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CHAPTER I 

 

INTRODUCTION 

 

1.1 Perspective  

 Chemical contamination of subsurface environments are increasing in concern in 

the United States due to the growing percentage of the population dependent on 

groundwater as their sole water supply (Freeze and Cherry 1979). Successful remediation 

of chemically contaminated groundwater, soil, and sediments is thus an important 

undertaking for environmental engineers and scientists. To provide for effective and 

efficient groundwater contamination prevention and remediation systems, however, 

engineers and scientists must first possess a clear understanding of the complex processes 

controlling the mass distribution, transportation, reaction, and transformation of 

contaminants in the subsurface system. In order to model contaminant movement at the 

field scale correctly, an accurate depiction of the rate-limited mass transfer processes 

controlling the distribution of contaminants at the particle scale and the pore scale is 

critical.  

 Recent research, however, has shown that mass transfer processes at the particle 

scale are subjected to highly nonlinear processes. For example, Weber and coworkers 

(Weber and Huang 1996; Huang, Young et al. 1997; LeBoeuf and Weber 1997; Weber, 

LeBoeuf et al. 2001) have  demonstrated that natural organic matter (NOM) derived from 

soils and sediments may be represented as a dual mode sorbent containing both rubbery 

and glassy components, and that diffusion of contaminants into and out of the glassy 
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domain contributes to slower sorption-desorption rates. The Distributed Reactivity Model 

(DRM), originally applied to equilibrium systems and later extended to heterogeneous 

natural solids under non-equilibrium conditions, provides a framework to characterize the 

influence of variably reactive domains of soil and sediment particles on sorption 

processes (Weber , McGinley et al. 1992; Young and Weber 1995; Weber and Huang 

1996; Huang, Young et al. 1997; LeBoeuf and Weber 1997; Huang and Weber 1998). 

Further, additional studies (LeBoeuf and Weber 1997; LeBoeuf and Weber 2000; 

LeBoeuf and Weber 2000; Schaumann and Antelmann 2000; Young and LeBoeuf 2000; 

DeLapp and LeBoeuf 2004; DeLapp, LeBoeuf et al. 2004; Schaumann and LeBoeuf 

2004), support analogies between NOM and synthetic organic macromolecules, and thus, 

well-developed theories for diffusion in organic polymers could be applied to NOM-

controlled intrasorbent diffusion (Weber, LeBoeuf et al. 2001).  

 These complex depictions of mass transfer processes at the particle scale 

necessitate the employment of more evolved conceptual models, and use of often highly 

nonlinear numerical methods, which thus provide a great educational challenge. While 

traditional approaches to instruction have, and continue to be, effective in teaching mass 

transfer processes, recent studies suggest that exclusive use of this approach is not 

sufficient (Gillett 2001; Hyde and Karney 2001; Koehn 2001). Depending too heavily on 

traditional forms of instruction, including formal lectures and homework, may limit 

students’ exposure to one or two stages of the four progressive, yet interrelated, stages of 

the Kolb Learning Cycle (Kolb 1984) ((i) concrete experience; (ii) active 

experimentation; (iii) reflective observation; and (iv) abstract conceptualization), and thus 

may limit their learning retention. Engineering students prefer active processing 
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(Anderson 1991); use of more active stages, i.e., concrete experiences, can greatly 

enhance their learning experiences. Web-based virtual laboratory environments, where 

students can gain a personalized experience and make intelligent decisions, has been 

widely recognized as a powerful substitute to traditional education strategies 

(Brusilovsky, Eklund et al. 1998; Goeller 1998; Kerrey and Isakson 2000; Kirschner and 

Paas 2001; Iskander 2002), including instruction of mass transfer processes (Katz, 

Weathers et al. 1997; Katz, Weathers et al. 1998; Reardon 2001). Current Web-based 

teaching activities relating to mass transfer processes education, however, are often 

provided at the most basic levels of instruction. Further, combining high-level 

computation requirements for modeling mass transfer processes with Web-based user-

friendly features greatly increases the technical challenges of employing such systems 

across the Internet. It is in this light that we provided a proof-of-principle framework 

from which to develop more sophisticated Web-based models that can employ 

computationally efficient, high-level computer programs (e.g., FORTRAN, C++). Here, 

we developed a mass transfer processes virtual laboratory (MTVLab) for individuals 

involved in coursework, research, and professional practice to improve the general 

understanding of controlling mass transfer processes in environmental systems.   

 In parallel to our effort to enhance mass transfer process education by 

incorporating state-of-the-art mass transfer models at the particle scale with Web-based 

education, this research seeks to better evaluate mass transfer processes at the pore scale. 

Traditional models employing ideal contaminant transport processes represented by local 

equilibrium assumptions and linear sorption processes often fail to adequately model 

observed processes, suggesting other, non-ideal factors are influencing observed 
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behaviors. These non-ideal factors include physical and chemical heterogeneity of soils 

and sediments (Haggerty and Borelick 1995; Haggerty and Gorelick 1998), 

nonequilibrium, rate-limiting, slow sorption/desorption behaviors (Pignatello and Xing 

1996; Luthy, Aiken et al. 1997; Weber, LeBoeuf et al. 2001), and variable advection 

patterns associated with complex soil particle geometries (Brusseau, Jessup et al. 1989; 

Brusseau, Jessup et al. 1991). In the past thirty years, mass transfer models have evolved 

in their ability to incorporate the primary non-ideal factors, from first-order reaction 

models (Lapidus and Amundson 1952; Coats and Smith 1964; Van Genuchten and 

Wierenga 1976; Travis and Etnier 1981; Brusseau, Jessup et al. 1989; Connaughton, 

Stedinger et al. 1993; Pedit and Miller 1994; Chen and Wagenet 1995; Haggerty and 

Borelick 1995; Culver, Hallisey et al. 1997; Haggerty and Gorelick 1998) to diffusion 

models (Miller and Weber 1984; Miller and Weber 1988; Ball and Roberts 1991; Pedit 

and Miller 1994; Cunningham, Werth et al. 1997; Haggerty and Gorelick 1998; Werth 

and Hansen 2002), from single site model (Lapidus and Amundson 1952) to multi-site 

model (Brusseau, Jessup et al. 1989; Pedit and Miller 1994; Haggerty and Borelick 1995; 

Pedit and Miller 1995), and from deterministic approaches to stochastic approaches 

(Cunningham, Werth et al. 1997; Haggerty and Gorelick 1998; Werth and Hansen 2002). 

Although these models provide enhanced abilities to capture the heterogeneity of soils, it 

remains difficult to explicitly quantify pore tortuosity, particle geometry, and pore size 

distribution within as employed in these models. Additionally, variability in flow rates 

and solute concentrations may also affect mass transfer characteristics, further suggesting 

the need to extend current mass transfer models to account for porous media geometry 

(Pignatello and Xing 1996), the first step of which is to develop a numerical model for 
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fluid flow capable of reproducing the physics of fluid flow in porous media to provide for 

improved simulations of controlling mass transfer processes.  

Different approaches have been applied to model flow through porous media, for 

example, effective-medium approximation (EMA) (Choy 1999), renormalization (King 

1989), percolation theory (Reyes and Jensen 1985; Sahimi 1994), volume-averaging 

method (Whitaker 1999), (Quintard and Whitaker 1994; Quintard and Whitaker 2000), 

network models (Koplik and Lasseter 1984; Aviles and LeVan 1991; Russell and LeVan 

1997; Blunt 2001), Laplacian methods (Durlofsky 1991; Efendiev and Durlofsky 2002), 

and multi-grid homogenization methods (Knapek 1998; Moulton, Dendy et al. 1998). 

Each of these methods, however, are based upon some level of averaging, and thus none 

of them can fully represent the details of what may occur within individual pores (Sahimi 

1995; Succi 2001). In the late 1980s’, lattice Botlzmann models (LBM) were successfully 

introduced into fluid flow simulations (Rothman 1988; Cancelliere, Chang et al. 1990; 

Chen, Diemer et al. 1991). The particle-like nature of LBM enables the representation of 

complex pore structures with fundamental mechanical events (e.g., bounce back), while  

permitting recovery of macroscopic flow behavior within very small pore spaces (Succi 

2001). LBM has been viewed as the most promising method for simulating complex 

problems of flow in natural porous media (Chen and Doolen 1998; Wolf-Gladrow 2000).  

Traditional LBM, however, is restricted to construction on a uniform grid, which 

can significantly reduce further applications of LBM in flow through porous media where 

the complex geometry of micropores cannot be well fit to a uniform lattice. By coupling 

LBM with traditional numerical methods such as Finite Difference, Finite Volume, and 

Finite Element methods, the applicability of LBM can be extended to irregular 
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unstructured grids (Cao, Chen et al. 1997; Mei and Shyy 1998; Peng, Xi et al. 1998; 

Peng, Xi et al. 1999; Lee and Lin 2001; Sofonea and Sekerka 2003). It is in this light that 

we developed a new finite element lattice Boltzmann method, which utilizes a least 

squares finite element method (LSFE) in space and a Crank-Nicolson method in time. 

This method is able to solve fluid flow and mass transfer problems in domains that 

contain complex or irregular geometric boundaries by using finite element methods’ 

geometric flexibility and numerical stability, while employing efficient and accurate least 

squares optimization. LSFE-LBM is a powerful tool to assist the numerical modeling 

efforts of elucidating the relative contributions of transport- and sorption/desorption-

related nonequilibrium factors on mass transfer processes in subsurface systems. 

 

1.2 RESEARCH SIGNIFICANCE 

To achieve successful remediation of contaminated groundwater, it is critical for 

engineers and scientists to possess a clear understanding of the complex mass transfer 

processes that may occur in the subsurface environment. The presence of physical and 

chemical heterogeneity of subsurface systems, as well as the inherent complexity 

associated with microscale rate-limiting mass transfer processes, provide for significant 

challenges to accurate prediction of the fate and transport of chemical constituents within 

the subsurface. Development of improved modeling techniques, based on extensions of a 

lattice Boltzmann method adapted to the specific research needs identified within this 

dissertation, will facilitate a more accurate prediction of the fate and transport of 

contaminants in subsurface environments. Provision of these models through a Web-

based environment will provide students, faculty, and professionals a convenient and 
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efficient tool to improve the understanding of controlling mass transfer processes in 

environmental systems. The novel Web-based modeling system architecture developed 

by this work will provide a proof-of-principle framework from which to develop more 

sophisticated Web-based models that can employ computationally efficient, high-level 

computer programs. 

 

1.3 Research Hypothesis 

This research addresses the following hypotheses: 

I. A Web-based virtual laboratory, incorporating recent advances in mass transfer 

processes research, as a complement to the existing practices, will serve as a 

powerful tool to enhance current mass transfer processes education. 

II. Advanced pore-scale numerical models, capable of capturing the physics of fluid 

flow and solute transport in complex pore geometries, will facilitate a better 

understanding of complex mass transfer processes. 

 

1.4 Research Objectives 

 In this work we seek to improve the general understanding of controlling mass 

transfer processes in environmental systems by developing advanced numerical methods 

and a virtual mass transfer laboratory (MTPVLab). Based on the aforementioned 

hypotheses, the following two general objectives with several sub-objectives are 

proposed: 



 8

I. Development of a user-friendly, graphical user interface, Web-based modeling 

system for students and researchers to study state-of-the-art mass transfer 

processes. This objective is delineated into three tasks: 

 I-1.  Development of finite element-based numerical modules for identified 

state-of-the-art mass transfer mechanisms. 

 I-2.  Development of user-friendly graphical user interfaces (GUIs) for input, 

output, and help modules. 

 I-3.  Development of a proof-of-principle software architecture from which to 

develop more sophisticated Web-based models that can employ computationally 

efficient, high-level computer programs (e.g., FORTRAN, C++).  

II.  Development of advanced numerical models to better investigate mass transfer 

processes in porous media 

 II-1. Use of a proper pore-scale method, e.g. LBM, to study characteristics of 

fluid flow in randomly generated porous media. 

 II-2. Development of a novel least squares finite element lattice Boltzmann 

method (LSFE-LBM) to more efficiently model fluid flow in porous media. 

 II-3. Use of LSFE-LBM to study fluid flow and mass transfer processes in 

randomly generated porous media. 

 

1.5 Organization of the Dissertation 

 This dissertation is organized into seven chapters. Chapter I includes an 

introduction to the research topic, its significance to environmental engineering, and the 
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stated hypotheses and objectives. Chapter II provides necessary background information 

and insights into the current state-of-the-art concepts and models that are being used to 

study mass transfer processes. Chapter III details the development of a Web-based mass 

transfer processes virtual laboratory. Chapter IV presents an innovative stochastic method 

to study permeability of randomly generated porous media by coupling a first order 

reliability method (FORM) with LBM. Chapter V describes the numerical derivations, 

validations, stability and accuracy analysis, and successful applications of LSFE-LBM to 

simulate flow fields in randomly generated porous media. Chapter VI extends LSFE-

LBM to study solute transport in porous media. Finally, Chapter VII summarizes the 

main conclusions from the dissertation and addresses future areas of research.  

 A bibliography of the manuscripts associated with this dissertation is listed below: 

Chapter III: Development of a Web-based Mass Transfer Processes Laboratory 

• Li, Y., LeBoeuf, E. J., Basu, P. K., and Turner, L.H. Development of a Web-Based Mass 
Transfer Processes Laboratory: System Development and Implementation. Computer 
Applications in Engineering Education. 11: 25-39, 2003. 

• Li, Y., LeBoeuf, E. J., Basu, P. K., and Turner, L.H. A Web-based interactive virtual 
laboratory system for environmental mass transfer processes. International Journal of 
Engineering Education (in review).  

 

Chapter IV: Stochastic Modeling of the Permeability of Randomly Generated 
Porous Media 

• Li, Y., LeBoeuf, E. J., Basu, P. K., and Mahadaven, S. Stochastic Modeling of the 
Permeability of Randomly-Generated Heterogeneous Porous Media. Advances in Water 
Resources, 28 (8): 835-844, 2005.  

 

Chapter V:  A Least Squares Finite Element Scheme for Lattice Boltzmann 
Method on Unstructured Meshes 

• Li, Y., E.J. LeBoeuf, and P.K. Basu, Least squares finite element lattice Boltzmann method. 
Physical Review E, 69 (6), Art. No., 06570(R). 2004. 

• Li, Y., E.J. LeBoeuf, and P.K. Basu, A Least Squares Finite Element Scheme for Lattice 
Boltzmann Method on Unstructured Meshes. Physical Review E (in review). 
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Chapter VI: Use of LSFE-LBM to Study Mass Transfer Processes 

• Li, Y., LeBoeuf, E.J. and Basu, P.K. Use of a Least Squares Finite Element Lattice Boltzmann 
Method to Study Fluid Flow and Mass Transfer Processes. Proceedings of the 2005 
International Conference on Computational Science, May, 2005 

• Li, Y., LeBoeuf, E. J. and Basu, P. K. Pore-scale modeling of the effects of transport - related 
and sorption/desorption processes on solute transport in heterogeneous porous media. Water 
Resources Research (in preparation).  
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CHAPTER II 

 

LITERATURE REVIEW 

 

2.1 Introduction 

This chapter consists of six sections providing an extensive review of the 

background and theories related to this research. Subsequent to this introduction, an 

overview of current macroscale solute fate and transport models is presented in Section 

2.2, followed by a discussion of important microscale rate-limiting mass transfer 

processes, including diffusion and sorption processes, in Section 2.3. Modeling fluid flow 

through porous media is explored in Section 2.4, while Section 2.5 discusses the lattice 

Boltzmann method (LBM), a promising method for simulating complex problems of fluid 

flow in natural porous media. Section 2.6 summarizes current state-of-the-art research 

efforts, and highlights the specific research objectives of this study.  

 

2.2  Mass Transfer at the Macroscale 

Mass transfer is an essential part of many environmental processes within natural 

or engineered systems, such as water and wastewater treatment, air emissions control, 

and groundwater and soil remediation systems. In this research, our focus is on the 

subsurface environment and the mass transfer processes that may be responsible for 

controlling removal of organic chemicals from soils and sediments.  

Two different scales are often involved in mass transfer processes: macroscale 

and microscale (Figure 2-1). Macroscale mass transfer processes include phenomena 

affecting the movement of constituents in the bulk of a system and across its boundaries 
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(Weber and DiGiano 1996), such as advection and dispersion. Microscale mass transfer 

processes include short-range diffusion and sorption processes that occur primarily at 

interfaces between phases (Weber and DiGiano 1996).  

 

 

Figure 2-1. Macroscopic and Microscopic of Mass Transfer Processes. 

 

Processes involved in mass transfer in the subsurface can be classified as 

(Brusseau and Rao 1989; Brusseau and Rao 1990; Weber, McGinley et al. 1991; 

Brusseau 1998): (i) advective-dispersive transport from bulk solution to the boundary 

layer of a soil or sediment particle; (ii) film diffusion across the adsorbed water to the 

surface of a particle; and (iii) diffusion within the particle itself (i.e., intrasorbent 

diffusion). Since these processes act in series, the slowest process will represent the rate-

limiting step. Subsurface systems are also complicated by the presence of variable fluid 

flow patterns, causing transitions between laminar and turbulent flow.  The critical value 

of the Reynolds number, at which fluid flow changes from laminar to turbulent, has been 

found by various investigators to range between 1 and 12 for subsurface systems 

(Scheidegger 1974). Although fluid flow in groundwater is generally laminar in nature, 
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the flow pattern and the residence times of fluid elements within the system may also 

influence the time available for mass transfer. 

Two types of ideal reactors, i.e., completely mixed reactors and plug flow 

reactors, are often employed to simplify flow patterns and reduce or effectively eliminate 

some mass transfer processes. The applications of completely mixed reactors to model 

environmental systems include completely mixed flow reactors (CMFRs) and completely 

mixed batch reactors (CMBRs), which will be discussed in Section 2.2.1. Plug flow 

reactors, discussed in Section 2.2.2, are often employed in conjunction with advection-

dispersion-reaction (ADR) equations, i.e., plug flow with dispersion reactor (PFDR), to 

model observed behaviors of natural porous media systems. 

 

2.2.1 Completely Mixed Reactors 

A CMFR or CMBR reactor provides for a system representing a suspension of 

sorbent particles in a bulk solution. As illustrated in Figure 2-2, a CMBR has no inflow or 

outflow, while a CMFR involves a continuous inflow and outflow. The well-mixed 

nature of CMFR and CMBR provide for uniform solute distribution in the bulk solution 

(i.e., no thermal or concentration gradient), although not necessarily constant 

concentration in a CMBR. Solute transport into or out of the suspended solid particles 

(i.e. adsorption and desorption processes), can be modeled through application of 

microscopic mass transfer models, which is discussed in detail in Section 2.3.  If the 

mixing intensity is high, film diffusion will not be significant compared to intrasorbent 

diffusion in a well-mixed system (Weber and Miller 1988), and thus, the rate of change 

of mass in the solution phase will equal to rate of change of mass in the solid phase: 
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CMBR:  
t
qVD

t
CV s ∂

∂
−=

∂
∂ ,       (2-1) 

CMFR: 
t
qVDQCQC

t
CV sin ∂

∂
−−=

∂
∂ ,    (2-2) 

where: 

    V =  solution volume [L3]; 
 C = solute concentration [M/L3]; 

Ds        = concentration of solid particle (sorbent) in the solution [M/L3]; 
Q  =  flow rate in a CMFR [L3/T]; and 
Cin =  solute concentration in the inflow of a CMFR [M/L3]. 

System mass uptake in CMFRs and CMBRs can be derived through a mass 

balance on the solute where solutes lost from solution are balanced with solute gain by 

the sorbent particles(Weber and DiGiano 1996). 

 

 

Figure 2-2. Completely Mixed Reactors for Coupling Macroscale and Microscale 
Mass Transport. 

 

2.2.2 Plug Flow with Dispersion Reactors 

Plug flow with dispersion reactor (PFDR) incorporates a dispersion term to 

account for the deviation from ideal plug flow behavior. In PFDR, macroscale advection 

CMBR 

CMFR 
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and dispersion are responsible for movement of solute through the bed, while inter-phase 

and intra-particle transport control sorption and diffusion rates. A one-dimensional 

advection-dispersion-reaction (ADR) model can be established based on a mass balance 

analysis on a control volume shown in Figure 2-3. 

 

 

Figure 2-3. Control Volume for One-Dimensional Transport through Porous Media 
(after Weber et al., 1991). 

 

The ADR model can be expressed as: 
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where: 

 C  = solute concentration in the solution phase [M/L3]; 
vz  = the component of liquid-phase pore velocity in the z direction 
[L/T]; 

sρ   =  the density of solid phase [M/ L3]; 
ε   =  the porosity of the bed [-]; and 
Dh   = the hydrodynamic dispersion coefficient [L/T2]. 

L 
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Microscale linear or nonlinear sorption processes can be coupled with the ADR 

model through its sorption term, 
t
q
∂
∂ . Initially, due to the slow movement of 

groundwater, it is assumed that microscale diffusion and sorption processes are much 

faster than macroscale advection and dispersion process, and thus, local sorption 

equilibrium should prevail, i.e., local equilibrium assumption (LEA). Numerous studies 

(Karickoff and Brown 1978; Freeman and Cheung 1981; Di Toro and Horzempa 1982; 

Ball 1989; Harmon 1992; Carroll, Harkness et al. 1994; Farrell and Reinhard 1994; 

Farrell and Reinhard 1994; Weber and Huang 1996; Werth and Reinhard 1997; Werth 

and Reinhard 1997; Werth and Hansen 2002), however, cast doubt on the applications of 

LEA through  the observation of long term sorption/desorption processes following an 

initial fast uptake. The resulting influence on macroscopic mass transfer phenomena are 

asymmetrical breakthrough curves, with earlier breakthrough and tailing, as shown in the 

Figure 2-4. 

 

 

Figure 2-4. Influence of Sorption Kinetics on the Breakthrough Curve. 
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This two stage sorption-desorption phenomena can be attributed to many factors 

(Brusseau, Jessup et al. 1989; Brusseau 1994), including transport related factors (e.g., 

different advection pattern) and sorption related factors (e.g., chemical nonequilibrium 

reactions, and intrasorbent diffusion). Attempts to capture sorption kinetics can be 

classified into two types of mass transfer models, i.e., first order reaction based (Section 

2.2.3) and diffusion model based (Section 2.2.4), both of which strive to include 

transport-related factors in the model. 

 

2.2.3 First Order Mass Transfer Models 

First order mass transfer models utilize a first order reaction to describe observed 

non-equilibrium mass transfer processes. An important advantage of this type of model is 

its simplicity, such that it does not require specific geometric information of the porous 

media. 

2.2.3.1 One-Site Models 

Very early efforts to capture sorption kinetics treat the sorption rate as a function 

of the concentration difference between the solid and solution phases, which is a 

combination of effects from sorption and desorption (Lapidus and Amundson 1952; 

Brusseau and Rao 1990): 

qkCk
t
q

dd
'−=

∂
∂

ρ
θ ,       (2-4) 

where: 

    C = solute concentration in the solution [M/L3]; 
q = solute concentration in the solid phase [M/M]; 
kd = sorption rate coefficient [L3/M]; 
kd’ = desorption rate coefficient [L3/M]; 
ρ  = soil bulk density [M/L3]; and 
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θ  = volumetric water content [-]. 

This over-simplified model failed to predict experimental data (Brusseau and Rao 

1989; Brusseau and Rao 1990), and was thus replaced by two site models, which can be 

classified as chemical based two-site models and physical based two-site models which 

attribute non-equilibrium phenomena to sorption related and transport-related processes, 

respectively. 

2.2.3.2 Two-Site First Order Models 

Chemical based two site models attribute non-equilibrium to sorption-related 

factors, and envision the sorbent as two types of sites, where first order reaction controls 

at Type 1 sites, and assumes local equilibrium at Type 2 sites (Selim, Davidson et al. 

1976; Cameron and Klute 1977; Travis and Etnier 1981): 

Type 1 site: ])1[( 1
1 qCKk
t

q
p −−=

∂
∂

φ ,     (2-5) 

Type 2 site: 
t
CK

t
q

p ∂
∂

=
∂
∂

φ2 ,     ( 2-6) 

where: 

q1  = solute concentration in the Type 1 sites [M/M]; 
q2  = solute concentration in the Type 2 sites [M/M]; 
k  =  the mass transfer coefficient for type 1 site [1/T];  
Kp  =  the partitioning coefficient [L3/M]; and 
φ   =  the fraction of Type 2 sites [-]; 

Physical-based two-site models attribute non-equilibrium to transport-related 

factors, and envision the liquid phase in the porous medium as two regions (Coats and 

Smith 1964; Van Genuchten and Wierenga 1976): a mobile region and an immobile 

region. A first order reaction connects the solute transfer between two regions, while 

sorption processes in both regions are assumed as instantaneous sorption equilibrium: 



 

 19

z
C

v
z
C

D
t

S
f

t
S

f
t

C
t

C m
mm

m
m

immim
im

m
m ∂

∂
−

∂
∂

=
∂
∂

−+
∂
∂

+
∂
∂

+
∂
∂

θθρρθθ 2

2

)1(   (2-7) 

t
CKnC

t
S n

∂
∂

=
∂
∂ −1      (2-8) 

)()1( imm
imim

im CC
t

S
f

t
C

−=
∂
∂

−+
∂
∂

αρθ     (2-9) 

where: 

m  = refers to mobile regions; 
im  = refers to immobile regions; 

mθ   = the fractions of soil filled with mobile regions [-]; 

miθ   = the fractions of soil filled with immobile regions [-]; 
vm  = average pore water velocity in the mobile solution[L/T]; 
α   =  first order reaction coefficient [1/T];  
n  =  Freundlich sorption coefficient [-]. 
S  =  the sorbed concentration [M/M]; and 
f  =  the fraction of sorption sites in dynamic region [-]. 

Although two-site models typically achieve good results in representing 

experimental data, Brusseau et al. (Brusseau, Jessup et al. 1989) point out that their major 

constraint lies in the fact that they attribute the observed nonequilibrium to a single 

process, which in fact may be affected by multiple chemical and physical factors. 

2.2.3.3 Multi-Site Models 

The multiprocess nonequilibrium (MPNE) model proposed by Brusseau et al. 

(1989) is specifically formulated for nonequilibrium caused by a combination of transport 

and sorption related processes. 
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Figure 2-5. Conceptualization of the Multiprocess Nonequilibrium Models (after 
Brusseau et al., 1989). 

 

It is clear from Figure 2-5 that MPNE actually is a coupling of chemical- and 

physical-based two-site models described in Section 2.2.3.2. Inherited from a physical-

based two-site model primarily for liquid phases consisting of mobile and immobile 

regions, MPNE also employs a chemical based two-site model in that sorption sites are 

separated into instantaneous and rate-limited portions. In this model, only Domain 1 

possesses instantaneous mass transfer with the mobile solution, the other three domains 

are all rate-limited by either diffusive mass transfer between mobile and immobile region 

or slow sorption processes.  

Realizing the diversity of transport and sorption processes at the grain scale, some 

studies (Pedit and Miller 1994; Haggerty and Borelick 1995) have extended multi-site 

model. Instead of two mobile and immobile regions, Haggerty’s model (Haggerty and 

Borelick 1995) postulate a mobile region combining with N distinct immobile regions. 

Those N distinct immobile regions can reflect various microscale mass transfer processes, 

e.g. diffusion, adsorption, and dissolution, although they are also expressed in the form of 

first order reactions. This model may be stated as: 
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where: 

cm  = solute concentration in the mobile phase [M/L3]; 
D  = the hydrodynamic dispersion coefficient [L/T2]; 
Rm  = the retardation factor of the mobile zone [-]; 
v  = the pore water velocity [L/T]; 
q  = a source or sink of water [1/T]; 

mθ         =  the porosity of mobile zone [-];  

jα         =  the apparent first –order mass transfer coefficient for the jth 
immobile zone [-]; 

jβ   =  the capacity ratio of the jth immobile zone [-];  
N  =  the number of immobile zones [-]; and 
(cim)j  =  the concentration in the jth immobile zone [-]. 

This multi-site model can accurately predict rates of mass transfer in a bulk 

sample of a Borden sand containing a mixture of different grain sizes and diffusion rates  

(Haggerty and Borelick 1995).  The multi-site formulation of first order reaction models 

allows for consideration of a comparatively broad range of sorption site heterogeneity. 

However, because too many parameters are included in the models, experimentally 

measuring all the parameters involved is not realistic. 

2.2.3.4 Stochastic First Order Reaction Models 

It has been argued that some soil properties, such as intraparticle porosity and 

pore size distributions, can vary for individual solid particles (Weber , McGinley et al. 

1992), and thus the discrete interpretation employed by two-site and multi-site models 

may not be sufficient to characterize the heterogeneity of soil. An alternative approach is 
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to use a continuous distribution function to characterize the multiple sites with different 

first order reaction rates. 

Connaughton et al. (Connaughton, Stedinger et al. 1993) envisioned soils as a 

continuum of particles ordered by a desorption rate constant. The probability that a 

randomly selected solute is located on a soil particle with first order desorption rate k is 

simulated by a gamma probability density function f(k).   

∫
∞ −

−

−

−
=
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)exp()(
dxxx

kkkf
α

αα ββ      (2-12) 

where: 

β   = a scale parameter [-]; and 
α  = a shape parameter [-]. 

β  serves to determine both the mean and standard deviation of the k, and  α 

indicates whether many soil particles have very small first order desorption rate the 

hydrodynamic dispersion coefficient. The smaller α is, the slower the desorption process. 

This model was employed to simulate desorption of naphthalene from contaminated soils 

and found that the gamma distribution model fit experimental data better than a two-site 

model. 

Similarly, in Chen and Wagenet ‘s model (Chen and Wagenet 1995), sorption 

sites are grouped based on a gamma probability density function for both the equilibrium 

linear partitioning portion and the first order sorption portion.  The model was applied to 

fixed bed reactors, leading to improved interpretation of the slow tailing effects in 

nonequilibrium breakthrough curves. 
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Pedit and Miller (Pedit and Miller 1994) treat the sorbent phase solute 

concentration, partitioning coefficient, and first-order mass transfer coefficient as random 

variables. In a batch reactor, the bulk fluid phase solute concentration is given by: 

)()]()([),(
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dt
tdC
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sb λ−×−= ∫ ∫

∞ ∞
  (2-13) 

where: 

kfo  = first order reaction coefficient [1/T]; 
Kd   = partitioning coefficient [L3/M]; 
fm(Kd, kfo) = mass fraction probability density function [-]; 
Se(t)                 = the sorbent-phase solute concentration for a particle or 

collection of sorption sites at equilibrium with the bulk 
fluid phase solute concentration [M/M];  

S(t)                       = the sorbent phase solute concentration for a particle of 
collection of sorption sites with locally defined sorption 
parameter values Kd and kfo [M/M]. 

Comparing to several other modeling approaches, e.g. multi-site first order model 

and diffusion model, it is found that this model, with a log-normal distribution, provides 

the best fit of all two parameter models tested, and performed nearly as well as the best 

three parameter models. 

A finite difference formulation with both the gamma distribution and lognormal 

distribution of the first order rate coefficient was developed by Culver et al. (Culver, 

Hallisey et al. 1997) for both completely mixed batch reactors and fixed-bed reactors. For 

desorption of TCE from long-term contaminated soils, this model also provided 

significantly improved simulations of aqueous concentrations as compared to the two-site 

models. 
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2.2.4 Diffusion Models 

No matter how sophisticated first-order reaction model may be, a first-order 

reaction is often a poor representation of the microscale sorption and diffusion processes. 

For example, Miller and Weber (Miller and Weber 1986) observed that a first-order mass 

transfer model under-predicted early uptake in batch sorption studies. Thus many studies 

(Miller and Weber 1984; Miller and Weber 1988; Ball and Roberts 1991; Pedit and 

Miller 1994; Cunningham, Werth et al. 1997; Haggerty and Gorelick 1998; Werth and 

Hansen 2002) engaged in coupling more mechanistic based explainable diffusion models 

with macroscopic ADR equations. During the past thirty years, diffusion based models 

developed from single mechanism models, to dual resistance models, two mechanism 

models, multiple particle class models, and stochastic diffusion models. 

2.2.4.1 Single Mechanism Diffusion Models 

One site diffusion models envision all microscopic mass transfer occur within the 

same environment, and often utilize Fickian diffusion based models to describe the 

microscale transfer processes in the solid phase: 

⎥⎦
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where: 

qr = the solid phase concentration at microscale [M/M]; 
D = diffusion coefficient [L/T2]; and 
v = the dimensionality of the microscale particles [-]. 

v=1 refers to a layered particle; v=2 represents a cylindrical particle; and v=3 

denotes a spherical particle. Based on the detailed concentration derived from this 

microscale solution, an average concentration for the particle can be generated as: 



 

 25

drq
a
vq

a

rvavg ∫=
0

,      (2-15) 

where a is the distance from the center to the edge of the solid particle. This averaged 

value can then be substituted into the sorption term, 
t
q
∂
∂ , of the ADR equation to 

compute the microscale behavior within the macroscale. 

2.2.4.2 Dual Resistance Diffusion Models 

The above mentioned diffusion models assume that film resistance is negligible. 

Under some circumstances, for example in non-well mixed system with very slow flow 

rate, film resistance may be at the same order of magnitude as intraparticle diffusion. In 

such cases, dual resistance models (Miller and Weber 1984; Crittenden, Hutzler et al. 

1986) may be applied.  In dual resistance models, the sorption term in the ADR equation 

is replaced by a film mass transfer term as: 
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where: 

δC  = the concentration at the outside of film [M/L3]; 
kf = the mass transfer coefficient in the film [1/T]; and 
R = the radius of spherical particle [L]. 

At the surface of particle, liquid film phase concentration and solid phase 

concentration follow the boundary relationship: 
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where, Ds is the surface diffusion coefficient. Moreover, solute transport inside the solid 

particle may be expressed by Fickian diffusion: 
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2.2.4.3 Two Mechanism Diffusion Models 

Although the single mechanism and dual resistance diffusion models incorporate 

Fickian diffusion as a mechanism explaining the microscopic mass transfer processes, 

they neglect the inherent sorbent heterogeneity caused by microscale variations in 

physical and chemical properties. Ball and Roberts (Ball and Roberts 1991) attribute the 

driving force for microscale mass transfer as pore diffusion and surface diffusion. For a 

batch reactor, combining with Fick’s first law, a mass balance over the spherical porous 

sorbent can lead to their model: 

⎥⎦
⎤

⎢⎣
⎡

∂
∂

∂
∂

+⎥⎦
⎤

⎢⎣
⎡

∂
∂

∂
∂

=
∂
∂

+
∂
∂

r
Cr

rr
D

r
Cr

rr
D

t
q

t
C s

a
p

iai
2

2
2

2 ρερε ,   (2-19) 

where: 

iε  = the internal porosity of particle [-]; 

aρ  = apparent density of the solid particle [M/L3]; and 

sD  = the effective surface diffusion coefficient [L/T2]. 

Ball and Roberts’s (Ball and Roberts 1991) model achieved excellent agreement 

with their experiment data of long term sorption of halogenated organic chemicals by 

aquifer material, and was able to find a strong correlation between grain radius and rates 

of uptake. 

2.2.4.4 Multiple Particle Class Models 

The aforementioned models only consider one type of particle, with uniform 

chemical and physical properties. Sorbent heterogeneity, however, suggests that, single 

particle class models will not be sufficient to characterize mass transfer processes in the 

heterogeneous systems such as soils and sediments. Pedit and Miller (Pedit and Miller 
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1995) developed a model including multiple-particle classes with different physical and 

sorptive properties. The model combines an instantaneous equilibrium faction with a rate-

limited pore diffusion process. At the same time, it accounts for first-order degradation 

reactions in both the bulk fluid phase and inside the particles. For a CMBR, the solute 

concentration at the macroscale bulk fluid-phase is given by: 
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and the particle scale concentration given by rate-limited intraparticle pore diffusion 

processes  is expressed as: 
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where: 

Ms = mass of solids [M]; 
V = volume of bulk fluid [L3]; 
i = the particle class index [-]; 
np = number of particle classes [-]; 
fe

i         = is the fraction of equilibrium-type sorption sites of particle class i 
[-]; 

qe
i(t)     = the solid –phase solution concentration of particle class i at 

equilibrium with the bulk fluid-phase solute concentration [M/M]; 
i = the particle class index [-]; 
kb

i        = the boundary layer mass transfer coefficient of particle class i 
[1/T]; 

Cb(t) = the bulk fluid-phase solute concentration [M/L3]; 
ai = the particle radius of particle class i [L]; 

i
aρ  = the apparent particle density of particle class i [M/L3]; 

Cp
i(r,t) = the intraparticle fluid phase solute concentration of particle  class i 

[M/L3]; 
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i
eλ         = the equilibrium type solid phase first-order reaction rate coefficient 

for particle class i [1/T]; 
bλ  = the bulk fluid-phase first-order reaction rate coefficient [1/T]; 
i
pλ  = the intraparticle fluid-phase first-order reaction rate [1/T]; 
i
rλ        = the intraparticle solid-phase first order reaction rate coefficient 

[1/T]; 
i
pθ  = the intraparticle porosity of particle class i [-]; and 

qr
i(r,t)  = intraparticle solid-phase solute concentration of particle class i 

[M/M]. 

 Pedit and Miller‘s (Pedit and Miller 1994; Pedit and Miller 1995) results 

indicated that multiple-particle class models provide a more accurate representation of 

long-term sorption rate data than traditional single-particle class approaches. 

