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CHAPTER I 

 

INTRODUCTION 

 

Exposure to humans to natural radiation from cosmic rays and from soil is an everyday 

occurrence.    In addition to those forms of radiation, radionuclides from building materials may 

cause further exposures.  The burning of coal is a significant element in the US energy budget; 

Figure 1* shows the primary forms of energy production in the United States. 

 

 

Figure 1. Energy production and usage in the United States. 

 

                                                           
*
 http://www.eia.gov/energy_in_brief/major_energy_sources_and_users.cfm 

http://www.eia.gov/energy_in_brief/major_energy_sources_and_users.cfm
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Coal fired power plants (CPPs) release naturally occurring radioactive material during 

the combustion of coal.   Fly ash, a by-product of CPPs, has many beneficial applications, for 

example in roads, building materials, concrete, cement and other materials.    From a survey 

from American Coal Ash Association (ACAA 2010) 6.77x107 short tons of fly ash were produced 

in 2010 and 2.57x107, 37.9%, was used beneficially, this percentage substantially greater than 

many countries (Baykal et al. 2011, Papastefanou 2010).  Figure 2 shows results of a survey 

regarding fly ash use, along with other CCRs that can be used beneficially.   

 

Figure 2. 2010 Coal Combustion Product survey. 
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However, use of fly ash has come under scrutiny due to recent accidents, as well as a 

general interest in evaluating the possible dosimetric consequences for humans of use of this 

material in these applications.  A notable fly ash spill occurred in Kingston, TN at a facility 

owned by the Tennessee Valley Authority (TVA) in 2008, in which over a billion gallons of fly ash 

and coal slurry were spilled due to a disposal cell rupture.  This was the largest spill of this 

nature to occur in United States history.  The Environmental Protection Agency (EPA) has thus 

decided to review their policies on regulation of fly ash.  The EPA’s proposal has two options, to 

regulate coal combustion residues (CCRs) under subtitle C as special wastes or under subtitle D 

as non-hazardous waste (40 CFR 75(118) 35128-35264); both options would operate under The 

Resource Conservation and Recovery Act (RCRA).  Beneficial use of fly ash could be affected by 

this decision, though usage eliminates waste and saves money.  Fly ash as an additive in 

concrete not only reduces the amount of waste products produced by CPPs but also increases 

the robustness of concrete by increasing the strength and durability of the concrete (Baykal and 

Saygili 2011).  

 In this work, analyses of the radioactive content of samples of fly ash were performed 

to determine if beneficial uses of fly ash in building materials could be of radiological concern.  

Analysis was also performed on samples of gypsum, scrubber sludge and fixated scrubber 

sludge.  The content of 234U and 232Th decay series radionuclides, as well as of 40K, was 

determined via gamma spectroscopy. Figures 2and 3 show the uranium chain and thorium 

decay series. 
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Figure 3. 238Uranium decay series†. 

  

 

 

 

 

 

 

 

                                                           
†
 ICRP 2012 
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Figure 4. 232Th decay series‡. 

  

 

 

 

 

 

 

                                                           
‡
 ICRP 2012 



6 
 

40K is not part of a decay series; it’s 1461 keV gamma is the key gamma. 

 

Figure 5. 40K decay scheme. 

 

After determination of typical fly ash radionuclide concentrations, a dosimetric analysis was 

performed using Monte Carlo transport simulations in concrete structures of various sizes 

assumed to contain different levels of incorporated fly ash. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

Pathways to radiation dose 

Radiation is ubiquitous; ionizing radiation from space constantly bombards our 

atmosphere and naturally occurring radionuclides are present in soil, water, food, air, and the 

human body.  Radionuclides were produced when the universe first formed, although many 

have decayed away since their creation.  Three important naturally occurring radionuclide 

decay chains – the uranium series, thorium series and actinium series, plus the radionuclide 40K 

provide significant contributions to our external background radiation. 226Ra, a daughter 

product of uranium, is responsible for the major fraction of internal dose, whether from 

ingestion or inhalation through 222Rn gas.  Uranium is present in soil and groundwater, which 

contribute to human exposures through internal and external exposure pathways.   

When radiation was first discovered there was little understanding of the potentially 

deleterious effects of ionizing radiation to humans.  Medical uses of x-rays and 226Ra 

proliferated in the early 1900s, as the benefits of the medical uses of radiation began to be 

realized. But soon, short and long term effects of radiation were beginning to be understood. In 

1925, Dr. A. Mutscheller suggested a limiting dose of 1/100 of a threshold erythema dose per 

month, an “R-unit.”  Simple limits of dose to the whole body to 1/10 of a 'skin erythema dose' 

per year, and an internal limit of 0.1 µg of radium in the body were proposed in 1941. Over 

subsequent decades, the international scientific community studied these effects extensively, 
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and dose limits were refined; finally in 1959 the ICRP released a report in the Health Physics 

Journal that laid the basis for a comprehensive system of radiation protection for radiation 

workers and the public. This work was mostly adopted and released as the first formal national 

US regulation of radiation exposures, Title 10 of the Code of Federal Regulations, Part 20, i.e. 

10CFR20.  (Stabin 2007).   

Today, there are many laws regarding contamination from radiation exposure and 

inhalation, chemical toxicity, air pollution and water pollution.  Throughout the 1950s and 

1960s, a general realization grew in the US of the need to formalize a regulatory basis for 

protection of the environment from all forms of potential chemical and radiological damage, 

and this led to the formation of the Environmental Protection Agency (EPA) in 1970.  In the 

recent years, nuclear regulations and policies have received heightened scrutiny because of the 

disaster at the Fukushima nuclear installation and debate over the high level waste (HLW) 

geologic repository in Yucca Mountain, Nevada.  Some of the major laws regulating nuclear 

materials and waste are listed below (Clarke 2012) 
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One of the most important regulations is the Atomic Energy Act (AEA) of 1954.  It is the law that 

governs nuclear materials and waste, and both the Nuclear Regulatory Commission (NRC) and 

the EPA draw their enforcement jurisdiction from this act.  The Nuclear Waste Policy Act (NWPA) 

of 1983 was established to develop a geologic repository for high level wastes (HLW) from the 

operation of nuclear power plants.  The act authorized the creating of a repository, which after 

much study and expenditure of federal funds was determined to be in Yucca Mountain, 

Nevada.  Due to political reasons, use of this site, as of this writing, has been put on hold 

indefinitely.   

 The EPA also established laws relating to environmental contamination such as the Safe 

Drinking Water Act (SDWA) and the Clean Air Act (CAA), which set limits of permissible levels of 

contaminates, both radioactive and chemical.  The EPA also oversees implementation of the 

RCRA, which covers solid and hazardous waste.  RCRA is important to this study because this is 

the act that will govern fly ash disposal, either under Subtitle C as hazardous waste or under 

Subtitle D as “special waste.”  However, currently, and perhaps in the future, fly ash is 

exempted from RCRA under the Bevell Amendment.  When regulating hazardous materials, the 

EPA considers all avenues of contamination and the best analysis of possible receptors is to 

build a site conceptual model as in Figure 6 (Brown 2008). 
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Figure 6. Conceptual site model with groundwater contamination pathway. 

 

When overseeing the release of contaminates, such as the fly ash spill in Tennessee in 2008, the 

EPA uses such conceptual site models to determine the type of effect releases of this kind could 

have on the air, water, biota and many other factors.   

 Since the EPA, NRC and other regulatory bodies have been overseeing releases of 

radioactive materials to the environment, there have been areas found that have elevated 

concentrations of some radionuclides.  For those that live in those areas, depending on the 

method of contamination, there are ways to circumvent this problem.  For example, water 

supplies in the Atlantic coastal plain areas and piedmont provinces were found to exceed the 

existing radium limit of 185 Bqm-3 (5 pCiL-1) (Lucas 1982, EPA 1991) with a maximum of 958 
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Bqm-3 (Hess 1985 et al.).  A study was performed to determine the most effective water 

treatment method.  Reverse osmosis and sodium ion-exchange processes were 92% effective 

and lime-soda ash softening processes reduced concentrations from 75 to 95% (Brinck et al. 

1978). 

Areas with high indoor radon have been discovered, e.g. the now famous Watras house 

in Pennsylvania.  Mr. Watras worked at a nuclear power plant and set off radiation monitors 

consistently.  It was determined that the radiation was of natural origin, and the Watras home 

was tested for 222Rn; the indoor radon concentration was found to be 100 kBq m-3 (2700 pCi L-

1). The Watras were advised to vacate the premises by the Pennsylvania Department of Energy 

Resources.  This event has widely been seen as the triggering point that led to the Indoor 

Abatement Act, which led to research of indoor radon concentrations (Cole 1993). 

Fortunately, there are ways to reduce exposures to radon gas.  A simple way is to use air 

filtration systems or fans throughout the home to increase air turnover (Curling et al. 1990a,b).  

One may seal openings in the foundations of the home or use “sub-slab suction” devices to 

draw out the gas (Eisenbud and Gesell 1997).  It is important to note that while exposure to 

high levels of radon may be potentially dangerous, most levels are low and if higher 

concentrations can be managed with the abatement methods described above.  Risk informed 

regulations should be implemented, so as to balance cost and benefit (Clarke 2012).   

All building materials contain radionuclides at some levels  Using fly ash in concrete, 

increases the durability of the concrete, reduces the need to utilize natural resources and it 

eliminates costly waste, but may raise the dose from naturally occurring radionuclides present 

in the coal combustion residues. 
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Inhalation of radon gas is one of two pathways humans can receive a radiation dose 

from fly ash within building materials, the second being external dose by gamma rays.  Fly ash 

contains radionuclides from the uranium series, thorium series and 40K.  These nuclides emit 

alpha, beta and gamma radiation.  While alpha and beta radiation are particles will be absorbed 

within the walls, gamma radiation is an electromagnetic wave and can penetrate through the 

walls. However, both the uranium and thorium series have radon isotopes; radon is a noble gas, 

and so can diffuse out of the concrete. It and its progeny emit alpha, beta and gamma radiation.  

The dose one receives depends on the porosity of the concrete, the air exchange rate in the 

room, the occupancy, distance and percentage of the concrete/fly ash mixture.  The radon itself 

is inhaled and exhaled quickly, but the progeny are usually attached to dust particles, due to 

their electrostatic charge, and may be deposited on the walls of the respiratory tract and 

deliver dose to important tissues there over their longer retention time (Eisenbud 1997). 
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A study from the US Geological  Survey (USGS 1997) concluded that the majority of our 

radiation exposure comes from natural sources. 

 

 

Figure 7. US Geological  Survey for natural radiation. 

 

Most of the radiation dose we receive actually comes from natural sources – natural radon, 

cosmic radiation and terrestrial from the soil.    Furthermore, all building materials are 

radioactive to some extent, whether from natural or artificial origin.   

 

Literature on specific activity of fly ash and other pertaining material 

There are conflicting views as to whether use of fly ash could represent a significant risk 

to human health.  A study from the European Commission (EC 112) found that there was 

potential to have annual exposures above 1 mSv in buildings with concrete containing a high 
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percentage of fly ash and possible if the use natural building stones are used in bulk amounts.  

They defined an 'activity concentration index' (I) for identifying whether a dose criterion is met 

using the following formula: 

 

 Where CRa, CTh, CK is the specific activity of 226R, 232Th, 40K.   The activity concentration index 

should not exceed the following values below depending on the dose criterion and the way and 

the amount the material is used in a building.  

 

The study also found one could get an annual effective dose of about 0.25 mSv in addition to 

the dose received outdoors living in an apartment block made of concrete with average 

concentrations of 40, 30, and 400 Bq kg-1 for radium, thorium and potassium respectively 

(Markkanen 1995). 

 The most common method to determine the specific activity of these materials is 

gamma ray spectroscopy using HPGe (El Afifi et al. 2006), but other methods may be used, such 

as alpha particle spectrometry, beta particle counting or gamma measurements after 

radiochemical separation (Johnston 1997, Koler 2002).  Also, it has been pointed out that radon 
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isotopes may not necessarily be in secular equilibrium with parent nuclides due to geo-chemical 

processes (Kovler et al. 2005). 

Specific activities for fly ash, building materials and other sources have been given in 

Tables 2-9.  Turhan et al. (2010) evaluated fly ash concentrations of 238U§, 232Th, and 40K and 

found values between 17 to 2720, 9 to 696, 12 to 2974 Bq kg-1, respectively.  This is a 

considerable range, and many of the literature values have wide a wide range.  Coles et al. 

(1978), in a domestic study, the range was decreased and found lower overall maximum 

concentrations, with 238U, 232Th, and 40K values between 70 to 130, 63 to 89, 233 to 300 Bq kg-1, 

respectively. Similar results were given in a European Commission study (EC 112 1999), which 

showed a much higher range of concentrations, with means of 180, 100, 650 Bq kg-1 for 238U, 

232Th, and 40K. Other studies have found concentrations of 117.5, 126.8, 687 and 134.2, 74.7, 

646.9 Bq kg-1 for 238U, 232Th, and 40K (Nakaoka et al. 1984, Bem et al. 2002).  Literature values 

for natural gypsum have average means of 15, 13.6, 112 for 238U, 232Th, and 40K (EC 112 1999, 

Trevisi et al. 2012, El Afifi et al. 2006, NCRP 1987). 

The specific activity in uranium and radium is related inversely to the diameter of the 

ash.  Also, fly ash size varies depending on the stage within the coal fired power plant; 

Papastefanou (2010) took fly ash from three separate stages in the combustion process and 

found as the ash flows towards the stack, they decrease in diameter, as seen from below. 

                                                           
§
 Assuming secular equilibrium with 

226
Ra and 

238
U 
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Figure 8. Mean diameter of ash throughout the combustion process. 

 

Table 1. Specific activity throughout the combustion process. 

 

 

The specific activities are seen to be different by as much as a factor of two depending on the 

point in combustion.  
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Table 2. Fly ash concentrations reported by other investigators (Bq kg-1). 

