setting [6]. In fact, nearly half of patients infected with S. lugdunensis do not exhibit 

identifiable comorbidities.  This indicates that S. lugdunensis is not confined to being an 

opportunistic pathogen, another fact which distinguishes it from other CNS [6]. Although 

S. lugdunensis remains highly susceptible to the majority of antimicrobial therapies, 

antibiotic resistance is evolving [6].  The number of S. lugdunensis isolates that are 



2 
 

susceptible to all antibiotics has decreased from 68% in 1993 to 45% in 2010 [6, 7]. 

Additionally, the prevalence of ampicillin resistant strains is increasing, and mecA positive 

S. lugdunensis isolates has been identified [6, 8].  This increase in antibacterial resistance 

coupled with the substantial virulence of this organism presents a clinical challenge that 

necessitates a more thorough understanding of the molecular determinants of virulence 

within S. lugdunensis. 

Many of the infections associated with S. lugdunensis (native valve endocarditis, 

prosthetic joint infection and intravascular catheter infection) are linked to biofilm 

formation [9, 10]. Few virulence factors have been identified within S. lugdunensis 

however those that have been described give insight into how this pathogen is able to 

adhere to host tissues and proliferate. For example, S. lugdunensis encodes fibrinogen 

binding protein, Fbl which is closely related to Clumping Factor A, Clf, from S. aureus. 

Importantly, Clf has been shown to be involved in adherence in an endocarditis model of 

S. aureus infection [11, 12]. Additionally, S. lugdunensis expresses a von Willebrand 

binding factor protein (vWbp) which aids in the establishment of infectious legions within 

S. aureus [13]. While S. lugdunensis does not encode an alpha hemolysin as does S. 

aureus, it does encode a delta hemolysin, enabling access to host hemoglobin [14]. This 

delta hemolysin in coordination with the S. lugdunensis Iron-regulated surface 

determinant (Isd) system is predicted to allow for nutrient iron acquisition during infection. 

Included in the S. lugdunensis Isd system is an IsdG-family heme oxygenase as well as 

the predicted peptidoglycan (PG) hydrolase, PghI. The role and regulation of both IsdG 

and PghI is discussed in detail within Chapters II and III.  
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Peptidoglycan Hydrolases 

The PG cell wall is an essential feature of the Gram-positive cell and protects the 

cellular membrane from osmotic rupture. PG is composed of polysaccharide strands that 

are covalently linked by crosslinking peptide moieties forming a continuous molecule that 

encases the cell [15]. Since bacteria are sheathed in this polymeric shell, bacterial growth 

and division are inherently linked to the synthesis and destruction of the PG layer. To 

prevent a critical loss of cellular resources, many bacteria recycle up to half of their cell 

wall per generation [16]. While PG hydrolysis is critical for bacterial growth, uncontrolled 

degradation of the cell wall will lead to lysis. Consequently, the expression of PG 

hydrolases is highly regulated. Since PG synthesis is critical for bacterial division and 

survival and PG is structurally unique to bacteria many antibiotics target the enzymes 

involved in PG synthesis [16].  

 PG hydrolases are a large and diverse group of enzymes capable of cleaving polymeric 

bonds within both the PG saculli and soluble PG fragments [17]. Assigning a specific 

function to any one hydrolase is challenging because most bacteria encode numerous 

hydrolases often with redundant functions. Additionally, many hydrolases perform 

multiple functions and can recognize and cleave PG at various bonds. In fact, for every 

amide and glycosidic bond within the PG structure, a hydrolase enzyme which can cleave 

it has been identified [17]. Additionally, hydrolases are often specific for a certain type of 

PG and can even be species specific. PG hydrolases can be grouped based on where in 

the PG molecule they cleave. Muramidases including lysozymes and lytic 

transglycosylases cleave the glycosidic bonds between N-acetylmuramic acid (MurNAc) 
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and N-acetylglucosamine (GlcNAc) while N-acetylmuramyl-L-alanine amidases hydrolyse 

the amide bond between MurNAc and L-alanine whereas carboxy and endopeptidases 

cleave the bonds between various stem peptides [17].  

 While PG hydrolases are involved in basic cellular functions, they have also been 

shown to play a critical role during pathogenesis. The autolysin LytFsm is up-regulated in 

Streptococcus mutans in response to cellular stress and subsequent activation of the 

SigX regulon by the quorum sensing peptide, competent-stimulating peptide (CSP). 

Expression of LytFsm causes lysis of a portion of cells, resulting in the production of 

extracellular DNA (eDNA) and increased survival of the remaining cells. This increased 

survival is likely due to the uptake of the released DNA [18]. PG is a potent immune 

activator and the release of PG subunits by hydrolases within Listeria monocytogenes 

modulate the innate immune response through natural killer (NK) cell activation and 

contribute to pathogenicity [19]. Additionally, the enzymatic activity of the PG hydrolase 

LytC within Streptococcus pneumonia diverts the deposition of C3b on the surface of 

bacteria and consequently mitigates the effect of complement-mediated immunity [20]. 

Lastly, both the PG modifying activities and lytic capabilities of PG hydrolases promote 

bacterial adherence and biofilm formation. Recurrent and persistent bacterial infections 

are frequently observed in patients with indwelling medical devices. The pathogenesis of 

these infections is dependent upon the ability of bacteria to first adhere to the device and 

then generate a biofilm. These biofilms are complex communities of bacteria that are 

encased within a matrix and display distinct phenotypes. Staphylococcal cells embedded 

within this matrix are inherently resistant to both the host immune system as well as 

antimicrobial therapies [21]. Furthermore, biofilms can complicate infections by serving 
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as a focus of infection from which bacteria can disseminate resulting in bloodstream 

infection, emboli, and metastatic infections [21]. The autolytic activity of some PG 

hydrolases generates eDNA which assists bacterial adherence to surfaces as well as 

neighboring bacteria [22]. The major autolysin within S. epidermidis, AtlE, is localized to 

the cell surface and is involved in the primary attachment of cells to polystyrene surfaces 

[23]. Importantly, homologs of AtlE have been identified in multiple staphylococcal 

species including S. aureus and S. lugdunensis. I have found that S. lugdunensis encodes 

an additional PG hydrolase, pghI, which promotes biofilm formation and is unique among 

PG hydrolases in that it is iron-regulated. This type of transcriptional regulation suggests 

pghI is expressed during infection and is therefore likely to play a role in pathogenesis. 

The enzymatic characterization and transcriptional regulation of pghI is described in 

Chapter III.  

Iron and Infection 

A promising strategy to combat bacterial infections is to inhibit the procurement of 

nutrients that are necessary for growth. Iron is required by nearly all living organisms and 

S. lugdunensis is no exception. In a process referred to as nutritional immunity, the 

vertebrate host tightly regulates iron levels and sequesters this valuable nutrient 

intracellularly as a mechanism to prevent bacterial proliferation.  

Host iron sequestration is a complex process requiring the synchronization of multiple 

enzymes involved in host iron regulation. Iron is insoluble at physiologic pH found within 

vertebrate tissues and any free iron is quickly removed by high-affinity iron binding 

proteins. Within the serum, free iron is bound by transferrin with an association constant 
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of approximately 1036 (Figure 1) [24]. In addition to binding free iron, transferrin functions 

as an iron transport protein, transferring iron to peripheral tissues through receptor-

mediated endocytosis of transferrin receptor 1 (TfR1) [25]. Iron levels are also limited in 

lymph and mucosal secretions through lactoferrin, which quickly binds all free iron. 

Additionally, lactoferrin is a major component within phagocytes, ensuring that engulfed 

pathogens have limited access to intracellular iron. In healthy individuals both lactoferrin 

and transferrin are only 30-40% saturated and consequently are poised to bind free iron 

[24].  

 The overwhelming majority of iron within humans is found in the form of heme; a 

tetrapyrrole ring with a coordinated iron center. Heme is often bound by hemoproteins, 

the most abundant of which is hemoglobin. To further prevent access to iron, hemoglobin 

is sequestered intracellularly within erythrocytes; greater than 90% of iron within the 

human body is located intracellularly making it inaccessible to extracellular pathogens 

unless mechanisms are employed to liberate these rich sources of nutrient iron (Figure 

1) [26].  Although hemoglobin is the most abundant hemoprotein in the body, there are 

additional heme-binding proteins that can serve as sources of iron for invading bacteria. 

Haptoglobin is a tetrachain (α2β2) glycoprotein that binds free hemoglobin (Figure 1) 

following hemolysis as a means to prevent loss of iron through urinary excretion and 

subsequent kidney damage [27]. S. aureus binds haptoglobin-hemoglobin complexes in 

vitro, suggesting that this protein complex is exploited as a source of nutrient iron [28]. 

While it remains unknown if S. lugdunensis can bind haptoglobin-hemoglobin, the high 

degree of homology between the iron acquisition systems of S. aureus and S. 

lugdunensis makes it reasonable to speculate that S. lugdunensis binds haptoglobin.  
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Myoglobin is an additional hemoprotein that is found within myocytes. S. aureus can 

utilize myoglobin as an iron source in vitro and this protein may represent a source of iron 

during colonization of muscle tissue [29]. While it is unclear if S. aureus or S. lugdunensis 

utilize myoglobin during infection, it is likely that the tissue damage that occurs during skin 

and soft tissue infections would provide these bacteria with significant access to this rich 

heme-iron source. In support of this contention, both S. lugdunensis and S. aureus readily 

colonizes the heart and damage surrounding cardiac myocytes [30]. 

 Nutritional immunity is a dynamic process that is capable of responding to assaults 

from invading bacteria.  A primary coordinator of this response is the hepatic peptide 

hormone hepcidin, which regulates iron absorption and the distribution of iron within 

tissues. All iron within the body, whether it is dietary iron entering through duodenal 

enterocytes, or iron within macrophages that have recycled senescent erythrocytes, must 

leave the cells to enter circulating plasma. Inflammation is one of the many stimulatory 

signals that affect hepcidin concentrations within the serum. Specifically, induction of IL-

6 production and LPS-mediated TLR4 signaling both cause increases in circulating 

hepcidin [31]. Inflammation-induced increases in hepcidin represent a hypoferremic 

response to infection, which allows the host to respond to bacterial assault by further 

reducing available iron and preventing bacterial replication [31]. Together hepcidin, 

transferrin, and lactoferrin function to maintain an extracellular environment free of 

elemental iron.  In summary, iron homeostasis within the human host requires the 

integration of multiple signals, resulting in an environment that is iron-deplete and able to 

respond to bacterial assault. 
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Figure 1. 

Model depicting both host factors involved in nutritional immunity as well as bacterial 

factors utilized to circumvent host sequestration of iron.  
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Heme Oxygenases 

 Heme oxygenases are a ubiquitous family of enzymes which catabolize heme. All 

identified heme oxygenases can be categorized into one of two families, the HO-1 family 

that is conserved across kingdoms and the IsdG family that has only been identified in 

Bacteria. HO-1 family heme oxygenases degrade heme to the blue-green molecule 

biliverdin with the concomitant production of carbon monoxide. In vertebrates biliverdin is 

further reduced to bilirubin by biliverdin reductase. In contrast, IsdG and IsdI degrade 

heme to staphylobilin, a yellow oxo-bilirubin molecule, and formaldehyde [32] with the 

exception of the M. tuberculosis IsdG which degrades heme to mycobilin [33]. Both 

bilirubin and biliverdin have potent antioxidant properties within humans however; the role 

of heme degradation products within bacteria has not been elucidated. The importance 

of both bilirubin and biliverdin to human physiology makes it tempting to speculate that 

staphylobilin may serve important biological functions within bacteria. Furthermore, 

carbon monoxide produced during HO-1 mediated heme catabolism serves as a signaling 

molecule within humans. Considering the conservation of IsdG family members across 

numerous bacterial pathogens, identifying the function of staphylobilin as well as 

formaldehyde may have broad implications to numerous infectious diseases.  