2.2.4.5 Stochastic Diffusion Models 

In parallel to the stochastic approaches for first order reaction models, stochastic 

methods have also been applied to diffusion models, commonly through a continuous 

probability distribution function for the diffusion coefficients. Cunningham et al. 

(Cunningham, Werth et al. 1997) consider  soil aggregates as spherical particles with 

water filled mesopores and micropores. Microscale mass transfer was decomposed to a 

fast portion and a slow portion. A fast local equilibrium is assumed to exist between the 

solute dissolved in the mesoporous water and the solute adsorbed on the mesopore walls. 

The slow, rate-limiting process was attributed to pore diffusion process within the 

micropores. A gamma probability density function was utilized to describe the 

distribution of rate-limiting diffusion coefficient. They demonstrated that an analytical 

solution can be derived for average solute concentrations in the particle, and thus using a 

gamma distribution of diffusion coefficient is no more demanding than using a single 

value for the diffusion coefficient. 
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Haggerty (Haggerty and Gorelick 1998) proposed a novel distributed diffusion 

model based on one dimensional diffusion along individual pathways within particle 

grains. Each pathway, identified by the apparent diffusion coefficient Da and the length l, 

follows a lognormal distribution of Da/l2. It is reasonable to include several pathways in a 

single aggregate, and thus, even a single aggregate may have a distribution of diffusion 

rate coefficients. Haggerty’s model was applied to simulate Farrell and Reinhard (Farrell 

and Reinhard 1994)’s experimental results, and found this lognormal distribution model 

provide a better fit. Comparing with Cunningham’s (Cunningham, Werth et al. 1997) 

model, Haggerty’s model can better capture variations of diffusion rates in a single 

particle; however, it did not explicitly differentiate between the fast and slow diffusion 

processes as  modeled by Cunnigham et al. (Cunningham, Werth et al. 1997). 

More recently, Werth and Hansen (Werth and Hansen 2002) proposed a spherical 

diffusion model based on a gamma distribution of diffusion rate constants for sorption 

and desorption, respectively. The uniqueness of this model is to capture the combinations 

of the exposure concentration and exposure time by probability functions. The model was 

successfully applied to simulate the effects of concentration history on desorption 

kinetics profiles for trichloroethene (TCE), and thus represents a more mechanistically 

explainable approach to capture the effects of heterogeneity on slow desorption. 

It is worthy noting here that stochastic approaches, both for first order reaction 

models and diffusion models, acclaimed outstanding ability to fit the experimental data, 

and more important in explaining the tailing effects for soil column breakthrough curves. 

Further, a continuous distribution function only needs two parameters, i.e. a mean and a 

standard deviation, so that it dose not need more parameters than the two site models. It 
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thus appears that stochastic approaches may produce an ability to model well a wide 

range of situation. However, employing the probability density function for some critical 

modeling parameters (e.g. diffusion coefficient) is arbitrary and it generally void of 

physical or mechanistic explanation (Pignatello and Xing 1996).  

2.2.4.6 Particle Geometry and Size  

The increased accuracy achieved by diffusion models are based on a certain 

geometric description of the porous medium. For mathematical simplicity, most models 

mentioned above assume a spherical shape and uniform aggregate size. Natural porous 

media, however, involve complex particle shapes and various aggregate size 

distributions. It has been shown that (Rasmuson 1985; Rasmuson 1985) particle shapes 

will influence the uptake rate especially for the long-term sorption processes, such that 

spherical aggregates are the slowest and the slabular particles show the fastest uptake 

rate. Meanwhile, Ball and Roberts (Ball and Roberts 1991) noted that aggregate size will 

also influence mass uptake rates, such that the rate of approach to equilibrium was greater 

for smaller size aggregates. Thus, models with uniform shape and size will not be 

sufficient to simulate the diversity of particles found in natural porous media. 

As an attempt to apply simplified models to some more realistic situations, Rao et 

al. (Rao and Jessup 1982; Brusseau and Rao 1990) tried to approximate mass transfer 

processes in nonspherical particles by equivalent spheres such that the sphere volume is 

equal to the volume of the nonspherical aggregates. Van Genuchten  (Van Genuchten 

1985) presented a method to transform soil aggregates with different shapes into a 

uniformly sized spherical aggregate with similar diffusion characteristics to the original 
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aggregate. The transformation is achieved by employing a geometry dependent shape 

factor, defined as: 

im

a
s qRa

LD
2

θ
γ = ,      (2-22) 

where: 

Da = the effective diffusion coefficient of the soil matrix [L/T2]; 
θ  = porosity [-]; 
a = spherical aggregate radius [L]; 
q = the macroscopic fluid flow specific discharge [L3/T]; 
Rim = is the immobile phase retardation factor [-]; and 
L = soil column depth [L]. 

This method extends the physical diffusion models to different particle shapes, 

including spheres, cylinders and slabs; however, it is limited to uniformly sized 

aggregates.  

Aggregate size distributions, as well as aggregate shape variations, are critical for 

particle characterization applying diffusion models to heterogeneous particles. By 

computing an equivalent radius from the volume-weighted radii of different aggregate-

size class, Rao et al. (Rao and Jessup 1982) presented a method to reduce a range of 

spherical aggregate sizes to a single equivalent aggregate class. Combining the shape 

transformation method of van Genchten (Van Genuchten 1985) with Rao’s (Rao and 

Jessup 1982) size equivalent methods, natural porous media aggregates with complex 

shapes and different sizes can thus be simplified to an equivalent spherical aggregate of 

an equivalent uniform size. 
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2.2.5 Summary of Macroscale Mass Transfer Models  

Non-ideal solute transport processes in the subsurface system can be attributed to 

three types of factors: (1) heterogeneous soil physical and chemical properties (Haggerty 

and Borelick 1995; Haggerty and Gorelick 1998), such as the types of soil particles, their 

hydraulic conductivity, porosity and pore distributions; (2) nonequilibrium rate limiting 

slow sorption desorption behaviors (Pignatello and Xing 1996; Luthy, Aiken et al. 1997; 

Weber, LeBoeuf et al. 2001), such as pore diffusion, intraorganic matter diffusion; and 

(3) different advection patterns due to complex soil particle geometries (Brusseau, Jessup 

et al. 1989; Brusseau, Jessup et al. 1991). Successful mass transfer models, which are 

able to capture all those influential factors, need to posses the ability to: (1) accurately 

interpret the rate-limiting mass transfer processes at the particle scale; (2) accurately 

model the complex flow advection behavior in the natural porous media. 

Most models discussed in this section, however, for mathematic simplification, 

are built upon a completely mixed batch reactor, or a plug flow with dispersion reactor. 

Thus, most are incapable of addressing the influence of fluid flow patterns on solute 

transport processes. Recent studies, however, indicate that particle configurations and 

geometries will significantly affect mass transfer processes in the subsurface environment 

(Knutson, Werth et al. 2001). It is thus of great importance to extend the above 

mentioned mass transfer models to account for porous media geometry (Pignatello and 

Xing 1996). The first step is to develop a numerical model for fluid flow capable of 

reproducing enough of the physics of real fluids in real porous media. Sections 2.4 and 

2.5 address the current state of the art research efforts in modeling fluid flow in porous 

media.  
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On the other hand, macroscale mass transfer models have evolved in an effort to 

better capture the rate-limiting mass transfer processes at the particle scale. The evolution 

of first order reaction models, from one site, to two site, multi-site, and eventually 

continuous probability distributions, vividly displays efforts to better simulate the 

influence of soil heterogeneity on rate-limiting mass transfer processes. The diffusion 

modeling approach, evolving from a single Fickian diffusion mechanism, to multiple 

diffusion mechanisms, and stochastic models, itself, is a step beyond the first order 

reaction approach in terms of improving our mechanic understanding of non-linear 

sorption processes. However, without an accurate depiction of the rate-limiting mass 

transfer processes controlling the distribution of contaminants within soils and sediments 

at the particle scale, one cannot expect to model contaminant movement correctly, and 

thus it is important to examine microscale mass transfer research efforts as a means to 

better link aforementioned macroscale models to more mechanistic-based microscale 

systems. Section 2.3 addresses the current state-of-the-art research efforts on microscale 

mass transfer processes. 

 

2.3 Microscale Mass Transfer Processes 

 

2.3.1 Intrasorbent Diffusion 

Intrasorbent diffusion processes include surface diffusion, pore diffusion, 

Knudson diffusion, and intraorganic matter diffusion. Since these processes act in 

parallel, the faster mechanism will control the overall mass transfer rate. 
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2.3.1.1 Surface Diffusion 

Surface diffusion accounts for the diffusion process where solute migrates along 

the wall surfaces of the internal pores. It can be considered important when 

concentrations of the sorbate are several orders of magnitude greater than that in the 

solution (de Boer 1968), which happens when sorbents posses continuous surfaces 

comprised by organic materials (Weber, LeBoeuf et al. 2001), e.g., activated carbon. In 

natural system, surface diffusion is significant when soils and sediments present very 

high organic contents. 

2.3.1.2 Pore Diffusion 

Reinhard and coworkers (Farrell and Reinhard 1994) postulated that diffusion in  

hydrophobic microspores (Werth and Reinhard 1997), or the mineral pores surfaces with 

a natural organic matter coat (Gu, Schmitt et al. 1994; Kaiser and Guggenberger 2000), 

may be the rate-limiting mass transfer step. Werth and Reinhard (Werth and Reinhard 

1999) found that counter-diffusion in slow desorbing sites can be sterically hindered, and 

thus, they concluded that slow diffusion takes places inside micropores. More recently, 

the correlation of rate with micropore size was demonstrated by Castilla et al. (Castilla, 

Werth et al. 2000), where slow desorption can be controlled by diffusion from 

successively smaller width micropores. Although the pore diffusion mechanism was 

explored by a number of researchers (Ball and Roberts 1991; Ball and Roberts 1991; 

Werth and Reinhard 1997; Werth and Reinhard 1997), simulation results using this 

model often underestimated observed short-term desorption rates, and overestimated the 

observed long-term desorption rate (LeBoeuf 1998). An explanation for this lack of 

model agreement with experiment data is that, instead of the solute retardation through 
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local sorption equilibrium on pore walls, the slow desorption results from diffusion into 

and out of organic matter with and along pore walls, which implicate that intraorgnic 

matter diffusion (Section 2.3.1.4) is the real controlling process. 

2.3.1.3 Knudsen Diffusion 

When the dimensions of the micropores are on the same order as the dimension of 

the solute molecule, Knudsen diffusion may occur. Knudsen diffusion is attributed to 

constraints of the confining medium, or non-Fickian and anomalous diffusion attributed 

to intraorganic matter diffusion. The confinement in Knudsen diffusion can have a 

number of impacts on the transport of molecules within them (Drake and Klafter 1990; 

Chatong and Massoth 1993; Werth and Reinhard 1997), including increasing effective 

viscosity within a micropore and significant reduction in molecular transport through 

micropores. Although it is possible for Knudsen diffusion to occur in mineral matrices 

(Farrell and Reinhard 1994), studies suggest that intraorganic matter diffusion often 

controls the mass transfer of hydrophobic organic compounds when natural organic 

matter (NOM) is present (Xing and Pignatello 1997; Huang and Weber 1998).  

2.3.1.4 Intraorganic Matter Diffusion 

Intraorganic matter diffusion theory suggests that NOM accounts the primary 

diffusive resistance in soils and sediments (Weber, LeBoeuf et al. 2001).  Weber and co-

workers envisioned soil particle as a three-domain substance: mineral domain, rubbery 

organic matter domain, and a glassy organic matter domain (Weber and Huang 1996).  

While the rubbery region may manifest fast linear sorption behavior, the glassy region is 

proposed to exhibit nonlinear sorption behavior, slower sorption rates, and possible 

sorption-desorption hysteresis (Weber and Huang 1996; Huang, Young et al. 1997; 
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LeBoeuf and Weber 1997). The Distributed Reactivity Model (DRM), which originally 

applied to equilibrium systems and later extended to heterogeneous natural solids under 

non-equilibrium conditions, provided a framework to characterize the influences of 

different energetic reactivity domains of soil particles on intraorganic matter 

processes.(Weber , McGinley et al. 1992; Young and Weber 1995; Weber and Huang 

1996).  

Intraorganic matter diffusion has been proposed as a rate-limiting mechanism for 

hydrophobic organic matter sorption by a number of researchers (Weber, LeBoeuf et al. 

2001) with various evidences, including (1) the increase of desorption rate with the 

swelling of soil organic matter matrix (Freeman and Cheung 1981);(2) lower mass 

transfer coefficient related to higher organic matter contents in the sorbents (Carroll et al., 

1994);(3) the decrease of Freundlich isotherm n values with increased time (Weber and 

Huang, 1996); (4) the reduce of intraorganic diffusion rates by the increasing sorptive 

interaction within the organic matrix (Ball and Roberts, 1991a); and (5) the agreements of 

diffusion coefficients between the bi-rate desorption in the NOM and  in rubbery and 

glassy macromoleculess (Carroll et al.). Given these observed phenomena associated with 

intraorganic matter diffusion, it is nature to make analogies between NOM and synthetic 

organic macromolecules. Recently, LeBoeuf and co-workers demonstrated that NOM 

possesses many macromolecular characteristics, including glass transition temperatures 

(temperatures marking the transitions from glassy, hard, relatively rigid states to rubbery, 

soft, relatively flexible states) (LeBoeuf and Weber 1997; LeBoeuf and Weber 2000; 

Schaumann and Antelmann 2000; Young and LeBoeuf 2000; DeLapp, LeBoeuf et al. 

expected 2003; DeLapp and LeBoeuf expected January 2004). Given the apparent 
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relevance of NOM and synthetic organic macromolecules behavior, many observations 

can be drawn from well-developed theories about diffusion in synthetic organic 

macromolecules to NOM-controlled intrasorbent diffusion (Weber, LeBoeuf et al. 2001). 

 

2.3.2 Diffusion in Synthetic Macromolecules 

Categorized based on their relative rate of solute diffusion and relaxation or 

reconfiguration of a macromolecular structure, four different types of diffusion 

phenomena occur in organic macromolecules: Case I (Fickian), Case II, Super Case II, 

and anomalous or nonFickian diffusion (Hopfenberg and Frisch 1969), as illustrated in 

the Figure 2-6. 

 

 

Figure 2-6. Hopfenberg-Frisch Chart of Anomalous Transport Phenomena   ( after 
Vieth, 1991 from Hopfenberg and Frisch, 1969). 
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2.3.2.1 Fickian Diffusion 

Case I, or Fickian diffusion, occurring only at very low solute concentrations or 

low temperatures, refers to rates of diffusion that are orders of magnitude slower than the 

relaxation rates of the macromolecule. The rate of Fickian diffusion is explained by the 

direct relationship between the velocity with which a solute moves and its 

thermodynamic driving forces (chemical potential): 

x
CDF
∂
∂

−= ,       ( 2-22) 

where: 

F = the rate of transfer per unit area of section [M/L2T]; 
C = the concentration of solutes [M/L3]; 
D = diffusion coefficient [L/T2]; 

When Fickian diffusion controls, the mass uptake is proportional to t1/2 (Crank 

1975).  

2.3.2.2 Case II Diffusion  

If the rate of diffusion is extremely fast relative to the macromolecule relaxation 

rate, Case II diffusion will be observed. Solutes in the organic macromolecules are 

affected by both mechanical stress and chemical potentials (Harmon, Lee et al. 1987). At 

high solute concentrations, swelling is required to relieve mechanical stress and to 

accommodate solute molecules. When swelling controls kinetics, there is a linear 

relationship between the mass uptake and time (Harmon, Lee et al. 1987). Case II 

diffusion causes the development of a sharp front of solute moving at a constant velocity 

from regions of high swelling (high mobility, rubber-like state) to regions of low swelling 

(low mobility, glass-like state). Case II diffusion only occurs below the glass transition 

temperature, and above certain concentrations of solutes. 
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2.3.2.3 Super Case II Diffusion 

Super Case II represents an extreme example of Case II diffusion, observed at 

higher concentrations than Case II diffusion while also below the glass transition 

temperature(Hopfenberg and Frisch 1969). Super Case II diffusion can result in the 

crazing or cracking of the macromolecule surface. In the natural system, it may occur 

when soil particles are immersed in the pure organic solvent, where the solute 

concentration is big enough to cause local fracture of the soil particles. 

2.3.2.4 Anomalous Transport  

Diffusion processes ranging from ideal Fickian diffusion to Case II (relaxation or 

swelling controlled) sorption may also be observed for a given solute/macromolecule 

system if a sufficient range of temperature and solute activity is traversed experimentally 

(Hopfenberg and Frisch 1969).  Anomalous or nonFickian diffusion occurs when 

relaxation rates and diffusion rates are comparable, and can be considered intermediate to 

Case I and Case II behavior. Due to initially low solute concentrations, anomalous 

diffusion often begins with a rapid relaxation independent phase, followed by a 

temporary desorption, and subsequent long term relaxation in the swelling 

macromolecules matrix (Berens and Hopfenberg 1978). Assuming the diffusion 

coefficient and the solute velocity is constant, Berens and Hopfenberg (Berens and 

Hopfenberg 1978) considered anomalous transport as the linear superposition of 

phenomenologically independent contributions from Fickian diffusion and 

macromolecular relaxations. Dual sorption theory, assuming that glassy macromolecules 

contain micro-holes, postulated that two concurrent modes of sorption exists in the 

macromolecules, has also been employed to explain anomalous transport phenomena. 
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Based on this concept, besides the normal dissolution in the bulk macromolecules, an 

abnormal non-linear Langmuir-type sorption, which accounts for the long term slow 

process, exists within fixed micro-hole sites (Vieth and Howell 1976) within the sorbents. 

 

2.3.3 Sorption Isotherm Models 

Sorption isotherm models describe the equilibrium distribution of contaminants 

between and among the constituent phases and interfaces of systems under constant 

temperature. Based on the degree of interaction between sorbate and sorbent, sorption 

processes can be broadly classified as absorption and adsorption. Absorption is a process 

in which solute migrates from one phase and dissolves into another phase, while 

adsorption is a phenomena restricted to the accumulation of dissolved substances at 

interfaces between the solution and adsorbent (Weber and DiGiano 1996), as illustrated 

in Figure 2-7. Sorption process often causes retardation of diffusive transport under 

transient conditions, and thus, it is essential for the quantification of solute transport.  

 

 

Figure 2-7. Schematic Characterization of Absorption and Adsorption Processes 
(after Weber and Digiano, 1996). 
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2.3.3.1 Linear Model 

The linear isotherm model, the simplest relationship between the solid phase and 

liquid phase concentrations, expresses the accumulation of solute within the sorbent as a 

function that is directly proportional to the solution phase concentration: 

ede CKq = ,       (2-24) 

where: 

qe  =  equilibrium sorbed concentration [M/M]; 
           Kd  =  distribution coefficient [L3/M]; and 
           Ce  =  equilibrium aqueous concentration [M/L3]. 

The linear sorption isotherm model has been correlated to the absorption of 

hydrophobic compounds into an organic matter. When soil particles possess very high 

organic carbon content, partitioning process will appear to allow solute dissolve into 

organic matter. Partitioning coefficient is often directly related to the mass fraction of 

organic carbon in soil, or related to an octanol-water partition coefficient (Weber and 

Digiano, 1996). 

Linear isotherm can also be applied to describe adsorption processes, however, in 

this case, implicating that the energies of sorption are uniform with increasing 

concentration and the loading of sorbent is low (Weber, McGinley et al. 1991). For 

adsorption process, it is only valid within Henry’s region, where solute accumulation on 

the surface is very low.  Due to its mathematical simplicity, linear sorption isotherm is 

still very widely used, albeit often incorrectly. 

2.3.3.2 Langmuir Model 

The Langmuir sorption isotherm includes two primary assumptions: (1) the 

sorption energy for each molecule is the same and independent of surface coverage; and 



 

 42

(2) sorption occurs only on localized sites and involves no interactions between sorbed 

molecules (Weber and Digiano, 1996). Thus, the Langmuir model leads to a 

monomolecular layer of solute on the surface, as illustrated in the Figure 2-8. 

 

 

Figure 2-8. Langmuir Model. 

 

The Langmuir model can be derived through the balance between the rates of 

condensation and evaporation of gas molecules at a solid surface, and is expressed as: 

e

e
e bC

bCQ
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+
=

1
0

,       (2-25) 

where : 

qe =  equilibrium sorbed concentration [M/M]; 
Q0  =  Langmuir capacity coefficient [M/M]; 
b  =  Langmuir intensity coefficient [L3/M]; and 
Ce =  equilibrium aqueous concentration [M/L3] 

It is worthy to note that the Langmuir intensity coefficient, b, is related to the net 

enthalpy of adsorption, dHa: 

)exp(, RT
dH

b a
ha

−
= β ,       (2-26) 

Adsorbent Surface 

Monolayer Adsorbed Solutes 
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where ha,β  has a characteristic value for a particular adsorption reaction. Given the value 

of b from equilibrium tests at different temperatures, the thermodynamic character of the 

adsorption, i.e. net enthalpy, can be determined by the linearized relationship: 

TR
dH

b a
ha

1lnln ,
−

−= β .    (2-27) 

Due to its homogeneous site energies assumption, the Langmuir model itself often can 

not provide good modeling results for many natural systems. However, it can be used in 

conjunction with other isotherm models to describe sorption of heterogeneous systems. 

For example, it has been successfully combined with linear portioning isotherm by the 

dual mode model to describe the sorption in the heterogeneous media (Vieth et al., 1976). 

2.3.3.3 Brunauer-Emmett-Teller (BET) Model 

Including the adsorption of multiple layers of molecules, the BET model can be 

considered as an extension of the Langmuir model, as illustrated in the Figure 2-9. 

Moreover, the BET model differentiates the energy between the first layer and the 

subsequent layers. It assumes that the energy associated with the first layer is comparable 

to the heat of adsorption, while the energy associated with the subsequent layers is the hot 

of condensation (Benefield, Judkins et al. 1982; Adamson 1990). 

 

 

Figure 2-9. BET Model. 
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The BET model may be expressed as: 

]/)(1(1)[(
0

sees

e
e CCCC

QC
q

−+−
=

β
β

,      (2-28) 

where Cs is the saturation concentration of the solute. β  is like b in the Langmuir model 

that it indicates the relationship with the energy of adsorption: 

)exp(
RT
dH a−

=β ,       (2-29) 

where dHa is the net enthalpy of adsorption of the first layer of adsorbate. 

2.3.3.4 Freundlich Model 

The Freundlich model describes the sorption equilibrium by an exponential relationship: 

n
eFe CKq = ,             (2-30) 

where: 

  KF  =  Freundlich capacity coefficient [M/M][L3/M]n; and 
    n   =  Freundlich sorption intensity exponent [-]. 

Although originally presented as an empirical model, the Freundlich model can be 

derived by the summation of a series of Langmuir models with different and constant 

adsorption energics (Weber and DiGiano 1996). Thus, the Freundlich model in fact 

accounts for the heterogeneous energy sites through the value of n.  As illustrated in 

Figure 2-10, n=1 indicates linear sorption. n>1 represents an unfavorable sorption 

process because sorption decreases sharply with lower concentration. n<1 represents a 

favorable sorption process, because sorption uptake capacities of the solid phase increase 

sharply from low solution concentration to high concentration. It is also worth noting that 

the decrease of n indicate an increasingly heterogeneous adsorption sites.  
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Figure 2-10. Freundlich Sorption Isotherm. 

 

2.3.3.5 Composite Isotherm Models 

Although the Freundlich model can capture the heterogeneity of environmental 

sorption processes, it assumes a continuous site energy distribution. Many environmental 

sorbents, as illustrated in Figure 2-11, however, may present discrete or discontinuous 

characteristics.  

 

 

Figure 2-11. Sorption Processes on the Discrete Heterogeneous Sorbent    (after 
Weber and Digiano, 1996). 

 

In these circumstances, a composite isotherm, consisting of a summation of the 

contributing sorption processes, can be applied. The Dual mode model (Vieth and Howell 

1976) is an example of a composite isotherm model, where linear dissolution occurs in 
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the bulk organic matter, while Langmuir sorption associated with adsorption of solute to 

fixed sites within the matrix. DRM developed by Weber and coworkers (Weber , 

McGinley et al. 1992; Young and Weber 1995; Weber and Huang 1996; Huang, Young 

et al. 1997; LeBoeuf and Weber 1997; Huang and Weber 1998) is also an attempt to 

capture the combination of linear and nonlinear sorption, as noted below: 

∑
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     (2-31) 

where: 

  qeT  =  the sorbed phase concentration per unit mass of sorbent [M/M];  
 xnl = the mass fraction of sorbent with nonlinear sorption [-]; 
 KFi = the Freundlich sorption coefficient for component i [M/M][L3/M]n;  
    n  = Freundlich sorption exponent for component i [-]. 
The DRM model envisioned the soil particle into three domains, namely, mineral 

domain, glassy domain and rubbery domain. The Freundlich sorption model is employed 

to describe the non-linear adsorption in the glassy domain. Meanwhile, a linear term is 

utilized to model the adsorption at the surface of mineral domain, and the partitioning 

process in the rubbery domain. 

It is interesting to compare the dual mode model and the DRM model here, where 

two major differences can be identified. First and most importantly, the dual mode model 

treats the glassy domain as a constant energy site by using a single Langmuir sorption 

model; however, DRM treats the nonlinear adsorption as a set of multiple reactions 

involving different sites energy by employing a Freundlich sorption model, which is 

actually the summation of multiple Langumir models (Weber et al., 1992). The second 

difference lies in the different explanations on the linear terms in two models. The 

portioning term in the dual mode model account only for the partitioning processes in the 
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rubbery phase. DRM, however, attributes the linear term to both adsorption on the 

mineral site and partitioning into rubbery organic matter. 

2.3.3.6 Polanyi-Manes Model  

It is reasonable, in some circumstances, to postulate that the adsorption domain of 

soils and sediments may be comprised of micro-porous non-polar surfaces (Xia and Ball 

1999). In such cases, a pore-filling model based on the Polanyi potential theory may be 

applicable. In Polanyi potential theory, an adsorption potential, depending on proximity 

to the surface and the nature of the sorbate is assumed: 

),/ln( ewsw CSRT=ε       (2-32) 
where: 

  swε  =  effective adsorption potential [cal/mol];  
 Sw = solubility of the solute at temperature T [M/L3];  
 Ce = the equilibrium concentration of the solute [M/L3]; and 
 R = the ideal gas constant 8.314 J/mol K. 

Adsorption will take place whenever the strength of the field, independent of 

temperature, is great enough to compress the solute to a partial pressure greater than its 

vapor pressure (Vermeulen, LeVan et al. 1987). The Polanyi – Manes model accounts 

partitioning processes for common organic matter, and pore filling effects for fixed-pore 

carbonaceous adsorbents, which can be stated as (Xia and Ball 2000; Xia and Pignatello 

2001):  
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where: 

  ρ  =  solute molecular density [M/L3];  
 Q0

’ = the adsorption volume capacity at saturation [L3/M]; 
 Kd = the partitioning coefficient [L3/M]; and 
 a,b = fitting parameters [-]. 
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The Polanyi – Manes models often works well with nonploar sorbent with well-

defined pore structures, such as soot, charcoals, and kerogens (Xia and Ball 2000).  

 

2.4 Modeling Fluid Flow in Porous Media 

While it is obvious that the variability of flow rate and solute concentration at the 

pore scale will affect mass transfer characteristics, proper pore-scale modeling efforts 

will further assist the exploration of micro-scale soil/sediment structure configurations on 

mass transfer. This section addresses the current state-of-the-art research studies in 

modeling fluid flow in the porous media. 

 

2.4.1 Models of Porous Media 

Accurate numerical simulation of fluid flow in porous media requires the 

description of porous media morphology, which remains a formidable problem. A 

realistic model for porous media should include both geometry properties, such as shape 

and volume, and topological properties, such as pore interconnectivity. In many cases, 

however, the type of model that can be employed is dependent on the modeling method, 

and more importantly, computational limitations. Thus, it is important to construct 

models that are able to closely mimic the heterogeneity of actual porous media, and at the 

same time are sufficiently efficient to allow simulation of flow and transport phenomena 

with reasonable computational effort. 

2.4.1.1 One-Dimensional Model 

A one-dimensional model envisions the pore space as a collection of cylindrical 

tubes in parallel or in series (Scheidegger 1974). The radii of tubes are uniform or 
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determined by the pore size distribution. This type of model cannot account for the 

interconnectivity of the pores, so that the predictions are typically grossly in error 

(Scheidegger 1974). 

2.4.1.2 Spatially-Periodic Models 

Spatially periodic models are represented by a periodic structure with unit cells of 

circular cylinder arrays. Figure 2-12 is an example of a spatially-periodic porous medium. 

 

 

Figure 2-12. A Spatially-Periodic Porous Media Model (after Sahimi, 1995). 

 

Sangani and Acrivos (Sangani and Acrivos 1983) first used spatially-periodic models to 

calculate the permeability of the system. Meanwhile, the spatially-periodic model was 

also employed to study hydrodynamic dispersion (Carbonell and Whitaker 1983; Eidsath, 

Carbonell et al. 1983), and found good agreement between the model predications and 

experimental values.  However, it is worth noting that this agreement is built upon the 

fact that experimental systems used in those studies were based on a simplified periodic, 

man-made porous media, instead of natural porous media.  Spatially-periodic models 

actually only represent an approximation of natural porous media, and thus do not contain 

enough real heterogeneity. 
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2.4.1.3 Network Models 

Network models can be classified into two broad categories, branching network 

models and closed loop network models (Sahimi 1995). The Bethe lattice (Flory 1941) is 

an example of a branching network model, illustrated in Figure 2-13. 

 

 

Figure 2-13. Bethe Network Model (after Sahimi et al., 1990). 

 

The advantage of a branching network model is that it is often possible to derive 

analytical solutions (Sahimi 1995) to describe the fluid flow. Due to the lack of closed 

loops of pore connectivity, however, the model fails to describe the topology of real 

porous media.  

Closed loop network models of porous media, which were first introduced by Fatt 

(Fatt 1956; Fatt 1956; Fatt 1956) in 1956, are intuitively appealing and have been very 

widely used. In a closed network model, pore bodies representing large void spaces are 

connected by pore throats representing narrow openings. Figure 2-14 illustrates a 

mapping from a two-dimensional real porous media to a network model: 
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Figure 2-14. A Cross Section of a Typical Porous Media, (a) Realistic, and (b) a 
Network Model (after Koplik and Lasseter, 1984). 

 

For simplicity, pore bodies are often represented by spheres whose radii follow 

the corresponding pore size distribution of the porous media under consideration. 

Similarly, throats are simplified as cylindrical shapes, and often are uniformly arranged 

as regular lattice (Lowry and Miller 1995; Held and Celia 2001). Figure 12-5 is an 

example of two-dimensional and three-dimensional closed network models on a regular 

lattice. 

 

 

Figure 2-15. Depiction of Two- and Three-Dimensional Network Models     (after 
Aviles and LeVan, 1991). 

 

A significant difficulty of using a closed network model is how to derive a network 

model from a given porous media, namely, the reconstruction of porous media (Adler, 

Thovert et al. 2002), which includes characterization of the structure of the porous media, 

(a (b)
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forms of the pore size distributions, and pore interconnectivity. Recently, statistical 

reconstruction algorithms were employed to construct two-dimensional (Vogel and Roth 

1998; Liang, Philippi et al. 1999; Tsakiroglou and Payatakes 2000; Vogel and Roth 2001) 

and three-dimensional (Bakke and Oren 1997) network models from given digital 

representations of the porous media. 

2.4.1.4 Particle Packing Models 

Particle packing models are different from the models mentioned above in that 

instead of simplifying the pore spaces, they idealize the solid particles. Particle models 

envision porous media as particles of certain geometries distributed in the continuum. 

Because packing of disks in two-dimension or spheres in three-dimension can represent a 

wide range of random media, such as suspensions, porous media, composite materials, 

and atomic structures, computer simulations of particle packing models have drawn 

increased attention (Torquato 2002). Figure 2-16 is an example of a two-dimensional 

particle packing model. 

 

 

Figure 2-16. A Two-Dimensional Particle Packing Model of Randomly Distributed 
Disks (after Sahimi, 1995). 

 

For a three-dimensional sphere, regular packing schemes include cubic, rhombohedral, 

orthorhombic, and tetragonal-sphenoidal (Harr 1977). Packing of particles representing a 
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natural porous media, however, is influenced by several factors, including the shape of 

particles, the distribution of particle sizes, and packing schemes, and is often 

implemented by the use of a random packing technique. 

Through random packing, particle locations are randomly generated subject to 

constraints, such as no particle overlap and structure stability. Two major types of 

particle packing algorithms currently exist: sequential addition and collective 

rearrangement. Sequential addition packing models sequentially fill an initially empty 

domain with randomly placed particles (Bennett 1972; Jullien and Meakin 1987) while 

maintaining a stable structure. Sequential addition packing algorithms perform well for 

relatively large, homogeneous spheres. However, they tend to yield relatively loose 

packing structures, and provide no explicit mechanism to control the produced porosity 

(Yang, Miller et al. 1996).  Collective rearrangement methods often include two steps: (i) 

definition of an initial distribution of particles; and (ii) iterative rearrangement of the 

particles to attain a structurally stable state (Yang, Miller et al. 1996). Initial particle size 

distributions are often based on lognormal distributions (Bear 1972; Scheidegger 1974), 

while spherical distributions of the particles follow a uniform distribution. Iterative 

rearrangement methods include Monte Carlo simulation and molecular dynamics 

techniques, which are often very computationally intensive (Yang, Miller et al. 1996). 

 

2.4.2 Modeling Fluid Flow through Porous Media 

Modeling fluid flow through porous media in groundwater involves multiscale 

phenomena: microscale (molecular level), mesoscale (single pore level), macroscale 

(multiple pores) and megascale (field size level). A central challenge is to understand 
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how macroscale flow characteristics depend on microscale geometry of the pore space 

and the physical characteristics of the fluid and solid (Sahimi 1995). A starting point of 

the problem is typically Darcy’s law (Scheidegger 1974): 

pKq ∇⋅−= ,      (2-34) 

where: 

  q =  specific flow rate [L/T];  
K = permeability constant [L3T/M]; and 

p∇  = pressure gradient [-].  

Darcy’s law assumes a linear relationship between the pressure gradient and the 

specific flow rate. The permeability constant, K, represents averaged effects of complex 

porous structures. A great challenge in modeling flow in porous media is to accurately 

predict permeability by developing a model at the mesoscopic level that is capable of 

reproducing enough of the physics of real fluids in real porous media. 

Many elegant approaches, which borrow most of the powerful tools of modern 

statistical mechanics, such as effective-medium approximation (EMA), renormalization, 

percolation theory, and volume-averaging methods, have been applied in order to more 

accurately estimate the equivalent permeability of random porous media (Renard and 

Marsily 1997). If the property fluctuations are small, EMA can provide reliable estimates 

of effective permeability (Sahimi 1995). In EMA, porous media is visualized as a 

heterogeneous medium constructed by side by side placement of homogeneous blocks; a 

single, known permeability block is embedded in the homogeneous matrix of unknown 

permeability to generate an expression for the equivalent permeability (Choy 1999). For 

systems with larger variations in permeability, King (King 1989) first applied 

renormalization methods to calculate equivalent permeability, which represents a porous 
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medium through analogy of with an electric network. Percolation theory (Reyes and 

Jensen 1985; Sahimi 1994), which addresses complex systems comprised of objects that 

may or may not be connected by analyzing the percolation transition point, has also been 

applied to estimate equivalent permeability of materials within two phases, one of which 

is non-permeable (Kirkpatrick 1973). Whitaker and his group used a volume-averaging 

method (Whitaker 1999) to solve the Navier-stokes equation in porous media, and 

eventually was able to estimate the permeability of the porous media while considering 

its geometry (Quintard and Whitaker 1994; Quintard and Whitaker 2000), although the 

closure problem remains very complex (Sahimi, 1995). 

Many advanced numerical simulation methods have also been developed to solve 

fluid flow in porous media when property parameters are available (Wen and Gomez-

Hernandez 1996). Network models (Koplik and Lasseter 1984; Aviles and LeVan 1991; 

Russell and LeVan 1997; Blunt 2001) consist of pores of variable radius connected to 

neighboring pores by variable sizes of throats. Here, fluid flow is solved for a single pore 

first, from which a solution of nodal pressures for every interior node of a network can be 

derived, finally resulting in an equivalent permeability. Laplacian methods (Efendiev and 

Durlofsky 2002), named for their dependence on the solution of the Laplace equation, 

often simulates a block isolated from the rest of the aquifer by assuming certain boundary 

conditions; for example, periodic boundary conditions (Durlofsky 1991), and thus an 

equivalent permeability can be estimated based on the resulting pressure gradient and 

specific flow rate. Laplacian methods are comparatively more accurate, although very 

computational intensive (Wen and Gomez-Hernandez 1996). Combining multigrid 

modeling techniques and homogenization methods, multigrid homogenization methods 
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(Knapek 1998; Moulton, Dendy et al. 1998) have been developed to calculate coarse grid 

permeability. Although it is claimed that multigrid homogenization methods reach a 

compromise between computational cost and the accuracy for estimating equivalent, it 

appears these methods are not stable in some special cases (Knapek 1998). 

While each of the aforementioned methods have been successful to some context, 

each is based upon a certain level of averaging, and thus none can fully represent the 

complete details of flow within micropores (Succi 2001). In the late 1980s’, lattice 

Botlzmann models (LBM) were successfully introduced into fluid flow simulations 

(Rothman 1988; Cancelliere, Chang et al. 1990; Chen, Diemer et al. 1991). Because of its 

ease of modeling complex pore geometries (Bernsdorf, Durst et al. 1999), LBM has been 

viewed as the most promising method for simulating complex problems of flow in natural 

porous media. A brief review of LBM is given in the subsequent section. 