  238U 232Th 40K Source 

  Mean  Min Max Mean Min  Max Mean Min  Max   

        100   300 650   1500 EC 112 (1999) 

  356 263 950       297 204 382 
Papastefanou 
(2010 ) 

  574 460 870             
Papastefanou et 
al.  (1979) 

        102 9 696 517 12 2974 
Turhan et al. 
(2010) 

  97 44 169 74 33 126 728 185 1547 
Tomczynska et 
al. (1980 ) 

        132 107 207 268 56 348 
Mirshra et al. 
(1984) 

  118 106 124 127 114 13 687 618 722 
Nakaoka et al. 
 (1984) 

  89 76 114 91 57 130 364 170 615 
Fardy et al. 
(1989) 

        111 90 126       
Hayumbu et al. 
(1995) 

  134 94 185 75 48 92 647 449 758 
Bem et al. 
(2002) 

    70 130   63 89   233 300 
Coles et al. 
(1978) 

                      

Mean 228 159 363 101 65 198 520 241 1016   

Standard 
deviation 197 151 375 22 37 203 186 200 868   

Min 89 44 114 74 9 13 268 12 300   

Max 574 460 950 132 114 696 728 618 2974   

 

 

Coal, like fly ash, can be highly variable in radionuclide concentration.  One study found 

the specific activity of uranium to be as high as 15,000 Bq kg-1 in coal from Freital, Germany 

(Vandenhove 2000).  Others have found 1,480 Bq kg-1 of 226Ra in coal samples from Illinois and 

2,590 Bq kg-1 of 226Ra in coal from Northern Greece (Barber and Giorgio 1977, Papastefanou 

and Charalambous, 1979, 1980). 
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 Secular equilibrium between 238U and 226Ra in fly ash has been contested by many 

(Kovler et al. 2005, Papastefanou and Charalambous, 1979, 1980) but it is usually assumed for 

coal (Coles et al. 1978). One study hypothesized an surplus of 238U due to precipitation in 

reduction zones in coal mines or removal of 234U by flowing waters (Papastefanou 2010). 

 

Table 3. Coal concentrations reported by other investigators (Bq kg-1). 

  238U 232Th 40K Source 

  Mean  Min Max Mean Min  Max Mean Min 
 

Max   

  18 1 540 21 2 320 52 1 710 Beck, DOE - 1980 

    9 32   6 21   27 52 
Coles et al.(1978 - 
US) 

  385 298 435             
Papastefanou et al. 
(1979) 

  38 2 141 30 9 107 294 37 759 
Tomczynska et al. 
(1980) 

        37 26 48 95 7 200 Mishra et al. (1984) 

  12 6 16 13 7 19 72 40 180 
Nakaoka et al. 
(1984) 

  24 13 39 14 9 153       Bem et al. (2002) 

  243 117 399       108 59 227 
Papastefanou 
(2010) 

  12     8     26     Tracy et al. (1985) 

  416           106     Font et al. (1993) 

                      

Mean  144 64 229 20 10 111 108 29 355   

Stdev 177 111 222 11 8 115 87 22 301   

Min 12 1 16 8 2 19 26 1 52   

Max 416 298 540 37 26 320 294 59 759   

 

 

World average building material specific activity has been cited to be 50, 50, and 500 Bq 

kg-1, with world average soil levels of 35 (17-60), 30 (11-64), 400 (140-850) Bq kg-1 for 226Ra, 

232Th, and 40K respectively (UNSCEAR 1993, UNSCEAR 2000).  Radiation exposures from 
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radionuclides in building materials depend on the type of materials used; wood for example, 

does not have much radioactivity but it shields less from cosmic radiation.  Soil concentrations 

can be highly variable, with levels reported as high as 1,000 Bq kg-1 for 238U, 360 Bq kg-1 for 

232Th and 3,200 Bq kg-1 for 40K (UNSCEAR 2008).   

 

Table 4. Cement concentrations reported by other investigators (Bq kg-1). 

  238U 232Th 40K Source 

  Mean  Min Max Mean Min  Max Mean Min 
 

Max   

  18     14     293     
Ramadan et al. 
(2006) 

        48     115     Beretka et al.  (1985) 

        59     564     
Malancea et al. 
(1993) 

        29     273     Khan et al. (2001) 

        24     432     Kumar et al. (1999) 

        27     422     Amrani et al. (2001)  

  51     23     832     Ibrahim (1999) 

        19     230     Ackers et al. (1985) 

        132     506     Mollah et al. (1986) 

        37     173     Xinwei (2005) 

  46     21     237     NCRP (1987) 

                      

Mean  38     39     371       

Stdev 18     34     208       

Min 18     14     115       

Max 51     132     832       
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Table 5. Concrete concentrations reported by other investigators (Bq kg-1). 

  238U 232Th 40K Source 

  Mean  Min Max Mean Min  Max Mean Min  Max   

        30   190 400   1600 EC 112 (1999) 

        40   190 430   1600 EC 112 (1999) 

        37 12 65 354 95 766 Ademola (2005) 

        35 1 152 392 7 1450 Trevisi (2012) 

Limestone 31     9     89     NCRP (1987) 

Sandstone 1     9     385     NCRP (1987) 

    19 89   15 120   260 1100 (Eicholz, 1980) 

                      

Mean 16 30 435 27 16 133 342 163 1269   

Stdev 21 16 489 14 15 54 126 135 335   

Min 1 19 89 9 1 65 89 7 766   

Max 31 41 780 40 37 190 430 290 1600   

 

Table 6. Soil concentrations reported by other investigators (Bq kg-1). 

  238U 232Th 40K Source 

  Mean  Min Max Mean Min  Max Mean Min  Max   

US  35 4 140 35 4 130 370 100 700 UNSCEAR(2000) 

 World 33     45     420     UNSCEAR (2000) 

  22     37     400     NCRP(1987) 

        34 1 258 483 0 3200 UNSCEAR (2010) 

                      

Mean 30 4 140 38 3 194 418 50 1950   

Stdev 7 ---- ---- 5 2 91 48 71 1768   

Min 22 4 140 34 1 130 370 0 700   

Max 35 4 140 45 4 258 483 100 3200   

 

 

 

 

 

 



21 
 

Table 7. Natural gypsum concentrations reported by other investigators (Bq kg-1). 

  238U 232Th 40K Source 

  Mean  Min Max Mean Min  Max Mean Min  Max   

        10     80     EC 112 (1999) 

            100     200 Mustonen (1997) 

        9 1 100 91 5 279 Trevisi et al. (2012) 

        28 25 30 129 126 132 El Afifi et al. (2006) 

  15     7     148     NCRP (1987) 

                      

Mean 15 ---- ----- 14 13 77 112 66 204   

Stdev ---- ---- ---- 10 17 40 32 86 74   

Min 15 ---- ---- 7 1 30 80 5 132   

Max 15 ---- ---- 28 25 100 148 126 279   

 

Table 8. Brick concentrations reported by other investigators (Bq kg-1). 

  238U 232Th 40K Source 

  Mean 
 

Min Max Mean Min  Max Mean Min  Max   

Clay (red)       50   200 670   2000 EC 112 (1999) 

Sand-lime       10   310 640   4000 EC 112 (1999) 

 
  4 180   1 140   7 1200 Eicholz (1980) 

Range       48 2 164 598 12 1169 Trevisi (2012) 

Clay 111     11           NCRP (1987) 

 
  4 180   1 140   7 1200 Eicholz (1980) 

                      

Mean 111 4 180 30 1 191 636 9 1914   

Stdev ----  0 0 22 1 71 36 3 1218   

Min 111 4 180 10 1 140 598 7 1169   

Max 111 4 180 50 2 310 670 12 4000   
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Table 9. Stone and rock concentrations reported by other investigators (Bq kg-1). 

  238U 232Th 40K Source 

  Mean  Min Max Mean Min 
 

Max Mean Min  Max   

        60     640     
EC 112 (1999 
- Europe) 

            310     4000 
Mustonen et. 
al (1997) 

Igneous 48     48     810     
UNSCEAR 
(1958) 

Sandstone 15     24     330     
UNSCEAR 
(1958) 

Shales 15     41     810     
UNSCEAR 
(1958) 

Limestone 15     5     81     
UNSCEAR 
(1958) 

Igneous - Basalt   7 10   10 15 300     NCRP (1987) 

Igneous - Mafic 10     10       70 400 NCRP (1987) 

Igneous - Salic 60     80       1100 1500 NCRP (1987) 

Igneous - 
Granite 40     70       1000   NCRP (1987) 

Shale 
sandstones 40     50     800     NCRP (1987) 

 Clean quartz     10     8     300 NCRP (1987) 

Igneous 
plutonic       89 0 906 1049 24 2040 

Trevisi et. al 
(2012) 

Igneous 
volcanic       163 8 750 1295 170 2354 

Trevisi et. al 
(2012) 

Metamorphic       21 0 142 395 0 1891 
Trevisi et. al 
(2012) 

Granite       70 65 75 1560 1340 1780 
El Afifi et. al 
(2006) 

                      

Mean 30 7 10 56 17 315 734 529 1783   

Stdev 19 ---- 0 42 27 367 449 589 1166   

Min 10 7 10 5 0 8 81 0 300   

Max 60 7 10 163 65 906 1560 1340 4000   

 

 

When fly ash is used as an additive in concrete, the increase of radionuclide 

concentration is only about 3 percent in comparison to other building materials, such as red 
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brick, that contain higher natural concentrations of radionuclides (Eisenbud 1997).  Direct 

measurement of the increase in radon is difficult because radiation emanation from the soil 

below the dwelling, which dominates the radon inhalation over building materials and other 

sources (Eisenbud and Gesell 1997).   However is it is estimated that concrete of all types only 

contribute less than 10 percent of the indoor radon dose (Eisenbud 1997).  Of more concern 

from CCRs might include the leaching of constituents like arsenic, selenium and lead into 

groundwater but concentrations of these elements are variable from site to site (Eisenbud 

1997).  

 

Literature on 222Rn internal dose 

Addition of fly ash to concrete may have an effect on the radon exhalation rate, but 

surprisingly there are several literature sources that claim that it has no effect (Ulbak et al. 

1984, Van Dijk et al. 1991) and maybe even causes a reduction in the radon 'exhalation rate' 

(Stranden, 1983, Ackers et al. 1985, Kovler et al. 2005).  Others disagree and believe that the 

addition of fly ash to concrete increases the radon exhalation rate (Siotis et al. 1984).  Kolver et. 

al 2005 calculated a typical dose due to 222Rn to 0.227 mSv y-1, assuming an 'emanation 

coefficient', the fraction of radon that escape from a material, of 5%. Dose from 220Rn was only 9.5 

µSv y-1 for the same emanation coefficient, so doses from 220Rn are low and are of very little 

importance compared to that from 222Rn.  A study was done for emanation factors of 1,5,10 

and 15 percent; dose from radon increased with increases in the emanation factor (Kolver et al. 

2005).  The final results showed a reduction in radon emanation due to the 0.52 percent 

emanation coefficient of fly ash, compared to the 7.65 percent coefficient of Portland cement, 
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despite the fly ash being three times higher in 226Ra content.  The dose depends on the area in 

question as well, whereas this study was done with small rooms vs. larger volumes (Taylor-

Lange et al. 2012).   It is debatable which is the best emanation coefficient to be used, one 

study found the best number to use would be 5%, while another believed it should be given in a 

range of 2-5%, and another used a variety of different ones but believed the best to 5% as well 

(Siotis et al, 1984 Stranden 1983, Taylor-Lange et al. 2012). 

 

Table 10. 222Rn inhalation (µSv y-1) with varying emanation coefficients. 

Description µSv y
-1

 due to 
222

Rn inhalation Source 

No fly ash < 54  Taylor-Lange et. al 2012 

25% fly ash,5% emanation 95 Taylor-Lange et. al 2012 

1% emanation 44 Kolver et. al 2005 

5% emanation 227 Kolver et. al 2005 

10% emanation 455 Kolver et. al 2005 

 

 

Gamma spectroscopy 

For this experiment two p-type coaxial high purity germanium detectors (HPGe) were 

used for gamma counting.  The detectors have a P-I-N structure, which means there in an 

Intrinsic (I) region is sensitive to the ionizing radiation from the X-rays and gamma rays.  When 

under a reverse bias, an electric field extends across the depleted region, also known as the 

intrinsic region.  When photons interact within the depleted region charge carriers, namely 

holes and electrons, are produced and are swept away by the electric field to the P and N 

electrodes.  This charge is proportional to the energy deposited by the photon and it is 
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converted into a voltage pulse by an integral charge-sensitive preamplifier.  The process is 

illustrated in Figure 9**.   

 

 

Figure 9. Electron-hole pair production. 

 

These detectors have a low band gap and must be cooled by liquid nitrogen to reduce the 

reverse leakage current to an acceptable level; otherwise noise destroys the energy resolution.  

Coaxial HPGe detectors have a high efficiency, high resolution and it takes little energy (~1.1 eV) 

to produce charge carriers, which makes it perfect for the current study (Canberra 1998).  

Figure 10 shows a diagram of a typical Canberra HPGe detector††.  

                                                           
** http://www4.nau.edu/microanalysis/Microprobe/EDS-Detector.html 
 
††

 http://www.df.uba.ar/users/sgil/labo5_uba/recursos/Gamma_Detection_Canberra.htm 
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Figure 10. Canberra HPGe detector. 

 

 In any radiation counting, one must understand the counting system's detection limits; 

with samples containing environmental levels of radioactivity, concentrations often may be 

close to detection limits.  The key quantity determining detectability is the Lower Limit of 

Detection (LLD) (Currie 1968).  Expressed mathematically this is: 

               

where   = √  , with NB being the number of background counts 

 

 LLD is defined as the counts above background that can be seen with a 5% chance of 

making a Type I or Type II error.  A type I error is an error in which a background count is called 

a positive count, and a Type II error is an error in which a positive count is called a background 

count.    The Minimum Detectible Activity (MDA) is the lowest level of activity that can be seen 

at the LLD.  The equation for MDA is (Currie 1968, Knoll 2000): 
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where f = radiation yield per disintegration  
  = absolute detection efficiency  
T = counting time  

 

Currie (1968) goes on to define three regions in which the analyst’s confidence can be defined.   

