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CHAPTER 1

INTRODUCTION

Many static systems in nature reside in a local energy minimum subject to some
constraint. A bowstring choses a shape that minimizes the potential energy stored in the
bow subject to the constraint that the bowstring passes through the tips of the bow and
the archer’s fingers. A marble on an uneven floor can come to rest only at a point that
is a local minimum of gravitational potential energy. A catenary minimizes gravitational
potential energy and also describes the shape of a slack chain hanging from two points. The
only stable locations for two electrons constrained to a sphere are those which minimize
the electrostatic energy. Because this phenomenon is so common, it has been studied
extensively.

In our examination of constrained energy minimization we shall focus on a class of
energies derived from the electrostatic energy. If the electrons in the previous example are
located at points; andx, in the Euclidean spadg?, then the electrostatic energy is, up to

a constant,
1
IXg — X

This is the quantity that would result from fixing the first electrorkaaand moving the
second electron from infinity t& while integrating the force due to the first electron over

the distance travelled by the second. More generally, one may consider the energy required
to assemble a collection &f electrons located at poinss, . .., Xy. In this case the energy
takes into account every pair of electrons and is, up to the same constant,

>

i=1 j=i+1

N-1

Pt (1.1)

In 1904 Thomson considered the following classical problem [48]: How does one



arrangeN electrons on the sphe® so as to minimize the electrostatic energy? The
physical model behind this problem is related to self-assemblage, viral morphology, best-
packing, formation of colloids and coding theory; progress on this problem has broad
application. However, the difficulty of this problem increases sharply Withe number
of electrons. In the last century advances in mathematics and technology have provided
complete and convincing descriptions of such minimal configurations in only a handful
of cases. The broadest results for this problem are qualitative in nature, and describe
properties of the configurations as a whole.

One of these properties is that the locations of the minimizing configuration of electrons
provide good sampling points f&°. More precisely: Letf : S2 — R be continuous, and
let wf, := {X,...Xy} C S? denote the locations of the electrons in tRepoint energy

minimizing configuration, then

.1

“l‘an‘”Nx;,)h f(x) = ffdcr,
where o is the surface area measure §f normalized to have total mass This
convergence, which is described in terms of continuous functions, is cated-star
convergence and is described in Chapter 2. We shall denote this convergence with a starred
arrow. While weak-star convergence applies to measures and more generally to elements

in a dual space, we shall writg}, = o to indicate

1 .
N Z Oy — O, (1.2)
xew],
wheredy is the Dirac measure centered at the paint
We shall consider two generalizations of Thomson’s problem. Insteagf,ofve
consider electrons on a compact sedf Hausdorff dimensiom residing inRP. Further,

for a value ofs > 0 we replace the kerngl |- with the Rieszs-kernel| - | 5.



To further introduce this subject we present some notation and review background

results. Letwy = {Xq,... Xy} be a collection oN > 1 distinct points inRP, then

N 1
ES(CUN) = Z Z |X| ~ les

i=1 j#i

and

Es(A,N) = min{Es(wn) @ wn C A}

The compactness & and the lower semicontinuity of the Riesz kernel ensures that there
is a (not necessarily uniqué) point configuration denotedy, that achieves the minimum

Es(A, N). Letu be a measure oA. Thes-energy ofu is

L 1
1460 = [ [ St

The quantityls(u) may be thought of as the generalized electrostatic energy of a continuous

charge distribution represented by the meaguiRelatedly the quantity

By *— 1
U109 = [ =it

is the s-potential of the measuye

The continuous version of the discrete optimization problem is to find a probability
measure supported on a compact Aethat minimizes the quantitys over the set of
probability measures supported Anlf 0 < s < d whered is the Hausdorff dimension of
the setA, then there is a unique minimizing probability measuté (cf. [21,30].) that is
called the(s-)equilibrium measure The uniqueness f$* follows from the positivity of
the Riesz kernel (cf. [22, 30]). For example, in the case #atthe interval[-1, 1] and
s e (0,1), it is well-known (cf. [25]) thatdus-2U(X) = co(1 — X2) 7 dx wherecs is chosen
so thatu3l-11 is a probability measure.

The generalization from the Coulomb kernel to the Rig&ernel is a natural one and



several values of are worth noting. In the spa@® the kernel fors = p—2is the harmonic
or Newtonian kernel and plays the same role the coulomb kernel ddgs iThe case
“s = 0" indicates the logarithmic kernellog|x — y|. A motivation for this is as follows:
the derivative of the logarithmic kernel with respectxe- y| is the limit of the derivatives
of %lx— y|~S with respect tgx — y| ass deceases t0. Alternatively, the generalized electric
field derived from the logarithmic potential is the limit ag 0 of the fields derived from
the Riesz potentials scaled ys.

The case whers equalsd is also a critical value because, in contrast to the case
s < d, lI4(u) = oo for every probability measure that is supported o (cf. [34] also
Lemma 2.4.2.) As a heuristic consider the cAse[-1, 1] c R henced = 1. Itis apparent
that the functionx|~® is Lebesgue integrable only for values ®f< 1. Put in physical
terms, the self-energy of any continuous charge distribution @aianensional conductor
IS infinite for the case = d.

Because the discrete electrostatic energy ignores the self-energy, discrete constrained
problems such as a generalized Thomson problem are well-posed for all positive values
of s. By raising the discrete-energy to the powet/s and taking the limit as increases
to infinity, only the largest term in the sum (1.1) remains. In this limit the optimization
problem is equivalent to the best packing problem.

Our theoretical interest is to understand the behavior of the equilibrium measures on a
d-dimensional compact sétass T d. For A = [-1, 1], we see directly from the above
expression that®* converges in the weak-star sensesas 1 to normalized Lebesgue
measure restricted #. It is natural to ask how general is this phenomena. We are further
motivated by results concerning the following related discrete minimal energy problem.

Whens < d the above continuous and discrete problems are related by the following

two results (cf. [30]). FirstEs(ws)/N? — I(u®*) asN — oo. Second, the sequence of



configurationgw$ }5_, has asymptotic distribution®”, that is,
wd - uSh. (1.3)

Note that the normalized surface area measuire(1.2) is thes = 1 equilibrium measure
for S2.

In the cases > d the lack of an equilibrium measure necessitates new techniques for
the discrete problem. An effective approach to the discrete equilibrium for this range of
swas presented in [24] and [3] fal-rectifiable sets. A seA is said to bed-rectifiable
(cf. [18,§3.2.14)) if it is the Lipschitz image of a bounded seRit In this case the results
of interest are

w5 HIHYA)  asN - . (1.4)

(Here and in the rest of the papgf® denotes the Hausdorff measure anddenotes the
restriction of a measurg to ag-measurable seék. e.g. HI = HY(- n A).) For technical
reasons, the results in [24] and [3] for the cased further require thaA be a subset of a
d-dimensionalC! manifold, although it is conjectured that this hypothesis is unnecessary.

Recall that a functiop : A — RP is Lipschitz if there is a constamhtso that

le(X) — oY) < LIX-Yi|

for all x, y € Aand is bi-Lipschitz if

1
[lx— Y < le(X) — @Y < LiIx-yl

orallx,yeA.
The limits (1.3) and (1.4) suggest that* - HI/HI(A) ass T d wheneverA is
d-rectifiable. If A is strongly (9, d)-rectifiable or is a strictly self-similag-fractal (see

Sections 3.1.2 and 3.1.4 for these definitions), we show that this is indeed the case. A



primary tool in our work is the following normalizedtenergy of a measure
la(w) := lim(d — 9)ls(u).
std
and the normalized-potential
TH N H _ u
Uy(x) = IerQ(d S)UL(X)

We will also rely on several notions of density. We Bfi, r) c RP denote the closed
ball in RP of radiusr centered aix. Given a measurg, the traditionald-dimensional
point-density ak is

Ol ) 1= lim ’w.

However, there are many sets, such as fractals (cf. [34]), for whichJedlmost allx €
A, this limit doesn't exist. However, Bedford and Fisher in [1] consider the following
averaging integral:

. 1 L1 u(B(x,1))
2 - ATV A
Diu, X) = Igg Togel fg P dr,

which they call arorder-two densityf u atx. Itis known (cf. [16,38,51]) that for a class of
sets including strictly self-similad-fractals and strongly#H¢, d)-rectifiable set®3(H3, X)
is positive, finite and constafi{s-a.e. We shall denote thig3-a.e. constant ad3(A).

We denote byM*(A) and M; (A) the set of Radon measures Arand the set of Borel
probability measures oA respectively. Ifu andv are two Radon measures, then we use
the notationu < v to indicate thav(E) = 0 implies thatu(E) = 0. Finally, the dimension
of a strongly(#¢, d)-rectifiable set is a positive integer, while the dimension of a strictly
self-similar d-fractal may take on positive non-integer values. For a strictly self-similar
d-fractal it is known (cf. [35]) thatH(A) € (0, ).

With this we state our main results.



Theorem 3.3.1. Let A be a strictly self-similad-fractal or a strongly(¢, d)-rectifiable

set of positiveH® measure and let? := HI/HY(A), then

(1) The limitiy(u) exists for allu € M*(A) and

2
) dD2(A) f(;’—;,) dH¢ if 1 < HE,
dlw) = A

00 otherwise.

(2) If Tg(u) < o0, then the limitJ4 equals_X; y-a.e. and
A

Ta(u) = f Uhdu.

(3) Ta(a?) < Ty(v) for all v € M (AN {29).

Theorem 4.1.1. Let A c RP be a compact strongly/H¢, d)-rectifiable set such that
HI(A) > 0. Leta? := HI/HIA). Thenus* 5 19 ass T d.

Theorem 4.1.2. Let A c RP be a compact strictly-self similad-fractal. LetA9 :=
HI/HI(A). Thenus” 5 1% ass 1 d.

There are two motivations for the normalizing factdr s). The first motivation arises
from a Fourier analytic expression of energy. If a finite meagusesupported irRY, then
for s < d we may write thes-energy ofu in terms of its Fourier transform as follows
(cf. [30,50]):

1) = o(s.0) [ IR (1.5)

The constant(s, d) has the property that
lim(d - s)c(s. d) = Ka,

whereKy depends only on the dimension of the ambient sgftécf. [30].) One may

take the limit inside the integral and the normalizédnergy becomes, up to a constant,



the L?-norm of the Fourier transform qf. For certainu this is equal to the.?>-norm of
the Radon-Nikodm derivative of the measure with respect to£, the d-dimensional
Lebesgue measure. The second motivation arises from a resudthté 52] which was
generalized by her student Hinz [26]. dfis a finite measure and B3(u, X) exists and is
finite, thenOg‘(x) exists and3(u, X) = dClg(x). These two results provide the foundation
for a proof of Theorem 3.3.1.

The proof of Theorem 4.1.1 relies on an estimate based on (1.5) that compares the
s-energy of a measure for two different values ofs. The constany depends on the
dimension of the embedding space and not on the dimension of thfe $édwever, the
Riesz energies depend only on the relative distances wikhand so the estimate holds
for any isometric embedding & into a higher dimensional space. The approach used in
the proof is to relax the isometric embedding to a bi-Lipschitz embedding, and to show
that A can be assembled from a collection of bi-Lipschitz embeddings in a manner which
preserves the necessary estimate.

The proof of Theorem 4.1.2 relies on a localization property of the fractals in question
to replace the original optimization problem with a coarser problem that gives a compatible
answer. Ass 1 d this coarse problem approximates the original problem arbitrarily well.

In addition to these theoretical results we present some numerical experiments for the
discrete energy of? for s = 0, 1, 2 and3. While these numerical experiments do not lead
to provable results, they provide data that can be used to examine conjectures. In particular
we look at higher order terms in the asymptotic expansiofis(f2, N) and the conjecture
that the number of stable minima on the sphere grows exponentiallyNwvith

We also present two algorithms, which to this author's knowledge, are new. The first

reduces and estimates the effect of roundoff error in sums of many numbers e.g. the sum

lIn his work on reconstructing measures from their moments Putinar [41] considers an alternate
normalization for thal-energy.



associated td&s(wy). The second employs computational geometry and graph-theory to
speed the process of counting distinct configurations.

The rest of this document is organized as follows: Chapter 2 contains a summary
of the theoretical basis for potential theory as it applies to Riesz energies. The central
result is the existence and uniqueness of the equilibrium meastir€hapter 3 examines
classes of sets relevant to the material at hand, notions of density and provides a proof of
Theorem 3.3.1; Chapter 4 presents proofs of Theorems 4.1.1 and 4.1.2; Chapter 5 describes
the numerical experiments and presents an initial analysis of the data; Chapter 6 proposes

some future work.



CHAPTER 2
BACKGROUND

This chapter presents an overview of the theoretical foundations and results for potential
theory and discrete minimal energy problemsRifi The key ingredients are measure
theory inRP, which provides the right setting for certain minimization problems, weak-star
topologies, which provide compactness, and Fourier analysis, which provides an invaluable
alternative view for many of the problems arising in potential theory. Because this chapter
aims to provide an overview, proofs for common theorems (e.g. the Radon3hikod
theorem) are omitted. Proofs are included if they provide an important idea or technique,

and are not overly technical.
2.1 Measures onRP

2.1.1 Basic Definitions and Results

Let A be a collection of subsets &P. Intuitively a measure: : A — R, U {oo} IS
a function that assigns sizes to elements#in a consistent manner i.g«(E) indicates
the size ofE for E € A. For example one may construct a meagurérom a continuous

functionf : RP — R, as follows

ui(E) ::fEf(x)dx

(Here and in the rest of this papex denotes the traditional volume element frih)

An example of a measure that is not represented by a function is the Dirac-delta measure

10



dx, centered at a poing, € RP and defined as follows:

For our purposes a measure will also be used to represent a charge distribytio. If
our charge distribution, them(E) indicates the amount of charge within the EetWith
this interpretation the Dirac-delta measuggis a point charge centeredka

We shall review the portions of measure theory that 1) make precise what is meant by
assigning size in a consistent manner and 2) are employed in the rest of this paper. This
section is drawn from and covered more thoroughly in [9, 34, 44].

Let A be a collection of subsets &F. A is ac-algebraif

(1) @ € A,
(2) RP\E € A whenevelE € A and

(3) Uni1 En € A for any countable collection of sefB,}, ¢ A.

It is a straightforward consequence of DeMorgan’s Law thatlifs a o-algebra, then
the countable intersection of sets i is also inA, i.e. requirement three holds for
intersections.

A functionu : A — R, is a measure if all of the following hold.

(1) Aisac-algebra. IfE € A, we say thakE is u-measurable. This requirement ensures

that countable set operationsigimeasurable sets result iliameasurable set.
(2) u(E) € [0, ] for all E € A.

(3) u is countably additive By this we mean that given any countable collection

{Enlpe; € AwhereE N E; = @ fori # j we have

H (O En) = i#(En)-
n n=1

=1

11



(4) There is som&’ € A so thatu(E’) < co.

It follows immediately from these definitions thats monotone.e. if E;, E, € A are such
thatE; c E,, thenu(E;) < u(Ey). Furtheru is countably subadditivethat is, given any

countable collectiofE,}, € A,

H (O En) < iﬂ(En)-
n=1

n=1

A set is said to baBorel if it is the result of countably many set operations (unions,
intersections, complements) on open sets, e.g. closed sets are Borel, the countable
intersection of open sets is Borel and the countable union of closed sets is Borel. A measure
is said to be Borel if its domaimf contains the Borel sets. Singéis ac-algebra, showing
thatA contains either the open sets or the closed sets is sufficient to show that the measure
is Borel.

Given a measurg and its domainA, we shall extendA as necessary to include any
subsetN c RP wheneverN c E € A andu(E) = 0. That is, subsets of measurable
sets of measure zero are measurable. This is referreddonagleting the measure space
(cf. [9, ch. 2]) and can be accomplished so thatmains a measure.

Of patrticular interest is the Hausdorff measure defined as follows: Begin with the
collection of sets

Qs := {Q c RP: diamQ < ¢},

wheres > 0. Note that any st ¢ RP may be covered by a countable collection of sets in
Q;. For this reason); is referred to as aequential coverDefine an intermediate function

‘H¢ whose domain consists of all subsetRéfas
HI(E) := inf {Z(diamq)d QI c @ andEc | Qi},
i=1 i=1
where the infimum is taken over every sequence of {€gt$’, c Q; whose union covers
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E. The Hausdorff outer-measure is then defined forBryRP as
HIYE) := |(i5?3 HI(E). (2.1)

Since HJ(E) is non-decreasing a$ decreases to zero, the limit in (2.1) always exists.
Following the standard Carathdory Construction, the domain #f¢ is restricted to sets
E that satisfy

HYA) = HYANE) + HYA\E)

for every sefA c RP. This ensures the domain ®f¢ is ac-algebra that contains the closed
sets (cf. [9, ch. 2]) and hendd® is a Borel measure. Note that the definition/gf does
not depend omp the dimension of the space upon which it is defined.

This construction provides a family of measures parameterizedl Whend is 1, 2
or 3 one might think of {9 as a generalized length, area or volume respectively, although
d need not be ilN. This gives rise to a notion of dimension referred to asHlaeisdorff

dimension(cf. [9, 34]) defined as follows:
dimA := supd : HYA) > 0} = inf{d : HYA) < o).

One may verify that itd < dimA, HY(A) = co and ifd > dimA, HYA) = 0. In the case
d = dimA, H9(A) does not have to be positive and finite.

In the case whed = p we have
0 < HYB(x, 1)) = HYB(Y,r)) < o0 (2.2)

for all x, y € R9 andr > 0. (Here and in the rest of the papB¢x, r) denotes the closed
ball centered ak of radiusr.) It is known (cf. [34, ch. 3]) that if two measurgsandy

each satisfy the condition in (2.2), then there is @ (0, ) such thaju = cv. From this

13



it follows that for ¢ defined orRY, HY = c£% where£9 is thed-dimensional Lebesgue
measure. The constant of proportionatitis computed in e.g. [14].
A Borel measure: is said to beRadonif u(K) < oo for every compact s c RP. A

measureu is finite if u(RP) < co. With this we have the following:

Proposition 2.1.1 (cf. [9]). Let E be a Borel set ang a finite Borel measure, then
(1) u(E) = supu(K) : K c E whereK is compact
(2) u(E) = inf{u(O) : E c O where0 is open.

Put another way, the-measure of a Borel s& can be approximated arbitrarily well
by either compact sets withia or open sets enclosirtg.

Any finite Borel measure is Radon. In particulaifis of finite ¢ measure, then the
restriction ofH9 to A (which we shall denote aHjj := HY(- N A)) is Radon. The measure
HY on RP is Radon wherd > p, and in fact is zero fod > p. Whend < p, H¢ is not
Radon.

A natural extension of a measure issgned measurewhich assigns positive and
negative values to subsets. To avoid the ambiguity of considering the difference of two
infinite quantities, a signed measure may assign the viaki®r —co, but not both. Given
ao-algebra of subsets, an example of a signed measure is any functisgh— R of the
formvy = u* — u~ whereuy*, u= : A — R are measures and one of them is finite. It is a
consequence of the Jordan decomposition theorem that any signed measure has exactly this
representation. To present the Jordan decomposition theorem we shall need the following:

Two measureg, v : A — R are said to benutually singular(this relationship is
denotedu L v) if RP can be partitioned into two disjoint seAs B € A so thatRP = AU B
andu(E n B) = 0andv(E N A) = Ofor every seE € A. Intuitively u resides withinA and

v resides withinB. With this we have the following:
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Theorem 2.1.2 (Jordan Decomposition Theorem (cf. [9]))Letv be a signed measure on

RP, then there are two measurgs$ and u~ one of which is finite such that™ L x~ and
v=pt -

As an example consider the signed measure Hy,,, — H 5 on R The Jordan
decomposition of is v = Hy ,; — H 5.

Given a signed measusewith Jordan decompositiont — u~ one denotes bjy| the
quantityu* + u~. The expressionv| is referred to as théotal variation' of v and is a
measure itself. Two signed measugesndy are said to be mutually singular|iff L |v|.

Thesupport of a measure — denotedsuppu — is the complement of the union of open
sets ofju|-measurd. Taking the perspective of charge distributiosigsppu is the smallest
closed set that contains all the charge representéa.by

We say that a pointwise condition holgsalmost everywherer u-a.e. if the set of
points where the condition doesn’t hold is@measuré. Analogously we may refer to
u-almost allor y-a.a. x to mean everyx € RP with the possible exception of a set of
u-measure.

While we are interested in measures because they can be used to represent charge
distributions, the development of measure theory was originally motivated by the study
of integrable functions. A significant theoretical milestone in this direction is the Lebesgue
integral, which is described more thoroughly and completely in other texts (cf. [9, 44,49].)

A heuristic interpretation of the Lebesgue integral is that

fR 909

integrates the functiori according to a weighting encoded by the meagurd-or this
guantity to be well defined the functioh must beu-measurable By this we mean that

the setdx € RP : f(X) > a} must beu-measurable for every € R. At times we shall

1An alternative definition of total variation can be found in [44, ch. 6]
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omit the integration variable if it is clear from context. Similarly if we omit the domain of

integration, it should be assumed to be the support of the measerg. the above may

ffd,u.

An integral written with respect to the volume elememtis equivalent to integration

also be written as

against the Lebesgue measure.
Finally, we shall introduce some useful collections of measures. ALet RP be a

compact set and define
M(A) = {u : wpis asigned measursyuppiul c A and|u|(A) < oo},
M*(A) = {ue M(A) : uisan (unsigned) measyrand
MI(A) = {ue MY (A) : u(A) =1).

Note thatM(A) is a vector space.

2.1.2 Comparing Radon Measures

Given two signed measurgsandy, we say thaj is absolutely continuous with respect
tov if |v|(E) = O implies thatju|(E) = O for any Borel seE. This relationship is denoted
u<v.

The next two theorems will be used repeatedly in the following chapters. These
theorems are presented at varying levels of generality in different texts, we present versions

that are most applicable to the material that follows.

Theorem 2.1.3 (Lebesgue Decomposition Theoremlety andy be Radon measures on
RP. There exists a unique pair of Radon measwesandu* so thatu = u< + u*, u< < v

andut L v.

As an example leA c RY be compact. The Lebesgue decompositioii@fwith respect

d
WhereﬂRd\ A

to HY is HY = HI + HI

Boa L HY and trivially HS < HJ. As another
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example lew,, be the Dirac-delta measure xt € RY, then the Lebesgue decomposition
of 6, with respect toH¢ is simply 0 + 6, becaus@y,, is purely singular and contains no

portion absolutely continuous with respectits.

Theorem 2.1.4 (Radon-Nikogm Theorem). Letu andv be Radon measures @&¥. Let
u = u< + ut be the Lebesgue decompositionuofvith respect tov. Then there is a-

measurable function denoté4- so that

d'u<<
E dV

dv,

u=(E) =
for any Borel seE. Furthermore this function is given by the limit

= uS(B(X )
a X =M B )

and is finitev-a.e. Additionally

_ur(B(xr))
S Bx) -

ut-a.e.

The value of this theorem is thatif < v then there is a function called the Radon-
Nikodym derivative that allowg to be represented as an integral of this function where the
integration is performed with respectitoOne may think of the Radon-Nikgch derivative

as a measure-theoretic Jacobian.

2.1.3 Image Measures and Lipschitz Maps
Theimage measuresu associated with a compactly supported Radon measong P

and a continuous functiop : supgdu} — RP is defined by

esu(E) := u(p™(E))
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for any Borel seE c RP. The functionpsu is a compactly supported Radon measure on

RP and integration with respect tgu is given by

[ faem= [tk

for any non-negativesu-measurable functior (cf. [34, ch. 1]). Intuitively we map a
measure from the domain éfto the range of .
Given a setA c RP, a functiong : A — RF is said to beLipschitzif there is a non-

negative and finite constahtso that

le(X) — (W) < LIX-Yi|

for all x, y € A. There is no restriction op’ other than it be a natural number. A function

¢ : A - RPF is said to bebi-Lipschitzif there is a positive and finite constanso that

1
Elx =Yl < le(X) — oY)l < LIx =yl

The next two lemmas show that the ratio of tH€ measure of a set to tig#“ measure
of the bi-Lipschitz image of the set is bounded above and below by the Lipschitz constant.
In particular, bi-Lipschitz functions preserve Hausdorff dimension. This will be important
as we shall consider image measures derived from Lipschitz functions. We include a proof

as one is not readily available in the introductory texts.

Lemma 2.1.5.Let A c RP andg : A — R” be Lipschitz with constarit and letd > 0.
ThenH%p(A)) < LIHY(A).

Proof. If HY(A) = oo, then the claim trivially holds. L = 0, theny(A) is a point,
H%p(A)) = 0 and the claim again holds. Assu&!(A) < co andL > 0. Lete > 0 and

0> 0. Seto, = /L. Let{Q,}, be a collection of subsets &F so that

Qn c AanddiamQ, < ¢, foralln e N,
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Ac U, Qnand
Sna(diamQn)? < HE (A) + &.

Thenp(Qn) < ¢ for n e N andg(A) c U1 ¢(Qn). We conclude

H (@A) < > (diame(Qn)°
n=1

< L i(diaan)d
n=1

< LYHIA) + &) < LAHYA) + &)

Sinces ande were chosen independently, we may take a limig 40 and then the a limit

ase | 0to obtain the result. O

Corollary 2.1.6. LetA c RP andy : A — RP be bi-Lipschitz with constarit and let
d > 0. ThenL™9H9(A) < HY(p(A)) < LIHY(A).

Proof. By definition L cannot equad. Lemma 2.1.5 ensure&(¢(A)) < LiH9(A). Bi-
Lipschitz functions have Lipschitz inverses and so welet ¢~ andB = ¢(A). Applying

Lemma 2.1.5 again gives

HOW(B)) < LYHY(B) and henceH(A) < HO(4(A)).

2.2 Weak-Star Compactness of Bounded Subsets df((A)

In this section we introduce the dual space associated to a vector space. We discuss
a compactness property of the closed unit ball in the dual space and then show that the
collection of signed measures with supports in a bounded\ sethose total variation is
bounded above has this compactness property. Finally, we shall discuss the significance of

this result in terms of optimization problems on measures.
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2.2.1 Dual Spaces of Vector Spaces
If V is a vector space with norifh- ||, thenL : V — R is said to be @ounded linear

functional onV if

(1)
L(ax+ BY) = aL(X) + BL(Y)

foralla,B e Randallx,y € V and

(2) there is a positive finite constaht, depending orL so that|/L(x)| < M_||x|| for all

xe V.

We shall denote by/* the set of all bounded linear functionals ¥rand refer to it as the
dual space o¥. One may quickly check that* is itself a vector space. Linearity & is

meant in the following sense

(L1 + BL2)(X) = aLi(X) + BL2(X),

whereL,, L, € V*. The norm of a bounded linear functiorials given by

IILIl := sudIL(X)| : x €V, [IX]| = 1}.

As an example consider the cage- RP, then any elemerit € V* may be represented

as an inner product with an elementR¥f. That is, there is a uniqueee RP so that

L(X) = (X, a) (2.3)

for all x e RP. The norm ofL is then|a. It is straightforward to see that any elemard RP
gives rise to a bounded linear functional &f via equation (2.3) (The Cauchy-Schwarz

inequality establishes boundedness.) In this &%eas isomorphic taRP and the bijection
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RP* 5 L, <> a € RPis given by equation (2.3). Linearity of the bijection follows from the
bi-linearity of the inner product.

This next example is a generalization of the previous example and is central to the
theory in the rest of this document. LAtc RP be a compact set. L&(A) denote the
functions that are continuous ga The sum of two continuous functions is continuous
and a continuous function times a scalar is continuous and(8p with the sup-norm
Ifllcea) = SURea [ f(X)] is @ vector space. (Continuous functions are bounded on compact
sets hence the norm is finite for dlle C(A).)

M(A) is a vector space and linearity Ml(A) is meant in the following sense

(aus + Buo)(E) = aui(E) + Bu(E),

whereE is any Borel set. The norm iM(A) is [lullmp) = |uI(A). We then have the

following important theorem:

Theorem 2.2.1 (Riesz Representation Theorem (cf. [44])L.et A € RP be a compact
set. The dual space 6f(A) is isometrically isomorphic taM(A) and the bijectiorC(A)* >
L, & u e M(A) is given by

L,(f) = f f du (2.4)

for f € C(A).