 

2.5 Lattice Boltzmann Methods 

 

2.5.1 Introduction to Lattice Boltzmann Methods 

Lattice Botlzmann methods originated from lattice gas automata (LGA) (Frisch, 

Hasslacher et al. 1986), which is based on concepts from the kinetic theory of gases. 

Instead of homogeneous and continuous materials, LGA views fluids as arrays of discrete 

particles living on a discrete lattice, evolving with some interactive rules, i.e., 

propagation and collision rules. First, each particle advances one node to a neighboring 

lattice site. If two or more particles arrive at the same site, collision between the particles 

will occur, and the velocity of each particle is then subject to change due to the effects of 
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the collision. Collision rules are selected such that mass and momentum conservation are 

satisfied at each node on the lattice. Despite its microscopic basis, LGA is capable of 

modeling macroscopic flow phenomena, with the simplest possible lattice (triangular) 

capable of accurately modeling two-dimensional fluid flow (Rothman 1997). The most 

widely used method used today, however, is the two-dimensional, nine-velocity model 

(D2Q9) (Wolf-Gladrow 2000), as illustrated in Figure 2-17. 

 

 

Figure 2-17. A Nine-Velocity (D2Q9) Lattice Model. 

 

In the D2Q9 model, the velocity vectors, icv are defined in the following manner: 
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where cs is the computational speed of sound, representing the maximum speed that may  

be achieved on the lattice. 
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LBM inherits most of the features of LGA, except that instead of tracking the 

movement of single particles, a collective population representing a cloud of microscopic 

particles is studied, thus overcoming many of the disadvantages of LGA, such as 

statistical noise and complex collision rules (Succi 2001). The following two steps can 

express LBM: 

Propagation:  ),()1,( txftcxf iii
vvv =++     (2-36) 

Collision:  iiii txftcxf Ω=−++ ),()1,( vvv     (2-37) 

where, fi represents the probability of finding a particle in the position xv  at time t that is 

moving with velocity icv . iΩ denotes a collision operator representing the rate of change 

of fi resulting from a collision. Utilizing a linearized, single time relaxation model 

(Bhatnagar, Bross et al. 1954) derived from kinetic theory, the collision operator may be 

defined as: 

1 ( )eq
i i if f

τ
Ω = − −       (2-38) 

where τ  is the relaxation time which controls the rate of approach toward equilibrium, 

which is related to the viscosity of the fluid. eq
if is an equilibrium distribution analogous 

to the Maxwellian distribution, which is given by: 
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where iω is the weighting parameter for each velocity direction. The density per node, ρ , 

the macroscopic velocity, uv , the fluid pressure P, and the kinematic viscosity ν are 

defined by 
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It has been shown (Chen, Chen et al. 1992) that use of the Chapman-Enskog procedure 

allows the lattice Boltzmann discretization equation to recover the Navier-Stokes 

equations with a truncation error proportional to the square of the Mach number 

( / sMa u c= , where u is the characteristic flow velocity and cs the speed of sound).  

 

2.5.2 Advantages of Lattice Boltzmann Methods 

A remarkable characteristic of LBM is its simplicity, such that the state of the 

fluid needs to be identified only at the lattice nodes, and the Navier-Stokes equation can 

be replicated by microscopic particle collision and propagation. Computations, based 

only on propagation and collision, is thus less complex relative to traditional 

computational fluid dynamics (CFD) methods. Moreover, local collision characteristics 

provide the opportunity for parallelism of the computer programming code, potentially 

enhancing computational efficiency. 

Another striking advantage of LBM is that it can address complex boundary 

conditions. The bounce back boundary condition, where particles will bounce back when 

moving towards solid walls, is very easy to implement. Bernsdorf et al. (Bernsdorf, Durst 

et al. 1999) compared the performance of LBM with finite volume methods for the 

prediction of incompressible fluid flows. Their results suggest that finite volume methods 

appear to be more efficient for simple geometries. For complex geometries, finite volume 

methods’ computational requirements increased greatly, while computational 

requirements for LBM first decreased with increasing complexity of the obstacle 

structure and became almost independent from it for highly complex structures 

(Bernsdorf, Durst et al. 1999).  
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2.5.3 Lattice Boltzmann Modeling Flows in Porous Media 

The particle like nature of LBM allows one to address complex pore structures 

with fundamental mechanical events (e.g., bounce back), while permitting recovery of 

macroscopic flow behavior in very small pore spaces (Succi 2001). This attractive feature 

makes LBM an excellent numerical tool for simulating flows in complicated geometries, 

such as flow through porous media. 

Rothmann first applied LBM for simulating flow through porous media in 2-D, 

and verified Darcy’s law in complex geometries (Rothman 1988). Succi et al. (Succi, Foti 

et al. 1989) provided a reasonable estimate of porous media permeability as a function of 

porosity by applying the LBM in 3-D. Cancelliere et al. (Cancelliere, Chang et al. 1990) 

subsequently refined Succi’s results with a better representation of the microgeometry 

through random positioning of penetrable spheres of equal radii. Later, Heijs and Lowe 

(Heijs and Lowe 1995) used the LBM to validate the Carman-Kozeny equation utilizing a 

computed tomography clay soil image, observing that the Carman-Kozeny equation 

provided a less successful estimation of permeability relative to LBM. Recent studies 

have applied and extended LBM to simulation of flow through porous media in various 

areas, such as multiphase flow (Shan and Doolen 1996; Knutson, Werth et al. 2001), non-

Newtonian flow (Boek, Chin et al. 2003), and multiscale flow simulation (Kang, Zhang 

et al. 2002).  At the same time, the method itself has undergone additional enhancements 

(Chen and Doolen 1998), especially in terms of deriving more accurate boundary 

conditions and extension to inclusion of irregular grids. 
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2.5.4 Improvements of Boundary Conditions 

Despite the success of LBM in many situations, the complex micro-geometry of 

many porous media systems suggests a need to provide for improved boundary 

conditions. In earlier work, boundary conditions in LBM were directly adopted from the 

LGA method (Chen and Doolen 1998). For example, the bounce back boundary 

condition, in which particles moving in the direction of a wall will exit the wall in the 

opposite direction from which they came, is commonly employed at walls to obtain a no-

slip velocity condition (Rothman 1988; Ziegler 1993). Although the bounce back 

boundary condition can be easily implemented, it possesses several shortcomings 

(Gallivan, Noble et al. 1997), including low accuracy (first-order accuracy) and an 

inability to apply to moving walls. Several new boundary conditions were thus proposed. 

Skordos (Skorodos 1993) proposed to include velocity gradients in the equilibrium 

distribution function at the wall nodes. By calculating the particle distributions 

contributed by nodes just inside the wall, Nobel et al. (Noble, Chen et al. 1995) was able 

to maintain a proper hydrodynamic boundary condition while executing a regular LBM 

procedure. Maier et al. (Maier, Bernard et al. 1996) modified the bounce back condition 

to nullify net momentum tangent to the wall and to preserve momentum normal to the 

wall. By introducing a counter slip velocity into the equilibrium distribution function, 

Inamuro et al. (Inamuro, Yoshino et al. 1995) eliminated slip velocity at the wall. A 

second-order extrapolation scheme was proposed by Chen et al. (Chen, Martinez et al. 

1996) to obtain unknown particle distribution functions. The above-mentioned boundary 

conditions yield good results for flat walls, however, curved boundaries are often 

approximated by a series of stairs that leads to a reduction of numerical accuracy. 
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Recently, an accurate curved boundary treatment method, which can preserve the 

geometry and still keep second order accuracy for the velocity field, was proposed by 

Filippova and Hanel (Filippova and Hanel 1998) and  improved and further extended to 

three-dimension by Mei et al. (Mei, Luo et al. 1999). The appearance and further 

development of curved boundary conditions will likely provide substantial contributions 

towards improved simulation of practical fluid flow situations in porous media. 

 

2.5.5 Lattice Boltzmann Methods on Irregular Grids 

As noted previously, LBM originated from LGA where particles propagate from 

one site to the other on a regular lattice, limiting LBM to uniform grids. This limitation  

seriously reduces the rate of further applications of LBM to flow through porous media 

where the complex geometry of micropores cannot be well-fit to a uniform lattice (Succi, 

Amati et al. 1995). Motivated by the consideration of extending the applicability of LBM 

to irregular grids, He et al. (He, Luo et al. 1996) proposed an interpolation-supplemented 

LBM, which can be implemented on an irregular rectangle, and later, has been extended 

to a general curvilinear coordinate system (He and Doolen 1997). However, in this 

approach collisions still take place on the grid points, and the topology of the grid is still 

not arbitrary (Peng, Xi et al. 1998). 

Recently, it has been shown that, while the coupling between discretization of 

velocity spaces and physical space is an essential part of LGA dynamics, it is not crucial 

for LBM (Cao, Chen et al. 1997). In this light, LBM can be viewed as a special finite 

difference scheme of the Boltzmann equation: 

( 1, 2,... )i
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where N is the number of different velocities in the model. Thus, any discretization of the 

Boltzmann equation, such as Finite Differences (FD), Finite Volumes (FV) and Finite 

Elements (FE) method may suffice to recover Navier-Stokes equations (Cao, Chen et al. 

1997). Linking LBM with these well-established numerical techniques will enable LBM 

to address much broader geometries (Succi 2001). 

Succi’s work group (Amati, Succi et al. 1997) was the first to propose a finite 

volume formulation of the LBM, where a piece-wise linear interpolation scheme was 

used to estimate the volume-averaged particle distribution in a non-uniform coarse lattice. 

Another volumetric formulation of LBM was developed by Chen (Chen 1998), which can 

be applied to arbitrary meshes while achieving exact conservation laws and equilibrium 

balance conditions. Peng et al. (Peng, Xi et al. 1998; Peng, Xi et al. 1999; Xi, Peng et al. 

1999) also proposed another version of Finite Volume LBM (FVLBM) for both 

triangular and rectangular elements. Their scheme is claimed to be very flexible for 

internal and external boundaries, however, there is a reduction in computational 

efficiency compared with classical LBM (Peng, Xi et al. 1999). 

Based on Runge-Kutta time marching schemes and various spatial discretization 

schemes, Chen and coworkers (Sofonea and Sekerka 2003) combined FD and LBM in 

several ways. A central difference scheme was proposed by Cao et al. (Cao, Chen et al. 

1997) in Cartesian coordinates, and was later extended to curvilinear coordinates with 

non-uniform grids (Mei and Shyy 1998). The proposed Finite Difference LBM (FDLBM) 

scheme has been successfully applied in several fluid simulations (Chen and Doolen 

1998), including single-phase flow through three-dimensional digitized rock fractures 

under varied simulated confining pressures (Kim and Lindquist 2003).  
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While the number of studies combining LBM and FD/FV continues to expand, 

few studies have addressed the generation of finite element LBM (FELBM). As an early 

effort to combine FE methods with LBM, Lee and Lin (Lee and Lin 2001) presented a 

characteristic Galerkin discrete Boltzmann equation (CGDBE), which implements a 

Taylor-Galerkin procedure for the discrete Boltzmann equation. With appropriate 

boundary conditions, their method results in accurate solutions with little numerical 

diffusion. This method, however, is limited by its conditional stability associated with the 

explicit expression of the convection term. FE methods, famous for their superior 

numerical stability and geometry flexibility over FD and FV methods, suggest FELBM 

may be an appealing alternative to FVLBM and FDLBM. Further research on combining 

FE method with LBM is necessary and will likely yield promising results. 

 

2.5.6 LBM Simulations of Solute Transport in Fluid Flow 

 LBM simulation of solute transport involves the recovery of the Navier-Stokes 

equation, the continuity equation, and advection-diffusion-reaction equations. 

Emphasizing the different areas of foci, current research efforts can be classified into 

three categories, including (i) solute transport in fluid flow without reaction; (ii) solute 

transport in fluid flow with reaction in the bulk fluid; and (iii) solute transport in fluid 

flow with reaction at the solid liquid interfaces.  

2.5.6.1 Solute Transport without Reaction  

 Research achievements in LBM simulation of miscible fluids flow provided the 

foundation for modeling inert solute transport in fluid flow. The color model is the 

earliest approach to simulate miscible flow mixture, which was first developed by Holme 
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and Rothman (Holme and Rothman 1992). In this model, red and blue particle 

distribution functions were introduced to represent two components. The evolution of the 

particles is the same as if they were not colored, but the color of the particles is 

redistributed after collision while keeping color conserved. Based upon the idea of Holme 

and Rothman, FlekkØy (FlekkØy 1993) introduced another color model, which also 

distinguishes the particles as either red or blue. Two relaxations, however, take place for 

the sum of the distribution functions or the mass density of the two components, and for 

the difference of the distribution functions or the relative amount of two components. It is 

shown that proper choice of eigenvalues of the collision operator can reduce the Holme 

and Rothman model to the FlekkØy model.  

 Assuming that solutes are in sufficiently low concentration such that they do not 

influence the flow, instead of collaborated red and blue particles, other research efforts 

introduced a separate particle distribution function to model solute particles. Employing a 

lattice model with four velocities and one rest particle, Alvarez-Ramirez (Alvarez-

Ramirez, Nieves-Mendoza et al. 1996) developed a LBM to simulate diffusion and 

calculate the effective diffusivity in a quiescent heterogeneous media. Nobel (Noble 

1997) formulated a LBM for two dimensional advection-diffusion equations, where a 

four velocity model is employed to model solute particles with known velocity fields. 

Knutson (Knutson, Werth et al. 2001) successfully applied Nobel’s method to simulate 

solute transport from distributed non-aqueous phase liquids blobs in a two-dimensional 

porous medium. In a similar manner, Inamuro et al.  (Inamuro, Yoshino et al. 2002) 

proposed another LBM for an isothermal binary miscible fluid mixture. Analyzing the 

method by asymptotic theory demonstrated that the solute concentration can be derived 
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with relative errors of the same order as the lattice spacing. The method was later applied 

to simulate flow and heat/mass transfer problems in a three-dimensional porous structure 

(Yoshino and Inamuro 2003).  

More recent efforts incorporate innovative techniques and theories to simulate 

solute transport in fluid flow. Merks et al.  (Merks, Hoekstra et al. 2002) demonstrated 

the utilization of a moment propagation method for modeling advection-diffusion in 

LBM. In this method, after each streaming and collision step, a scalar quantity is released 

in the lattice, part of which stays on the lattice while the remaining fraction is distributed 

over the neighboring nodes according to the probability that a carrier fluid particle moves 

after collision. Luo and Girimaji (Luo and Girimaji 2003) applied kinetic theory to derive 

a two-fluid LBM for binary mixture, in which mutual collisions and self-collisions are 

treated independently, such that both miscible and immiscible fluids can be simulated by 

sampling the sign of the mutual-collision term. This model provides a thermodynamically 

consistent lattice Boltzmann theory for simulating multi-component fluids. 

While most research efforts assume isotropic dispersion processes, Zhang and 

coworkers (Zhang, Bengough et al. 2002) presented a LBM for two-dimensional 

advection and anisotropic dispersion processes, where an anisotropic dispersion 

coefficient is derived through utilizing a directionally dependent relaxation time. The 

method was later extended to solve three-dimensional solute transport problem in 

variably saturated porous media (Zhang, Bengough et al. 2003) .  

2.5.6.2 Solute Transport with Reaction in the Bulk Fluid 

 Shortly after the appearance of LBM hydrodynamic models, Kingdon and 

Schofield (Kingdon and Schofield 1992) formulated the first lattice Boltzmann model for 
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chemical reaction in a flow system. In this model, solute is assumed to be sufficiently 

dilute such that advection is primarily due to bulk fluid flow. The diffusion of solute is 

controlled by the relaxation of the distribution function to the corresponding equilibrium 

status. The chemical reaction was incorporated by adding a source term in the lattice 

Boltzmann equation. In a similar manner, Dawson et al.  (Dawson, Chen et al. 1993) 

proposed a LBM for reaction-diffusion advected by velocities governed by the Navier-

Stokes equation. The collision term in this model was defined by a summation of a 

reactive term and a non-reactive term, where a BGK collision term is employed for the 

non-reactive term, and the reactive collision term is associated with the reaction 

processes under consideration. Dawson’s model has been applied to simulate so called 

Turing instability (Chen, Dawson et al. 1995) phenomenon described by Sel’kov model. 

Qian and Orszag (Qian and Orszag 1995) developed another LBM to simulate diffusion 

driven system with an irreversible reaction A+B C, where the general reaction-diffusion 

equation is derived under the assumption of local diffusive equilibrium. Compared with 

asymptotic analysis results and a cellular automaton model, Qian’s model is easier to 

apply when no analytic or asymptotic results exist, and is faster, simpler, and more 

accurate than a cellular automaton model. Utilizing LBM with 13 velocities on a two-

dimensional square lattice, Weimar and Boon (Weimar and Boon 1996) reported another 

LBM model for studying nonlinear reaction. As opposed to the common approach that 

uses the same velocity set for the reactants as for the fluid, this model adopted a smaller 

set of velocities, i.e., five velocities, for the reactive species. This model was successfully 

applied to study the effect of turbulent mixing on pattern formation in the Brusselator 

model.  
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2.5.6.3 Solute Transport with Reaction at the Solid-Liquid Interface 

As opposed to reaction in the bulk fluid, particular interests of some researchers 

focused on studying the coupled solute transport and chemical reactions at the solid 

liquid interfaces. Wells et al.  (Wells, Janecky et al. 1991) first studied chemical reactions 

including dissolution and precipitation at mineral surfaces. Allowing wall nodes to serve 

as sources or sinks for mass of a dissolved component, this lattice gas automata model 

simulates mass transfer rates as a function of the disequilibrium between fluid and 

mineral, represented by a mass transfer probability function. Dissolution processes are 

simulated by turning a wall node into a fluid node following a period of unsaturated 

conditions, while precipitation processes are reversed for a super-saturated condition. In 

2000, He et al.  (He, Li et al. 2000) extended Wells model to a LBM BGK formula, 

utilizing D2Q9 lattice models for both fluid flow and solute transport while assuming the 

mass transport of the solute has no effect on the fluid flow. Coupling the surface reaction 

with the diffusion between the wall and bulk fluid, the reaction kinetics were explicitly 

incorporated through boundary conditions. Here, boundary conditions are properly 

treated based upon the observation that, at a stationary wall, the non-equilibrium portion 

of the distribution function is proportional to the dot product of its microscopic velocity 

and the concentration gradient. Following application to convection-diffusion processes 

in channels with simple geometry, He’s model (He, Li et al. 2000) was extended to 

simulate the evolution of pore geometry due to dissolution by HCL in arbitrary 

geometries and with locally unsteady state reactions (Kang, Zhang et al. 2002). More 

recently, Kang et al.  (Kang, Zhang et al. 2003) further applied the model to explore the 
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effects of several dimensionless parameters (i.e., Peclet and Peclet-Damkohler numbers) 

on the coupled dissolution and precipitation processes in a simplified porous medium. 

 Meanwhile, it is worthy to mention another LBM model addressing reaction on 

solid wall surfaces, developed by Zhang and Ren (Zhang and Ren 2003). This model 

simulates one-dimensional vertical leaching processes. A five-direction LBM model, 

including two horizontal directions, two vertical directions, and a static direction is 

vertically bounded by two reactive walls, where the reactions at the walls are assumed to 

take place at two different rates. The solutes in solution and on the wall are in instant 

equilibrium on the fast wall; while a first-order kinetic reaction rate was applied to the 

mass transfer between the solutes in solution on the slow wall. The leaching of atrazine 

through soil columns was simulated based upon the experimentally-derived parameters, 

and the results of this LBM model agree well with the measured breakthrough curves and 

a non-equilibrium two site convection-dispersion model. 

 

2.6 Summary 

The background and theories presented in this chapter provide insight into current 

state-of-the-art research efforts to identify mass transfer processes mechanisms and 

modeling strategies. Mechanisms identifying rate-limiting mass transfer processes 

contributing to observed contaminant slow sorption and subsequent hysteretic desorption 

have been extensively studied in the past thirty years. Meanwhile, modeling strategies 

have evolved to better capture sorption and transport related nonequilibrium. However, 

few of these studies address the contribution of pore scale configurations and advection 

patterns on the identified rate-limiting mass transfer processes. The primary reason for 
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the lack of research in this area derives from the intrinsic complexity of using traditional 

CFD methods to model groundwater flow and its integration with the myriad mass 

transfer processes occurring in the heterogeneous porous media of subsurface systems. 

Employment of new modeling methods for groundwater flow and mass transfer, i.e., 

LBM, and adapting it to this specific research need, for example, combining LBM with 

traditional numerical methods, may provide a promising technique to better predict fluid 

flow in subsurface environments. On the other hand, LBM-based approaches have been 

extended to numerous mass transfer processes, including both pure diffusion processes 

and diffusion-advection processes. Capture of the influences of rate-limiting mass 

transfer processes at the particle scale, however, presents several challenges in 

identifying proper solid-liquid boundary conditions, and proper relationships between 

macroscale non-linear sorption parameters and microscale parameters. 
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CHAPTER III 

 

DEVELOPMENT OF A WEB-BASED MASS TRANSFER PROCESSES 
LABORATORY 

  

3.1 Introduction     

This chapter begins with a brief literature review of engineering education 

learning theories, followed with a discussion of Web-based education. Section 3.4 

presents strategies for incorporating mass transfer processes research into Web-based 

education in terms of Kolb’s Learning Cycle. Section 3.5 provides a detailed description 

of a Web-based mass transfer processes virtual laboratory (MTVLab), including its 

conceptual model, mathematical models, input/output interfaces, and the Help and 

tutorial module. Section 3.6 depicts the technical details of the system architecture of 

MTVLab. This Chapter concludes with a summary and identification of needs for future 

work. 

 

3.2  Learning theory and the importance of the laboratory in engineering 
education 
Behaviorism, cognitivism, and constructivism represent three fundamental 

theories of learning processes (Good and Brophy 1990). Behaviorism theory concentrates 

on observable behavior, and stresses that learning occurs when a correct response is 

demonstrated following a specific environmental stimulus. The behavioral instructional 

approach is especially effective in facilitating the learning of introductory-level topics. 

Describing knowledge acquisition as a mental activity rather than a straight stimulus-

response, cognitivism theory views the student as an active participant in the learning 
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process, and recognizes that meaningful and well-organized information is easier to learn 

and remember. Cognitive education strategies work well in teaching environments 

associated with strong cognitive emphases, such as analytic reasoning and algorithmic 

problem solving.  Constructivism theory suggests that learning is an active process of 

constructing a personal interpretation of the world, where learning should take place in 

realistic settings. Constructivist strategies are especially well-suited for advanced or 

expertise-level knowledge acquisition, such as advanced chemical mass transfer 

processes, where the student is required to make intelligent decisions within the learning 

environment.  

Constructivism views the learning process as a progression of activities consisting 

of four separate stages: (i) having an experience; (ii) reviewing the experience; (iii) 

drawing conclusions from the experience, and (iv) taking an action to confirm the 

conclusion or generation of a new experience (Gillett 2001). The aims of constructivist 

strategies are often synonymous with the aims of engineering education, which demands 

not only the development of the abilities to accept, evaluate, or use information, but also 

development of skills in identifying, defining, and problem solving (Kolari and Savander-

Ranne 2000). Following constructivist theory, engineering education can activate and 

encourage learners to work and learn in new and complex engineering surroundings, both 

independently and in teams. 

Laboratory experiences, which imitate the uncertainty and complexity of 

authentic life practices, are essential elements in constructivism education (Wang, Laffey 

et al. 2001), and thus engineering education. Several studies (Su and Huang 1999; Kolari 

and Savander-Ranne 2000) suggest that laboratory experiences can achieve positive 
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influences on learning skills, understanding concepts, cognitive abilities, and attitudes. 

For example, Su and Huang (Su and Huang 1999) illustrated that the quality of the 

laboratory environment, and the frequency of the laboratory experience, can account for 

10% to 24% of students’ attitudes toward science, and 5% to 27% of students’ academic 

achievements in science subjects. Besides improving students’ understanding of theories 

and principles, laboratory teaching can promote engineering awareness (England and 

Field 1989; Abu-Khalaf 1998), improve their ability to diagnose and correct unacceptable 

process performance (Myers 1994), and perform economic evaluations (Langrish and 

Davies 1995). 

Several types of laboratory experiences are active in engineering education today. 

Demonstration experiments, as a first-level laboratory experience, provide students the 

opportunity to observe particular phenomena in a classroom setting as a means to link 

theory with practice. A second-level laboratory experience can be derived from the 

analysis of data collected during an in-class demonstration.  Third-level laboratory 

experiences include experiments carried out by the students under close supervision, 

while fourth-level experiences may include open-ended labwork. Strongly-guided 

labwork is beneficial in developing students’ experimental skills, while open-ended 

labwork, where students have autonomy in making experimental protocol decisions, not 

only enhance experimental skills, but also assist students in developing independent 

scientific thinking.  

In recent years, a great deal of effort has focused on the integration of new 

technologies such as multimedia video, audio, and animation, and computers, with 

associated software, into the laboratory experience. These new technologies are used for 
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data collection (Ko, Chen et al. 2000), model building and interactive demonstration 

(Shin and Yoon 2000; Shin, Yoon et al. 2002), analysis and graphical representation of 

data (Iskander 2002), and for combinations of these technologies (Sere, Leach et al. 

1998).  A comprehensive survey on the current practice in laboratory education by Sere 

et al. (Sere, Leach et al. 1998) suggests that use of new technologies for model building 

during labwork stimulates students to think more about the conceptual background of a 

specific lab situation than most other contexts of labwork. Recent advances in the use of 

the Internet in educational settings suggest that laboratories conducted through use of the 

World Wide Web (hereinafter referred to as ‘the Web’) may provide increased 

opportunities for laboratory experiences (Chu 1999). 

 

3.3 Web-Based Education 

 

3.3.1 Web-Based Education Overview 

Web-based education possesses many advantages for engineering educators over 

other instructional approaches, including use of individual software packages 

(Brusilovsky, Eklund et al. 1998; Goeller 1998; Kerrey and Isakson 2000; Kirschner and 

Paas 2001; Iskander 2002). First, Web-based instruction presents information in a non-

linear style, allowing students to explore new information via browsing and cross-

referencing activities.  In such a constructivist, Web-based environment, students are 

provided more freedom to develop their own metacognitive strategies based on individual 

backgrounds and experiences (Good and Brophy 1990). Second, Web-based teaching 

supports active learning processes emphasized by constructivist theory. In a Web-based 
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modeling system, vis-à-vis reading, students possess the ability to interactively adjust the 

parameters of a system, which can then be evaluated and displayed in real time. Instead 

of passively accepting information, students take an active role in the learning process, 

and knowledge acquisition can be achieved in a more interesting and meaningful way. A 

third feature of Web-based education is enhanced understanding through improved 

visualization. Visual learning is the preferred mode for engineering students (Wankat and 

Oreovicz 1993), and Web-based tools that can provide clear, colorful, and interesting 

images can lead to improved degrees of understanding.  A fourth advantage of Web-

based education is its convenience. Access to the Internet enables education to occur at 

anyplace, at anytime (Kerrey and Isakson 2000). Through Web-based systems, students 

are provided the opportunity to study at a location they want, and at a time they like. 

Creating a learning environment that can accommodate individual schedules can thus 

improve the rate of learning, especially for well-prepared, senior or graduate level 

students (Whelan 1997; Brusilovsky, Eklund et al. 1998). 

 

3.3.2 Categories of Web-Based Education Tools 

Several categories of Web-based educational tools have been developed, 

including Web-based instruction systems, intelligent tutoring systems, virtual 

laboratories, and Web-based modeling systems.  

3.3.2.1 Web-Based Instruction System 

Web-based instruction systems represent a developing branch of computer-aided 

instruction (CAI). This type of instruction emphasizes the use of the Web for transfer of 

educational information, and it may be considered as a replacement or a supplement to 
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traditional delivery methods of lectures and textbooks.  Example information that may be 

distributed through this venue includes course instructional material, example problems, 

figures, questions, and exams.  HyperText Markup Language (HTML) and JavaScript 

often provide the foundation of such systems (Crown 1999; Crown 2001), and, on 

occasion, database technology is employed (Chu 1999). An online homework system 

developed by Nakavachara (Nakavachara 2001), which makes use of ColdFusion 

(Macromedia, San Francisco, California) for database connection, and MATLAB (The 

MathWorks, Inc., Natick, Massachusetts) as a computational engine,  provides a good 

example of Web-based instruction. 

3.3.2.2 Intelligent Tutoring System 

Intelligent tutoring systems (ITS) use artificial intelligence techniques to 

formulate models of an expert’s knowledge and that of a student’s knowledge, and then 

intervenes with tutorial advice when differences between the two models become evident 

(Roschelle, Kaput et al. 1998). ITS can alter instruction content and rate based on real-

time tracking and evaluation of students’ needs and knowledge levels, which often need 

to be fulfilled by employing advanced artificial intelligence techniques. Most Web-based 

ITS utilize short questionnaires or quizzes implemented with HTML forms and common 

gateway interface (CGI) programs to determine a student’s knowledge level (Roschelle, 

Kaput et al. 1998; Shin, Yoon et al. 2002). One such system is designed to assign 

students knowledge-level appropriate chemical engineering laboratory sessions based on 

the record of student performances in prior laboratories and exams (Shin, Yoon et al. 

2002). Recently, multimedia, in the form of video and audio, were incorporated into a 

Web based ITS as a means to improve the rate of learning (Stern and Woolf 2000).  
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3.3.2.3 Virtual Laboratory 

Virtual laboratories emphasize the creation of an interactive, multi-dimensional 

visualization of a laboratory environment, with some possessing the ability to remotely 

control actual instruments (Roschelle, Kaput et al. 1998; Book, Koeppen et al. 2002). 

While numerous examples of virtual laboratories exist (Mosterman, Dorlandt et al. 1994), 

most virtual laboratory systems use general sever/client models as a basis for their system 

architecture, with specific elements of the architecture customized to meet demands of 

the particular application.  Virtual Reality Modeling Language (VRML) is also widely 

employed (Dong and Zhu 2002; Shin 2002) in most systems due to the extensive use of 

advanced graphics and multimedia technology, including three-dimensional animation, 

sound, and artificial sensory devices. Ko’s (Ko, Chen et al. 2000) system may represent a 

typical example, where a double client-server structure is implemented by using 

JavaScript and HTML for the graphic interface on the client side, Laboratory Virtual 

Instrument Engineering Workbench (LabVIEW, National Instruments, Baltimore, 

Maryland) for local instrument control, inetCAM (Inetcam, Inc., San Diego, California) 

as a video server, and Common Gateway Interface (CGI) for communication between the 

client and Web server. Other technologies and components, including Java Input-Output 

Application Programming Interfaces (API), Java Applet, Java Database Connectivity 

(JDBC), Java Servlet, and Microsoft Access database (Microsoft Corporation, Redmond, 

Washington), are also used in virtual laboratories (Book, Koeppen et al. 2002).  

3.3.2.4 Web-Based Modeling System 

Web-based modeling systems can be useful tools to assist teaching of high-level, 

complex engineering principles in a stimulating manner (Kerrey and Isakson 2000). Like 
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ITS and virtual laboratories, these systems typically use interactive interfaces to guide 

students through the learning process, but as important, they also possess great 

computational capacity. With this added computational element, these systems often 

possess the potential of expanding from the role of an educational tool to that of a 

research tool. Example applications of Web-based modeling systems include simulating 

livestock grazing effects on pastures (Mohtar, Zhai et al. 2000), teaching modules for 

internal combustion engines to edify fundamental thermodynamic and heat transfer 

concepts (Kirkpatrick, Lee et al. 1997), simulation engines for custom project 

management education (Marin 2000) and fluid mechanics and aerodynamics (Higuchi 

2001), and a gas turbine simulator that provides an interactive graphical environment for 

rapid and efficient analysis of user-defined gas turbine systems (Reed and Afjeh 1998).   

Combining high-level computation capacity with Web-based user-friendly 

features, however, greatly increases the technical challenges of employing such systems 

across the Internet. Some of these challenges arise from a need to interface several 

aspects of the overall Web-based model, including high-level computer languages that 

drive the numerical models, databases to collect input and output data, graphics and 

possibly spreadsheet packages to generate model outputs, and interfaces to communicate 

with users’ browsers.  Other challenges arise from recognizing that not all Web browsers 

support the same computer languages, and the need for computational efficiency, since 

many of the models involve complex calculations.  In an effort to overcome these 

challenges, most of the aforementioned example systems (Kirkpatrick, Lee et al. 1997; 

Reed and Afjeh 1998; Higuchi 2001) employ Java Applet as the dominant technology to 
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construct interactive graphical programs that are easily distributed across the Internet, and 

are then run on the user’s machine using Java (Reed and Afjeh 1998).   

While generally robust in its ability to overcome many of these challenges, Java 

Applet may be restrictive when examining its long-term applicability to Web-based 

models that are likely to grow considerably more complex, and address an ever-growing 

variety of problems.  For example, many simulation codes already exist in languages 

such as C/C++ or FORTRAN (FORmula TRANslation). Use of Java Applet requires 

considerable work to translate the existing numerical code to Java. A second restriction is 

related to speed of download and computational efficiency.  Java Applet often has large 

initial download overhead, making the appearance of the first page very slow.  Moreover, 

as an interpreted system, Java is typically an order of magnitude less computationally 

efficient relative to C (Eckel 2000).  A third concern is availability. If not present on their 

computer, first-time users may be required to download Java. Although free, the 

download process might be restricted by the computer ability of users, and may be 

prohibited in computer laboratories and public Internet bars. 

To improve the quality of Web-based education, enhancements to the variety of 

architectures available for Web-based modeling are required.  These enhancements must 

be able to address each of the aforementioned challenges, and yet remain flexible to 

address potential system modifications in the future.   

 

3.4 Mass Transfer Processes Research and Education 

The approaches used for teaching and conducting research into mass transfer 

processes often take differing paths; teaching usually involves formal lectures, 
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homework, modeling (usually analytical), and sometimes, but often not, actual wet 

laboratories.  Fundamental research of mass transfer processes usually incorporates state-

of-the-art experimental apparati coupled with state-of-the-art analytical or numerical 

modeling.  While students may be well-grounded in the fundamental theories of mass 

transfer processes after completion of coursework, they may not be as well prepared to 

transition to practicing engineering and conducting state-of-the-art research for several 

reasons, including: (i) inability to apply known concepts to new problems; (ii) inability or 

reluctance to construct numerical models; and (iii) unfamiliarity with wet-laboratory 

procedures.  While the latter problem can be easily overcome through relatively short 

train-up periods addressing laboratory procedures specific to a project, the former 

problems usually must be overcome through additional coursework and experience with 

understanding the sensitivity of mass transfer models to changes in model parameters 

through use of developed models.  Further, while traditional approaches to instruction 

have, and continue to be, effective in teaching mass transfer processes, recent studies 

suggest that exclusive use of this approach is not enough (Gillett 2001; Hyde and Karney 

2001; Koehn 2001).  An examination of learning processes may thus assist in identifying 

additional instructional techniques that can optimize the overall educational experience.  

In particular, Kolb (1984) provides an especially appealing description of the learning 

process that may be most applicable to science and engineering education. 

Kolb (Kolb 1984) portrays successful learning as a cyclical process between 

various stages of learning.  This cyclical process, defined as “The Kolb Learning Cycle,” 

involves four progressive, yet interrelated, stages: (1) concrete experience (CE); (2) 

active experimentation (AE); (3) reflective observation (RO); and (4) abstract 
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conceptualization (AC). In the CE stage, learners rely on senses to take in information.  

The information is then transformed into internal knowledge by carefully thinking, 

watching, and making decisions during the RO stage. Through logical analysis and 

systematic planning, learners are able to move to AC, where they think and learn 

concepts. During the AE stage, learning involves experimenting, and many other hands-

on activities.  Finally, learners return from active experimentation to concrete experience 

to complete the learning cycle; albeit with a very different level of understanding, 

accompanied by higher level learning and thinking skills (Egan 1997), such as critical 

thinking and problem solving skills.   

Depending too heavily on traditional forms of instruction, including formal 

lectures (RO) and homework (AE), may limit students’ exposure to one or two stages of 

the learning cycle, and thus confine their learning retention.  Engineering students prefer 

active processing (Anderson 1991), and thus will learn better if more active stages, i.e., 

concrete experiences, also are involved.   For example, studies of engineering students by 

Stice (Stice 1987) and Wankat and Oreovicz  (Wankat and Oreovicz 1993) suggest that 

learning retention of up to 90 percent is achieved when all four stages of the Kolb 

Learning Cycle are employed, while only 20 percent of the material is retained if only 

abstract conceptualization is used. 

Although originally conceptualized in terms of wet laboratories, the CE stage of 

the Kolb Learning Cycle also can be achieved by using new instructional techniques that 

employ advanced information technology such as computer-assisted teaching, 

multimedia-based instruction, and Web-based learning (Goeller 1998; Kerrey and 

Isakson 2000; Iskander 2002).  In each of these activities, students can actively explore 
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concepts, models and designs, and eventually enhance their problem solving skills. 

Review of numerous prior studies (Abbas and Al-Bastaki 2002) suggest that a 32% 

reduction in average instruction time may be realized through use of computer-based 

technology.   