 S. aureus encodes two seemingly redundant heme oxygenases, IsdG and IsdI. While 

both enzymes bind and degrade heme, they are differentially regulated indicating a 

possible rationale for encoding two paralogous heme oxygenases [34, 35]. Both isdG and 

isdI transcript levels increase in iron-deplete conditions and are subjected to Fur-

mediated regulation [34]. IsdG however, undergoes proteolytic degradation in the 

absence of the substrate heme [34].  This suggests that S. aureus differentially regulates 



10 
 

IsdG and IsdI to precisely adjust the level of heme catabolism within the cell in response 

to alterations in cellular heme concentrations [34].  S. lugdunensis also expresses IsdG 

which is 68% identical to S. aureus IsdG at the amino acid level however I found that S. 

lugdunensis IsdG is stable in the absence of heme. This indicates that structural 

differences exist within S. lugdunensis IsdG that prevent it from being targeted for 

degradation. Alternatively, S. lugdunensis may not encode the protease responsible for 

the targeted degradation of S. aureus IsdG. The role and regulation of S. lugdunensis 

IsdG is described in detail in Chapter II.  

The S. lugdunensis Isd system 

While the vertebrate host has evolved sophisticated mechanisms by which it 

sequesters iron from invading pathogens, S. lugdunensis has evolved equally 

sophisticated mechanisms to gain access to iron during infection. For example, Fur-

mediated regulation allows S. lugdunensis to respond to iron starvation through the 

dramatic up-regulation of Isd system [36]. The Isd system includes the cell wall anchored 

heme binding proteins (IsdC, IsdJ, and IsdK), a wall anchored hemoglobin receptor 

(IsdB), a membrane transporter (IsdEF), and a cytoplasmic heme oxygenase (IsdG) [36-

38]. The Isd system also includes sortase B, an enzyme dedicated to anchoring IsdC to 

the cell wall and is also predicted to anchor IsdK to the cell wall. Conversely, IsdB and 

IsdJ are predicted to be anchored to the cell wall by sortase A [38, 39]. These proteins 

are hypothesized to work in concert to enable S. lugdunensis to utilize vertebrate 

hemoglobin as a source of nutrient iron.  
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IsdB, IsdC, IsdJ and IsdK contain NEAr iron Transporter (NEAT) domains [36]. NEAT 

domains are conserved stretches of amino acids that mediate heme and hemoprotein 

binding [40]. Heme-iron is bound within these clefts by a single axial tyrosine ligand [41]. 

The current model for heme acquisition via the S. lugdunensis Isd system proposes that 

IsdB employs NEAT domains to initiate the process by binding hemoglobin. IsdB then 

transfers heme to IsdC which transfers the porphyrin through the cell wall. It is then 

predicted that heme is transferred to IsdEF which passes heme through the cell 

membrane into the cytoplasm where it is degraded by IsdG. Interestingly, while both IsdJ 

and IsdK are predicted to be linked to the cell wall based on the presence of sortase A 

and sortase B signals respectively; a recent study found that the majority of IsdJ and IsdK 

are localized to the membrane [36]. Furthermore, the role of both IsdJ and IsdK in iron 

acquisition remains unclear. The Isd system represents a paradigm of heme-iron 

acquisition, and illustrates a mechanism by which bacterial pathogens utilize hemoglobin 

as an iron source and traffic heme inside the cell. 

To achieve an extracellular environment virtually free of iron vertebrate hosts produce 

the iron-sequestering proteins transferrin and lactoferrin. To combat this sequestration S. 

aureus elaborates siderophores, small molecules with an impressively high affinity for iron 

which target and remove iron bound to transferrin and lactoferrin (Figure 1). These 

siderophores are conserved within the S. lugdunensis genome however; it has not been 

conclusively shown that the protein products of these genes function as siderophores. 

Production of siderophores in S. aureus is Fur-regulated and consequently increases 

when the bacteria experience iron stress [42, 43]. Bacterial siderophores can be 

synthesized using two distinct pathways, the non-ribosomal peptide synthetases (NRPS) 
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pathway and the NRPS-independent (NIS) pathway. The NRPS pathway synthesizes 

siderophores using modular enzymatic platforms [44]. In contrast, the NIS pathway 

utilizes condensation reactions with units of dicarboxylic acids, diamines and amine 

alcohols to create the final siderophore structure [44]. S. aureus encodes for two 

siderophores, staphyloferrin A and staphyloferrin B, and both are synthesized through the 

NIS pathway and then secreted into the extracellular milieu.  Within S. aureus both 

staphyloferrin A and staphyloferrin B, upon binding iron, are transported into the 

cytoplasm through the ABC transporters HtsABC and the staphylococcal iron regulated 

transporter (SirABC), respectively [44]. Additionally, HtsBC has been found to transport 

heme into the cytoplasm suggesting that HtsABC may serve as a dual iron/heme 

transporter [45]. Siderophore production in combination with the Isd system provides S. 

aureus and presumably S. lugdunensis multiple routes for obtaining iron. 
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Chapter II 

 

 

STAPHYLOCOCCUS LUGDUNENSIS ISDG LIBERATES IRON FROM HOST HEME 

Introduction 

Iron acquisition is a critical process for pathogenic bacteria during infection. This is due 

to the numerous fundamental cellular processes that require iron such as DNA replication, 

electron transport and protection from reactive oxygen damage [46]. Vertebrates exploit 

the iron requirement of bacterial pathogens by creating an extracellular environment 

virtually devoid of free iron. The most abundant source of iron within the human body is 

found in the form of heme, a tetrapyrole ring with a coordinated iron center. Heme is 

further bound by hemoproteins the most abundant of which is hemoglobin. To circumvent 

this sequestration, pathogenic bacteria have evolved complex iron acquisition systems 

that they elaborate upon entry into host tissues. In Gram-positive bacteria one such 

system is the Isd system which binds hemoglobin, removes the heme cofactor, and 

transports heme inside the bacterial cytoplasm where it is degraded by heme oxygenases 

resulting in the release of nutrient iron [32, 47]. Interestingly, heme is the preferred source 

of iron for S. aureus during infection [45], and heme acquisition by the Isd system is critical 

for full virulence in S. aureus [34].  

The sequencing of the S. lugdunensis genome has allowed for a more in depth analysis 

of the genes underlying the virulence of this dynamic pathogen [48]. In this regard, S. 

lugdunensis encodes a complete Isd system including an IsdG heme oxygenase.  This 

observation suggests that S. lugdunensis is capable of using heme as a source of iron 



14 
 

during infection. Here I use biochemical and genomic techniques to characterize this 

member of the IsdG family of heme degrading oxygenases and provide insight into the 

nutrient acquisition pathways of S. lugdunensis. 
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Methods 

Protein purification 

Recombinant S. lugdunensis IsdG was purified from Escherichia coli BL21 (DE3) 

carrying the pET-15b-isdG plasmid. Overnight cultures were grown at 37o in TSB with 

100 μg/ml ampicillin and 34 μg/ml chloramphenicol. The next day cells were diluted in 

fresh media and grown to mid-log phase at which time expression was induced through 

the addition of 1mM isopropyl-1-thiol-(D)-galactopyranoside. Cell growth continued for 3 

H at 30o after which time cells were collected through centrifugation at 8,000 x g for 10 

min. Cell pellets were then washed with 50 mM Tris-HCl (pH 7.5) 100 mM NaCl, collected 

through centrifugation and stored at -80o. To collect recombinant protein cells were 

thawed on ice and resuspended in 50 mM Tris-HCl (pH 7.5) 100 mM NaCl with 100 μM 

phenylmethylsulfonyl fluoride.  Cells were lysed using a French press and the cell 

suspension was centrifuged at 100,000 x g for 60 min. After centrifugation the soluable 

fraction was filter through a 0.45 μm filter and then applied to a Ni-Nitrilotriacetic acid 

column that had been pre-equilibrated with 50 mM Tris-HCl (pH 7.5), 100 mM NaCl. The 

column was then washed with two volumes of 50 mM Tris-HCl (pH 7.5) 100 mM NaCl 

followed by a wash using three volumes of 50 mM Tris-HCl (pH 7.5), 100 mM NaCl with 

10% glycerol and 10 mM imidazole. Protein was eluted with 50 mM Tris-HCl (pH 7.5), 

100 mM NaCl containing 500 mM imidazole. Proteins were then dialyzed against 50 mM 

Tris-HCl (pH 7.5), 100 mM NaCl. Protein concentrations were determined using a BCA 

assay and purity was evaluated by SDS-PAGE. 
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Heme degradation and product purification 

 Heme degradation reactions were performed in 50 mM tris, pH 7.5, 150 mM NaCl at 

room temperature.  Forty µM purified IsdG or mutant IsdG was incubated with 40 µM 

hemin (Sigma) for 30 minutes at 4o to allow heme protein complexes to form. Catalase 

(from bovine liver, Sigma) was added to the sample at a 0.5:1 molar ratio of catalase: 

hemoprotein, ascorbic acid was added to a final concentration of 1 mM and spectral 

changes between 300 and 800 nm were measured at 15, 30, 60, and 90 min after the 

addition of ascorbate. Purification of heme degradation products were done as before 

[32].  

HPLC analysis was performed on a Varian ProStar using a Microsorb-MV C-18 

column. Analysis was performed with a flow rate of 1 ml min-1 using 95% water/5% 

acetonitrile with 0.1% TFA as the mobile phase. The mobile phase increased linearly from 

5% to 80% over a 45 min time period. Staphylobilin peaks eluted at approximately 32 min 

or 60% mobile phase.  

Difference absorption spectroscopy 

 All absorption spectra were obtained using a Varian Cary 50BIO. Heme binding 

analyses were performed using difference absorption spectroscopy at 413 nm. Aliquots 

of hemin (2 µM-28 µM) were added to both a sample aliquot (10 µM IsdG) and a reference 

aliquot of tris-buffered saline (50 mM tris, pH 7.5, 150 mM NaCl). Samples were incubated 

at 4o on a rotisserie for 30 min to allow ample time for protein heme complexes to form.  
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Heme binding assay 

 The Soret band of a 10 µM sample of purified IsdG was measured as hemin was added 

incrementally. The heme concentrations measured ranged from 2 µM-40 µM. After each 

addition of heme the sample was incubated at 4o on a rotisserie to allow time for heme 

protein complexes to form. 

