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CHAPTER 1

INTRODUCTION

Many static systems in nature reside in a local energy minimum subject to some

constraint. A bowstring choses a shape that minimizes the potential energy stored in the

bow subject to the constraint that the bowstring passes through the tips of the bow and

the archer’s fingers. A marble on an uneven floor can come to rest only at a point that

is a local minimum of gravitational potential energy. A catenary minimizes gravitational

potential energy and also describes the shape of a slack chain hanging from two points. The

only stable locations for two electrons constrained to a sphere are those which minimize

the electrostatic energy. Because this phenomenon is so common, it has been studied

extensively.

In our examination of constrained energy minimization we shall focus on a class of

energies derived from the electrostatic energy. If the electrons in the previous example are

located at pointsx1 andx2 in the Euclidean spaceR3, then the electrostatic energy is, up to

a constant,
1

|x1 − x2|
.

This is the quantity that would result from fixing the first electron atx1 and moving the

second electron from infinity tox2 while integrating the force due to the first electron over

the distance travelled by the second. More generally, one may consider the energy required

to assemble a collection ofN electrons located at pointsx1, . . . , xN. In this case the energy

takes into account every pair of electrons and is, up to the same constant,

N−1∑
i=1

N∑
j=i+1

1
|xi − xj |

. (1.1)

In 1904 Thomson considered the following classical problem [48]: How does one
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arrangeN electrons on the sphereS2 so as to minimize the electrostatic energy? The

physical model behind this problem is related to self-assemblage, viral morphology, best-

packing, formation of colloids and coding theory; progress on this problem has broad

application. However, the difficulty of this problem increases sharply withN the number

of electrons. In the last century advances in mathematics and technology have provided

complete and convincing descriptions of such minimal configurations in only a handful

of cases. The broadest results for this problem are qualitative in nature, and describe

properties of the configurations as a whole.

One of these properties is that the locations of the minimizing configuration of electrons

provide good sampling points forS2. More precisely: Letf : S2 → R be continuous, and

let ω1
N := {x1, . . . xN} ⊂ S

2 denote the locations of the electrons in theN-point energy

minimizing configuration, then

lim
N→∞

1
N

∑
x∈ω1

N

f (x) =
∫

f dσ,

where σ is the surface area measure onS2 normalized to have total mass1. This

convergence, which is described in terms of continuous functions, is calledweak-star

convergence and is described in Chapter 2. We shall denote this convergence with a starred

arrow. While weak-star convergence applies to measures and more generally to elements

in a dual space, we shall writeω1
N

∗
→ σ to indicate

1
N

∑
x∈ω1

N

δx
∗
→ σ, (1.2)

whereδx is the Dirac measure centered at the pointx.

We shall consider two generalizations of Thomson’s problem. Instead ofS2, we

consider electrons on a compact setA of Hausdorff dimensiond residing inRp. Further,

for a value ofs> 0 we replace the kernel| · |−1 with the Rieszs-kernel| · |−s.
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To further introduce this subject we present some notation and review background

results. LetωN = {x1, . . . xN} be a collection ofN > 1 distinct points inRp, then

Es(ωN) :=
N∑

i=1

∑
j,i

1
|xi − xj |

s

and

Es(A,N) = min{Es(ωN) : ωN ⊂ A}

The compactness ofA and the lower semicontinuity of the Riesz kernel ensures that there

is a (not necessarily unique)N point configuration denotedωs
N that achieves the minimum

Es(A,N). Let µ be a measure onA. Thes-energy ofµ is

Is(µ) :=
"

1
|x− y|s

dµ(y)dµ(x).

The quantityIs(µ) may be thought of as the generalized electrostatic energy of a continuous

charge distribution represented by the measureµ. Relatedly the quantity

Uµ
s(x) :=

∫
1

|x− y|s
dµ(y)

is thes-potential of the measureµ.

The continuous version of the discrete optimization problem is to find a probability

measure supported on a compact setA that minimizes the quantityIs over the set of

probability measures supported onA. If 0 < s < d whered is the Hausdorff dimension of

the setA, then there is a unique minimizing probability measureµs,A (cf. [21, 30].) that is

called the(s-)equilibrium measure. The uniqueness ofµs,A follows from the positivity of

the Riesz kernel (cf. [22, 30]). For example, in the case thatA is the interval[−1,1] and

s ∈ (0,1), it is well-known (cf. [25]) thatdµs,[−1,1](x) = cs(1− x2)
s−1
2 dx wherecs is chosen

so thatµs,[−1,1] is a probability measure.

The generalization from the Coulomb kernel to the Rieszs-kernel is a natural one and
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several values ofsare worth noting. In the spaceRp the kernel fors= p−2 is the harmonic

or Newtonian kernel and plays the same role the coulomb kernel does inR3. The case

“ s = 0” indicates the logarithmic kernel− log |x − y|. A motivation for this is as follows:

the derivative of the logarithmic kernel with respect to|x− y| is the limit of the derivatives

of 1
s|x− y|−s with respect to|x− y| assdeceases to0. Alternatively, the generalized electric

field derived from the logarithmic potential is the limit ass ↓ 0 of the fields derived from

the Riesz potentials scaled by1/s.

The case whens equalsd is also a critical value because, in contrast to the case

s < d, Id(µ) = ∞ for every probability measureµ that is supported onA (cf. [34] also

Lemma 2.4.2.) As a heuristic consider the caseA = [−1,1] ⊂ R henced = 1. It is apparent

that the function|x|−s is Lebesgue integrable only for values ofs < 1. Put in physical

terms, the self-energy of any continuous charge distribution on ad-dimensional conductor

is infinite for the cases= d.

Because the discrete electrostatic energy ignores the self-energy, discrete constrained

problems such as a generalized Thomson problem are well-posed for all positive values

of s. By raising the discretes-energy to the power1/s and taking the limit ass increases

to infinity, only the largest term in the sum (1.1) remains. In this limit the optimization

problem is equivalent to the best packing problem.

Our theoretical interest is to understand the behavior of the equilibrium measures on a

d-dimensional compact setA as s ↑ d. For A = [−1,1], we see directly from the above

expression thatµs,A converges in the weak-star sense ass ↑ 1 to normalized Lebesgue

measure restricted toA. It is natural to ask how general is this phenomena. We are further

motivated by results concerning the following related discrete minimal energy problem.

Whens < d the above continuous and discrete problems are related by the following

two results (cf. [30]). First,Es(ωs
N)/N2 → Is(µs,A) asN → ∞. Second, the sequence of

4



configurations{ωs
N}
∞
N=1 has asymptotic distributionµs,A, that is,

ωs
N

∗
→ µs,A. (1.3)

Note that the normalized surface area measureσ in (1.2) is thes= 1 equilibrium measure

for S2.

In the cases ≥ d the lack of an equilibrium measure necessitates new techniques for

the discrete problem. An effective approach to the discrete equilibrium for this range of

s was presented in [24] and [3] ford-rectifiable sets. A setA is said to bed-rectifiable

(cf. [18,§3.2.14]) if it is the Lipschitz image of a bounded set inRd. In this case the results

of interest are

ωs
N

∗
→ Hd

A/H
d(A) asN→ ∞. (1.4)

(Here and in the rest of the paperHd denotes the Hausdorff measure andµE denotes the

restriction of a measureµ to aµ-measurable setE. e.g.Hd
A = H

d(· ∩ A).) For technical

reasons, the results in [24] and [3] for the cases= d further require thatA be a subset of a

d-dimensionalC1 manifold, although it is conjectured that this hypothesis is unnecessary.

Recall that a functionϕ : A→ Rp is Lipschitz if there is a constantL so that

|ϕ(x) − ϕ(y)| ≤ L|x− y|

for all x, y ∈ A and is bi-Lipschitz if

1
L
|x− y| ≤ |ϕ(x) − ϕ(y)| ≤ L|x− y|

or all x, y ∈ A.

The limits (1.3) and (1.4) suggest thatµs,A ∗
→ Hd

A/H
d(A) as s ↑ d wheneverA is

d-rectifiable. If A is strongly(Hd,d)-rectifiable or is a strictly self-similard-fractal (see

Sections 3.1.2 and 3.1.4 for these definitions), we show that this is indeed the case. A
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primary tool in our work is the following normalizedd-energy of a measure

Ĩd(µ) := lim
s↑d

(d − s)Is(µ).

and the normalizedd-potential

Ũµ
d(x) := lim

s↑d
(d − s)Uµ

s(x)

We will also rely on several notions of density. We letB(x, r) ⊂ Rp denote the closed

ball in Rp of radius r centered atx. Given a measureµ, the traditionald-dimensional

point-density atx is

Θd(µ, x) := lim
r↓0

µ(B(x, r))
rd

.

However, there are many sets, such as fractals (cf. [34]), for which, atHd
A-almost allx ∈

A, this limit doesn’t exist. However, Bedford and Fisher in [1] consider the following

averaging integral:

D2
d(µ, x) := lim

ε↓0

1
| logε|

∫ 1

ε

1
r
µ(B(x, r))

rd
dr,

which they call anorder-two densityof µ at x. It is known (cf. [16,38,51]) that for a class of

sets including strictly self-similard-fractals and strongly(Hd,d)-rectifiable setsD2
d(H

d
A, x)

is positive, finite and constantHd
A-a.e. We shall denote thisHd

A-a.e. constant asD2
d(A).

We denote byM+(A) andM+1(A) the set of Radon measures onA and the set of Borel

probability measures onA respectively. Ifµ andν are two Radon measures, then we use

the notationµ � ν to indicate thatν(E) = 0 implies thatµ(E) = 0. Finally, the dimension

of a strongly(Hd,d)-rectifiable set is a positive integer, while the dimension of a strictly

self-similard-fractal may take on positive non-integer values. For a strictly self-similar

d-fractal it is known (cf. [35]) thatHd(A) ∈ (0,∞).

With this we state our main results.
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Theorem 3.3.1. Let A be a strictly self-similard-fractal or a strongly(Hd,d)-rectifiable

set of positiveHd measure and letλd := Hd
A/H

d(A), then

(1) The limitĨd(µ) exists for allµ ∈ M+(A) and

Ĩd(µ) =


dD2

d(A)
∫ (

dµ
dHd

A

)2

dHd
A if µ � Hd

A,

∞ otherwise.

(2) If Ĩd(µ) < ∞, then the limitŨµ
d equals dµ

dHd
A
µ-a.e. and

Ĩd(µ) =
∫

Ũµ
ddµ.

(3) Ĩd(λd) < Ĩd(ν) for all ν ∈ M+1(A)\
{
λd

}
.

Theorem 4.1.1. Let A ⊂ Rp be a compact strongly(Hd,d)-rectifiable set such that

Hd(A) > 0. Letλd := Hd
A/H

d(A). Thenµs,A ∗
→ λd ass ↑ d.

Theorem 4.1.2. Let A ⊂ Rp be a compact strictly-self similard-fractal. Let λd :=

Hd
A/H

d(A). Thenµs,A ∗
→ λd ass ↑ d.

There are two motivations for the normalizing factor(d− s). The first motivation arises

from a Fourier analytic expression of energy. If a finite measureµ is supported inRd, then

for s < d we may write thes-energy ofµ in terms of its Fourier transform as follows

(cf. [30,50]):

Is(µ) := c(s,d)
∫
Rd
|ξ|s−d|µ̂(ξ)|2dξ. (1.5)

The constantc(s,d) has the property that

lim
s↑d

(d − s)c(s,d) = Kd,

whereKd depends only on the dimension of the ambient spaceRd (cf. [30].) One may

take the limit inside the integral and the normalizedd-energy becomes, up to a constant,
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the L2-norm of the Fourier transform ofµ. For certainµ this is equal to theL2-norm of

the Radon-Nikod́ym derivative of the measureµ with respect toLd, the d-dimensional

Lebesgue measure. The second motivation arises from a result of Zähle [52] which was

generalized by her student Hinz [26]. Ifµ is a finite measure and ifD2
d(µ, x) exists and is

finite, thenŨµ
d(x) exists andD2

d(µ, x) = dŨµ
d(x). These two results provide the foundation

for a proof of Theorem 3.3.1.1

The proof of Theorem 4.1.1 relies on an estimate based on (1.5) that compares the

s-energy of a measureµ for two different values ofs. The constantKd depends on the

dimension of the embedding space and not on the dimension of the setA. However, the

Riesz energies depend only on the relative distances withinA and so the estimate holds

for any isometric embedding ofA into a higher dimensional space. The approach used in

the proof is to relax the isometric embedding to a bi-Lipschitz embedding, and to show

that A can be assembled from a collection of bi-Lipschitz embeddings in a manner which

preserves the necessary estimate.

The proof of Theorem 4.1.2 relies on a localization property of the fractals in question

to replace the original optimization problem with a coarser problem that gives a compatible

answer. Ass ↑ d this coarse problem approximates the original problem arbitrarily well.

In addition to these theoretical results we present some numerical experiments for the

discrete energy onS2 for s= 0, 1, 2 and3. While these numerical experiments do not lead

to provable results, they provide data that can be used to examine conjectures. In particular

we look at higher order terms in the asymptotic expansion ofEs(S2,N) and the conjecture

that the number of stable minima on the sphere grows exponentially withN.

We also present two algorithms, which to this author’s knowledge, are new. The first

reduces and estimates the effect of roundoff error in sums of many numbers e.g. the sum

1In his work on reconstructing measures from their moments Putinar [41] considers an alternate
normalization for thed-energy.
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associated toEs(ωN). The second employs computational geometry and graph-theory to

speed the process of counting distinct configurations.

The rest of this document is organized as follows: Chapter 2 contains a summary

of the theoretical basis for potential theory as it applies to Riesz energies. The central

result is the existence and uniqueness of the equilibrium measureµs,A; Chapter 3 examines

classes of sets relevant to the material at hand, notions of density and provides a proof of

Theorem 3.3.1; Chapter 4 presents proofs of Theorems 4.1.1 and 4.1.2; Chapter 5 describes

the numerical experiments and presents an initial analysis of the data; Chapter 6 proposes

some future work.
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CHAPTER 2

BACKGROUND

This chapter presents an overview of the theoretical foundations and results for potential

theory and discrete minimal energy problems inRp. The key ingredients are measure

theory inRp, which provides the right setting for certain minimization problems, weak-star

topologies, which provide compactness, and Fourier analysis, which provides an invaluable

alternative view for many of the problems arising in potential theory. Because this chapter

aims to provide an overview, proofs for common theorems (e.g. the Radon-Nikodým

theorem) are omitted. Proofs are included if they provide an important idea or technique,

and are not overly technical.

2.1 Measures onRp

2.1.1 Basic Definitions and Results

Let A be a collection of subsets ofRp. Intuitively a measureµ : A → R+ ∪ {∞} is

a function that assigns sizes to elements ofA in a consistent manner i.e.µ(E) indicates

the size ofE for E ∈ A. For example one may construct a measureµ f from a continuous

function f : Rp→ R+ as follows

µ f (E) :=
∫

E
f (x) dx.

(Here and in the rest of this paperdx denotes the traditional volume element fromRp.)

An example of a measure that is not represented by a function is the Dirac-delta measure
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δx0 centered at a pointx0 ∈ R
p and defined as follows:

δx0(E) :=


1 x0 ∈ E,

0 x0 < E.

For our purposes a measure will also be used to represent a charge distribution. Ifµ is

our charge distribution, thenµ(E) indicates the amount of charge within the setE. With

this interpretation the Dirac-delta measureδx0 is a point charge centered ax0.

We shall review the portions of measure theory that 1) make precise what is meant by

assigning size in a consistent manner and 2) are employed in the rest of this paper. This

section is drawn from and covered more thoroughly in [9,34,44].

LetA be a collection of subsets ofRp. A is aσ-algebraif

(1) ∅ ∈ A,

(2) Rp\E ∈ A wheneverE ∈ A and

(3)
⋃∞

n=1 En ∈ A for any countable collection of sets{En}
∞
n=1 ⊂ A.

It is a straightforward consequence of DeMorgan’s Law that ifA is a σ-algebra, then

the countable intersection of sets inA is also inA, i.e. requirement three holds for

intersections.

A functionµ : A → R+ is a measure if all of the following hold.

(1) A is aσ-algebra. IfE ∈ A, we say thatE is µ-measurable. This requirement ensures

that countable set operations ofµ-measurable sets result in aµ-measurable set.

(2) µ(E) ∈ [0,∞] for all E ∈ A.

(3) µ is countably additive. By this we mean that given any countable collection

{En}
∞
n=1 ⊂ A whereEi ∩ E j = ∅ for i , j we have

µ

 ∞⋃
n=1

En

 = ∞∑
n=1

µ(En).
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(4) There is someE′ ∈ A so thatµ(E′) < ∞.

It follows immediately from these definitions thatµ is monotonei.e. if E1, E2 ∈ A are such

that E1 ⊂ E2, thenµ(E1) ≤ µ(E2). Furtherµ is countably subadditive, that is, given any

countable collection{En}
∞
n=1 ⊂ A,

µ

 ∞⋃
n=1

En

 ≤ ∞∑
n=1

µ(En).

A set is said to beBorel if it is the result of countably many set operations (unions,

intersections, complements) on open sets, e.g. closed sets are Borel, the countable

intersection of open sets is Borel and the countable union of closed sets is Borel. A measure

is said to be Borel if its domainA contains the Borel sets. SinceA is aσ-algebra, showing

thatA contains either the open sets or the closed sets is sufficient to show that the measure

is Borel.

Given a measureµ and its domainA, we shall extendA as necessary to include any

subsetN ⊂ Rp wheneverN ⊂ E ∈ A andµ(E) = 0. That is, subsets of measurable

sets of measure zero are measurable. This is referred to ascompleting the measure space

(cf. [9, ch. 2]) and can be accomplished so thatµ remains a measure.

Of particular interest is the Hausdorff measure defined as follows: Begin with the

collection of sets

Qδ := {Q ⊂ Rp : diamQ < δ},

whereδ > 0. Note that any setE ⊂ Rp may be covered by a countable collection of sets in

Qδ. For this reasonQδ is referred to as asequential cover. Define an intermediate function

Hd
δ whose domain consists of all subsets ofRp as

Hd
δ (E) := inf

 ∞∑
i=1

(diamQi)
d : {Qi}

∞
i=1 ⊂ Qδ andE ⊂

∞⋃
i=1

Qi

 ,
where the infimum is taken over every sequence of sets{Qi}

∞
i=1 ⊂ Qδ whose union covers
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E. The Hausdorff outer-measure is then defined for anyE ⊂ Rp as

Hd(E) := lim
δ↓0
Hd

δ (E). (2.1)

SinceHd
δ (E) is non-decreasing asδ decreases to zero, the limit in (2.1) always exists.

Following the standard Carathéodory Construction, the domain ofHd is restricted to sets

E that satisfy

Hd(A) = Hd(A∩ E) +Hd(A\E)

for every setA ⊂ Rp. This ensures the domain ofHd is aσ-algebra that contains the closed

sets (cf. [9, ch. 2]) and henceHd is a Borel measure. Note that the definition ofHd does

not depend onp the dimension of the space upon which it is defined.

This construction provides a family of measures parameterized byd. Whend is 1, 2

or 3 one might think ofHd as a generalized length, area or volume respectively, although

d need not be inN. This gives rise to a notion of dimension referred to as theHausdorff

dimension(cf. [9,34]) defined as follows:

dimA := sup{d : Hd(A) > 0} = inf {d : Hd(A) < ∞}.

One may verify that ifd < dimA, Hd(A) = ∞ and if d > dimA, Hd(A) = 0. In the case

d = dimA,Hd(A) does not have to be positive and finite.

In the case whend = p we have

0 < Hd(B(x, r)) = Hd(B(y, r)) < ∞ (2.2)

for all x, y ∈ Rd andr > 0. (Here and in the rest of the paperB(x, r) denotes the closed

ball centered atx of radiusr.) It is known (cf. [34, ch. 3]) that if two measuresµ andν

each satisfy the condition in (2.2), then there is ac ∈ (0,∞) such thatµ = cν. From this
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it follows that forHd defined onRd, Hd = cLd whereLd is thed-dimensional Lebesgue

measure. The constant of proportionalityc is computed in e.g. [14].

A Borel measureµ is said to beRadonif µ(K) < ∞ for every compact setK ⊂ Rp. A

measureµ is finite if µ(Rp) < ∞. With this we have the following:

Proposition 2.1.1 (cf. [9]).Let E be a Borel set andµ a finite Borel measure, then

(1) µ(E) = sup{µ(K) : K ⊂ E whereK is compact}.

(2) µ(E) = inf {µ(O) : E ⊂ O whereO is open}.

Put another way, theµ-measure of a Borel setE can be approximated arbitrarily well

by either compact sets withinE or open sets enclosingE.

Any finite Borel measure is Radon. In particular ifA is of finiteHd measure, then the

restriction ofHd to A (which we shall denote asHd
A := Hd(· ∩ A)) is Radon. The measure

Hd on Rp is Radon whend ≥ p, and in fact is zero ford > p. Whend < p, Hd is not

Radon.

A natural extension of a measure is asigned measure, which assigns positive and

negative values to subsets. To avoid the ambiguity of considering the difference of two

infinite quantities, a signed measure may assign the value+∞ or −∞, but not both. Given

aσ-algebra of subsets, an example of a signed measure is any functionν : A → R of the

form ν = µ+ − µ− whereµ+, µ− : A → R are measures and one of them is finite. It is a

consequence of the Jordan decomposition theorem that any signed measure has exactly this

representation. To present the Jordan decomposition theorem we shall need the following:

Two measuresµ, ν : A → R are said to bemutually singular(this relationship is

denotedµ ⊥ ν) if Rp can be partitioned into two disjoint setsA, B ∈ A so thatRp = A∪ B

andµ(E ∩ B) = 0 andν(E ∩ A) = 0 for every setE ∈ A. Intuitively µ resides withinA and

ν resides withinB. With this we have the following:
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Theorem 2.1.2 (Jordan Decomposition Theorem (cf. [9])).Letν be a signed measure on

Rp, then there are two measuresµ+ andµ− one of which is finite such thatµ+ ⊥ µ− and

ν = µ+ − µ−

As an example consider the signed measureν = H1
[0,2] − H

1
[1,3] on R1. The Jordan

decomposition ofν is ν = H1
[0,1] −H

1
[2,3].

Given a signed measureν with Jordan decompositionµ+ − µ− one denotes by|ν| the

quantityµ+ + µ−. The expression|ν| is referred to as thetotal variation1 of ν and is a

measure itself. Two signed measuresµ andν are said to be mutually singular if|µ| ⊥ |ν|.

Thesupport of a measureµ – denotedsuppµ – is the complement of the union of open

sets of|µ|-measure0. Taking the perspective of charge distributions,suppµ is the smallest

closed set that contains all the charge represented by|µ|.

We say that a pointwise condition holdsµ-almost everywhereor µ-a.e. if the set of

points where the condition doesn’t hold is ofµ-measure0. Analogously we may refer to

µ-almost all or µ-a.a. x to mean everyx ∈ Rp with the possible exception of a set of

µ-measure0.

While we are interested in measures because they can be used to represent charge

distributions, the development of measure theory was originally motivated by the study

of integrable functions. A significant theoretical milestone in this direction is the Lebesgue

integral, which is described more thoroughly and completely in other texts (cf. [9,44,49].)

A heuristic interpretation of the Lebesgue integral is that

∫
Rp

f (x) dµ(x)

integrates the functionf according to a weighting encoded by the measureµ. For this

quantity to be well defined the functionf must beµ-measurable. By this we mean that

the sets{x ∈ Rp : f (x) > α} must beµ-measurable for everyα ∈ R. At times we shall

1An alternative definition of total variation can be found in [44, ch. 6]
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omit the integration variable if it is clear from context. Similarly if we omit the domain of

integration, it should be assumed to be the support of the measureµ, e.g. the above may

also be written as ∫
f dµ.

An integral written with respect to the volume elementdx is equivalent to integration

against the Lebesgue measure.

Finally, we shall introduce some useful collections of measures. LetA ⊂ Rp be a

compact set and define

M(A) := {µ : µ is a signed measure,supp|µ| ⊂ A and|µ|(A) < ∞},

M+(A) := {µ ∈ M(A) : µ is an (unsigned) measure} and

M+1(A) := {µ ∈ M+(A) : µ(A) = 1}.

Note thatM(A) is a vector space.

2.1.2 Comparing Radon Measures

Given two signed measuresµ andν, we say thatµ is absolutely continuous with respect

to ν if |ν|(E) = 0 implies that|µ|(E) = 0 for any Borel setE. This relationship is denoted

µ � ν.

The next two theorems will be used repeatedly in the following chapters. These

theorems are presented at varying levels of generality in different texts, we present versions

that are most applicable to the material that follows.

Theorem 2.1.3 (Lebesgue Decomposition Theorem).Letµ andν be Radon measures on

Rp. There exists a unique pair of Radon measuresµ� andµ⊥ so thatµ = µ� + µ⊥, µ� � ν

andµ⊥ ⊥ ν.

As an example letA ⊂ Rd be compact. The Lebesgue decomposition ofHd with respect

to Hd
A is Hd = Hd

A + H
d
Rd\A

, whereHd
Rd\A
⊥ Hd

A and triviallyHd
A � H

d
A. As another
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example letδx0 be the Dirac-delta measure atx0 ∈ R
d, then the Lebesgue decomposition

of δx0 with respect toHd is simply0 + δx0 becauseδx0 is purely singular and contains no

portion absolutely continuous with respect toHd.

Theorem 2.1.4 (Radon-Nikod́ym Theorem). Letµ andν be Radon measures onRp. Let

µ = µ� + µ⊥ be the Lebesgue decomposition ofµ with respect toν. Then there is aν-

measurable function denoteddµ�

dν so that

µ�(E) =
∫

E

dµ�

dν
dν,

for any Borel setE. Furthermore this function is given by the limit

dµ�

dν
(x) = lim

r↓0

µ�(B(x, r))
ν(B(x, r))

and is finiteν-a.e. Additionally

lim
r↓0

µ⊥(B(x, r))
ν(B(x, r))

= ∞

µ⊥-a.e.

The value of this theorem is that ifµ � ν then there is a function called the Radon-

Nikodým derivative that allowsµ to be represented as an integral of this function where the

integration is performed with respect toν. One may think of the Radon-Nikodým derivative

as a measure-theoretic Jacobian.

2.1.3 Image Measures and Lipschitz Maps

Theimage measureϕ#µ associated with a compactly supported Radon measureµ onRp

and a continuous functionϕ : supp{µ} → Rp′ is defined by

ϕ#µ(E) := µ(ϕ−1(E))
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for any Borel setE ⊂ Rp′. The functionϕ#µ is a compactly supported Radon measure on

Rp′ and integration with respect toϕ#µ is given by

∫
f dϕ#µ =

∫
f (ϕ) dµ,

for any non-negativeϕ#µ-measurable functionf (cf. [34, ch. 1]). Intuitively we map a

measure from the domain off to the range off .

Given a setA ⊂ Rp, a functionϕ : A → Rp′ is said to beLipschitzif there is a non-

negative and finite constantL so that

|ϕ(x) − ϕ(y)| ≤ L|x− y|

for all x, y ∈ A. There is no restriction onp′ other than it be a natural number. A function

ϕ : A→ Rp′ is said to bebi-Lipschitzif there is a positive and finite constantL so that

1
L
|x− y| ≤ |ϕ(x) − ϕ(y)| ≤ L|x− y|.

The next two lemmas show that the ratio of theHd measure of a set to theHd measure

of the bi-Lipschitz image of the set is bounded above and below by the Lipschitz constant.

In particular, bi-Lipschitz functions preserve Hausdorff dimension. This will be important

as we shall consider image measures derived from Lipschitz functions. We include a proof

as one is not readily available in the introductory texts.

Lemma 2.1.5.Let A ⊂ Rp andϕ : A → Rp′ be Lipschitz with constantL and letd > 0.

ThenHd(ϕ(A)) ≤ LdHd(A).

Proof. If Hd(A) = ∞, then the claim trivially holds. IfL = 0, thenϕ(A) is a point,

Hd(ϕ(A)) = 0 and the claim again holds. AssumeHd(A) < ∞ andL > 0. Let ε > 0 and

δ > 0. Setδ1 = δ/L. Let {Qn}
∞
n=1 be a collection of subsets ofRp so that

Qn ⊂ A anddiamQn < δ1 for all n ∈ N,
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A ⊂
⋃∞

n=1 Qn and

∑∞
n=1(diamQn)d < Hd

δ1
(A) + ε.

Thenϕ(Qn) < δ for n ∈ N andϕ(A) ⊂
⋃∞

n=1 ϕ(Qn). We conclude

Hd
δ (ϕ(A)) <

∞∑
n=1

(diamϕ(Qn))
d

< Ld
∞∑

n=1

(diamQn)
d

< Ld(Hd
δ1

(A) + ε) < Ld(Hd(A) + ε)

Sinceδ andε were chosen independently, we may take a limit asδ ↓ 0 and then the a limit

asε ↓ 0 to obtain the result. �

Corollary 2.1.6. Let A ⊂ Rp and ϕ : A → Rp′ be bi-Lipschitz with constantL and let

d > 0. ThenL−dHd(A) ≤ Hd(ϕ(A)) ≤ LdHd(A).

Proof. By definition L cannot equal0. Lemma 2.1.5 ensuresHd(ϕ(A)) ≤ LdHd(A). Bi-

Lipschitz functions have Lipschitz inverses and so we letψ := ϕ−1 andB = ϕ(A). Applying

Lemma 2.1.5 again gives

Hd(ψ(B)) ≤ LdHd(B) and henceL−dHd(A) ≤ Hd(ϕ(A)).

�

2.2 Weak-Star Compactness of Bounded Subsets ofM(A)

In this section we introduce the dual space associated to a vector space. We discuss

a compactness property of the closed unit ball in the dual space and then show that the

collection of signed measures with supports in a bounded setA whose total variation is

bounded above has this compactness property. Finally, we shall discuss the significance of

this result in terms of optimization problems on measures.
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2.2.1 Dual Spaces of Vector Spaces

If V is a vector space with norm‖ · ‖, thenL : V → R is said to be abounded linear

functional onV if

(1)

L(αx+ βy) = αL(x) + βL(y)

for all α, β ∈ R and allx, y ∈ V and

(2) there is a positive finite constantML depending onL so that|L(x)| ≤ ML‖x‖ for all

x ∈ V.

We shall denote byV∗ the set of all bounded linear functionals onV and refer to it as the

dual space ofV. One may quickly check thatV∗ is itself a vector space. Linearity ofV∗ is

meant in the following sense

(αL1 + βL2)(x) = αL1(x) + βL2(x),

whereL1, L2 ∈ V∗. The norm of a bounded linear functionalL is given by

‖L‖ := sup{|L(x)| : x ∈ V, ‖x‖ = 1}.

As an example consider the caseV = Rp, then any elementL ∈ V∗ may be represented

as an inner product with an element ofRp. That is, there is a uniquea ∈ Rp so that

L(x) = 〈x,a〉 (2.3)

for all x ∈ Rp. The norm ofL is then|a|. It is straightforward to see that any elementa ∈ Rp

gives rise to a bounded linear functional onRp via equation (2.3) (The Cauchy-Schwarz

inequality establishes boundedness.) In this caseRp∗ is isomorphic toRp and the bijection
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Rp∗ 3 La ↔ a ∈ Rp is given by equation (2.3). Linearity of the bijection follows from the

bi-linearity of the inner product.

This next example is a generalization of the previous example and is central to the

theory in the rest of this document. LetA ⊂ Rp be a compact set. LetC(A) denote the

functions that are continuous onA. The sum of two continuous functions is continuous

and a continuous function times a scalar is continuous and soC(A) with the sup-norm

‖ f ‖C(A) := sup{x∈A} | f (x)| is a vector space. (Continuous functions are bounded on compact

sets hence the norm is finite for allf ∈ C(A).)

M(A) is a vector space and linearity inM(A) is meant in the following sense

(αµ1 + βµ2)(E) = αµ1(E) + βµ2(E),

whereE is any Borel set. The norm inM(A) is ‖µ‖M(A) := |µ|(A). We then have the

following important theorem:

Theorem 2.2.1 (Riesz Representation Theorem (cf. [44])).Let A ∈ Rp be a compact

set. The dual space ofC(A) is isometrically isomorphic toM(A) and the bijectionC(A)∗ 3

Lµ ↔ µ ∈ M(A) is given by

Lµ( f ) =
∫

f dµ (2.4)

for f ∈ C(A).

Linearity of the bijection follows from the linearity of the Lebesgue integral with

respect to both the integrand and the measure. Boundedness of the functionalLµ follows

from the finiteness ofµ(A) and the fact that functions that are continuous on a compact set

are bounded above and below.

