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CHAPTER I 
 

INTRODUCTION 

 

 Current radiographic analysis of therapeutic response uses changes in tumor size. 

With the development of anticancer therapies that specifically target molecular and 

physiological processes of the tumor and the tumor’s microenvironment, solely assessing 

response on changes in tumor morphology might not be the most sensitive approach. 

Thus, the development of imaging techniques that can noninvasively estimate specific 

vascular, cellular, and molecular aspects of the tumor are of great interest. Much progress 

has been made to improve the quality of information available from functional and 

molecular imaging techniques in order to noninvasively measure tumor growth, assess 

tumor status, and predict treatment response. These studies have been performed in 

preclinical animal models as well as clinical trials, but with mixed results due to the lack 

of standardized imaging protocols, inadequate understanding of whether changes in 

imaging biomarkers predict clinical outcomes related to therapy, and lack of validation to 

assist in the interpretation of imaging data. Consequently, these obstacles have inhibited 

translation of many functional and molecular imaging techniques into routine clinical 

practice. Thus, a need exists to further develop quantitative imaging techniques that can 

report on specific characteristics of cancer in order to improve patient care. 

 The goals of this dissertation work were to unravel some of the issues that inhibit 

clinical translation by systematically evaluating clinically relevant imaging modalities to 

determine which technique (or set of techniques) can assess tumor response early during 

the course of therapy. Our research plan consisted of evaluating treatment response in a 
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major category of breast cancer with an established therapy, HER2-positive (HER2+) 

tumors exposed to trastuzumab. We performed longitudinal positron emission 

tomography (PET) and magnetic resonance imaging (MRI) studies to observe treatment-

induced changes in vascular, cellular, and molecular characteristics of breast cancer. We 

also correlated the imaging data with histology to elucidate the relationship between each 

imaging metric and the underlying biological mechanisms of response. 

 The goal of Specific Aim 1 was to assess the reproducibility of several current and 

emerging PET and MRI techniques in a xenograft model of HER2+ breast cancer. These 

studies provided a measure of the imaging protocol variability, as well as a threshold 

value where changes greater than this value would reflect treatment-induced 

physiological changes distinct from measurement error. Moving forward, reproducibility 

measurements are useful in, for example, quantifying the required sample size to achieve 

a desired level of statistical power in an experimental study. 

 The goal of Specific Aim 2 was to evaluate the ability of several PET and 

techniques to provide early assessments of response to trastuzumab in HER2+ xenograft 

models that are either sensitive or resistant to trastuzumab. Quantitative parameters 

derived from the imaging data were compared to explicitly determine which imaging 

techniques can assess early response in trastuzumab-sensitive mice. The ability of these 

imaging techniques to differentiate xenografts with different trastuzumab sensitivities 

was also investigated. These studies have significant clinical impact as the development 

of imaging methods that can separate responders from nonresponders earlier during the 

course of therapy would minimize negative systemic effects caused by ineffective 

therapies. 
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 The goal of Specific Aim 3 was to investigate the correlation between the 

parameters quantified from each in vivo imaging technique with histology. The objective 

of these comparisons was to elucidate the relationship between the imaging parameters 

and the underlying biology in order to aid in the interpretation of the imaging results, and 

potentially validate the quantified parameters. 

 Successfully achieving these aims will define a set of imaging techniques that are 

most accurate at predicting breast cancer response to treatment in a murine model of 

HER2+ breast cancer. In addition, it will validate the imaging data through correlation 

with histology. Furthermore, this work will provide a paradigm by which other imaging 

protocols as well as current and emerging breast cancer treatments might be evaluated.   
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CHAPTER II 

 

BIOLOGICAL BACKGROUND OF HER2+ BREAST CANCER 

 

Introduction 

Breast cancer is the most common type of cancer among women in the United 

States, other than skin cancer. According to the most recent National Cancer Institute’s 

Surveillance, Epidemiology, and End Results (SEER) Cancer Statistics Review (1), it is 

estimated that 1 in 8 women will be diagnosed with breast cancer sometime during their 

lifetime. Although the lifetime risk of developing breast cancer is high, the US mortality 

rates have steadily decreased from 33.14 per 100,000 in 1990 to 22.21 per 100,000 in 

2009 (1). This decrease has thought to be the result of advances in anticancer therapies, 

earlier detection through screening, and increased awareness for the disease.  

The development of molecular tests, especially gene expression profiling, has 

increased the accuracy of tumor classification and enhanced our understanding of the 

disease (2). Over the last several years, the development of gene expression profiling 

methodologies has improved the accuracy of classifying breast cancer subgroups. These 

advances hold great promise in improving estimation of prognosis as well as assigning 

appropriate treatment strategies.  

The four most common subtypes of breast cancer are categorized by the 

expression (or lack thereof) of specific cellular receptors: luminal subtype A (estrogen 

and/or progesterone receptor positive), luminal subtype B (estrogen and/or progesterone 

receptor positive and human epidermal growth factor receptor 2 (HER2) overexpression), 
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HER2-overexpressed, and basal-like/triple-negative (see Table II-1). This section 

highlights some of the appropriate treatment strategies as well as prognostic information 

for each subtype. A more detailed description of the molecular signatures as well as 

mechanisms of action and potential resistance of an anticancer therapy (i.e., trastuzumab) 

that specifically targets HER2-positive (HER2+) breast cancer is also discussed. 

 
Table II-1. Summary of Breast Cancer Molecular Subgroups (3-5) 

Luminal 
subtype A

Luminal 
subtype B HER2+

Basal-
like/TN

Breast cancer (%) 42-59% 6-19% 7-12% 14-20%
ER expression ✓ ✓ x x
HER2 overexpression x ✓ ✓ x
Prognosis Good Intermediate Poor Poor
ER: estrogen receptor; TN: triple-negative; ✓, ER expression or HER2 overexpression;
x, ER not expressed or normal expression of HER2  

 

Hormone/Receptor Status Guiding Therapy 

Almost two-thirds of patients diagnosed with breast cancer in the United States 

have tumors that are positive for either the estrogen or progesterone (or both) receptors 

(6). Correctly identifying these breast cancers is important, as this subgroup could 

potentially benefit from endocrine therapy. Several therapies that target hormonal activity 

are available, and each has a different mechanism of action. Selective estrogen-receptor 

response modulators (SERMs) bind to the estrogen receptor (ER) and partially block its 

function. Tamoxifen, the most widely used SERM for the past two decades, has achieved 

a 39% reduction in disease recurrence and a 31% reduction in mortality rate associated 

with ER positive (ER+) early stage breast cancer (7). Aromatase inhibitors (AIs) are a 

class of anti-hormonal therapies that function to decrease estrogen levels. Current third-
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generation AIs (such as anastrozole) prescribed in the adjuvant setting for 

postmenopausal patients improved disease-free survival and time-to-recurrence compared 

to tamoxifen (8). A third class of therapies, represented by fulvestrant, blocks the effects 

of estrogen in breast tissue through receptor downregulation and eventual degradation. 

The success of fulvestrant in the adjuvant setting remains to be seen, however it is 

currently approved for the treatment of hormone receptor-positive metastatic breast 

cancer in postmenopausal women who have disease progression following previous anti-

estrogen therapy (9).  

Types of breast cancer are also defined by the expression of HER2. HER2 

(erbB2/neu) is a protein found on the cell membrane, and diagnostic tests reveal that 

some breast cancers either have an overexpression of the protein or too many copies of its 

gene. Breast cancers that are HER2+ usually receive targeted therapy, which are a subset 

of anticancer drugs that identify and attack specific cancer cells. Trastuzumab and 

lapatinib are two examples of targeted therapies prescribed for patients diagnosed with 

HER2+ breast cancer, as they bind to HER2 and inhibit the downstream cell signaling 

pathways that lead to cell proliferation and survival. Trastuzumab treatment has resulted 

in improved survival in the first-line setting with chemotherapy in patients with advanced 

disease (10,11), as well as improved recurrence-free survival and overall survival in the 

adjuvant setting with and sequentially following chemotherapy (12,13). Lapatinib is a 

small molecule tyrosine kinase inhibitor that, when prescribed with the chemotherapeutic 

drug capecitabine, has been shown to increase survival in patients with advanced HER2+ 

breast cancer that recurred following previous anthracycline, taxane, and trastuzumab 

treatment regimens (14). 
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Pathology reports may also indicate that breast tumors test negative for ER, PR, 

and HER2, thus classifying these tumors as triple-negative and/or basal-like. The growth 

of these tumors is not stimulated by estrogen or progesterone receptors, or by the 

overexpression of HER2. Triple-negative breast cancers (TNBCs) will not respond to 

anti-hormonal therapies (such as tamoxifen) or HER2-targeted therapies (such as 

trastuzumab), a fact that in part accounts for the unfavorable clinical outcome. There are 

several emerging therapies being investigated in clinical trials for the treatment and 

management of TNBC. For example, the addition of iniparib (a polyADP-ribose 

polymerase inhibitor that interferes with chemotherapy-induced DNA damage) to 

traditional chemotherapy improved all measurements of efficacy, including response rate, 

progression-free survival, and overall survival (15). Platinum compounds (e.g., cisplatin) 

are a group of therapies that induce DNA cross-linking that ultimately leads to apoptosis, 

and when used in combination with traditional chemotherapies (epifubicin+paclitaxel) 

achieved a 62% pathological complete response (16).  

 

Prognosis Based on Subgroup Classification 

Identifying breast cancers into subgroups based on hormone receptor status or 

HER2 receptor expression also provides information on prognosis (see Table II-1). A 

meta-analysis performed by Wirapati et al. with data from 2,833 breast cancer patients 

across multiple institutions revealed that proliferation rates (assessed by proliferation 

module score) varied between tumors categorized into subtypes based on receptor status 

(17). This study showed that both triple-negative and HER2+ breast cancers have higher 

proliferation rates compared to the other subgroups, which (in part) leads to a lower 
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disease-regression free survival percentage. Another study investigated clinical outcome 

based on the molecular profile in 412 patients who had breast conservation surgery as 

well as adjuvant chemotherapy and/or endocrine therapy and local radiation. This study 

concluded that patients with breast cancers identified as HER2+ or triple-negative had 

lower recurrence-free survival and overall survival percentages (5).  

 

Molecular Signatures of HER2 

HER2 (erbB2) is a member of the human epidermal growth factor receptor (HER) 

family of receptor tyrosine kinases that include HER1 (epidermal growth factor receptor 

[EGFR]), HER3 (erbB3), and HER4 (erbB4). All members have an extracellular ligand 

binding region, a transmembrane region, and an intracellular tyrosine kinase domain. 

With the exception of HER2, the HER proteins exist in an inactivated state that is 

activated upon ligand binding. The ligand-bound protein will undergo a conformational 

change that allows for the formation of homo- or heterodimers and activation of the 

intrinsic kinase domain resulting in phosphorylation of specific tyrosine residues. These 

residues serve as docking stations for adaptor proteins that link the receptor with 

downstream signaling pathways leading to survival and proliferation, e.g., via mitogen-

activated protein kinase (MAPK). Since HER2 can undergo ligand-independent 

dimerization, it is always in a constitutively extended, open conformation and therefore is 

the preferred partner for other HER proteins (18). 

Normal dimerization with HER2 activates signaling networks leading to cell 

survival and proliferation, cell cycle progression, and cytoskeletal organization (Figure 

II.1, adapted from reference (19)). The role of HER2 during development and adult 
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physiology becomes evident through genetically modified mouse studies (19). HER2 has 

an essential role in heart development, and embryos without the receptor die due to 

malformation of ventricular wall muscle fibers that are responsible for maintaining blood 

flow (20). Conditional ablation of HER2 in postnatal cardiac muscle resulted in 

ventricular enlargement of both chambers, which is consistent with dilated 

cardiomyopathy (21). 

 

Figure II-1. Normal HER2 signaling pathways and potential intracellular and 
extracellular mechanisms of action of trastuzumab. Normal HER2 cell signaling 
networks lead to cell cycle progression, proliferation, and survival, as well as 
cytoskeleton organization (A). Exact mechanisms of action for trastuzumab are unclear, 
however several intracellular and extracellular mechanisms have been observed (B-E). 
Intracellular actions block HER2 cell signaling networks leading to cell proliferation and 
survival (B), inhibit specific angiogenic factors (C), and inhibit the ability of the cell to 
repair DNA damage after chemotherapy (D). Trastuzumab is a monoclonal antibody and 
can potentially interact with receptors on immune cells, specifically natural killer (NK) 
cells, and thus target the cell for degradation (E). 
 

Even though HER2 signaling has a role in normal development and adult 

physiology, receptor overexpression and thus aberrant signaling have been implicated in 
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the development of breast cancer. HER2 overexpression leads to an upregulation of the 

phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) survival pathway and of 

nuclear factor kB (a potent inhibitor of apoptotic stimuli) (22,23). Blocking HER2 

inhibited colony formation by temporarily inhibiting PI3K/Akt activity in vitro in breast 

cancer cells that overexpressed HER2 (24). This result was not observed in cell lines with 

basal levels of the receptor (24).  

 

Trastuzumab: HER2+ Breast Cancer Targeted Therapy 

HER2 is an attractive target of therapy for many reasons. It is estimated that 20% 

to 25% of human breast cancers have HER2/neu gene amplification or receptor 

overexpression (19). Since half a million cases of new breast cancers are diagnosed 

annually in the United States, HER2+ tumors represent a significant patient population. 

Furthermore, as mentioned previously, HER2 overexpression correlates with a more 

aggressive disease phenotype and poor prognosis (25,26).  

Trastuzumab (Herceptin®; Genentech, San Francisco) was the first FDA-

approved HER2-targeted therapy for the treatment of HER2+ metastatic breast cancer 

(27). Trastuzumab was first identified by screening monoclonal antibodies that bind to 

the extracellular domain (ECD) of HER2; subsequent development resulted in a 

humanized version of the murine antibody 4D5 (28). Initial clinical trials tested 

trastuzumab as a monotherapy in patients with HER2+ metastatic breast cancer, and 

observed response rates ranging from 12% to 34% for a median duration of 9 months 

(29-31). A phase III clinical trial evaluated response of trastuzumab in combination with 

paclitaxel and observed increased response rates (50% versus 32%), longer time to 
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disease progression (median, 7.4 versus 4.6 months), and longer survival (median, 25.1 

versus 20.3 months) compared to single-agent trastuzumab treatment (10).  

Although the exact mechanisms of action of trastuzumab are unknown, evidence 

for several possibilities have been observed, which are depicted in Figure II-1: 1) 

inhibition of intracellular signaling pathways, 2) inhibition of tumor-associated 

angiogenesis, 3) inhibition of DNA damage repair initiated by anticancer therapy, and 4) 

activation of antibody-dependent cell-mediated cytotoxicity. These mechanisms of action 

are described in more detail below. 

 

Inhibition of Intracellular Signaling Pathways 

PI3K/Akt and MAPK pathways are both enhanced when HER2 is overexpressed 

leading to abnormal regulation of cell proliferation and survival signaling networks (32). 

In HER2-overexpressing cells, trastuzumab inhibited HER2 activation/phosphorylation, 

which had a consequential effect on PI3K/Akt and MAPK intracellular signaling 

pathways that regulate cell cycle progression and apoptosis (33). In a preclinical mouse 

model, tumor regression was observed after treatment with trastuzumab, owing to the 

inhibition of both PI3K/Akt and MAPK signaling pathways (34). 

 

Inhibition of Tumor Associated Angiogenesis 

 Tumor cells secrete growth factors, such as the vascular endothelial growth factor 

(VEGF), which induces angiogenesis to support tumor growth. In a preclinical mouse 

model of HER2+ human breast cancer, trastuzumab treatment caused normalization and 

regression of tumor blood vessels (35). A significant reduction was observed in the 
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diameter (approximately 65%) and volume (approximately 85%) of blood vessels, as well 

as vascular permeability (approximately 66%) compared with controls at three weeks 

after therapy initiation (p < 0.05) (35). Another preclinical study observed decreased 

microvessel density (mean ± standard deviation) in the trastuzumab treated (35 ± 7) 

group compared to controls (44 ± 12) (36). Gene expression in vitro from both studies 

revealed a decrease in pro-angiogenic factors such as VEGF, transforming growth factor 

a (TGFa), and plasminogen activator inhibitor 1 (PAI-1) (35,36). In contrast, the anti-

angiogenic factor thrombospondin 1 was upregulated after trastuzumab treatment (35).  

 

Inhibition of DNA Damage Repair Initiated by Chemotherapy 

 Chemotherapy and radiotherapy induce DNA damage, and cells respond by 

activating genes of cell cycle arrest and apoptosis. HER2-mediated signaling pathways 

are important for DNA damage repair and survival, namely the PI3K and MAPK 

pathways. Thus, inhibiting HER2 cellular signaling also disrupts the DNA repair process. 

The cyclin-dependent kinase inhibitor p21 has been implicated in cellular response after 

DNA damage. Trastuzumab has been shown to inhibit p21 expression at 2 hours and 24 

hours after exposure to the chemotherapeutic drug cisplatin (37). 

 

Activation of Antibody-Dependent Cell-Mediated Cytotoxicity 

 Trastuzumab is a monoclonal antibody and thus contains an immunoglobulin G1 

(IgG1) Fc structure capable of interacting with the Fcg receptor on immune effector cells, 

namely natural-killer (NK) cells. This interaction initiates recruitment of immune effector 

cells to attack the targeted cell (i.e., the cell with bound trastuzumab) (19). This process is 
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termed Antibody-Dependent Cell-mediated Cytotoxicity (ADCC). There are both 

preclinical and clinical studies supporting the role of trastuzumab-initiated ADCC, 

suggesting this to be a key mechanism of action. Trastuzumab-induced tumor regression 

was reduced in xenograft models where the Fcg receptor was deleted (38). A clinical 

study evaluated the role of different immune effector cells after trastuzumab treatment. 

Pre- and post-operative breast tissue samples were obtained from patients receiving 

neoadjuvant docetaxol and trastuzumab treatment and study-matched controls comprising 

of patients who received only docetaxol or non-trastuzumab, non-docetaxol systemic 

therapy. The samples from patients receiving trastuzumab treatment had a significant 

infiltration of NK cells and increased lymphocyte activity compared with the controls 

(39). Immunohistochemical analysis also resulted in a significant difference in NK cell-

related staining between the trastuzumab treated and control groups (p = 0.003), which is 

consistent with trastuzumab recruitment of NK cells to the tumor. 

 

Trastuzumab: Molecular Mechanisms of Resistance 

In the adjuvant setting, trastuzumab treatment following or in combination with 

chemotherapy improves disease-free and overall survival rates in patients with early stage 

breast cancer (12,13). Yet, a portion of those patients who initially responded eventually 

experienced disease progression. Furthermore, many patients with HER2+ breast cancer 

do not respond to trastuzumab, suggesting both de novo and acquired mechanisms of 

resistance (40). Therefore, elucidating the molecular mechanisms of trastuzumab 

resistance is still an active area of investigation. While trastuzumab is effective at 

blocking HER2 homodimers, it is not effective against ligand-induced heterodimers. 
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Specifically, HER1-HER2 and HER2-HER3 interactions are important in driving HER2+ 

breast cancer cells, as well as bypassing the trastuzumab-induced inhibition of cell 

proliferation. Evidence to support many potential resistance mechanisms related to HER2 

and HER2 interactions with other HER proteins have been reported, including: increased 

HER1 expression (33); increased ligand expression for either HER1 (TGFa, (33)) or 

HER3 (neuregulin 1, (33)); steric hindrance of HER2-antibody interaction by membrane-

associated glycoproteins (41); and binding competition with circulating HER2 cleaved 

ECD fragments (42).  

Resistance to trastuzumab might also be due to alternate downstream signaling 

pathways. Trastuzumab resistant cells developed in vivo from the BT474 human breast 

cancer cell line had elevated levels of phosphorylated PI3K/Akt and MAPK compared to 

parental cells after treatment (33). Additional studies showed that the inability of 

trastuzumab to block mTOR signaling is a key mechanism of resistance, and treatment 

with mTOR inhibitors significantly inhibited growth in trastuzumab resistant cells (43). 

Nagata et al. observed that a decrease in phosphatase and tensin homolog (PTEN) 

increased PI3K/Akt phosphorylation and blocked growth suppression mediated by 

trastuzumab in HER2+ breast cancer cells (44). They also showed that PTEN-deficient 

HER2+ breast tumors had a poorer clinical response after trastuzumab treatment. 

Furthermore, they observed that PI3K inhibitors rescued trastuzumab resistance of PTEN 

deficient cells in vitro and in vivo. 
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Conclusion 

HER2+ breast tumors represent a large subset of all diagnosed breast cancers 

thereby initiating the development of many HER2 targeted therapies. Trastuzumab was 

the first targeted therapy approved for clinical use in patients with HER2+ metastatic 

breast cancer, and remains the only HER2 specific adjuvant treatment for patients with 

HER2+ early stage breast cancer (45). Despite the clinical success of trastuzumab, 

relapses still occur after adjuvant therapy resulting in disease progression invariably due 

to acquired trastuzumab resistance. Despite the many studies suggesting different 

mechanisms of resistance, currently there are very few biomarker(s) that predict the lack 

of clinical response or resistance to trastuzumab. Therefore, quantitative and reliable 

methods to assess response early during treatment would greatly benefit patient care.  
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CHAPTER III 

 

FUNCTIONAL AND MOLECULAR IMAGING OF CANCER 

 

Introduction 

 
The current radiographic assessment of tumor response is based on the Response 

Evaluation Criteria in Solid Tumors (RECIST), which uses one-dimensional changes in 

tumor size to indicate response (1). These response criteria offer standardized methods to 

evaluate the longest diameter for all target lesions from anatomical imaging data. Under 

these criteria, definitions of treatment response are divided into four categories, which are 

summarized in Table III-1 

 

Although RECIST has been used extensively since its introduction in 2000, some 

concerns about the method have not been addressed (2), even with the most recent 

updates in 2009, RECIST 1.1 (3). One fundamental statistical issue is the reduction of 

Table III-1. RECIST response categories 
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continuous tumor size and response to a series of four categories (i.e., Table III-1). 

Additionally, with emerging and developing therapies that are frequently cytostatic, long- 

term stable disease could be a beneficial outcome. For example, in tumors where size 

shrinks slowly after treatment, such as gastrointestinal stromal tumors (4), patients live 

for long periods with stable disease. Another limiting issue is that the results from 

RECIST are based on linear changes along one-dimension, where tumors are most 

certainly changing along three dimensions. These one-dimensional measurements are 

based on anatomical and morphological changes that are temporally delayed behind 

molecular and physiological changes (5). Thus, imaging techniques with the sensitivity to 

quantify changes in molecular characteristics of cancer would potentially offer earlier and 

more specific assessments of treatment response. 

Indeed, a supplement recently published in The Journal of Nuclear Medicine (2) 

was devoted to the development of metabolic response criteria to assess treatment 

response using positron emission tomography (PET). Wahl et al. introduce new criteria 

called “PERCIST” – Positron Emission tomography Response Criteria in Solid Tumors 

(2). The idea of PERCIST is that PET, with the 18F-labeled glucose analog 2-deoxy-2-

18F-fluoro-D-glucose (18F-FDG), more accurately assesses the continuous and time-

dependent nature of cancer response compared to RECIST, as well as, provides estimates 

of the metabolic changes of the tumor. The effort to develop quantitative PET methods to 

monitor tumor response in the preclinical and clinical settings has been remarkable (6-19). 

Additionally, efforts to improve the quality of quantitative information from magnetic 

resonance imaging (MRI) techniques for use in assessing treatment response are also 

increasing (20-32). This section highlights several current and emerging PET and MRI 
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techniques that are being investigated as biomarkers of cancer treatment response. The 

basic fundamentals, biological basis, and several quantitative parameters for each 

imaging method are also discussed. Example applications in cancer are also presented. 

 

Positron Emission Tomography 

PET imaging in principle is the spatial location of radiation emitted from a 

positron-electron annihilation event (33). An injected radiopharmaceutical distributed 

throughout the subject emits positrons as a by-product of radioactive decay. An emitted 

positron will then travel a short distance before it encounters an electron and annihilates 

to form two 511-keV photons (traveling approximately 180° apart) that are detected 

during PET acquisition (34). PET imaging depends on the coincidence detection of two 

within a detector pair located on opposite sides of the subject being imaged (see Figure 

III-1). When detectors on opposite sides of the subject register photons within 10-9 

 

 
Figure III-1. Basic physics of Positron Emission Tomography. A positron-emitting 
radionuclide is injected into a subject. The positron will travel a short distance before 
it encounters an electron and annihilates to form two 511-keV photons that travel 
approximately 180° apart. When a pair of detectors on opposite sides of the subject 
registers two photons simultaneously (e.g., within 10-9 seconds), the positron emission 
is thought to occur along a line between the two detectors.  
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seconds of one another, the annihilation event is thought to have occurred along a line 

between the detectors. Thus, the resulting PET image is a distribution of the number of 

positron decays or “counts” spatially localized within the subject. 

 
 

Data Analysis 

PET scans are intrinsically quantitative, and using a quantitative metric to assess 

early treatment-induced changes is an attractive tool to measure subclinical responses (2). 

Two main classes of PET data analysis exist: semi-quantitative and quantitative. The 

standardized uptake value (SUV) is the most widely used semi-quantitative parameter, 

and is calculated either voxel-wise or over a region of interest (ROI). The SUV of a 

dynamic series of time points t is calculated as: 

SUV(t) = c(t) (MBq / kg)
injected dose (MBq) / body weight (kg)

,    (III-1)  

where c(t) is tissue radioactivity concentration at time t. For small animals, such as mice, 

the percent-injected dose per gram (%ID/g) is often reported instead of the SUV as the 

weight is usually similar between animals (35): 

%ID / g(t) = c(t) (MBq / kg)
injected dose (MBq)

×100.      (III-2)  

PERCIST recommends that the SUV be normalized to lean body mass (SUL), 

which is less dependent on body habitus across populations (2). Additionally, SUL is 

typically more consistent than SUV between subjects and imaging time points. The main 

advantage of the semi-quantitative methods compared to the quantitative methods is the 

relative ease of data acquisition (importantly, these measurements do not require a blood 

sample) and analysis. 
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While the semi-quantitative parameters are easier to determine, they only quantify 

the radiotracer uptake within a tissue at a snapshot in time. In order to fully characterize 

radiotracer pharmacokinetics, a quantitative analysis of dynamically acquired data is 

required. The standard three-compartment model used to analyze dynamic PET data is 

shown in Figure III-2, with rate constants K1-k4 that represent the rate of transport 

between plasma and tissue, rate of outflow from the tissue to plasma, radiotracer 

phosphorylation rate, and the dephosphorylation rate, respectively (36). 

