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CHAPTER 1 

 

INTRODUCTION AND BACKGROUND 

 

Introduction 

 

Clinical data, information collected during the course of patient care, is essential for 

describing and monitoring a patient’s state of health. Examples of clinical data include 

laboratory test results, vital signs (e.g. temperature or blood pressure), medical diagnoses (e.g. 

diabetes), radiology test results (e.g. chest X-rays), and prescription drug information. For 

clinical data to be effectively stored and communicated, data elements must be mapped to a 

standardized terminology,1,2 a common language that is shared among users. This common 

language links clinical data elements with a standardized coding and classification system.3 

Aggregate data sources containing clinical data from multiple healthcare sites are 

valuable for research, quality, public health, and creating large evidence bases to answer 

clinical questions.4,5 Common data models, which standardize the format and content of 

observational data, hold promise for integrating disparate data sources in healthcare. A key 

requirement in this process is that institution-specific information must be mapped to a 

standardized terminology. Without this mapping, clinical data cannot be combined, shared, or 

interpreted in a meaningful context.1,2  

Laboratory tests, collected from a patient’s blood, urine, or other body tissue provide 

information about a patient’s health in order to prevent, diagnose, and treat disease. The 

standard code system for laboratory observations, the Logical Observation Identifiers Names 

and Codes (LOINC®),6 aims to facilitate data aggregation for quality measures, outcomes 

research, and health information exchange.7 Historically, electronic health record (EHR) 
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implementations have used proprietary data mapping with locally-defined, idiosyncratic, 

ambiguous identifiers8 that make mapping to standard terminologies challenging. Furthermore, 

even when LOINC codes are used, they are often incorrectly mapped.9 As a result, accurately 

mapping these data to standards for incorporation into common data models is time-consuming 

and resource intensive, 9-12 because there are currently no fully automated methods to map 

laboratory data.  

This thesis provides background on the history of the LOINC code system, challenges of 

LOINC implementation, findings from previous studies that attempted to automate laboratory 

mapping, and a brief overview of important concepts in machine learning. We describe the 

development of a novel, automated pipeline that leverages noisy labels in a machine learning 

algorithm to map unlabeled laboratory data and to reclassify incorrect mappings within labeled 

data. Using a dataset containing a mix of labeled and unlabeled data with an unknown labeling 

error rate, we evaluate model performance compared to manual adjudication. 

 

Background 

 

Primary Data Use 

 Clinical data use can be classified as either primary or secondary. Primary use is when 

clinical data is used to provide healthcare to the person from whom the data was collected. For 

example, when a patient’s blood pressure reading is elevated (i.e. hypertension), this clinical 

data element may influence the healthcare provider to start an anti-hypertensive medication to 

lower the patient’s blood pressure. Secondary clinical data use is when previously gathered 

information is used for purposes other than providing healthcare to the person from whom it was 

obtained (i.e. population health research). EHR systems are a rich source of data accumulated 

through routine clinical care.4 At the point of care (primary data use), the EHR can provide 

comprehensive, searchable, longitudinal information about a patient, an improvement over 
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previous paper medical records. While EHR’s have dramatically changed primary data use for 

healthcare delivery, they also have implications on secondary data use. 

 

Secondary Data Use and Aggregation 

Secondary use of EHR data for analytics, research, quality and safety measurement, 

and public health is increasingly prevalent.4,13,14 The Health Information Technology for 

Economic and Clinical Health (HITECH) Act15 and the meaningful use incentive program16 

facilitated widespread EHR adoption.17 The HITECH Act of 2009 is governmental legislation 

created to stimulate the adoption of EHRs and support technology in healthcare. 15 The 

meaningful use incentive defined standards for exchanging clinical data between healthcare 

providers, between healthcare providers and insurers, and between providers and patients.16 

The resulting widespread EHR adoption has made multi-site data aggregation and centralization 

feasible and increasingly common. These aggregate data sources are important for research, 

quality, public health, and commercial applications.4 For example, analyzing aggregate data in 

the public health domain can facilitate early detection of emerging epidemics.4 Additionally, such 

data enable the creation of generalizable observational cohorts to answer clinical questions that 

would not be feasible within randomized clinical trials, which are cost-prohibitive and often 

limited to a narrow spectrum of participants.5 However, to harness the power of this data, one 

must successfully integrate the data elements collected from multiple sources. Because 

historical EHR implementations used locally-defined mapping, converting the data to 

standardized mappings is challenging, time-consuming, and resource-intensive.8,12  

 

Laboratory Data 

In the context of primary use, laboratory data help to diagnose and monitor disease, 

guide treatment, and assess patient response to treatment. For example, a glycated hemoglobin 

(Hemoglobin A1c) is a blood test that provides a measure of what a patient’s average blood 
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glucose levels are over weeks to months. This laboratory test can be monitored over time in 

patients with diabetes to modify their diabetes treatment regimen and to stratify risk for 

developing diabetes-related complications. In the context of secondary data use, laboratory 

tests are essential for developing risk-prediction models (e.g. progression of kidney disease), 

population-level monitoring/data mining for adverse events (e.g. liver toxicity from medications), 

and performing comparative effectiveness research. In both the primary and secondary data 

use cases, laboratory data must first be mapped to a standardized terminology so that it can be 

integrated, shared, and interpreted. However, this mapping process is challenging due to 

idiosyncratic local test naming and coding practices. The heterogeneity of laboratory test 

naming conventions is evident in the Veterans Affairs (VA) Corporate Data Warehouse, which 

contains over 320,000 distinct laboratory test names (example in Table 1). Because there are 

currently no fully automated methods to map laboratory data to their standard terminology 

(LOINC), mapping is resource intensive and nonscalable.  

 

Table 1. Test Name Heterogeneity for Creatinine in VA Corporate Data Warehouse 
CREAT(PRIOR TO 2/20/02) *CREATININE mg/dL 
*CREATININE CREAT. 
CREAT, MG/DL (BU) CREATININE*IA 
CREATININE, DC 1/14/16 MH CREAT, SER, mg/dl 

 

LOINC Background 

History 

The LOINC common terminology for laboratory and clinical observations originated in 

1994 at the Regenstrief Institute due to a growing trend of sending clinical data electronically.6 

Because laboratory tests were historically represented by local, idiosyncratic naming 

conventions, electronic transmissions containing locally-defined data could not be fully 

“understood” by the receiving system. As a result, the receiving system would either need to 
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adopt the sender’s codes, which is not feasible if receiving transmissions from multiple sources, 

or move toward a unified system in which the sender and receiver use the same code system. 

For laboratory tests, the LOINC terminology facilitates the latter solution. An example of the 

LOINC code fields for a serum creatinine test is shown in Table 2. The LOINC Component 

identifies the analyte, or what is being measured (e.g. hemoglobin); Property refers to the type 

of measurement (e.g. mass concentration, enzyme activity); Time Aspect/Timing distinguishes 

specimens collected at a moment in time or over a specified time interval (e.g. 24 hours); 

System refers to the sample from which a specimen was obtained (e.g. blood versus urine); 

Scale specifies the unit of measurement (e.g. quantitative or ordinal), and Method refers to the 

technique used to the produce the test result (e.g. automated or manual count).18 

 

Table 2. LOINC Code Example: Serum Creatinine 
LOINC Code 2160-0 

Component Creatinine 

Property MCnc 

Timing Pt 

System Ser/Plas 

Scale Qn 

Method *NULL* 

Example Units mg/dL 

Long Name Creatinine [Mass/volume] in Serum or Plasma 

Short Name Creat SerPl-mCnc 

Abbreviations: MCnc, mass concentration; Pt, point (in time); Ser/Plas, serum or plasma; Qn, 
quantitative. 

 

Challenges 

Within the LOINC framework, laboratory tests can be mapped to LOINC codes that 

retain the same meaning across institutions. However, since LOINC contains more than 65,000 
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possible codes, the mapping task is non-trivial, requiring significant time and resource 

commitment and a good understanding of LOINC attributes for particular laboratory tests. 

Furthermore, even with an understanding of LOINC, human coding variation can lead to 

mapping inconsistencies or errors.9,19 One study examining the mapping consistency of LOINC 

codes between three institutions for 100 common tests found that in 75% of cases where codes 

could not be matched between sites, the discrepancies were due to local coding practices.10 

Prior studies demonstrate that many of these mapping inconsistencies result from selecting 

codes that differ in the Property, Scale, or Methods characteristics of the codes.9,10  Correctly 

translating local information to LOINC requires in-depth knowledge of laboratory testing, 

specifically what properties are being measured, on what entity, and by which method. 

However, because healthcare institutions may use vague local descriptions for tests, this 

information can be challenging to ascertain. For example, the Component can be difficult to 

determine due to idiosyncratic abbreviations (e.g. EPI-Cell, representing epithelial cell), or not 

specifying the type of analyte [e.g. HSV TYPE 1/2, which could represent either Herpes Simplex 

Virus (HSV) Type 1 or HSV Type 2]. Incomplete local information can lead to multiple mapping 

challenges, including no description of method (e.g. manual or automated cell count), scale (e.g. 

quantitative or ordinal), property (e.g. titer), timing (e.g. 24 hour) or specimen type (e.g. serum, 

or blood). One solution to infer some of the missing or poorly-defined aspects of institutional 

laboratory information is to observe test characteristics, such as frequency of testing, mean test 

result value, standard deviation of the value, units of measure, and/or value type (ordinal versus 

numeric). However, in practice, clinicians with good understanding of laboratory tests frequently 

do not have the fund of knowledge required to successfully translate all tests to LOINC.10  

 

Prior Automated LOINC Mapping Studies 

Previous studies attempting to ‘automate’ LOINC mapping through a local corpus or 

lexical mapping were not truly automated and still required significant manual effort.20-22 The 
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corpus method relies upon manually mapping local terms to LOINC codes (e.g. a local code 

‘BILID’ with local description ‘Bilirubin, Direct’ that is manually mapped to LOINC code 1968-7). 

The lexical method attempts to map local terms to standard vocabularies such as the Unified 

Medical Language System (UMLS) or LOINC (e.g. ‘AST’ maps to Aspartate Transaminase in 

UMLS with Concept Unique Identifier [CUI] C0004002). One previously published corpus-based 

algorithm correctly classified the single best LOINC code 50-79% of the time within three 

institutions.20 In another corpus-based algorithm including data from five Indian Health Services 

medical facilities, an automated tool mapped 63-76% of local laboratory tests to LOINC.23 This 

study also required manual mapping of laboratory tests from all sites to LOINC codes in a 

‘master file’. The automated mapping process consisted of attempting to find exact string 

matches between local laboratory test names and test names in the master file, which may not 

be generalizable outside of the Indian Health Systems. Additionally, this study did not attempt to 

map tests with incomplete information, which further hampers generalizability. The lexical 

algorithm correctly mapped 57-78% of concepts (average 63%).21 While the generation of 

potential mappings in this study was automated, the method still required that an expert/clinician 

choose the correct mapping from a list of candidates. The Regenstrief LOINC Mapping 

Assistant (RELMA®) provides a semi-automated platform for mapping local terms to LOINC 

fields (https://loinc.org/relma). While RELMA is valuable for mapping individual site data, the 

user input required to execute this process when test names or units are not in a normalized 

format is substantial, and in our experience, increases in a non-scalable fashion when 

attempting to map data from multiple sites. 

