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CHAPTER I 

 

INTRODUCTION 

 

I.1 A brief introduction to Deep Brain Stimulation (DBS) surgery 

Movement disorders like Parkinson’s disease (PD), essential tremor (ET) and dystonia 

affect approximately 1 million, 1.5 million and 250,000 people respectively in the United 

States [1]. Direct health-related expenses, indirect disability expenses and lost 

productivity in the United States for PD alone amount to $25 billion annually [2]. Since 

its first FDA approval in 1997, high frequency DBS has become a contemporary 

treatment of these diseases as well as of an emerging number of other focal neurological 

disorders [10-14]. It is offered to patients who have begun to see failure with standard 

medical therapy and also to patients in whom medical therapy is poorly effective. DBS 

involves the placement of a 4-contact electrode shown in figure 1 (Medtronic #3387 or 

#3389 quadripolar lead®, Medtronic, Inc., Minneapolis, MN), in the deep brain. 

Stimulation is applied with the aid of a stimulator implanted in the patient’s chest. 

Converging computational and experimental results [14, 15] suggest that therapeutic 

DBS generates an excitatory effect on axons surrounding the electrode. Although 

correlations between axonal activation and the therapeutic mechanisms of DBS remain 

controversial, one leading hypothesis is that high-frequency stimulation overrides the 

underlying pathologic neural activity patterns [3-5]. 
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Figure 1. Medtronic #3387 quadripolar lead® (Medtronic Inc., Minneapolis, MN). Each 
silver band is one stimulating contact. The scale is in centimeters. 

 

Effective stimulation results when the contacts surround the optimal target [6]. If the 

contacts are located away from the optimal location, ineffective stimulation results due to 

several reasons: a) failure to capture control of the desired group of neurons, b) 

stimulation of non-desirable areas resulting in unpleasant stimulation, or c) necessity for 

higher stimulus intensities to produce the desired effect resulting in reduced battery life 

of the implant. Therefore, targeting the specific neurons of interest for this therapy 

requires precision and allowance for variability among patients.  

The pre-operative stage involves planning for the location of implantation of a multi-

contact electrode in a specific region deep within the brain, the intra-operative stage 

involves the placement of the electrodes after refining the pre-operative target based on 

data collected during the surgery and the post-operative stage involves choosing the 

appropriate contact(s) as well as stimulation settings that will provide maximum 

therapeutic benefit (reduction in symptoms with minimum or no adverse effects).  

Specifically, during the pre-operative stage, based on experience and knowledge of 

the anatomy the neurosurgeon selects what he/she believes would be the optimal target 

for electrode implantation by visualizing the patient’s images. During the intra-operative 

stage, the pre-operatively selected target is refined by probing the surrounding region 
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with a recording and/or a stimulating electrode. Micro-electrode recordings and semi-

micro/macro stimulation responses are useful to accurately locate the target and optimize 

the final position of implantation [18-23]. The recording electrode is used to characterize 

the neuronal firing patterns, which are then used to infer locations of deep brain nuclei 

relevant to the targeted region. Stimulating electrodes are used to elicit responses in an 

awake patient. Both these sources of information allow the neurosurgeon, neurologist, 

and neurophysiologist to establish functional borders and to mentally reconstruct the 

somatotopic arrangement of the structures of interest. This, in turn, allows the surgical 

team to correct for initial targeting errors based on detailed knowledge of the intended 

therapeutic effect versus unintended adverse effects from the final implanted electrode. 

The clinical judgment of where the final electrode position should be requires sub-

specialty training in neurosurgery. The post-operative stage is referred to as the stage of 

programming the electrode where the goal of the neurologist is to find the optimal contact 

and the stimulator settings that can provide the best therapeutic benefit (maximize 

symptom relief, and minimize adverse effects if any). The surgery can be a lengthy 

process (sometimes extending for hours with the patient awake) and the entire procedure 

from pre-operative to post-operative stage requires expertise in neurosurgery, 

neurophysiology, and clinical neurology [7, 8]. This combined expertise is available only 

at a limited number of sites, which limits access to the procedure for a small fraction of 

the patients who would benefit from it. 
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I.2 Indirect targeting based on anterior and posterior commissures 

Common targets of interest for DBS are poorly visible in current imaging modalities. 

Therefore, in normal clinical practice pre-operative target localization is typically done 

by indirect targeting which involves determining the position of the targets with respect 

to landmarks visible in the images. A popular indirect targeting approach defines a 

coordinate system based on the Anterior and Posterior Commissures (AC and PC). The 

commissures are fiber tracts connecting the two cerebral hemispheres. The posterior 

commissure lies just in front of and above the superior colliculi, and below the pineal 

gland. The anterior commissure runs just in front of the fornix. Average standardized 

ACPC-based target coordinates for SubThalamic Nucleus (STN) [9], Globus Pallidus 

Internus (GPi) [9], and Ventralis intermedius nucleus (Vim) [10] are given in table 1. 

 

Table 1. Average AC-PC coordinates for target locations inside the STN, Vim and GPi 
reported in literature to clinically produce successful symptom reduction due to DBS. 

Nucleus 
Coordinates (mm) 

Vertical (origin) Lateral (origin) AP (origin) 

STN -4 (MC) 12 (MC) -3 (MC) 

Vim 0 (MC) 12 (MC) -6 (MC) 

GPi -2 (MC) 20 (MC) 5 (MC) 

 

Since this approach continues to be commonly used, the definition of a standard 

coordinate system that can be consistently reproduced across patients is necessary for 

effective communication of target locations. Therefore, it is valuable to quantify the 

variability among neurosurgeons in manually selecting AC and PC points on typical MRI 

4 
 



scans used for neurosurgery and to further evaluate the effect this variability can have on 

the accuracy of localizing targets and communicating the same. 

An automated and robust method based on image features for the localization of the 

anterior and posterior commissure points can aid in standardizing the AC-PC based 

coordinate system. Therefore, it is useful to investigate the accuracy with which an 

automatic method can select the AC and PC so that such a method can be used to 

overcome the inter-surgeon variability in selecting these points. To that end, an atlas-

based method has been applied to predict the position of AC and PC automatically and its 

accuracy has been validated. More importantly, the focus of this work is to validate the 

method against clinically selected points in a large number of patients as well as against a 

gold standard selected in a controlled laboratory setting.  

Target selection can also be done by direct targeting in which the target is selected by 

locating it on the patient images (if visible on those images) or by overlaying the target 

from atlases like the Talairach [11] or Schaltenbran-Wahren (S-W) [12] atlas onto the 

patient images. These atlases consist of unevenly spaced brain sections that have been 

histologically stained to reveal the structures and sub-structures of interest. However, 

such atlases are imperfect because they are either limited to one sectioning plane per 

hemisphere (Talairach) when a single brain is used or to non-contiguous anatomy in 

intersecting orthogonal slices (S-W) when several brains are used.  

Alternatives to these have been developed recently by Yelnik et al. [13] and Bardinet 

et al. [14]. These approaches involve one 3D histological atlas reconstructed from thin 

contiguous slices registered to their MR volume. Automatic segmentation of anatomical 
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structures of interest can then be obtained by registering the atlas MR volume to the 

patient MR volume. Chakravarty et al. [15, 16] also proposed a 3D anatomical atlas that 

was derived from a set of serial histological data. To aid the surgical target identification 

several groups use rigid or non-rigid alignment of the digitized stereotactic [15, 17-20] 

and histological atlases with patient-specific pre-operative brain images.  

However, there is a lack of consensus on the exact location where stimulation can 

provide the best efficacy for a given disease. While STN is a popular target for PD, the 

precise location of the optimal target is not straightforward because STN is not clearly 

visible on conventional imaging used for DBS. Locating sub-regions of STN on the 

images is even more challenging. Using micro-electrode recordings data to identify 

nuclei based on neuronal signatures, Lanotte et al. [21] located the center of the STN in a 

number of patients and found the variability in their positions to be approximately 4 mm 

in each direction; namely, anterior-posterior, medial-lateral, and dorsal-ventral. It has 

been reported by Plaha et al. [22] that there are multiple regions in the brain where 

efficacy for a given movement disorder can be achieved by DBS. For instance, for PD it 

is reported that both the dorsal part of the STN and zona inserta (ZI) provide symptom 

relief. Andrade-Souza et al. [23] recommended the use of a target near the superior 

portion of the nucleus. However, Maks et al. [24] have recently reported that patient-

specific models showed that therapeutic benefits were achieved with direct stimulation of 

a wide range of anatomical structures in the STN region in 10 PD patients. Furthermore, 

Zonenshayn et al. [25] found that anatomical targeting methods including direct targeting, 

S-W atlas and AC-PC based indirect targeting resulted in targets that were statistically 

different from the final MER-based electrophysiological targets. Thus, there is a need for 
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the development of accurate electrophysiological atlases that can be used during the 

various stages of DBS. 

 
I.3 Building electrophysiological atlases and maps 

As mentioned in section I.1, intra-operatively acquired micro-electrode recordings 

and stimulation response data allow the neurosurgeon, neurologist, and neurophysiologist 

to establish functional borders and to mentally reconstruct the somatotopic arrangement 

(organization of sensory and motor areas of the brain) of the structures of interest. This, 

in turn, allows the surgical team to plan electrode displacements. From the post-operative 

stage, similar stimulation response data as well as information on the clinically selected 

contact and the stimulator settings can be recorded. Using all this information from a 

population of patients, accurate electrophysiological atlases of intra-operative 

observations can be developed. Nowinski et al. [26] have contributed a Probabilistic 

Functional Atlas (PFA) for the STN using spatial distribution data of the locations of 

clinically active contacts in a number of patients. But, this atlas does not contain any 

stimulation response data collected either intra-operatively or during post-operative 

programming of the electrode. Finnis et al. [27] describe a functional database used to 

capture and normalize information acquired intra-operatively. The data is normalized 

spatially by registering the MR volume of each patient to one reference volume with a 

combination of rigid and non-rigid registrations. D’Haese et al.  [28, 29] have shown 

techniques by which a computer system can be used to predict the pre-operative planned 

target. The techniques involve creating statistical atlases of implant positions in a 

population of patients. Guo et al. [30] compared a number of methods for STN DBS 
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targeting including direct targeting, use of anatomical atlases [12], electrophysiological 

databases [31], actual surgical targets from a population of patients [28] and a 

combination of these methods. They found that the electrophysiological database, actual 

surgical target locations, and the combination of approaches based on functional and 

anatomical information, provided more accurate initial estimation of the surgical target 

positions than those techniques dependent solely on anatomical references. Castro et al. 

[32, 33] have shown atlas-based targeting using non-rigid registration similar to the 

method by D’Haese et al. [34]. In [34], D’Haese et al. used MRI image volumes as 

atlases and performed non-rigid registration between the atlases and MR images of 

patients using the adaptive bases algorithm proposed by Rohde et al. [35]. Pluim et al. [36] 

provide a detailed survey of mutual-information-based methods for medical image 

registration. Chakravarty et al. [16] survey various atlas warping techniques used for 

DBS and suggest that template-based atlas-to-patient warping techniques such as the 

methods above that use MRI imaging for atlas creation work best for customizing the 

atlas onto patient data. 

With reliable techniques for warping MRIs of patients to an atlas MRI, intra-

operatively acquired electrophysiological data can be mapped from a population of 

patients onto the atlas MRI. The collection of such data in the atlas MRI space is referred 

to as an electrophysiological atlas. This data includes micro-electro recordings, 

stimulation responses, pre-operative targets, final intra-operative implant positions, post-

operative implant positions, etc. Such data can be processed to make them more 

informative for identifying high likelihood regions by creating what are referred to as 

statistical electrophysiological maps or simply statistical maps in the remainder of this 
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dissertation. D’Haese et al. [34] showed how statistical maps of stimulation response data 

could be created by placing a Gaussian kernel at each stimulation response data point and 

combining those kernels. Guo et al. [37] also built stimulation response maps using this 

method for automatic target planning. However, as will be discussed in chapter IV, this 

method has certain drawbacks that need to be addressed. 

 

I.4 Brain shift in DBS 

In stereotactic neurosurgery, an underlying assumption is that anatomical structures do 

not move between the time of the pre-operative image acquisition and the time of the 

surgery. However, this assumption is not valid. For years, neurosurgeons and researchers 

have investigated the value of tracking brain shift during surgery for invasive procedures 

such as brain tumor resection [39, 40]. Gerdes et al. [38] in 1975 first described the error 

resulting from subdural air invasion and “brain sinking” in stereotactic procedures. 

Recently, by comparing pre- and post-operative images, Wester et al. [39], Winkler et al. 

[40], Khan et al. [41] reported that brain tissues can in fact shift during DBS surgery. 

Using real-time intra-operative MRI, Martin et al. [42] reported that appreciable 

ipsilateral brain shift was evident during burr hole access. Khan et al. [43] studied 25 

subjects that underwent DBS surgery and analyzed brain shift between pre- and post-

operative 3D MRI scans. Brain shift of up to 4 mm was observed in deep brain structures. 

The mean and standard deviation (and maximum) of shift magnitudes for the AC, PC, 

medial-anterior corners of left and right putamen were 1.8 ± 0.7 (2.9) mm, 1.6 ± 0.8 (2.9) 

mm, 1.8 ± 0.9 (3.5) mm, and 2.0 ± 0.7 (3.9) mm, respectively. Winkler et al. [40] 
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reported intra-operative brain movement of 2 mm in the region of the STN in a case study. 

By comparing post-operative MRI acquired on the day of the surgery with pre-operative 

MRI, Miyagi et al. [44] reported medial, posterior and inferior shifts of 0.69 ± 0.45 mm, 

2.23 ± 0.93 mm and 0.58 ± 0.77 mm respectively for AC. For PC, these shifts were 0.35 

± 0.26 mm, 1.03 ± 0.90 mm and 0.37 ± 0.47mm. Halpern et al. [45] reported that shift 

appeared to impact the number of microelectrode tracks required to optimize STN 

targeting. 

Intra-operative brain shift happens due to loss of cerebrospinal fluid and air invasion 

into the skull through the burr hole, gravitational force [46], change in pressure due to 

skull opening during the surgery, pneumocephalus, and forces due to insertion of the 

DBS lead. It could increase during the procedure due to the length of the procedure itself 

and failure or delay in sealing the burr hole. A shift of deep brain structures by only a few 

millimeters can potentially increase the number of required exploratory tracks and impact 

implantation accuracy. Although intra-operative neurophysiological techniques such as 

microelectrode mapping and macroelectrode stimulation may compensate for it, brain 

shift may require greater number of micro- and macro-electrode passes thereby 

lengthening the procedure and increasing the likelihood of complications. A review of 

STN-implanted patients in 2001 by the DBS for PD study group suggested that the higher 

the number of microelectrode passes the higher the risk of intracranial bleeding during 

DBS [47]. 

Thus, brain shift can have an effect on the functional atlases and databases of intra-

operative observations and statistical maps of such data developed by various groups 

10 
 



which have been discussed earlier [27, 31, 34, 37, 48, 49]. This is because to create such 

atlases pre-operative image volumes are typically used whereas due to brain shift the pre- 

and intra-operative coordinates of anatomic structures may be different. Therefore, 

ignoring brain shift could lead to inaccuracies and imprecision in the statistical atlases 

and maps and reduce the predictive value of systems that use this information. Model-

driven brain shift compensation techniques [50] are difficult to implement in burr hole 

surgeries such as DBS due to very limited brain surface deformation information. In the 

latter part of the dissertation, the effect of brain shift on building electrophysiological 

atlases is studied and approaches to build shift-corrected atlases are discussed and 

validated.  

 

I.5 Using electrophysiological atlases for DBS 

Limousin et al. [51] reported that neurophysiological guidance changed the target 

coordinates in 87% of the procedures in an experienced surgical team. These authors and 

others have concluded that guidance is a useful tool to improve and confirm target 

localization. The longer the intervention and the greater the number of tracks, the higher 

the possibility of adverse effects [52]. Gironell et al. [53] have presented benefits of a 

computerized intra-operative neurophysiological navigator system in helping a surgical 

team select the optimal target. A number of functional atlases and databases [16, 26, 27, 

29, 34, 48, 54, 55] containing intra-operatively acquired sub-cortical electrophysiology 

from a number of patients have been implemented to complement the anatomical and 

histological atlases. Butson et al. [56-58] developed a detailed methodology to predict the 
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volume of tissue activated (VTA) during DBS as a function of electrode design and 

stimulation parameter settings. D’Haese et al. have shown preliminary results on using 

electrophysiological maps for post-operative programming assistance in DBS. Thus, a 

number of groups have seen the need for the use of electrophysiological atlases in DBS. 

However, these systems either are still being validated for their use to provide assistance 

to the surgical team or do not address the issues described in the previous sections. 

Towards the end of the dissertation, the use of electrophysiological maps built based on 

the results from earlier chapters is investigated for post-operative programming assistance. 

The feasibility of using such an atlas for intra-operative assistance is also discussed.  

The dissertation is organized in the following manner to best present the contributions: 

Chapter II investigates the inter-surgeon variability in manually selecting the 

anterior and posterior commissures (AC and PC) and the effect this has on AC-PC based 

localization of common DBS targets. 

Chapter III validates the accuracy of an atlas-based method for the prediction of 

commissures by comparing the predictions against careful manual selections by a large 

number of neurosurgeons as well as against clinical selections in a large number of 

patients. 

Chapter IV describes the limitations of the previous model (Gaussian kernel) used 

for building statistical maps of stimulation response. A new model (Gaussian smoothed 

spherical shell kernel) is proposed and maps generated by the two models are compared. 

Chapter V shows the effect of intra-operative brain shift on the creation of 

electrophysiological atlases using intra-operative MER and stimulation response data 

from a population of patients. 
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Chapter VI proposes two different approaches to build electrophysiological maps 

after accounting for brain shift. Maps built using the new kernel as well as after 

accounting for brain shift are validated in this chapter. 

Chapter VII provides preliminary results for post-operative programming assistance 

using electrophysiological maps built using the new model after accounting for brain shift.  

Chapter VIII provides the summary of the work and discusses possible future work. 
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CHAPTER II  

 

INTER-SURGEON VARIABILITY IN THE SELECTION OF ANTERIOR AND 
POSTERIOR COMMISSURES (AC AND PC) AND ITS POTENTIAL EFFECTS 

ON TARGET LOCALIZATION 
 

 
Abstract 

 
The selection of the anterior and posterior commissures (AC and PC) defines the 

reference system by which stereotactic coordinates of targets are communicated in the 

literature and among surgeons. Atlases like the Nowinski [26] atlas also use AC and PC 

for normalization of a population of patients to a common reference space. Thus, it is 

important to quantify errors that may occur in this reference system because of difference 

in visual localization of AC and PC points. In this chapter, a study on the inter-surgeon 

variability in manually selecting the anterior and posterior commissures (AC and PC) and 

the effect this has on AC-PC based localization of common DBS targets is presented. 

 

This work was published in the Journal of Stereotactic and Functional 

Neurosurgery in 2008 [59]. 
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II.1 Introduction 

Based on the standard convention of the Schaltenbrand-Wahren atlas, AC and PC 

are defined as two points with the shortest, intraventricular distance between the 

commissures [12]. The mid-commissural point (MC), or the midpoint of the line 

connecting AC and PC, is the most common origin of the coordinate space used for 

stereotactic targeting. Some neurosurgeons continue to use the traditional definition of 

AC-PC distance to signify the shortest, intraventricular distance based on the traditional 

method of determining this by ventriculography and true lateral skull X-rays. On the 

other hand, most stereotactic neurosurgery relies on MRI imaging today, and some 

neurosurgeons use the middle of the commissure versus the intraventricular edge of the 

commissure to designate the AC and PC points. Because the selection of the AC and PC 

points defines the reference system by which stereotactic coordinates are communicated 

in the literature and among surgeons, it is important to quantify errors that may occur in 

this reference system because of difference in visual localization of AC and PC points.  

Furthermore, any discussion of localization of targets like the subthalamic nucleus (STN), 

ventralis intermedius nucleus (Vim) and globus pallidus internus (GPi) based on AC-PC 

is limited by the variability of visually selected AC and PC selections.  The variability in 

manual AC-PC selections by 43 neurosurgeons that specialized in stereotactic 

neurosurgery was examined. The impact this variability has on the localization of three 

popular deep brain stimulation (DBS) targets was also evaluated. 
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II.2 Data and Method 

During the American Society for Stereotactic and Functional Neurosurgery 

(ASSFN) conference held in Boston, MA, USA in 2006, 43 neurosurgeons (38 attendings 

and 5 residents/fellows) selected AC and PC (as they routinely do for surgical planning) 

on two high resolution MRI volumes. The scans were displayed on a laptop computer 

with image-viewing software containing simple tools for slice selection, zooming, and 

point selection. Both MRI volumes were acquired as sagittal T1 sequences (referred to as 

Patient1 with 1mm x 1mm x 1.2mm resolution and Patient2 with 1mm x 1mm x 1mm 

resolution, TR 8.05ms, TE 3.68ms) on a 1.5T Phillips Medical Systems scanner. Both 

scans were displayed to the neurosurgeons at a resolution of 1mm x 1mm x 1mm in three 

standard views (axial, sagittal, and coronal) simultaneously.  A point selection made on 

one view was also displayed on the other two views to allow further refinement on any of 

the three views. Figure 2(a) shows a snapshot of one of the scans as shown to the 

neurosurgeons.  