 

Figure III-2. A standard, 3-compartment, 4-rate constant model used to analyze dynamic 
PET data. Cp represents the radiotracer activity concentration in the plasma. The tissue is 
composed of two compartments, the exchangeable compartment, Ce, and the metabolized 
or trapped compartment, Cm. The parameters K1-k4 represent rate constants that describe 
transport between compartments. 
 

At anytime after injection, the total radiotracer concentration in the tissue, Ct, 

equals the sum of the amounts of free and phosphorylated radiotracer in the exchangeable 

compartment, Ce, and metabolized compartment, Cm, respectively (36): 

Ct = (Ce +Cm +Vb ⋅Cp )ρ ,      (III-3) 

where Vb is the blood volume fraction and r is the tissue specific gravity. The rate of 

change in the amount of exchangeable radiotracer in the tissue, dCe/dt, is described by:  

     (III-4) 

 

Cp Ce Cm 

K1 

k2 

k3 

k4 

dCe
dt
= K1Cp − k2Ce − k3Ce + k4Cm.
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The rate of change in the amount of tracer that is phosphorylated, dCm/dt, is:  

       (III-5) 

Equations (III-3) – (III-5) provide the basis for the determination of the rate constants K1-

k4, and describe the time course of the radioactivity in the tissue as a function of time. 

The time rate of change of tracer concentration predicted by the model (Ct) is fit to the 

measured dynamic time course (example from a tumor illustrated in Figure III-3B) using 

a nonlinear least-squares optimization method. The estimated rate constants (i.e., K1-k4), 

can then be used to calculate the net tracer flux, Ki, for any tracer i: 

Ki =
K1 ⋅ k3
k2 + k3

.         (III-6)  

To perform fully quantitative pharmacokinetic modeling, an accurate blood 

plasma time activity curve that serves as the model input function is typically required. 

The gold standard for making this measurement is blood sampling (37), which can be 

quite challenging and often labor intensive. Several noninvasive methods to estimate the 

dCm

dt
= k3Ce − k4Cm.

 

 
Figure III-3. Example time activity curves from the left ventricle (A) and tumor (B). 
To show the fast wash-in/wash-out and peak concentration for the left ventricle time 
activity, the first five minutes is graphed in the inset figure to panel A. The time 
activity curves from the left ventricle and tumor are fit to the three compartment 
model to generate the line of best fit, which is illustrated as the red line in panel B.  
 

A     B 
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blood plasma time activity curve have been proposed (including, factor analysis methods 

(38), standardized input functions (39), and simultaneous estimation (40)); however, 

image-derived input functions (IDIFs) are most commonly used (41). IDIFs are collected 

from PET image data by drawing ROIs around a large blood pool, which is often a major 

artery in the field of view or the left ventricle of the heart. An example of an IDIF from a 

left ventricle of a mouse is illustrated in Figure III-3A. The size of the tissues used to 

generate plasma time activity curves are often small relative to the imaging voxel and 

therefore the resulting time activity curves are a combination of the blood concentration 

and surrounding tissues; the terms given to this issue are spillover and partial-voluming. 

Corrections for spillover and partial-volume effects are often applied via a recovery 

coefficient, which is defined as the ratio between the measured activity and true activity 

(37,42,43). Most often, the recovery coefficient is determined from PET images of a 

phantom acquired under similar conditions as the experimental data (37,42,43). 

 

Current and Emerging PET Radiotracers 

The most commonly used radiotracer for breast cancer imaging is the 18F-labeled 

glucose analog, 18F-FDG. 18F-FDG is actively taken up in cells via the Glut-1 and Glut-3 

transporters and phosphorylated by hexokinase to 18F-FDG-6-PO4. Once phosphorylated, 

18F-FDG-6-PO4 is not metabolized further in the glycolytic pathway and remains trapped 

in the cell. The rate of phosphorylation is proportional to the metabolic rate of the cell, 

thus cells with high metabolic rates will accumulate more 18F-FDG. High glycolytic 

index is a hallmark of cancer (44), thus tumor cells will accumulate more 18F-FDG 

compared to healthy tissue.  
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The limited utility of 18F-FDG PET for use in tissues with high background signal 

(e.g., the brain), has led to the development of other 18F-labeled tracers that probe other 

molecular processes that might be altered in cancer. Two emerging 18F-labeled 

radiotracers for PET imaging are 3’-deoxy-3’-18F-fluorothymidine (18F-FLT) and 18F-

fluoromisonidazole (18F-FMISO), which are designed to reflect tumor proliferation (8) 

and hypoxia (12), respectively. 

The increased proliferative activity of tumor cells is a well known characteristic 

of cancer (44). Alterations in cellular proliferation occur, by definition, before changes in 

tumor size; thus, it is reasonable to hypothesize that imaging techniques reporting on cell 

proliferation could offer an early indication of therapeutic response. 18F-FLT is a 

thymidine analog, and has emerged as a promising PET tracer for estimating cell 

proliferation. Cells undergoing proliferation are actively transporting extracellular 

thymidine into the cell via the salvage pathway, which is then phosphorylated by 

thymidine kinase 1 (TK1) which is upregulated during the DNA synthesis phase. 18F-FLT 

works in an analogous fashion: 18F-FLT is introduced into the bloodstream and 

transported form the blood into the cytosol via the same nucleoside transporters as 

thymidine, where it is phosphorylated by TK1 into 18F-FLT-monophosphate and is 

retained in tissues.  While 18F-FLT-monophosphate may continue to be phosphorylated 

into 18F-FLT-diphosphate and 18F-FLT-triphosphate, phosphorylated 18F-FLT cannot be 

incorporated into the growing DNA chain (as the 3’ position was substituted by 18F) thus 

there will be an accumulation of 18F-FLT-mono-, di-, and triphosphate in the cell. Cells 

that have an increased amount and activity of TK1 (e.g., tumor cells) will accumulate 

more 18F-FLT than normal tissues. 
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  A tumor will quickly outgrow its blood supply as it proliferates, resulting in 

pockets of hypoxia that are heterogeneously spaced throughout the tumor. A specific PET 

radiotracer designed to accumulate in regions of low oxygen content is 18F-FMISO, 

which is lipophilic and freely diffuses through the cell membrane; however, retention is 

determined by the local oxygen tension (45). 18F-FMISO is a radiolabeled nitroimidazole 

that, once in the cell, is immediately reduced to R-NO2 radicals, regardless of 

intracellular oxygen concentration (8).  If the cell has normal oxygen levels (> 4 mmHg 

(46)), the radical is reoxidized and can diffuse out of the cell.  However, if intracellular 

oxygen is low, the R-NO2 radical is further reduced and will covalently bind to 

intracellular macromolecules and become trapped. 18F-FMISO has a unique characteristic 

in that it is not retained in necrotic cells as the electron transport chain that reduces 18F-

FMISO into a bioreductive alkylating agent is only active in viable cells (45).   

 

Applications in Cancer 

18F-FDG PET has been well characterized for the use of differentiating benign 

versus malignant lesions, preoperative staging, and detecting recurrent disease and 

metastasis (2,47). Efforts to expand the use of 18F-FDG PET in detection of cancer and 

evaluation of treatment response are ongoing (48,49). For example, Schmitz et al. 

recently reported that 18F-FDG PET provided an early marker of treatment response in 

patients with squamous cell carcinoma of the head and neck (48). Additionally, the 

maximum SUV correlated with residual tumor cellularity on surgical specimens.  

While there are a number of studies reporting the clinical utility of 18F-FDG, there 

are also a growing number of studies that observe the opposite outcome (7,15,18). For 
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example, Shah et al. observed similar SUV values from 18F-FDG PET between 

responders and nonresponders in a mouse model of HER2+ breast cancer (18). For these 

reasons, radiotracers that reflect molecular processes other than tumor metabolism are of 

great interest (19,50).  

  The clinical utility of 18F-FLT PET for diagnosing and staging cancer as well as 

assessing therapeutic response has previously been investigated (16,51,52). In preclinical 

studies, 18F-FLT PET is also being used to evaluate treatment efficacy of novel targeted 

anticancer drugs (53,54). Although these studies highlight 18F-FLT PET as a promising 

early biomarker of treatment response, recent studies have also shown the limited utility 

of 18F-FLT PET (9,55). Herrmann et al. acquired 18F-FLT PET and 18F-FDG PET data on 

patients with pancreatic tumors, and observed that 18F-FLT PET had lower sensitivity in 

differentiating pancreatic tumors than 18F-FDG PET (9). Additionally, a preclinical study 

by McKinley et al. provides evidence that suggests 18F-FLT PET may not always be a 

surrogate biomarker of the proliferative index of specific tumors (55). These outcomes 

thus emphasize the need to perform a systematic evaluation (e.g., similar to the work 

performed in this dissertation) with 18F-FLT PET in a variety of cancer types and 

treatment regimens. These types of studies are imperative if 18F-FLT PET is to be 

employed in routine clinical care of cancer.  

18F-FMISO PET is another emerging radiotracer that has been investigated to 

determine if the parameters derived from the image data can assess treatment efficacy in 

rodent cancer models. (21,56). Bokacheva et al. performed longitudinal 18F-FMISO PET 

with a rat model of colorectal cancer, and observed a decrease in tumor hypoxia after 

treatment with an antiangiogenic agent (21). Valable et al. also observed a subsequent 
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decrease in tumor hypoxia as assessed via 18F-FMISO PET after antiangiogenic treatment 

in a rat glioma model (56).  

 

Magnetic Resonance Imaging  

In addition to 18F-FDG PET imaging, the use of MRI in diagnosing and staging 

cancer, as well as assessing treatment efficacy is well established. This dissertation 

employs two MR techniques that have been successful in the clinic: diffusion-weighted 

MRI (DW-MRI) and dynamic contrast enhanced MRI (DCE-MRI). For clarity and 

understanding of DW-MRI and DCE-MRI, this first section highlights the basic 

fundamentals of NMR in the context of how image contrast is generated, in general, 

before moving on to the specifics about the DW-MRI and DCE-MRI techniques. For a 

more detailed description, please see (for example) reference (57).  

The signal from a typical MRI session is derived from the magnetic properties of 

1H nuclei. Each 1H nucleus possesses a magnetic moment that has both a magnitude and 

direction. These magnetic dipole moments, or “spins”, have random alignment (Figure 

III-4A); however, when nuclei with magnetic moments are placed within an external 

 
Figure III-4. 1H nuclei spins in a system usually have random alignment (A). 
However, in the presence of an external magnetic field, the spins will align either 
parallel or antiparallel to the external field Bo (B).  
 

A              B 



 
 
31 

magnetic field B0, the spins will seek to align in a low energy state that is either parallel 

or antiparallel to the external magnetic field (Figure III-4B).  

If external energy is applied, in the form, for example, of a radiofrequency (RF) 

pulse, the resulting proton signal is time varying due to the nature of the tissue, the 

interactions within the tissue, and the applied, external forces (58). Thus, the time-

varying signal and extent to which the signal varies is dependent on the tissue type. The 

term given to describe how the signal varies in time is called relaxation. One of the most 

important principles in MRI is that the magnetization in different tissues gives rise to 

different relaxation and thus different observed proton signals. This is the basis for MR 

image contrast.  

As described above, the spins will seek to align (either parallel or antiparallel) to 

the external field B0 creating a net magnetic moment M, as illustrated in Figure III-5A. 

When the net magnetization along the z-axis is perturbed, the magnetic moment is tipped 

away from parallel (Figure III-5B); however, the net magnetic moment will seek to 

regain the equilibrium state and eventually relax back to alignment with B0. This process 

is described as longitudinal relaxation and is characterized by the time constant T1.  

 

Figure III-5. The “spins” are summed to form a net magnetization M that at equilibrium 
is aligned with the external magnetic field Bo (A). As RF energy is applied, M will tip 
away from equilibrium (B); however, M will seek to regain equilibrium state and “relax” 
back; a term defined as longitudinal relaxation. 
 

M 

Bo RF Energy 

M 

Bo 
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The longitudinal relaxation is not the only type of relaxation occurring within the 

system. When the net magnetization is tipped away from its equilibrium state (i.e., 

parallel to B0), the transverse components (x, y) of M will rotate about B0 with a certain 

frequency. However, the spins exist in environments that are not completely 

homogeneous, and the local field inhomogeneities experienced by the spins will result in 

a dispersion of precession. In other words, the spins are initially coherently aligned after 

RF energy is applied (Figure III-6A). With time the coherent collection of spins 

experience local field fluctuations leading to the exponential loss of their coherence 

(Figure III-6 B and C), and are said to relax. This is called transverse relaxation, which is 

characterized by the time constant T2.  

 

By manipulating the timing and the strength of the radiofrequency pulses, 

sequences can be developed to better exploit these T1 or T2 relaxation properties to 

differentiate between tissue types and disease states. The two most common MR 

experiments are the spin echo and gradient echo acquisitions. A spin echo sequence is 

most often used in diffusion-weighted MRI to investigate water diffusion in a tissue of 

 
 
Figure III-6. Initially after the RF pulse, the spins in the transverse plane 
(perpendicular to the external magnetic field Bo) will coherently align (A). Due to 
local field fluctuations, the spins will begin to lose their coherence (B), and are 
said to relax (C). This is defined as the transverse relaxation. 

A    B    C 
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interest. A gradient echo pulse sequence is most often used to acquire dynamic images 

after contrast agent injection for a DCE-MRI analysis. These two sequences in the 

context of the specific imaging modalities (i.e., DW-MRI and DCE-MRI) are discussed 

in more detail below.  

  

Diffusion-Weighted MRI 

Self-diffusion or Brownian motion is the microscopic thermally induced behavior 

of water molecules moving in a random pattern. Diffusion measurements reflect the 

effective displacement of water molecules within a certain time interval. The diffusion 

path length r2 of a free water molecule is governed by the Einstein equation:  

r
2
= 2Dt         (III-7) 

where D is the diffusivity and t is the time interval. For example, the average 

displacement of a free water molecule at body temperature (~37 °C) with a diffusivity of 

3.0 mm2/ms during a 20 ms time interval is approximately 11 mm. Because this is 

comparable to the diameter of most cells, there is a high probability that a water molecule 

will interact with intact cellular components such as the hydrophobic cell membrane, 

intracellular organelles, and macromolecules, thereby impeding their motion (30,59). The 

observed rate of diffusion in cellular tissues will therefore be less than free water, which 

is often described by an apparent diffusion coefficient (ADC). Imaging techniques such 

as DW-MRI have been developed to quantify ADC and, in well-controlled situations, 

variations in ADC have been correlated with cellularity (60).  
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Data Acquisition and Analysis 

MRI is able to measure water diffusion by applying a pair of diffusion-sensitizing 

gradients to any MRI pulse sequence, the most common being the pulsed-gradient spin 

echo (PGSE) where the diffusion gradients are applied on opposite sides of the 180° RF 

pulse (see Figure III-7). The total diffusion weighting imparted to the tissue of interest is 

indicated by the “b-value”, which is calculated as:  

        (III-8) 

where g is the gyromagnetic ratio of water, and d,  G, and D are the gradient duration, 

amplitude, and time between application, respectively.  

 

The signal from a standard spin echo pulse sequence depends on the proton 

density r, T1, and T2. However, during a diffusion-weighted experiment, the signal will 

also depend on the amount of diffusion weighting. Thus, the spin echo signal equation is 

amended to include a diffusion term:   

      (III-9) 

b = γ 2δ 2G2 Δ−δ / 3( ),

S = S0ρ ⋅ (1− e
TR/T1 ) ⋅e−TE /T2 ⋅e−ADC⋅b,

 
 
Figure III-7. Typical pulsed-gradient spin echo pulse sequence used for diffusion-
weighted MR imaging. Two diffusion gradients with amplitude G and duration δ 
separated by the diffusion time Δ are equally spaced around the 180° RF pulse.  
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where TR and TE are the repetition time and echo time, respectively, and b is defined in 

Eq. (III-8). By varying the amplitude and duration of the diffusion-sensitizing gradients 

(thereby varying the b-value) and acquiring multiple diffusion-weighted images, the 

resulting data is exponentially fit to Eq. (III-9) to calculate ADC. ADC can be calculated 

for a ROI or each image voxel to generate ADC parametric maps; illustrations of each are 

shown in Figure III-8.   

 

Applications in Cancer 

Since a hallmark of cancer is uncontrolled cell proliferation leading to high cell 

density and loss of normal cytoarchitecture (27), DW-MRI could provide an early 

biomarker of pathology. Recent work has provided convincing data that DW-MRI can be 

used to characterize malignancy and determine lesion aggressiveness (61,62). For 

example, a study collected DW-MRI data from 136 female patients with 162 breast 

lesions (149 invasive lesions and 13 ductal carcinomas in situ) and then correlated ADC 

with histological grade (61). The results revealed a significant (p < 0.001) inverse 

 
 

Figure III-8. Diffusion-weighted data can be fit for an ROI to return one ADC value 
(left), or fit for every image voxel to calculate a parametric map (right). Units of ADC 
are in mm2/s.  
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correlation between tumor ADC and histological grade. Additionally, the mean ADC of 

the “less aggressive” group (grade 1 and in situ lesions) was 1.19 × 10-3 mm2/s, which 

was higher than the mean ADC (0.96 × 10-3 mm2/s) of the “more aggressive” group 

(grade 2-3 invasive carcinomas). 

In addition to characterizing tumor aggressiveness, the clinical utility of DW-MRI 

to assess treatment response has been shown (25,32). A study performed by Yankeelov et 

al. acquired DW-MRI data from 11 patients with locally advanced breast cancer prior to 

and post chemotherapy but before surgery (32). This work observed a significant increase 

(p < 0.005) in ADC from 1.61 × 10-3 mm2/s before treatment to 2.0 × 10-3 mm2/s post-

treatment. In another study involving 15 patients with locally advanced breast cancer, 

Jensen et al. also observed a significant increase (p = 0.008) in mean ADC after one cycle 

of neoadjuvant chemotherapy (25). 

 

Dynamic Contrast Enhanced MRI 

 DCE-MRI is an imaging technique that characterizes the pharmacokinetics of an 

injected contrast agent (CA) as it enters and leaves a region of tissue. As the CA passes 

through a tissue, it will interact with the hydrogen nuclei of water and shorten the tissue’s 

native longitudinal relaxation rates (i.e., both T1 and T2; though DCE-MRI is focused 

entirely on T1 changes induced by the contrast agent). The ability of a CA to alter 

relaxation is quantified by its “relaxivity”, which relates to what extent the relaxation rate 

R1 ( 1/ T1) is changed with respect to the concentration of the CA. The most common 

relationship between these parameters is described as (63): 

R1 = r1 ⋅[CA]+R10 ,        (III-10) 

≡
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where r1 is the CA-specific relaxivity (in units of mM-1s-1), [CA] is the concentration of 

the CA in the tissue, and R10 is the baseline longitudinal relaxation rate. 

 A characteristic of an ideal MR CA is a high number of unpaired electrons, as the 

unpaired electrons have a larger magnetic moment than the nuclei. Thus, MR contrast 

agents are designed with a large number of unpaired electrons in order to dominate the 

magnetic moment produced by the CA nuclei. Another ideal characteristic of MR 

contrast agents is an appropriate correlation time. Molecules in a liquid will rotate freely, 

and the inverse of their rotation frequency is known as the correlation time. Molecules 

with an optimum correlation time can interact with surrounding molecules more 

frequently causing the relaxation times to change.  

 Typical, clinically employed, MRI CAs are composed of gadolinium (Gd) within 

an appropriate chelate; gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) is one 

such molecule. Gd-DTPA is a small (~0.6 kDa) hydrophilic, barrier-limited molecule that 

is stable in vivo and has minimal toxicity. (Toxicity issues have recently been reported in 

patients with certain types of kidney disease. For more detail, see reference (64). The 

effect of the CA results in an increase in signal intensity, to a degree determined by the 

accumulation of the CA, on a T1-weighted image. Serial acquisition of T1-weighted MR 

images before, during, and after CA administration generates a signal intensity time 

course (see Figure III-9) that can then be analyzed quantitatively in order to characterize 

various physiological features of the tissue vasculature including blood flow, vessel 

permeability, and tissue volume fractions (58). 
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Figure III-9. An example of the change in signal intensity within a tissue of interest after 
contrast agent injection. 
 

Data Acquisition 

The three main components needed to perform an analysis of DCE-MRI data are: 

1) a series of T1-weighted images during CA injection, 2) native T1 ( 1/R10) prior to the 

injection of the CA, and 3) the vascular or arterial input function (VIF/AIF). Each of 

these components is discussed in more detail below. 

 

T1-Weighted Dynamic Images 

 To observe the T1 changes induced by the CA, T1-weighted MR images must be 

acquired before, during, and after CA injection. Similar to any MR imaging experiment, 

trade-offs exist between temporal resolution and spatial resolution. For example, if the 

main objective is to characterize rapid kinetics of the CA, then high temporal resolution 

(on the order of a few seconds) should be acquired. However, if the experiment must 

assess tissue heterogeneity and cover a large field of view, as in most oncological 

applications, then high spatial resolution is required. The latter requirement necessitates a 

reduction in temporal resolution (64). Thus, when designing a DCE-MRI protocol it is 

≡
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imperative to first consider the temporal resolution and spatial resolution requirements in 

the context of the study objectives.  

Once the temporal and spatial resolution needs are determined, serial T1-weighted 

images are typically acquired using a gradient echo pulse sequence. Dynamic gradient 

echo images are acquired for a set acquisition time, which is typically 10-20 minutes in 

the preclinical setting and 5-10 minutes in the clinical setting. The signal equation for a 

standard gradient echo pulse sequence is: 

     
(III-11) 

where a is the flip angle of the RF pulse and T2
* represents the combination of T2 and T2’, 

which is a quantity that represents magnetic field inhomogeneity. The parameters TR, TE, 

and a can be manipulated such that the resulting image can be either T1- or T2-weighted. 

For T1-weighted sequences commonly used in DCE-MRI experiments, a short TR relative 

to T1 and a very short TE (i.e., TE << T2
* so that exp(-TE/T2

*) à 1) are used.  

 

T1 Mapping Techniques 

 Pharmacokinetic analysis of DCE-MRI data requires a measure of the native T1 of 

the tissue (T10). In a typical DCE-MRI experiment, there is not enough time to quantify 

the T1 at each sample point during a dynamic acquisition after CA injection. Thus, a pre-

contrast T1 map is critical for calibrating the observed changes in signal intensity due to 

entrance and exit of the CA. Several methods have been employed in DCE-MRI studies, 

including spin echo or gradient echo with varied flip angle (a) or repetition time (TR) 

(57,65), and inversion recovery with varied inversion times (TI) (66,67). The latter 

S = S0 ⋅
(1− e−TR/T1 ) ⋅sin(α) ⋅e−TE /T2

*

1− cos(α) ⋅e−TR/T1
,
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technique is employed in this dissertation, and thus a more detailed description is 

presented below.  

 In an inversion recovery sequence, the net magnetization is flipped 180° and is 

sampled along the magnetization recovery at different times, which are called inversion 

times, TI. The signal intensity after the inversion pulse is:  

       (III-12) 

An example of the absolute value of the signal intensity at multiple inversion times is 

graphically presented in Figure III-10A. The data is then fit to Eq. (III-12) to produce an 

estimation of T1. This can be performed for a ROI or every image voxel resulting in a T1 

parametric map; illustrations of each are displayed in Figure III-10. 

 

Arterial Input Function 

Knowledge of the time rate of change of the CA concentration in the blood pool, 

the so-called arterial input function (AIF), is required for most quantitative DCE-MRI 

S = S0 ⋅ 1− 2 ⋅e
−TI /T1 +e−TR/T1 .

 
 
Figure III-10. Representative examples of data fit to the inversion recovery sequence 
equation to calculate T1 are displayed for a tumor ROI (left) or for every voxel 
creating a parametric map (right). The line of best fit from Eq. (III-12) is the blue, 
solid line in panel A. The units of T1 are seconds.   
 

T1 = 2.15 
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analyses. The AIF after a bolus injection is typically characterized by a steep wash-in, 

followed by a short-lived peak concentration, and a subsequent longer washout period. 

The current “gold standard” for making this measurement, as mentioned previously in the 

PET section, is blood sampling (68). However, the difficulty of collecting blood samples 

at a sufficient temporal resolution, particularly in small animals, limits the efficiency of 

this method. Another method of estimating the AIF is derived directly from the MR 

imaging data. A ROI can be placed within a large vessel located in the field of view or 

left ventricle of the heart, then the signal intensity time course from the blood can be 

converted to concentration using Eq. (III-10). In some applications, however, a blood 

pool large enough to characterize the AIF may not always coincide within the imaging 

field of view. Thus, a population-derived AIF (67,69) or reference tissue (66,70) have 

been proposed as alternatives for measuring an AIF for each subject. This dissertation 

employed a population-derived AIF from a gender and aged matched population of mice 

that was previously published by Loveless et al. (67); an illustration of the population-

derived AIF is presented in Figure III-11.  

 

Figure III-11. Population-derived arterial input function used in all DCE-MRI data 
analyses in this Dissertation.  
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Data Analysis  

There are two main classes of DCE-MRI data analyses: semi-quantitative and 

quantitative. A semi-quantitative analysis returns parameters that are calculated based on 

the shape characteristics of the dynamic time course. Typical semi-quantitative 

parameters are the initial area under the curve (iAUC), enhancement, time to peak, and 

wash-in/wash-out slope (64), as depicted in Figure III-12 (adapted from reference (64)). 

The iAUC is calculated as the area under the signal intensity time course from the time of 

CA injection to a designated time after injection. Enhancement is quantified as the 

percent change in signal intensity from the peak to baseline divided by the baseline signal 

intensity value. The time to peak is the time between CA injection and maximum value of 

the signal intensity curve. The wash-in and wash-out slopes are the slope of the line 

between the injection time and the peak of the curve and the peak of the curve until the 

end of data acquisition, respectively. While semi-quantitative analyses of DCE-MRI data 

have several advantages, a significant disadvantage is that the parameters might not 

 
Figure III-12. Several semi-quantitative parameters derived from DCE-MRI analyses 
are illustrated. All of these parameters are based on the characteristic shape of the 
dynamic signal intensity time course.   
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directly relate to the underlying physiology. Thus, at times, the parameter interpretation 

in the context of assessing treatment response, for example, might be challenging. 

 Quantitative DCE-MRI uses mathematical models in order to understand and 

quantify parameters that directly reflect underlying physiology. The most commonly used 

model is the Kety-Tofts model where the concentration of the CA resides in two 

compartments, the blood/plasma (denoted by Cp) and the tissue space (denoted by Ct) as 

shown in Figure III-13 (71,72).  