 

Scoping the LOINC Classification Problem 

 Because local laboratory test information contains the basic information required to map 

to a LOINC code, the mapping process can theoretically be automated, obviating the need for 

manual mapping, while improving coding consistency (by eliminating human coding variance 
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and local coding practices. The previously defined LOINC Component, Property, Time Aspect, 

System, and Scale are the requisite fields that facilitate mapping laboratory data to a LOINC 

code. Institutional laboratory data will, at minimum, contain a local test name, specimen type, 

units of measurement, and the test result (numeric, categorical, or text). The local test name 

determines the LOINC Component; the local specimen type correlates with the LOINC System; 

the test name and/or specimen type may contain information pertinent to the Time Aspect (e.g. 

24 hour); the local test units (e.g. mg/dL) inform the LOINC Property and Scale; and the test 

result itself may help determine the LOINC Scale. Because the LOINC terminology contains 

over 65,000 codes, defined by permutations of the LOINC fields described above, the LOINC 

mapping use case is an extreme multiclass classification problem in which there are complex 

variable interactions, a problem suited for machine learning.  

 

Machine Learning 

History and Uses 

Machine learning, computational methods that use experience (i.e. learn) to improve 

performance and make accurate predictions, evolved from the study of pattern recognition.24  

Though the concept existed in the 1950’s,25 the field has grown tremendously over the past 20 

years. This growth is in part due the mainstream availability of computing resources, 

improvements in computational efficiency, large data sets, and open source utilities. Machine 

learning algorithms have demonstrated utility in automating processes that previously required 

time- and resource-intensive manual work. For example, machine learning has been 

successfully deployed for speech recognition,26,27 text/document classification (e.g. spam 

detection),28,29 image recognition,30 information extraction,31-33 ranking and personalization of 

content,34 and medical risk-prediction and diagnosis.35-37  
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General Definitions and Terminology 

While machine learning can be used for clustering (partitioning items into similar 

regions), regression (predicting a real value for items), or learning associations and relations, it 

is most commonly used for classification (assigning categories to items).24,38 In classification 

problems, machine learning scenarios can broadly be separated into supervised learning, 

unsupervised learning, and semi-supervised learning. Instances refer to data points used for 

learning or evaluation. Labels are values or categories assigned to instances. The training 

sample consists of the instances used to train a learning algorithm and the test sample is 

comprised of instances used to evaluate the learning algorithm’s performance. In supervised 

learning, the training sample consists of labeled instances that the learner uses to make 

predictions on unseen data. Predicting whether or not a patient has diabetes is a case in which 

supervised learning can be used. In unsupervised learning, the learner uses unlabeled data to 

make predictions on unseen data (clustering is an example). Since no labeled instances are 

available in this setting, it can be difficult to quantitatively evaluate the performance of the 

learner/model. Finally, in semi-supervised learning, the learner uses a training sample that 

consists of both labeled and unlabeled data to make predictions on unseen data. This method is 

commonly used in settings where unlabeled data is accessible but labels are costly to obtain. 

 

Noisy Labels 

Noisy labels—the so-called ‘silver standard’—have recently gained attention39,40 

because they alleviate the need to perform time-consuming manual gold standard adjudication 

for label assignment (i.e. forming a corpus) prior to training a classification model. Noisy labels 

refer to incorrect class labels resulting from an imperfect labeling process. The proportion of 

incorrect labels varies across domains, but commonly occurs in the 5%-40% range.  For 

example, if a ‘Creatinine, Serum’ test were labeled with LOINC code 49004-5 (corresponding to 

Creatinine [Mass/volume] in Peritoneal dialysis fluid), that code would constitute a noisy label, 
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because the correct code would have been 2160-0 (corresponding to Creatinine [Mass/volume] 

in Serum or Plasma). Implicit in noisy labeling, a large volume of training data is necessary to 

compensate for inaccuracy in labels (noise-tolerant learning).41,42 Previous studies suggest 

large-volume, imperfectly-labeled training data can compensate for label inaccuracy and 

outperform models trained on smaller ‘clean’ datasets,43,44 even when up to 40% of labels are 

incorrect.45,46 To our knowledge, no prior studies have used noisy labels to facilitate automated 

mapping of laboratory tests to LOINC codes. 

 

Multiclass Classification Methods 

Mapping laboratory data to LOINC codes constitutes a multiclass classification problem. 

Multiclass classification is the scenario in which instances can be categorized into one of three 

or more classes (e.g. What Stage of breast cancer does this patient have [I, II, III, or IV]?), as 

opposed to binary classification, which classifies instances into one of two classes (e.g. Will this 

patient be readmitted to the hospital within 30 days? [yes/no]).  

Common multiclass classification methods include regularized logistic regression, 

decision trees, neural networks, support vector machines (SVMs), and Naïve Bayes. A full 

discussion of these methods is beyond the scope of this project. However, it is worth noting key 

strengths and weaknesses of these methods: logistic regression models can be updated easily 

and have a probabilistic interpretation, but can perform poorly when there are multiple or 

nonlinear decision boundaries; neural networks reduce the need for feature engineering via 

hidden layers, but are computationally intensive to train and require very large amounts of data 

to train; SVMs can model non-linear decision boundaries and are fairly robust to overfitting, but 

are memory intensive and do not scale well to large datasets; and Naïve Bayes classifiers are 

scalable and easily to implement, but are simplistic and often perform worse than other properly 

tuned, trained algorithms. Classification tree methods (e.g. random forests) have gained 

popularity because they are robust to outliers/noise, are scalable, and naturally model non-
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linear decision boundaries. Individual classification trees are prone to overfitting (error when the 

model is too closely fit to training data), which can be alleviated by using ensemble methods 

that build multiple classifiers independently and average their predictions. Random forests are 

an ensemble learning method that constructs multiple decision trees (comprising a forest) 

during training, and outputs the mode of the classes. Put simply, each of the trees in the forest 

“votes” on the class, and the forest chooses the class having the most votes over all of the trees 

in the forest.  

Using a dataset containing a mix of labeled and unlabeled data with an unknown 

labeling error rate, we hypothesized that noisy LOINC labels could be leveraged in a supervised 

machine learning algorithm to developed a truly automated method to map unlabeled data and 

reclassify incorrect mappings within labeled data. We describe our prototype model 

development, challenges we identified in the process, and model modification designed to 

address those challenges. We then present our final model and evaluate its performance when 

applied to both labeled and unlabeled data.  
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CHAPTER 2 

 

INITIAL MODEL IMPLEMENTATION 

 

Methods 

 

Study Setting and Design 

We collected laboratory data from the Department of Veterans Affairs (VA) Corporate 

Data Warehouse, which aggregates data from each VA facility’s Veterans Health Information 

Systems and Technology Architecture (VistA) and Computerized Patient Record System 

(CPRS) instances.47,48 Data included all inpatient and outpatient laboratory results from 130 VA 

hospitals and clinics collected between January 1, 2000 and December 31, 2016. This study 

was approved by the Institutional Review Board and the Research and Development Committee 

of the Tennessee Valley Healthcare System VA.  

 

Data Collection and Aggregation 

Within each VA site, we selected the 150 most commonly-used laboratory tests with 

numerically-reported results (e.g. hemoglobin, sodium).  We aggregated the raw data—

comprised of individual patient-level measurements—by grouping on the following data 

elements: 1) laboratory test identifier (a site-specific, test-specific integer), 2) specimen type 

identifier (a site-specific, specimen type-specific integer), 3) units of measurement, and 4) 

LOINC code. Within these groupings, we summarized the numeric test results using mean, 

median, percentiles (5th, 25th, 75th, 95th), minimum, maximum, count, and normalized frequency 

(the percentage of all laboratory results at the site attributed to the specific test). Each data row 

formed by aggregation comprised an instance.  
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Feature Engineering 

Automated Text Processing 

We processed source data test name and specimen type first creating a dictionary of 

unique test names and specimen types by site. We then removed punctuation, dates, and stop 

words from all test names and specimen types (Table 3). 

 

Table 3. Source Data Processing 

Site Original Test Name Processed Test Name 

1 B12 (9/14/11) B12 

2 Gamma Globulin (EP) GAMMA GLOBULIN EP 

3 HGB A1C (6/8/98-3/16/09) HGB A1C 

3 .CK MB ISO (BY ECI) (TO 4/14/08) CK MB ISO ECI 
 

 

LOINC Table Data Preprocessing 

We used the publicly-available LOINC® table (version 2.56), restricting to the laboratory 

and clinical observation class types,6 in automated feature generation. We preprocessed the 

Short Name and Long Name fields by removing punctuation, stop words, and bracketed 

phrases (Figure 1). We then computed the co-occurrence between each LOINC Short Name 

token and a sliding window of 1 to 3 LOINC Long Name tokens (Figure 2). We used a window 

length upper bound of 3 because the long-form components of most medical acronyms are ≤ 3 

words. From this output, we mapped each LOINC Short Name token to the Long Name token or 

phrase with the highest count by co-occurrence. In the case of ties, we evaluated whether the 

group of Long Name phrases with the highest co-occurrence contained an expansion of a Short 

Name token acronym (i.e. each letter of the Short Name token corresponded to the first letter of 

Long Name tokens). If no acronym expansion was detected within a group, we mapped the 
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Short Name token to the shortest phrase in the Long Name group (Figure 3). This process 

resulted in a cross-walk from LOINC Short Name Tokens to LOINC Long Name tokens/phrases.  
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Figure 1. LOINC Table Data Preprocessing 

The upper table represents fields in the unprocessed publicly-available LOINC table. 
Punctuation, stop words, and bracketed phrases (highlighted in red in the top table) were 
removed. The bottom table represents the LOINC Short Name and Long Name fields after 
processing. 

Figure 2. Computing LOINC Short Name and Long Name Token Co-occurrence using a 
3-token Window 
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To handle abbreviations contained in the LOINC System field, we used string distance-

matching with the Jaro-Winkler metric49-51 to find the corresponding words with the smallest edit 

distance in the LOINC Long Name field. We mapped the System token to the resulting distance-

matched Long Name token, except when the System could be mapped to an acronym 

expansion (in which case the acronym expansion was used).  

 

LOINC Feature Engineering 

We string distance-matched tokens from the processed source data test names and 

specimen types to the tokens derived from the LOINC data preprocessing step described 

Figure 3. Handling Ties in LOINC Term Co-occurrence Counts and Selecting Acronyms 

Each LOINC Short Name token was mapped to the Long Name token or phrase with the highest 
count by co-occurrence. In the case of ties, we first determined if the group of Long Name phrases 
with the highest co-occurrence contained an expansion of a Short Name token acronym. If no 
acronym expansion was detected within a group, the Short Name token was mapped to the shortest 
phrase in the Long Name group. In the above example, for the Short Name Token ‘RBC’ the highest 
co-occurrences contained ties. Each letter of the Short Name token corresponds to the first letter of 
each of the Long Name tokens, thus ‘RBC’ is mapped to ‘Red Blood Cells.’ In the case of the ‘WBC’ 
token, the highest co-occurrence count contains no ties, and is simply mapped to ‘Leukocytes’. 