Heme utilization assay 

 To assess the ability of S. lugdunensis IsdG to degrade heme and allow for its use as 

an iron source a liquid growth assay was utilized. The clinical S. aureus isolate strain 

Newman was used in all experiments [49]. All strains were transformed with the pOS1plgt 

vector [50, 51]. For phenotypic complementation experiments, strains were created by 

transforming S. aureus ΔisdGΔisdI with the pOS1-derived vector containing a full length 

copy of S. lugdunensis isdG under the control of the S. aureus lipoprotein diacylglycerol 

transferase (lgt) constitutive promoter. Strains were grown overnight in RPMI with 10% 

casamino acids, the appropriate antibiotic and 0.5 mM EDDHA. Cultures were normalized 

to an OD600 of 0.6 and subcultured 1:100 into NRPMI with 100 µM CaCl2, 25 µM ZnCl2, 1 

mM MgCl2, 25 µM MnCl2, 1 µM heme and the appropriate antibiotic. OD600 was measured 

over 55 H. The assay was repeated to test three biological replicates in triplicate.  

Quantitative immunoblot 

  Cultures were grown overnight in TSB or TSB with 100-350 µM 2,2’-dipyridyl (Dip). 

Protoplasts were prepped and total protein concentrations normalized using a BCA 

assay. Samples were run analyzed using a 15% SDS-PAGE and then transferred to a 

nitrocellulose membrane. Membranes were stained with α-IsdG polyclonal antibody and 
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then stained with goat anti-rabbit conjugated antibody. Membranes were imaged using 

an Odyssey infrared imager. To analyze the effect of heme on cytoplasmic IsdG levels 

cultures were grown overnight in TSB with 350 µM Dip and increasing concentrations of 

heme. Samples were prepped and stained as previously described. 

IsdG-family phylogenetic tree 

We reconstructed the evolutionary relationships of IsdG/I using amino acid sequences 

obtained from bacterial species with annotated IsdG family heme oxygenases. We looked 

for IsdG proteins in NCBI GenBank using a tBLASTx search of the nr nucleotide database 

restricted to bacteria. Staphylococcus aureus, Bacillus anthracis, Mycobacterium 

tuberculosis, and Bradyrhizobium japonicum isdG/isdI nucleotide sequences were used 

for this tBLASTx search and amino acid sequences associated with tBLASTx hits that 

had an E-value hat -05 were retrieved. Retrieved amino acid sequences were further 

screened by removing all sequences lacking the IsdG catalytic triad or a functional 

annotation. We also searched UniProt for all reviewed Isd proteins with known heme 

oxygenase function. A single representative operational taxonomic unit from each 

retrieved species was used to reconstruct the tree. 

  Prior to tree building, amino acid sequences were aligned with MUSCLE [52]. The final 

aligned dataset had 22 IsdG-family amino acid sequences of length 133. The Isd 

phylogeny was reconstructed using maximum likelihood (ML) [53]. The best fit model of 

amino acid substitution used in the ML reconstruction was determined with ProtTest 2.4 

[54]. According to the AIC, the best fit substitution model was WAG+I+G+F [55]. The ML 

tree was reconstructed with PhyML 3.0 [56, 57] by maximizing the topology likelihood of 

ten random starting trees from the best of NNI and SPR branch rearrangements. The 
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gamma shape parameter (four rate categories) and proportion of invariable sites were 

optimized via ML. Amino acid equilibrium frequencies were set at empirical levels. Node 

statistical support was determined using a non-parametric bootstrap with 500 replicates. 
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Results 

S. lugdunensis encodes an Isd system 

S. lugdunensis requires iron for growth and can use heme to satisfy this requirement.  

This suggests that systems dedicated to the acquisition of heme are encoded within the 

S. lugdunensis genome.  Using the nucleotide sequences of the S. aureus isd operon as 

queries, a putative Isd system was identified in S. lugdunensis. The S. aureus, Isd system 

encodes for 10 genes that work in concert to bind hemoglobin, remove the heme cofactor, 

and transport heme into the cell where it is degraded to release nutrient iron. Several 

proteins of the S. aureus Isd system are conserved within S. lugdunensis but important 

differences exist (Figure 2). For example, the Isd system of S. lugdunensis does not 

encode an isdA gene but rather an isdA-like gene, isdJ, which has two heme binding 

NEAT domains as opposed to the single NEAT domain of S. aureus isdA. Additionally, 

the S. lugdunensis Isd system encodes for a putative ABC transporter, SLGD_00070 not 

present in the S. aureus Isd system. Moreover, the S. aureus Isd system utilizes two heme 

oxygenases, IsdG and IsdI, while the S. lugdunensis Isd system appears to utilize a single 

heme oxygenase. We refer to the S. lugdunensis heme oxygenase as IsdG in keeping 

with it being 68% identical to the amino acid sequence of S. aureus IsdG. Importantly, the 

catalytic triad (N6, W67, H76) shown to be critical for the enzymatic function of S. aureus 

IsdG [58] is conserved within the S. lugdunensis IsdG (Figure 2B). Analysis of the region 

upstream of the S. lugdunensis isdCDEFSLGD_00070srtBisdGpghI transcriptional start 

site revealed sequences with a high degree of similarity to consensus Fur box sequence 

from S. aureus (Figure 2C). Fur boxes are nucleotide sequences to which the iron-

dependent repressor Fur binds. The presence of putative Fur boxes indicates that these 
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genes are likely iron-regulated, becoming maximally expressed in iron deplete conditions. 

These results suggest that S. lugdunensis encodes an iron-regulated Isd system including 

an IsdG family heme oxygenase. 
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Figure 2. Sequence analysis of the S. lugdunensis Isd operon  

(A) Growth comparison of S. lugdunensis grown in media alone, iron-depleted 
media or iron-depleted media supplemented with 5 μM heme. (B) The genomic 
organization of the isd locus within S. lugdunensis with four predicted 
transcriptional start sites designated by bent arrows. Putative Fur binding sites are 
marked by hashed boxes. All assignments are based on the annotated S. 
lugdunensis genome N920143 (in press with the accession number FR870271). 
(C) Amino acid alignment of S. aureus IsdG and S. lugdunensis IsdG with non-
conserved amino acids shown in bold. Amino acids within the conserved catalytic 
triad are indicated with an asterisk. (D) Nucleotide sequence alignment of the S. 
aureus Fur box consensus sequence, S. aureus isdG Fur box sequence and the 
S. lugdunensis isdG Fur box sequence. Nucleotides that differ from the consensus 
sequence are shown in bold 
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S. lugdunensis IsdG binds and degrades heme 

Heme binding proteins have a distinct absorption spectrum defined by peak 

absorbance in the range of 390-430 nm referred to as the Soret band.  S. lugdunensis 

IsdG purified from Escherichia coli does not exhibit absorption patterns indicative of a 

heme binding protein. Reconstitution of IsdG with heme produces an optical absorption 

spectrum with a peak absorbance at 413 nm which incrementally increases upon addition 

of heme (Figure 3A). The Soret peak of heme-protein complexes is distinct from that of 

free heme at a neutral pH. This difference allows for the spectrophotometric titration of 

IsdG with heme from which the stoichiometry of IsdG and heme can be determined. Heme 

added incrementally to purified IsdG (10 µM) has a discrete inflection point at 

approximately 10 µM heme, indicating a 1:1 stoichiometry of protein and heme (Figure 

3A inset). Together these data establish S. lugdunensis IsdG as a heme binding protein.   

The ability of S. lugdunensis IsdG to degrade heme was evaluated using optical 

absorption spectroscopy. Purified recombinant IsdG was incubated with heme allowing 

protein heme complexes to form and monitored spectrophotometrically upon the addition 

of the electron donor ascorbate. Spectral analysis of the reaction was performed prior to 

the addition of ascorbate as well as at 15, 30, 60, 90 and 120 minutes [58] following the 

addition of ascorbate. This reaction resulted in almost complete elimination of the peak 

at 413 nm indicating opening of the macrocyclic conjunction of heme (Figure 3B). To 

distinguish between the coupled oxidation of heme and IsdG-mediated heme degradation 

all reactions were performed in the presence of catalase. These results demonstrate that 

S. lugdunensis IsdG catalyzes the oxidative degradation of heme in the presence of an 

electron donor.  
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A defining characteristic of IsdG-family heme oxygenases is the presence of an NWH 

catalytic triad required for heme catabolism [58].  We evaluated the functional requirement 

for these three residues in S. lugdunensis IsdG using mutational analysis.  Each residue 

within the predicted catalytic triad was mutated to alanine and the heme binding 

properties of purified mutant proteins was assessed.  All three mutant proteins (N7A, 

W67A, and H77A) retained the ability to bind heme indicating that these mutations do not 

disrupt the overall fold or heme binding properties of IsdG.  However, inactivation of any 

residue within the catalytic triad resulted in the ablation of enzymatic function as 

demonstrated by the retention of the peak at 413 nm following addition of electron donor 

(Figure 4). These results indicate that IsdG enzymatically degrades heme through the 

catalytic NWH triad.   
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Figure 3. S. lugdunensis IsdG binds and degrades heme.  

 (A) Increasing amounts of hemin (2-40 µM) were added to a sample of 
purified IsdG (10 µM) and to a reference sample. Difference in absorbance of 
protein heme complex and free hemin at 413 nm is plotted against total heme 
concentration. Ten µM sample of protein was used (Inset). (B) Forty µM IsdG-
heme complex after the addition of ascorbate (1 mM), spectra were taken at 
0 (shown in blue), 15, 30, 60 and 90 minutes (shown in red). Reactions were 
performed in the presence of catalase at a 0.5:1 (catalase-hemoprotein) molar 
ratio. 
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Figure 4. Catalytic triad is functionally conserved in S. lugdunensis IsdG. 

Point mutants were made within the NWH catalytic triad by converting each of 
the three amino acids to alanine. Proteins were expressed and purified similar to 

wildtype and assessed for enzymatic activity. Forty  IsdG-heme complex after 
the addition of ascorbate (1 mM), spectra were taken at 0 (shown in blue), 15, 
30, 60 and 90 minutes (shown in red).  
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S. lugdunensis IsdG is iron-regulated 

 To ensure proper metal homeostasis, bacteria strictly regulate the uptake and 

metabolism of metals from the environment.  A putative Fur-binding sequence is present 

upstream of the predicted operon encoding isdG suggesting that isdG is up-regulated 

upon iron starvation (Figure 2C). To test this hypothesis we employed immunoblotting to 

assess relative IsdG quantities within cells grown in increasing concentrations of the iron 

chelator 2,2,’ dipyridyl (Dip). These experiments revealed that the relative abundance of 

IsdG increases expression in iron deplete conditions establishing IsdG as an iron-

regulated enzyme (Figure 5A). 

S. aureus encodes two IsdG-family enzymes, IsdG and IsdI, which are differentially 

regulated in response to iron and heme [34]. IsdI is maximally expressed in iron deplete 

conditions while IsdG is most abundant in iron deplete conditions in the presence of its 

substrate, heme. We therefore sought to determine what effect heme exposure has on 

IsdG levels within S. lugdunensis using quantitative immunoblotting. S. lugdunensis was 

grown in iron deplete conditions supplemented with increasing amounts of heme and 

IsdG levels were quantified (Figure 5B). This experiment revealed that the presence of 

heme has no effect on the intracellular abundance of IsdG within S. lugdunensis. 

Together these experiments show that S. lugdunensis IsdG is up-regulated in iron deplete 

conditions and is unaffected by the presence of heme.  This is consistent with a model 

whereby S. lugdunensis up-regulates its heme catabolizing machinery during times of 

nutrient iron starvation.  
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Figure 5. S. lugdunensis isdG is iron-regulated. 