 

Figure III-13. Two-compartment model showing compartments representing the plasma 
(Cp) space and the tissue (Ct) space. The contrast agent leaves from the tissue at a rate 
represented by Ktrans (volume transfer constant), and returns to the plasma from the tissue 
space at a rate represented by Ktrans /ve (efflux constant). 
 

Using the standard DCE-MRI notation presented by Tofts et al. in 1999, Ktrans is 

the volume transfer constant between the plasma and tissue space, and ve is the 

extravascular-extracellular volume fraction ((71,72), see Figure III-13). If the CA agent 

distribution is assumed to be homogeneous in both tissue compartments, then the 

concentration change within the tissue, dCt (t)
dt

, is described by: 

dCt (t)
dt

= K trans ⋅Cp (t) -
Ktrans

ve
Ct (t),     (III-13) 

 

plasma 
space 

Cp(t) 

Ktrans 

Ktrans/ve 

tissue space 
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for which the solution is given by: 

C
t
(t)= Ktrans

C
p
(u)

0

t

∫ ⋅ e
−(Ktrans /v

e
)(t-u)
du.      (III-14) 

This model neglects any fraction of the tissue that may contain vascular space; however, 

previous studies have shown that the contribution from vascular space may not be 

negligible in tumors (73,74). Therefore, Eq. (III-14) has been amended to included a third 

parameter that reflects the fraction of vascular space (vp) (75): 

  C
t
(t)= Ktrans

C
p
(u)

0

t

∫ ⋅ e
−(Ktrans /v

e
)(t-u)
du+ v

p
C
p
(t).     (III-15) 

In these forms, if Cp(t) and Ct(t) are measured, then these data can be fit to Eq. (III-14) or 

(III-15) using a nonlinear least squares method to extract estimates of Ktrans and ve (also 

vp) for a given tissue of interest on either a voxel by voxel or ROI basis.  

 Compared to the semi-quantitative parameters, this class of DCE-MRI analysis 

generates parameters that have the clearest correlation to the underlying physiology. It 

should be noted, however, that Ktrans has several physiological interpretations depending 

on the balance between blood flow and vessel permeability (71). In high-permeability 

situations, Ktrans is equal to the blood plasma flow (F) per unit volume: 

, where ρ is the density of the tissue and hct is the blood 

hematocrit. In the other limiting case of low permeability, the CA flux is permeability 

limited, and thus Ktrans is equal to the permeability surface area product (PS) between the 

blood plasma and the extravascular-extracellular space: . There are also 

situations of mixed flow and PS where neither flow nor permeability is the main limiting 

factor, but rather a combination of the two. In the mixed case, Ktrans is equal to the 

extraction fraction E × .  

Ktrans = F ⋅ρ ⋅ (1- hct)

Ktrans = PS ⋅ρ

(=1- e-PS / F(1-hct)) F ⋅ρ ⋅ (1- hct)
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Applications in Cancer 

Antivascular and antiangiogenic drugs are two classes of cancer therapeutics that 

are designed to alter tumor vasculature. Antivascular agents target the vascular 

endothelium, resulting in reduced vasculature, perfusion, and blood volume. 

Antiangiogenic agents target specific proteins along the angiogenic pathway, ultimately 

inhibiting tumor neovascularization. Since DCE-MRI has been shown to be sensitive to 

physiological changes in tumor vasculature including perfusion and vessel permeability, 

as well as vascular and extravascular volume fractions (71,76), it has the potential to 

provide surrogate biomarkers of both antivascular and antiangiogenic therapies.  

Although the semi-quantitative parameters may not always directly reflect the 

underlying physiology, their ability to assess the effect of antivascular agents have been 

reported. Robinson et al. quantified iAUC for the first 150 seconds after injection and 

observed a marked shift in the histogram of voxel-based iAUC values after antivascular 

therapy, indicating reduced perfusion, in a rat model of thyroid cancer (31). Another 

study performed by Marzola et al. used the iAUC to evaluate the effect of a tyrosine 

kinase inhibitor in a murine model of colon cancer (77). The authors observed a 

significant decrease (p < 0.05) in the iAUC at 92 seconds post injection between the pre-

treatment and 24-hour post-treatment acquisitions (77).  

Quantitative parameters have also been successfully used to assess longitudinal 

treatment response (22,29,78). For example, Loveless et al. quantified longitudinal 

changes in Ktrans after antiangiogenic therapy in a mouse model of lung cancer (29). The 

work indicated a significant (p < 0.05) post-treatment reduction in Ktrans. Checkley et al. 

investigated therapeutic efficacy of a VEGF inhibitor on prostate adenocarcinoma 
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xenografts using both Ktrans and ve (22). The work showed a decrease in both Ktrans and ve 

for all doses of the drug, with significant decreases in Ktrans for doses ≥ 25 mg/kg and ve 

for doses ≥ 50 mg/kg.  

 The clinical utility of quantitative DCE analyses has also been reported. Li et al. 

evaluated the ability of DCE-MRI parameters to predict early response of breast cancer to 

neoadjuvant chemotherapy (28). This work resulted in a significant decrease in the 

extravasation rate constant kep ( ) between responders and nonresponders after 

one cycle of therapy, thus suggesting that kep is an early predictor of tumor response. 

Another study monitoring the effects of chemoradiotherapy using DCE-MRI in patients 

with oral cancer observed significant increases in Ktrans and ve between pre- and post-

treatment in the responders, suggesting that increases in vessel permeability and 

extravascular-extracellular space are indicative of good tumor response (23). 

 

Conclusion 

Much progress has been made to improve the quality of information from the 

functional and molecular imaging techniques described in this Chapter. However, 

effective translation of most of these techniques into routine clinical practice has yet to be 

realized. This can be attributed to the paucity of standardized imaging protocols, 

inadequate understanding of whether imaging protocols can predict therapeutic efficacy, 

and the lack of validation to assist in the interpretation of imaging data (5,59). 

Nevertheless, functional and molecular imaging techniques can have a fundamental role 

in oncology as they have the ability to measure treatment-induced changes without 

perturbing the physiological system. 

≡ Ktrans / ve
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CHAPTER IV  

 

REPRODUCIBILITY OF STATIC AND DYNAMIC 18F-FDG, 18F-FLT, AND 18F-

FMISO MICROPET STUDIES IN A MURINE MODEL OF HER2+ BREAST 

CANCER 

 

Introduction 

 Current radiographic analysis for monitoring anticancer treatments is based on the 

response evaluation criteria in solid tumors (RECIST), which measures response using 

changes in a unidimensional measurement (1). With the development of novel 

therapeutics that target specific molecular pathways of breast cancer and the 

microenvironment (2), RECIST may not be the most sensitive or accurate approach (3). 

Three techniques that have been investigated as surrogate biomarkers of tumor response 

are 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG), 3’-deoxy-3’-18F-fluorothymidine (18F-

FLT), and 18F-fluoromisonidazole (18F-FMISO) positron emission tomography (PET), the 

specifics of which are described with more detail in Chapter III. Briefly, 18F-FDG 

provides an assessment of glucose metabolism as its accumulation is regulated by glucose 

transporters and hexokinase activity (3). As 18F-FLT accumulation is regulated by the 

cell-cycle dependent thymidine salvage pathway and activity of thymidine kinase 1, it 

reflects DNA synthesis and thus cell proliferation (4). 18F-FMISO is a radiolabeled 

nitroimidazole that accumulates in regions of low oxygen content, and thus provides a 

measurement of hypoxia (4). These molecular imaging techniques may provide more 

insight than RECIST into the assessment of disease response, as high glycolytic index, 
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increased proliferative activity, and regions with elevated hypoxia are hallmarks of 

malignant tumors (5). Indeed, PERCIST, or PET response evaluation criteria in solid 

tumors, was developed as a potentially more sensitive method to assess response to 

treatments that are cytostatic rather than cytocidal (1). PERCIST assesses response using 

the change from baseline in the standardized uptake value normalized to a reference 

tissue from 18F-FDG PET scans. With the increasing use of these techniques in 

preclinical studies to measure response to targeted therapies (6,7), investigating 

reproducibility is important to understand whether changes in imaging metrics during 

therapeutic interventions reflect changes in underlying biology rather than measurement 

error (8-10). The objectives of this study were to characterize static reproducibility of 18F-

FDG, 18F-FLT, and 18F-FMISO, as well as dynamic 18F-FLT and 18F-FMISO microPET 

studies in a murine model of HER2+ breast cancer. A portion of this chapter was 

previously published by Whisenant et al. in Molecular Imaging and Biology in 2012 (11). 

 

Materials and Methods 

Cell Culture 

 Trastuzumab-resistant breast cancer cells (HR6; gifted from Dr. Carlos Arteaga at 

Vanderbilt University) were harvested from BT474 xenografts that initially responded 

but then recurred in the presence of maintained trastuzumab treatment as described 

previously (12). HR6 cells were cultured in improved minimal essential medium (IMEM, 

Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum at 37 oC in a 

humidified, 5% CO2 incubator. To maintain trastuzumab resistance, HR6 cells were co-
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cultured with 10 mg/ml trastuzumab as previously described (12). Cells were harvested 

with trypsin at approximately 85% confluence.   

 

Tumor Xenograft Model 

Female athymic nude mice (n = 13, 4-6 weeks, Harlan, Indianapolis, IN) were 

implanted with 0.72 mg, 60-day release, 17β-estradiol pellets (Innovative Research of 

America, Sarasota, FL). Twenty-four hours later, approximately 107 HR6 cells, 

suspended in a 1:10 ratio of growth factor-reduced Matrigel and IMEM, were injected 

subcutaneously into the right flank. A 26-gauge jugular catheter was surgically implanted 

for radiotracer delivery. The mean tumor volume at start of imaging was 223 mm3 [range: 

103 mm3 – 312 mm3], and the average mouse weight during imaging was 22.0 g [range: 

18 g – 25 g]. Mice were anesthetized with 2% isoflurane in pure oxygen for all surgical 

procedures. All animal procedures were approved by Vanderbilt University’s Animal 

Care and Use Committee. 

 

Radiotracer Synthesis 

 PETNET synthesized 18F-FDG with a specific activity greater than 37 TBq/mmol. 

18F-FLT and 18F-FMISO were prepared as a service by the radiochemistry core with 

average specific activities of 128.76 TBq/mmol and 66.6 TBq/mmol, respectively, 

following standard protocols (13,14). 
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Imaging Sessions 

 Test-retest scans were performed on 12 mice for each radiotracer. All mice except 

one were imaged with all three radiotracers. (A minimum of 48 hours occurred between 

test-retest scans using different radiotracers.) Mice were anesthetized using 2% isoflurane 

in pure oxygen, and animal body temperature was maintained by a heated water pad and 

heat lamp. List-mode data were collected for 60 minutes using a microPET Focus 220 

system (Concorde Microsystems Inc., Knoxville, TN (14)) before, during, and after 

injection of 11.0 ± 2.0 MBq of 18F-FDG, 18F-FLT, or 18F-FMISO diluted in 100 µL of 

sterile saline, and reconstructed into a 64-frame dynamic sequence (5x12 s, 59x60 s). A 

second scan with a repeat injection was performed approximately six hours after the first 

injection. Six hours was chosen such that the radioactivity of the first scan would decay at 

least three half-lives; it was assumed that minimal tumor changes occurred during this 

period (8,9). A five-minute static scan was acquired just prior to the second injection to 

correct for residual activity, as a 2-fold decrease in coefficient of variation between 

repeated scans was previously observed using this method (9). 

 All microPET images were reconstructed using the 3D ordered-subsets 

expectation maximization (OSEM3D) (nine subsets) followed by a maximum a posteriori 

(MAP), 18 iterations, beta value 0.038. As the amount of attenuation in microPET studies 

of mice is small compared to human studies and significant differences between animals 

are not expected (14), attenuation and scatter correction were not performed.  

 Animals were fasted four hours (8) and warmed one hour (15) prior to each 18F-

FDG injection. After the first scan, animals recovered from anesthesia, were given access 

to food for one hour, then fasted another four hours prior to the second scan (8). It was 
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not necessary to fast prior to 18F-FLT imaging as significant differences in radiotracer 

accumulation between a fed or fasted state have not been observed in mice (9); we 

assumed this condition held true for 18F-FMISO, thus animals were not fasted for those 

studies either. 

 

Image Analysis 

 Regions of interest (ROIs) were drawn around the entire tumor volume using 

MATLAB (The MathWorks, Natick, MA, USA). The mean ROI activity from the last 10 

minutes of each dynamic scan was normalized by the injected dose to calculate percent-

injected dose per gram (%ID/g). Average activity from tumor voxels was calculated at 

each dynamic frame to construct time-activity curves (TACs). The ROI activities and 

TACs from scan 2 were adjusted by subtracting the activity from the five-minute static 

scan to eliminate residual activity.  

 Compartmental modeling requires the time rate of change of radiotracer activity 

concentration in the blood plasma. As the gold-standard for making this measurement, 

blood sampling (16), is not feasible for repeat studies in mice due to their small blood 

volume, we used the method developed by Kim et al. to obtain image-derived input 

functions (IDIFs) from 18F-FLT dynamic data (17). This method generates TACs from 

the left ventricle and corrects for partial-volume effects using a recovery coefficient 

(RC). In our implementation, we obtained TACs from cylindrical ROIs across three 

slices. A RC of 0.72 was determined from phantom studies acquired under similar 

acquisition conditions as described previously (18). An identical procedure was followed 

for 18F-FMISO. To the best of our knowledge, validation of an IDIF for 18F-FMISO 
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microPET studies in mice has not been published; a point we return to in the Discussion. 

 Due to the relatively low spatial resolution, coupled with myocardial spillover and 

partial-volume effects, the IDIF from user-defined ROIs cannot be used for 18F-FDG. 

(16). Several groups have developed mathematical models to derive the input function 

from 18F-FDG image data (16,19) or use hybrid TACs from other organs (18); however, 

these methods require at least one blood sample. Blood samples were not collected in this 

study, thus we were unable to assess 18F-FDG dynamic reproducibility.  

 

Kinetic Modeling 

 We employed a 3-compartment model (shown in Figure IV-1) with rate constants 

K1-k4, that for 18F-FLT represent the rate of transport between plasma and tissue, rate of 

outflow from the tissue to plasma, thymidine kinase 1 phosphorylation rate, and the 

dephosphorylation rate, respectively. Similar definitions apply for the 18F-FMISO kinetic 

parameters except k3 and k4 represent rates of reduction/retention and re-oxidation, 

respectively.  

 

Figure IV-1. A standard, 3-compartment, 4-rate constant model used to analyze PET 
dynamic data. Cp represents the radiotracer activity concentration in the plasma. The 
tissue is composed of two compartments, the exchangeable compartment, Ce, and the 
metabolized or trapped compartment, Cm. The parameters K1-k4 represent rate constants 
that describe transport between compartments. 

Cp Ce Cm 

K1 

k2 

k3 

k4 
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 As sensitivity assessments performed by Muzi et al. showed high covariance 

between K1 and k2 in tumors (15), we combined those parameters and performed model 

fitting with K1, Vd (=K1/k2, the initial volume of distribution), k3, and k4. Data were 

analyzed using four parameters assuming reversible phosphorylation (k4 ≠ 0) and three 

parameters assuming irreversible phosphorylation (k4 = 0). Modeling also included the 

blood volume fraction (Vb). Model fitting used a nonlinear least-squares method with the 

governing differential equations, parameter ranges, and initial guesses described 

previously (also listed in Table IV-1) (15). We also calculated the net tracer influx 

constant (Ki): 

 

(IV-1) 
 

Table IV-1. Initial guesses and parameter ranges for PET kinetic modeling 

 

 

The Akaike Information Criterion (AIC) was calculated to determine the most 

parsimonious kinetic model for 18F-FLT and 18F-FMISO (16). For the least-squares case, 

the AIC with a bias correction for small samples is: 

      (IV-2) 

Parameter (units) Initial Guess Parameter Range

K1 (mL/min/g) 0.1               0.0 - 0.5

Vd (K1/k2) (mL/g) 1               0.1 - 5.0

k3 (min-1) 0.1           0.001 - 1.0

k4 (min-1) 0.02           0.001 - 0.2

Vb (mL/g) 0.05               0.0 - 0.1

AIC = n ⋅ ln
RSS

n









+ 2k +

2k(k +1)

n - k -1
,

    

€ 

Ki =
K1⋅ k3
K1
Vd

+ k3
.
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where RSS is the residual sum of squares, n number dynamic frames, and k number of 

model parameters. Average AIC was calculated for each model, and reproducibility was 

assessed for the model with the lowest AIC. 

 

Reproducibility Statistics 

Statistical methods for evaluating reproducibility follow Bland and Altman (17) 

as implemented by Galbraith et al. (18). For each mouse, the difference between 

parameter measurements (d) was calculated. The distribution of d was tested for 

normality with the Shapiro-Wilk test, and the Kendall’s tau test was used to determine if 

d correlated with the mean. A Wilcoxon signed-rank test was performed to test the null 

hypothesis of no bias between repeated measurements. A significance value of p < 0.05 

was used for all statistical tests. 

The following statistical calculations were performed: 

1. Mean squared difference (dsd) is computed as the standard deviation of d. The 

dsd is then used to calculate the 95% confidence interval (CI), which provides a 

threshold of measurement error in a group of n mice: 

        (IV-3) 

where tstat is the appropriate t-statistic corresponding to the sample size. Any 

change in the population greater than this value would reflect changes in the 

underlying biology.  

2. Within-subject standard deviation (wSD) is: 

         (IV-4)  

CI = ±
tstat ⋅dsd

n
,

wSD =
dsd

2

.
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3. Repeatability coefficient (r) is: 

       
(IV-5)  

and indicates that the difference between two measurements will be less than this 

value for 95% of observation pairs.   

If the mean parameter difference is correlated with the mean (Kendall’s tau, p < 0.05), the 

data would need to be transformed to a log10 scale and Eqs. (IV-3) - (IV-5) would need to 

be modified accordingly (18). 

To compare our results with previous reproducibility studies (8,9), we calculated 

the coefficient of variation (CV) by dividing the standard deviation of the two 

measurements by the mean. Statistical analyses were performed using Microsoft Excel 

(Redmond, WA) and statistical toolbox in MATLAB. 

 

Results 

Static Reproducibility 

Twelve data sets were analyzed for 18F-FDG; one animal was removed from each 

of the 18F-FLT and 18F-FMISO data sets due to a large variation in injected activity 

between scans. Examples of repeated %ID/g parametric images are shown in Figure IV-

2. No parameter had a mean difference significantly different from normal except 18F-

FLT (p = 0.011). However, the conclusion that a population does or does not follow a 

Gaussian distribution may be incorrect for small sample sizes due to insufficient power of 

the normality test (19); thus, reproducibility statistics were still performed for 18F-

FLT %ID/g. No parameter had a dependence of d on the mean, thus a logarithmic 

transformation was not required.  

r = 2.77 ⋅wSD,
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Figure IV-2. Coronal sections of HR6 xenografts (T) showing static reproducibility of 
18F-FDG (panels A, B), 18F-FLT (panels C, D), and 18F-FMISO (panels E, F). Please note 
how the HER2+ xenografts are clearly visible for accurate tumor segmentation. 

 

Reproducibility statistics for %ID/g are listed in Table IV-2. Bland-Altman plots 

for each radiotracer are displayed in Figure IV-3, with each panel plotting the mean 

difference between repeated scans against the mean %ID/g. The mean difference (solid 

line) is also shown with 95% CIs (dotted line) that represent the required change to 

surpass the expected measurement variability for a group of mice, which is ± 0.62 (14%), 

± 0.23 (5%), and ± 0.24 (6%) for 18F-FDG, 18F-FLT, or 18F-FMISO, respectively. 

Repeatability ranges (dashed line) are ± 1.9, ± 0.66, or ± 0.69 for 18F-FDG, 18F-FLT, or 

18F-FMISO, respectively. The CVs for %ID/g (mean ± SD) are 11.4% ± 10.6%, 4.0% ± 

3.8%, and 6.0% ± 3.8% for 18F-FDG, 18F-FLT, and 18F-FMISO, respectively. 

 

Table IV-2. Reproducibility statistics for %ID/g 

Radiotracer
Mean 
difference

95% CI for mean 
difference wSD Repeatability CV (mean±SD)

18F-FDG -0.01 ±0.62 (14%) 0.69 1.9 11.4%±10.6%
18F-FLTa -0.09 ±0.23 (5%) 0.24 0.66 4.0%±3.8%
18F-FMISO -0.16 ±0.24 (6%) 0.25 0.69 6.0%±3.8%
a Normality cannot be assumed
CI, confidence interval; wSD, within-subject standard deviation; CV, coefficient of Variation  
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Figure IV-3. Bland-Altman plots displaying mean %ID/g plotted against mean parameter 
difference between repeat scans for 18F-FDG (panel a), 18F-FLT (panel b), and 18F-
FMISO (panel c). The mean difference (solid line) is shown with 95% confidence 
intervals (dotted lines) for the population. Repeatability is also shown (dashed lines), 
which represents the threshold of required change in an individual mouse. 
 

The percentage values for the 95% CIs will change with the mean. We note that 

the absolute values are appropriate when determining measurement error (18), however 

the percentage values are easier to interpret in a longitudinal study when parameter 

changes are normalized to baseline as is commonly done. The reader is encouraged to 
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refer to Table IV-2 for the absolute values, however the 95% CIs will be quoted as a 

percentage when defining the threshold of change in a mouse cohort. 

 

18F-FLT Dynamic Reproducibility 

Two additional data sets from the static reproducibility analysis were excluded 

due to abnormal TACs for the liver and kidney (n = 1) and the left ventricle not easily 

located on the images (n = 1), resulting in nine usable data sets. The AIC (mean ± SD) for 

the 4-parameter and 3-parameter models were 739 ± 44 and 758 ± 51, respectively. 

Reproducibility was assessed using the 4-parameter model, as it had the lowest AIC. 

Figure IV-4 shows an example of a repeated dynamic 18F-FLT data set, where the TACs 

from the left ventricle and tumor are shown in panels A and B, respectively. The 4-

parameter model fits are also shown, and the kinetic parameter values for each scan were: 

K1, 0.031 and 0.038; Vd, 0.629 and 0.578; k3, 0.027 and 0.029; k4, 0.091 and 0.061; KFLT, 

0.011 and 0.012.  

 

Figure IV-4. Representative example of 18F-FLT dynamic reproducibility. Left ventricle 
time-activity curves for both scans (A) are shown over the entire 60 minute acquisition, 
with the inset figure displaying the first five minutes. Tumor time-activity curves from 
each scan (B) are shown with curve fits from the most parsimonious kinetic model (4-
parameter fit, determined by AIC analysis). 
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18F-FLT dynamic reproducibility statistics are listed in Table IV-3 (a). No 

parameter was significantly different from normal, and no systematic bias was detected 

among repeats for any kinetic parameter. Additionally, the variability associated with 

each parameter was independent of the mean, thus no logarithmic transformation was 

required. Bland-Altman plots for each kinetic parameter are displayed in Figure IV-5; 

similar to Figure IV-3, the mean difference is graphed with 95% CIs and repeatability 

ranges. Vd, k3, and KFLT were the most reproducible parameters, with 95% CIs of ± 18%, 

± 10%, ± 18%, respectively. Results for K1 and k4 were more variable, with 95% CIs of ± 

33% and ± 43%, respectively. The repeatability coefficients for K1, Vd, k3, k4, and KFLT 

were ± 0.035, ± 0.231, ± 0.007, ± 0.07, and ± 0.005, respectively. To compare dynamic 

reproducibility results with %ID/g, the CVs (mean ± SD) for K1, Vd, k3, k4, and KFLT were 

25% ± 16%, 14% ± 9%, 6% ± 5%, 28% ± 27%, and 14% ± 9%, respectively.  

 

Table IV-3. Dynamic reproducibility for (a) 18F-FLT and (b) 18F-FMISO 

 

 

Parameter Mean
Mean 

difference

95% CI for mean 

difference
wSD Repeatability CV (mean ± SD)

K1 0.042 -0.012 ±0.014 (33%) 0.012 0.035 25% ± 16%

Vd (K1/k2) 0.501 0.013 ±0.091 (18%) 0.083 0.231 14% ± 9%

k3  0.031 -0.001 ±0.003 (10%) 0.003 0.007 6% ± 5%

k4 0.065 -0.006 ±0.028 (43%) 0.025 0.07 28% ± 27%

KFLT 0.011 -0.001 ±0.002 (18%) 0.002 0.005 14% ± 9%

K1 0.04 -0.007 ±0.010 (25%) 0.008 0.022 21% ± 13%

Vd (K1/k2) 0.473 0.042 ±0.075 (16%) 0.058 0.16 11% ± 7%

k3 0.019 0.003 ±0.008 (42%) 0.006 0.017 22% ± 13%

KFMISO 0.007 0.001 ±0.001 (14%) 0.001 0.003 11% ± 12%

CI, confidence interval; wSD, within-subject standard deviation; CV, coefficient of variation

(a) 18F-FLT with 4-parameter fit

(b) 18F-FMISO with 3-parameter fit
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Figure IV-5. Bland-Altman plots displaying mean of each 18F-FLT kinetic parameter 
plotted against the mean difference between scans. The mean difference (solid line) is 
shown with 95% confidence intervals (dotted lines) for the population. Repeatability is 
also shown (dashed lines) for each parameter, which represents the threshold of required 
change in an individual mouse. 
 

18F-FMISO Dynamic Reproducibility 

Four additional data sets from the static reproducibility analysis were excluded 

due to abnormal liver and kidney TACs (n = 4), resulting in seven useable data sets. The 

AIC (mean ± SD) for the 4-parameter and 3-parameter models were 756 ± 42 and 747 ± 
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39, respectively. Reproducibility was assessed using the 3-parameter model, as it had the 

lowest AIC. Figure IV-6 shows an example of repeated dynamic 18F-FMISO data, where 

the TACs from the left ventricle and tumor are shown in panels A and B, respectively. 

The 3-parameter model fits are also shown, and the kinetic parameter values for each 

scan were: K1, 0.028 and 0.035; Vd, 0.432 and 0.35; k3, 0.014 and 0.02; KFMISO, 0.005 and 

0.006.  

 

Figure IV-6. Representative example of 18F-FMISO dynamic reproducibility. Left 
ventricle time-activity curves for both scans (A) are shown over the entire 60 minute 
acquisition, with the inset figure displaying the first five minutes. Tumor time-activity 
curves of each scan (B) are shown with curve fits from the most parsimonious kinetic 
model (3-parameter fit, determined by AIC analysis). 
  