Every attempt was made to not provide any verbal cues or assistance to the 

surgeons while selecting the AC and PC points so that bias was minimized. To 

completely define the AC-PC reference system, a point on the mid-sagittal plane is 

required in addition to the AC and PC points. Surgeons were not asked to pick the mid-

sagittal plane point (MP) in order to limit interaction time. Instead, the MP was 

designated by a senior neurosurgeon and remained the same in all measurements. The X, 

Y, and Z coordinates (in mm) of AC and PC selections were recorded and the mid-

commissural point (MC) was calculated for each neurosurgeon’s pair of AC and PC. The 
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data consisting of the coordinates (X, Y, Z) of the manual selections made by the 

neurosurgeons for each MRI volume were further divided in two sets: pointset_all 

including selections by all 43 neurosurgeons and pointset_attendings including selections 

by only the 38 attending neurosurgeons.  

  

Figure 2. (a) Sample display from the image viewer software. The number on the top in 
the upper-left corner of each view refers to the slice number and the bottom number 
refers to the zoom factor. L=left, R=right, I=inferior, S= superior, A=anterior, 
P=posterior. (b) Illustration of the computation of “surgeon-pairwise distances” between 
surgeon selections. 
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Surgeon-Pairwise distances as a measure of inter-surgeon variability 

Traditionally, the spread of a cluster of points is measured as the mean distance from the 

centroid of the cluster to a given point, but this does not provide a direct measure of 

distances between points in the cluster. In this study, which focuses on measuring inter-

surgeon differences, we have opted for pairwise distances. Suppose, for instance, that 

S1AC, S2AC, S3AC, and S4AC are the AC selections by four surgeons S1, S2, S3 and S4 

and that distance(a, b) is the distance between points a and b, then we compute distances 

between the four surgeon selections taken pairwise, i.e., distance(S1AC, S2AC), 

distance(S1AC, S3AC), distance(S1AC, S4AC), distance(S2AC, S3AC), distance(S2AC, 

S4AC) and distance(S3AC, S4AC) and call these surgeon-pairwise distances. Their mean, 

standard deviation (SD) and median (to eliminate the effect of outliers) were computed as 

a measure of the inter-surgeon variability in selecting the AC. This is illustrated in figure 

2(b). 

 

Measuring the inter-surgeon variation at AC, PC and MC and the resultant variation at 

targets 

The method described above was applied to the AC, PC and MC coordinates for each 

surgeon pair to calculate the inter-surgeon variability at the commissures and at the MC. 

The effect of variation in the selection of AC and PC on target localization was analyzed 

using coordinates published in the literature for STN [9], GPi [9], and Vim [10]. These 

standard coordinates are shown in table 1. Using the coordinates shown in table 1, (X, Y, 

Z) coordinates for STN, GPi and Vim targets were calculated from each neurosurgeon’s 
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AC-PC selections.  To generate a 3-dimensional coordinate space, one point in the mid-

plane other than AC, PC and MC was chosen by a senior neurosurgeon on each MRI 

volume.  This mid-plane point remained the same in all cases, and was used in the 

calculation of each of the targets in X, Y, Z coordinates. The surgeon-pairwise distances 

were computed from these as a measure of the inter-surgeon variability at the targets. 

This variability is due only to the variability in selection of the commissures. 

 

Experiment to estimate the effect of mid-plane tilt 

To study the effect of variations in the selection of one or more midplane points, which 

could not be studied with the data set acquired at the conference, a small experiment was 

carried out. On the same two volumes, two neurosurgeons selected multiple sets of three 

points on the falx that could potentially be picked by a neurosurgeon to fit the mid-plane. 

The AC and PC for each of the volumes were fixed. Mid-planes were then fitted through 

each set of points selected on the falx for each volume. Pairwise angles between all these 

planes (inter-plane angles) were then computed to measure the variability in selecting 

mid-planes. Based on the results of this experiment the effect of mid-plane tilt on target 

localization was studied. 

 
 
II.3 Results 

II.3.1 Inter-surgeon variability in localizing the anterior and posterior commissures 
 

Mean and median surgeon-pairwise distances for the AC, PC and MC selections on MRI 

volumes 1 and 2 and both the datasets are given in table 2. The medians of AC and PC 

selection variability are similar. The mean of PC selection variability is substantially 
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larger than that of AC selection variability when all the data points are pooled 

(pointset_all). Both mean and median of MC selection variability are smaller than those 

of AC and PC selection variability for both data sets on both MRI volumes. This suggests 

that the MC point is more consistent as a common reference point than the AC or the PC. 

However, it must be noted that the standard deviation for the MC point remains large 

when all the data points are pooled (pointset_all) in both MRI volumes.  

 

Table 2. Mean and median of the surgeon-pairwise distances for manual AC-PC 
selections by 43 surgeons on two datasets (a) patient1, (b) patient2. 
 

Surgeon pairwise distance (mm) 
(a) Patient1 

  pointset_all  pointset_attendings 
  AC PC MC  AC PC MC 
Mean 1.92 2.27 1.47  1.53 1.45 0.85 
SD 1.96 3.92 2.01  1.44 1.24 0.42 
Median 1.26 1.23 0.89  1.21 1.17 0.81 

 

Surgeon pairwise distance (mm) 
(b) Patient2 

  pointset_all  pointset_attendings 
  AC PC MC  AC PC MC 
Mean 1.44 2.05 1.26  1.29 1.41 0.88 
SD 1.05 3.46 1.68  0.77 1.62 0.78 
Median 1.18 1.08 0.69  1.16 1.08 0.65 

 
 
 

One reason for the variability at MC being smaller than that at the AC and PC 

stems from the fact that it is a computed quantity (average of two measurements - the AC 

and PC selections). Therefore, if the disparities between the surgeons are random and 

uncorrelated at the commissures, the variance at the MC is expected to be half the 

average of the variances at the commissures. However, the variance at the MC is 
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considerably smaller than that. The reason for this could be the convention followed for 

selecting the commissures in MRI images. The manual selections could either be with 

respect to the intraventricular edge or middle of the commissure.  In other words, if the 

AC was chosen posterior then the PC was chosen anterior, and if the AC was chosen 

anterior then the PC was chosen posterior with respect to the middle of each commissure. 

This trend was indeed found in 65% of the surgeon selections, thus accounting for the 

additional tightness at the MC clusters.  

 

II.3.2 Variation in localization of STN, Vim and GPi targets due to variation in AC-PC 

selections 

Mean and median surgeon-pairwise distances for the STN, Vim and GPi coordinates on 

MRI volumes 1 and 2 and both the datasets are given in table 3.  

 

Table 3. Mean and median of the surgeon-pairwise distances for indirect targeting of 
STN, Vim and GPi based on manual AC-PC selections by 43 surgeons on two datasets (a) 
patient1, (b) patient2. 
 

Surgeon pairwise distance (mm) 
(a) Patient1 

  pointset_all  pointset_attendings 
  STN Vim GPi  STN Vim GPi 
Mean 2.64 2.75 3.31  1.15 1.45 1.21 
SD 6.32 6.09 8.61  0.89 1.25 0.83 
Median 1.02 1.24 1.15  0.94 1.20 1.02 

 

Surgeon pairwise distance (mm) 
(b) Patient2 

  pointset_all  pointset_attendings 
  STN Vim GPi  STN Vim GPi 
Mean 1.45 1.82 1.54  1.08 1.35 1.12 
SD 2.07 2.83 2.01  1.37 1.71 1.17 
Median 0.77 0.95 0.87  0.73 0.93 0.81 
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Effect of variation of mid-plane 

The maximum pairwise inter-plane angle was found to be 1.000 for Patient1 and 1.700 for 

Patient2. We found that the effect of mid-plane orientation is maximum in terms of 

Euclidean shift on the localization of GPi (error = 0.71mm) as it is farthest away from the 

mid-plane laterally, followed by STN (error = 0.44mm) and then Vim (error = 0.43mm) 

for a 20 tilt in the mid-plane. 

 
 

II.4 Discussion and Conclusions 

The dataset populated with 43 neurosurgeons localizing AC and PC on the same two 

MRI volumes is unique. The results show that variation in manual selection of the AC 

and the PC is substantial and has a substantial effect on AC-PC based indirect target 

localization.  They also show that the MC is a more consistent reference point than either 

the AC or the PC. This is likely due to canceling of differences among neurosurgeons 

using different conventions.  

It is noteworthy that the error in designating AC and PC has the most effect on 

targets located more lateral from the midline. Based solely on the error in determining 

AC and PC, two neurosurgeons on average would select STN, Vim and GPi up to 2.64 

mm, 2.75 mm and 3.31 mm apart respectively. This variability is significant because the 

distance between adjacent contacts on a standard DBS electrode is only 1.5 mm. 

Variability in selection of the mid-plane (which was held constant in the original 
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experiment) adds further 0.44 mm, 0.43 mm and 0.71 mm variability in selecting STN, 

Vim and GPi respectively.  

The two MRI image data sets used in this study were of high quality, with very 

limited motion artifacts because the images were acquired with the patient under 

anesthesia. The study, therefore, does not address the effect of quality of the images or 

the effect of large variability in brain anatomy (such as ventricular size). This may further 

have a significant impact on the surgeons’ ability to select AC and PC accurately. It is 

expected that blurring due to motion artifacts in image volumes acquired with awake 

patients will further increase inter-surgeon variability. 

The data set also strongly suggests that experience plays an important role in a 

neurosurgeon’s ability to select the points accurately. For Patient1 the mean surgeon-

pairwise distances for the attendings group are lower than those for the pooled group by 

20% for AC and 36% for PC. These percentages for Patient2 are 10% for AC and 31% 

for PC. This translates into a mean increase in the surgeon-pairwise distance of targeting 

error in the pooled data (including residents/fellows) versus experienced stereotactic 

neurosurgeons (attendings) by 130%, 90% and 174% for STN, Vim and GPi respectively 

for Patient1. For Patient2, the increase in percentage targeting errors between the pooled 

data and attendings only are 34%, 35% and 37% for STN, Vim and GPi respectively. 

The selection of the midplane point (MP) was held constant during the survey to 

reduce interaction time. Because of this, the effect of variation in selecting points on the 

falx on target selection could not be assessed in the subject population. But, the 

experiments indicate that this could introduce an additional error of 0.71 mm, 0.44 mm, 
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and 0.43 mm at the GPi, STN, and Vim, respectively for a 20 tilt in the mid-plane. 

Although this is relatively small compared to the error of AC-PC selection, this error can 

become more significant in patients with a curved falx. The variability presented herein 

should thus be considered as a lower bound. This study highlights the difficulty of 

establishing a common reference system to communicate locations of target points based 

on visual inspection of the MRI for AC-PC reference points. Yet, when comparing 

therapeutic target locations, a method of normalizing targets with respect to a common 

reference system (AC-PC coordinates) is highly useful. The source of error we have 

measured is only one among several sources of errors that complicates the surgical 

procedures. Others include the accuracy of the stereotactic frame used to place the 

electrode or anatomical differences between patients. It is therefore difficult to measure 

directly the impact of AC and PC localization errors on the overall procedure or its 

outcome. It is, however, reasonable to believe that any source of error in the reference 

process could potentially lengthen the procedure by requiring more intra-operative 

adjustment or lead to suboptimal placements. This, in turn, could lead to less than optimal 

therapeutic response from the procedure. 

A more accurate reference for stereotaxy would eliminate visual inspection of the 

AC-PC on MRI scans, and instead automate the selection based on imaging criteria. To 

that end, the first step is to develop automatic methods that would permit the accurate and 

consistent localization of the AC and the PC points [60-63]. The second is to develop 

algorithms that permit the automatic non-rigid registration of MRI images. D’Haese et al. 

[34] have used a non-rigid registration method [35] in the past for accurate localization of 
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targets. In the next chapter, this non-rigid registration technique will be used for 

automatic AC and PC predictions and the accuracy of the predictions will be validated. 
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CHAPTER III 

 
AN AUTOMATIC METHOD AND IT’S VALIDATION FOR THE ROUTINE 

SELECTION OF THE ANTERIOR AND POSTERIOR COMMISSURES IN MR 
IMAGES 

 
 

 
Abstract 

 
The previous chapter showed that there was substantial inter-surgeon variability in the 

manual selection of AC and PC and that this has a substantial impact on AC-PC based 

manual localization of targets. Since the AC and PC continue to be commonly used for 

targeting and communication of targets as well as for the normalization of patients to 

build certain atlases, there is a need for a method for accurate localization of these 

landmarks. In this chapter, an existing atlas-based technique is applied to predict the 

commissures. The accuracy of the method is validated by comparing the predictions 

against careful manual selections by a large number of neurosurgeons, and against 

selections made in a clinical setting as well as against gold standards created in a non-

clinical setting. 

 

This work was published in the Journal of Stereotactic and Functional 

Neurosurgery in 2009 [64] and the proceedings of SPIE Medical Imaging [60]. 
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III.1 Introduction 

The findings from the previous section suggest the need for automated and robust 

methods for the localization of the anterior and posterior commissure points. To that end 

an atlas-based method we have used in the past [34] for target predictions is applied to 

predict the position of AC and PC automatically. More importantly, the focus of this 

work is to validate the method against clinically selected points in a large number of 

patients as well as against a gold standard selected in a controlled setting. The results 

show that the predictions are more accurate than routine manual selection.   

 

III.2 Data and Method 

With IRB (Vanderbilt University IRB #060232) approval, a  pre-operative 3D MRI scan 

(TR 12.2ms,  TE 2.4ms, 256x256x170 voxels, with typical voxel resolution of 1x1x1 

mm³) was acquired for each patient using the SENSE parallel imaging technique 

(T1W/3D/TFE) from Philips on a 3T scanner. These images were acquired with the 

patient anesthetized and head taped to the table to minimize motion. The study presented 

herein includes 60 patients who underwent DBS surgery at our institution between 

December 2006 and January 2008. 

 

 

 

27 
 



 Atlas-based automatic AC and PC predictions 

An atlas-based method is used to predict automatically the position of AC and PC points. 

Atlas-based methods require two main components: (1) reference image volumes in 

which points or structures of interest have been localized and (2) registration algorithms, 

which permit the spatial realignment of the reference volumes to other image volumes in 

which the structures or points of interest need to be localized. Reference volumes in 

which the points of interests have been localized will be referred to as atlases in the 

remainder of the text. In this work, automatic spatial realignment or registration between 

image volumes is achieved in two steps. First, the volumes are realigned using an affine 

transformation (rotation, translation, and anisotropic scaling). This is followed by a non-

rigid registration step. In this study, non-rigid registration is performed with the adaptive 

bases algorithm proposed by Rohde et al. [35].  Briefly, this algorithm computes a 

deformation field that is modeled as a linear combination of radial basis functions with 

finite support. This results in a transformation with several thousands of degrees of 

freedom. Two transformations (one from the atlas to the subject and the other from the 

subject to the atlas) are computed simultaneously and constrained to be inverses of each 

other. Both the rigid and non-rigid registration algorithms are mutual information based 

[65, 66].  

Using this method, AC and PC points selected on an atlas volume can be 

projected onto a patient’s volume to predict these points on that particular patient. Figure 

3 illustrates this concept. The AC and PC from the atlas are projected onto the patient 

using a transformation (T) which is the result of rigid and non-rigid registrations between 
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the atlas and the patient. This results in the automatic localization of the anterior and 

posterior commissures in the patient (ACP and PCP). 

 

Figure 3. Atlas-based automatic method for predicting the anterior and posterior 
commissures on a patient (ACP, PCP) by applying a transformation T (result of rigid and 
non-rigid registration between atlas and patient) to the atlas points (AC, PC). 

 

Multiple-atlases-based automatic AC and PC predictions 

As others have observed (see for instance the work of Rohlfing et al. [67]), registration 

accuracy achievable by non-rigid registration may be influenced by morphological 

differences between the volumes to be registered. It is now relatively common to rely on 

outputs of several atlases to perform atlas-based segmentation [34, 67, 68]. To study the 

impact of the choice of an atlas on the process accuracy, four MRI image volumes were 

used as atlases. Three of these were patient volumes, which differed in size and/or shape 

(both overall and at specific structures like the ventricles). The fourth one was a synthetic 

volume generated by averaging 20 patient volumes using the method proposed by 

Guimond et al. [69]. This is an iterative method which starts with one of the volumes as a 

target and converges toward a volume that is representative of the population as a whole.  
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Figure 4 illustrates the extension of the single atlas approach described in the 

previous section to a multiple-atlases approach. The AC and PC points selected on each 

of the N atlases (AC1 and PC1, AC2 and PC2, …, ACN and PCN) are projected onto the 

patient volume (ACP
1 and PCP

1, ACP
2 and PCP

2, …, ACP
N and PCP

N) using the 

transformation between the respective atlas and the patient volume.  

 

Figure 4. Using multiple atlases to produce optimal AC and PC predictions by 
combining the individual atlas-based predictions generated using the approach shown in 
figure 3. 

 

The multiple predictions are then combined to produce the automatic prediction 

of the commissural points. The easiest way to combine the predictions from each atlas is 

to compute their average and use it as the optimal prediction. The drawback of this 

approach is that the predictions made by all the atlases are weighted equally, regardless 

of the quality of the registrations. In a 2005 study [70], we proposed an alternative 

approach in which the quality of the registration at a given location (STN), was estimated 

indirectly by estimating the quality of the segmentation of structures surrounding that 

location (thalamus, globus pallidus, and putamen). The measure of the quality of the 

segmentation is given by the specificity and sensitivity of the segmentations obtained 

with each atlas on these structures. These are computed using the STAPLE algorithm 

proposed by Warfield et al. [68]. The specificity and sensitivity values are then used to 
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weigh the contribution of each atlas to the optimal prediction while eliminating the 

contributions of atlases that produce low sensitivity values for the structures (i.e., atlases 

that lead to poor segmentation results for structures surrounding the location of interest). 

 

Manual localization of the points on the atlases 

As shown in the previous study and in [59], there is substantial inter-surgeon variability 

in the manual selection of the AC and PC points, which complicates the creation of 

atlases. Indeed, errors in the localization of the AC and PC points in the atlases produce 

prediction errors independent of the registration accuracy. To minimize the effect of 

localization errors in the atlases, two senior neurosurgeons were asked to carefully select 

AC and PC on each of the atlases without any time constraints. For each atlas, the 

reference AC and PC points were computed as the average of the selections by the two 

neurosurgeons.  

 

Evaluating accuracy of automatic AC and PC predictions against manual selections by 

43 neurosurgeons on the two MRI volumes from the previous study 

On the two MRI patient volumes used in the previous study on inter-surgeon variability 

in localizing the commissures, automatic atlas-based predictions of AC and PC were 

made using the method described above. Using the predicted AC and PC points STN, 

Vim and GPi were then indirectly localized in the two images based on the AC-PC 
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coordinates in table 1. The automatic AC and PC predictions were evaluated against the 

median of the manual AC and PC selections by the 43 neurosurgeons. The accuracy of 

our indirectly computed coordinates of STN, Vim and GPi based on atlas-predicted AC 

and PC were evaluated against the median of the computed coordinates of the same 

targets based on the 43 manual AC and PC selections. The atlas prediction accuracy was 

compared with the mean manual accuracy of the surgeon selections. 

 

Evaluating accuracy of automatic AC and PC predictions against clinical selections 

The automatic predictions of AC and PC points were evaluated against clinical manual 

selections on 60 DBS patients. Thirty of these patients were operated on by one 

neurosurgeon and thirty by the other. The pre-operative plans for these patients, which 

included clinical manual selection of AC and PC points, were generated by the 

neurosurgeon that performed the procedure. These clinical manual selections of the AC 

and PC points will be referred to as clinical selections. For each patient, using the pre-

operative MRI scan of the head, automatic predictions of AC and PC were generated 

using the individual atlases and the multiple-atlases-based methods described earlier. The 

accuracy of atlas-based automatic predictions (individual atlas as well as multiple-atlases-

based) was evaluated by measuring the Euclidian distance between the automatic 

predictions and clinical selections. 
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Need for a standard to evaluate AC and PC prediction accuracy 

Planning for a DBS procedure is typically performed under time constraints. This 

introduces inaccuracies. Thus, the clinical selections of AC and PC may not always be 

absolutely accurate. Consequently, measuring the distances between atlas-based 

predictions and clinical selections will not be conclusive in determining the accuracy of 

atlas-based predictions. To address this issue, a gold standard needs to be defined to 

which automatic AC and PC predictions and manual clinical selections can be compared.  

 

Creation of the gold standard to evaluate prediction accuracy 

To create the AC and PC gold standards, the following method was followed. Due to the 

time consuming nature of this method, 20 patients were selected out of the 60 patients 

used in this study. First, 10 of the 30 patients operated on by one of the neurosurgeons 

and 10 of the 30 patients operated on by the other neurosurgeon were selected randomly. 

Each of these patients already had AC and PC selected clinically by the operating 

neurosurgeon at the time of surgical planning. On these 20 volumes, both neurosurgeons 

were asked to carefully select AC and PC points in the laboratory without time 

constraints, using the same software tool that was used to create the atlases. Localization 

was performed independently by both neurosurgeons and they did not have access to the 

points that were selected by them clinically. This experiment created two new sets of AC 

and PC selections (one per neurosurgeon) on each of the 20 patients. These new 

selections can be considered to be the best achievable manual selections, henceforth 
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referred to as the silver standards (SlvStd1 and SlvStd2). The average of the two silvers 

standards on a given patient is the gold standard for that patient.  