S. lugdunensis was grown overnight with the indicated supplements and 
protoplasts werelysed and normalized by total protein concentration. (A and B) 
Effect of iron chelation by 2, 2, dipyridyl (Dip) on IsdG expression level analyzed 
by immunoblot. Fold change in cytoplasmic IsdG levels in increasing 
concentrations of Dip as compared to IsdG levels in media alone. (C and D) Effect 
of exogenous heme on expression of IsdG when grown in iron-depleted media 
analyzed by immunoblot. (D) Fold change in IsdG levels from cells grown in iron-
depleted media with increasing concentrations of exogenous heme as compared 
to IsdG levels from cellsgrown in iron-depleted media alone. 
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S. lugdunensis IsdG degrades heme to staphylobilin 

Two structurally distinct families of heme oxygenases have been identified, the HO-1 

family and the IsdG family. While the HO-1 family of heme oxygenases is ubiquitous 

across Kingdoms the IsdG family has only been identified in bacteria. The mechanism of 

heme degradation in the HO-1 family is highly conserved and typically results in the 

production of the blue-green molecule α-biliverdin [59]. Within eukaryotes biliverdin is 

further reduced to the yellow molecule α-bilirubin by biliverdin reductase [60]. In contrast, 

IsdG family members within Staphylococci degrade heme directly to yellow oxo-bilirubin 

molecules that have been named staphylobilins [32]. Based on this, we sought to 

determine the identity of the product of IsdG-mediated heme degradation within S. 

lugdunensis. Initially, we analyzed the product of IsdG-mediated heme degradation using 

high pressure liquid chromatography (HPLC) and compared its retention time to that of 

staphylobilin, and biliverdin (Figure 6). When analyzed by HPLC the heme degradation 

product generated by S. lugdunensis IsdG eluted in a series of two peaks with a retention 

time identical to that of staphylobilin (Figure 6). Importantly, the heme degradation product 

of S. lugdunensis IsdG eluted earlier than either biliverdin or bilirubin indicating a higher 

degree of polarity (Figure 6). After HPLC purification the products of S. lugdunensis and 

S. aureus IsdG mediated heme degradation were subjected to high resolution 

electrospray ionization mass spectrometry (HRESIMS). This analysis allowed for the 

molecular composition of each peak to be determined and subsequently compared. 

Samples from both peaks resulted in products with a mass of 598.25 Da (m/z 599.2605 

[M+H] Δ = 0.5-4.2 ppm) corresponding to a molecular formula of C33H34N4O7 (Figure 7) 

[32]. Importantly, the molecular masses of biliverdin and bilirubin are 582.6 and 584.7 Da 
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respectively, and are clearly distinct from that of staphylobilin. Together these data 

indicate that S. lugdunensis IsdG degrades heme to staphylobilin. 
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Figure 6. HPLC analysis of S. lugdunensis IsdG heme degradation product 

HPLC comparison of established heme degradation products indicates that S. 
lugdunensis IsdG degrades heme to staphylobilin. (A) Staphylobilin purification 
monitored at 465 nm. (B) S. lugdunensis IsdG-mediated heme degradation 
product monitored at 465 nm. (C) Biliverdin purification monitored at 405 nm. 
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Figure 7. Tandem LC-HRESIMS analysis of S. aureus staphylobilin and 
S. lugdunensis IsdG heme degradation product  

 (A) ESI-MS/MS of fragment ions selection for 599.3 m/z for S. lugdunensis 
IsdG-mediated heme degradation products. (C) ESI-MS/MS of fragment ions 
selection for 599.3 m/z for S. aureus IsdG-mediated heme degradation 
products. 
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S. lugdunensis IsdG facilitates the use of heme as an iron source 

 Heme degradation results in the release of free iron for use as a nutrient source.  To 

determine the biological function of S. lugdunensis IsdG we measured the ability of S. 

lugdunensis IsdG to complement the heme utilization defect of the S. aureus heme 

oxygenase mutant (ΔisdGI) [35]. Heme utilization was measured by comparing the growth 

of plasmid containing strains of S. aureus in iron deplete medium supplemented with 

heme. To eliminate complications associated with iron-dependent effects on transcription, 

isdG was cloned into the p-OS1plgt vector resulting in the constitutive expression of isdG 

under the lgt promoter [51]. Expression of S. lugdunensis IsdG completely restored the 

ability of S. aureus ΔisdGI to utilize heme as an iron source for growth (Figure 7). In fact 

the complemented strain grew better than wildtype at early time points demonstrating that 

overexpression of IsdG provides an enhanced ability to grow on heme as a sole source 

of iron. These results indicate that S. lugdunensis IsdG degrades heme to release free 

iron and enhance bacterial growth. 
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Figure 8. S. lugdunensis IsdG complements the heme utilization defect of 
a S. aureus heme oxygenase mutant. 

Comparison of growth by plasmid containing strains of S. aureus, S. aureus 
ΔisdGΔisdI, and S. aureus ΔisdGΔisdI complemented with S. lugdunensis isdG. 
Strains were grown in minimal media with hemin supplemented as the only iron 
source.  
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Figure 9. Two distinct Staphylococcal clades within a phylogenetic tree of 
annotated IsdG-family heme oxygenases. 
 
Midpoint rooted phylogenetic tree of IsdG/I amino acids sequences from bacterial 
taxa with characterized heme oxygenases. The phylogeny was reconstructed 
using maximum likelihood (ML) and the tree with the highest log likelihood (lnL = 
-3131.92126) is shown. A non-parametric bootstrap (500 replicates) was used to 
determine node support. Bootstrap values are shown at each node. Branch 
lengths are to scale and measured in amino acid substitutions per site. 



36 
 

Discussion 

 While the types of infections caused by S. lugdunensis are well described, the 

molecular mechanisms employed during infection have not been identified. As with most 

bacterial pathogens, S. lugdunensis cannot survive and replicate in the absence of iron. 

Moreover, free iron within host tissues is found at concentrations significantly less than is 

required to sustain bacterial growth [46, 61]. To combat this barrier to growth, S. 

lugdunensis presumably encodes systems dedicated to the acquisition of nutrient iron 

during infection.  Consistent with this, we report here that S. lugdunensis encodes an Isd 

system including an IsdG family heme oxygenase that degrades heme to staphylobilin 

and free iron. IsdG is up-regulated during conditions of iron starvation ensuring that the 

heme catabolizing machinery is abundant during times of nutrient stress.   Furthermore, 

S. lugdunensis IsdG promotes growth of a S. aureus heme oxygenase mutant on heme 

supporting the placement of this enzyme within the heme-iron acquisition pathway. Based 

on these findings, it is likely that the S. lugdunensis Isd system is utilized in low iron 

conditions to bind host hemoproteins, remove heme and transport it into the cytoplasm 

where it can be degraded to release free iron.  Functional IsdG family heme oxygenases 

have been identified in S. aureus, Bacillus anthracis, Bradyrhizobium japonicum, B. 

melitensis, and Mycobacterium tuberculosis [35, 47, 62, 63]. To gain insight into the 

evolutionary relationships between these IsdG family members we interrogated all 

bacterial genomes to identify IsdG orthologs and created a phylogenetic tree using all 

annotated IsdG family members (Figure 9). Interestingly, Staphyloccocal IsdG members 

segregated into two distinct clades with S. aureus and S. lugdunensis in the same clade 

and S. epidermidis and S. haemolyticus in a separate clade (Figure 9). Additionally, S. 

aureus IsdG is more closely related to S. lugdunensis IsdG than to any other IsdG family 
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member including its paralog, IsdI. Moreover, our analysis of all sequenced bacterial 

genomes revealed predicted IsdG orthologs across diverse classes of bacteria such as 

Alphaproteobacteria, Agrobacterium, Actinobacteria, Betaproteobacteria, Chloroflexi, 

Corynebacterinaea and Deinococcus-Thermus.   The broad conservation of IsdG across 

diverse classes of bacteria implicates heme degradation as a primary mechanism by 

which bacteria meet their iron requirements. Although the use of IsdG to catabolize heme 

may be pervasive among bacteria the number of species with putative IsdG heme 

oxygenases suggests that many questions remain regarding this enzyme. For example, 

many species with a predicted IsdG heme oxygenase have no known association with 

any plant or animal from which they could acquire heme. These species including 

Salinispora tropica, Oligotropha carboxidovorans, and Thermus thermophiles occupy 

unique niches, thriving in inhospitable environments such as thermal hot springs. Upon 

further investigation of the genomes of these bacteria it was discovered that they all 

possessed the necessary genes to synthesize heme endogenously. Therefore these 

bacteria may encode an IsdG family heme oxygenase to allow for the production of 

staphylobilin, adding support to the hypothesis that staphylobilin has an important 

biological function. 

The S. aureus Isd system includes three cell wall anchored proteins IsdA, IsdB and 

IsdC all of which are capable of binding heme.   

[64]. Putative orthologs of both IsdB and IsdC have been identified within the S. 

lugdunensis Isd system. Additionally, the S. aureus Isd system encodes for IsdD (a 

membrane protein), IsdF (a polytopic transmembrane protein) IsdE (a lipoprotein 

ATPase) and a sortase, SrtB, responsible for anchoring IsdC to the cell wall [64, 65] and 
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these proteins with the exception of IsdD are conserved within the S. lugdunensis Isd 

system. However, important differences between the two operons exist. One difference 

is the putative ABC transporter within the S. lugdunensis Isd system situated between 

isdF and srtB. This ABC transporter may be involved in iron homeostasis as its location 

within the predicted Isd operon suggests that it is iron regulated. Additionally it may 

facilitate heme uptake by acting as an accessory protein to the IsdEF heme transporter. 

While the S. lugdunensis Isd system does not include IsdA, it does encode for an 

additional wall anchored protein IsdJ. The role of IsdJ in iron acquisition has not been 

elucidated, however it does have two predicted NEAT domains and binds heme indicating 

it may be functionally analogous to S. aureus IsdA [36]. Another key difference between 

the two Isd systems is the presence of IsdI, an IsdG paralogue present in S. aureus but 

not S. lugdunensis. These two heme oxygenases have been shown to be differentially 

regulated within S. aureus [34]. Both heme oxygenases are transcriptionally regulated by 

Fur in response to iron levels however in the absence of heme IsdG is targeted for 

proteolytic degradation [34]. The biological significance of this differential regulation is not 

fully understood. One possibility is that by differentially regulating IsdG and IsdI, S. aureus 

can more precisely regulate heme degradation levels. S. aureus gains access to host 

heme through the expression of hemolysins which lyse erythrocytes. S. aureus regulates 

hemolysin expression in response to bacterial density by the global virulence regulator, 

agr. The two heme oxygenases within S. aureus may function such that IsdI is required 

early in infection to degrade the small amount of available heme present prior to the 

secretion of hemolysins. After seeding of host organs hemolysin expression likely 

increases resulting in an influx of heme necessitating the need for a second heme 
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oxygenase, IsdG. A single iron regulated heme oxygenase may be sufficient within S. 

lugdunensis because the amount of heme available for degradation may be more 

consistent throughout infection. This model is supported by the finding that hemolytic 

activity due to α, β or -hemolysins has not been detected in S. lugdunensis [7].  