Linearity of the bijection follows from the linearity of the Lebesgue integral with
respect to both the integrand and the measure. Boundedness of the furictibwlidws
from the finiteness gfi(A) and the fact that functions that are continuous on a compact set
are bounded above and below.

In comparing the two previous examples one might think of equation (2.4) as a
generalized inner product that pairs continuous functions with measures and is linear in

both arguments.
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2.2.2 Helly's Selection Theorem
Given a vector spac¥, the dual spac&/* may be given the so-calledeak-star
topology The precise definition of the weak-star topology can be found in [9, ch. 6],
although we are more concerned with convergence of sequences in this topology, which is
characterized as follows: A sequeritg}”, c V* converges in the weak-star topology to
L € V*if and only if
r!m La(X) = L(X)

for everyx € V. In this sense we view the convergence of a sequence in the weak-star
topology through the lens of elementsin
In terms of the Riesz Representation Theokgpk> , ¢ M(A) converges ta € M(A)

in the weak-star topology if, and only if,

rllimffd,un:ffd,u (2.5)

for every f € C(A). It should be noted that for a speciffice C(A) equation (2.5) is a
statement about convergence of real numbers. Further, the rate of convergence in (2.5)
depends orf.

Another topology on\(A) is the norm topology, which is induced by the total variation
metric: d(uq, u2) = |u1 — u2l(A). Convergence of a sequengé )., to u in the norm
topology means thalim,_,. |un — ul(A) = 0. The following example will show that
the weak-star topology is indeed weaker than the norm topology, that is, sequences that
converge in the weak-star topology may not converge in the norm topology.

Let A be the unit intervaj0, 1] ¢ R and let

1 n
Hn = n ; Oi/n.

For each natural number u, distributesn Dirac-delta measures evenly along the interval
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[0, 1] where each is scaled yn. We have

. 1y 1l !
mffdyn:mﬁ;ffdaim:mﬁz‘f(./n):fo f(x)dx

The integral with respect txis integration with respect to the one-dimensional Lebesgue
measureL! which in this case equal&*. We conclude thafu,}> , converges teH* in the
weak-star topology. (From this point forward we shall denote weak-star convergence with
a starred arrow e.g. we wrijg, 5 HL )

However, {un}>, does not converges t@f* in the norm topology becausg, —
H*|([0, 1]) does not converge to zero. For eathve may decomposi! into two sets
A=RW{1/n,2/n,...,1}andB = {1/n,2/n,..., 1}. Trivially AnB = @. FurtherH*(B) = 0
andu,(A) = 0. Therefore the Jordan decompositiont — u, is just H* — u,, thus
|H* — unl([0, 1]) = HY([O, 1]) + un([O, 1]) = 2 for everyn.

Consequently it is not in general true that if a sequence of meagues, ¢ M*(A)
converges in the weak-star topologyieE M*(A), thenu,(E) — u(E) for a Borel setE.
(LetE = [0, 1]\Q in the previous example, then(E) = O for all nandH*(E) = 1.) Under
certain conditions on the sEtone does have that,(E) — u(E).

The topological boundary of a s& c RP is given bydE = E\E°, whereE is the

closure ofE andE® is the interior ofE. A setE is said to be:-almost cloperif u(JE) = 0.2

Proposition 2.2.2.Lety € M*(A) and{un},., € M*(A) be a sequence of measures so that

pn — w. Then for anyu-almost clopen se, un(E) — u(E).

Proof. Let E beu-almost clopen, thep(E) = u(E°). Lete > 0 be arbitrary.
By Proposition 2.1.1 we may find an open o thatE c O andu(O\E) < . Since

RP\O andE are disjoint and closed, we may find a Urysohn functjotiat is1 on E and

2A set is said to be clopen if it is closed and open. Since closed sets contain their boundary and open sets
do not, a clopen set has no boundary. Almost clopen sets are a measure theoretic extension of this.
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0onRP\Q, then

lim supun(E) < rl]im fl//d/ln = f@bd,u <u(E) +&=pu(E) + .

NnN—oo

Similarly we may find a compact skt c E° so thatu(E°\K) < . SinceK andRP\E° are

closed, we may find a Urysohn functigrthat is1 on K and0 on RP\E®, then

Iirnn inf un(E) > rI]im f(ﬁd,un = fqbd,u > u(E°) — & = u(E) — &.

Sinceg is arbitrary, the claim holds. m|

While the weak-star topology admits convergent sequences that other topologies do
not, it has the advantage that the closed Bél, R) c V* is sequentially compact in the
weak-star topology. More precisely X := {L € V* : ||L|| £ R}, then for any sequence
{La}, C Athereis a subsequentig,)=_, c {L,}=, and arL’ € A such that.,, — L’. This
follows from the Alaoglu Theorem (cf. [9]) although in the special case wen C(A)

andV* = M(A) this is known as Helly's Selection Theorem.

Theorem 2.2.3 (Helly’s Selection Theorem)Let A c RP be compact an® € (0, «). The

setA = {u e M(A) : |ul(A) < R}is sequentially compact in the weak-star topology.

The weak-star compactness of bounded subsets will be an invaluable tool for addressing
optimization problems on measures. Given an objective fun¥iiomM*(A) — R one may

seek to minimizéN over M; (A). A common technique is essentially as follows:
(1) Show that the subset ot} (A) for which W is finite is non-empty.
(2) Show thatw(u) is bounded below independently o M; (A).

(3) Let{un}, € M;(A) be such that
rI]im W(un) = inf{W(w) : u e MI(A)}.
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(4) Letv be a weak-star cluster point ¢fi,} The existence of such a weak-star

oo
n=1"

cluster point is guaranteed by Helly’s Selection Theorem. Reglagg , with a

subsequence converging in the weak-star topology to

(5) Demonstrate a relationship betwden,_., W(u,) and W(v), that is, thatv is the

minimizing measure.

The following proof of Helly’s Selection Theorem is taken from [45] and, as the authors
of that text note, proving the Alaoglu theorem in this case requires nothing more advanced

than the Weierstrass Approximation Theorem.

Proof. Let {u,}, be a sequence of measuresMf(A) such thatu,|(A) < Rfor all n. By
the Weierstrass Approximation Theorem (cf. [9]), we may find a countable collection of

polynomials{p,}, that are dense in the sup-norm topologyG(#). Define

ar]{::fpld/ln-

Sincep; is bounded orA and|un|(A) < R for all n, we may conclude thagl}>, c R is

bounded, and hence has a cluster point.{LBf° , c {un}>>, be a subsequence of measures

that generates a convergent subsequéagg ,. Define

aﬁ::fpzdyﬁ.

By prior argument{a2}, has a cluster point. Lef2}>, c {¢i}>, be a subsequence of
measures that generates a convergent subsequefagein. Inductively we may generate

a collection of sequences of measuigs )™, ), that have the property that

im [ i

exists for everyj less than or equal to Lety; denote the diagonal elemeujt then{u;}>,
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is a subsequence gf!}>, for alli € N, and so

lmfmm

converges for every,.
Let f by any element o€(A) ande > 0. Since{p,},, is dense in sup-norm topology
onC(A), we may find ap € {pn};>, such that|p — fllon < &/R. We have

Iimfpdyn—s<Iiwinfffdynglimsup fd,un<rl1imfpdyn+e

nN—oo N—oo

and by subtracting
lim sup fd,un—liminfffd,un < 2.
Nn—o0

N—oo

Sincee was chosen arbitrarily we conclude the following

L(f) := mffdyn

defines a linear functional o@(A) that is bounded byR. By the Riesz Representation

Theorem there is somee M*(A) such that

L(f) :ffd,u

for all f € C(A), and thatu|(A) < R. Hencey — u asi — . O

2.3 Fourier Transforms

In this section we sketch the theory behind the Fourier transform. This material is
covered more thoroughly in e.g. [10, 50].

We say that a functiorf is in L, L? or L* if |f| is integrable, square integrable or

uniformly bounded a.e. with respect to the Lebesgue meaStirg.e. integration with
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respect talx) respectively. For a functiof in such a space the norm||, || f|]> and|| ||
refer to the integral off|, the square root of the integral pff? and the lowest number
that boundgf| a.e. The collection of functions ibP with the associate@-norm forms a
topologically complete vector space. Note thais a Hilbert space.

When the integration is performed with respect to a megsoteer than the Lebesgue

measure, we shall specify the vector spacp-oftegrable functions alsP(u).

2.3.1 L! Functions and Inversion

For a functionf € L! we define the Fourier transform éfas

f(&) := ff(x)e‘z”ix"fdx for & e RP. (2.6)

Observe that
@) < f FO9lle = €ldx = [1fll.

and so" : L! - L* is bounded and linear. If € L2, then one may define an inverse
transform (cf. [50]) as

F(X) = f fe)eede.

In such a casd = f a.e. In general, however, the Fourier transform ot &rfunction is

not inL. The function defined oR* that is one on the intervf-1, 1] and zero elsewhere

is such an example.

2.3.2 The Schwartz Space and.? Functions
With the motivation of finding a class of functions that is closed under the Fourier
transform we introduce the Schwartz Spatéef. [10,50]). This space consists of rapidly

decreasing, infinitely smooth complex valued functions, and is defined as

S :={p e C*RP) : || -* DPp(")||l < oo for all multi-indicesa ands}.
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An example of a Schwartz function is the Gausgah. Sis a topological vector space and
has a family of semi-normi§- ||, 5 := |IX*D” - ||, indexed bya andB. This family of semi-
norms generates a translation invariant topology; if a linear functiof mncontinuous at
0, then it is continuous everywhere & As suchT is continuous if

lim T(¢n) =0 whenever lim ¢, = 0.
Nn—oo

n—oo

By choosing appropriate semi-norms one can show$hat_* and hence is well defined
forall ¢ € S.
More significantly the operatofand™: S — S are linear and continuous with respect

to the topology orS. It is straightforward to show that far, ¢ € S

f B(x)o(x)dx = f o()3(x)dx

By choosingg to bez e S and verifying the effect of interchanging the order of taking a

complex conjugate and taking a Fourier transform one obtains

f o(XF()dx = f ()7 ()dx

By choosingy = v, it follows that|l¢ll> = |l¢ll.. This shall be our starting point for
extending the Fourier transform k3 functions.

Let¢ € S so thatsuppgp c B(0,1) 2 and||¢||; = 1. Let¢® = 8—1pgb(;). As ¢ decreases the
support of¢® contracts, whiles® gets scaled so that the-norm is preserved. Let be a

compactly supported function ir?, thenf € L' n L2, Define

f o f (- — Yo )dy.

3The support of a function is the closure of the set of points where the function is non-zero.
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It is a standard result (cf. [9, ch. 5]) thate C*, that
Eg If - flls =0, Ii?g If —fll=0

and that every point isuppf, is within & of suppf, hencef, € S.

Sincef, is converging inL2 and since|f.|l, = |If:ll., f. is Cauchy with respect to the
L2-norm along any subsequence of decreasir§incelL.? is complete . is convergent and
we denote its limit ag f. Sincef, is converging inL! to f, f.is converging inL* to f,
we concluder f = f a.e. and thatf|l, = |F f|l,.

Let f be an arbitrary function i and letf,, := fygon (Whereye(x) = 1for x € E
andyg(X) = Ofor x ¢ E). Thenf, is compactly supported, is ib' n L2 and f, — f in
L2, Then the limitlim,_.. F f, exists and its value is denotefd With this we have the

following theorem:

Theorem 2.3.1 (cf. [10]).Let f € L2, then the limit

f(&) := lim f| | Rf(x)e-z”ix'*fdx

R— oo

converges ir.2. We call f the Fourier transform off. The Fourier transform defined in

this manner is an isometric isomorphism frarto itself with an inverse given by

R—o

f(x) := lim L | Rf(g)ezﬂixfolg.

2.3.3 L'+ L? Functions

Note that if a functionf € L n L?, then the Fourier transform given by Theorem 2.3.1
agrees with the Fourier transform given by equation (2.6). We consider functions of the
form f = f, + f, wheref, € L* andf, € L. For such arf we may unambiguously define

the Fourier transform a.e. ds= f, + f,, wheref, € L™ andf, € L2. This is independent
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of the choice off; andf,. If f = f] + f is another representation 6f then
fi+ fo=1+1) hence fi—f/ =1 -f.

Thenf, — f; € L' andf, — f; € L2. Since is well defined and linear ob' N L2, we have
fi-f,=f,—f, hence fi+fh="1+f.

The following will be useful for computing the Fourier transform of a particular kernel

function.

Proposition 2.3.2 (cf. [50]).1f f € L' + L? and M is an invertible matrix, then

1

foM = | detM|

fo(M™T.

2.3.4 Measures and Tempered Distributions
Let u be a signed measure such thais a compactly supported Radon measure, then

we may define the Fourier transformofs

Ae) = f &2 ().

Analogous to the.! case, we have th#i(¢)| < u(RP).

Theorem 2.3.3.If u is a compactly supported Radon measure and L?, thenyu is

absolutely continuous with respect to Lebesgue MeasuraajdiLP € L?

The space of tempered distributions is the space of continuous linear functionsls on

and is defined

S :={T:S8—-> R : Tislinear andlim T(¢,) = Owheneverlim ¢, =0in S }.
n—oo N—oo
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While S is a not a normed space, we still consider the space of tempered distributions as
the dual space a$, hence the notatios*. We say thaf is the Fourier transform oF if

Ty = T for all ¢ € S. With this definition we have the following proposition (cf. [10].)

Proposition 2.3.4 (cf. [10]). The Fourier transform is a continuous linear bijection from

S*to S*.

The following proposition and corollary will be particularly useful examining a kernel

that arises in potential theory.

Proposition 2.3.5.1f f € L + L2 andg € S then
f f(X)P(X)dx = f f(X)p(X)dx
For convenience we introduce the following notation for a funcfiarRP — R,
[f>a] :={xeRP: f(X) > al.

Similarly we defind f > o], [f < o] and[f < «].
We shall use the notion of weak-convergence in a Hilbert space in the following proof.
We say({fy}-, converges tof weakly in a Hilbert spaceéd if (f,,g) — (f,g) for every

g € H. Strong convergence, i.gf, — f|l, — 0 implies weak convergence.

Proof. Let f e L' + L?andp € S.

f F()p()dx = lim fB (O)f(x)gb(x)dx

n—oo

= Iimf f(X)fgo(y)e_Z”ix'ydde
N—oo B(O,n)

= lim f(p(y)f f(x)e 7Y dx dy
Nn—oo B(O,n)

= lim fgo(y) (f f)([le](x)e‘z”ix'ydx+f fx1r<(¥)e ™Y dx|dy
nN—o0 B(O,I’l)

B(0,n)
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Note that

f f(X)X[le]e_z”iX'de{ < Ifxp21lls < oo,
BON)

and by dominated convergence

im [t [ e dxdy= [ )iy
N

Also the functions

an(y) = f fxtr<g(X)e ™Y dx
B(0,n)

are converging in.? to fy(-y and so

lim f ¢(y) Fxir<y()e>™Y dx dy= lim (¢, gn)
n—oo B(O,n) n—oo
- [ et iy
Here(-,-) is the standard inner-product irf. We may then combine our limits to obtain
the Fourier transform of. This completes the proof. O

This gives us the following corollary:

Corollary 2.3.6. If T € S8* has the representation

Tro = f ()¢ (9dx

wheref € L + L2 thenT; = T.

2.4 Potential Theory
In this section we shall examine classical potential theory as a natural extension of
electrostatics. We begin with a discussion of energies and potentials of Radon measures and

examine the relationship between potentials and approximate densities. We then consider
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the problem of finding the lowest possible energy for a measure of unit mass supported on
a compact sef. This leads to the questions of the existence and uniqueness of a measure
that achieves this energy. Both these questions have affirmative answers and the latter
Is established through Hilbert space techniques. We review a characterization the energy
minimizing measure in terms of its potential. Finally, we examine results for a related
discrete problem.

This material is covered in more depth in [21, 30, 34].

2.4.1 Energies, Potentials of Measures, the Sél; and Average Densities
Let u be a Radon measure with supporf®if ands > 0. TheRiesz §)energy ofu is

defined as

. 1
1400 = [ [ St

The integranqx%ws is referred to as thRiesz §)-kerneland is positive. The measupes
unsigned and so the quantityu) is well defined and may take on the valu®. The inner

integral

v — 1
U0 = [ =ity

is called thg(s)-potential ofu at x. We have that

() = f Utdp.

In R3 the Riesz kernel of exponehtis proportional to the Coloumb kernel and it is natural
to considerU%(x) as a generalized electrostatic potential at the pricaused by the
presence of the charge distribution Following this interpretatioris(u) integrates the
potential due to the charge distributipragainst the distribution itself and is a reasonable
generalization of the electrostatic energy.

If we letv = v* — v~ be the Jordan decomposition of the signed measwuriere|v| is
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Radon, then formally we may write

1 T vi—v
10) = [ 5507 =0T )09

[[Eewom [[Loosn e
B (ff|x_ly|st+(Y)dV_(X)+fflx_lylsdv_()’)df(x)). (2.8)

This is well defined so long as it is not the difference of two quantities both of which are

infinite. Each of the four integrals in (2.7) - (2.8) is well defined for the same reasons the
s-energy of a Radon measyudas. Further each of these integrals is less than or equal to
Is(]v]). From this we conclude that if(|v]) < oo, thenlg(v) is well defined and finite. With

this motivation we define the following set of signed measures

&s ;= {ua measure supported &* such thatu| is Radon and(|u|) < oo}.

One may verify that the séls is closed under addition and multiplication by scalars.

If u is Radon, thenu(B(x,r)) and theaveraged-densityu(B(x,r))/r¢ are both well
defined and finite for alk € RP and allr > 0. The averagel-density and potential of a
measure are related by the following useful application of Tonelli’'s Theorem (cf. [9, ch.
3].)

Let f : RP —» R be a non-negative Borel-measurable function armdRadon measure

with support inRP. We have

f v

[ 1629 dt) du(y)

I
f £ X10.5()] (t)dt) du(y)
!
J m

( f X[0.fy)] (t)dﬂ()’)) dt

y : f(y) = thdt,

34



where the interchange of the order of integration is permitted by Tonelli's Theorem.

When the functiorf is the Riesz kernel the above gives the following:

1
f O

J ol = e

fo pdty : Ix—yl <ttt

Us(¥)

rS+1

sfooo Mdr = sfow (M)rd‘*ldr (2.9)

sf ply - IX-yl < r})dr here we make the replacement t/s
0

rS+1 rd

If uis a compactly supported Radon measure, l@fx, r)) < u(RP) < ~ for all x
andr > 0. If in additionu satisfies the condition that there i€a< ~ so that the average

d-density satisfieg(B(x,r))/r¢ < C for all x e RP and allr > 0, then

. f (M(BEZQ r») g [ (M(BEZ@ r))) sgy

1 00 p
< stCrd‘Hdr+s£ (@)rd‘*ldr

- dSTCS + u(RP) < oo.

Us(¥)

We conclude that if a compactly supported Radon measure satisfies the condition that
u(B(x,1)) < Crdfor all x € RP and allr > 0, thenU% is uniformly bounded irRP. Note
that on the last line the expressiai(d — s) appears. This factor will play a significant role
in the next chapter.

The conditionu(B(x,r)) < Cr? is commonly referred to as growth condition orp.
There are many common cases where this condition occurd. he line inRP, then#!
satisfies this growth condition fat = 1. Similarly if P is a two-dimensional hyper-plane

in RP, then?H3 satisfies this growth condition fat = 2. More generally, given a compact
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d-dimensional manifol& embedded iRP, thenH{ satisfies this growth condition. The

Dirac-delta measure does not satisfy this condition fordusy0.

2.4.2 Capacity, The Principle of Descent and the Existence of a Minimizing
Measure

Let A c RP be a compact set. Thecapacity ofA is defined as

Cap(A) := sup1/Is(u) : pe Mi(A),

whereCap(A) is defined to bé if M:(A) N Es = @. As is shown below ifH9(A) > 0,
then M;(A) N & = @ if, and only if, s > d. This fact follows from Theorem 2.4.1 and
Lemma 2.4.2. Note that(u) > (diamA)~® for everyu € M;(A) soCap;(A) < oo for every
sand every compact sét

In the cases < d we have Frostman’s lemma (cf. [34]).

Theorem 2.4.1 (Frostman’s Lemma).Let A be a Borel set irRP. H9(A) > 0if and only
if there exists a non-trivial measugee M*(A) such thatu(B(x,r)) < r¢ for y-a.a. x € RP

andr > 0.

An immediate corollary is that iH(A) > 0, then there is a measyues M:(A) and a
constantC < oo so thatu(B(x,r)) < Cr? for all x € RP and allr > 0. This is precisely the
growth condition we need fdds to be uniformly bounded, and hence fgfu) to be finite.
We can conclude that 8 < d, thenCap,(A) > 0.

If s> dthenM](A) NEs = @. This follows from the next lemma (cf. [34]). While the
lemma only makes a statement about the cased, the result holds fos > d as well for

the following reason: Ifx is a compactly supported Radon measure soltiiat = c for

4This notion of capacity mirrors the notion of capacity from electrostatics in that both are reciprocals of
energy, although in the electrostatic case positive and negative charge are distributed over disjoint regions,
typically capacitor plates.
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somes, then

1 1
oo = Iu) = f f| L yEO00 ¢ f f| oy

SinceA is compact the second integral is finite and hence the first must be infinite. But

then for anyt > sand anyx, y so thatix — y| < 1, we have that

1 3 1
IX—=yls  [x—yt

This is enough to show th&i(u) = o as well.

Lemma 2.4.2 (cf. [34]). Let A be a compact subset & such thatH9(A) < c. Then
la(u) = oo for everyu € M;(A).

Proof. For sake of contradiction assume thgj:) < oo for someu € M;(A). ThenU,(X)

Is finite for u-a.e x. For such ar

1
lim f du(y) = 0.
10 Jaoery IX— Y19 v

By Egorov’s Theorem we can select a #gtsuch thaju(A) > 1/2 and the above limit is

uniform in Ag. Fix e > 0 and find arrg = ro(g) such that for alk € Ag and allr < rq

1
B(x, r r‘dsf ———du(y) < &,
pBOI S | )
allowing us to conclude that for alle Aq and allr < rq,

w(B(x,r)) < erf.

From the definition of the Hausdorff measure, we may find a collection of @gfs, such

that
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@) Aoc U Q

(b) AcnQ #oforalliel,?2,...
(c) diamQ, <rpforalliel,2,...
(d) Iy (diamQy)? < HY(AG) + 1.

For eachQ;, select anx; € Q, N Ag and letr; := diamQ;. Then
1 (o) (o]
5 <H(Ao) < Y u(Bx. 1) < & ) rf < o(H'(Ao) + 1)
i=1 i=1

Sincee is arbitrarily small 9(Ay) cannot be finite and hendg®(A) cannot be finite. O

One might think of the preceding lemma as an extension of the fact ti4t in

1
f —SdX
B.1) X

Is finite only whens < d. The preceding lemma is quite general, however, in that it holds
for non-integral values af.

With this one may define eapacitary dimensiofcf. [34]) as
dimg(A) := sugse R, : ls(u) < co for someu € M; (A)}

Theorem 2.4.1 and Lemma 2.4.2 prove the following:

Proposition 2.4.3. Let A be a compact set iiRP such that the Hausdorff dimension of
A (dimA) is d. If HY is a o-finite measure — that is to sag{s can be subdivided into
a countable sum of finite measures, thdim A agrees with the capacitary dimension

dime(A).

Having established the conditions € d = dimA) for which the s-capacity ofA is

non-zero, we show that there is at least one measure veéhasergy is the reciprocal of the
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s-capacity, that is, there is a measpfesuch that

1) = Inflls() © 1€ ME(A). (2.10)

To prove this we shall employ some further results regarding the weak-star convergence of

measures.

Lemma 2.4.4.Let A be a compact subset BP and let{u,} >, ¢ M*(A) be a sequence of

measures converging in the weak-star topology &AM*(A), then

lim f f £ (%, ) dutn(X)diny) = f £ (%, Y)dv(x)dv(y)

forany f € C(Ax A).

A sketch of a proof of this lemma is as follows: Consider the case whén a
polynomial onRP x RP, then f may be written as a sum of monomials 8nx A. The
integral of each monomial oA x A is the product of integrals of monomials @y and
the weak-star convergenpg Sy applied to a polynomial restricted tovensures that the
claim holds for such arf. By the Weierstrass Approximation Theorem polynomials on
RP x RP are dense in s&(A x A) with regards to the topology induced by thapnorm.

Our next tool is thePrinciple of Descentvhich is expressed in the following lemma:

Lemma 2.4.5.Let A be a compact subset BP. Let{u,}", ¢ M*(A) such thafu, Sve
M*(A). Then

I5(v) < lim inf 15(uo).

Proof. Define the following continuous function frof, toR,:

1
S >0

Kr):={ ' (2.11)
07 r <.
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For each pair of distinct andy K(]x - y|) < [x-y/"*and

lim (|X— v ke(Ix - yl)) =0.

We have

A

[ sEmtotg < tmint [[ ie0x- )9 (by Fatous Lemma)

liminf lim f K2(1X = V) dun(y)dun(X)  (Sinceun — v)

6l0 N—oo

1
Iiminfff den(y)dun(X
min X yF i (y)diin(X)

IA

We are now prepared to show the existence of a measusatisfying (2.10). This

argument is presented in a variety of texts including [30].

Proposition 2.4.6.Let A ¢ RP be compact. Les < d := dimA. There is a measure

(' € ME(A) such thatl () = inf{ls(u) : 1 e M(A)).

Proof. Let Ws = inf{ls(u) : u € M;(A)}, as already notetlVs > 0. Let {u,}>, be a
sequence so that

im 1(un) = We.
Nn—oo

By Helly’s Selection Theorem we may chose a cluster pgirt M; (A) of {uy)-, and a

subsequencgy’; C {nln, SO thatuy 5 . By the Principle of Descent we have

Ws < Is(l//) < I|rkn |nf |5(/.lk) = I|m |S(/Jn) = WS-
—00 N—oo

This impliesls(¥) = Ws and so our claimed measyggis y. To see thai is of unit mass,

choose the continuous function to be the constant O
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2.4.3 Hilbert Space Techniques and The Uniqueness of the Minimizing Measure

The proof of the existence of a minimizing measure for the Rsnergy in the
previous section relied on two facts about the Rekernel. First, the arguments presented
in section 2.4.1 showed that if a measure had a certain growth condition, then the singularity
in the Rieszs-kernel was integrable with respect to that measure. Frostman’s lemma
ensures there is a measure with this growth condition, and so there is at least one measure
with finite energy. Second, in the proof of the Principle of Descent we used the fact that
the Rieszs-kernel can be approximated pointwise from below by continuous functions. In
this section we will use another feature of the Rissernel, namely that it forms an inner
product on the sefs, to show that the energy minimizing measure we identified in the
previous section is unique.

The set&s is the vector space of all signed measures of finite energy. As such the

Qs i= [[ =smdutom)

is well-defined. Intuitively this is the amount of energy required to assemble the charge

bi-linear form

distributionu in the presence of the charge distributiorFor (-, -)s to be an inner product
it must also satisfy the positivity requirement tiatu)s = 0 if, and only if, u = 0. We
reproduce arguments (cf. [30]) based on Fourier techniques to show this.

The functionf (x) := [x|"° defines a functional o8& as follows

a 1
Ti(p) = ﬁw(x)dx

If se (0, p), then this integral is absolutely convergent as follows:

1 1 1
Seeitx = [ i [ g

©.1) IXI® me.1) 1XI°

1
Il f L axs f e()ldx < co.
Bo.1) X RP\B(0,1)
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From this we may conclude thadk is linear as well. To show thdt; is continuous, let

{¢nle, € S be a sequence converging@dn S. This implies that
im llgalle =0 and  lim ||| 1P| . = 0.
n—oo n—oo 0

Choose arN large enough so that for all > N we havellgnll. < 1 and||| - [Pg,| < 1.

For suchn we have the following bound

1 [X|~S X <1
—len(X)| < g(X) :=

X X" x> 1.
One may quickly see thatis integrable, and so we appeal to dominated convergence and

conclude that

rI]im Ti(¢n) = 0.