 

Statistical Analysis 

The accuracy of various selection methods was computed by comparing the distances 

between the selections and the corresponding reference points. Comparisons between 

these distances were conducted with a Wilcoxon signed-rank test to account for 

dependency between the values observed on the same patient.  The Wilcoxon signed-rank 

test is a non-parametric statistical hypothesis test for the case of two related samples or 

repeated measurements on a single sample. It is used as an alternative to the paired 

Student's t-test when the population cannot be assumed to be normally distributed. The 

distances were summarized with the median and the lower and upper quartiles. R version 

2.7.0 [71] was used for all statistical analyses.  

 

III.3 Results 

III.3.1 Validation against manual selections by a 43 neurosurgeons in two datasets  

Quantitative results for prediction accuracy of AC, PC and MC and for the computed 

coordinates of STN, Vim and GPi based on the predicted commissures against the 

medians of the corresponding clusters based on the manual selections of AC and PC by 

the 43 neurosurgeons (ground truth) are given in table 4. This work was published in [60]. 
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Table 4. Distances between the atlas-based AC, PC and MC predictions, the computed 
coordinates of STN, Vim and GPi based on the predicted commissures, manual AC and 
PC selections by 43 neurosurgeons and the computed coordinates of MC, STN, Vim and 
GPi based on the manually selected commissures from the respective ground truths for (a) 
Patient1 and (b) Patient2. 

Accuracy (mm) with respect to median of 43 surgeon 
selections 

 

(a) Patient1 

AC PC MC STN Vim GPi 

Atlas 0.48 0.74 0.17 0.45 0.85 0.47 

Manual 1.25 1.42 0.91 1.55 1.66 1.90 

 

   

(b) Patient2 

AC PC MC STN Vim GPi 

Atlas 0.54 0.63 0.27 0.24 0.44 0.10 

Manual 1.01 1.27 0.80 0.90 1.11 0.95 

 

III.3.2 Validation against manual selections by two neurosurgeons in 60 patients in a 

clinical setting 

Comparing single- and multiple-atlases-based predictions to clinical selections 

The accuracy of the average of multiple-atlases-based predictions as well as of multiple-

atlases-based predictions using STAPLE was evaluated with respect to clinical selections. 

These two methods of combining predictions were not statistically different for AC (p = 

0.48) and MC (p = 0.49). For PC the average method produced smaller prediction error 

with respect to the clinical selection than the STAPLE method on 41 among the 60 
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patients (68%).  This difference at PC was statistically significant (p < 0.001) based on a 

Wilcoxon signed-rank test, which takes into account the rank (1 or 2) within the pair 

(average and STAPLE) for each patient.  The mean difference, however, is only 0.037 

(95% Confidence Interval: 0.014 to 0.090).  But, the average method led to large errors in 

one patient because one of the atlases registered poorly to this image volume. In this 

patient, the error using the average method was 8.40 mm at AC and 2.16 mm at PC while 

the error using the STAPLE for the same patient was 0.57 mm at AC and 0.93 mm at PC. 

Because the difference in accuracy between the STAPLE and the simple averaging 

method is very small and because the STAPLE method is better at eliminating outliers, it 

has been used in the rest of this study. Table 5 summarizes the prediction errors for 

individual atlases and for multiple-atlases-based prediction using STAPLE with respect 

to clinical selections on 60 patients. The median error with the lower and upper quartile 

values are provided. The p-values comparing the prediction errors of individual atlas 

predictions with those of multiple-atlases-based predictions using STAPLE are also given. 

Superiority of the multiple-atlases-based method using STAPLE is highly statistically 

significant over atlas 1 for AC and MC, and over atlases 2, 3, and 4 for PC.  

 

Comparison of the atlas-based predictions and clinical selections against silver 

standards 

Figure 5 shows representative results for the selection of AC. It shows the STAPLE 

based atlas prediction (1), the gold standard (2) defined as the average between the 

careful selections by the two neurosurgeons (silver standards) (4) and the clinical 
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selection (3),  projected on the sagittal (left panel) and axial (right panel) slice passing 

through  the gold standard point.  

Table 6 summarizes distances between pairwise combinations of multiple-atlases-

based automatic predictions, clinical selections and the two silver standards. It reports, 

for AC, PC and MC, the median and the lower and upper quartiles of the Euclidian 

distance in millimeter, between (a) the two silver standards (careful manual selections by 

the two surgeons), (b-c) the STAPLE based atlas predictions and the two silver standards, 

and (d-e) the clinical points and the two silver standards. The silver standards comparison 

(a) reflects the inter-surgeon variability while carefully selecting the points manually. 

 

Table 5. The errors (mm) of individual atlas predictions as well as of multiple-atlases-
based predictions using STAPLE with respect to clinical selections in 60 patient volumes 
are summarized with the medians (lower quartile, upper quartile). The p-values of 
Wilcoxon signed-rank test comparing the STAPLE based prediction errors and individual 
atlas-based predictions errors with respect to clinical selections are shown.   
 

 Multiple-
atlases-based 

prediction 
using 

STAPLE 

Atlas1-based 
prediction 

Atlas2-based 
prediction 

Atlas3-based 
prediction 

Atlas4-based 
prediction 

 
AC 

1.07  
(0.70, 1.43) 

1.21 
(1.02,1.69) 
p < 0.001 

1.04 
(0.69,1.42) 

p = 0.95 

1.03 
(0.68,1.48) 

p = 0.15 

1.21 
(0.70,1.52) 

p = 0.02 
 
PC 

0.94 
(0.66,1.21) 

1.02 
(0.72,1.39) 

p = 0.52 

1.03 
(0.71,1.38) 
p = 0.008 

1.10 
(0.70,1.58) 
p = 0.008 

1.11 
(0.76,1.39) 
p < 0.001 

 
MC 

0.82 
(0.55,1.14) 

1.06 
(0.78,1.32) 
p < 0.001 

0.91 
(0.55,1.29) 

p = 0.05 

0.87 
(0.55,1.22) 

p = 0.36 

0.83 
(0.64,1.13) 

p = 0.10 
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Figure 5. Representative AC selections. The figure shows (1) the STAPLE based 
prediction using multiple atlases, (2) the gold standard, (3) the clinical selection and (4) 
the careful selections by the two neurosurgeons, projected on the sagittal (left panel) and 
axial (right panel) slices passing through the gold standard point. 

 

The p-values comparing (a) with (b, c, d and e) using Wilcoxon signed-rank tests are also 

reported in Table 6. The differences between clinical selections and the silver standards 

were statistically significant, thus indicating that clinical selection is sub-optimal. On the 

contrary, no statistical significance was found for the difference between the two silver 

standards (a) and that between STAPLE based atlas predictions and silver standards (b 

and c).  Although, no conclusion can be drawn from large p-values, based on these 

findings, it may be conjectured that the atlas-based predictions are similar to an 

experienced neurosurgeon carefully selecting the points manually. 
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Table 6. Median (lower quartile, upper quartile) of the Euclidian distances between 
various types of selections; namely, silver standards (SlvStd1 and SlvStd2), multiple-
atlases-based predictions using STAPLE (Atlas) and clinical selections, of the AC, PC 
and MC points over 20 patient volumes.  Distances in columns (b – e) are compared to 
distances in (a) using a Wilcoxon signed-rank tests, and the corresponding p-values are 
shown in the cells. 
 

 SlvStd1 vs. 
SlvStd2 

(a) 

SlvStd1 vs. 
Atlas 
(b) 

SlvStd2 vs. 
Atlas 
(c) 

SlvStd1 vs. 
Clinical 

(d) 

SlvStd2 vs. 
Clinical 

(e) 
AC 0.56 

(0.44,0.87) 
 

0.82 
(0.57,0.92) 
p = 0.048 

0.59 
(0.43,0.92) 
p = 0.220 

1.19 
(1.00,1.57) 
p < 0.001 

1.29 
(0.89,1.60) 
p = 0.001 

PC 0.55 
(0.38,0.91) 

 

0.63 
(0.45,0.97) 
p = 0.598 

0.57 
(0.42,0.80) 
p = 0.812 

1.08 
(0.97,1.27) 
p = 0.001 

1.00 
(0.79,1.19) 
p = 0.030 

MC 0.51 
(0.34,0.58) 

 

0.43 
(0.33,0.50) 
p = 0.890 

0.52 
(0.27,0.64) 
p = 0.667 

0.72 
(0.60,1.14) 
p < 0.001 

0.98 
(0.72,1.30) 
p < 0.001 

 

Accuracy of atlas-based predictions and clinical selections against gold standards 

Table 7 summarizes the key findings of the study. It shows for the 20 volumes for which 

the AC and PC gold standards were available, the median Euclidean distances with the 

lower and upper quartiles, in millimeter, between (a) the automatic predictions and the 

gold standards, and (b) the clinical selections and the gold standards. These numbers are 

reported for the AC, PC and MC points.  With respect to the gold standard, the median 

distances of atlas predictions are only about half of that of clinical selections.  Highly 

statistically significant differences were found between the accuracy of atlas predictions 

and that of the clinical selections with respect to the gold standards for AC (p = 0.007), 

PC (p < 0.001), and MC (p < 0.001).  The results also show that atlas-based predictions 

are significantly more accurate than clinical selections with respect to the gold standard.  
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Finally, 95% confidence intervals of the median accuracy of atlas-based predictions with 

respect to the gold standards are (0.56, 0.79), (0.46, 0.66) and (0.33, 0.50) mm, 

respectively for the AC, PC and MC. For the accuracy of clinical selections with respect 

to gold standards the 95% confidence intervals are (0.91, 1.47), (0.82, 1.26) and (0.68, 

1.20) mm respectively for AC, PC and MC. 

 
Table 7. Median (lower quartile, upper quartile) of the Euclidian distances between gold 
standards, clinical selections (Clinical), and multiple-atlases-based predictions using 
STAPLE (Atlas) for AC, PC, and MC points over 20 patient volumes.  Distances shown 
in column (a) and (b) are compared using a Wilcoxon signed-rank tests, and the 
corresponding p-values are given. 

 Atlas vs. Gold 
Standard 

(a) 

Clinical vs. Gold 
Standard 

(b) 
AC 0.65 (0.53,0.84) 1.21 (0.74,1.56) 

p = 0.007 
PC 0.56 (0.42,0.70) 1.06 (0.81,1.25) 

p < 0.001 
MC 0.41 (0.29,0.53) 0.84 (0.62,1.11) 

p < 0.001 

 

Figure 6 shows the cumulative distributions of the differences between atlas 

predictions and clinical selections with respect to the gold standard over the 20 volumes. 

The horizontal axis represents the distance in mm between selections of a point (AC, PC 

or MC) using two different methods. The vertical axis represents the fraction of cases for 

whom the distance between the selections was less than or equal to the corresponding 

distance on the horizontal axis. Figure 6(a) shows that in about 80% of the cases the 

distance between atlas predictions and gold standard for AC is less than 1.0 mm which is 

true in only 25% of cases for the clinical selections. Figure 6(b) shows similar results for 
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the PC.  Figure 6(c) shows that in 100% of the cases the distance between atlas 

predictions and the gold standard for MC is sub-millimetric while it is only true in about 

70% of the cases for the clinical selections. This figure also shows that manual selection 

can lead to relatively large errors in the selection of the MC, which is commonly used as 

the center of the coordinate system in stereotactic surgeries. 

 

Figure 6. Cumulative distributions of the Euclidian distances between multiple-atlases- 
based predictions using STAPLE and gold standards (solid line) as well as between the 
gold standards and the points chosen clinically (dotted line) for (a) AC, (b) PC and (c) 
MC on 20 patients. 

 

III.4 Discussion and Conclusions 

The previous chapter showed that there was substantial inter-surgeon variability in the 

manual selection of AC and PC and that this had a substantial impact on AC-PC based 

manual localization of targets. In this chapter, an atlas-based technique [34] was applied 

to predict the commissures and the accuracy of the method was validated by comparing 

the predictions against careful manual selections by a large number of neurosurgeons, 
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and against selections made in a clinical setting as well as against gold standards created 

in a non-clinical setting. 

The results in this chapter demonstrate that by carefully creating atlases containing 

AC and PC selections and by combining predictions from multiple atlases, a system can 

be developed that is not only fully automatic but also produces results that are more 

accurate and reproducible than those obtained by experienced physicians in clinical 

practice. The error distribution shows that in most cases, the accuracy of the predictions 

is as good as what is achievable with the resolution of clinically acquired images. The 

statistical analysis shows a slight gain in performance when using more than one atlas. 

With current computer speeds and multi-core processors, multiple-atlas approaches are 

thus recommended. When the registrations were reasonable, the STAPLE-based 

approach used to weigh more those atlases that registered well did not produce 

statistically better predictions than the average of the multi-atlas predictions. However, 

when atlases registered poorly to a patient’s images the STAPLE-based approach was 

able to eliminate the contribution of those atlases that registered poorly. 

With respect to the median of the manual selection by 43 neurosurgeons from 

multiple centers, the atlas-based predictions were sub-millimetric for AC, PC, MC, STN, 

Vim and GPi on both the datasets. With respect to the gold standard built under 

laboratory controlled setting, the accuracy of AC, PC and MC predictions was sub-

millimetric (0.65 mm, 0.56 mm and 0.41 mm for AC, PC and MC respectively) on 20 

datasets. In a clinical setting, multiple-atlas-based prediction accuracy over 60 patients 

between 2 neurosurgeons was 1.07 mm, 0.94 mm and 0.82 mm for AC, PC and MC 

respectively. Comparing the careful manual selection by 2 neurosurgeons, their clinical 
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selections and atlas-based predictions suggests that the atlas-based predictions are similar 

to an experienced neurosurgeon carefully selecting the points manually. Thus, an atlas-

based technique was applied to standardize automatic selection of the commissures. 

Using a number of validation schemes it was shown that automatic selection of AC and 

PC with sub-millimetric accuracy and better than clinical selection by neurosurgeons is 

possible. Using such an approach, variability in communicating targets based on AC-PC 

can be reduced. This also directly impacts the accuracy of atlases that use AC-PC based 

normalization methods to populate statistical data from patients. 
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CHAPTER IV  

 

 

A NEW KERNEL TO BUILD STATISTICAL MAPS OF STIMULATION 
RESPONSE 

 

Abstract 

Statistical maps of stimulation responses acquired during DBS surgeries have been built 

in the past by a number of groups including ours. More importantly, attempts have been 

made to use such maps to provide assistance to the surgical team. However, there is a 

problem with the way stimulation responses are modeled in these methods for building 

the maps. In this chapter, first a limitation of the model that has been used in the past is 

described. Second, a new model is proposed to overcome this limitation and maps 

generated by the two models are compared. 

This work was published in Lecture Notes in Computer Science in the 

proceedings of Medical Image Computing and Computer Assisted Intervention (LNCS, 

MICCAI), 2008 [49]. 
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IV.1 Introduction 

As described in section I.3, a number of functional atlases and databases containing sub-

cortical electrophysiological data of stimulation responses have been developed. Such 

data are typically acquired intra-operatively during the DBS procedure. In the past, our 

group has shown how a statistical map of stimulation response observations could be 

created [72, 73] by combining Gaussian (GAUSS) kernels centered at every location 

where stimulation response was recorded. Guo et al. [37] also built stimulation response 

maps using this method and used them for automatic target planning. For a given 

stimulation response observation, the Gaussian kernel model assigns the highest 

likelihood of producing the response to the location of the stimulation point itself and 

lower values to points further away from it. Also, the support of the kernel is made 

proportional to the stimulation amplitude. This means that the likelihood values at and 

around a stimulation point are higher if the response was observed at lower stimulation 

amplitude than if the response was observed at higher stimulation amplitude. Some other 

groups have also used this approach [37, 74]. However, the method used to build these 

maps has certain drawbacks as discussed below. 

Figure 7 shows in one-dimension two Gaussian kernels centered at two 

stimulation points D1 and D2 where responses were observed at low amplitudes. 

Response at a low amplitude means that the region likely to have produced the response 

was located close to the stimulation point itself. Summing the two kernels in figure 7 

produces two regions of high likelihood, one centered at D1 and the other at D2. 
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Figure 7. Gaussian kernels centered at two stimulation points D1 and D2 where 
stimulation responses were observed at low stimulation amplitudes.   

 

However, there is a potential problem with this method. Consider the same two 

stimulation points D1 and D2 but with the same responses observed at higher stimulation 

amplitudes. The Gaussian kernels thus have larger supports as shown in figure 8(a). Since 

the responses were observed at higher stimulation amplitudes, the regions whose 

stimulation produced the responses are likely to be located further away from the 

stimulation points themselves. Let us assume for the sake of argument that this region is 

in between the stimulation points as shown by the dotted box in figure 8(a). This means 

that this region should be assigned higher likelihood of producing the response than the 

stimulation points themselves. However, summing the Gaussian kernels results in a 

function that assigns relatively smaller likelihood values to the region in between the two 

stimulation points than those at the points themselves as shown in figure 8(b). 
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(a) 

 

(b) 

Figure 8. (a) The same two stimulation points D1 and D2 shown figure 7 but with 
stimulation responses observed at higher stimulation amplitudes. Corresponding 
Gaussian kernels with larger standard deviations are centered at the points.  The result of 
summing the kernels in (a) is shown in (b). 

 

IV.2 Data and Method 

At Vanderbilt, DBS surgeries are performed using a miniature stereotactic frame, the 

StarFix microTargeting Platform® (501(K), Number K003776, Feb. 23, 2001, FHC, Inc., 
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Bowdoin, ME) instead of a standard stereotactic frame. During surgery, a micro-

positioning drive (microTargeting® drive system, FHC Inc., Bowdoin, ME) is mounted 

on the platform. Recording and stimulating leads are then inserted through the guiding 

tubes. Details on the platform, including a study of its accuracy demonstrating it to be at 

least as accurate as standard frames can be found in [75, 76]. Recent work on the clinical 

accuracy of this platform after accounting for intra-operative brain shift can be found in 

[77]. Using this system, the location of every intra-operative data point was converted to 

X, Y, Z coordinates in the patient’s CT image space. Stimulation response data include 

the location of each stimulation point, observed percentage reduction in symptoms or 

efficacy (recorded based on subjective assessment by a neurologist) and the associated 

stimulation current, observed adverse effect (if any) and the associated current. 1512 

stimulation data points from 92 PD patients and 950 stimulation response data points 

from 43 ET patients were available. Of these, only those where at least 50% efficacy was 

observed were chosen as efficacy data points. Using this approach, 730 efficacy data 

points from 78 PD implantations (STN DBS) and 572 efficacy data points from 36 ET 

implantations (Vim DBS) were populated and projected onto an MRI atlas. An efficacy 

threshold of 50% was chosen in consultation with the surgical team as the minimum 

acceptable efficacy. Choosing a threshold was necessary to normalize the variability 

between neurologists in the subjective assessment of efficacy (e.g. an assessment of 70% 

by neurologist A may correspond to 50% by neurologist B). 
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IV.2.1 Spherical shell kernel 

To address the problem shown in figure 8 and discussed in section IV.1, an 

alternative model is proposed based on the approach that is used in surgery to test for 

stimulation response. During the surgery, stimulation current is gradually increased in 

steps until a response is observed. If a response occurs at stimulation current I and not at 

the previous step I–ε, then it is intuitive to assume that the responsive neurons were 

activated between current amplitudes I–ε and I, where ε is a positive real number. Thus, it 

can be assumed that the responsive neurons lie in a region that is activated by current I 

but not by current I–ε. Assuming the activation field to be isotropic and the material 

properties of the brain to be homogeneous, this region would be an annulus in 2D or a 

spherical shell in 3D. Thus, a uniform probability density function is associated with the 

neurons in the spherical shell. Summing over a number of such spherical shell kernels 

and normalizing them yields a likelihood map of regions responsive to stimulation. The 

relationship used between stimulation current and the radius (R) of the spherical region of 

activated by it is based on the data published by Butson et al. [58] for monopolar 

stimulation using a DBS electrode with standard stimulator settings in an isotropic 

medium. Typical radii values are 2.2 mm for 1 mA, 2.6 mm for 1.5 mA, 3 mm for 2 mA. 

At our center, stimulation is applied in steps of 0.5 mA, but, in order to account for 

potential delay between the application of stimulation and the occurrence of response ε 

was chosen to be 1. 

Specifically, let a patient P1 have N1 stimulation data points D1, D2, …, . Let 

data point D1 from patient P1 be mapped to the location (XA , YA , ZA ) in the 

1ND

11 D11 DP 11 DP P
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atlas via non-rigid registration between the patient and atlas MRIs. If D1 produces a 

stimulation response at I mA, the spherical shell kernel will have outer radius r1 = f(I) and 

inner radius r2 = f(I - 1), where f is the function that relates stimulation current to the 

radius of the spherical region activated by it. Let 
11 ,DPΩ be the set of all voxels inside the 

spherical shell due to data point D1 from patient P1 as defined in equation 1. Let 
11 ,DPΘ be 

the set of voxels inside the inner sphere (radius r2) for data point D1 as defined in equation 

2. For data points D1, D2, …,  from patient P1, let 
1ND

1PΘ  
be the set of all voxels in the 

inner spheres as defined in equation 3. (xA, yA, zA) represents the map value at point 

(xA, yA, zA) in the atlas due to stimulation response data projected from data point D1 of 

patient P1 as defined in equation 4. The statistical map of stimulation response built by 

combining several data points from a population of patients using spherical shell kernels 

is represented by FSS. The value of FSS at any point (xA, yA, zA) due to L patients P1, 

P2, …, PL contributing N1, N2, …, NL data points respectively is represented as 

 and computed based on equation 5. 
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IV.2.2 Gaussian smoothed spherical shell (GSSS) kernel 

The problem with the spherical shell kernel is that it produces unrealistic maps which 

have numerous small fragments of high likelihood regions as shown in figure 9(b) for the 

organization of stimulation data points shown in figure 9(a). This shows that the 

constraint of the spherical shell model that none of the neurons in the inner sphere can 

produce the observed response is too strict. A possible scenario when some of the 

neurons inside the inner circle may be required is shown in figure 10. Therefore, it is not 

appropriate to assign zero likelihood of producing the stimulation response to the region 

inside the inner sphere. 
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(a)                       (b) 

Figure 9. (a) Organization of 4 stimulation data points D1, D2, D3 and D4 and their 
associated annulus kernels. f is the function that relates stimulation current to the radius 
of the region activated by it, and ε is a positive real number. (b)  Resulting map built 
using the method based on the spherical shell described in section IV.2.1.  