 

17 

above. We used the Jaro-Winkler49-51 and Levenshtein52 distance metrics for string distance-

matching. The Jaro-Winkler algorithm measures the number of characters that two strings have 

in common, taking into account matches and transpositions. Because differences between two 

strings may be more important if they occur at the start of the string, the Jaro-Winkler method 

includes a correction factor that more favorably rates string pairs that match at the beginning 

rather than the end. The Levenshtein algorithm provides a count of the number of insertions, 

deletions, or substitutions required to convert one string to the other. We included both metrics 

for feature generation because they often provide different results. Using these string distance 

metrics, for each test name and specimen type we identified the LOINC Long Common Name 

token with the smallest edit distance. We concatenated the resulting tokens from the Long 

Name to form the two ‘LOINC Long Name mapped from Test Name’ features (one text string for 

each distance-matching metric) and the two ‘LOINC Long Name mapped from Specimen Type’ 

features. We distance-matched the resulting mapped test names and specimen types, using 

both the Jaro-Winkler and Levenshtein metrics, to the LOINC Component and System fields, 

respectively. We included the predicted Component and System, along with their corresponding 

match distances from each of the two string distance-matching metrics, as model features. The 

features included in the initial model are shown in Table 4. 

 



 

18 

Table 4. Initial Model Features 
Text Numeric 

LOINC Long Name (JW) mapped from Test Name Test result 5th percentile 
LOINC Long Name (LV) mapped from Test Name Test result 25th percentile 
LOINC System (JW) mapped from Specimen Type Test result median 
LOINC System (LV) mapped from Specimen Type Test result mean 
Predicted LOINC Component (JW) Test result 75th percentile 
Component Match Distance (JW) Test result 95th percentile 
Predicted LOINC Component (LV) Test result minimum 
Component Match Distance (LV) Test result maximum 
Predicted LOINC System (JW) Normalized test frequency* 
System Match Distance (JW)   
Predicted LOINC System (LV)   
System Match Distance (LV)   
Units   

JW, Jaro-Winkler; LV, Levenshtein. 
* Normalized test frequency calculation  =  Test	frequency

Total	number	of	laboratory	results	per	site 	4	566% 

 

Data Filtering and Partitioning 

We held out data instances with missing specimen type and/or LOINC code in the 

unlabeled dataset for a separate analysis. Additionally, instances containing LOINC codes with 

only one occurrence by test volume or comprising fewer than 5 instances in the aggregate 

dataset were combined with the unlabeled data for reclassification, under the assumption that 

these labels might be incorrect. In the remaining labeled dataset, we partitioned data for 5-fold 

cross-validation using splits by sites (Figure 4).    
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Within each of the 5-fold split-by-site data partitions (blue boxes), we performed 80/20 splits for hyperparameter 
tuning. A) Example of the first of five cross-validation iterations for hyperparameter tuning. Within the first 4 data 
blocks, the tuning training set (purple) is used to fit the model with different hyperparameters and the tuning test 
set (green) is used to estimate error. For hyperparameter tuning, the 5th data partition is not used. B) Example of 
one of five cross-validation iterations for estimating model performance. In this example, all data from the first 4 
blocks is used for model training (green and purple), and the 5th block (blue) is used for testing. 

Figure 4. Data Partitioning for Hyperparameter Tuning and Estimating Model Performance  
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Machine Learning Models 

We implemented two machine learning models, a random forest multiclass classifier, 

and a one-versus-rest ensemble of binary random forest classifiers. Model building and 

analyses were conducted using scikit-learn in Python.53 Using 5-fold cross-validation as 

depicted in Figure 4A and accuracy (number of correct predictions / total number of predictions) 

as the loss function, hyperparameters were manually tuned in step-wise fashion in the following 

order: 1) maximum features per split, 2) maximum tree depth, 3) minimum samples per split, 

and 4) maximum number of estimators. 

 

Estimating Model Performance 

Using 5-fold cross-validation with the aforementioned splits by site within the labeled 

dataset, we estimated model performance for the random forest and one-versus-rest models. 

For our initial model, we used only the accuracy measure due to its intuitive interpretation. 

 

Model Fitting and Label Assignment 

We fit the random forest and one-versus-rest models using the entire labeled dataset.  

We then used the fitted models to predict LOINC codes on the holdout dataset comprised of 

instances with either missing or infrequently-used LOINC codes. 

 

Manual Validation 

We used the label predicted in model with best cross-validated performance for manual 

validation. Initial manual validation was conducted by a single physician reviewer. In the 

unlabeled data, we randomly sampled 200 instances. From the labeled dataset, we randomly 

selected 100 instances where the predicted LOINC code matched the original LOINC code 

(concordant), and 100 instances in which the predicted LOINC code did not match the original 

LOINC code (discordant).  
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Results 

 

The raw laboratory data was comprised of approximately 6.6 billion test results, ranging 

from 2.5 to 184 million results per site. After aggregating by laboratory test identifier, specimen 

type identifier, units, and LOINC code, the analytic dataset consisted of 140,565 instances and 

2,215 distinct LOINC codes. LOINC codes were missing in 44,199 instances of source data, 

comprising to a total test volume of approximately 450 million results. This corresponds to 

missing LOINC codes in 31% of the data by instance, and 7% of the data by test frequency.  

 

Model Performance on Labeled Data 

For both the random forest multiclass classifier and the one-versus-rest ensemble of 

binary random forest classifiers, we evaluated performance when features were restricted to 

text elements, numeric features, and including all features (Table 5). Using both text and 

numeric features, the multiclass and one-versus-rest models performed comparably, with 

accuracy of 57-58%. In both models, performance was driven by the text features, which when 

used alone for model training yielded accuracy of approximately 54%. Numeric features alone 

resulted in poor model performance, with accuracy of about 33%, but when combined with the 

text features provided incremental improvement in accuracy.  

We examined the top 15 feature importances for the initial random forest classifier and 

the one-versus-rest ensemble classifier. In the random forest model, text features clearly 

outperformed numeric features (Figure 5), while the one-versus-rest model had lower individual 

feature importances, with numeric and text features both adding predictive value (Figure 6).  
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Table 5. Initial Model Predictive Accuracy Stratified by Feature Type 
 Accuracy 

Random Forest 
Numeric Features 33.7% 
Text Features 54.3% 
All Features 56.8% 

One-Versus-Rest 
Numeric Features 33.3% 
Text Features 53.6% 
All Features 57.7% 

 

 

 

Figure 5. Feature Importance in Initial Multiclass Random Forest Model 
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Figure 6. Mean Feature Importance in Initial One-versus-rest Ensemble of Binary 
Random Forest Classifiers 
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Manual Validation 

Unlabeled Data 

In initial manual validation of the unlabeled dataset using the model-predicted label from 

the one-versus-rest classifier, the model-predicted label was correct in 91% of sampled 

instances, and 92% of tests (Table 6). The model-predicted label accuracy was maximal when 

the test frequency was at least 10 (Figure 7). 

 

Table 6. Initial Manual Evaluation of LOINC Codes Assigned to Unlabeled Data 

Predicted LOINC Code Instances (N=200) Tests (N=3,364,245) 

   Correct 182 (91%) 3,097,999 (92.1%) 

   Incorrect 10 (5%) 263,744 (7.8%) 

   Insufficient Information to Determine 8 (4%) 2,502 (0.1%) 

Definition: Insufficient Information to Determine: Either not enough source data to infer code 
(i.e. units missing and would be necessary to assign code), or source data conflicts (i.e. test 
name includes the word ‘blood’ and specimen type is ‘urine’). 
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Labeled Data 

In the labeled data, when the original source data LOINC code and the model-predicted 

LOINC code were equal (concordant), the labels were correct in 92.0% of sampled instances 

and 99.9% of associated tests (top of Table 7). In cases where the original source data LOINC 

code and the model-predicted LOINC code were not equal (discordant), the model-predicted 

LOINC code was correct in 68.0% of instances and 94.2% of associated tests, and the model-

predicted code was better than the original code in 45.0% of instances (16.6% of associated 

tests). In 23% of instances (77.6% of associated tests), both the original and model-predicted 

LOINC codes were correct due to LOINC code equivalence. 

Figure 7. Initial Model Performance in Unlabeled Dataset Based on Test Frequency 
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Table 7. Initial Manual Evaluation of LOINC Codes Assigned to Labeled Data 

Concordant Original and Predicted LOINC Aggregate Data 
Instances (N=100) 

Associated Tests 
(N=14,910,333) 

   Correct 92 14,895,799 (99.9%) 

   Incorrect 2 316 (<0.1%) 

   Insufficient Information to Determine 6 14,218 (0.1%) 

   

Discordant Original and Predicted LOINC Aggregate Data 
Instances (N=100) 

Associated Tests 
(N=1,515,472) 

Total Correct 68 1.427,968 (94.2%) 

   Predicted LOINC Correct 45 251,498 (16.6%) 

   Both Correct (Equivalent LOINC Codes) 23 1,176,470 (77.6%) 

Total Incorrect 28 86,918 (5.7%) 

   Original LOINC Correct 19 85,113 (5.6%) 
   Both Incorrect 9 1,805 (0.1%) 

  Insufficient Information to Determine 4 585 (<0.1%) 

Definitions: Both Correct (Equivalent LOINC Codes): Model-predicted label ¹ original label and both labels 
are correct due to LOINC synonymy; Insufficient Information to Determine: Either not enough source data 
to infer code (i.e. units missing and would be necessary to assign code), or source data conflicts (i.e. test 
name includes the word ‘blood’ and specimen type is ‘urine’). 
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Challenges 

 

Uninformative Tokens in Test Names 

Discovery 

Upon manually reviewing the output of cleaned source data test names through the 

automated text processing module, we discovered that after the cleaning step some tokens 

remained that did not contribute meaning to the test name. For example, terms such as 

‘sendout’, and ‘DC’d’ are not informative for determining what a particular test signifies.  

 

Method Modification 

For each token, defined as a string of one or more alphanumeric characters separated 

by white space, we added a function to the text processing module to calculate the percent 

occurrence of each token as a function of the total number of tokens per site. Using a tunable 

threshold (based on manual inspection), tokens occurring above a certain frequency within a 

site can be removed and recorded in a separate comma-separated values file for review.  

 

Handling LOINC Table Synonyms 

Discovery 

During manual review of the mappings from source data test names to LOINC long 

names (completed using string distance matching), we confirmed that by using the publicly 

available LOINC table, we were not able to handle term synonymy. For example, a source data 

test name of ‘Dilantin’, maps to a LOINC Long Name token of ‘cilantro’ (Levenshtein metric), or 

‘plantain’ (Jaro-Winkler metric). The LOINC table does not contain the term Dilantin, and instead 

includes phenytoin, the generic name for Dilantin.  
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Method Modification 

To handle term synonymy, we initially used the Apache clinical Text Analysis and 

Kowledge Extraction System (cTAKES).54 Due to cumbersome implementation, requirement for 

large heaps of random access memory (RAM), inefficient computing time, and redundancy in 

output, cTAKES was abandoned in favor of the Unified Medical Language System (UMLS) 

Representational State Transfer (REST) Application Program Interface (API). With the 

processed text from the aforementioned output, we used the UMLS REST API to obtain UMLS 

concept unique identifiers (CUIs) for test names and specimen types, respectively. Adding this 

process to our algorithm allowed us to handle synonyms not captured by string distance-

matching using the LOINC table alone. Furthermore, by incorporating UMLS CUIs, we were 

able to generate more features for the machine learning algorithms.  