This establishes that; € S* and we may consider its Fourier transform in the sense of
distributions.

We shall not compute the Fourier transformxjfs directly, but rather infer it based on
properties ofT ;. The following arguments are taken from [10, 50Proofs of this fact are
also presented in [23, 34]. Consider the case wderp/2. The functionf(X) := |x|~° may
be written asf = fygg1) + fxree1). Becauses < p, fxgo1 € L! and becauss > p/2,
fyrrBo1) € L2 thusf € L1 + L2,

If we consider Proposition 2.3.2 whelkéis chosen to be a rotation matrix, then because
f oM = f we have

f=foM=fo(M™T,

and we conclude thdt is a radial function.

SIn [10] these arguments are presented quite concisely by tacitly equating properties of the Fourier
transform of a tempered distributidn with properties off. We shall provide those details.
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A tempered distributiofT is said to benomogenous of degreaf

- (so(ﬁ)
AP

) = A%To,

for all ¢ € S and all1 > 0. With this definition we have the following:

Proposition 2.4.7.1f T € S* is homogeneous of degragthenT is homogeneous of degree

-p-a

The proof follows from the definition of and an application of Proposition 2.3.2 to

@(-/2).
One may verify thafl; is homogeneous of degrees and soT¢ is homogenous of

degrees— p. From this and Corollary 2.3.6 it follows that

f [ f(%) = 5P F(%)] e(x)dx = O, (2.12)

for everyyp € S.

We now employ arguments similar to those used in Section 2.3.3 1;eth(/l')—/leA
and let¢p € S be compactly supported such thgi|; = 1. Define¢® := 8—1p¢(;). By
choosingy in equation (2.12) ag®(y — ), we have

gx¢°(y) =0 for ally € RP.
If we let K ¢ RP be a compact set, then (cf. [9, ch.5] for details.)
|j:[g I(@x«) * ¢° — Arllp = O,

for 1 < p < oo. (This is the essential argument used in [9] to prove the densiy/ofiLP.)
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This impliesg must be zero a.e. and so
f(Ax) = A5Pf(x)  fora.a.xeRP, (2.13)

Sincef is radial there is a functioi such thatf(x) = f(Ix)) for a.a. x € RP. Integrating

both sides of (2.13) over the bal0, R) gives

R R
f f(Ar)rPidr = /lH’f f(r)rP1dr,
0o - 0o -

Lettingu = Ar gives

AR

R
2 fyurtdu = a5 f f(r)rP-tdr.
AP Jo — 0o —

ChooseR = 1 and let
1
C= f F(ryrP-dr,
0 —

and then

A
f f(uuPtdu = A°C. (2.14)
. -

By the absolute continuity of the integral we may differentiate both sides with respéct to
and conclude

f(YAt=2'C

Hence f(x) = c(s p)|x>P for some constant(s, p) depending ons and p. By
proposition 2.3.5 and the fact that the Gaussa!” is its own Fourier transform we

obtain

f e |x*dx = c(s. p) f e |x*Pdx (2.15)

Converting to radial coordinates and making the substitutien v/zr both sides may be
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written as Gamma functions and we see that

p-s
os p) = Zn*é’y. (2.16)

P
NIn
SN—"

In the following chapters we shall be interested in the case skefp/2, p). However
this result can be extended to alk (0, p). The cases € (0, p/2) is handled roughly as
follows: If fg =] |5, thenf, = f, where” and” are considered in the senseldf+ L2
functions. We then have

ffs = Tf; = Tf‘s = -i:fs-

From the previous calculations we have
-]:fs = -ffs = C(S, p)Tfp_S.

Taking the Fourier transform of the leftmost and rightmost expressions gives

~ 1

Tfp—s = mTfs. (217)

Equation (2.17) holds fos € (p/2, p) and hence fop — s € (0, p/2). The cases = p/2is
handled by continuity arguments.
Having established the Fourier transform in the distributional sense of the fun¢tion

we refer to a result in [50] that the eneryu) for u € E can be expressed as

(1) = (s p) f T PAR dé = (u . (2.18)

This is sufficient to establish positivity @f, -)s. If (u, u)s = 0, theng is zero a.e. and

by Theorem 2.3.3y=0. ¢

6In [22] M. Gotz provides an alternate proof of the positivity of the Riesz kernel using geometric
arguments that avoid the Fourier transform.
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This shows thaf&s, (-, -)s) is a pre-Hilbert space. The norm arising from this Hilbert
space ig| - |ls ;= VIs() and is referred to as tha-)energy norm The following theorem
Is central to the proof of a unique minimizing measure and potential theory in general. The

proof is technical and we omit it. The interested reader should consult [21] or [30, p.90].

Theorem 2.4.8.The positive cone of (unsigned) measure&dis topologically complete
with respect to the metric induced from the ndfmi|s . The spacé&s with the same norm

IS not.

We shall also need the following:
Proposition 2.4.9 (cf [30]).Lets € (O,p). If f : RP — R has compact support and
continuous derivatives up to order+ 2 then there is a signed measweo that

f=U

Further, v is absolutely continuous with respect to Lebesgue measure.

We sketch the proof for the case= p— 2, a complete proof may be found in [30]. The
Riesz kernel fos = p—2is proportional to the fundamental solution of Laplace’s equation
given by (cf. [8]):

1 1
FOy) = (p— 2wy IX—yIP2

(Here and in the rest of this documeng will denote the “area” of th¢p — 1)-sphere in

RP) For sufficiently smooth and integrable functiopsandp, the following:

1 p(y)

¢

and
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are equivalent. 1§ is the smooth compactly supported potential we desire,&% will
be the Radon-Nikogn derivative of the claimed measure

The immediate consequence relevant to the topic at hand is the following:

Proposition 2.4.10.If a sequence of measurgs,};>, converge in the strong topology on
the pre-Hilbert spacd&s, (-, -)s) to u, then the measures convergegton the weak-star

topology onM(A) for any compact seh c RP.

Again we sketch the proof and refer the interested reader to [30]. Strong convergence
in a Hilbert space immediately implies weak convergence in the Hilbert space, observing

that for anyy € &
fU;d,U = (U, V)s = r!m(ﬂn, V)s = r![ﬂo f U <dun,

that any compactly supported smooth function functiazan be represented as a potential
of the form Uy, and that smooth compactly supported functions are dens¥An we
conclude weak-star convergence@f} > ;.

With these tools we present a proof of the uniqueness of the energy minimizing

measure. (cf. [30, pp.132-133])

Theorem 2.4.11.Let A € RP be compact so that{9(A) > 0, and lets € (0,d). There is a
measure:S* € M;(A) such thatl s(u®”) < 15(v) for all v € M (A)\ {34}

Proof. As in the proof of the existence of the equilibrium measurgdgl.; ¢ Mj(A)
be a sequence of measures such timag_., Is(un) = Ws = inf{ls(u) : u € M;(A)}.
Proposition 2.4.6 and in particular Frostman’s lemma ensuredibat c and without
lose of generality we may chooge,}>>, ¢ M;(A) N Es. Then VW < ||%(pm + up)l|s for

anymandn € N, and by the polarization identity
[lttm — ﬂn”é = 2||,Um||§ + 2||,Un||§ = |lpm + ,Un”i
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hence

llitm — il < 2lmll2 + 2llnl — AW,

For everye > 0, there is arN € N so thatiju,||2 — Ws < /2 wheneven > N. If n,m> N
then |jum — unll? < & and so{un}y , is a Cauchy sequence with respect to the nprris.
By the completeness o¥1*(A) N &, {un}n, converges in the strong topology & to a
measurel. By proposition 2.4.1Qy, — A and hencel € M; (A) (Choose the constafitas
the continuous test function to see théa) = 1.)

LetA; € M;(A) be another measure such thgti;) = Ws, then by the Cauchy-Schwarz

inequality
A+ 1 1
Wa < |25 = 2 11 + st + 200, 40| <  [WAIZ + 142 + 21l11] = W
S
Hence
A, Arb = Il
Which implies thatl; = CA. Sinceq, 4; € M;(A),C = 1. O

Note that the positive-definiteness ¢f-)s allows us to use the Cauchy-Schwartz
inequality. This unique probability measuteshall be denotegs” and referred to as the
(s-)equilibrium measure oA

Finally we note that by taking an appropriate limita$ O one may replace the Riesz
s-kernel with the logarithmic kernellog|x — y|. In this case there is a unique equilibrium
measure as well. This is referred to as tke=“0" case, although it is not obtained by using
a value of zero for the parameterThe limit of the gradient of the-potential ass | O will

give the gradient of the logarithmic os'= 0" kernel.
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2.4.4 Constant Potential of S

When electrostatics is studied as a physical phenomenon, one encounters the following
standard argument that the potential is constant across a conductor: Suppose the potential
was not constant, then the gradient of the potential would give a non-zero field that would
induce the mobile electrons to move in opposition to that field. Any steady-state must
therefore have a field of zero and hence constant potential.

This argument assumes a signed measure of fixed net mass to represent a charge
distribution and takes for granted that the potential is differentiable. Nevertheless, there
is an important idea: If the potential of a measure is non-constant, then the measure does
not have minimal energy. This idea continues to hold in the setting of potential theory
in a modified form: The potential of the equilibrium measure is constant approximately
everywhere on the support of the equilibrium measure; where we say a condition holds
(s-)approximately everywhefgef. [30, pg. 135]) if the set of pointll where the condition
does not hold contains no compact sets of positEépacity.

To prove and use this concept we introduce the notion of lower semicontinuity. Let
A c RP be compact. We say thdt: A — R U {o0} is lower semicontinuous oA if for
everyx € Aanda < f(X) there is a neighborhoo@ of x that is open in the subspace
topology onA such that for ally € O we havef (y) > a.

The following may be found in the introduction of [45].

Lemma 2.4.12.Let A c RP be compact and let : A — R U {co} have the property that

there is an increasing sequence of functi¢h$ , ¢ C(A) such that for eaclx € K,
lim f,(x) = f(x),
n—oo

where the limit is infinite whenevd(x) is. Thenf is lower-semicontinuous.

Proof. Let A, f and{f,}., be as provided in the hypothesis of the lemma. X etA and
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a < f(X). LetN so that for alln > N f,(X) > a. Let
O ={yeA: fn(y)>a}clyeA: f(y) > a},

thenO is open in the subspace topology Aty the continuity offy. O

Lemma 2.4.13.Let u be a Radon measure with support in a compactfset RP, then

UL : A — R U {oo} is lower-semicontinuous.

Proof. Define a truncated Rieszkernelk? : RP — R U {co} a@s

. IXI®  when|x|®<n
ks(x) =
n when|x®>n.

Define an analogouspotential as

UL, (%) 1= f K100 — Y du(y).

By dominated convergence

lim f KX = V) du(y) = f K1(1% — Y)u(y).

and soUg,, is continuous. By monotone convergence

tm [ 1x =) = [ o)

Lemma 2.4.12 completes the proof. O

An important consequence is that for a meagure M*(A) the sefUs > a] is open
and hence (cf. [9, ch. 3]) the sdtds > a], [Us < o] and[U% < a] are Borel-measurable.

The proof of the following proposition is taken from [21].
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Proposition 2.4.14.Let A c RP be compact so that(4(A) > 0. Then
Q) UQ‘SA > 14(u5") approximately everywhere ok
(2) U’s‘&A < ls(u%?) everywhere on the support @fA.

Proof. Letv € M;(A) N &Es and leta € [0, 1], then by the minimality of s(15*)
SA12 < lla + (1 - a)vIlz = a2 + (1 - @2V + 2a(1 — &), v)s,

hence
(1 - a)|sA12 - (1 - a)|vIi2
2a — 2a?

SAI2 = lim < WSP Ve,
> m < (W v)s

The linearity of the inner product allows us to conclude that>v(A) < (us*,v)s for all
ve MY (A) N Es.

LetN := {xe A : U (%) < luSA12). Supposer € M*(A) such that(N) > 0 (N.B.
We use the measurability ®f for this supposition.) Then there iska c N so thatK is

compact and(K) > v(N)/2 > 0. Let vk be the restriction of to K, in this case
i 1™)s = f U dvic < [ISM2vic(A),
implying thatvk ¢ Es and hence ¢ E;. This proves the first claim. In particular
EAUET < M3 =,

hence

SA sA
A= [ L et [ e
[US™ =llusAlI3] [US™ >llusAlZ]

Which impliespsA[UL" > [|us42]) = 0. BecausdU!™" > [|uSA|3] is open, it is disjoint

from the support ofi>A. This proves the second claim. O

From this we have an immediate corollary.
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Corollary 2.4.15. Let A ¢ RP be compact such that(4(A) > 0, lets € (0,d). Then

= l4(us?) us*-a.e.

SA

Us

2.5 Discrete Minimal Energy Problems

The previous sections of this chapter developed a mathematical model for arranging
a continuous fixed amount of charge over an object so as to minimize a generalized
electrostatic energy. The notion of a continuous charge density arises in physics as a
continuum limit of letting the number of electrons grow. In this section we shall see that for
s < d this continuum limit is justified if the electrons or point charges minimize a discrete
minimal energy problem.

Letwy = {X,..., Xy} denote a configuration df distinct points inRP. Thediscrete

s-energyof wy is

N N
Bl =2, 2,
i=1 | _XJ|

If we let A c RP be an infinite and compact set, then we may consider the constrained
problem of choosing a configuratiasy c A that minimizesE over allN-point subsets of

A. We first establish that this problem has a solution.

Proposition 2.5.1.Let A c RP be an infinite compact set. Let> 0. Then there is a
configurationw®", which is sometimes denoted, when the seA may be inferred, so that

Es(wy) < Es(wn) for any N-point configurationwy.

Proof. Let

IX™S X >e&
K (x) :=

g3 |X<e

and E® denote the energy where the kerivel y|=S is replaced by for some value
of ¢ > 0. For a givenN, we may choose an arbitrary configuration of distinct points on

A denotedw,. We then choose an > 0 such thatl/e® > Eg(«w9). Any configuration
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with lesser energy must contain points that are separated by atlelast configurations
whose points are separateddythe quantitie€s andEY agree.A is compact, an&® :
AY — R is continuous so we may find a configuratiof) c A", that minimizesE®. This

configuration also minimizeR;. O

It should be noted that a minimizing configuration may not be unique. For example,
if we let A be a circle andvy be a minimal configuration on the circle, then any rotation
of wy is also minimal. Further, there is no restriction sother than it be positive, the
dimension ofA does not play a role in the existence of a minimizing configuration. With

this in mind we define, for a compact &t

Es(AN) = Es(wy).

An early formulation of this problem is Thomson’s Problem (cf. [48]) which is to
arrangeN-electrons on the unit sphere so as to minimize the electrostaticl| d = 3)
energy. Under the reasonable assumption that the electrons are separated, the energy is a
differentiable function of the positions of the electrons. One may write down the equations
necessary for a configuration to be at a local minimum and attempt to solve them. There are
two obstacles to this problem: strong evidence that there are many configurations that are
local minima but not the global minimum, equations which are intractable even for modest
value ofN.

In the appropriate limit as — oo one recovers the best-packing problem or Tammes’
problem [47].

An alternative approach is to examine more qualitative behaviors of energy minimizing

configurations. The questions that have been of interest are:

(1) What is the asymptotic distribution (or continuum limit) of the energy minimizing

configurations? How does it depend ar A?
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(2) How does the minimal discrete energy grow withand what factors contribute to

the nature of the growth?

The techniques for addressing these questions depend to a large degree on whether

s< dimA.

2.5.1 The Potential Theory Case
Here we consider a compact et RP of positiveH® measure and assurse: d. One
may define the following measure based on an energy minimizing configutajar A.

Let

1
YN = ~ > 6 (2.19)

xews,
We consider the asymptotic distribution of points by examining the limjf3fasN — co.
The central tools are the integrability for the Rieskernel onA and the existence of a
unique equilibrium measuye”.

The setting for this next proposition is Riesz potentialRphowever the proof hinges
on the uniqueness of the equilibrium measure, the minimality otbeergy ofwy, and
the fact that the kernel can be approximated by continuous functions. These conditions
hold in more general settings (cf. [21]) and related results in these more general settings

are obtained in [17].

Proposition 2.5.2 (cf. [30] pp 160-162)Let wy, denote the configuration of points that
minimizesEs over all N point subsets of and y(SN) denote the measure derived frasng.

LetuSA be the unique measure that minimizgdf s < d := dimA, then

Es(A N)
N2

(N) *,  sA

Y — u and — 15(u®M).

asN — oo.
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Proof. We show that the limit

i Es(wy) (2.20)

—e N(N — 1)
exists. For sake of clarity, if a pointbelongs tavy, then we shall append a superscript of

the form,x"). By creating sums in which one point is omitted we have

N

1
Z'(N) N—ZZ (N) _

k=1 i<j,izk, jzk ‘XI

The inner sum on the right hand sidefg(w3\(x!V}). By the minimality ofEs(w3), this

must be greater than or equalEg(wy, ,), giving

1
Z N) X(N)S‘N zz'mn

i<j X%

which implies that

2 1
N(N — 1)Z|(N> X(N)S‘(N 1)(N - Z)Z'(N 1) X(_N—l)s'

This is sufficient to show that the quantity in (2.20) is increasing Witéind thus the limit,
finite or infinite, exists.
Now we let{y}!, be an arbitrary set of points ok and{x}, denote the points iny,.

By minimality we have

Z X — XJIS Z lyi — yjlS

i<j i<j
where we replacg; — y;|™° with oo if y; = y;. We letu € M7 (A). We shall integrate both
sides with respect tdu(y,) . . . du(yn). Since the left hand side does not depend;oit is

unchanged. On the right hand side, we see that integrating agaifystonly affects the
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terms containing;, and leave®N(N — 1)/2 copies of the same integral giving

< L dunduty) = SO (L gty
|X| le : |y| yjl 2 |ya ybl

i<j i<j

Since the above holds for any probability measure, it holds for the unique equilibrium

measure:3”. Further, since it holds for all, it holds in the limit and we obtain

lim < QA dLSA ).
N—-c N(N — 1) Z Ix — x;l ﬂ Va — Yol 1> (Ya) A (Vo)

i<j

We fix £ > 0 and consider the integral

[ e neten.

The above integral is similar to the discrete sum with two exceptions. The terms resulting
from pairs of distinct points are bounded abovesb§, and we now include pairs where
both points are the same. With this in mind the following bound may be established where
the first term is the bound on the terms whete j and the second term bounds the terms

wherei = j.

—-S

2 1 €
(2) (N) (N) N
ff KO (x, ) () dy 0 (x) < N(N—l);,- ERETA

Let ys denote any weak-star cluster pointyd¥, and let{Ni}=>, be such thag™ = y, as

I — oo. We take the limitN; — co and obtain

[ o= ndroineo < [[ it

The integrability of the Riesz kernel far< d and the fact that is independent oN give

I5(ys) < 1s(u®?).
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The uniqueness of the equilibrium measure ensuyesus. O

Related to the potential theory case are the cases when0. In this setting one
considers a maximization problem. In general one does not have a positive definite kernel

for s < 0. Results are obtained in [2]

2.5.2 The Singular Case

The first order growth of4(A, N) and the weak-star limit of{" were obtained in
the last section from a potential-theoretic approach. Such an approach is not available
in the cases > d and new techniques are required to make progress. Significant results
were obtained by Kuijlaars and Saff in [29] describing the energy of configurations which
minimized thed-energy on the spher8®. Results for thel-energy for minimal energy
configurations on rectifiable curves were obtained by Ma#-Finkelshtein, Maymeskul,
Rakhmanov, and Saff in [33].

Recent results fos > d can be found in [24] by Hardin and Saff. These results were
extended by Borodachov, Hardin and Saff in [3,4]. The results apply to configurations
on d-rectifiable sets and manifolds. The precise definitions of these classes of sets are left
to the next chapter. Because we omit the (technical) proofs of the following results, it is
enough to understand thdtrectifiable sets and manifolds have a local structure, which
in a measure-theoretic sensedigimensional for a natural numbdr Some of the more

significant results for the case> d are presented here.

(1) Borodachov, Hardin and Saff show in [3] that fodaectifiable setA, ands > d
the sequence oN-point minimal energy configurations becomes asymptotically,
uniformly distributed in the limitN — oo. That is to say, ifyl" is as defined in

the previous section, then
d
N * Hy
Ys T qa
HI(A)

asN — oo.
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(2) Hardin and Saff show in [24] that & = d andA is ad-rectifiable manifold and also

a subset of & manifold, then the same results holds.

(3) In [24] separation results are obtained fo RY whereHY(A) € (0, ). Note that
the dimension oA is the same as that of the embedding space. In this setting there

is a constan€ depending only o so that
min|x — xj| > CN~*¢
i#]
whens > d and
min|x — x;| > C(Nlog N)™/¢
i#]

whens = d. It is strongly believed that this second result is not sharp, and that the
factor oflogN is not needed. Further, the proof of these results relies on growth
estimates fofH{ that are satisfied foA c RY. However, a similar result holds when

A c RP is such thatH} satisfies the same growth conditions.

(4) In[3]itis shown for ad-rectifiable set and > d that

I|m 83(A9 N) _ Cssd
Nooo NI+sd Wd(A)s/d’

where the constar@sy depends only ors andd. It is known thatCq; is twice the
Riemann Zeta Function o (cf. [33]), and it is conjectured thas, is the Zeta

Function associated with the hexagonal lattic&#r(cf. [29]).

(5) In[24]itis shown for ad-rectifiable manifoldA, which is also a compact subset of a

d-dimensionalC! manifold, that, in the case= d we have

Eo(AN)  HI(EB)
N-eo N2logN — HI(A)
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whereB? is the closed unit ball iiRY. We note that in this resul{® is normalized

so thatH restricted taR¢ is d-dimensional Lebesgue measure.

(6) In [3] we have the following result about weighted energy problems. If we modify
the quantity to minimize by introducing a symmetric weight funcionAxA — R,

to get

W(X;, X))
B (on) = D) S
X #XjEWN )

and if the functionw(x,y) satisfies the CPD property (cf. [3]), then tiepoint

configurations will converge in the weak-star sense to a density deriveddrom

(7) In [4] the limiting case whes — oo is examined. Further a construction is provided

for a fractal sefA so that

. E(AN) Es(A N)
O<“ﬂl'2f N1+s/d <“T_)S£p N1+s/d <

We remark that items four and six and their proofs suggest that fod the behavior of
Es(A, N) results from local properties QjﬁA which in turn are derived from local properties

of the setA.
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CHAPTER 3
A NORMALIZED d-ENERGY

This chapter presents a limiting Riedznergy that is derived from the limit of Riesz
s-energies as T d. This result is of value in that potential theory has broad physical
application and deep connections with other branches of mathematics. We are further
motivated by connections between the equilibrium measure and the discrete problem
discussed in Chapter 2.

Whens < d andAis merely compact and of positicedimensional Hausdorff measure,
the first order growth in discrete minimal energy and the asymptotic distribution of minimal
s-energy points are addressed by Proposition 2.5.2. Further, given a collection of minimal
energy configurationﬁuEA}se[so,d) indexed bys, one can find a sequensg T d such that
{w3™) has a cluster point iAY, and that cluster point achieves the minimapoint d-
energy. In light of these facts it is reasonable to investigate the behavior of the equilibrium
measures as T d with the hope that one can learn about the asymptotic behavior of
minimal d-energy configurations.

As an example consider the case whis the interval[-1,1] ¢ R!. In this case
the Hausdorff dimensiond of A is 1. It is well-known (cf. [25]) that the equilibrium
measurg:SI-21 is given by the following Radon-Nikgan derivativecs(1 — x2)Z where
Cs is chosen so that3!=1 is a probability measure. From proposition 2.5.2 the weak-star
limit asN — oo of the discrete minimas-energy configurations jg*l-+1 whens < 1. One
may verify thatusi-21 5 H:,,1/2. This indicates that the weak-star limit Bis— oo of
the discrete minimal energy points is converging in the weak-star topology to the uniform

probability measure oA ass 1 d. From [24] we also know thab, 5 74[1_1’1]/21.

When we say a sequence of configurations converges in the weak-star topology we mean that the
measures derived from the configurations by (2.19) converge in the weak-star topology.
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To put this concisely we know that

IiSmus[_l’l] = Hi,y/2  and (3.1)
lim wy = SR hence
Iism(,\lli_r)noowﬁ) = H, /2 (3.2)

where all the limits are considered in the weak-star sense. We also know
lim wiy = HEy /2. (3.3)

It is not surprising that the right hand sides of (3.1) and (3.3) agree, however the technique
used to prove (3.3) did not rely on potential theory and (3.3) has been shown to hold only for
a compacd-rectifiable manifolds which are also subsetsladimensionalC! manifolds.
We take this as motivation to study the minimal discrétenergy as a limit of potential
theory.

A potential theoretic approach to the discrete minirdaénergy problem requires

addressing the following questions.
(1) Under what conditions oA does a limit such as the one in (3.1) exist?

(2) For what conditions oA and in what sense can we interchange the limits in (3.2) to

conclude that the right hand sides of (3.1) and (3.3) agree?

This and the following chapter address the first question. We hope to address the second
qguestion in future work. The approach is to develop a normatizedergy that is analogous

to thes-energyls. This normalizedl-energy is

la(w) = im(d = 9)ls(u).
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and the related normalizetipotential is
U4(x) = Iism(d — 5)UX(9).

using a combination of density arguments and Fourier analysis, we shall show for measures
supported on a set belonging to appropriate classes of sets that these two quantities are
well defined and that this normalized energy gives rise to a minimization problem with a
unique solution. This is done in this chapter. In the following chapter we show that, for
certain classes of sets, any weak-star cluster poistias of x5* hasd-energy less than
or equal to that of the unique solution, and hence must be the unique solution (this is done
in the following chatper.) This will be sufficient to show weak-star convergence of the
equilibrium measures.

The rest of this chapter will present classes of sets related that shall be examined,
review some notions of density necessary to study this normatizatergy, and finally

characterize thigd-energy in terms of the Radon-Nikieh derivative.

3.1 Classes of Sets

We shall begin by defining several classes of subs&PofRoughly speaking the sets
described in Sections 3.1.1, 3.1.2 and 3.1.3 can be assembled from bi-Lipschitz images of
compact subsets @Y. From Corollary 2.1.6 properties of tliedimensional Hausdorff
measure restricted to these sets will be similar toddiémensional Hausdorff measure on
RY. Further, image measures associated with bi-Lipschitz maps have energies bounded by
the original measure. More concretelyuifs a measure, angdis a bi-Lipschitz map with

constant, then

o) = [ [ smsdemtden() = || ()
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Since the denominator of the Riesz kernel can be bounded by

L% =yl < lp(X) — ¢(y)| < LIx—Yl,

we have that

L™ls(k) < Ts(pae) < LO1s(w0). (3.4)

This fact coupled with Corollary 2.1.6 provide a means to look at these sets as if they
were a collection of subsets &F. In broad terms, this approach works if the energy in
consideration can be shown to be localized; by this we mean that the interaction energy of
the charge on different bi-Lipschitz images interacting with charge on other bi-Lipschitz
images is small relative to the energy of the charges on the bi-Lipschitz images interacting
with themselves.

The fourth class of set is a type of fractal. These fractals cannot be assembled from bi-
Lipschitz images oRY, but by their construction they have the desired localization property
for certain types of energy. Further, their self similar nature ensures that the measure and
potential theoretic properties at each scale are proportional to these properties for the whole
set.