1. LC (critical level) – the activity is different from zero with 95% confidence. LC = 2.33   

2. LD (detection level) – also known as the MDA, smallest true signal that can be detected, 

it keeps the Type I and II errors to 5%. 

3. LQ (determination level) – the true value of the net signal has a relative standard 

deviation of 10%.  Mathematically it is 

     {  [  
  

    
]
   

} 

Currie really recommended that quantitative assessment be done only above LQ, however, the 

majority of health physicists are comfortable reporting values above LD (the MDA), and for this 

study MDAs were used to define the limit at which numerical values were reported (Currie 

1968, Stabin 2000). One can extend this to be a minimum detectible activity concentration (Bq 

kg-1) by dividing by the sample mass. 

 In gamma spectrometry, one must look at the spectrum of detected photons and 

determine the origin of the peaks.  An example spectrum can be seen below‡‡. 

                                                           
‡‡

 http://www.pas.rochester.edu/~AdvLab/6-Gamma/Lab06%20GammaSp.pdf 



28 
 

 

Figure 11. Typical gamma spectrum. 

 

The spectrum shows the gamma photopeaks of a typical radionuclide, as well as all the 

interactions, including scattering events and other photopeaks.  The three main photon 

interactions of interest are photoelectric scattering, Compton scattering, and pair production.  

When a photoelectric event occurs, the photon energy is completely absorbed, and the energy 

event is shown as an event from a photon of this energy ('full energy' event in the diagram 

above). Compton scattering occurs when a photon interacts with an orbital electron, the 

photon is scattered in another direction and loses energy.  The orbital electron is ejected from 

the atom with the energy lost from the photon.  The Compton equation is given as:§§ 

                                                           
§§

 http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/compton.html 
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Figure 12. Compton scattering. 

 

To get the equation in terms of energy we use 

     
  

 
 

where   = Planck’s constant, 6.63*10-34 J-s  
  = frequency of the electromagnetic radiation s-1 

   λ = wavelength [m]  
   c = speed of light, 3*108 ms-1  
 

   
 

  
      

      

 

where mo = the electron rest mass 

Any and all scattering angles may occur in a given scattering event.  Thus, a 'continuum' of 

partial energy events will be shown in the spectrum (Figure 11, above) on which full photopeak 

events are superimposed, representing partial photon deposition in the detector. However, if 

one or more Compton events occur in the detector followed by a photoelectric event, all of this 
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energy will be scored within the detector event resolution time and will represent a full 

photopeak event. If the photon energy is above 1.02 MeV, pair production events are possible.  

In pair production, one or both of the 511 keV photons may be detected.  If one is detected and 

the other escapes, a ‘single escape peak’ results; if both annihilation photons escape the 

detector, a ‘double escape peak’ is recorded. When two full photopeak events are detected at 

the same time, it is registered as a photopeak event at the sum of the two photon energies, 

thus representing a false 'sum peak'. After eliminating false peaks in a spectrum, true 

photopeak events of parent or progeny nulcides are used to confirm identification of the key 

photopeaks of interest. With nuclides in a decay chain in secular equilibrium, the areas under 

the various photopeaks will be theoretically equal, when properly weighted for photon 

abundance and detector efficiency at each energy. 

 A typical efficiency plot of HPGe detector is shown in Figure 13. 

 

 

Figure 13. Efficiency plot of an HPGe detector. 
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The efficiency curve of a Ge detector consists initially of a quadratic function, then the tail turns 

into a somewhat linear function, with the two being separated by a 'knee.' 

 

Literature on Monte Carlo simulations  

Monte Carlo simulation of radiation transport is a well-established and validated science. 

Very simple codes can be written, for example to model photon attenuation in a uniform 

medium. In most applications, however, the geometries and materials are complex, and 

modeling of the transport of different types of radiation requires a complicated and well 

validated code. Several of the widely available and used Monte Carlo codes are: 

1. EGS4 (Ford and Nelson 1978) - electron gamma shower code, a general purpose code 

for coupled transport of electrons and photons in different geometries for particles with 

energies from a few keV to several TeV.  Originally designed for modeling of radiation 

therapy, but it can be used in external, internal and detector dose calculations. 

2. MCNP (Briesmeister 1997) – Monte Carlo N-particle transport code, can be used for 

neutron, photon, electron, or coupled neutron/photon/electron transport modeling in 

complicated three-dimensional geometries. Originally designed for modeling of reactor 

environments, but it can be used for external, internal, detector and many other dose 

calculations.  

3. ALGAMP (Ryman and Eckerman 1993) – Organ doses are calculated by scoring energy 

deposition in all organs except skeletal tissues.  It was the first to define all the original 

absorbed fractions, and it was used for years in internal dosimetry. It was not 

distributed widely, being mostly used within Oak Ridge National Laboratory in Oak 
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Ridge, TN, but it was used for many years to determine tables of absorbed fractions for 

internal and external sources that were the basis for many important dosimetry 

documents. 

4. GEANT (Agostinelliae et al. 2003) - GEometry ANd Tracking, models a variety of different 

particles over a range of 250 eV to TeV.  Originally developed by CERN for high energy physics.   

The latest generation of this software is Geant4,*** which is widely used in many applications 

worldwide. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
***

 Copyright (c) Copyright Holders of the Geant4 Collaboration, 1994-2006. 
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CHAPTER III 

 

METHODS AND MATERIALS 

 

Sample specific activity methods and materials 

Samples of bituminous fly ash (N = 30), sub-bituminous fly ash (N = 9), FGD gypsum (N = 

20), and scrubber sludges and fixated scrubber sludges (N = 15) from US coals were analyzed 

using two p-type High Purity Germanium (HPGe) photon detectors, one manufactured by 

Canberra using the 'Genie 2000'††† software and the second by Ortec using the 

'GammaVision'‡‡‡ software.  The detectors were calibrated using a mixed nuclide NIST traceable 

standard used from Eckert & Ziegler and was calibrated in 2008 with a total activity of 7.77x104 

Bq.  The standard contains 100 grams of sand in a 250 mL polypropylene jar.  The sample 

containers were 250 mL (8 oz) polypropylene jars with a cap size of 89 mm from Fisher 

Scientific.  Samples were chosen to be around 40-50 g, so as to be similar to the counting 

geometry of the standard.  The atomic composition of the samples and density of the standard 

were assumed to be reasonably similar.   

Energy calibration of the detector with the standard was necessary before samples 

could be counted.  The procedure for energy calibration for the Ortec is as follows: 

 

 

                                                           
†††

 Copyright © 2001 Canberra Industries, Inc. 
‡‡‡

 Copyright © 2003 Advanced Measurement Technology, Inc. 
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1.  Place standard in the detector and count for five minutes. 

2. Figure 14 shows a spectrum already calibrated with key gammas marked in red, 

however, in this figure the calibration has already been done, with the 137Cs 661 keV 

peak showing pertinent information.  Before calibration this peak will not display the 

radionuclide, since there is no information to understand the relationship between 

channel number and absolute energy. 

 

Figure 14. Ortec gamma spectrum. 

 

3. From the spectrum peaks are highlighted and then the radionuclides are identified 

using the standard calibration sheet, (Appendix A). 

4. From the spectrum, the two well-known cobalt peaks at 1173 keV and 1332 keV are 

easily identified.  Other peaks are seen as well; this particular spectrum has 
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additional peaks at 60, 88, 122 and 662 keV for 241Am, 109Cd, 5757 and 137Cs 

respectively.  From these six radionuclides, an energy calibration can be completed. 

5. Using the GammaVision software, one can input in these energies for each peak 

highlighted as seen below, and a keV vs channel curve for the energy calibration is 

created. 

 

 

Figure 15. Ortec energy calibration. 

 

The next step before counting samples is to do an efficiency calibration.  The procedure 

is as follows:  

1.  Obtain a spectrum from the calibration source for five minutes. 

2. Determine the gammas/s for each nuclide after correction for radionuclide decay 

since the date of calibration.  The original gamma/s is given by the standard 

calibration sheet.  From the original calibration date, calculate the amount of days 
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that have passed then use the decay equation to get the correct gamma/s, as shown 

below: 

[
     

 
]
           

 [
     

 
]
           

      

                          where t = time elapsed in days from calibration 

3. Find the counts for each nuclide and divide by the time seconds passed to obtain the 

counts per second.  The counts per second is divided by the gamma/s, 

mathematically shown here: 

[
      

 ]

[
     

 ]
           

 [
      

     
] 

4. The counts/gamma is the efficiency of the detector, efficiency vs energy for the 

nuclides, is the efficiency calibration.   

5. One can input these numbers into GammaVision and the efficiency calibration is 

done, as seen Figure 16. 
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Figure 16. Ortec efficiency calibration curve. 

 

6. The efficiency curve is seen above, with a knee at 88 keV that separates the curve 

from a quadratic to a linear fit. 

The Canberra detector has different software, but the concepts are the same.  Once the 

energy and efficiency calibration were completed counting of fly ash began.  Quality Assurance 

(QA) was performed daily using the standard to confirm that the detector was functioning 

correctly.  The QA method consisted of tracking centroids, full width at half max (FWHM) and 

net counts of 137Cs and 60Co.  Background counts were taken for 12 hours, tracking 

approximately 10 radionuclides (photopeaks at 186 keV, 352 keV, 511 keV, 661 keV, 1460 keV, 

and others); a sample container like the ones used to hold the fly ash samples was filled with an 

amount of deionized water approximately equal to the volume of the samples and placed in the 

same counting geometry as the samples (the water is to provide some degree of photon 

scattering similar to what will occur with a sample).  Background levels of radon progeny were 
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variable, so the most recently obtained backgrounds (12 hour) were subtracted before analysis 

of the specific activities of the samples.  The samples were for sealed for several weeks to allow 

for secular equilibrium between the radium parents and the radon progeny.  As seen from  

Figure 17, it was determined that 4 to 5 half-lives of 222Rn, 3.82 days, would be sufficient to 

allow for secular equilibrium.  It was assumed that the coal combustion process did not 

interfere with isotopic composition, and thus equilibrium between uranium and the other 

species down to radon, of the samples; radioactive equilibrium with radon and its progeny was 

re-established by sealing the sample containers.   

 

 

Figure 17. Secular equilibrium plot. 

 

The fly ash samples were counted for eight hours; gypsum samples were counted for 72 

hours and scrubber sludge samples for 24 hours; samples were then analyzed using the spectral 

analysis software.  A number of photopeaks were examined for use in the analysis including: 
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238U decay series: 

    186 keV (226Ra) 
    295 keV (214Pb) 
    352 keV (214Pb) 
    609 keV (214Bi) 
    1754 keV (214Bi) 
 
232Th decay series: 

    583 keV (208Tl) 
    911 keV (228Ac) 
 
Naturally occurring peaks: 

    511 keV (various) 
    662 keV (137Cs) 
    1460 keV (40K) 
 

For analysis of the uranium and thorium series, one photopeak in each series was used 

to determine specific activity for all nuclides in the series, rather than an average of multiple 

photopeaks or other approaches.  The 352 keV photopeak of 214Pb, the 583 keV photopeak of 

208Tl, and the 1461 keV photopeak of 40K were used to determine the specific activity of 238U, 

232Th, and 40K respectively.  The partial branching for the 208Tl 583 keV photon was accounted 

for during analysis.  For each sample the MDAs were calculated using the Currie method (Currie 

1968).  Fly ash samples were separated into bituminous and sub-bituminous categories.  Results 

were graphed using 'box plots' in which the vertical line shows the range, the lower bound of 

box is the 25th percentile, the middle horizontal line is the median, the upper box is the 75th 

percentile and outliers are shown as circles.  We then compared our results to other data found 

in the literature.  Since most literature studies provide only averages or ranges from a number 

of samples, box plots could not be performed for these data; instead ranges were given by the 
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vertical lines with means indicated by circles.  Basic plots are given as well, with these plots 

additional building materials could be placed in the graphs, due to its smaller size.  In the bar 

graphs the whiskers show ± 1 s.d. 

 

Headspace methods and materials 

A potential concern arose that, due to the significant amount of headspace in the 

original containers, radon gas might diffuse out of the sample material and occupy the airspace 

above the sample. Sample volumes were chosen to be about the same as that of the mixed 

nuclide calibration sand sample used to determine the detector efficiencies. All of the nuclides 

in the standard are contained in the (approximately 1 cm) thickness of the material; if radon 

was partially trapped in the samples, but partially filled the airspace above the samples, the 

counting geometry difference could result in a difference in the efficiency values. The 

containers were 89 mm capsize, 8 oz (250 mL) capacity as mentioned earlier.  This container left 

approximately 5 cm of headspace from the 50 grams of fly ash at the bottom to the top of the 

lid.  Figure 18 shows the two containers are the two containers to test this theory, along with 

the standard. 
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Figure 18. Petri dish, and polypropylene jars for samples and standard and for calibration 

 

 

Figure 19. Sample containers showing airspace above sample material. 
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Figure 20. Sample containers showing the diameter of the containers. 

 

The original fly ash concentrations were determined in the larger containers (which are 

identical to that of the standard).  The fly ash samples were taken from the original containers 

and placed in the smaller petri dishes.  The samples were re-weighed and sealed to allow for 

secular equilibrium.  After a month had passed, the samples were recounted.  The Canberra 

detector was used solely for this comparison study, so as to rule out subtle differences between 

the two detectors.  Samples were counted for 8 hours, and background was subtracted (12 

hour counts) before results were finalized.  The data with and without headspace was 

compared by calculating the ratio of the two results. 
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222Rn dose methods and materials 

The radon dose from inhalation was estimated using the following equation (Taylor-

Lange 2012 et al.) 