 

 

Figure 10. Problem with the spherical shell model assigning zero likelihood of producing 
a stimulation response to the region inside the inner sphere. The region producing the 
stimulation response is plausible to be the entire region shown in red. The map built using 
the spherical shell kernel would only include the intersection of the three kernels (the part 
of the red region outlined in gray). 
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To account for this, the spherical shell model is modified. It is smoothed by 

convolution with a Gaussian kernel. The standard deviation of the Gaussian kernel used 

for smoothing was chosen to be 0.5 mm (which approximately corresponds to the shell 

width for a 1 mA increment in stimulation current) and the support was made 

proportional to the stimulation current producing the stimulation response. The equations 

of the spherical shell model from section IV.2.1 change as follows by applying Gaussian 

smoothing by convolution with a 3D Gaussian kernel . Let Gf 11 ,DPΩ be the set of all 

voxels inside the spherical shell due to data point D1 from patient P1 as defined in 

equation 1, where D1 is a data point from patient P1 mapped to the location (XA , YA

, ZA ) in the atlas. Equation 4 that defined the values of the spherical shell kernel 

, changes to defined in equation 6, where voxels of a spherical shell kernel 

lying inside the inner spheres of other spherical shell kernels are not eliminated. The 

Gaussian smoothed spherical shell kernel due to data point D1 from patient P1 is 

represented by and defined in equation 7. 
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Two-dimensional surface plots comparing the cross-sections from spherical shell 

and GSSS kernels are shown in figure 11. 

 

Figure 11. Two-dimensional surface plots comparing cross-sections from (a) spherical 
shell and (b) GSSS kernels. 
 

The statistical map of stimulation response built by combining several data points 

from a population of patients using Gaussian smoothed spherical shell kernels is 

represented by FGSSS. The value of FGSSS at any point (xA, yA, zA) due to L patients P1, 

P2, …, PL contributing N1, N2, …, NL data points respectively is represented as 

 and computed based on equation 8. ),,( AAA
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IV.2.3 Comparing efficacy maps built using the previously used Gaussian kernel 

(GAUSS) and those built using the new Gaussian Smoothed Spherical Shell (GSSS) 

Simulation 

Figure 12(a) shows an example arrangement of three stimulation response data points. 

The spherical shell corresponding to the region activated by the amplitude producing the 

response and not by the previous no-response amplitude is shown for each data point.  

 
(a) 

  
(b)    (c) 

Figure 12. (a) An example arrangement of three stimulation response data points with the 
corresponding spherical shells in 2D, (b) resultant map built by combining the spherical 
shells, (c) resultant maps built by combining the shells after Gaussian smoothing (GSSS). 
 

The resultant maps based on combining the spherical shells without Gaussian smoothing 

(section IV.2.1) and with Gaussian smoothing (section IV.2.2) are shown in figure 12(b) 
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and 12(c). Figure 12(b) shows an unrealistic map with the region common to the three 

data points being completely eliminated. On the other hand, the map built using the GSSS 

shown in figure 12(c) associates high likelihood with the common region and is more 

realistic. 

 

Using real patient data 

Statistical maps of efficacy were built using stimulation response data from PD (STN 

DBS) and ET (Vim DBS) patients using the previously used Gaussian (GAUSS) kernel 

as well as the proposed Gaussian Smoothed Spherical Shell (GSSS) kernel. The average 

of surgical electrode placement positions in a population of patients was taken as the 

ground truth referred to as the mean Intra-Operative Implant Position (IOIP). The 

centroids of the high likelihood regions for the efficacy maps generated using the two 

kernels were compared against it. The high likelihood region (HLR) of a map is defined 

as the region of the map containing voxels with values at least 70% of the maximum map 

value. This pipeline is shown in figure 13. 
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Figure 13. Pipeline to build statistical maps on an electrophysiological atlas using the 
Gaussian- and GSSS-based kernels and comparing them against the mean intra-operative 
implant position from a population of patients. 
 
 

IV.3 Results 

The PD and ET efficacy maps were overlaid on the MRI atlas and visualized along with 

the corresponding mean IOIP in a population of patients (ground truth). The results are 

shown in figures 14-16 below. Figure 14(a) shows that the centroid of the HLR of the PD 

efficacy map for the right side built using the new GSSS kernel is in close proximity to 

the ground truth. On the other hand, figure 14(b) shows that the HLR of the GAUSS-

kernel-based PD efficacy map is further away from the ground truth. Similar results can 

be seen in figure 15 (left brain PD), figure 16 (right brain ET) and figure 17 (left brain 

ET).  
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 (a) 

 
(b) 

 
(c) 

Figure 14. Axial, coronal and sagittal slices of PD efficacy maps for the right side built 

using (a) GSSS kernel and (b) GAUSS kernel, overlaid on the MRI atlas. (c) Color scale 

for the likelihood values. The mean IOIP (ground truth) is shown as a white crosshair. 
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(a) 

 
(b) 

 
(c) 

Figure 15. Axial, coronal and sagittal slices of PD efficacy maps for the left side built 
using (a) GSSS kernel and (b) GAUSS kernel, overlaid on the MRI atlas. (c) Color scale 
for the likelihood values. The mean IOIP (ground truth) is shown as a white crosshair. 
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 (a) 

 
(b) 

 
(c) 

Figure 16. Axial, coronal and sagittal slices of ET efficacy maps for the right side built 
using (a) GSSS kernel and (b) GAUSS kernel, overlaid on the MRI atlas. (c) Color scale 
for the probability values. The mean IOIP (ground truth) is shown as a white crosshair. 
 
 

The AC-PC coordinates (in mm) of the mean IOIPs and the centroids of the 

corresponding efficacy maps for and the distances between them are shown in table 8. 

The GAUSS-kernel-based maps produce multiple high likelihood regions. These are 

denoted as Region1, Region2 and so on. Table 8 shows that the centroids of the HLRs of 

the old GAUSS-kernel-based maps were further away from the corresponding mean 

IOIPs than were the HLR centroids for the new GSSS-kernel-based maps. The table also 
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shows that the GAUSS-kernel-based maps produced multiple HLRs as shown in figure 

18. 

 

 
 (a) 

 

 
(b) 

 
(c) 

Figure 17. Axial, coronal and sagittal slices of ET efficacy maps for the left side built 
using (a) GSSS kernel and (b) GAUSS kernel, overlaid on the MRI atlas. (c) Color scale 
for the probability values. The mean IOIP (ground truth) is shown as a white crosshair. 
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Table 8. AC-PC coordinates (in mm) of the mean IOIPs and the centroids of the HLRs of 
the GAUSS- and GSSS-kernel-based efficacy maps, and the distances between them. 
GAUSS-kernel-based maps produce multiple HLRs (Region1, Region2, etc). 

      Left  Anterior Inferior  Distance from mean IOIP 
mean IOIP  LSTN  10.28  ‐3.35  3.86  0.00 

GAUSS  LSTN  9.99  0.35  3.67  3.72 

GSSS  LSTN  9.37  ‐2.07  3.67  1.58 

      Left  Anterior Inferior  Distance from mean IOIP 
mean IOIP  RSTN  ‐10.92  ‐2.41  3.53  0.00 
GAUSS 
(Region1)  RSTN  ‐11.05  ‐0.28  2.64  2.31 
GAUSS 
(Region2)  RSTN  ‐11.05  ‐1.34  1.01  2.74 

GSSS  RSTN  ‐11.98  ‐1.83  3.03  1.31 

      Left  Anterior Inferior  Distance from mean IOIP 
mean IOIP  LVim  13.51  ‐5.15  ‐5.38  0.00 
GAUSS 
(Region1)  LVim  11.05  ‐4.32  ‐4.41  2.77 
GAUSS 
(Region2)  LVim  12.00  ‐3.27  ‐4.91  2.45 
GAUSS 
(Region3)  LVim  12.15  ‐6.22  ‐4.45  1.96 
GAUSS 
(Region4)  LVim  11.07  ‐2.87  ‐1.04  5.47 
GAUSS 
(Region5)  LVim  13.94  ‐2.87  ‐7.93  3.45 
GAUSS 
(Region6)  LVim  10.99  ‐3.41  ‐7.16  3.54 

GSSS  LVim  13.18  ‐5.21  ‐4.64  0.81 

      Left  Anterior Inferior  Distance from mean IOIP 
mean IOIP  RVim  ‐13.44  ‐3.30  ‐4.67  0.00 
GAUSS 
(Region1)  RVim  ‐13.44  ‐1.61  ‐4.09  1.78 
GAUSS 
(Region2)  RVim  ‐13.27  ‐1.22  ‐5.95  2.44 
GAUSS 
(Region3)  RVim  ‐14.28  ‐0.37  ‐6.49  3.55 

GSSS  RVim  ‐13.97  ‐2.85  ‐4.32  0.77 
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Figure 18. Axial, coronal and sagittal slices of the Vim efficacy map built using the 
GAUSS kernel show disconnected high likelihood regions. 
 

Furthermore, table 8 shows that all of the multiple HLRs of the old GAUSS-

kernel-based maps were farther from the corresponding mean IOIP than were the HLRs 

of the new GSSS-kernel-based maps. Specifically, the centroid of the high likelihood 

region (HLR) of the proposed GSSS-kernel-based PD efficacy map for the left side was 

1.58 mm away from the mean IOIP while that of the old GAUSS-kernel-based PD 
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efficacy map was 3.72 mm away. For the right side, the HLR centroid of the GSSS-

kernel-based PD efficacy map was 1.31 mm away while the GAUSS-kernel-based PD 

efficacy map for the right side produced two HLRs which were on average 2.53 mm (SD 

0.3 mm, maximum 2.74 mm) away from the corresponding mean IOIP. The HLR 

centroid of the GSSS-kernel-based ET efficacy map for the left side was 0.81 mm from 

the mean IOIP while the GAUSS-kernel-based ET efficacy map for the left side produced 

six HLRs which were on average 3.27 mm (SD 1.23 mm, maximum 5.47 mm) away 

from the corresponding mean IOIP. The HLR centroid of the GSSS-kernel-based ET 

efficacy map for the right side was 0.77 mm from the mean IOIP while the GAUSS-

kernel-based ET efficacy map for the right side produced three HLRs which were on 

average 2.59 mm (SD 0.9 mm, maximum 3.55 mm) away from the corresponding mean 

IOIP.   

 

IV.4 Discussion and Conclusions 

The idea of using no-response-points (NRPs) was also investigated in this study and is 

discussed here. When application of stimulation at a point from 0 mA to the maximum 

amplitude applicable by the stimulator does not produce any response that data point is 

referred to as no-response-point. It was deemed logical that the maps could be further 

refined by using such information. For example, using data points where no efficacy was 

observed, efficacy maps may be trimmed. Similarly, using data points where no adverse 

effects were observed, adverse effect maps may be trimmed.  

Specifically, let a patient P1 have N1 efficacious stimulation data points D1, D2, …, 

as noted earlier. Let P1 also have NE1 no-efficacy data points Q1, Q2, …, . If Q1 
1ND

1NEQ
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was stimulated up to  mA, then the corresponding radius of activated spherical region 

would be = f( ) where f is the function referred earlier that relates stimulation 

amplitude to radius of the activated spherical region. Let the coordinates of Q1 mapped to 

the atlas be (XA , YA , ZA ). Equation 9 defines 

1QI

11Qr QI

11QP 11QP 11QP
11 ,QPΨ  

as the set of voxels in 

the atlas activated by the maximum stimulation applied at Q1. Let the no-efficacy-mask 

defined in equation 10 be the set all voxels in the region activated by all no-efficacy 

stimulation points in patient P1. The set of points in the “trimmed” spherical shell due to 

efficacious stimulation at D1 and the no-efficacy mask 

1PΨ

1PΨ is 
1D1 ,PTΩ defined in equation 

11. (xA, yA, zA) represents the map value at point (xA, yA, zA) in the atlas due to 

efficacious stimulation response data point D1 from patient P1 after voxels overlapping 

with the no-efficacy mask have been eliminated from map-building. This is defined in 

equation 12. FT  represents the trimmed kernel after Gaussian smoothed by 

convolution with  and its value at any point (xA, yA, zA)  in the atlas is defined in 

equation 13. 
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The statistical map of stimulation response built by combining several data points 

from a population of patients using Gaussian smoothed spherical shell kernels after 

trimming them using no-efficacy (or no-adverse-effect) data is represented by FTGSSS. 

The value of FTGSSS at any point (xA, yA, zA) due to L patients P1, P2, …, PL contributing 

N1, N2, …, NL data points respectively is represented as  and 

computed based on equation 14. 
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While this method was conceived as an approach to further improve the GSSS 

kernel based maps, it is not used in the rest of the dissertation as it is extremely sensitive 

to the data. This is because the mask which includes all regions activated by no-efficacy 

mask (or no-adverse-effect mask) zeroes out overlapping regions activated by efficacious 

(or adverse effect) observations. As with any real measurements, measurement errors or 

noise are possible during the surgery due to a number of factors including assessment 

errors, hardware errors and personnel errors. While such errors can also happen with 
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efficacious observations, a few erroneous efficacious measurements cannot have a drastic 

effect on the maps because of the way the maps are built. However, even a single 

erroneous no-efficacy or no-adverse-effect observation can have a substantial effect on 

the efficacy or adverse effect map respectively because it forces the overlapping regions 

of the map to zero. One such case is shown in the example in figure 19. Figure 19(a) 

shows sagittal, axial and coronal slices of a GSSS-kernel-based efficacy map built using 

efficacious data points based on the method in section IV.2.2. In figure 19(b) the same 

sagittal, axial and coronal slices of the no-efficacy mask is shown. In figure 19(c), the 

same slices of the efficacy map built after trimming the individual GSSS kernels placed 

at efficacious data points using the no-efficacy mask is shown. In this particular case, the 

no-efficacy mask almost completely enclosed the efficacy map possibly due to erroneous 

no-efficacy measurements and therefore the efficacy map was almost completely 

eliminated. Thus, while the idea of using no-efficacy and no-adverse-effect data to trim 

maps seems reasonable, it may be useful only when such data is completely reliable. For 

the rest of the dissertation, GSSS-kernel-based maps built without trimming the kernels 

as described in section IV.2.2 are built and used. 
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(a) 

 

 
(b) 

 

 
(c) 

 
Figure 19. Demonstrating the problem with using no-efficacy data for trimming efficacy 
maps. Sagittal, axial and coronal slices of (a) GSSS-kernel-based efficacy map built 
based on the method in section IV.2.2, (b) no-efficacy mask shown in black built using 
no-efficacy data points, (c) efficacy map built after trimming the individual GSSS kernels 
placed at efficacious data points using the no-efficacy mask. 

 

To conclude the chapter, a critical drawback of the previous GAUSS model was 

delineated and a new GSSS model was proposed as an improvement. The centroids of the 
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high likelihood regions (HLR) of the PD and ET efficacy maps built using the new GSSS 

kernel were found to be substantially closer to the corresponding mean intra-operative 

implant positions (IOIP) from a population of patients than were the HLR centroids for 

the maps built using the old GAUSS kernel. Furthermore, the old GAUSS kernel 

produced multiple isolated HLRs all of which were farther away from the mean IOIP 

than were the HLR centroids for the GSSS-kernel-based maps. Further validation of the 

new kernel based maps is presented in chapter VI. A method to use no-efficacy and no-

adverse-effect data to trim the efficacy and adverse effect maps respectively was 

proposed and its effects investigated. The results suggest that such an approach is highly 

sensitive to the reliability of the no-efficacy and no-adverse-effect data. 
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CHAPTER V 

 

STUDYING THE EFFECT OF INTRA-OPERATIVE BRAIN SHIFT ON 
CREATION OF AN ELECTROPHYSIOLOGICAL ATLAS 

 

Abstract 

In stereotactic neurosurgery, an underlying assumption is that anatomical structures do 

not move between the time of the pre-operative image acquisition and the time of the 

surgery. However, this assumption is not valid. In this chapter, electrophysiological data 

acquired intra-operatively in a population of patients are used to show that intra-operative 

brain shift has a substantial effect on the creation of atlases of such data. The findings 

suggest that brain shift must be taken into account when creating such atlases. 

 

This work was published in the International Journal of Computer Assisted 

Radiology and Surgery in 2009 [78-80]. 
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V.1 Introduction 

An underlying assumption in stereotactic neurosurgery is that anatomical structures do 

not move between the time of the pre-operative image acquisition and the time of the 

surgery. However, this assumption is not valid. Recently, by comparing pre- and post-

operative images, Wester et al. [39], Winkler et al. [40] and Khan et al. [41] reported that 

brain tissues can in fact shift during DBS surgery. Intra-operative brain shift happens due 

to loss of cerebrospinal fluid, air invasion into the skull referred to as pneumocephalus, 

gravitational force [46] and forces due to insertion of the DBS lead. Although intra-

operative neurophysiological techniques such as micro-electrode mapping and 

macro/semi-macro electrode stimulation may compensate for it, brain shift may require a 

greater number of test-electrode passes thereby lengthening the procedure, increasing the 

likelihood of complications, and potentially impacting the outcome. A review of STN-

implanted patients in 2001 by the DBS-for-PD study group suggested that the higher the 

number of microelectrode passes the higher the risk of intracranial bleeding during DBS 

[47]. 

Brain shift can affect the accuracy of functional atlases, databases of intra-operative 

observations, and statistical maps of such data developed by various groups [27, 31, 34, 

37, 48, 49]. This is because pre-operative image volumes are typically used to create such 

atlases whereas due to brain shift the pre- and intra-operative coordinates of anatomic 

structures may be different. Therefore, ignoring brain shift could lead to inaccuracies in 

the statistical atlases and maps and reduce the predictive value of the systems that use this 

information. In this study, using intra-operatively acquired electrophysiological data from 
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a number of patients projected onto an atlas MRI it is shown that brain shift has a 

substantial effect on the creation of electrophysiological atlases. Therefore, it must be 

taken into account when building such atlases. 

Figure 20(a) shows an axial slice of a pre-operative CT. On the corresponding slice in 

the post-operative CT acquired immediately after surgery, figure 20(b) shows 

pneumocephalus as well as posterior shift and shrinking of the ventricles.  

       

(a) (b) 

Figure 20. Corresponding axial slices of (a) pre-operative CT and (b) post-operative CT 
acquired immediately after surgery. Measurements of the ventricles indicate posterior 
shift and shrinking or medial contraction of the ventricles post-operatively. 

 

V.2 Data and Method 

One pre-operative CT and one post-operative CT acquired on the day of the surgery 

(referred to as immediate CT) were acquired for each patient at kVp = 120 V, exposure = 

350mAs and 512x512 pixels. In-plane resolution and slice thickness were approximately 

0.5 mm and 0.75 mm respectively. Pre-operative MRI images were acquired using the 
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SENSE parallel imaging technique (T1W/3D/TFE) from Philips on a 3T scanner (TR 

12.2 ms, TE 2.4 ms, 256x256x170 voxels, with typical voxel resolution of 1x1x1 mm³). 

Intra-operative somatotopy and stimulation responses were recorded for this study. 

Data were acquired during the surgery using the procedure described in section IV.1. 

Somatotopy is defined as the correspondence of receptors in regions or parts of the body 

via respective nerve fibers to specific functional areas of the cerebral cortex. A 

somatotopic response at a given location in the patient’s brain during DBS refers to 

observing noticeable change in micro-electrode recordings when a stimulus like flexion 

or extension is applied to a body part like the elbow, shoulder or wrist. A total of 73 

somatotopy data points from 24 STN implantations were used. Stimulation response data 

included the location of each stimulation point, efficacy (therapeutic response) observed 

as percentage reduction in symptoms and the associated stimulation current, adverse 

effect (if any) and the associated current. 1512 stimulation data points from 92 PD 

patients were available. Of these, only those where at least 50% efficacy was observed 

were chosen as efficacy data points. Using this approach, 754 efficacy data points from 

78 PD implantations (STN DBS) were populated and projected onto an MRI atlas.  

Rosenbaum et al. [81] showed that brain shift in the deep brain is proportional to the 

amount of air invasion or pneumocephalus. Therefore, after AC-PC alignment, each 

immediate CT (CT-PI) was carefully inspected for pneumocephalus and classified into 

one of 3 categories: low, medium and large brain displacement corresponding to average 

air pocket width at lead level of less than or equal to 3 mm, between 3 mm and 7 mm, 

and higher than 7 mm respectively. Figure 21 shows sagittal slices (containing the final 
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implant) from immediate CTs of three different patients with low, medium and large 

average air pocket width. The air pockets were measured from the inner table of the 

calvarium in the frontal cortex as shown. The process flow for grouping a population of 

patients into the various shift groups is shown in figure 22. Electrophysiological data 

(somatotopy and stimulation response) from low-shift patients were mapped onto the 

atlas by rigid and non-rigid registration between the patient and atlas MRIs to form the 

low-shift electrophysiological atlas. Similarly, medium- and large-shift 

electrophysiological atlases were created. This is shown in figure 23 for low- and large-

shift groups. 