Additionally, most isolates of S. lugdunensis have been found to produce a -like 

hemolysin comprised of three 43-amino acid peptides encoded not in the agr locus but 

the SLUSH locus [14]. The location of these genes outside the agr locus suggests that 

they are regulated by an as-yet-determined mechanism. Consequently, cytoplasmic 

heme levels within S. lugdunensis may not vary considerably throughout the course of 

infection, and regulating IsdG through Fur alone may allow for sufficient control of the 

heme catabolizing machinery within the cell. Another potential explanation for regulating 

intracellular levels of IsdG through iron alone is that the S. lugdunensis Isd system may 

be less efficient than that of S. aureus resulting in comparatively lower cytoplasmic heme 

concentrations during infection. The amount of heme entering the cell may not allow for 

the heme dependent stabilization of an IsdG family heme oxygenase. 

S. lugdunensis IsdG degrades heme to staphylobilin (Figures 7 and 8). This is the first 

evidence that the production of staphylobilin is conserved amongst IsdG family members 

within Staphylococci. Bilirubin, biliverdin and carbon monoxide are the products of 

vertebrate heme catabolism and all of these molecules have important functions within 

mammalian cells [66]. For example, biliverdin and carbon monoxide both have beneficial 

anti-inflammatory functions and all three molecules act as anti-oxidants within the serum 

[66, 67].The biological roles of heme degradation products within bacteria remain 

unknown. Bacterial HO-1 family heme oxygenases degrade heme to biliverdin however 
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a biliverdin reductase ortholog has not been identified in bacteria. Furthermore, it remains 

unclear if bacterial derived biliverdin has a physiological function. Carbon monoxide is 

produced during heme catabolism by HO-1 family heme oxygenases while IsdG family 

heme oxygenases produce formaldehyde [66, 68]. It is plausible CO production by HO-1 

or formaldehyde production by IsdG family enzymes affects bacteria, however the impact 

of the endogenous synthesis of these molecules has yet to be determined. Establishing 

staphylobilin as a conserved Staphylococcal heme degradation product supports the idea 

that this molecule may serve a valuable biological function within pathogenic bacteria.  

This work has established the role of S. lugdunensis IsdG in heme-iron utilization and 

identifies the first gene within S. lugdunensis involved in nutrient acquisition. IsdG 

mediated heme degradation is required for full virulence within S. aureus [34]. S. aureus 

strains lacking isdG or isdI are severely attenuated for growth within murine hearts 

following systemic challenge [34].  This work supports the idea that bacterial heme 

degradation is vital to cardiac colonization. Future experiments will aim at elucidating the 

contribution of IsdG to the virulence of S. lugdunensis during the pathogenesis of 

endocarditis. The significant structural differences between IsdG family members and 

human HO-1 heme oxygenases highlights the potential to therapeutically target IsdG. 

Further investigation of the contribution of the Isd system to S. lugdunensis pathogenesis 

may facilitate the development of Isd directed antimicrobials.  
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Chapter III 

 

THE S. LUGDUNENSIS ISD PEPTIDOGLYCAN HYDROLASE MODULATES ISDC 

RELEASE AND FACILITATES BIOFILM FORMATION 

Introduction 

Staphylococcus lugdunensis is a common skin commensal that is gaining more 

recognition as a clinically relevant pathogen due to its propensity for causing aggressive 

and rapidly progressive infections. S. lugdunensis is frequently associated with infections 

linked to biofilm formation such as endocarditis, and prosthetic joint infection, however 

little is known regarding the molecular mechanisms that facilitate S. lugdunensis 

adherence and biofilm regulation. In fact, only two S. lugdunensis proteins to date have 

been shown to mediate bacterial adherence. The fibrinogen binding protein Fbl is highly 

related to clumping factor A (ClfA) of S. aureus which contributes to  endocarditis in a S. 

aureus rat model of infection [12, 69]. Importantly, S. lugdunensis strains lacking a 

functional fbl gene are unable to bind to fibrinogen. The second protein is vWbp which is 

conserved in S. lugdunensis and facilitates the establishment of infectious legions in a S. 

aureus infection [13, 70].  

Bacteria encode for multiple peptidoglycan (PG) hydrolases which are involved in a 

variety of biological functions including cell wall turnover, cell separation, and antibiotic-

induced autolysis. Additionally, many PG hydrolases contribute to the pathogenesis of 

Gram positive pathogens through innate immune modulation and biofilm formation. This 

fact is underscored by the numerous species of bacteria including Streptococcus 



42 
 

pneumonia, Staphylococcus epidermidis and Listeria monocytogenes in which a PG 

hydrolase mutant has a virulence defect [70-73].    

 The Isd system within S. lugdunensis clearly plays a role in iron acquisition however 

some genes that are unique to the S. lugdunensis operon have roles that have yet to be 

elucidated, specifically, the terminal gene pghI, a predicted PG hydrolase. In this study I 

show that pghI is part of the S. lugdunensis Isd system and consequently is iron regulated. 

Additionally I demonstrate that PghI has PG hydrolyzing activity and that PghI modulates 

the release of the wall anchored IsdC protein. Furthermore, I show that both IsdC and 

PghI are involved in biofilm formation.  
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Methods 

RNA isolation 

Overnight cultures of wildtype S. lugdunensis were subcultured (1:100) in triplicate into 

tryptic soy broth (TSB) alone or TSB with 350 µM Dip. Midlog cultures (O.D. 600 = 0.3) 

were then harvested and mixed with an equal volume ethanol and acetone (1:1 ratio) and 

stored at -80oC. For RNA extraction samples were then thawed on ice and cells pelleted 

by centrifugation 8,000 X g for 10 min. Pellets were then resuspended in LETS buffer (1 

M LiCl, 0.5 EDTA, 1 M Tris-HCl, pH 7.4, 10% SDS) and lysed in lysing matrix B tubes 

(MP Bio) agitated in a FastPrep Instrument (MP Bio) set at 6 m/s for 45 s. Samples were 

heated to 55oC for 5 min and then centrifuged at 16,000 X g for 10 min. RNA was isolated 

by removing supernatants and mixing with 1.0 mL TRIzol (Tri Reagent; Sigma), and 

incubating the mixture at room temperature for 5 min. Chloroform was added to samples 

(200 µL) and then samples were vigorously shaken for 15 s, incubated at room 

temperature for 2 min and then centrifuged at 16,000 X g for 15 min. RNA was extracted 

by removing the top aqueous fraction, mixing it with 1 mL isopropyl alchohol, and 

incubating the samples at room temperature for 10 min. Samples were centrifuged at 

16,000 X g for 10 min, pellets were washed with 1 mL 70% ethanol, and air dried for 1 m. 

RNA was then resuspended in 100 µL of distilled water and contaminating DNA was 

removed by the addition of 10 µL of DNaseI (Amersham Bioscience) and RQ1 buffer 

(Promega) and then incubating at 37oC for 30 min. After the removal of DNA, samples 

were cleaned using an RNeasy minikit (Qiagen) according to manufacturer’s protocol.  
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Real-time reverse transcription PCR (RT-PCR) 

For cDNA synthesis, 2 µg of total cellular RNA was reverse transcribed using Moloney 

murine leukemia virus (M-MLV) transcriptase according to the manufacturer’s protocol 

(Promega). cDNA was amplified in triplicate using iQ SYBR green Supermix (Bio-Rad) in 

an iCycler iQ instrument (Bio-Rad). Quantification of each sample was determined 

relative to 16S rRNA. Statistical significance was determined using Student’s t test.  

Protein purification 

Recombinant S. lugdunensis PghI was purified from Escherichia coli BL21 (DE3) 

carrying the pET-15b-isdG plasmid. Overnight cultures were grown at 37o in TSB with 

100 μg/ml ampicillin and 34 μg/ml chloramphenicol. The next day cells were diluted in 

fresh media and grown to mid-log phase at which time expression was induced through 

the addition of 1mM isopropyl-1-thiol-(D)-galactopyranoside. Cell growth continued for 3 

H at 30o after which time cells were collected through centrifugation at 8,000 x g for 10 

min. Cell pellets were then washed with 50 mM Tris-HCl (pH 7.5) 100 mM NaCl, collected 

through centrifugation and stored at -80o. To collect recombinant protein cells were 

thawed on ice and resuspended in 50 mM Tris-HCl (pH 7.5) 100 mM NaCl with 100 μM 

phenylmethylsulfonyl fluoride.  Cells were lysed using a French press and the cell 

suspension was centrifuged at 100,000 x g for 60 min. After centrifugation the soluable 

fraction was filter through a 0.45 μm filter and then applied to a Ni-Nitrilotriacetic acid 

column that had been pre-equilibrated with 50 mM Tris-HCl (pH 7.5), 100 mM NaCl. The 

column was then washed with two volumes of 50 mM Tris-HCl (pH 7.5) 100 mM NaCl 

followed by a wash using three volumes of 50 mM Tris-HCl (pH 7.5), 100 mM NaCl with 
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10% glycerol and 10 mM imidazole. Protein was eluted with 50 mM Tris-HCl (pH 7.5), 

100 mM NaCl containing 500 mM imidazole. Proteins were then dialyzed against 50 mM 

Tris-HCl (pH 7.5), 100 mM NaCl. Protein concentrations were determined using a BCA 

assay and purity was evaluated by SDS-PAGE. 

Peptidoglycan purification 

Overnight cultures of ΔpghI were subcultured (1:100) into 1 L of TSB with 350 µM Dip. 

Cells were grown to stationary phase (O.D.=5.0) and pelleted through centrifugation at 

6,000 X g for 10 min. Cells were then resuspended in 100 mL of 4% SDS and boiled for 

20 min. Saculli were collected through centrifugation at 6,000 X g for 10 m, washed five 

times with 50 mL of distilled water, and washed two times with 50 mL acetone. Saculli 

were then incubated overnight at 37oC to remove any remaining acetone. Peptidoglycan 

was removed from saculli by resuspending in 20 mL of ice cold distilled water with 15 mL 

silica beads and vigorously vortexed for 20 min. Peptidoglycan was isolated from the silica 

beads by centrifugation at 1,400 X g for 10 min and supernatants collected. Silica beads 

were washed until supernatants were clear and free of peptidoglycan. Unbroken cells 

were removed from the peptidoglycan prep by centrifugation at 4,000 X g for 10 min and 

the supernatant fraction collected. Peptidoglycan was pelleted by centrifugation at 8,000 

X g for 30 min. DNA and RNA contamination was removed from the peptidoglycan by 

adding 120 U of DNase and 50 U of RNase to sample suspended in phosphate-buffered 

saline (PBS) and incubate at 37oC for 18 H. Protein contamination was removed through 

proteinase K treatment. 4.0 mg of proteinase K was added to each sample and incubated 

at 37oC for 18H. Sample was then pelleted through centrifugation at 8,000 X g for 30 min 

and teichoic acid was removed through TCA precipitation. Sample was resuspended in 
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50 mL of 10% TCA and incubated at 4oC for 18 H. The sample was then pelleted and 

resuspended again in 50 mL of 10% TCA and incubated a second time at 4oC for 18 H. 

Sample, which is purified PG was then pelleted through centrifugation at 8,000 X g for 30 

min and washed three times in 50 mL of water. After washing purified PG is lyophilized 

and stored at -20oC until ready to use.  