In comparing the two previous examples one might think of equation (2.4) as a

generalized inner product that pairs continuous functions with measures and is linear in

both arguments.
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2.2.2 Helly’s Selection Theorem

Given a vector spaceV, the dual spaceV∗ may be given the so-calledweak-star

topology. The precise definition of the weak-star topology can be found in [9, ch. 6],

although we are more concerned with convergence of sequences in this topology, which is

characterized as follows: A sequence{Ln}
∞
n=1 ⊂ V∗ converges in the weak-star topology to

L ∈ V∗ if and only if

lim
n→∞

Ln(x) = L(x)

for every x ∈ V. In this sense we view the convergence of a sequence in the weak-star

topology through the lens of elements inV.

In terms of the Riesz Representation Theorem{µn}
∞
n=1 ⊂ M(A) converges toµ ∈ M(A)

in the weak-star topology if, and only if,

lim
n→∞

∫
f dµn =

∫
f dµ (2.5)

for every f ∈ C(A). It should be noted that for a specificf ∈ C(A) equation (2.5) is a

statement about convergence of real numbers. Further, the rate of convergence in (2.5)

depends onf .

Another topology onM(A) is the norm topology, which is induced by the total variation

metric: d(µ1, µ2) = |µ1 − µ2|(A). Convergence of a sequence{µn}
∞
n=1 to µ in the norm

topology means thatlimn→∞ |µn − µ|(A) = 0. The following example will show that

the weak-star topology is indeed weaker than the norm topology, that is, sequences that

converge in the weak-star topology may not converge in the norm topology.

Let A be the unit interval[0,1] ⊂ R1 and let

µn :=
1
n

n∑
i=1

δi/n.

For each natural numbern, µn distributesn Dirac-delta measures evenly along the interval
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[0,1] where each is scaled by1/n. We have

lim
n→∞

∫
f dµn = lim

n→∞

1
n

n∑
i=1

∫
f dδi/n = lim

n→∞

1
n

n∑
i=1

f (i/n) =
∫ 1

0
f (x)dx.

The integral with respect todx is integration with respect to the one-dimensional Lebesgue

measureL1 which in this case equalsH1. We conclude that{µn}
∞
n=1 converges toH1 in the

weak-star topology. (From this point forward we shall denote weak-star convergence with

a starred arrow e.g. we writeµn
∗
→ H1. )

However, {µn}
∞
n=1 does not converges toH1 in the norm topology because|µn −

H1|([0,1]) does not converge to zero. For eachn we may decomposeR1 into two sets

A = R1\{1/n,2/n, . . . ,1} andB = {1/n,2/n, . . . ,1}. Trivially A∩B = ∅. FurtherH1(B) = 0

andµn(A) = 0. Therefore the Jordan decomposition ofH1 − µn is justH1 − µn, thus

|H1 − µn|([0,1]) = H1([0,1]) + µn([0,1]) = 2 for everyn.

Consequently it is not in general true that if a sequence of measures{µn}
∞
n=1 ⊂ M

+(A)

converges in the weak-star topology toµ ∈ M+(A), thenµn(E) → µ(E) for a Borel setE.

(Let E = [0,1]\Q in the previous example, thenµn(E) = 0 for all n andH1(E) = 1.) Under

certain conditions on the setE one does have thatµn(E)→ µ(E).

The topological boundary of a setE ⊂ Rp is given by∂E = E\Eo, whereE is the

closure ofE andEo is the interior ofE. A setE is said to beµ-almost clopenif µ(∂E) = 0.2

Proposition 2.2.2.Letµ ∈ M+(A) and{µn}
∞
n=1 ⊂ M

+(A) be a sequence of measures so that

µn
∗
→ µ. Then for anyµ-almost clopen setE, µn(E)→ µ(E).

Proof. Let E beµ-almost clopen, thenµ(E) = µ(Eo). Let ε > 0 be arbitrary.

By Proposition 2.1.1 we may find an open setO so thatE ⊂ O andµ(O\E) < ε. Since

Rp\O andE are disjoint and closed, we may find a Urysohn functionψ that is1 on E and

2A set is said to be clopen if it is closed and open. Since closed sets contain their boundary and open sets
do not, a clopen set has no boundary. Almost clopen sets are a measure theoretic extension of this.
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0 onRp\O, then

lim sup
n→∞

µn(E) ≤ lim
n→∞

∫
ψdµn =

∫
ψdµ ≤ µ(E) + ε = µ(E) + ε.

Similarly we may find a compact setK ⊂ Eo so thatµ(Eo\K) < ε. SinceK andRp\Eo are

closed, we may find a Urysohn functionφ that is1 on K and0 onRp\Eo, then

lim inf
n→∞

µn(E) ≥ lim
n→∞

∫
φdµn =

∫
φdµ ≥ µ(Eo) − ε = µ(E) − ε.

Sinceε is arbitrary, the claim holds. �

While the weak-star topology admits convergent sequences that other topologies do

not, it has the advantage that the closed ballB(0,R) ⊂ V∗ is sequentially compact in the

weak-star topology. More precisely ifΛ := {L ∈ V∗ : ‖L‖ ≤ R}, then for any sequence

{Ln}
∞
n=1 ⊂ Λ there is a subsequence{Lm}

∞
m=1 ⊂ {Ln}

∞
n=1 and anL′ ∈ Λ such thatLm

∗
→ L′. This

follows from the Alaoglu Theorem (cf. [9]) although in the special case whenV = C(A)

andV∗ =M(A) this is known as Helly’s Selection Theorem.

Theorem 2.2.3 (Helly’s Selection Theorem).Let A ⊂ Rp be compact andR ∈ (0,∞). The

setΛ := {µ ∈ M(A) : |µ|(A) ≤ R} is sequentially compact in the weak-star topology.

The weak-star compactness of bounded subsets will be an invaluable tool for addressing

optimization problems on measures. Given an objective functionW :M+(A)→ R one may

seek to minimizeW overM+1(A). A common technique is essentially as follows:

(1) Show that the subset ofM+1(A) for whichW is finite is non-empty.

(2) Show thatW(µ) is bounded below independently ofµ ∈ M+1(A).

(3) Let {µn}
∞
n=1 ⊂ M

+
1(A) be such that

lim
n→∞

W(µn) = inf {W(µ) : µ ∈ M+1(A)}.
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(4) Let ν be a weak-star cluster point of{µn}
∞
n=1. The existence of such a weak-star

cluster point is guaranteed by Helly’s Selection Theorem. Replace{µn}
∞
n=1 with a

subsequence converging in the weak-star topology toν.

(5) Demonstrate a relationship betweenlimn→∞W(µn) and W(ν), that is, thatν is the

minimizing measure.

The following proof of Helly’s Selection Theorem is taken from [45] and, as the authors

of that text note, proving the Alaoglu theorem in this case requires nothing more advanced

than the Weierstrass Approximation Theorem.

Proof. Let {µn}
∞
n=1 be a sequence of measures inM(A) such that|µn|(A) < R for all n. By

the Weierstrass Approximation Theorem (cf. [9]), we may find a countable collection of

polynomials{pn}
∞
n=1 that are dense in the sup-norm topology onC(A). Define

a1
n :=

∫
p1dµn.

Sincep1 is bounded onA and |µn|(A) < R for all n, we may conclude that{a1
n}
∞
n=1 ⊂ R is

bounded, and hence has a cluster point. Let{µ1
n}
∞
n=1 ⊂ {µn}

∞
n=1 be a subsequence of measures

that generates a convergent subsequence{a1
n}
∞
n=1. Define

a2
n :=

∫
p2dµ

1
n.

By prior argument,{a2
n}
∞
n=1 has a cluster point. Let{µ2

n}
∞
n=1 ⊂ {µ

1
n}
∞
n=1 be a subsequence of

measures that generates a convergent subsequence in{a2
n}
∞
n=1. Inductively we may generate

a collection of sequences of measures{{µi
n}
∞
n=1}

∞
i=1 that have the property that

lim
n→∞

∫
pjdµ

i
n

exists for everyj less than or equal toi. Let µi denote the diagonal elementµi
i, then{µi}

∞
i=1
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is a subsequence of{µi
n}
∞
n=1 for all i ∈ N, and so

lim
i→∞

∫
pndµi

converges for everypn.

Let f by any element ofC(A) andε > 0. Since{pn}
∞
n=1 is dense in sup-norm topology

onC(A), we may find ap ∈ {pn}
∞
n=1 such that‖p− f ‖C(A) < ε/R . We have

lim
n→∞

∫
pdµn − ε < lim inf

n→∞

∫
f dµn ≤ lim sup

n→∞

∫
f dµn < lim

n→∞

∫
pdµn + ε

and by subtracting

lim sup
n→∞

∫
f dµn − lim inf

n→∞

∫
f dµn ≤ 2ε.

Sinceε was chosen arbitrarily we conclude the following

L( f ) := lim
n→∞

∫
f dµn

defines a linear functional onC(A) that is bounded byR. By the Riesz Representation

Theorem there is someµ ∈ M+(A) such that

L( f ) =
∫

f dµ

for all f ∈ C(A), and that|µ|(A) ≤ R. Henceµi
∗
→ µ asi → ∞. �

2.3 Fourier Transforms

In this section we sketch the theory behind the Fourier transform. This material is

covered more thoroughly in e.g. [10,50].

We say that a functionf is in L1, L2 or L∞ if | f | is integrable, square integrable or

uniformly bounded a.e. with respect to the Lebesgue measureLp (i.e. integration with
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respect todx) respectively. For a functionf in such a space the norms‖ f ‖1, ‖ f ‖2 and‖ f ‖∞

refer to the integral of| f |, the square root of the integral of| f |2 and the lowest number

that bounds| f | a.e. The collection of functions inLp with the associatedp-norm forms a

topologically complete vector space. Note thatL2 is a Hilbert space.

When the integration is performed with respect to a measureµ other than the Lebesgue

measure, we shall specify the vector space ofp-integrable functions asLp(µ).

2.3.1 L1 Functions and Inversion

For a functionf ∈ L1 we define the Fourier transform off as

f̂ (ξ) :=
∫

f (x)e−2πix·ξdx for ξ ∈ Rp. (2.6)

Observe that

| f̂ (ξ)| ≤
∫
| f (x)||e−2πix·ξ |dx= ‖ f ‖1.

and sô : L1 → L∞ is bounded and linear. If̂f ∈ L1, then one may define an inverse

transform (cf. [50]) as

ˇ̂f (x) :=
∫

f̂ (ξ)e2πix·ξdξ.

In such a casě̂f = f a.e. In general, however, the Fourier transform of anL1 function is

not in L1. The function defined onR1 that is one on the interval[−1,1] and zero elsewhere

is such an example.

2.3.2 The Schwartz Space andL2 Functions

With the motivation of finding a class of functions that is closed under the Fourier

transform we introduce the Schwartz SpaceS (cf. [10,50]). This space consists of rapidly

decreasing, infinitely smooth complex valued functions, and is defined as

S := {ϕ ∈ C∞(Rp) : ‖ ·α Dβϕ(·)‖∞ < ∞ for all multi-indicesα andβ}.
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An example of a Schwartz function is the Gaussiane−x2
. S is a topological vector space and

has a family of semi-norms‖ · ‖α,β := ‖xαDβ · ‖∞ indexed byα andβ. This family of semi-

norms generates a translation invariant topology; if a linear function onS is continuous at

0, then it is continuous everywhere onS. As suchT is continuous if

lim
n→∞

T(ϕn) = 0 whenever lim
n→∞

ϕn = 0.

By choosing appropriate semi-norms one can show thatS ⊂ L1 and hencêϕ is well defined

for all ϕ ∈ S.

More significantly the operatorsˆ andˇ : S → S are linear and continuous with respect

to the topology onS. It is straightforward to show that forϕ, φ ∈ S

∫
ϕ̂(x)φ(x)dx=

∫
ϕ(x)φ̂(x)dx.

By choosingφ to beψ̂ ∈ S and verifying the effect of interchanging the order of taking a

complex conjugate and taking a Fourier transform one obtains

∫
ϕ(x)ψ(x)dx=

∫
ϕ̂(x)ψ̂(x)dx.

By choosingϕ = ψ, it follows that ‖ϕ‖2 = ‖ϕ̂‖2. This shall be our starting point for

extending the Fourier transform toL2 functions.

Let φ ∈ S so thatsuppφ ⊂ B(0,1) 3 and‖φ‖1 = 1. Let φε = 1
εpφ

(
·

ε

)
. As ε decreases the

support ofφε contracts, whileφε gets scaled so that theL1-norm is preserved. Letf be a

compactly supported function inL2, then f ∈ L1 ∩ L2. Define

fε :=
∫

f (· − y)φε(y)dy.

3The support of a function is the closure of the set of points where the function is non-zero.
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It is a standard result (cf. [9, ch. 5]) thatfε ∈ C∞, that

lim
ε↓0
‖ f − fε‖1 = 0, lim

ε↓0
‖ f − fε‖2 = 0

and that every point insuppfε is within ε of suppf , hencefε ∈ S.

Since fε is converging inL2 and since‖ fε‖2 = ‖ f̂ε‖2, f̂ε is Cauchy with respect to the

L2-norm along any subsequence of decreasingε. SinceL2 is complete,f̂ε is convergent and

we denote its limit asF f . Since fε is converging inL1 to f , f̂ε is converging inL∞ to f̂ ,

we concludeF f = f̂ a.e. and that‖ f ‖2 = ‖F f ‖2.

Let f be an arbitrary function inL2 and let fn := fχB(0,n) (whereχE(x) = 1 for x ∈ E

andχE(x) = 0 for x < E). Then fn is compactly supported, is inL1 ∩ L2 and fn → f in

L2. Then the limitlimn→∞ F fn exists and its value is denoted̂f . With this we have the

following theorem:

Theorem 2.3.1 (cf. [10]).Let f ∈ L2, then the limit

f̂ (ξ) := lim
R→∞

∫
|x|<R

f (x)e−2πix·ξdx

converges inL2. We call f̂ the Fourier transform off . The Fourier transform defined in

this manner is an isometric isomorphism fromL2 to itself with an inverse given by

f̌ (x) := lim
R→∞

∫
|ξ|<R

f (ξ)e2πix·ξdξ.

2.3.3 L1 + L2 Functions

Note that if a functionf ∈ L1 ∩ L2, then the Fourier transform given by Theorem 2.3.1

agrees with the Fourier transform given by equation (2.6). We consider functions of the

form f = f1 + f2 where f1 ∈ L1 and f2 ∈ L2. For such anf we may unambiguously define

the Fourier transform a.e. aŝf = f̂1 + f̂2, where f̂1 ∈ L∞ and f̂2 ∈ L2. This is independent
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of the choice off1 and f2. If f = f ′1 + f ′2 is another representation off , then

f1 + f2 = f ′1 + f ′2 hence f1 − f ′1 = f ′2 − f2.

Then f1 − f ′1 ∈ L1 and f2 − f ′2 ∈ L2. Sincê is well defined and linear onL1 ∩ L2, we have

f̂1 − f̂ ′1 = f̂ ′2 − f̂2 hence f̂1 + f̂2 = f̂ ′1 + f̂ ′2.

The following will be useful for computing the Fourier transform of a particular kernel

function.

Proposition 2.3.2 (cf. [50]).If f ∈ L1 + L2 andM is an invertible matrix, then

f̂ ◦ M =
1

|detM|
f̂ ◦ (M−1)T .

2.3.4 Measures and Tempered Distributions

Let µ be a signed measure such that|µ| is a compactly supported Radon measure, then

we may define the Fourier transform ofµ as

µ̂(ξ) :=
∫

e−2πix·ξdµ(x).

Analogous to theL1 case, we have that|µ̂(ξ)| ≤ µ(Rp).

Theorem 2.3.3. If µ is a compactly supported Radon measure andµ̂ ∈ L2, thenµ is

absolutely continuous with respect to Lebesgue Measure anddµ/dLp ∈ L2

The space of tempered distributions is the space of continuous linear functionals onS

and is defined

S∗ := {T : S → R : T is linear andlim
n→∞

T(ϕn) = 0 wheneverlim
n→∞

ϕn = 0 in S }.
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While S is a not a normed space, we still consider the space of tempered distributions as

the dual space ofS, hence the notationS∗. We say thatT̂ is the Fourier transform ofT if

T̂ϕ = Tϕ̂ for all ϕ ∈ S. With this definition we have the following proposition (cf. [10].)

Proposition 2.3.4 (cf. [10]).The Fourier transform is a continuous linear bijection from

S∗ toS∗.

The following proposition and corollary will be particularly useful examining a kernel

that arises in potential theory.

Proposition 2.3.5. If f ∈ L1 + L2 andϕ ∈ S then

∫
f (x)ϕ̂(x)dx=

∫
f̂ (x)ϕ(x)dx.

For convenience we introduce the following notation for a functionf : Rp→ R,

[ f > α] := {x ∈ Rp : f (x) > α}.

Similarly we define[ f ≥ α], [ f < α] and[ f ≤ α].

We shall use the notion of weak-convergence in a Hilbert space in the following proof.

We say{ fn}∞n=1 converges tof weakly in a Hilbert spaceH if 〈 fn,g〉 → 〈 f ,g〉 for every

g ∈ H. Strong convergence, i.e.‖ fn − f ‖2→ 0 implies weak convergence.

Proof. Let f ∈ L1 + L2 andϕ ∈ S.

∫
f (x)ϕ̂(x)dx = lim

n→∞

∫
B(0,n)

f (x)ϕ̂(x) dx

= lim
n→∞

∫
B(0,n)

f (x)
∫

ϕ(y)e−2πix·y dy dx

= lim
n→∞

∫
ϕ(y)

∫
B(0,n)

f (x)e−2πix·y dx dy

= lim
n→∞

∫
ϕ(y)

(∫
B(0,n)

fχ[ f≥1](x)e−2πix·y dx+
∫

B(0,n)
fχ[ f<1](x)e−2πix·y dx

)
dy
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Note that ∣∣∣∣∣∣
∫

B(0,n)
f (x)χ[ f≥1]e

−2πix·y dx

∣∣∣∣∣∣ < ‖ fχ[ f≥1]‖1 < ∞,

and by dominated convergence

lim
n→∞

∫
ϕ(y)

∫
B(0,n)

fχ[ f≥1](x)e−2πix·y dx dy=
∫

ϕ(y) ̂fχ[ f≥1](y)dy.

Also the functions

gn(y) :=
∫

B(0,n)
fχ[ f<1](x)e−2πix·y dx

are converging inL2 to ̂fχ[ f<1] and so

lim
n→∞

∫
ϕ(y)

∫
B(0,n)

fχ[ f<1](x)e−2πix·y dx dy= lim
n→∞
〈ϕ,gn〉

=

∫
ϕ(y) ̂fχ[ f<1](y)dy,

Here〈·, ·〉 is the standard inner-product inL2. We may then combine our limits to obtain

the Fourier transform off . This completes the proof. �

This gives us the following corollary:

Corollary 2.3.6. If T f ∈ S
∗ has the representation

T fϕ =

∫
f (x)ϕ(x)dx

where f ∈ L1 + L2, thenT̂ f = T f̂ .

2.4 Potential Theory

In this section we shall examine classical potential theory as a natural extension of

electrostatics. We begin with a discussion of energies and potentials of Radon measures and

examine the relationship between potentials and approximate densities. We then consider

32



the problem of finding the lowest possible energy for a measure of unit mass supported on

a compact setA. This leads to the questions of the existence and uniqueness of a measure

that achieves this energy. Both these questions have affirmative answers and the latter

is established through Hilbert space techniques. We review a characterization the energy

minimizing measure in terms of its potential. Finally, we examine results for a related

discrete problem.

This material is covered in more depth in [21,30,34].

2.4.1 Energies, Potentials of Measures, the SetEs and Average Densities

Let µ be a Radon measure with support inRp ands > 0. TheRiesz (s-)energy ofµ is

defined as

Is(µ) :=
"

1
|x− y|s

dµ(y)dµ(x).

The integrand 1
|x−y|s is referred to as theRiesz (s)-kerneland is positive. The measureµ is

unsigned and so the quantityIs(µ) is well defined and may take on the value+∞. The inner

integral

Uµ
s(x) :=

∫
1

|x− y|s
dµ(y)

is called the(s)-potential ofµ at x. We have that

Is(µ) =
∫

Uµ
sdµ.

In R3 the Riesz kernel of exponent1 is proportional to the Coloumb kernel and it is natural

to considerUµ
s(x) as a generalized electrostatic potential at the pointx caused by the

presence of the charge distributionµ. Following this interpretationIs(µ) integrates the

potential due to the charge distributionµ against the distribution itself and is a reasonable

generalization of the electrostatic energy.

If we let ν = ν+ − ν− be the Jordan decomposition of the signed measureν where|ν| is
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Radon, then formally we may write

Is(ν) =
"

1
|x− y|s

d(ν+ − ν−)(y)d(ν+ − ν−)(x)

=

"
1

|x− y|s
dν+(y)dν+(x) +

"
1

|x− y|s
dν−(y)dν−(x) (2.7)

−

("
1

|x− y|s
dν+(y)dν−(x) +

"
1

|x− y|s
dν−(y)dν+(x)

)
. (2.8)

This is well defined so long as it is not the difference of two quantities both of which are

infinite. Each of the four integrals in (2.7) - (2.8) is well defined for the same reasons the

s-energy of a Radon measureµ is. Further each of these integrals is less than or equal to

Is(|ν|). From this we conclude that ifIs(|ν|) < ∞, thenIs(ν) is well defined and finite. With

this motivation we define the following set of signed measures

Es := {µa measure supported onRp such that|µ| is Radon andIs(|µ|) < ∞}.

One may verify that the setEs is closed under addition and multiplication by scalars.

If µ is Radon, thenµ(B(x, r)) and theaveraged-densityµ(B(x, r))/rd are both well

defined and finite for allx ∈ Rp and allr > 0. The averaged-density and potential of a

measure are related by the following useful application of Tonelli’s Theorem (cf. [9, ch.

3].)

Let f : Rp → R be a non-negative Borel-measurable function andµ a Radon measure

with support inRp. We have

∫
f (y)dµ(y) =

∫ (∫ f (y)

0
dt

)
dµ(y)

=

∫ (∫ ∞

0
χ[0, f (y)](t)dt

)
dµ(y)

=

∫ ∞

0

(∫
χ[0, f (y)](t)dµ(y)

)
dt

=

∫ ∞

0
µ({y : f (y) ≥ t})dt,
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where the interchange of the order of integration is permitted by Tonelli’s Theorem.

When the functionf is the Riesz kernel the above gives the following:

Uµ
s(x) =

∫
1

|x− y|s
dµ(y)

=

∫ ∞

0
µ

({
y :

1
|x− y|s

≥ t

})
dt

=

∫ ∞

0
µ({y : |x− y| ≤ t−1/s})dt

= s
∫ ∞

0

µ({y : |x− y| ≤ r})
r s+1

dr here we make the replacementr = t−1/s

= s
∫ ∞

0

µ(B(x, r))
r s+1

dr = s
∫ ∞

0

(
µ(B(x, r))

rd

)
rd−s−1dr (2.9)

If µ is a compactly supported Radon measure, thenµ(B(x, r)) ≤ µ(Rp) < ∞ for all x

andr > 0. If in additionµ satisfies the condition that there is aC < ∞ so that the average

d-density satisfiesµ(B(x, r))/rd < C for all x ∈ Rp and allr > 0, then

Uµ
s(x) = s

∫ 1

0

(
µ(B(x, r))

rd

)
rd−s−1dr + s

∫ ∞

1

(
µ(B(x, r))

rd

)
rd−s−1dr

< s
∫ 1

0
C rd−s−1dr + s

∫ ∞

1

(
µ(Rp)

rd

)
rd−s−1dr

=
sC

d − s
+ µ(Rp) < ∞.

We conclude that if a compactly supported Radon measure satisfies the condition that

µ(B(x, r)) < Crd for all x ∈ Rp and allr > 0, thenUµ
s is uniformly bounded inRp. Note

that on the last line the expression1/(d− s) appears. This factor will play a significant role

in the next chapter.

The conditionµ(B(x, r)) < Crd is commonly referred to as agrowth condition onµ.

There are many common cases where this condition occurs. LetL be a line inRp, thenH1
L

satisfies this growth condition ford = 1. Similarly if P is a two-dimensional hyper-plane

in Rp, thenH2
P satisfies this growth condition ford = 2. More generally, given a compact
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d-dimensional manifoldX embedded inRp, thenHd
X satisfies this growth condition. The

Dirac-delta measure does not satisfy this condition for anyd > 0.

2.4.2 Capacity, The Principle of Descent and the Existence of a Minimizing

Measure

Let A ⊂ Rp be a compact set. Thes-capacity ofA is defined4 as

Caps(A) := sup{1/Is(µ) : µ ∈ M+1(A)},

whereCaps(A) is defined to be0 if M+1(A) ∩ Es = ∅. As is shown below ifHd(A) > 0,

thenM+1(A) ∩ Es = ∅ if, and only if, s ≥ d. This fact follows from Theorem 2.4.1 and

Lemma 2.4.2. Note thatIs(µ) > (diamA)−s for everyµ ∈ M+1(A) soCapS(A) < ∞ for every

s and every compact setA.

In the cases< d we have Frostman’s lemma (cf. [34]).

Theorem 2.4.1 (Frostman’s Lemma).Let A be a Borel set inRp. Hd(A) > 0 if and only

if there exists a non-trivial measureµ ∈ M+(A) such thatµ(B(x, r)) < rd for µ-a.a. x ∈ Rp

andr > 0.

An immediate corollary is that ifHd(A) > 0, then there is a measureµ ∈ M+1(A) and a

constantC < ∞ so thatµ(B(x, r)) < Crd for all x ∈ Rp and allr > 0. This is precisely the

growth condition we need forUµ
s to be uniformly bounded, and hence forIs(µ) to be finite.

We can conclude that ifs< d, thenCaps(A) > 0.

If s≥ d thenM+1(A) ∩ Es = ∅. This follows from the next lemma (cf. [34]). While the

lemma only makes a statement about the cases = d, the result holds fors > d as well for

the following reason: Ifµ is a compactly supported Radon measure so thatIs(µ) = ∞ for

4This notion of capacity mirrors the notion of capacity from electrostatics in that both are reciprocals of
energy, although in the electrostatic case positive and negative charge are distributed over disjoint regions,
typically capacitor plates.
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somes, then

∞ = Is(µ) =
"
|x−y|<1

1
|x− y|s

dµ(y)dµ(x) +
"
|x−y|≥1

1
|x− y|s

dµ(y)dµ(x)

SinceA is compact the second integral is finite and hence the first must be infinite. But

then for anyt > s and anyx, y so that|x− y| < 1, we have that

1
|x− y|s

<
1

|x− y|t
.

This is enough to show thatIt(µ) = ∞ as well.

Lemma 2.4.2 (cf. [34]).Let A be a compact subset ofRp such thatHd(A) < ∞. Then

Id(µ) = ∞ for everyµ ∈ M+1(A).

Proof. For sake of contradiction assume thatId(µ) < ∞ for someµ ∈ M+1(A). ThenUµ
d(x)

is finite forµ-a.e x. For such anx

lim
r↓0

∫
B(x,r)

1
|x− y|d

dµ(y) = 0.

By Egorov’s Theorem we can select a setA0 such thatµ(A0) > 1/2 and the above limit is

uniform in A0. Fix ε > 0 and find anr0 = r0(ε) such that for allx ∈ A0 and allr < r0

µ(B(x, r))r−d ≤

∫
B(x,r)

1
|x− y|d

dµ(y) < ε,

allowing us to conclude that for allx ∈ A0 and allr < r0,

µ(B(x, r)) < εrd.

From the definition of the Hausdorff measure, we may find a collection of sets{Qi}
∞
i=1 such

that
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(a) A0 ⊂
⋃∞

i=1 Qi

(b) A0 ∩ Qi , ∅ for all i ∈ 1,2, . . .

(c) diamQi < r0 for all i ∈ 1,2, . . .

(d)
∑∞

i=1(diamQi)d < Hd(A0) + 1.

For eachQi, select anxi ∈ Qi ∩ A0 and letr i := diamQi. Then

1
2
< µ(A0) ≤

∞∑
i=1

µ(B(xi , r i) ≤ ε
∞∑

i=1

rd
i < ε(H

d(A0) + 1).

Sinceε is arbitrarily small,Hd(A0) cannot be finite and henceHd(A) cannot be finite. �

One might think of the preceding lemma as an extension of the fact that inRd

∫
B(0,1)

1
|x|s

dx

is finite only whens < d. The preceding lemma is quite general, however, in that it holds

for non-integral values ofd.

With this one may define acapacitary dimension(cf. [34]) as

dimC(A) := sup{s ∈ R+ : Is(µ) < ∞ for someµ ∈ M+1(A)}

Theorem 2.4.1 and Lemma 2.4.2 prove the following:

Proposition 2.4.3. Let A be a compact set inRp such that the Hausdorff dimension of

A (dimA) is d. If Hd
A is a σ-finite measure – that is to say,Hd

A can be subdivided into

a countable sum of finite measures, thendimA agrees with the capacitary dimension

dimC(A).

Having established the conditions (s < d = dimA) for which thes-capacity ofA is

non-zero, we show that there is at least one measure whoses-energy is the reciprocal of the
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s-capacity, that is, there is a measureµ′ such that

Is(µ
′) = inf {Is(µ) : µ ∈ M+1(A)}. (2.10)

To prove this we shall employ some further results regarding the weak-star convergence of

measures.

Lemma 2.4.4.Let A be a compact subset ofRp and let{µn}
∞
n=1 ⊂ M

+(A) be a sequence of

measures converging in the weak-star topology toν ∈ M+(A), then

lim
n→∞

"
f (x, y)dµn(x)dµn(y) =

"
f (x, y)dν(x)dν(y)

for any f ∈ C(A× A).

A sketch of a proof of this lemma is as follows: Consider the case whenf is a

polynomial onRp × Rp, then f may be written as a sum of monomials onA × A. The

integral of each monomial onA × A is the product of integrals of monomials onA, and

the weak-star convergenceµn
∗
→ ν applied to a polynomial restricted toA ensures that the

claim holds for such anf . By the Weierstrass Approximation Theorem polynomials on

Rp × Rp are dense in setC(A× A) with regards to the topology induced by thesup-norm.

Our next tool is thePrinciple of Descentwhich is expressed in the following lemma:

Lemma 2.4.5.Let A be a compact subset ofRp. Let {µn}
∞
n=1 ⊂ M

+(A) such thatµn
∗
→ ν ∈

M+(A). Then

Is(ν) ≤ lim inf
n→∞

Is(µn).

Proof. Define the following continuous function fromR+ toR+:

kδs(r) :=


1
r s r ≥ δ

δ−s r < δ.
(2.11)
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For each pair of distinctx andy kδs(|x− y|) ≤ |x− y|−s and

lim
δ↓0

(
1

|x− y|s
− kδs(|x− y|)

)
= 0.

We have

"
1

|x− y|s
dν(y)dν(x) ≤ lim inf

δ↓0

"
kδs(|x− y|)dν(y)dν(x) (by Fatou’s Lemma)

= lim inf
δ↓0

lim
n→∞

"
kδs(|x− y|)dµn(y)dµn(x) (sinceµn

∗
→ ν)

≤ lim inf
n→∞

"
1

|x− y|s
dµn(y)dµn(x)

�

We are now prepared to show the existence of a measureµ′ satisfying (2.10). This

argument is presented in a variety of texts including [30].

Proposition 2.4.6. Let A ⊂ Rp be compact. Lets < d := dimA. There is a measure

µ′ ∈ M+1(A) such thatIs(µ′) = inf {Is(µ) : µ ∈ M+1(A)}.

Proof. Let Ws = inf {Is(µ) : µ ∈ M+1(A)}, as already notedWs > 0. Let {µn}
∞
n=1 be a

sequence so that

lim
n→∞

Is(µn) =Ws.

By Helly’s Selection Theorem we may chose a cluster pointψ ∈ M+1(A) of {µn}
∞
n=1 and a

subsequence{µk}
∞
k=1 ⊂ {µn}

∞
n=1 so thatµk

∗
→ ψ. By the Principle of Descent we have

Ws ≤ Is(ψ) ≤ lim inf
k→∞

Is(µk) = lim
n→∞

Is(µn) =Ws.