 

LOINC Equivalence 

Discovery 

From the manual validation of initial model performance on labeled data (Table 7), we 

discovered that in 78% of the cases where the predicted LOINC code differed from the original 

LOINC code, the codes were actually equivalent. In a focused literature review, we found 

previously published work reporting that there are three levels of interoperability that may exist 

between two LOINC codes.55 In Level I interoperability, the LOINC Component, Time Aspect, 

Scale, Property, System, and Method are identical for two codes. In Level III interoperability, the 

two codes differ only the LOINC Method (example in Table 8). In the latter scenario, two codes 

can be used interoperably (albeit, with some meaning loss) in cases where the method is not 

considered important. In this study we did not consider Level II interoperability, which requires 

data processing to make codes comparable (e.g. log conversion). 
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Table 8. Example of Level III LOINC Code Interoperability 

LOINC Component Property Timing System Scale Method 

26471-3 Leukocytes other/100 leukocytes NFr Pt Bld Qn  

40646-2 Leukocytes other/100 leukocytes NFr Pt Bld Qn Automated count 

730-2 Leukocytes other/100 leukocytes NFr Pt Bld Qn Manual count 
 

 

We also reviewed the new publicly-available LOINC Groups table.56 However, we did not 

use this newly released publication, which contains multiple different equivalence types in the 

same table, and does not presently include a way for users to distinguish equivalence type. 

Additionally this publication has not yet been validated. 

 

Method Modification 

To automate the creation of equivalent LOINC code groups, we first grouped LOINC 

codes by Component, Property, Time Aspect, System, and Scale. Within these groups, we 

created key-value pairs for groups with Level I (identical methods) or Level III interoperability 

(differing methods). For Level I interoperable groups with a specified method and only one 

LOINC code with status of ‘Active’, this code was defined as the key, with all other codes in the 

group forming the values. For Level III interoperability in groups containing only one methodless 

LOINC code, the methodless code was defined as the key with all other LOINC codes in the 

group comprising the values. For groups containing more than one methodless code and only 

one code with ‘Active’ status, this code was defined as the key. In groups containing more than 

one methodless code and no codes with ‘Active’ status, but a single code with ‘Discouraged’ 

status, then this code formed the key for the group. Finally, if all codes within a group had status 

of ‘Deprecated’, the key was defined as the methodless code, except in cases where multiple 

methodless codes existed for the group, in which case the last LOINC code was selected.  
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Multi-class Classification and Class Imbalance 

Discovery 

The source data contained 2,215 distinct LOINC codes, with the most common code 

occurring 1,391 times in the dataset (top left, Figure 8), and the least common codes occurring 

only once (bottom right, Figure 8). We examined the number of labels in the test set that were  

 

 

Figure 8. LOINC Code Frequency Rank versus Absolute Code Frequency 



 

31 

not present in the training set for the cross-validation steps in both the hyperparameter tuning. 

In the test set for model hyperparameter tuning, on average 14 (1.6%) of the labels were not 

present in the training dataset (Table 9), compared with 23 (2.3%) in cross-validation using the 

full dataset (Table 10). In both scenarios, the labels not present in the training dataset were 

associated with a very small number of tests (<0.1%).  

 

Table 9. Label Imbalance in Initial Model Hyperparameter Tuning 
Distinct 
Test Set 
Labels 

Distinct 
Training 

Set Labels 

Test Set Labels not 
Present in Training 

Set 

Number of Tests Associated 
with Unbalanced Test Set 

Label 

Total Tests in 
Test Set 

1,035 1,435 19 (1.84%) 61,589 (0.01%) 775,504,186 
1,042 1,426 17 (1.63%) 133,672 (0.02%) 750,933,489 
1,042 1,437 16 (1.54%) 58,202 (0.01%) 837,147,736 
1,062 1,457 14 (1.32%) 338,506 (0.04%) 793,678,903 
1,039 1,440 19 (1.83%) 276,341 (0.03%) 801,861,074 

 
Table 10. Label Imbalance in Initial Model Cross-validation Training 
Distinct 
Test Set 
Labels 

Distinct 
Training 

Set Labels 

Test Set Labels not 
Present in Training Set 

N(%) 

Number of Tests Associated 
with Unbalanced Test Set 

Label N(%) 

Total Tests in 
Test Set 

1,092 1,454 27 (2.47%) 796,190 (0.06%) 1,387,362,728 
1,095 1,443 38 (3.47%) 1,340,312 (0.10%) 1,404,256,060 
1,070 1,453 28 (2.62%) 699,480 (0.07%) 974,756,279 
1,009 1,471 10 (0.99%) 20,857 (<0.01%) 1,165,458,633 
1,078 1,459 22 (2.04%) 211,638 (0.02%) 1,174,925,542 

 

Method Modification 

To reduce the number of classes in this extreme multi-class classification problem, we 

first implemented the automated roll-up of LOINC codes into LOINC group keys as described 

above. After transforming LOINC codes to their respective LOINC keys, we were left with 1,895 

distinct LOINC keys in the unfiltered dataset. Instances containing LOINC keys that occurred at 

only one site or <10 times by test volume were combined with the unlabeled data for 

reclassification, because their rarity suggested that the codes present in the source data may be 
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suspect. Following LOINC roll-up, the average number of labels in the test sets for 

hyperparameter tuning and cross-validation were reduced to 861 and 884, respectively, with 

concomitant decreases in the number and percentage of labels not present in the test sets for 

tuning (N=9 [1.1%]) and cross-validation for model performance estimates (N=6 [0.7%]). 

To handle class imbalance, we considered oversampling. However, oversampling is a 

valid approach only when it can be performed after splitting data into training and testing sets, 

otherwise performance will be optimistic (i.e. the model appears to perform better than it will 

generalize, because training data is ‘bled’ into the testing dataset). We also considered 

implementing a data-driven approach to split/filter data in a way that would ensure that all labels 

present in the testing set were also represented in the training set. However, because this 

method may not be generalizable to future use cases, we opted to build a model that can 

handle class imbalance independent of the complexities of the specific data source.  

Because some LOINC codes are more commonly used than others, class imbalance is 

observed in this dataset and is likely to be an issue in future use cases. In our initial model, for 

simplicity we used the accuracy measure to tune model hyperparameters and also to examine 

model performance. However, with class imbalance, accuracy can be driven by simply 

predicting the labels of the most common classes. Thus, for the final model, we used the 

weighted F1 score to tune hyperparameters. F1 score is the harmonic mean between precision 

and recall, and weighting refers to the support, or number of true instances per label. For 

evaluating model performance, in addition accuracy, we report the weighted F1 score and the 

micro-averaged F1 score.  
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CHAPTER 3 

 

FINAL MODEL 

 

Methods 

 

Study Setting and Design 

As presented in the initial model development, we collected laboratory data from the 

Department of VA Corporate Data Warehouse.47,48 Data included all inpatient and outpatient 

laboratory results from 130 VA hospitals and clinics collected between January 1, 2000 and 

December 31, 2016. The study was approved by the Institutional Review Board and the 

Research and Development Committee of the Tennessee Valley Healthcare System VA.  

 

Data Collection and Aggregation 

Unchanged from the initial model development, we selected the 150 most common 

laboratory tests with numerically reported results for each site. We aggregated the raw data—

comprised of individual patient-level measurements—by grouping on the following data 

elements: 1) laboratory test identifier (a site-specific, test-specific integer), 2) specimen type 

identifier (a site-specific, specimen type-specific integer), 3) units of measurement, and 4) 

LOINC code. Within these groupings, we summarized the numeric test results using mean, 

median, percentiles (5th, 25th, 75th, 95th), minimum, maximum, count, and normalized frequency 

(the percentage of all laboratory results at the site attributed to the specific test). Each data row 

formed by aggregation comprised an instance (example shown in Table 11).  
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Table 11. Example of Instances Created by Data Aggregation 
Site Lab Test 

Name 
Lab Test 

ID Specimen Specimen 
ID Units LOINC Min Max 5th 

Percentile 
25th 

Percentile Median 75th 
Percentile 

95th 
Percentile Count Normalized 

Frequency 
1 CREATININE 120006 PLASMA 120000 mg/dL *Missing* 0.1 40 0.6 0.9 1.0 1.2 2.1 85,110 0.04623 
1 CREATININE 120006 PLASMA 120000  Null 2160-0 0.5 6 0.7 0.9 1.1 1.2 2.4 48 0.00003 
1 CREATININE 120006 PLASMA 120000 mg/dL 2160-0 0.1 103 0.7 0.8 1.0 1.2 2.1 4,365,542 2.37134 

… … … … … … … … … … … … … … … … 
2 ALBUMIN 100004 SERUM 100000 G/dL *Missing* 0.3 5.8 3.0 3.9 4.2 4.4 4.7 55,779 0.03283 
2 ALBUMIN 100004 SERUM 100000 G/dL 1751-7 0.5 9.9 3.0 3.9 4.2 4.4 4.7 941,757 0.54675 
2 ALBUMIN 100004 PLASMA 100000 G/dL *Missing* 0.4 5.5 2.8 3.7 4.0 4.2 4.5 36,077 0.02095 

… … … … … … … … … … … … … … … … 
Data aggregated by grouping on the following four data elements: 1) laboratory test identifier (a site-specific, test-specific integer), 2) specimen type identifier (a site-specific, 
specimen type-specific integer), 3) units of measurement, and 4) LOINC code. Within these groupings, we summarized the numeric test results using mean, median, percentiles 
(5th, 25th, 75th, 95th), minimum, maximum, count, and normalized frequency. 
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Ancillary Data Sources 

We used the publicly-available LOINC
®
 table (version 2.56) for automated feature 

generation, restricting to the laboratory and clinical observation class types.
6
  We also used the 

Unified Medical Language System (UMLS®) REST API to generate model features containing 

Concept Unique Identifiers (CUIs).
57 

Feature Engineering  

 The schematic of data processing and feature engineering is depicted in Figure 9A-D 

and described further in the text that follows.  
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Figure 9. Data Processing and Feature Engineering 
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Automated Text Processing 

We processed source data test name and specimen type by first removing 

punctuation, dates, and stop words (Figure 9A). For each token, we computed the percent 

occurrence as a function of the total number of tokens per site. Using a tunable threshold 

(4% in this study based on manual inspection of the output), tokens occurring above a 

certain frequency within a site were removed (example in Table 12). 