Zymogram assay 

The zymogram assay was done by running 30 µg recombinant protein onto a 15% 

acrylamide gel which had 1mg purified peptidoglycan added to the gel and then 

performing SDS-PAGE. The acrylamide gel was then washed three times with 50 mL of 

distilled water before incubating in re-naturing buffer (10 mM Tris buffer, 0.1% TritonX100 

pH 5.0-8.0) at room temperature for 48 H. Precipitated protein was removed from gels by 

incubating them in a 10% SDS buffer for 3 H. Gels were stained with a 1% methylene 

blue in 0.01% KOH solution to increase contrast.   

Biofilm assay 

A 96 well flat bottom plate was prepared for the biofilm assay by adding 150 µL of 20% 

bovine plasma to each well. The plate is incubated at 4oC overnight and then the plasma 

was removed. Next, 150 µL of TSB with 350 µM Dip was added to the wells and then 

inoculated with 1.5 µL of overnight culture. Overnight cultures were grown in 100 µL of 

media in a 96 well plate and each well was inoculated with a single colony and grown 

overnight at 37oC with shaking. Biofilm plates were set up in duplicate with one plate being 

used to measure biomass and the other to measure biofilm formation. After the plasma 

treated plates were inoculated the plates incubate at 37oC without shaking for 48 H. To 
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determine biomass, biofilms were disrupted from one plate by vigorous pipetting and 20 

µL transferred into 180 µL of PBS in a 96 well plate and O.D. 600 taken. To measure 

biofilm production media was removed from wells and then wells were washed three 

times with 200 µL of PBS. Next 200 µL of ethyl alcohol was added to each well to fix the 

biofilm. After the ethyl alcohol was removed the plate was dried at room temperature for 

a minimum of 1 H. Biofilms were stained for 15 min with 100 µL a 0.41% crystal violet 

solution in 12% ethyl alcohol. Wells were then washed three times with 200 µL of PBS 

and allowed to dry at room temperature for a minimum of 1 H. Excess crystal violet was 

removed by adding 200 µL of 33% acetic acid to each well and incubate at room 

temperature for 30 m. Acetic acid was removed and biofilm mass was determined by 

reading the O.D. at 598 nm. Assays were conducted with a minimum of three biological 

replicates.  
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Results 

PghI is iron regulated 

 pghI is the terminal gene within the Isd operon and consequently is predicted to be co-

transcribed with the upstream genes isdC through isdG in an iron-dependent manner 

such that transcription increases upon iron starvation (Figure 10B). To test this hypothesis 

I analyzed transcript levels of pghI in cells grown in iron rich media and iron deplete media. 

I observed that transcript levels of pghI increased nearly 70-fold upon iron starvation 

consistent with Fur regulation that has been previously established for the S. lugdunensis 

Isd operon (Figure 10A) [36, 37]. This level of up-regulation is comparable to that of isdC, 

the first gene within the operon. To confirm that pghI is co-transcribed along with the rest 

of the Isd operon, cDNA isolated from iron starved cells was used as template within a 

PCR reaction with a 5’ primer located within the isdG gene and a 3’ primer located within 

the pghI gene (Figure 9B). This PCR showed a positive amplicon band indicating that 

isdG and pghI are transcribed in the same continuous piece of mRNA (Figure 10B and 

C). Together these results along with the well-established iron dependent Fur-mediated 

regulation of Isd systems indicate that pghI is part of the Isd operon and is transcriptionally 

up-regulated upon iron restriction along with the rest of the Isd operon. 
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Figure 10. pghI is part of the Isd operon and is iron regulated 

Transcript levels of isdC, pghI and isdG were analyzed by quantitative RT-
PCR and normalized to 16S rRNA. Wild type S. lugdunensis was grown in 
iron-deplete media (TSB with 350 µM Dip) and transcript levels were 
compared with those grown in TSB. Error bars represent the average range 
of triplicate experiments (A). Genomic organization of the S. lugdunensis Isd 
locus with four predicted transcriptional start sites designated by black bent 
arrows. All assignments are based on the annotated S. lugdunensis genome 
N920143 (B). PCR product generated using cDNA isolated from S. 
lugdunensis grown in iron deplete media. Primers used to create amplicon are 
located within pghI and isdG and are designated by red bent arrows. Amplicon 
production indicates that pghI is part of the Isd locus and is transcribed 
together with isdG (C).  
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PghI is a peptidoglycan hydrolase 

 Based on sequence alignments PghI is predicted to have peptidoglycan hydrolyzing 

activity through both a FlgJ domain, and C-terminal CHAP domain. The N-terminus of 

PghI contains a secretory sequence suggesting that it is secreted through the membrane 

by the Sec system. The N-terminus of PghI contains a predicted disordered domain of 

approximately 130 amino acids with no identifiable domains or homology (Figure 11A). 

Together this information lead me to hypothesize that PghI is a secreted PG hydrolase 

with both a FlgJ domain and a CHAP domain. To confirm the PG hydrolyzing ability of 

PghI I used a zymography assay using purified PG from S. lugdunensis cells grown in 

iron deplete conditions. The zymogram showed a zone of clearing at approximately 53 

kDa corresponding to the size of PghI lacking a secretory signal. Zymograms were done 

with a range of pHs and I found that PghI shows the greatest activity at low pHs between 

5.0-6.0 with no detectable activity at a pH of 8.0 or above (Figure 11).  
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Figure 11. PghI is a peptidoglycan hydrolase 

Graphical representation of PghI shows the location of a Sec signal, disordered 
domain (DD), putative sortase B sorting signal, FlgJ domain and CHAP domain (A). 
Peptidoglycan hydrolysis activity was assessed through a zymogram assay using 
SDS PAGE impregnated with PG purified from iron-starved ΔpghI S. lugdunensis 
cells (B). Recombinant PghI was run out on zymogram gel. Zones of clearing 
indicate PG hydrolase activity. Recombinant PghI was analyzed using SDS-PAGE 
to confirm size of protein (C).  
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PghI modulates the IsdC secretion profile of S. lugdunensis  

 The Isd system includes multiple wall anchored proteins that allow for the extraction of 

heme from hemoglobin and the subsequent transport of heme across the cell wall. This 

anchoring is achieved through the enzymatic activity of sortase A and sortase B which 

recognize substrates through either an LPXTG or NPQTS peptide motif, respectively, and 

then covalently link targeted proteins to the cell wall [39, 64, 74]. Proteins destined for 

sortase anchoring must first be exported through the membrane by the Sec secretion 

system and consequently these proteins have three sizes as they progress through the 

cell to ultimately be localized to the wall. Immediately after translation proteins are at their 

largest size referred to as P1. Upon passing through the Sec system and the subsequent 

removal of the Sec signal peptide proteins reduce in size resulting in the P2 form. Finally 

after sortase cleavage and subsequent PG linkage at the C-terminus of the protein the 

proteins reach their mature and smallest size referred to as M [74]. The wall anchored 

protein, IsdC is bound to the cell wall through sortase B [36]. 

Due to the location of pghI within the Isd operon and its peptidoglycan hydrolyzing 

activity I hypothesized that PghI modifies the PG wall to allow for proper placement of 

wall anchored Isd proteins. To test this hypothesis I pelleted cells from overnight cultures 

grown in both iron rich and iron deplete media through centrifugation and collected the 

supernatant fractions. Cells were then resuspended in TSM (100 mM Tris pH 7.0, 500 

mM sucrose, 10 mM MgCl2) and treated with lysostaphin to remove the cell wall. Next 

protoplasts were pelleted and the supernatants collected for the wall fraction. These 

fractions were then run on an agarose gel and proteins analyzed by silver stain. No 

differences could be seen in the wall fractions however; within the supernatant fractions 
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one protein band was present in wildtype but significantly reduced in the ΔpghI strain. 

The reduced band was approximately 18kD in size, corresponding to the mature size of 

IsdC, therefore I hypothesized that PghI was modulating the IsdC protein profile within 

the supernatant fraction. To test this hypothesis, supernatant fractions from wildtype S. 

lugdunensis and the ΔpghI strain grown in iron replete and iron deplete media were 

collected and run on an agarose gel. Proteins were then transferred to a nitrocellulose 

membrane and probed with anti-IsdC polyclonal antibodies. This immunoblot indicated 

that IsdC is present within the supernatant of wildtype cells in two different sizes and the 

larger band is significantly reduced within the ΔpghI mutant (Figure 12A and B).  

As a sortase B substrate IsdC proceeds from the P1 to P2 and then to the M form as 

it progresses from the cytoplasm, through the membrane and is finally linked to the cell 

wall [75]. To elucidate where in this sorting process PghI is modulating IsdC release, I 

performed an immunoblot on ΔsrtB supernatants and found no detectable IsdC indicating 

that sortase B activity is required for IsdC release. Furthermore, when wildtype cells and 

ΔpghI were fractionated to separate cytoplasm, membrane, wall and supernatant 

fractions it was found that both wildtype and ΔpghI strains have the same amount and 

size of IsdC within the membrane and cytoplasm indicating that PghI does not influence 

sortase B activity or the amount of IsdC anchored to the wall (Figure 12C). Together these 

results indicate that PghI acts on IsdC after it has been anchored to the PG wall by sortase 

B and that PghI does not alter the amount of IsdC anchored to the wall.  
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Figure 12.  PghI modulates IsdC release into the extra-cellular milieu  

Modulation of IsdC release from the cell wall into the supernatant by PghI 
was measured using quantitative immunoblot. Graphical representation of 
the small IsdC band within the supernatant. Error bars represent average 
range of biological triplicates. a.u., arbitrary units. * p<.002 (A). 
Representative IsdC levels as analyzed by immunoblotting. Wildtype S. 
lugdunensis or ΔpghI strains were grown in TSB alone or TSB with 350 µM 
Dip. Arrow indicates IsdC band that is diminished within the ΔpghI mutant 
(B). Graphical representation of IsdC bands within the wall fraction of 
wildtype and ΔpghI mutant. Error bars represent the average range of 
biological triplicates (C). 

 



55 
 

PghI is required for biofilm formation 

 Many of the infections attributed to S. lugdunensis are associated with biofilm etiology 

including native valve endocarditis, intravascular catheter associated infections, and 

prosthetic joint infections [3]. However, the molecular mechanisms and subsequent 

regulation that contribute to these biofilms remain poorly understood. Iron restriction is 

typically encountered within host tissues and consequently many bacterial virulence 

factors are iron-regulated. Establishing pghI as part of the iron-regulated Isd system but 

lacking a clear definitive role in iron acquisition or cell division lead to the hypothesis that 

PghI may contribute to biofilm formation in an iron dependent manner. To test this 

hypothesis wildtype and ΔpghI strains were tested for their ability to form biofilms within 

plasma coated 96 well plates as measured by crystal violet staining. This assay indicated 

that the level of biofilm formation is reduced within the ΔpghI strain and resulted in 

significantly less crystal violet staining (Figure 13). This change in staining is not due to 

general growth defects within the mutant strains as biofilm formation was determined by 

the ratio of crystal violet staining to total growth as measured by O.D. 600. Furthermore, 

this phenotype was iron dependent such that both the wildtype and the ΔpghI mutant 

created similar biofilms when grown in iron replete media . PghI modulates IsdC release 

from the cell wall which lead me to hypothesize that this supernatant IsdC facilitates 

biofilm formation. To test this hypothesis a ΔisdC S. lugdunensis strain was tested for its 

ability to generate biofilms (Figure 13). Similar to the ΔpghI mutant the ΔisdC strain did 

not form biofilms at wildtype levels and this phenotype was iron dependent. It remains 

unclear however if IsdC must be released from the cell wall by PghI to enhance biofilm 

production therefore additional research needs to be conducted to elucidate whether the 

IsdC-mediated biofilm formation occurs concomitantly with PghI release of IsdC from the 
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cell wall or if these two events are unrelated. It is possible that multiple species of IsdC 

participate in biofilm matrix production.  
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Figure 13.  PghI is required for normal biofilm formation. 