Recent trends in mass transfer education also involve use of advanced 

technologies.  For example, Katz and co-workers (Katz, Weathers et al. 1997; Katz, 

Weathers et al. 1998) constructed a multimedia-based laboratory module for a 

contaminant fate and transport course, which includes interactive tutorials, instructional 

video, annotated spreadsheets, and simulations of field-scale transport.  Reardon 

(Reardon 2001) presents an example use of the Internet in mass transfer education 

through establishment of a course Web site, including on-line distribution of instructional 

material, example problems, figures, questions, and exams.   

In this study, we attempt to further the use of Web-based tools in mass transfer 

processes education and research through development of a user-friendly problem solving 

environment, where users are able to define, model, and compare and contrast certain 

mass transfer processes, all in the confines of one program.  MTVLab is an appealing 

Web-based system to assist in the instruction of mass transfer processes in a number of 

ways:  (1) it completes the Kolb Learning Cycle for mass transfer education by creating 

an active learning environments to explore, visualize, compare and contrast mass transfer 

processes; (2) it minimizes computational effort, and thus allows students to focus on 

developing problem solving strategies; and (3) it provides an opportunity for users to 

more easily explore highly nonlinear processes where no analytical solutions exist, thus 
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saving time in developing numerical models, and instead focusing efforts on improved 

understanding of mass transfer processes.   

The remaining portion of this chapter provides descriptions of each of the 

elements comprising MTVLab (Section 3.5) and the technical architecture of the system 

(Section 3.6). 

 

3.5 Mass Transfer Process Laboratory  

 

3.5.1 Overview 

 MTVLab is comprised of interactive user-friendly input interfaces, customizable 

output interfaces, illustrative Help and Tutorial sections, a relational database, and a finite 

element in space and finite difference in time numerical engine (Figure 3-1).  

 Upon access to the welcome page of MTVLab, each user can gain access to the 

Help and Tutorial modules to obtain detailed descriptions of each component of the 

program, as well as example applications described within the Case Studies section. First-

time users are invited to participate in the registration process.  Following registration, 

users can enter input interface pages, where they can define a modeling project, including 

reactor type, initial conditions, specific mass transfer process, and particle characteristics. 

Upon completion of the input component of the laboratory, users may run the numerical 

model representing their chosen reactor and particle characteristics by selecting the 

Execute button. Model simulation status and estimated time for completion are displayed 

continuously. Model output results, including concentration, mass uptake, and mass flux 
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data, are presented in tabular and graphical forms to users through use of Excel 

(Microsoft Corporation, Redmond, Washington) spreadsheets.   
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Figure 3-1.  General Information Flow within MTVLab. 

 

3.5.2 Conceptual Model 

MTVLab provides a virtual environment for users to model solute mass transfer 

into or out of spherical particles in two types of ideal reactors: a completely mixed flow 

reactor (CMFR) and a completely mixed batch reactor (CMBR). Figure 3-2 illustrates a 

conceptual model of MTVLab, where sorbate diffusion processes occur in spherical 

particles in a CMBR and a CMFR.  
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Figure 3-2.  MTVLab Conceptual Model. 
 

Currently, up to five different types of particles may be defined with each particle 

possessing specific properties including size, initial conditions (solid-phase and liquid-

phase concentrations), physical and chemical properties, and sorption/diffusion 

processes.  Up to five separate reactive domains are also allowed within each particle, 

where users can define different physical and chemical properties of each domain.  

Twelve types of complex mass transfer processes are available for modeling as 

listed in Table 3-1. Fickian and non-Fickian diffusion models are employed to represent 

nonequilibrium sorption processes, and linear and/or nonlinear sorption isotherms are 

utilized to account for equilibrium sorption. Further, based on recognized analogies 

between NOM and synthetic organic macromolecules, several well-developed synthetic 

organic macromolecule diffusion models, e.g. Case II diffusion and relaxation models, 

are employed to describe mass transfer processes in NOM.  
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Table 3-1.  Mass Transfer Processes Included in the Model. 
 

Fickian diffusion (no sorption) 

Fickian diffusion + Linear sorption 

Fickian diffusion + Langmuir sorption 

Fickian diffusion + Freundlich sorption 

Fickian diffusion + Polanyi sorption 

 

Fickian diffusion + Linear sorption + 
Langmuir sorption 

Fickian diffusion + Linear sorption + 
Langmuir sorption 1 + Langmuir sorption 2 

Fickian diffusion + Linear sorption + 
Freundlich sorption 

Fickian diffusion + Linear sorption + 
Polanyi sorption 

Case II Diffusion Relaxation Model 

 

3.5.3 Mathematical Models 

Mathematical models used to describe mass transfer processes in the subsurface 

environment enforce the law of conservation of mass allowing for diffusion, advection, 

interphase mass exchange, chemical reaction, and the presence of sources and sinks. In 

the special case involving aforementioned mass-transfer rate-limited processes, and for 

very small flow velocities, advection can be ignored.  A general mathematical model for 

mass transfer in a spherical particle can thus be reduced to (Crank 1975): 
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where: 

 r  = the spherical coordinate [L];  
C =  concentration of solute in the particle [M/L3 ]; 
De  = the effective diffusion coefficient [L2/T];  
εd = porosity of the diffusion domain [-];  
ρs =  solid phase density [M/L3]; 
S  = sorbed solute in the solid phase [M/MT]. 

Initial conditions, including initial concentration of solution in the reactor, and 

initial solid phase concentration in the particle, are defined by user input. Different 
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reaction domains within each particle may also possess different initial concentrations, 

effectively allowing for sorption, desorption, or combinations of sorption and desorption 

processes.  

Boundary conditions are determined based on selection of one of two types of 

ideal reactors, CMFR and CMBR. For both reactors, it is assumed that there is no mass 

transfer flux in the center of the particle. For CMFR, the liquid-phase concentration at the 

surface of the particle is set equal to a constant concentration of solute in the solution.  

For CMBR, the rate at which a sorbate leaves solution is set equal to the rate it enters the 

surface of the spherical particles, where the liquid-phase sorbate concentration at the 

surface of particles is assumed equal to the solution concentration. The boundary 

conditions for both CMFR and CMBR are summarized in Table 3-2.  

 

Table 3-2.  Boundary Conditions for CMFR and CMBR. Where R is the radius of a 
particle; C is the liquid phase concentration of a particle; De is the effective diffusion 

coefficient of a particle; Sp is the surface area of a particle; Ca is the constant 
solution concentration in CMFR; V is the volume of the solution; N is the number of 

particle included in the reaction. 
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Brief descriptions of the mathematical models for each mass transfer processes 

listed in Table 3-1 are provided in the following sections. 
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3.5.3.1 Fickian Diffusion (No sorption) 

If diffusing species possess low chemical activities (e.g., low partial pressures or 

low concentrations), Fick's First Law can be applied to explain the mass transfer process.  

Following equation could be used to describe this process: 
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where: 

  Da       =      apparent diffusivity coefficient [L2/T]; 
  R       =      the space coordinate in the particle [L]; and 

 t       =      time [T]. 

3.5.3.2 Fickian Diffusion + Linear Sorption 

The simplest case of sorption isotherm behavior is observed under conditions of 

linear distribution between sorbent and solute (sorbate) characterized by a linear 

isotherm. Employing Fickian diffusion to represent the nonequilibrium sorption process, 

and linear sorption accounting for equilibrium, following particle scale mass transfer 

model can be derived: 
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where:     
Kd = distribution coefficient [L3/M]; 
Dl =  free liquid diffusivity [L2/t] of the solute; 
τ       = tortuosity factor [-] 

3.5.3.3 Fickian Diffusion +Freundlich Sorption 

Sorption processes are often nonlinear functions of the aqueous phase 

concentration of the solute. In natural soils and sediments, a Freundlich isotherm model 

often describes nonlinear sorption processes very well (e.g., Huang and Weber, 1996; 
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Young and Weber, 1995.). Combining Fickian diffusion and Freundlich sorption 

processes yields the following model: 
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where: 
 Kf  =  Freundlich capacity coefficient [M/M][L3/M]n; and 

   n =  Freundlich sorption intensity exponent [-]. 

3.5.3.4 Fickian Diffusion +Langmuir Sorption 

Based on a homogeneous surface site energy assumption, a Langmuir sorption 

model may be employed. Combining Langmuir sorption with Fickian diffusion yields the 

following model: 
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where: 
 Q0 =  Langmuir capacity coefficient [M/M]; and 
            b =  Langmuir intensity coefficient [L3/M]. 

 

3.5.3.5 Fickian Diffusion +Polanyi Sorption 

Polanyi sorption theory could apply to any particulate matter with well-defined 

pore structure and with surfaces that are sufficiently nonpolar to allow natural organic 

chemicals to strongly out-compete water for the adsorption space (Xia and Ball 2000). 

Combining the following equations, we may obtain a model to describe Fickian diffusion 

coupled with Polanyi sorption: 
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where:   
R  =  ideal gas constant (cal/mol-K); 
T =  temperature (K)  
Qo =  adsorption volume capacity at saturation [L3/M]; 
Sw =  aqueous solubility [M/L3]; 
V  =  the bulk molar volume of the adsorbate at the temperature 

 of adsorption [L3/mol];  
a', b’ =  fitting parameters; and 
 ρ  =  solute density [M/L3].  

3.5.3.6  Fickian Diffusion +Linear Sorption + Langmuir Sorption (Dual-Mode Model) 

Although not widely used by itself in the environmental literature due to its 

assumption of homogeneous surface site energies (Weber, McGinley et al. 1992), the 

Langmuir model can be used in conjunction with other isotherm models to describe 

sorption of more heterogeneous systems. In a heterogeneous medium, non-linear sorption 

isotherms can be decomposed into a linear component that accounts for normal 

dissolution and a non-linear Langmuir-type component that accounts for immobilization 

of penetrant molecules at fixed sites within the medium (LeBoeuf and Weber 1997). 

Combining the Fickian diffusion and dual sorption theory, we obtain: 
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3.5.3.7 Fickian Diffusion +Linear Sorption + Langmuir Sorption 1 ,2 

The Distributed Reactivity Model developed by Weber and coworkers (Weber , 

McGinley et al. 1992; Young and Weber 1995; Weber and Huang 1996; Huang, Young 

et al. 1997; LeBoeuf and Weber 1997; Huang and Weber 1998) is based on the 

hypothesis that energetic differences among or within individual soil and sediment 

particles result in different combinations of linear and nonlinear contributions to overall 
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sorption. The two different Langmuir sorption models here represent two different 

energetic sites. The model, including a linear phase partitioning component and two 

Langmuir-type isotherm components, thus represent select cases of the Distributed 

Reactivity Model. Combining with the nonequilibrium Fickian diffusion process, we 

obtain: 
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3.5.3.8 Fickian Diffusion +Linear Sorption + Freundlich Sorption 

Freundlich sorption may be approximated as a summation of several distinct 

Langmuir-type (i.e., capacity-limited and relatively constant energy) nonlinear adsorption 

at different sites in a heterogeneous matrix (LeBoeuf 1998). Based on DRM theory, the 

nonlinear component of adsorption includes a set of multiple reactions involving different 

sites of different energy. A model combining linear sorption and Freundlich sorption is 

thus often applied to account for multiple sorption domains of different reactivity at the 

soil-sediment particle scale. Again, combining with Fickian diffusion process yields the 

following model: 
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3.5.3.9 Fickian Diffusion +Linear Sorption +Polanyi Sorption 

The sorption of non-polar and low-polar organic chemicals on natural sorbents 

can be interpreted as an additive combination of partitioning and adsorption (Xia and Ball 

2000). A model which can incorporate linear partitioning with Polanyi sorption is a two-
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domain model proposed to separately account for contributions from partition by 

ordinary organic matter and adsorption, or, more accurately, pore-filling, by fixed-pore 

carbonaceous adsorbents (Xia and Pignatello 2001). 
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3.5.3.10 Case II Diffusion 

The transport of organic molecules in glassy polymers often does not obey 

Fickian behavior. When the relaxation rate of individual macromolecular chains are much 

slower than the diffusion rate of the solute, Case II diffusion may be observed. It only 

occurs below a polymer glass transition temperature, and above certain concentrations of 

solute. Case II diffusion is characterized by linear kinetics and a sharp diffusion front, 

and it occurs in polymer penetrant systems in which the penetrant substantially swells the 

polymer (Thomas and Windle 1980; Thomas and Windle 1982).  Harmon proposed an 

equation for the total flux in terms of the sum of two fluxes; one Fickian diffusion and the 

other Case II transport (Harmon 1992):  
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Mass balance in spherical particle provides the following equation:  
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where: 
  v  =  constant velocity of Case II diffusion front [L/T]; 
            C  =  concentration of solute in the particle [M/L3]; and 
            D  =  apparent diffusivity coefficient [L2/T]. 
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3.5.3.11 Relaxation Model 

Both concentration-gradient-controlled diffusion and relaxation-controlled 

swelling contribute to the rate and the extent of penetrant sorption in glassy polymers. 

Diffusion processes ranging from ideal Fickian diffusion to Case II (relaxation or 

swelling controlled) sorption may be expected for a given penetrant/polymer system if a 

sufficient range of temperature and penetrant activity is traversed experimentally 

(Hopfenberg and Frisch 1969).  The sorption process is considered here as the linear 

superposition of phenomenological independent contributions from Fickian diffusion and 

polymeric relaxations: 

 RtFtt MMM ,, +=       (3-14) 

where:   
Mt = total mass uptake by the soil particle [M]; 

  Mt,F = mass uptake due to Fickian diffusion and adsorption [M]; 
  Mt,R = mass uptake due to relaxation process [M]. 

The relaxation process is assumed to be first order in the concentration difference 

(Berens 1978), which can be expressed as: 
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where:  
RM ,∞  = ultimate mass uptake due to relaxation [M]; and  

  kr = relaxation rate constant [1/T]. 

Thus, total mass uptake due to Fickian diffusion, adsorption and relaxation processes can 

be expressed as: 
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where:  
∞M  = total ultimate mass uptake [M]; 

  fd = mass uptake percentage due to diffusion and adsorption [-]. 
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3.5.4  Numerical Methods 

In a CMBR or CMFR, if the mixing intensity is high, transport of solute to the 

surface of the solid phase does not limit the sorption rate, and thus, the rate of change of 

mass in the solution phase can be set equal to the rate of solute mass change in the 

particle. Thus, the modeling task reduces to solving microscale mass transfer problems. 

Through establishment of a mass balance between the particles at every instant of time 

based on conservation of total system mass consisting of mass of solute in the solution 

and mass of solute within all of the particles, solution concentration can be derived for 

multiple particle cases. 

The mathematical model is solved through use of a discrete numerical scheme 

using hp-finite element in space and finite difference in time. Use of the hp-version of 

finite element method ensures that the non-smoothness of the response can be accounted 

for easily without the need to resort to upwind-mixed finite element technique to avoid 

spurious perturbations (Basu, Hsiao et al. 1993). Spatial discretization is accomplished 

using spherical shell elements, while temporal modeling is based on discretization using 

backward difference. The unknown function C(r,t) for an element is approximated by:  
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Here Cj are spatial constants but vary with time, Nj are shape functions which are 

integrals of Legendre polynomial in terms of the standard element coordinate -1 ≤ ζ ≤ 1. 

Using the weighted residual method and applying discretization, the following matrix 

equation is obtained for the system at the kth time step. 
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where: 



 95

[M]   =  matrix containing integrals of product of shape functions;  
[K]  =  matrix containing integrals of product of derivatives of 

shape functions;  
∆tk   =  kth time step;  
θ   =  temporal approximation parameter with value depending on 

 the scheme use;  
{C}k  =  approximation concentration at the kth time step. 

Non-linearity of physical parameters was accounted for through an iterative 

scheme. Implementations were accomplished in FORTRAN 90, where each of the 

aforementioned mass transfer processes cases was successfully modeled. For the simplest 

cases (i.e., Fickian diffusion without sorption, Fickian diffusion with linear sorption), 

analytical solutions are available for both CMFR and CMBR (Crank 1975). Figures 3-3 

and Figure 3-4 illustrate the similarity of results of the numerical solutions relative to the 

analytical solutions.  

 

 

Figure 3-3.  Uptake by a Sphere from a CMBR.  Numbers on curves 
represent the percentage of solute taken up by the particle at equilibrium. Solid 

lines represent analytical solutions, and points represent numerical solutions. 
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Figure 3-4.  Concentration Distributions at Various Times in a Sphere with Initial 

Concentration C1 and Surface Concentration C0.  Numbers on curves represent 
values of Dt/a2.  Lines represent analytical solutions, and points represent numerical 

solutions. 

 

3.5.5  The Mass Transfer Process Laboratory Website 

3.5.5.1 Welcome and Registration 

As shown in Figure 3-5, the Welcome page represents the gateway to MTVLab, 

through which users can access Help and Tutorial modules, the registration system, and 

Input and Output interfaces. Users can access the Help and Tutorial modules from the 

Welcome page by clicking on the large ‘Welcome’ picture.   First-time users will be led 

to the registration system, where they are required to complete information fields, 

including username, password, and contact information.  This information is used by 

MTVLab to uniquely identify each user within the system. Registered users may directly 

enter the MTVLab from the Welcome page. 
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Figure 3-5. An Example Welcome Page. 

 

3.5.5.2 Input Interface 

 A set of interactive input interface Web pages are logically presented to lead users 

through the simulation process. Input information includes project description, definition 

of the reactor configuration, determination of the number of particles in the system, 

selection of mass transfer processes, identification of the model parameters involved in 

the specific processes, locations and times of user-specified data collection points, and 

simulation period. 

Project Description. The Project Description page presents different formats for first-

time users and previously registered users. First-time users are prompted to open a new 

project by inputting the project name and description. A Project Description page 

containing information of the latest project entered is presented to previously registered 

users. Users can then choose to edit the existing project or open a new project. Users may 

also choose to view the results if the existing project simulation run is complete. An 

example Project Description page is provided in Figure 3-6. 
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Figure 3-6. An Example Page of Project Description. 

 

System Data Input. In this page, users define overall system information, including 

reactor type, the volume of solution within the reactor, initial solution concentration, the 

number of different types of particles, and simulation duration. An example system data 

input page is provided in Figure 3-7. 

 

 
Figure 3-7. An Example Page of System Data Input. 
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Particle Definition. An equivalent number of particles to that defined in the System Data 

Input page is displayed on this screen. Selection of a particular particle leads users to 

subsequent pages to define the mass transfer process and particle properties.  Colors of 

the displayed particles change from bright blue to pale blue upon completion of data 

entry for that particle.  An example page of particle definition is provided by Figure 3-8. 

 

 

Figure 3-8. An Example Page of Particle Definition. 
 

Diffusion Processes Definition. Corresponding to the particle selected in the previous 

page, users provide the particle radius, the number of shells (i.e., reaction domains), and 

the diffusion type. Users can choose one mass transfer process among the provided 

twelve mass transfer processes including linear and nonlinear sorption, and Fickian and 

nonFickian diffusion processes. An example page of diffusion processes definition is 

provided by Figure 3-9. 



 100

 
Figure 3-9. An Example Page of Diffusion Processes Definition. 

 

Defining Particle Properties. This page provides data entry fields for particles’ physical 

and chemical properties. This page is custom-formatted based on information provided in 

the previous page. For example, based on the number of defined shells for a particular 

particle, a corresponding picture is displayed to help users visualize its physical structure. 

Based on the diffusion type, corresponding model parameters are also shown in the input 

tables. For each particle, users first locate the position of each shell, then they input basic 
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properties for each shell, including initial solid phase concentration, porosity, tortuosity, 

and density. Finally, the required model parameters, e.g., diffusion coefficient, for the 

corresponding mass transfer process is provided by the user for each shell. Figure 3-10 

provides an example page of defining particle properties. 

 

 
Figure 3-10. An Example Page of Defining Particle Properties. 

 

User-Specified Output. Upon completion of all required input, users are afforded the 

opportunity to define spatial and temporal data collection points for each particle type for 

which they are interested in obtaining data. Upon project execution, model-specified and 

user-specified points are available as model output. An example of the user-specific 

output page is present in Figure 3-11. 
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Figure 3-11. An Example of User-Specified Output Page. 

 

Confirmation Page. Following completion of all input information, a confirmation page 

is displayed to allow users the opportunity to review all entered data.  If satisfied with 

their design, users may select the Submit button to start the numerical simulation process.  

Users may choose to reconstruct the input pages should they desire to make a change. A 

sample confirmation page is provided in Figure 3-12. 
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Figure 3-12. An Example Confirmation Page. 

 

Model Status. Once executed, the approximate time for model completion is displayed on 

the screen. Users may select the model status button to update the modeling status. 

During this time, users may choose either to wait for the results on-line, or close the Web 

browser and return at a later time to retrieve results.  Upon completion of a simulation 

run, users are able to access the output interface by selecting the Show Results button. 

Figure 3-13 provides an example model status page. 
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Figure 3-13. An Example Model Status Page. 

 

3.5.5.3 Output Interface 

The MTVLab output module possesses three objectives: (1) provide sufficient 

information without overwhelming users with excessive data; (2) present information in a 

customizable manner; and (3) provide a meaningful visualization of model output data. 

To achieve these objectives, MTVLab embeds Excel spreadsheets into the Web page, and 

groups the results in terms of graphs and data tables. Data tables provide detailed results 

from the numerical modeling process, and can be copied, pasted, or exported directly 

from the on-line Excel table to local Excel files by clicking on a single button. Graphical 

outputs provide informative displays of output data as line, radar, or pie graphs. The 

MTVLab output system is very flexible in that data information can be displayed for a 

particular particle, shell, and location in the particle (when applicable), and for more than 

one hundred time points by interactively changing data collection locations and times. 

Further, the output interface is presented in such a way so as to present an overall 

summary of modeling results that is integrated with detailed results for each particle. 
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General Results Summary. Access to the output portion of MTVLab generates a report 

summarizing results of the simulation.  Information displayed includes (1) summarized 

project description, including project name, reactor type, the number of particles, and 

simulation duration; (2) solution and liquid phase concentrations in the middle of shells 

for each particle; and (3) particle mass uptake represented by color-coded bars 

corresponding to referenced concentrations displayed along a time axis from the 

beginning of the simulation to its completion.  Selecting the corresponding hot button 

leads users to detailed Concentration, Mass Uptake and Mass Flux results pages.  Figure 

3-14 provides an example of General Results Page. 

 

 
Figure 3-14. An Example of General Results Page. 
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Concentration Results Output. Detailed concentration results, including liquid phase 

concentration and solid phase concentration, are provided for each particle type as spatial 

concentration profile graphs, concentration versus time graphs, and comprehensive 

concentration data tables. Figure 3-15 presents the concentration output menu. 

 

 
Figure 3-15.  Example Concentration Output Menu. 
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In the menu, the Concentration Profile Overview section presents a concentration vs. 

radial line graph that provides visual display of the spatial change of solute concentration 

at five specific time points.  Users can then select to display a concentration profile line 

graph or radial graph at more than one hundred additional time points. Users may also 

display a concentration vs. time line graph for user-defined spatial locations in each 

particle type at more than one hundred time points.  In addition, concentration output data 

for fifty equally-spaced locations and all user-defined locations at more than two hundred 

time points are summarized in a tabulated Excel spreadsheet.  Concentration data for 

standard output locations including particle center, particle surface, the center of all the 

shells, and user-defined locations are also presented in a separate concentration overview 

table. Figure 3-16 provides an example concentration profile output presented by a radar 

graph. 

 

 
Figure 3-16.  An Example Concentration Profile Output Presented by a Radar 

Graph. 



 108

Mass Uptake Results Output. Detailed mass uptake results, including liquid phase mass 

uptake, solid phase mass uptake, and total mass uptake, are presented as mass uptake 

versus time graphs, relative mass uptake percentage pie graphs, and comprehensive mass 

uptake data tables at both the particle-level and shell-level for each type of particle in the 

system. Mass uptake for particles or for shells in a designated particle is displayed as 

mass uptake vs. time line graphs. Pie graphs illustrate the relative mass uptake 

percentages among the particles in the system or among the shells in a designated particle 

at more than one hundred time points. A particle mass uptake table summarizes tabular 

information for each particle, while a shell-level mass uptake table summarizes mass 

uptake results for a designated particle.  Figure 3-17 provides an example of mass uptake 

percentage output in the format of pie graph. 

 

 
Figure 3-17.  An Example Mass Uptake Output Presented by a Pie Graph. 
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Mass Flux Results Output. A mass flux profile for a designated particle is presented by a 

mass flux vs. radial line graph, and a mass flux vs. time line graph is presented at user-

defined locations in the particle for more than one hundred time points. Similar to that 

provided for Concentration output, a mass flux table and a detailed mass flux data table 

are used to summarize the mass flux data at more than two hundred time points for more 

than fifty standard and user-defined locations in the particle. Figure 3-18 is an example 

mass flux output presented by a line graph. 

 

 
Figure 3-18.  An Example Mass Flux Output Presented by a Line Graph. 

 

3.5.5.4 Tutorial and Help Modules 

 Successful use of MTVLab requires users to possess the ability to not only 

understand the basic principles behind mass transfer processes, but also the aptitude to 
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navigate the MTVLab Web site. MTVLab Tutorial and Help modules are designed to 

highlight basic mass transfer-related principles and theories, orient users with the purpose 

and structure of the laboratory, and to provide step-by-step instructions for full laboratory 

utilization. Figure 3-19 illustrates the help and tutorial page of MTVLab. 

 

 
Figure 3-19.  MTVLab Help and Tutorial Modules. 

 

Help Module.  The Help module provides descriptions of the MTVLab framework, 

including purpose and motivation for development of the laboratory, conceptual model 

employed, and mathematical and numerical models used. In addition, MTVLab Help 

provides an overview of basic theories, governing equations, and application areas of 

each of the twelve mass transfer processes used in MTVLab (Table 3-1).  

Tutorial. The Tutorial module includes operating instructions, explanations of input 

parameters, and illustrations of relevant mass transfer theories. Should users have a 

question on a particular entry they may click on the Help button located at the upper right 



 111

corner of each Web page.  The user is then directed to a tutorial page, which presents an 

image of the Web page of the initial query. The user is then instructed to click on the 

location where the difficulty was encountered (e.g., number of shells in a particle), 

wherein the tutorial provides detailed explanations of corresponding operations. Another 

function of the Tutorial module is the provision of links from the current screen to related 

background information.  For example, when inputting parameters for a certain diffusion 

type, it is very common for users to be unfamiliar with the definition of particular model 

parameters. Selecting respective tutorial topics lead users to corresponding background 

information, where a specific diffusion process is explained in detail, and the parameters’ 

meanings are discussed. 

Case Studies.  Many meaningful, solved problems are included in the Case Studies 

module of MTVLAB in an effort to provide an in-depth illustration of diffusion and 

sorption behavior under numerous initial conditions, boundary conditions, particle 

characteristics, and diffusion and sorption methods.  Case Study 1 examines how the 

numerical solutions developed in the finite-element and finite-difference-based numerical 

model used in this laboratory compare to available analytical solutions.  Case Study 2 

evaluates the differences in rates of mass uptake or release realized by particles subjected 

to two different reactor conditions:  CMFR and CMBR.  Case Study 3 explores the effect 

of particle size under three different scenarios.  Case Study 4 examines the influence of 

varying sorption isotherm parameters on diffusion-limited mass transfer.  Case Study 5 

examines several examples of how differing shell properties can influence the diffusion 

process.    
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3.5.6  Example Applications 

3.5.6.1 Background 

 As previously discussed, the overarching goal of MTVLab is to provide a user-

friendly, Web-based environment for students and research professionals to more fully 

understand and evaluate a number of mass-transfer processes. Currently, MTVLab is 

undergoing further development to incorporate additional particle shapes (i.e., cylinders 

and slabs) and non-well-mixed systems, including the use of a lattice Boltzmann method 

to determine velocity profiles within user-defined reactor domains (e.g., users can define 

the pore structure or particle size distribution of particles within a fixed-bed reactor).  

Further, MTVLab is undergoing further validation and development in environmental 

engineering courses at Vanderbilt University.  The following discussion provides an 

example of how MTVLab may be employed in a graduate-level course (in this case, 

ENVE 270, Environmental Thermodynamics, Kinetics and Mass Transfer at Vanderbilt 

University). 

 ENVE 270 addresses fundamental environmental processes while providing 

necessary tools to solve a broad range of environmental problems including equilibrium 

phenomena, process dynamics, and mass transfer processes. MTVLab is introduced in the 

course as part of an in-class tutorial following traditional instruction in sorption and 

diffusion processes.  Situated in a computer laboratory, students become familiar with the 

program through an instructor-led tour of the Help and Tutorial modules of MTVLab.  

Following the initial tour, students are led through a hands-on demonstration of the use of 

the program to solve a relatively simple mass transfer problem.  After demonstrating their 

ability to understand and use the program, the students are provided opportunities to 
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solve additional problems and case studies using MTVLab.  Part of the learning value of 

this effort stems from the use of previously solved homework problems as part of their 

new assignment, where students can compare their previous analytical solutions with the 

numerical solutions from MTVLab.  Further, students are able to solve much more 

complex problems previously unsolvable using analytical techniques, thus promoting 

their critical thinking and problem solving skills. Following is an example application of 

the use of MTVLab in solving an advanced mass transfer processes problem.    

3.5.6.2 Example Application 

 Clean spherical particles (radius, r = 1 mm; diffusion coefficient, D = 6.0e-7 

mm2/s; porosity, ε = 50%; tortuosity, τ = 1.2; density, ρ = 1.35g/cm3; partitioning 

coefficient, Kd = 1.0 cm3/g) of mass 1.0 kg are dropped into a pond of water (V = 

1,760,839 mm3) contaminated with an organic chemical (e.g., trichloroethylene (TCE)) at 

a concentration of 1 mg/l. Assuming that the pond is well-mixed allows one to assume 

that each of the particles may be assigned an equivalent volume of 10 mm3 {equivalent 

volume for each particle = [No. of Particles]/[Total Reactor Volume] = [((1.0 kg)(1000 

g/kg)(1 particle/(4/3π(0.1 cm)3))/((1.35 g/cm3))]/[ 1,760,839 mm3] = (176,839 

Particles)/(1,760,839 mm3) = 1 Particle/10 mm3}.  Scenarios: (i) Assuming that TCE will 

diffuse into the spherical particles, and the diffusion process will be Fickian with linear 

sorption, what is the equilibrium concentration of TCE in the particle if the pond is 

modeled as a CMBR vis’-a-vis’ a CMFR (with contaminated water flowing into the 

pond)?  (ii) What is the TCE concentration in the particle if, following attainment of 

equilibrium described in scenario (i), clean water replaces the contaminated water in each 

of the reactors?   
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Step 1:  Problem Identification 

 Users examine the given information to identify that two separate MTVLab 

simulations are required to answer the first question associated with scenario (i) 

concerning sorption processes: one for the CMFR, and one for the CMBR.  Following 

attainment of equilibrium within the two reactors, two additional simulations are required 

to model the desorption processes based on an initial particle concentration derived from 

the sorption equilibrium concentration obtained in scenario (i). 

Step 2:  Model Definition and Simulation 

Here, users define the model to simulate by specifying initial and boundary 

conditions, and corresponding parameter values. Using the input wizard interfaces of 

MTVLab, users select the appropriate reactor configuration, sorption type, and diffusion 

type based on information derived from the problem statement and Step 1.  Upon 

completion of data input, users select the “calculation” button to perform the numerical 

simulation. Table 3-3 summarizes model parameters for each of the four simulations 

required in this application.  

 

Table 3-3.  Parameters for MTVLab Example Applications. 

Example Name Reactor Type Initial Solution 
Concentration (mg/l) 

Particle Solid Phase Initial 
concentration (mg/kg) 

Project 1 CMFR 1.0 0.00 

Project 2 CMBR 1.0 0.00 

Project 3 CMFR 0.0 1.00 

Project 4 CMBR 0.0 0.67 

 



 115

Step 3.  Examination of Results.   

Upon completion of the simulation, users have the opportunity to explore and 

analyze the results based on the given output formats; e.g,. data tables and graphs, or they 

may choose to download the data within Excel spreadsheets to analyze and display the 

data in their own preferred format. Figures 3-20 and 3-21 summarize the MTVLab 

Concentration Profile Overview line graphs for simulations 1 and 3 (CMBR), and 

simulations 2 and 4 (CMFR), respectively.  By defining user-specified time points, users 

may also view the changes of concentration profiles during the sorption/desorption 

process in colorful radar graphs, as illustrated in Figure 3-22.   

Step 4. Problem Generalization. 

MTVLab provides a convenient environment for users to compare different 

conditions in a particular scenario or contrast different scenarios; thus allowing users to 

make connections, generalize results, and develop critical thinking skills.  In the 

aforementioned application, users are able to examine the differences in concentration 

profile and mass uptake achieved by a CMBR relative to a CMFR. Users may also use 

MTVLab to model the same scenarios, but with different sorption or diffusion types, or 

different particle types and sizes, so that they can derive a better understanding of the 

effects of differing particle properties on overall mass transfer processes.  Innumerous 

other scenarios may also be created by using MTVLab, providing an opportunity for 

comparing and contrasting results, while improving users’ critical thinking ability, and at 

the same time significantly reducing the time required to setup and solve similar 

problems using analytical solutions (when available), or numerical models when 

analytical solutions are not obtainable. 
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Figure 3-20.  Particle Sorption and Desorption Processes in a CMFR. 

 

 
Figure 3-21.  Particle Sorption and Desorption Processes in a CMBR. 
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Figure 3-22. A Comparison of Particle Concentration Profiles During Sorption and  
Desorption Processes for a CMFR and a CMBR. 

 

3.6 Mass Transfer Process Laboratory System Architecture 

 

3.6.1   Architecture Overview 

The Model-View-Controller (MVC) design model serves as the basis for the 

system architecture of MTVLab. The objective of MVC is to separate the input and 

output interfaces and the modeling portion of the program into three different 



 118

components: the “Model”, the “View”, and the “Controller”. In the MTVLab application, 

the “Model” includes several server-resident applications, including the numerical model 

and a database. Common Object Request Broker Architecture (CORBA) serves as a 

communication protocol. The “View” displays and retrieves information from the user, 

including interfaces that graphically display model data to the user. The “Controller”, 

through use of the Java Server Pages (JSP) and Java Beans, interprets mouse and 

keyboard inputs from the user to make appropriate changes to the “Model” and “View”. 

The advantage of the MVC paradigm is that it effectively limits and defines the 

interaction between interface components and underlying problem-domain classes. 

Relative to the aforementioned web-based model systems, the MTVLab system 

architecture is especially appealing for a number of reasons:  (i) it supports various 

programming languages and also supports the mixing of these languages allowing the use 

of the most appropriate one for a given task; (ii) it allows for the exectution of the 

numerical engine and the web server on different computers by employing CORBA 

technology; (iii) it accepts different database management systems by using Open 

Database Connectivity (ODBC); and (iv) it provides downloadable, well-organized, 

highly-visual, and easily edited output through use of a popular spreadsheet program 

(Excel, Microsoft Office Web Components, Version 9.0.0.2710). Figure 3-23 provides a 

general illustration of the MVC architecture employed in this laboratory. 
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Figure 3-23. Mass Transfer Processes Virtual Laboratory System 
Architecture. 

 

Briefly, the MVC architecture of MTVLab was developed as follows:  the finite-

element- and finite-difference-based numerical engine used in MTVLab was developed 

in C++ and FORTRAN for use on the server, while interactive input/output interfaces 

were constructed with Hypertext Markup Language (HTML), JavaScript and JSP. In 

MPTL, users input data via Internet Explorer (Microsoft Corporation, Redmond, 

Washington). The web server accepts the data using JSP, which creates Java Beans to 

hold and manage the information. JSP and the Java Beans handle the transmission and 

storage of the information in the database, thereby building a simulation request. When 

the simulation request is complete and valid, users use Internet Explorer to initiate the 

execution of the simulation request. CORBA functions as a bridge to pass the simulation 

request from the JSP and Java Beans to the numerical engine to begin the simulation 

process. The numerical engine obtains the input data and parameters from the simulation 

request and the database via ODBC. During the simulation, the numerical engine 
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provides program output to the database, again using ODBC. Simulation results, in the 

form of tables and graphs, are then generated from data retrieved from the database using 

JSP and Java Beans and displayed through Excel. This information is summarized in a 

detailed flowchart provided in Figure 3-24. 

 

3.6. 2 Architecture Specifications  

A number of software development tools were utilized in the development of this 

program.  This section describes these components in detail, including descriptions of 

why a particular tool was selected, how it was used, and, in the case of particular 

software packages, how the software was interfaced with other software.   

3.6.2.1 Web Server  

 A web server acts as a gateway for users’ browsers (e.g., Internet Explorer) to 

access the laboratory model. A number of web sever software programs are available, 

including Microsoft Internet Information Server (Microsoft Corporation, Redmond, 

Washington), Apache web server (The Apache Software Foundation, Wilmington, 

Delaware), and IBM WebSphere (IBM Corporation, Armonk, New York). Because 

MTVLab employs a JSP environment with Windows 2000 (Microsoft Corporation, 

Redmond, Washington) system software, the web server must be capable of delivering 

JSP.  In this case, Tomcat (The Apache Software Foundation, Wilmington, Delaware, 

Version 3.2.3) was employed as the web server software since, unlike other servers, 

Tomcat delivers on both JSP and Servlets (http://java.sun.com/products/jsp/tomcat/), and 

is a very good server for developing and testing JavaSever Pages (Bergsten 2001).   
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Figure 3-24. MTVLab FlowChart. 
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3.6.2.2 JavaServer Pages (JSP) 

 Server-based scripting languages such as Perl, Active Sever Pages (ASP), PHP 

(recursive acronym for "Hypertext Preprocessor"), ColdFusion, and JSP, provide a means 

to develop dynamic, robust, and easily maintained input and output interfaces.  Each 

scripting language possesses unique features; each with its own particular 

advantages/disadvantages (Bloomberg, Kawski et al. 1997). JSP was selected for use in 

MTVLab because it combines the most important features of available alternatives, plus 

it possesses several unique characteristics. Like other scripting languages, JSP can be 

embedded with HTML, and allows the development of customized tag libraries. JSP is 

different in that it provides access to Java APIs, allowing for easy integration of JSP with 

existing Java files. JSP is also generally more efficient than other scripting languages 

(Bergsten 2001). For example, JSP pages are compiled and loaded only once, while ASP, 

Perl, and PHP require reinterpretation for each new client request. In MTVLab, JSP 

provides dynamic input/output interfaces, and transfers data between input/output 

interfaces and Java Beans, and between input/output interfaces and the database. 