                    
 

where Jf = radon exhalation rate from the building element 
Q = fly ash mixture specific activity [Bq/kg] 
η is the decay constant of radon, 2.1*10-6 s-1 
ρ is the density of mixture 
f is the radon emanating fraction, 5% 
l0 is the diffusion length in concrete, .2 m 
d is the half thickness of the building element  

 

                          
    

where Css = the steady state indoor radon concentration    
  A = concrete surface area [m2] 

   λ = air exchange rate [s-1],  
   V = volume of the area [m3] 
   Assume 25 µSv per Bq m-3  
 

These equations, along with the constants, along with the assumed µSv per Bq m-3 conversion 

factor were taken from Taylor-Lange et al. 2012 and UNSCEAR 1993.  For this study, d = 0.125 

m, λ = 3.4*10-4s-1, and A and V were chosen and applied to the different room sizes cited by the 

EPA as standard room sizes (EPA 2011). The radon dose was taken from room sizes of 6x12x8 

ft3, 10x12x8 ft3 and 12x15x8 ft3 for different percentages of fly ash and occupancy factors.  The 

occupancy factors were scaled from an occupancy of 100%, e.g. if the occupancy was 25%, the 

dose results from 100% were multiplied by 0.25.  The percentage of fly ash contributed to a 

change in both the density of the mixture and the specific activity.  The density of concrete was 
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assumed 2350 kg m-3, while the density of fly ash was assumed to be 1600 kg m-3.  If the 

mixture was 25%/75% for fly ash and concrete, the density was as follows: 

(     
  

  
     )       

  

  
           

  

  
 

The specific activity of the sample was found using the same method assuming the specific 

activity of concrete being 40, 30 and 400 Bq kg-1 as given by the European Commission 112 

1999 and fly ash concentrations found in this study using both bituminous and sub-bituminous 

results. 

 

Monte Carlo external dose methods 

Voxel-based, realistic anthropomorphic phantoms were implemented in the Geant4  

Monte Carlo radiation transport simulation environment to estimate yearly doses from usage of 

fly ash in concrete.  The worst case scenario in terms of dose was estimated to be a concrete 

room, e.g. a prison cell, with a person spending approximately 24 hours per day.  For other 

situations, e.g. homes, offices, occupancy factors will be lower. The simulation was run with 20 

million events or disintegrations for 238U and 232Th and 40 million events for 40K.  The Monte 

Carlo results reported dose in Gy per organ per starting particle, numerically equal to Sv, as 

photon radiation weighting factors are 1.0. Effective doses were then calculated using tissue 

weighting factors (ICRP 2007).    The yearly dose was found using the following equation: 
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where V = volume of the concrete 

   ρ = density of the concrete (and fly ash mixture) 
   Q = specific activity of fly ash 
   H = total equivalent dose 
 

The same methods were employed for varying room sizes, occupancy factors and fly ash 

percentages as in the internal radon dose calculations.  

An illustration of the Monte Carlo simulation can be seen in Figure 21, with photons 

both hitting and missing the person represented inside since radiation is random in nature.  The 

walls are made of concrete and the person is standing in the center of the room.   

 



46 
 

 

Figure 21. Monte Carlo simulation geometry. 

 

Simulations were performed on a male adult, female adult and male child of ten years.  

In addition, simulations were done on the male at an offset from half the lateral distance and 

three-fourths the distance away from the center of the room to determine if position was 

dependent on the dose received. 
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CHAPTER IV 

 

RESULTS 

 

Specific activity of fly ash, gypsum and other 

All fly ash samples had concentrations of 238U, 232Th, and 40K significantly above system 

MDAs.  Some gypsum and scrubber sludge sample results for 232Th and 40K were not above 

MDA, even with extended sample counting times of up to 72 hours.  Tables 11 and 12 show the 

results for 238U, 232Th and 40K concentrations in bituminous and sub-bituminous fly ash samples, 

with associated statistics (mean, median, standard deviation and range).  Table 3 shows the 

results of the gypsum samples and Table 4 shows the results for the scrubber sludge samples 

and fixated scrubber sludge samples.  Figures 22, 23 and 24 give the resulting box plots from 

the current study, with comparison to the range of values from the literature cited above for 

238U, 232Th and 40K respectively. 
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Table 11. Bituminous fly ash concentrations (Bq kg-1). 

Sample 238U 232Th 40K 

1 125 90 606 

2 124 86 617 

3 217 97 790 

4 152 101 462 

5 68 58 630 

6 181 120 576 

7 135 103 547 

8 131 91 552 

9 130 99 758 

10 51 39 426 

11 147 77 641 

12 103 78 534 

13 136 90 738 

14 166 108 694 

15 138 84 773 

16 106 89 693 

17 132 85 552 

18 97 73 432 

19 110 82 741 

20 209 71 735 

21 119 63 216 

22 79 35 177 

23 117 66 518 

24 90 10 750 

25 47 37 287 

26 30 35 369 

27 54 33 244 

28 92 69 506 

29 180 60 928 

30 108 78 574 

Mean 119 73 569 

Standard Deviation 45 26 184 

Min 30 10 177 

Max 217 120 928 

Median 119 77 571 
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Table 12. Sub-bituminous fly ash concentrations (Bq kg-1). 

Sample name 238U 232Th 40K 

1 98 71 303 

2 209 110 245 

3 119 93 115 

4 127 91 158 

5 81 60 87 

6 120 94 195 

7 72 53 162 

8 94 76 108 

9 111 84 168 

Mean 115 81 171 

Standard Deviation 40 18 69 

Min 72 53 87 

Max 209 110 303 

Median 111 84 162 
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Table 13. Gypsum concentrations (Bq kg-1). 

Sample name 238U 232Th 40K 

1 4 1 8 

2 5 ---  10 

3 7 1 8 

4 1 ---  13 

5 11 1 2 

6 10 1 0.5 

7 7 1 7 

8 9 0.3 11 

9 3 ---  16 

10 24 3  --- 

11 6 1 12 

12 12 2 17 

13 12 2 16 

14 8 0.2 11 

15 10  --- ---  

16 8 1 19 

17 14 ---  4 

18 14 ---  ---  

19 11 1 5 

20 11 1 ---  

Mean 9 1 10 

Standard Deviation 5 1 5 

Min 1 --- --- 

Max 24 3 19 

Median 10 1 11 
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Table 14. Scrubber sludges and fixated scrubber sludges concentrations (Bq kg-1). 

Sample name 238U 232Th 40K 

1 117 69 455 

2 6  --- 53 

3 10  --- 24 

4 16 6 123 

5 114 85 541 

6 12  --- 13 

7 40 17 335 

8 19 13 148 

9 7  --- 9 

10 0.2 0.3 9 

11 23 16 167 

12 109 9 239 

13 95 10 94 

14 135 3 69 

15 174 10 177 

Mean 58 22 164 

Standard Deviation 58 28 165 

Min 0.2 --- 9 

Max 174 85 541 

Median 23 10 123 
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Figure 22. 238U results from this study, compared to values observed in the literature. 
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Figure 23. 232Th results from this study, compared to values observed in the literature. 
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Figure 24. 40K results from this study, compared to values observed in the literature. 
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Figure 25. 238U concentrations; error bars are ± 1 standard deviation. 
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Figure 26. 232Th concentrations; error bars are ± 1 standard deviation. 
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Figure 27. 40K concentrations; error bars are ± 1 standard deviation. 
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Headspace comparison 

Table 15. 238U concentrations in the larger containers (headspace) and Petri dishes (no 
headspace). 
 

Sample name Headspace 238U (Bq kg-1) No head space 238U (Bq kg-1) Ratio 

1 125 137 1.10 

2 123 155 1.25 

3 217 250 1.15 

4 152 222 1.45 

5 68 80 1.18 

6 181 219 1.21 

7 135 142 1.05 

8 131 193 1.48 

9 130 150 1.15 

10 51 89 1.77 

11 147 178 1.21 

12 103 131 1.27 

13 136 160 1.17 

14 166 194 1.16 

15 138 165 1.19 

16 106 122 1.14 

17 132 150 1.14 

18 97 113 1.16 

19 110 118 1.07 

20 209 241 1.15 

21 119 149 1.25 

22 79 128 1.61 

23 117 134 1.14 

24 90 124 1.38 

25 47 111 2.34 

26 30 83 2.71 

27 54 73 1.35 

28 92 101 1.10 

29 180 203 1.12 

30 108 126 1.17 

31 98 123 1.25 

32 209 239 1.14 

33 119 130 1.09 

34 127 144 1.13 

35 81 82 1.02 
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Table 15, continued 

36 120 141 1.18 

37 72 79 1.10 

38 94 108 1.16 

39 111 123 1.11 

        

Average 118 144 1.28 

Standard Deviation 44 47   

Variance 1914 2216   

 

Table 16. 232Th concentrations in the larger containers (headspace) and Petri dishes (no 
headspace). 

Sample name Headspace 232Th (Bq kg-1) No head space 232Th (Bq kg-1) Ratio 

1 90 90 1.00 

2 85 91 1.07 

3 97 119 1.23 

4 101 115 1.14 

5 58 60 1.02 

6 120 118 0.99 

7 103 114 1.11 

8 91 131 1.44 

9 99 106 1.07 

10 39 59 1.54 

11 77 104 1.34 

12 78 96 1.24 

13 90 106 1.19 

14 108 122 1.13 

15 84 112 1.34 

16 89 93 1.05 

17 85 92 1.08 

18 73 77 1.06 

19 82 97 1.18 

20 71 79 1.11 

21 63 74 1.18 

22 35 54 1.56 

23 66 73 1.11 

24 10 91 8.77 

25 37 107 2.93 

26 35 40 1.15 
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Table 16, continued 

27 33 37 1.11 

28 69 68 0.98 

29 60 60 1.01 

30 78 94 1.21 

31 71 85 1.20 

32 110 114 1.04 

33 93 101 1.08 

34 91 93 1.03 

35 60 58 0.97 

36 94 102 1.09 

37 53 56 1.06 

38 76 84 1.10 

39 84 91 1.08 

        

Average 75 89 1.38 

Standard Deviation 24 23 1.25 

Variance 594 549   

 

Table 17. 40K concentrations in the larger containers (headspace) and Petri dishes (no 
headspace). 

Sample name Headspace 40K (Bq kg-1) No head space 40K (Bq kg-1) Ratio 

1 606 687 1.13 

2 616 686 1.11 

3 790 814 1.03 

4 462 786 1.70 

5 630 776 1.23 

6 576 758 1.31 

7 547 541 0.99 

8 552 857 1.55 

9 758 899 1.19 

10 426 767 1.80 

11 641 772 1.21 

12 534 682 1.28 

13 738 861 1.17 

14 694 784 1.13 

15 773 928 1.20 

16 693 928 1.34 

 



61 
 

Table 17, continued 

17 552 730 1.32 

18 432 574 1.33 

19 741 891 1.20 

20 735 896 1.22 

21 216 320 1.48 

22 177 303 1.71 

23 518 621 1.20 

24 750 890 1.19 

25 287 813 2.83 

26 369 442 1.20 

27 244 334 1.37 

28 506 630 1.24 

29 928 1083 1.17 

30 574 783 1.37 

31 303 361 1.19 

32 245 314 1.28 

33 115 175 1.52 

34 158 133 0.84 

35 87 80 0.92 

36 195 225 1.15 

37 162 144 0.88 

38 108 183 1.69 

39 168 167 0.99 

        

Average 477 606 1.27 

Standard Deviation 236 284 1.20 

Variance 56 81   
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Internal dose due to 222Rn 

Table 18. Doses from 222Rn inhalation (mSv y-1), occupancy of 100%, concrete concentration 40 
Bq kg-1. 

Type; FA%/Concrete% Room size Indoor radon concentration Bq m-3 mSv y-1 

Bituminous FA; 25/75 

6x12x8 ft3 10.29 0.26 

10x12x8 ft3 8.46 0.21 

15x12x8 ft3 7.54 0.19 

Sub-bituminous; 25/75 

6x12x8 ft3 10.11 0.25 

10x12x8 ft3 8.32 0.21 

15x12x8 ft3 7.42 0.19 

Concrete; 0/100 

6x12x8 ft3 7.48 0.19 

10x12x8 ft3 6.15 0.15 

15x12x8 ft3 5.49 0.14 

Bituminous FA; 15/85 

6x12x8 ft3 9.24 0.23 

10x12x8 ft3 7.59 0.19 

15x12x8 ft3 6.77 0.17 

Sub-bituminous FA; 15/85 

6x12x8 ft3 9.13 0.23 

10x12x8 ft3 7.51 0.19 

15x12x8 ft3 6.69 0.17 

Bituminous FA; 5/95 

6x12x8 ft3 8.09 0.20 

10x12x8 ft3 6.65 0.17 

15x12x8 ft3 5.93 0.15 

Sub-bituminous FA; 5/95 

6x12x8 ft3 8.05 0.20 

10x12x8 ft3 6.62 0.17 

15x12x8 ft3 5.91 0.15 
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Table 19. Doses from Indoor 222Rn inhalation (mSv y-1) occupancy of 65% and 25%; concrete 
concentration assuming 40 Bq kg-1. 

Type Room size occ .65, mSv yr-1 occ .25, mSv yr-1 

Bituminous 

6x12x8 ft3 0.17 0.064 

10x12x8 ft3 0.14 0.053 

12x15x8 ft3 0.12 0.047 

Sub-bituminous 

6x12x8 ft3 0.16 0.063 

10x12x8 ft3 0.14 0.052 

12x15x8 ft3 0.12 0.046 

Concrete, no FA 

6x12x8 ft3 0.12 0.047 

10x12x8 ft3 0.10 0.038 

12x15x8 ft3 0.090 0.034 

Bituminous; 15%, 85% 

6x12x8 ft3 0.15 0.058 

10x12x8 ft3 0.12 0.047 

12x15x8 ft3 0.11 0.042 

Sub-bituminous; 15%, 85% 

6x12x8 ft3 0.15 0.057 

10x12x8 ft3 0.12 0.047 

12x15x8 ft3 0.11 0.042 

Bituminous; 5%, 95% 

6x12x8 ft3 0.13 0.051 

10x12x8 ft3 0.11 0.042 

12x15x8 ft3 0.10 0.037 

Sub-bituminous; 5%, 95% 

6x12x8 ft3 0.13 0.050 

10x12x8 ft3 0.11 0.041 

12x15x8 ft3 0.10 0.037 
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External dose from Monte Carlo simulations 

Table 20. External dose (mSv y-1), occupancy of 100%, adult male. 