This impliesIs(ψ) = Ws and so our claimed measureµ′ is ψ. To see thatψ is of unit mass,

choose the continuous function to be the constant1. �
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2.4.3 Hilbert Space Techniques and The Uniqueness of the Minimizing Measure

The proof of the existence of a minimizing measure for the Rieszs-energy in the

previous section relied on two facts about the Rieszs-kernel. First, the arguments presented

in section 2.4.1 showed that if a measure had a certain growth condition, then the singularity

in the Rieszs-kernel was integrable with respect to that measure. Frostman’s lemma

ensures there is a measure with this growth condition, and so there is at least one measure

with finite energy. Second, in the proof of the Principle of Descent we used the fact that

the Rieszs-kernel can be approximated pointwise from below by continuous functions. In

this section we will use another feature of the Rieszs-kernel, namely that it forms an inner

product on the setEs, to show that the energy minimizing measure we identified in the

previous section is unique.

The setEs is the vector space of all signed measures of finite energy. As such the

bi-linear form

〈µ, ν〉s :=
"

1
|x− y|s

dµ(x)dν(y)

is well-defined. Intuitively this is the amount of energy required to assemble the charge

distributionµ in the presence of the charge distributionν. For 〈·, ·〉s to be an inner product

it must also satisfy the positivity requirement that〈µ, µ〉s = 0 if, and only if, µ ≡ 0. We

reproduce arguments (cf. [30]) based on Fourier techniques to show this.

The functionf (x) := |x|−s defines a functional onS as follows

T f (ϕ) :=
∫

1
|x|s

ϕ(x)dx.

If s ∈ (0, p), then this integral is absolutely convergent as follows:

∫
1
|x|s
|ϕ(x)|dx =

∫
B(0,1)

1
|x|s
|ϕ(x)|dx+

∫
Rp\B(0,1)

1
|x|s
|ϕ(x)|dx

≤ ‖ϕ‖∞

∫
B(0,1)

1
|x|s

dx+
∫
Rp\B(0,1)

|ϕ(x)|dx< ∞.
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From this we may conclude thatT f is linear as well. To show thatT f is continuous, let

{ϕn}
∞
n=1 ⊂ S be a sequence converging to0 in S. This implies that

lim
n→∞
‖ϕn‖∞ = 0 and lim

n→∞

∥∥∥| · |p+1ϕn

∥∥∥
∞
= 0.

Choose anN large enough so that for alln > N we have‖ϕn‖∞ < 1 and
∥∥∥| · |p+1ϕn

∥∥∥
∞
< 1.

For suchn we have the following bound

1
|x|s
|ϕn(x)| ≤ g(x) :=


|x|−s |x| ≤ 1

|x|−(s+p+1) |x| > 1.

One may quickly see thatg is integrable, and so we appeal to dominated convergence and

conclude that

lim
n→∞

T f (ϕn) = 0.

This establishes thatT f ∈ S
∗ and we may consider its Fourier transform in the sense of

distributions.

We shall not compute the Fourier transform of|x|−s directly, but rather infer it based on

properties ofT f . The following arguments are taken from [10, 50]5. Proofs of this fact are

also presented in [23,34]. Consider the case whens> p/2. The functionf (x) := |x|−s may

be written asf = fχB(0,1) + fχRp\B(0,1). Becauses < p, fχB(0,1) ∈ L1 and becauses > p/2,

fχRp\B(0,1) ∈ L2, thus f ∈ L1 + L2.

If we consider Proposition 2.3.2 whereM is chosen to be a rotation matrix, then because

f ◦ M = f we have

f̂ = f̂ ◦ M = f̂ ◦ (M−1)T ,

and we conclude that̂f is a radial function.

5In [10] these arguments are presented quite concisely by tacitly equating properties of the Fourier
transform of a tempered distributionT f with properties off . We shall provide those details.
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A tempered distributionT is said to behomogenous of degreea if

T

(
ϕ(·/λ)
λp

)
= λaTϕ,

for all ϕ ∈ S and allλ > 0. With this definition we have the following:

Proposition 2.4.7.If T ∈ S∗ is homogeneous of degreea, thenT̂ is homogeneous of degree

−p− a.

The proof follows from the definition of̂T and an application of Proposition 2.3.2 to

ϕ(·/λ).

One may verify thatT f is homogeneous of degree−s and soT̂ f is homogenous of

degrees− p. From this and Corollary 2.3.6 it follows that

∫ [
f̂ (λx) − λs−p f̂ (x)

]
ϕ(x)dx= 0, (2.12)

for everyϕ ∈ S.

We now employ arguments similar to those used in Section 2.3.2. Letg := f̂ (λ·)−λs−p f̂

and letφ ∈ S be compactly supported such that‖φ‖1 = 1. Defineφε := 1
εpφ

(
·

ε

)
. By

choosingϕ in equation (2.12) asφε(y− ·), we have

g ∗ φε(y) = 0 for all y ∈ Rp.

If we let K ⊂ Rp be a compact set, then (cf. [9, ch.5] for details.)

lim
ε↓0
‖(gχK) ∗ φε − gχK‖p = 0,

for 1 ≤ p < ∞. (This is the essential argument used in [9] to prove the density ofS ⊂ Lp.)
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This impliesg must be zero a.e. and so

f̂ (λx) = λs−p f̂ (x) for a.a.x ∈ Rp, (2.13)

Since f̂ is radial there is a functionf such thatf̂ (x) = f (|x|) for a.a. x ∈ Rp. Integrating

both sides of (2.13) over the ballB(0,R) gives

∫ R

0
f (λr)r p−1dr = λs−p

∫ R

0
f (r)r p−1dr,

Lettingu = λr gives

1
λp

∫ λR

0
f (u)up−1du= λs−p

∫ R

0
f (r)r p−1dr.

ChooseR= 1 and let

C =
∫ 1

0
f (r)r p−1dr,

and then ∫ λ

0
f (u)up−1du= λsC. (2.14)

By the absolute continuity of the integral we may differentiate both sides with respect toλ

and conclude

f (λ)λp−1 = λs−1C

Hence f̂ (x) = c(s, p)|x|s−p for some constantc(s, p) depending ons and p. By

proposition 2.3.5 and the fact that the Gaussiane−π|x|
2

is its own Fourier transform we

obtain ∫
e−π|x|

2
|x|−sdx= c(s, p)

∫
e−π|x|

2
|x|s−pdx. (2.15)

Converting to radial coordinates and making the substitutionu =
√
πr both sides may be
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written as Gamma functions and we see that

c(s, p) = 2πs− p
2

Γ
(

p−s
2

)
Γ
(

s
2

) . (2.16)

In the following chapters we shall be interested in the case whens ∈ (p/2, p). However

this result can be extended to alls ∈ (0, p). The cases ∈ (0, p/2) is handled roughly as

follows: If fs := | · |−s, then f̂s = f̌s whereˆ andˇ are considered in the sense ofL1 + L2

functions. We then have

T̂ fs = T f̂s = T f̌s = Ť fs.

From the previous calculations we have

Ť fs = T̂ fs = c(s, p)T fp−s.

Taking the Fourier transform of the leftmost and rightmost expressions gives

T̂ fp−s =
1

c(s, p)
T fs. (2.17)

Equation (2.17) holds fors ∈ (p/2, p) and hence forp− s ∈ (0, p/2). The cases = p/2 is

handled by continuity arguments.

Having established the Fourier transform in the distributional sense of the function| · |−s,

we refer to a result in [50] that the energyIs(µ) for µ ∈ Es can be expressed as

Is(µ) = c(s, p)
∫
|ξ|s−p|µ̂(ξ)|2 dξ = 〈µ, µ〉s. (2.18)

This is sufficient to establish positivity of〈·, ·〉s. If 〈µ, µ〉s = 0, thenµ̂ is zero a.e. and

by Theorem 2.3.3,µ ≡ 0. 6

6In [22] M. Gotz provides an alternate proof of the positivity of the Riesz kernel using geometric
arguments that avoid the Fourier transform.
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This shows that(Es, 〈·, ·〉s) is a pre-Hilbert space. The norm arising from this Hilbert

space is‖ · ‖s :=
√

Is(·) and is referred to as the(s-)energy norm. The following theorem

is central to the proof of a unique minimizing measure and potential theory in general. The

proof is technical and we omit it. The interested reader should consult [21] or [30, p.90].

Theorem 2.4.8.The positive cone of (unsigned) measures inEs is topologically complete

with respect to the metric induced from the norm‖ · ‖s . The spaceEs with the same norm

is not.

We shall also need the following:

Proposition 2.4.9 (cf [30]). Let s ∈ (0, p). If f : Rp → R has compact support and

continuous derivatives up to orderp+ 2 then there is a signed measureν so that

f = Uν
s.

Further,ν is absolutely continuous with respect to Lebesgue measure.

We sketch the proof for the cases= p− 2, a complete proof may be found in [30]. The

Riesz kernel fors= p−2 is proportional to the fundamental solution of Laplace’s equation

given by (cf. [8]):

F(x; y) :=
1

(p− 2)ωp

1
|x− y|p−2

(Here and in the rest of this documentωp will denote the “area” of the(p − 1)-sphere in

Rp) For sufficiently smooth and integrable functions,φ andρ, the following:

φ =
1

(p− 2)ωp

∫
ρ(y)
| · −y|p−2

dy

and

ρ = −∆φ
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are equivalent. Ifφ is the smooth compactly supported potential we desire, then−∆φ

(p−2)ωp
will

be the Radon-Nikod́ym derivative of the claimed measureν.

The immediate consequence relevant to the topic at hand is the following:

Proposition 2.4.10.If a sequence of measures{µn}
∞
n=1 converge in the strong topology on

the pre-Hilbert space(Es, 〈·, ·〉s) to µ, then the measures converge toµ in the weak-star

topology onM(A) for any compact setA ⊂ Rp.

Again we sketch the proof and refer the interested reader to [30]. Strong convergence

in a Hilbert space immediately implies weak convergence in the Hilbert space, observing

that for anyν ∈ Es

∫
Uν

sdµ = 〈µ, ν〉s = lim
n→∞
〈µn, ν〉s = lim

n→∞

∫
Uν

sdµn,

that any compactly supported smooth function functionf can be represented as a potential

of the form Uν
s, and that smooth compactly supported functions are dense inC(A), we

conclude weak-star convergence of{µn}
∞
n=1.

With these tools we present a proof of the uniqueness of the energy minimizing

measure. (cf. [30, pp.132-133])

Theorem 2.4.11.Let A ∈ Rp be compact so thatHd(A) > 0, and lets ∈ (0,d). There is a

measureµs,A ∈ M+1(A) such thatIs(µs,A) < Is(ν) for all ν ∈ M+1(A)\{µs,A}.

Proof. As in the proof of the existence of the equilibrium measure let{µn}
∞
n=1 ⊂ M

+
1(A)

be a sequence of measures such thatlimn→∞ Is(µn) = Ws := inf {Is(µ) : µ ∈ M+1(A)}.

Proposition 2.4.6 and in particular Frostman’s lemma ensures thatWs < ∞ and without

lose of generality we may choose{µn}
∞
n=1 ⊂ M

+
1(A) ∩ Es. Then

√
Ws ≤ ‖

1
2(µm + µn)‖s for

anym andn ∈ N, and by the polarization identity

‖µm− µn‖
2
s = 2‖µm‖

2
s + 2‖µn‖

2
s − ‖µm+ µn‖

2
s,
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hence

‖µm− µn‖
2
s ≤ 2‖µm‖

2
s + 2‖µn‖

2
s − 4Ws.

For everyε > 0, there is anN ∈ N so that‖µn‖
2
s −Ws < ε/2 whenevern > N. If n, m> N

then‖µm − µn‖
2
s ≤ ε and so{µn}

∞
n=1 is a Cauchy sequence with respect to the norm‖ · ‖s.

By the completeness ofM+(A) ∩ Es, {µn}
∞
n=1 converges in the strong topology onEs to a

measureλ. By proposition 2.4.10,µn
∗
→ λ and henceλ ∈ M+1(A) (Choose the constant1 as

the continuous test function to see thatλ(A) = 1.)

Letλ1 ∈ M
+
1(A) be another measure such thatIs(λ1) =Ws, then by the Cauchy-Schwarz

inequality

Ws ≤

∥∥∥∥∥λ + λ1

2

∥∥∥∥∥2

s
=

1
4

[
‖λ‖2s + ‖λ1‖

2
s + 2〈λ, λ1〉s

]
≤

1
4

[
‖λ‖2s + ‖λ1‖

2
s + 2‖λ‖s‖λ1‖s

]
=Ws.

Hence

〈λ, λ1〉s = ‖λ‖s‖λ1‖s.

Which implies thatλ1 = Cλ. Sinceλ, λ1 ∈ M
+
1(A), C = 1. �

Note that the positive-definiteness of〈·, ·〉s allows us to use the Cauchy-Schwartz

inequality. This unique probability measureλ shall be denotedµs,A and referred to as the

(s-)equilibrium measure onA

Finally we note that by taking an appropriate limit ass ↓ 0 one may replace the Riesz

s-kernel with the logarithmic kernel− log |x− y|. In this case there is a unique equilibrium

measure as well. This is referred to as the “s= 0” case, although it is not obtained by using

a value of zero for the parameters. The limit of the gradient of thes-potential ass ↓ 0 will

give the gradient of the logarithmic or “s= 0” kernel.
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2.4.4 Constant Potential ofµs,A

When electrostatics is studied as a physical phenomenon, one encounters the following

standard argument that the potential is constant across a conductor: Suppose the potential

was not constant, then the gradient of the potential would give a non-zero field that would

induce the mobile electrons to move in opposition to that field. Any steady-state must

therefore have a field of zero and hence constant potential.

This argument assumes a signed measure of fixed net mass to represent a charge

distribution and takes for granted that the potential is differentiable. Nevertheless, there

is an important idea: If the potential of a measure is non-constant, then the measure does

not have minimal energy. This idea continues to hold in the setting of potential theory

in a modified form: The potential of the equilibrium measure is constant approximately

everywhere on the support of the equilibrium measure; where we say a condition holds

(s-)approximately everywhere(cf. [30, pg. 135]) if the set of pointsN where the condition

does not hold contains no compact sets of positive (s-)capacity.

To prove and use this concept we introduce the notion of lower semicontinuity. Let

A ⊂ Rp be compact. We say thatf : A → R ∪ {∞} is lower semicontinuous onA if for

every x ∈ A andα < f (x) there is a neighborhoodO of x that is open in the subspace

topology onA such that for ally ∈ O we havef (y) > α.

The following may be found in the introduction of [45].

Lemma 2.4.12.Let A ⊂ Rp be compact and letf : A → R ∪ {∞} have the property that

there is an increasing sequence of functions{ fn}∞n=1 ⊂ C(A) such that for eachx ∈ K,

lim
n→∞

fn(x) = f (x),

where the limit is infinite wheneverf (x) is. Thenf is lower-semicontinuous.

Proof. Let A, f and{ fn}∞n=1 be as provided in the hypothesis of the lemma. Letx ∈ A and
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α < f (x). Let N so that for alln ≥ N fn(x) > α. Let

O := {y ∈ A : fN(y) > α} ⊂ {y ∈ A : f (y) > α},

thenO is open in the subspace topology onA by the continuity offN. �

Lemma 2.4.13.Let µ be a Radon measure with support in a compact setA ⊂ Rp, then

Uµ
s : A→ R ∪ {∞} is lower-semicontinuous.

Proof. Define a truncated Rieszs-kernelkn
s : Rp→ R ∪ {∞} as

kn
s(x) :=


|x|s when|x|s < n

n when|x|s ≥ n.

Define an analogouss-potential as

Uµ
s,n(x) :=

∫
kn

s(|x− y|)dµ(y).

By dominated convergence

lim
x→x0

∫
kn

s(|x− y|)dµ(y) =
∫

kn
s(|x0 − y|)dµ(y),

and soUµ
s,n is continuous. By monotone convergence

lim
n→∞

∫
kn

s(|x− y|)dµ(y) =
∫

1
|x− y|s

dµ(y).

Lemma 2.4.12 completes the proof. �

An important consequence is that for a measureµ ∈ M+(A) the set[Uµ
s > α] is open

and hence (cf. [9, ch. 3]) the sets[Uµ
s ≥ α], [Uµ

s < α] and[Uµ
s ≤ α] are Borel-measurable.

The proof of the following proposition is taken from [21].
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Proposition 2.4.14.Let A ⊂ Rp be compact so thatHd(A) > 0. Then

(1) Uµs,A

s ≥ Is(µs,A) approximately everywhere onA.

(2) Uµs,A

s ≤ Is(µs,A) everywhere on the support ofµs,A.

Proof. Let ν ∈ M+1(A) ∩ Es and leta ∈ [0,1], then by the minimality ofIs(µs,A)

‖µs,A‖2s ≤ ‖aµ
s,A + (1− a)ν‖2s = a2‖µs,A‖2s + (1− a)2‖ν‖2s + 2a(1− a)〈µs,A, ν〉s,

hence

‖µs,A‖2s = lim
a↑1

(1− a2)‖µs,A‖2s − (1− a)2‖ν‖2s
2a− 2a2

≤ 〈µs,A, ν〉s.

The linearity of the inner product allows us to conclude that‖µs,A‖2sν(A) ≤ 〈µs,A, ν〉s for all

ν ∈ M+(A) ∩ Es.

Let N := {x ∈ A : Uµs,A

s (x) < ‖µs,A‖2s}. Supposeν ∈ M+(A) such thatν(N) > 0 (N.B.

We use the measurability ofN for this supposition.) Then there is aK ⊂ N so thatK is

compact andν(K) > ν(N)/2 > 0. Let νK be the restriction ofν to K, in this case

〈νK , µ
s,A〉s =

∫
Uµs,A

s dνK < ‖µ
s,A‖2sνK(A),

implying thatνK < Es and henceν < Es. This proves the first claim. In particular

µs,A([Uµs,A

s < ‖µs,A‖2s]) = 0,

hence

‖µs,A‖2s =

∫
[Uµs,A

s =‖µs,A‖2s]
Uµs,A

s dµs,A +

∫
[Uµs,A

s >‖µs,A‖2s]
Uµs,A

s dµs,A.

Which impliesµs,A([Uµs,A

s > ‖µs,A‖2s]) = 0. Because[Uµs,A

s > ‖µs,A‖2s] is open, it is disjoint

from the support ofµs,A. This proves the second claim. �

From this we have an immediate corollary.
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Corollary 2.4.15. Let A ⊂ Rp be compact such thatHd(A) > 0, let s ∈ (0,d). Then

Uµs,A

s = Is(µs,A) µs,A-a.e.

2.5 Discrete Minimal Energy Problems

The previous sections of this chapter developed a mathematical model for arranging

a continuous fixed amount of charge over an object so as to minimize a generalized

electrostatic energy. The notion of a continuous charge density arises in physics as a

continuum limit of letting the number of electrons grow. In this section we shall see that for

s < d this continuum limit is justified if the electrons or point charges minimize a discrete

minimal energy problem.

Let ωN := {x1, . . . , xN} denote a configuration ofN distinct points inRp. Thediscrete

s-energyof ωN is

Es(ωN) :=
N∑

i=1

N∑
j=1 j,i

1
|xi − xj |

s
.

If we let A ⊂ Rp be an infinite and compact set, then we may consider the constrained

problem of choosing a configurationωN ⊂ A that minimizesEs over allN-point subsets of

A. We first establish that this problem has a solution.

Proposition 2.5.1. Let A ⊂ Rp be an infinite compact set. Lets > 0. Then there is a

configurationωs,A
N , which is sometimes denotedωs

N when the setA may be inferred, so that

Es(ωs
N) ≤ Es(ωN) for anyN-point configurationωN.

Proof. Let

k(ε)
s (x) :=


|x|−s |x| ≥ ε

ε−s |x| < ε

and E(ε)
s denote the energy where the kernel|x − y|−s is replaced byk(ε)

s for some value

of ε > 0. For a givenN, we may choose an arbitrary configuration of distinct points on

A denotedω0
N. We then choose anε > 0 such that1/εs > Es(ω0

N). Any configuration
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with lesser energy must contain points that are separated by at leastε. For configurations

whose points are separated byε, the quantitiesEs andE(ε)
s agree.A is compact, andE(ε)

s :

AN → R is continuous so we may find a configurationωs
N ⊂ AN, that minimizesE(ε)

s . This

configuration also minimizesEs. �

It should be noted that a minimizing configuration may not be unique. For example,

if we let A be a circle andωN be a minimal configuration on the circle, then any rotation

of ωN is also minimal. Further, there is no restriction ons other than it be positive, the

dimension ofA does not play a role in the existence of a minimizing configuration. With

this in mind we define, for a compact setA,

Es(A,N) := Es(ω
s,A
N ).

An early formulation of this problem is Thomson’s Problem (cf. [48]) which is to

arrangeN-electrons on the unit sphere so as to minimize the electrostatic (s = 1, d = 3)

energy. Under the reasonable assumption that the electrons are separated, the energy is a

differentiable function of the positions of the electrons. One may write down the equations

necessary for a configuration to be at a local minimum and attempt to solve them. There are

two obstacles to this problem: strong evidence that there are many configurations that are

local minima but not the global minimum, equations which are intractable even for modest

value ofN.

In the appropriate limit ass→ ∞ one recovers the best-packing problem or Tammes’

problem [47].

An alternative approach is to examine more qualitative behaviors of energy minimizing

configurations. The questions that have been of interest are:

(1) What is the asymptotic distribution (or continuum limit) of the energy minimizing

configurations? How does it depend ons or A?
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(2) How does the minimal discrete energy grow withN, and what factors contribute to

the nature of the growth?

The techniques for addressing these questions depend to a large degree on whether

s< dimA.

2.5.1 The Potential Theory Case

Here we consider a compact setA ⊂ Rp of positiveHd measure and assumes< d. One

may define the following measure based on an energy minimizing configurationωs
N of A.

Let

γ(N)
s :=

1
N

∑
x∈ωs

N

δx. (2.19)

We consider the asymptotic distribution of points by examining the limit ofγ(N)
s asN→ ∞.

The central tools are the integrability for the Rieszs-kernel onA and the existence of a

unique equilibrium measureµs,A.

The setting for this next proposition is Riesz potentials inRp, however the proof hinges

on the uniqueness of the equilibrium measure, the minimality of thes-energy ofωs
N and

the fact that the kernel can be approximated by continuous functions. These conditions

hold in more general settings (cf. [21]) and related results in these more general settings

are obtained in [17].

Proposition 2.5.2 (cf. [30] pp 160-162).Let ωs
N denote the configuration of points that

minimizesEs over all N point subsets ofA andγ(N)
s denote the measure derived fromωs

N.

Letµs,A be the unique measure that minimizesIs. If s< d := dimA, then

γ(N)
s

∗
→ µs,A and

Es(A,N)
N2

→ Is(µ
s,A).

asN→ ∞.
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Proof. We show that the limit

lim
N→∞

2
N(N − 1)

Es(ω
s
N) (2.20)

exists. For sake of clarity, if a pointx belongs toωs
N, then we shall append a superscript of

the form,x(N). By creating sums in which one point is omitted we have

∑
i< j

1∣∣∣∣x(N)
i − x(N)

j

∣∣∣∣s =
1

N − 2

N∑
k=1

∑
i< j, i,k, j,k

1∣∣∣∣x(N)
i − x(N)

j

∣∣∣∣s.
The inner sum on the right hand side isEs(ωs

N\{x
(N)
k }). By the minimality ofEs(ωs

N), this

must be greater than or equal toEs(ωs
N−1), giving

∑
i< j

1∣∣∣∣x(N)
i − x(N)

j

∣∣∣∣s ≥
N

N − 2

∑
i< j

1∣∣∣∣x(N−1)
i − x(N−1)

j

∣∣∣∣s,
which implies that

2
N(N − 1)

∑
i< j

1∣∣∣∣x(N)
i − x(N)

j

∣∣∣∣s ≥
2

(N − 1)(N − 2)

∑
i< j

1∣∣∣∣x(N−1)
i − x(N−1)

j

∣∣∣∣s.
This is sufficient to show that the quantity in (2.20) is increasing withN and thus the limit,

finite or infinite, exists.

Now we let{yi}
N
i=1 be an arbitrary set of points onA, and{xi}

N
i=1 denote the points inωs

N.

By minimality we have ∑
i< j

1
|xi − xj |

s
≤

∑
i< j

1
|yi − yj |

s

where we replace|yi − yj |
−s with ∞ if yi = yj. We letµ ∈ M+1(A). We shall integrate both

sides with respect todµ(y1) . . . dµ(yN). Since the left hand side does not depend onyi, it is

unchanged. On the right hand side, we see that integrating againstdµ(yi) only affects the
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terms containingyi, and leavesN(N − 1)/2 copies of the same integral giving

∑
i< j

1
|xi − xj |

s
≤

∑
i< j

"
1

|yi − yj |
s
dµ(yi)dµ(yj) =

N(N − 1)
2

"
1

|ya − yb|
s
dµ(ya)dµ(yb)

Since the above holds for any probability measure, it holds for the unique equilibrium

measureµs,A. Further, since it holds for allN, it holds in the limit and we obtain

lim
N→∞

2
N(N − 1)

∑
i< j

1
|xi − xj |

s
≤

"
1

|ya − yb|
s
dµs,A(ya)dµ

s,A(yb).

We fix ε > 0 and consider the integral

"
k(ε)

s (x, y)dγ(N)
s (y)dγ(N)

s (x).

The above integral is similar to the discrete sum with two exceptions. The terms resulting

from pairs of distinct points are bounded above byε−s, and we now include pairs where

both points are the same. With this in mind the following bound may be established where

the first term is the bound on the terms wherei , j and the second term bounds the terms

wherei = j.

"
k(ε)

s (x, y)dγ(N)
s (y)dγ(N)

s (x) ≤
2

N(N − 1)

∑
i< j

1
|xi − xj |

s
+
ε−s

N

Let γs denote any weak-star cluster point ofγ(N)
s , and let{Ni}

∞
i=1 be such thatγ(Ni )

s
∗
→ γs, as

i → ∞. We take the limitNi → ∞ and obtain

"
k(ε)

s (x− y)dγs(y)dγs(x) ≤
"

1
|ya − yb|

s
dµs,A(ya)dµ

s,A(yb)

The integrability of the Riesz kernel fors< d and the fact thatε is independent ofN give

Is(γs) ≤ Is(µ
s,A).
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The uniqueness of the equilibrium measure ensuresγs = µ
s,A. �

Related to the potential theory case are the cases whens < 0. In this setting one

considers a maximization problem. In general one does not have a positive definite kernel

for s< 0. Results are obtained in [2]

2.5.2 The Singular Case

The first order growth ofEs(A,N) and the weak-star limit ofγ(N)
s were obtained in

the last section from a potential-theoretic approach. Such an approach is not available

in the cases ≥ d and new techniques are required to make progress. Significant results

were obtained by Kuijlaars and Saff in [29] describing the energy of configurations which

minimized thed-energy on the sphereSd. Results for the1-energy for minimal energy

configurations on rectifiable curves were obtained by Martı́nez-Finkelshtein, Maymeskul,

Rakhmanov, and Saff in [33].

Recent results fors ≥ d can be found in [24] by Hardin and Saff. These results were

extended by Borodachov, Hardin and Saff in [3, 4]. The results apply to configurations

on d-rectifiable sets and manifolds. The precise definitions of these classes of sets are left

to the next chapter. Because we omit the (technical) proofs of the following results, it is

enough to understand thatd-rectifiable sets and manifolds have a local structure, which

in a measure-theoretic sense, isd-dimensional for a natural numberd. Some of the more

significant results for the cases≥ d are presented here.

(1) Borodachov, Hardin and Saff show in [3] that for ad-rectifiable setA, and s > d

the sequence ofN-point minimal energy configurations becomes asymptotically,

uniformly distributed in the limitN → ∞. That is to say, ifγ(N)
s is as defined in

the previous section, then

γ(N)
s

∗
→
Hd

A

Hd(A)

asN→ ∞.
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(2) Hardin and Saff show in [24] that ifs = d andA is ad-rectifiable manifold and also

a subset of aC1 manifold, then the same results holds.

(3) In [24] separation results are obtained forA ⊂ Rd whereHd(A) ∈ (0,∞). Note that

the dimension ofA is the same as that of the embedding space. In this setting there

is a constantC depending only onA so that

min
i, j
|xi − xj | > CN−1/d

whens> d and

min
i, j
|xi − xj | > C(N logN)−1/d

whens = d. It is strongly believed that this second result is not sharp, and that the

factor of logN is not needed. Further, the proof of these results relies on growth

estimates forHd
A that are satisfied forA ⊂ Rd. However, a similar result holds when

A ⊂ Rp is such thatHd
A satisfies the same growth conditions.

(4) In [3] it is shown for ad-rectifiable set ands> d that

lim
N→∞

Es(A,N)
N1+s/d

=
Cs,d

Hd(A)s/d
,

where the constantCs,d depends only ons andd. It is known thatCs,1 is twice the

Riemann Zeta Function ofs (cf. [33]), and it is conjectured thatCs,2 is the Zeta

Function associated with the hexagonal lattice inR2 (cf. [29]).

(5) In [24] it is shown for ad-rectifiable manifoldA, which is also a compact subset of a

d-dimensionalC1 manifold, that, in the cases= d we have

lim
N→∞

Ed(A,N)
N2 logN

=
Hd(Bd)
Hd(A)
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whereBd is the closed unit ball inRd. We note that in this resultHd is normalized

so thatHd restricted toRd is d-dimensional Lebesgue measure.

(6) In [3] we have the following result about weighted energy problems. If we modify

the quantity to minimize by introducing a symmetric weight functionw : A×A→ R+

to get

E(w)
s (ωN) :=

∑
xi,x j∈ωN

w(xi , xj)

|xi − xj |
s

and if the functionw(x, y) satisfies the CPD property (cf. [3]), then theN-point

configurations will converge in the weak-star sense to a density derived fromw.

(7) In [4] the limiting case whens→ ∞ is examined. Further a construction is provided

for a fractal setA so that

0 < lim inf
N→∞

Es(A,N)
N1+s/d

< lim sup
N→∞

Es(A,N)
N1+s/d

< ∞.

We remark that items four and six and their proofs suggest that fors > d the behavior of

Es(A,N) results from local properties ofωs,A
N which in turn are derived from local properties

of the setA.
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CHAPTER 3

A NORMALIZED d-ENERGY

This chapter presents a limiting Rieszd-energy that is derived from the limit of Riesz

s-energies ass ↑ d. This result is of value in that potential theory has broad physical

application and deep connections with other branches of mathematics. We are further

motivated by connections between the equilibrium measure and the discrete problem

discussed in Chapter 2.

Whens< d andA is merely compact and of positived-dimensional Hausdorff measure,

the first order growth in discrete minimal energy and the asymptotic distribution of minimal

s-energy points are addressed by Proposition 2.5.2. Further, given a collection of minimal

energy configurations{ωs,A
N }s∈[s0,d) indexed bys, one can find a sequencesn ↑ d such that

{ωsn,A
N }

∞
n=1 has a cluster point inAN, and that cluster point achieves the minimalN-point d-

energy. In light of these facts it is reasonable to investigate the behavior of the equilibrium

measures ass ↑ d with the hope that one can learn about the asymptotic behavior of

minimal d-energy configurations.

As an example consider the case whenA is the interval[−1,1] ⊂ R1. In this case

the Hausdorff dimensiond of A is 1. It is well-known (cf. [25]) that the equilibrium

measureµs,[−1,1] is given by the following Radon-Nikod́ym derivativecs(1− x2)
s−1
2 where

cs is chosen so thatµs,[−1,1] is a probability measure. From proposition 2.5.2 the weak-star

limit asN→ ∞ of the discrete minimals-energy configurations isµs,[−1,1] whens< 1. One

may verify thatµs,[−1,1] ∗
→ H1

[−1,1]/2. This indicates that the weak-star limit asN → ∞ of

the discrete minimal energy points is converging in the weak-star topology to the uniform

probability measure onA ass ↑ d. From [24] we also know thatωd
N

∗
→ H1

[−1,1]/2
1.

1When we say a sequence of configurations converges in the weak-star topology we mean that the
measures derived from the configurations by (2.19) converge in the weak-star topology.
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To put this concisely we know that

lim
s↑d

µs,[−1,1] = H1
[−1,1]/2 and (3.1)

lim
N→∞

ωs
N = µs,[−1,1] hence

lim
s↑d

(
lim
N→∞

ωs
N

)
= H1

[−1,1]/2 (3.2)

where all the limits are considered in the weak-star sense. We also know

lim
N→∞

ωd
N = H

1
[−1,1]/2. (3.3)

It is not surprising that the right hand sides of (3.1) and (3.3) agree, however the technique

used to prove (3.3) did not rely on potential theory and (3.3) has been shown to hold only for

a compactd-rectifiable manifolds which are also subsets ofd-dimensionalC1 manifolds.

We take this as motivation to study the minimal discreted-energy as a limit of potential

theory.

