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Chapter I 

INTRODUCTION 

1.1 Cochlea and cochlear implants 

Hearing is the outcome of a series of complex steps that translate sound wave signals into electrical 

signals. Incoming sound waves traveling through the ear canal reach cochlea, which is the snail-

shaped fluid-filled cavity1. Cochlea is composed of three principal cavities called the scala tympani 

(ST), scala vestibuli (SV) and scala media (SM). The ST and SM are separated by the basilar 

membrane (BM) and the SM and SV are separated by Reissner’s membrane (RM). The sound 

waves collected by the outer ear cause a ripple effect within cochlea which results in movement of 

the hair cells that correspond to the frequencies of the received sound1.  

The hair cells are tonotopically ordered by decreasing characteristic frequency along the 

length of the cochlea; the hair cells located within the lower part of the cochlea correspond to 

higher frequency of sounds, and those that are located in the upper part of the cochlea correspond 

to lower frequency sounds3,4. The movement of the corresponding hair cells releases chemicals 

into the ear inner activating the spiral ganglion nerve cells5. This stimulation is propagated along 

the auditory nerve fiber traveling through the brain stem and finally reaching the auditory cortex 

allowing the brain to process and hear the sound. 

In simple terms, the inner ear performs a frequency spectrum decomposition of incoming 

signals, and the auditory nerve fibers send this information to the brain for further processing. In 

patients suffering from sensorineural hearing loss caused by abnormalities in hair cells, direct 

electrical stimulation of spiral ganglion cells is possible. This is done with a neural prosthesis 
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called a cochlear implant (CI)6 as shown in Figure 1.1.  

 
 

Figure 1.1. Example of a cochlear implant’s external and internal parts. Image retrieved from7. 

 

The main components of a CI are an electrode array with up to 22 contacts that is surgically 

implanted into the cochlea, an externally-worn processor with microphone that picks up and 

decomposes the incoming signals, and a stimulator that transforms the output of the processor into 

biphasic electrical pulses that are sent to the appropriate contact in the electrode array. These high-

frequency pulse trains stimulate the nerves in a frequency-specific manner to maintain tonotopicity 

of the system. Patient-specific parameter values for the processor are set by an audiologist in a 

series of office visits, resulting in a so-called MAP, and the process of selecting these parameter 

values is referred to as mapping.   

With over 700,000 recipients worldwide and significant speech understanding benefits in 

the majority of those recipients, CIs are arguably the most successful neural prostheses to date. 

Yet, a significant number of recipients achieve poor outcomes and restoration to normal fidelity is 
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rare even among the best performers. The factors that affect hearing performance in CI recipients 

have been studied extensively. Scalar electrode location, the distance from electrodes to neural 

activation sites and neural survival are some of such factors. Electrode interaction is another factor 

that negatively affects the hearing performance of CI recipients. In natural hearing, each neural 

pathway can only be activated when the corresponding frequency is present in a sound. However, 

since CIs have relatively larger sizes of electrode contacts that create a wide current spread, each 

electrode stimulates a group of nerves that correspond to a wide range of frequencies.  

This phenomenon known as channel interaction causes spectral smearing artifacts, which 

could be addressed and accounted for during clinical mapping sessions as CI devices allow 

manipulation of several settings, including activation or deactivation of contacts, assigning 

stimulation levels and sound frequency bands to each active electrode, etc. However, most of these 

settings are left at default during the mapping sessions due to lack of objective cues available that 

could indicate what settings will lead to better hearing outcomes. The audiologists depend heavily 

on patient feedback trying to optimize available CI settings, which is a difficult task because weeks 

or months of experience with given settings is necessary before the hearing performance can be 

reliably measured. Thus, the programming process often converges to sub-optimal settings and 

several sessions over the course of many years may be required. 

In order to generate objective information that might indicate what settings will lead to 

better hearing outcomes, one would need to accurately determine the location of the electrodes as 

well as the electrode-neuron interface, which refers to an implant channel's ability to effectively 

stimulate the auditory nerve8. The positional factor of an electrode can be grouped into three 

different categories: (1) Scalar location of an electrode, i.e. whether the electrode lies within the 

ST or SV, (2) modiolar distance of an electrode, i.e. the distance between the electrode and the 
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neural activation sites; and (3) angular depth of the insertion. The scalar location9,10 as well as 

modiolar distance11 of electrodes have been found to correlate with hearing outcomes. Studies also 

suggest that hearing outcomes12,13 as well as maintenance of residual hearing14,15 are superior when 

all electrodes are located within the ST. Angular depth of insertion on the other hand had 

conflicting results with some studies showing better outcomes are associated with deeper16–19 or 

shallower10,11 insertions. Some factors such as distance to the modiolus have been little studied, 

and others such as depth of insertion led to conflicting findings. One potential reason for this is 

that methods used in aforementioned studies do not provide an accurate enough estimation of the 

position of intra-cochlear anatomy. Recent studies have shown that individual human cochleae 

differ not only in size but also in morphology20–23. Non-rigid variations, from the simplest variation 

of overall cochlea size to more complex variations such as changing proportions of specific areas 

(e.g. a deeper basal turn or a more horizontally positioned round window), need to be captured in 

order to accurately determine the position of the electrodes.  

Another important factor is the electrode-neuron interface, which can be thought as spread 

of excitation caused by each electrode coupled with the health of the auditory nerve fibers along 

the length of cochlea. Analyses of temporal bones of CI users have revealed varying degrees of 

spiral ganglion counts of less than one third to almost 80% of those in age-matched healthy ears8. 

It has also been shown that neuron loss generally occurs heterogeneously, e.g. different segments 

of cochlea have different levels of neural survival24,25. Spiral ganglion loss as well as channel 

interaction, which occurs when two electrodes with two distinct frequency allocations stimulate 

the same nerve group, has been shown to limit spatial selectivity26,27.  

Thus, it is important to develop new techniques that could not only accurately localize the 

important structures within the cochlea, but could also predict the patient-specific electrode-neuron 
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interface in CI users. Our group has developed several image processing techniques that permit 

localization of anatomical structures that are of interest28–31 as well as CI electrodes32–34 in patient 

computed-tomography (CT) images with high accuracy. Using these techniques, our lab has 

developed the first image-guided CI programming (IGCIP) technique where electrode position is 

used to estimate the neural activation patterns caused by the electrodes, which is unique 

information that audiologists can use to define patient-specific CI processor settings26. Briefly, the 

patient cochlea anatomy is segmented using the pre-operative CT image, and the location of the 

intra-cochlear electrodes are segmented using the corresponding post-operative CT image. The 

anatomical structures segmented in the pre-operative CT are spatially aligned with the intra-

cochlear electrodes segmented in the post-operative CT image. An example of the segmentation 

process is shown in Figure 1.2. The Euclidian distance from each electrode to the neural activation 

sites characterized by the frequencies to which they correspond is measured and is visualized using 

the Distance Vs. Frequency (DVF) curves. For each new patient, a DVF curve is created and an 

automatic method is used to generate patient-specific deactivation mapping plan35.  

In 26, IGCIP method was tested with a total of 68 patients, and significant improvements 

were reported for 39 out of 72 ears. In addition, patients elected to keep the experimental IGCIP 

maps for 56 ears (78%). Even though it has been shown that our IGCIP method leads to better 

hearing outcomes, it is possible that the method could be improved with a better estimate of the 

electrodes’ neural activation patterns. In our current system, neural activation is estimated 

indirectly using only the Euclidian distance from each electrode to the neural activation sites as a 

surrogate for activation. 
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Segmented preoperative image and 3-
D meshes of ST, SV and MO  

3-D mesh of the electrode array and 
segmented postoperative image  

  

 

     

Figure 1.2. Overview of the process of segmenting the intra-cochlear structures as well as the electrodes. 

 

We hypothesize not only that comprehensive and physics-based electro-anatomical and 

auditory nerve fiber models will better estimate neural activation patterns than our current 

approach but also that these models will enable us to estimate neural health along the length of 

cochlea which is currently not possible. In the remainder of this chapter, we present brief reviews 

on the methods that are currently used to determine the position of electrodes as defined above as 

well as methods that estimate the patient-specific electrode-neuron interface. We will also identify 

the limitations of such methods and introduce the contributions of this dissertation. 
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1.2 Effect of cochlear anatomy variations 

Variability in human cochlea size has been previously demonstrated. Differences in cochlear 

anatomy exists not only between males and females but also between individual differences20–23,36. 

Because of variations in cochlea anatomy, detailed quantified information on the patient-specific 

differences need to be provided and such individual differences need to be taken into account in 

selecting appropriate prosthesis. Accurately estimating the shape and size of the cochlea can be 

beneficial in not only selecting the correct electrode array size for individual patients, but also in 

accurately determining the location of the electrode array.  

Selection of a properly sized electrode array may be an important element in maintaining 

residual hearing and/or improving hearing outcomes for CI recipients. At present, CI companies 

offer a finite number of choices for electrode length and little to no instruction to optimize surgical 

placement given individualized anatomy. A properly sized electrode array might not only reduce 

the trauma caused by the electrode array insertion but also allow a better placement of the electrode 

array with respect to the neural activation sites. Studies suggest that a deeper insertion impacts 

scalar position and intra-cochlear trauma10,37,38. Finley et al.10 and Radeloff et al.38 found that 

insertion depth impacts scalar position and increases the number of electrodes in the SV, which is 

negatively correlated with hearing outcomes. Since the advent of cochlear implantation, multiple 

studies have assessed the role of using the cochlear duct length (CDL), which is defined as the 

length of the scala media, to determine the appropriate electrode length for implantation. This is 

particularly important as the length of the cochlea can vary between 25 and 45mm in patients36,39–

47 , and the angular depth of insertion is dependent upon CDL and the length of the implanted 

electrode. Ketten et al.45 and Alexiades et al.48 described a formula to calculate CDL at a given 
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angular depth using CT, and by measuring the distance from the middle of the round window (RW) 

to the farthest point on the opposite wall of the cochlea, denoted A. Determining the farthest point 

from the RW on the opposite lateral wall of the cochlea can be a demanding task given that 

surgeons are only presented 2D slices and the middle of the RW and the farthest point might be 

located on 2 different slices. A comparison between manually determined length As as measured 

by two different experts is shown in Figure 1.3.  

 

 

Figure 1.3. Length A measured by two expert neurotologists shown in different colors. 

 

Manually determining A remains time consuming and operator dependent, and intra- or 

inter-observer variability in measurements might exist. An automatic method to measure CDL at 

a given angular depth would minimize the error introduced by the manual measurements and 

would provide a more accurate selection of a properly sized electrode array. As part of this 

dissertation, we have developed and evaluated an automatic way to measure both A and CDL. We 

have also compared expert measurements with automatic measurements of A, and investigate the 

sensitivity of the choice of electrode type to the choice of CDL measurement method by counting 

how often the choice of electrode would differ when different expert or automatic measures are 

used to estimate CDL. 

Another factor that affects outcomes is electrode position which, as previously mentioned, 
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can be grouped into three different categories: (1) Scalar location of an electrode, (2) modiolar 

distance of an electrode, and (3) angular depth of the insertion. Different methods have been used 

in order to estimate the shape of the cochlea and localize intra-cochlear electrode positions, ranging 

from manually determining the intra-cochlear electrode location on CT images to creating cochlear 

shape models (CSM) and registering these models to patient images. Aschendorff et al.13, Verbist 

et al.49, and Boyer et al.50 presented different manual segmentation techniques that use CT imaging 

to evaluate the correlation between the scalar electrode position and hearing outcomes. However, 

manually determining intra-cochlear electrode location using images alone is arduous and labor-

intensive. In addition, CT imaging lacks the adequate resolution to visualize fine scale intra-

cochlear structures, such as the modiolar wall. 

Although CT imaging still remains the imaging modality best suited for this task, some 

groups have also used magnetic resonance imaging (MRI), which is the only modality that can 

directly visualize the membrane separating the ST and SV51. As it is not possible to use MRI for 

post-implantation imaging, Neri et al.52 developed a technique in which postoperative CT images 

were registered to 1.5 T preoperative MRI images to assess electrode location within the 

membranous labyrinth. Even though this method allows visualization of certain intra-cochlear 

structures, the ST and SV were non-differentiable on MRI images. It is important to note that with 

current MRI technology achieving the high signal quality and CT-like resolution necessary to 

accurately image ST and SV requires hours of scan time and the use of high field scanners not yet 

approved for clinical use, making use of MRI for large scale analysis of patient cochleae not yet a 

viable option.  