 

Figure 21. Sagittal slices containing the final implant for low-, medium- and large-shift 
patients classified based on the width of the air pocket in the immediate CT.  
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Figure 22. Grouping patients into low-, medium- and large- shift groups based on the 
average air pocket width at lead level as seen on the immediate CT. 

 

Efficacy maps were built for the low-, medium- and large-shift-atlases based on 

the method described in section IV.2.2 using the Gaussian smoothed spherical shell 

kernel. The high likelihood regions (voxels with values at least 70% of the map 

maximum) of the efficacy maps were compared across the various brain shift groups. 
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Similarly, the locations of the somatotopy clusters were compared across the various 

brain shift groups. 

 

Figure 23. Flowchart for populating electrophysiological atlases of various brain shifts. 

 
V.3 Results 
 
 
V.3.1 Quantifying the effect of brain shift using somatotopy data 

Grouping somatotopy data based on pneumocephalus following the flowchart in figure 

22 resulted in 17, 47 and 9 data points in the low-, medium- and large-shift groups 

respectively. The coordinates (posterior, lateral, inferior) in mm of the centroids were 

(1.94, 13.92, 3.20), (2.90, 13.57, 4.53) and (3.06, 11.27, 5.36) for the low-, medium- and 

large-shift clusters respectively and shown in figure 24. The centroid of the medium-shift 
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cluster was located posterior, inferior and medial to that of the low-shift cluster. 

Furthermore, the centroid of the large-shift cluster was posterior, inferior and medial to 

that of the medium-shift cluster. 

 

Figure 24. Centroids of the somatotopy clusters from low-, medium and large-shift 
electrophysiological atlases showing the larger shift clusters being medial, posterior and 
inferior to the lower shift clusters. 

 

In table 9 Euclidean distances between centroids of various shift groups have been 

tabulated. The Euclidean distances between the centroids of low- and large-shift clusters, 

medium- and large-shift clusters, and low- and medium-shift clusters were 3.59 mm, 2.44 

mm and 1.68 mm respectively.  
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Table 9. Euclidean distance between centroids of somatotopy data clusters of various 
brain shift groups. 

Distance between Centroids (mm) 
 Low Medium Large 

Low 0 1.68 3.59 

Medium 1.68 0 2.44 

Large 3.59 2.44 0 

 
 
 
V.3.2 Quantifying the effect of brain shift using statistical maps of efficacious 

stimulation response 

The stimulation response data consisted of 194 points from 20 implantations, 350 point 

from 38 implantations and 186 points from 20 implantations in the low-, medium- and 

large-shift groups respectively. PD efficacy maps created for each shift group overlaid on 

the atlas MRI are shown in figures 25 and 26 in (a) axial, (b) coronal and (c) sagittal 

orientations. The images are AC-PC aligned. Posterior, lateral and inferior measurements 

from fixed landmarks (yellow crosshairs) to the centers of the high likelihood regions for 

the various maps are also shown.  
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Figure 25. Low-, medium- and large-shift PD efficacy maps for the left brain overlaid on 
the MRI atlas shown in (a) axial, (b) coronal and (c) sagittal orientations. 

79 
 



Ant Ant Ant 

13.9 
mm

14.8 
 mm 

13.7 
 mm 

 Post 

(a) Post Post 

SupSup Sup 

11.2 mm 
11.2 mm 9.2 mm 

2.7 mm 3.5 mm 
5.2 mm

InfInf Inf  

(b) 

Sup Sup Sup 

13.7 mm 
14.8 mm 13.9 mm 

Ant Ant Post AntPost Post

Inf Inf Inf  

(c) 

Figure 26. Low-, medium- and large-shift data based PD efficacy maps for right brain 
overlaid on the MRI atlas shown in (a) axial, (b) coronal and (c) sagittal orientations. 
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Tables 10 and 11 give the coordinates of the centroids of the high likelihood 

regions for the low-, medium- and large-shift efficacy maps. The coordinates show that 

the medium-shift efficacy maps were inferior to the low-shift efficacy maps by 0.77 mm 

and 1.1 mm for the right and left sides respectively. The large-shift efficacy maps were 

inferior to the low-shift efficacy maps by 2.47 mm and 2.83 mm for the right and left 

sides respectively. The low- and medium-shift efficacy maps were found to be quite 

similar in the anterior and lateral directions. The large-shift efficacy maps were posterior 

to the low-shift efficacy maps by 1.12 mm and 1.84 mm for the right and left sides 

respectively and medial to the low-shift efficacy maps by 1.93 mm and 2.20 mm for the 

right and left sides respectively.  

Table 10. AC-PC coordinates (posterior, lateral, inferior) of the centroids of the high 
likelihood regions for the low-, medium- and large-shift PD efficacy maps (STN) for the 
right brain. 

Right  STN  Posterior Lateral  Inferior 
Low  0.21  11.38  2.79 
Medium  0.33  11.61  3.56 
Large  1.33  9.45  5.26 

 

Table 11. AC-PC coordinates (posterior, lateral, inferior) of the centroids of the high 
likelihood regions for the low-, medium- and large-shift PD efficacy maps (STN) for the 
left brain. 

Left STN  Posterior Lateral  Inferior 
Low  ‐1.62  11.90  2.80 
Medium  ‐1.62  11.85  3.90 
Large  0.22  9.7  5.63 
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Table 12 gives the Euclidean distances between the centroids of the high 

likelihood regions for the low-, medium- and large-shift PD efficacy maps. For the right 

side, the distances between the centroids of the low- and medium-shift PD efficacy maps, 

the medium- and large-shift PD efficacy maps, and the low- and large-shift PD efficacy 

maps were 0.81 mm, 2.92 mm and 3.33 mm respectively. For the left side, the distances 

between the centroids of the low- and medium-shift PD efficacy maps, the medium- and 

large-shift PD efficacy maps, and the low- and large-shift PD efficacy maps were 1.1 mm, 

3.32 mm and 4.03 mm respectively. 

Table 12. Euclidean distance between the centroids of the high likelihood regions for the 
PD efficacy maps (STN) for various shift groups for (a) right and (b) left sides. 

(a) Distance between Centroids of high 

likelihood regions for the maps (mm) 

Right STN  Low  Medium  Large 

Low  0  0.81  3.33 

Medium  0.81 0  2.92 

Large  3.33 2.92  0 

 
(b) Distance between Centroids of high 

likelihood regions for the maps (mm) 

Left STN  Low  Medium  Large 

Low  0  1.10  4.03 

Medium  1.10 0  3.32 

Large  4.03 3.32  0 
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V.4 Discussion and Conclusions 

Earlier studies have reported on brain shift by comparing locations of anatomical 

landmarks like AC and PC between pre- and post-operative images. Such studies could 

have been affected by changes in patient posture between surgery and post-operative 

imaging. Their analyses could have also been affected by post-implantation brain shift as 

well as delay between implantation and post-operative imaging. Furthermore, their 

comparison was between landmarks that were not directly relevant to the outcome of the 

surgery. Of greater interest are the electrophysiological data that are used to guide the 

surgery towards the site of optimal therapeutic benefit and the atlases created using such 

data from a population of patients. In this study, electrophysiological data including 

somatotopy observations and stimulation responses recorded intra-operatively in a 

population of patients were used to investigate the effect of brain shift on the creation of 

electrophysiological atlases.  

Analyses of clusters of somatotopy data as well as of maps of efficacious 

stimulation response built for the low-, medium- and large-shift groups showed that intra-

operative brain shift had a substantial effect on the creation of electrophysiological 

atlases. The results indicated that considerable brain shift happened before micro-

electrode recordings in DBS. Furthermore, the lower brain-shift electrophysiological 

atlases were anterior, lateral and superior to the larger brain-shift electrophysiological 

atlases. The low- and medium-shift efficacy maps were quite similar to each other 

whereas the large-shift efficacy maps were substantially far away from them.  
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It must be noted that a more reliable approach to group patients based on brain 

shift would be to use  an intra-operative CT to capture snapshots of landmarks in the 

vicinity of the targets at various stages of the procedure, i.e., immediately after dura 

opening, before micro-electrode recordings, before micro/macro stimulation and after 

implantation of the final electrode. Most centers including ours do not have access to 

intra-operative imaging for DBS. The amount of pneumocephalus seen on the immediate 

CT provided an accessible solution to categorize patients into various brain shift groups. 

In the recent past, a number of functional atlases and databases containing intra-

operatively acquired sub-cortical electrophysiological data from a number of patients 

have been implemented to complement anatomical and histological atlases. Several 

groups have used such atlases to provide targeting predictions and intra-operative 

guidance. However, none of these atlases accounts for brain shift. Given that DBS 

requires precise targeting and implantation with millimetric accuracy, brain shift should 

be accounted for when building atlases of intra-operatively acquired electrophysiological 

data. Additionally, due to intra-operative brain shift caution should be used when using 

intra-operative recordings to validate anatomical atlases. 
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CHAPTER VI 

 

BUILDING ELECTROPHYSIOLOGICAL ATLASES AFTER ACCOUNTING 
FOR BRAIN SHIFT 

 

Abstract 

The results from the previous chapter show that considerable brain shift happens before 

micro-electrode recordings in DBS and that brain shift should be accounted for when 

building atlases of intra-operatively acquired electrophysiological data. This chapter 

addresses the problem of building an electrophysiological atlas after accounting for brain 

shift. Statistical maps built using the stimulation response data from such an atlas are 

validated in this chapter. 

 

This work was published in Lecture Notes for Computer Science in the 

proceedings of Medical Image Computing and Computer Assisted Intervention (LNCS, 

MICCAI), 2009 [82]. 
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VI.1 Introduction 

The results from the previous chapter indicate that considerable brain shift happens 

before micro-electrode recordings in DBS. This affects the accuracy of 

electrophysiological atlases and databases of intra-operative observations developed by 

various groups because to create such atlases pre-operative image volumes are used, 

whereas, due to brain shift the pre- and intra-operative coordinates of anatomic structures 

are different. Therefore, brain shift should be accounted for in order to build accurate 

electrophysiological atlases. If intra-operative imaging were available then brain shift 

could be measured during surgery and the coordinates of all intra-operative data could be 

corrected using this information. In the absence of intra-operative imaging (which is 

typically the case for DBS surgeries) other approaches are needed. While model-driven 

brain shift compensation techniques [50] have been used in open craniotomies, these are 

difficult to implement in burr hole surgeries such as DBS due to very limited brain 

surface deformation information. In this chapter, the problem of building an 

electrophysiological atlas after accounting for brain shift is addressed. Statistical maps 

built using stimulation response data populated on such an atlas are validated. 

 

VI.2 Data and Method 

Intra-operative data was acquired using the procedure described in section IV.1. Data 

used in this study includes 544 efficacy points from 58 Parkinson’s disease (PD) 
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implantations, 280 efficacy points from 20 Essential tremor (ET) implantations and 266 

paresthesia adverse effect points from 37 implantations. 

 

VI.2.1 Eliminating large brain shift patients from the atlas-building process 

Electrophysiological atlases can be built after accounting for brain shift by eliminating 

large-shift patients from the process of atlas-building. Patient selection depending on the 

amount of brain shift can be based on the amount of pneumocephalus seen on the 

immediate CT as described in the previous chapter. Specifically, by using data from only 

low-shift patients an atlas minimally affected by brain shift can be created. This means 

that data from a number of patients belonging to the medium- and large-shift groups 

cannot be used. Results on the effect of brain shift on atlas creation discussed in the 

previous chapter show little difference between the low- and medium-shift efficacy maps 

whereas they show substantial difference between the low and large-shift efficacy maps. 

Specifically, the distance between the high likelihood regions for the low- and medium-

shift efficacy maps was approximately 1 mm, which was one-third that between the 

medium- and large-shift efficacy maps and one-fourth that between low- and large-shift 

efficacy maps. Therefore, to reduce loss of data without compromising on brain shift, 

patients from the low- and medium-shift groups can be combined. Thus, an 

electrophysiological atlas can be built after accounting for brain shift by projecting data 

from only low- and medium-shift patients onto the atlas. In the rest of this document, 

such an atlas is referred to as a low-shift-atlas and statistical maps built using such an 

atlas are referred to as low-shift statistical maps. The flowchart for building a low-shift 
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electrophysiological atlas and validating the statistical maps built using stimulation 

response data from such an atlas is shown in figure 27. 

 

Figure 27. Flowchart for building a low-shift electrophysiological atlas and validating 
the statistical maps built using stimulation response data from such an atlas.  
 
 

VI.2.2 Validating the maps built after eliminating large-shift patients 

Statistical maps of efficacy and adverse effects built using the low-shift-atlas based on 

the flowchart in figure 27 were validated in two ways. First, the final implant positions 
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chosen intra-operatively from a population of low- and medium-shift patients were 

projected onto the atlas and the centroid of that cluster was computed. This was referred 

to as the mean intra-operative implant position (mean IOIP) and taken as the ground truth 

against which low-shift efficacy maps were compared. Second, the high likelihood 

regions for the efficacy and paresthesia maps were overlaid on the Schaltenbrand-Wahren 

(S-W) atlas and compared against anatomical structures known to produce the 

corresponding stimulation response as shown in figure 28. 

 

Figure 28. Flowchart for validating statistical maps against anatomical atlases. 

This was done by first aligning the maps with respect to the AC and PC of the 

atlas MRI. Then the S-W atlas was then aligned to the atlas MRI by using the AC and PC 

landmarks and piecewise-linear scaling to account for the differences in the overall brain 

size and orientation. The slices of the aligned S-W atlas corresponding to the high 
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likelihood regions for the maps were then extracted. The slices from the maps were 

overlaid on these anatomical slices and compared against the locations of the structures 

known to produce the corresponding stimulation response. 

 
VI.3 Results 
 
 
VI.3.1 Validating low-shift efficacy maps by comparing them against the mean intra-

operative implant position from a population of patients 

 
The low-shift PD and ET efficacy maps were overlaid on the MRI atlas and visualized 

along with the corresponding mean IOIP (ground truth). The centroids of the high 

likelihood regions for the PD and ET efficacy maps for both sides were found to be in 

close proximity to the ground truth as shown in figures 29 and 30. Table 13(a) shows the 

AC-PC coordinates (in mm) of the mean IOIP positions for PD and ET patients for the 

left and right sides. Table 13(b) shows the AC-PC coordinates of the centroids of the high 

likelihood regions (HLRs) for the corresponding efficacy maps. The Euclidean distances 

(mm) of the HLR centroids from the corresponding mean IOIPs are given in table 13(c). 

Table 13 shows that the HLR centroids for the efficacy maps are in close proximity to the 

corresponding mean IOIP locations. The left and right PD efficacy maps are 1.58 mm and 

1.31 mm away respectively from the corresponding mean IOIPs. The left and right ET 

efficacy maps are 0.81 mm and 0.77 mm away respectively from the corresponding mean 

IOIPs. 
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(a) 

 

 
 (b) 

 
 

(c) 
 

Figure 29. Axial, coronal and sagittal slices of PD efficacy maps for (a) right side (b) left 
side. (c) Color scale. The mean final implant position from a population of PD patients is 
shown as a white crosshair. 
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(a) 

 

 
 (b) 

 
 

(c) 
 

Figure 30. Axial, coronal and sagittal of ET efficacy maps for (a) right side (b) left side. 
(c) Color scale. The mean final implant position from a population of ET patients is 
shown as a white crosshair. 
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Table 13. (a) AC-PC coordinates (lateral, anterior, inferior) in mm of the mean IOIP 
positions for PD (STN DBS) and ET (Vim DBS) for the left and right sides, (b) AC-PC 
coordinates of the HLR centroids for the corresponding efficacy maps. (c) The Euclidean 
distances (mm) of the centroids from the corresponding mean IOIPs. 
 

mean IOIP 

  
Lateral 
(mm) 

Anterior 
(mm) 

Inferior 
(mm) 

Left STN  10.28  ‐3.35  3.86 
Right STN  10.92  ‐2.41  3.53 

           
Left Vim  13.51  ‐5.15  ‐5.38 
Right Vim  13.44  ‐3.3  ‐4.67 

Centroid of high likelihood Efficacy map 

  
Lateral 
(mm) 

Anterior 
(mm) 

Inferior 
(mm) 

Left STN  9.37  ‐2.07  3.67 
Right STN  11.98  ‐1.83  3.03 

           
Left Vim  13.18  ‐5.21  ‐4.64 
Right Vim  13.97  ‐2.85  ‐4.32 

Distance (mm) between high likelihood 
Efficacy map and mean IOIP 

   Left STN  1.58    
   Right STN  1.31    
           
   Left Vim  0.81    
   Right Vim  0.77    

 

VI.3.2 Validating low-shift maps by comparing them against the Schaltenbrand-

Wahren anatomical atlas 

Figure 31 shows the axial slice containing the high likelihood region of the low-

shift ET efficacy map overlaid on top of the corresponding slice of the S-W atlas. The 

high likelihood region of the efficacy map was in the anatomical Vim (split into Vim.i 
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and Vim.e for internal and external respectively) as shown in the yellow contour. This is 

consistent with the literature reporting Vim as the widely accepted DBS target for 

successful essential tremor relief. A European multi-center six year follow-up study of 

thalamic stimulation recommended Vim stimulation for persistently effective treatment 

of essential tremor [83]. Lozano [84] also reported that Vim DBS has unequivocal 

functional benefit in patients with essential tremor. This confirms that the high likelihood 

region of the low-shift ET efficacy map correlates strongly with the anatomical structure 

known to produce therapeutic benefit for ET. 

Figure 32 shows the axial slice containing the high likelihood region of the 

paresthesia adverse effect map overlaid on the S-W atlas. The high likelihood region of 

the paresthesia map was found to be posterior to the efficacy map and in the ventro-

caudalis nucleus or the Vc (split into Vc.i and Vc.e for internal and external respectively). 

This is consistent with information well-documented in literature. Electrophysiology data 

in the Schaltenbrand atlas [12] show sensory effects like paresthesia in the Vc. The main 

sources of sensory information are the medial lemniscus and spinal lemniscus which feed 

into the Vc [85].  Wallace et al. [86] refer to the Vc as a paresthesia-producing 

stimulation target. Fukushima et al. [87] reported shortest latency in evoked potentials 

recorded from the Vc due to somatosensory stimulation. This confirms that the high 

likelihood region of the low-shift paresthesia map correlates strongly with the anatomical 

structure known to produce paresthesia stimulation response. 
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Figure 31. Axial slice containing the high likelihood region of the Vim efficacy map 
overlaid on the corresponding slice in the Schaltenbrand Wahren (S-W) atlas. 
 

 
 

 
Figure 32. Axial slice containing the high likelihood region of the paresthesia map 
overlaid on the corresponding slice in the Schaltenbrand Wahren (S-W) atlas. 
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VI.4 Discussion and Conclusions 

Following results from chapter V showing that substantial brain shift happens before 

micro-electrode recordings during DBS surgery, an approach to build 

electrophysiological atlases after accounting for brain shift was proposed in this chapter. 

Using the post-operative immediate CT to categorize patients into various brain shift 

groups, patients with large brain shift were eliminated from the atlas building process to 

populate a low-shift-atlas. Efficacy and paresthesia adverse effect maps were built using 

this atlas and validated. The PD and ET efficacy maps were found to be in close 

proximity to the corresponding mean intra-operative implantation position in a population 

of patients. The best anatomical location for successful PD relief is debatable but there is 

clear consensus that the Vim is the best anatomical target for ET relief. The high 

likelihood region of the efficacy map built using successful ET relief data was found to 

be localized inside the Vim visible on the Schaltenbrand atlas. Similarly, it is well-

documented in the neuro-electrophysiology community that stimulation in the Vc 

produces paresthesia. The high likelihood region of the paresthesia map was found to be 

localized inside the Vc visible on the Schaltenbrand atlas. 

 A limitation of this approach where the large shift patients are eliminated is that 

data from a number of patients cannot be used. Ideally, it is valuable to be able to use as 

much data as possible when building statistical atlases. Therefore, a brain shift correction 

scheme that can overcome this limitation would be valuable. A preliminary approach for 

shift-correction is discussed here which will be validated in the future. 
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Shift-correction using the stabilized implant position  

An approach for shift-correction could be developed by understanding the various stages 

of brain shift. A likely scenario is presented in figure 33. Figure 33(a) shows the pre-

operative stage where target selection is performed based on the patient’s images. Figure 

33(b) shows the first intra-operative stage when the dura is opened resulting in air 

invasion or pneumocephalus in the frontal lobe. At this stage the first intra-operative 

brain shift can be expected to happen. Figure 33(c) shows cannulae inserted into the brain 

for holding the test electrodes. These cannulae can be expected to act like a fork and hold 

the brain in place. Figure 33(d) shows the final implant inserted into the brain after 

electrophysiological mapping while the cannulae are still in the brain. The brain 

continues to be held in place but pneumocephalus continues to grow. Figure 33(e) shows 

the final implant in place but the cannulae removed. Since the final implant is a flexible 

wire the brain is now free to move under the effects of the pneumocephalus. Figure 33(f) 

shows the brain when the post-operative stable scan is taken a couple of weeks after 

surgery. By this time the pneumocephalus is completely resolved and the brain is 

expected to have returned to its pre-operative state after complete brain shift recovery. 
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Figure 33. Various stages of brain shift in DBS. (a) Pre-Operative imaging, (b) Intra-
operative: Dura opening causing air invasion and brain shift, (c) Intra-operative: platform 
mounted, cannulae inserted and ready for electrophysiological mapping, (d) Intra-
operative: final electrode implanted with cannulae remaining in, (e) Intra-operative: 
cannulae removed leaving the flexible final implant in allowing the brain to move, (f) 
Post-operative stable imaging: stable lead position in place after shift recovery. 