A potential theoretic approach to the discrete minimald-energy problem requires

addressing the following questions.

(1) Under what conditions onA does a limit such as the one in (3.1) exist?

(2) For what conditions onA and in what sense can we interchange the limits in (3.2) to

conclude that the right hand sides of (3.1) and (3.3) agree?

This and the following chapter address the first question. We hope to address the second

question in future work. The approach is to develop a normalizedd-energy that is analogous

to thes-energyIs. This normalizedd-energy is

Ĩd(µ) := lim
s↑d

(d − s)Is(µ),
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and the related normalizedd-potential is

Ũµ
d(x) := lim

s↑d
(d − s)Uµ

s(s).

using a combination of density arguments and Fourier analysis, we shall show for measures

supported on a set belonging to appropriate classes of sets that these two quantities are

well defined and that this normalized energy gives rise to a minimization problem with a

unique solution. This is done in this chapter. In the following chapter we show that, for

certain classes of sets, any weak-star cluster point ass ↑ d of µs,A hasd-energy less than

or equal to that of the unique solution, and hence must be the unique solution (this is done

in the following chatper.) This will be sufficient to show weak-star convergence of the

equilibrium measures.

The rest of this chapter will present classes of sets related that shall be examined,

review some notions of density necessary to study this normalizedd-energy, and finally

characterize thisd-energy in terms of the Radon-Nikodým derivative.

3.1 Classes of Sets

We shall begin by defining several classes of subset ofRp. Roughly speaking the sets

described in Sections 3.1.1, 3.1.2 and 3.1.3 can be assembled from bi-Lipschitz images of

compact subsets ofRd. From Corollary 2.1.6 properties of thed-dimensional Hausdorff

measure restricted to these sets will be similar to thed-dimensional Hausdorff measure on

Rd. Further, image measures associated with bi-Lipschitz maps have energies bounded by

the original measure. More concretely, ifµ is a measure, andϕ is a bi-Lipschitz map with

constantL, then

Is(ϕ#µ) =
"

1
|x− y|s

dϕ#µ(y)dϕ#µ(x) =
"

1
|ϕ(x) − ϕ(y)|s

dµ(y)dµ(x).
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Since the denominator of the Riesz kernel can be bounded by

L−1|x− y| ≤ |ϕ(x) − ϕ(y)| ≤ L|x− y|,

we have that

L−sIs(µ) ≤ Is(ϕ#µ) ≤ LsIs(µ). (3.4)

This fact coupled with Corollary 2.1.6 provide a means to look at these sets as if they

were a collection of subsets ofRd. In broad terms, this approach works if the energy in

consideration can be shown to be localized; by this we mean that the interaction energy of

the charge on different bi-Lipschitz images interacting with charge on other bi-Lipschitz

images is small relative to the energy of the charges on the bi-Lipschitz images interacting

with themselves.

The fourth class of set is a type of fractal. These fractals cannot be assembled from bi-

Lipschitz images ofRd, but by their construction they have the desired localization property

for certain types of energy. Further, their self similar nature ensures that the measure and

potential theoretic properties at each scale are proportional to these properties for the whole

set.

A setA ⊂ Rp is said to be Ahlforsd-regular if there are constantsC1, andC2 so that for

all x ∈ A and allr ∈ (0,diamA)

C1 <
Hd

A(B(x, r))

rd
< C2 (3.5)

A setA ⊂ Rp is said to be upper(lower) Ahlforsd-regular if the upper(lower) bound in (3.5)

holds.
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3.1.1 d-Rectifiable and(Hd,d)-Rectifiable Sets

A setA ⊂ Rp is d-rectifiable(cf. [18,§3.2.14]) if it is the Lipschitz image of a bounded

set inRd. If we consider such a definition in measure theoretic terms we have the following:

A set A ⊂ Rp is (Hd,d)-rectifiable (cf. [18, §3.2.14]) ifHd(A) < ∞ and there exists a

countable collectionE1,E2, . . . of d-rectifiable sets that coverHd-almost all ofA. That is,

there exists a countable collection of bounded subsets ofRd K1,K2, . . . and a corresponding

collection of Lipschitz maps,ϕ1 : K1→ R
p, ϕ2 : K2→ R

p, . . . such that

Hd

A\ ∞⋃
i=1

ϕi(Ki)

 = 0.

Moreover, it is a result of Federer [18,§3.2.18]) that ifA is (Hd,d)-rectifiable then for

everyε > 0, the Lipschitz maps and the bounded sets may be chosen such that eachϕi is

bi-Lipschitz with constant less than1+ε, eachKi is compact and the setsϕ1(K1), ϕ2(K2), . . .

are pairwise disjoint. For such a choice of theϕi andKi there is anN = N(ε) such that

Hd

A\ N⋃
i=1

ϕi(Ki)

 < ε.
This class of set arose in the study of geometric measure theory, one of whose

motivations was to generalize differential geometry from smooth manifolds to sets

satisfying certain measure theoretic properties. While the results in this dissertation do

not reference(Hd,d)-rectifiable sets, this definition and the results due to Federer provide

the basis for the next two classes of sets.

3.1.2 Strongly (Hd,d)-Rectifiable Sets

The following definition of strong(Hd,d)-rectifiability strengthens this condition in

that for eachε > 0 there must be a finite collection of the mappings as above such that

the portion ofA not covered by the union is of strictly lower dimension. We say that a

setA ⊂ Rp is strongly(Hd,d)-rectifiableif, for every ε > 0, there is a finite collection of
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compact subsets ofRd K1, . . . ,KN and a corresponding set of bi-Lipschitz mapsϕ1 : K1→

Rp, . . . , ϕN : KN → R
p such that

1. The bi-Lipschitz constant of each map is less than1+ ε,

2. Hd(ϕi(Ki) ∩ ϕ j(K j)) = 0 for all i , j,

3. dim
(
A\

⋃N
i=1 ϕi(Ki)

)
< d.

Note that compact subsets ofd-dimensionalC1 manifolds are strongly(Hd,d)-rectifiable

and any strongly(Hd,d)-rectifiable set is(Hd,d)-rectifiable. Further note that any strongly

(Hd,d)-rectifiable set is of finiteHd-measure.

This definition was first presented in [6]. The requirements that theHd
A measure of the

intersection of the bi-Lipshcitz images is zero, and that any portion ofA that is not covered

be of lower dimension are needed for energy localization ass ↑ d.

Proposition 3.1.1. Let A ⊂ Rp be strongly(Hd,d)-rectifiable. ThenA is upper Ahlfors

d-regular.

Proof. Let K1, . . . ,KN andϕ1 : K1 → R
p, . . . , ϕN : KN → R

p be the compact subsets ofRd

and the corresponding maps with bi-Lipschitz constant less than2 provided by the strong

(Hd,d)-rectifiability of A. SinceHd(A) = Hd(
⋃N

i=1 ϕi(Ki)) and since eachϕi is bijective,

we have
Hd

A(B(x, r))

rd
≤

N∑
i=1

Hd(ϕi(Ki) ∩ B(x, r))
rd

=

N∑
i=1

Hd(ϕi(Ki ∩ ϕ
−1
i (B(x, r))))

rd
≤

N∑
i=1

2dHd(Ki ∩ ϕ
−1
i (B(x, r)))

rd
,

where the last inequality follows from Corollary 2.1.6. SinceHd(Ki∩ϕ
−1
i (B(x, r))) ≤ 22drd,

the claim holds withC = 23dN. �
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3.1.3 d-Rectifiable Manifolds

A setA is said to be ad-rectifiable manifoldif

A =
N⋃

i=1

ϕi(Ki),

where eachKi is a compact subset ofRd and ϕi : Oi → Rp is bi-Lipschitz on some

open setOi ⊃ Ki. This class of sets was introduced in [24] in a broad examination of

discrete minimal(s)-energy problems fors > d. As with strongly(Hd,d)-rectifiable sets,

d-rectifiable manifolds are(Hd,d) rectifiable sets.

3.1.4 Strictly Self-Similar d-Dimensional Fractals

We say a compact setA ⊂ Rp is astrictly self-similard-fractal if

A =
N⋃

i=1

ϕi(A),

where the union is disjoint and the maps (which we shall also refer to as similitudes)

ϕ1, . . . , ϕN are of the formϕ(x) = LiAi x + bi whereAi is an isometry,Li is a scale factor

andbi describes the translation. We requireLi ∈ (0,1). In [35] Moran shows for strictly

self-similard-fractals the Hausdorff dimension is also the unique value ofd that satisfies

the equation
N∑

i=1

Ld
i = 1,

and thatHd(A) ∈ (0,∞). Moran shows this result for fractals satisfying the broaderopen

set condition(cf. [15]), however we use the strict separation in the proofs of the following

results.

An example of such a set would be the middle third Cantor set inR1. In this case there

are two similitudesϕ1(x) := x/3 andϕ2(x) = 2/3+ x/3, L1 = L2 = 1/3, and the Hausdorff

dimension islog 2/ log 3.
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The following proposition is proven by Hutchinson in [27,§5.3], although Hutchinson

does not explicitly state the result that sets he considers are Ahlforsd-regular. We will need

the intermediate result given in Lemma 3.1.3, and so for completeness we include our own

proof based on techniques employed in [27].

For the rest of the paper we shall order our maps{ϕ1, . . . , ϕN} so that the scaling factors

satisfyL1 ≤ L2 ≤ . . . ≤ LN.

Proposition 3.1.2. Let A ⊂ Rp be a strictly self-similard-fractal, thenA is Ahlfors d-

regular.

The intermediate result we need is:

Lemma 3.1.3.LetA be a strictly self-similard-fractal then, for eachx ∈ A andr > 0 there

is a subsetA′ ⊂ A so that

1. B(x, r) ∩ A ⊂ A′.

2. A′ = ϕ(A) for some similitudeϕ.

3. diamA′ < Wr whereW depends only on the setA.

Proof. Choosex ∈ A andr > 0. Let K̃ = mini∈1,...,N{dist(ϕi(A),A\ϕi(A))}. If r ≥ L1K̃, let

A′ = A and then triviallyA∩ B(x, r) ⊂ A′ anddiamA′ < r(2 diamA)/(L1K̃).

We now consider the case whenr < L1K̃. Because the images ofA under eachϕi are

disjoint, we may assign to everyy ∈ A a unique infinite sequence{ j1, j2 . . .} ∈ {1, . . . ,N}N

so that{y} =
⋂∞

n=1 ϕ jn(ϕ jn−1(. . . ϕ j1(A) . . .)). If {i1, i2, . . .} is the sequence identifyingx, let M

be the smallest natural number so thatLi1Li2 . . . LiM K̃ < r (note thatM ≥ 2), then

r ≤ Li1Li2 . . . LiM−1K̃ <
r

LiM

<
r
L1
.

Let A′ = ϕiM−1(ϕiM−2(. . . ϕi1(A) . . .)), hence diamA′ = Li1Li2 . . . LiM−1 diamA <

r diamA/(L1K̃). To complete the proof we shall showB(x, r) ∩ A ⊂ A′.
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Choosey ∈ B(x, r) ∩ A. If y = x, theny ∈ A′, otherwise let{ j1, j2 . . .} be the sequence

identifyingy ∈ A andm the smallest natural number so thatjm , im. We have that

Li1Li2 . . . Lim−1K̃ ≤ dist(x, y) ≤ r ≤ Li1Li2 . . . LiM−1K̃,

from which we concludem≥ M forcingy ∈ ϕiM−1(ϕiM−2(. . . ϕi1(A) . . .)) = A′.

The claimed constantW is (2 diamA)/(L1K̃). �

Proof of Proposition 3.1.2.We shall prove the lower bound first. Letx ∈ A, {i1, i2, . . .}

be the identifying sequence forx and r ∈ (0,diamA). Let M be a the smallest

natural number so thatLi1Li2 . . . LiM diamA < r. Then rL1 ≤ Li1Li2 . . . LiM diamA and

ϕiM (ϕiM−1(. . . ϕi1(A) . . .)) ⊂ B(x, r), hence

Hd
A(B(x, r)) ≥ Hd(ϕiM (ϕiM−1(. . . ϕi1(A) . . .)))

= (Li1Li2 . . . LiM )dHd(A) ≥ rdHd(A)
( L1

diamA

)d

.

This proves thatA is lower Ahlforsd-regular with constantHd(A)
(

L1
diamA

)d
.

Let A′ ⊂ A be as provided by Lemma 3.1.3, thenB(x, r) ⊂ A′, anddiamA′ < Wr. We

have

Hd
A(B(x, r)) ≤ Hd(A′) =

(
diamA′

diamA

)d

Hd(A) < rd
( W
diamA

)d

Hd(A).

whereW is the constant from Lemma 3.1.3. This proves thatA is upper Ahlforsd-regular

with constant
(

W
diamA

)d
Hd(A). �

3.2 Generalized Densities

Section 2.4.1 discussed the(r)-averaged-density of a measureµ at a pointx as it related

to the potential ofµ at x. Here we assign the following symbol to the average density

Θr
d(µ, x) :=

µ(B(x, r))
rd

.
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The traditional point density of a measureµ at a pointx is the limit

Θd(µ, x) := lim
r↓0
Θr

d(µ, x).

This limit need not exist and the following two results (cf. [34]) indicate that the existence

of this limit on a set of positiveµ-measure is a strong condition.

Theorem 3.2.1 (Marstrand [32]). Letµ be a Radon measure supported onRp andd be a

positive number. IfΘd(µ, x) exists and is positive and finite on a set of positiveµ-measure,

thend ∈ N.

If one chosesµ to beHd
A for some setA of fractional dimension, thenHd

A-a.e. the point

densitiesΘd(Hd
A, ·) do not exist. Put another way fractional dimensional sets do not have

a traditional point density. As an example the non-existence ofΘ(Hd
A,0) whereA is the

middle third Cantor set inR1 with one end at0 can be seen by choosing two sequences

indexed byn of decreasing radii
(

1
3

)n 1
3 and

(
1
3

)n 2
3.

A stronger result due to Priess (cf. [34]) indicates that if the point density exists and

is positive and finite on a set of positiveµ-measure, thenµ is concentrated on an(Hd,d)-

rectifiable set.

Theorem 3.2.2 (Preiss [39]).Let µ be a Radon measure supported onRp and d be a

positive number. IfΘd(µ, x) exists and is positive and finiteµ-a.e., then there is an(Hd,d)-

rectifiable setA so thatµ(Rp\A) = 0.

A related result (cf. [34, ch.16,17])2 indicates that for a(Hd,d)-rectifiable setA the

densityΘd(Hd
A, ·) exists and is constantHd

A-a.e.

Theorem 3.2.3.Let A be a(Hd,d)-rectifiable set, thenΘd(Hd
A, x) = 2d forHd

A-a.a. x.

2Note that Mattila uses the termd-rectifiable to describe what we refer to as(Hd,d)-rectifiable.
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We conclude that, ifA belongs to one of the first three classes of sets,Θd(Hd
A, x) = 2d

for Hd
A-a.a x, but that if A is a strictly self similard-fractal then, atHd

A-a.a. x the limit

Θd(Hd
A, x) does not exist.

3.2.1 The Order-Two Density

Bedford and Fisher in [1] consider the following averaging integral:

D2
d(µ, x) := lim

ε↓0

1
| logε|

∫ 1

ε

1
r
Θr

d(µ, x)dr,

which they call anorder-two densityof µ at x. It is known (cf. [16, 38, 51]) that for a class

of sets including strictly self-similard-fractalsD2
d(H

d
A, x) is positive, finite and constant

Hd
A-a.e. We shall denote thisHd

A-a.e. constant asD2
d(A). The next proposition shows that

this order-two density agrees with the traditional density whenever the traditional density

exists.

Proposition 3.2.4. Let µ be a Radon measure supported onRp and x ∈ Rp such that

Θd(µ, x) exists, thenD2
d(µ, x) = Θd(µ, x).

Proof. Let µ be a Radon measure supported onRp andx ∈ Rp such thatΘd(µ, x) exists. Let

δ > 0 and choose anR> 0 so that for allr ∈ (0,R)

|Θr
d(µ, x) − Θd(µ, x)| < δ.

We have

1
| logε|

∫ 1

ε

1
r
Θr

d(µ, x)dr = Θd(µ, x)
1
| logε|

∫ R

ε

1
r

dr (3.6)

+
1
| logε|

∫ R

ε

1
r
[
Θr

d(µ, x) − Θd(µ, x)
]
dr (3.7)

+
1
| logε|

∫ 1

R

1
r
Θr

d(µ, x)dr (3.8)
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The limit asε ↓ 0 of the right hand side of (3.6) isΘd(µ, x). The limit superior asε ↓ 0 of

the absolute value of (3.7) is less thanδ. The limit as limit asε ↓ 0 of (3.8) is zero. The

choice ofδ was arbitrary and this completes the proof. �

From this we conclude that for a setA in any of the classes described in section 3.1

D2
d(A) exists and is positive and finite. With this we present our first theorem regarding the

normalizedd-energyĨd.

3.3 Results for a Normalizedd-Energy

Theorem 3.3.1 ensures that the normalizedd-energyĨd is well defined on all ofM+(A),

and generates a minimization problem whose solution is unique.

Theorem 3.3.1.Let A be a strictly self-similard-fractal or a strongly(Hd,d)-rectifiable

set of positiveHd measure and letλd := Hd
A/H

d(A), then

(1) The limitĨd(µ) exists for allµ ∈ M+(A) and

Ĩd(µ) =


dD2

d(A)
∫ (

dµ
dHd

A

)2

dHd
A if µ � Hd

A,

∞ otherwise.

(2) If Ĩd(µ) < ∞, then the limitŨµ
d equals dµ

dHd
A
µ-a.e. and

Ĩd(µ) =
∫

Ũµ
ddµ.

(3) Ĩd(λd) < Ĩd(ν) for all ν ∈ M+1(A)\
{
λd

}
.

We shall accomplish the proof of Theorem 3.3.1 in several steps. We shall first show

that if µ ∈ M+(A) andµ 3 Hd
A, thenĨd(µ) = ∞. We shall then relate the Radon-Nikodým

of a measure with finite normalizedd-energy to the normalizedd-potential of the measure.

We shall use the maximal function in conjunction with dominated convergence to show that
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second result in Theorem 3.3.1 implies the first. Finally, we shall appeal to Hilbert space

techniques to show the third result.

3.4 µ 3 Hd
A Implies Ĩd(µ) = ∞

In this section we shall show that ifA is a strictly self-similard-fractal or a strongly

(Hd,d)-rectifiable set and ifµ ∈ M+(A) is such thatµ 3 Hd
A, thenId(µ) = ∞.

3.4.1 Case I: A is a Strongly (Hd,d)-Rectifiable Set

Given a compactly supported Radon measureµ onRd ands ∈ (0,d) the Rieszs-energy

of µ may be expressed via (2.18) as

Is(µ) = c(s,d)
∫
Rd
|ξ|s−d|µ̂(ξ)|2dξ,

where the constantc(s,d) is given by

c(s,d) = πs− d
2
Γ(d−s

2 )

Γ( s
2)
.

Observe that (cf. [30, ch. 1])

lim
s↑d

(d − s)c(s,d) = ωd, (3.9)

whereωd is the surface area of thed − 1 sphere inRd.

Lemma 3.4.1.Let K ⊂ Rd be compact. For a measureµ ∈ M(K) we have

Ĩd(µ) = ωd‖µ̂‖
2
2,Ld.

Further, if Ĩd(µ) < ∞, thenµ � Ld.
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Proof. For any measureµ ∈ M(K) the Rieszs-energy can be expressed as

Is(µ) = c(s,d)
∫
|ξ|≤1
|ξ|s−d|µ̂(ξ)|2dξ + c(s,d)

∫
|ξ|>1
|ξ|s−d|µ̂(ξ)|2dξ.

By dominated convergence

lim
s↑d

∫
|ξ|≤1
|ξ|s−d|µ̂(ξ)|2dξ =

∫
|ξ|≤1
|µ̂(ξ)|2dξ,

and by monotone convergence

lim
s↑d

∫
|ξ|>1
|ξ|s−d|µ̂(ξ)|2dξ =

∫
|ξ|>1
|µ̂(ξ)|2dξ.

From (3.9) the first statement is proven, and henceµ̂ ∈ L2. Theorem 2.3.3 completes the

proof. �

Lemma 3.4.2.LetA ⊂ Rp be a compact and strongly(Hd,d)-rectifiable and letµ ∈ M+(A)

be such thatµ 3 Hd
A, thenĨd(µ) exists and is infinite.

Proof. Let µ ∈ M+(A) such thatµ 3 Hd
A. Letµ = µ⊥+µ� be the Lebesgue decomposition

of µ with respect toHd
A. Let K1, . . . ,KN andϕ1 : K1 → R

p, . . . , ϕN : KN → R
p be the

compact subsets ofRd and the corresponding maps with bi-Lipschitz constant less than

2 provided by the strong(Hd,d)-rectifiability of A. Let B = A\
⋃N

i=1 ϕi(Ki) and s0 =

dim B. If µ(B) > 0, then, by the equality of the capacitory and Hausdorff dimensions (see

Proposition 2.4.3),Is(µ) = ∞ for all s ∈ (s0,d). HenceĨd(µ) = ∞.

If µ(B) = 0, then

0 < µ⊥(A) ≤
N∑

i=1

µ⊥(ϕi(Ki)).

Choosej ∈ 1, . . . ,N such thatµ⊥(ϕ j(K j)) > 0, and defineν j := µ⊥ϕ j (K j )
. Sinceν j ⊥ H

d
ϕ j (K j )

, it

follows thatϕ−1
j# ν j ⊥ H

d and henceϕ−1
j# ν j ⊥ L

d. By Lemma 3.4.1 we have thatĨd(ϕ−1
j# ν j) =

∞ and by (3.4) it follows that∞ = Ĩd(ϕ j#ϕ
−1
j# ν j) = Ĩd(ν j) ≤ Ĩd(µ). �
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3.4.2 Case II: A is a Strictly Self-Similar d-Fractal

Lemma 3.4.3.Let A be a compact strictly self-similard-fractal and letµ ∈ M+(A) such

thatµ 3 Hd
A. ThenĨd(µ) = ∞.

Proof. Let A be a compact strictly self-similard-fractal and letµ ∈ M+(A) such thatµ 3

Hd
A. Let µ = µ� + µ⊥ be the Lebesgue decomposition ofµ with respect toHd

A. The

Radon-Nikod́ym theorem ensures that forµ⊥-a.a.x,

lim
r↓0

µ⊥(B(x, r))

Hd
A(B(x, r))

= ∞.

For such anx, let M ∈ R be arbitrary andR > 0 such that for allr ∈ (0,R) we have

µ⊥(B(x, r))/Hd
A(B(x, r)) > M. It then follows from the technique presented in (2.9) that

lim inf
s↑d

(d − s)
∫

1
|x− y|s

dµ⊥(y) = lim inf
s↑d

(d − s)s
∫ ∞

0

µ⊥(B(x, r))
r s+1

dr

≥

(
inf

r∈(0,R)

µ⊥(B(x, r))

Hd
A(B(x, r))

)
lim inf

s↑d
(d − s)s

∫ R

0

Hd
A(B(x, r))

r s+1
dr

≥ M lim
s↑d

(d − s)sC1
1

d − s
Rd−s = C1Md,

whereC1 is the lower bound from the Ahlforsd-regularity ofA. M is arbitrary. Hence

Ũµ⊥

d (x) = ∞ for µ⊥-a.a.x.

By Fatou’s lemma

∞ =

∫
Ũµ⊥

d dµ⊥ =
∫

lim inf
s↑d

(d − s)Uµ⊥

s dµ⊥

≤ lim inf
s↑d

(d − s)
∫

Uµ⊥

s dµ⊥ = Ĩd(µ
⊥) ≤ Ĩd(µ).

�
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3.5 The Order-Two Density, Ũµ
d and dµ

dHd
A

for a Measureµ ∈ M+(A)

One of the central results used to examine the functionalĨd is the fact that if the

order-two density of a measureµ at a pointx (D2
d(µ, x)) exists, then the normalizedd-

potential ofµ at x (Ũµ
d(x)) exists as well, and the two agree. This relationship between

the order-two density and the limiting potential is examined by Zähle in the context of

stochastic differential equations in [52] and also by Hinz, in [26]. We include a proof of

this relationship from [26].

Proposition 3.5.1. Let µ be a finite Borel measure with support inRp, x ∈ suppµ, d ∈

(0, p]. If D2
d(µ, x) exists and is finite, then

Ũµ
d(x) = dD2

d(µ, x).

Proof. One may verify that the functionkε(t) := ε2χ(0,1](t)tε−1| log t| is an approximate

identity in the following sense: Iff : R → R is right continuous at0 and is bounded on

(0,1), then

lim
ε↓0

∫ ∞

0
kε(t) f (t)dt = f (0).

Define the following function:

f (t) :=


1
| log t|

∫ 1

t
1
rΘ

r
d(µ, x)dr whent > 0

D2
d(µ, x) whent = 0
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If D2
d(µ, x) exists and is finite, thenf is right-continuous at0 and bounded on(0,1) thus

D2
d(µ, x) = lim

ε↓0

∫ ∞

0
kε(t) f (t)dt

= lim
ε↓0

ε2

∫ 1

0
t1−ε

∫ 1

0

χ[t,1](r)
r
Θr

d(µ, x)drdt

= lim
ε↓0

ε2

∫ 1

0

1
r
Θr

d(µ, x)
∫ r

0
tε−1dtdr

= lim
ε↓0

ε

∫ 1

0

1
r
Θr

d(µ, x)rεdr

= lim
s↑d

(d − s)
∫ 1

0
Θr

d(µ, x)
1

r1−(d−s)
dr =

1
d

Ũµ
d(x).

The final equivalence is an application of (2.9). �

We define a modified normalized energy as follows: For a measureµ ∈ M+(A), let

Ĩd(µ) := lim inf
s↑d

(d − s)
"

1
|x− y|s

dµ(y)dµ(x).

With this definition we shall provide a characterization of measures for whichĨd is finite.

Proposition 3.5.2. Let A ⊂ Rp be a compact set such thatD2
d(A) exists and isHd

A-a.e.

constant. Letµ ∈ M+(A) so thatĨd(µ) < ∞. Then,

(1) Ũµ
d(x) = dD2

d(A) dµ
dHd

A
(x) for µ-a.a. x and

(2) dµ
dHd

A
∈ L2(Hd

A).

Proof. Note that for allR> 0

lim
s↑d

(d − s)s
∫ ∞

R
Θr

d(µ, x)
1

r1−(d−s)
dr = 0.

From this we conclude that if̃Uµ
d(x) exists, then

Ũµ
d(x) = lim

s↑d
(d − s)s

∫ R

0
Θr

d(µ, x)
1

r1−(d−s)
dr,
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for anyR> 0.

We begin with the following equality for an arbitraryR> 0:

(d − s)s
∫ R

0

µ(B(x, r))
r s+1

dr (3.10)

=
dµ

dHd
A

(x)(d − s)s
∫ R

0

Hd
A(B(x, r))

r s+1
dr (3.11)

+ (d − s)s
∫ R

0

(
µ(B(x, r))

Hd
A(B(x, r))

−
dµ

dHd
A

(x)

)
Hd

A(B(x, r))

r s+1
dr. (3.12)

By Proposition 3.5.1 the limit ass ↑ d of the summand in (3.11) isdµ
dHd

A
(x)dD2

d(A) for Hd
A-

a.a. x. The absolute value of the limit superior of the summand in (3.12) is bounded for

Hd
A-a.a.x by

sup
r∈(0,R)

∣∣∣∣∣∣ µ(B(x, r))

Hd
A(B(x, r))

−
dµ

dHd
A

(x)

∣∣∣∣∣∣ dD2
d(A),

which can be made arbitrarily small by choosingR sufficiently small. Thus the limit as

s ↑ d of (3.10) existsHd
A-a.e. and hencẽUµ

d does as well.

Arguing as we did in the proof of Lemma 3.4.3 we appeal to Fatou’s lemma to obtain

∫
lim inf

s↑d
(d − s)Uµ

sdµ ≤ Ĩd(µ) < ∞.

This implies thatlim inf s↑d(d − s)Uµ
s is finite µ-a.e. and, by Lemmas 3.4.3 and 3.4.1,µ �

Hd
A. By the first claim in this proposition and by the previous equation

∫ (
dµ

dHd
A

)2

dHd
A =

∫ (
dµ

dHd
A

)
dµ =

∫
1

dDd
2(A)

Ũµ
ddµ < ∞.

�

3.6 Proof of Theorem 3.3.1

With the preceding results we may now prove Theorem 3.3.1.

Proof of Theorem 3.3.1.Let µ ∈ M+(A) so thatĨd(µ) < ∞, thenµ � Hd
A anddµ/dHd

A ∈
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L2(Hd
A). The maximal function ofµ with respect toHd

A is

MHd
A
µ(x) := sup

r>0

µ(B(x, r))

Hd
A(B(x, r))

= sup
r>0

1

Hd
A(B(x, r))

∫
B(x,r)

dµ

dHd
A

dHd
A.

The maximal function is bounded onL2(Hd
A) and soMHd

A
µ ∈ L2(Hd

A). We shall use this to

provide aµ-integrable bound for(d− s)Uµ
s that is independent ofsand appeal to dominated

convergence. We begin with the point-wise bound

(d − s)
∫

1
|x− y|s

dµ(y)

= (d − s)s
∫ ∞

0

µ(B(x, r))

Hd
A(B(x, r))

Hd
A(B(x, r))

r s+1
dr

≤ MHd
A
µ(x)(d − s)s

[∫ diamA

0

Hd
A(B(x, r))

r s+1
dr +

∫ ∞

diamA

Hd
A(B(x, r))

r s+1
dr

]
≤ MHd

A
µ(x)

[
(d − s)s

∫ diamA

0

C2rd

r s+1
dr + (d − s)s

∫ ∞

diamA

1
r s+1

dr

]
, (3.13)

whereC2 is the constant in the upper bound of the Ahlforsd-regularity ofA. The quantity

in brackets in (3.13) may be maximized overs ∈ (0,d) and we denote this maximum byK.

Then, by the Cauchy-Schwarz inequality,

∫
KMHd

A
µdµ < K

∫ (
MHd

A
µ
) ( dµ

dHd
A

)
dHd

A < K
∥∥∥∥MHd

A
µ
∥∥∥∥

2,Hd
A

∥∥∥∥∥∥ dµ

dHd
A

∥∥∥∥∥∥
2,Hd

A

< ∞.

By dominated convergence the second claim follows. The first claim follows from the

second and from Proposition 3.5.2

The final claim of the theorem follows from a straightforward Hilbert space argument.

Let ν denote the finite measuredD2
d(A)−1

Hd
A. By Proposition 3.5.2 the set of measures

with finite normalizedd-energy is identified with the non-negative cone inL2(ν) (denoted

L2(ν)+) via the mapµ↔ dµ/dν. Under this map we havẽId(µ) = ‖dµ/dν‖22,ν. A measureµ

of finite d-energy is a probability measure if and only if‖dµ/dν‖1,ν = 1. We seek a unique
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non-negative functionf that minimizes‖ · ‖2,ν subject to the constraint‖ f ‖1,ν = 1. The non-

negative constant function1/ν(Rp) satisfies the constraint‖1/ν(Rp)‖1,ν = 1. Let f ∈ L2(ν)+

such that‖ f ‖1,ν = 1 and‖ f ‖2,ν ≤ ‖1/ν(Rp)‖2,ν, then

1
ν(Rp)

=

∥∥∥∥∥ f
ν(Rp)

∥∥∥∥∥
1,ν
=

〈
f ,

1
ν(Rp)

〉
ν

≤ ‖ f ‖2,ν

∥∥∥∥∥ 1
ν(Rp)

∥∥∥∥∥
2,ν
≤

∥∥∥∥∥ 1
ν(Rp)

∥∥∥∥∥2

2,ν
=

1
ν(Rp)

.

Thus 〈
f ,

1
ν(Rp)

〉
ν

= ‖ f ‖2,ν

∥∥∥∥∥ 1
ν(Rp)

∥∥∥∥∥
2,ν
.

From the Cauchy-Schwarz inequalityf = 1/ν(Rp) ν-a.e. By the identification above the

measureλd := Hd
A/H

d(A) ∈ M+1(A), uniquely minimizes̃Id overM+1(A). �
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CHAPTER 4

THE BEHAVIOR OF µs,A AS s ↑ d

The previous chapter showed that the normalizedd-energy is well defined and gives rise

to a minimization problem with a unique solution. In this chapter we use properties of the

normalizedd-energy to show that the (s-)equilibrium measures on appropriate classes of

sets converge in the weak-star sense to the minimizer of the normalizedd-energy ass ↑ d.