Creating CSM of intra-cochlear anatomy that can be registered to a patient CT image to 

define the location of the intra-cochlear structures was the approach in several papers9–11, where a 
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rigid CSM was created using a histological image of a single cochlear specimen and was rigidly 

registered to new patient CT image.  

However, as explained previously, non-rigid variations exist between different individuals, 

and using a single model that is rigidly registered to patient images does not provide an accurate 

enough estimation of the position of intra-cochlear anatomy. Indeed, this approach does not permit 

to take into account normal non-rigid inter-subject anatomical variations and thus leads to error 

when localizing anatomic structures. Anatomical differences that exist between two ex-vivo 

specimens are shown in Figure 1.4. These specimens are first manually segmented in high-

resolution images and then rigidly registered to each other. As part of this thesis, we propose an 

approach to quantify the accuracy of measurements of intra-cochlear electrode positions when 

using rigid CSM. As rigid CSMs cannot capture the non-rigid variations between individuals, this 

study will also enable us to quantify the effect of cochlea anatomy variations on electrode 

localization. Another application of interest for which selection of an accurate CSM is important 

is creating of patient-specific EAMs. Since EAMs depends on accurate localization of intra-

cochlear electrode position for each patient, choosing an appropriate cochlear model is crucial. 

 

 

(a) (b) 

Figure 1.4. Two rigid shape models containing scala tympani and modiolus. The contours are shown on a CT image 
(a) and in 3D meshes (b). 



 

11  

 

 1.3 Electro-anatomical model of the electrically stimulated cochlea 

Noble et al.26 showed that neural activation caused by CI electrodes can be estimated from CT 

images. The DVF curve based spatial analysis approach has been successful when used for coarse 

strategies, but these techniques rely on Euclidean distance measured between the electrodes and 

the nerves. Work from other groups has shown that purely distance-based measures do not provide 

an accurate estimation of stimulation patterns53. Thus, we need to develop more comprehensive 

models to accurately estimate stimulation and neural activation patterns. A computational electro-

anatomical model can be used to estimate patient-specific current density fields created by the 

electrodes, and the magnitude of these fields in the region where neural activation occurs estimates 

the neural stimulation patterns. EAMs can estimate stimulation patterns more accurately than 

distance based measures because these simulation: (a) account for the differing electrical 

properties of tissues when estimating the distribution of electrical current, (b) can account for the 

size and shape of contacts when estimating the current patterns emitted from those contacts, and 

(c) can account for complex anatomical geometry to simulate events such as cross-turn stimulation, 

which is a phenomenon where current injected at one location in the cochlea can cross through the 

thin tissue separating one turn of the cochlea from another to stimulate entirely separate groups of 

nerves.  Cross-turn stimulations have long been suspect to cause performance degradations54,55. 

An example of the resulting voltage map is shown in Figure 1.5. 

 



 

12  

        

(a) (b) 

Figure 1.5. An example of a resulting current density map within cochlea (a) and along the neural interface (b) 

 

Several groups have used EAMs to study intra-cochlear voltage distribution and its effect 

on neural activation. Several methods to create EAMs have been adopted by different groups 

ranging from using a rotationally symmetric model of human cochlea55 to using human cochleae 

from histological images. Although these models have been shown to be useful, they cannot be 

applied in vivo; thus, patient-specific differences cannot be incorporated into these models. 

Additionally, these models do not account for patient-specific electrical characteristics, i.e., the 

resistivity value of different tissue types. This is important because the ultimate goal of such 

models is to estimate neural stimulation patterns, and to do so accurately will require accurately 

estimating the voltage distribution in the cochlea.  

As part of this thesis, we are proposing a method to anatomically and electrically customize 

EAMs using patient CT images and electric field imaging (EFI) data, respectively. EFI is measured 

such that one electrode at a time is activated while voltage at each of the remaining electrodes in 

the cochlea is measured, thus sampling the intra-cochlear potentials at sites where electrodes sit. 

Electrical customization method also includes a step in which intra-cochlear regions where fibrous 

tissue might have grown is determined. This is a phenomenon seen with CI users, where after the 
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electrode insertion, the body treats the electrode array as a foreign object and starts forming 

scar/fibrous tissue around it56–59. This is a crucial step as it has been shown that the efficiency of 

CIs is affected by such tissue growths consisting of inflammation or fibrosis60.  

 

1.4 Auditory nerve fiber model 

The response of an auditory nerve fiber to an external stimulation depends on the electrical and 

physical properties of the nerve as well as the strength and polarity of the extracellular potential. 

Electrical properties i.e. ion channels, myelination, conductance, etc., and physical properties i.e. 

length and diameter of different parts of the nerve can be modeled using a compartmental auditory 

nerve fiber model (ANFM). ANFMs can be used not only to better analyze and understand the 

neural response caused by the CI electrodes, but also to better program CIs.   

Several groups have worked on predicting neural activation caused by electrical 

stimulation. In one of the earliest works, Rattay61 used a current term generated from an EAM 

which is proportional to the second spatial derivative of the extracellular field and concluded that 

the activity of the axon depends on the second derivative of the extracellular medium, denoted as 

the “activating function”.  

 

Figure 1.6. The geometrical properties of the auditory nerve fiber. 

 

This was the method of choice in 62,63. However, the activating function is a first approximation 



 

14  

which assumes that the axon is infinitely long and thus, in a resting state64 when stimulated by a 

constant source, which would not hold true for a finite length axon placed in a non-uniform 

extracellular field. Most common models that are integrated into non-uniform EAMs are 

physiologically-based active membrane nerve models as shown in Figure 1.6. The potential at the 

active sites calculated by the EAMs are used to predict the activation of auditory nerve fibers. Such 

models were employed by several different groups in their studies65–70. These methods developed 

in the aforementioned studies either lack the capacity to be applied in-vivo65,68–70 or only confine 

themselves to anatomical customization71 and do not make us of the physiological measurements 

that are clinically available. In this work we are proposing a semi-automatic way to create a 

physiologically-based active membrane nerve model. Our approach involves creating subject-

customized computational models of auditory nerve fibers that are parameterized by neural health. 

Fiber-specific neural health is numerically estimated such that electrically evoked compound 

action potential (eCAP) model simulations match eCAPs measured directly from the CI. We 

clinically evaluate the auditory neural health estimations with clinically measured psychophysical 

measurements. This breakthrough could provide an unprecedented window into the health of the 

inner ear, opening the door for studying population variability and intra-subject neural health 

dynamics. It could further potentially transform the CI rehabilitation process by permitting 

comprehensive subject-specific simulation and optimization of the neural stimulation strategy 

based on the health of the electro-neural interface.  

 

1.5 Goals and contributions of the dissertation 

The goals of this dissertation are to develop patient-specific electro-anatomical models (EAMs) 

and auditory nerve fiber models (ANFMs) and clinically verify them. Fine resolution anatomical 
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as well as tissue electrical properties are incorporated into the EAMs. The methods developed in 

this dissertation allow such information to be transferred from high-resolution µCT images to 

patient CT image with high accuracy. μCTs have the resolution necessary to detect some of the 

fine structures required for accurate electrical modeling, such as Rosenthal’s canal and the neural 

pathways. While EAMs constructed using image-based techniques are quite useful, they cannot 

accurately capture certain patient-specific factors such as post-implantation tissue growth or 

regions that lack neural survival. Thus, taking advantage of ANFMs as well as physiological 

measurements such as electric field imaging and electrically evoked compound action potentials, 

we propose a method that can potentially estimate tissue growth regions as well as regions that 

lack neural survival.  

The specific contributions of this dissertation are summarized below: 

Chapter II presents the effects of non-rigid variations in cochlea anatomy on intra-

cochlear electrode localization. This is important because constructing an accurate EAM and 

simulating a variety of physiological CI measurements depend not only on accurate segmentation 

of the anatomical structures but also on accurate localization of the electrode positions with respect 

to these structures.   

Chapter III proposes an automatic method to measure both length A, the line from the 

center of the round window through modiolus to the farthest point on the lateral wall of the basal 

turn of the cochlea, as well as cochlear duct, measured from round window to the helicotrema. 

Such measurements are important not only in selecting the appropriate size of array but also in 

comparing individual cochleae differences. 

Chapter IV introduces a method that allows construction of high-resolution EAMs of 

electrically stimulated cochlea from μCT images of ex-vivo specimens. We extend this method by 
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incorporating fine resolution tissue electrical property information that can be transferred from 

high-resolution μCT images to patient CTs to create in-vivo patient-specific models that 

approximate electrical tissue properties. We compare these patient-specific models to models 

created from ground-truth μCT images. 

Chapter V presents the optimization algorithm we developed in order to electrically 

customize patient-specific EAMs. This method uses physiological measurements called electric 

field imaging in order to optimize the resistivity values of different tissue types, namely soft and 

neural tissue. This is an important step in creating patient-specific electro-anatomical and auditory 

nerve fiber models because the resistivity values will change the path of the current that flows 

between an active electrode and the distant ground, which in turn will affect the neural activation 

patterns caused by each electrode.  

Chapter VI proposes a graph-search based algorithm used to segment auditory nerve 

fibers. CT image slices do not have the adequate resolution to accurately visualize the fine intra-

cochlear structures including the auditory nerve fibers, which are roughly 2µm in width. Thus, our 

algorithm relies on a priori information of the morphology of the fibers to estimate their positon. 

Since the location of certain structures crucial in nerve fiber segmentation are estimated, it is 

important to evaluate the sensitivity of the algorithm as well as auditory nerve fiber models to 

moderate changes in nerve fiber shape.  

Chapter VII introduces the method we developed in order to create patient-specific 

auditory nerve fiber models (ANFMs). Coupled with electro-anatomical models, ANFMs can 

provide insight with respect to the health of the inner ear, opening the door for studying intra-

subject neural health dynamics. It could further transform the cochlear implant rehabilitation 

process by permitting comprehensive subject-specific simulation and optimization of the neural 
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stimulation strategy based on the health of the electro-neural interface. In this work, we have 

developed the first approach for estimating in vivo, subject-specific health of auditory nerve fiber 

populations in different regions of the inner ear. Our approach involves creating subject-

customized computational models of auditory nerve fibers that are parameterized by neural health. 

In order to evaluate the validity of our ANFMs, we have performed clinical tests and compared 

the results to our estimations. 

Chapter VIII provides the summary of the work and discusses possible future work. 
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Abstract 

Objective: To investigate the accuracy of rigid cochlear models in measuring intra-cochlear 

positions of cochlear implant (CI) electrodes  

Patients: 93 adults who had undergone CI and pre- and post-operative CT imaging. 

Main Outcome Measures: Seven rigid models of cochlear anatomy were constructed using 

micro-CTs of cochlear specimens. Using each of the 7 models, the position of each electrode in 

each of the 98 ears in our dataset was measured as its depth along the length of the cochlea, its 

distance to the basilar membrane, and its distance to the modiolus. Cochlear duct length was also 

measured using each model.  

Results: Standard deviation across rigid cochlear models in measures of electrode depth, distance 

to basilar membrane, distance to modiolus, and length of the cochlear duct at two turns were 0.68, 

0.11, 0.15, and 1.54 mm. Comparing the estimated position of the electrodes with respect to the 

basilar membrane, i.e., deciding whether an electrode was located within the scala tympani (ST) 

or the scala vestibuli (SV), there was not a unanimous agreement between the models for 19% of 
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all the electrodes. With respect to the modiolus, each electrode was classified into one of the three 

groups depending on its modiolar distance: Close, medium, and far. Rigid models did not 

unanimously agree on modiolar distance for approximately 50% of the electrodes tested.  

Conclusions: Inter-model variance of rigid cochlear models exists, demonstrating that 

measurements made using rigid cochlear models are limited in terms of accuracy due to non-rigid 

inter-subject variations in cochlear anatomy. 