 

Assuming that the brain indeed returns to its pre-operative state following 

complete brain shift recovery by the time of post-operative CT acquisition a few weeks 

after surgery (stable CT), the position of the implant in the stable CT can be used for 

shift-correction. Based on this, the following model is proposed. Figure 34(a) shows a 

detailed model of various brain shift components. During the procedure, the Optimal 

Target (OT) where the implant should be placed gets displaced due to Brain Shift Before 

Implantation (BSBI). Ideally, by electrophysiological mapping the displaced OT is 
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identified and the electrode is implanted at that location. This implanted location is the 

Intra-Operative Implant Position (IOIP).  

 

 

Figure 34. (a) Detailed model of various brain shift components, (b) approximate model 
assuming that the brain recovers to exact pre-operative state by the time of the stable CT 
and that IPE is zero, (c) demonstrating how data points D1, D2, D3 and D4 are corrected 
for brain shift to arrive at D1*, D2*, D3*, D4* using the model in (b). OT is the optimal 
target, BSBI is brain shift before implantation and is referred to as the intra-operative 
brain shift, BSAI is the brain shift after implantation, BSR is the brain shift recovery 
vector and BSRE is the brain shift recovery error.  
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Implant placement error (IPE) due to the finite accuracy of the stereotactic system 

and/or manual errors results in the implant being placed at a slightly different location 

(IOIP*). Brain Shift After Implantation (BSAI) causes the implant to move further to the 

Post-operative Immediate Implant Position (PIIP) which can be seen in the post-operative 

CT acquired immediately after surgery (immediate CT). Finally, the lead stabilizes at the 

Post-operative Stable Implant Position (PSIP) by the time the stable CT is acquired. The 

difference between PSIP and OT is because of IPE and/or Brain Shift Recovery Error 

(BSRE) due to the brain not recovering exactly to its pre-operative state. If we assume 

that BSRE and IPE are negligible, the model reduces to the simpler formulation shown in 

figure 34(b) where PSIP returns to OT.  

Using this model, brain shift could be accounted for when populating atlases since 

the relative positions of all intra-operative data points are known with respect to the IOIP. 

By changing the reference from IOIP to PISP and maintaining the same relative positions 

for the data points, their coordinates can be corrected for brain shift. This is illustrated in 

figure 34(c) for four points. By populating electrophysiological atlases using these 

transformed coordinates, shift-corrected atlases could be populated using data from all 

patients irrespective of the amount of brain shift they suffered. While this preliminary 

model seems promising, the validity of the underlying assumptions needs to be verified 

and the atlases built using this method validated. Therefore, only maps built by 

eliminating large shift patients have been validated in section VI.3 are used in the rest of 

the work. 
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CHAPTER VII 

 

PRELIMINARY STUDY ON THE CLINICAL USEFULNESS OF AN 
ELECTROPHYSIOLOGICAL ATLAS FOR POST-OPERATIVE 

PROGRAMMING ASSISTANCE FOR DBS 
 

 

Abstract 

In this chapter, a preliminary study on the clinical usefulness of statistical maps of 

stimulation response for post-operative DBS programming assistance is presented. The 

Gaussian smoothed spherical shell kernel proposed in chapter IV was used to build the 

maps. The maps were built using data from the low-shift electrophysiological atlas built 

and validated in chapter VI. 
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VII.1 Introduction 

Post-operative neurological management of DBS patients is a complex and dynamic 

process. It involves selecting an optimal contact from the 4 contacts (numbered 0, 1, 2 

and 3, with 0 being the most ventral contact and 3 being the most dorsal contact) 

available on an implant and optimizing the stimulator programming parameters to 

alleviate symptoms. Symptom alleviation (efficacy) is desired with decrease in 

medication while avoiding adverse effects. This is referred to as therapeutic benefit. The 

difference in the stimulation amplitude producing efficacy and the larger stimulation 

amplitude inducing adverse effect is referred to as the therapeutic window. Additionally, 

the neurologists also have to try to minimize energy consumption of the stimulator to 

prolong battery life. In clinical practice, finding the optimal contact and programming 

parameters can be a challenging and time-consuming process. Furthermore, neurologists 

programming the DBS implant must have expert knowledge of the electrophysiology of 

the area neighboring the implant.  

Generally, a neurologist conducts the first programming session approximately two 

weeks after implantation. This allows the patient to recover from surgery and provides 

enough time for the transient lesion effects to resolve. Detailed principles and methods 

used to select the optimal programming parameters have been presented by different 

authors [88, 89]. Briefly, the first step in post-operative programming is the examination 

of efficacy and adverse effects induced by stimulation. The contacts are individually 

evaluated in an effort to determine the one that produces the best therapeutic benefit. 

Frequency and pulse width are typically kept at constant settings of 130-180 Hz and 60-

120 μs respectively. These are similar to the settings used intra-operatively. Amplitude is 
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steadily increased to the tolerance level of the patient or until adverse effects occur. As 

the stimulation amplitude is increased, repeated motor evaluation is performed to assess 

the efficacy of stimulation. Typically, ten to fifteen minutes are to be allowed to pass 

between trials of separate contacts to allow the effects from previous stimulations to 

disappear. The initial programming session as described above can take several hours and 

requires continuous feedback from the patient to ascertain the degree of benefit and to 

identify any adverse effects. This can be very taxing, especially when the patient is kept 

off medication for long periods of time. Furthermore, finding the optimal settings may 

take several trials over many months which can be frustrating.  

Using efficacy maps, D’Haese et al. [73] have shown that it is feasible to provide 

assistance for the selection of optimal contact for DBS programming. However, in that 

work adverse effect maps were not used. Furthermore, the value of the efficacy map at 

the location of each contact was the only feature used to identify the optimal contact. 

There are certain limitations to this approach as illustrated in figure 35. Figure 35(a) 

shows an efficacy map overlaid on an implant with 4 contacts labeled 0, 1, 2 and 3. If 

only the value of the efficacy map at each contact is chosen as a discriminator to choose 

the optimal contact then contact 3 would be the optimal contact. In the case of figure 

35(b), based solely on the value of the efficacy map at each contact, contact 3 would be 

the optimal contact. But, based on visual examination contact 2 may be preferred over 

contact 3 due to its closer proximity to the high likelihood region of the efficacy map. 

Figure 35(c) shows the case where based on proximity to the high likelihood region of 

the efficacy either contact 1 or contact 2 can be chosen. Figure 35(d) shows the same case 

as in figure 35(c) but with the additional information of an adverse effect map (labeled 
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AE). The overlap of the high likelihood region of the adverse effect map with contact 2 

suggests that contact 1 should be preferred over contact 2. Thus, using more than one 

type of statistical map and multiple features from such maps may be useful in predicting 

the optimal contact. In this chapter, a preliminary investigation on the usefulness of such 

a system for DBS programming assistance is described. Such a system may facilitate the 

programming process and impact the outcome of the surgery. 

 

(a)                          (b)                            (c)                           (d) 

Figure 35. Illustrating optimal contact prediction based on the interaction between 
statistical maps and the implant. (a) Contact 3 is the optimal contact based solely on the 
value of the efficacy map at the contact, (b) Contact 2 is the optimal contact based on its 
proximity to the high likelihood region of the efficacy map, (c) Either contact 1 or contact 
2 may be the optimal contact based on their proximity to the high likelihood region of the 
efficacy map, (d) Same as case (c), but, the additional information provided by the high 
likelihood region of the adverse effect (AE) map overlapping with contact 2 helps choose 
contact 1 as the optimal contact. 

 

VII.2 Data and Method 

The study was carried out on 23 STN DBS implantations for Parkinson’s disease patients. 

Patient selection was based on two criteria, namely, availability of the post-operative 

stable CT (CT-PS) as well as good therapeutic response to the programming session. 

Efficacy (544 points from 58 implantations), paresthesia (202 points from 41 

implantations) and dysarthria (98 points from 20 implantations) data points were 
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projected from the low-shift electrophysiological atlas onto each patient MRI using non-

rigid registration. From the patient MRI they were projected onto the patient’s post-

operative stable CT (CT-PS) using rigid registration. For every case, the implant in CT-

PS was extracted and each of the 4 contacts was localized. Efficacy, paresthesia and 

dysarthria statistical maps were created for each case using the method described in 

section IV.2.2 based on the Gaussian smoothed spherical shell kernel. Each statistical 

map was normalized so that the map maximum was set to 1. The high likelihood regions 

(HLR) for the maps were extracted. HLR of a map as defined earlier is the region of the 

map containing voxels with values at least 70% of the map maximum. The intensity 

centroid (similar to the center of mass) of the HLR was computed for each map. For 

every case, the following were computed for each of the 4 contacts: 1) value of each map 

at the location of the contact, 2) closest distance from the contact to the HLR of each map, 

3) distance from the contact to the intensity centroid of the HLR of each map, 4) distance 

from the contact to the maximum value of each map. Using a combination of these, 

heuristic feature values (FV) were computed for predicting the optimal contact for every 

case. The predicted contact was compared against the clinically selected contact. This 

pipeline is shown in the flowchart in figure 36. 
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Figure 36. Pipeline to predict the optimal contact for DBS programming using statistical 
maps of efficacy and adverse effects. 

 

Since efficacy is the primary measure of the success of programming, a component of 

efficacy was used in every feature value. The following heuristic feature values were 

computed for each of the 4 contacts on the implant, and the contact with the maximum 

value for a given feature was predicted as the optimal contact based on that feature. 
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1. FV1: This feature value uses only the efficacy map and is simply the value of 

the efficacy map at the location of the contact (EFFC). 

2. FV2: This feature also uses only the efficacy map. It is motivated by the 

heuristic that even if the high likelihood region of the map does not overlap 

with the contact, the information it provides about the proximity of the region 

likely to produce the corresponding stimulation response is valuable. 

Therefore, the closest distance from the contact to the HLR of the efficacy 

map (EFF_HLR_closest_dist) was chosen as a feature to identify the contact 

that could be most efficacious.  

3. FV3: As a variant of FV2, this heuristic feature is examined based on the idea 

that the intensity centroid of the HLR of a map may represent greater 

confidence in producing the corresponding stimulation response than a point 

on the periphery of the HLR of the map. Therefore, the distance from the 

contact to the intensity centroid of the HLR of the efficacy map 

(EFF_HLR_IntCentr_dist) was chosen as a feature.  

4. FV4: This heuristic feature is the distance from the contact to the maximum 

value in the efficacy map (EFF_MAX_dist) and is examined because the 

location with the maximum map value represents the location that is 

statistically the most likely to produce the corresponding stimulation response.  

5. FV5: This feature combines the efficacy and dysarthria maps. It is based on 

the idea that it is desirable to have a larger efficacy map value (EFFC) than 

dysarthria map value (DYSC) at the contact, a large therapeutic window i.e. a 
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large separation between the HLR of the efficacy map 

(EFF_HLR_closest_dist) and the HLR of the dysarthria map 

(DYS_HLR_closest_dist), and that the HLR of the efficacy map is closer to the 

contact than is the HLR of the dysarthria map. This is shown in equation 15 

below.  
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6. FV6: This feature is based on the same idea as FV5 except that instead of the 

dysarthria map the paresthesia map is used as shown in equation 16 below. 

The paresthesia map value at the contact is referred to as PARC and the HLR 

of the paresthesia map is referred to as PAR_HLR_closest_dist.  
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7. FV7: This feature value defined in equation 19 uses all three maps (efficacy, 

dysarthria and paresthesia) together as shown in the equation below. T1 is 

defined in equation 17 such that it is maximum when the efficacy map value 

at the contact is maximum and both the adverse effect maps have minimum 

values at the contact. T2 defined in equation 18 is maximized when the 

distances between the contact and the HLRs of both adverse effects are 
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maximum and the distance between the contact and the HLR of the efficacy 

map is minimum. In T2, the closest distances from the contact to the HLRs of 

each of the adverse effect maps are multiplied so that if the HLR of even one 

of the adverse effect maps is very close to the contact the feature value is 

smaller. 
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8. FV8: This feature is an extension of FV5 and FV6. It uses all three maps 

(efficacy, dysarthria and paresthesia) together as shown in equation 20 below. 

)20(658 FVFVFV +=  

 

Predictions were first made using only the efficacy-map-based features (FV1-FV4) 

and their performance was evaluated. The prediction error was measured as the number 

of contacts by which the predicted contact was off from the clinically selected active 

contact. If the predicted contact matched exactly with the clinically selected contact then 

the error was referred to as 0-error. If the predicted contact was off by 1 contact then the 

error was referred to as 1-error. Similarly, 2-error and 3-error were defined. The efficacy-

map-based feature that produced the best results was combined with the features of the 

adverse effect maps in multiple ways (FV5-FV8) to compute the predictions for all the 

cases. Then, the performance of all the features (FV1-FV8) was evaluated. For every 

feature, the mean, median and mode of the prediction error was computed. A cumulative 
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distribution function showing the percentage of cases predicted within 0, 1, 2 and 3 

contacts from the clinically selected contact was generated for each feature. An error of at 

most 1 contact (0-error or 1-error) is referred to as ‘<= 1-error’. Similarly, ‘<= 2-error’ 

and ‘<= 3-error’ are defined.  

Additionally, for the feature that had the lowest prediction error, the second-best 

optimal contact was also predicted and the performance of the system when both the 

predictions are made available was evaluated. 

 

VII.3 Results 

Figure 37 shows the cumulative distribution of the optimal contact prediction error in 

23 STN implants using efficacy-map-based features (FV1, FV2, FV3 and FV4). FV2 had 

the best 0-error performance. Therefore, FV2 was combined with features based on the 

adverse effect maps to compute FV5, FV6, FV7 and FV8. Figure 38 shows the mean, 

median and mode of prediction errors in 23 STN implants using each of the 8 features 

(FV1 – FV8). Both features FV7 and FV8 that used a combination of all the maps (efficacy, 

dysarthria and paresthesia) had marginally better performance on the mean prediction 

error than all the other features. The only clear improvement in using FV7 or FV8 over the 

other features is seen in the mode. Both had mode of 0. All other features had mode of 2 

and FV5 had mode of 1. 
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Figure 37. Cumulative distribution of the optimal contact prediction error in 23 STN 
implants for the efficacy-map-based features (FV1, FV2, FV3 and FV4). 
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Figure 38. Bar graph showing the mean, standard deviation, median and mode of the 
optimal contact prediction errors for all the features.  
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Figure 39 shows the cumulative distribution of the prediction error in 23 STN 

implants for all the features (FV1-FV8). FV8 had more cases with 0 contact error than any 

other feature. FV8 also had the more cases with at most 1 contact error than any other 

feature. Figure 40 shows the cumulative distribution of the prediction error in 23 STN 

implants when the best and second-best contacts predicted using FV8 were compared 

with the clinically active contact. The predictive performance of feature FV8 improved to 

74% of the cases for 0-error and to 94% of the cases for at most 1 contact error. 
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Figure 39. Cumulative distribution of the optimal contact prediction error in 23 STN 
implants for all the features. 
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Figure 40. Cumulative distribution of the prediction error in 23 STN implants when the 
best and second-best contacts predicted using FV8 were compared with the clinically 
active contact. 
 

 

VII.4 Discussion and Conclusions 

Randomly choosing one of the 4 contacts 

When heuristic features are used in a predictive system, the baseline performance is 

typically established based on making selections at random. Let the automatic random 

predictions be denoted by ‘A’ and the neurologist’s clinical selection be denoted by ‘N’. 

The implant has 4 contacts labeled 0, 1, 2 and 3. Let PA(i) represent the probability of 

automatically choosing contact i. Let PN(j) represent the probability of the neurologist 

choosing contact j. Let E denote the prediction error defined as the absolute difference 

between the automatic random prediction and the neurologist’s selection: E = |i – j|. For 
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the random model it is assumed that every choice for A and N is equally likely. A random 

model is a good first approximation. Depending on the surgical practices of lead 

implantation it is possible that certain contacts are preferred over others. For instance, at 

Vanderbilt, the implant is typically centered at the optimal target with 2 contacts superior 

to it and 2 contacts inferior to it. This may prompt the neurologist to prefer the center two 

contacts over the bottommost and topmost contacts. However, the existence of such 

preference is not yet obvious in our data. It may be possible to extract reliable preferential 

patterns after grouping data by the operating surgeon and the programming neurologist 

over a period of time when practices remained unchanged. 

 

Thus, 

Aܲሺ݅ሻ ൌ ܲ ଵ
ସNሺ݆ሻ ൌ                                              

where ݅ ൌ 0, 1, 2, 3 and ݆ ൌ 0, 1, 2, 3    

 (21) 

 

Zero error (E = 0) occurs when both the atlas and the neurologist choose the same 

contact (i = j). Therefore, 

ܲሺܧ ൌ 0ሻ ൌ ∑ Aܲሺ݅ሻ Nܲሺ݅ሻଷ
௜ୀ଴                              (22) 

Similarly, 

ܲሺܧ ൌ 1ሻ ൌ  Aܲሺ0ሻ Nܲሺ1ሻ ൅ Aܲሺ1ሻ Nܲሺ2ሻ ൅ Aܲሺ1ሻ Nܲሺ0ሻ ൅ Aܲሺ2ሻ Nܲሺ3ሻ ൅ Aܲሺ2ሻ Nܲሺ1ሻ ൅

Aܲሺ3ሻ Nܲሺ2ሻ                                                                       (23) 

 

ܲሺܧ ൌ 2ሻ ൌ Aܲሺ0ሻ Nܲሺ2ሻ ൅ Aܲሺ1ሻ Nܲሺ3ሻ ൅ Aܲሺ2ሻ Nܲሺ0ሻ ൅ Aܲሺ3ሻ Nܲሺ1ሻ   (24) 
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ܲሺܧ ൌ 3ሻ ൌ  Aܲሺ0ሻ Nܲሺ3ሻ ൅ Aܲሺ3ሻ Nܲሺ0ሻ    (25) 

 

ܲሺܧ ൑ 1ሻ ൌ  ܲሺܧ ൌ 0ሻ ൅ ܲሺܧ ൌ 1ሻ               (26) 

 

ܲሺܧ ൑ 2ሻ ൌ  ܲሺܧ ൑ 1ሻ ൅ ܲሺܧ ൌ 2ሻ                    (27) 

 

ܲሺܧ ൑ 3ሻ ൌ  ܲሺܧ ൑ 2ሻ ൅ ܲሺܧ ൌ 3ሻ                     (28) 

 

Using equation 21 in equations 22 to 28, the cumulative distribution of the errors 

of automatic random predictions can be computed. Figure 41 compares the cumulative 

distribution of the optimal prediction results in 23 STN implants obtained using FV8 and 

that obtained when making random predictions. FV8 performs better than randomly 

choosing a contact both on the zero-error and at-most-one-error measures while the 

performance is almost the same for the two for the at-most-2- and at-most-3-error 

measures.  

 The mean error and the standard deviation (std) when making random selections 

are computed as follows: 

ሺ ሻ ∑ ∑ ሺ ሻܲ ሺ ሻ| |ଷଷ         (29) mean ܧ ൌ  Aܲ ݅ N ݆ ݅ െ ݆௝ୀ଴௜ୀ଴                             

Aܲሺ݅ሻ Nܲሺ݆ሻ൫|݅ െ ݆| െ meanሺܧሻ൯ଶଷ
଴

ଷ      (30) varianceሺܧሻ ൌ  ∑ ∑௝ୀ௜ୀ଴

stdሺܧሻ ൌ  ඥvarianceሺܧሻ                                                              (31) 
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The mean error when making random selections is 1.25. The mean error for feature FV8 

is 0.96, which represents a 23% advantage over random selection. The standard 

deviations of the two are comparable at 1.0 for random selection and 1.07 for FV8.  
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Figure 41. Cumulative distribution of the optimal prediction error in 23 STN implants 
using FV8 and that obtained when making random predictions with all 4 contacts equally 
likely to be chosen. 
 

 

To summarize, finding the optimal contact and programming parameters to maximize 

therapeutic benefit to the patient can be a challenging and time-consuming process in 

clinical practice. This is also taxing for the patient as the patient is required to be off 
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medication during programming. Furthermore, neurologists programming the DBS 

implant must have expert knowledge of the electrophysiology of the area neighboring the 

implant. A system that can predict the optimal contact may be clinically useful to the 

neurologist and beneficial to the patient as well. In this chapter, statistical maps of 

stimulation response built using the new Gaussian smoothed spherical shell kernel and 

data from the low-shift electrophysiological atlas have been used for predicting the 

optimal contact in a population of patients. Although preliminary, the results suggest that 

using adverse effect maps in conjunction with the efficacy map reduces the optimal 

contact prediction error compared to that achieved by using only the efficacy map. Using 

a combination of efficacy, paresthesia and dysarthria maps, when the best and the 

second-best predicted contacts were used, in 74% of those cases there was 0-error with 

respect to the clinically selected contact. This suggests 50% reduction in programming 

time in those cases, but, these are preliminary results and it is difficult to draw strong 

conclusions from them. Predictions based on FV8 were substantially better both on the 0-

error and at-most-1-error measures than making random predictions. 