A setA c RP is said to be Ahlforgl-regular if there are constar®s, andC, so that for
all xe Aand allr € (0, diamA)

HiBOD) _

Cl < rd 2 (35)

A setA c RPis said to be upper(lower) Ahlfosregular if the upper(lower) bound in (3.5)
holds.
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3.1.1 d-Rectifiable and(#¢, d)-Rectifiable Sets

A setA c RP is d-rectifiable(cf. [18, §3.2.14]) if it is the Lipschitz image of a bounded
setinRY. If we consider such a definition in measure theoretic terms we have the following:
A setA c RP is (HY, d)-rectifiable (cf. [18, §3.2.14]) if HY(A) < o and there exists a
countable collectiofE, E,, ... of d-rectifiable sets that covér®-almost all ofA. That is,
there exists a countable collection of bounded subsék8 Kf, K,, ... and a corresponding

collection of Lipschitz mapsg; : Ky = RP, ¢, : K, —» RP, ... such that

H [A\ 0 ‘Pi(Ki)J =0.
i1

Moreover, it is a result of Federer [183.2.18]) that ifA is (¢, d)-rectifiable then for
everye > 0, the Lipschitz maps and the bounded sets may be chosen such thai éach
bi-Lipschitz with constant less thdr-&, eachK; is compact and the sets(K1), ¢2(K>), . ..

are pairwise disjoint. For such a choice of theandK; there is arN = N(g) such that

N
H (A\ U <Pi(Ki)) <e.

i=1

This class of set arose in the study of geometric measure theory, one of whose
motivations was to generalize differential geometry from smooth manifolds to sets
satisfying certain measure theoretic properties. While the results in this dissertation do
not referencgH¢, d)-rectifiable sets, this definition and the results due to Federer provide

the basis for the next two classes of sets.

3.1.2 Strongly (HY, d)-Rectifiable Sets

The following definition of strong ¢, d)-rectifiability strengthens this condition in
that for eache > 0 there must be a finite collection of the mappings as above such that
the portion ofA not covered by the union is of strictly lower dimension. We say that a

setA c RP is strongly (HY, d)-rectifiableif, for everye > 0, there is a finite collection of
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compact subsets & K, ..., Ky and a corresponding set of bi-Lipschitz maps K, —

RP,...,¢n : Ky = RP such that
1. The bi-Lipschitz constant of each map is less thate,
2. 7’{d(g0|(K|) N (pJ(KJ)) =Oforalli # j,

3. dim(A\ U, ¢i(K)) < d

Note that compact subsets @fdimensionalC* manifolds are strongly#¢, d)-rectifiable
and any stronglyH¢, d)-rectifiable set i§H¢, d)-rectifiable. Further note that any strongly
(HA, d)-rectifiable set is of finitd4{%-measure.

This definition was first presented in [6]. The requirements tha#tfieneasure of the
intersection of the bi-Lipshcitz images is zero, and that any portightbat is not covered

be of lower dimension are needed for energy localizatios fad.

Proposition 3.1.1.Let A ¢ RP be strongly(#¢, d)-rectifiable. TherA is upper Ahlfors

d-regular.

Proof. Let Ky, ..., Ky andes : Ky = RP, ..., on : Ky = RP be the compact subsetskt
and the corresponding maps with bi-Lipschitz constant less2lovided by the strong
(HA, d)-rectifiability of A. SinceH9(A) = HY(UY, ¢i(Ki)) and since each; is bijective,

we have

7-fi‘\(B(x r)) Z H(¢i(Ki) N B(x, 1))
- rd

ZN: H(pi(Ki 0 <P. Y(B(x.1))) ZN: 29HI(Ki N 90. (B(x, r)))
i=1 i=1
where the last inequality follows from Corollary 2.1.6. Sitfd&(K; Ng1(B(x, 1))) < 2%r9,

the claim holds withC = 23%IN. O
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3.1.3 d-Rectifiable Manifolds

A setAis said to be a-rectifiable manifoldf
N
A= U ¢i(Ki),
i=1

where eachK; is a compact subset &“ and¢g; : O; — RP is bi-Lipschitz on some
open seD; O K;. This class of sets was introduced in [24] in a broad examination of
discrete minimals)-energy problems fos > d. As with strongly(7¢, d)-rectifiable sets,

d-rectifiable manifolds ar¢/H9, d) rectifiable sets.

3.1.4 Strictly Self-Similar d-Dimensional Fractals

We say a compact sétc RP is astrictly self-similard-fractal if
N
A=),
i=1

where the union is disjoint and the maps (which we shall also refer to as similitudes)
¢1,...,on are of the formp(x) = LiAX + b; whereA, is an isometryL; is a scale factor
andb; describes the translation. We requirec (0,1). In [35] Moran shows for strictly
self-similard-fractals the Hausdorff dimension is also the unique valué thfat satisfies

the equation

N
du=g,

i=1
and thatHY(A) € (0, ). Moran shows this result for fractals satisfying the broamfsen
set condition(cf. [15]), however we use the strict separation in the proofs of the following
results.

An example of such a set would be the middle third Cantor s&tirin this case there
are two similitudes;(X) := x/3 andg,(X) = 2/3+ x/3, L; = L, = 1/3, and the Hausdorff

dimension idog 2/ log 3.
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The following proposition is proven by Hutchinson in [ZB,.3], although Hutchinson
does not explicitly state the result that sets he considers are AbH@gular. We will need
the intermediate result given in Lemma 3.1.3, and so for completeness we include our own
proof based on techniques employed in [27].

For the rest of the paper we shall order our m@gs. . ., ¢n} SO that the scaling factors

satisfyL; <L, <...<Ly.

Proposition 3.1.2.Let A c RP be a strictly self-similard-fractal, thenA is Ahlforsd-

regular.
The intermediate result we need is:

Lemma 3.1.3.Let A be a strictly self-similad-fractal then, for eactx € Aandr > Othere

IS a subse® c A so that
1. B(x,r)nACA.
2. A" = p(A) for some similitudep.

3. diamA’ < Wr whereW depends only on the sAt

A = Aand then triviallyA N B(x,r) ¢ A’ anddiamA’ < r(2 diamA)/(L,K).

We now consider the case wherc L;K. Because the images éfunder eacly; are
disjoint, we may assign to evegye A a unique infinite sequendgy, j»...} € {1,...,N}*
so thatly} = M2, @jn (@i (- - - 0, (A) .. ). If {is 0o, .. .} is the sequence identifying let M
be the smallest natural number so that,, ... L;, K < r (note thatM > 2), then
~ r r
K<—< —.

L, L1
Let A = o, @i .¢,(A)..)), hencediamA” = LL,...L_,diamA <
r diamA/(L;K). To complete the proof we shall shd{x,r) N Ac A'.
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Choosey € B(x,r) N A. If y = x, theny € A’, otherwise le{ 4, j....} be the sequence

identifyingy € A andmthe smallest natural number so that# i,. We have that

Li,L,...L K <distxy) <r < LL...L, K,

from which we concluden > M forcingy € ¢i,,_,(¢iy_(- - - ¢i,(A)...)) = A'.

The claimed consta is (2 diamA)/(L;K). O

Proof of Proposition 3.1.2We shall prove the lower bound first. L&te A, {ii, iz, ...}
be the identifying sequence for andr € (0,diamA). Let M be a the smallest

natural number so thdt;, L, ...L;, diamA < r. ThenrL; < LjL,...L;, diamA and

Gin (@i (- 91, (A) ...)) € B(x, 1), hence
WK(B(X’ r)) > 7_{d(‘;DiM (‘;DiM_i(- .- ‘;Dii(A) v )))

depyd dgd LY’
= (LiyLi, .- Liyg)*HY(A) = roH (A)(m\) '

This proves thaf is lower Ahlforsd-regular with constarit{9(A) (di;ﬁA)d.
Let A’ c Abe as provided by Lemma 3.1.3, thB(x,r) c A", anddiamA’ < Wr. We

have
diamaA’
diamA

d d
W
d dary _ d d d
HAB(X, 1)) < HY(A) _( ) HOA) < (diamA) HE(A).
whereW is the constant from Lemma 3.1.3. This proves #ha upper Ahlforsd-regular

with constan( o A)d HIA). O

3.2 Generalized Densities
Section 2.4.1 discussed t{r§-averagead-density of a measureat a pointx as it related
to the potential of: at x. Here we assign the following symbol to the average density

u(BOT)

Oy, X) = =
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The traditional point density of a measuyrat a pointx is the limit
Og(u, X) = Ii?g Og(u, X).
r

This limit need not exist and the following two results (cf. [34]) indicate that the existence

of this limit on a set of positive-measure is a strong condition.

Theorem 3.2.1 (Marstrand [32]). Letu be a Radon measure supported®handd be a
positive number. 184(u, X) exists and is positive and finite on a set of positiv@easure,

thend € N.

If one chosegw to beHy for some sef of fractional dimension, thett{3-a.e. the point
densitiesdy(H4, -) do not exist. Put another way fractional dimensional sets do not have
a traditional point density. As an example the non-existend®(#{¢, 0) whereA is the
middle third Cantor set ifR! with one end aD can be seen by choosing two sequences
indexed byn of decreasing rad(i%)né and(%)n 2,

A stronger result due to Priess (cf. [34]) indicates that if the point density exists and
is positive and finite on a set of positigemeasure, thep is concentrated on a9, d)-

rectifiable set.

Theorem 3.2.2 (Preiss [39]).Let u be a Radon measure supported A and d be a
positive number. 104(u, X) exists and is positive and finitea.e., then there is a#H¢, d)-

rectifiable setA so thatu(RP\A) = 0.

A related result (cf. [34, ch.16,17]jndicates that for ¢, d)-rectifiable setA the

density®q(H§, -) exists and is constarit§-a.e.

Theorem 3.2.3.Let A be a(H?, d)-rectifiable set, the®q(H3, x) = 2¢ for H3-a.a. x.

2Note that Mattila uses the terdarectifiable to describe what we refer to (@, d)-rectifiable.
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We conclude that, iA belongs to one of the first three classes of ®§H3, x) = 2
for Hg-a.ax, but that if A is a strictly self similard-fractal then, atH3-a.a. x the limit

O4(HY, x) does not exist.

3.2.1 The Order-Two Density

Bedford and Fisher in [1] consider the following averaging integral:

1
|log el

11
f F®EI(IJ, X)dr,

Di(u, X) := Il?g

which they call arorder-two densityof u at x. It is known (cf. [16, 38, 51]) that for a class
of sets including strictly self-similad-fractals Dg(ﬂd, X) is positive, finite and constant
‘H3-a.e. We shall denote thids-a.e. constant aB3(A). The next proposition shows that
this order-two density agrees with the traditional density whenever the traditional density

exists.

Proposition 3.2.4. Let u be a Radon measure supported Rh and x € RP such that

Oq(u, X) exists, therD3(u, X) = Og(u, X).

Proof. Letu be a Radon measure supportedk@randx € RP such thaBq(u, X) exists. Let

6 > 0and choose aR > 0 so that for allr € (0, R)

|®rd(/~l’ X) - ®d(ﬂ7 X)l <.

We have

1 11 1 R1
|Iogs|f8 0, )dr ®d(”’x)||ogg|fg —dr (3.6)

R
" @f %[@5(,1,x)—®d(y,x)]dr (3.7)

1
|log el

11
f Z @}, (. dr (3.8)
R I
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The limit ase | 0 of the right hand side of (3.6) Bq4(u, X). The limit superior ag | 0 of
the absolute value of (3.7) is less thanThe limit as limit ase | 0 of (3.8) is zero. The

choice ofs was arbitrary and this completes the proof. O

From this we conclude that for a satin any of the classes described in section 3.1
D3(A) exists and is positive and finite. With this we present our first theorem regarding the

normalizedd-energyiy.

3.3 Results for a Normalizedd-Energy
Theorem 3.3.1 ensures that the normalidezhergyiy is well defined on all ofM*(A),

and generates a minimization problem whose solution is unique.

Theorem 3.3.1.Let A be a strictly self-similad-fractal or a strongly(#¢, d)-rectifiable

set of positive{? measure and let? := HZ/HI(A), then

(1) The limitiy(u) exists for allu € M*(A) and

2
2 du d ; d
) = dDd(A)f(—d(Hg) dH} if u < HY,

) otherwise.
(2) If fa(u) < oo, then the limitJ’ equals-2; y-a.e. and
A
Ta(u) = f Ukdu.

(3) Ta(a?) < Ty(v) for all v € M (A {29},

We shall accomplish the proof of Theorem 3.3.1 in several steps. We shall first show
that if u € M*(A) andu <« HY, theniy(u) = co. We shall then relate the Radon-NiKoud
of a measure with finite normalizedenergy to the normalizedtpotential of the measure.

We shall use the maximal function in conjunction with dominated convergence to show that
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second result in Theorem 3.3.1 implies the first. Finally, we shall appeal to Hilbert space

techniques to show the third result.

3.4 pu <« HY Implies ig(u) = o
In this section we shall show that K is a strictly self-similard-fractal or a strongly

(HY, d)-rectifiable set and ifi € M*(A) is such thaj <« HY, thenlg(u) = .

3.4.1 Case I:Ais a Strongly (9, d)-Rectifiable Set
Given a compactly supported Radon meaguoa R? ands € (0, d) the Rieszs-energy

of u may be expressed via (2.18) as

l(u) = o(s. d) f Pz,

where the constam(s, d) is given by

gF(—dgs)
d)=n%2 :
c(sd)=nx )
Observe that (cf. [30, ch. 1])
lim (d - 9)c(s.d) = wa, (3.9)

wherewy is the surface area of tie— 1 sphere irRC.

Lemma 3.4.1.LetK c RY be compact. For a measupec M(K) we have

la(u) = wall2ll3 o

Further, if ig(u) < oo, thenu < £9.
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Proof. For any measurg € M(K) the Rieszs-energy can be expressed as

Is(u) = c(s.d) €15 (@) Pdé + c(s. d) €1 () Pdz.

lg1<1 lé>1

By dominated convergence

I s-di~ Zd — o 2d ,
im L e (&) P

lK1<1

and by monotone convergence

li s-di~ Zd — Py 2d .
im flf e a(€) P

l§1>1

From (3.9) the first statement is proven, and heineel2. Theorem 2.3.3 completes the

proof. O

Lemma 3.4.2.LetA c RP be a compact and strong(g+¢, d)-rectifiable and lef: € M*(A)
be such that « HY, theniy(u) exists and is infinite.

Proof. Letu € M*(A) such thaf: « HY. Letu = u* + = be the Lebesgue decomposition
of u with respect ton'\. LetKy,...,Kyandg; : Ky = RP,...,¢n ¢ Ky — RP be the
compact subsets @Y and the corresponding maps with bi-Lipschitz constant less than
2 provided by the strong#¢, d)-rectifiability of A. Let B = A\UY, ¢i(Ki) and sy =
dimB. If u(B) > 0, then, by the equality of the capacitory and Hausdorff dimensions (see
Proposition 2.4.3)ls(x) = o for all s € (s, d). Hencely(u) = oo.

If u(B) =0, then .

0< (A < Emm(m).

Choosegj € 1,..., N such that*(¢;(K;)) > 0, and define’; := ﬂij(Kj)- Sincey; L W;’j(Kj), it
follows thatejv; L HY and hencej;v; L LY. By Lemma 3.4.1 we have th&I(QDJ-_#Vj) =

oo and by (3.4) it follows thato = Ta(wjee;v)) = Ta(v) < Ta(w). O
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3.4.2 Case ll: Ais a Strictly Self-Similar d-Fractal
Lemma 3.4.3.Let A be a compact strictly self-similai-fractal and letu € M*(A) such
thatu « HY. Thenig(u) = .

Proof. Let A be a compact strictly self-similal-fractal and leju € M*(A) such thaj «
HS. Letp = u= + p* be the Lebesgue decomposition ofwith respect toH2. The

Radon-Nikogm theorem ensures that fof-a.a.x,

lim £ (BXxn) _ o
10 HIB(x, 1))

For such anx, let M € R be arbitrary andR > 0 such that for allr € (0,R) we have

wH(B(x, 1))/ HI(B(x, 1)) > M. It then follows from the technique presented in (2.9) that

lim in (d - S)f lx_lylsd,ul(y) lim inf (d - S)Sfooo ﬂ—l(ng’ ) g
L d
( inf £ (BX1) )Iin;rzjnf(d— s)sfR —WA(rBSS(’r))dr

0

re@R) HI(B(X,T))

\%

. 1 46
|v|nsm(d—s.)sc;ldTSRd = C,Md,

whereC; is the lower bound from the Ahlford-regularity of A. M is arbitrary. Hence
0% (X) = oo for u*-a.a.x.

By Fatou’s lemma

8
I

~/JL 1 . . _ ﬂJ_ n
fUd du _fllrrs%nf(d UL du

|irrs1T inf (d - ) f U dut = Tg(ut) < Ta(u).

IA
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3.5 The Order-Two Density, U% and dd_ﬁg for a Measure u € M*(A)

One of the central results used to examine the functidnas the fact that if the
order-two density of a measufeat a pointx (D3(u, X)) exists, then the normalizedt
potential ofu at x (LNJ’(j(x)) exists as well, and the two agree. This relationship between
the order-two density and the limiting potential is examined lg in the context of
stochastic differential equations in [52] and also by Hinz, in [26]. We include a proof of

this relationship from [26].

Proposition 3.5.1. Let 4 be a finite Borel measure with supportiR?, x € suppu, d €

(0, p]. If DA(u, X) exists and is finite, then
U%(x) = dD3(y, X).

Proof. One may verify that the functiok.(t) := &%y (t)t**|logt| is an approximate
identity in the following sense: If : R — R is right continuous ab and is bounded on

(0,1), then
Iimf k.(t) f(t)dt = f(0).
el0 0
Define the following function:
1 1

f(t) = [logt] Jt
D3(u, X) whent =0

10 (u, ¥)dr  whent > 0
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If DA(u, X) exists and is finite, thefi is right-continuous ab and bounded of0, 1) thus

Di(u. %)

im fo k.(t) f (H)dt

1 1
r
= lim &2 f e f )(“+]()®g(;1,x)drdt
0 0

el0

ll r
= Iimszf —@[j(y,x)ftg‘ldtdr
&l0 o r 0
11
= Iimsf F@[j(;u,x)radr
0

L 1 1~
_ H _ r — T1I#
— "S?J(d s)f0 @d(,u,x)—rl_(d_s)dr_dud(x).

The final equivalence is an application of (2.9). O

We define a modified normalized energy as follows: For a measara*(A), let

foe) = iminf (0= 9 || =)

With this definition we shall provide a characterization of measures for whiismnite.

Proposition 3.5.2.Let A c RP be a compact set such thBE(A) exists and isHS-a.e.

constant. Let: € M*(A) so thatiy(u) < co. Then,

(1) U4(X) = dD3(A)-=;(x) for p-a.a. x and

e
dH¢
(@) g € L2(H).
Proof. Note that for alR > 0
lim(d m®r 1 dr=0
'Sm( - 9)s . d(ll,x)m r=>~0.
From this we conclude that iﬁg(x) exists, then
~ R 1
M _ i r
Uy(x) = Ilsm(d - s)sj; Og(u, x)mdr,
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foranyR > 0.

We begin with the following equality for an arbitraR/> O:

d-9)s f (B(X D) gy (3.10)
R?{d B
d(x)(d— SE f (rsf)l( r)) (3.11)
p(B(x.r))  du HA(B(X, r))
+ (d- s)sfO (Wﬁ(B(x,r)) - dﬂf\(x)) e dr. (3.12)

By Proposition 3.5.1 the limit as 1 d of the summand in (3.11) igh: (x)dD3(A) for Hg-
A
a.a. x. The absolute value of the limit superior of the summand in (3.12) is bounded for

HI-a.a.x by
sup p(B(x,r))  du

dD?(A
re@R) | HI(B(X, 1)) d7’{d A

(x)

which can be made arbitrarily small by choosiRgsufficiently small. Thus the limit as
s 1 d of (3.10) existsH¢-a.e. and henc@ﬁ does as well.

Arguing as we did in the proof of Lemma 3.4.3 we appeal to Fatou’s lemma to obtain
flirrslTLnf (d - 9ULdu < Tg(u) < oo.

This implies thatim inf 4(d — s)U% is finite u-a.e. and, by Lemmas 3.4.3 and 3.4k«

H{. By the first claim in this proposition and by the previous equation

dHd = [ ([ )du= [ ——Ukd
f(d%(d) A= ) \awd)™ = J apgay 4

3.6 Proof of Theorem 3.3.1

With the preceding results we may now prove Theorem 3.3.1.

Proof of Theorem 3.3.1Let u € M*(A) so thatr_d(/u) < oo, thenu < HY anddu/dH] €
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L2(HY). The maximal function ofi with respect toH{ is

(B, 1)) 1 A
M. au(X) ;= su = Su 3 Ha
#gH(X) r>C,IO7{/§(B(X ) 0 HB(X 1) Jer) dHR

The maximal function is bounded drf(#3) and soMyqu € L*(Hy). We shall use this to
provide au-integrable bound fofd — s)U% that is independent afand appeal to dominated

convergence. We begin with the point-wise bound

1
@-9 [ Gosth)

Ao gs [ A(BOLT) HEBXD)
o HAB(xr) e

diamA ¢qd(g g ©  HIYB
Mgu@-9s| [ A2 Dare [ HEEED g

diamA Czrd ™
M(Hg,u(x) [(d - s)sf0 mdr +(d- s)sfd rmdr], (3.13)

iamA

IA

IA

whereC; is the constant in the upper bound of the Ahlfdreegularity ofA. The quantity
in brackets in (3.13) may be maximized oz (0, d) and we denote this maximum b

Then, by the Cauchy-Schwarz inequality,

du
dHd

< oo,
2HY

fKM,,gpdy< Kf(MWgu)(d(;ﬁd)d?{A< KHMHW

‘27{2\

By dominated convergence the second claim follows. The first claim follows from the
second and from Proposition 3.5.2

The final claim of the theorem follows from a straightforward Hilbert space argument.
Let v denote the finite measudng(A)_l?{}j. By Proposition 3.5.2 the set of measures
with finite normalizedd-energy is identified with the non-negative cond.ffv) (denoted
L2(v),) via the magu < du/dv. Under this map we havig(u) = ||d,u/dvllg,v. A measure:

of finite d-energy is a probability measure if and onlyjdu/dvll;, = 1. We seek a unique
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non-negative functiori that minimizeg| - ||, subject to the constraifif||,, = 1. The non-
negative constant functialyv(RP) satisfies the constraifl/v(RP)||1, = 1. Let f € L2(v),

such that|f||y, = 1 and||f|l2, < [|1/v(RP)l2,, then

1 | f Y PR 1 1P 1
v@®P) @R, \ VR, T T @), T @R, T v(RP)
Thus
1
<fm> = Iflls ISl

From the Cauchy-Schwarz inequality= 1/v(RP) v-a.e. By the identification above the

measurel’ := HI/HI(A) € M;(A), uniquely minimizedy over M7 (A). m|
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CHAPTER 4

THE BEHAVIOR OF uS*ASs1d

The previous chapter showed that the normala-ethergy is well defined and gives rise
to a minimization problem with a unique solution. In this chapter we use properties of the
normalizedd-energy to show that thes{)equilibrium measures on appropriate classes of

sets converge in the weak-star sense to the minimizer of the normdheerergy as 7 d.

4.1 Results Regarding the Behavior of:* ass T d

Theorems 4.1.1 and 4.1.2 establish the weak-star convergence of the equilibrium
measures to normalized Hausdorff measurs agl. While the statements of the theorems
are nearly the same, the methods used in their proofs are quite different and hence we

provide two different theorems.

Theorem 4.1.1.Let A c¢ RP be a compact strongly/H¢, d)-rectifiable set such that
HIA) > 0. Letad := HI/HIA). Thenu* 5 1% ass 1 d.

Theorem 4.1.2.Let A ¢ RP be a compact strictly-self similag-fractal. Let A9 :=

HI/HI(A). ThenusA 5 1% ass 1 d.

Theorem 4.1.3 ensures that the equilibrium measure or charge distribution on strictly
self-similar d-fractals cannot be too concentrated. Any growth condition with exponent

less thard allows the measure to be concentrated on a lower dimensional sul#set of

Theorem 4.1.3.Let A be a compact strictly self-similat-fractal, then there is a constant
K depending only o\, so that for anys € (0, d), uS*(B(x,r)) < Krs for uSA-a.a. x € A

andr > 0.

A bound similar to that in Theorem 4.1.3 is presented in [34, Ch. 8]. This result differs

in that the constarK does not depend on
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4.2 The Behavior of 3 on Strongly (H¢, d)-Rectifiable Sets
We begin with an estimate obtained via the Fourier transform which will be of

considerable value in examining strongi(¢, d)-rectifiable sets.

Lemma 4.2.1.LetK c RY be a compact set. Then, for every 0, there is ansy = S(17)

such that, for anys andt satisfyings, < s <t < d and any measurg € M(K),

(d— 9)ls() < (L+n) [(d = Oli(u) + nu(R??].

Proof. Without loss of generality assumttamA < 1. If Is(u) = oo, thenly(u) = oo for
t > sand the lemma holds trivially. Now suppose thgj:) < o for somes such that
(d —1t)c(t,d) > wy/2 for all t € (s,d) (recall (3.9) to see why there is such)and observe

that

@-916) = (@-9c(sd) [ I lae)rds

(d - 9)c(s d)

(d —t)c(t, d) (d - t)e(t, d) Ld €15l Pdé. (4.1)

We may approximate the integral in (4.1) as follows.

f eI Pde
Rd
_ f AP + f )P
1¢1<1 1€>1
< [ e - aerd + f - la@)Pde + f el Pz
[é1<1 [£1<1 [é1>1
< u® [ (s - e + f el Pz,
[é1<1 Rd

By (3.9) we may picksy € (0,d) high enough so that, for anyyandt satisfyingsy < s <

t<d
(d = 9)c(s d)

@ otg <Lt [@-Ddtd)<2w
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and

(&5 — e~ de

lg1<1

n
< —.
Za)d

The following generalization of Lemma 4.2.1 will be applied repeatedly to measures
supported on the bi-Lipschitz image of a compact Bet; RY. Letu € M(¢(K)) be such
a measure. Using (3.4) to bound teenergy ofg,’u, applying Lemma 4.2.1 to, 'y,
and then using (3.4) again to bound thenergy of the measurgy,, 1 = u we obtain the

following.

Corollary 4.2.2. LetK c RY be a compact set and suppase K — RP is bi-Lipschitz
with constantL. Then, for every; > 0 there is ansy = S(7) such that for anys andt

satisfyingsy < s < t < d and any measurg € M(¢(K)), we have

(d = 9)ls() < L1+ 7) [LUd = () + nu(RPY?].

The intuition that led to Corollary 4.2.2 is as follows: Lemma 4.2.1 relies on the Fourier
transform of a measure supported on a set of dimension equal to the dimension of the
embedding space, and in particular on (3.9). If one takeslEanensional set and bends it
(and the charge sitting on it) slightly so that it can no longer be embedd¥d the Fourier
approach breaks down because (3.9) holds only when one is taking the Fourier transform
in a space of the same dimension as theAseHowever, since the bending is slight, the
relative distances are mostly preserved and the energy shouldn’t change too much. The
parametet in Corollary 4.2.2 indicates the degree of the bending.

In Proposition 4.2.3 we prove a simple case of Theorem 4.1.1. Its proof illustrates the

approach used in the proof of Theorem 4.1.1.

Proposition 4.2.3.Let A ¢ RY be a compact set such thaf4(A) > 0. Letu® denote the

s-equilibrium measure supported @a Thenus* 5 19 := HI/HI(A) ass T d.
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Proof. Lety € M;(A) be a weak-star cluster point pf* ass 7 d. Let{s,}>>, T d such
that A 5 Y asn — oo, Letn > 0 be arbitrary,s, be as provided by Lemma 4.2.1, and

let s € (S0, d). We have

(d=9lsw) < liminf (d- 9™
< liminf (1+7)|(d - $)1s, ™) + 1]
< liminf (1+7)|(d - $)15(2) + 7]

(L +m)[Taa%) + 7|

where the first inequality is an application of the Principle of Descent. The second
inequality follows from Lemma 4.2.1 whettein the statement of the lemma is chosen
to bes,, and the third from the minimality af, (u«*).

The variables may be taken arbitrarily close &) and soig(¥) < (1 + n)[ia(29) + 7].
The variable; was also chosen arbitrarily and we concluglg) < i3(1%). Theorem 3.3.1
ensures that? is the unique probability measure that minimizgsand soy = 19. Since

this holds for any weak-star cluster point, the proposition is proven. |

The only technical hurdle to extending the proof of Proposition 4.2.3 to a proof of
Theorem 4.1.1 is to establish an analog of Lemma 4.2.1 for the case Avlsestrongly
(HY, d)-rectifiable and of lower dimension than that of the embedding s{ifteThis is
accomplished by breaking into near isometries of compact subsetsRéf establishing
the desired estimate on each piece, and showing that the pieces can be glued back together
without affecting the estimate. This is the content of Lemmas 4.2.4, 4.2.5 and 4.2.6.