4.1 Results Regarding the Behavior ofµs,A ass ↑ d

Theorems 4.1.1 and 4.1.2 establish the weak-star convergence of the equilibrium

measures to normalized Hausdorff measure ass ↑ d. While the statements of the theorems

are nearly the same, the methods used in their proofs are quite different and hence we

provide two different theorems.

Theorem 4.1.1. Let A ⊂ Rp be a compact strongly(Hd,d)-rectifiable set such that

Hd(A) > 0. Letλd := Hd
A/H

d(A). Thenµs,A ∗
→ λd ass ↑ d.

Theorem 4.1.2. Let A ⊂ Rp be a compact strictly-self similard-fractal. Let λd :=

Hd
A/H

d(A). Thenµs,A ∗
→ λd ass ↑ d.

Theorem 4.1.3 ensures that the equilibrium measure or charge distribution on strictly

self-similard-fractals cannot be too concentrated. Any growth condition with exponent

less thand allows the measure to be concentrated on a lower dimensional subset ofA.

Theorem 4.1.3.Let A be a compact strictly self-similard-fractal, then there is a constant

K depending only onA, so that for anys ∈ (0,d), µs,A(B(x, r)) ≤ Kr s for µs,A-a.a. x ∈ A

andr > 0.

A bound similar to that in Theorem 4.1.3 is presented in [34, Ch. 8]. This result differs

in that the constantK does not depend ons.
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4.2 The Behavior ofµs,A on Strongly (Hd,d)-Rectifiable Sets

We begin with an estimate obtained via the Fourier transform which will be of

considerable value in examining strongly(Hd,d)-rectifiable sets.

Lemma 4.2.1.Let K ⊂ Rd be a compact set. Then, for everyη > 0, there is ans0 = s0(η)

such that, for anys andt satisfyings0 < s< t < d and any measureµ ∈ M(K),

(d − s)Is(µ) ≤ (1+ η)
[
(d − t)It(µ) + ηµ(Rd)2

]
.

Proof. Without loss of generality assumediamA < 1. If Is(µ) = ∞, then It(µ) = ∞ for

t > s and the lemma holds trivially. Now suppose thatIs(µ) < ∞ for somes such that

(d − t)c(t,d) > ωd/2 for all t ∈ (s,d) (recall (3.9) to see why there is such at) and observe

that

(d − s)Is(µ) = (d − s)c(s,d)
∫
Rd
|ξ|s−d|µ̂(ξ)|2dξ

=
(d − s)c(s,d)
(d − t)c(t,d)

(d − t)c(t,d)
∫
Rd
|ξ|s−d|µ̂(ξ)|2dξ. (4.1)

We may approximate the integral in (4.1) as follows.

∫
Rd
|ξ|s−d|µ̂(ξ)|2dξ

=

∫
|ξ|≤1
|ξ|s−d|µ̂(ξ)|2dξ +

∫
|ξ|>1
|ξ|s−d|µ̂(ξ)|2dξ

≤

∫
|ξ|≤1

(|ξ|s−d − |ξ|t−d)|µ̂(ξ)|2dξ +
∫
|ξ|≤1
|ξ|t−d|µ̂(ξ)|2dξ +

∫
|ξ|>1
|ξ|t−d|µ̂(ξ)|2dξ

≤ µ(Rd)2

∫
|ξ|≤1

(|ξ|s−d − |ξ|t−d)dξ +
∫
Rd
|ξ|t−d|µ̂(ξ)|2dξ.

By (3.9) we may picks0 ∈ (0,d) high enough so that, for anys andt satisfyings0 < s <

t < d
(d − s)c(s,d)
(d − t)c(t,d)

< 1+ η, (d − t)c(t,d) < 2ωd,
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and ∣∣∣∣∣∣
∫
|ξ|≤1

(|ξ|s−d − |ξ|t−d)dξ

∣∣∣∣∣∣ < η

2ωd
.

�

The following generalization of Lemma 4.2.1 will be applied repeatedly to measures

supported on the bi-Lipschitz image of a compact set,K ⊂ Rd. Let µ ∈ M(ϕ(K)) be such

a measure. Using (3.4) to bound thes-energy ofϕ−1
# µ, applying Lemma 4.2.1 toϕ−1

# µ,

and then using (3.4) again to bound thet-energy of the measureϕ#ϕ
−1
# µ = µ we obtain the

following.

Corollary 4.2.2. Let K ⊂ Rd be a compact set and supposeϕ : K → Rp is bi-Lipschitz

with constantL. Then, for everyη > 0 there is ans0 = s0(η) such that for anys and t

satisfyings0 < s< t < d and any measureµ ∈ M(ϕ(K)), we have

(d − s)Is(µ) ≤ Ld(1+ η)
[
Ld(d − t)It(µ) + ηµ(Rp)2

]
.

The intuition that led to Corollary 4.2.2 is as follows: Lemma 4.2.1 relies on the Fourier

transform of a measure supported on a set of dimension equal to the dimension of the

embedding space, and in particular on (3.9). If one takes ad-dimensional set and bends it

(and the charge sitting on it) slightly so that it can no longer be embedded inRd, the Fourier

approach breaks down because (3.9) holds only when one is taking the Fourier transform

in a space of the same dimension as the setA. However, since the bending is slight, the

relative distances are mostly preserved and the energy shouldn’t change too much. The

parameterL in Corollary 4.2.2 indicates the degree of the bending.

In Proposition 4.2.3 we prove a simple case of Theorem 4.1.1. Its proof illustrates the

approach used in the proof of Theorem 4.1.1.

Proposition 4.2.3.Let A ⊂ Rd be a compact set such thatHd(A) > 0. Letµs denote the

s-equilibrium measure supported onA. Thenµs,A ∗
→ λd := Hd

A/H
d(A) ass ↑ d.
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Proof. Let ψ ∈ M+1(A) be a weak-star cluster point ofµs,A ass ↑ d. Let {sn}
∞
n=1 ↑ d such

thatµsn,A
∗
→ ψ asn→ ∞. Let η > 0 be arbitrary,s0 be as provided by Lemma 4.2.1, and

let s ∈ (s0,d). We have

(d − s)Is(ψ) ≤ lim inf
n→∞

(d − s)Is(µ
sn,A)

≤ lim inf
n→∞

(1+ η)
[
(d − sn)Isn(µ

sn,A) + η
]

≤ lim inf
n→∞

(1+ η)
[
(d − sn)Isn(λ

d) + η
]

= (1+ η)
[
Ĩd(λ

d) + η
]
,

where the first inequality is an application of the Principle of Descent. The second

inequality follows from Lemma 4.2.1 wheret in the statement of the lemma is chosen

to besn, and the third from the minimality ofIsn(µ
sn).

The variables may be taken arbitrarily close tod, and soĨd(ψ) ≤ (1 + η)[ Ĩd(λd) + η].

The variableη was also chosen arbitrarily and we concludeĨd(ψ) ≤ Ĩd(λd). Theorem 3.3.1

ensures thatλd is the unique probability measure that minimizesĨd, and soψ = λd. Since

this holds for any weak-star cluster point, the proposition is proven. �

The only technical hurdle to extending the proof of Proposition 4.2.3 to a proof of

Theorem 4.1.1 is to establish an analog of Lemma 4.2.1 for the case whenA is strongly

(Hd,d)-rectifiable and of lower dimension than that of the embedding space,Rp. This is

accomplished by breakingA into near isometries of compact subsets ofRd, establishing

the desired estimate on each piece, and showing that the pieces can be glued back together

without affecting the estimate. This is the content of Lemmas 4.2.4, 4.2.5 and 4.2.6.

These lemmas are somewhat technical and so the reader may want to keep the following

example in mind while reading them. LetA be a one dimensional subset ofR2 consisting

of the following union of two intervals

{(x,0) ∈ R2 : x ∈ [−1,1]} ∪ {(0, y) ∈ R2 : y ∈ [−1,1]}.
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In this caseA is a union of two bi-Lipschitz (in fact isometric) images of the interval[−1,1].

Our goal is to establish an estimate like that of Lemma 4.2.1 for strongly(Hd,d)-rectifiable

sets such as our exampleA.

When applied to our example setA Lemma 4.2.4 considers the energy of the charge

lying in the intersection of a single image of the interval[−1,1] and anHd
A almost clopen

setB. Roughly speaking the limiting energies on this intersection are proportional to the

Hd
A-measure of the intersection.

Lemma 4.2.4.LetA ⊂ Rp be a compact, strongly(Hd,d)-rectifiable set such thatHd(A) >

0. Let K ⊂ Rd be compact, andϕ : K → Rp a bi-Lipschitz map such thatϕ(K) ⊂ A. Then,

for everyε > 0, there is ans0 = s0(ε) and a constantCK,ϕ = CK,ϕ(A,K, ϕ) such that, for

any Borel setB ⊂ Rp satisfyingHd
A(∂B) = 0 and anys ∈ (s0,d),

lim sup
t↑d

(d − s)Is

(
µt,A

B∩ϕ(K)

)
≤ CK,ϕ

√
Hd

A(B) + ε.

The boundary,∂B, is computed in the usual topology onRp.

Proof. Without loss of generality assumeε ∈ (0,1). Let B ⊂ Rp be a Borel set such that

Hd
A(∂B) = 0. Observe that

It

(
µt,A

B∩ϕ(K)

)
=

∫
B∩ϕ(K)

U
µt,A

B∩ϕ(K)
t dµt,A ≤

∫
B∩ϕ(K)

Uµt,A

t dµt,A = It(µ
t,A)µt,A(B∩ ϕ(K)). (4.2)

We bound the quantitylim supt↑d µ
t,A(B∩ ϕ(K)) as follows. Letψ ∈ M+(A) be a weak-star

cluster point ofµt,A
B∩ϕ(K) as t ↑ d, and let{tn}

∞
n=1 ↑ d such thatµtn,A

B∩ϕ(K)

∗
→ ψ asn → ∞.

Let L denote the bi-Lipschitz constant ofϕ. Chooses̃0 so that Corollary 4.2.2 applied to

Radon measures with supported inϕ(K) holds forη = 1. Let λd := Hd
A/H

d(A) denote the
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minimizer of Ĩd overM+1(A). For anys ∈ (s̃0,d),

(d − s)Is(ψ) ≤ lim inf
n→∞

(d − s)Is

(
µtn,A

B∩ϕ(K)

)
≤ lim inf

n→∞
2Ld

[
(d − tn)L

dItn(µ
tn,A) + 1

]
≤ lim inf

n→∞
2Ld

[
(d − tn)L

dItn(λ
d) + 1

]
= 2L2d Ĩd(λ

d) + 2Ld =: M < ∞.

The first inequality follows from the Principle of Descent, the second from Corollary 4.2.2

and the inequality,Is(µ
tn,A
B∩ϕ(K)) ≤ Is(µtn,A), and the third from the minimality ofItn(µ

tn,A).

Letting s ↑ d we see that, for any weak-star cluster pointψ of µt,A
B∩ϕ(K) (ast ↑ d), Ĩd(ψ) ≤ M.

Theorem 3.3.1 ensures thatψ � Hd
A, and soψ(∂B) = 0, implying µtn,A(B ∩ ϕ(K)) =

µtn,A
B∩ϕ(K)(B)→ ψ(B) asn→ ∞.

The setB ∩ A is stronglyd-rectifiable, and ifψ(B) > 0, thenHd
A(B) > 0, implying

Hd
(
B∩ A

)
> 0 and by Theorem 3.3.1,̃Id is minimized overM1

(
B∩ A

)
by λd,B∩A :=

Hd
B∩A

/Hd
(
B∩ A

)
. We then have

2dd

Hd
A(B)

=
2dd

Hd
A

(
B
) = 2dd

Hd
(
B∩ A

) = Ĩd

(
λd,B∩A

)
≤ Ĩd

 ψ

ψ
(
B
) = Ĩd

(
ψ

ψ(B)

)
≤

M
ψ(B)2

,

and we may conclude

ψ(B) ≤

√
M

2dd
Hd

A(B).

(If ψ(B) = 0, then the above inequality holds trivially.) It follows from the above inequality

and (4.2) that for any Borel setB ⊂ Rp withHd
A(∂B) = 0 we have

lim sup
t↑d

(d − t)It

(
µt,A

B∩ϕ(K)

)
≤ lim sup

t↑d
(d − t)It(µ

t,A) lim sup
t↑d

µt,A(B∩ ϕ(K))

≤ Ĩd(λ
d)

√
M

2dd

√
Hd

A(B). (4.3)

We complete the proof of this lemma by appealing to Corollary 4.2.2 applied to
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measures supported onϕ(K) with η = ε/2Ld. If s0 is chosen so that Corollary 4.2.2 holds,

then, for anys ∈ (s0,d) andt ∈ (s,d),

(d − s)Is

(
µt,A

B∩ϕ(K)

)
≤ Ld

[(
1+

ε

2Ld

) (
Ld(d − t)It

(
µt,A

B∩ϕ(K)

)
+

ε

2Ld

)]
≤ 2L2d(d − t)It

(
µt,A

B∩ϕ(K)

)
+ ε.

Taking the limit superior of both sides ast ↑ d and appealing to (4.3) completes the proof

with CK,ϕ = 2L2d Ĩd(λd)
√

M/2dd. �

Lemma 4.2.5 uses Lemma 4.2.4 to excise a small neighborhood around the crossing of

the two intervals in our example setA. The limiting energy due to this excised portion is

small and the remaining pieces ofA can be embedded intoR and are disjoint.

Lemma 4.2.5.LetA ⊂ Rp be a compact, strongly(Hd,d)-rectifiable set such thatHd(A) >

0. Then, for everyε > 0, there exists a finite collection of compact subsets ofRd K̃1, . . . , K̃N

and a corresponding set of bi-Lipschitz mapsϕ̃1 : K̃1 → R
p, . . . , ϕ̃N : K̃N → R

p each with

bi-Lipschitz constant less than1+ ε, such that

1. ϕ̃i(K̃i) ∩ ϕ̃ j(K̃ j) = ∅ for i , j, and

2. there is ans0 = s0(ε) ∈ (0,d), such that forB̃ := A\
⋃N

i=1 ϕ̃i(K̃i) and all s ∈ (s0,d) we

have

lim sup
t↑d

(d − s)Is(µ
t,A
B̃

) ≤
ε

N
.

Proof. Without loss of generality assumeε ∈ (0,1). SinceA is strongly(Hd,d)-rectifiable,

we may find a set,A0 ⊂ R
p, compact setsK1, . . . ,KN ⊂ R

d and bi-Lipschitz mapsϕ1 :

K1 → R
p, . . . , ϕN : KN → R

p with constant less than1+ ε such thatA =
⋃N

i=1 ϕi(Ki) ∪ A0,

wheredimA0 < d, andHd(ϕi(Ki) ∩ ϕ j(K j)) = 0. Let δ = ε2/4N2 ∈ (0,1). The set

E =
⋃

i, j

(
ϕi(Ki) ∩ ϕ j(K j)

)
is a compact set ofHd

A-measure0. SinceHd
A is Radon, there is

an open setO such thatE ⊂ O andHd
A(O) < δN−4

(
max

{
CK1,ϕ1, . . . ,CKN,ϕN

})−2
whereCKi ,ϕi

is the constant provided by Lemma 4.2.4 applied toϕi(Ki) ⊂ A.
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For any pointx ∈ E, we may find a non-empty open ballB(x,R)0 ⊂ O. Since∂B(x, r1)∩

∂B(x, r2) = ∅ for any r1 , r2 and sinceHd
A is a finite measure, all but a countable set of

values ofr ∈ (0,R) must be such thatHd
A(∂B(x, r)) = 0. Construct an open cover ofE as

follows.

Ω =
{
B(x, r)0 : x ∈ E, B(x, r)0 ⊂ O, Hd

A (∂B(x, r)) = 0
}
.

Choose a finite sub-coverΩ′ ⊂ Ω, of E. Let B =
⋃

b∈Ω′ b. Since∂B ⊂
⋃

b∈Ω′ ∂b, we have

thatHd
A(∂B) = 0. Let Bi = B∩ ϕi(Ki). For anys, t ∈ (0,d) with t > max{s,dimA0} we

have, by the equality of the Hausdorff and capacitory dimensions (Proposition 2.4.3), that

µt,A(A0) = 0 and hence

(d − s)Is(µ
t,A
B ) ≤ (d − s)Is

µt,A
A0
+

N∑
i=1

µt,A
Bi

 = N∑
i, j=1

(d − s)Is(µ
t,A
Bi
, µt,A

Bj
).

By Jensen’s inequality followed by the Cauchy-Schwarz inequality applied to the inner-

productIs(·, ·) we have

 1
N2

N∑
i, j=1

(d − s)Is(µ
t,A
Bi
, µt,A

Bj
)


2

≤
1

N2

N∑
i, j=1

[
(d − s)Is(µ

t,A
Bi
, µt,A

Bj
)
]2

≤
1

N2

N∑
i, j=1

(d − s)Is(µ
t,A
Bi

)(d − s)Is(µ
t,A
Bj

).

Let s0 = max
{
dimA0, s0,1, . . . , s0,N

}
, wheres0,i is the value ofs0 provided by Lemma 4.2.4

applied toϕi(Ki) ⊂ A, and where the value ofε in the statement of Lemma 4.2.4 is chosen
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to beδ/N2. Combining the previous bounds gives, fors ∈ (s0,d),

[
lim sup

t↑d
(d − s)Is(µ

t,A
B )

]2

≤ N2
N∑

i, j=1

lim sup
t↑d

(d − s)Is(µ
t,A
Bi

) lim sup
t↑d

(d − s)Is(µ
t,A
Bj

)

≤ N2
N∑

i, j=1

CKi ,ϕi

√√
δ

N4
(
CKi ,ϕi

)2
+

δ

N2


CK j ,ϕ j

√√
δ

N4
(
CK j ,ϕ j

)2
+

δ

N2


= N2

N∑
i, j=1

 √δ + δN2

2

≤ 4δ =
(
ε

N

)2

.

The value ofs0, the setB̃ := (B∩ A) ∪ A0, the compact sets̃Ki := Ki\ϕ
−1
i (B), and the

bi-Lipschitz maps̃ϕi := ϕi |K̃i
satisfy the properties claimed in the lemma for the value ofε

given. �

At this point we are ready to establish an analog of Lemma 4.2.1 for our example setA.

We consider the limiting energy on our setA in the following four categories:

(1) The limiting energy of the excised portion around the intersection of the two

intervals: By Lemma 4.2.5 this may be made small.

(2) The limiting energy from the interactions between the excision and the interaction

with remaining portions ofA: By Cauchy-Schwarz applied to the inner productIs(·, ·)

this can be made small as well.

(3) The interaction energy between the disjoint pieces ofA that weren’t excised: This

can be made small because the limiting energy is localized.

(4) The limiting energy of the disjoint pieces ofA: Because each of them can be

embedded intoR we may appeal to Lemma 4.2.2 to establish the desired estimate.
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Lemma 4.2.6.LetA ⊂ Rp be a strongly(Hd,d)-rectifiable, compact set such thatHd(A) >

0. Then, for everyη > 0, there is ans0 = s0(η), such that for alls ∈ (s0,d) we have

lim sup
t↑d

(d − s)Is(µ
t,A) ≤ (1+ η) lim sup

t↑d
(d − t)It(µ

t,A) + η.

Proof. Let λd := Hd
A/H

d(A) denote the unique minimizer of̃Id overM+1(A). Let η > 0.

Chooseε ∈ (0,1) such that

max

{(
ε
[
2+ (1+ ε)d+1

]
+ 2

√
ε(1+ ε)2d+1Ĩd(λd) + ε2(1+ ε)d+1

)
,
(
(1+ ε)2d+1 − 1

)}
< η. (4.4)

From Lemma 4.2.5 there is ans1 ∈ (0,d), a sequence of compact setsK̃1, . . . , K̃N ⊂ R
d

and a sequence of bi-Lipschtiz mapsϕ̃1 : K̃1 → R
p, . . . , ϕ̃N : K̃N → R

p each with constant

less than1+ ε such that̃ϕi(K̃i) ∩ ϕ̃ j(K̃ j) = ∅ for i , j, andB̃ := A\
⋃N

i=1 ϕ̃i(K̃i) satisfies the

following for all s ∈ (s1,d)

lim sup
t↑d

(d − s)Is(µ
t,A
B̃

) ≤
ε

N
.

For s ∈ (s1,d) we have

lim sup
t↑d

(d − s)Is(µ
t,A) = lim sup

t↑d
(d − s)Is

µt,A
B̃
+

N∑
i=1

µt,A
ϕ̃i (K̃i )


≤ lim sup

t↑d
(d − s)Is

(
µt,A

B̃

)
(4.5)

+ 2 lim sup
t↑d

N∑
i=1

(d − s)Is

(
µt,A

B̃
, µt,A

ϕ̃i (K̃i )

)
(4.6)

+ lim sup
t↑d

N∑
i, j=1
i, j

(d − s)Is

(
µt,A
ϕ̃i (K̃i )

, µt,A
ϕ̃ j (K̃ j )

)
(4.7)

+ lim sup
t↑d

N∑
i=1

(d − s)Is

(
µt,A
ϕ̃i (K̃i )

)
. (4.8)
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We next find upper bounds for each of the terms in (4.5–4.8). First, Lemma 4.2.5

implies that, fors ∈ (s1,d), expression (4.5) is less thanε/N .

Second, using Jensen’s inequality and the Cauchy-Schwarz inequality in the same

manner as in the proof of Lemma 4.2.5 we have

N∑
i=1

(d − s)Is

(
µt,A

B̃
, µt,A

ϕ̃i (K̃i )

)
≤

√√
N(d − s)Is

(
µt,A

B̃

) N∑
i=1

(d − s)Is

(
µt,A
ϕ̃i (K̃i )

)
.

Since each̃ϕi is bi-Lipschitz with constant(1+ε), Corollary 4.2.2 (with the values ofη and

L as stated in the corollary chosen to beε and1+ ε respectively) ensures that there is some

s2 ∈ (s1,d) such that, fors2 < s< t < d, we have

(d − s)Is

(
µt,A
ϕ̃i (K̃i )

)
≤ (1+ ε)2d+1(d − t)It

(
µt,A
ϕ̃i (K̃i )

)
+ ε(1+ ε)d+1µt,A

ϕ̃i (K̃i )
(Rp)2. (4.9)

Then (4.9), together with the bound for (4.5), implies that expression (4.6) is bounded

above by

2

√√
N
ε

N
lim sup

t↑d

(1+ ε)2d+1

N∑
i=1

(d − t)It

(
µt,A
ϕ̃i (K̃i )

)
+ ε(1+ ε)d+1

N∑
i=1

µt,A
ϕ̃i (K̃i )

(Rp)


Using

lim sup
t↑d

N∑
i=1

(d − t)It

(
µt,A
ϕ̃i (K̃i )

)
≤ lim sup

t↑d
(d − t)It(µ

t,A) ≤ lim sup
t↑d

(d − t)It(λ
d) = Ĩd(λ

d)

it follows that, fors ∈ (s2,d), expression (4.6) is bounded above by

2
√
ε
[
(1+ ε)2d+1Ĩd(λd) + ε(1+ ε)d+1

]
.

We bound (4.7) as follows. For1 ≤ i , j ≤ N, let Di, j = dist(ϕ̃i(K̃i), ϕ̃ j(K̃ j)) > 0

and letsi, j ∈ (0,d) be such that(d − s)D−s
i, j ≤ ε/N2 for all s ∈ (si, j ,d). For such ans,

(d − s)Is(ν1, ν2) ≤ ν1(Rp)ν2(Rp)ε/N2, for any ν1, ν2 ∈ M
+(A) supported oñϕi(K̃i) and
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ϕ̃ j(K̃ j) respectively. Lets0 := max
{
s2, si, j : i , j

}
. For all s ∈ (s0,d),

N∑
i, j=1
i, j

(d − s)Is

(
µt,A
ϕ̃i (K̃i )

, µt,A
ϕ̃ j (K̃ j )

)
< ε.

From (4.9) we have the following bound for (4.8)

N∑
i=1

(d − s)Is

(
µt,A
ϕ̃i (K̃i )

)
≤ (1+ ε)2d+1

 N∑
i=1

(d − t)It

(
µt,A
ϕ̃i (K̃i )

) + ε(1+ ε)d+1

 N∑
i=1

µt,A
ϕ̃i (K̃i )

(Rp)2


≤ (1+ ε)2d+1(d − t)It(µ

t,A) + ε(1+ ε)d+1.

For s ∈ (s0,d), the preceding estimates, together with (4.4), gives

lim sup
t↑d

(d − s)Is(µ
t,A) ≤

[
ε
[
2+ (1+ ε)d+1

]
+ 2

√
ε(1+ ε)2d+1Ĩd(λd) + ε2(1+ ε)d+1

]
+

[
(1+ ε)2d+1

]
lim sup

t↑d
(d − t)It(µ

t,A)

≤ η + (1+ η) lim sup
t↑d

(d − t)It(µ
t,A).

�

4.2.1 Proof of Theorem 4.1.1

Proof of theorem 4.1.1.Let A satisfy the hypotheses of Theorem 4.1.1 and hence of

Theorem 3.3.1. Letλd := Hd
A/H

d(A) denote the unique minimizer of̃Id overM+1(A).

Letψ be any weak-star cluster point ofµs,A ass ↑ d, and let{sn}
∞
n=1 ↑ d such thatµsn,A

∗
→ ψ.

Let η > 0 be arbitrary. Lets0 be the value provided by lemma 4.2.6 for this choice ofη.
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For anys ∈ (s0,d), we have

(d − s)Is(ψ) ≤ lim inf
n→∞

(d − s)Is(µ
sn,A)

≤ lim sup
n→∞

(d − sn)Isn(µ
sn,A)(1+ η) + η

≤ lim sup
n→∞

(d − sn)Isn(λ
d)(1+ η) + η

= (1+ η)Ĩd(λ
d) + η.

As in the proof of Proposition 4.2.3, the first inequality follows from the Principle of

Descent, the second from Lemma 4.2.6, and the third from the minimality ofIsn(µ
sn,A).

Sinces may be chosen arbitrarily close tod, Ĩd(ψ) ≤ (1 + η)Ĩd(λd) + η. Sinceη was also

arbitrarily chosen,̃Id(ψ) ≤ Ĩd(λd). The uniqueness of the minimizerλd ensured by Theorem

3.3.1 proves thatψ = λd and is sufficient to prove Theorem 4.1.1. �

4.3 The Behavior ofµs,A for Strictly Self-Similar d-Fractals

Lemma 4.3.1. Let A be a compact subset ofRp such thatdimA = d andHd(A) < ∞1 ,

then

lim
s↑d

Is(µ
s,A) = ∞.

Proof. Without loss of generality we shall assume thatdiamA ≤ 1, then for0 < s< t < d

and any measureµ ∈ M+(A), Is(µ) ≤ It(µ). Let {sn}
∞
n=1 be any sequence increasing tod so

thatµsn,A
∗
→ ν for someν ∈ M+1(A). Then for anyt ∈ (0,d) we have

It(ν) ≤ lim inf
n→∞

It(µ
sn,A) by the Principle of Descent (Lemma 2.4.5)

≤ lim inf
n→∞

Isn(µ
sn,A) becausediamA < 1 andsn > t for n large. (4.10)

1The author would like to thank Douglas Hardin for reducing the hypotheses necessary for this lemma.
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(4.10) is independent oft and so we may taket ↑ d. Then by monotone convergence

lim
t↑d

It(ν) = Id(ν).

By Lemma 2.4.2,Id(ν) = ∞. Since every sequence of values ofs increasing tod has a

subsequence which is convergent in the weak-star topology, the claim folows. �

Lemma 4.3.2.Let A be a compact Ahlforsd-regular set, then

lim
s↑d

sup
y∈A

dist(y, suppµs,A) = 0.

Proof. Let s ∈ (0,d) and δ = supy∈A dist(y, suppµs,A). We consider the possibility that

δ > 0. Picky′ ∈ A so thatdist(y′, suppµs,A) > δ/2. Let ν = Hd
A∩B(y′,δ/4)/H

d
A(B(y′, δ/4)). For

β ∈ [0,1] we have(1− β)µs,A + βν ∈ M+1(A). The lower Ahlforsd-regularity ensures that

ν is not identically zero and the upper Ahlforsd-regularity ensures thatIs(ν) < ∞ for all

s ∈ (0,d). Define the function

f (β) := Is

(
(1− β)µs,A + βν

)
= (1− β)2Is(µ

s,A) + β2Is(ν) + 2β(1− β)Is(µ
s,A, ν).

Differentiating gives

1
2

d f
dβ
= β

[
Is(µ

s,A − ν)
]
−

[
Is(µ

s,A) − Is(µ
s,A, ν)

]
and

1
2

d2 f
dβ2
=

[
Is(µ

s,A − ν)
]
.

BecauseIs(·, ·) is positive definite,Is(µs,A− ν) > 0. Becauseµs,A is the unique minimizer of

Is, f cannot have a minimum for anyβ > 0, henceIs(µs,A) − Is(µs,A, ν) ≤ 0. We obtain

Is(µ
s,A) ≤ Is(µ

s,A, ν) ≤
1

(δ/4)s
, and hence δ ≤

4
Is(µs,A)1/s

.

The compactness and the upper Ahlforsd-regularity of A ensure thatHd(A) < ∞. By

Lemma 4.3.1δ ↓ 0 ass ↑ d. �
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4.3.1 Proof of Theorem 4.1.3

The remaining proofs will make use of the following fact regarding the behavior of

equilibrium measures on scaled sets: IfB′ = ϕ(B) whereϕ is a similitude with a scale factor

of L, then for any Borel setE ⊂ B′, µs,B′(E) = µs,B(ϕ−1(E)) andIs(µs,B′) = L−sIs(µs,B). This

follows from scaling properties of the Riesz kernel.

Proof of Theorem 4.1.3.Without loss of generality assumediamA ≤ 1. Let x ∈ A and

r ∈ (0,diamA/4), then

Is(µ
s,A) = Is

(
µs,A

B(x,r) + µ
s,A
A\B(x,r)

)
≥ Is

(
µs,A

B(x,r)

)
+ Is

(
µs,A

A\B(x,r)

)
. (4.11)

By Lemma 4.3.2 there is ans0 ∈ (0,d) so thatµs,A(A\B(x,diamA/4)) > 0 for all s ∈ (s0,d).

Note that the choice ofs0 depends only onA and not onx. First, consider the cases ∈

(s0,d). If µs,A(B(x, r)) = 0, then the claim is trivially proven. Assumeµs,A(B(x, r)) > 0.

We normalize the measures on the right hand side of (4.11) to be probability measures and

obtain

Is

(
µs,A

B(x,r)

)
+ Is

(
µs,A

A\B(x,r)

)
(4.12)

= µs,A(B(x, r))2Is

 µs,A
B(x,r)

µs,A(B(x, r))


+ (1− µs,A(B(x, r)))2Is

 µs,A
A\B(x,r)

1− µs,A(B(x, r))

 . (4.13)

By Lemma 3.1.3 we may find a setA′ ⊂ A so thatB(x, r) ∩ A ⊂ A′, diamA′ < Wr andA′

is a scaling ofA. The right hand side of (4.12) is bounded below by

µs,A(B(x, r))2Is(µ
s,A′) + (1− µs,A(B(x, r)))2Is(µ

s,A)

= Is(µ
s,A)

[
µs,A(B(x, r))2

(
diamA′

diamA

)−s

+ (1− µs,A(B(x, r)))2

]
> Is(µ

s,A)

[
µs,A(B(x, r))2

( Wr
diamA

)−s

+ (1− µs,A(B(x, r)))2

]
(4.14)
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Combining (4.11) and (4.14) and dividing byIs(µs,A) gives the following:

1 ≥ µs,A(B(x, r))2
( Wr
diamA

)−s

+ 1− 2µs,A(B(x, r)) + µs,A(B(x, r))2,

hence

2µs,A(B(x, r)) ≥ µs,A(B(x, r))2

[( Wr
diamA

)−s

+ 1

]
,

and thus

µs,A(B(x, r)) ≤ 2
( W
diamA

)s

r s.

Let K1 be the maximum of2(W/diamA)s overs ∈ [0,d], K2 the maximum of(4/diamA)s

over s ∈ [0,d] andKa := max{K1,K2}, thenµs,A(B(x, r)) < Kar s for all x ∈ A, r > 0 and

s ∈ (s0,d).