Using statistical maps and other electrophysiological data projected on the patient 

using non-rigid registration holds promise for a number of reasons including the fact that 

it accounts for anatomical variability between patients. It also permits the possibility of 

not only predicting the optimal contact but also of providing the stimulation amplitude 

and stimulator settings needed to achieve the therapeutic benefit. More importantly, while 

choosing a single optimal contact manually for monopolar stimulation is a demanding 

task in itself, it is extremely complicated to arrive at an appropriate multipolar selection 

manually. Such a task may be feasible algorithmically based on the interaction of the 
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region activated by multipolar stimulation with statistical maps and other forms of 

electrophysiological data. Therefore, a controlled experiment is needed which can help 

improve the predictive performance of the system. This can be done by having the 

statistical maps available during the programming sessions and comparing the 

information they provide with the actual clinical observations as well as by using the 

insight of the neurologists on the art of programming. The shortcoming and strengths of 

the system can thus be assessed and necessary changes can be made to improve the 

system.  

While the results need further improvement and validation, it is important to note 

that there are certain issues surrounding the selection of the ground truth (clinical 

selection) itself and this impacts the assessment of the predictive performance of the 

system. Programming PD patients is complicated by the fact that in order to see the 

effects of stimulation the patients are made to go off medication for 24 hours prior to 

programming. This can be very stressful to them. Furthermore, it is not clear if 24 hours 

are sufficient to reduce the effects of medication to the extent that they do not interfere 

with the programming. If there is any interference from medication it has a direct effect 

on the patient’s exam as well as on the patient’s feedback to stimulation. Both of these 

can impact the selection of the optimal contact. Also, it is necessary to leave enough time 

between stimulating individual contacts in order to avoid transient effects from 

previously tested contacts from interfering with stimulation at the contact being tested 

currently. This not practical in the clinic due to limited time available for programming as 

well as due to patient discomfort from being off medication. There is also the possibility 

of inter-neurologist variability in defining the desired outcome. For instance, some 
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neurologists choose a contact that produces the best efficacy while others prefer a contact 

with slightly inferior efficacy but larger therapeutic window. Also, it is often unclear 

from neurologist notes why a particular contact was preferred over another when both 

had similar performance. All these scenarios have a direct effect on the accuracy of the 

ground truth against which the predictions are compared and thus impact the evaluation 

of the predictive performance of the system. A prospective study is required where such 

variables can be controlled in order to have a robust and realistic assessment of the 

prediction performance of the system. Such a study can provide a reliable assessment of 

the clinical usefulness of such a system across a number of parameters including savings 

in programming time which is beneficial both to the patient and the neurologist, savings 

in battery life as well as the therapeutic benefit to the patient in the short and long terms. 
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CHAPTER VIII 

 

SUMMARY AND FUTURE WORK 
 

This chapter summarizes the main findings of this dissertation and discusses their 

implications. Several ideas for future research are also explored. 
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Chronic Deep Brain Stimulation (DBS) has been a rapidly evolving area of 

neurotherapeutics since its initial introduction for the treatment of Parkinson’s disease 

and essential tremor in the 1990s. For these conditions, DBS is now considered accepted 

therapy for patients failing to adequately respond to medical treatment. Since the 1990s, 

new clinical indications, anatomical targets, and technologies have contributed to an 

expanding role for DBS in the treatment of other movement disorders such as Dystonia 

and Tourette syndrome as well as for other neurologic disorders such as epilepsy and 

cluster headache. Early experience has also been reported for psychiatric syndromes, 

such as obsessive-compulsive disorders and depression [90]. With DBS attaining 

widespread acceptance, in the recent past, there has been active research to improve the 

outcome of the procedure as well as to make it more accessible to patients. To that end, a 

part of this dissertation is motivated by recent findings by other researchers [24, 26, 27, 

34, 40, 43, 44, 58, 91-100] and contributes to the field of stereotactic functional 

neurosurgery in several ways.  

This work can be broadly categorized into two parts. The first is motivated by a lack 

of standardization in the localization of popular landmarks used to indirectly localize as 

well as communicate the locations of stereotactic targets. The second is motivated by 

shortcomings and inaccuracies in existing methods to populate statistical atlases of 

electrophysiological data acquired intra-operatively during DBS surgeries. A general 

introduction to DBS as well as a survey of existing related works and their limitations 

was detailed in chapter I.  
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VIII.1 Standardizing AC-PC based indirect targeting in DBS surgery 

Common targets of interest for DBS are poorly visible in current imaging modalities. 

Therefore, in normal clinical practice neurosurgeons pre-operatively localize targets 

indirectly. They do this by first selecting the anterior and posterior commissures (AC and 

PC) which are visible in the images. The targets are then localized based on their relative 

locations with respect to the AC and PC. The coordinates of the relative location can be 

from a variety of sources including a specific atlas or average location from a population 

of patients.  

In chapter II, the variability in manual AC and PC selections by 43 neurosurgeons 

specialized in stereotactic neurosurgery from multiple centers was investigated. The 

impact this variability has on the localization of three popular DBS targets (STN, Vim 

and GPi) was also evaluated. The results presented in chapter II showed that inter-

surgeon variability in manual selection of the AC and the PC was substantial and that this 

had a substantial impact on AC-PC based target localization.  The mid-commissural point 

(MC) was found to be a more consistent reference point than AC and PC and was 

recommended as the preferred origin of the stereotactic reference system for 

communication of targets. It was found that based solely on the error in determining AC 

and PC, two neurosurgeons on average would select STN, Vim and GPi 2.64 mm, 2.75 

mm and 3.31 mm apart respectively. This variability is substantial because the distance 

between adjacent contacts on a standard DBS electrode is only 1.5 mm. Variability in 

selection of the mid-plane (which was held constant in the original experiment) added a 

further 0.44 mm, 0.43 mm and 0.71 mm variability in selecting STN, Vim and GPi 

respectively. The images used in this study were high quality images and additional 

122 
 



variability can be expected with poor image quality. Thus, in chapter II, the difficulty in 

establishing a common reference system to communicate locations of target points by 

manually selecting AC and PC on MRI images was highlighted. This study attains 

significance in the context of widespread use of AC and PC as stereotactic reference 

points. It serves to alert the surgical community to be cognizant of the potential effects of 

lack of standardization in selecting these points on contemporary images.  

In Chapter III, an atlas-based technique [34] was applied to predict the locations of 

the commissures. The accuracy of the method was evaluated by comparing the 

predictions against 1) manual selections by 43 neurosurgeons from multiple centers, 2) a 

gold standard computed based on careful selections in a laboratory setting using 20 

patients, and 3) manual selections by two neurosurgeons in a clinical setting over 60 

patients. 

With respect to the median of the manual selection by 43 neurosurgeons, the atlas-

based predictions had sub-millimetric accuracy for AC, PC and MC, and consequently 

for AC-PC based localization of STN, Vim and GPi. With respect to the gold standard 

designed under laboratory controlled settings, the accuracy of AC, PC and MC 

predictions was sub-millimetric in 20 datasets. In a clinical setting, atlas-based prediction 

accuracy over 60 patients between 2 neurosurgeons was 1.07 mm, 0.94 mm and 0.82 mm 

for AC, PC and MC respectively. Statistical analysis suggested that atlas-based 

predictions were similar to an experienced neurosurgeon carefully selecting the points.  

The results demonstrated that by carefully creating atlases containing AC and PC 

selections and by combining predictions from multiple atlases, a system could be 

developed that was not only fully automatic but also produced results that were more 
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accurate and reproducible than those obtained by experienced physicians in clinical 

practice. This has a direct impact on the clinical practice of stereotactic neurosurgery as 

the AC-PC reference system continues to remain the popular choice for indirectly 

localizing and communicating targets. Using the approach validated in this chapter, 

variability in communicating targets based on AC-PC reference can be reduced. This may 

influence the outcome of procedures where AC-PC based targeting is used. Furthermore, 

using the standardized AC and PC predicted by this approach can impact the accuracy of 

atlases that use AC-PC based normalization methods to populate statistical data from 

patients.  

 

VIII.2 Building accurate electrophysiological maps and atlases after accounting for 

intra-operative brain shift and using them for post-operative programming in DBS 

In the recent past, a number of atlases and databases containing sub-cortical 

electrophysiological data of stimulation responses have been developed by various 

groups. A popular way to use such data from a population of patients was to combine 

them to create statistical maps that highlighted regions likely to produce a specific 

stimulation response. Previous method to build such maps using Gaussian kernels as 

proposed by our group [34] and used by others as well [37, 74] had certain limitations. In 

chapter IV, these shortcomings were identified and the Gaussian Smoothed Spherical 

Shell (GSSS) kernel was proposed as a new model to overcome them. Statistical maps 

built using the proposed GSSS kernels correlated strongly with a statistical ground truth, 

namely, the mean intra-operative implant position (IOIP) from a population of patients 
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while those built using the previously used Gaussian (GAUSS) kernel correlated poorly. 

Specifically, the centroid of the high likelihood region (HLR) of the proposed GSSS-

kernel-based PD efficacy map for the left side was 1.58 mm away from the mean IOIP 

while that of the old GAUSS-kernel-based PD efficacy map was 3.72 mm away. For the 

right side, the HLR centroid of the GSSS-kernel-based PD efficacy map was 1.31 mm 

away while the GAUSS-kernel-based PD efficacy map for the right side produced two 

HLRs which were on average 2.53 mm (SD 0.3 mm, maximum 2.74 mm) away from the 

corresponding mean IOIP. The HLR centroid of the GSSS-kernel-based ET efficacy map 

for the left side was 0.81 mm from the mean IOIP while the GAUSS-kernel-based ET 

efficacy map for the left side produced six HLRs which were on average 3.27 mm (SD 

1.23 mm, maximum 5.47 mm) away from the corresponding mean IOIP. The HLR 

centroid of the GSSS-kernel-based ET efficacy map for the right side was 0.77 mm from 

the mean IOIP while the GAUSS-kernel-based ET efficacy map for the right side 

produced three HLRs which were on average 2.59 mm (SD 0.9 mm, maximum 3.55 mm) 

away from the corresponding mean IOIP. Additionally, the use no-efficacy as well as no-

adverse-effect data to refine or trim the efficacy and adverse effect statistical maps 

respectively for better localization of the high likelihood regions was proposed. It was 

found to be very sensitive to the reliability of the no-response data. 

 Another problem with existing atlases of intra-operatively acquired data is that 

they all have an underlying assumption that anatomical structures do not move between 

the time of the pre-operative image acquisition and the time of the surgery. However, this 

assumption is not valid. Ignoring brain shift could lead to inaccuracies in the building of 

atlases and statistical maps built using data from such atlases. This can reduce the 
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predictive value of systems that use such information. In chapter V, the effect of brain 

shift on the creation of atlases was studied using intra-operative electrophysiological data. 

In the absence of intra-operative imaging, a method to categorize patients into low, 

medium and large brain shift groups based on the amount of pneumocephalus seen on the 

CT acquired immediately after surgery was proposed. Clusters of micro-electrode 

recordings-based somatotopy data and stimulation response maps of efficacy for PD were 

analyzed for various brain shift groups. The results show that substantial brain shift 

happens before micro-electrode recordings in DBS. Specifically, the low-shift 

somatotopy cluster was 3.59 mm away from the large-shift cluster while it was 1.68 mm 

away from the medium-shift somatotopy cluster. Comparing the centroids of the HLRs, 

the low-shift efficacy map for right PD was 3.33 mm away from the large-shift efficacy 

map while it was 0.81 mm from the medium-shift efficacy map. For left PD, the low-shift 

efficacy map was 4.03 mm away from the large-shift efficacy map while it was 1.10 mm 

from the medium-shift map. Therefore, it was concluded that in order to build accurate 

atlases intra-operative brain shift that must be accounted for. 

In chapter VI, the problem of accounting for intra-operative brain when building 

atlases of intra-operatively acquired electrophysiological data was addressed by 

eliminating patients with large brain shift from the atlas building process. Such an atlas 

was referred to as the low-shift-atlas. Also, the GSSS-kernel-based statistical maps built 

using data from the low-shift-atlas were validated in this chapter. The PD and ET 

efficacy maps were found to be in close proximity to the mean intra-operative 

implantation position (ground truth) from a population of patients projected onto the atlas 

MRI. The high likelihood region of the efficacy map built using successful ET relief data 
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was found to be localized inside the Vim visible on the Schaltenbrand atlas. This is 

consistent with clear consensus in the stereotactic and functional neurosurgical 

community on Vim being the best anatomical target for ET relief. Similarly, it is well-

understood in the neuro-electrophysiology community that stimulation in the Vc 

produces paresthesia. The high likelihood region of the paresthesia map was found to be 

localized inside the Vc visible on the Schaltenbrand atlas. Thus, in chapter VI, an 

approach to build electrophysiological atlases after accounting for brain shift was 

proposed and maps built using this method were validated. Additionally, a model 

showing the various stages and components of brain shift was described and a 

preliminary shift-correction scheme based the post-operative stable lead position was 

proposed. 

In chapter VII, the use of statistical maps of efficacy and adverse effects for post-

operative programming assistance was investigated. This preliminary study was 

motivated by the fact that in clinical practice finding the optimal contact and 

programming parameters to maximize therapeutic benefit to the patient is a challenging 

and time-consuming process to both the neurologist and the patient. A system that can 

predict the optimal contact may be clinically useful to the neurologist and beneficial to 

the patient as well. The results from this chapter suggested that using a combination of 

efficacy map in combination with maps of adverse effects like paresthesia and dysarthria 

produced better predictive performance than when only using efficacy maps. When the 

best and the second-best predicted contacts were compared against the clinically selected 

contact, prediction error was zero in 74% of the cases. While this may suggest 50% 

reduction in programming time in those cases, the results not only need further 
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improvement and validation but they are also preliminary making it is difficult to draw 

strong conclusions from them. Furthermore, since the predictive system used heuristic 

features, its performance was compared against a system randomly selecting the optimal 

contact. The random selector had 0-error in 25% of the cases while the predictive system 

based on the statistical maps of efficacy and adverse effects had 0-error in 43% of the 

cases. For 1-error, these percentages were 62.5% and 74% for the random selector and 

the predictor based on statistical electrophysiological maps respectively. 

 

VIII.3 Future work 

The function governing the relationship between the stimulation amplitude and the radius 

of the spherical region activated by it that was used for building the statistical maps was 

based on data populated by Butson et al. for the Medtronic 3389 electrode which is a 

macro-electrode. However, the electrode used intra-operatively is a semi-macro electrode 

with slightly different dimensions and electrical properties. This can introduce some 

inaccuracies in the maps. A more precise function specific to the intra-operatively used 

electrode is required to improve the accuracy of the statistical maps. Another inaccuracy 

in the map building process is the assumption of isotropic tissue properties leading to the 

assumption of a spherical activation region. However, the electrical properties of brain 

tissue are not isotropic. To further improve the accuracy of the maps this has to be taken 

into account. The concept of a shell-based kernel will still remain valid except that the 

shape of the activation region may not necessarily be a sphere anymore.  
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To avoid eliminating large-shift patients from the process of building 

electrophysiological atlases least affected by brain shift, the brain shift recovery 

assumptions necessary for the use of the post-operative stable lead (section VI.4) for 

brain shift correction need to be validated. Additionally, it may be feasible to use intra-

operative CTs to study the evolution of brain shift as the surgery progresses so that new 

models of brain shift can be developed and used to build more accurate shift-corrected 

atlases.  

In the absence of intra-operative imaging, intra-operative electrophysiological 

recordings are the only source of information available to the surgical team to navigate 

towards the optimal target. In the event of large brain shift during the procedure these 

recordings can be expected to correlate poorly with the anatomical information available 

in the pre-operative images used for planning the procedure and can thus make it difficult 

for the surgical team to reach the optimal target. It may thus be beneficial to the surgical 

team if the occurrence of intra-operative brain shift can at least be detected, if not 

corrected automatically. One way to do that is to correlate the statistical 

electrophysiological maps built using data from the low-shift electrophysiological atlas 

with intra-operative observations. Preliminary results on the use of low-shift maps for 

intra-operative brain shift detection were presented recently [101]. Further work is 

necessary in this direction as well as towards intra-operative navigation using 

electrophysiological atlases. 

Post-operatively, the severity of the disease can be assessed using scales like the 

UPDRS rating scale to objectively evaluate any differences in the therapeutic benefit to 

patient when using the predicted contact as opposed to a different clinically selected 
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contact. Also, as discussed in section VII.4 there are issues surrounding the selection of 

the ground truth (clinical selection) that affect the assessment of the predictive 

performance of the system. A well-designed prospective study where these issues can be 

controlled is required to not only improve methods for using the statistical maps and 

other forms of electrophysiological data for post-operative programming assistance, but 

also to assess their predictive performance. Furthermore, neurologist typically use 

monopolar stimulation, i.e. they activate only one of the multiple contacts at a given time 

as this is already quite challenging because visualizing the electric field produced by the 

stimulation is not trivial especially when the spatially varying electrical properties of the 

brain tissue need to be taken into account. It is even more difficult to arrive at optimal 

multipolar stimulator settings because of the complexity of the interaction between the 

electric fields produced by the activation of more than one contact simultaneously. Thus, 

there is tremendous potential in the direction automatically predicting multipolar 

stimulation in order to modulate the electric fields so that they can be shaped to conform 

to the target known to produce efficacy while avoiding interaction with neighboring 

structures known to induce adverse effects. 
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	Surgeon-Pairwise distances as a measure of inter-surgeon variability
	Traditionally, the spread of a cluster of points is measured as the mean distance from the centroid of the cluster to a given point, but this does not provide a direct measure of distances between points in the cluster. In this study, which focuses on measuring inter-surgeon differences, we have opted for pairwise distances. Suppose, for instance, that S1AC, S2AC, S3AC, and S4AC are the AC selections by four surgeons S1, S2, S3 and S4 and that distance(a, b) is the distance between points a and b, then we compute distances between the four surgeon selections taken pairwise, i.e., distance(S1AC, S2AC), distance(S1AC, S3AC), distance(S1AC, S4AC), distance(S2AC, S3AC), distance(S2AC, S4AC) and distance(S3AC, S4AC) and call these surgeon-pairwise distances. Their mean, standard deviation (SD) and median (to eliminate the effect of outliers) were computed as a measure of the inter-surgeon variability in selecting the AC. This is illustrated in figure 2(b).
	Measuring the inter-surgeon variation at AC, PC and MC and the resultant variation at targets
	The method described above was applied to the AC, PC and MC coordinates for each surgeon pair to calculate the inter-surgeon variability at the commissures and at the MC. The effect of variation in the selection of AC and PC on target localization was analyzed using coordinates published in the literature for STN [9], GPi [9], and Vim [10]. These standard coordinates are shown in table 1. Using the coordinates shown in table 1, (X, Y, Z) coordinates for STN, GPi and Vim targets were calculated from each neurosurgeon’s AC-PC selections.  To generate a 3-dimensional coordinate space, one point in the mid-plane other than AC, PC and MC was chosen by a senior neurosurgeon on each MRI volume.  This mid-plane point remained the same in all cases, and was used in the calculation of each of the targets in X, Y, Z coordinates. The surgeon-pairwise distances were computed from these as a measure of the inter-surgeon variability at the targets. This variability is due only to the variability in selection of the commissures.
	Experiment to estimate the effect of mid-plane tilt
	To study the effect of variations in the selection of one or more midplane points, which could not be studied with the data set acquired at the conference, a small experiment was carried out. On the same two volumes, two neurosurgeons selected multiple sets of three points on the falx that could potentially be picked by a neurosurgeon to fit the mid-plane. The AC and PC for each of the volumes were fixed. Mid-planes were then fitted through each set of points selected on the falx for each volume. Pairwise angles between all these planes (inter-plane angles) were then computed to measure the variability in selecting mid-planes. Based on the results of this experiment the effect of mid-plane tilt on target localization was studied.
	II.3 Results
	The maximum pairwise inter-plane angle was found to be 1.000 for Patient1 and 1.700 for Patient2. We found that the effect of mid-plane orientation is maximum in terms of Euclidean shift on the localization of GPi (error = 0.71mm) as it is farthest away from the mid-plane laterally, followed by STN (error = 0.44mm) and then Vim (error = 0.43mm) for a 20 tilt in the mid-plane.