 

Table 12. Example of High Frequency Terms Removed from Source Data 

Site Discarded Term 

358 SENDOUT 

402 DCD 

459 OLD 

516 THRU 

516 DCD 

521 CVICU 

 

LOINC Table Data Preprocessing 

For the final model, we made no changes to the LOINC table preprocessing algorithm 

presented in the initial model. From the publicly-available LOINC table, we preprocessed the 

Short Name and Long Name fields by removing punctuation, stop words, and bracketed 

phrases (Figure 9B). We then computed the co-occurrence between each LOINC Short Name 

token and a sliding window of 1 to 3 LOINC Long Name tokens. From this output, we mapped 

each LOINC Short Name token to the Long Name token or phrase with the highest count by co-

occurrence. In the case of ties, we evaluated whether the group of Long Name phrases with the 

highest co-occurrence contained an expansion of a Short Name token acronym (i.e. each letter 

of the Short Name token corresponded to the first letter of Long Name tokens). If no acronym 

expansion was detected within a group, we mapped the Short Name token to the shortest 
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phrase in the Long Name group. This process resulted in a cross-walk from LOINC Short Name 

Tokens to LOINC Long Name tokens/phrases. 

To handle abbreviations contained in the LOINC System field, we used string distance-

matching with the Jaro-Winkler metric
49-51

 to find the corresponding words with the smallest edit 

distance in the LOINC Long Name field. We mapped the System token to the resulting distance-

matched Long Name token, except when the System could be mapped to an acronym 

expansion (in which case the acronym expansion was used).  

 

LOINC Feature Engineering 

For the final model, we made no changes to the LOINC feature engineering methods 

presented in the initial model. We string distance-matched tokens from the processed source 

data test names and specimen types to tokens derived from the LOINC data preprocessing 

step. We used the Jaro-Winkler and Levenshtein distance metrics to identify the LOINC Long 

Name token with the smallest edit distance (Figure 9C).
52

 For each test name and specimen 

type, we concatenated the resulting tokens from the Long Name to form the two ‘Test Name 

mapped to LOINC Long Name’ features (one for each distance-matching metric) and the two 

‘Specimen Type mapped to LOINC Long Name’ features. We distance-matched the resulting 

mapped test names and specimen types, using both the Jaro-Winkler and Levenshtein metrics, 

to the LOINC Component and System fields, respectively. We included the predicted 

Component and System, along with their corresponding match distances from each of the two 

string distance-matching metrics, as model features. The process for mapping source data test 

names and specimen types are depicted in Figure 10 and Figure 11. All features of the final 

model are shown in Table 13. 
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Figure 10. Test Name Text Processing 

Figure 11. Specimen Type Text Processing 
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Feature Engineering Using UMLS CUIs 

Using output from the automated text processing module, we leveraged the UMLS 

REST API to obtain UMLS CUIs for test names and specimen types, respectively (Figure 9D). 

In the initial step, we attempted to map the test name or specimen type to a UMLS CUI using 

the exact match search type. If no results were returned, we then attempted a ‘words’ search, in 

which a term is broken into its component parts and all concepts containing any words in the 

term are retrieved. Finally, if neither of the initial search types returned results, we iterated over 

the individual tokens in the test name and performed an exact match search for each token. For 

both the test name and the specimen type, if the resulting JSON object from a single UMLS 

search contained multiple CUIs, the first three CUIs were retained as model features (Table 13). 

 

Table 13. Final Model Features 
Text Numeric 

LOINC Long Name (JW) mapped from Test Name Test result 5th percentile 

LOINC Long Name (LV) mapped from Test Name Test result 25th percentile 

LOINC System (JW) mapped from Specimen Type Test result median 

LOINC System (LV) mapped from Specimen Type Test result mean 

Predicted LOINC Component (JW) Test result 75th percentile 

Component Match Distance (JW) Test result 95th percentile 

Predicted LOINC Component (LV) Test result minimum 

Component Match Distance (LV) Test result maximum 

Predicted LOINC System (JW) Normalized test frequency
*
 

System Match Distance (JW)   

Predicted LOINC System (LV)   

System Match Distance (LV)   

Units   

UMLS Test CUI #1  

UMLS Test CUI #2  

UMLS Test CUI #3  

UMLS Specimen CUI #1  

UMLS Specimen CUI #2  

UMLS Specimen CUI #3  

JW, Jaro-Winkler; LV, Levenshtein. 

* Normalized test frequency calculation  =  
Test	frequency

Total	number	of	laboratory	results	per	site 
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Data Filtering and Partitioning 

We held out instances with missing specimen type and/or LOINC code in the unlabeled 

dataset for a separate analysis. We combined data instances containing LOINC codes used at 

only one site or <10 times by test frequency with the unlabeled dataset for reclassification. In 

the remaining labeled dataset, we partitioned data for 5-fold cross-validation using splits by 

sites. 

 

Automating LOINC Equivalence and Forming LOINC Groups 

Based on the challenges identified in our initial model iteration, we automated the 

creation of equivalent LOINC code groups (see Chapter 2 for full details). Using the LOINC 

group keys defined above, all LOINC codes present in the original source data were ‘rolled up’ 

into corresponding LOINC keys where possible and appended to the analytic data file. If the 

original LOINC codes were not part of an interoperable LOINC group, the original LOINC code 

was retained as the LOINC key. 

 

Machine Learning Models 

We implemented logistic regression (L1 penalized,
58

 L2 penalized,
59

 and L1/L2 

penalized
60

), a random forest
61

 multiclass classifier, and a one-versus-rest ensemble of binary 

random forest classifiers. Model building and analyses were conducted using scikit-learn in 

Python.
53

 We tuned all models with 5-fold cross-validation using the weighted F1 score as the 

loss function. For the logistic regression models, we tuned parameters using grid search. 

Because the random forest models have multiple hyperparameters to tune which makes an 

exhaustive grid search infeasible, we tuned the following random forest hyperparameters using 

the hyperopt package:
62

 criterion (function to measure the quality of a split), number of 

estimators (numbers of trees in the forest), maximum features (number of features to consider 

when looking for the best split), maximum tree depth, and minimum samples per split.  
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Estimating Model Performance 

Using 5-fold cross-validation by site in the labeled dataset, we estimated performance 

for each model with the following measures: accuracy, weighted F1 score, and micro-averaged 

F1 score. Accuracy represents the number of correct labels divided by the number of instances. 

The F1 score is the harmonic mean of precision (positive predictive value) and recall 

(sensitivity).
63

 In the weighted F1 score, the metrics for each label are calculated, averaged, and 

weighted by the support (number of true instances for each label).
53

 In the micro-averaged F1 

score, metrics are calculated globally by counting the total true positive, false negatives, and 

false positives.
53

 We included accuracy for intuitive interpretation. Since accuracy can be 

optimistic with class imbalance (simply predicting the labels of the most common classes), we 

examined the weighted F1 score and the micro-averaged F1 score. We also calculated 

expected accuracy with random guessing in proportion to label prevalence. 

 Within each of the three measures (accuracy, weighted F1, and micro-averged F1), we 

evaluated performance differences among the five models using a one-way anlysis of variance 

(ANOVA),
64

 followed by independent two-sample t-tests
65

 between each pair of models when 

findings from the ANOVA test were significant (p <0.05). We also calculated 95% confidence 

intervals for the performance measures of each of the five models using their mean and 

standard deviation from the 5-fold cross-validation.  

 

Model Fitting and Label Assignment 

The model has 2 potential use cases: 1) predicting labels when new sites are added to 

an existing model, and 2) reclassifying incorrect labels in retrospective multi-site data. In the first 

use case, cross-validated performance is of interest to estimate how the model would perform if 

data from new sites were added. In the second case, overfitting is not an issue, obviating the 

need to estimate performance with cross-validation. To examine these two use cases, we fit the 

best-performing model to the training data during cross-validation (CV Model) and to the full 
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labeled dataset (Full Model). For the CV Model and the Full Model, we obtained the predicted 

LOINC keys as described above. In cases where the predicted LOINC code was not identical to 

the original LOINC code, but the predicted LOINC code was the key for the group containing the 

original LOINC code, we retained the original LOINC code. When the predicted code was not 

interoperable with the original LOINC code, we retained the predicted LOINC code. 

Subsequently, to evaluate model utility for mapping data with missing labels or instances 

originally labeled with infrequently used LOINC codes, the CV Model and the Full Model were 

used to predict LOINC codes on the holdout unlabeled dataset. 

 

Manual Validation 

We performed manual validation on random samples from both the labeled and 

unlabeled datasets. Within each dataset, we selected two instances from each of the 130 sites. 

Using the cumulative sum of test frequency within a site, we selected one instance with test 

frequency ≥50%, and one instance with test frequency <50% (Table 14). Descriptions of the 

adjudication label categories are shown in Tables 15-17. We examined the accuracy of the 

labels predicted in the CV Model and the Full Model. Additionally, to explicitly evaluate model 

utility for reclassifying incorrect LOINC codes in the dataset, we obtained a sample of 260 

instances in the labeled dataset where the predicted LOINC code (Full Model) differed from the 

original source data LOINC code. Two reviewers (one physician [SKP] and one nurse 

practitioner [ADJ]) manually reviewed a total of 780 records. We report the inter-annotator 

agreement using Cohen’s kappa. In the case of adjudication disagreement, we used consensus 

agreement to determine the final adjudication. 
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Table 14. Manual Validation Data Sampling Strategy 

 

Unlabeled Data 
Randomly-

Sampled Labeled 
Data 

Discordant 
Labeled Data 

Top 50% by cumulative 
sum of testing frequency 130 records 130 records 130 records 

Bottom 50% by cumulative 
sum of testing frequency 130 records 130 records 130 records 

  

 

In the unlabeled dataset, there were 5 possible mutually exclusive labels. These labels 

and their definitions are shown in Table 15.  
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Table 15. Label Categories for Manual Validation in Unlabeled Dataset 

Label Definition 

Predicted Correct Model-predicted label is correct 

Predicted Incorrect Model-predicted label is incorrect 

Insufficient Or Conflicting Information 

Either not enough source data to infer 

code (i.e. units missing and would be 

necessary to assign code), or source data 

conflicts (i.e. test name includes the word 

‘blood’ and specimen type is ‘urine’) 

No LOINC Coverage, Code Synonymous 

LOINC code does not exist for the 

combination of test and specimen type in 

the source data, but the predicted LOINC 

code is the most reasonable alternative 

(i.e. protein, blood does not exist in 

LOINC; protein, serum/plasma is the 

reasonable alternative) 

No LOINC Coverage, Code Incorrect 

LOINC code does not exist for the 

combination of test and specimen type in 

the source data, and the predicted LOINC 

code is not a reasonable alternative (i.e. 

protein, blood does not exist in LOINC; 

protein, urine is not a reasonable 

alternative) 
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In the randomly-sampled labeled dataset, there were 9 possible mutually exclusive 

labels after fitting the model to the full dataset. These labels and their definitions are shown in 

Table 16. 