2.1 Introduction 

Cochlear implants (CIs) are considered standard treatment for patients who experience 

sensorineural hearing loss. Each CI has an electrode array with a certain number of electrodes, 

between 12 and 22, depending on the type and the manufacturer. The electrode array is surgically 

inserted into the cochlea. Although CIs have been very successful at restoring hearing, restoration 

to normal auditory performance is rare, and some CI recipients may experience poor outcomes. 

Electrode position is one of the factors that has been shown in several studies to affect hearing 

outcomes. However, the intra-cochlear positioning of the electrode array is invisible to the surgeon 

as the array must be blindly threaded into the cochlea through a small opening, and x-ray-based 

imaging modalities have been the only option for intra-operative imaging but are difficult to 

interpret and to implement in the traditional clinical workflow. Different groups have tried to 

estimate the shape of the cochlea and localize intra-cochlear electrode positions using post-

implantation computed-tomography (CT) imaging, which remains the imaging modality best 

suited for postoperative CI imaging. Aschendorff et al.1 used rotational tomography (RT) to 

manually determine whether electrodes were located within the scala tympani (ST) or the scala 

vestibuli (SV). In a later study2, this imaging approach was used to show that hearing outcomes 



 

25  

are correlated with the scalar positioning of the electrode array. Verbist et al.3 presented another 

CT imaging technique to evaluate electrode scalar position. Recently, Boyer et al.4 presented 

another technique using cone-beam CT to study the scalar positioning of electrode arrays. 

However, manually determining intra-cochlear electrode location using images alone is arduous. 

Further, while these methods may be accurate enough to detect correlations of gross differences in 

electrode positioning with hearing outcomes with a large enough dataset, they are prone to error. 

This is because it is not possible in CT to directly visualize fine scale intra-cochlear structures, 

such as the modiolar wall (the inner wall of the cochlea) or the basilar membrane and the bone that 

separate the ST from the SV, because of the lack of adequate resolution of the CT.  

Magnetic resonance imaging (MRI) is another modality that has great potential for imaging 

the cochlea. It is the only modality that can directly visualize the ST and SV5. However, it is not 

possible to use MRI for post-implantation imaging because the electrodes within the cochlea 

corrupt the MRI signal in the region around the cochlea. In addition, only certain types of MRI are 

considered safe for cochlear implant recipients. Neri et al.6 developed a technique in which 

postoperative CT images were registered to 1.5 T preoperative MRI images to assess electrode 

location within the membranous labyrinth. Even though this method allows visualization of certain 

intra-cochlear structures, the ST and SV were non-differentiable on MRI images. It is important 

to note that with current MRI technology achieving the high signal quality and CT-like resolution 

necessary to accurately image ST and SV requires hours of scan time and the use of high field 

scanners not yet approved for clinical use, making use of MRI for large scale analysis of patient 

cochleae not yet a viable option. However, with future improvements to MRI technology it may 

become possible to fuse an MRI for pre-implantation imaging of the cochlea anatomy and a CT 
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for post-implantation localization of the CI electrodes to accurately quantify intra-cochlear 

electrode position.  

Another approach is to create a model of intra-cochlear anatomy that can be registered to 

a patient CT image to define the location of the basilar membrane, modiolus, and other intra-

cochlear structures, which are not directly visible in the images. This was the approach of Skinner 

et al.7, who created a rigid model of cochlear anatomy using a high-resolution multi-section 

histological image of a single cochlear specimen where the fine structures of the cochlea can be 

visualized. Using a spatially aligned CT volume, this model could be rigidly registered to new 

patient CT images to estimate the position of the electrodes relative to the model-estimated 

position of the basilar membrane and other fine intra-cochlear structures. This model has been 

used in several studies to investigate the relationship between electrode position and hearing 

outcomes. In Skinner et al.7 and Finley et al.8, it was found that scalar location of the electrode 

array is correlated with hearing outcomes. Later in Holden et al.9, it was found that in addition to 

scalar location, the distance of the electrode array to the modiolus is another factor that is predictive 

of outcomes. Depth of insertion into the cochlea is another factor that has been studied, but results 

are conflicting with some studies showing better outcomes are associated with deeper10,11 or 

shallower8,9 insertions. Thus, even with a model based approach, some factors such as distance to 

the modiolus have been little studied, and others such as depth of insertion led to conflicting 

findings. One potential reason for this is that using a single model that is rigidly registered to 

patient images does not provide an accurate enough estimation of the position of intra-cochlear 

anatomy. Indeed, this approach does not permit to take into account normal non-rigid inter-subject 

anatomical variations and thus leads to error when localizing anatomic structures. For example, 

consider using a square model to approximate a circle. Even with optimal rotation and translation 
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of the model, it never perfectly matches the circle in shape. Recent studies have shown that 

individual human cochleae differ not only in size but also in morphology12–15. Studying 73 ears, 

Erixon et al.12 found large variations in cochlea dimensions, concluding that each cochlea was 

uniquely shaped. Avci et al.13 also observed large variability across different measurements of 

cochlea, including height, width, length, and number of cochlear turns. Non-rigid variations, from 

the simplest variation of overall cochlea size to more complex variations such as changing 

proportions of specific areas (e.g., a deeper basal turn or a more horizontally positioned round 

window), cannot be captured by rotating or translating one geometric model to fit another and thus 

cannot be accounted for by rigid models.  

A cochlear model that captures non-rigid variations in anatomy and that can be 

automatically and accurately aligned with new patient CT images has been proposed and 

developed by Noble et al.16, and the authors have begun to use it to assess electrode placement and 

its effect on outcomes17,18. Consider the analogy of matching a square model to a circle above. 

With non-rigid transformation of the model, the square model can be warped to match the shape 

of the circle. Similarly, non-rigid models of the cochlea have the advantage of being able to be 

warped to more accurately match the shape of the target anatomy. When the non-rigid cochlea 

model was introduced by Noble et al.16, it was shown that it more accurately estimates the position 

of intra-cochlear structures than a rigid model; however, the effect that the anatomy localization 

method, i.e., rigid versus non-rigid, has on the accuracy of electrode position measurements has 

not been quantified. In this study, we propose an approach to quantify the accuracy of 

measurements of intra-cochlear electrode positions when using rigid cochlear models. In future 

work, we plan to design a study to quantify measurement accuracy with non-rigid models which 

will require expanding our dataset as will be discussed in the conclusions section.  
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Another application of interest for which selection of an accurate cochlear model is 

important is image-guided CI programming (IGCIP)19. After CI surgery, each CI is programmed 

by an audiologist to attempt to optimize hearing performance. These programming sessions 

include deciding which electrodes will be activated, and assigning stimulation levels as well as 

sound frequency bands. With the intra-cochlear position of the electrodes unknown, audiologists 

have little quantitative information they can use to guide programming. Thus, they have to depend 

on the feedback that the patients provide to try to optimize the settings. However, the adjustment 

process often converges to suboptimal settings, and it requires several programming sessions over 

the course of many years. In IGCIP, the goal is to accurately identify the intra-cochlear location of 

the CI electrodes and to use that information to assist the audiologist in selecting better patient-

customized programming settings. Previous studies have shown that this approach leads to 

significant improvement in hearing outcomes20,21. Since IGCIP depends on accurate localization 

of intra-cochlear electrode position for each patient, choosing an appropriate cochlear model is 

crucial. 

2.2 Methods 

We use a dataset of pre- and post-implantation CTs of 98 CI ears from 93 patients to quantify the 

accuracy of measurements of intra-cochlear electrode positions when using rigid cochlear models. 

Our approach is to 1) fit individual rigid models of cochlear anatomy we have created from seven 

different cochleae to each of the CI ears; 2) evaluate intra-cochlear electrode position in each ear 

relative to each of the seven models; and 3) quantify the errors because of non-rigid variations in 

cochlear anatomy as the differences in resulting measurement of electrode position across the 

seven different models. Our approach is described in detail in the following sections. 
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2.2.1. Dataset 

Our model construction dataset consists of seven µCTs of cochlea specimens in which the ST, SV, 

and modiolus were manually segmented to create seven different rigid cochlea models. µCTs 

rather than CTs must be used because intra-cochlear structures are not visible in CT images as 

discussed in the introduction section. Figure 2.1 shows a cropped µCT image where ST, SV, and 

modiolus are represented with blue, yellow, and red contours, respectively.  

 

 

Figure 2.1. Two different view of a cropped µCT image where scala tympani (ST), scala vestibuli (SV), and modiolus 
are represented with light blue, yellow, and red contours, respectively. 

 

Our testing dataset consists of pre- and post-implantation CTs for 98 ears of 93 CI patients. 

CT images were obtained with various scanners and parameters and had voxel size ranging from 

approximately 0.2x0.2x0.3mm3 to 0.4x0.4x0.4mm3. As a pre-processing step, we have 

implemented the approach of Noble et al.16 to localize the ST, SV, and modiolus in the pre-

implantation CT. We then localized the electrodes in the post-implantation CT22–25, and rigidly 

registered the two CTs to bring the two datasets into alignment. Localizing the ST, SV, and 

modiolus in the preimplantation CTs facilitates an automatic approach for fitting each of the seven 

rigid models to the dataset as will be described below. Each pre-localization was visually inspected 
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in the preimplantation CT by an experienced Otolaryngologist, although it is not necessary for our 

pre-localizations to be extremely accurate for the analyses we describe below. 

 

2.2.2. Model fitting 

The seven rigid models represent the ST, SV, and modiolus as surfaces composed of a set of over 

3,000 points distributed uniformly over the surfaces of these structures. Each of these points 

corresponds to a specific anatomical site that was semi automatically determined when the active-

shape model of the cochlea was created16.  

 

 

Figure 2.2. Rigidly model fitting result. Scala tympani (ST—red) and modiolus (blue) are the surfaces in the 
preimplantation CTs, and ST (green) and modiolus (yellow) belong to one of the rigid models. 

 

Thus, the rigid models were created such that point correspondences exist not only across the 

models but also with the pre-localizations of the ST, SV, and modiolus in the testing dataset of 98 

CI cases. Using these point correspondences, we automatically rigidly registered the seven models 

to each patient using well known point-based registration techniques26. All of the points that make 

up the ST, SV, and modiolus surfaces were used in the point-based registration.  This method finds 
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the translation and the rotation that will be applied to a set of points to spatially align them with 

another set of points while minimizing the sum of squared errors between the point sets. As it is 

an error minimizing method, it is more accurate than manual registration done based on visual 

observation. Point-based registration also has the advantage that it guarantees a solution that 

globally minimizes the surface error, as opposed to techniques such as image-based registration, 

where the image intensity-based error minimizing procedure could fall into a local minima and 

cause alignment errors. By using our point registration approach in which the models are registered 

to a reference in an unbiased way, we minimize the possibility that the differences we measure in 

relative electrode position across models are because of model alignment errors. Figures 2.2 and 

2.3 show an example result of this process. 

 

 
 
Figure 2.3. Segmentation of anatomical structures using seven different rigid models are represented with seven 
different colors. Scala tympani (ST) on the left, scala vestibuli (SV) in the middle, and modiolus on the right. 

 

2.2.3. Relative electrode position 

In order to measure the relative position of the electrodes with respect to the basilar membrane, 

we first use the ST and SV to define a “basilar membrane curve,” or BMC for short, which is a 

curve that lies along the length of the cochlea on the basilar membrane, between the ST and the 

SV, and located midway between the modiolus and the lateral wall of the cochlea. The BMC is 

shown in white on Figure 2.4 where the ST and the SV are shown as blue and green 3D meshes, 
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respectively.  

 

 

Figure 2.4. The basilar membrane curve (BMC) that separates scala tympani (ST) and scala vestibuli (SV) is shown 
in white. ST and SV are shown as blue and green 3-D meshes, respectively. 

 

At each point c along the BMC, a vector, m, that points from c towards the mid-modiolar axis can 

be found. Next, a vector s, which is perpendicular to both m and the tangent of the BMC at c can 

be found. The mid-modiolar axis and the m and s vectors found along the length of the BMC for 

one case are shown in Figure 2.5 in red, light blue, and yellow, respectively.  