These lemmas are somewhat technical and so the reader may want to keep the following
example in mind while reading them. LAtbe a one dimensional subsetRf consisting

of the following union of two intervals
{(x,0)eR? : xe[-1,1}U{(0,y) e R? : ye[-1,1]}.
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In this caseAis a union of two bi-Lipschitz (in fact isometric) images of the intefwal, 1].
Our goal is to establish an estimate like that of Lemma 4.2.1 for strdt¢flyd)-rectifiable
sets such as our exampe

When applied to our example sAtLemma 4.2.4 considers the energy of the charge
lying in the intersection of a single image of the interfral, 1] and anH$ almost clopen
setB. Roughly speaking the limiting energies on this intersection are proportional to the

HJ-measure of the intersection.

Lemma 4.2.4.LetA c RP be a compact, stronglgH¢, d)-rectifiable set such that(9(A) >
0. LetK c RY be compact, ang : K — RP a bi-Lipschitz map such that(K) c A. Then,
for everye > 0, there is ansy = s9(¢) and a constanCx, = Ck (A K, ¢) such that, for

any Borel seB c RP satisfyingH3(dB) = 0 and anys € (s, d),

lim sup (d — 9)1s (1, ;) < Cco \/HEB) + .

td
The boundary9B, is computed in the usual topology &A.

Proof. Without loss of generality assunaec (0,1). Let B ¢ RP be a Borel set such that

HJ(0B) = 0. Observe that

t’ﬁ tA
 (Haou0) = f U dut < f U dut A = LA BN ¢(K).  (4.2)
Bny(K) BNe(K)

We bound the quantitym sup,4 1AB N @(K)) as follows. Lety € M*(A) be a weak-star

cluster point ofug ., ast T d, and let{t)}2; T d such thatug?

Let L denote the bi-Lipschitz constant @f Chooses, so that Corollary 4.2.2 applied to

—*>wasn—>oo.

Radon measures with supportedgK) holds fory = 1. Let A% := HS/HY(A) denote the
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minimizer of iy over M; (A). For anys € (%, d),

(d-9ly) < liminf (d- s (it )
< liminf 209((d = ty)L%%, (") + 1]
< liminf 2L9[(d - to)L7;, (2%) + 1]
n—oo

2L25(2%) + 2L =: M < oo.

The first inequality follows from the Principle of Descent, the second from Corollary 4.2.2
and the mequalltyls(pBW(K)) < lg(u?), and the third from the minimality of_ (u™*).
Letting s T d we see that, for any weak-star cluster pairuf ,uBm (k) (@st Td), la(w) < M.
Theorem 3.3.1 ensures that < H¢, and soy(dB) = 0, implying x"A(B N ¢(K)) =
BmW(K)(B) — ¥(B) asn — oo.

The setB N A is stronglyd-rectifiable, and ifiy(B) > O, thenH3(B) > 0, implying
H?(BN A) > 0 and by Theorem 3.3.11 is minimized overM; (BN A) by A48 :=
HE JHC (E N A). We then have

2d _ 2d 24 ¢ (ad’BﬂA)dd( v ] r( Y ) M
HYB)  HI(B) HI(BnA) @) w®) " uER
and we may conclude

w(B) < 2TO|ﬂd(B).

(If y(B) = 0, then the above inequality holds trivially.) It follows from the above inequality
and (4.2) that for any Borel s& c RP with H3(4B) = 0 we have

limsup(d - )l (1gh,0) < Ilmsup(d '[)lt(,utA)|ImSUp,utA(Bﬂ(p(K))
t1d
< d(/ld)\lzd JHA(B). (4.3)

We complete the proof of this lemma by appealing to Corollary 4.2.2 applied to

85



measures supported @(K) with n = £/2LY. If 5 is chosen so that Corollary 4.2.2 holds,

then, for anys € (s, d) andt € (s, d),

(d - 915 (ko)

IA

L¢ [(1 + %) (Ld(d =l (ﬂ:éﬁgo(K)) M %)]

2L2(d — O (1gh, ) + &

IA

Taking the limit superior of both sides &3 d and appealing to (4.3) completes the proof
with Cy, = 2L%7(2%) v/M/29d. O

Lemma 4.2.5 uses Lemma 4.2.4 to excise a small neighborhood around the crossing of
the two intervals in our example sAt The limiting energy due to this excised portion is

small and the remaining piecesAftan be embedded in®® and are disjoint.

Lemma 4.2.5.LetA c RP be a compact, stronglgH¢, d)-rectifiable set such that(9(A) >
0. Then, for every > 0, there exists a finite collection of compact subse®d,, ..., Ky
and a corresponding set of bi-Lipschitz mags: Ki — RP,... ,ON Ky — RP each with

bi-Lipschitz constant less thdn+ g, such that
1. %(K) N QZJ(RJ) =gfori# j,and

2. there is arg = so(¢) € (0,d), such that forB := A\ UY, i(K;) and all s € (s, d) we

have

I d- 9l < =.

Irqgur)( IMslug) <
Proof. Without loss of generality assunaes (0, 1). SinceA is strongly(#¢, d)-rectifiable,
we may find a setd, ¢ RP, compact setK,...,Ky ¢ RY and bi-Lipschitz maps; :
Ky — RP,...,¢n : Ky = RP with constant less thah+ & such thatAd = (Y, ¢i(Ki) U Ay,
wheredimAy < d, and H(¢i(Ki) N ¢j(K;)) = 0. Lets = £?/4N? € (0,1). The set
E = Uiy ((,oi(Ki) N go,—(K,—)) is a compact set oH3-measurd. SinceHy is Radon, there is
an open se® such tha€ c O andHJ(0) < 6N~ (max{Cx, .. ... CKN#,N})_2 whereCy,,

Is the constant provided by Lemma 4.2.4 appliegi{&;) c A.
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For any pointx € E, we may find a non-empty open b&i{x, R)° c O. SincedB(x,r{)N
0B(x,r3) = @ for anyry, # r, and sincg{,‘i is a finite measure, all but a countable set of
values ofr € (0,R) must be such that(J(9B(x,r)) = 0. Construct an open cover & as

follows.

Q={B(xr)°:xeE, B(x.r)°cO, Hj(@B(xr) =0}.

Choose a finite sub-covel’ c Q, of E. Let B = [ Jpeoy b. SincedB c | Jpeor db, we have
that HJ(0B) = 0. Let Bl = BN ¢i(K;). For anys, t € (0,d) with t > max{s, dimAs} we
have, by the equality of the Hausdorff and capacitory dimensions (Proposition 2.4.3), that

1A (Ao) = 0 and hence
N
(d -9l gA)s(d—s)ls(u;ﬁhZugi] Z(d N s(uhy > 1y)-
i=1 ij=1

By Jensen’s inequality followed by the Cauchy-Schwarz inequality applied to the inner-

productlg(-, -) we have

2

IA

N
L Z(d S)ls(NB ,/JB) Niz (d S)Is(ﬂB ’/’tB )]

i,j=1

IA

N
2 2,0 910 - 91s(u).
i,j=1

Z|,_\

Let 50 = max{dim Ay, So1, - - -, Son}, Wheresy; is the value ofs, provided by Lemma 4.2.4

applied toyi(K;) c A, and where the value @fin the statement of Lemma 4.2.4 is chosen

87



to bes/N2. Combining the previous bounds gives, ot (s, d),

2
limsup(d — 9)ls EA)] lim sup (d — 9)Is(ug ) lim sup(d - s)l té';'\)
t1d

IA
Z
. N
™=

t1d o1 wd
N 5 S 5 S
2
< N Z Cki . 2+N2 Ckigi 4 2+W
(=1 N*(Cii) N*(Ci)
N (Ve
0+0
_ 2
- N Z 7 )

IA

&

I =
—_
T

The value ofsy, the setB := (BN A) U A, the compact set&; := Ki\¢~%(B), and the
bi-Lipschitz mapsp; := ¢i|g, satisfy the properties claimed in the lemma for the value of

given. O

At this point we are ready to establish an analog of Lemma 4.2.1 for our exampie set

We consider the limiting energy on our gein the following four categories:

(1) The limiting energy of the excised portion around the intersection of the two

intervals: By Lemma 4.2.5 this may be made small.

(2) The limiting energy from the interactions between the excision and the interaction
with remaining portions of: By Cauchy-Schwarz applied to the inner prodiu¢t -)

this can be made small as well.

(3) The interaction energy between the disjoint pieces tiat weren't excised: This

can be made small because the limiting energy is localized.

(4) The limiting energy of the disjoint pieces @& Because each of them can be

embedded int® we may appeal to Lemma 4.2.2 to establish the desired estimate.
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Lemma4.2.6.LetA c RP be a strongly(#¢, d)-rectifiable, compact set such thatd(A) >

0. Then, for every > 0, there is ansy = S(17), such that for alls € (s, d) we have

limsup(d — 9ls(u™?) < (L +n) limsup(d - 1) + 7.
t1d t1d

Proof. Let 29 := HY/HI(A) denote the unique minimizer d§ over M:(A). Letn > 0.

Chooses € (0, 1) such that

max{(s [2 +(1+ 8)d+1] +2/e(L + &)2+1g(29) + £2(1 + g)d+1), (@ +e)2 - 1)}

<n. (4.4)

From Lemma 4.2.5 there is a € (0, d), a sequence of compact séls ..., Ky ¢ RY
and a sequence of bi-Lipschtiz maps: K; — RP,..., &\ : Ky — RP each with constant
less tharl + & such thai;(Ki) N ¢;(K;) = @ fori # j, andB := A\ U}, &(K;) satisfies the

following for all s€ (s, d)

: _ t.A €
Im:gup(d INs(ug) < N’

Fors e (s;,d) we have

N
: t,A T _ LA LA
Ilrrzﬁup(d—s)ls(,u ) = Im:sup(d s)ls(,ué + E “@(Ki)]

IA

; _ tA
Ilrr:Tiup(d S)ls(,uB ) (4.5)

N
. tA  tA
+ 2 I|rrt1T§up ;(d - S)IS(,ué ’”@(Ki)) (4.6)

N
. tA tA
+ “n:T‘Z’Up Zl(d N S)IS(/J@(Ki)’/JJ’j(KJ)) (*.7)
ij=

i#]

+ limsup ZN:(d - s)|s(ﬂgﬁki)). (4.8)

tmd 3
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We next find upper bounds for each of the terms in (4.5-4.8). First, Lemma 4.2.5
implies that, fors € (s, d), expression (4.5) is less thayN .
Second, using Jensen’s inequality and the Cauchy-Schwarz inequality in the same

manner as in the proof of Lemma 4.2.5 we have

N N
;(d - s)ls(ﬂEA,ﬂ:éﬁki)) < J N(d - 9)ls (15" ;(d - s)ls(ﬂ;i?ﬁi))_

Since eacly; is bi-Lipschitz with constanfl + £), Corollary 4.2.2 (with the values gfand
L as stated in the corollary chosen tods@nd1 + ¢ respectively) ensures that there is some

S € (81, d) such that, fors, < s< t < d, we have
LA 2d+1 tLA d+1, tA 2
(A= 9l ) < @+ A - Ol (s ) + L+ e D2 (4.9)

Then (4.9), together with the bound for (4.5), implies that expression (4.6) is bounded

above by

E
24| N—=Ilimsu
J N td P

N N
(L+ ey Y (d - D), (ﬂ;’?&)) + (1 + g)t le 1A (BP)

i=1

Using

N
lim sup Z(d -l (,ut:_AK_ ) < limsup(d — t)l,(**) < limsup(d — t)1;(2%) = i4(1%)
td 4 Gi(ka) t7d t1d

it follows that, fors € (s,, d), expression (4.6) is bounded above by

2o [(L+ £)2iy(19) + e(L + )o+1].

We bound (4.7) as follows. Fdr < i # j < N, let D;; = dist@(K:), 3;j(K;)) > 0
and lets; € (0,d) be such thafd — s)D[jS < ¢/N?for all s € (sj,d). For such ars,

(d = 9)ls(v1,v2) < vi(RP)vo(RP)e/N2, for any vy, v» € M*(A) supported onﬁi(Ki) and
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(,B,-(Kj) respectively. Let, := max{sg, Sjl# j}. For all s € (0, d),

N
B tA  tA
Z(d S)'S(“avi(&)’“@j(r%j)) <&

ipj=1
1#]

From (4.9) we have the following bound for (4.8)

g(d - S)IS(,u;QKi))

IA

N N
(1 + &) (d — 1) + (1 + &)+

IA

For s € (s, d), the preceding estimates, together with (4.4), gives

IA

limsup(d — 9)ls(u"?)
t1d

£[2+ (1 +&)"| + 24/e(L + )2 ig(2%) + £2(1 + g)d+1]

+

@+ 2y Iin:sup(d — )1 ()

7+ (1 +n)limsup(d - )l ().
trd

IA

4.2.1 Proof of Theorem 4.1.1

Proof of theorem 4.1.1Let A satisfy the hypotheses of Theorem 4.1.1 and hence of
Theorem 3.3.1. Lef? := ?{g/ﬂd(A) denote the unique minimizer df over MI(A).
Lety be any weak-star cluster point@f* ass 1 d, and let{s,};2, T d such thaps* 5 v

Letn > O be arbitrary. Letsy be the value provided by lemma 4.2.6 for this choicey.of
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For anys € (s, d), we have

A

(d-9lsy) < liminf (d- 9ls(u™")

limsup(d - s)ls,(u™") (1 +7) +7

nN—oo

lim sup(d — s)ls,(A%)(1 +7) +7

nN—oo

(L +m)ia(2%) + 7.

IA

IA

As in the proof of Proposition 4.2.3, the first inequality follows from the Principle of
Descent, the second from Lemma 4.2.6, and the third from the minimality @f*).
Sinces may be chosen arbitrarily close th ig(y) < (1 + n)ig(1%) + 5. Sincen was also
arbitrarily choseniy(y) < 14(1%). The uniqueness of the minimizét ensured by Theorem

3.3.1 proves thap = A9 and is sufficient to prove Theorem 4.1.1. O

4.3 The Behavior of u5* for Strictly Self-Similar d-Fractals
Lemma 4.3.1.Let A be a compact subset &P such thatdimA = d and HY(A) < oot ,
then

lim 14(u3?) = oo.
STds(,U) ©o

Proof. Without loss of generality we shall assume tl@mA < 1,thenforO<s<t<d
and any measune € M*(A), Is(u) < l(u). Let{s,};>, be any sequence increasingdso

that A ~ y for somey € M (A). Then for anyt € (0, d) we have

l(v) < liminf I (u™") by the Principle of Descent (Lemma 2.4.5)
n—oo
< liminf I3 (u™") becausaiamA < 1ands, > tfor nlarge.  (4.10)
nN—oo

1The author would like to thank Douglas Hardin for reducing the hypotheses necessary for this lemma.
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(4.10) is independent @fand so we may takeT d. Then by monotone convergence

l:m l{(v) = 1q(v).
By Lemma 2.4.2)4(v) = c. Since every sequence of valuessahcreasing tad has a
subsequence which is convergent in the weak-star topology, the claim folows. O

Lemma 4.3.2.Let A be a compact Ahlford-regular set, then

Iirg supdist(y, suppu>”) = 0.

std yea

Proof. Let s € (0,d) ands = sugeAdist(y,suppu&A). We consider the possibility that
5 > 0. Picky € A so thatdist(y’, suppus?) > §/2. Lety = ﬂf\nB(y,M)/?{f\(B(y’,5/4)). For
B € [0,1] we have(1 — B)u>* + Bv € M;(A). The lower Ahlforsd-regularity ensures that
v is not identically zero and the upper Ahlfodsregularity ensures thdt(v) < oo for all

s € (0,d). Define the function

£(8) = 1s((1 = " + Bv) = (1= BY1s(u™) + B1o(v) + 28(1 = B)ls(u™™, v).

Differentiating gives

1df
2d8

12

B1sw™” = )| - [16@* = 1@ v)|  and E@_[ls(,ﬁ’*—v)].

Becausds(-, -) is positive definite]s(u3* — v) > 0. Because:3” is the unique minimizer of

ls, f cannot have a minimum for ay> 0, hencel s(u*) — Is(u5#, v) < 0. We obtain

1 4
A A
) ST < gy andhence 0 g

The compactness and the upper Ahlfdrsegularity of A ensure thatH9(A) < co. By
Lemma4.3.% | Oass T d. O
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4.3.1 Proof of Theorem 4.1.3

The remaining proofs will make use of the following fact regarding the behavior of
equilibrium measures on scaled set®B'lt= ¢(B) wherey is a similitude with a scale factor
of L, then for any Borel seE c B, u3% (E) = uSB(¢™X(E)) andls(u3®) = L=8I4(uSB). This

follows from scaling properties of the Riesz kernel.

Proof of Theorem 4.1.3Without loss of generality assuntkamA < 1. Letx € A and
r € (0,diamA/4), then

A A A A A
6™ = s (1500 + Htaeen) = Vs (o) + s (Msen) - (4.11)

By Lemma 4.3.2 there is ag € (0, d) so thatuS*(A\B(x, diamA/4)) > Ofor all s € (sp, d).
Note that the choice of, depends only oA and not onx. First, consider the cassee
(so,d). If uSA(B(x,1)) = 0, then the claim is trivially proven. Assume&?(B(x,r)) > O.
We normalize the measures on the right hand side of (4.11) to be probability measures and

obtain

1 (30e)) + 15 (Hiaen) (4.12)
JTn
 SAB Y B(x.)
H(BEen) s(,US’A(B(x,r))

SA
Haeoa) ) . (4.13)

+ (- p¥(B(x, r)))zls(l — 1SAB(X, 1)

By Lemma 3.1.3 we may find a st c Aso thatB(x,r) N A c A, diamA’ < Wr andA’

Is a scaling ofA. The right hand side of (4.12) is bounded below by

HEABOG NP1 ) + (1= p*A(B(x, 1)) s

— 1) B )+ (- k]
] TG Cer IR R R
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Combining (4.11) and (4.14) and dividing by{u5*) gives the following:

12 i (o) 1 26 ) + A B

hence

258(B(x. 1) > pA(B(x, 1) [(di\::lvr:\A)_s * 1] ’

and thus

HAB(x 1) < z(diamA)srs'
Let K; be the maximum o2(W/ diamA)® overs € [0, d], K, the maximum of4/ diamA)®
overs € [0,d] andK, := maxKy, K3}, thenuSA(B(x,r)) < Karsfor all x € A, r > 0 and
se (S, d).

Forse (0, 5] we have the bound (cf. [34, Ch. §FA(B(x, 1)) < U‘S‘SA(x)rS = lg(usMrs
for uSA-a.a. x. BecausediamA < 1, I§(u%?) < lg@®?) for all s € (0,%)]. LetK =

maxKa, 2l ¢, (1)}, thenuSA(B(x, 1)) < Krs for uS*-a.a.x € Aandr > 0. O

4.3.2 Proof of Theorem 4.1.2
Proof of Theorem 4.1.2Let f : A — R be continuous. SincA is compactf is uniformly
continuous orA. Fix e > 0and lets > 0 so thatf (AN B(x,6)) c (f(X) — &, f(X) + &) for all
X € A. Let M be a natural number high enough so thidtdiamA < 6.

Let @ be a multi-index of lengttM taking values in(1,...,N}M. If @ = (iy,...,im),
then we denote;,, (¢i,_,(. .- (¢i,) . ..)) by ¢,. LetX be any point inA. For anyy € M;(A)

we may write

f fdv:Z f fdvy, :Z f(¢a(>”<))v(¢(,<A>)+Z f (f = 1(¢2(X))) dv,a.-

(When we write a multi-indew at bottom of a sum we indicate summation over all possible
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multi-indices of the specified length.) It follows that
‘ f fdv - Z f(Pa(R))v(Pam)| < & (4.15)

As in the proof of Lemma 3.1.3 lé€ = mincr . n {dist(ei(A), A\gi(A))}. If @ anda’ are
different multi-indices of lengtiM, thendist(,(A), ¢..(A) > LM-*K. By Lemma 4.3.2
there is arg < d so that for alls € (s, d) we havesup,., disty, suppus*) < LN-*K. From
this we conclude3(¢,(A)) > 0 for any multi-indexx of lengthM and anys € (sp, d). For

such a choice of we have

s A
HeyA)

15658 > D 1 (131) Z’“S’A(‘f’“(A))z 15A(0o(A))

> D 1A @A)l (13 P).

We shall use the notatidn, to denotel;, L, ... L;,,. By appealing to the scaling properties

of the Riesz energy, the above becomes

) > DAL ),

Let ¢ be any weak-star cluster point pf* ass 1 d and let{s,}**, T d be a sequence so

thatu™A 5 y and hence so th&t*(¢,(A))). converges ifo, 1], then

S‘A(%(A))Z [imn e S1A(¢ (AN
1=m s (|_M)d _nawzﬂ Z :

We then have that

[
Il

. I n—oo SA @
3 im gy = 3 Q’F(‘ﬁ 2

a

\/Z [nmnwww B [ g_g

Note that the sum over of L¢ is one because the sum over 1,...N of LY is one. From
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this we conclude

lim 1 A(pa(A) = LG

for every multi-indexx of lengthM. Becausel(¢,(A)) = LY, we have that

im D F@a(R=Au(A) = 3, 1601 (u(A).

a

and so

< 2e.

Iimffd,us“’A—ffd/ld
nN—oo

The choice of in (4.15) was arbitrary as was the choice of the continuous fundtiamd

509 = y for any weak-star cluster poigt, and hencgs” = 19 ass 1 d. O
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CHAPTER 5
NUMERICAL EXPERIMENTS

In this chapter we describe our numerical experiments regarding discrete minimal
energy configurations on th2-dimensional spher§?> c R3. There are a variety of
motivations for such experiments. Separation results such as those presented in [7,24] and
weak-star convergence of discrete minimal energy points to the uniform measure suggest
these points may be of value for numerical integration or coding theory. Minimizing the
logarithmic or ‘s = 0” energy is equivalent to finding a collection of points where the
product of the pairwise distances is maximized. In general minimal energy points appear
to provide a good sampling set f6f. The physical underpinning of the problem suggests
that numerical results may lead to a better understanding of structures found in spherical
seed-pods, virus shells and colloids.

For the purposes of this chapter it will be more convenient to define-gmergy as

1
2i1=i<j=N XoxXF whens # 0

Es(wn) 1= (5.1)

1 —_—
Yisicj=nlog 54 whens=0.

Note that this is half the value of the discrete energy as presented in 2.5. Recall that
SS(A, N) = Inf{Es(wN) . wn C Aand#a)N = N}.

BecauseS? has a high degree of symmetry and because it is a manifold without
boundary, a variety of numerical techniques are available and certain problems regarding
points on a boundary (cf. [37]) are avoided.

In the cases where our experiments can be compared to previous experiments the results

are largely in agreement. The new results presented here are:
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(1) An accurate energy calculation that computes and minimizes roundoff error.

(2) A technigue to compare configurations rapidly that is based on computational

geometry and graph theory.

(3) An estimate of the parameters describing exponential growth of the number of stable

configurations for a given value of.

(4) Initial results for the observed minimal discrete energy Nor= 20,...,200 and

s=2,3

5.1 The Setting

The following map

[0, 27] x [0, 7] 3 (¢, 6) — r(p, ) := (cosf) sin@), sin(p) sin@), cosp)) € S> c R® (5.2)

takes a point from the rectand® 2r] x [0, x] to S?. The azimuthal angle ig and the polar
angle ish. A configuration ofN points onS? may be viewed as the image of a point in the

cube([0, 2n] x [0, #])N as follows:

([0, 27] x [0, 7])N 5 (1, 61, - . .. o, On) = (F(p1. 01), - ... T (n, O)) € (SDN.

The energy we are considering is a function of pairwise distances and so two configurations
which are isometric to each other should be identified. As a first step we require that
the first point in the configuration lie at the poifit 0, 1) and that the second point lie in
the x-z plane. By appropriate rotations any configuratiom\bf> 1 points can meet this

requirement, and so the parameterization space we consider is

Xn := [0,27] x ([0, 27] x [0, 22])N"" 5 (B2, 93, 63, . - - N, ON),
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where the second point has coordingiga(@.), 0, cos@,)). We have expanded the range
of the polar angle t¢0, 27]. While this allows multiple representations of a point, it also
allows us to identify sections of the boundaryX§ so that the angles may be considered
as elements dk /2#7Z.

We shall denote bypy the map fromXy, to (S?)N. Note thatdy is analytic onXy. We
shall consideEs in (5.1) as a map froniS?)N to R, U {eo}. So long as the points making
up the configuratiomy € (S?)N are disjointEs : (S?)N — R, U {0} is analytic and hence
Es(®Pn) : XN — R, U {0} is analytic. We may then consider the gradi®ift(®y) with
respect to the coordinate systé¢y, and the2N — 3 square matrix of mixed second order
partials with respect to the same variables i.e. the Hessigg®f,) which we shall denote

HE (D).

5.2 Optimization Tools
Our goal is to minimizeEg(®y) over the seiXy. Because of the identifications of the
boundary this can be considered as an unconstrained minimization problem. The two tools

we shall use are nonlinear conjugate gradient with line minimization and Newton’s method.

5.2.1 Nonlinear Conjugate Gradient

The basis of conjugate gradient is a modified gradient descent algorithm that avoids
“zig-zagging” down valleys of positive-definite quadratic forms. It is an iterated method
— given a point inXy, we choose a descent direction, move in that direction and choose a
new descent direction. Our scheme for choosingthie descent directiod, is the Polak-
Ribiere updating scheme(cf. [40]), which is based omthpoint x", the previous descent

directiond,_; and the previous poink™b. It is given by the following formula:

(VEL(@n(XM)) = VEL(@n (X)) - VE(Dn (X))

dn = —VE4(@n(X")) + 5
|VE(@n(xD)|

n-1-
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For the cas@ = 1, d, is —VEg(®n(x™M)).

5.2.2 Line Minimization
Given a descent directioth, we must choose how far to move in this direction. The

distance to move* should be a minimum of the following function

R3a — f(a) = E{On(X™ + ady)).

The search for* begins by choosing; to be the minimum pairwise separation of the
points onS? as represented by (x™) divided by1000times the largest component @y
Because all partial derivatives of the map in (5.2) are bounded abotgtbig initial step
size will not decrease the pairwise separation of poin®y(x™) by more thanl/1000Q
Our motivation is to avoid regions &y where points in the corresponding configuration
on S? are close together. It is in these regions that the derivatives; dfecome large
and derivative-based minimization techniques may become unstable.c\\ithosen we

inductively choosern,; to be2a,,. We stop when the condition

flam) < flam1)  and  flam) < flame). (5.3)

is met. The condition in (5.3) is referred to as havimgcketed a minimum Note

that if f(e;) > f(0) we choosean,1 t0 be an/2. If an drops below the minimum
separation divided b0, 000times the largest componentdl, we conclude that the line
minimization has failed to bracket a minimum.

Once a minimum has been bracketed we refine our bracket in one of two ways. The

first is Brent's Method (cf. [40§10.2]) where the three bracketing poititg, 1, f(a@m-1),

(am, f(am) and(am:1, f(am:1) are fit to a parabola. Let (@, p(@)) denote the vertex of the
parabola, then the center of the refined bracket is chosen to be®jtloeir depending on

which makesf less. The edges of the refined bracket are chosen #n) a1 andan
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or a (depending on the choice for the new center) that also bracket the new center and are
closest to the new center. The second method is the Golden Section Search £df0[2]),

which chooses the new center of the bracket as

3-15 3-+5
> am + 1- > Q1

assuming thatv., is further froma,, thana,+1. The edges of the bracket are chosen in
the same manner as they are in Brent’s Method.

We conclude that we have an approximate minimum if the highest and lowest values of
f in the bracketing points differ by less than the minimum separation dividdd0t{imes
the largest component o. Note that this relaxes our stopping criteria as the infinity norm
of d, decreases. The line minimization algorithm starts by attempting to obtain an initial
bracket, then using Brent’s Method for ten iterations or until an approximate minimum is
found and then using the Golden Section until an approximate minimum is found.