18F-FMISO dynamic reproducibility statistics are listed in Table IV-3 (b). No 

kinetic parameter was significantly different from normal, and no systematic bias was 

detected among repeats for any parameter. Additionally, no parameter had a significant 

dependence of d on the mean, thus no logarithmic transformation was required. Bland-

Altman plots for each 18F-FMISO kinetic parameter are displayed in Figure IV-7; again, 

the mean difference is graphed with 95% CIs and repeatability ranges. Vd and KFMISO 

were the most reproducible with the lowest 95% CIs of ± 16% and ± 14%, respectively. 
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Results for K1 and k3 were more variable, with 95% CIs of ± 25% and ± 42%, 

respectively. The repeatability coefficients for K1, Vd, k3, and KFLT were ± 0.022, ± 0.16, 

± 0.017, and ± 0.003, respectively. To compare dynamic reproducibility results with 

%ID/g, the CVs (mean±SD) for K1, Vd, k3, and KFMISO were 22% ± 13%, 11% ± 7%, 24% 

± 13%, and 12% ± 13%, respectively. 

 

Figure IV-7. Bland-Altman plots displaying mean of each 18F-FMISO kinetic parameter 
plotted against the mean difference between scans. The mean difference (solid line) is 
shown with 95% confidence intervals (dotted lines) for the population. Repeatability is 
also shown (dashed lines) for each parameter, which represents the threshold of required 
change in an individual mouse. 
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Discussion 

Reproducibility for individuals or groups can be described by several statistical 

metrics. The 95% CIs of the mean difference in Tables IV-2 and IV-3 dictate thresholds 

by which greater changes would reflect tumor physiology rather than measurement 

variability in groups of similar size to our study. For individuals, the repeatability 

coefficient represents the required threshold of change. Both the 95% CI and repeatability 

coefficient are useful in, for example, a treatment response study where the objective is to 

quantify changes in parameters after a specific therapy. For example, 18F-FDG %ID/g 

needs to either increase or decrease by 1.9 for individuals or 14% in a group analysis to 

reflect a treatment-induced change, whereas 18F-FLT can be used to detect a change 

in %ID/g of ± 0.66 in individual tumors or ± 5% in a group. These measurement 

uncertainties are not unreasonable, and much higher changes due to therapy have been 

reported in preclinical studies of cancer (6,7). 

Our results are comparable to previously published 18F-FDG and 18F-FLT static 

reproducibility via the CV. Average CV observed by Dandekar et al. (8) and Tseng et al. 

(9) for whole tumor ROIs were 15.4% and 14% for 18F-FDG and 18F-FLT, respectively. 

We observed CVs that were 4% and 10% less than the previous studies for 18F-FDG and 

18F-FLT, respectively. This difference in measurement uncertainty could be attributed to 

differences in animal preparation and PET data reconstruction. We used jugular vein 

catheters that are implanted into the animal once, while the previous studies used tail vein 

catheters which can be quite difficult to place. A difficult catheter placement could cause 

activity accumulation in the tail due to a less than optimal tracer injection. Additionally, 

the two previous studies used an OSEM image-reconstruction algorithm. Disselhorst et al. 
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investigated the effect of different reconstruction algorithms on PET image quality, and 

observed that OSEM3D followed by MAP increased overall image quality by increasing 

the recovery coefficient, and lowering the spillover ratio and percent standard deviation 

of the noise. (20). The improved image quality obtained by using an OSEM3D-MAP 

algorithm would decrease measurement error; however, the slight differences in animal 

handling procedures and the uncontrollable variable that is animal stress between scans 

affects 18F-FDG accumulation and would increase measurement error (21). This may 

explain why we observed a much lower CV for 18F-FLT and a similar CV to the previous 

study for 18F-FDG. 

Measurements of tracer uptake normalized to the injected dose are straightforward 

to acquire, however changes in tracer clearance from the blood or tumor metabolism are 

not considered (22). Performing measurements that use the full dynamic curve of tracer 

retention/metabolism can overcome some of these issues. However, dynamic acquisitions 

and compartmental modeling can be complex and can introduce additional sources of 

noise in the measurement, which in turn, lowers reproducibility as has been observed 

previously (22) and also in our study.  

One potential parameter of interest in a tumor response study with dynamic 18F-

FLT is KFLT, which was the second most reproducible dynamic parameter after k3. The 

95% CI for KFLT is ± 18%, suggesting that a change greater than ± 18% would reflect true 

treatment differences in a mouse cohort (n = 9). A larger difference in KFLT due to 

treatment has been observed in a murine model of prostate cancer (23). The least 

reproducible parameter was k4, which agrees with the large error previously reported (10), 

especially when using a 60-minute dynamic acquisition (22). The greater variability in K1 
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(compared to KFLT) may be because it is more sensitive to changes in the model input 

function and/or tracer injection; a similar phenomenon has been reported for 18F-FMISO 

data (24) as well as dynamic contrast enhanced MRI (18). Using a power injector with a 

constant injection rate instead of a manual injection may lower variability in this 

parameter. 

The only published 18F-FLT dynamic reproducibility study in mice reported 

measurement error as the mean ± standard deviation of the percent difference (10). Choi 

et al. concluded that a parameter was reproducible if the standard deviation of the percent 

difference was ≤ 20%. The kinetic parameters that fit this criterion from their study were 

KFLT (17.5%) for A431 tumors, and K1 (19.7%), Vd (17.4%), and k3 (8.6%) for LLC 

tumors (10). The parameters that fit this criterion from our study were Vd (13%), k3 

(6.4%), and KFLT (13%).  

The use of static 18F-FMISO measurements to assess treatment response is 

increasing, however to the best of our knowledge a 3-compartment analysis of tracer 

accumulation within a treatment response protocol has not been performed. Thus, we can 

only hypothesize that the observed measurement errors for 18F-FMISO are reasonable 

and the kinetic parameters can be used to reliably assess tumor response. The most 

reproducible parameter is KFMISO, which might be of interest in a treatment response 

study as this parameter provides both a measure of tracer perfusion as well as tracer 

retention and/or trapping. For KFMISO, a change greater than ± 14% would reflect changes 

due to treatment in a mouse cohort (n = 7) instead of measurement variability.  

As mentioned previously, validation of an IDIF for 18F-FMISO microPET studies 

in mice has not been published. However, an IDIF from ROIs within the carotid artery 
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has been used in a human study to assess 18F-FMISO pharmacokinetics in cancer (25). 

Using a large blood pool such as the left ventricle or carotid artery for an IDIF is 

reasonable as these tissues are not normally hypoxic and therefore retention of 18F-

FMISO in those tissues should be minimal. 

 

Study Limitations 

We noted in the Results section that 18F-FLT %ID/g test-retest measurements 

failed normality testing; however interpreting results from normality tests with small 

samples can be difficult. Indeed, a large p-value does not guarantee that the data follow a 

Gaussian distribution with small sample sizes (19). Therefore, we computed the 

reproducibility statistics knowing that the statistical methods depend strongly on the 

assumption of normally distributed data. The two previous static reproducibility studies 

(8,9) did not perform the statistical methods outlined in this work, instead concluded that 

the threshold of required change in an individual mouse would be twice that of the CV. 

Following their analysis with our data, threshold of change for 18F-FLT %ID/g is ± 8% 

(twice the CV) in an individual mouse. Our reproducibility results are more conservative, 

and the repeatability coefficient as a percentage of the mean is ± 14%.  

The anesthesia used in this study was 2% isoflurane in pure oxygen. A previous 

study has shown that the use of pure oxygen lowers accumulation of 18F-FMISO, thereby 

potentially leading to systematic errors in the measurement of tumor hypoxia (26). 

However, the measurement error associated with the actual imaging protocol should not 

change depending on the anesthesia method.  

Changes in physiological variables (e.g. blood glucose, cardiac output, and tracer 
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metabolic rates of tumors), scanner electronics efficiency, or radiotracer specific 

activities might increase longitudinal variability. The ability to generalize these same day 

test-retest reproducibility results to the variability of serial studies is important. To 

minimize these sources of error, it is imperative to develop and strictly follow a well-

designed imaging protocol. Furthermore, implementing quantitative methods to 

normalize imaging data could prove beneficial if, for example, changes in blood glucose 

and scanner electronic drift become significant sources of variability during longitudinal 

studies. 

 

Conclusion 

Imaging biomarkers that can detect early changes in specific molecular 

characteristics of tumors would greatly benefit both preclinical and clinical cancer studies. 

Before an imaging biomarker can be employed to assess treatment response, 

reproducibility must be assessed. In this study, we assessed static reproducibility for 18F-

FDG, 18F-FLT, and 18F-FMISO, as well as dynamic 18F-FLT and 18F-FMISO microPET 

data. Our test-retest analyses of %ID/g measurements were very reproducible (95% CI < 

± 14%). Although, the kinetic analysis of 18F-FLT and 18F-FMISO resulted in higher 

measurement error, the variability associated with the net influx constants (KFLT and 

KFMISO) is reasonable (95% CI < ± 19%). Our study indicates that static and dynamic 

measurements of these radiotracers can be used in serial studies to measure changes in 

tracer metabolism following anticancer therapies in mouse models of HER2+ human 

breast cancer. 
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CHAPTER V 

 

REPRODUCIBILITY OF DIFFUSION-WEIGHTED MAGNETIC RESONANCE 

IMAGING STUDIES IN A MURINE MODEL OF HER2+ BREAST CANCER 

 

Introduction 

Current radiographic analysis of treatment response is based on the Response 

Evaluation Criteria in Solid Tumors (RECIST), which uses one-dimensional changes in 

tumor size to determine response (1). However, it is well recognized that RECIST may 

not provide the most sensitive response assessment to novel and emerging therapies that 

target the molecular or cellular aspects of the tumor itself or, for example, its 

microenvironment (2,3). Development of imaging methods that can provide an earlier 

assessment of disease response is an active area of research, as it would allow for the 

initiation of alternative, potentially more effective, treatments while avoiding 

unnecessary toxicities associated with ineffective therapy. Diffusion-weighted magnetic 

resonance imaging (DW-MRI) has the potential to offer earlier assessments of disease 

response, as parameters derived from quantitative analyses of such data can be used to 

characterize treatment-induced alterations in tumor cell density (4-7). 

The microscopic, thermally-induced behavior of molecules moving in a random 

pattern is referred to as self-diffusion or Brownian motion. The rate of diffusion in 

cellular tissues is described by an apparent diffusion coefficient (ADC), which is 

influenced by the number and separation of barriers that a diffusing water molecule 

encounters. DW-MRI maps the ADC, and in well-controlled situations, the variations in 
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ADC have been shown to correlate inversely with tissue cellularity (8). It has been 

shown, in preclinical (9-12) and clinical (13-15) settings, that exposure of tumors to both 

chemotherapy and radiotherapy consistently leads to measurable increases in water 

diffusion in cases of favorable treatment response.   

In their 2009 DW-MRI review, Padhani et al. recommended that each imaging 

center determine the reproducibility of DW-MRI data at their institution to allow for 

proper study design and to assess the significance of treatment-induced changes (16). 

Reproducibility of clinical DW-MRI data have been previously assessed in normal and 

diseased tissues with a variety of image acquisition methods and data analyses including 

differences in the number and strength of diffusion-weighted images, as well as the 

reproducibility statistics themselves (17-20). However, there is a paucity of such data in 

the preclinical setting. With the increasing use of DW-MRI as a surrogate biomarker of 

response in preclinical studies (9,10,12), investigating reproducibility is imperative to 

interpret whether parameter changes during therapeutic interventions reflect tumor 

cellularity instead of measurement error in mouse models of disease. Thus, the objective 

of this study was to quantify DW-MRI reproducibility in a murine model of HER2+ 

breast cancer in order to assist in the interpretation of results collected from future 

longitudinal treatment response studies.  

 

Materials and Methods 

Animal and Tumor Xenograft Model 

Trastuzumab-resistant breast cancer cells, HR6, were obtained from a generous 

gift from Dr. Carlos Arteaga, M.D. at Vanderbilt University. These cells were developed 
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by harvesting them from BT474 xenografts that initially responded but recurred in the 

presence of maintained trastuzumab; details are provided in (21). (This cell line was 

selected as it is part of an ongoing investigation of trastuzumab-resistance in breast 

tumors). Female athymic nude mice (n = 11, 4-6 weeks old, Harlan, Indianapolis, IN) 

were implanted with 0.72 mg, 60-day release, 17β-estradiol pellets (Innovative Research 

of America, Sarasota, FL). Twenty-four hours later, approximately 107 HR6 cells were 

injected subcutaneously into the right flank. Mice were anesthetized with 2% isoflurane 

in pure oxygen for both procedures. The mean tumor volume at start of imaging was 298 

mm3 (range: 136 mm3 – 526 mm3). All animal procedures were approved by our 

Institution’s Animal Care and Use Committee. 

 

Image Acquisition 

 Test-retest DW-MRI sessions were performed on 11 mice using a 7T MRI 

scanner (Agilent Technologies (formally Varian), Palo Alto, CA) equipped with a 38-mm 

quadrature RF coil (Doty Scientific, Columbia, SC). A second test-retest session was 

performed on one mouse one week after the first study, resulting in 12 useable data sets. 

Anesthesia was induced and maintained for each imaging session via 2% isoflurane in 

pure oxygen. Animal respiration rate was monitored, and animal body temperature was 

maintained at an external temperature of 32 o C by means of a flow of warm air directly 

into the bore of the magnet. Each animal was placed in a custom built restraint, and the 

tumor region was first localized via 3D gradient echo scout images. Multiple 1 mm thick 

slices with a 1 mm gap were acquired over the entire tumor region. A standard pulsed 

gradient spin echo sequence was used to acquire diffusion-weighted images with three b 

values (150, 500, and 800 s/mm2) and gradients applied simultaneously along the three 
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orthogonal directions (x, y, and z). Scan acquisition parameters were: TR/TE = 2000/30 

ms, gradient duration δ  = 3 ms, gradient interval Δ = 20 ms, two signal excitations, and 

an acquisition matrix of 128 × 128 over a 28 × 28 mm2 field of view. Image acquisition 

was triggered with respiration and navigator corrected (22) to reduce image artifacts due 

to bulk motion. Animals were allowed to recover from anesthesia and given free access 

to food and water between repeat imaging sessions. Repeat DW-MRI scan acquisitions 

were separated by a median of 5.88 hours (range: 1.5 – 7.8). 

 

Image Analysis 

To construct an ADC parametric map, signal intensities from images acquired at 

three b values were fit for each image voxel using a nonlinear least squares optimization 

method to Eq. (V-1): 

     (V-1) 

where S0 and S(b) are the signal intensities before and after application of diffusion 

gradients, respectively. As we did not acquire images without application of diffusion 

gradients (i.e., b = 0), S0 was a free parameter in our optimization routine. Both image 

volumes were viewed simultaneously to ensure that a similar tissue section was analyzed, 

and the b = 150 s/mm2 image was utilized to define tumor boundaries. Care was taken 

during setup so that animal position and orientation in the magnet were similar between 

repeat acquisitions; however, image co-registration was not performed and thus separate 

regions of interest (ROIs) were drawn around the tumor for each scan. ROIs were also 

drawn within the skeletal muscle on the same slice as the tumor ROIs. Mean ADC values 

from each ROI were calculated and compared between repeated measurements. To 

S(b)= S0 ⋅exp(-ADC ⋅b),
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ensure data integrity, a water phantom was imaged simultaneously with the animal in 

each imaging session. If the mean ADC of the water phantom was outside the range of 

2.65 × 10-3 mm2/s ± 15% (ADC value of free water at 32 o C; linearly interpolated from 

reference (23)), then the DW-MRI data from that animal was not used. All data analysis 

methods were performed in MATLAB® (The MathWorks, Natick, MA).  

 

Reproducibility Statistics 

 Statistical methods for evaluating reproducibility follow Bland and Altman (24), 

and similar to what was previously implemented with imaging data by Galbraith et al. 

(25). For each data set, the difference between repeat measurements, d, was calculated. 

The distribution of the differences d was tested for normality using a two-sided Shapiro-

Wilk test. A Kendall’s tau test was used to estimate the correlation between the 

magnitude of the difference values and overall mean parameter value for the repeated 

measurements. Wilcoxon signed-rank test was performed with the original data to test the 

null hypothesis of no bias (i.e., average difference is zero) between repeated 

measurements. The statistical measurements of reproducibility were then calculated as 

follows:  

1. The root-mean-square deviation (rMSD) is computed using the differences 

between repeat measurements d: 

       (V-2) 

 

 

rMSD =
d 2∑
n
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2. The 95% confidence interval (CI) for change which might occur in a group of n 

subjects:  

      
(V-3)

 

where std(d) is the standard deviation of the difference between repeated 

measurements. Any change in a group of n greater than this value would be 

significant at the 5% level. 

3. The within-subject standard deviation (wSD) is: 

      (V-4) 

4.  The repeatability coefficient (r) is: 

      (V-5)  

or, equivalently: 

      (V-6) 

The repeatability coefficient defines the magnitude of the maximum difference 

expected in 95% of paired observations; i.e., an observed difference greater than 

this value between scans in an individual would indicate a significant difference at 

the 5% level.  

Due to our moderate sample sizes, we replaced 1.96 in Eq. (V-3) with the appropriate t-

statistic for our sample size, which for 12 data sets is 2.2. Statistical analyses were 

performed using the statistical toolbox in MATLAB. A significance value of p < 0.05 

was used for all statistical tests. 

CI = ±
1.96 ⋅ std(d )

n
,

wSD = rMSD
2
.

r = 2.77 ⋅wSD,

r =1.96 ⋅ rMSD.
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 In addition to the above reproducibility statistics, we also quantified the intraclass 

correlation coefficient (ICC). An ICC greater than 0.61 was considered substantial 

agreement between repeated measurements (26). 

 

Results 

ADC from the water phantom for all repeated data sets was within the accepted 

range of free water diffusion at 32 °C (i.e., 2.65 × 10-3 mm2/s ± 15%). The average ADC 

for scan 1 was 2.59 × 10-3 mm2/s (range: 2.25 × 10-3 mm2/s to 2.94 × 10-3 mm2/s), and the 

average ADC for scan 2 was 2.53 ×10-3 mm2/s (range: 2.28 × 10-3 mm2/s to 2.82 × 10-3 

mm2/s). Examples of ADC parametric maps from repeated scans are depicted in Figure 

V-1, annotated with labels for tumor (‘T’), muscle (‘M’), and water phantom (‘W’). It 

can be noted from the figure that the animal orientation is slightly different between 

repeated scans, thus demonstrating the need for separate ROIs for each imaging session.  

 

Figure V-1. Test-retest examples of ADC parametric maps. Three regions of interest are 
indicated: tumor (denoted with a ‘T’), skeletal muscle (denoted with ‘M’), and a water 
phantom (denoted with a ‘W’). Take note of how the animal orientation is slightly 
different between repeat scans, which might affect ADC reproducibility as the same 
tissue sections from each scan might not be analyzed. This variation in positioning is 
somewhat noticeable in the tumor, as the location and size of higher ADC regions (white 
arrows) are different. Units of ADC are in mm2/s. 

scan 1     scan 2  
  

W! W!
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The reproducibility statistics for the tumor and muscle ROIs are listed in Table V-

1. Neither ROI had an average difference significantly different from normal as 

determined from the Wilcoxon signed-rank test. Additionally, the difference between 

repeat measurements d was independent of the mean for both tumor and muscle ROIs 

(thus, a logarithmic (or other) transformation was not required).  

 
Table V-1. ADC (mm2/s) reproducibility analysis for both tumor and muscle ROIs 
 
ROI Mean (x10-3)

Mean difference  
(x10-3)

95% CI for mean 
difference (x10-3) wSD (x10-3)

Repeatability 
(x10-3) ICC

tumor 0.811 0.030 ± 0.099 (11%) 0.099 0.273 0.79
muscle 1.14 -0.008 ± 0.097 (8.5%) 0.104 0.288 0.64
ADC, apparent diffusion coefficient; ROI, region of interest; CI, confidence interval; wSD, within-subject standard deviation; ICC, 
intraclass correlation coefficient

 

Figure V-2 displays Bland-Altman plots for both ROIs, with each panel plotting 

the differences in ADC values between the repeated scans against the mean ADC. The 

mean difference and 95% CIs are displayed as solid and dotted lines, respectively. The 

95% CIs define the required change to surpass the expected measurement variability for a 

group of mice, which are ± 0.090 × 10-3 mm2/s (± 11.1%) and ± 0.097 × 10-3 mm2/s (± 

8.5%) for mean tumor and muscle ADC, respectively. Repeatability ranges (dashed lines) 

provide thresholds of significance for individuals, and are ± 0.273 × 10-3 mm2/s and ± 

0.288 × 10-3 mm2/s for mean tumor and muscle ADC, respectively.  

We calculated the ICC for each ROI (see Table V-1). The ICC for each of the 

ROIs was greater than 0.61, and thus there was substantial agreement between repeated 

measurements (26).  
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Discussion 

We chose to quantify reproducibility for individuals and groups in a manner 

similar to Galbraith et al. (24), which is based on the limits of agreement methods 

described by Bland and Altman (24). This analysis provides objective statistical 

thresholds that define the range of repeatability by quantifying the maximum difference 

expected to be observed between two repeat observations for an individual. Additionally, 

the 95% CI for the mean difference provides a measure of spontaneous change that is 

expected in groups of similar size to our cohort. Both the 95% CI and repeatability 

coefficient are useful in, for example, a longitudinal treatment response study where the 

objective is to quantify changes in parameters after a specific therapeutic intervention. 

 
Figure V-2. Bland-Altman plots displaying the difference in ADC between scans 
plotted against mean ADC for both tumor (left panel) and muscle (right panel) ROIs. 
The mean difference (solid line) is shown with 95% confidence intervals (dotted lines), 
which defines the significance threshold for the population. Repeatability is also shown 
(dashed lines), and represents the threshold required to guarantee a statistically 
significant change in an individual mouse.  
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For example, mean tumor ADC would need to increase or decrease by 0.090 × 10-3 

mm2/s to reflect a treatment-induced change in a group analysis, or change by ± 0.273 × 

10-3 mm2/s for an individual animal. The 95% CI when expressed as a percentage of the 

mean is ± 11.1%; this is a tolerable variability as treatment-induced changes greater than 

± 20% have been reported when evaluating DW-MRI as a biomarker of response in 

several preclinical mouse models of cancer (12,27), including a mouse model of HER2+ 

human breast cancer (9). The reproducibility for muscle ADC was also expressed as a 

95% CI and repeatability coefficient, which were ± 0.097 × 10-3 mm2/s and ± 0.288 × 10-3 

mm2/s, respectively. The 95% CI expressed as a percentage of the mean is ± 8.5%, and 

thus changes greater than this value would reflect treatment-induced change rather than 

measurement error in muscle for cohort of mice.  

Reproducibility in terms of agreement between repeat measurements (defined by 

the ICC) was worse for muscle (ICC = 0.64) compared to tumor (ICC = 0.79). This result 

is not surprising, considering that muscle ADC values in this study are calculated from a 

diffusion-weighted pulse sequence that encodes along a single diffusion direction, instead 

of the trace, for each b value. Since diffusion in muscle tissue is anisotropic (28-30), 

ADC values measured along only one direction, acquired by applying diffusion gradients 

simultaneously on all three axes, would be dependent on animal orientation in the 

scanner. Although the orientation was kept as consistent as possible, one might expect 

that slight differences between repeated scans would have a greater impact on 

reproducibility in muscle compared to tumor, as water diffusion in most tumor models is 

nearly isotropic (16).  
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The ICC for tumor and muscle from our study were slightly lower than a previous 

reproducibility study by O’Flynn et al. who observed an ICC of 0.91 for mean ADC of 

normal human breast tissue at 3T (20). It is worth noting that, while we observed lower 

ICCs than O’Flynn et al., our main objective was to quantify a threshold by which 

changes greater than that value would represent therapeutic interventions. The 95% CI 

and repeatability coefficient define these thresholds in a population or an individual, 

respectively, and thus are more appropriate than the ICC when interpreting results from a 

longitudinal treatment response study (19,31). 

Although we attempted to be as consistent as possible between repeated 

acquisitions, this study is not without limitations. The most prominent issue is that we are 

not comparing the exact sections of tissue from each scan. We chose to remove the 

animal from the scanner between repeat acquisitions to more closely mimic a study in 

which an animal is scanned multiple times over multiple days, thereby allowing us to 

quantify the variability that we might expect during a treatment study. Additionally, 

allowing the animal to recover between repeat scans eliminated any physiological stress 

that may occur during long periods (~ 2.5 hours) of anesthesia. Removing the animal and 

allowing for recovery would mean that there might be slight differences in ROIs (both 

tumor and muscle), and thus possible repositioning errors between acquisitions. We 

expect that errors associated with differences in animal position would negatively impact 

reproducibility, thus resulting in larger 95% CIs and repeatability coefficients. 
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Conclusion 

 The development of imaging biomarkers with the sensitivity to detect treatment-

induced changes in tumor physiology before tumor volume change is an active area of 

interest. Before an imaging biomarker can be reliably employed in a treatment response 

study, the reproducibility must be assessed. In this study, we assessed reproducibility of 

DW-MRI data in conjunction with an ADC measurement. The test-retest analysis of 

mean tumor ADC measurements was very reproducible (95% CI = ± 11.1%), and thus 

DW-MRI can be used in serial studies to measure treatment-induced changes of tumor 

physiology in our mouse model of HER2+ human breast cancer. 
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CHAPTER VI 

 

OPTIMIZATION OF IMAGING TIME POINTS FOR LONGITUDINAL 

TREATMENT RESPONSE STUDIES 

 

Introduction 

The current radiographic assessment of tumor response is based on the Response 

Evaluation Criteria in Solid Tumors (RECIST), which relies on characterizing one-

dimensional changes in tumor size during the course of therapy (1). Results from these 

criteria can be misleading as tumor response is based on linear changes along one-

dimension, whereas tumors are most certainly changing in all three spatial dimensions. 

Additionally, this measurement is based on morphological changes that are almost 

certainly temporally delayed behind molecular, cellular, and physiological changes (2). 

Thus, imaging techniques with the sensitivity to quantify early changes in molecular 

characteristics of cancer would potentially offer earlier and more specific assessments of 

treatment response.  