3.6.2.3 Java Beans 

  Java Beans are reusable Java components that can be recognized and manipulated 

within visual application builder environments. Value beans and utility beans are two 

primary types of Java Beans (Bergsten 2001) in a JSP-based application. Value beans 

carry information, while utility beans perform actions such as retrieving data from a 

database. In MTVLab, value beans are used to encapsulate information, such as user ID, 

reactor type, and particle properties. Utility beans are employed to transmit and retrieve 
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data to/from the database, transmit an execution message to the numerical model, and 

query the status of the numerical simulation. 

3.6.2.4 Database 

 Web-based modeling systems are typically supported by relational databases 

capable of storing structured data required by the program (Jansons and Cook 2002). A 

relational database places all information in tables, links tables through shared attributes, 

and controls redundancy to maintain logical relationships. Several database programs 

exist, including Structured Query Language (SQL) Server (Microsoft Corporation, 

Redmond, Washington), mySQL (MySQL AB Company, West Edmonds, WA), Access 

(Microsoft Corporation, Redmond, Washington), and Oracle (Oracle Corporation, 

Redwood Shores California). While each database program provides relatively similar 

relational database functions and capabilities, SQL Server 2000 (Microsoft Corporation, 

Redmond, Washington), was selected for use in MTVLab based primarily on its 

availability.   

Database characteristics of interest include data storage limits, simplicity of 

programming for customizable solutions, ease of integration into web-based applications, 

and query performance.  For example, initial evaluations of the overall performance of 

MTVLab indicated that an unreasonable length of time was required for presentation of 

modeling results.  Improvements in the logical design through optimized queries, and 

installation of powerful database indexes for frequently used queries, provided 

significantly increased performance.   
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3.6.2.5 Numerical Engine 

 Because of its robust compiler designed for high-performance technical 

computing, the availability of useful subroutines from numerous library sources, and its 

popularity among many engineering applications, FORTRAN compilers are still 

commonly employed in solving complex problems requiring extensive computations 

(e.g., Netlib (http://www.netlib.org/)).  Previous uses of FORTRAN-based numerical 

codes in web-based modeling systems, however, appear to be limited, since the 

FORTRAN language lacks sufficient support for directly connecting to databases 

(Jansons and Cook 2002) and is not well suited to handling input and output to through 

web servers.  These problems are easily overcome, however, by creating a MTVLab C++ 

shell, or wrapper, for the FORTRAN program core. C++ possesses the ability to easily 

communicate with the database for data input/output. 

Mixed FORTRAN/C++ language development is relatively simple to employ 

when the same versions of Visual C++ and Visual FORTRAN are used. In MTVLab, 

Compaq Visual FORTRAN Professional Edition 6.6.0 (Compaq Computer Corporation, 

Tallahassee, Florida ) and Microsoft Visual C++ 6.0 (Microsoft Corporation, Redmond, 

Washington) were employed to create the numerical model. Editing, debugging, linking, 

and compiling both software packages are accomplished transparently within Microsoft 

Visual Studio (Microsoft Corporation, Redmond, Washington). Special consideration, 

however, must be given for calling, naming, and argument passing conventions between 

FORTRAN and C++. In addition, if different versions of FORTRAN and C++ are used, 

FORTRAN code must be complied separately, and the compiled file is required to be 

added to the C++ program. 
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3.6.2.6 Database – Numerical Application Connection: ODBC  

 To provide an interface between applications and an underlying database, 

Application Programming Interfaces (APIs) are required. Microsoft SQL Server 2000 

supports several classes of APIs for C++ programs: Object Linking and Embedding 

(OLE DB), ODBC, Embedded SQL for C, and DB-Library for C.  Embedded SQL for C 

and DB-Library are two relatively old APIs, and no future versions of SQL Server will 

include the files required to perform programming on applications that use these APIs. 

ODBC is a platform- and database-neutral standard designed to access relational SQL 

data. A striking advantage of ODBC is its flexibility which makes it possible for users to 

replace one database program with another without extensive coding (Jansons and Cook 

2002). For example, use of ODBC makes it very easy to replace SQL Server 2000 with 

any other database management system (DBMS) such as Microsoft Access or Oracle.  

OLE DB, which has evolved from ODBC, can access both relational and non-relational 

information. OLE DB is creating a better known presence (Ling, Yen et al. 2000); 

however, ODBC is still considered the more established interface. As such, ODBC is 

recommended for employment in web-based modeling systems, as utilized in this system.  

ODBC includes an ODBC Administrator and a list of database drivers including 

SQL Server driver.  In MTVLab, the C++/FORTRAN application calls ODBC functions 

to communicate with the ODBC SQL Server driver, and submit SQL statements. The 

SQL Server driver then translates the application’s SQL statements into commands that 

the SQL Server understands, passes SQL statements to the data source, and returns 

results to the application. 
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3.6.2.7 Database – JSP Connection: JDBC 

 JDBC provides connectivity between a Java program and a database. JSP, which 

uses Java as its underlying language, requires use of JDBC to communicate with a 

database. Similar to ODBC, JDBC relies on drivers, rewritten for each specific DBMS, to 

convert the JDBC functions to the corresponding DBMS. JDBC can be used directly in 

JSP pages, but this often leads to excessively large programming code. A better approach 

is to develop a set of custom action elements based on JDBC. In MTVLAB, custom 

actions developed by Bergsten (Bergsten 2001) are used to achieve JSP and database 

connectivity.  

3.6.2.8 Common Object Request Broker Architecture (CORBA) 

 CORBA is a platform-independent, language-independent architecture that allows 

applications to communicate with one another no matter where they are located. CORBA 

technology is employed in MTVLab to enable communication between JSP and the 

numerical engine.  Figure 3-25 illustrates the flow of information using CORBA 

technology in MTVLab.  

In MTVLab, users issue requests to the numerical engine via web pages 

employing Java Beans. Object Request Broker (ORB), the core layer of CORBA, serves 

as a client-server bridge, routing requests from the client (i.e. applications that send 

messages requesting services) to the server (i.e. applications that actually implement the 

requesting messages), passing model parameter information, and returning the results. To 

allow both client and server access to ORB, an interface must be established through an 

Interface Definition Language (IDL). To make the IDL interface understandable to the 

server-based numerical engine, it is compiled to C++ by OMNI ORB 4.0.0 (AT&T 
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Laboratories, Cambridge, Massachusetts), resulting in files called IDL skeletons. On the 

client side, Java IDL is used to compile the IDL interface to Java language used in Java 

Bean, and the resulting files are called IDL stubs. Skeletons and stubs serve as proxies for 

servers and clients, respectively.   

 

 

Figure 3-25 Example CORBA Architecture. 

 

During operation, Java Bean client initiates a client request by calling stubs. ORB 

receives the call, finds the server, passes the parameters and operation, and calls the 

server through a skeleton. After the server completes the program execution, ORB returns 

the results back to the client through stubs. In MTVLab, a Naming Service, which 

associates clients with locations and information, is employed to locate the client and the 

server by their usernames. By using Naming service, the Java Bean client and the 

numerical engine server do not necessarily need to be installed on the same computer.  

3.6.2.9 Specifications for Input Interfaces 

HTML is used for building the static frame of each interface page, while 

JavaScripts and JSP are embedded into HTML for dynamic contents. Running at the 

client site, JavaScript helps create truly interactive web pages through programming, and 
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it is also used to validate user input before submission to the web server. Running on the 

server, JSP is used to develop dynamic web pages and build the bridge between web 

pages and the database in real time.  

There are two distinguishing features of the MTVLab input system. First is the 

logical organization. The input interfaces are logically organized like a wizard, leading 

users in a step by step manner to build models. A wizard style interface is intuitive and 

very easy to use, which effectively avoids overwhelming users with too much 

information on each page (Chu 1999). The second feature is interactivity. As stated 

before, with JDBC technology, the input interface can communicate with a relational 

database in real time. For example, data input into the interface will be transmitted to a 

database immediately. In addition, whenever users log into their accounts, the data of 

their latest projects can be displayed. This automatic data retrieval mechanism is 

convenient in that users do not need to remember, copy, or store the models they have 

previously submitted. They can work whenever they want, wherever they have access to 

the Internet. 

3.6.2.10 Specifications for Output Interfaces 

The basic structure of the output interface is the same as the input interface, where 

HTML comprises the main static structure of the output interface, while JSP and 

JavaScripts provide dynamic contents. The most striking characteristic of MTVLab 

output is the use of Excel. There are two important reasons that Excel is used to present 

MTVLab output results. First, Excel is a powerful, yet easy to understand spreadsheet 

program for organizing, editing, and plotting data. The second reason is that Excel is the 

most widely used spreadsheet tool in the world (Bott and Leonhard 1999), ensuring that a 
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large number of users already possess familiarity with its use.  As part of Microsoft 

Office Web Components, Excel combines seamlessly with other content in the web page. 

In order to dynamically generate customized Excel tables, lines, or graphs based on user 

requests, JDBC is used to retrieve the necessary data from the database and JSP code is 

used to generate the Extensible Markup Language (XML) strings which define the Excel 

data. 

 

3.7 Summary 

Mass transfer processes form the foundation of many environmental processes 

including water treatment, wastewater treatment, and surface and groundwater 

contaminant transport modeling, and thus represent a core component of environmental 

engineering and science. Recent research achievements in mass transfer mechanisms at 

the particle scale employed evolved conceptual models, and used highly nonlinear 

numerical methods, which thus provide a great educational challenge. In this study, we 

propose to develop a Web-based modeling tool to improve mass transfer processes 

education, especially for better conveying state-of-the-art understanding of mass transfer 

mechanisms at the particle scale. 

Learning theories and the use of laboratories in engineering education were 

utilized as a background to argue for the further development of web-based education 

tools. Limitations in the use of current web-based models were highlighted in terms of 

the need to develop more robust system architectures to address the complexity of 

sophisticated mass transfer numerical models. Applicability of Web-based education to 

mass transfer processes was addressed in the context of The Kolb Learning Cycle. 
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Presentation of the web-based modeling system, MTVLab, provided a proof-of-principle 

framework from which to develop more sophisticated Web-based models that can 

employ computationally efficient, high-level computer programs (e.g., FORTRAN, 

C++).  MTVLab will help improve mass transfer processes education in several aspects, 

including (i) provision of an interactive problem-solving environment; (ii) improved 

visualization of abstract concepts; and (iii) decreased users’ time devoted to mathematical 

or numerical modeling. 

While MTVLab is able to help enhance mass transfer processes education, it 

cannot be used as a sole replacement to other instructional means; rather, it is intended as 

a complement to existing practices.  MTVLab is best utilized as a means to follow-up 

course lectures and homework on mass transfer processes principles.  Only after 

addressing the basic theories in class will MTVLab be able to reinforce the topics 

covered, and assist users’ understanding through visualization of the various processes.  

Another consideration in the use of Web-based educational tools like MTVLab is that 

users’ navigation within hypermedia systems can cause confusion and disorientation due 

to their nonlinear structure (i.e., users can jump from one location to another without any 

logical sequence of information presented between the two links). Web-based 

instructional tools may thus require a high degree of maturity on the part of the student 

(e.g., MTVLab is recommended for senior undergraduate or graduate-level students). 

Moreover, Web-based instruction provides opportunities for self-paced study.  This, 

however, may decrease the contact time between students and teachers. Communication 

mechanisms between students and instructors such as on-line questionnaires and instant 

help should thus be included whenever possible. 
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CHAPTER IV 

 

STOCHASTIC MODELING OF THE PERMEABILITY OF RANDOMLY 
GENERATED POROUS MEDIA 

 

4.1 Introduction 

It is well-recognized that fluid flow in subsurface porous media is strongly 

influenced by spatial variability and heterogeneity (Scheidegger 1974).  Proper modeling 

of groundwater flow within this environment thus involves capture of multiscale 

phenomena, including microscale- (molecular), mesoscale- (single pore), macroscale- 

(multiple pores), and megascale- (field) level systems. A central challenge arising from 

this situation is to understand how macroscale characteristics of fluid flow depend on 

microscale geometry of pore spaces and physical characteristics of the fluid and solid 

(Sahimi 1995).  

Specific permeability is an important macroscale parameter representing averaged 

microscale characteristics of fluids and porous media. At the macroscale, specific 

permeability for single-phase flow can be described within the context of Darcy’s law for 

low Reynolds numbers: 

( )zgpkq ∇+∇−= ρ
µ

      (4-1) 

where: 

 k = the specific permeability [L2];   
 q  = the specific flow rate [L/T]; 
 µ  = the viscosity of the fluid [M/LT];  

p∇   = the pressure gradient [M/L2T2];  
 ρ  = the fluid density [M/L3]; 
 g   = the gravitational acceleration [L/T2]; and  
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z  = the vertical coordinate [L].  

Furthermore, many empirical methods, such as the Hazen method and Kozeny theory 

(Scheidegger 1974), have related specific permeability with microscale properties of 

porous media, including particle size, sorting level, and porosity. For example, the 

Kozeny equation may be expressed as: 

2

3

cS
k φ
=                           (4-2) 

 where: 

   φ  = porosity [-]; 
  c  = the Kozeny coefficient [-]; and 

   S          = the specific surface area [1/L], defined by the ratio of 
particle surface area exposed to fluid per unit volume.  

 The heterogeneous nature of soils derived in part from the randomness of particle 

size distributions, porosities, and pore structures, however, suggests that soil and 

sediment permeability is also subject to randomness and uncertainty. This uncertainty is 

well- recognized, and numerous studies  have employed stochastic methods to model 

groundwater flow in subsurface porous media by assuming a permeability probability 

density function, including the use of normal (Sitar, Cawlfield et al. 1987), lognormal 

(Hamed, Bedient et al. 1996; Skaggs and Barry 1997; Lu and Zhang 2003), and gamma 

(Cooke, Mostaghimi et al. 1995; Johnston 1998) distributions. Although it is widely 

understood that the selection of a particular probability density function will markedly 

influence simulation results (Woodbury and Sudicky 1991; Cooke, Mostaghimi et al. 

1995), few studies (Woodbury and Sudicky 1991; Turcke and Kueper 1996; Kennedy 

and Woodbury 2002) describe the manner in which to construct a permeability 

probability density function. These studies primarily focus on experimental determination 
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of probability density functions for permeability at the field scale. Developing 

numerically-dervied distributions will be more economically efficient, although such 

such efforts  face several technical challenges, namely: (i) restriction on the 

computational resources available to employ numerous Monte-Carlo-type statistical 

simulations and (ii) difficulty in accurately capturing influences of microscale 

uncertainties with macroscale permeability uncertainty.  

Recently, several analytical reliability approximation methods, e.g., first-order 

reliability method (FORM) and second-order reliability method (SORM), have been used 

in the environmental field to model groundwater flow and contaminant transport (Sitar, 

Cawlfield et al. 1987; Hamed, Bedient et al. 1996; Skaggs and Barry 1996), and surface 

water quality (Portielje, Hvitved-Jacobsen et al. 2000; Maier, Lence et al. 2001). 

Possessing greater efficiency than traditional Monte-Carlo-type simulations, these 

methods can greatly decrease computational demands. In addition, lattice Boltzmann 

methods (LBM) have been applied to estimate the permeability of porous media 

(Rothman 1988; Zhang, Zhang et al. 2000; Pan, Hilpert et al. 2001; Manwart, Aaltosalmi 

et al. 2002; Keehm, Mukerji et al. 2004). Due to its ability to address fluid flow in 

complex micropore geometries, researchers have used LBM to help to relate microscale 

uncertainties with macroscale permeability uncertainty.  In this paper, we present a 

mathematical framework to construct a probability density function for permeability that 

(i) employs LBM to estimate permeability based on fluid flow in complex micropore 

geometries, and (ii) utilizes FORM to derive the stochastic characteristics of porous 

media permeability. In this way, probability density functions for permeability can be 

constructed with reasonable computational efforts based on more easily obtained media 
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properties, e.g., porosity and particle size distribution. Although permeability CDFs 

constructed by LBM FORM in this study focus on the pore scale, this effort has the 

potential to provide valuable information for correctly constructing permeability CDFs at 

the field scale (Eggleston and Rojstaczer 2001). 

Descriptions of numerical methods employed in this work follow this 

introduction. This discussion includes a brief introduction to porous media generation 

methods, the theoretical basis for use of LBM to model fluid flow, and the statistical 

basis for FORM, concluding with a general description of the proposed algorithm. The 

subsequent section exemplifies implementation of LBM FORM in several example 

domains of interest, including discussion of statistical properties of the generated 

permeability density function, and the accuracy and efficiency of the new method.  

Following a brief summary, the manuscript concludes by highlighting directions for 

further enhancements of the proposed method. 

 

4.2  Numerical Methods 

 

4.2.1  Porous Media Generation 

Accurate numerical simulation of fluid flow in porous media requires detailed 

descriptions of porous media morphology, which should include geometric properties 

such as particle or pore shape and volume, and topological properties such as pore 

interconnectivity. In many cases, however, the type of model that can be employed is 

dependent on the modeling method, and more importantly, limited computational 

resources. It is thus important to construct models that are able to closely mimic the 
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heterogeneity of actual porous media, and at the same time are sufficiently efficient to 

allow simulation of flow and transport phenomena with reasonable computational effort. 

In this study, porous media are envisioned as a statistical distribution of non-overlapping 

circular disks representing soil particles distributed in a rectangular two-dimensional 

uniform continuum representing the pore space through which a fluid flows.  

As first proposed by Gardner , particle size distributions in soil are often assumed 

to be lognormal in nature (Lerman 1979). Buchan  noted that approximately one-half of 

the U.S. Department of Agriculture (USDA) textual classification triangle could be 

adequately modeled by a lognormal distribution. Since a standard lognormal distribution 

implies zero and infinity for the smallest and largest particle sizes, respectively, modified 

lognormal distributions  were developed to constrain the upper and lower extremes of the 

particle size. Recently, Fredlund et al.  proposed a new model based on a unimodal 

mathematical function, which is believed to provide improved representations of particle 

size distributions relative to lognormal distributions. This model’s ease of use, however, 

is limited by its employment of five fitting parameters; our study thus employs a 

modified lognormal distribution to describe particle size distribution, assuming that all 

particle sizes reside in a 95% confidence interval to eliminate extremely large or small 

particles.  

Modifying the algorithm proposed by Yang et al.(Yang, Miller et al. 1996) for a 

three dimensional sphere packing, a two-step collective rearrangement technique is 

developed to generate random porous media. First, particles with size distributions 

following a modified lognormal distribution are generated until the required porosity is 

satisfied. The particles are then assigned to a two dimensional domain by assuming a 
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uniform distribution of particle locations. Based on this initial, possibly overlapped 

configuration (i.e., one particle may overlap another particle), an iterative arrangement 

process is applied to achieve an overlap-free condition. During each iteration, the largest 

particle is selected for relocation if there is any overlap with another particle; if overlap 

occurs, its spatial location is adjusted until the overlap is removed, and then registered in 

the final non-overlap location. The procedure continues with the next largest particle, etc. 

until all particles are registered in their final non-overlap location. Periodic boundary 

conditions are maintained at all boundaries throughout the iteration process. Figure 4-1 

provides an illustration of several of the generated random porous media employed in this 

study. 

 

 
Figure 4-1. Example Randomly-Generated Porous Media at Porosity 0.45. (a) 
geometric mean diameter is 25 µm and coefficient of variation (COV) 0.01; (b) 

geometric mean diameter is 50 µm and COV 0.6; (c) geometric mean diameter is 50 
µm and COV 0.3. 

 

4.2.2  LBM Simulation 

LBM (Rothman 1988; Chen and Doolen 1998; Wolf-Gladrow 2000) is a 

mesoscopic approach for simulating computational fluid dynamics by solving a 

discretized Boltzmann equation. An attractive feature of LBM is the ease of addressing 

(a) (b) (c) 
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complex boundary conditions by implementing very simple schemes. Numerous works 

have successfully applied LBM in modeling fluid flow in porous media and 

quantification of porous media permeability (Rothman 1988; Cancelliere, Chang et al. 

1990; Heijs and Lowe 1995; Pan, Hilpert et al. 2001). 

LBM models fluids as particle distributions residing on a discrete lattice, 

propagating to their adjacent lattice nodes, and colliding with other particles to 

redistribute momentum. In this study, a two-dimensional, nine-velocity lattice model 

(D2Q9) (Wolf-Gladrow 2000) is employed.. The evolution process can be expressed by 

the equation: 

)],(),([1),()1,( txftxftxftcxf i
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τ
                          (4-3) 

where, fi represents the particle distribution in position xv  at time t, moving with velocity 

icv , τ is the relaxation time which controls the rate of approach towards equilibrium, 

and eq
if is an equilibrium distribution parameter. It has been shown (Chen, Chen et al. 

1992) that the Navier-Stokes equation can be recovered from this discretized Boltzmann 

equation for incompressible flow, with a truncation error proportional to the square of the 

Mach number ( sa cuM /= , where u is the characteristic flow velocity, and cs is the speed 

of sound (usually set to 3/1 for the D2Q9 model)). The density per node, ρ , the 

macroscopic velocity, uv , the fluid pressure P, and the kinematic viscosity ν are defined 

by 
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A non-slip boundary condition is imposed at the solid and liquid interfaces by 

implementing a bounce-back rule that reverses the momentum of particles approaching 

the solid wall. Periodic boundary conditions are maintained at the inlet and outlet of the 

domain. A pressure gradient is imposed by maintaining a density difference between the 

inlet and the outlet of the simulation domain; thus at very small Reynolds numbers, the 

permeability of simulated porous domains can be estimated by Darcy’s law based on the 

imposed pressure gradient and specific flow rate derived from LBM simulation. 

 

4.2.3 FORM 

FORM originated from reliability analysis in structural engineering, and is an 

attractive alternative to computationally intensive Monte Carlo methods (Sitar, Cawlfield 

et al. 1987).  In this paper, we implement FORM to construct permeability cumulative 

distribution functions (CDFs) for randomly generated porous media. A description of the 

FORM procedure is presented below. 

In reliability analysis, a function M (x1, x2, …,xn) is often formulated to describe 

the performance of a system. The system performance is considered in terms of two 

states, ‘failure’ or ‘safe’, depending on whether the performance function is less than or 

greater than zero, respectively. A limit state surface may then be defined as the boundary 

between the failure and safe regions, i.e., M (x1, x2, …,xn) = 0. In this study, the 

performance function evaluates whether the calculated permeability of a simulation 

domain is smaller than some selected target value gi: 

M (x1, x2, …,xn) = G (x1, x2, …,xn) - gi     (4-5) 
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The limit state surface may thus be defined at G = gi. The probability of failure, i.e., G is 

less than gi, can be defined: 

n
gG

nXiG dxdxdxxxxfgGpgF 2121 ),...,,(...)()( ∫ ∫
≤

=≤=     (4-6) 

where ),...,,( 21 nX xxxf  is the joint probability density function for random variables x1, 

x2, …,xn. Equation 4-6 is difficult to evaluate for many reasons, including (i) difficulty of 

evaluating multidimensional integration, (ii) lack of statistical information for the joint 

probability density function, f; and (iii) the complexity in evaluating the performance 

function. The objective of FORM is to derive an estimation of FG based on a first-order 

Taylor series expansion of the performance function.  

If random variables, xis, are correlated non-normal functions, they should be 

transformed to the space of uncorrelated reduced normal functions (Haldar and 

Mahadevan 2000). On the transformed limit state surface, the point closest to the origin is 

defined as the ‘design point’, representing the most likely failure point. This minimum 

distance from the origin in the transformed space can be computed as 

*xT vv ⋅−= αβ       (4-7) 

where, α is a unit vector normal to the limit state surface and directed toward G < gi, and 

x* is the design point . The first-order approximation of the failure probability can be 

obtained as: 

)()( β−Φ=≤ igGp                 (4-8) 

where ()Φ is the standard normal cumulative probability operator (Haldar and 

Mahadevan 2000). This approximation is accurate if the limit state surface is nearly flat 

in the neighborhood of the design point.  
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The design point is determined by solving an optimization problem that 

minimizes the distance from the origin in the reduced normal space to the limit state 

surface. A Newton-Raphson-type recursive algorithm, proposed by Rackwitz and Fiessler 

(Rackwitz and Fiessler 1978), as described in equation 4-8, is implemented here:  
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where, k denotes the iteration number, and )( '
kxG v∇  represents the gradient vector of the 

performance function at '
kxv . The Rackwitz-Fiessler method linearizes the performance 

function at each iteration point, and uses the derivatives to find the next iteration point. 

The entire CDF can be constructed by repeating this FORM procedure to estimate the 

probability of the calculated permeability is smaller than a series of gi values in equation 

4-8. 

In many applications, FORM requires only a small number of iterations for 

convegence. When the performance function is in implicit or numerical form, however, 

extra effort, for example, a finite difference scheme (equation 4-10), may be required to 

derive the gradient of the performance function.  

i

iiii

i x
xxGxxG

x
xG

∆
∆−−∆+

=
∂

∂
2

)()()( v     (4-10) 

Here, the step, ix∆ , is chosen as a small fraction of the standard deviation of random 

variables. Thus, the number of function evaluations required by each iteration of FORM 

will be 2n+1, where n is the number of random variables. 
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4.2.4. Proposed Algorithm 

Since porosity data are widely available for many soil types and it can be accurately and 

routinely determined in laboratories, porosity statistics are generally easier to obtain than 

statistics for porous media permeability. An underlying assumption of this work is that 

the porosity of the simulated domain is a random variable. Figure 4-2 presents a summary 

flowchart describing the proposed algorithm, as detailed below.  First, an initial value for 

porosity is generated based on the probability distribution of the random variable 

porosity; it is then combined with a given particle size distribution to generate a random 

porous medium. LBM is then implemented to estimate the permeability of the generated 

domain.. Based on the particular porosity and the particle size distribution, the resulting 

micropore configuration is subject to uncertainty. With sufficiently large numbers of 

samples, however, the average permeability of randomly-generated porous media will 

approach a constant value dependent only on the porosity and the particle size 

distribution (Koponen, Kataja et al. 1997). The simulation is considered converged if the 

relative error of the average permeability corresponding to the value derived from the 

previous number of samples is consistently less than 1% for five consecutive iterations. 

In this study, we found at least 25 samples were required to achieve a stable average 

permeability. Upon determination of an average permeability, the Rackwitz-Fiessler 

formula is employed to calculate the probability that the average permeability of the 

randomly-generated porous media is smaller than a gi. As illustrated in Figure 4-2, a 

particle size distribution is employed, but it is utilized to generate porous medium 

configurations as part of the performance function. Porosity is thus the only random 

variable for FORM input. In this situation, the Rackwitz-Fiessler iteration scheme  
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Figure 4-2.  Flow Chart for the LBM FORM Algorithm. 
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(Rackwitz and Fiessler 1978) becomes a one dimensional Newton formula as expressed 

in equation 11: 
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Points on the CDF curve corresponding to gi are generated when the Rackwitz-Fiessler 

iteration scheme achieves convergence. Repeating this procedure for a series of gi values 

enables the construction of the entire CDF. 

 

4.3  Illustrative Examples  

 

4.3.1  Example Model Domains 

Simulations included use of randomly-generated porous media with domain size 1 

mm ×  1 mm, and geometric mean particle diameters of 25 µm, 50 µm, and 100 µm, 

depicting particle sizes representative of very coarse silt to very fine sand. The particle 

size distribution employs a modified lognormal distribution, using a 95% confidence 

interval for particle size to eliminate extreme values. The influence of particle sorting 

characteristics on permeability was also examined by varying the coefficient of variance 

(COV) of the particle diameters, i.e., COV of 0.01, 0.31 and 0.66, which correspond to 

very well-sorted, moderately sorted, and poorly sorted sediments . Summaries of the 

particle size distributions for simulated domains are listed in Table 4-1, while illustrations 

of the domains are presented in Figure 4-1.  
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Table 4-1. Particle Size Distribution Parameters Employed in This Work. 
 

Geometric Mean 
Diameter (µm) 

COV Rmax/Rmin Sorting Lattice Size

25 0.01 1.04 Very well sorted 800 x 800 

0.01 1.04 Very well sorted 400 x 400 

0.31 3.24 Moderately 
sorted 400 x 400 

 
50 

0.66 10.51 Poorly sorted 540 x 540 
100 0.01 1.04 Very well sorted 300 x 300 

 

4.3.2. Evaluations of the LBM Model 

A series of numerical simulations were conducted to evaluate LBM accuracy, its 

ability to estimate permeability, and numerical resolution requirements for the 

aforementioned example domains. Poiseuille flow was first simulated to test the accuracy 

of the LBM model. Numerical experiments with different channel widths were performed 

while holding the relaxation time, τ, and Reynolds number, Re, constant. Relative errors 

for the whole channel are calculated as  
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where N is the number of lattice nodes along the channel width, and )(n
iu  and )(a

iu  are the 

numerical and analytical solutions, respectively. The relative error and the channel width 

present a linear relationship with a slope of –2.1 on a log graph, which indicates a second 

order convergence of this LBM model in the spatial discretization, as described 

elsewhere (Maier, Kroll et al. 1998; Wolf-Gladrow 2000; Pan, Hilpert et al. 2001). The 

influence of τ on the accuracy of the LBM model was verified by numerical experiments 

employing different τ values from 0.6 to 1.2 with a step size of 0.2, which provide a local 

minimum of the relative error at τ = 0.8.  
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To investigate the ability of LBM to accurately estimate permeability, LBM was 

employed with the randomly generated porous media under varying pressure gradient 

conditions. A linear relationship between pressure gradient and specific rate is identified 

with a low Reynolds number, i.e., Re < 0.01, which is consistent with applicable regions 

for Darcy’s law (Bear 1972; Rothman 1988). In this study, Re is restricted to values less 

than 0.01, and permeability is estimated as the ratio of flow rate and pressure gradient. 

Effects of spatial discretization on permeability estimation for randomly generated porous 

media were investigated by varying the density of numerical grids on simulation 

domains. Results indicate that estimated permeability converges to a stable value with 

increasing spatial resolution, as stated elsewhere (Maier, Kroll et al. 1998; Pan, Hilpert et 

al. 2001).  For COV of 0.01 and 0.31, the number of grids per mean particle diameter, m, 

should be greater than 20 to achieve convergence on ks , while m should be greater than 

27 to achieve convergence for COV of 0.66. Specific lattice sizes employed in LBM 

simulations are listed in Table 4-1.  

 

4.4  Numerical Results  

 

4.4.1 Permeability Statistics 

For the purpose of simplicity, a normal distribution with mean of 0.5 and COV of 

0.12 is assumed for the random variable porosity. Under this condition, the probability of 

a negative porosity is as small as 1.5e-5. A summary of statistical properties of the 

derived CDFs for the sample domains is presented in Table 4-2. The influence of particle 
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size distributions on permeability CDFs are further illustrated in Figure 4-3 and Figure 4-

4. 

 

Table 4-2. Statistical Properties of Derived Permeability CDFs. 
 

Chi-Square Test Significance Level Geometric 
Mean 

Diameter 
(µm) 

Diameter 
COV 

Permeability 
Mean 

(Darcy) 

Permeability 
COV 

Normal Lognormal Gamma 

25 0.01 1.54 1.36 0.04 0.001 0.11 
0.01 6.22 1.30 0.007 1E-05 0.015 
0.31 8.71 1.10 0.002 2E-06 0.002 

50 

0.66 12.11 1.00 0.02 1E-04 0.16 
100 0.01 17.36 1.54 0.048 0.0004 0.01 
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Figure 4-3. Influence of Particle Mean Diameter on Porous Media Permeability 
CDF for Domains with Geometric Mean Particle Diameter D = 50 µm and Differing 

COV. 
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Figure 4-4. Influence of Particle Sorting on Porous Media Permeability CDF for 
Domains with Geometric Mean Particle Diameter D = 50 µm and Differing COV. 

 

First, it is observed that domains with larger particle mean diameters or higher 

particle diameter COVs possess larger mean permeability values and higher probabilities 

of achieving larger permeability values. This phenomenon can be explained in terms of 

specific surface area, or the ratio of particle surface area in contact with fluid per unit 

volume. Specific surface areas are larger for the domains, which are well sorted or 

possess smaller particle mean diameters. Higher specific surface areas suggest greater 

surface area in contact with fluid, causing increased frictional resistance to fluid flow, 

thus leading to a reduction in permeability.   

Second, it is shown in Table 4-2 that permeability COVs of all domains generally 

lie in the range of 1.0 to 1.5, which is about 10 times larger than the porosity COV of 
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0.12. This suggests that permeability is subjected to greater uncertainty than porosity. In 

addition, permeability COVs of domains with mean diameter 50 µm range from 1.0 to 

1.3, although the particle diameter COVs change 66 times from 0.01 to 0.66. This 

indicates that, although the particle diameter COV will influence the permeability mean 

value, it will not directly affect the uncertainty of permeability. We believe it is the 

uncertainty of micropore structure configurations derived from porosity and particle size 

distributions that actually lead to the larger uncertainties in permeability. 

 

4.4.2 Applicability of Permeability Distributions 

Chi-square tests were applied to the derived permeability CDFs based upon 

normal, lognormal, and gamma distributions. The chi-square test significance levels are 

listed in Table 2, where a smaller significance level suggests that the model result is less 

significantly different from the given probability function, representing a better model fit. 

In this work, a lognormal distribution appears to provide the lowest significance level for 

all five modeling domains. Further exploration of the ability of normal, lognormal, and 

gamma distributions to describe permeability is provided in Figure 4-5, which illustrates 

corresponding CDFs utilizing LBM FORM derived mean and COV. 
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Figure 4-5. Comparison of FORM-Derived Permeability CDF with Most 
Commonly Used Normal Distribution CDF, Gamma Distribution CDF, and 

Lognormal Distribution CDF on the Simulation Domains with Differing Geometric 
Mean Particle Diameter and COV. 
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 It is clear that normal distributions fail to represent the LBM FORM results at 

low probability, which can be attributed to normal distributions’ allowance for the 

negative permeability values at extremely low probability. Although the Gamma 

distribution is limited to only positive values of permeability, it appears to overestimate 

the probability for the lower permeability. The failure of the Gamma distribution is likely 

associated with the constant nature of COV, i.e., the Gamma distribution COV = 2/1 , 

regardless of the mean value, which is incapable of fully describing the high uncertainty 

of porous media permeability. In this study, the lognormal distribution performs very 

well in describing the FORM-derived permeability CDF both at low and high probability 

regions, which are actually implied from two important characteristics of the lognormal 

distribution (i) exclusion of negative values and (ii) high right skewness. The 

applicability of the lognormal distribution to permeability in this study also agrees well 

with Woodbury and Sudicky (Woodbury and Sudicky 1991), who evaluated more than 

1000 samples for the Borden aquifer, suggesting that the lognormal distribution can be 

employed to describe the permeability distribution.  

 

4.4.3 Comparison with Monte Carlo Simulations 

 Monte Carlo simulation is a useful tool capable of addressing stochastic problems 

when only a basic working knowledge of probability and statistics is available. Given 

sufficient simulations, the Monte Carlo method can provide accurate simulation results in 

a simple but computationally demanding manner (Haldar and Mahadevan 2000). 

Evaluation of the necessary number of simulations required to guarantee the accuracy is 

thus critical in the proper employment of the Monte Carlo method. As opposed to 
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common approaches that establish the number of model runs based upon experience or 

simplified tests, this study determined the required number of simulations by relating it to 

the relative error and probability based on equation (Haldar and Mahadevan 2000), 

%200)1(% ×
×
−

=
pN
pε      (4-13) 

where, ε is the error, p is probability and N is the number of simulations required. This 

equation was derived by considering the number of failures in N trials as a binomial 

distribution, then approximating the binomial distribution with a normal distribution, and 

estimating the 95% confidence interval of the estimated probability of failure .  

For the purpose of validation, Monte Carlo simulations were implemented on the 

domain with a particle mean diameter of 25 µm and COV = 0.01. Equation 4-13 indicates 

that, for p = 0.1, at least 14,400 Monte Carlo runs are required to achieve an error less 

than 5%. As discussed in Section 4.2.4, the uncertainty of micropore structures for a 

given porosity and particle size distribution necessitates at least 25 simulations of 

different configurations to achieve a stable average permeability. 360,000 LBM 

simulations will thus be required to construct a CDF for p > 0.1. In this study, the 

computing time required for LBM modeling of permeability depended on permeability 

values, varying from 0.5 to 10 hours on a Dell Precision 650 Workstation; with longer 

convergence times associated with higher permeability domains or denser numerical 

discretization resolutions. It is thus not feasible to perform all 360,000 LBM simulations 

due to computational limitations. Our approach to overcome this problem included (i) 

performing a smaller number of simulations based on available computing resources and 

(ii) quantitatively defining the relative error of Monte Carlo results based on equation 12, 

which serves as a basis to evaluate the relative accuracy of LBM FORM results. 
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1,600 Monte Carlo runs were computed, corresponding to 40,000 LBM 

simulations. Constructed CDFs are plotted in Figure 4-6 and compared well with FORM 

results. When the probability exceeds 0.4, the largest relative error between the two 

methods is approximately 3.4%. The largest relative error for the entire CDF is 8.5%, 

occurring at the point p = 0.12, the smallest probability point simulated. Based on 

Equation 12, 1600 Monte Carlo runs will provide an error of less than 6% for 

probabilities larger than 0.4, and an error of 13.5% for p = 0.12. LBM FORM results are 

thus within the relative error range of the Monte Carlo method, suggesting the relatively 

high accuracy of this method.  