 

 
 

Table 16. Label Categories for Manual Validation in the Randomly-Sampled Labeled Dataset 

Label Definition 

Concordant Correct Model-predicted label = original label and 

is correct 

Concordant Incorrect Model-predicted label = original label and 

is incorrect 

Discordant Predicted Correct Model-predicted label ¹ original label and 

model-predicted label is correct 

Discordant Original Correct Model-predicted label ¹ original label and 

original label is correct 

Discordant Neither Correct Model-predicted label ¹ original label and 

neither label is correct 

Discordant Both Correct Model-predicted label ¹ original label and 

both labels are correct (equivalent) 

Insufficient Or Conflicting Information 

Either not enough source data to infer 

code (i.e. specimen type cannot be 

extrapolated to something meaningful), or 

source data conflicts (i.e. test name 

includes the word ‘blood’ and specimen 

type is urine) 

No LOINC Coverage Code Correct Synonymous 

LOINC code does not exist for the 

combination of test and specimen type in 

the source data, but the predicted LOINC 

code is the most reasonable alternative 

(i.e. protein, blood does not exist in 

LOINC; protein, serum/plasma is the 

reasonable alternative) 

No LOINC Coverage Code Incorrect 

LOINC code does not exist for the 

combination of test and specimen type in 

the source data, and the predicted LOINC 

code is not a reasonable alternative (i.e. 

protein, blood does not exist in LOINC; 

protein, urine is not a reasonable 

alternative) 
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In the targeted evaluation of the labeled dataset where the model-predicted LOINC key 

differed from the original source data LOINC key, there were 7 potential labels, listed with their 

definitions in Table 17. 

 

 
 
 

Table 17. Label Categories for Manual Validation in Labeled Dataset where Original and 

Predicted LOINC Codes Disagree (Discordant) 

Label Definition 

Predicted Correct Model-predicted label correct (original 

label incorrect) 

Both Correct (Synonymous) 
Model-predicted label and original label 

correct but not captured by LOINC 

equivalence algorithm logic 

Original Correct Original label correct (model-predicted 

label incorrect) 

Neither Correct Model-predicted label and original label 

both incorrect 

Insufficient Or Conflicting Information 

Either not enough source data to infer 

code (i.e. units missing and would be 

necessary to assign code), or source data 

conflicts (i.e. test name includes the word 

‘blood’ and specimen type is ‘urine’) 

No LOINC Coverage, Code Synonymous 

LOINC code does not exist for the 

combination of test and specimen type in 

the source data, but the predicted LOINC 

code is the most reasonable alternative 

(i.e. protein, blood does not exist in 

LOINC; protein, serum/plasma is the 

reasonable alternative) 

No LOINC Coverage, Code Incorrect 

LOINC code does not exist for the 

combination of test and specimen type in 

the source data, and the predicted LOINC 

code is not a reasonable alternative (i.e. 

protein, blood does not exist in LOINC; 

protein, urine is not a reasonable 

alternative) 
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Examining Model Performance by Dataset Characteristics 

From the full labeled dataset, we randomly sampled between 5 and 125 sites (in 

increments of 5 sites) and fit a random forest multiclass classifier with 5-fold cross-validation 

split by sites to assess model performance. Within each sampled data subset, we calculated the 

number of distinct LOINC keys and the number of data instances, and examined their 

relationship with model performance. 

All source code was developed in Python 3.6.0, and is available at 

https://github.com/skparr/ml_loinc_mapping. For string distance matching, we used the R 

stringdist package
66,67

 within Python via the rpy2 package.
68

 Table 18 contains tool options that 

can be parameterized to provide flexibility for the user. Once the user specifies the variables in 

the configuration file (detailed in the README.md file), the program can be run via command 

line execution of a single Python script. 

 

Table 18. Parameterizable Tool Options 

Frequency threshold for uninformative token elimination 

Number of CUIs returned from the test name and specimen search via the UMLS API 

Data filtering criterion (i.e. LOINC codes present at only one site, or LOINC codes used less 

than a certain threshold value by test volume) 

Granularity of hyperparameter grid 

Number of trials to be attempted using the hyperopt hyperparameter tuning package 

Number of cross-validation folds used in both hyperparameter tuning and estimation of model 

performance 
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Results 

 

The raw laboratory data consisted of over 6.5 billion test results, ranging from 2.5 to 184 

million results per site (median 41.2 million). After aggregating by laboratory test identifier, 

specimen type identifier, units, and LOINC code, the analytic dataset consisted of 140,565 

instances and 2,215 distinct LOINC codes. LOINC codes were missing in 41,301 source data 

instances (29%), corresponding to 450 million test results.  

Of the 1,895 distinct LOINC keys remaining after grouping, less than 100 keys were 

used consistently across sites (top left, Figure 12), and many were used at less than 10 sites 

(bottom right, Figure 12). The 707 keys used at only a single site and the 24 keys used fewer 

than 10 times by total test frequency were combined with the unlabeled data for reclassification. 
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The filtered, labeled dataset consisted of 94,845 data instances, aggregated from 

approximately 6.1 billion individual test results, with 1,164 distinct LOINC keys. The dataset 

comprised of unlabeled and/or infrequent tests consisted of 42,720 instances, aggregated from 

approximately 462 million individual test results.  

 

Cross-Validated Model Performance 

The random forest models (one-versus-rest and multiclass) significantly outperformed 

the three logistic regression models in all performance measures (Table 19). All models 

performed considerably better than random guessing in proportion to the prevalence of the 

Figure 12. LOINC Code Frequency Rank versus Number of Sites using Code 
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1,164 possible class labels, which would yields an accuracy of 0.5%. The random forest 

classifiers in the final model performed significantly better than the model prototype presented in 

Chapter 2 (RF multiclass: 63.8% vs 56.8% and RF one-versus-rest 64.9% vs 57.7%). 

 

Table 19. Final Model Cross-validated Performance 

 Accuracy (95% CI) Weighted F1 Score 
(95% CI) 

Micro-Averaged F1 
(95% CI) 

L1  0.568 (0.559-0.578) 0.551 (0.537-0.565) 0.568 (0.559-0.578) 

L2  0.606 (0.591-0.621) 0.556 (0.536-0.577) 0.606 (0.591-0.621) 

L1-L2  0.607 (0.593-0.621) 0.562 (0.543-0.582) 0.607 (0.593-0.621) 

RF (multiclass) 0.638 (0.622-0.653)* 0.612 (0.594-0.630)* 0.638 (0.623-0.654)* 

RF (one-versus-rest)  0.649 (0.632-0.666)* 0.621 (0.601-0.640)* 0.649 (0.632-0.666)* 

Abbreviations: CI, Confidence Interval. L1, L1 penalized logistic regression; L2, L2 penalized 

logistic regression; L1-L2, L1-L2 penalized logistic regression; RF, random forest. 

* P-values <0.05 within each of the three performance measures for comparisons between RF 

(multiclass) and, L1, L2, and L1-L2 LR models and for comparisons between RF (one-versus-

rest) and, L1, L2, and L1-L2 LR models. 

 

Manual Validation 

Full Model 

Unlabeled Data 

Using the Full Model applied to the unlabeled data, Cohen’s kappa for inter-rater 

agreement was 0.76 (Table 20). The model-predicted label was correct in 84.7% of records by 

test frequency. Model performance by test frequency was comparable in the infrequent (Bottom 

50%) and frequent (Top 50%) tests, but by instance the model performed better on the frequent 

tests (Table 21). 
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Table 20. Adjudicator Agreement on Manual Validation with Model Fit to Full Labeled Dataset 

  % Agreement Cohen’s kappa 

Unlabeled Data 88.1% 0.76 

Randomly-Sampled Labeled Data 92.7% 0.82 

Discordant Labeled Data 84.6% 0.70 
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Table 21. Manual Validation in Unlabeled Data (Model Fit to Full Labeled Dataset) 

 Unlabeled Data 

 Bottom 50% Top 50% Total 

 Instances 
(N=130) 

Tests 
(N=944,156) 

Instances 
(N=130) 

Tests 
(N=30,776,801) 

Instances 
(N=260) 

Tests 
(N=31,720,957) 

Total Correct 87 (66.9%) 798,268 (84.5%) 108 (83.1%) 26,054,265 (84.7%) 195 (75.0%) 26,852,533 (84.7%) 

Predicted Correct 70 (53.9%) 599,043 (63.4%) 106 (81.5%) 25,910,603 (84.2%) 176 (67.7%) 26,509,646 (83.6%) 

No LOINC Coverage, Code 
Synonymous 

17 (13.1%) 199,225 (21.1%) 2 (1.5%) 143,662 (0.5%) 19 (7.3%) 342,887 (1.1%) 

Total Incorrect 26 (20%) 114,632 (12.1%) 19 (14.6%) 4,285,372 (13.9%) 45 (17.3%) 4,400,004 (13.9%) 

Predicted Incorrect 22 (16.9%) 114,622 (12.1%) 19 (14.6%) 4,285,372 (13.9%) 41 (15.8%) 4,399,994 (13.9%) 

No LOINC Coverage, Code Incorrect  4 (3.1%) 10 (<0.1%) 0 (0%) 0 (0%) 4 (1.5%) 10 (<0.1%) 

Insufficient or Conflicting Information 17 (13.1%) 31,256 (3.3%) 3 (2.3%) 437,164 (1.4%) 20 (7.7%) 468,420 (1.5%) 

Definitions: Predicted Correct: Model-predicted label is correct; No LOINC Coverage, Code Synonymous: LOINC code does not exist for the 
combination of test and specimen type in the source data, but the predicted LOINC code is the most reasonable alternative; Predicted Incorrect: 
Model-predicted label is incorrect; No LOINC Coverage, Code Incorrect: LOINC code does not exist for the combination of test and specimen type 
in the source data, and the predicted LOINC code is not a reasonable alternative; Insufficient or Conflicting Information: Either not enough source 
data to infer code (i.e. units missing and would be necessary to assign code), or source data conflicts (i.e. test name includes the word ‘blood’ and 
specimen type is ‘urine’). 
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Randomly-Sampled Labeled Data 

In the labeled dataset, inter-rater agreement assessed by Cohen’s kappa was 0.82 

(Table 20). The model-predicted label was correct in 95.9% of records by test frequency, with 

higher accuracy in the frequent tests than in infrequent tests (Table 22). 
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Table 22. Manual Validation in Randomly-sampled Labeled Data (Model Fit to Full Labeled Dataset) 

 Randomly-Sampled Labeled Data 

 Bottom 50% Top 50% Total 

 Instances 
(N=130) 

Tests 
(N=4,678,607) 

Instances 
(N=130) 

Tests 
(N=136,643,970) 

Instances 
(N=260) 

Tests 
(N=141,322,577) 

Total Correct 81 (62.3%) 3,801,382 (81.3%) 126 (96.9%) 131,790,613 (96.4%) 207 (79.6%) 135,591,995 (95.9%) 

Concordant Correct 71 (54.6%) 3,763,546 (80.4%) 124 (95.4%) 129,207,143 (94.6%) 195 (75%) 132,970,689 (94.1%) 

Discordant Predicted Correct 7 (5.4%) 37,612 (0.8%) 1 (0.8%) 1,565,720 (1.1%) 8 (3.1%) 1,603,332 (1.1%) 

No LOINC Coverage, Code 
Synonymous 

3 (2.3%) 224 (<0.1%) 1 (0.8%) 1,017,750 (0.7%) 4 (1.5%) 1,017,974 (0.7%) 

Total Incorrect 31 (23.8%) 876,859 (18.7%) 4 (3.1%) 4,853,357 (3.6%) 35 (13.5%) 5,730,216 (4.1%) 

Concordant Incorrect 25 (19.2%) 876,829 (18.7%) 3 (2.3%) 2,782,119 (2.0%) 28 (10.8%) 3,658,948 (2.6%) 