 

 

Figure 2.5. Scala tympani (ST) is shown as the blue 3-D mesh. Midmodiolar axis, m and s vectors are in red, light 
blue, and yellow, respectively. 
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Using the BMC and these vectors, we can measure the intra-cochlear location of each electrode. 

For each electrode, first, the closest point p along the BMC is found. Then, the depth of insertion 

of the electrode can be found by measuring the geodesic distance, i.e., the distance along the BMC 

between p and the round window (RW). The geodesic distance is calculated as the sum of 

Euclidian distances of each line segment that defines the BMC between RW and p. Next, the 

modiolar distance of the electrode is found by measuring the distance to the electrode along the 

vector m associated with BMC point p. Finally, the scalar location of the electrode relative to the 

basilar membrane is found by measuring the position of the electrode along the s vector associated 

with BMC point p. Because p lies on the basilar membrane and s is defined to be normal to the 

basilar membrane, electrodes that are found to be in the positive s direction relative to p are located 

in the ST, and those that are found to be in the negative s direction are located in the SV.  

 

2.2.4. Cochlear duct length at 2 turns 

The cochlear duct length (CDL) is another quantity of interest for CI as its measurement has been 

proposed as an approach for pre-operative patient-specific selection of the electrode array. 

Measurement of CDL using a rigid model would not be useful because it would be measured 

identically for each patient. However, herein we report the standard deviation of the length of the 

cochlear duct at a depth of two turns across rigid models as an indicator for inter-subject variations 

in CDL.  

2.3. Results 

Standard deviation across rigid models in measures of electrode location relative to the basilar 

membrane was 0.11 mm. We also counted the number of times the rigid models were in unanimous 
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agreement about the scala in which each electrode was located. Out of 1834 electrodes, the models 

were in agreement for 1348 electrodes being in ST and 133 electrodes being in SV. The models 

did not unanimously agree for 353 electrodes.  

Standard deviation across rigid models in measures of distance to the modiolus was 0.15 

mm. Electrodes found to sit more than 0.3 mm from the BMC towards the modiolus were 

considered to be close to the modiolus and labelled as group I electrodes. Those found to sit more 

than 0.3 mm from the BMC towards the lateral wall of the cochlea were considered far from the 

modiolus and labelled as group III electrodes. All other electrodes were considered as sitting a 

medium distance to the modiolus and labelled as group II electrodes. We found that out of 1834 

electrodes, the rigid models unanimously agreed on 326 electrodes as belonging to group I, 169 as 

belonging to group II, and 426 as belonging to group III. The models did not agree on the remaining 

913 electrodes.  

Average standard deviation across rigid models in measurement of electrode depth within 

the cochlea was found to be 0.68 mm. We found the standard deviation in CDL across rigid models 

to be 1.54mm. 

2.4. Conclusions 

The primary aim of this study was to quantify the performance of rigid models in measuring intra-

cochlear electrode position. Quantifying intra-cochlear position of CI electrodes is important for 

studying the relationship between electrode position and hearing outcomes. It is also important for 

image-guided cochlear implant programming techniques that rely on measurements of electrode 

positions to determine patient-customized programming settings. Rigid models are commonly 

used for measuring intra-cochlear electrode position, but the accuracy of electrode position 
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measurements when using a rigid model has not been widely studied. Rigid models of anatomy 

are limiting because they are aligned by simple rotation and translation and assume identical size 

and proportions of the cochlea exist between patients. This approach is effective if the assumptions 

are met but fails when there are substantial inter-patient differences.  

In this study, we compared measurements of intra-cochlear electrode position on 93 

subjects when using 7 different rigid models. Standard deviations of electrode position measures 

across rigid models are relatively high, leading to potentially different findings about the scalar 

position of electrodes and their proximity to the modiolus depending on which rigid model is used. 

The rigid models disagreed on scalar position for 19% of the electrodes in our dataset and on 

modiolar proximity for 50% of the electrodes. The error minimizing approach we used to align the 

rigid models ensures that we have minimized the likelihood that the disagreements we observe in 

measurements of electrode position are due to misalignment of the rigid models. These results 

motivate the use of non-rigid models of cochlear anatomy, such as that proposed by Noble et al.16, 

when measuring intra-cochlear electrode position as they have been shown to be more accurate 

than rigid ones. It was not possible in this study to similarly analyze variability in non-rigid models 

because it was not possible to create multiple unique non-rigid models to compare to each other. 

However, in future work, we plan to collect µCTs of a large number of implanted cochlea 

specimens which will facilitate more direct measurement of errors in electrode positioning using 

both rigid and non-rigid models. 
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Abstract 

Hypothesis: Cochlear duct length (CDL) can be automatically measured for custom selection of 

cochlear implant (CI) electrode arrays.  

Background: CI electrode array selection can be influenced by measuring the CDL, which is 

estimated based on the length of the line that connects the round window and the lateral wall of 

the cochlea when passing through the modiolus. CDL measurement remains time consuming and 

inter-observer variability has not been studied. 

Methods: We evaluate an automatic approach to directly measure the two-turn (2T) CDL using 

existing algorithms for localizing cochlear anatomy in computed tomography (CT). Pre-op CT 

images of 309 ears were evaluated. Two fellowship-trained neurotologists manually and 

independently measured CDL. Inter-observer variability between measurements across experts 

and automatic observers is assessed. Inter-observer differences for choice of electrode type are 

also investigated.  



 

40  

Results: Manual measurement of CDL by experts tends to underestimate cochlea size and has 

high inter-observer variability, with mean absolute differences between expert CDL estimations 

of 1.15 mm. Our results show that this can lead to a large number of cochleae for which a different 

electrode array type would be selected by different observers. 

Conclusion: Choosing the best CI electrode array is an important task for optimizing hearing 

outcomes. Manual cochleae length measurements are user-dependent, and errors impact upon the 

CI electrode array choice for certain patients. Measuring cochlea length automatically is less time 

consuming and generates more repeatable results. Our automatic approach could make use of CDL 

for patient-customized treatment more clinically adoptable. 

3.1 Introduction 

The human cochlea and cochlear duct, defined as the length of the scala media, are fully formed 

at birth. In 1938, Hardy first reported the histologic measurements of the cochlear duct length 

(CDL) in 68 cadaveric specimens via graphic reconstructions of serial sections, measuring from 

the middle of the round window to the helicotrema1. Since the advent of cochlear implantation, 

multiple studies have assessed the role of using the CDL to determine the appropriate electrode 

length for implantation. This is particularly important as the length of the cochlea can vary between 

25 – 45 mm in patients2–12. 

Several studies have demonstrated that greater angular insertion depths result in improved 

speech perception performance13–16. Since the angular depth of insertion is dependent upon CDL 

and the length of the implanted electrode, the variability in CDL and electrode options can 

influence speech perception performance. In addition, as evidence suggests atraumatic cochlear 

implantation preserves residual hearing and postoperative performance, knowing the correct CDL 
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is of paramount importance to ensure trauma caused by over-insertion (e.g. scalar translocation) is 

avoided. 

Recently, building on the work of Hardy1 and others8, Alexiades et al. described a 

simplified formula to calculate CDL at a given angular depth using computerized tomography 

(CT) and by measuring the distance from the middle of the round window (RW) to the farthest 

point on the opposite wall of the cochlea, denoted A17. However, this method remains time 

consuming and operator dependent, and intra- or inter-observer variability in measurements have 

not been studied. 

Thus, herein we have developed an automatic method to measure both A and CDL at a 

given angular depth using an active-shape-model-based, automatic cochlea segmentation 

technique18. In the current work, we assess the inter-observer variability by computing differences 

between measurements of A across expert observers. We also compare expert measurements to 

automatic measurements of A, and investigate the sensitivity of the choice of electrode type to the 

choice of CDL measurement method by counting how often the choice of electrode would differ 

when different expert or automatic measures are used to estimate CDL.  

3.2 Methods 

After Institutional Review Board approval, we retrospectively reviewed a CT imaging database to 

identify 275 pre-operative CT scans that were available for review for adult patients who 

underwent cochlear implantation. As described in the following sub-sections, CDL was measured 

in each of these CTs using manual and automatic measurement methods. 
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3.2.1. Cochlear duct length from A 

Previous literature has shown that A, the length of the line from the center of the round window 

(RW) through the modiolus to the farthest point on the lateral wall of the basal turn of the cochlea, 

can be used to calculate the length of the cochlear duct along the outer wall of the cochlea from 

the center of the RW to a specified angular depth19. The formula is defined as follows: 

                                             CDL(𝐴, 𝜃) = 2.62	𝐴		log1	(1.0 +
5

678°
)                              (3.1)  

where 𝜃 is the angular depth within the cochlea at which we want to estimate the CDL. The angular 

depth of a point in the cochlea is defined as proposed by Verbist et al20. It is measured using the 

position of the mid-modiolar axis and the center of the round window membrane, as shown in 

Figure 3.1, which are found automatically using the automatic image processing methods 

described below.  

 

 

Figure 3.1. Explanation of angular depth. Scala tympani is shown in red and mid-modiolar axis is shown in black. 
Round window (RW) is marked with 0 degree. 

 

The middle of the round window membrane defines the 0° depth, and the angular depth of a point 

is measured as its angle around the mid-modiolar axis along the length of the cochlea spiral relative 
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to the round window reference angle. 0° to 360° corresponds to the first turn of the cochlea, 360° 

to 720° corresponds to the second turn, etc. The angular depth where the cochlear duct ends is 

approximately 2.5 turns but this varies across subjects. Since advancement of the arrays past 2 

turns (2T) is rare, and estimation of CDL at 2T is more reliable than that of the full CDL17, in this 

work we choose to estimate CDL at 2T rather than the full CDL. Measuring CDL along the outer 

wall of the cochlea to a depth of 2T implies 𝜃 = 720°, and thus Equation 3.1 simplifies to 2.62A 

loge(1.0 + :6;
678

) = 3.67A. Further, Alexiades et al. showed that Equation 3.1 could be modified to 

calculate the length an electrode array with average diameter d would need to have to reach a 

specified depth as17:  

                                          E(𝐴, 𝜃, 𝑑) = 2.62	(𝐴 − 𝑑)		log1	(1.0 +
5

678°
)	                           (3.2) 

 

3.2.2. Manual Measurement of A 

Manual measurement of patient-specific A values was done using a software package developed 

in-house that allows for rotation of the CT volume to create oblique axial, coronal, and sagittal 

reconstructions as well as 3D views and permits selecting the RW and lateral wall points. Two 

fellowship-trained neurotologists independently reviewed each patient’s imaging study, 

identifying the RW and the farthest point on the opposite wall of the cochlea for which a straight 

line could be drawn through the modiolus. The manually measured A values were denoted as AS1 

for surgeon 1 and AS2 for surgeon 2. An example result of this process is shown in Figure 3.2. 

Using Equation 3.1 with 𝜃 = 720°, the CDL along the outer wall at 2T can be computed for both 

AS1 and AS2, and these quantities are denoted as CDLS1 and CDLS2, respectively. 
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Figure 3.2. Example of manual selection of A. 
 
 
 
3.2.3. Automatic measurement of A 

Automatic segmentation of the cochlea was achieved by implementing the model fitting-based 

approach described by Noble et al., which was shown to localize highly accurate surface models 

of cochlear anatomy in patient CTs18,21. This method permits accurately identifying anatomical 

sites anywhere on the surface of the cochlea. Thus, we used this approach to automatically identify 

a point on the middle of the RW and another point on the lateral wall of the first turn of the cochlea 

that is farthest from the RW. We then computed the distance between these two points for each 

patient. The automatically measured A values were denoted as AAuto. All automatic cochlea 

segmentations were visually inspected in the patient CT image and confirmed to be accurate. Using 

Equation 3.1, the corresponding CDL at 2T can be computed for AAuto as CDLA-Auto. 

 

3.2.4. Automatic direct measurement of CDL at 2T 

In addition to computing the CDL at 2T automatically as CDLA-Auto by using Equation 3.1 with 

AAuto, we can also use the automatic segmentation method to directly measure the CDL at 2T. 