 

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14

Permeability k (Darcy)

p 
(K

<k
)

MONTE CARLO
FORM

 
Figure 4-6. A Comparison of Monte Carlo Simulation Results and FORM Results 
for the Simulation Domain with Particle Mean Diameter D = 25 µm and COV = 

0.01. 
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The FORM method employed in this work can achieve convergence within two to 

six iterations.  Each iteration involves 3 function evaluations to calculate average 

permeability and gradient values. Although 15 points were used to construct the CDF 

employed in this work, 10 points are usually sufficient to generate a CDF (Haldar and 

Mahadevan 2000). Assuming an average of 4 FORM iterations to achieve convergence, 3 

function evaluations for calculating average permeability and its gradient values, and 10 

points on a CDF, approximately 120 averaged permeability values must be computed to 

construct a CDF through FORM. This is approximately 1/13 times the 1,600 Monte Carlo 

simulations used in this study, and approximately 1/120 times the required 14,400 Monte 

Carlo simulations needed to construct a CDF possessing an error less than 5% when p > 

0.1, indicating the relatively high efficiency of LBM FORM relative to Monte Carlo 

simulations. 

 

4.5 Summary 

Permeability, as a function of particle size distribution, porosity, and packing, is 

often the greatest source of uncertainty in simulating fate and transport of contaminants 

in the subsurface environment. Although permeability has previously been assumed as a 

random variable in groundwater modeling, the restriction on computational resources and 

the difficulty in relating microscale and macroscale uncertainites have resulted in reduced 

efforts to construct probability density functions for permeability. In this study, we 

proposed a new approach, LBM FORM,  based on more easily derived porosity statistics 

and particle size distribution, to construct permeability CDFs through the combination of 

LBM and FORM.  
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LBM FORM was implemented to construct permeability CDFs of five randomly 

generated porous media; each possessing different particle size distributions. Results 

show that the domains with larger mean particle diameter or higher particle diameter 

COV tend to possess a higher probability of achieving larger permeability. Permeability 

values are subjected to higher uncertainty than the porosity and particle diameters 

because of the uncertainty of the micropore structure configurations. Lognormal 

distributions modeled well the permeability CDF constructed for a variety of domains 

examined in this study. Accuracy of the proposed method was confirmed by comparison 

with Monte Carlo simulations for one example simulation domain. The largest relative 

error is approximately 3.4% when the probability exceeds 0.4, and is 8.5% when 

probability is less than 0.4, both of which are within the relative error associated with the 

Monte Carlo method. Further, this work demonstrated that the Monte Carlo method is 

severely limited by computational requirements, making it extremely difficult to 

accurately construct an entire permeability CDF curve by Monte Carlo; LBM FORM, 

however, was found to be approximately 13 to 120 times more efficient than traditional 

Monte Carlo simulations. 

The primary contribution of this effort derives from the development of a new 

approach to calculate permeability CDFs by combining LBM and FORM. Although it 

provides higher accuracy and efficiency than Monte-Carlo simulations, it is worthy to 

note several directions for enhancements of the method. First, the LBM method 

implemented in this study is in the BGK form (Bhatnagar, Bross et al. 1954) with a linear 

collision operator. The accuracy of permeability based on BGK LBM is dependent on the 

fluid viscosity and thus on the relaxation time. We chose an optimized value of the 
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relaxation time τ (τ = 0.8) to eliminate this dependency. In the future, we suggest the use 

of more sophisticated LBM schemes to simulate fluid flow in porous media. For 

example, a two relaxation time (TRT) LBM  (d'Humieres, Ginzburg et al. 2002; 

Lallemand, d'Humieres et al. 2003) will be able to annihilate the permeability 

dependence on the viscosity with a specific choice of the free eighenvalues. Further, the 

convergence rate is accelerated when using higher viscosity values for a TRT LBM. A 

second potential enhancement of the method is associated with the reliability method 

employed. While FORM performed well in example domains in this study, more 

advanced methods, such as SORM or other modified forms of FORM, might be required 

for situations that are more complicated. Finally, the simulation results in this work are 

based on randomly generated, two-dimensional simplified porous media. Future 

modeling efforts will benefit from use of more sophisticated porous media packing 

modules to more closely reflect actual field situations. Applications of the proposed 

framework with more sophisticated LBM and reliability methods for three-dimensional 

porous media should greatly assist future researchers in advancing fundamental 

understanding of the primary factors influencing permeability within porous media. 
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CHAPTER V 

 

A LEAST SQUARES FINITE ELEMENT SCHEME FOR LATTICE 
BOLTZMANN METHOD ON UNSTRUCTURED MESHES 

 

5.1  Introduction 

In the last decade, LBM has been developed as an effective tool to simulate 

complex fluid flow problems (Benzi, Succi et al. 1992; Chen and Doolen 1998). 

Historically, LBM originated from lattice gas automata (LGA), which views fluids as 

arrays of particles residing on a discrete lattice, evolving with specific interactive 

propagation and collision rules. Improvements to LBM relative to LGA include extending 

single particle occupation variables to particle distribution functions (McNamara and 

Zanetti 1988), developing of a linearly stable collision operator (Higuera, Succi et al. 

1989; Higuera and Jim´enez 1989), and utilizing a single time relaxation approximation 

(Chen, Chen et al. 1991), which provides LBM an improved capability to eliminate 

statistical noise and enhanced computational efficiency. LBM, similar to LGA, however, 

is restricted to uniform lattice structures, which  severely limits its potential application to 

many practical problems, e.g., flow in porous media, where representations of complex 

pore geometry require a very fine uniform lattice, thus necessitating additional computing 

resources (Succi, Amati et al. 1995). More recently, it was determined that, although the 

coupling between discretization of velocity spaces and physical spaces is an essential part 

of LGA dynamics, it is not critical for LBM (Sterling and Chen 1996). It is in this light 

that many efforts were forwarded to improve LBM such that it is able to more flexibly 

apply to non-uniform grids. Those improvements can be classified as: (i) interpolation 
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techniques; (ii) grid refinement techniques; and (iii) numerical lattice Boltzmann 

methods. 

Interpolation techniques, first proposed by He, Luo, and Dembo (He, Luo et al. 

1996),  extend LBM to non-uniform rectangular meshes by interpolating the density 

distribution at the grid sites from the square lattices. An extension of this technique is a 

Taylor-series expansion and least-squares-based LBM proposed by Shu, Niu, and Chew 

(Shu, Niu et al. 2002). Instead of direct interpolation, a Taylor series expansion is 

implemented to estimate the density function at the grid sites, and a least-squares scheme 

is implemented to minimize errors. Although this approach removes the rectangular shape 

restriction and possesses a meshless feature, collisions still take place on the grid points. 

More recently, a local time step technique (Imamura, Suzuki et al. 2005) was applied to 

this interpolation supplemented LBM, which greatly reduces CPU time required to obtain 

steady-state solutions. 

Grid refinement techniques refine the lattice locally where more precision is 

required or the geometry is more complex, passing the data between fine and coarse 

lattices via a particular algorithm. Filippova and Hänel (Filippova and Hanel 1998) 

coupled LBM with a local second order hierarchical grid refinement and boundary fitting 

scheme. The new approach not only possesses an improved ability to treat curved 

boundaries, but also provides higher computational accuracy, especially in thin boundary 

layers where solutions possess highly anisotropic features. Utilizing a multigrid 

architecture, Lin and Lai (Lin and Lai 2000) proposed a composite block-structured 

LBM, which allows one-way interaction at the post-streaming stage without rescaling the 

discrete distribution function. Pointing out that Lin’s algorithm is inaccurate, and that 
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Filippova’s approach presents singularity for τ = 1, Dupuis and Chopard (Dupuis and 

Chopard 2003) proposed an alternative grid refinement algorithm, which can accelerate 

the flow settlement process a thousand times faster than a single grid resolution. Grid 

refinement techniques present a promising direction for the development of LBM; 

however, its limited application to regular rectangular grid structures restricts the 

flexibility of these methods. 

Numerical lattice Boltzmann methods combine LBM with traditional numerical 

methods such as finite difference (FD), finite volume (FV), and finite element (FE) 

methods to increase computational efficiency and accuracy, while adapting LBM to 

irregular mesh. Based on Runge-Kutta time discretization and various spatial 

discretization schemes, Chen and coworkers (Cao, Chen et al. 1997; Chen 1998) 

combined FD and LBM in number of ways. The central difference scheme was first 

proposed by Cao et al. (Cao, Chen et al. 1997) in Cartesian coordinates, and was later 

extended to curvilinear coordinates with non-uniform grids(Mei and Shyy 1998). 

Nannelli and Succi (Nannelli and Succi 1992) proposed the first finite volume 

formulation of LBM. Later, Amati, Succi, and Benzi (Amati, Succi et al. 1997) presented 

a finite volume formulation of the LBM, where a piece-wise linear interpolation scheme 

was used to estimate the volume-averaged particle distribution in a non-uniform coarse 

lattice. Another volumetric formulation of LBM was developed by Chen (Chen 1998), 

which can be applied to arbitrary mesh while achieving exact adherence to conservation 

laws and equilibrium conditions (Chen 1998).  Peng and co-workers (Peng, Xi et al. 

1998; Peng, Xi et al. 1999; Xi, Peng et al. 1999) proposed additional versions of the finite 

volume LBM (FV-LBM) using both triangular and rectangular elements, which appears 
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to be flexible for both internal and external boundaries. More recently, this method was 

further developed from both theoretical and practical aspects by S. Ubertini and 

coworkers (Ubertini, Bella et al. 2003; Ubertini and Succi 2005), who demonstrated that 

the method does not present significant numerical viscosity effects (at the second order) 

in the mesh size. As an early effort to combine FE methods with LBM,  Lee and Lin (Lee 

and Lin 2001; 2003) presented a characteristic Galerkin discrete Boltzmann equation 

(CGDBE), which implements a Taylor-Galerkin procedure.  

Traditionally, FE methods (Strang and Fix 1973) have allowed simulation of more 

complex, and hence, realistic geometries relative to FD and FV methods. In standard 

Computational Fluid Dynamics (CFD), FV methods, however, are more widespread. A 

significant reason lies in the nature of the convection operators of fluid flow, which are 

first order, and thus non-self-adjoint. For equations with non-self-adjoint operators, the 

classical Galerkin method is often corrupted by spurious oscillations or wiggles (Jiang 

1998). Least-squares finite element (LSFE) method, on the other hand, was recently 

shown to be a robust and efficient way to solve non-self-adjoint equations. It always leads 

to symmetric, positive definite, linear systems of equations without using techniques such 

as upwinding, staggered grids and operator splitting techniques (Ding 1999).  Compared 

with Taylor-Galerkin-based FE methods, LSFE method possesses improved stability. 

Furthermore, for more complex systems, Taylor-Galerkin-based FE methods may 

promote oscillations at discontinuities (Jiang 1998) or at solid-liquid interfaces with 

boundary layers or high velocity gradients.  Those oscillations may be suppressed by 

adding dissipation terms like those in 'upwind' and 'artificial viscosity' schemes, which, 

however, are dependent on the specific parameters of the problem.  For non-self-adjoint 
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systems, such as the lattice Boltzmann equation, it is thus reasonable to apply LSFE, 

which represents a promising approach to extend LBM to more practical and complex 

domains while simultaneously benefiting from finite element methods’ superior stability 

and flexibility. It is in this light that we implement a new FE-LBM, which utilizes LSFE 

in space and a Crank-Nicolson scheme in time.  

This chapter details the derivation and example applications of LSFE-LBM. 

Subsequent to this introduction, a numerical formulation section, including a numerical 

derivation of the LSFE-LBM and a discussion of important implementation issues, is 

presented, followed by a thorough theoretical analysis of the accuracy and stability of the 

method. The implementation of LSFE-LBM is exemplified through two-dimensional 

incompressible Poiseuille flow, Couette flow, flow past a circular cylinder, and flow in 

porous media. The chapter concludes by summarizing the advantages of the LSFE-LBM, 

and a discussion of its future potential. 

 

5.2 Numerical Formulations 

 

5.2.1 Numerical Derivation 

The starting point of LSFE-LBM is the discrete lattice Boltzmann equation 

               ),...2,1( Nifc
t
f

iii
i =Ω=∇⋅+

∂
∂ vv                              (5-1) 

where fi represents the particle velocity distribution function, icv  is the velocity along the 

i-th direction, N is the number of different velocities in the model, and iΩ  denotes the 
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collision operator which is commonly approximated by the Bhatnagar-Gross-Krook 

model (Bhatnagar, Gross et al. 1954) 
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where τ  is the relaxation time, eq
if  is the local equilibrium given by 
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in which iω  is the weighting parameter for each velocity direction. The nodal density ρ  

and the macroscopic velocity uv  is defined by 
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Nine possible directional velocities are used in this study, where iω  in equation 

(5-3) equals 4/9 for i = 0, 1/9 for i = 1,2,3,4, and 1/36 for i = 5,6,7,8. The nine velocities 

are defined as 
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Construction of LSFE-LBM first considers application of the θ-method to treat 

time-space approximations. Setting the time step nn ttt −=∆ +1 , and given fi
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In this work, θ=1/2 is implemented, which corresponds to the Crank-Nicolson scheme, 

providing for second order accuracy in time. Under this condition, a standard form of 

LSFE can be obtained by rearranging equation (5-6): 
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For brevity, operator L is used, and equation (5-7) can be written in the following form: 

pLf n =+1       (5-8) 

For finite element analysis, the problem domain can first be subdivided into a set 

of finite elements, and then approximated by the solution fh
e,n+1  in a finite element 

subspace as: 

1n
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where Nj denotes the element shape function, α represents the number of nodes in an 

element, and fj is the nodal value at the j-th node. Introducing equation (5-9) into equation 

(5-8) for an element, we get 

e
h
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h pLfE −= +1,                 (5-10) 

where E is the residual due to elemental approximation. The LSFE is based on the 

minimization of the squares of the residual for the subspace 
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where eΩ  is the domain of the e-th element, and the exponent T denotes the transpose. 

For each element, the following set of linear algebraic equations can be derived from 

equation (5-12): 

e
n

ee PFK =+1                             (5-13) 

where 1+n
eF  is the vector of nodal values at the current time step. Ke is the elemental 

matrix given by 
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where Q  is a ( α×1 ) vector defined by: 
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The element vector Pe in equation (5-13) is  

 e
e
h

T
e dpQP

e

Ω= ∫Ω                                         (5-16) 

As presented in equation (5-7), ph
e is related to the previous time step fi

n and fi
eq,n 

values, and the current time step fi
eq,n+1 value. An extrapolation is applied to express 

fi
eq,n+1 as proposed by Mei and Shyy (Mei and Shyy 1998), 
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where fi
n, fi

eq,n and fi
eq,n-1 can be approximated in the subspace similar to fi

n+1: 
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5.2.2 Boundary Conditions 

 A typical boundary condition for first order differentiation equations can be 

expressed as: 

Γ= ongfi      (5-19) 

where, Г denotes a homogeneous boundary condition when g equals 0, and a 

heterogeneous boundary condition when g is not 0.   

This essential type of boundary condition is of great convenience to LSFE-LBM. 

Well-established LBM boundary methods (Chen, Martinez et al. 1996; Maier, Bernard et 

al. 1996; Zou and He 1997), e.g., bounce back conditions, constant velocity conditions, 

and pressure gradient conditions, can be readily applied. At each time step, the boundary 

values of fh
n+1 can be calculated in similar manner to traditional LBMs, which are then 

applied to the LSFE-LBM scheme as essential boundary conditions. Meanwhile, 

macroscopic boundary conditions are imposed through the equilibrium function, fh
eq. For 

unstructured mesh, special attention should be noted when implementing periodic 

boundary conditions, where corresponding nodes for inlet and outlet boundary are 

required.  

 

5.2.3 Implementation Issues 

LSFE method leads to a linear system of equations, as described by equation (5-

13), which requires solving at each time step. Since Ke in equation (5-13) is always 
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symmetric and positive definite, a preconditioned conjugate gradient (CG) method can be 

well applied as a tool for efficient solution. The CG iterative updating formula can be 

expressed as: 

)(11 PKFMFF nnn −−= −+  ,    (5-20) 

where, M is a non-singular preconditioning matrix serving to accelerate convergence of 

the iteration. In this study, Jacobi preconditioned CG (JPCG) (Jiang 1998) is applied, 

where the diagonal matrix of K is utilized as the preconditioner matrix M.  

 As presented in equation (5-20), matrix multiplication, K×F, is involved in the 

JPCG algorithm. Traditionally, a sparse and large global matrix system will requires 

assemblage prior to the multiplication operation, necessitating a large amount of 

computer memory usage and significant computing time, thus restricting the size of the 

problem. To overcome this issue, an element-by-element approach (Wathen 1989), which 

stores information only at the element level, was implemented. Avoiding the assembling 

of global matrices, this approach requires greatly reduced memory storage compared to 

the traditional approach. Following is a brief description of this element-by-element 

approach. 

A global matrix may be expressed as: 
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where, Ne is the number of elements in the system, and e
gK  is a matrix with global size. 

The components of e
gK  are all zero except those corresponding to the nodes in element e. 

Meanwhile, the global vector P can be expressed as: 
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where e
gF  is a modified global vector, whose components are all zero, except those 

corresponding to the nodes of element e whose values remain the same as in global vector 

F. Thus, individual matrix-vector products e
gP  may be obtained by computing an element 

matrix vector product 

  deede FKP =  ,      (5-22) 

and expanding the vector deP  into appropriate position of e
gP . In equation (5-22), deF  is 

an element level vector which extracts values from corresponding components of e
gF . In 

this way, matrix-vector multiplication can be conducted at the element level, 

independently and concurrently without storing the global matrix.  

 It is noteworthy that large benefits of this element-by-element approach have been 

observed in this study. For a system with 2500 nodes, the memory usage of the element-

by-element approach is about 130 times less than a typical assembled global matrix 

approach, and the computing speed is approximately 4 times faster. These advantages will 

likely become even more obvious for larger systems, where memory leakage may occur 

while storing global matrices.  
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5.3 Analysis of LSFE-LBM 

 

5.3.1  Accuracy Analysis 

Since the collision term has no effect on numerical accuracy, for simplicity, a one-

dimensional pure advection equation is utilized to analyze the accuracy of LSFE-LBM.  
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Applying the θ-method to treat time-space approximations, and implementing 

LSFE scheme as presented above with uniform linear element, equation (5-23) will lead 

to a discretized format for a typical node j: 
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where, δ2 denotes the second order variation operator, and xtc ∆∆= /β .  

 In order to determine the accuracy of equation (5-24), a Taylor series expansion of 

f around time t and the node j is considered: 
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Implementing Taylor series expansion on 1+n
jF , n

jF , n
jF 1+ , n

jF 1− , 1
1
+
+
n
jF , 1

1
+
−
n
jF  in equation 

(5-24), and utilizing the recursive application relationship of the advection equation 

(Comini, Manzan et al. 1995), i.e. 

xxxtttxxxxttxxxxxtxxtt fcffcfcfffcf 322 ,,, −==−== ,    (5-26) 

the transient truncation error can be derived as: 
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When θ=1/2, corresponding to the Crank-Nicolson scheme, the transient trunk error is: 
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Thus, for uniform linear elements, LSFE-LBM enjoys similar accuracy as the CGDBE 

method presented by Lee and Lin (Lee and Lin 2001), i.e., fourth-order accuracy in space 

and second order accuracy in time. Compared to the second-order accuracy in space for 

FD-based LBM, it is clear that FE-based LBM greatly increases numerical accuracy. 

Further, the spatial accuracy is dependent on the order of the shape functions. If higher 

order shape functions are employed, higher order accuracy will be expected. In this work, 

linear shape functions are utilized for all test examples. It is important to note that the 

temporal and spatial accuracy discussed here is for LSFE, not for the incompressible 

Navier-Stokes equation. When applying LSFE to recover the incompressible Navier-

Stokes equation, there exists an additional error in the order of O(Ma
2), where Ma is the 

Mach number of the flow. 

  

5.3.2  Stability Analysis 

Stability analysis is applied to the pure advection equation in similar fashion to the 

accuracy analysis. Application of von Neumann stability analysis to the discretized 

format of LSFE-LBM, i.e., equation (5-23), reveals unconditional stability with any 

Courant-Friedrichs-Lewy (CFL) number for the pure advection equation on a uniform 

mesh if θ  in equation (5-6) is in the range of [1/2, 1]. This unconditional stability, 

derived from the implicit nature of LSFE, provides a significant advantage over CGDBE, 
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which is only conditionally stable due to its explicit treatment of the advection term. A 

comparison of accuracy and stability among LSFE-LBM, CGDBE, and FD-LBM is given 

in Table 5-1.  

 

Table 5-1. A Comparison of Accuracy and Stability Characteristics of FD-LBM, 
CGDBE, and LSFE-LBM for the Pure Advection Equation on a Uniform Mesh. 

 FD-LBM CGDBE LSFE-LBM 
Space Second order Fourth order Fourth order Accuracy Time Second order Second order Second order 

Stabilitya 
Conditional 

/Unconditional ||3 e
xt ∆

≤∆  Unconditional

aStability of FD-LBM is based upon the specific time discretization 
scheme used. 

x∆  = element size 
t∆  = time step 

 e = discrete velocity in the characteristic direction (Lee and Lin 2001) 

 

Stability analysis based upon the pure advection equation simplifies the analysis 

procedure by neglecting the nonlinear collision term. Although this simplified analysis 

may represent some stability property of LSFE-LBM, it is not sufficient to reflect the true 

stability feature of the method. Thus, the numerical stability of the LSFE-LBM is further 

studied via the linearization approach proposed by Sterling and Chen (Sterling and Chen 

1996), as detailed below.   

Rearranging equation (5-13) into a more desirable format for stability analysis: 
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e NdQW , and C, B, N are as defined in equation (5-

15).  In order to implement von Neumann stability analysis, it is necessary to transform 
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equation (5-29) into a discrete form. For the purpose of simplicity, a uniform triangular 

mesh is utilized here, as illustrated in Figure 5-1. 

 

 

Figure 5-1. Schematic Plot of Neighboring Point Distribution around the Point (i,j) 
in a Uniform Triangular Mesh for LSFE-LBM. 

 

Assembling global matrixes based on this mesh, a discrete formula for point (i,j) 

can be expressed as: 
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where, p is the node number as denoted in Figure 5-1. As proposed by Sterling and Chen 

(Sterling and Chen 1996), fi can be expanded as:  
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ii fff += ,     (5-31) 

where, '
if  is the fluctuating quantity, and )0(f  is the global equilibrium population, not 

varying in space or time. It can be shown that the constant property of )0(f  results in the 

relationship: 

0)0( =fU p .       (5-32) 
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Applying a Taylor series expansion to the collision operator around )0(f  gives: 
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Substituting this first order approximation of the collision operator after the expansion of 

fi by equation (5-30) in equation (5-31), and utilizing the relationship in equation (5-32), 

equation (5-30) is reduced to the following form: 
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  Performing a Fourier transform of equation (5-34), it follows 

),(),( tkFZttkF jiji

vv
=∆+ ,    (5-35) 
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 is the wave number. Matrix Z 

is given by: 
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where, 
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When the spectral radius of matrix Z, i.e., the largest value of eigenvalues, is not 

larger than unity, the system approaches stability. When the wave number is zero, Ep 

matrices become identity matrices, resulting in eigenvalues of matrix Z: 
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⎭
⎬
⎫

⎩
⎨
⎧

+∆
+∆−
τθ
τθ

t
t)1(,1 , with three and six multiplicity respectively, independent of 

macroscopic velocity. In this special case, the stability of the system is guaranteed when 

})2/1(,0max{ t∆−> θτ .  

When the wave number is non-zero, the stability of LSFE-LBM is dependent on a 

number of parameters, including time step, element size, wave number, and relaxation 

time, similar to that reported in other studies for LBM on irregular mesh (Sterling and 

Chen 1996; Guo and Zhao 2003).  It is therefore not feasible to evaluate the full effects of 

these parameters on stability; rather, simplifications and restrictions may be imposed. In 

this study, the influences of collision frequency τω /t∆= , ratio dt/dl, and mean velocity 

u are evaluated with several simplifications. These include, (i) fix 5.0=θ ; (ii) evaluate 

wave number vector only in the range [0,π]; (iii) use uniform mesh, i.e., dx = dy = dl; (iv) 

keep the mean velocity and the wave number vector horizontal corresponding to the 

likely most unstable condition identified by Sterling and Chen (Sterling and Chen 1996).  

A program written in MATLAB (version 6.5.1, The MathWorks, Inc., Natick, 

Massachusetts) was employed to numerically calculate eigenvalues of the matrix Z, and 

thus to determine the stability boundary. An iterative scheme is used in which values of 

ω, dt/dl, and τ were selected, and the mean flow velocity u is incrementally increased 

until the maximum eigenvalue exceeds unity. The resulting mean flow velocity is coined 

in terms of a maximum stable velocity, which is utilized to construct the stability 

boundary by varying the value of ω for several different dt/dl and τ values. Although it is 

very difficult to present a complete illustration of the dependence of the LSFE-LBM 

stability on physical parameters and numerical discretization, Figure 5-2 and Figure 5-3 

shed light on the stability feature of LSFE-LBM with selected τ and dt/dl values.  
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Figure 5-2. Stability Boundaries as Function of Mean Velocity u and Collision 
Frequencies ω for Selected dt/dl when τ = 1.0. 

 

Figure 5-2 presents the correlation between maximum stable velocity u and 

collision frequency ω for different dt/dl under a fixed τ value. As the value of ω 

decreases, the maximum stable velocity first increases, and then is held constant near 

0.58. This existence of a limiting stable velocity was also observed by Sterling and Chen 

(Sterling and Chen 1996) for traditional LBM, implying the underlying inability of using 

a finite set of particle velocities to represent high flow velocity. The observed limiting 

stable velocity for the LSFE-LBM of 0.58, corresponding to a Mach number Ma = u/cs = 

1.0, however, is higher than 0.42 for a traditional D2Q9 model derived by Sterling and 

Chen (Sterling and Chen 1996), indicating that the LSFE scheme actually enhanced the 
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stability of LBM. Meanwhile, Figure 5-2 shows that the stability region is increased with 

increased of dt/dl values. 
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Figure 5-3. Stability Boundaries as Function of Mean Velocity u and Collision 
Frequencies ω for Selected τ when dt/dl = 1.0. 

 

Similar to Figure 5-2, Figure 5-3 presents the relationship between ω and 

maximum stable velocity, but for different τ values. Again, with decreased ω, the 

maximum stable velocity increases until the largest possible value of 0.58 is reached. The 

smaller curve slopes for larger τ values agree well with other simulation results that 

suggest that LBM tends toward stability at higher values of velocity for a larger τ value. 

Moreover, it is observed in Figure 5-3 that smaller τ values possess larger stability regions 

relative to larger τ values, which implicates some trends about the dependency of stability 
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on the numerical discretization. For a certain ω, a smaller τ value corresponds to a smaller 

dt value, and thus a smaller dl value due to the fixed dt/dl in Figure 5-3. Therefore, the 

smaller dt and dl values may lead to larger stability regions, although, on the other hand, a 

higher dt/dl ratio tends to be more stable, based on Figure 5-2.  

 

5.4 Numerical Results 

 Demonstration of the validity and power of LSFE-LBM is illustrated in the 

following test problems in this section, including: Poiseuille flow, Couette flow, flow 

past a circular cylinder, and flow in porous media. 

 

5.4.1 Poiseuille Flow 

Poiseuille flow, i.e., channel flow driven by a constant pressure gradient, is first 

simulated to validate LSFE-LBM. An analytical solution to plan Poiseuille flow in a 

channel is provided by equation (5-37) (Deen 1998): 
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max                    (5-37) 

where x is the spatial longitudinal dimension, y is the spatial transverse dimension, umax is 

the maximum velocity at the parabolic velocity profile, and H is the half width of the 

channel. In our LSFE-LBM implementation, the initial flow velocity is zero, relaxation 

time, τ , is 0.05, particle density, ρ, is 1.0, umax is 0.1, and H is 5/6. A periodic boundary 

condition is applied in the x-direction, and a body force 2
max2

H
vu

G =  is applied in the x-

direction to initiate the flow, where v is the viscosity. This system possesses a Reynolds 
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number (
v

Hu
Re

2max= ) of 10, and a Mach number (
sc

u
Ma max= ) of 0.173. Results 

presented in Figure 5-4 illustrate that LSFE-LBM achieves close agreement with the 

analytical solution.  
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Figure 5-4.  Comparison of LSFE-LBM Solution (points) and Analytical Solution 

(line) for Normalized Velocity Profile for Poiseuille Flow. In LSFE-LBM, the 
relaxation time,τ , is 0.05, and particle density, ρ, is 1.0, the maximum velocity, umax, 

is 0.1, and the half width of the channel, H, is 5/6. 
 

It is observed in modeling Poiseuille flow, and later in Couette flow, that the 

viscosity of fluid follows the relationship 3/τ=v . In a traditional D2Q9 lattice 

Boltzmann model, the viscosity is 3/)2/dt(v −τ= , in which the negative component 

derives from  numerical errors. Thus, it is indicated that LSFE-LBM will be less 

subjected to numerical diffusion. Further, the absence of the negative component implies 
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the possibility of very small viscosity values, which may lead to higher Reynolds 

numbers. However, to fully explore the efficiency of LSFE-LBM with high Reynolds 

number, we suggest that more thorough theoretical and numerical tests are necessary. 

 

5.4.2 Couette Flow 

The second application of unsteady Couette flow is used to evaluate the temporal 

accuracy of LSFE-LBM. Different from Poiseuille flow, here the top plate is moving 

along the x-direction at a constant velocity, umax, while the bottom plate remains 

stationary. The analytical solution for Couette flow is (Deen 1998): 

Dyye
D
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D
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t

i i

i
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+= −
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=
∑ 0,sin)1(2),(

2/1

1

max
max λ

λ
λ ,       (5-38) 

where ...3,2,1, == m
D
i

i
πλ  

A periodic boundary condition is applied in the x-direction, and the Reynolds 

number 
v

Du
Re

max=  is again set equal to 10, where D represents the width of the 

channel. The time step is 0.03, relaxation time,τ , is 0.05, particle density is 1.0, umax is 

0.1, and D is 5/3. A comparison of numerical results and the analytical solution is shown 

in Figure 5-5.  
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Figure 5-5.  Comparison of LSFE-LBM Solution and Analytical Solution for 
Couette flow. The points represent the LSFE-LBM solution, while the lines denote 

the analytical solution. The time step is 0.03, and relaxation time,τ , is 0.05, the 
maximum velocity, umax, is 0.1, and the width of the channel, D, is 5/3. 

 

5.4.3  Flow past a Circular Cylinder 

LSFE-LBM was also applied to simulate steady-state flow past a circular 

cylinder, since this problem has been widely employed (He and Doolen 1997; Lee and 

Lin 2001; Guo and Zhao 2003) as a benchmark problem to validate different numerical 

methods.  Here, the results are compared with previous numerical and experimental 

studies. Simulation is carried out in a square domain with width W = 100d, Ma = 0.1, and 

20/ == ∞ νduRe , where ∞u  is the free stream velocity and d is the diameter of the 

circular cylinder. Unstructured triangular mesh is applied, as shown in Figure 5-6, which 

includes 2544 nodes and 4992 elements.   
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Figure 5-6.  Unstructured Mesh for Flow past a Circular Cylinder in (a) the entire 
computational domain and (b) the vicinity of the cylinder. 

 

Simulation starts from an irrotational potential flow. Free stream velocity ∞u  is 

enforced on the domain boundaries, while keeping the distribution function in its 

equilibrium state. Periodic boundary conditions are implemented for the inlet and outlet 

of the simulation domain, while a bounce back rule is imposed to ensure the non-slip 

condition at the surface of cylinder.  

LSFE-LBM simulation results show a pair of stationary recirculation eddies 

appearing behind the cylinder, as reported in many previous studies (He and Doolen 

1997; Lee and Lin 2001; Guo and Zhao 2003). Geometric parameters of the flow are 

measured and listed in Table 5-2, including the separation angle Өs and the ratio of wake 

length to cylinder radius L/r0, where wake length L is defined as the distance from the 

rearmost point of the cylinder to the end of the wake. Dynamic parameters, including the 

(a) (b) 
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drag coefficient (CD) and the stagnation pressure coefficients at the front, Cp(π), and at 

the end, Cp(0), of the cylinder, were also measured and listed in Table 5-2.  

 

Table 5-2 Comparison of Geometric and Dynamic Parameters of Flow past a 
Circular Cylinder with Previous Studies. 

Authors L/r0 Өs CD -Cp(0) Cp(π) 
Trittona (Tritton 1959) 1.86 41.6 - - - 
Coutanceau and Bouarda 
(Coutanceau and Bouard 1977) 

1.86 44.8 - - - 

Nieuwstadt and Kellerb 
(Nieuwstadt and Keller 1973) 

1.786 43.37 2.053 0.582 1.274 

Dennis and Changb 
(Dennis and Chang 1970) 

1.88 43.7 2.045 0.589 1.269 

Fornbergb (Fornberg 1980) - - 2.000 0.54 1.28 
He and Doolenc (He and 
Doolen 1997) 

1.843 42.96 2.152 0.567 1.233 

Guo and Zhaod (Guo and 
Zhao 2003) 

1.824 43.59 2.048 0.512 1.289 

Lee and Line (Lee and Lin 
2001) 

1.85 44.08 1.998 0.530 1.248 

Present f 1.835 44.64 2.011 0.551 1.262 
a Experiment. 
b Numerical simulation of Navier-Stokes equations. 
c Interpolation-supplemented LBM on structured mesh with 181×241grid points. 
d Explicit finite-difference LBM on structured mesh with 129×64grid points. 
e Characteristic Galerkin discrete LBM on unstructured mesh with 2568 grid points 
f Least squares finite-element LBM on unstructured mesh with 2544 grid points. 

 

The stagnation pressure coefficient Cp is defined as: 

22/1 ∞

∞−
=

u
ppC p ρ

      (5-39) 

where, p is the pressure which can be evaluated directly using: 

ρ2
scp =       (5-40) 

The drag coefficient, CD, is defined as 
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     (5-41) 
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where, n is the normal direction of the cylinder wall and S is the stress tenser given by: 

)][( TuupIS ∇+∇+= ρν      (5-42) 

 As shown in Table 5-2, the results of LSFE-LBM are in good agreement with 

previous experimental studies (Tritton 1959; Coutanceau and Bouard 1977) and finite-

difference based CFD methods by Nieuwstadt and Keller (Nieuwstadt and Keller 1973) 

and Dennis and Chang (Dennis and Chang 1970).  Compared to LBM on structured mesh 

(He and Doolen 1997; Guo and Zhao 2003), LSFE-LBM achieves good agreement with 

simulation results while using a much smaller number of grid points. Approximately the 

same number of grid points as CGDBE (Lee and Lin 2001) on the unstructured mesh is 

utilized by LSFE-LBM in this study. However, LSFE-LBM is not restricted by the CFL 

condition due to the implicit feature of the LSFE scheme, which can be implemented 

with a larger time step.  

 

5.4.4 Flow in Porous Media 

Traditional LBM has been successfully applied to study fluid flow in porous 

media by numerous studies (Rothman 1988; Cancelliere, Chang et al. 1990; Chen, 

Diemer et al. 1991; Zhang, Zhang et al. 2000; Talon, Martin et al. 2003; Pan, Hilpert et 

al. 2004; Spaid, Phelan et al. 2004; Sukop and Or 2004; Zhang and Kang 2004; Li, 

LeBoeuf et al. 2005). To demonstrate its ability to address complex geometries and 

compare its performance with traditional LBM, we here apply LSFE-LBM to simulate 

flow in a porous medium and estimate permeability of the simulation domain. At low 

Reynolds number for single-phase flow, specific permeability k of porous media, in unit 

of L2 or Darcy, can be described within the context of Darcy’s law 
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pkq ∇⋅−=
µ

      (5-43) 

where, q [L/T] is the specific flow rate, µ [M/LT] is the viscosity of the fluid, and p∇  

[M/L2T2] represents the pressure gradient. 

 In this study, porous media are envisioned as a statistical distribution of non-

overlapping circular disks representing soil particles distributed in a rectangular two-

dimensional uniform continuum representing the pore space through which a fluid flows. 

Simulation is conducted on a 1mm ×  1mm domain with porosity 0.5, and randomly 

generated particle diameters obeying a lognormal distribution with geometric mean 100 

µm and coefficient of variance (COV) 0.3. For comparison, both tradional LBM with 

uniform mesh and LSFE-LBM with unstructured mesh are considered.  Figure 5-7 

illustrates an example irregular trianglular mesh for LSFE-LBM.   