 The primary objective of Specific Aim 2 is to define a set of imaging techniques 

that are most sensitive to assessing early treatment response of HER2+ breast cancer 

xenografts exposed to trastuzumab. More specifically, we aim to determine the imaging 

methods that differentiate responders from nonresponders before tumor size changes are 

evident. In this chapter, we describe the experiments used to select the optimal imaging 

time points during therapy, with the objective of determining when a significant 

difference in tumor volume is first observed. 
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Materials and Methods 

Tumor Xenograft Model 

BT474 cells (gifted from Dr. Carlos Arteaga, M.D. at Vanderbilt University) were 

cultured in improved minimal essential medium (IMEM, Invitrogen, Carlsbad, CA) 

supplemented with 10% fetal bovine serum at 37°C in a humidified, 5% CO2 incubator. 

Cells were harvested with trypsin at approximately 85% confluence. Female athymic 

mice (n = 8, 4-6 weeks of age, Harlan, Indianapolis, IN) were implanted with 0.72 mg, 

60-day release, 17β-estradiol pellets (Innovative Research of America, Sarasota, FL). 

One day later, approximately 107 BT474 cells suspended in a 1:10 ratio of growth factor-

reduced Matrigel and IMEM were injected subcutaneously into the right flank. Mice 

were anesthetized with 2% isoflurane in pure oxygen for both procedures. Tumor 

volumes were measured weekly via calipers, and longitudinal imaging and treatment 

regiment commenced when tumor volumes reached approximately 200 mm3 (typically 4-

8 weeks after cell injection). Vanderbilt University’s Animal Care and Use Committee 

approved all animal procedures. 

 

Image Acquisition and Analysis 

All tumor-bearing mice were separated into treated and control cohorts, and 

imaged across multiple days after baseline (see Figure VI-1): day 1, day 2, day 4, day 5, 

day 7, and day 8. Mice were treated immediately following imaging at baseline and days 

3 and 6 with either trastuzumab (10 mg/kg) or saline vehicle via an i.p. injection (total 

volume, 100 mL). Trastuzumab was purchased from the Vanderbilt University Hospital 

Pharmacy (Nashville, TN).   
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Figure VI-1. Longitudinal imaging and trastuzumab treatment study schema. Tumor 
volume measurements were quantified from T2-weighted images acquired at baseline and 
days 1, 2, 4, 5, 7, and 8. Mice were randomized equally into two groups: trastuzumab (n 
= 4) and vehicle (n = 4) treated cohorts. Mice were treated with either trastuzumab (10 
mg/kg) or saline vehicle by i.p. (total volume, 100 mL).  
 
  

Tumor volumes were measured from high-resolution, T2-weighted, magnetic 

resonance images (MRI) collected at each time point using a 7T MRI scanner (Agilent 

Technologies (formally Varian), Palo Alto, CA) equipped with a 38 mm quadrature RF 

coil (Doty Scientific, Columbia, SC). Anesthesia was induced and maintained for each 

imaging session via 2% isoflurane in pure oxygen. Animal respiration rate was 

monitored, and animal body temperature was maintained at an external temperature of 

32o C by means of a flow of warm air directly into the bore of the magnet. Each animal 

was placed in a custom built restraint, and the tumor region was first localized via 3D 

gradient echo scout images. T2-weighted images covering the entire tumor volume were 

acquired using a fast spin-echo pulse sequence with the following parameters: TR = 5500 

ms, effective TE  = 35.6 ms, 1 mm slice thickness, and an acquisition matrix of 128 × 

128 over a 28 × 28 mm2 field of view yielding a voxel size of 0.22 × 0.22  mm2.  

 MRI data were imported into MATLAB® version R2010B (The MathWorks, 

Natick, MA), and tumor volumes at each time point were measured by manually drawing 

Day      baseline     1           2  3  4    5      6        7           8 

Imaging      MRI      MRI     MRI              MRI      MRI          MRI      MRI 

x x x 

trastuzumab (10 mg/kg) 

Dose 

x saline vehicle 
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regions of interest (ROIs) along tumor boundaries from all slices consisting of tumor 

tissue. I delineated all tumor ROIs to ensure consistency. Tumor volumes at each time 

point were compared between and within each mouse cohort using a two-tailed Student’s 

t-test. A significance value of p < 0.05 was used for all comparisons.  

 

Results 

Figure VI-2 displays a representative example of a T2-weighted image with tumor 

boundaries highlighted in red. Note that the image contrast between tumor and muscle 

tissue is sufficient such that the peripheries of the tumor can be easily identified for 

accurate tumor segmentation and ROI definition.  

 

Average tumor volume (± standard error, SE) is displayed in Figure VI-3 for the 

trastuzumab and vehicle treated cohorts. Statistically significant differences in tumor 

volume between cohorts are denoted with asterisks (*).  

 

Figure VI-2. Representative example of a T2-weighted magnetic resonance image 
displayed with tumor boundaries highlighted in red. Note the sufficient contrast 
between tumor and muscle for accurate delineation of tumor boundaries. 
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Figure VI-3. Average tumor volume displayed at each imaging time point for each mouse 
cohort. Longitudinal tumor volumes were measured from T2-weighted MR images. * p < 
0.05, significant difference in tumor volume between cohorts. 
 

The p values from each statistical comparison (i.e., within each group and 

between groups) at each time point are listed in Table VI-1. Values representing 

significance are highlighted in red font. Significant differences in tumor volume were 

observed at day 2 within each cohort compared to baseline. However, tumor volumes 

between mouse cohorts were not statistically different until day 4. 

 

Table VI-1. Comparison results for within and between each group and time point 
Mouse Cohort Baseline Day 1 Day 2 Day 4 Day 5 Day 7 Day 8

Vehicle n/a 0.41 0.01 0.008 0.01 0.009 0.007
Trastuzumab n/a 0.47 0.04 0.02 0.02 0.09 0.08

Between cohorts 0.25 0.21 0.08 0.03 0.02 0.02 0.03  
 

Discussion 

The objective of this experiment was to determine the earliest time point after 

therapy where differences in tumor volume measurements were not observed. A 

* * 
* * 



 
 
97 

statistically significant difference in tumor volume between the BT474 treated and 

control group was first observed at 24 hours after the second round of treatment (day 4). 

Both of the within group comparisons resulted in a significant difference in tumor 

volume at day 2 when compared to baseline. Difference in tumor volume when compared 

within or between cohorts was not observed at day 1. Thus, the optimal imaging time 

points for the longitudinal treatment response studies were determined to be baseline 

before any treatment, and 24 hours post a first (day 1) and second (day 4) treatment.  

 

Conclusion 

 Specific Aims 2 and 3 (Chapters VII-IX) investigate the utility of several PET and 

MRI techniques for assessing response early during the course of treatment with HER2+ 

human breast cancer xenografts exposed to trastuzumab. Since these treatment response 

studies were our first experiences with these tumor models, it was imperative to 

investigate the pattern of tumor growth with and without treatment. This study allowed 

for the determination of an early time point after treatment where differences in tumor 

volume were not yet significant. We hypothesize that functional and molecular imaging 

techniques will report treatment-induced vascular, cellular, and molecular changes at or 

before this early time point, and thus be predictors of therapeutic response. This 

hypothesis is systematically tested in the following chapters. 
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CHAPTER VII 

 

UTILITY OF 18F-FLT PET TO ASSESS TREATMENT RESPONSE IN A MURINE 

MODEL OF HER2+ BREAST CANCER 

 

Introduction 

The human epidermal growth factor receptor 2 (HER2) is overexpressed in 20% 

to 25% of diagnosed breast cancers (1,2), and positively correlates with a more 

aggressive disease phenotype and poor prognosis (2). Consequently, specific anti-HER2 

therapeutics have been developed that bind to HER2 and disrupt downstream signaling 

pathways (3). Trastuzumab (Herceptin®, Genentech, San Francisco, CA) was the first 

HER2-targeted therapy (4,5), and has been shown to inhibit cell cycle progression, cell 

proliferation, and survival (6,7). It is estimated, however, that only 25% to 30% of 

patients with HER2-overexpressing tumors will respond to single-agent trastuzumab and 

others will develop resistance (8), emphasizing the need for accurate and reliable 

assessments of treatment response early during the course of therapy. 

The standard-of-care radiographic assessment of response uses the response 

evaluation criteria in solid tumors (RECIST, (9)), which quantifies treatment response 

based on one-dimensional changes in tumor morphology. As current and emerging 

anticancer therapies are designed to induce molecular changes that potentially occur 

substantially sooner than changes in tumor size (10), RECIST may not be the most 

sensitive or accurate approach (11). Thus, noninvasive imaging techniques that can report 

on cellular and physiological processes are of interest. Positron emission tomography 
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(PET) with 3’-deoxy-3’-18F-fluorothymidine (18F-FLT) is an emerging molecular 

imaging technique that, in certain situations, provides a noninvasive estimate of cellular 

proliferation as tracer uptake is regulated by the expression and activity of thymidine 

kinase 1 (TK1), which is an important enzyme in the cell-cycle dependent thymidine 

salvage pathway of DNA synthesis (12). 18F-FLT PET might provide more insight than 

RECIST into the assessment of disease response, as one of the hallmarks of malignant 

tumors is increased proliferative activity (13). Indeed, 18F-FLT PET has been shown to be 

useful for evaluating treatment efficacy with molecular targeted therapies in preclinical 

mouse models (14-16), as well as assessing response early during the course of therapy in 

patients (17,18). However, a recent study provided evidence suggesting that 18F-FLT PET 

might not always reflect the proliferative index of certain tumors (19); thus, emphasizing 

the need for the systematic evaluation of 18F-FLT PET to assess response in a variety of 

cancer types and treatment regimens.  

Based on the observations that trastuzumab reduces HER2-mediated cell 

proliferation, we explored the utility of 18F-FLT PET to assess response early during the 

course of therapy (i.e., before significant changes in tumor size occurred) in HER2+ 

mouse models that are sensitive and resistant to trastuzumab. We also explored the 

sensitivity of 18F-FLT PET to differentiate trastuzumab resistance between sensitive and 

resistant HER2+ xenografts after exposure to trastuzumab. Thus, the objective of this 

study was to determine if 18F-FLT PET could separate mouse cohorts early during the 

course of treatment. In an attempt to validate the imaging findings, we also investigated 

the relationship between the imaging data and the underlying biology. 
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Materials and Methods 

Cell Culture 

Trastuzumab responsive (BT474) and resistant (HR6) cells were gifts from Dr. 

Carlos Arteaga, M.D. at Vanderbilt University. HR6 cells were harvested from BT474 

xenografts as described previously (6). Briefly, female athymic mice with BT474 

xenografts were treated twice per week with 20 mg/kg trastuzumab diluted in sterile 

saline. Tumors that initially responded completely and then recurred in the presence of 

maintained trastuzumab treatment were harvested, minced, and digested to generate the 

HR6 cell line (6). Both cell lines were cultured in improved minimal essential medium 

(IMEM, Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum at 37°C in 

a humidified, 5% CO2 incubator. To maintain trastuzumab resistance, HR6 cells were 

also cultured with 10 mg/ml trastuzumab as previously described (6). Trastuzumab was 

purchased from the Vanderbilt University Hospital Pharmacy (Nashville, TN). For cell 

innoculation, cells were harvested with trypsin at approximately 85% confluence. 

 

Tumor Xenograft Model 

 Our Institution’s Animal Care and Use Committee approved all animal 

procedures. Female athymic nude mice (n = 25, 4-6 weeks old, Harlan, Indianapolis, IN) 

were implanted with 0.72 mg, 60-day release, 17β-estradiol pellets (Innovative Research 

of America, Sarasota, FL). Twenty-four hours later, approximately 107 BT474 or HR6 

cells, suspended in a 1:10 ratio of growth factor-reduced Matrigel and IMEM, were 

injected subcutaneously into the right flank. Tumor volumes were measured once per 

week via calipers, and experiments commenced once tumor volumes reached > 200 mm3 
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(typically 4 to 8 weeks post cell innoculation). A 26-gauge jugular catheter was surgically 

implanted for radiotracer delivery. Mice were anesthetized with 2% isoflurane in pure 

oxygen mixture for all surgical procedures. 

 

Trastuzumab Treatment Study 

 Mice bearing tumors were grouped into four cohorts: trastuzumab and vehicle 

treated BT474 cohorts, and trastuzumab and vehicle treated HR6 cohorts. The number of 

mice for each cohort and imaging time point is displayed in Table VII-1.  

For treatment, mice were administered twice in four days with trastuzumab (10 mg/kg) or 

saline vehicle by i.p. (total volume, 100 mL). 18F-FLT PET was conducted at baseline 

and days 1 and 4, which were 24 hours post first and second treatments, respectively. 

Figure VII-1 illustrates the imaging and dosing schedule for the treatment response study. 

 
 
Figure VII-1. Longitudinal imaging and trastuzumab treatment study schema. 
Mice were treated twice in four days with either trastuzumab (10 mg/kg) or saline 
vehicle. Dynamic 18F-FLT PET data were acquired at baseline and 24 hours post 
the first and second treatment.  
 

Table VII-1. Tabulated list of animal number for each cohort and time point 
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Radiotracer Synthesis 

 18F-FLT was prepared as a service by the radiochemistry core using a two-step, 

one pot reaction as described previously (20). 18F-FLT was obtained with average 

radiochemical purity of 98.3% and specific activity ≥ 345.5 TBq/mmol.    

 

Volumetric Imaging and Analysis 

Longitudinal tumor volume was measured from T2-weighted magnetic resonance 

images (as previously described in Chapter VI). Anesthesia was induced and maintained 

via 2% isoflurane in pure oxygen. Animal respiration rate was monitored, and animal 

body temperature was maintained at an external temperature of 32o C by means of a flow 

of warm air directly into the bore of the magnet. Each animal was placed in a custom 

built restraint, and the tumor region was first localized via 3D gradient echo scout images. 

T2-weighted images covering the entire tumor volume were acquired using a fast spin-

echo pulse sequence with the following parameters: TR = 5500 ms, effective TE  = 35.6 

ms, 1 mm slice thickness, and an acquisition matrix of 128 × 128 over a 28 × 28 mm2 

field of view yielding a voxel size of 0.22 × 0.22 mm2. Data were imported into 

MATLAB® version R2010b (The MathWorks, Natick, MA), and tumor volumes were 

measured at each time point by manually drawing regions of interest (ROIs) along tumor 

boundaries from all slices consisting of tumor tissue. I delineated all tumor ROIs to 

ensure consistency. 
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18F-FLT PET Imaging 

After volumetric imaging, mice were transferred under anesthesia to a dedicated 

small-animal microPET Focus 200 system (Concorde Microsystems Inc, Knoxville, TN 

(21)) where animal body temperature was then maintained by a heated water pad and heat 

lamp. Anesthesia was continued, and list-mode data were collected for 60 (n = 2) or 90 

(n = 23) minutes before, during, and after injection of 7.3 ± 2.0 MBq (mean ± standard 

error, SE) of 18F-FLT diluted in 100 µL of sterile saline. Images collected for 90 minutes 

were reconstructed into a 46-frame dynamic sequence (12 × 5 s, 6 × 10 s, 4 × 40 s, 4 × 60 

s, 5 × 120 s, 4 × 180s, and 12 × 300 s) using a three-dimensional ordered-subsets 

expectation maximization (OSEM3D) algorithm followed by a maximum a posteriori 

(MAP) algorithm (22). OSEM3D-MAP reconstruction was performed using two 

OSEM3D iterations with nine subsets, followed by 18 MAP iterations with a beta value 

0.038 (22). Images collected for 60 minutes were reconstructed similarly but with a 64-

frame dynamic sequence (5 × 12 s, 59 × 60 s). The resulting 3D reconstruction has a 

voxel size of 0.475 mm × 0.475 mm × 0.796 mm. Attenuation and scatter correction were 

not performed as the amount of attenuation in microPET studies of mice is small 

compared to human studies and differences between animals are not expected to be 

significant (21).  

 

Quantification of Tracer Uptake 

MATLAB was used to manually draw 3D ROIs around the tumor volumes from 

the PET images. ROIs were also drawn across three slices within the contralateral 

muscle. The average activity from the last 30 minutes of each dynamic acquisition was 
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normalized for animal weight and injected dose to generate parametric maps of the 

standardized uptake value (SUV). For longitudinal comparison, the maximum SUV 

normalized to lean muscle (SULmax) was quantified for each tumor ROI. 

 

Immunohistochemistry 

 Immediately following imaging, animals were sacrificed and excised tumors were 

fixed in 10% formalin for at least 24 hours. Samples were then transferred to 70% ethanol 

and stored in 4 °C. Samples were blocked in paraffin, and 4-micron sections were 

prepared for immunostaining with Ki67 (M7240; Dako, Carpinteria, CA) and TK1 

(ab57757; Abcam, Cambridge, MA). Stained sections were imaged at 20× magnification 

using a Leica SCN400 Slice Scanner (Leica, Buffalo Grove, IL). Unbiased and 

automated image analysis was performed using algorithms that were trained based on 

shape and intensity of the stain. The index for each marker was expressed as the ratio of 

the number of percent positive cells to total cell number counted from four random fields 

per tumor section. Tumor sections from 4 (BT474 and HR6 vehicle treated groups) or 6 

(BT474 and HR6 trastuzumab treated groups) mice from each cohort were analyzed for 

comparison with in vivo data.  

 

Statistics 

Three statistical comparisons were performed in this study: 1) trastuzumab versus 

vehicle treated BT474 cohorts, 2) trastuzumab versus vehicle treated HR6 cohorts, and 3) 

responders (BT474 treated) versus nonresponders (HR6 treated). Longitudinal 18F-FLT 

PET parameters were compared within and between cohorts at each imaging time point. 
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Ki67 and TK1 percent positive were compared between cohorts. All data are presented as 

mean ± SE. Additionally, all statistical comparisons were evaluated using the 

nonparametric Wilcoxon rank sum test in MATLAB version 2010b, and data were 

considered significant if p < 0.05. 

 

Results 

Impact of Trastuzumab on Tumor Xenograft Growth 

Longitudinal tumor volumes from the trastuzumab and vehicle treated BT474 

cohorts are displayed in Figure VII-2A. In the vehicle treated group, tumor size increased 

slightly over four days but the increase was not statistically significant (day 1: p = 0.42; 

day 4: p = 0.11). Trastuzumab treatment inhibited tumor growth in the trastuzumab 

treated group; the decrease was not statistically significant at day 1 (p = 0.44), yet trended 

towards significance at day 4 (p = 0.05). No difference in tumor volume between the 

trastuzumab and vehicle treated BT474 mice was observed at day 1 (p = 0.28), but a 

statistically significant difference was observed at day 4 (p = 0.02), indicating that the 

BT474 xenograft model is responsive to trastuzumab. 

Longitudinal tumor volumes for the trastuzumab and vehicle treated HR6 cohorts 

are displayed in Figure VII-2B. Tumor size steadily increased over four days in the 

vehicle treated group yet differences after treatment were not statistically different (day 1: 

p = 0.39; day 4: p = 0.24). Tumor size also increased in the trastuzumab treated group, 

although, similar to the vehicle cohort, differences were not significant at any time point 

after baseline (day 1: p = 0.80; day 4: p = 0.96). Tumor volume between groups was not 
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statistically different at any imaging time point (baseline: p = 0.18; day 1: p = 0.14; day 

4: p = 0.18), indicating that the HR6 xenograft model is resistant to trastuzumab. 

To evaluate the impact of trastuzumab on tumor xenografts with different 

trastuzumab sensitivities, longitudinal tumor volume from the responders (BT474 treated) 

and nonresponders (HR6 treated) are graphed for comparison in Figure VII-2C. No 

difference in tumor volume between responders and nonresponders was observed at day 1 

(p = 0.23), but a statistically significant difference was observed at day 4 (p = 0.04).  

 

Figure VII-2. Impact of trastuzumab on tumor growth in the: (A) trastuzumab sensitive 
BT474, (B) trastuzumab resistant HR6, and (C) trastuzumab treated BT474 and HR6 
xenografts. Tumor volume was measured from MR images. *p < 0.05 
 

18F-FLT PET Assesses Early Treatment Response in BT474 Xenografts 

Changes in 18F-FLT accumulation in response to trastuzumab are shown in Figure 

VII-3. At baseline, no statistical difference in SULmax was observed between trastuzumab 

and vehicle treated groups (p = 0.72). In the vehicle treated group, a non-significant 

increase in SULmax was observed at day 1 (p = 0.55, compared to baseline); the increase 

in SULmax at day 4 trended towards significance (p = 0.06, compared to baseline). In 

contrast, SULmax in the trastuzumab treated group decreased, although not significantly, 

at day 1 (p = 0.10, compared to baseline) and day 4 (p = 0.75, compared to baseline). 

 * 

 * 

A             B            C 
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However, the difference in SULmax between the trastuzumab and vehicle treated groups 

was statistically significant at day 1 (p = 0.03), and continued to be significantly different 

at day 4 (p = 0.04). The Ki67 immunohistochemistry results (Figure VII-3C) supported 

the imaging findings at day 4 as a significant difference (p = 0.02) in Ki67 score is 

observed between the trastuzumab and vehicle treated BT474 cohorts. The expected trend 

in TK1 immunohistochemistry results was observed (i.e., more TK1 staining observed in 

the vehicle treated group), however the difference between cohorts was not statistically 

significant (p = 0.61). 

 

Figure VII-3. Early biological changes after trastuzumab treatment is observed with 18F-
FLT PET: parametric maps of the standardized uptake value (SUV) from a 
representative animal in the trastuzumab (top row) and vehicle (bottom row) treated 
cohorts (A), longitudinal changes in SULmax (mean ± SE) of tumors in mice receiving 
either trastuzumab or vehicle (B), and significant difference Ki67 percent positive 
corresponds with in vivo imaging results (C). Expected trend in TK1 percent positive is 
observed, but differences between cohorts was not statistically significant (C). * p < 0.05 
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For reference, the maximum SUV from the tumor ROI, the mean SUV from the 

muscle ROI used to calculate SULmax, and the SULmax for each time point and animal in 

the trastuzumab and vehicle treated BT474 cohorts is tabulated in Supplemental Table 

VII-1 (located at the end of this chapter). 

 

No Difference in 18F-FLT PET Observed Between HR6 Xenografts 

Longitudinal 18F-FLT PET data are displayed in Figure VII-4 for the trastuzumab 

and vehicle treated HR6 cohorts. Statistical differences in SULmax between the 

trastuzumab and vehicle treated HR6 groups were not observed any point during the 

study (baseline: p = 0.28; day 1: p = 0.41; day 4: p = 0.84). In the vehicle treated group, a 

non-significant decrease in SULmax was observed at day 1 (p = 0.18, compared to 

baseline). A non-significant increase was observed at day 4 but to a SULmax below that at 

baseline (p = 0.59, compared to baseline). In the trastuzumab treated group, a non-

significant decrease in SULmax was observed at day 1 (p = 0.38, compared to baseline) 

followed by a non-significant increase at day 4 (p = 0.23, compared to baseline).  

Immunohistochemistry results (Figure VII-4C) supported the imaging findings at 

day 4 as the difference in Ki67 and TK1 scores were not statistically significant (p = 0.11, 

p = 0.35, respectively) between the trastuzumab and vehicle treated HR6 cohorts. 

Although the differences were insignificant, the percentages of Ki67 and TK1 positive 

cells were almost 50% higher in the trastuzumab-treated cohort, which was unexpected 

considering the in vivo PET data (Figure VII-4B). We hypothesize that the 50% increase 

in histological markers relating to cellular proliferation (e.g., Ki67 and TK1) is the effect 

of overcoming trastuzumab response. We return to this point in the Discussion.  
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Figure VII-4. Statistically significant differences in 18F-FLT retention were not observed 
between trastuzumab and vehicle treated trastuzumab resistant HR6 cohorts at any time 
point during the study: parametric maps of the standardized uptake value (SUV) from a 
representative animal in the trastuzumab (top row) and vehicle (bottom row) treated 
cohorts (A), longitudinal changes in SULmax (mean ± SE) of tumors in mice receiving 
either trastuzumab or vehicle (B), and no significant differences with Ki67 or TK1 
immunohistochemistry (C), which corresponds with the in vivo imaging data at day 4. 
White arrows point to the tumor, and a blue arrow points to an example of necrosis. 

 

For reference, the maximum SUV from the tumor ROI, the mean SUV from the 

muscle ROI used to calculate SULmax, and the SULmax for each time point and animal in 

the trastuzumab and vehicle treated HR6 cohorts is tabulated in Supplemental Table VII-

1 (located at the end of this chapter). 
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18F-FLT PET Differentiates Responders from Nonresponders 

Longitudinal 18F-FLT PET data is graphed in Figure VII-5 for the trastuzumab 

treated BT474 and HR6 cohorts, i.e., the responders and nonresponders, respectively. 

Differences in SULmax were not statistically different at baseline (p = 0.65) or day 1 (p = 

0.57) between the responders and nonresponders. However, differences at day 4 were 

significant (p = 0.02), suggesting that 18F-FLT PET can differentiate between tumors that 

are sensitive and resistant to trastuzumab. Ki67 immunohistochemistry results trended 

similarly to the imaging data, however the difference between the responder and 

nonresponder cohorts only trended towards significance (p = 0.06; Figure VII-5B). The 

TK1 immunohistochemistry results also trended similarly to the imaging data, however 

the difference was not statistically different between cohorts (p = 0.59; Figure VII-5C).  

 

Figure VII-5. Statistically significant differences in SULmax were observed between mice 
bearing tumors with varying trastuzumab sensitivities, suggesting that 18F-FLT PET can 
detect responders from nonresponders (A). Ki67 score trended with the imaging data at 
Day 4, however the difference between cohorts only trended toward significance (B, p = 
0.06). TK1 score also trended with the imaging data, however the difference was not 
statistically significant (C, p = 0.59) 7). * p < 0.05 

 

Discussion 

 In contrast to the anatomical imaging methods (e.g., computed tomography and 

MRI) used to assess one-dimensional changes in tumor size, noninvasive molecular 

*"
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imaging aims to provide in vivo assessments of specific molecular, cellular, and 

physiological characteristics of the tumor and the microenvironment. As emerging 

anticancer therapeutics are designed to induce molecular changes that potentially occur 

substantially sooner than changes in morphology, molecular imaging techniques offer 

earlier and potentially more sensitive therapeutic response assessments. Recently newer 

criteria, such as the PET Response Criteria in Solid Tumors (PERCIST), recognize the 

potential utility of PET to predict response earlier during the course of therapy (PERCIST 

(9)). 18F-FLT PET is an emerging molecular imaging technique that has shown clinical 

utility in preclinical mouse models of cancer (14,15,23) and patients (17,24). However, 

limitations of 18F-FLT as a biomarker of the proliferative index of tumors have been 

recently reported (19), emphasizing the need for a systematic evaluation of 18F-FLT PET 

to assess response in a variety of cancer types and specific treatment regimens. Thus, the 

objective of this study was to evaluate the potential utility of 18F-FLT PET to offer earlier 

response assessments in HER2+ mouse models of breast cancer treated with trastuzumab.  