For s ∈ (0, s0] we have the bound (cf. [34, Ch. 8])µs,A(B(x, r)) ≤ Uµs,A

s (x)r s = Is(µs,A)r s

for µs,A-a.a. x. BecausediamA ≤ 1, Is(µs,A) ≤ Is0(µ
s0,A) for all s ∈ (0, s0]. Let K =

max{Ka,2Is0(µ
s0,A)}, thenµs,A(B(x, r)) < Kr s for µs,A-a.a.x ∈ A andr > 0. �

4.3.2 Proof of Theorem 4.1.2

Proof of Theorem 4.1.2.Let f : A→ R be continuous. SinceA is compactf is uniformly

continuous onA. Fix ε > 0 and letδ > 0 so thatf (A∩ B(x, δ)) ⊂ ( f (x)− ε, f (x)+ ε) for all

x ∈ A. Let M be a natural number high enough so thatLM
N diamA < δ.

Let α be a multi-index of lengthM taking values in{1, . . . ,N}M. If α = (i1, . . . , iM),

then we denoteϕiM (ϕiM−1(. . . (ϕi1) . . .)) by φα. Let x̃ be any point inA. For anyν ∈ M+1(A)

we may write

∫
f dν =

∑
α

∫
f dνφα(A) =

∑
α

f (φα(x̃))ν(φα(A)) +
∑
α

∫
( f − f (φα(x̃))) dνφα(A).

(When we write a multi-indexα at bottom of a sum we indicate summation over all possible
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multi-indices of the specified length.) It follows that

∣∣∣∣∣∣∣
∫

f dν −
∑
α

f (φα(x̃))ν(φα(A))

∣∣∣∣∣∣∣ < ε. (4.15)

As in the proof of Lemma 3.1.3 let̃K = mini∈1,...,N{dist(ϕi(A),A\ϕi(A))}. If α andα′ are

different multi-indices of lengthM, thendist(φα(A), φα′(A)) ≥ LM−1
N K̃. By Lemma 4.3.2

there is ans0 < d so that for alls ∈ (s0,d) we havesupy∈A dist(y, suppµs,A) < LM−1
N K̃. From

this we concludeµs,A(φα(A)) > 0 for any multi-indexα of lengthM and anys ∈ (s0,d). For

such a choice ofs we have

Is(µ
s,A) >

∑
α

Is

(
µs,A
φα(A)

)
=

∑
α

µs,A(φα(A))2Is

 µs,A
φα(A)

µs,A(φα(A))

 ≥∑
α

µs,A(φα(A))2Is

(
µs,φα(A)

)
.

We shall use the notationLα to denoteLi1Li2 . . . LiM . By appealing to the scaling properties

of the Riesz energy, the above becomes

Is(µ
s,A) >

∑
α

µs,A(φα(A))2Ld−s
α

Is(µs,A)
Ld
α

.

Let ψ be any weak-star cluster point ofµs,A ass ↑ d and let{sn}
∞
n=1 ↑ d be a sequence so

thatµsn,A
∗
→ ψ and hence so that(µsn,A(φα(A)))α converges in[0,1]N

M
, then

1 = lim
n→∞

1

(LM
1 )d−sn

≥ lim
n→∞

∑
α

µsn,A(φα(A))2

Ld
α

=
∑
α

[lim n→∞ µ
sn,A(φα(A))]2

Ld
α

.

We then have that

1 =
∑
α

lim
n→∞

µsn,A(φα(A)) =
∑
α

limn→∞ µ
sn,A(φα(A)√
Ld
α

√
Ld
α

≤

√∑
α

[lim n→∞ µsn,A(φα(A))]2

Ld
α

√∑
α

Ld
α = 1.

Note that the sum overα of Ld
α is one because the sum overi ∈ 1, . . .N of Ld

i is one. From
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this we conclude

lim
n→∞

µsn,A(φα(A)) = Ld
α

for every multi-indexα of lengthM. Becauseλd(φα(A)) = Ld
α, we have that

lim
n→∞

∑
α

f (φα(x̃))µsn,A(φα(A)) =
∑
α

f (φα(x̃))λd(φα(A)),

and so ∣∣∣∣∣ limn→∞

∫
f dµsn,A −

∫
f dλd

∣∣∣∣∣ < 2ε.

The choice ofε in (4.15) was arbitrary as was the choice of the continuous functionf and

soλd = ψ for any weak-star cluster pointψ, and henceµs,A ∗
→ λd ass ↑ d. �
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CHAPTER 5

NUMERICAL EXPERIMENTS

In this chapter we describe our numerical experiments regarding discrete minimal

energy configurations on the2-dimensional sphereS2 ⊂ R3. There are a variety of

motivations for such experiments. Separation results such as those presented in [7,24] and

weak-star convergence of discrete minimal energy points to the uniform measure suggest

these points may be of value for numerical integration or coding theory. Minimizing the

logarithmic or “s = 0” energy is equivalent to finding a collection of points where the

product of the pairwise distances is maximized. In general minimal energy points appear

to provide a good sampling set forS2. The physical underpinning of the problem suggests

that numerical results may lead to a better understanding of structures found in spherical

seed-pods, virus shells and colloids.

For the purposes of this chapter it will be more convenient to define thes-energy as

Es(ωN) :=


∑

1=i< j=N
1

|xi−x j |
s whens, 0∑

1=i< j=N log 1
|xi−x j |

whens= 0.
(5.1)

Note that this is half the value of the discrete energy as presented in 2.5. Recall that

Es(A,N) := inf {Es(ωN) : ωN ⊂ A and#ωN = N}.

BecauseS2 has a high degree of symmetry and because it is a manifold without

boundary, a variety of numerical techniques are available and certain problems regarding

points on a boundary (cf. [37]) are avoided.

In the cases where our experiments can be compared to previous experiments the results

are largely in agreement. The new results presented here are:
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(1) An accurate energy calculation that computes and minimizes roundoff error.

(2) A technique to compare configurations rapidly that is based on computational

geometry and graph theory.

(3) An estimate of the parameters describing exponential growth of the number of stable

configurations for a given value ofN.

(4) Initial results for the observed minimal discrete energy forN = 20, . . . ,200 and

s= 2, 3.

5.1 The Setting

The following map

[0,2π] × [0, π] 3 (ϕ, θ)→ r(ϕ, θ) := (cos(ϕ) sin(θ), sin(ϕ) sin(θ), cos(θ)) ∈ S2 ⊂ R3 (5.2)

takes a point from the rectangle[0,2π]× [0, π] toS2. The azimuthal angle isϕ and the polar

angle isθ. A configuration ofN points onS2 may be viewed as the image of a point in the

cube([0,2π] × [0, π])N as follows:

([0,2π] × [0, π])N 3 (ϕ1, θ1, . . . , ϕN, θN)→ (r(ϕ1, θ1), . . . , r(ϕN, θN)) ∈ (S2)N.

The energy we are considering is a function of pairwise distances and so two configurations

which are isometric to each other should be identified. As a first step we require that

the first point in the configuration lie at the point(0,0,1) and that the second point lie in

the x-z plane. By appropriate rotations any configuration ofN > 1 points can meet this

requirement, and so the parameterization space we consider is

XN := [0,2π] × ([0,2π] × [0,2π])N−1 3 (θ2, ϕ3, θ3, . . . ϕN, θN),
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where the second point has coordinates(sin(θ2),0, cos(θ2)). We have expanded the range

of the polar angle to[0,2π]. While this allows multiple representations of a point, it also

allows us to identify sections of the boundary ofXN so that the angles may be considered

as elements ofR/2πZ.

We shall denote byΦN the map fromXN to (S2)N. Note thatΦN is analytic onXN. We

shall considerEs in (5.1) as a map from(S2)N to R+ ∪ {∞}. So long as the points making

up the configurationωN ∈ (S2)N are disjointEs : (S2)N → R+ ∪ {∞} is analytic and hence

Es(ΦN) : XN → R+ ∪ {∞} is analytic. We may then consider the gradient∇Es(ΦN) with

respect to the coordinate systemXN, and the2N − 3 square matrix of mixed second order

partials with respect to the same variables i.e. the Hessian ofEs(ΦN) which we shall denote

HEs(ΦN).

5.2 Optimization Tools

Our goal is to minimizeEs(ΦN) over the setXN. Because of the identifications of the

boundary this can be considered as an unconstrained minimization problem. The two tools

we shall use are nonlinear conjugate gradient with line minimization and Newton’s method.

5.2.1 Nonlinear Conjugate Gradient

The basis of conjugate gradient is a modified gradient descent algorithm that avoids

“zig-zagging” down valleys of positive-definite quadratic forms. It is an iterated method

– given a point inXN, we choose a descent direction, move in that direction and choose a

new descent direction. Our scheme for choosing then-th descent directiondn is the Polak-

Ribière updating scheme(cf. [40]), which is based on thenth point x(n), the previous descent

directiondn−1 and the previous pointx(n−1). It is given by the following formula:

dn = −∇Es(ΦN(x(n))) +


(
∇Es(ΦN(x(n))) − ∇Es(ΦN(x(n−1)))

)
· ∇Es(ΦN(x(n)))∣∣∣∇Es(ΦN(x(n−1))

∣∣∣2
 dn−1.
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For the casen = 1, dn is −∇Es(ΦN(x(n))).

5.2.2 Line Minimization

Given a descent directiondn we must choose how far to move in this direction. The

distance to moveα∗ should be a minimum of the following function

R 3 α→ f (α) := Es(ΦN(x(n) + αdn)).

The search forα∗ begins by choosingα1 to be the minimum pairwise separation of the

points onS2 as represented byΦN(x(n)) divided by1000times the largest component ofdn.

Because all partial derivatives of the map in (5.2) are bounded above by1, this initial step

size will not decrease the pairwise separation of points inΦN(x(n)) by more than1/1000.

Our motivation is to avoid regions ofXN where points in the corresponding configuration

on S2 are close together. It is in these regions that the derivatives ofEs become large

and derivative-based minimization techniques may become unstable. Withα1 chosen we

inductively chooseαm+1 to be2αm. We stop when the condition

f (αm) < f (αm−1) and f (αm) < f (αm+1). (5.3)

is met. The condition in (5.3) is referred to as havingbracketed a minimum. Note

that if f (α1) > f (0) we chooseαm+1 to be αm/2. If αm drops below the minimum

separation divided by10,000times the largest component indn, we conclude that the line

minimization has failed to bracket a minimum.

Once a minimum has been bracketed we refine our bracket in one of two ways. The

first is Brent’s Method (cf. [40,§10.2]) where the three bracketing points(αm−1, f (αm−1),

(αm, f (αm) and(αm+1, f (αm+1) are fit to a parabolap. Let (α̃, p(α̃)) denote the vertex of the

parabola, then the center of the refined bracket is chosen to be eitherαm or α̃ depending on

which makesf less. The edges of the refined bracket are chosen fromαm−1, αm+1 andαm
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or α̃ (depending on the choice for the new center) that also bracket the new center and are

closest to the new center. The second method is the Golden Section Search (cf. [40,§10.1])

which chooses the new center of the bracket as

3−
√

5
2

αm+

1− 3−
√

5
2

αm±1

assuming thatαm±1 is further fromαm thanαm∓1. The edges of the bracket are chosen in

the same manner as they are in Brent’s Method.

We conclude that we have an approximate minimum if the highest and lowest values of

f in the bracketing points differ by less than the minimum separation divided by100times

the largest component indn. Note that this relaxes our stopping criteria as the infinity norm

of dn decreases. The line minimization algorithm starts by attempting to obtain an initial

bracket, then using Brent’s Method for ten iterations or until an approximate minimum is

found and then using the Golden Section until an approximate minimum is found.

The rationale for choosing Brent’s Method first is thatf is differentiable and so

the neighborhood around a minimumα∗ should be well approximated by a quadratic.

Essentially, as is discussed in [40], this is the optimist’s approach. If after ten iterations

a local minimum has not been found, then the Golden Section search, which is guaranteed

to decrease bracket width, is put to use.

5.2.3 Newton’s method

Newton’s method is also an iterative method to find zeros of functions and is based on

approximating the derivative with a linear function. We use it to find zeros of the gradient

∇Es(ΦN), the derivative of which is the HessianHEs(ΦN). A first-order expansion of the

gradient∇Es(ΦN) about the pointx(n) is

∇Es(ΦN(x)) ≈ ∇Es(ΦN(x(n))) + HEs(ΦN(x(n)))(x− x(n))
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If x is a minimum, then∇Es(ΦN(x)) = 0. Setting our expansion to zero gives

0 = ∇Es(ΦN(x(n))) + HEs(ΦN(x(n)))(x− x(n)),

and so

HEs(ΦN(x(n)))(x− x(n)) = −∇Es(x
(n)) (5.4)

The value ofx that solves (5.4) is our choice forx(n+1).

Near a minimum the analyticity ofEs(ΦN) implies that Es(ΦN) will be well

approximated by a quadratic form and hence the derivative will be close to linear. In these

cases we expect that Newton’s method will converge rapidly.1 However, unlike conjugate

gradient there is no guarantee that a step of Newton’s method will decrease the value of

Es(ΦN) or bringxn closer to a local minimum thanxn−1.

5.2.4 Accurate Summations

It is well known that ifa, b andc are double precision floating point numbers differing

by many orders of magnitude, then the addition operation performed by most computers

can lead to the following error:

a+ (b+ c) , (a+ b) + c.

This is a result of roundoff error where small numbers may individually fall within

the roundoff error of the larger numbers, but the sum of the smaller numbers is larger

than the roundoff error. The discrete energy of anN-point configuration involvesN(N−1)
2

summands, the smallest of which is six orders of magnitude smaller than the final sum

in the caseN = 500 and s = 3. One goal in these experiments was to minimize this

effect. The naive approach of sorting the summands and re-sorting intermediate sums

1Conditions under which Newton’s method will converge are given in the paper [28] (in Russian) by L.
Kantorovich
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is prohibitively computationally expensive. In response we developed2 the following

algorithm for summing a finite series of numbers:

Assume that the absolute value of the numbers is bounded away from zero byC. We

shall create an array to store summands. Given a summands we assign it to the bin in the

array whose index isblog2
s
Cc. If the bin is empty, we places in that bin. If the bin is not

empty, we empty the bin of its contentt and we placet+s into the array in the same manner

as we placeds into the array. After the last summand has been placed in the array, we add

up the contents of the array starting with the lowest indexed bin. This algorithm has several

benefits.

(1) Most addition operations occur between numbers that are within a factor of two of

each other. It is only in the final sum over the bins in the array that numbers whose

ratio is greater than2 or less than1/2 can be added. The number of such addition

operations is bounded bylog2

∑N
i=1 si, wheres1, s2, . . . , sN are the summands.

(2) This algorithm generates a record for how many summations are performed at each

scale.

(3) The algorithm completes inO(N log2

∑N
i=1 si) time.

We estimate the error for a single addition operation within a given bin using the

following common algorithm: Letb denote the upper bound for a bin. Find the lowest

value forn such that the computer’s floating point representation returns(b+ 2−n) − b = 0.

If n∗ is this lowest exponent then, we say the roundoff error for that bin is2−n∗. To estimate

the error for a sum, we multiply the number of summations performed at each bin by the

roundoff error for that bin.

2This was done in collaboration with Drew Scoggins.
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5.3 Generating Candidate Configurations

The first step is to choose a starting point inXN. We do this by randomly choosing

angles in[0, π] × [0,2π] and making sure that the resulting points onS2 are separated from

all the previous points by at least
√

4π
√

3N
. The rationale for this factor will be discussed

in Section 5.6.2; at this point it is sufficient to know that it is possible to choose such

points. This gives us our starting configuration and hence our pointx(1) ∈ XN. Note that

the configuration will preferentially place points near the poles ofS2. We then alternate

between some number of iterations of conjugate gradient with line minimization and

Newton’s method. We conclude that we have a candidate for a local minimum when neither

method can decrease the energy.

During development this optimization approach appeared to use conjugate gradient

with line minimization to get near a local minimum and then use Newton’s method to

converge rapidly to the minimum. In the cases observed, four or five successive iterations

of Newton’s method would bring the optimization software to the stopping condition.

Because Newton’s method was so effective in finding a minimum, we made some effort

to choose the number of iterations of conjugate gradient so that Newton’s method would be

employed as soon as it was likely to converge. However, a single step of Newton’s method

requires building the Hessian which runs inO(N3) time, so we also sought to avoiding using

Newton’s method when it wouldn’t converge. In addition, conjugate gradient incorporates

information from previous steps to improve the search direction. Running conjugate

gradient for too few iterations would mimic steepest descent and was not effective3. It is

known that conjugate gradient can “lose conjugacy” if run for too many steps and become

ineffective. The final choice for the number of consecutive iterations of conjugate gradient

was three times the number of points which is roughly1.5 times the number of degrees of

freedom.4

3In experiments where conjugate gradient was replaced with steepest descent performance dropped
dramatically.

4The author has since been told that conjugate gradient should not run for more consecutive iterations
than there are degrees of freedom.
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The algorithm was used in two phases. In the first phase all iterated summations

(summations appearing within for-loops) were performed in the natural way. When the

stopping condition was met, the program was rerun using the final configuration as the

starting point. During this second run a flag was set that caused the program to use

the accurate summation technique described in section 5.2.4 for all iterated sums; this

includes sums in computing the energy and in building the gradient and the Hessian. For

the logarithmic energy there is no lower bound for the magnitude of a summand in the

energy calculation. We fixed the constantC as described in section 5.2.4 atlog diamS2;

any summands of magnitude less than this were added to the zeroth bin.

5.4 Criteria for a Minimum

In an abstract setting the stopping condition – that neither conjugate gradient nor

Newton’s method can decrease the energy – is only achieved when a pointx ∈ XN is

precisely at a local minimum ofEs(ΦN). It is unlikely that this will occur unless some

neighborhood of a stable minimum is exactly a positive quadratic form. We conclude that

the stopping condition most likely indicates that possible reductions in energy are smaller

than the roundoff error in the energy calculation. Further, we did not make a systematic

check to see if the optimization software completed with several successive iterations of

Newton’s method. To address this we consider the following tests for stability.

5.4.1 A Positive-Definite Hessian

After the optimization software has completed both the initial and final stages, we have

a candidate for a local minimum̃x ∈ XN. In a multivariate setting a sufficient condition

for a point to be a local minimum is that the Hessian at that point is positive-definite.

This requirement is not necessary e.g. the objective functionf (x, y) = x4 + y4 has a local

minimum at(0,0) but the Hessian at that point is all zeroes. Because our goal is to establish
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a lower bound on the number of stable configurations we shall require that Hessian with

respect to the coordinates ofXN is positive-definite.

5.4.2 Lowest Eigenvalue of the Hessian

In most cases the optimization method stopped with a non-zero gradient indicating that

an actual minimum was not achieved. In this section we use some mild assumptions to

bound the distance in the spaceXN between the stopping point and the actual minimum.

If x̃ is near an actual local minimumy, then we may write the gradient∇Es(ΦN) at x̃ as

an expansion abouty.

∇E(ΦN(x̃)) ≈ ∇E(ΦN(y)) + HEs(ΦN(y))(x̃− y).

By the assumption thaty is a local minimum, and that the Hessian aty is nearly the same

as the Hessian at̃x, we obtain

(x̃− y) ≈ [HEs(ΦN(x̃))]−1∇Es(ΦN(x̃))

Note that [HEs(ΦN(x̃))]−1 exists because the Hessian is positive-definite. If we let

UDU−1 = HEs(ΦN(x̃)) be the diagonalization of the Hessian atx̃ (i.e. U is unitary and

D is a diagonal matrix whose entries are the eiganvalues ofHEs(ΦN(x̃))), then we have the

following bound on|x̃− y|:

|x̃−y| ≈
∣∣∣∣[UDU−1

]−1
∇Es(ΦN(x̃))

∣∣∣∣ = ∣∣∣UD−1U−1∇Es(ΦN(x̃))
∣∣∣ ≤ ‖D−1‖ · |∇Es(ΦN(x̃))|. (5.5)

Here‖M‖ denotes the operator norm of the matrixM acting on Euclidean space and|x|

denotes the Euclidian length of a vector inx ∈ XN. BecauseD is diagonal,‖D−1‖ is the
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inverse of the smallest eigenvaluedmin. The bound we obtain is then

|x̃− y| .
|∇Es(ΦN(x̃))|

dmin
. (5.6)

Note that the Euclidian norm|x̃− y| is computed in the spaceXN.

We require that the right hand side of (5.6) is less than1/10,000 the minimum

separation between any pair of points in the configuration as represented onS2. As noted

earlier, if one changes a specific angle (i.e. a single component ofx ∈ XN) by δ, the

corresponding change of the location of a point in the configuration onS2 will be less than

δ. It follows from the assumption that the Hessian is constant, that if|x̃− y| is less than the

minimum separation of two points in the configuration divided by10,000, then the points

will not need to move more than1/10,000of the minimum separation to be positioned at

an actual stable minimum.

This condition is probably much more restrictive for the following reasons: First, the

quantity|x̃− y| is likely due to many components ofx̃ andy differing, not just one. Second,

there is considerable spread in eigenvalues of the Hessian due to the fact that the partial

derivatives ofEs(ΦN) with respect to the azimuthal angle of points close to the north or

south poles will be much smaller than the partial derivatives with respect to the azimuthal

angle of points located at the equator. The final inequality of (5.5) chooses the reciprocal

of the smallest, thus maximizing our upper bound.

5.4.3 Comparison of the Lowest Eigenvalue with the Gradient Norm

It is natural to ask whether the minimum eigenvalue or the gradient norm contributes

more to the right hand side of (5.6). For the casesN = 200ands= 1, 3, the right hand side

of (5.6) is highly correlated with the gradient as is shown in the log-log plot in Figure 5.1.

The suggests that the eigenvalue test is in agreement with a similar test requiring that the

norm of the gradient be small.
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Figure 5.1: A plot of two tests of stability forN = 200ands= 1, s= 3.

The points in Figure 5.1 appear to be clustered. The lower left of each data set represent

points that we accept. In this case we accept every point to the left of the vertical line at

10−5. The points in the upper right indicate cases where the optimization software failed

entirely. The middle of the graph suggests that there is a range of gradient norms for the

candidate configurations. This poses a question. If the gradient had such a large norm, then

conjugate gradient, the first step of which is steepest descent, should have made progress.

This suggests that certain descent directions are not explored.

The fraction of candidate configurations that pass both tests is shown in Figure 5.2.

5.5 Implementation of Configuration Generation

The software to implement these algorithms and to test the candidate configurations

was written in the C programming language and compiled for AMD Opteron and the IBM

PowerPC processors running the CentOS Linux operating system and for the Motorola G4

and Intel Core Duo processors running Apple’s OS X operating system. The first phase
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Figure 5.2: A plot of the fraction of the candidate configurations passing both tests for
stability.

of the computations were performed at Vanderbilt’s computing cluster on the Opteron and

PowerPC processors. The second phase of the calculation that used the accurate summing

techniques was run on servers at the Vanderbilt math department and at the author’s home

on the Core Duo processor.

The LAPACK library provides an interface to hardware accelerated matrix operations.

This library is available for all the combinations of processor type and operating system

listed and was used for the matrix operations described above. To test if the Hessian

was positive-definite, we instruct LAPACK to perform a Cholesky decomposition. One

of the error codes returned by this call reports that the matrix in question is not positive-

definite. The eigenvalues of the Hessian were obtained by performing a singular-value

decomposition.

For each value ofN = 20, . . . ,500 and s = 0,1,3 roughly one thousand candidate

configurations were generated. Fors = 2 and the same range of values ofN, roughly600

candidate configurations were generated.
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5.6 Computational Geometry

Having generated configurations onS2 that pass our stability test, we would like to

understand the relative positions of the points making up these configurations, and in

particular we would like to establish a technique to compare two configurations rapidly

and determine if there is an isometry mapping one configuration to another. A simple

approach is to take the first configuration and place a point at(0,0,1) and another point on

the x-z plane, and then to search for a rotation and reflection of the second configuration

that does the same and also causes the points to match up with each other. Because the

rotations of the second configuration are indexed by pairs of points, there are2N(N − 1)

possible rotations and reflections. Because the points in the configurations are ordered

randomly, checking if a point in the first configuration corresponds to a point in the second

configuration requires looking at every point in the second configuration. From this we

see that this simple approach has a run time that isO(N4). We present a new method to

compare configurations onS2 that is substantially faster.

One of the central tools we use is computational geometry. We begin with a review

of some basic definitions. Given a collection of distinct pointsωN ⊂ R
p the Voronoi

(alternatively Dirichlet) cellsfor ωN are convex subsets ofRp around each point inωN

formed as follows: Pickx ∈ ωN. For everyy ∈ ωN let Hxy denote the closed half-space of

Rp containingx that is bounded by the plane forming a perpendicular bisector of the line

segment connectingx andy. The Voronoi cellVx for the pointx is given by

Vx :=
⋂

y∈ωN\{x}

Hxy.

Theconvex hullof ωN is the intersection of all half-spaces that containωN. TheDelaunay

triangulationof ωN divides the convex hull ofωN into simplices according to the following

rule: A simplexK belongs to the Delaunay triangulation ofωN ⊂ R
p if, and only if, the
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Figure 5.3: The circumcircles in gray associated with a Delaunay triangulation of the black
points. (This image is courtesy of Wikipedia via the GNU free documentation license.)

p + 1 vertices ofK are inωN and the interior of the sphere passing through thesep + 1

points contains no point inωN.

It is a standard result that the Delaunay triangulation and Voronoi cells of a collection

of points inRp are geometric duals. More concretely, the Delaunay triangulation can be

thought of as connecting nearest neighbors inRp. Figure 5.3 shows a collection of black

points with their associated Delaunay triangulation and circumcircles. The centers of the

circumcircles are the red points. Figure 5.4 shows the duality between the Voronoi cells

and the Delaunay triangulation. Note that the centers of the circumcircles are the vertices

of the Voronoi cells.

It is important to bear in mind that the Delaunay triangulation need not be unique.

Given any finite collectionP of N > 2 points distributed onS1 ⊂ R2 every triangulation of

the convex hull ofP consisting of triangles whose vertices are drawn fromP is a Delaunay

triangulation. This results from the simple fact that no point lies in the interior of the

circle passing through any three elements ofP. If we let x̃ denote the center ofS1, and
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Figure 5.4: The Voronoi cells (bounded by the red lines) are the geometric dual of the
Delaunay triangulation of the black points. (This image is courtesy of Wikipedia via the
GNU free documentation license.)

let P̃ := P∪ {x̃}, then the Delaunay triangulation ofP̃ is unique. If we remove any edges

containingx̃ as an endpoint, then we have a Delaunay triangulation ofP that is in some

sense restricted toS1. Note that the triangles in the Delaunay triangulation ofωN ⊂ R
2 are

replaced by line segments in the “circular Delaunay triangulation” ofωN ⊂ S
1.

5.6.1 Spherical Delaunay Triangulations onS2

We shall extend the idea of circular Delaunay triangulations toS2. Given a configuration

ωN ⊂ S
2 we shall consider the Delaunay triangulation ofωN ∪ {(0,0,0)} and ignore any

face that contain(0,0,0) as a vertex. In the same manner that our circular triangulations

are over lower dimension than the ambient space, here we replace tetrahedrons inR3 with

triangles that are roughly speaking restricted toS2. When this algorithm succeeds we refer

to the result as aspherical Delaunay triangulation. Figure 5.5 shows such an example.

There are two ways by which this method could fail to produce a usable spherical
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Figure 5.5: A sample spherical Delaunay triangulation from a configuration of500points
onS2.

Delaunay triangulation. The first is if a configurationωN contains a subset of more than

three points that is cospherical with(0,0,0). This would occur if four points fromωN

lie on circle on the sphere – perhaps forming the vertices of a square – and no points

in ωN lie in the spherical cap bounded by the circle. The second is if more than three

points inωN are nearly cospherical. This could occur if the actual stable configuration

contains four points located at the vertices of a square, but the optimization software stops

before the points reach those vertices. While this will give us a unique spherical Delaunay

triangulation, another trial my produce a candidate configuration that is extremely close

to the first candidate, but has a different spherical Delaunay triangulation. In Figures 5.6

and 5.7 two configurations are shown that, due minute changes in the location of the points,

have different spherical Delaunay triangulations. Given that points in the configuration are

nearly isometric, we do not want to treat these configurations as distinct. With this in

mind we perform the following two tests to determine if we accept a spherical Delaunay

triangulation ofωN:
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Figure 5.6: A Delaunay triangulation for a stable configuration of 24 points onS2.

Figure 5.7: A Delaunay triangulation for a configuration that is very similar to the
configuration in figure 5.6. Note that the orientation of the two triangles facing out of
the page as compared to Figure 5.6.
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First, if the convex hull ofωN contains a face with more than three sides, the

triangulation is marked as bad. If a triangulation passes the first test, we then examine

the unit vectors normal to the faces in the triangulation. If the dot-product is too close to

one, we conclude that we may be in the situation illustrated by Figures 5.6 and 5.7 and we

mark the triangulation as bad. We appeal to the following approximation for determining

how close is too close.

If we act under the assumptionS2 can be triangulated with equilateral triangles – for

mostN it cannot, but Figure 5.5 suggests that the triangles are close to equilateral – then

we may consider the distance between the center of one triangle and the center of the

next and use this as a basis for estimating the minimum average dot-product between unit

vectors normal to the faces in the spherical Delaunay triangulation onS2. Using a small

angle approximation we obtain that the average minimum dot product should be roughly

1−
8π

3
√

3F
whereF is the number of faces. For a triangulation ofωN we then compute the

following:

dmin(ωN) := min

{
1− a · b

8π/3
√

3F
: a andb are normal to faces in the triangulation ofωN

}
.

The quantitydmin(ωN) has the benefit that it measures how close to parallel two faces are

in a manner that is independent ofF. If dmin(ωN) ≤ 1/10,000, we mark the spherical

triangulation as bad.

5.6.2 Spherical Voronoi Cells onS2

Once we have an acceptable spherical Delaunay triangulation, we may generate

Voronoi cells onS2 as follows: Given a pointx ∈ ωN consider the triangles in the

triangulation ofS2 for which x is a vertex. For each of those triangles find the intersection

of the perpendicular bisectors of the edges of the triangle. Use those intersections as the

vertices of a region that we shall call the Voronoi cell forx restricted toS2. Figure 5.8
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Figure 5.8: Sample Voronoi cells for the configuration of500points used in Figure 5.5.

provides an example of the Voronoi cells derived from the Delaunay triangulation shown

in Figure 5.5. We have used the color of the Voronoi cell to indicate the number of nearest

neighbors. In the stable minima for which we have generated and examined the Voronoi

cells, the points onS2 appear to be arranged in a generally hexagonal pattern.

Following reasoning similar to that used to estimate the dot product for vectors that

are normal to adjacent triangles in the triangulation ofS2 we may estimate the distance

between a point and its nearest neighbors by assuming that the sphereS2 is tiled with

regular hexagons. In this case we approximate the distance between nearest neighbors in a

configurationωN as

√
8π

N
√

3
.

5.7 Implementation of Computational Geometry Tools

Generating the convex hull and the Delaunay triangulation ofωN ⊂ R
p was done using

the QHull package5. The software to create and test the spherical Delaunay triangulations

5QHull was developed by the University of Minnesota’s now defunct Geometry Center. This package was
written by researchers specializing in computational geometry, was extremely fast and minimized the effects
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and to create the Voronoi cells were written in the C and Java programming languages.

They did not use any hardware specific features and could be run on any Posix compliant

operating system for which there is a Java Virtual Machine (e.g. Linux and the Macintosh

OS X operating systems.)

5.8 Graph Theory

If we have a collection of configurations onS2 and these configurations all have

good spherical Delaunay triangulations, then we may speed the process of comparing the

configurations by using an algorithm presented in [31] that is used for comparing planar

graphs.6 The essential idea is to identify a canonical representation for planar graphs so that

two planar graphs are graph-isomorphic if, and only if, their canonical representations are

the same. By excising a point that is separated from the vertices and edges of the spherical

Delaunay triangulation of a configurationωN we may consider our spherical Delaunay

triangulation as a planar graph.

The algorithm works as follows: For any edge(v1, v2) and any orientation (clockwise

or counter clockwise) we number the vertices in the triangulation as follows:

step 1: Letv1 be number1 and letv2 be number2.

step 2: Find the already numbered vertexvc with the lowest numbering that has an

unnumbered neighbor. If no such vertex exists, we’re done.

step 3: Start working around the neighbors ofvc in the chosen orientation, starting with the

lowest numbered neighbor. Skipping the already numbered neighbors, assign the

smallest unused number to any unnumbered neighbor.

step 4: If there is an unnumbered vertex go to step 2.

of roundoff error. Producing comparable software would not have generated results proportional to the time
spent in development.