Type; FA%/Concrete% Room size 238U 232Th 40K Total 

Bituminous FA; 25/75 

6x12x8 ft3 0.51 0.24 0.17 0.92 

10x12x8 ft3 0.53 0.26 0.17 0.96 

12x15x8 ft3 0.50 0.25 0.18 0.94 

Sub-bituminous; 25/75 

6x12x8 ft3 0.50 0.26 0.13 0.89 

10x12x8 ft3 0.52 0.27 0.14 0.93 

12x15x8 ft3 0.49 0.26 0.14 0.90 

Concrete; 0/100 

6x12x8 ft3 0.36 0.19 0.16 0.70 

10x12x8 ft3 0.37 0.20 0.16 0.73 

12x15x8 ft3 0.35 0.19 0.17 0.71 

Bituminous FA; 15/85 

6x12x8 ft3 0.45 0.22 0.17 0.84 

10x12x8 ft3 0.47 0.23 0.17 0.88 

12x15x8 ft3 0.44 0.23 0.18 0.86 

Sub-bituminous FA; 
15/85 

6x12x8 ft3 0.45 0.23 0.14 0.82 

10x12x8 ft3 0.47 0.24 0.15 0.86 

12x15x8 ft3 0.44 0.24 0.16 0.83 

Bituminous FA; 5/95 

6x12x8 ft3 0.39 0.20 0.16 0.75 

10x12x8 ft3 0.41 0.21 0.16 0.78 

12x15x8 ft3 0.38 0.21 0.17 0.76 

Sub-bituminous FA; 5/95 

6x12x8 ft3 0.39 0.20 0.15 0.74 

10x12x8 ft3 0.40 0.21 0.16 0.77 

12x15x8 ft3 0.38 0.21 0.17 0.76 
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Table 21. External dose (mSv y-1), occupancy of 65%, adult male. 

Type; FA%/Concrete% Room size 238U 232Th 40K Total 

Bituminous FA; 25/75 

6x12x8 ft3 0.33 0.16 0.11 0.60 

10x12x8 ft3 0.35 0.17 0.11 0.62 

12x15x8 ft3 0.33 0.16 0.12 0.61 

Sub-bituminous; 25/75 

6x12x8 ft3 0.33 0.166 0.09 0.58 

10x12x8 ft3 0.34 0.175 0.09 0.60 

12x15x8 ft3 0.32 0.172 0.09 0.59 

Concrete; 0/100 

6x12x8 ft3 0.23 0.12 0.10 0.45 

10x12x8 ft3 0.24 0.13 0.10 0.47 

12x15x8 ft3 0.23 0.13 0.11 0.46 

Bituminous FA; 15/85 

6x12x8 ft3 0.30 0.15 0.11 0.55 

10x12x8 ft3 0.31 0.15 0.11 0.57 

12x15x8 ft3 0.29 0.15 0.12 0.56 

Sub-bituminous FA; 
15/85 

6x12x8 ft3 0.29 0.150 0.09 0.53 

10x12x8 ft3 0.30 0.16 0.10 0.56 

12x15x8 ft3 0.29 0.15 0.10 0.54 

Bituminous FA; 5/95 

6x12x8 ft3 0.25 0.13 0.10 0.49 

10x12x8 ft3 0.26 0.14 0.11 0.51 

12x15x8 ft3 0.25 0.13 0.11 0.50 

Sub-bituminous FA; 5/95 

6x12x8 ft3 0.25 0.13 0.10 0.48 

10x12x8 ft3 0.26 0.14 0.10 0.50 

12x15x8 ft3 0.25 0.14 0.11 0.49 
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Table 22. External dose (mSv y-1), occupancy of 25%, adult male. 

Type; FA%/Concrete% Room size U-238 Th-232 K-40 Total 

Bituminous FA; 25/75 

6x12x8 ft3 0.13 0.061 0.042 0.23 

10x12x8 ft3 0.133 0.064 0.043 0.24 

12x15x8 ft3 0.125 0.063 0.046 0.23 

Sub-bituminous; 25/75 

6x12x8 ft3 0.13 0.064 0.033 0.22 

10x12x8 ft3 0.131 0.067 0.034 0.23 

12x15x8 ft3 0.123 0.066 0.036 0.23 

Concrete; 0/100 

6x12x8 ft3 0.089 0.047 0.039 0.17 

10x12x8 ft3 0.093 0.049 0.040 0.18 

12x15x8 ft3 0.087 0.048 0.043 0.18 

Bituminous FA; 15/85 

6x12x8 ft3 0.11 0.056 0.041 0.21 

10x12x8 ft3 0.118 0.059 0.042 0.22 

12x15x8 ft3 0.111 0.058 0.045 0.21 

Sub-bituminous FA; 
15/85 

6x12x8 ft3 0.11 0.058 0.036 0.21 

10x12x8 ft3 0.117 0.061 0.037 0.21 

12x15x8 ft3 0.110 0.060 0.039 0.21 

Bituminous FA; 5/95 

6x12x8 ft3 0.10 0.050 0.040 0.19 

10x12x8 ft3 0.101 0.052 0.041 0.19 

12x15x8 ft3 0.096 0.052 0.043 0.19 

Sub-bituminous FA; 5/95 

6x12x8 ft3 0.10 0.050 0.038 0.19 

10x12x8 ft3 0.101 0.053 0.039 0.19 

12x15x8 ft3 0.095 0.052 0.041 0.19 
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Table 23. External dose (mSv y-1), occupancy of 100%, adult female. 

Type; FA%/Concrete% Room size 238U 232Th 40K Total 

Bituminous FA; 25/75 

6x12x8 ft3 0.60 0.30 0.20 1.10 

10x12x8 ft3 0.61 0.30 0.21 1.12 

12x15x8 ft3 0.59 0.30 0.21 1.10 

Sub-bituminous; 25/75 

6x12x8 ft3 0.59 0.31 0.16 1.06 

10x12x8 ft3 0.60 0.32 0.16 1.08 

12x15x8 ft3 0.58 0.31 0.17 1.06 

Concrete; 0/100 

6x12x8 ft3 0.42 0.23 0.19 0.83 

10x12x8 ft3 0.42 0.23 0.19 0.85 

12x15x8 ft3 0.41 0.23 0.20 0.83 

Bituminous FA; 15/85 

6x12x8 ft3 0.53 0.27 0.20 1.01 

10x12x8 ft3 0.54 0.28 0.20 1.02 

12x15x8 ft3 0.52 0.27 0.21 1.00 

Sub-bituminous FA; 
15/85 

6x12x8 ft3 0.53 0.28 0.17 0.98 

10x12x8 ft3 0.53 0.29 0.17 0.99 

12x15x8 ft3 0.52 0.28 0.18 0.98 

Bituminous FA; 5/95 

6x12x8 ft3 0.46 0.25 0.19 0.90 

10x12x8 ft3 0.46 0.25 0.19 0.91 

12x15x8 ft3 0.45 0.24 0.20 0.89 

Sub-bituminous FA; 5/95 

6x12x8 ft3 0.46 0.25 0.18 0.89 

10x12x8 ft3 0.46 0.25 0.19 0.90 

12x15x8 ft3 0.45 0.25 0.19 0.88 
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Table 24. External dose (mSv y-1), occupancy of 65%, adult female. 

Type; FA%/Concrete% Room size 238U 232Th 40K Total 

Bituminous FA; 25/75 

6x12x8 ft3 0.39 0.20 0.13 0.72 

10x12x8 ft3 0.39 0.20 0.13 0.72 

12x15x8 ft3 0.38 0.19 0.14 0.71 

Sub-bituminous; 25/75 

6x12x8 ft3 0.38 0.20 0.10 0.69 

10x12x8 ft3 0.39 0.21 0.11 0.70 

12x15x8 ft3 0.38 0.20 0.11 0.69 

Concrete; 0/100 

6x12x8 ft3 0.27 0.15 0.12 0.54 

10x12x8 ft3 0.27 0.15 0.12 0.55 

12x15x8 ft3 0.27 0.15 0.13 0.54 

Bituminous FA; 15/85 

6x12x8 ft3 0.35 0.18 0.13 0.65 

10x12x8 ft3 0.35 0.18 0.13 0.66 

12x15x8 ft3 0.34 0.18 0.13 0.65 

Sub-bituminous FA; 
15/85 

6x12x8 ft3 0.34 0.18 0.11 0.64 

10x12x8 ft3 0.35 0.19 0.11 0.65 

12x15x8 ft3 0.34 0.18 0.12 0.64 

Bituminous FA; 5/95 

6x12x8 ft3 0.30 0.16 0.12 0.58 

10x12x8 ft3 0.30 0.16 0.13 0.59 

12x15x8 ft3 0.29 0.16 0.13 0.58 

Sub-bituminous FA; 5/95 

6x12x8 ft3 0.30 0.16 0.12 0.58 

10x12x8 ft3 0.30 0.16 0.12 0.58 

12x15x8 ft3 0.29 0.16 0.12 0.58 
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Table 25. External dose (mSv y-1), occupancy of 25%, adult female. 

Type; FA%/Concrete% Room size 238U 232Th 40K Total 

Bituminous FA; 25/75 

6x12x8 ft3 0.15 0.075 0.050 0.28 

10x12x8 ft3 0.15 0.076 0.051 0.28 

12x15x8 ft3 0.15 0.074 0.053 0.27 

Sub-bituminous; 25/75 

6x12x8 ft3 0.15 0.079 0.039 0.27 

10x12x8 ft3 0.15 0.080 0.040 0.27 

12x15x8 ft3 0.14 0.078 0.042 0.26 

Concrete; 0/100 

6x12x8 ft3 0.10 0.057 0.046 0.21 

10x12x8 ft3 0.11 0.058 0.048 0.21 

12x15x8 ft3 0.10 0.057 0.049 0.21 

Bituminous FA; 15/85 

6x12x8 ft3 0.13 0.069 0.049 0.25 

10x12x8 ft3 0.13 0.070 0.050 0.25 

12x15x8 ft3 0.13 0.068 0.052 0.25 

Sub-bituminous FA; 
15/85 

6x12x8 ft3 0.13 0.071 0.042 0.25 

10x12x8 ft3 0.13 0.072 0.043 0.25 

12x15x8 ft3 0.13 0.070 0.045 0.24 

Bituminous FA; 5/95 

6x12x8 ft3 0.11 0.061 0.047 0.22 

10x12x8 ft3 0.12 0.062 0.049 0.23 

12x15x8 ft3 0.11 0.061 0.050 0.22 

Sub-bituminous FA; 5/95 

6x12x8 ft3 0.11 0.062 0.045 0.22 

10x12x8 ft3 0.12 0.063 0.046 0.22 

12x15x8 ft3 0.11 0.061 0.048 0.22 
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Table 26. External dose (mSv y-1), occupancy of 100%, 10 year old male. 

Type; FA%/Concrete% Room size 238U 232Th 40K Total 

Bituminous FA; 25/75 

6x12x8 ft3 0.57 0.29 0.20 1.05 

10x12x8 ft3 0.61 0.28 0.19 1.08 

12x15x8 ft3 0.55 0.29 0.23 1.06 

Sub-bituminous; 25/75 

6x12x8 ft3 0.56 0.30 0.16 1.02 

10x12x8 ft3 0.60 0.30 0.15 1.05 

12x15x8 ft3 0.54 0.30 0.18 1.02 

Concrete; 0/100 

6x12x8 ft3 0.40 0.22 0.18 0.80 

10x12x8 ft3 0.43 0.22 0.17 0.82 

12x15x8 ft3 0.38 0.22 0.21 0.81 

Bituminous FA; 15/85 

6x12x8 ft3 0.48 0.25 0.18 0.91 

10x12x8 ft3 0.54 0.26 0.18 0.99 

12x15x8 ft3 0.49 0.27 0.22 0.97 

Sub-bituminous FA; 
15/85 

6x12x8 ft3 0.50 0.27 0.17 0.94 

10x12x8 ft3 0.51 0.25 0.15 0.91 

12x15x8 ft3 0.48 0.27 0.19 0.95 

Bituminous FA; 5/95 

6x12x8 ft3 0.43 0.23 0.19 0.86 

10x12x8 ft3 0.47 0.23 0.18 0.88 

12x15x8 ft3 0.42 0.24 0.21 0.87 

Sub-bituminous FA; 5/95 

6x12x8 ft3 0.43 0.24 0.18 0.85 

10x12x8 ft3 0.47 0.23 0.17 0.87 

12x15x8 ft3 0.42 0.24 0.20 0.86 

 

 

 

 

 

 

 



71 
 

Table 27. External dose (mSv y-1), occupancy of 65%, 10 year old male. 

Type; FA%/Concrete% Room size 238U 232Th 40K Total 

Bituminous FA; 25/75 

6x12x8 ft3 0.37 0.19 0.13 0.68 

10x12x8 ft3 0.40 0.18 0.12 0.70 

12x15x8 ft3 0.36 0.19 0.15 0.69 

Sub-bituminous; 25/75 

6x12x8 ft3 0.36 0.196 0.10 0.66 

10x12x8 ft3 0.39 0.192 0.10 0.68 

12x15x8 ft3 0.35 0.198 0.12 0.66 

Concrete; 0/100 

6x12x8 ft3 0.26 0.14 0.12 0.52 

10x12x8 ft3 0.28 0.14 0.11 0.53 

12x15x8 ft3 0.25 0.14 0.14 0.53 

Bituminous FA; 15/85 

6x12x8 ft3 0.31 0.16 0.12 0.59 

10x12x8 ft3 0.35 0.17 0.12 0.64 

12x15x8 ft3 0.32 0.17 0.14 0.63 

Sub-bituminous FA; 
15/85 

6x12x8 ft3 0.32 0.176 0.11 0.61 

10x12x8 ft3 0.33 0.16 0.10 0.59 

12x15x8 ft3 0.31 0.18 0.12 0.61 

Bituminous FA; 5/95 

6x12x8 ft3 0.28 0.15 0.12 0.56 

10x12x8 ft3 0.30 0.15 0.12 0.57 

12x15x8 ft3 0.27 0.15 0.14 0.56 

Sub-bituminous FA; 
5/95 

6x12x8 ft3 0.28 0.15 0.12 0.55 

10x12x8 ft3 0.30 0.15 0.11 0.57 

12x15x8 ft3 0.27 0.16 0.13 0.56 
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Table 28. External dose (mSv y-1), occupancy of 25%, 10 year old male. 