We demonstrated the utility of 18F-FLT PET to assess early response to 

trastuzumab in the BT474 HER2+ human breast cancer model. We are not the first to 

report these observations in the BT474 exposed to trastuzumab. Shah et al. performed 

18F-FLT PET before and after 1 week of trastuzumab therapy, and observed a significant 

difference between trastuzumab and vehicle treated cohorts (25). Our study builds on the 

previous effort and suggests that 18F-FLT PET can detect a significant change as early as 

24 hours after one trastuzumab treatment. Shah et al. also evaluated the ability of the 

most clinically used PET tracer, 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG), to quantify 

tumor metabolism changes in the BT474 model exposed to trastuzumab; however, 
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significant differences in 18F-FDG uptake were not observed between trastuzumab and 

vehicle treated cohorts (25). The insensitivity of 18F-FDG to differentiate response 

coupled with our findings suggest that biomarkers of proliferation (e.g., 18F-FLT PET) 

might be better suited to predict response to therapies that alter cellular proliferation (e.g., 

trastuzumab).  

We are, however, the first to present longitudinal 18F-FLT PET data in a xenograft 

model that was engineered to exhibit trastuzumab resistance. We demonstrated that 

differences in 18F-FLT retention were not observed between trastuzumab and vehicle 

treated mice with trastuzumab resistant xenografts although one cohort was receiving 

therapy that was intended to alter cellular proliferation. This result then allowed for the 

comparison between the so-called responders and nonresponders, or the trastuzumab 

treated BT474 and HR6 cohorts, respectively. We observed a significant difference in 

18F-FLT retention between cohorts suggesting that 18F-FLT PET can differentiate 

nonresponders from responders. However, the detected change was significant at the 

same time as a significant difference in tumor volume (i.e., at day 4); thus, 18F-FLT PET 

did not provide an early biomarker of treatment response in these cohorts.  

The objective of the immunohistochemistry analyses was to provide potential 

validation of the in vivo data by investigating the relationship between the imaging 

parameter and the underlying biology. Both the Ki67 and TK1 scores for the BT474 

cohorts corresponded with the imaging data (Figure VII-3C), although only the difference 

in Ki67 between the cohorts was statistically significant. Significant differences in Ki67 

or TK1 scores were not observed between the trastuzumab and vehicle treated HR6 

cohorts, which also corresponded with the imaging data (Figure VII-4C). The difference 
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in Ki67 score between the responders and nonresponders trended towards significance 

(Figure VII-5C p = 0.06). To investigate whether Ki67 score correlated with SULmax, we 

calculated the Pearson correlation coefficient. Similarly to the comparison between Ki67 

scores from the two cohorts, the correlation between the histological parameter and in 

vivo imaging parameter also only trended towards significance. These data suggest that 

the imaging-histology parameter comparison does not have the required power to observe 

a statistical significant difference. To test this hypothesis, we processed tumor sections 

from additional BT474 (n = 2) and HR6 (n = 2) xenografts with Ki67 

immunohistochemistry. These mice were treated in the same manner (i.e., at baseline and 

day 3) as the mice included in the imaging study, the only difference being that 18F-FLT 

PET data were not collected. The resulting difference in Ki67 score after including more 

animals is now significant (p  = 0.04). The trend in TK1 score corresponded with the 

imaging data, yet difference between cohorts was neither significant nor trended towards 

significance (Figure VII-5C).  

 

Study Limitations 

 We note that the average tumor volume of the treated trastuzumab resistant HR6 

xenografts at baseline was larger (~30%) than the treated trastuzumab sensitive BT474 

xenografts. Since the difference in tumor volume between these two groups was not 

significant, we were able to compare the effects of trastuzumab treatment with the in vivo 

PET and histology data. As the volume of xenografts increase, regions of necrosis 

develop due to a reduced delivery of nutrients to those tumor regions. (Examples of 

necrosis are highlighted with blue arrows in Figure VII-4A). Necrosis will increase the 
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heterogeneity of radiotracer uptake throughout the whole tumor volume. To eliminate the 

potential bias of tumor heterogeneity from the quantified 18F-FLT PET data, we 

compared the maximum activity from the tumor ROI. We also noted longitudinal 

differences (> ±15%) in 18F-FLT accumulation within the muscle tissue in a few mice 

suggesting possible differences in radiotracer specific activities and radioactivity yield. In 

order to compare data across multiple time points and mice, we normalized the maximum 

SUV from the tumor to the average SUV from the contralateral muscle.  

 

Future Work 

We noted in the Results section that although not significant, a 50% increase in 

both Ki67 and TK1 scores were observed in the trastuzumab treated HR6 cohort 

compared to the vehicle treated cohort. Our hypothesis for these observations is that the 

trastuzumab treated HR6 cohort is resistant to trastuzumab by increasing cellular 

processes, specifically those leading to cellular proliferation and survival. Ritter et al. 

postulate that the HR6 cell line escapes trastuzumab action through PI3K activation, 

which is a cell signaling pathway that leads to cellular proliferation and survival (6). In a 

subsequent report from the same group, Miller et al. demonstrate that inhibition of mTOR 

(a major downstream effector of the PI3K pathway) suppressed cell growth in the HR6 

cells (26). Quantifying TK1 and other proteins relating to cellular proliferation (e.g., PS6, 

which is a marker for mTOR) from Western blot studies of HR6 cells with and without 

exposure to trastuzumab is a potential study that, if TK1 expression increased with 

increasing concentration of trastuzumab, would support our hypothesis.  Future studies to 
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elucidate the potential relationship between TK1 expression and trastuzumab resistance 

are needed to support this hypothesis. 

 Robust and reproducible methods for analyzing kinetic 18F-FLT PET data in 

order to provide quantitative evaluations of tumor proliferation have been previously 

investigated (27-29). The net tracer flux (previously described in Chapter III) is a 

quantity of interest in treatment response studies as it combines kinetic modeling 

parameters relating to delivery and retention of the radiotracer (30). Future work will be 

to evaluate the utility of 18F-FLT PET dynamic parameters to assess early response to 

trastuzumab in both HER2+ models that are sensitive (i.e., BT474) and resistant (i.e., 

HR6) to trastuzumab. 

 

Conclusion 

 18F-FLT PET is an emerging molecular imaging technique that offers noninvasive 

measurements of cellular proliferation. However, mixed reviews of the utility of 18F-FLT 

PET to assess early treatment response have been reported, thus emphasizing the need to 

systematically evaluate this technique in different cancer types and treatment regimens. 

Our data suggest that 18F-FLT PET is sensitive to early molecular changes in the 

trastuzumab sensitive BT474 HER2+ breast cancer model, and can also differentiate 

mouse models of HER2+ breast cancer with varying trastuzumab sensitivities (i.e., 

BT474 versus HR6). The latter result potentially has significant clinical impact as the 

development of imaging methods that can separate responders from nonresponders earlier 

during the course of therapy is of great interest in order to reduce cost and negative 

systemic effects caused by ineffective therapies. 

Ve
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Supplementary Table VII-1 
 
Tabulated SUV values for tumor and muscle ROIs, as well as, the tumor SULmax for each 
trastuzumab and vehicle treated BT474 and HR6 cohort and imaging time point 
 

Trastuzumab treated BT474 mice

Mouse Baseline Day 1 Day 4 Baseline Day 1 Day 4 Baseline Day 1 Day 4

1 1.14 1.19 1.29 0.91 0.97 0.97 1.25 1.22 1.33

2 1.35 1.30 1.21 0.98 0.91 0.88 1.37 1.43 1.38

3 1.92 1.83 1.91 1.34 1.31 1.24 1.43 1.39 1.53

4 1.53 1.46 1.21 1.05 1.11 0.80 1.45 1.31 1.53

5 1.99 1.64 1.34 1.13 1.28 1.02 1.76 1.28 1.32

6 1.73 1.18 1.36 1.07 0.99 1.03 1.62 1.20 1.32

7 1.82 1.65 NaN 1.24 1.25 NaN 1.46 1.32 NaN

8 1.44 1.61 NaN 1.18 1.15 NaN 1.22 1.41 NaN

average 1.61 1.48 1.39 1.11 1.12 0.99 1.45 1.32 1.40

SE 0.11 0.08 0.11 0.05 0.05 0.06 0.06 0.03 0.04

Vehicle treated BT474 mice

Mouse Baseline Day 1 Day 4 Baseline Day 1 Day 4 Baseline Day 1 Day 4

1 1.67 1.79 1.76 1.26 1.25 1.25 1.32 1.43 1.41

2 2.12 1.75 1.85 1.45 1.24 1.20 1.46 1.42 1.54

3 0.91 1.41 1.98 0.69 0.94 1.23 1.31 1.51 1.61

4 2.23 2.09 2.35 1.45 1.27 1.24 1.53 1.64 1.89

5 1.54 1.68 NaN 1.16 1.27 NaN 1.33 1.32 NaN

average 1.69 1.75 1.98 1.20 1.19 1.23 1.39 1.47 1.61

SE 0.24 0.11 0.13 0.14 0.06 0.01 0.04 0.05 0.10

Trastuzumab treated HR6 mice

Mouse Baseline Day 1 Day 4 Baseline Day 1 Day 4 Baseline Day 1 Day 4

1 1.86 1.89 2.15 1.32 1.33 1.17 1.41 1.42 1.84

2 1.22 1.51 1.01 0.86 1.14 0.57 1.42 1.32 1.78

3 1.43 1.28 1.92 1.09 1.21 1.40 1.31 1.05 1.37

4 1.85 1.68 0.86 1.22 1.13 0.47 1.52 1.49 1.85

5 1.31 1.34 1.60 0.99 1.10 1.14 1.33 1.21 1.41

6 2.82 2.37 1.78 1.01 1.00 1.04 2.78 2.38 1.72

7 1.99 1.84 1.84 1.17 1.04 0.84 1.70 1.77 2.18

8 1.65 1.56 NaN 1.03 1.25 NaN 1.59 1.25 NaN

average 1.77 1.68 1.60 1.09 1.15 0.95 1.63 1.49 1.73

SE 0.18 0.12 0.18 0.05 0.04 0.13 0.17 0.15 0.10

Vehicle treated HR6 mice

Mouse Baseline Day 1 Day 4 Baseline Day 1 Day 4 Baseline Day 1 Day 4

1 1.69 1.53 1.90 1.23 1.04 1.26 1.37 1.47 1.50

2 2.43 1.36 2.01 1.05 0.91 0.85 2.33 1.49 2.35

3 1.84 1.86 2.59 1.11 1.23 1.30 1.66 1.51 1.99

4 2.62 1.69 1.92 1.20 1.18 1.30 2.19 1.43 1.47

5 1.68 1.53 1.40 0.95 1.09 0.98 1.77 1.40 1.43

6 1.62 1.89 1.42 1.09 1.20 1.07 1.48 1.58 1.33

average 1.98 1.64 1.87 1.10 1.11 1.13 1.80 1.48 1.68

SE 0.18 0.08 0.18 0.04 0.05 0.08 0.16 0.03 0.16

SUV tumor SUV muscle SULmax

SUV tumor SUV muscle SULmax

SUV tumor SUV muscle SULmax

SUV tumor SUV muscle SULmax

 

 



 
 
121 

CHAPTER VIII 

 

ASSESSING TREATMENT RESPONSE IN HER2+ MURINE MODELS OF BREAST 

CANCER WITH DYNAMIC CONTRAST ENHANCED MRI 

 

Introduction 

The human epidermal growth factor receptor 2 (HER2) is overexpressed in 

approximately 25% of all breast cancers (1,2); HER2 overexpression is usually 

represented by a more aggressive disease phenotype and poor prognosis (2). 

Consequently, specific anti-HER2 therapeutics have been developed that bind to HER2 

and disrupt downstream signaling pathways (3). Trastuzumab (Herceptin®, Genentech, 

San Francisco, CA) is one such therapy that was specifically developed to target HER2. 

The exact mechanisms of action of trastuzumab are unknown (4), however studies have 

shown that trastuzumab inhibits cell signaling pathways leading to an inhibition of 

cellular proliferation and survival. Trastuzumab has also been observed to alter tumor 

microvasculature by downregulating specific growth factors of angiogenesis leading to 

reduced vascular volume and blood flow (5,6). (A more detailed description of these 

mechanisms is provided in Chapter II).  

 A number of imaging techniques that report on specific characteristics of tumor 

vasculature have been developed; including, but not limited to, contrast enhanced 

ultrasound (7,8), contrast-enhanced computed tomography (9), and dynamic contrast 

enhanced magnetic resonance imaging (10). The latter technique is one of current 

interest, and efforts to improve the quality of information derived from dynamic contrast 
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enhanced magnetic resonance imaging (DCE-MRI) in the context of assessing treatment 

response are ongoing. Fundamentally, DCE-MRI is an imaging technique that 

characterizes the pharmacokinetics of an injected contrast agent (CA) as it washes in and 

out of a specific tissue. By acquiring serial T1-weighted images over time, the kinetics of 

the CA can be quantified using (for example) a two-compartment model to estimate 

physiological characteristics relating to tumor microvasculature such as blood flow, 

vessel permeability, and tissue volume fractions. These quantitative measurements have 

been used to assess treatment response in a variety of cancer models and treatment 

regimens (11-13). More recently, the clinical utility of DCE-MRI to predict 

nonresponders from responders earlier in the course of therapy has been reported (14,15).  

 Although the use of DCE-MRI has been investigated in preclinical and clinical 

settings, the clinical translation of quantitative DCE-MRI into routine clinical care of 

cancer has been limited. This can be attributed to the inadequate understanding of 

whether DCE-MRI protocols can predict therapeutic efficacy and the lack of validation to 

assist in the interpretation of the imaging data (16,17). Thus, the objectives of this study 

were to determine if DCE-MRI can assess early treatment response (i.e., before changes 

in tumor size occur) in HER2+ mouse models that are sensitive to trastuzumab. We also 

explored the sensitivity of DCE-MRI to differentiate trastuzumab resistance between 

sensitive and resistant HER2+ xenografts exposed to trastuzumab. Additionally, in an 

attempt to validate the imaging findings, we investigated the relationship between the 

imaging data and the underlying biology. 
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Materials and Methods 

Cell Culture 

Trastuzumab responsive (BT474) and resistant (HR6) cells were gifts from Dr. 

Carlos Arteaga, M.D. at Vanderbilt University. HR6 cells were harvested from BT474 

xenografts as described previously (18). Briefly, female athymic mice with BT474 

xenografts were treated twice per week with 20 mg/kg trastuzumab diluted in sterile 

saline. Tumors that initially responded completely and then recurred in the presence of 

maintained trastuzumab treatment were harvested, minced, and digested to generate the 

HR6 cell line (18). Both cell lines were cultured in improved minimal essential medium 

(IMEM, Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum at 37 °C 

in a humidified, 5% CO2 incubator. To maintain trastuzumab resistance, HR6 cells were 

also cultured with 10 mg/ml trastuzumab as previously described (18). Trastuzumab was 

purchased from the Vanderbilt University Hospital Pharmacy (Nashville, TN). Cells were 

harvested with trypsin at approximately 85% confluence for implantation. 

 

Tumor Xenograft Model 

 Our Institution’s Animal Care and Use Committee approved all animal 

procedures. Female athymic nude mice (n = 25, 4-6 weeks old, Harlan, Indianapolis, IN) 

were implanted with 0.72 mg, 60-day release, 17β-estradiol pellets (Innovative Research 

of America, Sarasota, FL). Twenty-four hours later, approximately 107 BT474 or HR6 

cells, suspended in a 1:10 ratio of growth factor-reduced Matrigel and IMEM, were 

injected subcutaneously into the right flank. Tumor volumes were measured once per 

week via calipers, and experiments commenced once tumor volumes reached > 200 mm3 
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(typically 4 to 8 weeks post cell injection). A 26-gauge jugular catheter was surgically 

implanted for radiotracer delivery. Mice were anesthetized with 2% isoflurane in pure 

oxygen mixture for all surgical procedures. 

 

Trastuzumab Treatment Study 

Mice bearing tumors were grouped into four cohorts: trastuzumab and vehicle 

treated BT474 cohorts, and trastuzumab and vehicle treated HR6 cohorts. The number of 

mice for each cohort and time point is displayed in Table VIII-1. For treatment, mice 

were administered twice in four days with trastuzumab (10 mg/kg) or saline vehicle by 

i.p. (total volume, 100 mL). DCE-MRI was conducted at baseline and days 1 and 4, 

which were 24 hours post first and second treatments, respectively. Figure VIII-1 

illustrates the imaging and dosing schedule for the trastuzumab treatment study. 

 

Figure VIII-1. Longitudinal imaging and trastuzumab treatment study schema. Mice were 
treated twice in four days with either trastuzumab (10 mg/kg) or saline vehicle. DCE-
MRI data were acquired at baseline and 24 hours post the first and second treatments.  

MRI MRI MRI 

Treat Treat 

 D0         D1            D3       D4 

MRI: serial T1-weighted images 
collected over 20 minutes 
Treat: i.p. 10 mg/kg trastuzumab 
Histology: CD31 and H&E 

Sacrifice, 
histology 

Table VIII-1. Tabulated list of animal number for each cohort and time point 
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Volumetric Imaging and Analysis 

All MRI data were collected using a 7T MRI scanner (Agilent Technologies 

(formally Varian), Palo Alto, CA) equipped with a 38 mm quadrature RF coil (Doty 

Scientific, Columbia, SC). Anesthesia was induced and maintained via 2% isoflurane in 

pure oxygen. Animal respiration rate was monitored, and animal body temperature was 

maintained at an external temperature of 32 o C by means of a flow of warm air directly 

into the bore of the magnet. Each animal was placed in a custom built restraint, and the 

tumor region was first localized via 3D gradient echo scout images. Longitudinal tumor 

volume was measured from T2-weighted images; T2-weighted images covering the entire 

tumor volume were acquired using a fast spin-echo pulse sequence with the following 

parameters: TR = 5500 ms, effective TE  = 35.6 ms, 1 mm slice thickness, and an 

acquisition matrix of 128 × 128 over a 28 × 28 mm2 field of view yielding a voxel size of 

0.22 × 0.22 mm2. Data were imported into MATLAB® version R2010b (The 

MathWorks, Natick, MA), and tumor volumes were measured at each time point by 

manually drawing regions of interest (ROIs) along tumor boundaries from all slices 

consisting of tumor tissue. I delineated all tumor ROIs to ensure consistency. 

 

DCE-MRI Data Acquisition  

 The DCE-MRI protocol included acquisition of a pre-contrast T1 map, as well as, 

serial T1-weighted images. Data for the pre-contrast T1 map were obtained by employing 

an inversion recovery fast low angle shot gradient echo sequence with an adiabatic 

inversion pulse with seven inversion times (TI): 15, 27, 49.8, 90, 162, 300, 600 seconds. 

The imaging parameters were as follows: TR/TE/a = 12,000 ms/2.1 ms/15°, NEX = 2, 
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acquisition matrix of 64 × 64, and a 28 × 28 mm2 FOV yielding a voxel size of 0.44 × 

0.44 mm2. Fifteen 1 mm thick slices were acquired to cover the entire tumor volume. 

Dynamic T1-weighted images were acquired using a spoiled gradient echo sequence at a 

temporal resolution of 12.8 seconds for ~20 minutes with the following parameters: 

TR/TE/α  = 100 ms/2.1 ms/25°, NEX = 2, and the same acquisition matrix and FOV as 

the pre-contrast T1 map. A bolus of Gd-DTPA at a concentration of 0.05 mmol/kg was 

delivered via a jugular catheter using an automated syringe pump (Harvard Apparatus, 

Holliston, MA) at a rate of 2.4 mL/min. Eleven baseline images (~ 2 minutes) were 

acquired before Gd-DTPA was administered. 

 

DCE-MRI Data Analysis 

 Data collected for the pre-contrast T1 map were imported into MATLAB, and 

then fit for every image voxel using a nonlinear least squares method to the following 

equation (also described in Chapter III): 

                 (VIII-1) 

where TR is the repetition time, and S0 and S are the signal intensities at thermal 

equilibrium and inversion time, respectively.  

 Once T1 maps were calculated, signal intensity time courses from all tumor voxels 

were analyzed to extract quantitative parameters relating to tumor blood flow, vessel 

permeability, and tissue volume fractions. Each signal intensity time course was then fit 

to a two-compartment model to extract pharmacokinetic parameters (19,20). If a 

homogeneous distribution of the contrast agent is assumed in both compartments, then 

S = S0 ⋅ (1- 2 ⋅e
-TI /T1 +e-TR/T1 ) ,
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the time rate of change of the contrast agent concentration in the tissue, can be described 

as a linear, first-order ordinary differential equation: 

dC
t
(t)

dt
= K trans

⋅C
p
(t)+

Ktrans

v
e

C
t
(t),                 (VIII-2) 

where Ct and Cp are the concentrations of the contrast agent in the tissue and plasma 

compartment, respectively, Ktrans is the volume transfer constant between Cp and Ct, and 

ve is the extravascular extracellular volume fraction. The solution to this equation is: 

C
t
(t)= Ktrans

C
p
(u)

0

t

∫ ⋅ e
−(Ktrans /v

e
)(t-u)
du.                          (VIII-3) 

The measured signal intensity time courses from each voxel were fit to Eq. (VIII-

3) using a nonlinear least squares algorithm to extract estimates of Ktrans and ve. The 

efflux constant that describes the transfer of contrast between Cp and Ct, kep , 

was calculated from the estimated values of Ktrans and ve. The ROIs used for the tumor 

volume measurements were downsampled to match the image resolution of the DCE-

MRI data, and the median Ktrans, kep, and ve were quantified from multiple slices across 

the tumor volume. 

The fitting routine incorporated 1) the pre-contrast T1 value, 2) the fast exchange 

limit model with relaxivity for gadopentetate at 7T, r1 = 4.72/mM/s (21), and 3) a 

population-derived vascular input function collected from a cohort of 10 athymic female 

mice using the identical protocol described by Loveless et al. (21). The population-

derived vascular input function was calibrated for each animal in the current study using 

the method previously described by Li et al. (22). Briefly, a region of interest was drawn 

across three slices in the muscle to generate an averaged signal intensity time course, 

which was then fit to the two-compartment model in an iterative fashion until the ve of 

(≡ Ktrans / ve )
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the muscle equaled a physiologically relevant value, i.e., 0.11 (23). With each iteration 

the peak of the population-derived concentration time course was altered. This process 

was repeated until the muscle ve equaled 0.11 (22).   

 

Histological Analysis 

 Animals were sacrificed immediately following imaging at day 4, and excised 

tumors were fixed in 10% formalin for at least 24 hours. Samples were then transferred to 

70% ethanol and stored in 4 °C. Samples were blocked in paraffin and sectioned with 4-

micron thick slices. Immunohistochemistry for CD31 (CM303; Biocare Medical, 

Concord, CA) and hematoxylin and eosin (H&E) was performed on consecutively 

sectioned slides. Stained sections were imaged at 20× magnification using a Leica 

SCN400 Slice Scanner (Leica, Buffalo Grove, IL). Unbiased and automated image 

analysis was performed with associated software packages that use trained algorithms 

based on shape and intensity of the stain. Microvessel density was quantified from CD31 

stained sections by counting the number of positively stained vessels and dividing it by 

the area of the tissue section. The percentage of extracellular space (EC%) was quantified 

as previously described (11). Briefly, a region was manually drawn around the entire 

tissue section, and every pixel was analyzed to determine whether it contained enough 

staining to be counted. Pixels that did not reach this threshold were considered unstained 

(i.e., extracellular regions). The EC% was calculated using Eq. (VIII-4): 

                  (VIII-4) 

where AROI is the thresholding that includes the total area of the tissue section and Astain is 

the total stained area. Tumor sections from 4-5 mice from each cohort were analyzed for 

EC% = AROI - Astain
Aroi

!

"
#

$

%
&×100,
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comparison with in vivo data. Microvessel density measurements were compared with 

DCE-MRI measurements relating to perfusion/blood flow (e.g., Ktrans, kep). The EC% was 

compared with the extracellular extravascular volume fraction (i.e., ve). 

 

Statistics 

Three statistical comparisons were performed in this study: 1) trastuzumab versus 

vehicle treated BT474 cohorts, 2) trastuzumab versus vehicle treated HR6 cohorts, and 3) 

responders (BT474 treated) versus nonresponders (HR6 treated). Longitudinal DCE-MRI 

parameters were compared within and between cohorts at each time point. Microvessel 

density and EC% were compared between cohorts. All data are presented as mean ± SE. 

All statistical comparisons were evaluated using the nonparametric Wilcoxon rank sum 

test in MATLAB version 2010b, and data were considered significant if p < 0.05. 

 

Results 

Impact of Trastuzumab on Tumor Xenograft Growth 

Longitudinal tumor volumes for the trastuzumab and vehicle treated BT474 

cohorts are displayed in Figure VIII-2A. There was no statistically significant difference 

in tumor volume between these cohorts at the measured timed points (baseline: p = 0.76; 

day 1: p = 0.64; day 4: p = 0.20). In the vehicle treated group, tumor size steadily 

increased over time yet differences after treatment were not statistically significant at day 

1: p = 0.55, compared to baseline) or day 4 (p = 0.29, compared to baseline). 

Trastuzumab inhibited tumor growth in the trastuzumab treated group, although 
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differences were not statistically significant at day 1 (p = 0.53, compared to baseline) or 

day 4 (p = 0.41, compared to baseline).  

Longitudinal tumor volumes for the trastuzumab and vehicle treated HR6 cohorts 

are displayed in Figure VIII-2B. Again, there was no statistically significant difference in 

tumor volume between these cohorts at the measured timed points (baseline: p = 0.35; 

day 1: p = 0.44; day 4: p = 0.54). In the vehicle treated group, non-significant increases in 

tumor size were observed at day 1 (p = 0.65, compared to baseline), and day 4 (p = 0.75, 

compared to baseline). In the trastuzumab treated group, tumor size steadily increased 

over time yet differences after treatment were also not statistically different day 1 (p = 

0.84, compared to baseline) or day 4 (p = 0.84, compared to baseline). 

To evaluate the impact of trastuzumab on tumor xenografts with different 

trastuzumab sensitivities, longitudinal tumor volume from the trastuzumab treated BT474 

(responder) and HR6 (nonresponder) cohorts are graphed for comparison in Figure VIII-

2C. Similar to the other cohort comparisons, differences in tumor volume between 

responders and nonresponders were not statistically significant at any of the measured 

time points (baseline: p = 0.76; day 1: p = 0.53; day 4: p = 0.29).  