 

 

Figure 5-7.  An Example of Unstructured Mesh for Flow in the Porous 
Media. 
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No-flow boundary conditions were applied on upper and lower edges, which are 

parallel to the main flow direction. Periodic boundary conditions were applied at the inlet 

and outlet of the domain, which require that the last column of nodes face nodes of the 

same y-axis values at the first column. For porous media with complex geometry, an 

unstructured mesh commonly will not provide such a symmetric node structure for 

domain inlet and outlet. To overcome this problem, an additional buffer area without any 

soil particles was added at the domain inlet and outlet. A similar handling technique was 

also utilized by S. Ubertini and coworkers (Ubertini, Bella et al. 2003; Ubertini and Succi 

2005) to treat zero-gradient boundary conditions for unstructured mesh, where acceptable 

results were found. Bounce back boundary conditions are applied to guarantee the non-

slip condition at the surface of particles.  To mimic the effects of a pressure gradient 

along the horizontal direction, an external body force was enforced on the fluid in the 

porous media, which generates fluid flow at low Reynolds number of approximately 

0.05. Darcy’s law equation (5-43) may thus be applied to calculate the permeability of the 

porous media. 

Traditional LBM was carried out with increasing numerical resolution until the 

effects of spatial discretiztion were negligible. As presented in Figure 5-8, at grid point 

number 2001 ×  2001, the permeability estimated by traditional LBM approaches a stable 

value of 35.56 Darcy, which is utilized as a standard value to compare with LSFE-LBM 

simulation results. 8866 grid points are utilized in LSFE-LBM simulation, leading to a 

permeability value of 33.59 Darcy. While the relative error between the two methods is 

only approximately 5.5%, the number of grid points utilized by traditional LBM is about 

452 times that used by LSFE-LBM. Although LSFE-LBM inherits the computational 
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complexity from the LSFE method, the reduced grid point requirement for unstructured 

mesh potentially offsets the negative influence on computational efficiency. In this 

specific example, LSFE-LBM with 8866 nodes and traditional LBM with 2001 ×  2001 

nodes require approximately the same amount of time to achieve equilibrium, while 

producing permeability values within the same order of accuracy. Further, in this study, 

the memory usage of LSFE-LBM is only about 4% of traditional LBM, suggesting the 

potential benefits of applying LSFE-LBM to larger and more complex domains.  

 

 
 

Figure 5-8.  A Comparison of the Performance of Traditional LBM and LSFE-LBM 
on Simulating Flow in the Porous Media. 

 

5.5 Summary  

In this chapter, we present a new numerical model for LBM by implementing a 

least squares finite element scheme on unstructured mesh.  Through theoretical accuracy 
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and stability analysis, and successful application of LSFE-LBM to a variety of test 

problems, including Poiseuille flow, Couette flow, flow past a cylinder, and flow in 

porous media, it is suggested that the LSFE-LBM possesses the following attributes:    

• High accuracy: Accuracy analysis of the pure advection equation suggests that LSFE-

LBM enjoys fourth-order accuracy in space and second-order accuracy in time. LSFE-

LBM results agree well with the analytical solutions for Poiseuille and Couette flow, 

and the previous numerical and experimental study results for flow past a cylinder. 

• High stability: For the pure advection equation, LSFE-LBM presents unconditional 

stability in the time domain, which is superior to other finite-difference and finite-

element based LBMs.  Although the von Neumann linearized stability analysis 

indicates that the stability of LSFE-LBM is dependent on physical and numerical 

discretization parameters as other numerical LBMs, its improved stability property is 

further confirmed by a higher limiting stable velocity. 

• High flexibility: Application of LSFE-LBM to flow past a circular cylinder suggests 

good agreement with previous numerical and experimental results, providing initial 

evidence of its applicability to curved boundaries. Later, LSFE-LBM was successfully 

applied to model fluid flow in a randomly generated porous media using an 

unstructured mesh; good agreement with traditional LBM results further demonstrate 

the geometric flexibility of LSFE-LBM. 

• High efficiency: Although more complex computations are required in LSFE-LBM 

relative to traditional LBM, LSFE-LBM requires fewer grid points by utilizing 

unstructured mesh, while consuming less memory by implementing an innovative 

element-by-element approach in the LSFE scheme. As demonstrated by the flow in 
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porous media problem, LSFE-LBM requires 1/452 of the number of grids points and 

1/25 of the memory of traditional LBM to achieve a similar order of accuracy with a 

similar amount of computational time. It is worthy to note that advantages derived 

from this increased efficiency may not be obvious for problems with simple 

geometries; rather, it is expected to be better demonstrated when applied to larger 

domains with more complex geometries. 

Encouraging results from this work suggest that LSFE-LBM will be a promising 

addition to the family of LBM, especially for geometric complex domains. Further 

improvements of LSFE-LBM, however, are suggested. First, LSFE-LBM numerical tests 

were primarily applied to complex geometries with low Reynolds numbers, 

corresponding to our research focus area. Although it is predicted that LSFE-LBM will 

provide potential for employment in high Reynolds number conditions, additional efforts 

are required to validate this point. Second, LBM is well-suited for distributed computing. 

Since element contributions are computed independently, element-by-element based 

LSFE-LBM can also be easily implemented in parallel. It is thus worthwhile to provide a 

more thorough study on the performance of LSFE-LBM following parallelization. 

Finally, since finite volume based CFDs are more commonly employed relative to finite 

element based CFDs, it will be meaningful to further assess and compare the performance 

of LSFE-LBM, FV-LBM, and FV based CFDs. 
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CHAPTER VI 

 

USE OF LSFE-LBM TO STUDY MASS TRANSFER PROCESSES  

 

6.1 Introduction 

To provide for effective and efficient groundwater contamination prevention and 

remediation, it is important to possess a clear understanding of the complex mass transfer 

processes governing solute transport in the subsurface environment. Solute mass transfer 

in the subsurface includes several processes acting simultaneously: (i) advective-

dispersive transport from bulk solution to the boundary layer of a soil or sediment 

particle; (ii) film diffusion across adsorbed water to the surface of a particle; (iii) 

sorption/desorption processes at the surface of the soil particle; and (iv) intrasorbent 

diffusion. Experimental observations of these processes often reveal non-ideal behaviors, 

for example, long term sorption/desorption processes may follow a pattern of initial rapid 

uptake/release, followed by a stage of slow uptake/release. These non-ideal behaviors 

were attributed to transport-related non-equilibrium factors, e.g. different advection 

patterns due to complex soil particle geometries (Brusseau, Jessup et al. 1989; Brusseau, 

Jessup et al. 1991),  and sorption-related non-equilibrium factors (Pignatello and Xing 

1996), e.g. chemical non-equilibrium reactions, pore diffusion and intrasorbent diffusion 

processes.  

Successful mass transfer models that capture these non-ideal behaviors need to 

posses the ability to: (i) accurately interpret the rate-limiting mass transfer processes at 

the particle scale; and (ii) accurately model the complex flow advection behavior within 
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the porous media. While traditional advective-dispersive equations with a local 

equilibrium assumption (LEA) often fail to predict non-ideal behaviors, mass transfer 

models range from one-site models (Lapidus and Amundson 1952) to multi-site models 

(Brusseau, Jessup et al. 1989; Pedit and Miller 1994; Haggerty and Borelick 1995; Pedit 

and Miller 1995), multiple diffusion mechanism models (Miller and Weber 1984; Miller 

and Weber 1988; Ball and Roberts 1991; Pedit and Miller 1994; Cunningham, Werth et 

al. 1997; Haggerty and Gorelick 1998; Werth and Hansen 2002), and stochastic based 

models (Cunningham, Werth et al. 1997; Haggerty and Gorelick 1998; Werth and Hansen 

2002). Although these models provide enhanced abilities for describing sorption-related 

nonequilibrium, their ability to account for transport-related nonequilibrium at the 

microscale is deficient. Extension of these mass transfer models through improved 

representation of the physics of fluid flow and solute transport in porous media is 

necessary.   

  Recently, a lattice Boltzmann method was successfully applied to simulate fluid 

flow in porous media (Chen and Doolen 1998), providing a powerful alternative to model 

transport-related nonequilibrium processes. Corresponding to LBM’s inability to allow 

irregularity in the lattice (Sterling and Chen 1996), we developed a least squares finite 

element lattice Boltzmann method (LSFE-LBM), which uses a LSFE method (Jiang 

1998) in space and Crank-Nicolson method in time to solve the lattice Boltzmann 

equation. As described in Chapter 5, LSFE-LBM was successfully implemented on 

unstructured mesh to simulate fluid flow in porous media, requiring fewer grid points and 

consuming significantly less memory than traditional LBM. In this chapter, we extend 

LSFE-LBM is to simulate solute transport in bulk fluid and couple it with non-linear 
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sorption/desorption processes at particle surfaces and intraparticle diffusion processes. In 

this way, we present a novel approach to integrate transport-related nonequilibrium 

factors with sorption-related nonequilibrium factors.  

 Following this introduction, a brief description of a LBM model is provided. 

Validations of LSFE-LBM for solute transport on simple geometric problems are 

provided in Section 6.3. In Section 6.4, we applied LSFE-LBM to study mass transfer in 

a simplified system. Sensitivity analysis is performed to elucidate the relative 

contributions of mass transfer processes. In Section 6.5, LSFE-LBM is applied to study 

mass transfer processes in porous media. 

 

6.2  LSEF-LBM for solute transport 

In this study, we assume that the solute concentration is sufficiently low that it 

will not influence solvent flow. In this case, the solute can be described by a separate 

particle distribution function (Wolf-Gladrow 2000). To recover the advection-diffusion 

equation, a simple square lattice with four possible velocities, i.e., D2Q4 model, is 

sufficient, which can be described as: 
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∂
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where gi represents a particle distribution function for the solute, τs is the relaxation time, 

icv is the microscopic velocity associated with each link, given by: 
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and gi
eq is the corresponding equilibrium distribution function, which is defined by: 
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)uc(
c2
C
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Cg i2

eq
i

vv ⋅+= ,     (6-3) 

where C is the solution concentration defined by 

∑
=

=
4

1i
igC ,      (6-4) 

and uv  is fluid flow velocity provided by solving flow field. 

Implementing the same numerical approach as for fluid flow, i.e., Crank-Nicolson 

method for time and least squares finite element method for space, a LSFE-LBM for 

solute transport can be derived based on this four velocity model.  

 

6.3 Validation of LSFE-LBM  

In this section, validations of LSFE-LBM simulating solute transport are 

performed by several diffusion problems on a very simple geometry for both steady state 

and unsteady state conditions. LSFE-LBM results are then compared with analytical 

solutions. 

 

6.3.1 Diffusion between Two Parallel Walls 

As illustrated in Figure 6-1, two walls are assumed to be porous and a constant 

normal flow ua is injected through the lower wall and removed from the upper wall. The 

concentration of solute at the lower and upper walls is maintained with CL and CU, 

respectively. In this specific problem, CU is assumed higher than CL; it follows that solute 

diffuses counter to the flow of the fluid.  
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Figure 6-1. Diffusion between Two Parallel Walls. 

 

The governing equation for this problem is:  

y
u

y
D

t a ∂
Φ∂

+
∂
Φ∂

=
∂
Φ∂

2

2

     (6-5) 

1),(,0),0(,0)0,( =Φ=Φ=Φ tlty  

where, Φ  is a normalized concentration defined as: 
LU

L

CC
CC
−
−

=Φ , and D is the 

diffusivity of solute. Analytical solutions can be obtained for this problem in two special 

cases.  

Case I: When ua = 0, equation (6-5) will reduce to an unsteady state pure diffusion 

problem. The analytical solution can be expressed as:  

λπ
π
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Case II: When 0≠au , analytical solutions are only available for steady-state conditions:  

1
1

)/(

)/(

−
−

=Φ Du

Dyu

a

a

e
e      (6-7) 

Results presented in Figure 6-2 illustrate that LSFE-LBM achieves close agreement with 

analytical solutions for solute transport in both unsteady state and steady state conditions. 

x 

 

ua 

CU 

CL 

l 



 192

(a)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

y/H

C
/C

H

t=0.5t=1.0
t=2.5

t=5.0

t=9.0

t=15.0

t=172

 

(b)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Dimensionless Concentration

y

 

Figure 6-2. Comparison of LSFE-LBM Solution (points) and Analytical Solution 
(line) for Diffusion between Two Parallel Walls. (a) represents unsteady state 

solutions when water velocity ua=0 and (b) represents steady state solution when 
water velocity 0≠au . 
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6.3.2  Diffusion with Reactive Boundary 

 In this section, applicability of LSFE-LBM to reactive boundary conditions is 

examined by the classical problem of diffusion between two parallel walls. As illustrated 

in Figure 6.3, a constant concentration CA0 is maintained at the lower wall, while a first 

order reaction occurs at the surface of the upper wall. Solute is transported between the 

two walls due to the concentration gradient. 

 

 

Figure 6-3. Diffusion between Two Parallel Walls with a Reactive Boundary 
Condition. 

 

The governing equation and boundary conditions for this problem are:   

 

02

2

=
dy

Cd A        (6-8) 

0AA CC = , @ y=0    

   A
A kC

dy
dCD −= , @ y=H    

 
where CA represents concentration of solute A, D is the diffusion coefficient of solute A, 

k is the first order reaction rate, and H is the distance between two walls. An analytical 

solution of this problem is given by: 

D
kHD

H
y

D
D

C
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a
a

a

A

A =
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−= ,
1

1
0

    (6-9) 
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RA=-k CA 
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where Da is Damkohler number, representing the ratio of reaction rate to the diffusion 

rate. 

To implement the boundary condition at the upper wall, it is important to relate 

the concentration gradient with the microscale particle distribution function. For a D2Q4 

lattice Boltzmann model, a relationship is given by (Noble 1997):  

   C
2

Cucg s
i

4

1i
i ααα

=

∂
τ

−≈∑              (6-10) 

where α denotes x or y direction. As shown in Figure 6.4, g4 and concentration C is 

unknown. 

 

 

Figure 6-4. An Illustration of an Upper Wall Boundary Condition at the Micro-
Scale. 

  

Based on the relationship (6-10), and the fact of u = 0 on the wall, we can get: 

y
C

2
gg s

42 ∂
∂τ

−=− .      (6-11) 

Substituting in the boundary condition on the wall, we have:  

C
D
k

2y
C

2
gg ss

42
τ

=
∂
∂τ

−=−     (6-12) 

Further, we know:  

    Cgggg 4321 =+++      (6-13) 

1

2

3
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Solving equation (6-12) and (6-13), unknown distribution g4 and concentration C can be 

calculated. LSFE-LBM simulation results were compared with analytical solutions under 

different Damkohler numbers. As presented in Figure 6-5, very good accuracy is 

achieved, demonstrating the ability of LSFE-LBM to simulate reactive boundary 

diffusion problems. 
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Figure 6-5. Comparison of LSFE-LBM Solution (points) and Analytical Solution 

(line) for Diffusion Between Two Parallel Walls with a Reactive Boundary 
Condition under Different Damkohler Numbers. 

 

6.4  Use of LSFE-LBM to simulate mass transfer in a single particle system 

 

6.4.1 Problem Description 

To explore influences of transport-related and sorption-related non-equilibrium 

factors on mass transfer processes, we first apply LSFE-LBM to simulate flow and 
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transport through and around a single circular particle, set in a two-dimensional domain 

with a uniform far-field velocity, as illustrated in Figure 6-6. 

 

 

Figure 6-6. An Illustration of Fluid Flow and Solute Transport Through and 
Around a Circular Particle. 

 

As shown in Figure 6-6, a constant body force is imposed to as the driving force 

to move the fluid from the left to right.  In the steady state fluid flow field, a solute source 

with a constant concentration is applied as a line source. Solute transport in the bulk fluid 

is driven by advection and diffusion processes. Some solutes will arrive at the surface of 

the particle, where sorption/desorption processes will occur. The sorption rate at the 

particle surface can be expressed (Brusseau and Rao 1990) as a function of the 

concentration difference between the solid and solution phases: 

skCk
t
s

d
m

a −=
∂
∂      (6-14) 

where: 

 s = the solute concentration in the solid phase [M/L2]; 
 C  =  the solute concentration in solution [M/L3];  
 m  =  Freundlich sorption intensity exponent [-]; 
  ka  =  sorption rate coefficient [L/T] [L3/M]m-1; and  

2R 
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  kd =  desorption rate coefficient [1/T].  

At equilibrium, i.e. 0
t
s
=

∂
∂ , adsorption may be described by a Freundlich isotherm as:  

m
da C)k/k(s = ,     (6-15) 

Following adsorption at the surface, the solute may diffuse into the soil particle. A 

simple Fickian diffusion model is employed to describe this intra-particle process:  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θ∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

2

2

22

2

in
q

r
1

r
q

r
1

r
qD

t
q      (6-16) 

where: 

 q  = the solid phase concentration [M/L3]; 
 Din  = the intraparticle diffusion coefficient [M2/T]; 
 r  =  the radial coordinate; and  

  =  the azimuthal coordinate. 

 

6.4.2 Liquid Phase Boundary Condition 

 Boundary conditions at the solid-liquid interface are derived by mass 

conservation. Considering a typical control volume at the surface noted in Figure 6-7, 

mass balance of the liquid phase solute may be expressed as: 

dA
n
CDrCdV

t c∫∫ ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+−=
∂
∂    (6-17) 

where V is the volume of control volume, A is the surface area, and rc is the 

adsorption/desorption rate expressed by: 

skCkr d
m

ac −=−      (6-18) 
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Figure 6-7. An Illustration of Boundary Conditions at the Solid-Liquid Interface. 
 

For a small control volume, it is reasonable to assume that solute concentration, solute 

adsorption/desorption rates, and diffusion rates are all uniform at the surface, then we 

have: 

A
n
CDrCAdr

t c ⎟
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or  

 
n
CDr)drC(

t c ∂
∂

+−=⋅
∂
∂      (6-20) 

where C  is an average concentration over the depth of the control volume. When dr is 

sufficiently small, the local adsorption/desorption and diffusion rates will be equal to the 

diffusion rate:  

n
CDrc ∂
∂

= ,      (6-21) 

or  

 skCk
n
CD d

m
a −=

∂
∂      (6-22) 

This formula reflects a boundary condition at the macroscale. To implement this in 

LSFE-LBM, it is necessary to use the relationship between the macroscale concentration 

gradient and microscale particle distribution functions, equation (6-10): 

n 
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qDin ∂
∂
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   C
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Applying this relationship to boundary nodes as shown in Figure 6-8,  

 

 

Figure 6-8. An Illustration of the LBM Boundary Condition at the Solid-Liquid 
Interface. 

 

We have the following expressions: 

θsin)(42 skCkgg d
n

a −−=−     (6-23) 

θcos)(31 skCkgg d
n

a −−=−     (6-24) 

Further, we know: 

Cgggg =+++ 4321     (6-25) 

Unknown distribution functions are different for each portion of the circular surface. For 

example, at the upper left quadrant of the circle, g2 and g3 are unknown; at the upper right 

quadrant, g1 and g2 are unknown; at the lower left quadrant, g3 and g4 are unknown; and 

at the lower right quadrant g1 and g4 are unknown. Meanwhile, concentration C is 

unknown for all four domains. At each time step, boundary conditions are applied by 

solving the non-linear equation system (6-23), (6-24), and (6-25) with different 

unknowns corresponding to each domain. 
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6.4.3 Intraparticle Diffusion   

Following adsorption at the particle surface, intraparticle diffusion will occur 

either by pore diffusion or intra-organic matter diffusion. For simplification, it is assumed 

in this study that the soil particle possesses uniform diffusivity everywhere. A Fickian 

diffusion model is employed to describe intraparticle diffusion, as described in equation 

(6-16): 

 qDq
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q
rr
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θ
     (6-16) 

In a similar manner to the liquid phase solute, a boundary condition at the surface of 

particle for the solid phase solute can be derived: 

)( skCk
n
qD d

m
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Rr
in −−=
∂
∂

=

     (6-26) 

Due to the non-uniform feature of C and surface concentration s at the surface of the 

particle, no analytical solution is available to describe this intraparticle diffusion process. 

In this work, a numerical technique with finite-difference in space and Crank-Nicolson 

method in time space was implemented, as illustrated in Figure 6-9. 
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Figure 6-9. An Illustration of a Finite Difference Discretization of a Circular 
Particle with a Cylindrical Coordinate System. 
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 Using a central difference scheme, first and second order differentiation in 

equation (6-16) can be approximated as: 

2
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Applying a Crank-Nicolson method to the time discretization: 
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Substituting equation (6-30) and (6-31) into equation (6-16): 
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At the surface of the particle, i.e. i=M, j,1Mq + can only be derived by approximating the 

boundary condition equation (6-26) 
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Rearranging:  
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and substituting in equation (6-32) yields: 
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In the inner most circle i=1, jq ,0 , the concentration in the center of particle, is not 

directly available, and is thus approximated as follows.  It can be shown (Smith 1978) 

that q2∇ can be approximated in a second order accuracy as: 

2
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−
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where meanq is a mean value of concentration around the inner most circle. At r = 0, the 

governing equation is then reduced to: 
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Applying a Crank-Nicolson method, we have: 
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Combining (6-32), (6-35), (6-38), a linear equation system can be derived: 

[A]{q}t+1 = [B]{q}t + {k}     (6-39) 
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where A and B are two M*(N+1) ×  M*(N+1) matrices, and {q}and {q}t+1 illustrate that 

{k} is a M*(N+1) vector, with 
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With a given initial condition, the solid phase concentration at current time step {q}t+1 in 

equation (6-40) may be calculated. 

 

6.4.4 Analysis of the Single Particle System 

As illustrated in Figure 6-10, mass transfer processes in this single particle system 

include diffusion and advection in the bulk fluid, adsorption/desorption at the surface of 

the particle, and intraparticle diffusion. Advection and diffusion in the bulk fluid act in 

parallel, which similarly act in parallel with mass transfer processes in the solid particle. 

Mass transfer processes in the solid particle act in series, where surface adsorption 

processes occur first, followed by intraparticle diffusion.  

 

 

Figure 6-10. An Illustration of Relationships among Mass Transfer Processes in a 
Single Particle System. 
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For parallel processes, the fastest one will control; while for series processes, the 

slowest one will control. To quantitatively analyze mass transfer characteristics, we 

defined several dimensionless numbers.  

1. Pe 

The Peclet number represents the ratio of the time scale of diffusion in the bulk 

fluid to the time scale of advection in the bulk fluid: 

 
D
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uL
DLPe ==

/
/2

,     (6-41) 

where u is an average velocity of the domain, and L is the characteristic length of the 

domain defined as the distance between the source line and the control panel. A large Pe 

indicates that advection is important, while a small Pe means diffusion will control. 

2. Dna 

 Dna is defined as the ratio of adsorption reaction time to the intraparticle diffusion 

time. For simplicity, only linear adsorption processes are considered, so that ka is 

possesses units of [L/T], where Dna may be expressed as: 

 
a
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D

DR
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/
/

2     (6-42) 

Since adsorption and intraparticle diffusion act in series, the slower process will 

dominate. A large Dna thus indicates that surface adsorption will control, while a small 

Dna implies that intraparticle diffusion will control. 

3. Dad 

 Dad is defined as the ratio of the time scale of diffusion in bulk fluid to the 

adsorption reaction time. Again, ka possesses units of [L/T] for linear adsorption, which 

gives: 
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Since diffusion in the bulk fluid and adsorption are parallel processes, the faster process 

will control. A large Dad means adsorption will control, while a small Dad indicates that 

diffusion in the bulk fluid will control.  

Figure 6-11 graphically represents different mass transfer regions based on these 

defined dimensionless numbers.  

 

 

Figure 6-11. Graphic Representation of Mass Transfer Regimes of a Single Particle 
System. 

 

When the adsorption reaction rate is smaller than the diffusion rate in the bulk fluid (i.e. 

Dad <<1), the contribution of sorption-related nonequilibrium is relatively insignificant. 

In this case, physical nonequilibrium will control, which is represented as region PNE in 
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the figure. When both the adsorption reaction rate and the intraparticle diffusion rate are 

larger than the diffusion rate in the bulk fluid (i.e. Dad >>1, and Dna >>1), the overall 

mass transfer rate in the particle will be very fast, indicating a local equilibrium 

condition, which is denoted as region LEA in the figure. When the adsorption reaction 

rate is faster than the diffusion rate in the bulk fluid (i.e. Dad >>1) and the intraparticle 

diffusion rate is smaller than the adsorption reaction rate (i.e. Dna <<1), intraparticle 

diffusion will control, represented as region IND. 

 

6.4.5 Numerical Simulations 

Mass transfer characteristics of each region were studied by conducting numerical 

experiments with varied intraparticle diffusion coefficients, Din, and adsorption reaction 

rates, ka, for a single particle system. General system characteristic parameters are as 

listed in Table 6-1. 

 

Table 6-1. Parameters of the Single Particle System. 

L (µm) R (µm) D (mm2/s) Re 
300.00 50.00 5.00E-05 0.14 

 

6.4.5.1  Region PNE 

Mass transfer characteristics of region PNE was first studied. Parameters of 

numerical tests are listed in Table 6-2. Corresponding locations of these tests in region 

PNE are denoted as dots in Figure 6-11. 
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Table 6-2. Parameters of Numerical Tests for Region PNE. 

Case ka(µm/s) Din (mm2/s) log(Dad) log(Dna) 
6 1.00E-05 1.00E-07 -3.44 2.30 

12 1.00E-04 1.00E-10 -2.44 -1.70 
5 1.00E-04 1.00E-07 -2.44 1.30 

16 1.00E-04 1.00E-03 -2.44 5.30 
 

As illustrated in Figure 6-12, numerical test Cases 5, 6, 12, and 16 produced 

identical breakthrough curves (BTCs), although their ka spanned one order of magnitude 

and Din varied over seven orders of magnitude. The identical BTCs are probably due to 

small Dad values, which imply a small adsorption reaction rate relative to the diffusion 

rate in the bulk fluid. Thus, when Dad is sufficiently low, the sorption-related 

nonequilibrium component will have minimum effects on solute transport. In this 

example, when Dad is less than -2.44, influences of sorption-related nonequilibrium may 

be neglected. 
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Figure 6-12. Break Through Curves in Region PNE. 
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6.4.5.2.  Region LEA 

When both ka and Din are large enough, the time scale of mass transfer in the 

solid phase will be very small compared to the time scale of solute transport in the bulk 

fluid, in which case the local equilibrium assumption is valid. Numerical experiment 

Cases 7, 10, 14 and 13 were conducted in region LEA, as presented in Table 6-3 and 

Figure 6-13. 

 

Table 6-3. Parameters of Numerical Tests for Region LEA. 

Case ka(µm/s) Din (mm2/s) log(Dad) log(Dna) 
7 1.00E+00 1.00E-05 1.56 -0.70 

14 1.00E+00 1.00E-03 1.56 1.30 
13 1.00E+01 1.00E-03 2.56 0.30 
10 1.00E+01 1.00E-02 2.56 1.30 
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Figure 6-13. Break Through Curves in Region LEA.  
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Compared with BTCs in region PNE, e.g., Case 6, BTCs in region LEA present 

much later breakthrough. This is due to the presence of much higher Dad values in region 

LEA, which allow more solutes enter solid particle, producing lower outlet concentration 

at the control point.  

 It is interesting to note that Cases 7 and 14 possess identical BTCs, as do Cases 

10 and 13, which can be attributed to large Dna values in region LEA. A large Dna 

indicates a smaller adsorption rate relative to the intraparticle diffusion rate. Since 

adsorption and intraparticle diffusion are in series, adsorption will control if it is slower. 

In this condition, variations in the intraparticle diffusion rate will not influence mass 

transfer characteristics. 

 It is also interesting to examine the intersection of BTCs of Cases 7 and 14 and 

Cases 10 and 13. At early times, since Cases 10 and 13 possess higher adsorption rates 

than Cases 7 and 14, more solute will attach on the surface of the solid particle, resulting 

in a lower outlet concentration. With the concentration at the surface of the particle 

increasing, the concentration gradient at solid-liquid interfaces will decrease, leading to a 

slower mass uptake within the solid particle. At this point, less solute will enter Cases 10 

and 13, resulting in a higher outlet concentration relative to Cases 7 and 14. 

6.4.5.3 Region IND 

In region IND, the adsorption rate is faster than the diffusion rate in the bulk fluid, 

but the intraparticle diffusion rate is slower than the adsorption rate. In this region, 

intraparticle diffusion will control. Numerical tests for region IND and their results are 

presented in Table 6-4 and Figure 6-14. 
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Table 6-4. Parameters of Numerical Tests for Region IND. 

Case ka(µm/s) Din (mm2/s) log(Dad) log(Dna) 
8 1.00E+00 1.00E-10 1.56 -5.70 
2 1.00E+00 1.00E-07 1.56 -2.70 

 

As shown in Figure 6-14, while Cases 7 and 14 share a similar BTC in region 

LEA, Cases 2 and 8 possess different BTCs. This confirms that when Dad is large and 

Dna is small, intraparticle diffusion will be an important factor in the overall mass 

transfer rate. Since the intraparticle diffusion rate of Case 8 is lower than Case 2, less 

solute will enter the particle in Case 8 than in Case 2, resulting in higher outlet solute 

concentration in Case 8. 
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Figure 6-14. Break Through Curves in Region IND.  
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Cases 1, 4, 11, 15, and 17 were conducted to elucidate under what circumstances 

intraparticle diffusion will begin to govern, as presented in Table 6-5. 

 

Table 6-5. Parameters of Numerical Tests for Defining the Intraparticle Diffusion 
Region. 

Case ka(µm/s) Din (mm2/s) log(Dad) log(Dna) 
11 1.00E-02 1.00E-10 -0.44 -3.70 
4 1.00E-02 1.00E-07 -0.44 -0.70 

15 1.00E-02 1.00E-03 -0.44 3.30 
17 1.00E+01 1.00E-10 2.56 -6.70 
1 1.00E+01 1.00E-07 2.56 -3.70 

 

As noted in the previous section, BTCs of Cases 5, 6, 12 and 16 in region PNE  

are identical, representing insignificant effects of sorption-related factors. BTCs of Case 

4, 11 and 15 appear different than BTCs of Case 5, 6, 12 and 16, suggesting that larger 

Dad values increase the role of sorption-related non-equilibrium. It is reasonable to 

consider the existence of a transition area that sorption-related factors will begin to 

function, which is about )0.1,0.2()Dadlog( −−∈ for this example. 

While log(Dad) > -1.0, Cases 11, 4, 15, Cases 8, 2 , 7, 14, and Cases 17, 1, 13, 10 

represent three groups whose members possess similar Dad values but varied Dna. As 

shown in Table 6-6, BTCs will be insensitive to intraparticle diffusion when log(Dna) is 

larger than -0.7. Since a similar trend holds true for log(Dad), it is reasonable to consider 

a transition region instead of a distinct line along which the overall mass transfer rate will 

be influence by intraparticle diffusion, which is approximately )0.1,0.2()Dnalog( −−∈ for 

this example.  
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Table 6-6. An Analysis of BTCs of Numerical Tests for Defining the Intraparticle 
Diffusion Region. 

Case Log(Dad) log(Dna) BTC 
15 -0.44 3.30 Same as Case 4 
4 -0.44 -0.70 Same as Case 15 

11 -0.44 -3.77 Different 
14 1.56 1.30 Same as Case 7 
7 1.56 -0.70 Same as Case 14 
2 1.56 -2.77 Different 
8 1.56 -5.77 Different 

10 2.56 1.30 Same as Case 13 
13 2.56 0.30 Same as Case 10 
1 2.56 -3.70 Different  

17 2.56 -6.70 Different 
 

6.4.5.4 Summary of a Single Particle System 

 Thus, for this single particle system, we have: (i) when )0.1,0.2()Dadlog( −−< , 

sorption-related non-equilibrium will have a minimal effect on solute transport, and 

physical nonequilibrium will control. (ii) when )0.1,0.2()Dadlog( −−> and 

)0.1,0.2()Dnalog( −−> , both the adsorption reaction rate and the intraparticle diffusion 

rate are fast. In this situation, a local equilibrium assumption will be valid, and mass 

transfer is insensitive to intraparticle diffusion; (iii) when )0.1,0.2()Dadlog( −−>  and 

)0.1,0.2()Dnalog( −−< , intraparticle diffusion will significantly influence the overall 

mass transfer rate. 
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6.5  Use of LSFE-LBM to simulate mass transfer in porous media 

 

6.5.1 Introduction 

Experimental observations of fate and transport of hydrophobic organic chemicals 

(HOCs) in subsurface environment often reveal non-ideal behaviors, for example, long 

term sorption/desorption processes may follow a pattern of initial rapid uptake/release, 

followed by a stage of slow uptake/release (Brusseau and Rao 1989). Traditional models 

employing ideal contaminant transport processes represented by local equilibrium 

assumptions and linear sorption processes often fail to adequately model observed 

processes, suggesting other, non-ideal factors are influencing observed behaviors. 

Heterogeneities of soils and sediments, including soil and sediment structural 

configurations and composition, are known to play important roles for these non-ideal 

behaviors.  

Variable structural configurations can result in complex advection patterns in 

porous media, leading to transport-related non-ideal behaviors (Brusseau, Jessup et al. 

1989; Brusseau, Jessup et al. 1991). Research has shown that complex pore 

configurations, including root channels, earth worm burrows, and intrapedal voids, 

contribute significantly to nonideal solute transport behaviors (Beven and Germann 1982; 

Willoughby and Kladivko 2002). For example, preference transport of water and solute in 

macropore channels will lead to early solute breakthrough. Experimental studies and 

numerical modeling efforts were carried out to investigate the influence of intraparticle 

porosity (Brusseau 1993), macropore networks (Haws, Das et al. 2004), and soil 

aggregations (Rao, Rolston et al. 1980; Van Genuchten and Dalton 1986). These 
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numerical modeling efforts, however, focus at the Darcy-scale. It remains a very difficult 

challenge to explicitly quantify pore tortuosity, particle geometry, and pore size 

distribution within models. While it is obvious that the variability of flow rate and solute 

concentration at the pore scale will affect mass transfer characteristics, proper pore-scale 

modeling efforts will thus enhance our ability to explore the influence of microscale soil 

structure configurations on mass transfer. 

Meanwhile, the variable soil and sediment composition can contribute to sorption-

related non-ideal behaviors (Pignatello and Xing 1996), e.g., chemical non-equilibrium 

reactions, pore diffusion, and intrasorbent diffusion processes. Studies (Pignatello and 

Xing 1996) have attributed some non-ideal behaviors of HOC transport, e.g., slow 

desorption, to a combination of contributions of different reactivity fractions, i.e., mineral 

fraction and soil organic matter (SOM) in their different physical states, i.e., glassy or 

condensed states and rubbery or gel-like states. The Distributed Reactivity Model 

(DRM), proposed by Weber and co-workers (Weber , McGinley et al. 1992; Young and 

Weber 1995; Weber and Huang 1996; Huang, Young et al. 1997; LeBoeuf and Weber 

1997; Huang and Weber 1998), characterizes soil particles as three functional domains 

that contribute differently to equilibrium and non-equilibrium sorption/desorption 

processes. 

 Domain I consists of mineral sites which may play a minor role for HOC 

sorption/desorption processes (Huang, Schlautman et al. 1996).  Domain II contains soft 

fractions of SOM, such as humic acids and fulvic acids in their rubbery states. Humic 

acids, soluble in bases but insoluble in acids, are dominant SOM components (Stevenson 

1994). Humic acids may transfer from a glassy state to a rubbery state at temperature 
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range between 36 oC to 62 oC (LeBoeuf and Weber 1997; LeBoeuf and Weber 2000; 

LeBoeuf and Weber 2000; Schaumann and Antelmann 2000; Young and LeBoeuf 2000; 

DeLapp and LeBoeuf 2004; DeLapp, LeBoeuf et al. 2004). Although it has been 

observed that HOCs may present slow sorption/desorption rate in aged humic materials 

(Shor, Rockne et al. 2003), humic acids in their rubbery states, possessing high macro-

molecular mobility, often provide sites for relatively fast and linear sorption/desorption 

processes. Domain III refers to condensed fractions of SOM, such as kerogen, black 

carbon, and humic acids in their glassy states, and are believed to be primarily 

responsible for adsorption-type behaviors. Kerogen, the nonextractable fraction of SOM, 

is an important component of Domain III, where it has been shown to possess much 

larger sorption capacities for HOCs than humic acids, and always presents highly 

nonlinear sorption isotherms (Young and Weber 1995; Kleineidam, Rugner et al. 1999).  

Identification of kerogen and detection of glass transition phenomenon for humic 

acids improved the mechanistic understanding of HOC sorption and desorption 

processes. However, efforts of incorporating these laboratory observations with pore-

scale simulation of HOCs fate and transport are insufficient (Huang, Peng et al. 2003). As 

an initial effort to bridge comprehensive sorption/desorption mechanistic studies with 

pore–scale modeling, LSFE-LBM was employed to study the influences of the 

heterogeneity of both soil structure configurations and soil compositions on solute 

transport in porous media.   
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6.5.2 System Setting 

The desorption of phenanthrene, a typical HOC, from soils and sediments under 

saturated conditions was simulated.  Numerical simulations were conducted for the 

system illustrated in Figure 6-15. 

 

   

Figure 6-15. An Illustration of Fluid Flow and Solute Transport through a Porous 
Medium. 

 

A 1 mm ×  1 mm soil domain consisting of circular particles with geometric mean 

diameter of 100 µm, depicting particle size representative of coarse sand, was studied. 