Biofilm formation relative to total biomass was measured for both wildtype S. 
lugdunensis, a ΔsrtB,  ΔpghI and ΔisdC strains of S. lugdunensis. Error bars 
represent the average range of biological triplicates. * p<.02. 
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Discussion 

  

PG hydrolases are a family of enzymes that perform a variety of functions within the 

bacterial cell. Many hydrolases remodel PG, allowing for cell division and cell wall 

recycling. Some PG hydrolases induce cell lysis and are referred to as autolysins [17]. 

Lysing of cells can be beneficial to a species as a whole as it can facilitate biofilm 

formation through the release of eDNA which promotes adherence to surfaces. Release 

of eDNA can also promote bacterial survival. For example Streptococcus pneumonia 

releases bacteriolytic PG hydrolases referred to as fratricidins which cause cell lysis of 

non-competent cells and allow competent cells to acquire the eDNA [76]. This DNA 

acquisition has been shown to promote survival of the species during periods of stress 

[76]. Furthermore, the major autolysin within S. aureus has been shown to facilitate 

binding to host factors and subsequently promotes cellular internalization and persistent 

infections [77]. While there have been a wide range of functions associated with PG 

hydrolases none have been shown to be iron-regulated or modify the secretion profile of 

a sortase anchored protein.  

 Wall anchored proteins allow bacteria to interact with and respond to their environment. 

Within Gram positive bacteria many of these proteins are covalently linked to the 

peptidoglycan wall through the enzymatic activity of membrane bound sortases. Proteins 

destined to be linked to the cell wall by sortases contain signal peptides that are typically 

located at the C-termini. All Gram-positive bacteria have a sortase A which cleaves the 

C-terminal LPXTG sorting motif. Within the S. lugdunensis Isd system heme binding 

proteins IsdB and IsdJ possess a sortase A sorting motif and localize to the cell wall. IsdC 
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and IsdK however have sortase B motifs and while IsdC localizes to the cell wall, the 

majority of IsdK within the cell is found in the cell membrane [36]. Upon completion of 

translation precursor proteins (P1) destined for sortase anchoring are exported from the 

cytoplasm and the NH2-terminal leader peptide is removed creating the P2 intermediate. 

P2 is cleaved at the C-terminal sortase motif generating the mature wall anchored protein 

M. Research I conducted shows that the PghI alters the IsdC secretion profile such that 

supernatants from wildtype S. lugdunensis have two sizes of IsdC while supernatants 

from the ΔpghI strain have significantly less of the larger IsdC species. Importantly, 

supernatants from a ΔsrtB mutant had no detectable IsdC in their supernatant indicating 

that PghI modulates the M form of IsdC. Interestingly, PghI has a sortase B sorting signal 

located at the non-canonical N-terminus. While it remains unclear if PghI is a sortase B 

substrate it is tempting to speculate that PghI is cleaved by sortase B resulting in the co-

localization of PghI and IsdC. The specific IsdC modification performed by PghI is 

currently unknown. One possibility is the PghI protects IsdC from proteolytic cleavage or 

protects the PG associated peptides to which IsdC is bound from hydrolysis. In the 

absence of PghI all mature IsdC is processed, resulting in a single smaller species of 

IsdC. Interestingly, other PG hydrolases with FlgJ domains have been shown to interact 

with flagellar proteins and protect them from degradation [78]. An additional possibility is 

that PghI hydrolyzes PG bonds near IsdC resulting in the release of IsdC with PG residues 

still attached.  

 The canonical function of IsdC is to transport heme through the PG wall to IsdEF which 

then transports heme across the membrane. The biological ramifications of releasing 

IsdC in multiple forms needs to be explored further. It is conceivable that unbound IsdC 
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could act as a hemophore and bind free extracellular heme and transfer the heme back 

to the cell. I analyzed the ability of the ΔpghI strain to utilize heme or hemoglobin as an 

iron source and could not detect a growth defect. This does not exclude the possibility of 

IsdC functioning as a hemophore because iron acquisition phenotypes are incredibly 

difficult to detect within S. lugdunensis. 

 Biofilms are bacterial communities that adhere to surfaces through extracellular 

polymeric substances (EPS) [79]. The composition of this EPS varies and can consist of 

DNA, techoic acids, host plasma factors, and proteinaceous adhesins [79]. Biofilms are 

clinically significant as they result in refractory infections that are resistant to antibiotics. 

Indwelling devices can lead to biofilm formation and S. lugdunensis has a propensity for 

causing endocarditis, an infection typically associated with biofilm formation. The role of 

PG hydrolases in biofilm formation has been well established. Often autolysins will lyse 

cells, releasing eDNA which then functions as an EPS. My research shows that the PghI 

facilitates biofilm formation however the role of the PghI in this process has not been 

elucidated. There is no evidence that PghI promotes cell lysis during exponential growth 

however it has not been determined if PghI activity accelerates cell lysis during stationary 

phase therefore it is possible that the enzymatic activity of PghI results in the production 

of eDNA. Future experiments will focus on investigating if PghI activity mediates autolysis 

during later growth phases. The PghI-mediated release of IsdC may facilitate bacterial 

adhesion and subsequent biofilm formation. In support of this, I found that a ΔisdC mutant 

strain of S. lugdunensis has reduced biofilm formation comparable to that of the ΔpghI 

strain. It remains unclear how IsdC facilitates biofilm production or which IsdC species is 

involved in biofilm formation. It is tempting to speculate that IsdC, upon being released 
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from the cell wall by PghI, mediates bacterial adherence and biofilm establishment. It is 

possible however that PghI is involved in biofilm formation in an IsdC independent 

manner. When supernatants from both the wildtype and ΔpghI strain were analyzed by 

silver stain IsdC was the only protein that differed between the two strains. It is possible 

that PghI modifies additional proteins that enhance bacterial adhesion but were not 

detectable by silver stain. Additionally, PghI may promote adhesion directly as the major 

autolysin, Atl, does within S. aureus. The propensity of S. lugdunensis to cause infections 

typically associated with biofilm production underscores the necessity to identify proteins 

involved in this process. Further research on PghI activity could provide vital insight into 

the pathogenesis of S. lugdunensis.  
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Chapter IV 

 

CONCLUSIONS 

Summary 

Most bacterial pathogens require iron for growth including S. lugdunensis (Figure 2A). 

The vertebrate host exploits this iron requirement by deploying numerous iron binding 

proteins including lactoferrin, transferrin and ferritin which rapidly remove all free iron [31]. 

Additionally, the majority of iron in the human body is found in the form of heme which is 

bound by hemoproteins, the most abundant of which is hemoglobin. To further sequester 

iron, hemoglobin is stored within erythrocytes. To gain access to the iron within 

hemoglobin bacterial pathogens utilize an arsenal of virulence factors. S. lugdunensis 

expresses a delta hemolysin which lysis red blood cells and provides S. lugdunensis 

physical access to host hemoglobin [14]. This liberated hemoglobin is then bound via 

proteins within the Isd system which remove heme from hemoglobin, transport the heme 

across the cell wall and membrane and upon entering the cytoplasm the heme is 

degraded to release iron (Figure 14). This heme catabolism is performed by a cytoplasmic 

IsdG-family heme oxygenase (Chapter II).  

 Although S. lugdunensis encodes within its genome a complete Isd system the 

enzymatic activity had not been characterized for any of the S. lugdunensis Isd proteins. 

Sequence analysis revealed the presence of Fur boxes upstream of the IsdC, IsdJ and 

IsdB start sites however iron-regulated transcription had not been confirmed for this locus. 

My work has demonstrated that the S. lugdunensis Isd system is up-regulated upon iron 

starvation which results in the increased abundance of cytoplasmic IsdG (Chapter II and 
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III). I have also established that S. lugdunensis IsdG is capable of binding and catabolizing 

heme. Furthermore, I have shown that S. lugdunensis IsdG expressed in trans within a 

S. aureus ΔisdGΔisdI mutant is able to complement the heme utilization defect of this 

strain indicating that S. lugdunensis IsdG-mediated heme degradation enables the use of 

heme as a nutrient iron source (Chapter II).  

The Isd system within S. aureus encodes two heme oxygenases, IsdG and IsdI, which 

are differentially regulated by iron and heme. Both isdG and isdI transcription levels 

increase in iron deplete conditions, however IsdG is proteolytically degraded in the 

absence of heme while IsdI is constitutively stable [34]. At the amino acid level S. 

lugdunensis IsdG is 68% identical to S. aureus IsdG yet I have shown that S. lugdunensis 

IsdG is regulated in a manner similar to S. aureus IsdI and is stable independent of heme 

binding (Chapter II). This data suggests that S. lugdunensis does not regulate heme 

catabolism as tightly as S. aureus. Differences in heme oxygenase regulation between S. 

aureus and S. lugdunensis may be due to variances in the rate of exogenous heme influx 

or endogenous heme synthesis. 

 Heme oxygenases are a ubiquitous family of enzymes which degrade the tetrapyrole 

heme to release free iron and are conserved within vertebrates, plants and bacteria. 

Heme oxygenases are divided into two families, the HO-1 family of heme oxygenases 

and the IsdG-family of heme oxygenases. The catabolism of heme by HO-1 heme 

oxygenases results in the production of α-biliverdin and carbon monoxide [59]. The IsdG-

family of heme oxygenases in contrast degrade heme to the chromophore staphylobilin 

and formaldehyde [68] with the exception of the M. tuberculosis IsdG which degrades 

heme to mycobilin. The role of HO-1 mediated heme degradation products has been well 
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established but the biological ramifications of staphylobilin production have not yet been 

determined. Our work demonstrates that S. lugdunensis IsdG also degrades heme to 

staphylobilin thus establishing staphylobilin as the conserved degradation product of the 

IsdG-family of heme oxygenases within Staphylococci. Moreover, analysis of all 

sequenced bacterial genomes revealed the presence of predicted IsdG orthologs within 

a diverse range of bacterial species. This finding indicates the use of IsdG for heme 

degradation and subsequent regulation is a common strategy among bacteria and 

suggests a possible universal role for staphylobilin production in bacteria (Chapter II). 

 In Chapter III I describe the elucidation of a PG hydrolase within the S. lugdunensis Isd 

operon. My work establishes the inclusion of pghI within the S. lugdunensis Isd operon 

and confirms that pghI is transcriptionally up-regulated along with the entire Isd locus 

during periods of iron starvation. Prior to my work pghI was predicted to encode for a PG 

hydrolase however no biochemical research had been conducted to confirm the 

enzymatic function of PghI. My research confirms that recombinant PghI is capable of 

hydrolyzing PG. Importantly, these results are the first to establish the inclusion of a PG 

hydrolase within an Isd system. The biological relevance of coordinating expression of a 

PG hydrolase along with heme-iron acquisition proteins is an area of active research. 