Figure VIII-2. Impact of trastuzumab on tumor growth in the: (A) trastuzumab sensitive 
BT474, (B) trastuzumab resistant HR6, and (C) trastuzumab treated BT474 and HR6 
xenografts. Tumor volume was measured from T2-weighted MR images. Significant 
differences were not observed between cohorts at any of the measured time points. 
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DCE-MRI Assesses Early Treatment Response Between BT474 Cohorts 

Figure VIII-3 displays the representative parametric maps of Ktrans and ve for a 

mouse in the trastuzumab and vehicle treated BT474 groups. The tumor parametric maps 

are superimposed onto one of the baseline serial T1-weighted images for anatomical 

reference. The Ktrans parametric maps illustrate a marked increase in Ktrans with the 

trastuzumab treated group compared to the vehicle control. This result was unexpected 

considering the previously observed antiangiogenic effects of trastuzumab (5,6). We 

return to this point in the Discussion. Additionally, a slight increase in longitudinal ve is 

observed in the trastuzumab treated group compared to the controls.  

 
 
Figure VIII-3. Parametric maps of Ktrans and ve are displayed for a representative animal 
from each trastuzumab and vehicle treated BT474 cohort. Note the marked increase in 
Ktrans at day 1 with the treated animal compared with the control animal. This result was 
unexpected due to the antiangiogenic effects of trastuzumab. Also note the slight increase 
in longitudinal ve in the trastuzumab treated animal compared to the relatively no change 
in ve for the control animal. For viewing purposes only, voxels with ve > 1 were set to 1. 
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Figure VIII-4 displays longitudinal changes in Ktrans (left panel), kep (center 

panel), and ve (right panel) in the BT474 cohorts. A significant difference in Ktrans is 

observed at day 4 between the trastuzumab and vehicle treated cohorts (Figure VIII-4A, p 

= 0.03). At day 4, the Ktrans of the trastuzumab treated group was significantly higher 

than the vehicle treated group, which was unexpected considering the previous observed 

antiangiogenic effects of trastuzumab (5,6). We return to this point in the Discussion. In 

the trastuzumab treated group, a non-significant increase was observed at day 1 (p = 1.00, 

compared to baseline) while a significant increase in Ktrans was observed at day 4 (p = 

0.04, compared to baseline). In the vehicle treated group, non-significant decreases in 

Ktrans were observed at day 1 (p = 1.00, compared to baseline) and day 4 (p = 0.9, 

compared to baseline). 

Significant differences in kep were not observed at any time point during the study 

between the BT474 trastuzumab and vehicle treated cohorts (Figure VIII-4B; baseline: p 

= 0.53; day 1: p = 0.88; day 4: p = 0.11). In the trastuzumab treated group, a non-

significant decrease in kep was observed at day 1 (p = 0.62, compared to baseline) 

followed by a non-significant increase at day 4 (p = 0.23, compared to baseline). In the 

vehicle treated group, non-significant decreases in kep were observed at day 1 (p = 0.84, 

compared to baseline) and day 4 (p = 1.00, compared to baseline). 

A significant difference in ve was observed at day 4 between the trastuzumab and 

vehicle treated cohorts (Figure VIII-4C, p = 0.03). In the trastuzumab treated group, a 

trend towards a significant increase in ve was observed at day 1 (p = 0.07, compared to 

baseline) followed by a significant increase at day 4 (p = 0.006, compared to baseline). In 
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the vehicle treated group, non-significant increases in ve were observed at day 1 (p = 

0.31, compared to baseline) and day 4 (p = 0.56, compared to baseline). 

 
Figure VIII-4. Longitudinal changes in the pharmacokinetic parameters derived from 
DCE-MRI data. Early changes (i.e., before tumor size) in Ktrans (A) and ve (C) were 
observed between the trastuzumab and vehicle treated BT474 cohorts. Differences in kep 
between cohorts were not statistically significant at any of the time points (B). * p < 0.05 

 

Representative examples of CD31 and H&E tissue sections for a mouse from each 

BT474 cohort are illustrated at 20× magnification in Figure VIII-5. The amount of CD31 

staining appears to be larger in the trastuzumab treated animal compared to the vehicle 

treated animal (Figure VIII5-A, top row). This qualitative observation was supported by 

the significant increase in microvessel density from the trastuzumab treated BT474 mice 

compared to the controls (Figure VIII-5B; p  = 0.03). The significant difference in CD31 

between these two cohorts corresponds with the in vivo data for Ktrans (Figure VIII-4A). 

Qualitatively, it appears that the H&E tissue section from the trastuzumab treated animal 

has more extracellular space than the tumor from the vehicle treated tumor (Figure VIII5-

A, bottom row). This qualitative observation was supported by the observed significant 

difference in EC% (Figure VIII-5C). Additionally, this significant difference in EC% 

corresponds with the observed significant difference in ve (Figure VIII-5C).  
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Figure VIII-5. CD31 and H&E histology comparisons between the trastuzumab and 
vehicle treated BT474 cohorts. It can be observed from the sample CD31 stains that the 
trastuzumab treated cohort has increased CD31 staining (A, top row). This observation is 
supported by the significant increase in microvessel density from the trastuzumab treated 
cohort compared to the controls (B). It can be observed from the sample H&E stains that 
the trastuzumab treated group has an increased amount of extracellular space compared to 
the vehicle treated group (A, bottom row). This observation is also supported by the 
significant increase in EC% from the trastuzumab treated cohort (C). * p < 0.05 
 

No Difference in DCE-MRI Pharmacokinetic Parameters Between HR6 Cohorts 

Figure VIII-6 displays representative parametric maps of Ktrans and ve for a mouse 

in the trastuzumab and vehicle treated HR6 groups. The tumor parametric maps are 

superimposed onto one of the baseline serial T1-weighted images for anatomical 

reference. It can be observed qualitatively from these images that minimal changes in 

Ktrans and ve occur longitudinally in these cohorts. Additionally, both the Ktrans and ve 

values appear to be similar between the trastuzumab and vehicle treated HR6 groups. 
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Figure VIII-6. Parametric maps of Ktrans and ve are displayed for a representative animal 
from each trastuzumab and vehicle treated HR6 cohort. Note how neither of these 
parameters change longitudinally in both of these cohorts. For viewing purposes only, 
voxels with ve > 1 were set to 1. 

 

The group average for the actual parameter values and percent change is graphed 

at each measured time point in Figure VIII-7 for the trastuzumab and vehicle treated HR6 

cohorts, where Ktrans, kep, and ve are shown in the left, center, and right panels, 

respectively. The difference in Ktrans between the HR6 cohorts was not statistically 

significant at any time point (Figure VIII-7A; baseline: p = 0.28; day 1: p = 0.53; day 4: p 

= 1.00). In the trastuzumab treated HR6 group, the decrease in Ktrans trended towards 

significance at day 1 (p = 0.06, compared to baseline), and then was followed by a non-

significant increase at day 4 (p = 0.84, compared to baseline). In the vehicle treated 
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group, non-significant increases in Ktrans were observed at day 1 (p = 0.80, compared to 

baseline) and at day 4 (p = 0.49, compared to baseline).  

Significant differences in kep were not observed at any time point during the study 

between the HR6 trastuzumab and vehicle treated cohorts (Figure VIII-7B; baseline: p = 

0.94; day 1: p = 0.28; day 4: p = 0.54). In the trastuzumab treated group, non-significant 

decreases in kep were observed at day 1 (p = 0.22, compared to baseline) and day 4 (p = 

0.69, compared to baseline). In the vehicle treated group, a non-significant decrease in kep 

was observed at day 1 (p = 0.13, compared to baseline), which was followed by a non-

significant increase at day 4 (p = 0.61, compared to baseline). 

Significant differences in ve were not observed at any time point during the study 

between the HR6 trastuzumab and vehicle treated cohorts (Figure VIII-7C; baseline: p = 

0.28; day 1: p = 1.00; day 4: p = 0.13). In the trastuzumab treated group, a non-significant 

decrease in ve was observed at day 1 (p = 1.00, compared to baseline), which was 

followed by an increase in ve that trended towards significance (p = 0.07, compared to 

baseline). In the vehicle treated group, non-significant increases in ve were observed at 

day 1 (p = 0.51, compared to baseline) and day 4 (p = 0.18, compared to baseline). 

 

Figure VIII-7. Longitudinal changes in the pharmacokinetic parameters derived from 
DCE-MRI data. Significant differences between cohorts were not observed with any of 
the pharmacokinetic parameters at the measured time points. 
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Representative examples of CD31 and H&E tissue sections for a mouse from each 

HR6 cohort are illustrated at 20× magnification in Figure VIII-8. The amount of CD31 

staining between the trastuzumab and vehicle treated cohorts appears to be similar 

(Figure VIII8-A, top row). This qualitative observation was supported by the similar 

microvessel density measurements between the cohorts (Figure VIII-8B; p  = 1.00). The 

non-significant difference in CD31 between these two cohorts corresponds with the in 

vivo data for Ktrans (Figure VIII-8A). Qualitatively, it appears that the H&E tissue section 

from the trastuzumab treated animal (lower right) has slightly more extracellular space 

than the vehicle treated animal (lower left). This observation is supported by the trend in 

EC% (Figure VIII-7C), where the EC% calculated from the trastuzumab treated HR6 

cohort was larger than the vehicle controls; however, the difference between cohorts was 

not statistically significant (p = 0.19). Additionally, the trend in EC% corresponds with 

the trend in ve values observed in the trastuzumab treated cohort of HR6 tumor-bearing 

mice (Figure VIII-7C).  

 

Figure VIII-8. CD31 and H&E histology comparisons between the trastuzumab and 
vehicle treated HR6 cohorts. It can be observed from the samples that the CD31 staining 
is similar between cohorts (A, top row). This observation is supported by the non-
significant difference in microvessel density (B, p = 1.00). It can be observed from the 
sample H&E stains that the trastuzumab treated group might have a slightly larger EC% 
compared to the vehicle group (A, bottom row). This observation was also observed by 
the increase in EC% from the trastuzumab treated cohort, however the difference 
between cohorts was not statistically significant (C, p = 0.19).  
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DCE-MRI Evaluation of Treatment Response Between Responders and Nonresponders 

The group average for the actual parameter values and percent change is graphed 

at each measured time point in Figure VIII-9 for the responders (BT474 treated) and 

nonresponders (HR6 treated), where Ktrans, kep, and ve are shown in the left, center, and 

right panels, respectively. The difference in Ktrans between these cohorts was statistically 

significant at all time points during the study (Figure VIII-9A; baseline: p = 0.03; day 1: 

p = 0.005; day 4: p = 0.02). The difference in kep between these cohorts was statistically 

significant at baseline (Figure VIII-9A, p = 0.02), trended towards significance at day 1 

(p = 0.05), and then was significantly different again at day 4 (p = 0.02). The difference 

in ve between these cohorts was not statistically significant at the measured time points 

(Figure VIII-9C; baseline: p = 0.34; day 1: p = 0.15; day 4: p = 1.00).  

Figure VIII-9. Longitudinal changes in the pharmacokinetic parameters derived from 
DCE-MRI data for the responders and nonresponders. Significant differences in Ktrans 
were observed at all of the measured time points (A). Similar to Ktrans, significant 
differences in kep were observed between cohorts at baseline and day 4 (B); the difference 
between cohorts at day 1 trended towards significance (p = 0.05). No statistically 
significant differences in ve were observed at the measured time points (C). *p < 0.05, 
**p < 0.01.  
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VIII-10. Microvessel density is increased in the responder group (which corresponds to 

the in vivo Ktrans data; Figure VIII-9A), however the difference between the groups is not 

statistically significant (p = 0.42). Additionally, the EC% is slightly increased in the 

responder group, however the difference is not statistically significant (p = 0.90). 

Furthermore, the non-significant difference in EC% corresponds with the non-significant 

difference in ve observed between these cohorts (Figure VIII-9C).  

 

Figure VIII-10. CD31 and H&E histology comparisons between the responder and 
nonresponder cohorts. Microvessel density in the responder group is slightly increased 
compared to the nonresponders, however the difference is not statistically significant (B, 
p = 0.42). Similarly, the EC% in the responder group is slightly increased, but again the 
difference is not statistically significant (C, p = 0.90). Although not significant, the trends 
in both the microvessel density and EC% correspond with the in vivo DCE-MRI data.  
 

Discussion 

The main mechanism of action of trastuzumab appears to be the disruption of 

downstream cell signaling pathways leading to inhibition of cellular proliferation and 

survival (2,4). A secondary mechanism of action has been observed where trastuzumab 

acts as an antiangiogenic agent to reduce vascular volume and flow (5). The former 

observation will occur, by definition, earlier than changes in tumor size. Additionally, 

treatment-induced changes in tumor vasculature might also occur sooner than changes in 

tumor morphology. Thus, one of the unique advantages of imaging tumor physiology is 
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that quantitative functional and molecular imaging techniques have the ability to capture 

treatment-induced changes before any palpable/volumetric changes in tumor growth are 

observed; thus, providing early response assessments. The goals of this study were to 

examine the sensitivity of DCE-MRI to: 1) assess early treatment response in HER2+ 

breast cancer xenografts that are trastuzumab responsive, and 2) differentiate between 

trastuzumab responsive and resistant HER2+ breast cancer xenografts exposed to 

trastuzumab.  

An early treatment-induced change in Ktrans was observed between the 

trastuzumab and vehicle treated BT474 cohorts. Interestingly, Ktrans of the trastuzumab 

treated group was significantly higher than the vehicle group. This result was unexpected 

considering the previously observed antiangiogenic effects of trastuzumab (5,6). 

Additionally, we hypothesized that Ktrans would decrease with effective treatment, as has 

been previously observed with other antiangiogenic agents (11,13). When we quantified 

the microvessel density measurements, however, we observed a significant increase in 

the trastuzumab treated cohorts. Thus, the histological result corresponds with the in vivo 

Ktrans measurement. The increase in microvessel density and the subsequent increase in 

Ktrans in the trastuzumab treated cohort could be explained by an increase in vascular 

volume contributing to an increase in vessel flow that in turn increases Ktrans (in a flow-

limited regime (20)). However, it is well known that Ktrans is a mixed parameter, 

reflecting on vessel flow, vessel permeability, or most often in tumors, a combination of 

the two (20). In this experiment, it is almost impossible to tease out the different 

contributions of vessel flow and permeability from the Ktrans measurement. To investigate 

to what extent trastuzumab affects vessel flow or permeability, a future DCE-MRI 



 
 
141 

experiment with a larger-sized contrast agent (e.g., albumin-Gd-DTPA (24)) could be 

used so that Ktrans reflects vessel permeability. For example, if trastuzumab affects 

permeability, then Ktrans would decrease with a larger contrast agent. However, an 

increase in Ktrans would reflect a trastuzumab-induced change in vessel flow.  

In addition to microvessel density measurements assessed via CD31 staining, 

employing another histological marker that reflects vessel perfusion instead of just vessel 

morphology would add to the physiological understanding of Ktrans. For example, 

Moasser et al. used fluorescein isothiocyanate (FITC)-labeled lectin perfusion studies in 

addition to CD31 staining in order to glean information about the tumor morphology and 

functionality during a DCE-MRI evaluation of treatment response with an epidermal 

growth factor receptor inhibitor (24).  

Another plausible explanation for the significant increase in Ktrans observed from 

the trastuzumab treated BT474 cohort is the idea of “tumor remodeling”. Suppose that 

before any treatment, the whole tumor volume has areas of viable and necrotic regions. 

After treatment the necrotic regions might shrink with tumor volume, resulting in an 

apparent increase in Ktrans as there is now less necrotic voxels that consequently have 

lower Ktrans values contributing to the whole tumor measurement. Future analyses to 

investigate changes in the distribution of Ktrans (i.e., histogram analysis or regional 

clustering) might provide more information than just reporting one summary statistics 

from the whole tumor volume. 

An early treatment-induced change in ve was also observed between the 

trastuzumab and vehicle treated BT474 cohorts. The ve value of the trastuzumab treated 

group was significantly higher than the vehicle group. This was an expected result 
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considering that trastuzumab inhibits cellular proliferation causing an increase in 

extracellular space, which in turn results in an increase in the extravascular extracellular 

volume fraction, ve. When we quantified the percentage of extracellular space (i.e., EC%) 

from H&E tissue sections, we observed a significant increase in EC% in the trastuzumab 

treated cohorts. Thus, the histological result corresponds with the in vivo ve measurement. 

We also demonstrated that parameters derived from quantitative DCE-MRI 

analyses are not different between trastuzumab and vehicle treated mice with 

trastuzumab-resistant (i.e., HR6) xenografts although one cohort was receiving therapy 

that was intended to alter cellular proliferation and vascular physiology. Both of the 

histological parameters supported the in vivo data, as significant differences in 

microvessel density and EC% were not observed between the groups. These results then 

allowed for the comparison between the so-called responders and nonresponders, or the 

trastuzumab-treated BT474 and HR6 cohorts, respectively.  

DCE-MRI parameters relating to vascular flow and permeability (i.e. Ktrans, kep) 

were significantly different between responders and nonresponders at baseline. Ktrans 

continued to be significantly different at both time points after the initiation of treatment, 

and kep was significantly different at day 4. These results not only suggest that DCE-MRI 

can differentiate between trastuzumab sensitivities, but that Ktrans and kep might be 

prognostic factors for trastuzumab effectiveness. Although we did not observe a 

statistical difference in microvessel density, the expected trend (i.e., microvessel density 

is higher in the responder group) was observed. A statistical difference in ve was not 

observed between the responders and nonresponders, which was corroborated by the non-

significant difference in EC%.  
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Study Limitations 

The optimal imaging time points for this study were determined from a separate 

group of trastuzumab and vehicle treated mice with BT474 xenografts (see Chapter VI). 

Although a significant difference in tumor volume was observed at day 4 in the previous 

study, treatment-induced differences in tumor volume were not statistically different at 

day 4 in the current study. Thus, due to the variability of mouse physiology and treatment 

efficiency, a true study endpoint based on tumor size changes was not achieved in the 

current study. This is not ideal, especially in studies that are evaluating if an imaging 

parameter is a biomarker of early treatment response; however, the trends in tumor 

volume changes were as expected. 

Quantitative analysis of DCE-MRI requires the concentration of the contrast agent 

in the plasma. As noted in Chapter III, the gold standard for this measurement is blood 

sampling. However, the difficulty of collecting blood samples at a sufficient temporal 

resolution, particularly in small animals, limits the efficiency of this method. Thus, we 

employed a population-derived vascular input function collected from a group of gender 

and age matched population of mice. We note that the use of a population-derived 

vascular input function can lead to parameter errors due to the overestimation or 

underestimation of the contrast agent concentration in the plasma (i.e., Cp) in individual 

subjects. Error in the measurement of Cp would manifest itself in errors of the derived 

parameters, i.e., Ktrans and ve. Recognizing this is as a potential limitation of the study, we 

used the method previously described by Li et al. to calibrate the population-derived 

input function for each mouse based on the characteristics of a known tissue, which in 

this study was the ve of muscle (22). After setting the ve of muscle to a certain value (i.e., 
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0.11), we then adjusted the peak concentration of the population-derived input function in 

order to better reflect the actual pharmacokinetics for each animal. However, errors could 

still occur resulting in unphysical values, for example, ve > 1. Thus, we eliminated those 

voxels from the whole tumor analysis as including them would have skewed the Ktrans, 

kep, and ve measurements. 

 

Conclusion 

DCE-MRI is an emerging quantitative imaging technique that offers noninvasive 

measurements of vascular physiology and tissue volume fractions. Efforts to evaluate the 

ability of DCE-MRI data to provide early response assessments as well as prognostic 

indicators of eventual response are ongoing. The results from this study suggest that 

DCE-MRI parameters Ktrans and ve are early biomarkers of response in trastuzumab 

sensitive HER2+ xenografts. Furthermore, this work shows that DCE-MRI has the 

potential sensitivity to differentiate between HER2+ xenografts with varying trastuzumab 

sensitivities (i.e., BT474 versus HR6). The latter result potentially has significant clinical 

impact as the development of imaging methods that can separate responders from 

nonresponders earlier during the course of therapy is of great interest in order to reduce 

medical cost and negative systemic effects caused by ineffective therapies. 
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CHAPTER IX 

 

ASSESSING TREATMENT RESPONSE IN HER2+ MURINE MODELS OF BREAST 

CANCER WITH DIFFUSION-WEIGHTED MRI 

 

Introduction 

Imaging biomarkers that can detect and characterize cancer as well as monitor the 

response to therapy are of great interest. Diffusion-weighted magnetic resonance imaging 

(DW-MRI) is a promising technique as it provides a noninvasive, quantitative 

characterization of tumor cytoarchitecture, data acquisition does not require an 

exogenous contrast agent, and can be obtained relatively rapidly (1). DW-MRI depends 

on the microscopic, thermally-induced behavior of water molecules moving in a random 

pattern, classically referred to as Brownian motion. In a system defined by small 

compartments (e.g., cellular tissues) that are separated by semi-permeable membranes, 

the rate of Brownian motion or self-diffusion will be less than that of free diffusion. In 

cellular tissues, this rate of self-diffusion is described by an apparent diffusion coefficient 

(ADC), which is influenced by the number, permeability, and separation of barriers that 

act to restrict the free diffusion of water molecules (2). DW-MRI maps the ADC, and in 

well-controlled situations the variations in ADC have been shown to correlate inversely 

with tissue cellularity (3).  

Since a hallmark of cancer is uncontrolled tumor growth leading to high cell 

density and loss of normal cytoarchitecture (4), DW-MRI could provide an early 

biomarker of biological abnormality. Thus, the development of DW-MRI methods that 
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can provide an earlier assessment of disease response is an active area of research.  It has 

been shown, in preclinical (2,5-7) and clinical (8-10) settings, that exposure of tumors to 

both chemotherapy and radiotherapy consistently leads to measurable increases in water 

diffusion in cases of favorable response. However, before any of these methods can be 

employed in routine clinical care, a systematic evaluation is required, which includes the 

assessment of protocol reproducibility, treatment response evaluation in a variety of 

cancer types and treatment regimens, and development of validation methods to assist in 

the interpretation of the imaging findings. This Dissertation performed a systematic 

evaluation of DW-MRI in HER2+ breast cancer xenografts that are sensitive and resistant 

to trastuzumab. The study discussed in Chapter V assessed DW-MRI reproducibility and 

provided a measurement of protocol variability. The work discussed in this chapter 

explored the utility of DW-MRI to provide an early therapeutic response assessment. 

This study also quantified a histological correlate to help provide an interpretation of the 

in vivo imaging findings.  

 

Materials and Methods 

Cell Culture 

Trastuzumab responsive (BT474) and resistant (HR6) cells were gifts from Dr. 

Carlos Arteaga, M.D. at Vanderbilt University. HR6 cells were harvested from BT474 

xenografts as described previously (11). Briefly, female athymic mice with BT474 

xenografts were treated twice per week with 20 mg/kg trastuzumab diluted in sterile 

saline. Tumors that initially responded completely and then recurred in the presence of 

maintained trastuzumab treatment were harvested, minced, and digested to generate the 
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HR6 cell line (11). Both cell lines were cultured in improved minimal essential medium 

(IMEM, Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum at 37°C in 

a humidified, 5% CO2 incubator. To maintain trastuzumab resistance, HR6 cells were 

also cultured with 10 mg/ml trastuzumab as previously described (11). Trastuzumab was 

purchased from the Vanderbilt University Hospital Pharmacy (Nashville, TN). Cells were 

harvested with trypsin at approximately 85% confluence. 

 

Tumor Xenograft Model 

 Our Institution’s Animal Care and Use Committee approved all animal 

procedures. Female athymic nude mice (n = 38, 4-6 weeks, Harlan, Indianapolis, IN) 

were implanted with 0.72 mg, 60-day release, 17β-estradiol pellets (Innovative Research 

of America, Sarasota, FL). Twenty-four hours later, approximately 107 BT474 or HR6 

cells, suspended in a 1:10 ratio of growth factor-reduced Matrigel and IMEM, were 

injected subcutaneously into the right flank. Tumor volumes were measured once per 

week via calipers, and experiments commenced once tumor volumes reached > 200 mm3 

(typically 4 to 6 weeks post cell injection). A 26-gauge jugular catheter was surgically 

implanted for radiotracer delivery. Mice were anesthetized with 2% isoflurane in pure 

oxygen mixture for all surgical procedures. 

 

Trastuzumab Treatment Study 

Mice bearing tumors were grouped into four cohorts: trastuzumab and vehicle 

treated BT474 cohorts, and trastuzumab and vehicle treated HR6 cohorts. The number of 

mice for each cohort and time point is displayed in Table IX-1. For treatment, mice were 
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administered trastuzumab (10 mg/kg) or saline vehicle by i.p. (total volume, 100 mL) 

twice within four days. DCE-MRI was conducted at baseline and days 1 and 4, which 

were 24 hours post the first and second treatments, respectively. Figure IX-1 illustrates 

the imaging and dosing schedule for the trastuzumab treatment study. 

 

Volumetric Imaging and Analysis 

All MRI data was collected using a 7T MRI scanner (Agilent Technologies 

(formally Varian), Palo Alto, CA) equipped with a 38-mm quadrature RF coil (Doty 

Scientific, Columbia, SC). Anesthesia was induced and maintained via 2% isoflurane in 

pure oxygen. Animal respiration rate was monitored, and animal body temperature was 

maintained at an external temperature of 32 o C by means of a flow of warm air directly 

into the bore of the magnet. Each animal was placed in a custom built restraint, and the 

Table IX-1. Tabulated list of animal number for each cohort and time point 

 

 
 
Figure IX-1. Longitudinal imaging and trastuzumab treatment study schema. Mice 
were treated twice in four days with either trastuzumab (10 mg/kg) or saline vehicle. 
DW-MRI data were acquired at baseline and 24 hours post the first and second 
treatments.  
 



 
 
151 

tumor region was first localized via 3D gradient echo scout images. Longitudinal tumor 

volume was measured from T2-weighted images; T2-weighted images covering the entire 

tumor volume were acquired using a fast spin-echo pulse sequence with the following 

parameters: TR = 5500 ms, effective TE = 35.6 ms, 1 mm slice thickness, and an 

acquisition matrix of 128 × 128 over a 28 × 28 mm2 field of view yielding a voxel size of 

0.22 × 0.22 × 1 mm3. Data were imported into MATLAB® version R2010b (The 

MathWorks, Natick, MA), and tumor volumes were measured at each time point by 

manually drawing regions of interest (ROIs) along tumor boundaries from all slices 

consisting of tumor tissue. I delineated all tumor ROIs to ensure consistency. 