Type; FA%/Concrete% Room size 238U 232Th 40K Total 

Bituminous FA; 25/75 

6x12x8 ft3 0.14 0.072 0.050 0.26 

10x12x8 ft3 0.15 0.071 0.047 0.27 

12x15x8 ft3 0.14 0.073 0.056 0.27 

Sub-bituminous; 25/75 

6x12x8 ft3 0.14 0.075 0.039 0.25 

10x12x8 ft3 0.15 0.074 0.037 0.26 

12x15x8 ft3 0.13 0.076 0.044 0.25 

Concrete; 0/100 

6x12x8 ft3 0.10 0.055 0.046 0.20 

10x12x8 ft3 0.11 0.054 0.044 0.20 

12x15x8 ft3 0.10 0.055 0.052 0.20 

Bituminous FA; 15/85 

6x12x8 ft3 0.12 0.062 0.046 0.23 

10x12x8 ft3 0.14 0.065 0.046 0.25 

12x15x8 ft3 0.12 0.066 0.055 0.24 

Sub-bituminous FA; 15/85 

6x12x8 ft3 0.12 0.068 0.042 0.23 

10x12x8 ft3 0.13 0.063 0.038 0.23 

12x15x8 ft3 0.12 0.069 0.048 0.24 

Bituminous FA; 5/95 

6x12x8 ft3 0.11 0.059 0.047 0.21 

10x12x8 ft3 0.12 0.058 0.045 0.22 

12x15x8 ft3 0.10 0.059 0.053 0.22 

Sub-bituminous FA; 5/95 

6x12x8 ft3 0.11 0.059 0.045 0.21 

10x12x8 ft3 0.12 0.058 0.042 0.22 

12x15x8 ft3 0.10 0.060 0.051 0.21 

 

Table 29. External dose halfway across room ( mSv y-1), occupancy of 100%, adult male, 
10x12x8 ft3. 

Type; FA%/Concrete% 238U 232Th 40K Total 

Bituminous FA; 25/75 0.52 0.25 0.18 0.95 

Sub-bituminous FA; 25/75 0.51 0.27 0.14 0.92 

Concrete; 0/100 0.36 0.19 0.17 0.72 

Bituminous FA; 15/85 0.46 0.23 0.17 0.87 

Sub-bituminous FA; 15/85 0.46 0.24 0.15 0.85 

Bituminous FA; 5/95 0.40 0.21 0.17 0.77 

Sub-bituminous FA; 5/95 0.40 0.21 0.16 0.77 
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Table 30. External dose halfway across room ( mSv y-1), occupancy of 65%, adult male, 10x12x8 
ft3. 

Type; FA%/Concrete% U-238 Th-232 K-40 Total 

Bituminous FA; 25/75 0.34 0.16 0.12 0.62 

Sub-bituminous FA; 25/75 0.33 0.17 0.09 0.60 

Concrete; 0/100 0.24 0.13 0.11 0.47 

Bituminous FA; 15/85 0.30 0.15 0.11 0.57 

Sub-bituminous FA; 15/85 0.30 0.16 0.10 0.55 

Bituminous FA; 5/95 0.26 0.13 0.11 0.50 

Sub-bituminous FA; 5/95 0.26 0.14 0.10 0.50 

 

 
Table 31. External dose halfway across room ( mSv y-1), occupancy of 25%, adult male, 10x12x8 
ft3. 

Type; FA%/Concrete% 238U 232Th 40K Total 

Bituminous FA; 25/75 0.13 0.063 0.044 0.24 

Sub-bituminous FA; 25/75 0.13 0.066 0.035 0.23 

Concrete; 0/100 0.09 0.048 0.041 0.18 

Bituminous FA; 15/85 0.12 0.058 0.044 0.22 

Sub-bituminous FA; 15/85 0.11 0.060 0.038 0.21 

Bituminous FA; 5/95 0.10 0.052 0.042 0.19 

Sub-bituminous FA; 5/95 0.10 0.053 0.039 0.19 

 

Table 32. External dose three quarters across room ( mSv y-1), occupancy of 100%, adult male, 
10x12x8 ft3. 
 

Type; FA%/Concrete% 238U 232Th 40K Total 

Bituminous FA; 25/75 0.52 0.26 0.17 0.95 

Sub-bituminous FA; 25/75 0.51 0.28 0.13 0.92 

Concrete; 0/100 0.36 0.20 0.15 0.72 

Bituminous FA; 15/85 0.46 0.24 0.16 0.86 

Sub-bituminous FA; 15/85 0.45 0.25 0.14 0.84 

Bituminous FA; 5/95 0.40 0.21 0.16 0.77 

Sub-bituminous FA; 5/95 0.39 0.22 0.15 0.76 
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Table 33. External dose three quarters across room ( mSv y-1), occupancy of 65%, adult male, 
10x12x8 ft3. 

Type; FA%/Concrete% 238U 232Th 40K Total 

Bituminous FA; 25/75 0.23 0.13 0.10 0.47 

Sub-bituminous; 25/75 0.34 0.17 0.11 0.62 

Concrete; 0/100 0.33 0.18 0.085 0.59 

Bituminous FA; 15/85 0.30 0.16 0.11 0.56 

Sub-bituminous FA; 15/85 0.30 0.16 0.091 0.55 

Bituminous FA; 5/95 0.26 0.14 0.10 0.50 

Sub-bituminous FA; 5/95 0.26 0.14 0.10 0.49 

 

Table 34. External dose three quarters across room ( mSv y-1), occupancy of 25%, adult male, 
10x12x8 ft3. 

Type; FA%/Concrete% 238U 232Th 40K Total 

Bituminous FA; 25/75 0.09 0.050 0.039 0.18 

Sub-bituminous; 25/75 0.13 0.066 0.042 0.24 

Concrete; 0/100 0.13 0.069 0.033 0.23 

Bituminous FA; 15/85 0.12 0.060 0.041 0.22 

Sub-bituminous FA; 15/85 0.11 0.062 0.035 0.21 

Bituminous FA; 5/95 0.10 0.054 0.039 0.19 

Sub-bituminous FA; 5/95 0.10 0.054 0.037 0.19 
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Cumulative dose for male, female and child (male 10 years old) 

Table 35. Total dose (mSv y-1), occupancy of 100%, adult male. 

Type; FA%/Concrete% Room size Internal External Total 

Bituminous FA; 25/75 

6x12x8 ft3 0.26 0.92 1.18 

10x12x8 ft3 0.21 0.96 1.17 

12x15x8 ft3 0.19 0.94 1.13 

Sub-bituminous; 25/75 

6x12x8 ft3 0.25 0.89 1.14 

10x12x8 ft3 0.21 0.93 1.14 

12x15x8 ft3 0.19 0.90 1.09 

Concrete; 0/100 

6x12x8 ft3 0.19 0.70 0.89 

10x12x8 ft3 0.15 0.73 0.88 

12x15x8 ft3 0.14 0.71 0.85 

Bituminous FA; 15/85 

6x12x8 ft3 0.23 0.84 1.07 

10x12x8 ft3 0.19 0.88 1.07 

12x15x8 ft3 0.17 0.86 1.03 

Sub-bituminous FA; 15/85 

6x12x8 ft3 0.23 0.82 1.05 

10x12x8 ft3 0.19 0.86 1.05 

12x15x8 ft3 0.17 0.83 1.00 

Bituminous FA; 5/95 

6x12x8 ft3 0.20 0.75 0.95 

10x12x8 ft3 0.17 0.78 0.95 

12x15x8 ft3 0.15 0.76 0.91 

Sub-bituminous FA; 5/95 

6x12x8 ft3 0.20 0.74 0.94 

10x12x8 ft3 0.17 0.77 0.94 

12x15x8 ft3 0.15 0.76 0.91 
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Table 36. Total dose (mSv y-1), occupancy of 65%, adult male. 

Type Room size Internal  External Total 

Bituminous FA; 25/75 

6x12x8 ft3 0.17 0.60 0.77 

10x12x8 ft3 0.14 0.62 0.76 

12x15x8 ft3 0.12 0.61 0.73 

Sub-bituminous; 25/75 

6x12x8 ft3 0.16 0.58 0.74 

10x12x8 ft3 0.14 0.60 0.74 

12x15x8 ft3 0.12 0.59 0.71 

Concrete; 0/100 

6x12x8 ft3 0.12 0.45 0.57 

10x12x8 ft3 0.10 0.47 0.57 

12x15x8 ft3 0.09 0.46 0.55 

Bituminous FA; 15/85 

6x12x8 ft3 0.15 0.55 0.70 

10x12x8 ft3 0.12 0.57 0.69 

12x15x8 ft3 0.11 0.56 0.67 

Sub-bituminous FA; 15/85 

6x12x8 ft3 0.15 0.53 0.68 

10x12x8 ft3 0.12 0.56 0.68 

12x15x8 ft3 0.11 0.54 0.65 

Bituminous FA; 5/95 

6x12x8 ft3 0.13 0.49 0.62 

10x12x8 ft3 0.11 0.51 0.62 

12x15x8 ft3 0.10 0.50 0.60 

Sub-bituminous FA; 5/95 

6x12x8 ft3 0.13 0.48 0.61 

10x12x8 ft3 0.11 0.50 0.61 

12x15x8 ft3 0.10 0.49 0.59 
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Table 37. Total dose (mSv y-1), occupancy of 25%, adult male. 

Type Room size Internal External Total 

Bituminous FA; 25/75 

6x12x8 ft3 0.064 0.23 0.29 

10x12x8 ft3 0.053 0.24 0.29 

12x15x8 ft3 0.047 0.23 0.28 

Sub-bituminous; 25/75 

6x12x8 ft3 0.063 0.22 0.28 

10x12x8 ft3 0.052 0.23 0.28 

12x15x8 ft3 0.046 0.23 0.28 

Concrete; 0/100 

6x12x8 ft3 0.047 0.17 0.22 

10x12x8 ft3 0.038 0.18 0.22 

12x15x8 ft3 0.034 0.18 0.21 

Bituminous FA; 15/85 

6x12x8 ft3 0.058 0.21 0.27 

10x12x8 ft3 0.047 0.22 0.27 

12x15x8 ft3 0.042 0.21 0.25 

Sub-bituminous FA; 15/85 

6x12x8 ft3 0.057 0.21 0.27 

10x12x8 ft3 0.047 0.21 0.26 

12x15x8 ft3 0.042 0.21 0.25 

Bituminous FA; 5/95 

6x12x8 ft3 0.051 0.19 0.24 

10x12x8 ft3 0.042 0.19 0.23 

12x15x8 ft3 0.037 0.19 0.23 

Sub-bituminous FA; 5/95 

6x12x8 ft3 0.050 0.19 0.24 

10x12x8 ft3 0.041 0.19 0.23 

12x15x8 ft3 0.037 0.19 0.23 
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Table 38. Total dose (mSv y-1), occupancy of 100%, adult female. 

Type; FA%/Concrete% Room size Internal External Total 

Bituminous FA; 25/75 

6x12x8 ft3 0.26 1.10 1.36 

10x12x8 ft3 0.21 1.12 1.33 

12x15x8 ft3 0.19 1.10 1.29 

Sub-bituminous; 25/75 

6x12x8 ft3 0.25 1.06 1.31 

10x12x8 ft3 0.21 1.08 1.29 

12x15x8 ft3 0.19 1.06 1.25 

Concrete; 0/100 

6x12x8 ft3 0.19 0.83 1.02 

10x12x8 ft3 0.15 0.85 1.00 

12x15x8 ft3 0.14 0.83 0.97 

Bituminous FA; 15/85 

6x12x8 ft3 0.23 1.01 1.24 

10x12x8 ft3 0.19 1.02 1.21 

12x15x8 ft3 0.17 1.00 1.17 

Sub-bituminous FA; 15/85 

6x12x8 ft3 0.23 0.98 1.21 

10x12x8 ft3 0.19 0.99 1.18 

12x15x8 ft3 0.17 0.98 1.15 

Bituminous FA; 5/95 

6x12x8 ft3 0.20 0.90 1.10 

10x12x8 ft3 0.17 0.91 1.08 

12x15x8 ft3 0.15 0.89 1.04 

Sub-bituminous FA; 5/95 

6x12x8 ft3 0.20 0.89 1.09 

10x12x8 ft3 0.17 0.90 1.07 

12x15x8 ft3 0.15 0.88 1.03 
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Table 39. Total dose (mSv y-1), occupancy of 65%, adult female. 

Type Room size Internal  External Total 

Bituminous FA; 25/75 

6x12x8 ft3 0.17 0.72 0.89 

10x12x8 ft3 0.14 0.72 0.86 

12x15x8 ft3 0.12 0.71 0.83 

Sub-bituminous; 25/75 

6x12x8 ft3 0.16 0.69 0.85 

10x12x8 ft3 0.14 0.7 0.84 

12x15x8 ft3 0.12 0.69 0.81 

Concrete; 0/100 

6x12x8 ft3 0.12 0.54 0.66 

10x12x8 ft3 0.10 0.55 0.65 

12x15x8 ft3 0.09 0.54 0.63 

Bituminous FA; 15/85 

6x12x8 ft3 0.15 0.65 0.80 

10x12x8 ft3 0.12 0.66 0.78 

12x15x8 ft3 0.11 0.65 0.76 

Sub-bituminous FA; 15/85 

6x12x8 ft3 0.15 0.64 0.79 

10x12x8 ft3 0.12 0.65 0.77 

12x15x8 ft3 0.11 0.64 0.75 

Bituminous FA; 5/95 

6x12x8 ft3 0.13 0.58 0.71 

10x12x8 ft3 0.11 0.59 0.70 

12x15x8 ft3 0.10 0.58 0.68 

Sub-bituminous FA; 5/95 

6x12x8 ft3 0.13 0.58 0.71 

10x12x8 ft3 0.11 0.58 0.69 

12x15x8 ft3 0.10 0.58 0.68 
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Table 40. Total dose (mSv y-1), occupancy of 25%, adult female. 