Discordant Original Correct 1 (0.8%) 1 (<0.1%) 1 (0.8%) 2,071,238 (1.5%) 2 (0.8%) 2,071,239 (1.5%) 

Discordant Neither Correct 1 (0.8%) 15 (<0.1%) 0 (0%) 0 (0%) 1 (0.4%) 15 (<0.1%) 

No LOINC Coverage, Code Incorrect 4 (3.1%) 14 (<0.1%) 0 (0%) 0 (0%) 4 (1.5%) 14 (<0.1%) 

Insufficient or Conflicting Information 18 (13.8%) 366 (<0.1%) 0 (0%) 0 (0%) 18 (6.9%) 366 (<0.1%) 

Definitions: Concordant Correct: Model-predicted label = original label and is correct; Discordant Predicted Correct: Model-predicted label ¹ 
original label and model-predicted label is correct; No LOINC Coverage, Code Synonymous: LOINC code does not exist for the combination of 
test and specimen type in the source data, but the predicted LOINC code is the most reasonable alternative; Concordant Incorrect: Model-
predicted label = original label and is incorrect; Discordant Original Correct: Model-predicted label ¹ original label and original label is correct; 
Discordant Neither Correct: Model-predicted label ¹ original label and neither label is correct; Insufficient or Conflicting Information: Either not 
enough source data to infer code (i.e. units missing and would be necessary to assign code), or source data conflicts (i.e. test name includes the 
word ‘blood’ and specimen type is ‘urine’). 
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Targeted Evaluation of Discordant Labels 

 In manual validation of cases where the LOINC code present in the source data (original 

label) differed from the model-predicted LOINC code, Cohen’s kappa for inter-rate agreement 

was 0.70 (Table 20). The model-predicted LOINC code was correct in 83.2% by test frequency, 

and the model-predicted LOINC code was better than the original label 71.5% of the time by test 

frequency (Table 23). 
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Table 23. Manual Validation in Labeled Data where Original and Predicted LOINC Codes Discordant (Model Fit to Full Labeled 
Dataset) 

 Discordant Labeled Data 

 Bottom 50% Top 50% Total 

 Instances 
(N=130) 

Tests 
(N=593,709) 

Instances 
(N=130) 

Tests 
(N=48,825,571) 

Instances 
(N=260) 

Tests 
(N=49,419,280) 

Total Correct 87 (66.9%) 532504 (89.7%) 117 (90%) 40570921 (83.1%) 204 (78.5%) 41103425 (83.2%) 

Predicted Correct 77 (59.2%) 501167 (84.4%) 108 (83.1%) 34857234 (71.4%) 185 (71.2%) 35358401 (71.5%) 

Both Correct (Synonymous) 1 (0.8%) 31153 (5.2%) 6 (4.6%) 5252216 (10.8%) 7 (2.7%) 5283369 (10.7%) 

No LOINC Coverage, Code 
Synonymous 

9 (6.9%) 184 (0%) 3 (2.3%) 461471 (0.9%) 12 (4.6%) 461655 (0.9%) 

Total Incorrect 33 (25.4%) 61157 (10.3%) 11 (8.5%) 7478321 (15.3%) 44 (16.9%) 7539478 (15.3%) 

Original Correct 15 (11.5%) 20121 (3.4%) 8 (6.2%) 7023988 (14.4%) 23 (8.8%) 7044109 (14.3%) 

Neither Correct 18 (13.8%) 41036 (6.9%) 3 (2.3%) 454333 (0.9%) 21 (8.1%) 495369 (1%) 

Insufficient or Conflicting Information 10 (7.7%) 48 (0%) 2 (1.5%) 776329 (1.6%) 12 (4.6%) 776377 (1.6%) 

Definitions: Predicted Correct: Model-predicted label correct (original label incorrect); Both Correct (Synonymous): Model-predicted label and 
original label correct; No LOINC Coverage, Code Synonymous: LOINC code does not exist for the combination of test and specimen type in the 
source data, but the predicted LOINC code is the most reasonable alternative; Original Correct: Original label correct (model-predicted label 
incorrect); Neither Correct: Model-predicted label and original label both incorrect; Insufficient Or Conflicting Information: Either not enough source 
data to infer code (i.e. units missing and would be necessary to assign code), or source data conflicts (i.e. test name includes the word ‘blood’ and 
specimen type is ‘urine’). 
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CV Model 

Unlabeled Data 

Using the CV Model applied to the unlabeled dataset, Cohen’s kappa for inter-rater 

agreement was 0.73 (Table 24). The model-predicted label was correct in 82.3% of records by 

test frequency, which is similar to the results from the Full Model. Compared to the Full Model, 

the CV Model performed modestly better in the infrequent tests and slightly worse in the 

frequent tests (Table 21 and Table 25). 

 

Table 24. Adjudicator Agreement on Manual Validation with Model Fit During 5-fold Cross-
Validation 

  % Agreement Cohen’s kappa 

Unlabeled Data 86.9% 0.73 

Randomly-Sampled Labeled Data 93.4% 0.86 
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Table 25. Manual Validation in Unlabeled Data (Model Fit During 5-fold Cross-validation) 

 Unlabeled Data 

 Bottom 50% Top 50% Total 

 Instances 
(N=130) 

Tests (N=944,156) Instances 
(N=130) 

Tests 
(N=30,776,801) 

Instances 
(N=260) 

Tests 
(N=31,720,957) 

Total Correct 89 (68.5%) 900,072 (95.3%) 106 (81.5%) 25,212,942 (81.9%) 195 (75%) 26,113,014 (82.3%) 

Predicted Correct 72 (55.4%) 700,972 (74.2%) 104 (80.0%) 25,069,280 (81.5%) 176 (67.7%) 25,770,252 (81.2%) 

No LOINC Coverage, Code 
Synonymous 

17 (13.1%) 199,100 (21.1%) 2 (1.5%) 143,662 (0.5%) 19 (7.3%) 342,762 (1.1%) 

Total Incorrect 24 (18.5%) 12,828 (1.4%) 21 (16.2%) 5,126,695 (16.7%) 45 (17.3%) 5,139,523 (16.2%) 

Predicted Incorrect 21 (16.2%) 12,822 (1.4%) 21 (16.2%) 5,126,695 (16.7%) 41 (15.8%) 5,139,517 (16.2%) 

No LOINC Coverage, Code Incorrect  3 (2.3%) 6 (<0.1%) 0 (0%) 0 (0%) 4 (1.5%) 6 (<0.1%) 

Insufficient or Conflicting Information 17 (13.1%) 31,256 (3.3%) 3 (2.3%) 437,164 (1.4%) 20 (7.7%) 468,420 (1.5%) 

Definitions: Predicted Correct: Model-predicted label is correct; No LOINC Coverage, Code Synonymous: LOINC code does not exist for the 
combination of test and specimen type in the source data, but the predicted LOINC code is the most reasonable alternative; Predicted Incorrect: 
Model-predicted label is incorrect; No LOINC Coverage, Code Incorrect: LOINC code does not exist for the combination of test and specimen type 
in the source data, and the predicted LOINC code is not a reasonable alternative; Insufficient or Conflicting Information: Either not enough source 
data to infer code (i.e. units missing and would be necessary to assign code), or source data conflicts (i.e. test name includes the word ‘blood’ and 
specimen type is ‘urine’). 
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Randomly-Sampled Labeled Data 

Cohen’s kappa for inter-rater agreement was 0.86 in the labeled dataset (Table 24). The 

model-predicted label was correct in 94.8% of records by test frequency, which is similar to the 

results from the Full Model. Compared to the Full Model, incorrect predictions in the CV Model 

were driven by more instances in which the original and predicted labels disagreed and were 

both incorrect (Discordant Neither Correct), but fewer instances in which the original and 

predicted labels agreed and were incorrect (Concordant Incorrect) (Table 22 and Table 26). 
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Table 26. Manual Validation in Randomly-sampled Labeled Data (Model Fit During 5-fold Cross-validation) 

 Randomly-Sampled Labeled Data 

 Bottom 50% Top 50% Total 

 Instances 
(N=130) 

Tests 
(N=4,678,607) 

Instances 
(N=130) 

Tests 
(N=136,643,970) 

Instances 
(N=260) 

Tests 
(N=141,322,577) 

Total Correct 81 (62.3%) 3,508,110 (75%) 125 (96.2%) 130,461,944 (95.5%) 206 (79.2%) 133,970,054 (94.8%) 

Concordant Correct 61 (46.9%) 3,452,906 (73.8%) 123 (94.6%) 127,878,474 (93.6%) 184 (70.8%) 131,331,380 (92.9%) 

Discordant Predicted Correct 13 (10%) 54,966 (1.2%) 1 (0.8%) 1,565,720 (1.1%) 14 (5.4%) 1,620,686 (1.1%) 

No LOINC Coverage, Code 
Synonymous 

7 (5.4%) 238 (<0.1%) 1 (0.8%) 1,017,750 (0.7%) 8 (3.1%) 1,017,988 (0.7%) 

Total Incorrect 31 (23.8%) 1,170,131 (25.0%) 5 (3.8%) 6,182,026 (4.5%) 36 (13.8%) 7,352,157 (5.2%) 

Concordant Incorrect 10 (7.7%) 239,959 (5.1%) 3 (2.3%) 2,782,119 (2.0%) 13 (5.0%) 3,022,078 (2.1%) 

Discordant Original Correct 1 (0.8%) 1 (<0.1%) 1 (0.8%) 2,071,238 (1.5%) 2 (0.8%) 2,071,239 (1.5%) 

Discordant Neither Correct 20 (15.4%) 930,171 (19.9%) 1 (0.8%) 1,328,669 (1%) 21 (8.1%) 2,258,840 (1.6%) 

No LOINC Coverage, Code Incorrect 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Insufficient or Conflicting Information 18 (13.8%) 366 (<0.1%) 0 (0%) 0 (0%) 18 (6.9%) 366 (<0.1%) 

Definitions: Concordant Correct: Model-predicted label = original label and is correct; Discordant Predicted Correct: Model-predicted label ¹ 
original label and model-predicted label is correct; No LOINC Coverage, Code Synonymous: LOINC code does not exist for the combination of 
test and specimen type in the source data, but the predicted LOINC code is the most reasonable alternative; Concordant Incorrect: Model-
predicted label = original label and is incorrect; Discordant Original Correct: Model-predicted label ¹ original label and original label is correct; 
Discordant Neither Correct: Model-predicted label ¹ original label and neither label is correct; Insufficient or Conflicting Information: Either not 
enough source data to infer code (i.e. units missing and would be necessary to assign code), or source data conflicts (i.e. test name includes the 
word ‘blood’ and specimen type is ‘urine’). 
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Estimated Noisy Label Prevalence 

In manual validation of randomly-sampled labeled data, noisy labels (incorrect labels in 

the original source data) are comprised of the Discordant Predicted Correct, Discordant Neither 

Correct, and Concordant Incorrect categories in Table 22. Considering the 234 instances in 

which LOINC coverage existed for the source data, and in which there was sufficient information 

to determine the LOINC code, the noisy label prevalence is 15.8% (Table 27).  In this data 

sample, if all original labels were replaced with the model-predicted labels, the error rate would 

be 13.2%. 