 

DW-MRI Data Acquisition 

 After volumetric imaging, anesthesia was continued and diffusion-weighted 

images were acquired using a standard pulsed gradient spin echo sequence with three b 

values (150, 500, and 800 s/mm2) and gradients applied simultaneously along the three 

orthogonal directions (x, y, and z). Scan acquisition parameters were: TR/TE = 

2000/30 ms, gradient duration δ  = 3 ms, gradient interval Δ = 20 ms, two signal 

excitations, and an acquisition matrix of 64 × 64 over a 28 × 28 mm2 field of view 

yielding a voxel size of 0.44 × 0.44 mm2. Multiple 1 mm thick slices with a 1 mm gap 

were acquired over the entire tumor region. Image acquisition was triggered with 

respiration and navigator corrected (12) to reduce image artifacts due to bulk motion. 
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DW-MRI Data Analysis 

 To construct an ADC parametric map, signal intensities from images acquired at 

three b values were fit for each image voxel using a nonlinear least squares optimization 

method to Eq. (IX-1): 

        (IX-1) 

where S0 and S(b) are the signal intensities before and after application of diffusion 

gradients, respectively. As we did not acquire images without application of diffusion 

gradients (i.e., b = 0), S0 was a free parameter in our optimization routine. The ROIs used 

for the tumor volume measurements were downsampled to match the image resolution of 

the DW-MRI data. Both the mean and median ADC were quantified from multiple slices 

across the tumor volume. To ensure DW-MRI data integrity, a water phantom was 

imaged simultaneously with the animal in each imaging session. If a tumor slice had a 

water phantom ADC value outside the range of 2.65 × 10-3 mm2/s ± 15% (ADC value of 

free water at 32o C; linearly interpolated from reference (13)), then the tumor ADC slice 

was not used in the tumor analysis. All data analysis methods were performed in 

MATLAB® version R2010b. 

 

Removing Necrosis 

It is well known that regions of necrosis have increased ADC values (8,14), which 

will systematically bias the summary statistics (i.e., mean and median) of the whole 

tumor ROIs towards higher ADC values. To remove the potential affects of necrosis from 

the ADC measurements, necrotic regions identified as low perfused regions from 

contrast-enhanced MR images were removed from the ADC analysis.  

S(b)= S0 ⋅exp(-ADC ⋅b),
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Serial, contrast-enhanced MRI data were acquired using a spoiled gradient echo 

sequence at a temporal resolution of 12.8 seconds for ~20 minutes with the following 

parameters: TR/TE /a  = 100 ms/TE  = 2.1 ms / 25°, NEX = 2, and the same acquisition 

matrix and FOV as the DW-MRI data. A bolus of 0.05 mmol/kg Gd-DTPA was delivered 

via a jugular catheter using an automated syringe pump (Harvard Apparatus, Holliston, 

MA) at a rate of 2.4 mL/min after 11 images of baseline (~ 2 minutes) were acquired. 

The slope of the dynamic signal intensity time course from each voxel was calculated 

from the average value of the baseline images to the signal intensity value at 60 seconds 

post injection (see Figure IX-2). If the slope was less than 20%, the voxel is determined 

to be poorly perfused and removed from the tumor ADC analysis.  

 

Histological Analysis 

 Immediately following imaging at day 4, animals were sacrificed and excised 

tumors were fixed in 10% formalin for at least 24 hours. Samples were then transferred to 

 
Figure IX-2. Examples of contrast-enhanced dynamic time courses of a well 
perfused (red line) and not well perfused (black line) voxels. The slope (blue line) is 
illustrated from the mean of the baseline images to the signal intensity at 60 seconds 
post injection. 
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70% ethanol and stored in 4 °C. Samples were blocked in paraffin and sectioned with 4-

micron thick slices before processing with hematoxylin and eosin (H&E). Stained 

sections were imaged at 20× magnification using a Leica SCN400 Slice Scanner (Leica, 

Buffalo Grove, IL). Unbiased and automated image analysis was performed with 

associated software packages that use trained algorithms based on shape and intensity of 

the stain. Cell density was quantified from H&E stained sections by counting the total 

number of cells and dividing it by the area of the tissue section.  

 

Statistics 

Three statistical comparisons were performed in this study: 1) trastuzumab versus 

vehicle treated BT474 cohorts, 2) trastuzumab versus vehicle treated HR6 cohorts, and 3) 

responders (BT474 treated) versus nonresponders (HR6 treated). Longitudinal ADC 

values were compared within and between cohorts at each time point. Cell density 

quantified from H&E data were compared between cohorts at day 4. All data are 

presented as mean ± standard error (SE). All statistical comparisons were evaluated using 

the nonparametric Wilcoxon rank sum test in MATLAB version 2010b, and differences 

were considered significant if p < 0.05. 

 

Results 

Impact of Trastuzumab on Tumor Xenograft Growth 

Longitudinal tumor volumes for the trastuzumab and vehicle treated BT474 

cohorts are displayed in Figure IX-3A. There was no statistically significant difference in 

tumor volume between these cohorts at baseline (p = 0.76) or day 1 (p = 0.76); however, 
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a trend towards significance was observed at day 4 (p = 0.09). In the vehicle treated 

group, tumor growth steadily increased over time yet differences after treatment were not 

statistically significant compared to baseline (day 1: p = 0.80, +1.82% ± 1.23% compared 

to baseline; day 4: p = 0.32, +7.67% ± 4.44% compared to baseline). While Trastuzumab 

treatment inhibited tumor growth, the difference in tumor volume was not statistically 

significant at day 1 (p = 0.60, -4.98% ± 2.19% compared to baseline), and only trended 

towards significance at day 4 (p = 0.09, -26.5% ± 6.02% compared to baseline).  

Longitudinal tumor volumes for the trastuzumab and vehicle treated HR6 cohorts 

are displayed in Figure IX-3B. No statistically significant difference in tumor volume 

was observed between these cohorts at the measured timed points (baseline: p = 0.13; day 

1: p = 0.13; day 4: p = 0.23). In the vehicle treated group, tumor growth steadily 

increased over time yet differences after treatment were not statistically significant 

compared to baseline (day 1: p = 0.60, +8.32% ± 1.94% compared to baseline; day 4: p = 

0.44, +15.2% ± 3.26% compared to baseline). In the trastuzumab treated group, tumor 

growth also steadily increased over time yet differences after treatment were not 

statistically significant (day 1: p = 0.86, +3.29% ± 1.59% compared to baseline; day 4: p 

= 1.00, +5.61% ± 5.16% compared to baseline). 

To evaluate the impact of trastuzumab on tumor xenografts with different 

trastuzumab sensitivities, longitudinal tumor volume within the trastuzumab treated 

BT474 (responder) and HR6 (nonresponder) cohorts are compared in Figure IX-3C. 

Similar to the other cohort comparisons, difference in tumor volume between responders 

and nonresponders was not statistically significant at baseline (p = 0.40) or day 1 (p = 

0.22), though it trended towards significance at day 4 (p = 0.06).  
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DW-MRI Evaluation of Treatment Response in BT474 Xenografts 

 An ADC parametric map from a representative animal from each trastuzumab and 

vehicle treated BT474 cohort is displayed in Figure IX-4A. The median ADC values and 

the percent change in median ADC are displayed in Figures IX-3B and 3C, respectively. 

No statistical difference in median ADC was observed between the trastuzumab and 

vehicle treated cohorts at any measured time point (Figure IX-3B; baseline: p = 0.22; day 

1: p = 0.94; day 4: p = 0.54). Additionally, the percent change in median ADC at either 

time point after baseline was not statistically different between cohorts (Figure IX-3C; 

day 1: p = 0.54; day 4: p = 0.89). In the trastuzumab treated group, non-significant 

increases in ADC were observed at day 1 (p = 0.84) and day 4 (p = 0.13). In the vehicle 

treated group, a non-significant increase in ADC was also observed at day 1 (p = 0.34) 

followed by another increase that trended towards significance at day 4 (p = 0.07). The 

graphical representation and results from the statistical comparisons for the mean ADC 

were similar to the median ADC, and thus not shown. 
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Figure IX-3. ADC parametric maps are displayed for a representative animal from each 
trastuzumab and vehicle treated BT474 cohort (A). No statistically significant differences 
in longitudinal ADC values between the cohorts (B). The percent change (compared to 
baseline) in ADC was not statistically significant between cohorts at day 1 or day 4 (C). 
The units for ADC are mm2/s. 
 

 

 

0 1 2 3 4
4

6

8

10

12 x 10ï4

day

A
D

C 
(m

m
2 /s)

 

 

Vehicle
Trastuzumab

0 1 2 3 4
4

6

8

10

12 x 10ï4

day

A
D

C 
(m

m
2 /s)

 

 

Vehicle
Trastuzumab

0 1 2 3 4
4

6

8

10

12 x 10ï4

day

A
D

C 
(m

m
2 /s)

 

 

Nonresponder
Responder

Day 1 Day 4
0

20

40

60

80

A
D

C 
(m

m
2 /s)

 

 

Vehicle
Trastuzumab

Day 1 Day 4
0

20

40

60

80

A
D

C 
(m

m
2 /s)

 

 

Vehicle
Trastuzumab

Day 1 Day 4
0

20

40

60

80

A
D

C 
(m

m
2 /s)

 

 

Nonresponder
Responder

Trastuzumab 

Baseline          Day 1         Day 4 

Vehicle 

 

2.0 x10-3 
 
1.5 
 
1 
 
0.5 
 
0 

A 

B C 



 
 
158 

DW-MRI Evaluation of Treatment Response Between HR6 Xenografts 

 An ADC parametric map from a representative animal from each trastuzumab and 

vehicle treated HR6 cohort is displayed in Figure IX-4A. The median ADC values and 

the percent change in median ADC are displayed in Figures IX-4B and 4C, respectively. 

No statistical difference in median ADC was observed between the trastuzumab and 

vehicle treated cohorts at any measured time point (Figure IX-4B; baseline: p = 0.13; day 

1: p = 0.93; day 4: p = 0.89). Additionally, the percent change in median ADC at either 

time point after baseline was not statistically different between cohorts (Figure IX-4C; 

day 1: p = 0.39; day 4: p = 0.24). In the trastuzumab treated group, a non-significant 

increase in ADC was observed at day 1 (p = 0.19, +11.6% ± 4.36% compared with 

baseline) followed by a significant increase in ADC at day 4 (p = 0.006). In the vehicle 

treated group, non-significant increases in ADC were observed at day 1 (p = 0.67) and 

day 4 (p = 0.26). The graphical representation and results from the statistical comparisons 

for the mean ADC were similar to the median ADC, and thus not shown.  
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DW-MRI Evaluation of Treatment Response Between Responders and Nonresponders 

 No statistical difference in median ADC was observed between the trastuzumab 

and vehicle treated cohorts at any measured time point (baseline: p = 0.93; day 1: p = 

 
Figure IX-4 ADC parametric maps are displayed for a representative animal from each 
trastuzumab and vehicle treated HR6 cohort (A). No statistically significant 
differences in longitudinal ADC values between the cohorts (B). The percent change 
(compared to baseline) in ADC was not statistically significant between cohorts at day 
1 or day 4 (C). The units for ADC are mm2/s. ** p < 0.01 
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0.45; day 4: p = 0.28). Additionally, the percent change in median ADC at either time 

point after baseline was not statistically different between cohorts (day 1: p = 0.45; day 4: 

p = 0.54). The results from the statistical comparisons for the mean ADC were similar to 

the median ADC and thus not shown.  

 

DW-MRI Evaluation of Treatment Response After Necrosis Segmentation 

It can be noted from the ADC parametric maps illustrated in Figures IX-3 and 4 

that regions of necrosis develop over time in the vehicle treated BT474 group as well as 

both of the HR6 cohorts. Necrotic voxels that were poorly perfused (determined from the 

contrast-enhanced MRI data) were removed, and mean and median ADC values were 

again calculated from the resulting tumor voxels. Serial, contrast-enhanced MR images 

were not collected for all mice; thus, the number of mice used for the ADC comparison 

after necrosis segmentation is tabulated in Table IX-2. 

Table IX-2. Tabulated list of animal number used in the ADC comparison after 
necrosis removal 

Time point
BT474 
treated

BT474 
control

HR6 
treated

HR6 
control

Baseline 7 5 5 8
Day 1 7 5 5 8
Day 4 5 4 5 7  

 

The median ADC values after necrosis segmentation are displayed for each cohort 

comparison in Figure IX-5. The longitudinal results for median ADC were relatively 

unchanged after necrosis segmentation; the only different result being that the median 

ADC between trastuzumab and vehicle treated HR6 cohorts at baseline trended towards 

significance (p = 0.05). Results from the statistical analysis are tabulated in Tables IX-3 
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and 4 for the within and between cohort comparison, respectively. The graphical 

representation and results from the statistical comparisons for the mean ADC were again 

similar to the median ADC, and thus not shown. 

 

Figure IX-5. Longitudinal median ADC after necrosis segmentation for the trastuzumab 
and vehicle treated BT474 cohorts (A), trastuzumab and vehicle treated HR6 cohorts (B), 
and the responders and nonresponders (C). The median ADC of the HR6 treated cohort 
(i.e., nonresponder) increased significantly at day 4 compared to baseline (*p = 0.03).  
 

Table IX-3. The p values from the statistical comparison between cohorts 

Time point BT474 HR6
Responder vs 
Nonresponder

Baseline 0.89 0.05 0.77
Day 1 0.70 0.78 0.86
Day 4 1.00 0.66 0.27  

Table IX-4. The p values from the statistical comparison within each cohort 

Time point
BT474 
treated

BT474 
control

HR6 
treated

HR6 
control

Day 1 0.55 0.42 0.24 0.44
Day 4 0.54 0.56 0.03 0.86  

 

Histological Evaluation of Cell Density 

Representative H&E stained tissues sections at 20× magnification are displayed in 

for a representative animal from each BT474 and HR6 cohort in the top and bottom rows, 

* 
A B C 
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respectively, in Figure IX-6. A significant difference in cell density was not observed 

between BT474 cohorts (Figure IX-7A), which supported the non-significant difference 

in ADC at day 4 (Figure IX-3B). Although the difference in cell density was not 

statistically different, the trend in the measurements appears to correlate inversely with 

ADC at day 4 (Figure IX-3B). A significant difference in cell density was not observed 

between HR6 cohorts (Figure IX-7B), which supported the non-significant difference in 

ADC at day 4 (Figure IX-4B). Additionally, the difference in cell density is not 

statistically significant between the responders (BT474 treated) and the nonresponders 

(HR6 treated) (Figure IX-7C), which also corresponds with the comparison the in vivo 

ADC data between these cohorts. Note from the H&E stained tissue sections that both the 

HR6 groups appear to have a lower number of cells than the BT474 groups; this 

observation is reflected in the cell density measurements displayed in the bar graphs. 

Furthermore, the cell density of the vehicle treated BT474 group is significantly greater 

than the trastuzumab and vehicle treated HR6 groups (p  = 0.01). 

 
 
Figure IX-6. Representative examples of H&E stained tissue sections imaged at 20× 
magnification are displayed from one animal in each cohort. Note how the cell packing 
from each of the HR6 cohorts appears to be less when compared to the BT474 cohorts. 
 

Vehicle Trastuzumab 

BT474 
 
 
 
 
 
 

HR6 
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Figure IX-7. Cell density comparison between trastuzumab and vehicle treated BT474 
and HR6 cohorts. A significant difference in cell density was not observed between 
BT474 groups (A). However, note that the trend in cell density appears to inversely 
correlate with ADC at day 4 (Figure IX-4B). A significant difference in cell density was 
not observed between HR6 groups (B). The lower cell packing of the HR6 cohorts is 
reflected in the lower cell density measurements of both HR6 cohorts compared to the 
BT474 cohorts. The significant difference in cell density between responders and 
nonresponders was not statistically significant (C), however the trend correlates with the 
longitudinal ADC illustrated in Figure IX-6C. 
 

Discussion 

 In recent years, there has been considerable growth in the number of quantitative 

functional and molecular imaging biomarkers that are capable of providing noninvasive 

measurements of treatment-induced changes. DW-MRI is an emerging technique where 

the derived imaging parameters (e.g., ADC) have been shown to correlate with cellular 

density (3,15,16). As a hallmark of cancer is uncontrolled tumor growth leading to high 

cell density and loss of normal cytoarchitecture (4), DW-MRI could potentially provide 

an early biomarker of biological abnormality. However, before a biomarker, such as 

ADC, can be used in routine clinical assessments of disease response, a systematic 

evaluation in a variety of cancer models and treatment regimens are required. Thus, the 

objective of this study was to evaluate the utility of DW-MRI to provide an early 

response assessment in two HER2+ human breast cancer xenografts exposed to 

trastuzumab.  

0

1000

2000

3000

4000

5000

6000

7000

# 
of

 c
el

ls
 p

er
 m

m
2

 

 

Vehicle
Trastuzumab

0

1000

2000

3000

4000

5000

6000

7000

# 
of

 c
el

ls
 p

er
 m

m
2

 

 

Vehicle
Trastuzumab

0

1000

2000

3000

4000

5000

6000

7000

# 
of

 c
el

ls
 p

er
 m

m
2

 

 

Nonresponder
ResponderA B C 



 
 
164 

 The results of this study indicate that DW-MRI is not sensitive to trastuzumab-

induced changes in the trastuzumab-sensitive BT474 mouse model of human breast 

cancer. The main mechanism of action of trastuzumab is the inhibition of cell signaling 

pathways leading to cellular proliferation and survival. Thus, a plausible hypothesis 

would be that the ADC derived from DW-MRI measurements will increase with effective 

treatment. However, we observed practically no change (after removing necrotic voxels) 

in longitudinal ADC in both the trastuzumab and vehicle treated BT474 cohorts. This 

result could be due to two things: 1) the imaging time points employed in this study were 

not optimal to catch the transient nature of treatment-induced changes in ADC (14), or 2) 

another observed mechanism of action is the antibody-dependent cell-mediated 

cytotoxicity (ADCC) effect where trastuzumab interacts with specific immune cells 

initiating infiltration of natural killers and macrophages that cause inflammation (17). 

The optimal imaging time points for this study were set based on tumor volume 

changes, as one of the study objectives was to evaluate ADC as an early marker of 

response before significant changes in tumor size are observed. However, the optimal 

timing window to observe trastuzumab-induced changes in tumor ADC might be earlier 

or later than 24 hours post one cycle of therapy. For example, Thoeny et al. quantified 

ADC at 1 hour, 6 hours, 2 days, and 9 days after therapy and observed significant 

decreases in tumor ADC at the 1 and 6 hour time points, which is indicative of increased 

cell swelling, respectively (18). An increase in ADC at the 2-day follow-up suggests that 

progressive necrosis is forming. ADC decreased at the 9-day follow-up, which is 

consistent with tumor relapse resulting in a reorganization of the tumor cytoarchitecture 

(18). If data were not acquired at any one of the imaging time points in the highlighted 
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study, then the transient nature of ADC in response to treatment would not be fully 

characterized.  

The ADCC phenomenon has mainly been observed in patients (or animals) with 

intact immune systems. In mice with suppressed natural killers cell function, trastuzumab 

demonstrated only a 29% reduction in tumor growth compared to 96% reduction in 

control mice with intact natural killer cell function (19). Clinical data has shown a higher 

in situ infiltration of leukocytes in patients who achieved complete or partial remission 

with neoadjuvant trastuzumab relative to those who did not respond (20). If trastuzumab 

interacts with the immune cells resulting in an influx of macrophages, this would cause a 

decrease in tumor ADC. However, this influx of macrophages also causes inflammation 

resulting in an ADC increase. In this situation, the overall median (or mean) tumor ADC 

may not change significantly. However, one would argue that this effect is minimal in 

mice with compromised immune systems. The mice used in this study are athymic, 

meaning that they lack T-cells; the immune effect from natural killer cells remains 

unchanged. Thus, the ADCC phenomenon could be occurring in these animals and 

affecting our observed ADC measurements.  

We observed very interesting results when comparing longitudinal ADC between 

the trastuzumab and vehicle treated cohorts, as well as, between responders (BT474 

treated) and nonresponders (HR6 treated). Tumor volume and ADC increased over time 

in both HR6 cohorts. This result was unexpected considering that previous studies 

observed an inverse relationship between tumor volume and ADC (2,5,21). The volumes 

of some of the HR6 xenografts were quite large resulting in regions of necrosis at 

baseline. Additionally, the necrotic volumes increased over the course of the study (e.g., 
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see Figure IX-5), thus biasing the mean or median tumor ADC toward higher values. The 

effect of necrosis on tumor ADC has previously been observed in xenograft studies, and 

the authors used the signal intensity from T2-weighted images to remove necrotic voxels 

(5). Thus, we also used an additional imaging technique to remove necrosis; we removed 

necrosis based on tumor perfusion from contrast-enhanced MRI data.  

Removing necrosis did not seem to have any effect as the tumor ADC values from 

both the trastuzumab and vehicle treated HR6 cohorts still increased compared to 

baseline. The next step was to investigate the histology to see if the observed imaging 

result was in fact true and representative of the underlying biology. It can be observed 

from Figure IX-7 that the H&E tissue sections of both the HR6 cohorts appear to be less 

densely packed with cells compared to the BT474 groups. This qualitative assessment is 

supported, as the cell density is lower in both HR6 groups compared to the BT474 groups 

(Figure IX-8). In fact, the cell density of the trastuzumab and vehicle treated HR6 cohorts 

was significantly lower than the vehicle treated BT474 group (p < 0.05). These results 

suggest that the observed in vivo ADC values are reflecting the underlying biology. 

 

Study Limitations 

 The optimal imaging time points for this study were determined from a separate 

group of trastuzumab and vehicle treated mice with BT474 xenografts (see Chapter VI). 

Although a significant difference in tumor volume was observed at day 4 in the previous 

study, treatment-induced differences in tumor volume were not statistically different at 

day 4 in the current study. Thus, due to the variability of mouse physiology and treatment 

efficiency, a true study endpoint based on tumor size changes was not achieved. This is 
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not ideal, especially in studies that are evaluating if an imaging parameter is a biomarker 

of early treatment response. 

 The segmentation method (i.e, slope of the dynamic contrast-enhanced signal 

intensity time course) used in study to remove necrotic voxels may not be the most 

optimal technique. We assumed that if a voxel is not well perfused, that it is not viable 

and removed it from the ADC analysis. This may or may not be a valid assumption in 

tumors as voxels could contain viable cells but not functioning tumor vasculature. A 

more sophisticated analysis of the perfusion data would be clustering the dynamic curves 

into groups using, for example, a k-means clustering algorithm (22). This technique 

would group the voxels with similar dynamic time courses in order to provide a better 

means of segmentation than the wash-in slope, which was calculated in this study.  

 Another means of necrotic segmentation would be to compute functional 

diffusion maps between the imaging time points, as the change in ADC between time 

points should be minimal in necrotic regions (14). This method, however, requires 

longitudinal registration between imaging time points, which is not feasible with the 

current imaging set-up.  

 

Conclusion 

 The results from this study suggest that DW-MRI does not provide an early 

biomarker of response in trastuzumab sensitive or resistant xenografts exposed to 

trastuzumab. However, we showed that a parameter derived from DW-MRI data (i.e., 

ADC) does reflect the underlying tumor biology. The latter result is just as important as 

the treatment response evaluation as it provides validation for the current in vivo imaging 
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technique in order to assist in the interpretation of imaging findings from future treatment 

response studies.  
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CHAPTER X 

 

CONCLUSION 

 

The standard-of-care radiographic response assessment is based on one-

dimensional changes in tumor size. With the development of anticancer therapies that 

induce molecular changes that would occur substantially sooner than changes in 

morphology, one-dimensional assessments of response may not be the most sensitive or 

accurate approach. Functional and molecular imaging techniques that provide 

quantitative assessments of tumors could have a fundamental role in oncology as they 

have the ability to noninvasively measure specific molecular changes of the tumor. Much 

progress has been made to improve the quality of information available from functional 

and molecular imaging techniques in order to noninvasively measure tumor growth, 

assess tumor status, and predict treatment response. Obstacles have inhibited translation 

of many functional and molecular imaging techniques into routine clinical practice; thus, 

a need exists to further develop quantitative imaging techniques that can report on 

specific characteristics of cancer in order to improve patient care.  

This work has developed standardized experimental protocols for several small-

animal PET and MRI techniques, as well as, assessed protocol reproducibility. This work 

also evaluated the application of several current and emerging PET and MRI techniques 

to assess early treatment response in HER2+ breast cancer models exposed to 

trastuzumab. The application of PET and MRI to differentiate between two HER2+ 

models with varying degrees of trastuzumab sensitivity was also investigated. Lastly, the 
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parameters derived from the image data were compared to histology in order to examine 

the relationship between the in vivo imaging data and the underlying biology.  

This work has shown that small-animal imaging techniques with 18F-FDG PET, 

18F-FLT PET, 18F-FMISO PET, and DW-MRI are reproducible and can be reliably 

employed in treatment response studies. Furthermore, this work quantified thresholds 

where changes greater than this value would reflect changes in tumor physiology and not 

measurement error in a group or individual analysis.   

 With the observation that trastuzumab inhibits cell signaling pathways leading to 

cellular proliferation and survival, as well as, angiogenesis, this work examined the 

ability of 18F-FLT PET, DCE-MRI, and DW-MRI to provide early response assessments 

of HER2+ breast cancer models that are sensitive and resistant to trastuzumab. This work 

showed that 18F-FLT PET and DCE-MRI provided early biomarkers of response in 

trastuzumab sensitive xenografts. This work also showed that 18F-FLT PET differentiates 

responders (trastuzumab-sensitive) from nonresponders (trastuzumab-resistant) when 

exposed to trastuzumab. In the context of this study, parameters derived from DW-MRI 

data were not sensitive to trastuzumab-induced changes in HER2+ xenografts.  

 The histological correlates for 18F-FLT PET (e.g., Ki67) and DCE-MRI (e.g., 

microvessel density quantified via CD31 staining) corresponded with the in vivo imaging 

data, thereby providing some validation for the observed treatment-induced changes in 

the trastuzumab sensitive xenografts. The observed trend in the histological 

measurements corresponded with the imaging data from the responder and nonresponder 

comparison, however the differences in the histology measurements were not statistically 

significant. Although DW-MRI was not sensitive to trastuzumab response in this study, 
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the cell density measurements from histology corresponded with the DW-MRI data 

suggesting that measurements of cell density from DW-MRI reflected the underlying 

biology of tumor. 

Overall, these contributions have aided in the development, implementation, and 

interpretation of future treatment response studies. This work has created a paradigm by 

which other imaging protocols as well as current and emerging breast cancer treatments 

might be evaluated.   