6The author is grateful to Mark Ellingham for describing the algorithm.
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Once we have a numbering, we create a table whose rows and columns are indexed by

the vertices as numbered by the preceding procedure. We place a1 in the i, j-cell if there

is an edge connecting vertexi and vertexj, otherwise place a0 in that cell. We generate

a row major encoding of the upper right triangle of this table. Because of size constraints,

we then create an MD5 cryptographic digest of this encoding.

This process is repeated for every choice of edge and orientation. For every choice

we record the ordering of vertices, the orientation and MD5 digest when the MD5 digest

is lexically less than the current lowest digest. When this process completes we call the

lexically lowest digest thetag for the graph and we rotate the configuration so that the

first and second point in the corresponding numbering are at(0,0,1) and in thex-z plane

respectively. If the orientation associated with the tag is counter-clockwise, then we reflect

the configuration across thex-z plane. We say a configuration that has been so rotated and

reflected is incanonical position.

The algorithm for generating this tag runs inO(EV) whereE is the number of edges and

V is the number of vertices in the spherical Delaunay triangulation. While this algorithm

is somewhat expensive, it is expensive on a per configuration basis (i.e.O(M) assuming

we haveM configurations to compare) as opposed to being expensive on a per comparison

basis (i.e.O(M2).)

We use this algorithm to compare configurations in canonical position as follows: If

two configurations ofN pointsω1
N andω2

N have the same tag, then compute the following

d(ω1
N, ω

2
N) := max{|xi − yi | : xi ∈ ω

1
N, yi ∈ ω

2
N, i ∈ 1, . . . ,N}.

If d(ω1
N, ω

2
N) < 1/100,000, then we say the configurations are the same. While this may

seem like a fairly large threshold, our goal is to get a lower bound on the number of distinct

stable configurations onS2 and errors resulting from this threshold being too large will

undercount the number of distinct configurations. Note that the quantityd(ω1
N, ω

2
N) can be

computed inO(N) time.
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While this graph theory based test is extremely valuable in identifying the isometry

between two isometric configurations, we never use this test alone to conclude that two

configurations are not isometric. There are two reasons for this. First, it is possible that

there could be a configuration that has a good spherical Delaunay triangulation ofS2, and

that there is a graph-automorphism of this triangulation that does not correspond to an

isometry. As an example consider a four sided polygon in the plane for which all the

angles between sides are different. The group of graph-automorphism is the dihedral group

D4, but the group of isometries is trivial7. Second, the brute-force isometry test is a more

concrete test and the corresponding software is easier to verify.

5.8.1 Tagging Scars

An important benefit of the graph theory algorithm is that it allows us to tag the portions

of a configuration where the hexagonal structure breaks down. Any connected subgraph

of the spherical Delaunay triangulation ofS2 containing only vertices of degree other than

six shall be called ascar. For each scar we generate a tag of the graph consisting of the

scar, the vertices that are connected to the scar by a single edge and the edges connecting

these neighboring vertices8. We include the neighbors of the scar when we form a tag

because many scars have a chain like structure and the connections to the neighboring

points provides information regarding how the chain bends within the larger triangulation.

5.9 Counting Distinct Configurations

We count the distinct configurations for a given value ofN and s in two phases. In

the first phase we generate the spherical Delaunay triangulation of every configuration and

ignore the possibility that the spherical Delaunay triangulations are bad. We say that two

configurations have energies which cannot be satisfactorily distinguished if the difference

7One could address this by storing every ordering of points corresponding to the lexicographically lowest
tag

8Software to identify the scars was written with Whitney Goulart.

120



in energies is less than ten times maximum of the two summation errors as described in

section 5.2.4. We sort the configurations by energy and bin them as follows: We start

with the configuration with the lowest energy and create a bin for it. We go through

the configurations by increasing energy until we find a configuration whose energy can

be distinguished from the energy of the first configuration. We start a new bin for this

configuration and continue the process. When we are done, all the configurations have

been placed in bins. At this point we use the graph theory tags to search for isometric

configurations. This subdivides bins into isometry classes. Within each class we keep the

configuration with the lowest energy and drop the others. When the first phase completes

we have reduced the number of configurations to a large degree. Even if the spherical

Delaunay triangulation for two configurations do not pass our test for goodness, they may

still happen to provide the correct ordering of points to show us that the configurations are

isometric.

At this point we test the configurations for stability and test the validity of the spherical

Delaunay triangulation. Any configuration that does not pass our stability test and doesn’t

have the lowest energy is discarded.

In the second phase we bin configurations by energy as we did in the first phase, but

now we use a brute force isometry test to compare configurations. Because the number

of configurations to test has been reduced as a result of the first phase, this process is

computationally feasible. We end with a list of stable configurations.

5.10 Implementation of Counting Algorithm

All software implementing the graph theory algorithm and the counting method

described in the previous sections was written in the Java programming language.
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5.11 Results

This section describes some of the initial data analysis. One of the most important

questions is: How does the minimal discrete energy for a givenN ands depend onN and

s? These questions have been addressed with theory, experiment and conjecture and we

shall present our data in this context. More recent questions are: does the number of stable

configurations increase exponentially withN? And what trends can be identified in the

breakdown of the hexagonal structure?

The reader should bear in mind that numerical results can present upper bounds for

the minimal discrete energy and lower bounds for the number of states. In regards to the

number of states, we are really counting the number of states that pass our stability test and

are not isometric to one another.

5.11.1 Comparison with Prior Experiments

Similar experiments with the goal of numerically approximating the minimal discrete

energy have been performed in a variety of settings (cf. [11, 12, 36, 43].) We shall

look closely at the results obtained in [36, 43] because the methodologies used in those

experiments differ from ours and provide an interesting point of comparison.

In [43] Rakhmanov, Saff and Zhou perform related experiments. Those in common

with ours are fors = 0, 1 (α = 0, α = −1 respectively in their paper) andN = 2, . . . ,200,

212, 272 and 282. They parameterize the sphere using a stereographic projection and

their parameter space is(R2)N. For s = 0 they use a combination of steepest descent and

a version of Newton’s method that does not require solving the full linear system. For

s = 1, they use conjugate gradient and a variable metric method. As with the experiments

described here, they start with1000random initial configurations for a given value ofN

ands. For the descent-based methods, they do not use a line minimization but rather a step

size computed from the state of the configuration. The absolute value of the differences

between the results of Rakhmanov, Saff and Zhou and the results in this document for
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Figure 5.9: The absolute value of the difference of the minimal discretes = 0 energies of
the experiments described in this paper and the experiments of Rakhmanov, Saff and Zhou.

s = 0 ands = 1 are plotted in Figures 5.9 and 5.10 respectively. We examine the results

that differ by more than10−6.

In [36] Morris, Deaven and Ho report results of similar experiments forN =

112, . . . ,200 and s = 1. They indicate that for10 ≤ N ≤ 132 their results are in

agreement with unpublished results of Erber. Morris, Deaven and Ho use a structured

genetic algorithm combined with conjugate gradient. Each generation relaxes the candidate

configurations using conjugate gradient and mimics “mating” by combining portions of

configurations located on random hemispheres of the existing population of configurations.

The absolute value of the differences between the results of Morris, Deaven and Ho and

the results in this document are plotted in 5.11. We examine the results that differ by more

than10−6.

Figures 5.9, 5.10 and 5.11 show that the mean difference in energies of our experiments

and those of Morris, Deaven and Ho is higher than the mean difference in energies between

our experiments and those of Rakhmanov, Saff and Zhou. One possible explanation for this
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Figure 5.10: The absolute value of the difference of the minimal discretes= 1 energies of
the experiments described in this paper and the experiments of Rakhmanov, Saff and Zhou.
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Figure 5.11: The absolute value of the difference of the minimal discretes= 1 energies of
the experiments described in this paper and the experiments of Morris, Deaven and Ho.
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is that our experiments and the experiments of Rakhmanov, Saff and Zhou use a Newton-

like method in conjunction with a descent based approach, whereas Morris, Deaven and

Ho use conjugate gradient alone.

Table 5.1: Differences between current and prior results

N s C. R., S. and Z. M., D. and H. Min.
188 0 (L) -3664.2434024129 -3664.239977217 N.A. 2nd

197 0 -4013.1824623541 (L) -4013.187189799 N.A.
272 0 -7533.1688007506 (L) -7533.180190868 N.A.
282 0 -8084.9967902276 (L) -8085.027739960 N.A.
156 1 (L) 11092.798311456 - 11092.80311478 2nd

170 1 (L) 13226.681078541 13226.682823953 - 2nd

177 1 14364.850519211 (L) 14364.837545298 -
185 1 (L) 15723.720074072 15723.723463950 - 2nd

188 1 (L) 16249.222678879 16249.250131462 16249.25013148 2nd

190 1 (L) 16604.428338501 - 16604.44596500 2nd

196 1 (L) 17693.460548082 17693.476356930 17693.46055212 2nd

197 1 17878.382745772 (L) 17878.340162571 -
198 1 (L) 18064.262177195 - 18064.28806296 5th?
200 1 18438.842717530 - (L) 18438.84227198
272 1 34515.330488416 (L) 34515.193292687 N.A.
282 1 37147.638541777 (L) 37147.294418462 N.A.

Table 5.1 shows the experiments where the reported lowest energies differed by more

than10−6. The columnsN and s indicate the experiment performed. The columns “C”,

“R., S. and Z” and “M., D. and H” indicate the value of the energy as found by this

author, by Rakhmanov, Saff and Zhou, and by Morris, Deaven and Ho respectively. A

dash indicates that the energy is in agreement with the energy in column “C”. When the

column “C” contains the lowest energy, the column “Min.” indicates the index of the

stable configuration whose energy is in agreement with the other experimental values (the

configuration with the lowest energy has index1.) The lowest energy is marked by “(L)”.

The caseN = 196ands = 1 indicates that the energies in this experiment differ from

the energies in the experiment performed by Morris, Deaven and Ho by more than10−6.

However, the second stable minimum we found was separated from our lowest minimum
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by considerably more than the difference between the values reported by the experiments.

We allow for the possibility that in this case Morris, Deaven and Ho had found the same

minimum, but their conjugate gradient algorithm stopped prematurely.

The question mark next to the index of the minimum forN = 198ands = 1 indicates

that the energy reported by Morris Deavon and Ho lies between the energies of the fourth

and fifth stable configurations we observed. This could indicate that their conjugate

gradient algorithm stopped prematurely or that they found a stable configuration we did

not.

The conclusion we draw is that for20 ≤ N ≤ 200 the experiments are largely in

agreement. ForN > 200 there are reasons to suspect that our experiments were unlikely

to find the ground state configuration on the sphere. In [13] Erber and Hockney suggest

that the number of stable configurations grows exponentially withN. If this is the case,

then forN larger than200we expect that the number of stable configurations will greatly

exceed the number of trials we ran. Consequently the chance of finding the global minimum

decreases. For the casesN = 272and282; our lowest energy was so much higher than the

lowest energy found by Rakhmanov, Saff and Zhou that it suggests that there are a number

of states with energies laying between the energy they found and the energy we found. This

indicates that we should not consider the lowest energies we have found forN > 200 as

probably globally minimal.

Further confirmation is shown in Figure 5.12 where we plot the number of distinct

configurations passing our stability tests divided by the number of trials that resulted in a

stable configuration. AsN grows much beyond200, the number of distinct configurations

found is approximately the total number of trials resulting in a good configuration. It is

reasonable to assume that at this saturation point the next stable configuration resulting

from running the optimization software would be a new one. For this reason it seems likely

that the number of trials we performed is insufficient to find all the stable minima and in

particular to find the ground state.
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Figure 5.12: The ratio of the number of distinct states to the number of trials leading to
good configurations as a function of the number of pointsN.

5.11.2 Estimating Growth of the Number of Stable Minima

Based on Figure 5.12 we shall try to estimate the values ofN for which we can

reasonably assume we have found most of the stable configurations. The growth of the

graph with lowN is most certainly due to the increase in the number of stable minima. The

plateau at1 starting at roughlyN = 200 can be reasonably assumed to follow from the

fact that there are more stable configurations than trials performed. Based on an admittedly

subjective judgment, one could imagine that the former effect dominates forN ≤ 160.

Figure 5.13 shows the growth of the number of distinct stable configurations as a

function ofN for the range ofN where we have reason to believe we have seen the majority

of stable configurations (i.e.20 ≤ N ≤ 160.) On the hypothesis of exponential growth as

presented in [13], fitting these data to a function of the formAeαN gives parameters for

growth. Table 5.2 shows the results.

Note that the results of this fit is highly dependent on the value ofN chosen. If we fit

data forN = 20, . . . ,180the value ofA increases by an order of magnitude while the value
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Figure 5.13: The number of distinct states as a function of the number of pointsN.

Table 5.2: Estimated growth of number of minima withN

s A α

0 0.173811± 0.04772 0.0472814± 0.00182
1 0.236733± 0.06899 0.046808± 0.001933
2 0.473013± 0.1389 0.0413641± 0.001966
3 0.355103± 0.09599 0.0466184± 0.001794

of α decreases. If these parameters reflect the actual growth of the number of stable minima

with N, then forN = 500we expect millions of distinct stable configurations and conclude

that it is highly unlikely that we have observed the ground state configuration.

5.11.3 Estimating the Growth of Energy

In this section we compare our observed growth in minimal energy as a function ofN

with previous results, observations and conjectures.

The value in obtaining an accurate expansion of the minimal discrete energy in terms

of N is that a given term in the expansion often provides a physical understanding of the

128



nature of the energy. Two examples are theN2 term and theN1+s/2 term. Whens < 2, the

leading term is of orderN2. This is proven in Proposition 2.5.2. The central idea in this

proof is that the Riesz kernel is integrable, and that the minimal energy points provide a

sampling set for the Riesz kernel that approximates the equilibrium measure – the term is

N2 because we are performing a double integral. More generally theN2 term reflects an

interaction over all pairs of points.

Whens > 2, Hardin and Saff show in [24] that the leading term is orderN1+s/2. They

prove this result first for the cube (or square as it applies to the case ofS2) using a self-

similarity argument. A result of their argument is that theN1+s/2 term reflects the local

structure of the configurations of minimal energy points. The conjectured value for this

leading term is connected to the expectation that, for two-dimensional compact manifolds,

the ground state will be largely hexagonal.9

Numerical results corroborate conjectures that for0 < s < 2 the second order term

is order N1+s/2 and for some range ofs > 2 the second order term isN2. A natural

interpretation of these conjectures is that fors < 2 the discrete minimal energy reflects

the global structure first and the local structure second, whereas, for some range ofs > 2,

the local structure dominates and the second term reflects the global structure.

The main tool in examining the expansion is the residual difference between the

observed data and the expansion. The expansion may be qualitatively described as good if

the residuals are small compared to the smallest term in the expansion for the range ofN

under consideration, and if the residuals do not have any obvious structure.

9While many accept that the hexagonal lattice is the ground state for particles on a two dimensional set
interacting via a Riesz potential, there is no proof of this. If ones takes the appropriate limit ass ↑ ∞, one
obtains the problem of best packing. In this case it is proven in [19] (also cf. [20]) that the hexagonal lattice
is optimal.
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5.11.4 Growth of Energy for s= 0

In [42] the expansion for the minimal discretes = 0 energy on the sphere is shown to

be of the form

E0(S
2,N) ≈ −

1
4

log

(
4
e

)
N2 −

1
4

N logN + BN+ O(N)

for someB, and is conjectured to be of the form

E0(S
2,N) ≈ −

1
4

log

(
4
e

)
N2 −

1
4

N logN + BN+C logN + O(1). (5.7)

The problem of minimizing thes= 0 energy is equivalent to the problem of maximizing

the product of the pairwise distances between points onS2. Solutions to this problem are

of considerable value and consequently the seventh of Smale’s eighteen problems for the

twenty-first century [46] is to find an algorithm whose run time grows as a polynomial in

N that can create a configuration of pointsωN ⊂ S
2 so that

E0(ωN) − E0(S
2,N) < C logN

for some valueC. One of the difficulties of this problem is the lack of a theoretical

description of growth accurate to within orderlogN10.

In [43] the authors use their results to suggest an expansion of the form

E0(S
2,N) ≈ −

1
4

log

(
4
e

)
N2 −

1
4

N logN − 0.026422N + 0.13822. (5.8)

Note that this expansion does not include alogN term.

Using the best available data forN = 20, . . . ,200, 212, 272 and 282 from our

10Smale’s eighteenth problem is to find the limits of human and artificial intelligence.
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Figure 5.14: The difference between the best fit and the observed minimal discrete energy
for s= 0.

experiments and from those found in [43] we varyα, β andγ to obtain a fit of the form

E0(S
2,N) ≈ −

1
4

log

(
4
e

)
N2 −

1
4

N logN + αN + β logN + γ.

The results as computed by KaleidaGraph and confirmed with GNUPlot are:α =

−.026669± 4.5917× 10−5, β = .023322± .0042084andγ = .056395± .014392, where

the sum of the squares of the residuals is0.0184548. One possible explanation for the

difference between these values and those in (5.8) is the curve fitting algorithm. Both

KaleidaGraph and GNUPlot require initial guesses for the free parameters and for both

programs the results depend on the guesses. If the starting value ofβ is zero, then GNUPlot

finds a solution very much like that in (5.8). However in that case the sum of the squares of

the residuals is0.0215498. We conclude that this curve fitting problem is a minimization

problem with several local minima and that it is hard to know if a given minimum is the

global minimum. More significantly we feel the data allow for a non-zerologN term.
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5.11.5 Growth of Energy for s= 1

Proposition 2.5.2 implies that the first order term for thes= 1 minimal discrete energy

is 1
2 I1(µ1,S2

)N2 (It is known thatI1(µ1,S2
) = 1). In [29] the second order term is conjectured

to beCsN1+s/2, where the constantCs is given by

Cs := 3

 √3
8π

s/2

ζ(s/2)L−3(s/2).

Hereζ is the classical Riemann zeta function – the analytic extension of

ζ̃(α) :=
∞∑

n=1

1
nα

andL−3 is the DirichletL-function given by

L−3(α) = 1−
1
2α
+

1
4α
−

1
5α
+

1
7α
− . . .

In the cases= 1 numerical computations ofCs give a value of−.553002. In [42] the third

order term is conjectured to be of the formNs/2.

In [43] Rakhmanov, Saff and Zhou fit their data to obtain an expansion of the form

E1(S
2,N) ≈

N2

2
− 0.55230N3/2 + 0.0689N1/2.

In [36] Morris Deaven and Ho perform a similar fit and obtain

E1(S
2,N) ≈

N2

2
− 0.55230N3/2 + 0.0685N1/2.

Using the best available data from our experiments forN = 20, . . . ,200and from [36,
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Figure 5.15: The difference between the best fit and the observed minimal discrete energy
for s= 1 assuming the conjectured value for the coefficient of the second term.

43] we fit the following two expressions to the observed minimal discrete energy:

E1(S
2,N) =

N2

2
+ αN3/2 + βN1/2, (5.9)

E1(S
2,N) =

N2

2
− .553002N3/2 + γN1/2. (5.10)

The values of the parameters resulting from the fit are:α = −0.552311± 7.707× 10−6,

β = 0.0691789± 0.001098andγ = 0.162383± 0.002395. The sum of the squares of

the residuals for the fit involvingα andβ was0.447483and the sum of the square of the

residuals for the fit forγ alone was20.5643.

The structure in figure 5.15 immediately suggests that for the range ofN considered,

the expansion given in (5.10) isn’t optimal. Reasonable hypotheses include: the data aren’t

the minimum values; the expansion isn’t valid for the range ofN considered, alternatively

the higher order terms are significant for this range ofN; finally the conjectured value of

the coefficient for second order term isn’t correct.
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Given the similarity in the parameters we obtain in the fit of (5.9) to those obtained

in [36,43] we refer the interested reader to those papers for a plot of the residuals.

5.11.6 Growth of Energy for s= 2

In [29] and also in [24] the leading term in the growth of the minimalN point s = 2

energy is shown to be

E2(S
2,N) =

1
4

N2 logN.

The next order term is conjectured to be of the formCN2.

In the cases ofs= 2 ands= 3 we do not have data from other experiments with which

to compare our data. Given that we performed600trials and that approximately90%(See

Figure 5.2) of them lead to stable configurations, we assume that, at most, we could have

identified540distinct stable states. The growth parameters from table 5.2 suggests that at

N = 173the number of stable configurations will exceed this. For this reason we examine

the data forN = 20, . . . ,173when studying the expansion of thes= 2 energy as a function

of N.

We fit the expression

E2(S
2,N) = αN2 logN + βN2

to the data and obtainα = 0.124475± 1.42× 10−5 andβ = −0.0392098± 7.045× 10−5 and

the sum of the square of the residuals is38.4787

Figure 5.16 suggests that the residuals have some structure in that the observed data

exceeds the expansion for low and high values ofN examined.
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Figure 5.16: The difference between the best fit and the observed minimal discrete energy
for s= 2.

5.11.7 Growth of Energy for s= 3

In [29] for the cases> 2 is shown that11

lim sup
N→∞

E3(S2,N)
N1+s/2

≤
Cs,2

H2(S2)s/2
(5.11)

The constantCs,2 is given by

1
2

 √3
2

s/2

ζL(s),

whereζL(s) is the zeta function associated with the hexagonal lattice. That is ifL consists

of all points in the hexagonal lattice of edge length1, then

ζL(α) =
∑

r∈L\{0}

1
|r |α

.

In [29] it is conjectured, and in [24] it is shown, that the limit superior of the left hand

11In this result, the measureH2 has been normalized so that it agrees withL2 when restricted toR2.
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Figure 5.17: The difference between the best fit and the observed minimal discrete energy
for s= 3.

side of (5.11) can be replaced by a limit. And in both papers it is conjectured that the value

of the limit is the right hand side of (5.11). The results in [24] are broader in thatS2 may

be replaced by any compactd-rectifiable manifold.

For the range ofs under consideration (s > 2) the functionζL has the following

factorization(cf. [29])

ζL(s) = 6ζ(s/2)L−3(s/2).

We compute the coefficient of the leading order term as0.0998139for the cases= 3. For

this case the second order term is conjectured to be of the formCN2.

Based on arguments similar to those in Section 5.11.6 we feel that forN > 168 we

expect that there are more stable configurations than there are trials we have run that led

to configurations passing our stability criteria. For this reason we examine data forN =

20, . . . ,168.
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Fitting a curve of the form

E3(S
2,N) = αN5/2 + βN2

to the data givesα = 0.0999087± 1.411× 10−5 andβ = −0.118845± 0.0001673where the

sum of the squares of the residuals is962.77. The residuals are plotted in Figure 5.17 and

suggest that the expansion is reasonable.

5.11.8 Growth of Scars

In the preceding analysis few assumptions have been made about the structure of

the energy minimizing configurations. The conjectured values for the coefficient of the

N1+s/2 term were tangentially related to the assumption of a ground state dominated by

a hexagonal lattice inasmuch as the terms are related to the zeta function for that lattice,

however the bulk of the theory and questions have been agnostic about the local structure

of the ground state.

In [5] Bowick, Cacciuto, Nelson and Travesset make the natural but unproven

assumption that the ground state is roughly a hexagonal lattice. Because the Euler

characteristic ofS2 is two,S2 cannot be covered in hexagons. The Voronoi cells cannot all

have six sides, consequently not all of the points can have six nearest neighbors. The points

which do not have six nearest neighbors are referred to asdisclinations. Further, numerical

experiments suggest that disclinations group together. These groupings of disclinations are

referred to as scars. However, unlike our definition of the term, these scars need not be

connected. The approach in [5] is to view minimal configurations in terms of collections

these groupings of disclinations. While the authors of [5] do not provide an exact definition

of scars, they do refer to them as grain boundaries and in numerical experiments these scars

often occur where the the orientation of the hexagonal lattice changes.

Figure 5.18 shows the Voronoi cells for a configuration with1600points resulting from
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Figure 5.18: Examples of disconnected scars on a configuration resulting from optimizing
N = 1600points fors= 4.

numerically minimizing thes= 4 energy. The features of note are that the disclinations are

gathered together into scars, that four of the five scars shown are disconnected, and lastly

that the scars are located roughly at the vertices of an icosahedron circumscribed by the

sphere. The idea presented in [5] is that the hexagonal lattice is flat and that the curvature

of the sphere introduces strain in the lattice that increases with distance. The scars are

the points where energy is lowered if the hexagonal structure is broken and the strain is

relieved. The hypothesis is that the minimal configurations will have scars at the vertices

of an inscribed icosahedron and that these scars will grow in size asN grows.

Our goal in this section is to examine this hypothesis. We use the scar tagging

technique to count the number of connected components of scars in the observed minimal

configurations. We also count the total number of disclinations. The results for this

can be found in Figures 5.19, 5.20, 5.21 and 5.22. We note that the total number

of scar components is fairly constant at12. As N approaches500 the number of scar

components increases, although this is likely due to disconnected scars. The total number

138



 0

 10

 20

 30

 40

 50

 60

 50  100  150  200  250  300  350  400  450  500

N
um

be
r 

of
 D

ef
ec

ts
 fo

r 
s=

0

Number of Points

Number of Scars
Number of Points with other than six nearest neighbors

Figure 5.19: The growth of scars and disclinations fors= 0.

of disclinations grows and we conclude, based on these data, that scar size does grow with

N. The small number of scars for smallN is due to insufficiently many points to generate

a hexagonal lattice of any extent.

One should bear in mind that in Figures 5.19, 5.20, 5.21 and 5.22, the consistent growth

of the number of disclinations beyond12occurs for a range ofN for which we do not expect

that these experiments found the global minimal configuration.

Of particular interest is the point corresponding toN = 174, s = 0 in Figure 5.19.

Here, in stark contrast to nearby values ofN, there are only six scars and54 disclinations.

Figure 5.23 shows the Voronoi cells for the configuration. The scars are quite large

compared to the size of scars for values ofN near174. Further, the scars appear to be

located at the centers of faces of a cube enclosing the sphere, suggesting a symmetry that

is not based on the icosahedron.
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Figure 5.20: The growth of scars and disclinations fors= 1.
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Figure 5.21: The growth of scars and disclinations fors= 2.
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Figure 5.22: The growth of scars and disclinations fors= 3.

Figure 5.23: The Voronoi cells for an experimentally obtained ground state forN = 174
s= 0. Note the symmetry as compared to the configuration forN = 24 in Figure 5.6.
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CHAPTER 6

OPEN QUESTIONS AND FUTURE WORK

The results presented so far suggest the following areas of inquiry:

(1) Can we show that the asymptotic distribution of minimal discreted-energy

configurations agrees with the minimizer of our normalizedd-energy Ĩd? Such a

result would likely be new for the case of strictly self-similard-fractals. More

generally, under what conditions can the asymptotic distribution of the minimal

discretes-energy configurations be related to a continuous problem? In [4] it is

shown for a fractal setA andssufficiently large, thatEs(A,N) oscillates, asN→ ∞,

on a scale proportional to its highest order term. This suggests a set formed from the

union of such a fractal and ad-rectifiable fractal of the same dimension might not

have a single asymptotic distribution.

(2) Can one construct a weighted normalizedd-energy whose unique minimizer agrees

with a prescribed measure? In such a setting could similarly weighteds-energies

produces-equilibrium measures that converge to this prescribed measure?

(3) The two proofs that thes-equilibrium measures converged in the weak-star sense

to the uniform measure both relied on different localization properties. Can this be

generalized and applied to a broader class of sets?

(4) When is the equilibrium measureµs,A absolutely continuous with respect toHd
A? If

µs,A � Hd
A for some range ofs ∈ (s0,d) does the convergence ofµs,A toHd

A/H
d(A)

occur within anLp(Hd
A) space?

(5) For what measuresµ is the functionfµ(s) := (d− s)Is(µ) analytic? What is the range

of the analyticity? For example the analytic extension of(1− s)Is(H1
[−1,1]) has a pole

at s= 2.
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(6) Regarding the numerical experiments: why did the results of the least eigenvalue test

for stability cluster as they did?

(7) DiscreteN-point energy calculations areO(N2). Under what conditions can we use

an approximate energy, such a multipole expansion, and still differentiate stable

configurations? Relatedly, how deep are the energy wells separating the stable

configurations?

(8) Can one develop and test models, such as that presented in [5], that describe

interactions between scars.

(9) Are there good starting points that are in the basin of attraction for a stable minimum

with energy close to that of the global minimum. This problem has been posed by

others in earlier work, but its significance justifies its reiteration.
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APPENDIX A

DATA

Data from the experiments described in Chapter 5 are presented in the following tables.

Each tables presents data for a specific value ofsand a range of values ofN. The columns

of the tables are as follows:

“N”: The number of points.

“Minimum Energy”: The lowest observed energy for the experiments for the given

values ofs andN.

“Stable States”: The number of distinct stable states observed. The criteria for

configurations to be considered stable and distinct is described in Chapter 5.