The particle size distribution function of the domain obeys a modified lognormal 

distribution, employing a 95% confidence interval for particle size to eliminate extreme 

values. The geometric mean porosity of the domain is 0.5. The phenanthrene 

concentration was initially set as a uniform concentration C0 of 1.0 mg/L, close to its 

aqueous solubility at 25 oC (Schwarzenbach, Gschwend et al. 1993). The bulk fluid flows 

from left to right, with a Reynolds number close to 0.002, representing laminar flow 

conditions in porous media.  Phenanthrene transport in the bulk fluid is driven by 

Control  
Panel 

1m
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advection and diffusion processes, with a diffusion coefficient of 8.0E-06 cm2/s 

(Schwarzenbach, Gschwend et al. 1993).  

The influence of soil structure configuration was first evaluated by modeling the 

transport of phenanthrene in randomly generated porous media with varied structural 

configurations, without the presence of SOM. The effects of SOM were then studied by 

simulations of porous media with varied SOM contents and compositions. 

 

6.5.3   Influence of Pore Structural Configurations 

6.5.3.1 Domains of Simulation  

The influence of pore structure configurations was examined by simulating 

porous media domain with varied particle diameter coefficient of variance (COV), i.e. 

COV of 0.01 and 0.6, corresponding to very well-sorted and poorly sorted soils and 

sediments. Since soil configurations may be different, even for soils possessing similar 

particle diameters and COV, two configurations were simulated for soils possessing 

similar particle diameters and COV.  Illustrations of the simulated domains are presented 

in Table 6-7. 

In this portion of the simulation, porous media are envisioned as soils and 

sediments with negligible SOM; mineral materials thus comprise the main component of 

the soil. Research (Weber and Huang 1996) has shown that HOC sorption/desorption 

processes on mineral materials are described by relatively low sorption capacity, rapid 

uptake, and rapid release. Huang (Huang, Schlautman et al. 1996) conducted a systematic 

experimental investigation of the sorption of phenanthrene by mineral materials, which 

reported Freundlich sorption capacities of four to six orders of magnitude lower than the  
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SOMs employed by LeBoeuf (LeBoeuf and Weber 2000). Because of this relatively 

minor role for HOC sorption on mineral solids, sorption/desorption processes of 

phenanthrene at the surfaces of mineral particles were ignored. Mass transfer processes in 

such a system thus only include advection and diffusion of phenanthrene in the bulk 

fluid. This simplification reduces the primary variable of concern to soil structure 

configuration.  

 

Table 6-7. Porous Media Domains Used for Studying the Influence of Soil Structure 
Configurations on Solute Transport. 

 Soil 5 Soil 6 
 
 

D = 100 µm 
COV=0.01 

Permeability K = 38 Darcy Permeability K = 44 Darcy 
 Soil 7 Soil 9 
 
 
 
D = 100 µm 
COV=0.6 

Permeability K= 61 Darcy Permeability K= 100 Darcy 
 

6.5.3.2 Results and Discussion 

Figure 6-16 below illustrates break through curves (BTCs) for four porous media 

domains. The most obvious observation is that all BTCs are subjected to a long tailing. 
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Further, tailing concentrations are dependent on soil particle diameter COVs. At 30 pore 

volumes, the outlet concentration of soil configurations with COV of 0.01 is 

approximately 5% of the original saturated concentration. Meanwhile, outlet 

concentrations of soil configurations with COV of 0.6 are approximately 2% of the 

original concentration.  
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Figure 6-16. BTCs of Phenanthrene Removal from Contaminated Porous Media 
with Varied Particle Sorting Levels. The y-axis represents a ratio of observed outlet 

concentration to the original phenanthrene concentration in porous media. 
 

It is reasonable to hypothesize that some phenanthrene was trapped inside the 

porous media, serving as long term sources for the tailing. A closer observation of 

phenanthrene distributions upon transmission of 30 pore volumes is shown in Table 6-8. 



 220

Table 6-8. Distributions of Remaining Phenanthrene in Simulated Porous Media 
Domains at a Time of 30 Pore Volumes. The color bar represents a ratio of the 

residual concentration to the original concentration; blue arrow lines denote fluid 
flow lines. 

D = 100 µm,  COV=0.01, Porosity = 0.5 

D = 100 µm,  COV=0.6, Porosity = 0.5 

 
 

 
 
 
 

 

Snap shots of residual phenanthrene distributions vividly show the influence of 

soil configurations on tailing. In pore throats with higher velocities, advection will 

control phenanthrene transport. Phenanthrene was easily advected by the bulk fluid flow, 

resulting in low residual concentrations. Within nearly stagnant zones, diffusion will 

control phenanthrene transport, resulting in higher concentrations of phenanthrene 

residual. Soil configurations with a lower COV tend to be denser, which provide 

increased regions of low velocity, resulting in higher residual concentrations. On the 

C/C0 =1.0 

C/C0 =0.0 
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contrary, soil configurations with a higher COV generally possess higher velocity flow 

fields, resulting in lower residual concentrations. 

Although COVs play an important role on tailing effects, domains consisting of a 

similar particle mean diameter, COV, and porosity presented different tailing 

concentrations, due to differing soil structure configurations. COV itself is thus not 

sufficient to describe the mass transfer rate within a porous media. Considering 

permeability is a parameter representing averaged microscale characteristics of the fluid 

and the porous media, the relationship between permeability and the residual mass was 

investigated, as presented in Figure 6-17. The mass of phenanthrene residual decreases in 

a nonlinear fashion with increases in permeability. The rate of decrease at lower 

permeability values is greater than at higher permeability values. 
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Figure 6-17. A Relationship between Permeability and the Amount of Mass 
remaining in a Porous media. The y-axis represents a ratio of phenanthrene mass 
remaining in a porous media at a time of 30 pore volumes to the original mass at 

time 0. 
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Low permeability porous media often possess significantly large stagnant zones 

or dead ends, where solutes may become entrapped. Slight incremental increases in 

permeability in these low permeability media, however, can greatly decrease the 

proportion of stagnant zones, allowing for significant increases in the release of trapped 

solute. For high permeability porous media, however, the percentage of stagnant zones or 

dead ends is low, such that an equivalent incremental increase in permeability will not 

display a similar reduction in the portion of stagnant zones compared with porous media 

with lower permeability. Thus, the influence of incremental permeability increases will 

have a decreased effect on the mass of phenanthrene residual as the overall permeability 

increases; as exemplified in the non-linear behavior depicted in Figure 6-17. 

The aforementioned simulations imply an underlying relationship between the 

permeability of porous media and the amount of solute residual. However, permeability, 

as a function of particle size distribution, porosity, and packing, is often subject to 

uncertainty. Clear identification of the uncertainties and the relationship between 

permeability and phenanthrene residual actually will require a comprehensive stochastic 

study. Considering the large computational requirements for traditional Monte-Carlo 

simulations, employment of an analytical reliability method, e.g., first order reliability 

method (FORM), may be beneficial. As demonstrated by a similar application (Li, 

LeBoeuf et al. 2005), a combination of LSFE-LBM and FORM may help elucidate the 

relationship between permeability and solute residual while capturing particle scale 

uncertainties. 
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6.5.4 Influences of Soil Organic Matter  

6.5.4.1 Numerical Simulations 

The influence of SOM was examined by simulating porous media domain with 

varied SOM contents. Humic acid and kerogen, representing SOM of Domain II and 

Domain III respectively, are randomly scattered in the porous medium. Humic acid is 

depicted by a thin layer on randomly-selected particles.  This layer represents the outer 

10% of the original particle radius. Kerogen is represented by select porous media 

particles, with a radius of 28 µm. Although the representations of the simulated humic 

acid and kerogen components represent a simplification of their actual physical shape, 

simplification enables the maintenance of the original soil configuration, such that the 

fluid flow simulation results can be readily compared among a variety of SOM contents.  

Initially, phenanthrene concentrations in the humic acid and kerogen are in 

equilibrium with the liquid phase phenanthrene concentration in the bulk fluid, based on 

their corresponding Freundlich isotherm models. As noted in Table 6-9, porous media 

with various proportions of humic acid and kerogen, including humic acid contents of 3% 

and 0.3%, a kerogen content of 0.48%, and their combination, were simulated to 

investigate behaviors of phenanthrene transport under different SOM contents, which are 

compared with the same porous medium but without SOM.  
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Table 6-9. Porous Media Domains with Varied Humic Acids and Kerogen Contents 
Used for Studying the Influence of SOMs on Solute Transport. Red circles represent 

humic acid coatings; orange particles denote kerogen particles. 

NOSOM 

 

 
 
Humic Acid 0% 
Kerogen 0% 

SOM 2 

 

 
 
 
Humic Acid 3% 
Kerogen 0% 

SOM 3 

 

 
 
 
Humic Acid 0.3% 
Kerogen 0% 

SOM 4 

 

 
 
 
Humic Acid 0% 
Kerogen 0.48% 

SOM 5 



 225

 

 
 
Humic Acid 3% 
Kerogen 0.48% 

SOM 6 

 

 
 
 
Humic Acid 0.3% 
Kerogen 0.48% 

 

Again, due to the minor role of mineral materials  (Huang, Schlautman et al. 

1996), sorption/desorption processes of phenanthrene at the surfaces of mineral particles 

were ignored. Mass transfer processes in such a system thus include advection and 

diffusion of phenanthrene in the bulk fluid, sorption/desorption at the surfaces of the 

humic acid and kerogen, and intraparticle diffusion in the humic acid and kerogen.  

6.5.4.2 Parameter Determinations 

When phenantheren arrives at the surface of SOM, sorption/desorption processes 

will occur. Nonequibrium sorption processeses were considered as (Brusseau, Jessup et 

al. 1991): 

  )( qCK
t
q m

f −=
∂
∂ γ      (6-45) 

where, γ is a reaction rate [1/T], and Kf is a Freundlich capacity parameter [µg/g][L/µg]m. 

In equilibrium, i.e., 0
t
q
=

∂
∂ , adsorption is described by a Freundlich isotherm as:  
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m
f CKq = ,     (6-46) 

Following sorption at the surface, the solute will diffuse into the particle. A simple 

Fickian diffusion model is employed to describe this intra-particle process, as expressed 

by equation (6-16):  
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LeBoeuf (LeBoeuf and Weber 2000; LeBoeuf 1998) conducted equilibrium and 

non-equilibrium experiments for phenanthrene sorption on an Aldrich humic acid and an 

Ohio Shale II kerogen, the results of which can be readily applied to estimate Kf, γ and 

Din for humic acids and kerogen. Freundlich isotherm model parameters derived from 

LeBoeuf’s sorption equilibrium experiments at 25 oC are summarized in Table 6-10.  

 

Table 6-10. Freundlich Isotherm Model Parameters for Phenanthrene Sorption on 
Humic Acids and Kerogen at 25 oC (LeBoeuf and Weber 2000). 

 log Kf a n b R2 N c 

Aldrich Humic Acid 1.138 
(0.058) 

0.965 
(0.030) 1.000 22 

Ohio Shale II 
kerogen 

3.164 
(0.026) 

0.548 
(0.049) 

1.000 22 
a Kf units are [µg/g][L/µg]n, 95% confidence interval for logKf in parentheses.  

b Freundlich exponent [-], 95% confidence interval in parentheses. 
c Number of observations. 

  

Non-equilibrium sorption experiments provided C and q values at different time points. 

Coupled with a simple least squares linear optimization program, the reaction rate γ of 

equation (6-45) can be derived, as summarized in Table 6-11. 
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Table 6-11. Nonequilibrium Reaction Rates of Phenanthrene Sorption on Humic 
Acid and Kerogen. 

 γ (1/s) R2 
Aldrich Humic Acid 

1.21E-05 0.96 
Ohio Shale II kerogen 5.69E-06 0.95 

 

Further, intraparticle diffusion coefficients equation (6-11) were also provided by 

LeBoeuf’s non-equilibrium sorption studies:   

 

Table 6-12. Intraparticle Diffusion Coefficients for Phenanthrene Diffusion into 
Humic Acids and Kerogen (LeBoeuf and Weber 2000). 

 Din (mm2/s) R2 
Aldrich Humic Acid 

5.96E-8 0.999 
Ohio Shale II kerogen 

13.91E-8 0.996 
 

6.5.4.3 Results and Discussions 

As illustrated in Figure 6-18, while each possesses long tailing effects, shapes of 

BTCs for soils with differing humic acid and kerogen contents are almost identical. As 

explained in Section 6.5.1.3, the complex pore configuration contributes significantly to 

this tailing effect.   
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Figure 6-18. Breakthrough Curves of Phenanthrene Removal from Contaminated 
Porous Media with Varied SOM Contents. The y-axis represents a ratio of observed 

outlet concentrations to the original phenanthrene concentration in the porous 
media. 
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Figure 6-19. Tailing Concentrations of Phenanthrene Removal from Contaminated 

Porous Media with Varied Humic Acids and Kerogen contents.  The y-axis 
represents a ratio of observed outlet concentrations to the original phenanthrene 

concentration in the porous media. 
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Figure 6-19 presents two groups of tailing behaviors, i.e., a group without kerogen 

SOM 2, SOM 3, and NOSOM, and a group with kerogen, i.e., SOM 4, SOM 5, and SOM 

6. Several interesting phenomena are observed among these two groups.  First, the group 

with kerogen possesses much higher tailing concentrations than the group without 

kerogen, indicating that significant amounts of phenanthrene were added into the bulk 

fluid from the desorption from high sorption capacity kerogen. Second, the two groups 

possess parallel tails, which suggests that that desorption from kerogen will be a very 

slow and long lasting process, comparable to the time scale of tailing due to pore 

structure complexity. Third, SOM 3 (0.3% humic acid) and NOSOM (without SOM) 

possess almost identical BTCs, suggesting that that very low humic acid contents will 

have limited effects on the tailing concentration. This point can be further illustrated by 

the similar BTCs of SOM 4 (0% humic acid, 0.48% kerogen) and SOM 6 (0.3% humic 

acid, 0.48% kerogen). Fourth, SOM 2 (3% humic acid) presents larger concentration than 

NOSOM (without SOMs) at the early time. The difference of tailing concentration, 

however, continues to decrease, and eventually disappears somewhere between 45 to 50 

pore volumes. Here, phenanthrene entered the bulk fluid by desorbing from the humic 

acid at early time, which might be depleted after 45 to 50 pore volumes. A similar 

phenomenon was also observed for SOM 5 (3% humic acid, 0.48% kerogen) and SOM 4 

( 0% humic acid, 0.48% kerogen).  

Based on these observations, it is reasonable to note that the humic acid will 

contribute to an early-time influence on solute breakthrough curve tailing effects, while 

kerogen plays a very important role in late-time tailing effects. To further elucidate this 

point, the fractions of remaining phenanthrene in different domains are investigated, as 
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shown in Figure 6-20. Here, phenanthrene desorption rates from SOM 2 (3% humic acid, 

0% kerogen) and SOM 3 (0.3% humic acid, 0% kerogen) are very fast. Upon passing of 

approximately 50 pore volumes, only 7% of the original phenanthrene mass residing in 

SOM 2 remains, while less than 0.1% of the original phenanthrene remains in SOM 3; 

further illustrating the early-time influence of humic acid on tailing effects, due to the 

limited sorption capacity and rapid desorption rates.  

A closer investigation, as shown at the upper portion of Figure 6-20, indicates the 

group with kerogen generally presents much slower desorption rates. First, the amount of 

phenanthrene in SOM 4 (0% humic acid, 0.48% kerogen) has barely decreased. Further, 

the amount of phenanthrene in SOM 5 (3% humic acid, 0.48% kerogen) and SOM 6 

(0.3% humic acid, 0.48% kerogen) after about 50 pore volumes are 94.0% and 98.6%, 

respectively. Most of the observed decrease of phenanthrene represents desorption of 

from the humic acid portion of SOM. The overall higher percentages of remaining 

phenanthrene for SOM 4, SOM 5 and SOM 6 relative to domains without kerogen, i.e., 

SOM 2 and SOM 3, can again be explained by the very large sorption capacity and slow 

desorption rate of kerogen relative to humic acid, illustrating the late-time influence of 

kerogen on tailing processes.   
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Figure 6-20. Changes of Phenanthrene Concentrations in SOMs with Different 
Humic Acids and Kerogen Contents when Removal of Phenanthrene from 

Contaminated Porous Media. The y-axis represents a ratio of phenanthrene 
concentrations in SOMs to the original phenanthrene concentration in SOMs. 
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6.6 Summary 

In this Chapter, a LSFE-LBM, based on a four-velocity lattice Boltzmann model, 

was developed to simulate solute transport processes at the pore scale. Numerical 

validations of LSFE-LBM for solute transport were conducted through comparison with 

analytical solutions of diffusion between two walls. Very good agreements with 

analytical solutions were achieved for both steady and unsteady states, and for a reactive 

boundary condition situation. 

LSFE-LBM was then applied to study mass transfer processes in a single particle 

system. The purpose of simulating such a simplified system is to better elucidate roles of 

different mass transfer processes, while eliminating the influence of complex flow 

patterns. Advection, diffusion in bulk fluid, adsorption/desorption at the surface of the 

particle, and intraparticle diffusion were under consideration. Specially, intraparticle 

diffusion was solved by a two-dimensional finite difference method, which was 

incorporated with LSFE-LBM through a nonequlibrium adsorption/desorption boundary 

condition. In such a system, if the sorption rate is very low, or )0.1,0.2()Dadlog( −−< , 

sorption-related nonequilibrium will have minimal effects on solute transport, and 

physical nonequilibrium will control. If both the sorption reaction rate and intraparticle 

diffusion rate are fast, or )0.1,0.2()Dadlog( −−> and )0.1,0.2()Dnalog( −−> , the local 

equilibrium assumption will be valid, and mass transfer will be insensitive to intraparticle 

diffusion. If the sorption reaction rate is fast but the intraparticle diffusion rate is slow, or 

)0.1,0.2()Dadlog( −−>  )0.1,0.2()Dnalog( −−< , then intraparticle diffusion will 

significantly influence the overall mass transfer rate. 
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LSFE-LBM was then applied to study mass transfer processes in randomly 

generated porous media. Phenanthrene removal from contaminated porous media with 

varied pore configurations was simulated. Results show that complex pore configurations 

contributed significantly to a long tailing phenomenon. While the particle sorting level 

does affect solute tailing behavior, it appears more reasonable to relate soil/sediment 

permeability with the amount of solute mass remaining within a porous media as a 

function of time.  

The influence SOM on phenanthrene transport in porous media was examined 

based on parameters derived from LeBoeuf’s phenanthrene equilibrium and non-

equilibrium sorption batch experiments. As expected, humic acids, possessing small 

sorption capacity and large desorption rates, will contribute to early time tailing effects. 

The effect of the presence of a kerogen, possessing large sorption capacity and low 

desorption rates, however, is manifested in long lasting tailing effects. Although the 

results are not surprising; this effort represents a proof-of-concept demonstration of 

bridging comprehensive representations of fluid-flow with more mechanistic 

sorption/desorption processes.  Further efforts will expand this analysis to include 

additional diffusion mechanisms known to operate in SOM; namely non-Fickian 

diffusion and Case II diffusion processes.   
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CHAPTER VII 

 

CONCLUSIONS AND FUTURE RESEARCH NEEDS 

 

7.1  Overview 

This dissertation provides comprehensive Web-based modeling tools and 

advanced numerical methods for students and researchers to better investigate mass 

transfer processes in natural and model systems under water-saturated conditions. 

Development of a mass transfer virtual laboratory provides a convenient and efficient 

tool for engineering students to gain an improved understanding of state of-the-art mass 

transfer mechanisms at the particle scale. Development of a novel least squares finite 

element lattice Boltzmann method (LSFE-LBM) improved the kinetic theory-based 

lattice Boltzmann method (LBM) by extending LBM to unstructured meshes. LSFE-

LBM provided the foundation for the numerical modeling efforts to elucidate the relative 

contributions of transport-related and sorption/desorption-related nonequilibrium factors 

on mass transfer processes in a whole class of porous media exemplified by randomly 

generated particle size and pore size distributions. Important findings from this work are 

summarized in the following paragraph and detailed in the following sections. Although 

each of the stated conclusions provides an answer to a challenge in modeling of these 

systems, every discovery unravels new questions; thus, recommendations for future work 

are provided in the final section of this chapter.   
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7.2  Summary 

This study began with development of a Web-based mass transfer process virtual 

laboratory (MTVLab) for students and researchers to study mass transfer mechanisms at 

the particle scale. Chapter III provides a detailed depiction of MTVLab and its system 

architecture. Later, this research went beyond well-mixed systems considered in 

MTVLab and focused on utilizing and improving LBM to simulate fluid flow and mass 

transfer processes in porous media. As an initial effort of LBM modeling, Chapter IV 

presents an innovative stochastic method to construct probability density functions for 

permeability of porous media by coupling a first order reliability method (FORM) with 

LBM. To further improve LBM, a novel LSFE-LBM was developed. LSFE-LBM breaks 

the uniform grid restriction of traditional LBM and is able to more efficiently simulate 

fluid flow and solute transport in domains that contain complex or irregular geometric 

boundaries. Chapter V details the numerical derivations, validations, stability and 

accuracy analysis, and successful applications of LSFE-LBM to simulate flow fields in 

randomly generated porous media. Chapter VI extends LSFE-LBM to study solute 

transport in porous media, improved elucidation of the relative contributions of mass 

transfer processes, including advection and diffusion in bulk fluid, sorption/desorption at 

the surface of particles, and intraparticle diffusion. Applications of LSFE-LBM to 

simulate phenanthrene transport in porous media present an initial effort to bridge 

comprehensive sorption/desorption mechanistic studies with pore–scale modeling, the 

results of which assist in advancing our understanding of the effects of soil organic matter 

and soil structure configurations on fate and transport of organic chemicals in subsurface 

systems. 
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7.2.1 Development of a Web-Based Mass Transfer Process Laboratory (MTVLab) 
(http://www.vanderbilt.edu/mtvlab) 
 
The state-of-the-art understanding of mass transfer processes at the particle scale 

brought in complex concepts and necessitated highly nonlinear numerical models, which 

thus provide a great educational challenge. In Chapter III, a user-friendly, graphical user 

interface, Web-based mass transfer processes laboratory was developed to serve as an 

educational tool to assist in the instruction of mass transfer processes. Twelve types of 

diffusion models, representing state-of-the-art understanding of solute transport in soil 

organic matter, were solved by a finite element method and were incorporated into 

MTVLab as numerical modules. 

MTVLab is comprised of interactive user-friendly input interfaces, customizable 

output interfaces, illustrative help and tutorial sections, a relational database, and a 

numerical engine. The system was designed based on a Model-View-Controller (MVC) 

model. Relative to the currently available Web-based model systems, the MTVLab 

system architecture is novel in its multi- and mixed- language supporting ability, its 

ability to physically separate the numerical engine and Web server using CORBA 

technology, its flexibility for database management system, and its downloadable, easily 

edited EXCEL Web-component output. MTVLab system architecture will provide a 

proof-of-principle framework from which to develop more sophisticated Web-based 

models that can employ computationally efficient, high-level computer programs. This 

part of work leads to one published paper and one manuscript in review: 

• Li, Y., E. J. LeBoeuf, et al. Development of a Web-Based Mass Transfer Processes 
Laboratory: System Development and Implementation. Computer Applications in 
Engineering Education. 11: 25-39, 2003. 
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• Li, Y., E. J. LeBoeuf, et al. A Web-based interactive virtual laboratory system for 
environmental mass transfer processes. International Journal of Engineering Education (in 
review).  

 

7.2.2 Stochastic Modeling of the Permeability of Randomly Generated Porous Media  

While only well-mixed systems were considered in MTVLab, efforts were put 

forward to simulate fluid flow in porous media in Chapter IV. In this study, porous media 

were envisioned as a statistical distribution of non-overlapping circular disks representing 

soil particles distributed in a rectangular two-dimensional uniform continuum 

representing the pore space through which a fluid flows. The particle size distribution 

function obeys a modified lognormal distribution, with a 95% confidence interval for 

particle size to eliminate extreme values. A two-step collective rearrangement technique 

based algorithm was developed to generate random porous media. 

Although permeability has previously been assumed as a random variable in 

groundwater modeling, the restriction on computational resources and the difficulty in 

relating microscale and macroscale uncertainties have resulted in reduced efforts to 

construct probability density functions for permeability. In Chapter IV, we proposed a 

new approach, LBM FORM, based on more easily derived porosity statistics and particle 

size distribution, to construct permeability CDFs through the combination of LBM and 

FORM. LBM FORM was implemented to construct permeability CDFs of five randomly 

generated porous media; each possessing different particle size distributions. Results 

show that the domains with larger mean particle diameter or higher particle diameter 

COV tend to possess a higher probability of achieving larger permeability. Permeability 

values are subjected to higher uncertainty than the porosity and particle diameters 

because of the uncertainty of the micropore structure configurations. Lognormal 
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distributions modeled well the permeability CDF constructed for a variety of domains 

examined in this study. Accuracy of the proposed method was confirmed by comparison 

with Monte Carlo simulations for one example simulation domain. The largest relative 

error is approximately 3.4% when the probability exceeds 0.4, and is 8.5% when the 

probability is less than 0.4, both of which are within the relative error associated with the 

Monte Carlo method. Further, this work demonstrated that the Monte Carlo method is 

severely limited by computational requirements, making it extremely difficult to 

accurately construct an entire permeability CDF curve by Monte Carlo; LBM FORM, 

however, was found to be approximately 13 to 120 times more efficient than traditional 

Monte Carlo simulations. This part of work leads to one published paper: 

• Li, Y., LeBoeuf, E. J., Basu, P. K., and Mahadaven, S. Stochastic Modeling of the 
Permeability of Randomly-Generated Heterogeneous Porous Media. Advances in Water 
Resources, 28 (8): 835-844, 2005.  

 

7.2.3 Development of a Least Squares Finite Element Lattice Boltzmann Method 
(LSFE-LBM) 

 
Lattice Boltzmann methods (LBM) have been demonstrated as promising tools 

for simulating fluid flow. In practical applications, the potential of LBM is restricted 

because it can only be applied to uniform lattice structures. To overcome this problem, 

Chapter V presented a new LBM, i.e. LSFE-LBM, which uses a least-squares finite 

element method in space and a Crank-Nicolson method in time. The new method is able 

to solve fluid flow in domains that contain complex or irregular geometric boundaries by 

using the finite-element method’s unstructured mesh while employing accurate least-

squares optimization. Through theoretical accuracy and stability analysis, and successful 

applications of LSFE-LBM to a variety of test problems, including Poiseuille flow, 



 239

Couette flow, flow past a cylinder, and flow in porous media, it is suggested that LSFE-

LBM is highly accurate, stable, flexible and efficient: 

High accuracy: Accuracy analysis of the pure advection equation suggests that LSFE-

LBM enjoys fourth-order accuracy in space and second-order accuracy in time. LSFE-

LBM results agree well with the analytical solutions for Poiseuille and Couette flow, and 

the previous numerical and experimental study results for flow past a cylinder. 

High stability: For the pure advection equation, LSFE-LBM presents unconditional 

stability in the time domain, which is superior to other finite-difference and finite-

element based LBMs.  Although the von Neumann linearized stability analysis indicates 

that the stability of LSFE-LBM is dependent on physical and numerical discretization 

parameters as other numerical LBMs, its improved stability property is further confirmed 

by a higher limiting stable velocity. 

High flexibility: Application of LSFE-LBM to flow past a circular cylinder suggests good 

agreement with previous numerical and experimental results, providing initial evidence 

of its applicability to curved boundaries. Later, LSFE-LBM was successfully applied to 

model fluid flow in a randomly generated porous media using an unstructured mesh; 

good agreement with traditional LBM results further demonstrate the geometric 

flexibility of LSFE-LBM. 

High efficiency: Although more complex computations are required in LSFE-LBM 

relative to traditional LBM, LSFE-LBM requires fewer grid points by utilizing 

unstructured mesh, while consuming less memory by implementing an innovative 

element-by-element approach in the LSFE scheme. As demonstrated by the flow in 

porous media problem, LSFE-LBM requires 1/452 of the number of grids points and 1/25 
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of the memory of traditional LBM to achieve a similar order of accuracy with a similar 

amount of computational time. It is worthy to note that advantages derived from this 

increased efficiency may not be obvious for problems with simple geometries; rather, it is 

expected to be better demonstrated when applied to larger domains with more complex 

geometries. This part of work leads to one rapid communication published and one 

manuscript in review: 

• Li, Y., E.J. LeBoeuf, and P.K. Basu, Least squares finite element lattice Boltzmann method. 
Physical Review E, 69 (6), Art. No., 06570(R). 2004. 

 
• Li, Y., E.J. LeBoeuf, and P.K. Basu, A Least Squares Finite Element Scheme for Lattice 

Boltzmann Method on Unstructured Meshes. Physical Review E (in review). 

 

7.2.4 Use of a Least Squares Finite Element Lattice Boltzmann Method to Study Fluid 
Flow and Mass Transfer Processes 

 
In Chapter VI, LSFE-LBM based on a four-velocity lattice Boltzmann model was 

developed to simulate solute transport processes at the pore scale. Numerical validations 

of LSFE-LBM for solute transport were conducted by comparison with analytical 

solutions of problems regarding diffusion between two walls. Very good agreements with 

analytical solutions were achieved for both steady and unsteady states, and for a reactive 

boundary condition situation. 

LSFE-LBM was then applied to study mass transfer processes in a single particle 

system. The purpose of simulating such a simplified system is to better elucidate roles of 

different mass transfer processes, while eliminating the influence of complex flow 

patterns. Advection, diffusion in bulk fluid, adsorption/desorption at the surface of the 

particle, and intraparticle diffusion were under consideration. Specially, intraparticle 

diffusion was solved by a two-dimensional finite difference method, which was 



 241

incorporated with LSFE-LBM through a nonequlibrium adsorption/desorption boundary 

condition. Sensitivity analysis shows that if the adsorption rate is 10 to 100 times slower 

than the bulk fluid diffusion rate, sorption-related non-equilibrium will have minimum 

effects on solute transport. If the adsorption reaction rate is fast and intraparticle diffusion 

rate is 10 to 100 faster than the adsorption reaction rate, the local equilibrium assumption 

will be valid, and mass transfer will be insensitive to intraparticle diffusion. If the 

adsorption reaction rate is fast but the intraparticle diffusion rate is 10 to 100 times 

slower than the adsorption rate, then intraparticle diffusion will govern the solute 

transport process. 

LSFE-LBM was then applied to simulate phenanthrene removal from 

contaminated porous media with varied pore configurations. Results show that complex 

pore configurations contributed significantly to a long tailing phenomenon. While the 

particle sorting level does affect the tailing effect, it appears more reasonable to relate 

permeability with the amount of mass trapped within porous media. The influence of 

SOM on phenanthrene transport in porous media was examined based on parameters 

derived from LeBoeuf’s phenanthrene equilibrium and non-equilibrium sorption batch 

experiments (LeBoeuf 1998). The presence of soil and sediment organic matter (SOM) 

further contributes to the tailing effect.  Sufficiently high contents of humic acids, 

representing soft SOM, will contribute to an early-time influence on solute breakthrough 

curve tailing effects. Kerogen, representing hard SOM, however, plays a very important 

role in late-time tailing effects. Although the results are not surprising; they do, however, 

present an initial effort to bridge comprehensive mechanistic studies with pore-scale 
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simulating of HOCs fate and transport. This portion of work leads to one conference 

paper published and a manuscript under preparation: 

• Li, Y., LeBoeuf, E.J. and Basu, P.K. Use of a Least Squares Finite Element Lattice Boltzmann 
Method to Study Fluid Flow and Mass Transfer Processes. Proceedings of the 2005 
International Conference on Computational Science, May, 2005. 

• Li, Y., LeBoeuf, E. J. and Basu, P. K. Pore-scale modeling of the effects of transport - related 
and sorption/desorption processes on solute transport in heterogeneous porous media. Water 
Resources Research (in preparation).  

 

7.3 Recommendations for Future Research 

This research presented a Web-based modeling system and advanced numerical 

methods, e.g., LBM FORM and LSFE-LBM, for students and researchers to further 

explore fate and transport of solute in subsurface systems. While each of these 

contributions provide answers to several challenges in numerical modeling of mass 

transfer processes, they also reveal further research needs, especially in expanding 

MTVLab for broader applicability, further advancing numerical methods LBM FORM 

and LSFE-LBM, and more extensively investigating mass transfer processes using LSFE-

LBM. 

 

7.3.1 Future directions on expanding MTVLab 

The mass transfer processes system illustrated in MTVLab focused on 

understanding fundamental sorption and diffusion processes for spherical particles in 

various reactor configurations.  Although comprehensive in its coverage of different 

diffusion and sorption models that may be applicable in most environmental systems, 

additional phases of work are suggested to expand the model capabilities for wider 

applicability.  Future work includes: 
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• Improvement of the numerical engine, to include other standard particle shapes (slabs 

and cylinders) and user-defined shapes (e.g., polygons), parameter optimization, 

stochastic simulation, and expansion to multiscale modeling. 

• Enhancement of the graphical user interface, to include addition of 3-D animation for 

result visualization. 

• Development of improved feedback mechanisms to provide prompt, two-way 

communication between the users and the program developers. 

• Increase multi-client capacity through use of parallel programming, and use of high-

performance distributed computing systems. 

 

7.3.2  Future directions on advancing LBM FORM  

Although LBM FORM provides higher accuracy and efficiency than Monte-Carlo 

simulations to construct permeability CDFs, it is worthy to note several directions for 

enhancements of the method: 

•  First, the LBM method implemented in this study is in the BGK form (Bhatnagar, 

Gross et al. 1954) with a linear collision operator. The accuracy of permeability based 

on BGK LBM is dependent on the fluid viscosity and thus on the relaxation time. We 

chose an optimized value of the relaxation time τ (τ = 0.8) to eliminate this 

dependency. In the future, we suggest the use of more sophisticated LBM schemes to 

simulate fluid flow in porous media. For example, a two relaxation time (TRT) LBM  

(d'Humieres, Ginzburg et al. 2002; Lallemand, d'Humieres et al. 2003) will be able to 

annihilate the permeability dependence on the viscosity with a specific choice of the 
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free eigen values. Further, the convergence rate will be accelerated when using higher 

viscosity values for a TRT LBM.  

• A second potential enhancement of the method is associated with the reliability 

method employed. While FORM performed well in example domains in this study, 

more advanced methods, such as SORM or other modified forms of FORM, might be 

required for situations that are more complicated.  

• Finally, the simulation results in this work are based on randomly generated, two-

dimensional simplified porous media. Future modeling efforts will benefit from use of 

more sophisticated porous media packing modules to more closely reflect actual field 

situations, and extension to three-dimensions. 

 

7.3.3  Future directions on advancing LSFE-LBM  

Encouraging results from this work suggest that LSFE-LBM will be a promising 

addition to the family of LBM, especially for geometricly complex domains. For further 

improvements of LSFE-LBM, the following future directions are suggested: 

• First, LSFE-LBM numerical tests were primarily applied to complex geometries with 

low Reynolds numbers, corresponding to authors’ research foci. Although it is likely 

that LSFE-LBM will have similarly high potential for application to flows with high 

Reynolds numbers, we suggest more efforts to validate this point.  

• Second, the superior performance of LBM following parallelization is one of the most 

important features of LBM. Since element contributions are computed independently, 

element-by-element based LSFE-LBM can also be easily implemented in parallel. It is 
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thus worthwhile to provide a more thorough study on the performance of LSFE-LBM 

after parallelization.  

• Finally, since finite volume-based CFDs are much in vogue relative to finite element-

based CFDs, it will be meaningful to further assess and compare the performances of 

LSFE-LBM-, FV-LBM- and FV-based CFDs. 

 

7.3.4  Future directions on investigating mass transfer processes using LSFE-LBM 

  LSFE-LBM has been demonstrated as a powerful method to study fluid flow and 

mass transfer processes in porous media. The example applications of LSFE-LBM 

employed in this study are purposefully simple, as the main objective of this effort was to 

demonstrate new methods to incorporate experimental mechanistic studies with pore 

scale modeling. To more fully utilize LSFE-LBM, the following future research efforts 

are suggested: 

• HOC diffusion in SOM is concentration-dependent and sorbent property-dependent. 

For the purpose of simplicity, a Fickian diffusion model was used to describe 

intraparticle diffusion in this study. It will be very interesting to link LSFE-LBM with 

more sophisticated intraparticle diffusion models, e.g. non-Fickian diffusion and SOM 

relaxation models. The link can be achieved by coupling LSFE-LBM with traditional 

numerical methods through sorption/desorption boundary interfaces, as demonstrated 

in this study. Moreover, the link can also be achieved by further developing LSFE-

LBM to directly model multi-phase transport among water, sorbates, and sorbents. 

• Humic acids and kerogen were randomly scattered on solid circular particles, in very 

simplified shapes. To further explore the influence of SOMs to the transport of organic 
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chemicals, it will be beneficial to consider more realistic distributions of SOMs, for 

example, considering kerogen as smaller scattered junks and humic acids as coatings 

at both surfaces of particles and intraparticle pore surfaces.  

• Techniques, such as X-ray microtomography (XMT) characterization of porous media, 

can provide accurate visualizations of real soil configurations. Further advancements 

of LSFE-LBM to three dimensions and parallelization, will allow LSFE-LBM to be 

more easily applied to simulate transport in real soil configurations. These advanced 

applications of LSFE-LBM will certainly progress the understanding of mass transfer 

processes at the pore scale, likely leading to improvements to existing mass transfer 

theories. 

• Finally, the findings developed in this work necessitate application to current 

remediation problems. Upscaling of LSFE-LBM will be a first step towards practical 

applications. Properly coupling of LSFE-LBM with available upscaling techniques 

will be a good direction to explore. 
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