Points along the outer wall of the cochlea along the CD were identified in the cochlea model to 

form the model CD curve. These points were automatically mapped to each patient CT using the 
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model22. Then for each patient, we directly measure the outer wall CDL at 2T, CDLDirect-Auto, by 

computing the length of the CDL curve defined by the model from RW to an angular depth of 2T. 

 

3.2.5. Effect of CDL measurement approach on selection of array type 

While many factors go into the decision about what electrode array is most suitable for a patient, 

we investigated whether the choice of CDL measurement could affect selection of the electrode 

array when only CDL is considered. To do this, we assessed how often CDL measurement would 

result in a different choice of electrode array between two array types, the Med-El (Innsbruck, 

Austria) 𝐹𝑙𝑒𝑥24EF (Array 1) and 𝐹𝑙𝑒𝑥28EF (Array 2). Array 1 and Array 2 both have 12 

electrodes and average diameter of approximately 0.6 mm, and lengths of 24 and 28 mm, 

respectively. With lateral wall arrays, studies have shown a trend of deeper implantation being 

associated with better outcomes, suggesting that in general longer arrays are better, although 

several additional factors should be considered when selecting the electrode array. A smaller CDL 

warrants a shorter electrode to ensure the base of the array can be fully inserted and all basal 

electrodes are available for stimulation. Basal contacts that are too shallow and lie either near the 

entrance of the cochlea or outside the cochlea typically provide ineffective stimulation due to lack 

of access to neural populations. Such contacts are sometimes deactivated during cochlear implant 

(CI) programming but often are left at default values due to adequate volume perception potentially 

leading to sub-optimal hearing outcomes by interfering with other electrodes. On the other hand, 

a larger CDL warrants a longer electrode to ensure the tip of the array can reach apical stimulation 

sites which has also been shown to be important in maximizing audiological outcomes16. Given 

that there has been little evidence on what electrode depth is best for optimal hearing outcomes, 

the specific threshold value of A (thresh-A) used to decide between Array 1 and Array 2 is a matter 
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of surgeon preference. Thus, in this work, we aim to show how often the choice of array would 

differ over a range of choices of thresh-A across different techniques for measuring cochlea size 

when only cochlea size is used to make this decision. We tested the range of values of thresh-A 

from 8 mm (CDL at 2T = 29.54 mm) to 10.25 mm (CDL at 2T = 37.66 mm) as this matches the 

range of A values in our dataset. The different measures of cochlea size described in the previous 

sub-sections, CDLS1, CDLS2, CDLA-Auto, and CDLDirect-Auto were each used to estimate A for each 

case. Then, for each value of thresh-A, we counted how many times the different measures of 

cochlea size would lead to a different choice in the array that is selected.  

 

3.2.6. Statistical analysis 

Continuous features were described with means, ranges, and standard deviations. Analysis of 

variance (ANOVA) with post-hoc comparison analysis was performed to compare means. Inter-

observer variability in measurement of cochlea size were assessed with mean differences, mean 

absolute differences, and maximum absolute differences. Fisher’s exact tests were used to 

determine if measurement techniques influenced appropriate electrode selection. p-values less than 

0.05 were considered statistically significant. 

3.3 Results 

The mean, range, and standard deviations for length A for AAuto, AS1 and AS2 are shown in Table 

3.1. A one-way repeated measures ANOVA revealed significant differences between the three 

different measurement means for the 309 ears (p < 0.001).  

 Post-hoc analyses were conducted in order to assess the significant difference between each 

of the measurements. The three paired t-tests revealed that the means were significantly different 
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(p<0.001) between each pair of measurements. 

 

Table 3.1. Maximum, minimum, mean, and standard deviation across automatically and manually measured A values. 
AAuto indicates automatically measured A values; AS1, surgeon 1; AS2, surgeon 2. 

 Maximum 
(mm) 

Minimum 
(mm) 

Mean ± standard deviation 
(mm) 

 
 

AAuto 10.25 8.04 9.22 ± 0.44 
AS1 11.56 7.58 8.91 ± 0.49 
AS2 10.99 7.97 9.00 ± 0.46 

 
 
 
The mean difference, mean absolute difference, and the maximum absolute difference between the 

manual measurements AS1 and AS2 were, 0.06 mm, 0.18 mm, and 2.18 mm, respectively. The same 

measurements between AAuto and AS1 were 0.18 mm, 0.25 mm, and 1.92 mm, and between AAuto 

and AS2 were 0.12 mm, 0.18 mm, and 1.92 mm, respectively.  

 

 

Figure 3.3. Boxplots of the automatically measured and the estimated CDL. CDL indicates cochlear duct length. 
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The mean and standard deviations for CDLS1, CDLS2, CDLA-Auto, and CDLDirect-Auto were 

32.71 ± 1.80, 33.07 ± 1.69, 33.87 ± 1.61, and 34.14 ± 1.75 mm, respectively. A box plot of these 

measurements is displayed in Figure 3.3 where each of the box-plot represents a different 

measurement. In each boxplot, the box represents the inter-quartile range, the black line is the 

median, values that fall 1.5 times the interquartile range above the third quartile or below the first 

quartile are considered outliers and shown as circles, and the “whiskers” at the bottom and at the 

top represent the minimum and the maximum values excluding the outliers, respectively. 

Comparing the means, an ANOVA test revealed a significant difference between the four 

measurement means (p < 0.001). Post-hoc analyses were conducted.  

 

 

Figure 3.4. Boxplots of the difference between all of the four different cochlear duct length (CDL) values. 
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The paired t-tests between the six combinations of measures showed that each pair of 

measurements were significantly different (p < 0.001). Figure 3.3 illustrates that manually 

measuring A tends to underestimate A in comparison to automated techniques, resulting in an 

underestimation of the CDL. A comparison between different CDL measurements is shown in 

Figure 3.4 where each boxplot represents the absolute values of the differences between various 

CDL measurements.  

 

 

Figure 3.5. Panels in the left column show the number of times the selected electrode arrays differed among 
measurement methods for different values of thresh-A. Right columns show histograms of cochlea size across subjects 
using each measurement technique. 
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In the left column of Figure 3.5, each panel corresponds to one measurement technique and shows 

the number of ears for which a different electrode array would be selected when using each other 

measurement method to measure A across the range of values of thresh-A.  In the right column of 

Figure 3.5, a histogram of cochlea size across subjects is shown as measured using each of the 

measurement techniques. Equation 3.1 was used to map values between CDL at 2T and A. It is 

clear from the two upper plots in the left column that using CDLDirect-Auto or CDLA-Auto 

measurements resulted approximately in the same electrode array type selections, with the biggest 

difference of 38 ears out of 309 occurring at a thresh-A of 9.74 mm. Automated techniques to 

measure length A and CDL did not lead to significant differences in the selected electrode array 

type for any value of thresh-A smaller than 9.5 mm (p > 0.68). Manual measurements by the first 

and second surgeon, on the other hand, led to a larger number of differences in the selected 

electrode array type between each other and the automated measures, as observed in Figure 3.5. 

The selections by the first surgeon were significantly different than the selections by the CDLDirect-

Auto for all values of thresh-A smaller than 10 mm (p < 0.015). When comparing selections based 

on measurements done by the second surgeon with those by CDLDirect_Auto, Fisher’s exact test 

revealed statistically significant differences between these two selections for thresh-A greater than 

8.34 and smaller than 9.84 mm (p < 0.02).  

3.4 Discussion 

Several studies have documented a correlation between the angular depth of insertion and speech 

performance outcomes following cochlear implantation13-16. The angular depth of insertion is 

dependent on CDL and length of the electrode array12-17. Choosing the appropriate length CI 

electrode array could ensure the desired angular depth of insertion, which in turn can improve 
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postoperative hearing outcomes. The importance of the relationship between CDL and electrode 

length deals with cochlear coverage. An ideal electrode covers the entire frequency spectrum of 

the cochlea. Electrodes that are too short fail to reach the apical cochlea, possibly leading to poorer 

patient outcomes. On the other hand, electrodes that are too long may lead to cochlear trauma, 

leading to poorer patient outcomes; or under-insertion at the basal end, leading to a loss of coverage 

of the high-frequency spectrum also leading to poorer outcomes. Thus, an ideal fit between the 

electrode and the CDL is desired. Given these findings, determining the CDL and selecting the 

most appropriately sized electrode is important in maximizing patient benefit. Nonetheless, while 

several studies have described techniques in determining CDL, these techniques remain 

burdensome and time consuming with unknown intra-and inter-observer variability. Thus, we 

developed an automatic method measuring both length A and 2T CDL using an automatic model-

based segmentation technique and compared it to previous reported techniques. 

The results presented herein will permit weighing the importance of choice of measurement 

method when using cochlear size to choose between different array lengths for a specific subject 

and choice of thresh-A. Our long-term goal is to develop a system to assist with patient-customized 

selection of electrode arrays using comprehensive information including but not limited to the 

patient’s CDL. In ongoing investigation, preliminary results indicate that a reasonable choice for 

thresh-A would be 8.5 mm. To arrive at this value, we have reviewed post-implantation CTs of 10 

subjects in our CT imaging database who were implanted by multiple surgeons and with Array 2. 

We found that the base of the array was not fully inserted in 7 cases, leaving the most basal 

contact(s) ineffective. Further advancement of the array was not done due to the perception of 

resistance to avoid the risk of trauma. We speculate that deeper angular depths increase the 

likelihood resistance is encountered due to the increased redirection of forces necessary to advance 
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the array as the coiling of the array increases (i.e. additive frictional forces as more of the electrode 

array abuts against intra-cochlear anatomy).  

 

 
 
Figure 3.6. Angular Insertion depth measurements in relation to CNC word scores for 16 subjects 

 

The average depth of the apical electrode across these 10 cases was 560°, thus we assume 

this is the angular depth at which resistance is encountered for the average cochlea. To establish a 

minimum target insertion depth, we further examined insertion depth in relation to CNC word 

scores for 16 subjects including the 10 subjects implanted with Array 2 mentioned above as well 

as other subjects implanted with long electrodes from the same manufacturer. These data are 

shown in Figure 3.6. As seen in the red curve in the figure, the trend is that increasing angular 

depth is associated with better CNC scores, however that trend appears to plateau once the insertion 

depth passes 450 degrees, suggesting that this insertion depth is deep enough to expect maximal 

outcomes. Thus, our strategy would be to choose thresh-A such that the array we select is long 

enough to at least reach a 450 degree depth at full insertion and is short enough to permit having 

all basal electrodes inserted into the cochlea when the tip insertion depth reaches 560 degrees. At 

thresh-A = 8.5 mm, Equation 3.2 predicts the length of the intra-cochlear path of Array 2 to reach 
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560° depth to be 25 mm for cochleae of that size. For the reader’s reference, angular insertion 

depths predicted by Equation 3.2 for Array 1 and Array 2 for cochleae of different sizes are shown 

in Figure 3.7 for “full-insertion,” where the depth marker on the array reaches the RW, as well as 

for an insertion where the 12th electrode is located at RW, denoted as “under-insertion.” The 

lengths of the electrode arrays between the tip and the 12th electrode are approximately 21 mm and 

24 mm, for Array 1 and Array 2, respectively. Thus, insertion depth for a full-insertion Array 1 

and for an under-insertion Array 2 is the same, as shown in the figure. Since Array 2 is 28 mm in 

length with contacts distributed on the apical 24 mm of that length, it is likely that the array will 

be under-inserted at the base for cochleae that are smaller than A=8.5mm. For smaller cochlea, it 

is reasonable to consider Array 1 instead. At full-insertion, Array 1 would be predicted to reach 

515°, which is deep enough that we would not expect a detriment to outcomes due to lack of 

insertion depth. For cochleae with A greater than 8.5 mm, Array 2 would be the preferred choice 

to ensure greater insertion depths can be reached. From Figure 3.5, it can be seen that Array 2 

would be selected in 291/309 cases when using CDLA-Auto, and it can be seen that the choice of 

array would differ in 53 and 30 of the 309 cases when using CDLS1 and CDLS2. For cochleostomy 

(C) insertion on the other hand, thresh-A = 9 mm (CDL at 2T = 33.1 mm) could be used as the 

intra-cochlear path of the array will be around 1.5 mm shorter for cochleostomy insertions, and 

thus the thresh-A value needs to be appropriately adjusted. With thresh-A = 9 mm, Figure 3.5 

shows that Array 2 would be selected in 211/309 cases when using CDLA-Auto, and it can be seen 

that the choice of array would differ in 115 and 80 of the 309 cases when using CDLS1 and CDLS2. 