 

Table 27. Estimating Noisy Label Prevalence from Randomly-sampled Labeled Data (Full 
Model) 

 Instances (N=234) 

Noisy Labels 37 (15.8%) 

Concordant Incorrect 28 (12.0%) 

Discordant Predicted Correct 8 (3.4%) 

Discordant Neither Correct 1 (0.4%) 

Correct Labels 197 (84.2%) 

Concordant Correct 195 (83.3%) 

Discordant Original Correct 2 (0.9%) 

Full Model refers to the One-Versus-Rest classifier fit to the full labeled dataset. 
Label Definitions: Concordant Incorrect: Model-predicted label = original label and is incorrect; 
Discordant Predicted Correct: Model-predicted label ¹ original label and model-predicted label is 
correct; Discordant Neither Correct: Model-predicted label ¹ original label and neither label is 
correct; Concordant Correct: Model-predicted label = original label and is correct; Discordant 
Original Correct: Model-predicted label ¹ original label and original label is correct. 

 

Examining Model Performance by Dataset Characteristics 

 When the number of sites in the model ranged from 5 to 35, performance improved 

dramatically with the addition of data in 5-site increments (Figure 13.A). Increasing the number 
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of sites beyond 35 (up to 125) provided modest, albeit continued, performance improvement. 

The number of unique LOINC keys in the data also increased most appreciably in the range of 5 

to 35 sites, plateauing when approximately 80 sites were included in the model (Figure 13.B). 

As sites were added to the dataset, the number of data instances increased linearly across the 

entire range.  
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Figure 13. Examining Model Performance by Dataset Characteristics. 

A) Model accuracy (solid line) and weighted F1 score (dashed line) with 95% confidence bands 
for random forest multiclass model fit in 5-fold cross-validation to randomly sampled data subsets 
with varying number of sites. B) Number of unique LOINC keys (solid line) and number of data 
instances (dashed line) in randomly sampled data subsets with varying number of sites. 
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CHAPTER 4 

 

DISCUSSION 

 

In this study we automated feature generation and mapping of laboratory data to LOINC 

codes using a series of automated data transformation modules and a machine learning 

algorithm that leverages noisy labels within a large, heterogeneous national electronic health 

record system database. Using this method, we were able to assign LOINC codes to unlabeled 

data with reasonable performance. We demonstrated comparable label accuracy when the 

model was fit to the entire dataset or when labels were assigned during cross-validation, 

suggesting that this model could be used on existing retrospective datasets or applied to new 

sites. Additionally, our model demonstrated utility in LOINC code reclassification, which could 

serve to augment data quality.  

Our results are similar in accuracy to the best reported methods that have previously 

attempted to automate laboratory mapping.20-22 Notably, our estimates of model performance 

may actually be conservative for two main reasons. First, we did not exclude tests that occurred 

rarely (i.e. <10 results during the 16-year data collection timeframe). We attempted to map 

these results both for generalizability and to assess model performance with rare occurrences. 

Second, during manual validation we did not consider clinical equivalence in determining label 

accuracy. For example, using the LOINC Groups classification,56 a test for Glucose 

[Mass/volume] in Capillary blood (LOINC code 32016-8) and a test for Glucose [Mass/volume] 

in Blood (LOINC code 2339-0) can be grouped by the parent code LG11181-1. However, we 

considered a label of 2339-0 for the test ‘Glucose, Capillary Blood’ incorrect, because a model 

would ideally assign the more specific code 32016-8 given the information in the source data. 

We opted to stringently assess model label accuracy, because an ideal model would assign the 
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most granular label that represents the data and allow the end-user to aggregate codes if 

desired. We chose not use the publicly available LOINC Multi-Axial Hierarchy table, which in 

some cases groups LOINC codes with differing Property and Scale. For example, tests with 

quantitative results may be grouped with tests reported in ordinal scale. Since we aimed to map 

laboratory tests in a way that would not require the end-user to filter, sort, or transform tests 

within a LOINC group, we used the LOINC equivalence algorithm detailed in the Methods 

section. 

In our manual validation, the model performed better within the labeled data than the 

unlabeled data. This is not surprising, given that unlabeled data is not necessarily unlabeled at 

random, and contains an over-representation of unusual combinations of test name, specimen 

type, and/or units. Nonetheless, within unlabeled data, the model-predicted LOINC code was 

correct in 85% of the sampled data by test frequency. Depending on the use case, the gain in 

useable data provided by assigning LOINC codes to unlabeled data (albeit, with some incorrect 

labels) might offset the misclassification rate. We observed that in both the labeled and 

unlabeled data, the model performed better within common tests (Top 50%) than within 

uncommon tests (Bottom 50%). This is not unexpected, given that uncommon tests also contain 

unusual combinations of test name, specimen type, and/or units. Unlike previous studies, we 

attempted to map all data instances for generalizability, but our results suggest that model 

performance (and confidence in label predictions) could be improved by restricting to common 

tests. Where the model-predicted LOINC code disagreed with the original source data LOINC 

code, the model-predicted code was correct and more appropriate than the original code in 71% 

of instances. Implementation of our current model without any modification would still generally 

improve the original source data quality by correctly reclassifying LOINC codes in 72% of the 

data by test frequency, while incorrectly reclassifying 14% of labels whose original assignment 

was correct.  
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In this study, the random forest models outperformed penalized logistic regression 

models, which is not surprising given that random forests are inherently multi-class capable and 

robust to label noise.61 Additionally, random forest models are attractive because they 

automatically handle non-linear relationships and high-order variable interactions, and do not 

require binary expansion of categorical variables or standardization of continuous variables.  

 

Strengths 

 

Strengths and novelties of this study include: (a) use of a large (6.6 billion laboratory 

results) heterogeneous data source (130 sites) for model development, (b) implementation of an 

automated pipeline, (c) generalizable application, and (d) leveraging of noisy labels.  

 

Automated Pipeline 

Prior to our study, there have been no truly automated methods to map laboratory tests 

to LOINC codes. Previous ‘automated’ methods required manual work by domain experts, either 

to extensively map local terms to LOINC codes (corpus-based methods), or to choose the 

correct mapping from a list of candidates generated by the mapping tool (lexical method). The 

method we present fully automates the following steps: source data text processing and 

normalization, acronym and abbreviation expansion, synonym detection, feature engineering, 

and mapping/LOINC code assignment. The tool we present only requires the user to supply 

their aggregate laboratory source data and to enter the following mandatory fields into the 

configuration file: input and output file directories, the R library location, the user UMLS api key, 

and the names of the variables in the user’s laboratory data file. Once the user specifies the 

configuration variables, the program can be run via command line execution of a single Python 

script. In the final output for both labeled and unlabeled data, the model-predicted LOINC code 
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is appended to the source data file and written to the output directory. 

 

Generalizability 

The methods we present are generalizable to laboratory data at any healthcare 

institution and are not dependent on any proprietary VA laboratory information. To implement 

our model, the laboratory data need only contain a laboratory test name, specimen type, and a 

numeric test result, standard elements for laboratory data in any electronic health record 

system. We designed the model to handle data that contains only partial LOINC mappings and 

missing fields.  

 

Noisy Labels 

By including noisy labels, model performance will be inherently dependent upon the 

quality of the underlying labels. In this data source with an estimated noisy label rate of 16%, 

model performance was reasonable and prior research suggests that higher rates of noisy 

labels may be tolerated by machine learning methods. By incorporating noisy labels, we obviate 

the need for the manual corpus adjudication used in prior studies.20,22 This is important because 

for corpus-based methods to be generalizable, the corpus must be large and heterogeneous, 

which requires significant and potentially non-scalable upfront manual effort to extensively map 

local laboratory tests. We developed our model using a large, heterogeneous data source, but 

because we leveraged noisy labels, no manual effort was required.  

 

Limitations 

 

Our study is not without limitations. First, because this model was developed using a 

large, national data source, our approach may not be generalizable to organizations with fewer 

sites. However, in our sensitivity analysis examining model performance by varying dataset 
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characteristics, performance was reasonable with approximately 35 sites. Furthermore, 

performance appears to be more closely correlated with the number of distinct LOINC codes in 

the dataset rather than the number of data instances, suggesting that the model might perform 

well even in smaller organizations with heterogeneous data. Second, we restricted to the 150 

most common laboratory tests with numeric results at each site, which could limit 

generalizability. However, the model may continue to perform well with addition of more tests 

due to our study design. First, because the top 150 tests were not identical across all of the 130 

sites, the data used to train and evaluate the model was heterogeneous. Second, the 150 most 

common tests per site were selected based upon the local laboratory test name, but those test 

names could be associated with different specimen types and/or units, resulting in 219 to 2153 

distinct combinations of test name/specimen type/units per site. Third, for our manual validation, 

we sampled from both commonly- (Top 50%) and uncommonly- (Bottom 50%) used tests. We 

used this sampling strategy to explicitly examine how the model performs with rarer data 

occurrences.  Because we used heterogeneous data with rare occurrences for model 

development, the model may perform well with addition of more tests. Another potential 

limitation is that our model uses LOINC keys, which effectively group similar LOINC codes via 

interoperability. This method is likely appropriate for many use cases; however, the information 

contained in the method field of the individual LOINC codes could be important for research 

questions requiring granular laboratory test information.  

 

Future Directions 

 

Because we designed our study to include heterogeneous data for model development 

and we included data with rare occurrences (unlike previously published studies) the model may 

perform well with addition of more tests. Future model development and evaluation could 

conceivably be attempted without restricting to common tests. We did not include tests with text-
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reported results due to the need for normalization. However, Hauser et al. recently reported 

creating a scalable, generalizable tool to standardize laboratory test fields,69 which could 

potentially be used in conjunction with our method to comprehensively improve data quality and 

mapping. Additionally, because our manual validation of instances with discordant labels 

(original source data and model-predicted LOINC codes disagreed) demonstrated model utility 

for LOINC code resclassification, a future model implementing an iterative 

training/adjudication/retraining phase could potentially be even more robust for tolerance of 

noisy labels. For each data instance, the model-predicted label has an associated probability 

generated by the fitted random forest model. In future iterations, our model could be modified by 

incorporating label probabilities (as a measure of estimate confidence) to target the data that 

requires adjudication. Finally, the methods we describe incorporate features created from raw 

source data aggregation, and as such, could be implemented as an initial step in the 

transformation pipeline for common data models. We describe a model that effectively maps 

laboratory data to LOINC codes. However, the same principles could be applied in future 

applications to map medication data to a terminology (e.g. RxNorm) or to map clinical notes to 

the LOINC document ontology (set of LOINC codes that classify the key attributes of clinical 

documents). 

 

Conclusion 

 

With widespread EHR adoption, multi-site data aggregation and centralization are 

feasible and increasingly common. To leverage these data sources for research, quality 

assessments, and public health, data must be represented accurately and consistently across 

sites. Currently, there is a paucity of truly automated methods to map disparate data sources to 

standards that facilitate consistent data representation. We present a scalable, automated 
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algorithm that may improve data quality and interoperability, while substantially reducing the 

manual effort currently required to accurately map data. 
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