The rationale for choosing Brent's Method first is thiatis differentiable and so
the neighborhood around a minimuai should be well approximated by a quadratic.
Essentially, as is discussed in [40], this is the optimist’s approach. If after ten iterations
a local minimum has not been found, then the Golden Section search, which is guaranteed

to decrease bracket width, is put to use.

5.2.3 Newton’s method

Newton’s method is also an iterative method to find zeros of functions and is based on
approximating the derivative with a linear function. We use it to find zeros of the gradient
VE¢(®yn), the derivative of which is the HessidhE(®y). A first-order expansion of the

gradientVE¢(®y) about the poink®™ is

VE(®n(X)) ~ VE{(Pn(X™)) + HE(Dn(X™))(x — X7)
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If xis a minimum, thetVE¢(®y(X)) = 0. Setting our expansion to zero gives
0 = VE(@n(X")) + HES(@n(X"))(x— x7),

and so

HES(@n (X)) (x = X) = —VE(x") (5.4)

The value ofx that solves (5.4) is our choice faf™?.

Near a minimum the analyticity oEg(®y) implies that E5(®y) will be well
approximated by a quadratic form and hence the derivative will be close to linear. In these
cases we expect that Newton’s method will converge rapidhpwever, unlike conjugate
gradient there is no guarantee that a step of Newton’s method will decrease the value of

Es(®n) or bring X, closer to a local minimum thax,_;.

5.2.4 Accurate Summations
It is well known that ifa, b andc are double precision floating point numbers differing
by many orders of magnitude, then the addition operation performed by most computers

can lead to the following error:
a+((bb+c)#(a+b)+c.

This is a result of roundoff error where small numbers may individually fall within
the roundoff error of the larger numbers, but the sum of the smaller numbers is larger
than the roundoff error. The discrete energy ofNupoint configuration involveé\%
summands, the smallest of which is six orders of magnitude smaller than the final sum
in the caseN = 500ands = 3. One goal in these experiments was to minimize this

effect. The naive approach of sorting the summands and re-sorting intermediate sums

!Conditions under which Newton’s method will converge are given in the paper [28] (in Russian) by L.
Kantorovich
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is prohibitively computationally expensive. In response we devefopies following
algorithm for summing a finite series of numbers:

Assume that the absolute value of the numbers is bounded away from z€ro\bg
shall create an array to store summands. Given a sumswaedassign it to the bin in the
array whose index iflog, ZJ. If the bin is empty, we placsin that bin. If the bin is not
empty, we empty the bin of its contetraind we placé+ sinto the array in the same manner
as we placed into the array. After the last summand has been placed in the array, we add
up the contents of the array starting with the lowest indexed bin. This algorithm has several

benefits.

(1) Most addition operations occur between numbers that are within a factor of two of
each other. It is only in the final sum over the bins in the array that numbers whose
ratio is greater tha@ or less tharl/2 can be added. The number of such addition

operations is bounded ibyg, Zi“il S, wheres,, s, ..., Sy are the summands.

(2) This algorithm generates a record for how many summations are performed at each

scale.
(3) The algorithm completes i@(N log, 3\, s) time.

We estimate the error for a single addition operation within a given bin using the
following common algorithm: Leb denote the upper bound for a bin. Find the lowest
value forn such that the computer’s floating point representation reflorr2™") — b = 0.

If n* is this lowest exponent then, we say the roundoff error for that n"is To estimate
the error for a sum, we multiply the number of summations performed at each bin by the

roundoff error for that bin.

2This was done in collaboration with Drew Scoggins.
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5.3 Generating Candidate Configurations
The first step is to choose a starting pointAR. We do this by randomly choosing

angles in0, 7] x [0, 2r] and making sure that the resulting points®rare separated from

%. The rationale for this factor will be discussed

in Section 5.6.2; at this point it is sufficient to know that it is possible to choose such

all the previous points by at lea

points. This gives us our starting configuration and hence our pding Xy. Note that

the configuration will preferentially place points near the pole§%fWe then alternate
between some number of iterations of conjugate gradient with line minimization and
Newton’s method. We conclude that we have a candidate for a local minimum when neither
method can decrease the energy.

During development this optimization approach appeared to use conjugate gradient
with line minimization to get near a local minimum and then use Newton’s method to
converge rapidly to the minimum. In the cases observed, four or five successive iterations
of Newton’s method would bring the optimization software to the stopping condition.
Because Newton’'s method was so effective in finding a minimum, we made some effort
to choose the number of iterations of conjugate gradient so that Newton’s method would be
employed as soon as it was likely to converge. However, a single step of Newton’s method
requires building the Hessian which rung2(iN?®) time, so we also sought to avoiding using
Newton’s method when it wouldn’t converge. In addition, conjugate gradient incorporates
information from previous steps to improve the search direction. Running conjugate
gradient for too few iterations would mimic steepest descent and was not effedtiie
known that conjugate gradient can “lose conjugacy” if run for too many steps and become
ineffective. The final choice for the number of consecutive iterations of conjugate gradient
was three times the number of points which is rough$/times the number of degrees of

freedom?

3In experiments where conjugate gradient was replaced with steepest descent performance dropped
dramatically.

4The author has since been told that conjugate gradient should not run for more consecutive iterations
than there are degrees of freedom.

105



The algorithm was used in two phases. In the first phase all iterated summations
(summations appearing within for-loops) were performed in the natural way. When the
stopping condition was met, the program was rerun using the final configuration as the
starting point. During this second run a flag was set that caused the program to use
the accurate summation technique described in section 5.2.4 for all iterated sums; this
includes sums in computing the energy and in building the gradient and the Hessian. For
the logarithmic energy there is no lower bound for the magnitude of a summand in the
energy calculation. We fixed the constéhts described in section 5.2.4lag diamS?;

any summands of magnitude less than this were added to the zeroth bin.

5.4 Criteria for a Minimum

In an abstract setting the stopping condition — that neither conjugate gradient nor
Newton’s method can decrease the energy — is only achieved when axpainXy is
precisely at a local minimum dEs(®y). It is unlikely that this will occur unless some
neighborhood of a stable minimum is exactly a positive quadratic form. We conclude that
the stopping condition most likely indicates that possible reductions in energy are smaller
than the roundoff error in the energy calculation. Further, we did not make a systematic
check to see if the optimization software completed with several successive iterations of

Newton’s method. To address this we consider the following tests for stability.

5.4.1 A Positive-Definite Hessian

After the optimization software has completed both the initial and final stages, we have
a candidate for a local minimukd € Xy. In a multivariate setting a sufficient condition
for a point to be a local minimum is that the Hessian at that point is positive-definite.
This requirement is not necessary e.g. the objective fundtigny) = x* + y* has a local

minimum at(0, 0) but the Hessian at that point is all zeroes. Because our goal is to establish
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a lower bound on the number of stable configurations we shall require that Hessian with

respect to the coordinates &f; is positive-definite.

5.4.2 Lowest Eigenvalue of the Hessian

In most cases the optimization method stopped with a non-zero gradient indicating that
an actual minimum was not achieved. In this section we use some mild assumptions to
bound the distance in the spakg between the stopping point and the actual minimum.

If Xis near an actual local minimug) then we may write the gradieNE(Dy) atX as

an expansion abowt

VE(On (X)) ~ VE(ON(Y)) + HES(Pn(Y)(X - ).

By the assumption thatis a local minimum, and that the Hessiaryas nearly the same

as the Hessian & we obtain
(X—y) ~ [HE{(®n(K))] ™ VES(On (X))

Note that[HE¢(®n(X))]™! exists because the Hessian is positive-definite. If we let
UDU! = HE(®n(X)) be the diagonalization of the Hessian%ati.e. U is unitary and
D is a diagonal matrix whose entries are the eiganvaluéts={d®y(X))), then we have the

following bound onX —yi:
~ 111 ~ 1y ~ _ ~
%=y ~ [[UDU™| " VE(@y(%)| = [UD U VEL(@n(R)| < D VE(@n(R). (5.5)

Here||M|| denotes the operator norm of the mathikacting on Euclidean space and

denotes the Euclidian length of a vectonire Xy. BecauseD is diagonal,||D7Y|| is the
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inverse of the smallest eigenvaldg,,. The bound we obtain is then

_ IVE(@u(R)]

dmin

%-y] (5.6)
Note that the Euclidian noriiX — y| is computed in the spacéy.

We require that the right hand side of (5.6) is less thgm0, 000 the minimum
separation between any pair of points in the configuration as represenf&d As noted
earlier, if one changes a specific angle (i.e. a single componextefXy) by §, the
corresponding change of the location of a point in the configuratiag?avill be less than
¢. It follows from the assumption that the Hessian is constant, th@t-ify| is less than the
minimum separation of two points in the configuration dividedlBy000, then the points
will not need to move more thaty10, 000 of the minimum separation to be positioned at
an actual stable minimum.

This condition is probably much more restrictive for the following reasons: First, the
guantity|X—y] is likely due to many components &fandy differing, not just one. Second,
there is considerable spread in eigenvalues of the Hessian due to the fact that the partial
derivatives ofEg(®y) with respect to the azimuthal angle of points close to the north or
south poles will be much smaller than the partial derivatives with respect to the azimuthal
angle of points located at the equator. The final inequality of (5.5) chooses the reciprocal

of the smallest, thus maximizing our upper bound.

5.4.3 Comparison of the Lowest Eigenvalue with the Gradient Norm

It is natural to ask whether the minimum eigenvalue or the gradient norm contributes
more to the right hand side of (5.6). For the caldes 200ands = 1, 3, the right hand side
of (5.6) is highly correlated with the gradient as is shown in the log-log plot in Figure 5.1.
The suggests that the eigenvalue test is in agreement with a similar test requiring that the

norm of the gradient be small.
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Figure 5.1: A plot of two tests of stability fdd = 200ands= 1, s= 3.

The points in Figure 5.1 appear to be clustered. The lower left of each data set represent
points that we accept. In this case we accept every point to the left of the vertical line at
10°°. The points in the upper right indicate cases where the optimization software failed
entirely. The middle of the graph suggests that there is a range of gradient norms for the
candidate configurations. This poses a question. If the gradient had such a large norm, then
conjugate gradient, the first step of which is steepest descent, should have made progress.
This suggests that certain descent directions are not explored.

The fraction of candidate configurations that pass both tests is shown in Figure 5.2.

5.5 Implementation of Configuration Generation

The software to implement these algorithms and to test the candidate configurations
was written in the C programming language and compiled for AMD Opteron and the IBM
PowerPC processors running the CentOS Linux operating system and for the Motorola G4

and Intel Core Duo processors running Apple’s OS X operating system. The first phase

109



1.2

S=i
S=
S=
S=

WN O
0O x X +

0.6 - B

04 - -

Fraction of Candidates Accepted

0.2 - B

0 ! ! ! !
50 100 150 200

Number of Points

Figure 5.2: A plot of the fraction of the candidate configurations passing both tests for
stability.

of the computations were performed at Vanderbilt's computing cluster on the Opteron and
PowerPC processors. The second phase of the calculation that used the accurate summing
techniques was run on servers at the Vanderbilt math department and at the author’s home
on the Core Duo processor.

The LAPACK library provides an interface to hardware accelerated matrix operations.
This library is available for all the combinations of processor type and operating system
listed and was used for the matrix operations described above. To test if the Hessian
was positive-definite, we instruct LAPACK to perform a Cholesky decomposition. One
of the error codes returned by this call reports that the matrix in question is not positive-
definite. The eigenvalues of the Hessian were obtained by performing a singular-value
decomposition.

For each value oN = 20,...,500ands = 0,1, 3 roughly one thousand candidate
configurations were generated. o 2 and the same range of valuesifroughly 600

candidate configurations were generated.
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5.6 Computational Geometry

Having generated configurations 6A that pass our stability test, we would like to
understand the relative positions of the points making up these configurations, and in
particular we would like to establish a technique to compare two configurations rapidly
and determine if there is an isometry mapping one configuration to another. A simple
approach is to take the first configuration and place a poif, 8t 1) and another point on
the x-z plane, and then to search for a rotation and reflection of the second configuration
that does the same and also causes the points to match up with each other. Because the
rotations of the second configuration are indexed by pairs of points, theBNéke— 1)
possible rotations and reflections. Because the points in the configurations are ordered
randomly, checking if a point in the first configuration corresponds to a point in the second
configuration requires looking at every point in the second configuration. From this we
see that this simple approach has a run time thax(l¢*). We present a new method to
compare configurations @it that is substantially faster.

One of the central tools we use is computational geometry. We begin with a review
of some basic definitions. Given a collection of distinct poiats c RP the Voronoi
(alternatively Dirichlet) cellsfor wy are convex subsets &P around each point iy
formed as follows: Pick € wy. For everyy € wy let Hyy denote the closed half-space of
RP containingx that is bounded by the plane forming a perpendicular bisector of the line

segment connectingandy. The Voronoi cellVy for the pointx is given by

yewn\{X}

Theconvex hullof wy is the intersection of all half-spaces that contajpn TheDelaunay
triangulationof wy divides the convex hull aby into simplices according to the following

rule: A simplexK belongs to the Delaunay triangulation®f, c RP if, and only if, the
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Figure 5.3: The circumcircles in gray associated with a Delaunay triangulation of the black
points. (This image is courtesy of Wikipedia via the GNU free documentation license.)

p + 1 vertices ofK are inwy and the interior of the sphere passing through thesel
points contains no point iay.

It is a standard result that the Delaunay triangulation and Voronoi cells of a collection
of points inRP are geometric duals. More concretely, the Delaunay triangulation can be
thought of as connecting nearest neighborRtn Figure 5.3 shows a collection of black
points with their associated Delaunay triangulation and circumcircles. The centers of the
circumcircles are the red points. Figure 5.4 shows the duality between the Voronoi cells
and the Delaunay triangulation. Note that the centers of the circumcircles are the vertices
of the Voronoi cells.

It is important to bear in mind that the Delaunay triangulation need not be unique.
Given any finite collectio? of N > 2 points distributed 018! c R? every triangulation of
the convex hull ofP consisting of triangles whose vertices are drawn fféra a Delaunay
triangulation. This results from the simple fact that no point lies in the interior of the

circle passing through any three elementoflf we let X denote the center df?, and
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Figure 5.4: The Voronoi cells (bounded by the red lines) are the geometric dual of the
Delaunay triangulation of the black points. (This image is courtesy of Wikipedia via the
GNU free documentation license.)

let P := P U {X}, then the Delaunay triangulation Bfis unique. If we remove any edges
containingX as an endpoint, then we have a Delaunay triangulatioB thfat is in some
sense restricted $®'. Note that the triangles in the Delaunay triangulatiomgfc R? are

replaced by line segments in the “circular Delaunay triangulationjpf= S*.

5.6.1 Spherical Delaunay Triangulations onS?

We shall extend the idea of circular Delaunay triangulatiorf® t@iven a configuration
wn C S? we shall consider the Delaunay triangulationegf U {(0, 0, 0)} and ignore any
face that contairf0, 0, 0) as a vertex. In the same manner that our circular triangulations
are over lower dimension than the ambient space, here we replace tetrahedt®mstim
triangles that are roughly speaking restrictedtoWhen this algorithm succeeds we refer
to the result as apherical Delaunay triangulatiarFigure 5.5 shows such an example.

There are two ways by which this method could fail to produce a usable spherical
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Figure 5.5: A sample spherical Delaunay triangulation from a configurati®@points
on 2.

Delaunay triangulation. The first is if a configuratiag contains a subset of more than
three points that is cospherical wiff, 0,0). This would occur if four points fromuy

lie on circle on the sphere — perhaps forming the vertices of a square — and no points
in wy lie in the spherical cap bounded by the circle. The second is if more than three
points inwy are nearly cospherical. This could occur if the actual stable configuration
contains four points located at the vertices of a square, but the optimization software stops
before the points reach those vertices. While this will give us a unique spherical Delaunay
triangulation, another trial my produce a candidate configuration that is extremely close
to the first candidate, but has a different spherical Delaunay triangulation. In Figures 5.6
and 5.7 two configurations are shown that, due minute changes in the location of the points,
have different spherical Delaunay triangulations. Given that points in the configuration are
nearly isometric, we do not want to treat these configurations as distinct. With this in
mind we perform the following two tests to determine if we accept a spherical Delaunay

triangulation ofwy:
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Figure 5.6: A Delaunay triangulation for a stable configuration of 24 poin&?on

Figure 5.7: A Delaunay triangulation for a configuration that is very similar to the
configuration in figure 5.6. Note that the orientation of the two triangles facing out of
the page as compared to Figure 5.6.
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First, if the convex hull ofwy contains a face with more than three sides, the
triangulation is marked as bad. If a triangulation passes the first test, we then examine
the unit vectors normal to the faces in the triangulation. If the dot-product is too close to
one, we conclude that we may be in the situation illustrated by Figures 5.6 and 5.7 and we
mark the triangulation as bad. We appeal to the following approximation for determining
how close is too close.

If we act under the assumptid@?t can be triangulated with equilateral triangles — for
mostN it cannot, but Figure 5.5 suggests that the triangles are close to equilateral — then
we may consider the distance between the center of one triangle and the center of the
next and use this as a basis for estimating the minimum average dot-product between unit
vectors normal to the faces in the spherical Delaunay triangulatidit.okJsing a small
angle approximation we obtain that the average minimum dot product should be roughly
1- i whereF is the number of faces. For a triangulationugf we then compute the

3V3F

following:

. l-a-b . . .
min(wn) = mln{—a . aandb are normal to faces in the trlangulatlona»m}.
87/3V3F

The quantitydmin(wn) has the benefit that it measures how close to parallel two faces are
in a manner that is independent Bf If dyin(wn) < 1/10,000, we mark the spherical

triangulation as bad.

5.6.2 Spherical Voronoi Cells ons?

Once we have an acceptable spherical Delaunay triangulation, we may generate
Voronoi cells onS? as follows: Given a poinix € wy consider the triangles in the
triangulation ofS? for which x is a vertex. For each of those triangles find the intersection
of the perpendicular bisectors of the edges of the triangle. Use those intersections as the

vertices of a region that we shall call the Voronoi cell forestricted toS2. Figure 5.8
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Figure 5.8: Sample Voronoi cells for the configuratiorb0D points used in Figure 5.5.

provides an example of the Voronoi cells derived from the Delaunay triangulation shown
in Figure 5.5. We have used the color of the Voronoi cell to indicate the number of nearest
neighbors. In the stable minima for which we have generated and examined the Voronoi
cells, the points 082 appear to be arranged in a generally hexagonal pattern.

Following reasoning similar to that used to estimate the dot product for vectors that
are normal to adjacent triangles in the triangulatiorS6fve may estimate the distance
between a point and its nearest neighbors by assuming that the shisrdiled with

regular hexagons. In this case we approximate the distance between nearest neighbors in a
configurationwy as &
N - —.
N V3
5.7 Implementation of Computational Geometry Tools
Generating the convex hull and the Delaunay triangulatianyof RP was done using

the QHull package The software to create and test the spherical Delaunay triangulations

SQHull was developed by the University of Minnesota’s now defunct Geometry Center. This package was
written by researchers specializing in computational geometry, was extremely fast and minimized the effects
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and to create the Voronoi cells were written in the C and Java programming languages.
They did not use any hardware specific features and could be run on any Posix compliant
operating system for which there is a Java Virtual Machine (e.g. Linux and the Macintosh

OS X operating systems.)

5.8 Graph Theory

If we have a collection of configurations dif and these configurations all have
good spherical Delaunay triangulations, then we may speed the process of comparing the
configurations by using an algorithm presented in [31] that is used for comparing planar
graphs® The essential idea is to identify a canonical representation for planar graphs so that
two planar graphs are graph-isomorphic if, and only if, their canonical representations are
the same. By excising a point that is separated from the vertices and edges of the spherical
Delaunay triangulation of a configuratiany, we may consider our spherical Delaunay
triangulation as a planar graph.

The algorithm works as follows: For any edfe, v,) and any orientation (clockwise

or counter clockwise) we number the vertices in the triangulation as follows:
step 1. Letv; be numbed and letv, be numbeg.

step 2: Find the already numbered vertex with the lowest numbering that has an

unnumbered neighbor. If no such vertex exists, we’re done.

step 3: Start working around the neighbors/pin the chosen orientation, starting with the
lowest numbered neighbor. Skipping the already numbered neighbors, assign the

smallest unused number to any unnumbered neighbor.

step 4. If there is an unnumbered vertex go to step 2.

of roundoff error. Producing comparable software would not have generated results proportional to the time
spent in development.
5The author is grateful to Mark Ellingham for describing the algorithm.
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Once we have a numbering, we create a table whose rows and columns are indexed by
the vertices as numbered by the preceding procedure. We plaoethei, j-cell if there
Is an edge connecting vertexand vertexj, otherwise place @ in that cell. We generate
a row major encoding of the upper right triangle of this table. Because of size constraints,
we then create an MD5 cryptographic digest of this encoding.

This process is repeated for every choice of edge and orientation. For every choice
we record the ordering of vertices, the orientation and MD5 digest when the MD5 digest
is lexically less than the current lowest digest. When this process completes we call the
lexically lowest digest theag for the graph and we rotate the configuration so that the
first and second point in the corresponding numbering a(@, 8t1) and in thex-z plane
respectively. If the orientation associated with the tag is counter-clockwise, then we reflect
the configuration across thez plane. We say a configuration that has been so rotated and
reflected is ircanonical position

The algorithm for generating this tag runsEV) whereE is the number of edges and
V is the number of vertices in the spherical Delaunay triangulation. While this algorithm
is somewhat expensive, it is expensive on a per configuration basig)(iM) assuming
we haveM configurations to compare) as opposed to being expensive on a per comparison
basis (i.eO(M?).)

We use this algorithm to compare configurations in canonical position as follows: If

two configurations oN pointsw?, andw, have the same tag, then compute the following

d(wy, ) == max|x — Vil : X € wy, Y €w?, i€l ...,N}.

If d(w},, w3) < 1/10Q,000, then we say the configurations are the same. While this may
seem like a fairly large threshold, our goal is to get a lower bound on the number of distinct
stable configurations of? and errors resulting from this threshold being too large will
undercount the number of distinct configurations. Note that the qualftity, »Z) can be

computed irO(N) time.
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While this graph theory based test is extremely valuable in identifying the isometry
between two isometric configurations, we never use this test alone to conclude that two
configurations are not isometric. There are two reasons for this. First, it is possible that
there could be a configuration that has a good spherical Delaunay triangulafiénaoid
that there is a graph-automorphism of this triangulation that does not correspond to an
isometry. As an example consider a four sided polygon in the plane for which all the
angles between sides are different. The group of graph-automorphism is the dihedral group
D4, but the group of isometries is trivfal Second, the brute-force isometry test is a more

concrete test and the corresponding software is easier to verify.

5.8.1 Tagging Scars

An important benefit of the graph theory algorithm is that it allows us to tag the portions
of a configuration where the hexagonal structure breaks down. Any connected subgraph
of the spherical Delaunay triangulation$f containing only vertices of degree other than
six shall be called acar. For each scar we generate a tag of the graph consisting of the
scar, the vertices that are connected to the scar by a single edge and the edges connecting
these neighboring verticks We include the neighbors of the scar when we form a tag
because many scars have a chain like structure and the connections to the neighboring

points provides information regarding how the chain bends within the larger triangulation.

5.9 Counting Distinct Configurations

We count the distinct configurations for a given valueNoind s in two phases. In
the first phase we generate the spherical Delaunay triangulation of every configuration and
ignore the possibility that the spherical Delaunay triangulations are bad. We say that two

configurations have energies which cannot be satisfactorily distinguished if the difference

’One could address this by storing every ordering of points corresponding to the lexicographically lowest
tag
8Software to identify the scars was written with Whitney Goulart.
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In energies is less than ten times maximum of the two summation errors as described in
section 5.2.4. We sort the configurations by energy and bin them as follows: We start
with the configuration with the lowest energy and create a bin for it. We go through
the configurations by increasing energy until we find a configuration whose energy can
be distinguished from the energy of the first configuration. We start a new bin for this
configuration and continue the process. When we are done, all the configurations have
been placed in bins. At this point we use the graph theory tags to search for isometric
configurations. This subdivides bins into isometry classes. Within each class we keep the
configuration with the lowest energy and drop the others. When the first phase completes
we have reduced the number of configurations to a large degree. Even if the spherical
Delaunay triangulation for two configurations do not pass our test for goodness, they may
still happen to provide the correct ordering of points to show us that the configurations are
iIsometric.

At this point we test the configurations for stability and test the validity of the spherical
Delaunay triangulation. Any configuration that does not pass our stability test and doesn’t
have the lowest energy is discarded.

In the second phase we bin configurations by energy as we did in the first phase, but
now we use a brute force isometry test to compare configurations. Because the number
of configurations to test has been reduced as a result of the first phase, this process is

computationally feasible. We end with a list of stable configurations.

5.10 Implementation of Counting Algorithm
All software implementing the graph theory algorithm and the counting method

described in the previous sections was written in the Java programming language.

121



5.11 Results

This section describes some of the initial data analysis. One of the most important
guestions is: How does the minimal discrete energy for a gve@md s depend orN and
s? These questions have been addressed with theory, experiment and conjecture and we
shall present our data in this context. More recent questions are: does the number of stable
configurations increase exponentially wit? And what trends can be identified in the
breakdown of the hexagonal structure?

The reader should bear in mind that numerical results can present upper bounds for
the minimal discrete energy and lower bounds for the number of states. In regards to the
number of states, we are really counting the number of states that pass our stability test and

are not isometric to one another.

5.11.1 Comparison with Prior Experiments

Similar experiments with the goal of numerically approximating the minimal discrete
energy have been performed in a variety of settings (cf. [11, 12, 36, 43].) We shall
look closely at the results obtained in [36, 43] because the methodologies used in those
experiments differ from ours and provide an interesting point of comparison.

In [43] Rakhmanov, Saff and Zhou perform related experiments. Those in common
with ours are fors= 0, 1 (« = 0, @ = —1 respectively in their paper) ard = 2,...,200
212 272 and 282 They parameterize the sphere using a stereographic projection and
their parameter space (8?)N. Fors = 0 they use a combination of steepest descent and
a version of Newton's method that does not require solving the full linear system. For
s = 1, they use conjugate gradient and a variable metric method. As with the experiments
described here, they start wildOOrandom initial configurations for a given value Nf
ands. For the descent-based methods, they do not use a line minimization but rather a step
size computed from the state of the configuration. The absolute value of the differences

between the results of Rakhmanov, Saff and Zhou and the results in this document for
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Figure 5.9: The absolute value of the difference of the minimal discret® energies of
the experiments described in this paper and the experiments of Rakhmanov, Saff and Zhou.

s = 0ands = 1 are plotted in Figures 5.9 and 5.10 respectively. We examine the results
that differ by more tharl07°.

In [36] Morris, Deaven and Ho report results of similar experiments Nor=
112...,200and s = 1. They indicate that folO < N < 132 their results are in
agreement with unpublished results of Erber. Morris, Deaven and Ho use a structured
genetic algorithm combined with conjugate gradient. Each generation relaxes the candidate
configurations using conjugate gradient and mimics “mating” by combining portions of
configurations located on random hemispheres of the existing population of configurations.
The absolute value of the differences between the results of Morris, Deaven and Ho and
the results in this document are plotted in 5.11. We examine the results that differ by more
than107°,

Figures 5.9, 5.10 and 5.11 show that the mean difference in energies of our experiments
and those of Morris, Deaven and Ho is higher than the mean difference in energies between

our experiments and those of Rakhmanov, Saff and Zhou. One possible explanation for this

123



T T T
Difference in Energy between C. and R., S. and Z. fors=1  +
1+ Threshold E
+
+
+
+
0.01 |- + * -
+
n
3  0.0001 |- 4
[9)
=
L0
£
()
2 1le-06
[
(9
£
[a} +
1le-08 B
n
#;++@#ﬁﬁqj,#ﬁﬁ++ﬁﬁ++ﬂ#ﬁ+¢ﬁgﬁaégh'ﬁ”i4+ #*gﬁitqﬁk+ﬁ e T
T PR e L TR A et gy R *
le-10 + g +hy ++ + o+ -
+ o+ 1 L
+ o+ + o + n *
+ +ﬁ— * + Ty *
1e-12 | | | | |
0 50 100 150 200 250 300

Number of Points
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Is that our experiments and the experiments of Rakhmanov, Saff and Zhou use a Newton-
like method in conjunction with a descent based approach, whereas Morris, Deaven and

Ho use conjugate gradient alone.