Future temporal bone studies would be necessary to assess the effectiveness of these choices for 

thresh-A.  

While Escude et al. described the length of the cochlear lateral wall based on the length 
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A19, we noted significant inter-observer variability between manual measurements conducted by 

fellowship trained neurotologists. When we automated the measurement, we noted further 

significant differences between all three measurements. Rather than continuing to measure an 

indirect metric of CDL, we automatically segmented CDL and measured its length directly. There 

were significant differences between the automatic CDL measure and the calculated CDLs 

utilizing the manual A measurements. Ignoring all other factors that influence electrode selection, 

we found that the significant difference in CDL measurement techniques might lead to different 

clinical decisions across the range of possible choices for thresh-A. 

 

 
Figure 3.7. Angular insertion depths for Array 1 and Array 2 when fully and under-inserted across the range of cochlea 
size. 

 

Figure 3.3 and the histograms in Figure 3.5 illustrates that the surgeons tend to 

underestimate the A value, in turn causing underestimation of CDL. Statistically significant 

differences between surgeons for both approaches can be explained by multiple factors. First, the 
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measurement requires identification of the RW, modiolus, and the opposite lateral wall of the 

cochlea. However, the slice containing all three anatomic landmarks is not available within normal 

coronal, axial or sagittal views, thus requiring specific reformatting; and difficulties in 

reformatting can lead to possible measurement errors. Second, once familiar with the reformatting 

approach, we estimate that it took approximately 90 seconds per ear to identify the appropriate 

angle and measure A. We estimate an even longer process would be necessary in clinical practice 

where less optimized CT analysis programs are available and familiarity with the software is rare.  

Because of the large variability in the measurement of A value and its possible implication 

on the choice of the electrode clinically selected, a more consistent, less time consuming and 

reproducible method to determine CDL would be of high utility. The current study shows that an 

automatically selected A could achieve these desired qualities requiring ~30 seconds processing 

time on a standard PC. In determining CDL, there was no significant difference when using 

CDLDirect-Auto or CDLA-Auto calculations regarding chosen electrode type when thresh-A of less than 

9.5 mm is used. While future studies will be required to better understand the differences between 

the CDLA-Auto and CDLDirect-Auto measurements, the results presented highlight the role an 

automated system may have in selecting electrode array types.  

There were several limitations to our study. First, ideally these measurement techniques 

should be correlated with histopathologic and/or microCT datasets. Second, we recognize that 

multiple factors are considered in determining the appropriate electrode for each patient including 

residual hearing, etiology of hearing loss, and duration of hearing loss to name but a few. Volume 

and cross-sectional area of the scala tympani are other factors that might be important for electrode 

selection, although recent studies have not found volume to be significantly associated with scalar 

translocations16. In this study, those variables were ignored as our aim was to evaluate variability 
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due to choice of CDL measurement technique alone. However, it is likely that volume and cross-

sectional area are correlated with CDL, and this relationship will be investigated in future work.  

3.5. Conclusions 

Choosing the best CI electrode array for a patient is an important task for optimizing hearing 

outcomes. A-values measured manually are user-dependent, and errors in measurement of A 

impact upon the choice of length of CI electrode array for certain patients. Measuring A and CDL 

automatically is less time consuming and generates more repeatable results. Our automatic 

approach could make the use of CDL for patient-customized treatment more clinically adoptable. 
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Abstract 

Cochlear implants (CIs) are considered standard treatment for patients who experience sensory-

based hearing loss. Although these devices have been remarkably successful at restoring hearing, 

it is rare to achieve natural fidelity, and many patients experience poor outcomes. Previous studies 

have shown that outcomes can be improved when optimizing CI processor settings using an 

estimation of the CI’s neural activation patterns found by detecting the distance between the CI 

electrodes and the nerves they stimulate in pre- and post-implantation CT images. We call this 

method Image-Guided CI Programming (IGCIP). More comprehensive electro-anatomical models 

(EAMs) might better estimate neural activation patterns than using a distance-based estimate, 

potentially leading to selecting further optimized CI settings. Our goal in this study is to investigate 

whether μCT-based EAMs can accurately estimate neural stimulation patterns. We propose a 

method to create such customized electro-anatomical models of the electrically stimulated cochlea. 

We compare the accuracy of our patient- specific models to the accuracy of generic models. Our 

results show that the patient-specific models are on average more accurate than the generic models, 

which motivates the use of a patient-specific modeling approach for cochlear implant patients. 
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4.1 Introduction 

Cochlear implants (CIs) are neural prosthetics that are used to treat sensory-based hearing loss. 

Over the last 20 years, they have been one of the most successful implants. CIs use an array of up 

to 22 electrodes to apply electrical stimulation to the inner ear to stimulate auditory nerves and 

permit the sensation of sound. Auditory nerve fibers in the cochlea are tonotopically mapped such 

that activation of nerve fibers that are deeper in the cochlea creates the sensation of lower 

frequency sounds. CIs are designed such that the array of electrodes is placed along the length of 

the cochlea, and each electrode is assumed to stimulate independent nerve populations 

corresponding to independent frequency channels. After a CI has been implanted, the implant 

processor is programmed by an audiologist. This procedure is called mapping, and each program 

is called a MAP. Mapping involves determining program parameters, e.g., which electrodes will 

be activated or deactivated, stimulation levels assigned to each active electrode, sound frequency 

bands assigned to each electrode, etc. The mapping process is one of the elements that has a high 

impact on the effectiveness of the implant. Optimal settings depend on many factors, including the 

location of the electrode array within the cochlea1–3. Since the electrode array is blindly threaded 

into the cochlea, with its location generally unknown, it has been impossible to determine how to 

optimize settings to account for variable intra-cochlear electrode position. Lacking an effective 

objective programming approach, audiologists make changes based entirely on patient feedback. 

As weeks or months of experience with given settings can be required for hearing performance to 

stabilize with a given set of settings, the standard clinical approach can require many programming 

sessions over the course of years and does not result in optimal settings for many patients.  

Our group has recently developed a technique that permits detecting the intra-cochlear 

location of CI electrodes with a high degree of accuracy in post-op CT images2,4–8. Using this 
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approach, our group has developed the first Image-Guided Cochlear Implant Programming 

(IGCIP) strategy4. IGCIP aims to reduce channel interaction artifacts. Channel interaction occurs 

when an electrode stimulates the same populations of nerves that are stimulated by other 

electrodes. With IGCIP, electrodes that cause high levels of channel interaction are detected based 

on their distance to the nerves, and these electrodes are removed from the patient’s map4. A large 

clinical study by our group has shown statistically significant improvement in average outcomes 

when implants are programmed using this approach2.  

While our studies have shown that our IGCIP approach already leads to improved 

outcomes, our current method for detecting channel interaction relies on an indirect estimation of 

each electrode’s neural activation pattern based purely on the distance from the electrodes to the 

neural stimulation sites. This approach may be less accurate than a more comprehensive model of 

electrical stimulation, such as a high-resolution electro-anatomical model (EAM) of the 

electrically stimulated cochlea. Three-dimensional EAMs have been used by several different 

groups in order to investigate the voltage distribution and neural activation within the cochlea9–12. 

Even though these models have been shown to be useful, they lack the capacity to be applied in 

vivo, and patient-specific differences cannot be incorporated. It has been previously shown that 

anatomical shape variations exist13 and likely lead to different neural activation patterns14. For this 

reason, Malherbe et al.15 used CT images to construct patient-specific electrical models of CI users. 

However the model relies on manual point selection as well as approximation of fine scale intra-

cochlear structures. In this study, our aim is to (1) evaluate the use of μCT-based EAMs for our 

application and test EAMs of various resolutions and fields-of-view to evaluate the sensitivity of 

the results to the choice of resolution and scope of the EAM and (2) create patient-specific high 

resolution EAMs using the patient CT image. As opposed to a rough approximation of the fine 
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scale structures as is done in15 we leverage existing segmentation approaches that permit highly 

accurate localization of structures when creating the model. This is important because it has been 

shown in14 that accurate localization is critical to make an accurate model and approximations 

done at CT resolution are inadequate. We also aim to compare accuracy of generic models, which 

are currently the community standard, to patient-specific ones. 

4.2 Methods 

4.2.1. Dataset 

µCT images of 9 cadaveric cochlea specimens were acquired using a ScanCo µCT scanner that 

produces images with voxel size of 0.036 mm isotropic. Conventional CT images of 5 of the 9 

cadaveric cochlea specimens were acquired using a Xoran XCAT scanner with voxel size of 0.3 

mm isotropic. The remaining 4 specimens were used in another study which prevented acquisition 

of conventional images. 

 

4.2.2. Electro-anatomical model creation 

EAMs were designed based on our μCT images in a similar fashion to those designed with 

histological images by Whiten et al.9. An example μCT image is shown in Figure 4.1. The tissue 

was assumed to be electrically linear and the impedances of all the tissue types were assumed to 

be purely resistive. A uniform 3D grid of nodes was defined over the field of view of the μCT 

image. Nodes were assigned tissue resistivity classes, including air, bone, soft tissue, neural tissue, 

and electrolytic fluid. The μCT was used to determine the class of each node. Manual segmentation 

of the modiolus and the scala tympani and vestibuli in the μCT were used to label nodes as neural 

tissue and electrolytic fluid, respectively. Intensity thresholding of the μCT was used to classify 
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the remaining nodes into air, bone, and soft tissue classes. Electrical resistivity values for each 

class were selected as values found by other groups16, with air, bone, neural tissue, soft tissue, and 

electrolytic fluid being assigned resistivity values of ∞, 5000, 300, 300 and 50 Ωcm, respectively.  

 

 

Figure 4.1. µCT image of specimen 5. Red contour represents modiolus with a resistivity of 300 Ωcm, green scala 
tympani, yellow scala vestibuli both with a resistivity of 150 Ωcm. Green arrow points to round window (RW) 
according to which angles are defined. Angles 0, 45, 90 and 225 degrees, are shown with white dashed lines. 

 

Once the resistivity values are assigned, a system of linear equations is created by solving 

Poisson’s Equation for electrostatistics using finite difference method: 

 𝛻 · 𝐽 =  -σ𝛻6𝜙 (4.1) 

where 𝐽 is the current density, σ is the conductivity and 𝜙 is the potential. The current flows 

between the source (an active electrode) and the sink (a ground) which are both located within the 

scope of the μCT image. We adopt the Neumann boundary condition: 

 𝐽 · 𝑛 =  0 (4.2) 

where 𝑛 is the outward normal vector at the model boundary. This condition simply states that 

current flow is confined to the interior of the model. The tissue in our model was assumed to be 

purely resistive. Thus, the amount of current that enters a node is equal to the amount of current 

that leaves the same node, except for the sink and source nodes. Using this notion and the 

585; 

90; 

45; 

0; 
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formulation of Whiten et al9, a current conservation formula for each a node located at i,j,k  can be 

written as: 

 
𝐼P,Q,RST 		+ 𝐼P,Q,RSU + 𝐼P,Q,R

VT + 𝐼P,Q,R
VU + 𝐼P,Q,RWT + 𝐼P,Q,RWU = 	X

+1	𝜇𝐴		𝑛𝑜𝑑𝑒P,Q,R = 𝑠𝑜𝑢𝑟𝑐𝑒
−1	𝜇𝐴	𝑛𝑜𝑑𝑒P,Q,R = 𝑠𝑖𝑛𝑘

0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

   

(4.3) 

where 𝐼P,Q,RST  is the current entering the node at i,j,k   in the x+ direction. The left hand variables 

describe the current flow between a node and one of its 6-connected neighbor nodes. Using Ohm’s 

Law V=IR and the resistance formula, current is defined as: 

 𝐼 = 	
𝜙𝐴𝜎

L  
  

(4.4) 

where I is the current,  𝜙 is the voltage, L is the length, 𝜎 is the conductivity and A is the cross 

section. Given two notes located at 𝑖, 𝑗, 𝑘 and 𝑖 + 1, 𝑗, 𝑘 with dimensions 𝛥𝑥, 𝛥𝑦, and 𝛥𝑧, the 

Equation is 4.4 can be rewritten as: 

 
𝐼ST = 	 i

𝜎P,Q,R. 𝜎Pjk,Q,R
𝜎P,Q,R + 𝜎Pjk,Q,R

l m
𝜙Pjk,Q,R − 𝜙P,Q,R

𝛥𝑥 n 𝛥𝑦𝛥𝑧 
   

(4.5) 

for the current in x+ direction.  A system of linear equations using the formulation 𝐴𝜙o⃗ = 𝑏o⃗  was 

created where 𝐴 is a sparse matrix containing coefficients of the linear sum of currents’ equations, 

𝜙o⃗  are the set of node voltages that are being determined and are concatenated into a vector, and 𝑏o⃗  

is a vector containing the sum of current for each node equation. In order to solve the system 

described above, bi-conjugate gradient method was used17. After solving for the voltage map 𝜙o⃗ , 

the current amplitude passing through each node was calculated using the Equation 4.5 in order to 

estimate neural activation patterns. It is believed that neural activation with cochlear implants is 

directly related to the current density induced by the CI in spiral ganglion cells located in 

Rosenthal’s Canal (RC), which is located in the modiolus along the length of the cochlea18.Thus, 
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we estimate neural activation patterns as the current density in RC estimated by the EAM. The 

position of RC was manually defined in the μCT of each specimen. Figure 4.2 shows an example 

result of this process.  