Type Room size Internal External Total 

Bituminous FA; 25/75 

6x12x8 ft3 0.064 0.28 0.34 

10x12x8 ft3 0.053 0.28 0.33 

12x15x8 ft3 0.047 0.27 0.32 

Sub-bituminous; 25/75 

6x12x8 ft3 0.063 0.27 0.33 

10x12x8 ft3 0.052 0.27 0.32 

12x15x8 ft3 0.046 0.26 0.31 

Concrete; 0/100 

6x12x8 ft3 0.047 0.21 0.26 

10x12x8 ft3 0.038 0.21 0.25 

12x15x8 ft3 0.034 0.21 0.24 

Bituminous FA; 15/85 

6x12x8 ft3 0.058 0.25 0.31 

10x12x8 ft3 0.047 0.25 0.30 

12x15x8 ft3 0.042 0.25 0.29 

Sub-bituminous FA; 15/85 

6x12x8 ft3 0.057 0.25 0.31 

10x12x8 ft3 0.047 0.25 0.30 

12x15x8 ft3 0.042 0.24 0.28 

Bituminous FA; 5/95 

6x12x8 ft3 0.051 0.22 0.27 

10x12x8 ft3 0.042 0.23 0.27 

12x15x8 ft3 0.037 0.22 0.26 

Sub-bituminous FA; 5/95 

6x12x8 ft3 0.050 0.22 0.27 

10x12x8 ft3 0.041 0.22 0.26 

12x15x8 ft3 0.037 0.22 0.26 
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Table 41. Total dose (mSv y-1), occupancy of 100%, 10 year old male. 

Type; FA%/Concrete% Room size Internal  External Total 

Bituminous FA; 25/75 

6x12x8 ft3 0.26 1.05 1.31 

10x12x8 ft3 0.21 1.08 1.29 

12x15x8 ft3 0.19 1.06 1.25 

Sub-bituminous; 25/75 

6x12x8 ft3 0.25 1.02 1.27 

10x12x8 ft3 0.21 1.05 1.26 

12x15x8 ft3 0.19 1.02 1.21 

Concrete; 0/100 

6x12x8 ft3 0.19 0.80 0.99 

10x12x8 ft3 0.15 0.82 0.97 

12x15x8 ft3 0.14 0.81 0.95 

Bituminous FA; 15/85 

6x12x8 ft3 0.23 0.91 1.14 

10x12x8 ft3 0.19 0.99 1.18 

12x15x8 ft3 0.17 0.97 1.14 

Sub-bituminous FA; 15/85 

6x12x8 ft3 0.23 0.94 1.17 

10x12x8 ft3 0.19 0.91 1.10 

12x15x8 ft3 0.17 0.95 1.12 

Bituminous FA; 5/95 

6x12x8 ft3 0.20 0.86 1.06 

10x12x8 ft3 0.17 0.88 1.05 

12x15x8 ft3 0.15 0.87 1.02 

Sub-bituminous FA; 5/95 

6x12x8 ft3 0.20 0.85 1.05 

10x12x8 ft3 0.17 0.87 1.04 

12x15x8 ft3 0.15 0.86 1.01 
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Table 42. Total dose (mSv y-1), occupancy of 65%, 10 year old male. 

Type Room size Internal  External Total 

Bituminous FA; 25/75 

6x12x8 ft3 0.17 0.68 0.85 

10x12x8 ft3 0.14 0.70 0.84 

12x15x8 ft3 0.12 0.69 0.81 

Sub-bituminous; 25/75 

6x12x8 ft3 0.16 0.66 0.82 

10x12x8 ft3 0.14 0.68 0.82 

12x15x8 ft3 0.12 0.66 0.78 

Concrete; 0/100 

6x12x8 ft3 0.12 0.52 0.64 

10x12x8 ft3 0.10 0.53 0.63 

12x15x8 ft3 0.09 0.53 0.62 

Bituminous FA; 15/85 

6x12x8 ft3 0.15 0.59 0.74 

10x12x8 ft3 0.12 0.64 0.76 

12x15x8 ft3 0.11 0.63 0.74 

Sub-bituminous FA; 15/85 

6x12x8 ft3 0.15 0.61 0.76 

10x12x8 ft3 0.12 0.59 0.71 

12x15x8 ft3 0.11 0.61 0.72 

Bituminous FA; 5/95 

6x12x8 ft3 0.13 0.56 0.69 

10x12x8 ft3 0.11 0.57 0.68 

12x15x8 ft3 0.10 0.56 0.66 

Sub-bituminous FA; 5/95 

6x12x8 ft3 0.13 0.55 0.68 

10x12x8 ft3 0.11 0.57 0.68 

12x15x8 ft3 0.10 0.56 0.66 
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Table 43. Total dose (mSv y-1), occupancy of 25%, 10 year old male. 

Type Room size Internal External Total 

Bituminous FA; 25/75 

6x12x8 ft3 0.064 0.26 0.32 

10x12x8 ft3 0.053 0.27 0.32 

12x15x8 ft3 0.047 0.27 0.32 

Sub-bituminous; 25/75 

6x12x8 ft3 0.063 0.25 0.31 

10x12x8 ft3 0.052 0.26 0.31 

12x15x8 ft3 0.046 0.25 0.30 

Concrete; 0/100 

6x12x8 ft3 0.047 0.2 0.25 

10x12x8 ft3 0.038 0.2 0.24 

12x15x8 ft3 0.034 0.2 0.23 

Bituminous FA; 15/85 

6x12x8 ft3 0.058 0.23 0.29 

10x12x8 ft3 0.047 0.25 0.30 

12x15x8 ft3 0.042 0.24 0.28 

Sub-bituminous FA; 15/85 

6x12x8 ft3 0.057 0.23 0.29 

10x12x8 ft3 0.047 0.23 0.28 

12x15x8 ft3 0.042 0.24 0.28 

Bituminous FA; 5/95 

6x12x8 ft3 0.051 0.21 0.26 

10x12x8 ft3 0.042 0.22 0.26 

12x15x8 ft3 0.037 0.22 0.26 

Sub-bituminous FA; 5/95 

6x12x8 ft3 0.050 0.21 0.26 

10x12x8 ft3 0.041 0.22 0.26 

12x15x8 ft3 0.037 0.21 0.25 
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Comparison results 

Table 44. Total dose (mSv y-1), occupancy of 100%. 

Type; FA%/Concrete% Room size Male Female Child 

Bituminous FA; 25/75 

6x12x8 ft3 1.18 1.36 1.31 

10x12x8 ft3 1.17 1.33 1.29 

12x15x8 ft3 1.13 1.29 1.25 

Sub-bituminous; 25/75 

6x12x8 ft3 1.14 1.31 1.27 

10x12x8 ft3 1.14 1.29 1.26 

12x15x8 ft3 1.09 1.25 1.21 

Concrete; 0/100 

6x12x8 ft3 0.89 1.02 0.99 

10x12x8 ft3 0.88 1.00 0.97 

12x15x8 ft3 0.85 0.97 0.95 

Bituminous FA; 15/85 

6x12x8 ft3 1.07 1.24 1.14 

10x12x8 ft3 1.07 1.21 1.18 

12x15x8 ft3 1.03 1.17 1.14 

Sub-bituminous FA; 15/85 

6x12x8 ft3 1.05 1.21 1.17 

10x12x8 ft3 1.05 1.18 1.10 

12x15x8 ft3 1.00 1.15 1.12 

Bituminous FA; 5/95 

6x12x8 ft3 0.95 1.10 1.06 

10x12x8 ft3 0.95 1.08 1.05 

12x15x8 ft3 0.91 1.04 1.02 

Sub-bituminous FA; 5/95 

6x12x8 ft3 0.94 1.09 1.05 

10x12x8 ft3 0.94 1.07 1.04 

12x15x8 ft3 0.91 1.03 1.01 
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Table 45. Total dose (mSv y-1), occupancy of 65%. 

Type; FA%/Concrete% Room size Male Female Child 

Bituminous FA; 25/75 

6x12x8 ft3 0.77 0.89 0.85 

10x12x8 ft3 0.76 0.86 0.84 

12x15x8 ft3 0.73 0.83 0.81 

Sub-bituminous; 25/75 

6x12x8 ft3 0.74 0.85 0.82 

10x12x8 ft3 0.74 0.84 0.82 

12x15x8 ft3 0.71 0.81 0.78 

Concrete; 0/100 

6x12x8 ft3 0.57 0.66 0.64 

10x12x8 ft3 0.57 0.65 0.63 

12x15x8 ft3 0.55 0.63 0.62 

Bituminous FA; 15/85 

6x12x8 ft3 0.70 0.80 0.74 

10x12x8 ft3 0.69 0.78 0.76 

12x15x8 ft3 0.67 0.76 0.74 

Sub-bituminous FA; 15/85 

6x12x8 ft3 0.68 0.79 0.76 

10x12x8 ft3 0.68 0.77 0.71 

12x15x8 ft3 0.65 0.75 0.72 

Bituminous FA; 5/95 

6x12x8 ft3 0.62 0.71 0.69 

10x12x8 ft3 0.62 0.70 0.68 

12x15x8 ft3 0.60 0.68 0.66 

Sub-bituminous FA; 5/95 

6x12x8 ft3 0.61 0.71 0.68 

10x12x8 ft3 0.61 0.69 0.68 

12x15x8 ft3 0.59 0.68 0.66 
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Table 46. Total dose (mSv y-1), occupancy of 25%. 

Type; FA%/Concrete% Room size Male Female Child 

Bituminous FA; 25/75 

6x12x8 ft3 0.29 0.34 0.32 

10x12x8 ft3 0.29 0.33 0.32 

12x15x8 ft3 0.28 0.32 0.32 

Sub-bituminous; 25/75 

6x12x8 ft3 0.28 0.33 0.31 

10x12x8 ft3 0.28 0.32 0.31 

12x15x8 ft3 0.28 0.31 0.30 

Concrete; 0/100 

6x12x8 ft3 0.22 0.26 0.25 

10x12x8 ft3 0.22 0.25 0.24 

12x15x8 ft3 0.21 0.24 0.23 

Bituminous FA; 15/85 

6x12x8 ft3 0.27 0.31 0.29 

10x12x8 ft3 0.27 0.30 0.30 

12x15x8 ft3 0.25 0.29 0.28 

Sub-bituminous FA; 15/85 

6x12x8 ft3 0.27 0.31 0.29 

10x12x8 ft3 0.26 0.30 0.28 

12x15x8 ft3 0.25 0.28 0.28 

Bituminous FA; 5/95 

6x12x8 ft3 0.24 0.27 0.26 

10x12x8 ft3 0.23 0.27 0.26 

12x15x8 ft3 0.23 0.26 0.26 

Sub-bituminous FA; 5/95 

6x12x8 ft3 0.24 0.27 0.26 

10x12x8 ft3 0.23 0.26 0.26 

12x15x8 ft3 0.23 0.26 0.25 

 

Table 47. External dose with center room offset (mSv y-1), occupancy of 100%, adult male, 
10x12x8 ft3. 

Type; FA%/Concrete% Middle Halfway Three quarters 

Bituminous FA; 25/75 0.96 0.95 0.95 

Sub-bituminous; 25/75 0.93 0.92 0.92 

Concrete; 0/100 0.73 0.72 0.72 

Bituminous FA; 15/85 0.88 0.87 0.86 

Sub-bituminous FA; 15/85 0.86 0.85 0.84 

Bituminous FA; 5/95 0.78 0.77 0.77 

Sub-bituminous FA; 5/95 0.77 0.77 0.76 
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Table 48. External dose with center room offset (mSv y-1), occupancy of 65%, adult male, 
10x12x8 ft3. 

Type; FA%/Concrete% Middle Halfway Three quarters 

Bituminous FA; 25/75 0.62 0.62 0.62 

Sub-bituminous; 25/75 0.60 0.60 0.60 

Concrete; 0/100 0.47 0.47 0.47 

Bituminous FA; 15/85 0.57 0.57 0.56 

Sub-bituminous FA; 15/85 0.56 0.55 0.55 

Bituminous FA; 5/95 0.51 0.50 0.50 

Sub-bituminous FA; 5/95 0.50 0.50 0.49 

 

Table 49. External dose with center room offset (mSv y-1), occupancy of 25%, adult male, 
10x12x8 ft3. 