Table 5.1: Differences between current and prior results

N|s C. R.,S.and Z. M., D. and H.| Min.
188 | 0 | (L) -3664.2434024129 -3664.239977217 N.A. 2nd
1970 -4013.1824623541 (L) -4013.187189799 N.A.

272 0 -7533.1688007506 (L) -7533.1801908689 N.A.
2820 -8084.9967902276 (L) -8085.02773996( N.A.
156 | 1| (L)11092.798311456 - 11092.80311478 2"
170| 1| (L)13226.681078541 13226.682823953 - 2nd
177 | 1 14364.850519211 (L) 14364.837545298 -
185| 1| (L)15723.720074072 15723.723463950 - 2nd
188 | 1| (L) 16249.222678879 16249.250131462 16249.25013148 2"
190| 1| (L)16604.428338501 - 16604.44596500 2
196| 1| (L)17693.460548082 17693.476356930 17693.46055212 2
197 | 1 17878.382745772 (L) 17878.340162571 -
198 | 1| (L) 18064.262177195% - 18064.28806296 57
200| 1 18438.842717530 - | (L) 18438.84227199
272 | 1 34515.330488416 (L) 34515.193292687 N.A.
282 |1 37147.638541777 (L) 37147.294418462 N.A.

Table 5.1 shows the experiments where the reported lowest energies differed by more
than10. The columnsN and s indicate the experiment performed. The columns “C”,
‘R., S. and Z” and “M., D. and H” indicate the value of the energy as found by this
author, by Rakhmanov, Saff and Zhou, and by Morris, Deaven and Ho respectively. A
dash indicates that the energy is in agreement with the energy in column “C”. When the
column “C” contains the lowest energy, the column “Min.” indicates the index of the
stable configuration whose energy is in agreement with the other experimental values (the
configuration with the lowest energy has index The lowest energy is marked by “(L)".

The caseN = 196ands = 1 indicates that the energies in this experiment differ from
the energies in the experiment performed by Morris, Deaven and Ho by mord @hHan

However, the second stable minimum we found was separated from our lowest minimum

125



by considerably more than the difference between the values reported by the experiments.
We allow for the possibility that in this case Morris, Deaven and Ho had found the same
minimum, but their conjugate gradient algorithm stopped prematurely.

The question mark next to the index of the minimum foe 198ands = 1 indicates
that the energy reported by Morris Deavon and Ho lies between the energies of the fourth
and fifth stable configurations we observed. This could indicate that their conjugate
gradient algorithm stopped prematurely or that they found a stable configuration we did
not.

The conclusion we draw is that f&0 < N < 200 the experiments are largely in
agreement. FoN > 200there are reasons to suspect that our experiments were unlikely
to find the ground state configuration on the sphere. In [13] Erber and Hockney suggest
that the number of stable configurations grows exponentially Withf this is the case,
then forN larger thar200we expect that the number of stable configurations will greatly
exceed the number of trials we ran. Consequently the chance of finding the global minimum
decreases. For the cadés- 272and282 our lowest energy was so much higher than the
lowest energy found by Rakhmanov, Saff and Zhou that it suggests that there are a number
of states with energies laying between the energy they found and the energy we found. This
indicates that we should not consider the lowest energies we have fouhd$o200 as
probably globally minimal.

Further confirmation is shown in Figure 5.12 where we plot the number of distinct
configurations passing our stability tests divided by the number of trials that resulted in a
stable configuration. ABl grows much beyon800, the number of distinct configurations
found is approximately the total number of trials resulting in a good configuration. It is
reasonable to assume that at this saturation point the next stable configuration resulting
from running the optimization software would be a new one. For this reason it seems likely
that the number of trials we performed is insufficient to find all the stable minima and in

particular to find the ground state.
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Figure 5.12: The ratio of the number of distinct states to the number of trials leading to
good configurations as a function of the number of polhts

5.11.2 Estimating Growth of the Number of Stable Minima

Based on Figure 5.12 we shall try to estimate the valuedl dor which we can
reasonably assume we have found most of the stable configurations. The growth of the
graph with lowN is most certainly due to the increase in the number of stable minima. The
plateau atl starting at roughlyN = 200 can be reasonably assumed to follow from the
fact that there are more stable configurations than trials performed. Based on an admittedly
subjective judgment, one could imagine that the former effect dominatés £0160.

Figure 5.13 shows the growth of the number of distinct stable configurations as a
function of N for the range oN where we have reason to believe we have seen the majority
of stable configurations (i.20 < N < 160) On the hypothesis of exponential growth as
presented in [13], fitting these data to a function of the faxeiN gives parameters for
growth. Table 5.2 shows the results.

Note that the results of this fit is highly dependent on the valud ohosen. If we fit

data forN = 20,..., 180the value ofA increases by an order of magnitude while the value
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Table 5.2: Estimated growth of number of minima wiNh

A

@

WN O W’

0.173811+ 0.04772
0.236733+ 0.06899

0.473013+ 0.1389
0.355103+ 0.09599

0.0472814+ 0.00182
0.046808+ 0.001933
0.0413641+ 0.001966
0.0466184+ 0.001794

of @ decreases. If these parameters reflect the actual growth of the number of stable minima
with N, then forN = 500we expect millions of distinct stable configurations and conclude

that it is highly unlikely that we have observed the ground state configuration.

5.11.3 Estimating the Growth of Energy

In this section we compare our observed growth in minimal energy as a functidn of
with previous results, observations and conjectures.

The value in obtaining an accurate expansion of the minimal discrete energy in terms

of N is that a given term in the expansion often provides a physical understanding of the
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nature of the energy. Two examples are Mfeterm and theN'*52 term. Whens < 2, the
leading term is of ordeN2. This is proven in Proposition 2.5.2. The central idea in this
proof is that the Riesz kernel is integrable, and that the minimal energy points provide a
sampling set for the Riesz kernel that approximates the equilibrium measure — the term is
N? because we are performing a double integral. More generalliNthterm reflects an
interaction over all pairs of points.

Whens > 2, Hardin and Saff show in [24] that the leading term is orét¥2. They
prove this result first for the cube (or square as it applies to the ca$® ofing a self-
similarity argument. A result of their argument is that tK&>2 term reflects the local
structure of the configurations of minimal energy points. The conjectured value for this
leading term is connected to the expectation that, for two-dimensional compact manifolds,
the ground state will be largely hexagofal.

Numerical results corroborate conjectures thatdfor s < 2 the second order term
is order N**$2 and for some range o§ > 2 the second order term id?. A natural
interpretation of these conjectures is that ok 2 the discrete minimal energy reflects
the global structure first and the local structure second, whereas, for some rage2pf
the local structure dominates and the second term reflects the global structure.

The main tool in examining the expansion is the residual difference between the
observed data and the expansion. The expansion may be qualitatively described as good if
the residuals are small compared to the smallest term in the expansion for the rathge of

under consideration, and if the residuals do not have any obvious structure.

SWhile many accept that the hexagonal lattice is the ground state for particles on a two dimensional set
interacting via a Riesz potential, there is no proof of this. If ones takes the appropriate lignft & one
obtains the problem of best packing. In this case it is proven in [19] (also cf. [20]) that the hexagonal lattice
is optimal.
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5.11.4 Growth of Energy for s=0
In [42] the expansion for the minimal discrede= 0 energy on the sphere is shown to

be of the form
Eo(S% N) ~ L Iog(é—l) NZ = 2N logN + BN + O(N)
4 e 4
for someB, and is conjectured to be of the form

1 4 1

Eo(S% N) =~ -2 Iog((—e) N? — 21N logN + BN + ClogN + O(1). (5.7)
The problem of minimizing the = O energy is equivalent to the problem of maximizing

the product of the pairwise distances between point§?rSolutions to this problem are

of considerable value and consequently the seventh of Smale’s eighteen problems for the

twenty-first century [46] is to find an algorithm whose run time grows as a polynomial in

N that can create a configuration of pointg c S? so that
Eo(wn) — Eo(S? N) < ClogN

for some valueC. One of the difficulties of this problem is the lack of a theoretical
description of growth accurate to within ordeg N°.

In [43] the authors use their results to suggest an expansion of the form
p 1 4\ , 1
&Eo(S%, N) = 2 log s N- — ZN logN — 0.026422 + 0.13822 (5.8)

Note that this expansion does not include@N term.

Using the best available data fo¢ = 20,...,200 212 272 and 282 from our

10Smale’s eighteenth problem is to find the limits of human and artificial intelligence.
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Figure 5.14: The difference between the best fit and the observed minimal discrete energy
fors=0.

experiments and from those found in [43] we vary3 andy to obtain a fit of the form
5 1 4\ , 1
Eo(S%,N) ~ —Zlog s N- - ZNIogN +aN +BlogN + .

The results as computed by KaleidaGraph and confirmed with GNUPIlot ares
-.026669+ 4.5917x 10°°, B = .023322+ .0042084andy = .056395+ .014392 where

the sum of the squares of the residual9.3184548 One possible explanation for the
difference between these values and those in (5.8) is the curve fitting algorithm. Both
KaleidaGraph and GNUPIot require initial guesses for the free parameters and for both
programs the results depend on the guesses. If the starting va#lieezdro, then GNUPIot

finds a solution very much like that in (5.8). However in that case the sum of the squares of
the residuals i19.0215498 We conclude that this curve fitting problem is a minimization
problem with several local minima and that it is hard to know if a given minimum is the

global minimum. More significantly we feel the data allow for a non-2egiN term.
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5.11.5 Growth of Energy for s=1
Proposition 2.5.2 implies that the first order term for #he 1 minimal discrete energy
is %Il(;zl’SZ)N2 (It is known thatl, (u>**) = 1). In [29] the second order term is conjectured
to beCN*%2 where the constalls is given by
V3
Cs = 3( 8

T

s/2
) {(s/2)L_3(s/2).
Here( is the classical Riemann zeta function — the analytic extension of

- 1
(@)= ) —
n=1 n

andL_; is the DirichletL-function given by

1 1 1 1
L_3(Q)—1—E+E—§+%—...

In the cases = 1 numerical computations @ give a value 0of-.553002 In [42] the third
order term is conjectured to be of the fod¥2.

In [43] Rakhmanov, Saff and Zhou fit their data to obtain an expansion of the form

N2
E1(S% N) ~ = - 0.55230N*/? + 0.068INY/2.
In [36] Morris Deaven and Ho perform a similar fit and obtain
2

N
E1(S% N) ~ - - 0.5523MN*/? + 0.0689NY/2,

Using the best available data from our experimentdNet 20,...,200and from [36,
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Figure 5.15: The difference between the best fit and the observed minimal discrete energy
for s= 1 assuming the conjectured value for the coefficient of the second term.

43] we fit the following two expressions to the observed minimal discrete energy:

N2

E1(S%4N) = -+ aN¥2 + pNY/2, (5.9)
N2

E1(S%4N) = = - 5530032 + yN/2, (5.10)

The values of the parameters resulting from the fit arez —0.552311+ 7.707 x 10°,
B = 0.0691789+ 0.001098andy = 0.162383+ 0.002395 The sum of the squares of
the residuals for the fit involving andg was0.447483and the sum of the square of the
residuals for the fit foy alone wa20.5643
The structure in figure 5.15 immediately suggests that for the rangjeaminsidered,
the expansion given in (5.10) isn’t optimal. Reasonable hypotheses include: the data aren’t
the minimum values; the expansion isn't valid for the rang&l aonsidered, alternatively
the higher order terms are significant for this rang@&pfinally the conjectured value of

the coefficient for second order term isn’t correct.
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Given the similarity in the parameters we obtain in the fit of (5.9) to those obtained

in [36, 43] we refer the interested reader to those papers for a plot of the residuals.

5.11.6 Growth of Energy for s= 2
In [29] and also in [24] the leading term in the growth of the minifapoints = 2
energy is shown to be

1
Ex(S% N) = 21N2 logN.

The next order term is conjectured to be of the f@@is?.

In the cases of = 2 ands = 3 we do not have data from other experiments with which
to compare our data. Given that we perforn@@@trials and that approximate§0% (See
Figure 5.2) of them lead to stable configurations, we assume that, at most, we could have
identified540distinct stable states. The growth parameters from table 5.2 suggests that at
N = 173the number of stable configurations will exceed this. For this reason we examine
the data folN = 20,...,173when studying the expansion of tee- 2 energy as a function
of N.

We fit the expression

Ex(S%, N) = aN?logN + BN?

to the data and obtaim = 0.124475+ 1.42x 10~ andp = —0.0392098+ 7.045x 10~° and
the sum of the square of the residual8&#4787
Figure 5.16 suggests that the residuals have some structure in that the observed data

exceeds the expansion for low and high valuell @xamined.
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Figure 5.16: The difference between the best fit and the observed minimal discrete energy
fors= 2.

5.11.7 Growth of Energy for s=3
In [29] for the cases > 2 is shown thalt!

2 C
|Imsup83(S ) N) < s2

Nesoo N1+s/2 = -7_{2(82)3/2 (511)

The constan€y; is given by

s/2
2] ao

where(, () is the zeta function associated with the hexagonal lattice. Thatisansists

of all points in the hexagonal lattice of edge lendgilthen

{i(a) = Z #
}

relL\{0

In [29] it is conjectured, and in [24] it is shown, that the limit superior of the left hand

n this result, the measuf? has been normalized so that it agrees withwhen restricted t&2.
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Figure 5.17: The difference between the best fit and the observed minimal discrete energy
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side of (5.11) can be replaced by a limit. And in both papers it is conjectured that the value
of the limit is the right hand side of (5.11). The results in [24] are broader inSthatay
be replaced by any compattitrectifiable manifold.

For the range ofs under considerations(> 2) the function/, has the following

factorization(cf. [29])

£1(s) = 64(s/2)L_3(s/2).

We compute the coefficient of the leading order tern@.899813%or the cases = 3. For
this case the second order term is conjectured to be of the@d\ifn
Based on arguments similar to those in Section 5.11.6 we feel thatt for168 we
expect that there are more stable configurations than there are trials we have run that led
to configurations passing our stability criteria. For this reason we examine dath for

20,...,168
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Fitting a curve of the form

E3(S?, N) = aN>? + gN?

to the data gives = 0.0999087 1.411x 10™° andB = —0.118845+ 0.0001673where the
sum of the squares of the residual®8277. The residuals are plotted in Figure 5.17 and

suggest that the expansion is reasonable.

5.11.8 Growth of Scars

In the preceding analysis few assumptions have been made about the structure of
the energy minimizing configurations. The conjectured values for the coefficient of the
N2 term were tangentially related to the assumption of a ground state dominated by
a hexagonal lattice inasmuch as the terms are related to the zeta function for that lattice,
however the bulk of the theory and questions have been agnostic about the local structure
of the ground state.

In [5] Bowick, Cacciuto, Nelson and Travesset make the natural but unproven
assumption that the ground state is roughly a hexagonal lattice. Because the Euler
characteristic of? is two, S? cannot be covered in hexagons. The Voronoi cells cannot all
have six sides, consequently not all of the points can have six nearest neighbors. The points
which do not have six nearest neighbors are referred tiisafinations Further, numerical
experiments suggest that disclinations group together. These groupings of disclinations are
referred to as scars. However, unlike our definition of the term, these scars need not be
connected. The approach in [5] is to view minimal configurations in terms of collections
these groupings of disclinations. While the authors of [5] do not provide an exact definition
of scars, they do refer to them as grain boundaries and in numerical experiments these scars
often occur where the the orientation of the hexagonal lattice changes.

Figure 5.18 shows the Voronoi cells for a configuration vi@®0points resulting from
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Figure 5.18: Examples of disconnected scars on a configuration resulting from optimizing
N = 1600points fors = 4.

numerically minimizing thes = 4 energy. The features of note are that the disclinations are
gathered together into scars, that four of the five scars shown are disconnected, and lastly
that the scars are located roughly at the vertices of an icosahedron circumscribed by the
sphere. The idea presented in [5] is that the hexagonal lattice is flat and that the curvature
of the sphere introduces strain in the lattice that increases with distance. The scars are
the points where energy is lowered if the hexagonal structure is broken and the strain is
relieved. The hypothesis is that the minimal configurations will have scars at the vertices
of an inscribed icosahedron and that these scars will grow in sikiegaews.

Our goal in this section is to examine this hypothesis. We use the scar tagging
technique to count the number of connected components of scars in the observed minimal
configurations. We also count the total number of disclinations. The results for this
can be found in Figures 5.19, 5.20, 5.21 and 5.22. We note that the total number
of scar components is fairly constant . As N approache$00 the number of scar

components increases, although this is likely due to disconnected scars. The total number
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Figure 5.19: The growth of scars and disclinationsder 0.

of disclinations grows and we conclude, based on these data, that scar size does grow with
N. The small number of scars for smallis due to insufficiently many points to generate
a hexagonal lattice of any extent.

One should bear in mind that in Figures 5.19, 5.20, 5.21 and 5.22, the consistent growth
of the number of disclinations beyod@ occurs for a range dfl for which we do not expect
that these experiments found the global minimal configuration.

Of particular interest is the point correspondingMo= 174, s = 0 in Figure 5.19.
Here, in stark contrast to nearby valued\hfthere are only six scars ahd disclinations.
Figure 5.23 shows the Voronoi cells for the configuration. The scars are quite large
compared to the size of scars for valueshohear174. Further, the scars appear to be
located at the centers of faces of a cube enclosing the sphere, suggesting a symmetry that

is not based on the icosahedron.
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Figure 5.20: The growth of scars and disclinationsder 1.
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Figure 5.21: The growth of scars and disclinationsder 2.
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Figure 5.22: The growth of scars and disclinationsder 3.

XXX XK OROK X XX X X
XXX XXX KX
X X X OO XK XX X X
XX XK XX X
MK X XX KX X X
X X X X X X X X B
XXX XK OO X
XX XX X X X XXX XK K BRI X
X X X XX XX OB K XKOORK SRR X
+ _
| | | | | |
50 100 150 200 250 300 350 400 450

500

Figure 5.23: The Voronoi cells for an experimentally obtained ground stats fer174
s = 0. Note the symmetry as compared to the configuratiomNfer 24 in Figure 5.6.
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CHAPTER 6

OPEN QUESTIONS AND FUTURE WORK

The results presented so far suggest the following areas of inquiry:

(1) Can we show that the asymptotic distribution of minimal discrdtenergy
configurations agrees with the minimizer of our normalizkenergyig? Such a
result would likely be new for the case of strictly self-simildifractals. More
generally, under what conditions can the asymptotic distribution of the minimal
discretes-energy configurations be related to a continuous problem? In [4] it is
shown for a fractal seA ands sufficiently large, tha&s(A, N) oscillates, atN — oo,
on a scale proportional to its highest order term. This suggests a set formed from the
union of such a fractal and @rectifiable fractal of the same dimension might not

have a single asymptotic distribution.

(2) Can one construct a weighted normalizednergy whose unique minimizer agrees
with a prescribed measure? In such a setting could similarly weightatergies

produces-equilibrium measures that converge to this prescribed measure?

(3) The two proofs that the-equilibrium measures converged in the weak-star sense
to the uniform measure both relied on different localization properties. Can this be

generalized and applied to a broader class of sets?

(4) When is the equilibrium measuré” absolutely continuous with respect#é)? If
ush < HY for some range o$ € (o, d) does the convergence pf* to HS/H(A)

occur within anLP(H{) space?

(5) For what measurgsis the functionf,(s) := (d - s)ls(u) analytic? What is the range
of the analyticity? For example the analytic extensioflof s)IS(?{[l_l,l]) has a pole

ats= 2.
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(6) Regarding the numerical experiments: why did the results of the least eigenvalue test

for stability cluster as they did?

(7) DiscreteN-point energy calculations ar®N?). Under what conditions can we use
an approximate energy, such a multipole expansion, and still differentiate stable
configurations? Relatedly, how deep are the energy wells separating the stable

configurations?

(8) Can one develop and test models, such as that presented in [5], that describe

interactions between scars.

(9) Are there good starting points that are in the basin of attraction for a stable minimum
with energy close to that of the global minimum. This problem has been posed by

others in earlier work, but its significance justifies its reiteration.

143



APPENDIX A

DATA

Data from the experiments described in Chapter 5 are presented in the following tables.
Each tables presents data for a specific valugaofd a range of values &f. The columns

of the tables are as follows:
“N”: The number of points.

“Minimum Energy”: The lowest observed energy for the experiments for the given

values ofsandN.

“Stable States”: The number of distinct stable states observed. The criteria for

configurations to be considered stable and distinct is described in Chapter 5.

“s=0""“s=1""s= 2" "s= 3" Graph information for other values & If the
experiment in question had a bad graph-tag, then all of these columns are filled in
with “B”. If the experiment has a good graph-tag then a search is performed through
the configurations for other values sfor the same values df. The results of the
search are then placed in the appropriate column. A numbeticates that tha"

stable minimum for the value afassociated to that column has the same graph-tag
as the minimum configuration for the experiment performed. If the graph-tag occurs
multiple times, the configuration with the lowest energy is chosen. The letter “N”
indicates that the graph-tag for the minimal configuration did not occur in the list of
tags for the stable minima for the value ®indicated. The letter “X” indicates that

the graph-tag was found, but the configuration with the lowest energy bearing this
graph-tag had a bad graph-tag. The presence of a number does not indicate that there

is an isometry, only that the graph-tags are good and the same.
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Table A.1: Datafors=0, N =20,...,59

N | Minimum Energy| Stable States s=0| s=1|s=2|s=3
20 -54.01112997 1 - 1 1 1
21 -59.00091214 1 - 1 1 1
22 —-64.20600776 2 - 1 1 1
23 —69.57838259 1 - 1 1 1
24 —75.21398479 1 B B B B
25 —80.99750999 1 B B B B
26 —87.00942306 1 - 1 1 1
27 -93.25198640 1 - 1 1 1
28 —-99.65860938 1 - 1 1 1
29| -10625457117 2 - N N N
30| -11308925550 1 - 1 1 1
31| -12011034664 1 - 1 1 1
32| -12737886761 2 - 1 1 1
33| -13474782082 1 B B B B
34| -14237585227 1 - 1 1 1
35| -15019205851 2 - 1 1 X
36| -15822406843 1 - 1 1 1
37| -16645069752 2 - 1 1 1
38| -17488019715 2 - 1 1 1
39| -18350922571 2 - 1 1 1
40| -19233768992 3 - 1 1 1
41| -20135920665 2 - 1 1 1
42| -21058451156 2 - 1 1 1
43| -22000347705 1 - 1 1 1
44| -22964180149 1 B B B B
45| -23945369825 1 - 1 1 1
46 | -24945584790 4 - 1 1 3
47| -25966175985 5 B B B B
48| -27011794996 1 B B B B
49| -28070190312 1 - 1 1 1
50| -29152860066 1 - 1 1 1
51| -30253367346 3 - 1 1 1
52| -31373237194 3 - 1 1 1
53| -32513823470 2 B B B B
54 | -33674546440 4 - 1 1 1
55| —-34854179628 5 - 1 1 1
56| -36054589924 2 - 2 2 2
57| -37274120062 4 - 1 1 1
58| —-38513282979 8 - 1 1 1
59| -397.72814966 5 - 1 2 2
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Table A.2: Datafors=0, N =60,...,99

N | Minimum Energy| Stable States s=0| s=1|s=2|s=3
60| -41053316279 3 - 1 1 1
61| -42350763599 5 - 1 1 1
62| -43670397924 2 - 1 1 1
63| -45008123918 2 - 1 1 1
64 | -46365443299 7 - 1 1 1
65| -47742642607 3 B B B B
66 | —-49140747003 2 - 2 2 2
67| -50559261250 1 - 1 1 1
68| -51994664229 3 - 1 1 1
69| -53450818618 4 - 1 1 1
70 | -54927505585 6 B B B B
71| -56423169473 2 - 1 N N
72| -57942034577 3 - 1 1 1
73| -59472869843 3 - 1 1 1
74| -61026707141 8 - 2 N N
75| -62602346268 2 - 1 1 1
76 | -64196315052 6 1 1 1
77| -65811780984 4 - 1 1 1
78| -67445299419 4 - 2 2 2
79| -69097490094 3 B B B B
80| -707.70334618 5 B B B B
81| -72460446934 5 - 1 1 1
82| 74171792246 14 - 1 1 3
83| -75903535475 16 - 1 1 1
84| -77654543156 11 - 1 1 1
85| -79425031228 9 - 1 1 1
86| -81215132187 19 - 2 2 2
87| -83025191515 14 - 1 1 1
88| —-84855342692 9 - 1 1 1
89| -867.04251640 14 - 1 1 1
90| -88573182177 22 - 1 1 1
91| -90461441244 12 - 1 1 1
92| -92369263633 19 - 1 1 1
93| -94296395807 18 - 1 1 1
94 | -96243913215 28 - 1 1 1
95| -98210267832 12 - 1 1 1
96 | —100196953397 13 - N N N
97 | -102202397776 8 - 1 1 1
98 | —-104228469040 10 - 1 1 1
99 | -106272666994 11 - 1 1 1
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Table A.3: Datafors=0, N = 100,...,139

N | Minimum Energy| Stable States s=0| s=1|s=2|s=3
100 | -108337714054 21 - 1 1 1
101 | -110420875781 30 - 1 1 1
102 | -112524648890 35 - 1 1 1
103 | -114648126010 20 - 1 1 1
104 | -116791583717 21 - 1 1 1
105| -118952030197 20 - 1 1 1
106 | —-121134105988 29 - 1 1 1
107 | —-123335192224 28 - 1 1 1
108 | —-125557113187 25 - 1 1 1
109 | -127796692689 34 - 1 1 1
110| -130057108956 44 - 1 1 1
111 | -132337521678 32 - 1 1 1
112 | -134636661369 36 - 1 1 1
113 | —-136954147278 39 - 1 1 1
114 | -139291949432 53 - 1 1 1
115| -141649160795 48 - 1 1 1
116 | -144Q25846520 74 - 2 2 3
117 | 146423264292 75 - 1 1 1
118 | -148839287053 101 - 1 1 1
119 | -151275357172 93 - 1 1 1
120 | -153731267642 67 - 1 1 1
121 | -156206859738 52 - 1 1 1
122 | -158703219402 83 - 1 1 1
123 | -161215297129 66 - 1 1 1
124 | -163747911003 91 - 1 1 1
125| -166300144580 81 - 1 1 2
126 | —-168873013605 109 - 1 1 1
127 | -171465474034 113 - N 1 1
128 | -174Q76259257 132 - 1 1 1
129 | -176707413795 81 - 1 1 1
130 | -179358178367 82 - 1 1 1
131 | -182028217330 83 - 1 1 1
132 | -184720554490 93 - 1 1 1
133 | -187426656534 92 - 1 1 1
134 | -190155512674 105 - 1 1 1
135| -192904793880 85 - 1 1 1
136 | —-195672704659 62 - 1 1 1
137 | -198460269719 90 - 1 1 1
138 | -201265407868 118 - 1 1 1
139 | -204Q090259564 122 - 1 1 1
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Table A.4: Datafors=0, N = 140,...,179

N | Minimum Energy| Stable States s=0| s=1|s=2|s=3
140 | -206935226042 147 - 1 2 2
141 | -209800927608 135 - N N N
142 | -212685329867 119 - 1 1 1
143 | —-215589952457 111 - 1 1 1
144 | —-218514244088 96 - 1 1 1
145 | -221456887402 90 - 1 1 1
146 | —224420265977 93 - 1 1 1
147 | -227401059503 88 - 1 1 1
148 | -230401977867 151 - 2 2 2
149 | —-233422178132 161 - 1 N N
150 | —-236463224259 204 - 1 1 1
151 | -239522345412 271 - 1 1 1
152 | -242601759261 265 - 1 1 1
153 | -245701518190 259 - 1 1 1
154 | —-248819087645 244 - 1 1 1
155 | -251956863374 270 - 1 1 1
156 | —-255113317768 333 - 1 1 1
157 | -258290510682 336 - 1 1 1
158 | -261486990053 366 - 1 1 1
159 | -264703231575 290 - 1 1 1
160 | —-267938513532 334 - 1 1 1
161 | —-271192800830 332 - 1 1 1
162 | —-274467023067 359 - 1 1 1
163 | —-277760275049 314 - 1 1 1
164 | —-281Q73179977 335 - 1 1 1
165 | —-284405672050 381 - 1 1 1
166 | —287757686768 376 - 1 1 1
167 | —291128864575 389 - 1 1 1
168 | —294520367766 396 - 1 1 1
169 | —-297930037673 307 - 1 1 1
170| -301360507643 288 - 3 3 3
171 | -304809911405 284 - 1 1 1
172 | -308278465723 314 - 1 1 1
173 | -311766740914 330 - 1 1 1
174 | -315275008214 310 - 2 N N
175| -318801572185 302 - 1 1 1
176 | —322347504496 452 - 1 1 1
177 | -325913716127 471 - N 1 N
178 | —-329499049845 451 - 1 1 N
179 | -333103831581 416 - 1 N N
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Table A.5: Datafos=0, N = 180,...,200