 

 

Figure 4.2. Scala tympani, scala vestibuli, and modiolus 3-D meshes are shown in blue, yellow, and red, respectively. 
Rosenthal's Canal (RC) is shown with a black line; stimulating electrodes at 90, 180, 270, 360, 450, and 540 degree-
depths with purple squares; and Round Window with the arrow. 

 

To simulate various electrode positions, we place a stimulating electrode at 90, 180, 270, 

360, 450 and 540 degrees along the length of the scala tympani (see Figure 4.2). Angular-depth 

within the cochlea is defined by angle along the cochlea’s spiral with 0° being defined by the 

location of the round window membrane of the cochlea. The cochlea has three turns, and the points 

corresponding to depths less than 360 degrees are located in the first turn of the cochlea. The points 

corresponding to depths larger than 360 degrees are located in the second turn of the cochlea. The 

simulated electrode locations were chosen at these angles because they are representative of the 

typical range of electrode locations with CIs. A node in the internal auditory canal (IAC) was 

defined as the ground as it is thought that nearly all current returning to the CI ground travels 

through the IAC9.  
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4.2.3. EAM sensitivity analysis 

We evaluated the importance of patient-specific design of the EAM by comparing model 

estimations across the EAMs built for each specimen. The sensitivity of the model to different 

anatomical structures is evaluated by comparing the resulting estimated current density profile 

(CDP) along the length of RC (see Figure 4.3) across specimens.  

 

 

Figure 4.3. Resulting current density map (left) and current density profile (CDP—right) of the same specimen for an 
electrode located at 90 degree. 

 

We also evaluated the performance of the model by testing the sensitivity of model 

estimations to design parameters, including field-of-view (FOV) of the mesh, resolution of the 

mesh, and tissue resistivity values. A more limited FOV mesh improves computational efficiency 

but may decrease accuracy. Similarly, coarser resolution of the mesh can improve efficiency but 

may decrease accuracy. Measuring the sensitivity of the model to changes in tissue resistivity will 

help in understanding the limits of the model’s accuracy. To test sensitivity to FOV, EAMs were 

built with FOV at the full μCT FOV and at a limited FOV containing approximately 5 mm of space 

around the cochlea. To test sensitivity to resolution, EAMs were built at the full resolution of the 

μCT 	4.6𝑥10r8𝑚𝑚7 as well as at a resolution downsampled by a factor of 2 at each step in one 
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direction. Further EAMs were constructed with resistivity values halved and doubled for each of 

the electrolytic fluid, nervous tissue, and bone resistivity values. 

 

4.2.4. Creating anatomically customized EAMs from CT images 

 
 

 
Figure 4.4. Method for creating patient-specific (a) and generic models (b). 

 

The overview of the method proposed in this section is shown in Figure 4.4. In order to make an 

anatomically customized EAM with a new patient image, high resolution resistivity maps were 

created from µCT images of ex-vivo specimens and were projected onto the patient image through 

a thin-plate spline (TPS)19 transformation that registers segmentations in the new patient image 

with segmentations in the µCTs. A combined resistivity map is created using a majority voting 

scheme between all of the 9 possible resistivity maps. Using the combined resistivity map and the 

patient's known electrode position, an anatomically customized EAM is created. Patient-specific 

neural activation is then estimated as the CDP along RC (see Figure 4.3), which is where spiral 

ganglion nerve cells activated by the CI are located. We also create what we refer to as a generic 

model to compare to our patient-specific one. A generic model is created for a new patient by 

mapping the patient electrode positions onto the set of high resolution resistivity maps using a TPS 

transformation. Each resistivity map is used to estimate a CDP. Then, the generic CDP is computed 
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by averaging CDPs calculated from all 9 models. We create our generic CDP by averaging the 

results of multiple models, as opposed to using the results from a single model, to avoid biasing 

the results towards the anatomy of a single individual. In this work, we implemented these 

proposed models and evaluated their accuracy using a leave-one-out strategy.   

 

 

Figure 4.5. µCT (left) and CT (right) images of specimen 4, where the scala tympani, scala vestibuli, and modiolus 
meshes are represented with blue, yellow and red contours, respectively. 

 

CT images were automatically segmented using previously published techniques20  to 

localize the position of the electrodes and the anatomical structures that we used to create EAMs, 

including ST, SV, and MO. After automatic segmentation, each CT image was manually aligned 

with its corresponding µCT image in order for the electrodes defined in the µCT image space to 

correspond to the same anatomical location in the CT image space. An example of segmented and 

aligned µCT and CT images of a specimen is shown in Figure 4.5.  Our segmentation algorithm 

prevents us from segmenting SM and RM. While RM is an important structure for natural hearing, 

its width is finer than the resolution of the μCT images so ignoring it does not affect the electrical 

simulations achieved by our model, and thus, segmentation of the RM was not considered critical 

in this study. The 3-D meshes of the anatomical structures are surfaces composed of a set of points, 

and they were created using an active-shape model approach. 
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We warped each individual μCT to match the shape of the cochlea in the CT image and 

combined the tissue segmentations using a voting scheme. To do this, the CT image was non-

linearly registered to each of the high-resolution μCTs using TPS. The TPS formulation presented 

in Equation 4.6 is limited to 2-D, but extension to the 3-D formulation we used in this work is 

straightforward. TPS define a non-rigid transformation that minimizes the bending energy, which 

is given by: 

 𝐼t = u (𝑓SS6
	

wx
+ 2𝑓SV6 + 𝑓VV6 )𝑑𝑥𝑑𝑦   

(4.6) 

where f(x,y) is the mapping function. 

The surface points of the segmented ST, SV, and MO were used as landmarks in the CT 

image. For a one-to-one point correspondence to exist between these surfaces and the manual 

segmentations of the ST, SV, and MO in the μCT images, the active shape model was registered 

to each of the μCT images. This was done in a semi-automated fashion where first, the active shape 

model was fit to the image, then visible errors between the active shape model and the manual 

segmentations were manually corrected using software designed for this purpose, and finally the 

closest points on the manual segmentation surfaces were found. These points were used as the 

landmarks in the μCT images for the TPS transformation. The TPS registration between the low-

resolution CT image and high-resolution μCTs allowed us to create a high-resolution resistivity 

map for each patient. The TPS mapping between two different spaces defined by two 

corresponding landmark point sets (xi, yi) and (𝑥Py, 𝑦Py) has the form: 

 
𝑓(𝑥, 𝑦) = 𝑎; + 𝑎k𝑥 + 𝑎6𝑦 +{𝑤P𝑈(|(𝑥Py, 𝑦Py) − (𝑥, 𝑦)|)

~

P�k

 
  

(4.7) 

where U(r) = r2logr is the radial basis function, a0, a1 and a2 are the affine coefficients, and the wi 
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is the weight vector. The coefficients and the weight vector are determined such that total bending 

energy, e.g. total curvature, is minimized while providing an exact transformation between the two 

sets of landmark points. 

The patient resistivity map was created in the region around the patient’s cochlea and with 

the same resolution as the grids defined on the μCTs. The TPS registrations provided the non-

linear mapping between the patient space and μCT spaces and were used to label each node in a 

new high-resolution patient resistivity map. For each node x in the patient resistivity map, the 

corresponding point y in a μCT can be found using the TPS registration. The tissue class of y was 

then stored as a candidate assignment for the tissue class of x. This procedure was followed for 

each μCT image. Using a leave-one-out strategy, 8 nonlinear mappings were created between a 

CT image of one specimen and the µCT images of the remaining 8 specimens. These nonlinear 

mappings allowed the construction of 8 different high resolution resistivity maps for each CT 

image. The tissue class at each pixel in the final map was chosen by majority vote: 

 
𝐿 = argmax� {(𝑧P = 𝑙)

�

P�k

 
   

(4.8) 

 
where zi is the stored candidate tissue class for the ith resistivity map.  

In addition, the nonlinear mapping was used to localize the RC (see Figure 4.2) in the newly 

constructed resistivity map as RC is not visible in CT images due to lack of adequate resolution. 

Manually segmented RCs in the remaining 8 µCT images were mapped to the CT image, resulting 

in 8 different RC segmentations. The final RC segmentation was generated as the average RC of 

all 8 segmentations. The position of the electrodes for each specimen was determined to be the 

same position defined in the corresponding registered µCT for that specimen. 
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4.2.5. Generic electro-anatomical model 

Using a leave-one-out strategy, electrode locations defined in a target specimen image were 

nonlinearly mapped to the high resolution resistivity maps of the remaining 8 specimens through 

the corresponding TPS transformations. This produced 8 individual models which were executed 

resulting in 8 different CDPs. The final generic CDP was determined as the mean across the 8 

CDPs. This method was used to create a CDP that is representative of an average cochlea. 

 

4.2.6. Evaluation 

While in-vivo CDP measurement would provide the best ground truth, such measurements are not 

possible. Thus, we defined the CDPs calculated from the models created using the target 

specimens' µCT images as the ground truth, and compared them to the CDPs calculated using 

patient-specific and generic models. One potential source of error in creating our models is the 

accuracy of the automatic anatomy segmentations in the target specimen CT image because the 

segmentations serve as landmarks for registration with the resistivity maps. To characterize how 

sensitive our results are to those errors, we also evaluated models constructed using the manual 

anatomy localizations that we have for the target specimen from its corresponding µCT image, 

which provides a baseline for how accurate our models could be given ideal landmark localization. 

4.3 Results 

4.3.1. Patient-specific design 

We evaluated the importance of patient-specific design of the EAM by comparing model 

estimations across the EAMs built for each specimen. The sensitivity of the model to different 

anatomical structures is evaluated by comparing the resulting estimated current density profile 
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(CDP) along the length of RC (see Figure 4.2.) across specimens. To measure difference in model 

predictions across specimens, we compute the coefficient of variation (COV) in the estimated 

CDPs across specimens for identically located simulated electrodes. Since we are interested in 

using the model to estimate the relative differences in CDP between electrodes for a given cochlea, 

a groupwise change in scale of the CDPs among electrodes from one cochlea to another is not as 

important, and a direct comparison of CDP across specimens would not be appropriate. Thus, prior 

to comparing CDP across specimens, for each specimen, the electrode with the maximum total 

current density (mCD) along RC is identified, and the CDPs for all electrodes for that specimen 

are normalized by rescaling them by 1/mCD. mCD is chosen as the normalization factor because 

perception levels are thought to be related to total current density in RC. After normalization, the 

COV of the CDPs across specimens for each electrode can be measured to quantify inter-model 

differences, and these results are shown in Table 4.1.  