Many of the Isd proteins are anchored to the PG cell wall and localize to the bacterial 

surface where they interact with the extracellular environment. The biological pathways 

that target proteins for secretion and PG linkage are well studied yet how these proteins, 

which are often large, traverse through the rigid PG wall remains unknown. One possible 

rationale for including pghI within the Isd operon could be to facilitate PG rearrangement 

that allows Isd wall anchored proteins to localize on the outside of the cell. IsdC is 
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predicted to be embedded throughout the cell wall thus creating a channel which heme 

can pass through. Additionally, it is conceivable that PghI ensures that IsdC is evenly and 

consistently placed throughout the cell wall.  

 Biofilms are complex communities of bacteria which are of particular clinical 

significance due to their increased resistance to antibiotics and association with refractory 

infections. The formation of biofilms is a complex and dynamic process that frequently is 

associated with PG hydrolase activity. My research demonstrates that S. lugdunensis 

produces a biofilm within an iron limiting environment and that formation of this biofilm 

requires PghI activity. How S. lugdunensis adheres to surfaces and forms an extracellular 

matrix to establish a biofilm remains unknown however research I have conducted has 

identified potential molecular mechanisms utilized by S. lugdunensis during biofilm 

formation. My work shows that PghI modulates mature IsdC release from the 

staphylococcal cell wall (Figures 12 and 14). Many bacteria create biofilms through 

protein secretion and therefore it is plausible that released IsdC is a constituent of the 

extracellular matrix and that PghI mediated release of IsdC enhances matrix formation. 

Future research will focus on identifying the specific molecular constituents within S. 

lugdunensis biofilm matrixes and more precisely defining the roles of PghI and IsdC in 

the formation of the matrix.  
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Figure 14. 

Model illustrating the role of IsdG and PghI within the S. lugdunensis Isd system. 
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Future Directions 

Identify the residues required for PghI enzymatic activity 

 Comparative studies of the primary structure of PghI with proteins with known PG 

hydrolyzing activity suggest that the N-terminus of PghI contains an FlgJ domain including 

conserved residues, aspartic acid and glutamic acid. These conserved residues are 

located in the active center of multiple muramidases. The C-terminus of PghI has a 

predicted cysteine, histidine dependent amidohydrolase/peptidase (CHAP) domain. 

Previous research has shown that CHAP domains have two invariant residues, cysteine 

and histidine, both of which are conserved within PghI [80]. These conserved residues 

will be targeted for mutagenesis. The generation of point mutants will be done using a pfu 

mutagenesis technique. Mutant forms of PghI will be created in both an over-expression 

vector to allow for recombinant protein purification as well as a constitutive expression 

vector for complementation studies. We will purify mutant forms of recombinant PghI 

using our established protocol. Proteins will be assessed for proper expression by SDS-

PAGE and proper folding will be determined using circular dichroism spectroscopy at the 

Structural Biology Core Facility located at Vanderbilt University. Purified mutant PghI will 

be analyzed for enzymatic activity using a zymogram assay. Additionally, mutant PghI 

activity will be analyzed through complementation assays in which mutant pghI is 

expressed within ΔpghI S. lugdunensis cells and supernatants assessed to determine if 

mutant PghI can complement the IsdC release defect. Biofilm formation will also be 

measured within ΔpghI strains complemented with mutant forms of pghI and allow us to 

determine if the PG hydrolyzing activity of PghI is required for biofilm establishment. 

Together, these experiments will allow us to define the amino acid residues required for 

the enzymatic activity of PghI as well as confirm the designation of an FlgJ and CHAP 
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domain within PghI. Furthermore, we will determine if modulation of IsdC release and 

biofilm formation are dependent upon the ability of PghI to hydrolyze PG.  

Determine if PghI is a sortase B substrate 

 Analysis of the primary sequence of PghI revealed a putative sortase B sorting motif. 

Sortase sorting signals are typically located at the C-terminus upstream of a stretch of 

hydrophobic residues however; the sortase B signal in PghI is located at the N-terminus 

between a disordered domain and the FlgJ domain. To determine if PghI is a sortase B 

substrate, we will create a myc-tagged version of PghI which is expressed from a 

constitutive expression vector. Expression vectors will be created to add a myc-tag to 

both the N and C termini. These vectors will be transformed into both wildtype S. 

lugdunensis as well as a ΔsrtB mutant strain and the localization of PghI will be assessed 

by first fractionating cells and then analyzing each fraction by western-blot analysis using 

myc specific antibodies. If PghI is indeed a sortase B substrate, we should be able to 

detect PghI within the wall fraction of wildtype cells and within the membrane fraction of 

the ΔsrtB mutant.  

 If it is determined that PghI is a sortase B substrate, expression vectors will be 

constructed in which point mutations within the NPQTS sorting motif have been created 

to ablate sortase B cleavage and subsequent linkage of PghI to the PG wall. Expression 

of this vector in a ΔpghI mutant will allow us to elucidate what contribution sortase B 

anchoring has on PghI activity. Furthermore, we will probe the supernatants for IsdC 

using western blot analysis to determine if sortase B processing is required for PghI-

mediated release of IsdC from the cell wall. Additionally, biofilm production will be 



69 
 

measured in this strain to define if sortase B cleavage of PghI is necessary for PghI 

dependent biofilm formation. 

Elucidate the specific modification of IsdC mediated by PghI 

I have demonstrated that after IsdC is covalently anchored to the cell wall PghI 

facilitates the release of IsdC into the extracellular milieu. How specifically PghI 

modulates the release of IsdC is not known. To determine how IsdC has been modified 

by PghI we will perform pull-down assays in which IsdC will be removed from the 

supernatant of wildtype and ΔpghI mutant cultures using IsdC specific antibodies. Protein-

A sepharose beads will be used to remove anti-IsdC antibodies and associated proteins. 

Proteins that co-precipitate with the IsdC antibodies will then be separated by SDS-

PAGE. The SDS-PAGE will then be stained with colloidal blue and bands corresponding 

to the sizes of both species of IsdC will be removed and analyzed by Multi-Dimmensional 

Protein Identification Technology (MuDPIT) at the Mass Spectrometry Research Lab at 

Vanderbilt University. This analysis will enable us to identify differences between both 

IsdC sizes at the amino acid level. Additionally, if IsdC is still bound to PG fragments 

these fragments can be detected using MuDPIT. Together, these experiments will 

elucidate the specific PghI-mediated modifications of of IsdC and determine if either IsdC 

species is still bound to PG moieties.  

Identify how PghI promotes biofilm formation 

Bacterial biofilms require the production of an extracellular polymeric matrix. This 

matrix is predominantly self-produced and can be composed of proteins, eDNA, techoic 

acids and polysaccharides. My research demonstrates that S. lugdunensis generates a 
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biofilm during iron starvation and that PghI and IsdC are required for this biofilm formation. 

The mechanism by which PghI contributes to this bacterial community remains undefined 

however, it is possible that IsdC released from the cell by PghI activity aids bacterial 

adherence or is a matrix constituent and therefore the biofilm phenotypes of both the 

ΔpghI and ΔisdC strains are linked. To test this hypothesis biofilm production of the ΔpghI 

strain grown in media supplemented with supernatants collected from wildtype cultures 

will be measured. If IsdC released from the cells by PghI is responsible for the ΔpghI 

biofilm phenotype then wildtype supernatants containing this IsdC species should 

complement the biofilm defect. To confirm that it is specifically IsdC in wildtype cultures 

that complements the ΔpghI phenotype supernatants from ΔisdC cultures will also be 

tested.  

Many PG hydrolases promote biofilm formation through cell lysis and subsequent 

eDNA release. While no growth phenotype has been found in the ΔpghI mutant during 

early exponential through early stationary growth phases it is conceivable that PghI 

activity induces cell lysis during stationary phase. In fact, the major autolysin within S. 

aureus, Atl, does not contribute to cell lysis until cells have reached stationary phase [81]. 

To elucidate if PghI activity stimulates cell lysis the OD600 of wildtype and ΔpghI cells will 

be monitored throughout all growth phases including stationary phase. The OD600 

measurement in stationary phase of wildtype cells will decrease as cells lyse, however if 

PghI promotes autolysis the OD600 value will remain relatively constant. Furthermore, this 

assay will be done on cells grown in both iron replete and iron deplete media to ensure 

that any phenotype observed within the ΔpghI strain is iron dependent. Additionally, 

eDNA production of wildtype and ΔpghI cells can be measured directly by culturing the 
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strains in media supplemented with propidium iodide which fluoresces when bound to 

DNA but does not penetrate live bacteria. The eDNA can therefore be measured using a 

microtitre plate reader. Together these experiments will deduce whether PghI expression 

promotes cell lysis and subsequent eDNA release. 

In addition to promoting biofilm formation through the production of eDNA many PG 

hydrolases aid biofilm formation by promoting bacterial adhesion. To determine if PghI 

participates in the initial binding to foreign surfaces a primary attachment assay will be 

conducted in which the ability of both wildtype and ΔpghI cells to adhere to polysterene 

that has been coated with plasma will be measured. In this assay overnight cultures are 

normalized to the same total colony forming units (CFU) and then briefly applied to treated 

polysterene petri dishes. Unattached cells are then removed using multiple PBS washes. 

Next molten agar is poured onto the plates and the plates are then incubated to allow 

bacterial growth. Primary attachment is expressed as the percent of original CFUs which 

remain attached as indicated by colony formation. If PghI promotes biofilm production by 

assisting in the initial attachment of bacteria then a greater percentage of the ΔpghI cells 

will be washed off the plates resulting in decreased CFUs. Additionally, by treating cells 

with DNAse prior to plating this assay can be utilized to determine if PghI facilitates initial 

attachment through eDNA production.  

Determine if PghI facilitates extracellular protein localization 

The inclusion of a PG hydrolase is unique to the S. lugdunensis Isd system, however 

a role in iron acquisition has not been identified for PghI. One possible explanation for co-

transcribing pghI with the rest of the Isd system is that PghI-mediated PG hydrolysis 
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enables proper placement of wall anchored proteins, specifically IsdC which is predicted 

to be embedded continuously throughout all layers of the PG wall. To test this hypothesis 

localization of IsdC on the bacterial surface of wildtype and ΔpghI cells could be analyzed 

using immunofluorescence. If PghI promotes proper placement and movement of IsdC 

through the PG layers less IsdC should be present on the surface of the ΔpghI cells. 

Additionally, PghI may expedite the process of IsdC localization within the wall resulting 

in slower appearance of IsdC on the surface of ΔpghI cells. To test this model, all 

extracellular proteins would be removed from the cell wall through proteinase K treatment 

and cells subsequently measured for surface levels of IsdC at various time points using 

immunofluorescence. If PghI accelerates the placement of IsdC through the PG wall then 

reappearance of extracellular IsdC should occur more rapidly in wildtype cells than in 

ΔpghI cells. Together these experiments would elucidate if PghI facilitates IsdC 

movement and localization within the PG wall. Furthermore, these experiments could be 

extrapolated to examine the influence of  PghI on the localization of additional wall 

anchored proteins including IsdB, IsdK and IsdJ.  
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