N | Minimum Energy| Stable States s=0| s=1|s=2|s=3
180 | —336729162492 334 - 2 2 2
181 | —340372956406 446 - 1 1 1
182 | —344Q37370646 504 - 1 1 1
183 | —-347718355890 470 - 1 1 1
184 | -351420892351 520 - 1 1 1
185 | —-355141816587 610 - 2 2 2
186 | —358883543401 545 - 1 1 1
187 | —-362645617221 549 - 1 1 1
188 | -366424340241 534 - 1 1 1
189 | —370223529643 503 - 1 1 1
190 | —374Q42981545 602 - 1 1 1
191 | -377881801847 512 - 1 1 1
192 | —-381741795618 583 - 1 1 1
193 | -385616036156 605 - 1 1 1
194 | —389511694654 555 - 1 1 1
195 | —393428880272 646 - 1 1 1
196 | —397363658094 618 - 1 1 1
197 | —401318246235 715 - 1 1 1
198 | —405292459102 913 - 1 1 1
199 | —-409286457064 671 - 1 1 1
200 | —-413300307953 691 - 1 1 1
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Table A.6: Datafors=1, N =20,...,59

N | Minimum Energy| Stable States s=0| s=1|s=2|s=3
20 15088156833 1 1 - 1 1
21 167.64162240 1 1 - 1 1
22 18528753615 2 1 - 1 1
23 20393019066 1 1 - 1 1
24 22334707405 1 B B B B
25 24381276030 1 B B B B
26 26513332632 1 1 - 1 1
27 287.30261503 1 1 - 1 1
28 31049154236 1 1 - 1 1
29 33463443992 1 2 - 1 1
30 35960394590 1 1 - 1 1
31 38553083806 1 1 - 1 1
32 41226127465 2 1 - 1 1
33 44020405745 1 B B B B
34 46890485328 2 1 - 1 1
35 49856987249 2 1 - 1 X
36 52912240838 1 1 - 1 1
37 56061888773 2 1 - 1 1
38 59303850357 2 1 - 1 1
39 62638900902 2 1 - 1 1
40 66067527883 3 1 - 1 1
41 69591674434 2 1 - 1 1
42 73207810754 4 1 - 1 1
43 76919084646 1 1 - 1 1
44 807.17426308 1 B B B B
45 84618840106 1 1 - 1 1
46 88616711364 5 1 - 1 3
47 927.05927068 4 B B B B
48 96871345534 1 B B B B
49 101155718265 1 1 - 1 1
50| 105518231473 1 1 - 1 1
51 109981929032 2 1 - 1 1
52 114541896432 4 1 - 1 1
53| 119192229042 2 B B B B
54| 123936147473 4 1 - 1 1
55| 128777272078 6 1 - 1 1
56| 133709494528 4 2 - 1 1
57 138738322925 5 1 - 1 1
58| 143861825064 8 1 - 1 1
59 149077333528 4 1 - 2 2
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Table A.7: Datafos=1, N =60,...,99

N | Minimum Energy| Stable States s=0| s=1|s=2|s=3
60 | 154383040098 5 1 - 1 1
61 159794183020 6 1 - 1 1
62 165290940990 3 1 - 1 1
63| 170887968150 2 1 - 1 1
64 | 176580257793 6 1 - 1 1
65| 182366796026 3 X - 1 1
66 | 188244152530 2 N - 1 1
67 194212270041 1 1 - 1 1
68 | 200287470175 5 1 - 1 1
69| 206453348323 5 1 - 1 1
70 | 212710090155 6 B B B B
71| 219064990643 3 1 - N N
72| 225500119097 5 1 - 1 1
73| 232063388375 4 1 - 1 1
74 | 238707298184 9 2 - 1 1
75| 245436968904 3 1 - 1 1
76 | 252267487184 8 1 - 1 1
77| 259185015235 5 1 - 1 1
78 | 266204647457 5 2 - 1 1
79| 273324835748 4 B B B B
80| 280535587598 6 B B B B
81| 287852282966 8 1 - 1 1
82| 295256967529 16 1 - 1 3
83| 302752848892 15 1 - 1 1
84| 310346512443 15 1 - 1 1
85| 318036144294 9 1 - 1 1
86| 325821160571 23 2 - 1 1
87| 333700075001 19 1 - 1 1
88| 341672019676 16 1 - 1 1
89| 349743901862 18 1 - 1 1
90 | 357909122272 22 1 - 1 1
91| 366171369932 18 1 - 1 1
92 | 374529163624 21 1 - 1 1
93| 382984433842 22 1 - 1 1
94 | 391530926962 29 1 - 1 1
95| 400177167557 17 1 - 1 1
96 | 408915401006 18 N - 1 1
97 | 417753359962 10 1 - 1 1
98| 426682246416 18 1 - 1 1
99 | 435713916313 14 1 - 1 1
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Table A.8: Datafors=1, N =100,...,139

N | Minimum Energy| Stable States s=0| s=1|s=2|s=3
100| 444835063433 27 1 - 1 1
101 | 454059005169 39 1 - 1 1
102 | 463373656590 42 1 - 1 1
103 | 472783661683 24 1 - 1 1
104 | 482287652275 23 1 - 1 1
105| 491900063762 29 1 - 1 1
106 | 501598459570 44 1 - 1 1
107 | 511395354771 34 1 - 1 1
108 | 521281350783 33 1 - 1 1
109 | 531273507992 45 1 - 1 1
110| 541354929419 55 1 - 1 1
111 | 551529321459 40 1 - 1 1
112 | 561804488233 51 1 - 1 1
113 | 572182497803 55 1 - 1 1
114 | 582652157216 71 1 - 1 1
115| 593218128578 73 1 - 1 1
116| 603881559358 91 3 - 1 1
117 | 614634244658 96 1 - 1 1
118 | 625487702779 126 1 - 1 1
119| 636434731748 105 1 - 1 1
120| 647475632498 90 1 - 1 1
121 | 658612194958 81 1 - 1 1
122 | 669837449926 102 1 - 1 1
123 | 681182722817 90 1 - 1 1
124 | 692616997419 104 1 - 1 1
125| 704147326402 110 1 - 1 2
126 | 715766922487 151 1 - 1 1
127
128 | 739300744307 145 1 - 1 1
129 | 751210731927 125 1 - 1 1
130| 763216737891 106 1 - 1 1
131 | 775320516694 112 1 - 1 1
132 | 787504534280 129 1 - 1 1
133 | 799817921290 137 1 - 1 1
134 | 812208972119 120 1 - 1 1
135| 824690948699 120 1 - 1 1
136| 837274330254 83 1 - 1 1
137 | 849953449478 120 1 - 1 1
138 | 862740638988 140 1 - 1 1
139 | 875622705695 175 1 - 1 1
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Table A.9: Datafors=1, N = 140,...,179

N | Minimum Energy| Stable States s=0| s=1|s=2|s=3
140| 888598060904 191 1 - 2 2
141 | 901661534919 166 B B B B
142 | 914827157999 157 1 - 1 1
143 | 928083985119 154 1 - 1 1
144 | 941437179446 117 1 - 1 1
145| 954892883723 108 1 - 1 1
146 | 968438182557 108 1 - 1 1
147 | 982093237837 122 1 - 1 1
148 | 995840600427 163 2 - 1 1
149 | 1009685990740 182 1 - N N
150 | 1023619643670 251 1 - 1 1
151 | 1037657146927 288 1 - 1 1
152 | 1051786759288 392 1 - 1 1
153 | 1066008274824 341 1 - 1 1
154 | 1080337242114 320 1 - 1 1
155| 1094757469228 372 1 - 1 1
156 | 1109279831146 415 1 - 1 1
157 | 1123890304116 466 1 - 1 1
158 | 1138599018620 446 1 - 1 1
159 | 1153402396096 343 1 - 1 1
160 | 1168305480555 412 1 - 1 1
161 | 1183308473946 400 1 - 1 1
162 | 1198405033581 427 1 - 1 1
163 | 1213601305322 402 1 - 1 1
164 | 1228893010532 390 1 - 1 1
165| 1244280445137 463 1 - 1 1
166 | 1259764907132 444 1 - 1 1
167 | 1275346942975 454 1 - 1 1
168 | 1291021267227 501 1 - 1 1
169 | 1306800645113 437 1 - 1 1
170 | 1322668107854 408 2 - 1 1
171 | 1338635593072 449 1 - 1 1
172 | 1354701810879 397 1 - 1 1
173 | 1370863524303 377 1 - 1 1
174 | 1387118709229 387 2 - 1 1
175| 1403478130693 380 1 - 1 1
176 | 1419935477563 536 1 - 1 1
177 | 1436485051921 495 N - 2 2
178 | 1453130955259 616 1 - 1 N
179 | 1469875459422 454 1 - N N

153




Table A.10: Datafos=1, N =18Q,...,200

N | Minimum Energy| Stable States s=0| s=1|s=2|s=3
180 | 1486709992753 495 2 - 1 1
181 | 1503646723977 531 1 - 1 1
182 | 1520673061091 615 1 - 1 1
183 | 1537816657103 624 1 - 1 1
184 | 1555042145031 727 1 - 1 1
185 | 1572372007407 713 2 - 1 1
186 | 1589789743705 594 1 - 1 1
187 | 1607297518632 584 1 - 1 1
188 | 1624922267888 614 1 - 1 1
189 | 1642637193886 572 1 - 1 1
190 | 1660442833850 727 1 - 1 1
191 | 1678345221936 603 1 - 1 1
192 | 1696333838646 626 1 - 1 1
193 | 1714456474088 702 1 - 1 1
194 | 1732661613647 653 1 - 1 1
195 | 1750948930393 656 1 - 1 1
196 | 1769346054808 735 1 - 1 1
197 | 1787838274577 712 1 - 1 1
198 | 1806426217720 773 1 - 1 1
199 | 1825108249564 797 1 - 1 1
200 | 1843884271753 789 1 - 1 1
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Table A.11: Datafos=2,N = 20,...

a
©

N | Minimum Energy| Stable States s=0| s=1|s=2|s=3
20 13393697857 1 1 1 - 1
21 15032512274 1 1 1 - 1
22 16766578564 2 1 1 - 1
23 18640371287 1 1 1 - 1
24 20565843800 1 B B B B
25 22654507726 1 B B B B
26 24826713892 1 1 1 - 1
27 27079840421 1 1 1 - 1
28 29487847161 1 1 1 - 1
29 32021603176 1 2 1 - 1
30 34626363064 1 1 1 - 1
31 37358086896 1 1 1 - 1
32 40150000000 2 1 1 - 1
33 43193183859 1 B B B B
34 46270123642 1 1 1 - 1
35 49481643195 1 1 1 - X
36 52791425658 1 1 1 - 1
37 56225563823 2 1 1 - 1
38 59773945308 2 1 1 - 1
39 63441533338 2 1 1 - 1
40 67230935350 3 1 1 - 1
41 71152615148 2 1 1 - 1
42 75187519682 4 1 1 - 1
43 79352188633 1 1 1 - 1
44 83604183181 1 B B B B
45 88035796932 1 1 1 - 1
46 92606234385 5 1 1 - 3
47 97282374491 5 B B B B
48| 101982958059 1 B B B B
49 106955973981 2 1 1 - 1
50| 111959950653 1 1 1 - 1
51 117132838138 2 1 1 - 1
52 122447845607 5 1 1 - 1
53| 127865220625 2 B B B B
54 | 133408489536 4 1 1 - 1
55| 139096919424 6 1 1 - 1
56 | 144895427411 3 2 1 - 1
57 150836883851 7 1 1 - 1
58| 156906993853 9 1 1 - 1
59 163090965834 4 2 2 - N
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Table A.12: Datafos=2, N = 60,...

(o]
(o]

N | Minimum Energy| Stable States s=0| s=1|s=2|s=3
60 | 169379461177 5 1 1 - 1
61 175869713396 6 1 1 - 1
62 182434692636 3 1 1 - 1
63| 189163233079 2 1 1 - 1
64 | 196028162697 6 1 1 - 1
65| 203023367851 4 X 1 - 1
66 | 210127074682 2 N 1 - 1
67| 217333824541 1 1 1 - 1
68| 224758774197 5 1 1 - 1
69 | 232289604947 5 1 1 - 1
70 | 239923952414 6 B B B B
71| 247716344965 3 B B B B
72| 255540331495 5 1 1 - 1
73| 263735501432 2 1 1 - 1
74| 271961432209 8 2 1 - 1
75| 280257081367 3 1 1 - 1
76 | 288729601466 8 1 1 1
77| 297278857677 5 1 1 - 1
78 | 306013624953 4 2 1 - 1
79| 314932797599 3 B B B B
80| 323952254745 8 B B B B
81| 333189217990 11 1 1 - 1
82| 342508475447 16 1 1 - 3
83| 351932494939 17 1 1 - 1
84| 361517122267 15 1 1 - 1
85| 371243793664 11 1 1 - 1
86| 381108956067 24 2 1 - 1
87| 391103614332 19 1 1 - 1
88| 401217707431 14 1 1 - 1
89| 411508458022 19 1 1 - 1
90| 421921427750 22 1 1 - 1
91| 432487611878 18 1 1 - 1
92 | 443193316704 29 1 1 - 1
93| 454058291910 21 1 1 - 1
94 | 465025998102 28 1 1 - 1
95| 476171053075 12 1 1 - 1
96 | 487427708664 14 N 1 - 1
97 | 498860996990 10 1 1 - 1
98 | 510398944253 17 1 1 - 1
99 | 522137043734 11 1 1 - 1
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Table A.13: Datafos=2, N =100...,139

N | Minimum Energy| Stable States s=0| s=1|s=2|s=3
100| 533966222912 26 1 1 - 1
101 | 545995420894 42 1 1 - 1
102 | 558126509648 34 1 1 - 1
103 | 570399384121 34 1 1 - 1
104 | 582802384908 32 1 1 - 1
105| 595450986197 26 1 1 - 1
106 | 608165764494 40 1 1 - 1
107 | 621046346350 34 1 1 - 1
108 | 634011590277 34 1 1 - 1
109 | 647213078480 65 1 1 - 1
110| 660501261375 50 1 1 - 1
111 | 673905470955 50 1 1 - 1
112 | 687500862394 43 1 1 - 1
113 | 701303290905 60 1 1 - 1
114 | 715213631359 69 1 1 - 1
115| 729270695721 76 1 1 - 1
116 | 743491209894 90 3 1 - 1
117 | 757797606668 95 1 1 - 1
118 | 772290055012 106 1 1 - 1
119 | 786909201544 95 1 1 - 1
120| 801651874402 91 1 1 - 1
121 | 816539574901 64 1 1 - 1
122 | 831504573336 98 1 1 - 1
123| 846853352816 118 1 1 - 1
124 | 862271531086 102 1 1 - 1
125| 877842640658 112 1 1 - 2
126| 893492328855 182 1 1 - 1
127 | 909279887602 143 1 N - 1
128 | 925294017309 157 1 1 - 1
129 | 941407791355 108 1 1 - 1
130| 957670572069 99 1 1 - 1
131 | 974098241330 106 1 1 - 1
132 | 990521893494 107 1 1 - 1
133 | 1007411435027 113 1 1 - 1
134 | 1024272593933 109 1 1 - 1
135| 1041231895342 94 1 1 - 1
136 | 1058390082868 82 1 1 - 1
137 | 1075694326989 90 1 1 - 1
138 | 1093266598141 159 1 1 - 1
139 | 1110972897838 157 1 1 - 1

157




Table A.14: Datafos=2, N =140,...,179

N | Minimum Energy| Stable States s=0| s=1|s=2|s=3
140 | 1128802333318 224 N 2 - 1
141 | 1146696666228 149 B B B B
142 | 1164805615753 163 1 1 - 1
143 | 1183007319504 119 1 1 - 1
144 | 1201367706409 108 1 1 - 1
145| 1219933607646 96 1 1 - 1
146 | 1238588421282 92 1 1 - 1
147 | 1257533713511 114 1 1 - 1
148 | 1276583595181 180 2 1 - 1
149 | 1295809798633 163 B B B B
150 | 1315100686986 223 1 1 - 1
151 | 1334612314680 262 1 1 - 1
152 | 1354234883108 365 1 1 - 1
153 | 1373967763810 258 1 1 - 1
154 | 1393969506964 263 1 1 - 1
155| 1414064034421 270 1 1 - 1
156 | 1434373724426 313 1 1 - 1
157 | 1454745445049 336 1 1 - 1
158 | 1475291586068 419 1 1 - 1
159 | 1495970362503 457 1 1 - 1
160 | 1516838176793 274 1 1 - 1
161 | 1537896405095 308 1 1 - 1
162 | 1559076378090 449 1 1 - 1
163 | 1580444924964 320 1 1 - 1
164 | 1601954585555 328 1 1 - 1
165| 1623608499438 327 1 1 - 1
166 | 1645427931547 594 1 1 - 1
167 | 1667401270412 341 1 1 - 1
168 | 1689491881228 518 1 1 - 1
169 | 1711827720784 304 1 1 - 1
170 | 1734224309237 311 2 1 - 1
171 | 1756815613080 420 1 1 - 1
172 | 1779582895023 361 1 1 - 1
173 | 1802492946909 411 1 1 - 1
174 | 1825526330399 555 2 1 - 1
175| 1848797845990 316 1 1 - 1
176 | 1872242290446 620 1 1 - 1
177 | 1895776297334 402 1 N - N
178 | 1919487800291 382 1 1 - N
179 | 1943366536597 348 B B B B
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Table A.15: Datafos=2, N =18Q,...,200

N | Minimum Energy| Stable States s=0| s=1|s=2|s=3
180 | 1967330446923 389 2 1 - 1
181 | 1991501560945 349 1 1 - 1
182 | 2015755376950 208 1 1 - 1
183 | 2040401522614 546 1 1 - 1
184 | 2065030678755 636 1 1 - 1
185 | 2089906525088 382 2 1 - 1
186 | 2114841475532 671 1 1 - 1
187 | 2139849429850 426 1 1 - 1
188 | 2165251441151 281 1 1 - 1
189 | 2190736432745 773 1 1 - 1
190 | 2216305953397 452 1 1 - 1
191 | 2242024950115 364 1 1 - 1
192 | 2267794397770 832 1 1 - 1
193 | 2294155632399 415 1 1 - 1
194 | 2320500203699 454 1 1 - 1
195 | 2346835335667 789 1 1 - 1
196 | 2373477400254 414 1 1 - 1
197 | 2400262215229 829 1 1 - 1
198 | 2427192840886 436 1 1 - 1
199 | 2454245458758 335 1 1 - 1
200 | 2481422048170 77 1 1 - 1
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Table A.16: Datafos=3, N =20,...,59

N | Minimum Energy| Stable States s=0| s=1|s=2|s=3
20 13181301439 1 1 1 1 -
21 15023065116 1 1 1 1 -
22 16983235594 2 1 1 1 -
23 19185117003 1 1 1 1 -
24 21389406549 1 B B B B
25 23907299697 1 B B B B
26 26514266151 1 1 1 1 -
27 29202920993 1 1 1 1 -
28 32190995073 1 1 1 1 -
29 35390225089 1 2 1 1 -
30 38640958628 1 1 1 1 -
31 42109518013 1 1 1 1 -
32 45594557013 2 1 1 1 -
33 49701183920 1 B B B B
34 53728151396 1 1 1 1 -
35 58006830338 1 B B B B
36 624.20989776 1 1 1 1 -
37 67055661428 2 1 1 1 -
38 71870458293 2 1 1 1 -
39 76895800949 2 1 1 1 -
40 82132116611 2 1 1 1 -
41 87619933407 2 1 1 1 -
42 93290632010 4 1 1 1 -
43 99203528464 3 1 1 1 -
44| 105206978959 1 B B B B
45| 111658437324 1 1 1 1 -
46| 118391364994 5 N 3 2 -
47 125269620404 5 B B B B
48 | 131991872645 1 B B B B
49 139530989274 3 1 1 1 -
50| 146923151162 1 1 1 1 -
51 154725107892 2 1 1 1 -
52 162838979852 5 1 1 1 -
53| 171090626912 2 B B B B
54 | 179584509849 4 1 1 1 -
55| 188397744449 6 1 1 1 -
56| 197386312052 4 2 1 1 -
57| 206687780942 6 1 1 1 -
58| 216233366569 8 1 1 1 -
59| 225964863823 4 N N N -

160




Table A.17: Data fos= 3, N = 60,...,99

N | Minimum Energy| Stable States s=0| s=1|s=2|s=3
60 | 235857143341 5 1 1 1 -
61| 246324269494 6 1 1 1 -
62| 256813434304 3 1 1 1 -
63| 267692224484 2 1 1 1 -
64 | 278868063859 7 1 1 1 -
65| 290310131931 4 X 1 1 -
66 | 301923782474 3 N 1 1 -
67| 313671780064 1 1 1 1 -
68| 326089141494 4 1 1 1 -
69| 338662408637 5 1 1 1 -
70| 351368078779 7 B B B B
71| 364474899401 3 N N X -
72| 377383567661 6 1 1 1 -
73| 391710911520 5 1 1 1 -
74| 405816286113 10 2 1 1 -
75| 419903249875 4 1 1 1 -
76 | 434481548211 12 1 1 1

77| 449064633677 4 1 1 1 -
78| 464178690729 5 2 1 1 -
79| 479859956213 5 B B B B
80| 495648522623 9 B B B B
81| 512145399891 12 1 1 1 -
82| 528659507246 19 3 3 3 -
83| 545322391000 20 1 1 1 -
84| 562413726606 23 1 1 1 -
85| 579830047654 12 1 1 1 -
86| 597559375754 25 2 1 1 -
87| 615557392106 24 1 1 1 -
88| 633768178577 16 1 1 1 -
89| 652498640466 19 1 1 1 -
90| 671453306124 24 1 1 1 -
91| 690803776675 23 1 1 1 -
92| 710470386135 30 1 1 1 -
93| 730574004347 23 1 1 1 -
94 | 750787251551 31 1 1 1 -
95| 771537412160 19 1 1 1 -
96 | 792450387149 20 N 1 1 -
97 | 813905544943 13 1 1 1 -
98 | 835491348157 21 1 1 1 -
99 | 857734236268 18 1 1 1 -
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Table A.18: Datafos=3, N =100...,139

N | Minimum Energy| Stable States s=0| s=1|s=2|s=3
100| 880027062617 33 1 1 1 -
101 | 902981430383 53 1 1 1 -
102 | 926Q47829746 38 1 1 1 -
103 | 949462546179 37 1 1 1 -
104 | 973155503693 38 1 1 1 -
105| 997756649366 44 1 1 1 -
106 | 1022288571553 56 1 1 1 -
107 | 1047294590658 46 1 1 1 -
108 | 1072299946085 49 1 1 1 -
109 | 1098207143555 79 1 1 1 -
110 | 1124124646635 69 1 1 1 -
111 | 1150224991054 67 1 1 1 -
112 | 1176968324259 65 1 1 1 -
113 | 1204435809148 84 1 1 1 -
114 | 1232049652905 99 1 1 1 -
115| 1260028926845 97 1 1 1 -
116 | 1288492473240 145 3 1 1 -
117 | 1316957570430 152 1 1 1 -
118 | 1346023998466 173 1 1 1 -
119 | 1375351470550 131 1 1 1 -
120 | 1404897507170 118 1 1 1 -
121 | 1434812604524 111 1 1 1 -
122 | 1464667735657 140 1 1 1 -
123 | 1496423764922 126 1 1 1 -
124 | 1528011291900 153 1 1 1 -
125| 1560042641944 179 3 3 2 -
126 | 1592004505650 187 1 1 1 -
127 | 1624272674082 191 1 N 1 -
128 | 1657451202563 211 1 1 1 -
129 | 1690694806653 160 1 1 1 -
130 | 1724336460095 159 1 1 1 -
131 | 1758479169861 153 1 1 1 -
132 | 1792025855157 184 1 1 1 -
133 | 1828004621605 175 1 1 1 -
134 | 1863228363149 178 1 1 1 -
135| 1898516178856 177 1 1 1 -
136 | 1934519696950 169 1 1 1 -
137 | 1970899027019 163 1 1 1 -
138 | 2008473495796 185 1 1 1 -
139 | 2046330201191 263 1 1 1 -
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Table A.19: Datafos=3, N =140...,179

N | Minimum Energy| Stable States s=0| s=1|s=2|s=3
140 | 2084410151009 275 N 2 1 -
141 | 2122320320818 247 B B B B
142 | 2161086206868 211 1 1 1 -
143 | 2199840194030 195 1 1 1 -
144 | 2239089068544 200 1 1 1 -
145 | 2279079808379 147 1 1 1 -
146 | 2319089318433 172 1 1 1 -
147 | 2360471171383 198 1 1 1 -
148 | 2401924696675 273 2 1 1 -
149 | 2443990931002 286 B B B B
150 | 2485857224534 401 1 1 1 -
151 | 2528595715233 455 1 1 1 -
152 | 2571474918826 556 1 1 1 -
153 | 2614506400851 441 1 1 1 -
154 | 2658775130482 551 1 1 1 -
155| 2703030681227 570 1 1 1 -
156 | 2748159284307 589 1 1 1 -
157 | 2793065919754 674 1 1 1 -
158 | 2838562145227 513 1 1 1 -
159 | 2884338557028 631 1 1 1 -
160 | 2930806167029 511 1 1 1 -
161 | 2977970257156 547 1 1 1 -
162 | 3025339892099 627 1 1 1 -
163 | 3073394572101 622 1 1 1 -
164 | 3121790462130 652 1 1 1 -
165| 3170550029489 636 1 1 1 -
166 | 3219854688160 565 1 1 1 -
167 | 3269549145497 652 1 1 1 -
168 | 3319456119754 595 1 1 1 -
169 | 3370459846337 529 1 1 1 -
170 | 3421210797695 574 2 1 1 -
171 | 3472720015355 488 1 1 1 -
172 | 3524821400356 485 1 1 1 -
173 | 3577270884894 546 1 1 1 -
174 | 3629949376420 525 2 1 1 -
175| 3683686116351 536 1 1 1 -
176 | 3738017760236 651 1 1 1 -
177 | 3792400712566 661 N N 3 -
178 | 3847176330702 903 B B B B
179 | 3902619089549 646 N N X -
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Table A.20: Datafos=3, N =18Q,...,200

N | Minimum Energy| Stable States s=0| s=1|s=2|s=3
180 | 3958006329774 685 2 1 1 -
181 | 4014177636064 742 1 1 1 -
182 | 4070288513162 821 1 1 1 -
183 | 4128659956422 870 1 1 1 -
184 | 4186142945866 1020 1 1 1 -
185 | 4244789792292 879 2 1 1 -
186 | 4303180238055 700 1 1 1 -
187 | 4361354103956 913 1 1 1 -
188 | 4421836391431 968 1 1 1 -
189 | 4482216926745 856 1 1 1 -
190 | 4542498858514 1029 1 1 1 -
191 | 4603118598693 799 1 1 1 -
192 | 4663519914732 850 1 1 1 -
193 | 4727748240312 945 1 1 1 -
194 | 4791024695661 938 1 1 1 -
195 | 4853510742495 1229 1 1 1 -
196 | 4917623068582 1097 1 1 1 -
197 | 4982111207943 986 1 1 1 -
198 | 5046978078287 1075 1 1 1 -
199 | 5112020797092 997 1 1 1 -
200 | 5177269661064 1006 1 1 1 -
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