Type; FA%/Concrete% Middle Halfway Three quarters 

Bituminous FA; 25/75 0.24 0.24 0.24 

Sub-bituminous; 25/75 0.23 0.23 0.23 

Concrete; 0/100 0.18 0.18 0.18 

Bituminous FA; 15/85 0.22 0.22 0.22 

Sub-bituminous FA; 15/85 0.21 0.21 0.21 

Bituminous FA; 5/95 0.19 0.19 0.19 

Sub-bituminous FA; 5/95 0.19 0.19 0.19 
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CHAPTER V 

 

DISCUSSION 

 

Specific activity analysis 

238U concentrations in bituminous fly ash samples varied from 30 to 217 Bq kg-1 (119 ± 

45 Bq kg-1) (all values in parentheses mean ± 1 s.d), and concentrations in sub-bituminous fly 

ash samples varied from 72 to 209 Bq kg-1 (115 ± 40 Bq kg-1);  232Th concentrations in 

bituminous fly ash samples  varied from 10 to 120 Bq kg-1 (73 ± 26 Bq kg-1), and concentrations 

in sub-bituminous fly ash samples varied from 53 to 110 Bq kg-1 (81 ± 18 Bq kg-1);  40K 

concentrations in bituminous fly ash samples varied from 177 to 928 Bq kg-1 (569 ± 184 Bq kg-1), 

and in sub-bituminous fly ash samples varied from 87 to 303 Bq kg-1 (171 ± 69 Bq kg-1).  Fly ash 

specific activities found in this study are relatively consistent with those of other authors (Coles 

et al. 1978, Papastefanou 2010, Turhan et al. 2010), but were overall somewhat on the low side 

of their reported ranges, although means were similar.  The variability in our samples was less 

than that observed in the literature, but the literature values encompassed many kinds of 

samples, both from domestic and international sources, while our samples were all from within 

the United States.  The specific activities of the fly ash were similar to other building materials 

such as stones, rocks and cement (NCRP 1987).  The mean specific activities were slightly higher 

than the world average of building materials, with 238U, 232Th and 40K having 50, 50 and 500 Bq 

kg-1 respectively (UNSCEAR 1993). 
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FGD gypsum specific activities were much lower, with many below system MDAs, even 

with 72 hour counting times. Concentrations varied from 1 to 24 Bq kg-1 (9 ± 5 Bq kg-1); from 

below MDA to 3 Bq kg-1 (1 ± 1 Bq kg-1);  from below MDA to 19 Bq kg-1 (10 ± 5 Bq kg-1).  The 

concentrations in scrubber sludge samples varied from 0.2 to 174 Bq kg-1 (58 ± 58 Bq kg-1); from 

below MDA to 85 Bq kg-1 (22 ± 28 Bq kg-1); from 9 to 541 Bq kg-1 (164 ± 165 Bq kg-1) for 238U, 

232Th and 40K respectively.  

 Bituminous and sub-bituminous fly ashes are very similar in specific activity for 238U and 

232Th; however, 40K specific activity values were approximately three times higher than in 

bituminous fly ash samples.  FGD gypsum sample concentrations are comparable to those from 

natural gypsum samples and are an order of magnitude lower than in fly ash samples.  Natural 

gypsum samples, along with FGD gypsum samples, have much lower specific activity levels, as 

found in our measurements and reported by others (El Afifi et al. 2006, Trevisi et al. 2012), and 

appear to be negligible dose contributors for use in dose and risk assessment from their use in 

building materials.  Scrubber sludge concentrations were lower than those in fly ash samples, 

but the range was wide because the composition of sludge samples can be quite variable.  Thus, 

overall, our values were quite comparable to what others have found in similar sample types. 

 

Headspace analysis 

 The headspace analysis was performed for both types of fly ash, and averages were 

calculated using both the containers with headspace and smaller petri dishes.  Averages for the 

polypropylene jars and the petri dishes were 118 and 144 Bq kg-1; 75 and 89 Bq kg-1; 477 and 

606 Bq kg-1 for 238U, 232Th and 40K respectively. The ratios of the concentrations in the petri 
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dishes to those in the jars were 1.28, 1.38 and 1.27 for 238U, 232Th and 40K.  If radon and thoron 

gas was escaping through the headspace in such a way as to alter the counting efficiency, the 

results would have shown an increase in specific activity for both 238U and 232Th but not for 40K.  

Due to the equal increase in concentration of 40K, an alternative explanation is necessary other 

than the escape of radon/thoron gas was causing the change in counting efficiency seen in the 

smaller petri dishes.  A 3 mm layer of material was found present at the bottom of the 

polypropylene jars that was not present in the petri dishes.  It was concluded that the 

separation of the sample from the detector due to this layer of material was causing a slight 

change in counting efficiency from use of Petri dishes.  Since the detector was calibrated using a 

standard with the same type of polypropylene jars (with the 3 mm base), the correct specific 

activity of the samples were based on the results obtained from the larger containers.   

 

Radon internal dose analysis 

 It was assumed that 25% fly ash was the maximum concentration that would be used in 

building materials, which is the maximum allowable be the American Concrete Institute (ACI 

2005). The radon dose changed from 0.19 to 0.26 mSv y-1 for a 6x12x8 ft3 room, 0.15 to 0.21 

mSv y-1 for a 10x12x8 ft3, 0.14 to 0.19 mSv y-1 for a 15x12x8 ft3 when a 25% fly ash 

concentration was assumed, instead of pure concrete.     This gives an increased dose of 0.07, 

0.06 and 0.05 mSv y-1 when a person is in a 25%/75% room instead of in a pure concrete room.  

This is small compared to the annual limit of the public, 1 mSv y-1 (10CFR20 1997).  This is also 

assuming occupancy of 100%, which is unrealistic for the average person.  UNSCEAR (2000) 

estimated the world’s population of radon and thoron dose to be 1.275 mSv y-1 and an increase 
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of a maximum of 0.07 mSv y-1 is small compared to the total dose received by the average 

person.  The maximum indoor radon concentration, 10.29 Bq m3, is also well below the 

maximum of 100 Bq m3 advised by the World Health Organization (WHO 2009). The results, as 

expected, gave highest doses in the smallest rooms.  This is confirmed by similar literature 

(Sathish et. al 2011).   

Radon dose was assumed to be relatively the same for both sexes; age-dependent 

models were not found in the literature.  Though the breathing rate is most likely slightly 

different for male and female, it might differ quite a bit for a child compared to an adult; 

however tidal volumes are smaller and this may offset the effect of higher breathing rates 

somewhat.   

 The fly ash percentages for this study were presumed to be 25% and 15% of concrete, 

however, typical mass percentages are usually around 2-3% with a high loading of 6%.  This 

means that 20-45% of cement will be substituted for fly ash.  Doses in this study will accordingly 

be higher than in actuality.  

 

Monte Carlo external dose analysis 

 The male adult external dose with 100% occupancy varied from 0.92 to 0.7 mSv y-1 for a 

6x12x8 ft3 room, 0.96 to 0.73 mSv y-1 for a 10x12x8 ft3 room, 0.94 to 0.71 mSv y-1 for a 15x12x8 

ft3 room, for rooms with 25%/75% fly ash and concrete mixture to 0%/100% pure concrete.  

The female adult external dose with 100% occupancy varied from 1.10 to 0.83 mSv y-1 for a 

6x12x8 ft3 room, 1.12 to 0.85 mSv y-1 for a 10x12x8 ft3 room, 1.10 to 0.83 mSv y-1 for a 15x12x8 

ft3 room, for rooms with 25%/75% fly ash and concrete mixture to 0%/100% pure concrete.  
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The male child of ten years old external dose with 100% occupancy varied from 1.05 to 0.8 mSv 

y-1 for a 6x12x8 ft3 room, 1.08 to 0.82 mSv y-1 for a 10x12x8 ft3 room, 1.06 to 0.81 mSv y-1 for a 

15x12x8 ft3 room, for rooms with 25%/75% fly ash and concrete mixture to 0%/100% pure 

concrete.  The male adult external dose with 100% occupancy and a room size of 10x12x8 ft3 

varied from 0.95 to 0.72 mSv y-1 for a center offset of halfway across the room and 0.95 to 0.72 

mSv y-1 for a center offset of three quarters across the room. 

 In general, doses per Bq in the walls are higher for smaller rooms, but this is offset by 

the overall higher amounts of total activity in larger rooms (i.e. due to more kg of concrete); 

thus there is no clear pattern for doses as the volume of the room increases.  The results show 

that the 10x12x8 ft3 volume room had a higher dose of the other two, so the multiplication of 

the decreasing volume of concrete with the increasing Sv per disintegration was the 

determining factor, and the dose was not significantly different from the room sizes.  Female 

dose is the highest, due to the radiosensitivity of the breast tissue, for which males do not have.  

The male child had the next highest dose, level the male adult with the least amount of dose.  

Since both the adult and child are assumed to have the same tissue weighting factors (ICRP 

103) the dose just depends on differences in body size.  The difference in weight translates to a 

higher dose in Sv, which is the only factor different in the calculation for annual dose; however 

with external dose, fewer photons are intercepted by a smaller individual.  The doses calculated 

for the center, halfway center offset and three-fourths offset were not different; it appears that  

dose reductions due to distance from one wall are offset by proximity to the other. 
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Internal and external total dose analysis 

 The male adult total dose with 100% occupancy varied from 1.18 to 0.89 mSv y-1 for a 

6x12x8 ft3, room 1.17 to 0.88 mSv y-1 for a 10x12x8 ft3 room, 1.13 to 0.85 mSv y-1 for a 15x12x8 

ft3 room, for rooms with 25%/75% fly ash and concrete mixture to 0%/100% pure concrete.  

The female adult total dose with 100% occupancy varied from 1.36 to 1.02 mSv y-1 for a 6x12x8 

ft3 room, 1.33 to 1.00 mSv y-1 for a 10x12x8 ft3 room, 1.29 to 0.97 mSv y-1 for a 15x12x8 ft3 

room, for rooms with 25%/75% fly ash and concrete mixture to 0%/100% pure concrete.  The 

male child of ten years old total dose with 100% occupancy varied from 1.31 to 0.99 mSv y-1 for 

a 6x12x8 ft3 room, 1.29 to 0.97 mSv y-1 for a 10x12x8 ft3 room, 1.25 to 0.97 mSv y-1 for a 

15x12x8 ft3 room, for rooms with 25%/75% fly ash and concrete mixture to 0%/100% pure 

concrete.  The percent differences between women vs man, woman vs child, and child vs man 

were on an average of 14, 3.4, and 11 percent, respectively, assuming full occupancy. 

The average annual dose received by natural sources is 2.4 mSv, with 1.26 mSv received 

from radon and 0.48 from external terrestrial radiation (UNSCEAR 2000).  This indicates that 

our radon dose may be underestimated, while our external dose could be overestimated.  

Overall, however, the doses suggest that even at maximum occupation this is not more than 

the world average of 2.4 mSv y-1 (UNSCEAR 2000).  It is also unknown that doses so low can lead 

to cancer.  Although many accept the tenets of the ‘linear no threshold’ (LNT) model of 

radiation carcinogenesis, others dispute its applicability at low doses and dose rates.  The BEIR 

VII Committee (BEIR VII 2006) found that cancer risks were ‘not inconsistent’ with a LNT model, 

while the French Academy of the Sciences concluded that there was not enough evidence to 

extrapolate cancer risks from high doses and dose rates to lower values (Aurengo et al. 2005). 
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Other theories hold that doses below 100 mGy of radiation could even produce a protective 

effect (‘hormesis’) by stimulating cellular repair mechanisms (Cameron and Moulder 1998). At 

present it is unknown what doses may poses a threat to human health (Feinendegen 2005).  

The theoretical doses calculated in this work, from the possible inclusion of fly ash material into 

building materials are very low, and within the variability of natural background rates in the US.  

In Figure 28 it is shown the variability of the natural background in the US (Dixon 2007). 

 

 

Figure 28. Variability of the natural radiation background in the US. 

 

 Indeed, the variability of natural levels of  238U, 232Th and 40K in concrete (with no fly ash added) 

is considerable, thus drawing specific conclusions about increased risk of cancer from inclusion 

of fly ash in building materials is not possible from these data. 
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Chapter VI 

 

Conclusions 

 

Concentrations of 238U, 232Th and 40K were analyzed in various samples of fly ash, 

gypsum and other related materials. The concentrations in fly ash were detectable with 8 hour 

counting times and produced values that were similar to values established in the literature by 

others. Fly ash bituminous 238U concentrations varied from 30 to 217 Bq kg-1 (mean + 1 sd 119 ± 

45 Bq kg-1), and sub-bituminous concentrations varied from 72 to 209 Bq kg-1 (115 ± 40 Bq kg-1);  

bituminous 232Th concentrations varied from 10 to 120 Bq kg-1 (73 ± 26 Bq kg-1), and sub–

bituminous concentrations varied from 53 to 110 Bq kg-1 (81 ± 18 Bq kg-1); bituminous 40K 

concentrations varied from 177 to 928 Bq kg-1 (569 ± 184 Bq kg-1), and sub-bituminous 

concentrations varied from 87 to 303 Bq kg-1 (171 ± 69 Bq kg-1).  Concentrations in gypsum 

samples were much lower, and many were below system MDAs, even with 72 hour counting 

times.  It was concluded FGD gypsum has negligible amounts of radionuclides and therefore is 

not a relevant contributor to dose. 

Samples were transferred from polypropylene jars into petri dishes to determine if 

headspace contributed to loss of specific activity due to seepage of radon gas.  The headspace 

analysis used 40K as the control because it did not have a gas component.  The 40K specific 

activity increased almost the same amount as both 238U and 232Th when counted in the petri 

dishes.  It was concluded that this increase was due to the container thickness and not gas 

escaping through the headspace.    
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Radon doses were calculated using an equation given by Taylor-Lange et. al 2012.  

Several factors were variable and chosen based on previous literature.  The dose is highly 

dependent on the air exchange rate and the radon emanation coefficient.  For this study, the 

maximum radon dose was found to be 0.26 mSv y-1, with an occupancy of 100% given the 

smallest room size.   

Monte Carlo simulations were run on Geant4 transport code to estimate external dose.  

The doses were from highest to lowest for female adult, male child of ten years and male adult.  

The differences were attributed to differences in weighting factors and weight.  For this study, 

the maximum external dose was found to be 0.96, 1.12, 1.08 mSv y-1 for adult male, adult 

female and 10 year old male, respectively, with an occupancy of 100%.   

Total doses estimated from typical levels of these radionuclides in fly ash added to 

building materials were low, in comparison to routine background, medical and other radiation 

exposures of the US public, and are within the range of variability of these exposures. 

It was concluded the most important factor with respect to eternal dose is occupancy, 

rather than sex, age or room size, given an upper bound to the usage rate of fly ash in concrete 

based on construction code requirements.  The most important factor with respect to internal 

dose is occupancy and air exchange rate.  Natural materials used in concrete have almost as 

much naturally occurring radioactivity as the fly ash, so the incremental effect of fly ash usage is 

small, even with mass percentages as high as 25%. 
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APPENDIX A 

 

Figure 29. Certificate of calibration for standard source. 
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Figure 30. QA sheet for Ortec detector. 
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Figure 31. Detector specs for Canberra detector. 
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Figure 32. Standard Cs-137 QA graph for Canberra detector. 

 



101 
 

 

Figure 33. 352 keV background QA graph for Canberra detector. 
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