“ s = 0”, “ s = 1”, “ s = 2”, “ s = 3”: Graph information for other values ofs. If the

experiment in question had a bad graph-tag, then all of these columns are filled in

with “B”. If the experiment has a good graph-tag then a search is performed through

the configurations for other values ofs for the same values ofN. The results of the

search are then placed in the appropriate column. A numbern indicates that thenth

stable minimum for the value ofs associated to that column has the same graph-tag

as the minimum configuration for the experiment performed. If the graph-tag occurs

multiple times, the configuration with the lowest energy is chosen. The letter “N”

indicates that the graph-tag for the minimal configuration did not occur in the list of

tags for the stable minima for the value ofs indicated. The letter “X” indicates that

the graph-tag was found, but the configuration with the lowest energy bearing this

graph-tag had a bad graph-tag. The presence of a number does not indicate that there

is an isometry, only that the graph-tags are good and the same.
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Table A.1: Data fors= 0, N = 20, . . . ,59

N Minimum Energy Stable States s= 0 s= 1 s= 2 s= 3
20 −54.01112997 1 - 1 1 1
21 −59.00091214 1 - 1 1 1
22 −64.20600776 2 - 1 1 1
23 −69.57838259 1 - 1 1 1
24 −75.21398479 1 B B B B
25 −80.99750999 1 B B B B
26 −87.00942306 1 - 1 1 1
27 −93.25198640 1 - 1 1 1
28 −99.65860938 1 - 1 1 1
29 −106.25457117 2 - N N N
30 −113.08925550 1 - 1 1 1
31 −120.11034664 1 - 1 1 1
32 −127.37886761 2 - 1 1 1
33 −134.74782082 1 B B B B
34 −142.37585227 1 - 1 1 1
35 −150.19205851 2 - 1 1 X
36 −158.22406843 1 - 1 1 1
37 −166.45069752 2 - 1 1 1
38 −174.88019715 2 - 1 1 1
39 −183.50922571 2 - 1 1 1
40 −192.33768992 3 - 1 1 1
41 −201.35920665 2 - 1 1 1
42 −210.58451156 2 - 1 1 1
43 −220.00347705 1 - 1 1 1
44 −229.64180149 1 B B B B
45 −239.45369825 1 - 1 1 1
46 −249.45584790 4 - 1 1 3
47 −259.66175985 5 B B B B
48 −270.11794996 1 B B B B
49 −280.70190312 1 - 1 1 1
50 −291.52860066 1 - 1 1 1
51 −302.53367346 3 - 1 1 1
52 −313.73237194 3 - 1 1 1
53 −325.13823470 2 B B B B
54 −336.74546440 4 - 1 1 1
55 −348.54179628 5 - 1 1 1
56 −360.54589924 2 - 2 2 2
57 −372.74120062 4 - 1 1 1
58 −385.13282979 8 - 1 1 1
59 −397.72814966 5 - 1 2 2
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Table A.2: Data fors= 0, N = 60, . . . ,99

N Minimum Energy Stable States s= 0 s= 1 s= 2 s= 3
60 −410.53316279 3 - 1 1 1
61 −423.50763599 5 - 1 1 1
62 −436.70397924 2 - 1 1 1
63 −450.08123918 2 - 1 1 1
64 −463.65443299 7 - 1 1 1
65 −477.42642607 3 B B B B
66 −491.40747003 2 - 2 2 2
67 −505.59261250 1 - 1 1 1
68 −519.94664229 3 - 1 1 1
69 −534.50818618 4 - 1 1 1
70 −549.27505585 6 B B B B
71 −564.23169473 2 - 1 N N
72 −579.42034577 3 - 1 1 1
73 −594.72869843 3 - 1 1 1
74 −610.26707141 8 - 2 N N
75 −626.02346268 2 - 1 1 1
76 −641.96315052 6 - 1 1 1
77 −658.11780984 4 - 1 1 1
78 −674.45299419 4 - 2 2 2
79 −690.97490094 3 B B B B
80 −707.70334618 5 B B B B
81 −724.60446934 5 - 1 1 1
82 −741.71792246 14 - 1 1 3
83 −759.03535475 16 - 1 1 1
84 −776.54543156 11 - 1 1 1
85 −794.25031228 9 - 1 1 1
86 −812.15132187 19 - 2 2 2
87 −830.25191515 14 - 1 1 1
88 −848.55342692 9 - 1 1 1
89 −867.04251640 14 - 1 1 1
90 −885.73182177 22 - 1 1 1
91 −904.61441244 12 - 1 1 1
92 −923.69263633 19 - 1 1 1
93 −942.96395807 18 - 1 1 1
94 −962.43913215 28 - 1 1 1
95 −982.10267832 12 - 1 1 1
96 −1001.96953397 13 - N N N
97 −1022.02397776 8 - 1 1 1
98 −1042.28469040 10 - 1 1 1
99 −1062.72666994 11 - 1 1 1
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Table A.3: Data fors= 0, N = 100, . . . ,139

N Minimum Energy Stable States s= 0 s= 1 s= 2 s= 3
100 −1083.37714054 21 - 1 1 1
101 −1104.20875781 30 - 1 1 1
102 −1125.24648890 35 - 1 1 1
103 −1146.48126010 20 - 1 1 1
104 −1167.91583717 21 - 1 1 1
105 −1189.52030197 20 - 1 1 1
106 −1211.34105988 29 - 1 1 1
107 −1233.35192224 28 - 1 1 1
108 −1255.57113187 25 - 1 1 1
109 −1277.96692689 34 - 1 1 1
110 −1300.57108956 44 - 1 1 1
111 −1323.37521678 32 - 1 1 1
112 −1346.36661369 36 - 1 1 1
113 −1369.54147278 39 - 1 1 1
114 −1392.91949432 53 - 1 1 1
115 −1416.49160795 48 - 1 1 1
116 −1440.25846520 74 - 2 2 3
117 −1464.23264292 75 - 1 1 1
118 −1488.39287053 101 - 1 1 1
119 −1512.75357172 93 - 1 1 1
120 −1537.31267642 67 - 1 1 1
121 −1562.06859738 52 - 1 1 1
122 −1587.03219402 83 - 1 1 1
123 −1612.15297129 66 - 1 1 1
124 −1637.47911003 91 - 1 1 1
125 −1663.00144580 81 - 1 1 2
126 −1688.73013605 109 - 1 1 1
127 −1714.65474034 113 - N 1 1
128 −1740.76259257 132 - 1 1 1
129 −1767.07413795 81 - 1 1 1
130 −1793.58178367 82 - 1 1 1
131 −1820.28217330 83 - 1 1 1
132 −1847.20554490 93 - 1 1 1
133 −1874.26656534 92 - 1 1 1
134 −1901.55512674 105 - 1 1 1
135 −1929.04793880 85 - 1 1 1
136 −1956.72704659 62 - 1 1 1
137 −1984.60269719 90 - 1 1 1
138 −2012.65407868 118 - 1 1 1
139 −2040.90259564 122 - 1 1 1
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Table A.4: Data fors= 0, N = 140, . . . ,179

N Minimum Energy Stable States s= 0 s= 1 s= 2 s= 3
140 −2069.35226042 147 - 1 2 2
141 −2098.00927608 135 - N N N
142 −2126.85329867 119 - 1 1 1
143 −2155.89952457 111 - 1 1 1
144 −2185.14244088 96 - 1 1 1
145 −2214.56887402 90 - 1 1 1
146 −2244.20265977 93 - 1 1 1
147 −2274.01059503 88 - 1 1 1
148 −2304.01977867 151 - 2 2 2
149 −2334.22178132 161 - 1 N N
150 −2364.63224259 204 - 1 1 1
151 −2395.22345412 271 - 1 1 1
152 −2426.01759261 265 - 1 1 1
153 −2457.01518190 259 - 1 1 1
154 −2488.19087645 244 - 1 1 1
155 −2519.56863374 270 - 1 1 1
156 −2551.13317768 333 - 1 1 1
157 −2582.90510682 336 - 1 1 1
158 −2614.86990053 366 - 1 1 1
159 −2647.03231575 290 - 1 1 1
160 −2679.38513532 334 - 1 1 1
161 −2711.92800830 332 - 1 1 1
162 −2744.67023067 359 - 1 1 1
163 −2777.60275049 314 - 1 1 1
164 −2810.73179977 335 - 1 1 1
165 −2844.05672050 381 - 1 1 1
166 −2877.57686768 376 - 1 1 1
167 −2911.28864575 389 - 1 1 1
168 −2945.20367766 396 - 1 1 1
169 −2979.30037673 307 - 1 1 1
170 −3013.60507643 288 - 3 3 3
171 −3048.09911405 284 - 1 1 1
172 −3082.78465723 314 - 1 1 1
173 −3117.66740914 330 - 1 1 1
174 −3152.75008214 310 - 2 N N
175 −3188.01572185 302 - 1 1 1
176 −3223.47504496 452 - 1 1 1
177 −3259.13716127 471 - N 1 N
178 −3294.99049845 451 - 1 1 N
179 −3331.03831581 416 - 1 N N
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Table A.5: Data fors= 0, N = 180, . . . ,200

N Minimum Energy Stable States s= 0 s= 1 s= 2 s= 3
180 −3367.29162492 334 - 2 2 2
181 −3403.72956406 446 - 1 1 1
182 −3440.37370646 504 - 1 1 1
183 −3477.18355890 470 - 1 1 1
184 −3514.20892351 520 - 1 1 1
185 −3551.41816587 610 - 2 2 2
186 −3588.83543401 545 - 1 1 1
187 −3626.45617221 549 - 1 1 1
188 −3664.24340241 534 - 1 1 1
189 −3702.23529643 503 - 1 1 1
190 −3740.42981545 602 - 1 1 1
191 −3778.81801847 512 - 1 1 1
192 −3817.41795618 583 - 1 1 1
193 −3856.16036156 605 - 1 1 1
194 −3895.11694654 555 - 1 1 1
195 −3934.28880272 646 - 1 1 1
196 −3973.63658094 618 - 1 1 1
197 −4013.18246235 715 - 1 1 1
198 −4052.92459102 913 - 1 1 1
199 −4092.86457064 671 - 1 1 1
200 −4133.00307953 691 - 1 1 1
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Table A.6: Data fors= 1, N = 20, . . . ,59

N Minimum Energy Stable States s= 0 s= 1 s= 2 s= 3
20 150.88156833 1 1 - 1 1
21 167.64162240 1 1 - 1 1
22 185.28753615 2 1 - 1 1
23 203.93019066 1 1 - 1 1
24 223.34707405 1 B B B B
25 243.81276030 1 B B B B
26 265.13332632 1 1 - 1 1
27 287.30261503 1 1 - 1 1
28 310.49154236 1 1 - 1 1
29 334.63443992 1 2 - 1 1
30 359.60394590 1 1 - 1 1
31 385.53083806 1 1 - 1 1
32 412.26127465 2 1 - 1 1
33 440.20405745 1 B B B B
34 468.90485328 2 1 - 1 1
35 498.56987249 2 1 - 1 X
36 529.12240838 1 1 - 1 1
37 560.61888773 2 1 - 1 1
38 593.03850357 2 1 - 1 1
39 626.38900902 2 1 - 1 1
40 660.67527883 3 1 - 1 1
41 695.91674434 2 1 - 1 1
42 732.07810754 4 1 - 1 1
43 769.19084646 1 1 - 1 1
44 807.17426308 1 B B B B
45 846.18840106 1 1 - 1 1
46 886.16711364 5 1 - 1 3
47 927.05927068 4 B B B B
48 968.71345534 1 B B B B
49 1011.55718265 1 1 - 1 1
50 1055.18231473 1 1 - 1 1
51 1099.81929032 2 1 - 1 1
52 1145.41896432 4 1 - 1 1
53 1191.92229042 2 B B B B
54 1239.36147473 4 1 - 1 1
55 1287.77272078 6 1 - 1 1
56 1337.09494528 4 2 - 1 1
57 1387.38322925 5 1 - 1 1
58 1438.61825064 8 1 - 1 1
59 1490.77333528 4 1 - 2 2

150



Table A.7: Data fors= 1, N = 60, . . . ,99

N Minimum Energy Stable States s= 0 s= 1 s= 2 s= 3
60 1543.83040098 5 1 - 1 1
61 1597.94183020 6 1 - 1 1
62 1652.90940990 3 1 - 1 1
63 1708.87968150 2 1 - 1 1
64 1765.80257793 6 1 - 1 1
65 1823.66796026 3 X - 1 1
66 1882.44152530 2 N - 1 1
67 1942.12270041 1 1 - 1 1
68 2002.87470175 5 1 - 1 1
69 2064.53348323 5 1 - 1 1
70 2127.10090155 6 B B B B
71 2190.64990643 3 1 - N N
72 2255.00119097 5 1 - 1 1
73 2320.63388375 4 1 - 1 1
74 2387.07298184 9 2 - 1 1
75 2454.36968904 3 1 - 1 1
76 2522.67487184 8 1 - 1 1
77 2591.85015235 5 1 - 1 1
78 2662.04647457 5 2 - 1 1
79 2733.24835748 4 B B B B
80 2805.35587598 6 B B B B
81 2878.52282966 8 1 - 1 1
82 2952.56967529 16 1 - 1 3
83 3027.52848892 15 1 - 1 1
84 3103.46512443 15 1 - 1 1
85 3180.36144294 9 1 - 1 1
86 3258.21160571 23 2 - 1 1
87 3337.00075001 19 1 - 1 1
88 3416.72019676 16 1 - 1 1
89 3497.43901862 18 1 - 1 1
90 3579.09122272 22 1 - 1 1
91 3661.71369932 18 1 - 1 1
92 3745.29163624 21 1 - 1 1
93 3829.84433842 22 1 - 1 1
94 3915.30926962 29 1 - 1 1
95 4001.77167557 17 1 - 1 1
96 4089.15401006 18 N - 1 1
97 4177.53359962 10 1 - 1 1
98 4266.82246416 18 1 - 1 1
99 4357.13916313 14 1 - 1 1
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Table A.8: Data fors= 1, N = 100, . . . ,139

N Minimum Energy Stable States s= 0 s= 1 s= 2 s= 3
100 4448.35063433 27 1 - 1 1
101 4540.59005169 39 1 - 1 1
102 4633.73656590 42 1 - 1 1
103 4727.83661683 24 1 - 1 1
104 4822.87652275 23 1 - 1 1
105 4919.00063762 29 1 - 1 1
106 5015.98459570 44 1 - 1 1
107 5113.95354771 34 1 - 1 1
108 5212.81350783 33 1 - 1 1
109 5312.73507992 45 1 - 1 1
110 5413.54929419 55 1 - 1 1
111 5515.29321459 40 1 - 1 1
112 5618.04488233 51 1 - 1 1
113 5721.82497803 55 1 - 1 1
114 5826.52157216 71 1 - 1 1
115 5932.18128578 73 1 - 1 1
116 6038.81559358 91 3 - 1 1
117 6146.34244658 96 1 - 1 1
118 6254.87702779 126 1 - 1 1
119 6364.34731748 105 1 - 1 1
120 6474.75632498 90 1 - 1 1
121 6586.12194958 81 1 - 1 1
122 6698.37449926 102 1 - 1 1
123 6811.82722817 90 1 - 1 1
124 6926.16997419 104 1 - 1 1
125 7041.47326402 110 1 - 1 2
126 7157.66922487 151 1 - 1 1
127
128 7393.00744307 145 1 - 1 1
129 7512.10731927 125 1 - 1 1
130 7632.16737891 106 1 - 1 1
131 7753.20516694 112 1 - 1 1
132 7875.04534280 129 1 - 1 1
133 7998.17921290 137 1 - 1 1
134 8122.08972119 120 1 - 1 1
135 8246.90948699 120 1 - 1 1
136 8372.74330254 83 1 - 1 1
137 8499.53449478 120 1 - 1 1
138 8627.40638988 140 1 - 1 1
139 8756.22705695 175 1 - 1 1
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Table A.9: Data fors= 1, N = 140, . . . ,179

N Minimum Energy Stable States s= 0 s= 1 s= 2 s= 3
140 8885.98060904 191 1 - 2 2
141 9016.61534919 166 B B B B
142 9148.27157999 157 1 - 1 1
143 9280.83985119 154 1 - 1 1
144 9414.37179446 117 1 - 1 1
145 9548.92883723 108 1 - 1 1
146 9684.38182557 108 1 - 1 1
147 9820.93237837 122 1 - 1 1
148 9958.40600427 163 2 - 1 1
149 10096.85990740 182 1 - N N
150 10236.19643670 251 1 - 1 1
151 10376.57146927 288 1 - 1 1
152 10517.86759288 392 1 - 1 1
153 10660.08274824 341 1 - 1 1
154 10803.37242114 320 1 - 1 1
155 10947.57469228 372 1 - 1 1
156 11092.79831146 415 1 - 1 1
157 11238.90304116 466 1 - 1 1
158 11385.99018620 446 1 - 1 1
159 11534.02396096 343 1 - 1 1
160 11683.05480555 412 1 - 1 1
161 11833.08473946 400 1 - 1 1
162 11984.05033581 427 1 - 1 1
163 12136.01305322 402 1 - 1 1
164 12288.93010532 390 1 - 1 1
165 12442.80445137 463 1 - 1 1
166 12597.64907132 444 1 - 1 1
167 12753.46942975 454 1 - 1 1
168 12910.21267227 501 1 - 1 1
169 13068.00645113 437 1 - 1 1
170 13226.68107854 408 2 - 1 1
171 13386.35593072 449 1 - 1 1
172 13547.01810879 397 1 - 1 1
173 13708.63524303 377 1 - 1 1
174 13871.18709229 387 2 - 1 1
175 14034.78130693 380 1 - 1 1
176 14199.35477563 536 1 - 1 1
177 14364.85051921 495 N - 2 2
178 14531.30955259 616 1 - 1 N
179 14698.75459422 454 1 - N N
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Table A.10: Data fors= 1, N = 180, . . . ,200

N Minimum Energy Stable States s= 0 s= 1 s= 2 s= 3
180 14867.09992753 495 2 - 1 1
181 15036.46723977 531 1 - 1 1
182 15206.73061091 615 1 - 1 1
183 15378.16657103 624 1 - 1 1
184 15550.42145031 727 1 - 1 1
185 15723.72007407 713 2 - 1 1
186 15897.89743705 594 1 - 1 1
187 16072.97518632 584 1 - 1 1
188 16249.22267888 614 1 - 1 1
189 16426.37193886 572 1 - 1 1
190 16604.42833850 727 1 - 1 1
191 16783.45221936 603 1 - 1 1
192 16963.33838646 626 1 - 1 1
193 17144.56474088 702 1 - 1 1
194 17326.61613647 653 1 - 1 1
195 17509.48930393 656 1 - 1 1
196 17693.46054808 735 1 - 1 1
197 17878.38274577 712 1 - 1 1
198 18064.26217720 773 1 - 1 1
199 18251.08249564 797 1 - 1 1
200 18438.84271753 789 1 - 1 1
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Table A.11: Data fors= 2, N = 20, . . . ,59

N Minimum Energy Stable States s= 0 s= 1 s= 2 s= 3
20 133.93697857 1 1 1 - 1
21 150.32512274 1 1 1 - 1
22 167.66578564 2 1 1 - 1
23 186.40371287 1 1 1 - 1
24 205.65843800 1 B B B B
25 226.54507726 1 B B B B
26 248.26713892 1 1 1 - 1
27 270.79840421 1 1 1 - 1
28 294.87847161 1 1 1 - 1
29 320.21603176 1 2 1 - 1
30 346.26363064 1 1 1 - 1
31 373.58086896 1 1 1 - 1
32 401.50000000 2 1 1 - 1
33 431.93183859 1 B B B B
34 462.70123642 1 1 1 - 1
35 494.81643195 1 1 1 - X
36 527.91425658 1 1 1 - 1
37 562.25563823 2 1 1 - 1
38 597.73945308 2 1 1 - 1
39 634.41533338 2 1 1 - 1
40 672.30935350 3 1 1 - 1
41 711.52615148 2 1 1 - 1
42 751.87519682 4 1 1 - 1
43 793.52188633 1 1 1 - 1
44 836.04183181 1 B B B B
45 880.35796932 1 1 1 - 1
46 926.06234385 5 1 1 - 3
47 972.82374491 5 B B B B
48 1019.82958059 1 B B B B
49 1069.55973981 2 1 1 - 1
50 1119.59950653 1 1 1 - 1
51 1171.32838138 2 1 1 - 1
52 1224.47845607 5 1 1 - 1
53 1278.65220625 2 B B B B
54 1334.08489536 4 1 1 - 1
55 1390.96919424 6 1 1 - 1
56 1448.95427411 3 2 1 - 1
57 1508.36883851 7 1 1 - 1
58 1569.06993853 9 1 1 - 1
59 1630.90965834 4 2 2 - N
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Table A.12: Data fors= 2, N = 60, . . . ,99

N Minimum Energy Stable States s= 0 s= 1 s= 2 s= 3
60 1693.79461177 5 1 1 - 1
61 1758.69713396 6 1 1 - 1
62 1824.34692636 3 1 1 - 1
63 1891.63233079 2 1 1 - 1
64 1960.28162697 6 1 1 - 1
65 2030.23367851 4 X 1 - 1
66 2101.27074682 2 N 1 - 1
67 2173.33824541 1 1 1 - 1
68 2247.58774197 5 1 1 - 1
69 2322.89604947 5 1 1 - 1
70 2399.23952414 6 B B B B
71 2477.16344965 3 B B B B
72 2555.40331495 5 1 1 - 1
73 2637.35501432 2 1 1 - 1
74 2719.61432209 8 2 1 - 1
75 2802.57081367 3 1 1 - 1
76 2887.29601466 8 1 1 - 1
77 2972.78857677 5 1 1 - 1
78 3060.13624953 4 2 1 - 1
79 3149.32797599 3 B B B B
80 3239.52254745 8 B B B B
81 3331.89217990 11 1 1 - 1
82 3425.08475447 16 1 1 - 3
83 3519.32494939 17 1 1 - 1
84 3615.17122267 15 1 1 - 1
85 3712.43793664 11 1 1 - 1
86 3811.08956067 24 2 1 - 1
87 3911.03614332 19 1 1 - 1
88 4012.17707431 14 1 1 - 1
89 4115.08458022 19 1 1 - 1
90 4219.21427750 22 1 1 - 1
91 4324.87611878 18 1 1 - 1
92 4431.93316704 29 1 1 - 1
93 4540.58291910 21 1 1 - 1
94 4650.25998102 28 1 1 - 1
95 4761.71053075 12 1 1 - 1
96 4874.27708664 14 N 1 - 1
97 4988.60996990 10 1 1 - 1
98 5103.98944253 17 1 1 - 1
99 5221.37043734 11 1 1 - 1
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Table A.13: Data fors= 2, N = 100, . . . ,139

N Minimum Energy Stable States s= 0 s= 1 s= 2 s= 3
100 5339.66222912 26 1 1 - 1
101 5459.95420894 42 1 1 - 1
102 5581.26509648 34 1 1 - 1
103 5703.99384121 34 1 1 - 1
104 5828.02384908 32 1 1 - 1
105 5954.50986197 26 1 1 - 1
106 6081.65764494 40 1 1 - 1
107 6210.46346350 34 1 1 - 1
108 6340.11590277 34 1 1 - 1
109 6472.13078480 65 1 1 - 1
110 6605.01261375 50 1 1 - 1
111 6739.05470955 50 1 1 - 1
112 6875.00862394 43 1 1 - 1
113 7013.03290905 60 1 1 - 1
114 7152.13631359 69 1 1 - 1
115 7292.70695721 76 1 1 - 1
116 7434.91209894 90 3 1 - 1
117 7577.97606668 95 1 1 - 1
118 7722.90055012 106 1 1 - 1
119 7869.09201544 95 1 1 - 1
120 8016.51874402 91 1 1 - 1
121 8165.39574901 64 1 1 - 1
122 8315.04573336 98 1 1 - 1
123 8468.53352816 118 1 1 - 1
124 8622.71531086 102 1 1 - 1
125 8778.42640658 112 1 1 - 2
126 8934.92328855 182 1 1 - 1
127 9092.79887602 143 1 N - 1
128 9252.94017309 157 1 1 - 1
129 9414.07791355 108 1 1 - 1
130 9576.70572069 99 1 1 - 1
131 9740.98241330 106 1 1 - 1
132 9905.21893494 107 1 1 - 1
133 10074.11435027 113 1 1 - 1
134 10242.72593933 109 1 1 - 1
135 10412.31895342 94 1 1 - 1
136 10583.90082868 82 1 1 - 1
137 10756.94326989 90 1 1 - 1
138 10932.66598141 159 1 1 - 1
139 11109.72897838 157 1 1 - 1
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Table A.14: Data fors= 2, N = 140, . . . ,179

N Minimum Energy Stable States s= 0 s= 1 s= 2 s= 3
140 11288.02333318 224 N 2 - 1
141 11466.96666228 149 B B B B
142 11648.05615753 163 1 1 - 1
143 11830.07319504 119 1 1 - 1
144 12013.67706409 108 1 1 - 1
145 12199.33607646 96 1 1 - 1
146 12385.88421282 92 1 1 - 1
147 12575.33713511 114 1 1 - 1
148 12765.83595181 180 2 1 - 1
149 12958.09798633 163 B B B B
150 13151.00686986 223 1 1 - 1
151 13346.12314680 262 1 1 - 1
152 13542.34883108 365 1 1 - 1
153 13739.67763810 258 1 1 - 1
154 13939.69506964 263 1 1 - 1
155 14140.64034421 270 1 1 - 1
156 14343.73724426 313 1 1 - 1
157 14547.45445049 336 1 1 - 1
158 14752.91586068 419 1 1 - 1
159 14959.70362503 457 1 1 - 1
160 15168.38176793 274 1 1 - 1
161 15378.96405095 308 1 1 - 1
162 15590.76378090 449 1 1 - 1
163 15804.44924964 320 1 1 - 1
164 16019.54585555 328 1 1 - 1
165 16236.08499438 327 1 1 - 1
166 16454.27931547 594 1 1 - 1
167 16674.01270412 341 1 1 - 1
168 16894.91881228 518 1 1 - 1
169 17118.27720784 304 1 1 - 1
170 17342.24309237 311 2 1 - 1
171 17568.15613080 420 1 1 - 1
172 17795.82895023 361 1 1 - 1
173 18024.92946909 411 1 1 - 1
174 18255.26330399 555 2 1 - 1
175 18487.97845990 316 1 1 - 1
176 18722.42290446 620 1 1 - 1
177 18957.76297334 402 1 N - N
178 19194.87800291 382 1 1 - N
179 19433.66536597 348 B B B B
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Table A.15: Data fors= 2, N = 180, . . . ,200

N Minimum Energy Stable States s= 0 s= 1 s= 2 s= 3
180 19673.30446923 389 2 1 - 1
181 19915.01560945 349 1 1 - 1
182 20157.55376950 208 1 1 - 1
183 20404.01522614 546 1 1 - 1
184 20650.30678755 636 1 1 - 1
185 20899.06525088 382 2 1 - 1
186 21148.41475532 671 1 1 - 1
187 21398.49429850 426 1 1 - 1
188 21652.51441151 281 1 1 - 1
189 21907.36432745 773 1 1 - 1
190 22163.05953397 452 1 1 - 1
191 22420.24950115 364 1 1 - 1
192 22677.94397770 832 1 1 - 1
193 22941.55632399 415 1 1 - 1
194 23205.00203699 454 1 1 - 1
195 23468.35335667 789 1 1 - 1
196 23734.77400254 414 1 1 - 1
197 24002.62215229 829 1 1 - 1
198 24271.92840886 436 1 1 - 1
199 24542.45458758 335 1 1 - 1
200 24814.22048170 777 1 1 - 1
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Table A.16: Data fors= 3, N = 20, . . . ,59

N Minimum Energy Stable States s= 0 s= 1 s= 2 s= 3
20 131.81301439 1 1 1 1 -
21 150.23065116 1 1 1 1 -
22 169.83235594 2 1 1 1 -
23 191.85117003 1 1 1 1 -
24 213.89406549 1 B B B B
25 239.07299697 1 B B B B
26 265.14266151 1 1 1 1 -
27 292.02920993 1 1 1 1 -
28 321.90995073 1 1 1 1 -
29 353.90225089 1 2 1 1 -
30 386.40958628 1 1 1 1 -
31 421.09518013 1 1 1 1 -
32 455.94557013 2 1 1 1 -
33 497.01183920 1 B B B B
34 537.28151396 1 1 1 1 -
35 580.06830338 1 B B B B
36 624.20989776 1 1 1 1 -
37 670.55661428 2 1 1 1 -
38 718.70458293 2 1 1 1 -
39 768.95800949 2 1 1 1 -
40 821.32116611 2 1 1 1 -
41 876.19933407 2 1 1 1 -
42 932.90632010 4 1 1 1 -
43 992.03528464 3 1 1 1 -
44 1052.06978959 1 B B B B
45 1116.58437324 1 1 1 1 -
46 1183.91364994 5 N 3 2 -
47 1252.69620404 5 B B B B
48 1319.91872645 1 B B B B
49 1395.30989274 3 1 1 1 -
50 1469.23151162 1 1 1 1 -
51 1547.25107892 2 1 1 1 -
52 1628.38979852 5 1 1 1 -
53 1710.90626912 2 B B B B
54 1795.84509849 4 1 1 1 -
55 1883.97744449 6 1 1 1 -
56 1973.86312052 4 2 1 1 -
57 2066.87780942 6 1 1 1 -
58 2162.33366569 8 1 1 1 -
59 2259.64863823 4 N N N -
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Table A.17: Data fors= 3, N = 60, . . . ,99

N Minimum Energy Stable States s= 0 s= 1 s= 2 s= 3
60 2358.57143341 5 1 1 1 -
61 2463.24269494 6 1 1 1 -
62 2568.13434304 3 1 1 1 -
63 2676.92224484 2 1 1 1 -
64 2788.68063859 7 1 1 1 -
65 2903.10131931 4 X 1 1 -
66 3019.23782474 3 N 1 1 -
67 3136.71780064 1 1 1 1 -
68 3260.89141494 4 1 1 1 -
69 3386.62408637 5 1 1 1 -
70 3513.68078779 7 B B B B
71 3644.74899401 3 N N X -
72 3773.83567661 6 1 1 1 -
73 3917.10911520 5 1 1 1 -
74 4058.16286113 10 2 1 1 -
75 4199.03249875 4 1 1 1 -
76 4344.81548211 12 1 1 1 -
77 4490.64633677 4 1 1 1 -
78 4641.78690729 5 2 1 1 -
79 4798.59956213 5 B B B B
80 4956.48522623 9 B B B B
81 5121.45399891 12 1 1 1 -
82 5286.59507246 19 3 3 3 -
83 5453.22391000 20 1 1 1 -
84 5624.13726606 23 1 1 1 -
85 5798.30047654 12 1 1 1 -
86 5975.59375754 25 2 1 1 -
87 6155.57392106 24 1 1 1 -
88 6337.68178577 16 1 1 1 -
89 6524.98640466 19 1 1 1 -
90 6714.53306124 24 1 1 1 -
91 6908.03776675 23 1 1 1 -
92 7104.70386135 30 1 1 1 -
93 7305.74004347 23 1 1 1 -
94 7507.87251551 31 1 1 1 -
95 7715.37412160 19 1 1 1 -
96 7924.50387149 20 N 1 1 -
97 8139.05544943 13 1 1 1 -
98 8354.91348157 21 1 1 1 -
99 8577.34236268 18 1 1 1 -
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Table A.18: Data fors= 3, N = 100, . . . ,139

N Minimum Energy Stable States s= 0 s= 1 s= 2 s= 3
100 8800.27062617 33 1 1 1 -
101 9029.81430383 53 1 1 1 -
102 9260.47829746 38 1 1 1 -
103 9494.62546179 37 1 1 1 -
104 9731.55503693 38 1 1 1 -
105 9977.56649366 44 1 1 1 -
106 10222.88571553 56 1 1 1 -
107 10472.94590658 46 1 1 1 -
108 10722.99946085 49 1 1 1 -
109 10982.07143555 79 1 1 1 -
110 11241.24646635 69 1 1 1 -
111 11502.24991054 67 1 1 1 -
112 11769.68324259 65 1 1 1 -
113 12044.35809148 84 1 1 1 -
114 12320.49652905 99 1 1 1 -
115 12600.28926845 97 1 1 1 -
116 12884.92473240 145 3 1 1 -
117 13169.57570430 152 1 1 1 -
118 13460.23998466 173 1 1 1 -
119 13753.51470550 131 1 1 1 -
120 14048.97507170 118 1 1 1 -
121 14348.12604524 111 1 1 1 -
122 14646.67735657 140 1 1 1 -
123 14964.23764922 126 1 1 1 -
124 15280.11291900 153 1 1 1 -
125 15600.42641944 179 3 3 2 -
126 15920.04505650 187 1 1 1 -
127 16242.72674082 191 1 N 1 -
128 16574.51202563 211 1 1 1 -
129 16906.94806653 160 1 1 1 -
130 17243.36460095 159 1 1 1 -
131 17584.79169861 153 1 1 1 -
132 17920.25855157 184 1 1 1 -
133 18280.04621605 175 1 1 1 -
134 18632.28363149 178 1 1 1 -
135 18985.16178856 177 1 1 1 -
136 19345.19696950 169 1 1 1 -
137 19708.99027019 163 1 1 1 -
138 20084.73495796 185 1 1 1 -
139 20463.30201191 263 1 1 1 -
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Table A.19: Data fors= 3, N = 140, . . . ,179

N Minimum Energy Stable States s= 0 s= 1 s= 2 s= 3
140 20844.10151009 275 N 2 1 -
141 21223.20320818 247 B B B B
142 21610.86206868 211 1 1 1 -
143 21998.40194030 195 1 1 1 -
144 22390.89068544 200 1 1 1 -
145 22790.79808379 147 1 1 1 -
146 23190.89318433 172 1 1 1 -
147 23604.71171383 198 1 1 1 -
148 24019.24696675 273 2 1 1 -
149 24439.90931002 286 B B B B
150 24858.57224534 401 1 1 1 -
151 25285.95715233 455 1 1 1 -
152 25714.74918826 556 1 1 1 -
153 26145.06400851 441 1 1 1 -
154 26587.75130482 551 1 1 1 -
155 27030.30681227 570 1 1 1 -
156 27481.59284307 589 1 1 1 -
157 27930.65919754 674 1 1 1 -
158 28385.62145227 513 1 1 1 -
159 28843.38557028 631 1 1 1 -
160 29308.06167029 511 1 1 1 -
161 29779.70257156 547 1 1 1 -
162 30253.39892099 627 1 1 1 -
163 30733.94572101 622 1 1 1 -
164 31217.90462130 652 1 1 1 -
165 31705.50029489 636 1 1 1 -
166 32198.54688160 565 1 1 1 -
167 32695.49145497 652 1 1 1 -
168 33194.56119754 595 1 1 1 -
169 33704.59846337 529 1 1 1 -
170 34212.10797695 574 2 1 1 -
171 34727.20015355 488 1 1 1 -
172 35248.21400356 485 1 1 1 -
173 35772.70884894 546 1 1 1 -
174 36299.49376420 525 2 1 1 -
175 36836.86116351 536 1 1 1 -
176 37380.17760236 651 1 1 1 -
177 37924.00712566 661 N N 3 -
178 38471.76330702 903 B B B B
179 39026.19089549 646 N N X -
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Table A.20: Data fors= 3, N = 180, . . . ,200

N Minimum Energy Stable States s= 0 s= 1 s= 2 s= 3
180 39580.06329774 685 2 1 1 -
181 40141.77636064 742 1 1 1 -
182 40702.88513162 821 1 1 1 -
183 41286.59956422 870 1 1 1 -
184 41861.42945866 1020 1 1 1 -
185 42447.89792292 879 2 1 1 -
186 43031.80238055 700 1 1 1 -
187 43613.54103956 913 1 1 1 -
188 44218.36391431 968 1 1 1 -
189 44822.16926745 856 1 1 1 -
190 45424.98858514 1029 1 1 1 -
191 46031.18598693 799 1 1 1 -
192 46635.19914732 850 1 1 1 -
193 47277.48240312 945 1 1 1 -
194 47910.24695661 938 1 1 1 -
195 48535.10742495 1229 1 1 1 -
196 49176.23068582 1097 1 1 1 -
197 49821.11207943 986 1 1 1 -
198 50469.78078287 1075 1 1 1 -
199 51120.20797092 997 1 1 1 -
200 51772.69661064 1006 1 1 1 -
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