	The dataset populated with 43 neurosurgeons localizing AC and PC on the same two MRI volumes is unique. The results show that variation in manual selection of the AC and the PC is substantial and has a substantial effect on AC-PC based indirect target localization.  They also show that the MC is a more consistent reference point than either the AC or the PC. This is likely due to canceling of differences among neurosurgeons using different conventions. 
	It is noteworthy that the error in designating AC and PC has the most effect on targets located more lateral from the midline. Based solely on the error in determining AC and PC, two neurosurgeons on average would select STN, Vim and GPi up to 2.64 mm, 2.75 mm and 3.31 mm apart respectively. This variability is significant because the distance between adjacent contacts on a standard DBS electrode is only 1.5 mm. Variability in selection of the mid-plane (which was held constant in the original experiment) adds further 0.44 mm, 0.43 mm and 0.71 mm variability in selecting STN, Vim and GPi respectively. 
	The two MRI image data sets used in this study were of high quality, with very limited motion artifacts because the images were acquired with the patient under anesthesia. The study, therefore, does not address the effect of quality of the images or the effect of large variability in brain anatomy (such as ventricular size). This may further have a significant impact on the surgeons’ ability to select AC and PC accurately. It is expected that blurring due to motion artifacts in image volumes acquired with awake patients will further increase inter-surgeon variability.
	The data set also strongly suggests that experience plays an important role in a neurosurgeon’s ability to select the points accurately. For Patient1 the mean surgeon-pairwise distances for the attendings group are lower than those for the pooled group by 20% for AC and 36% for PC. These percentages for Patient2 are 10% for AC and 31% for PC. This translates into a mean increase in the surgeon-pairwise distance of targeting error in the pooled data (including residents/fellows) versus experienced stereotactic neurosurgeons (attendings) by 130%, 90% and 174% for STN, Vim and GPi respectively for Patient1. For Patient2, the increase in percentage targeting errors between the pooled data and attendings only are 34%, 35% and 37% for STN, Vim and GPi respectively.
	The selection of the midplane point (MP) was held constant during the survey to reduce interaction time. Because of this, the effect of variation in selecting points on the falx on target selection could not be assessed in the subject population. But, the experiments indicate that this could introduce an additional error of 0.71 mm, 0.44 mm, and 0.43 mm at the GPi, STN, and Vim, respectively for a 20 tilt in the mid-plane. Although this is relatively small compared to the error of AC-PC selection, this error can become more significant in patients with a curved falx. The variability presented herein should thus be considered as a lower bound. This study highlights the difficulty of establishing a common reference system to communicate locations of target points based on visual inspection of the MRI for AC-PC reference points. Yet, when comparing therapeutic target locations, a method of normalizing targets with respect to a common reference system (AC-PC coordinates) is highly useful. The source of error we have measured is only one among several sources of errors that complicates the surgical procedures. Others include the accuracy of the stereotactic frame used to place the electrode or anatomical differences between patients. It is therefore difficult to measure directly the impact of AC and PC localization errors on the overall procedure or its outcome. It is, however, reasonable to believe that any source of error in the reference process could potentially lengthen the procedure by requiring more intra-operative adjustment or lead to suboptimal placements. This, in turn, could lead to less than optimal therapeutic response from the procedure.
	A more accurate reference for stereotaxy would eliminate visual inspection of the AC-PC on MRI scans, and instead automate the selection based on imaging criteria. To that end, the first step is to develop automatic methods that would permit the accurate and consistent localization of the AC and the PC points [60-63]. The second is to develop algorithms that permit the automatic non-rigid registration of MRI images. D’Haese et al. [34] have used a non-rigid registration method [35] in the past for accurate localization of targets. In the next chapter, this non-rigid registration technique will be used for automatic AC and PC predictions and the accuracy of the predictions will be validated.
	CHAPTER III
	AN AUTOMATIC METHOD AND IT’S VALIDATION FOR THE ROUTINE SELECTION OF THE ANTERIOR AND POSTERIOR COMMISSURES IN MR IMAGES
	This work was published in the Journal of Stereotactic and Functional Neurosurgery in 2009 [64] and the proceedings of SPIE Medical Imaging [60].
	III.1 Introduction


	The findings from the previous section suggest the need for automated and robust methods for the localization of the anterior and posterior commissure points. To that end an atlas-based method we have used in the past [34] for target predictions is applied to predict the position of AC and PC automatically. More importantly, the focus of this work is to validate the method against clinically selected points in a large number of patients as well as against a gold standard selected in a controlled setting. The results show that the predictions are more accurate than routine manual selection.  
	III.2 Data and Method

	With IRB (Vanderbilt University IRB #060232) approval, a  pre-operative 3D MRI scan (TR 12.2ms,  TE 2.4ms, 256x256x170 voxels, with typical voxel resolution of 1x1x1 mm³) was acquired for each patient using the SENSE parallel imaging technique (T1W/3D/TFE) from Philips on a 3T scanner. These images were acquired with the patient anesthetized and head taped to the table to minimize motion. The study presented herein includes 60 patients who underwent DBS surgery at our institution between December 2006 and January 2008.
	 Atlas-based automatic AC and PC predictions
	An atlas-based method is used to predict automatically the position of AC and PC points. Atlas-based methods require two main components: (1) reference image volumes in which points or structures of interest have been localized and (2) registration algorithms, which permit the spatial realignment of the reference volumes to other image volumes in which the structures or points of interest need to be localized. Reference volumes in which the points of interests have been localized will be referred to as atlases in the remainder of the text. In this work, automatic spatial realignment or registration between image volumes is achieved in two steps. First, the volumes are realigned using an affine transformation (rotation, translation, and anisotropic scaling). This is followed by a non-rigid registration step. In this study, non-rigid registration is performed with the adaptive bases algorithm proposed by Rohde et al. [35].  Briefly, this algorithm computes a deformation field that is modeled as a linear combination of radial basis functions with finite support. This results in a transformation with several thousands of degrees of freedom. Two transformations (one from the atlas to the subject and the other from the subject to the atlas) are computed simultaneously and constrained to be inverses of each other. Both the rigid and non-rigid registration algorithms are mutual information based [65, 66]. 
	Using this method, AC and PC points selected on an atlas volume can be projected onto a patient’s volume to predict these points on that particular patient. Figure 3 illustrates this concept. The AC and PC from the atlas are projected onto the patient using a transformation (T) which is the result of rigid and non-rigid registrations between the atlas and the patient. This results in the automatic localization of the anterior and posterior commissures in the patient (ACP and PCP).
	/
	Figure 3. Atlas-based automatic method for predicting the anterior and posterior commissures on a patient (ACP, PCP) by applying a transformation T (result of rigid and non-rigid registration between atlas and patient) to the atlas points (AC, PC).
	Multiple-atlases-based automatic AC and PC predictions
	As others have observed (see for instance the work of Rohlfing et al. [67]), registration accuracy achievable by non-rigid registration may be influenced by morphological differences between the volumes to be registered. It is now relatively common to rely on outputs of several atlases to perform atlas-based segmentation [34, 67, 68]. To study the impact of the choice of an atlas on the process accuracy, four MRI image volumes were used as atlases. Three of these were patient volumes, which differed in size and/or shape (both overall and at specific structures like the ventricles). The fourth one was a synthetic volume generated by averaging 20 patient volumes using the method proposed by Guimond et al. [69]. This is an iterative method which starts with one of the volumes as a target and converges toward a volume that is representative of the population as a whole. 
	Figure 4 illustrates the extension of the single atlas approach described in the previous section to a multiple-atlases approach. The AC and PC points selected on each of the N atlases (AC1 and PC1, AC2 and PC2, …, ACN and PCN) are projected onto the patient volume (ACP1 and PCP1, ACP2 and PCP2, …, ACPN and PCPN) using the transformation between the respective atlas and the patient volume. 
	/
	Figure 4. Using multiple atlases to produce optimal AC and PC predictions by combining the individual atlas-based predictions generated using the approach shown in figure 3.
	The multiple predictions are then combined to produce the automatic prediction of the commissural points. The easiest way to combine the predictions from each atlas is to compute their average and use it as the optimal prediction. The drawback of this approach is that the predictions made by all the atlases are weighted equally, regardless of the quality of the registrations. In a 2005 study [70], we proposed an alternative approach in which the quality of the registration at a given location (STN), was estimated indirectly by estimating the quality of the segmentation of structures surrounding that location (thalamus, globus pallidus, and putamen). The measure of the quality of the segmentation is given by the specificity and sensitivity of the segmentations obtained with each atlas on these structures. These are computed using the STAPLE algorithm proposed by Warfield et al. [68]. The specificity and sensitivity values are then used to weigh the contribution of each atlas to the optimal prediction while eliminating the contributions of atlases that produce low sensitivity values for the structures (i.e., atlases that lead to poor segmentation results for structures surrounding the location of interest).
	Manual localization of the points on the atlases
	As shown in the previous study and in [59], there is substantial inter-surgeon variability in the manual selection of the AC and PC points, which complicates the creation of atlases. Indeed, errors in the localization of the AC and PC points in the atlases produce prediction errors independent of the registration accuracy. To minimize the effect of localization errors in the atlases, two senior neurosurgeons were asked to carefully select AC and PC on each of the atlases without any time constraints. For each atlas, the reference AC and PC points were computed as the average of the selections by the two neurosurgeons. 
	Evaluating accuracy of automatic AC and PC predictions against manual selections by 43 neurosurgeons on the two MRI volumes from the previous study
	On the two MRI patient volumes used in the previous study on inter-surgeon variability in localizing the commissures, automatic atlas-based predictions of AC and PC were made using the method described above. Using the predicted AC and PC points STN, Vim and GPi were then indirectly localized in the two images based on the AC-PC coordinates in table 1. The automatic AC and PC predictions were evaluated against the median of the manual AC and PC selections by the 43 neurosurgeons. The accuracy of our indirectly computed coordinates of STN, Vim and GPi based on atlas-predicted AC and PC were evaluated against the median of the computed coordinates of the same targets based on the 43 manual AC and PC selections. The atlas prediction accuracy was compared with the mean manual accuracy of the surgeon selections.
	Evaluating accuracy of automatic AC and PC predictions against clinical selections
	The automatic predictions of AC and PC points were evaluated against clinical manual selections on 60 DBS patients. Thirty of these patients were operated on by one neurosurgeon and thirty by the other. The pre-operative plans for these patients, which included clinical manual selection of AC and PC points, were generated by the neurosurgeon that performed the procedure. These clinical manual selections of the AC and PC points will be referred to as clinical selections. For each patient, using the pre-operative MRI scan of the head, automatic predictions of AC and PC were generated using the individual atlases and the multiple-atlases-based methods described earlier. The accuracy of atlas-based automatic predictions (individual atlas as well as multiple-atlases-based) was evaluated by measuring the Euclidian distance between the automatic predictions and clinical selections.
	Need for a standard to evaluate AC and PC prediction accuracy
	Planning for a DBS procedure is typically performed under time constraints. This introduces inaccuracies. Thus, the clinical selections of AC and PC may not always be absolutely accurate. Consequently, measuring the distances between atlas-based predictions and clinical selections will not be conclusive in determining the accuracy of atlas-based predictions. To address this issue, a gold standard needs to be defined to which automatic AC and PC predictions and manual clinical selections can be compared. 
	Creation of the gold standard to evaluate prediction accuracy
	To create the AC and PC gold standards, the following method was followed. Due to the time consuming nature of this method, 20 patients were selected out of the 60 patients used in this study. First, 10 of the 30 patients operated on by one of the neurosurgeons and 10 of the 30 patients operated on by the other neurosurgeon were selected randomly. Each of these patients already had AC and PC selected clinically by the operating neurosurgeon at the time of surgical planning. On these 20 volumes, both neurosurgeons were asked to carefully select AC and PC points in the laboratory without time constraints, using the same software tool that was used to create the atlases. Localization was performed independently by both neurosurgeons and they did not have access to the points that were selected by them clinically. This experiment created two new sets of AC and PC selections (one per neurosurgeon) on each of the 20 patients. These new selections can be considered to be the best achievable manual selections, henceforth referred to as the silver standards (SlvStd1 and SlvStd2). The average of the two silvers standards on a given patient is the gold standard for that patient. 
	Statistical Analysis
	The accuracy of various selection methods was computed by comparing the distances between the selections and the corresponding reference points. Comparisons between these distances were conducted with a Wilcoxon signed-rank test to account for dependency between the values observed on the same patient.  The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test for the case of two related samples or repeated measurements on a single sample. It is used as an alternative to the paired Student's t-test when the population cannot be assumed to be normally distributed. The distances were summarized with the median and the lower and upper quartiles. R version 2.7.0 [71] was used for all statistical analyses. 
	III.3 Results

	III.3.1 Validation against manual selections by a 43 neurosurgeons in two datasets 
	Table 4. Distances between the atlas-based AC, PC and MC predictions, the computed coordinates of STN, Vim and GPi based on the predicted commissures, manual AC and PC selections by 43 neurosurgeons and the computed coordinates of MC, STN, Vim and GPi based on the manually selected commissures from the respective ground truths for (a) Patient1 and (b) Patient2.
	Accuracy (mm) with respect to median of 43 surgeon selections
	(a) Patient1
	AC
	PC
	MC
	STN
	Vim
	GPi
	Atlas
	0.48
	0.74
	0.17
	0.45
	0.85
	0.47
	Manual
	1.25
	1.42
	0.91
	1.55
	1.66
	1.90
	(b) Patient2
	AC
	PC
	MC
	STN
	Vim
	GPi
	Atlas
	0.54
	0.63
	0.27
	0.24
	0.44
	0.10
	Manual
	1.01
	1.27
	0.80
	0.90
	1.11
	0.95
	III.3.2 Validation against manual selections by two neurosurgeons in 60 patients in a clinical setting
	Comparing single- and multiple-atlases-based predictions to clinical selections
	The accuracy of the average of multiple-atlases-based predictions as well as of multiple-atlases-based predictions using STAPLE was evaluated with respect to clinical selections. These two methods of combining predictions were not statistically different for AC (p = 0.48) and MC (p = 0.49). For PC the average method produced smaller prediction error with respect to the clinical selection than the STAPLE method on 41 among the 60 patients (68%).  This difference at PC was statistically significant (p < 0.001) based on a Wilcoxon signed-rank test, which takes into account the rank (1 or 2) within the pair (average and STAPLE) for each patient.  The mean difference, however, is only 0.037 (95% Confidence Interval: 0.014 to 0.090).  But, the average method led to large errors in one patient because one of the atlases registered poorly to this image volume. In this patient, the error using the average method was 8.40 mm at AC and 2.16 mm at PC while the error using the STAPLE for the same patient was 0.57 mm at AC and 0.93 mm at PC. Because the difference in accuracy between the STAPLE and the simple averaging method is very small and because the STAPLE method is better at eliminating outliers, it has been used in the rest of this study. Table 5 summarizes the prediction errors for individual atlases and for multiple-atlases-based prediction using STAPLE with respect to clinical selections on 60 patients. The median error with the lower and upper quartile values are provided. The p-values comparing the prediction errors of individual atlas predictions with those of multiple-atlases-based predictions using STAPLE are also given. Superiority of the multiple-atlases-based method using STAPLE is highly statistically significant over atlas 1 for AC and MC, and over atlases 2, 3, and 4 for PC. 
	Comparison of the atlas-based predictions and clinical selections against silver standards
	Figure 5 shows representative results for the selection of AC. It shows the STAPLE based atlas prediction (1), the gold standard (2) defined as the average between the careful selections by the two neurosurgeons (silver standards) (4) and the clinical selection (3),  projected on the sagittal (left panel) and axial (right panel) slice passing through  the gold standard point. 
	Table 6 summarizes distances between pairwise combinations of multiple-atlases-based automatic predictions, clinical selections and the two silver standards. It reports, for AC, PC and MC, the median and the lower and upper quartiles of the Euclidian distance in millimeter, between (a) the two silver standards (careful manual selections by the two surgeons), (b-c) the STAPLE based atlas predictions and the two silver standards, and (d-e) the clinical points and the two silver standards. The silver standards comparison (a) reflects the inter-surgeon variability while carefully selecting the points manually.
	The p-values comparing (a) with (b, c, d and e) using Wilcoxon signed-rank tests are also reported in Table 6. The differences between clinical selections and the silver standards were statistically significant, thus indicating that clinical selection is sub-optimal. On the contrary, no statistical significance was found for the difference between the two silver standards (a) and that between STAPLE based atlas predictions and silver standards (b and c).  Although, no conclusion can be drawn from large p-values, based on these findings, it may be conjectured that the atlas-based predictions are similar to an experienced neurosurgeon carefully selecting the points manually.
	Accuracy of atlas-based predictions and clinical selections against gold standards
	Table 7 summarizes the key findings of the study. It shows for the 20 volumes for which the AC and PC gold standards were available, the median Euclidean distances with the lower and upper quartiles, in millimeter, between (a) the automatic predictions and the gold standards, and (b) the clinical selections and the gold standards. These numbers are reported for the AC, PC and MC points.  With respect to the gold standard, the median distances of atlas predictions are only about half of that of clinical selections.  Highly statistically significant differences were found between the accuracy of atlas predictions and that of the clinical selections with respect to the gold standards for AC (p = 0.007), PC (p < 0.001), and MC (p < 0.001).  The results also show that atlas-based predictions are significantly more accurate than clinical selections with respect to the gold standard.  Finally, 95% confidence intervals of the median accuracy of atlas-based predictions with respect to the gold standards are (0.56, 0.79), (0.46, 0.66) and (0.33, 0.50) mm, respectively for the AC, PC and MC. For the accuracy of clinical selections with respect to gold standards the 95% confidence intervals are (0.91, 1.47), (0.82, 1.26) and (0.68, 1.20) mm respectively for AC, PC and MC.
	Figure 6 shows the cumulative distributions of the differences between atlas predictions and clinical selections with respect to the gold standard over the 20 volumes. The horizontal axis represents the distance in mm between selections of a point (AC, PC or MC) using two different methods. The vertical axis represents the fraction of cases for whom the distance between the selections was less than or equal to the corresponding distance on the horizontal axis. Figure 6(a) shows that in about 80% of the cases the distance between atlas predictions and gold standard for AC is less than 1.0 mm which is true in only 25% of cases for the clinical selections. Figure 6(b) shows similar results for the PC.  Figure 6(c) shows that in 100% of the cases the distance between atlas predictions and the gold standard for MC is sub-millimetric while it is only true in about 70% of the cases for the clinical selections. This figure also shows that manual selection can lead to relatively large errors in the selection of the MC, which is commonly used as the center of the coordinate system in stereotactic surgeries.
	/
	Figure 6. Cumulative distributions of the Euclidian distances between multiple-atlases- based predictions using STAPLE and gold standards (solid line) as well as between the gold standards and the points chosen clinically (dotted line) for (a) AC, (b) PC and (c) MC on 20 patients.
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	CHAPTER IV 
	A NEW KERNEL TO BUILD STATISTICAL MAPS OF STIMULATION RESPONSE
	Abstract
	Statistical maps of stimulation responses acquired during DBS surgeries have been built in the past by a number of groups including ours. More importantly, attempts have been made to use such maps to provide assistance to the surgical team. However, there is a problem with the way stimulation responses are modeled in these methods for building the maps. In this chapter, first a limitation of the model that has been used in the past is described. Second, a new model is proposed to overcome this limitation and maps generated by the two models are compared.
	This work was published in Lecture Notes in Computer Science in the proceedings of Medical Image Computing and Computer Assisted Intervention (LNCS, MICCAI), 2008 [49].
	IV.1 Introduction

	CHAPTER V
	STUDYING THE EFFECT OF INTRA-OPERATIVE BRAIN SHIFT ON CREATION OF AN ELECTROPHYSIOLOGICAL ATLAS
	This work was published in the International Journal of Computer Assisted Radiology and Surgery in 2009 [78-80].
	V.1 Introduction
	V.2 Data and Method
	Figure 21. Sagittal slices containing the final implant for low-, medium- and large-shift patients classified based on the width of the air pocket in the immediate CT. 
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	Table 10. AC-PC coordinates (posterior, lateral, inferior) of the centroids of the high likelihood regions for the low-, medium- and large-shift PD efficacy maps (STN) for the right brain.
	Table 11. AC-PC coordinates (posterior, lateral, inferior) of the centroids of the high likelihood regions for the low-, medium- and large-shift PD efficacy maps (STN) for the left brain.
	CHAPTER VII
	VII.4 Discussion and Conclusions
	To summarize, finding the optimal contact and programming parameters to maximize therapeutic benefit to the patient can be a challenging and time-consuming process in clinical practice. This is also taxing for the patient as the patient is required to be off medication during programming. Furthermore, neurologists programming the DBS implant must have expert knowledge of the electrophysiology of the area neighboring the implant. A system that can predict the optimal contact may be clinically useful to the neurologist and beneficial to the patient as well. In this chapter, statistical maps of stimulation response built using the new Gaussian smoothed spherical shell kernel and data from the low-shift electrophysiological atlas have been used for predicting the optimal contact in a population of patients. Although preliminary, the results suggest that using adverse effect maps in conjunction with the efficacy map reduces the optimal contact prediction error compared to that achieved by using only the efficacy map. Using a combination of efficacy, paresthesia and dysarthria maps, when the best and the second-best predicted contacts were used, in 74% of those cases there was 0-error with respect to the clinically selected contact. This suggests 50% reduction in programming time in those cases, but, these are preliminary results and it is difficult to draw strong conclusions from them. Predictions based on FV8 were substantially better both on the 0-error and at-most-1-error measures than making random predictions.
	Using statistical maps and other electrophysiological data projected on the patient using non-rigid registration holds promise for a number of reasons including the fact that it accounts for anatomical variability between patients. It also permits the possibility of not only predicting the optimal contact but also of providing the stimulation amplitude and stimulator settings needed to achieve the therapeutic benefit. More importantly, while choosing a single optimal contact manually for monopolar stimulation is a demanding task in itself, it is extremely complicated to arrive at an appropriate multipolar selection manually. Such a task may be feasible algorithmically based on the interaction of the region activated by multipolar stimulation with statistical maps and other forms of electrophysiological data. Therefore, a controlled experiment is needed which can help improve the predictive performance of the system. This can be done by having the statistical maps available during the programming sessions and comparing the information they provide with the actual clinical observations as well as by using the insight of the neurologists on the art of programming. The shortcoming and strengths of the system can thus be assessed and necessary changes can be made to improve the system. 
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