 

Table 4.1. Coefficient of variation values of normalized current density profiles across all nine specimens. 

 EL1 EL2 EL3 EL4 EL5 EL6 Average 
Mean 0.198 0.192 0.176 0.175 0.154 0.177 0.179 
Max 0.483 0.570 0.613 0.485 0.571 0.604 0.554 

 
 

As seen in Table 4.1, the average mean and maximum COV values of current density, estimated 

at each of the densely sampled points along the length of RC are 0.179 and 0.554. These are 

relatively large values, suggesting that patient-specific anatomical difference might lead to 

different neural activation patterns.  
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Figure 4.6. Non-normalized (left) and normalized (right) current density profiles (CDPs) of an electrode placed at 
360 degree-depth across all nine models. 

 

This indicates that using a generic model might lack the accuracy to correctly estimate CDPs, and 

that patient-specific models are necessary. A visual analysis also shows that the CDPs across 

specimens for the same electrode location differ from each other. Figure 4.6 shows the non-

normalized and normalized CDPs of an electrode placed at 360 degrees across all nine models. 

 

4.3.2. Model resolution and field of view 

There are several design parameters on which our model is based. The first parameter is the FOV 

of the μCT images. Since we define a node for each voxel, an increase in the FOV will lead to an 

increase in the computational cost. On the other hand, limiting the FOV might decrease the 

accuracy of our model. The same principle holds true for the resolution of the μCT images. Coarser 

resolution will improve computational efficacy but it may decrease accuracy. In order to test the 

sensitivity of our model to FOV, EAMs were built with FOV at the full μCT FOV and a limited 

FOV that contains approximately 5 mm of space around cochlea in each direction. To test the 

sensitivity to resolution, the EAMs were built with full μCT resolution, 4.6x10-5 mm3, as well as 
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lower resolution levels that were achieved by downsampling the μCT images by a factor of 2 at 

each step.   

We have calculated average percent differences in estimated CDPs between the full and 

the limited FOV, as well as between the full and limited resolution models. These results are shown 

in Table 4.2.  

 

Table 4.2. The average percent differences in estimated current density profile along RC between full and limited 
FOV models, between the full and limited resolution model. 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 Average 
Limited FOV 3.00 4.88 4.57 3.80 5.30 7.24 4.60 4.70 3.25 4.60 
Downsampled2 1.08 0.99 1.01 0.97 1.19 0.46 1.60 0.77 0.66 0.97 
Downsampled4 2.32 2.10 2.52 1.64 1.88 0.85 2.91 1.03 1.31 1.84 
Downsampled8 2.35 2.42 2.91 3.66 4.52 1.52 6.05 2.02 2.95 3.16 

 

As can be seen in the table, limiting the FOV results in relatively small differences in 

estimations of current density profiles for all the specimens. In addition to accuracy, another 

important aspect is computational requirements and it is evident that solving a system with limited 

FOV is quicker, up to an order of magnitude, and requires less memory.  Another parameter that 

effects accuracy and computational requirements is model resolution. As can be seen from Table 

4.2, model resolution reduction results in small differences ~1.0%, ~1.8%, and ~3.2% when 

downsampled by 2, 4 and by 8, respectively. It is also evident from the table that each resolution 

reduction leads to a bigger mean difference, demonstrating that as resolution is increased towards 

the µCT resolution, the current density estimations to be converging to a specific value. This 

suggests that the µCT resolution is high enough and leads to accurate results. Comparisons 

between CDPs for full vs limited FOV, for specimens 1, 4 and 6, are shown in Figure 4.7. CDPs 

for specimens 1, 2 and 9, comparing different resolution levels are shown in Figure 4.8. 
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(a) (b) (c) 
 
Figure 4.7. Current density profile comparison between full and limited FOV for three different specimens. Each peak 
corresponds to a different electrode location at 90, 180, 270, 360, 450 and 540 degree-depth. (a), (b), and (c) are 
current density profiles for specimen 1, specimen 4 and specimen 6, respectively.  

 
 

 

(a) (b) (c) 
 
Figure 4.8. Comparison between different resolution levels for specimen 1, 3 and 5. Specimen 1 for an electrode 
located at 270 degree-depth (a), specimen 3 for an electrode located at 180 degree-depth (b), and specimen 5 for an 
electrode at 360 degree-depth (c).  

 

4.3.3. Tissue resistivity analysis 

Doubling bone resistivity will result in increased CDP along RC, given that the current follows a 

path with smaller resistivity. Increased bone resistivity means that less current will escape through 

bone and more current through modiolus, increasing the CDP. The same principle applies when 

fluid resistivity doubled and nervous tissue resistivity is halved. In order to quantify model 

sensitivity to different resistivity values, we first calculated the mean difference between CDPs 

using doubled and halved resistivity values with CDPs using default resistivity values. This is 
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shown in Table 4.3.  

 

Table 4.3. The average percent differences in estimated current density profile along RC between default resistivity 
values and halved and doubled resistivity values. Coefficient of variation in mean difference within specimens is also 
included. 

  
Fluid 

halved 

 
Fluid 

doubled 

Nervous 
tissue 
halved 

Nervous 
tissue 

doubled 

 
Bone 

halved 

 
Bone 

doubled 
Mean difference % -29.15 40.15 60.58 -39.59 -11.21 15.86 
Coefficient of Variation 0.106 0.083 0.053 0.044 0.177 0.221 

 

We then calculated COV values within mean difference across specimens, i.e., for doubled bone 

resistivity, COV is calculated using 9 different mean differences corresponding to 9 specimens as 

shown in Table 4.3. CDPs for specimen 4 for the different tissue resistivity conditions for an 

electrode located at 180 degree-depth are shown in Figure 4.9. These results show that the model 

is relatively insensitive to changes in the resistivity of bone but is sensitive to changes in fluid and 

nerve tissue resistivity. 

 

 

 

(a) (b) (c) 
 
Figure 4.9. Comparison between different resistivity levels for specimen 4. Halved and doubled: Electrolytic fluid 
resistivity level (a), modiolus resistivity level (b), and bone resistivity level (c). 
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4.3.4. Evaluation of the patient-specific model 

The accuracy of the patient-specific and generic models was quantified as (100% - error), where 

error is the absolute mean percent difference compared to the ground truth CDP. Table 4.4 shows 

the accuracy of the patient-specific and generic models created using manual anatomy 

localizations for model registration. As shown in the table, patient-specific models are relatively 

more accurate than generic models, demonstrated by a higher value of accuracy of 87.5% 

compared to 78.4%, respectively. Table 4.4 also presents the accuracy of patient-specific and 

generic models created using automatic landmark localization techniques. On average, patient-

specific models are more accurate than generic models, 81.2% compared to 77.2%, respectively. 

 

Table 4.4. Accuracy of the patient-specific and generic models created using manual and automatic landmarks. 

  S1 S2 S3 S4 S5 S6 S7 S8 S9 Average 
Manual 

landmarks 
Patient-specific 87.3 87.1 91.1 88.6 83.3 87.9 92.2 85.5 84.5 87.5 

Generic 85.8 67.3 85.8 85.0 81.2 77.1 64.4 77.0 82.2 78.4 
            

Automatic 
landmarks 

Patient-specific - - - 82.1 82.8 87.3 77.0 76.9 - 81.2 
Generic - - - 83.3 81.4 77.9 66.8 76.4 - 77.2 

 
 

In addition, the minimum accuracy of the patient-specific model 76.9% is relatively higher than 

that of the generic model, 66.8%. In general, models created using manual anatomy localizations 

are more accurate than those created using automatic anatomy localizations. A visual comparison 

between CDPs calculated from patient-specific, ground truth, and generic models for specimens 4 

and 6, the cases where the patient-specific model is the least and the most accurate compared to 

the generic model, is shown in Figure 4.10. 
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(a) (b) 
 
Figure 4.10. A comparison of current density profiles (CDPs) between patient-specific, ground truth, and generic 
models. Specimen 4 (a) is stimulated with an electrode located at 450 degree-depth and, specimen 6 (b) with an 
electrode at 180 degree-depth. 

4.4 Conclusion 

To the best of our knowledge, this is the first time that a high resolution patient-specific model 

was created using CT images and the accuracy of such models was compared to that of generic 

models. Quantitative and qualitative analysis of the results indicate that improvements in landmark 

localization could lead to more accurate models and that patient-specific models are on average 

more accurate than generic models, which is currently the community standard approach. These 

results motivate the use of patient-specific models and represent a crucial step toward developing 

and validating the first in vivo patient-specific EAM, which will be used to better customize CI 

processor settings. 
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Abstract 

Cochlear implants (CIs) are surgically-implanted medical devices used to treat individuals with 

sensorineural hearing loss who do not receive benefit from appropriately fit amplification. 

Although these devices have been remarkably successful at restoring audibility, many patients 

experience poor outcomes. Our group has developed the first image-guided CI programming 

(IGCIP) technique where the positions of the electrodes are found in CT images and used to 

estimate neural activation patterns, which is unique information that audiologists can use to define 

patient-specific processor settings. In our current system, neural activation is estimated using only 

the distance from each electrode to the neural activation sites. This approach might be less accurate 

than using a high-resolution electro-anatomical model (EAM) of the electrically stimulated 

cochlea to perform physics-based estimation of neural activation. In this work, we propose a 

patient-customized EAM approach where the EAM is spatially and electrically adapted to a 

patient-specific configuration. Spatial adaptation is done through non-rigid registration of the 

model with the patient CT image. Electrical adaptation is done by adjusting tissue resistivity 

parameters so that the intra-cochlear voltage distributions predicted by the model best match those 
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directly measured for the patient via their implant. We demonstrated our approach for N=7 

patients. We found that our approach results in mean percent differences between direct and 

simulated measurements of voltage distributions of 11%. In addition, visual comparison shows the 

simulated and measured voltage distributions are qualitatively in good agreement. This represents 

a crucial step toward developing and validating the first in vivo patient-specific cochlea EAMs. 

5.1 Introduction 

Cochlear implants (CIs) are neural prosthetics that are used to treat sensory-based hearing loss. 

Each CI has an electrode array with a number of electrodes, ranging between 12 and 22, dependent 

upon the manufacturer. These electrodes are situated on a silicone electrode array that is surgically 

inserted into the cochlea. The electrodes stimulate spiral ganglion (SG) auditory nerve fibers in 

order to create the sensation of sound. After implantation, each CI is programmed by an audiologist 

to attempt to optimize CI settings that will lead to better hearing outcomes. The programming 

process includes determining which electrodes will be activated or deactivated, assigning 

stimulation levels to each electrode, assigning a sound frequency band for each electrode, and a 

number of other settings. Optimal settings depend on many factors, including the location of the 

electrodes within the cochlea1,2. The cochlea is composed of two principal intra-cochlear cavities 

called the scala tympani (ST) and scala vestibuli (SV). Inserted CI electrode arrays lie within either 

the ST or SV or can cross the thin membrane separating the two and lie in both cavities. The 

placement of the array in the scalas and the distance from each electrode to the SG nerve cells they 

stimulate are positional factors that affect hearing outcomes1–3. SG cells are located in the modiolus 

(MO), around which cochlea spirally wraps. 3D meshes of ST, SV, and MO are shown in Figure 

5.1 in blue, yellow and red, respectively.  
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The intra-cochlear positioning of the electrodes is usually unknown since the electrode 

array is surgically inserted into the cochlea through a small opening and its intra-cochlear position 

cannot be seen. Lacking knowledge of the location of the electrodes, the audiologists have to 

entirely depend on patient feedback trying to optimize CI settings. As patients require weeks or 

months of experience with given settings for the hearing performance to stabilize, many 

programming sessions are required over the course of years and they may not result in optimal 

settings for many patients. 

 

 

(a) (b) 
 
Figure 5.1. The 3D meshes of scala tympani (ST), scala vestibuli (SV) and, modiolus (MO) in blue, yellow and red, 
respectively. (a) is a posterior-to-anterior view. (b) is a lateral-to-medial view. 

 
 
We have developed several image processing techniques that permit localization of CI electrodes 

in CT images with high accuracy4–7. Using these techniques, our group has developed the first 

image-guided CI programming (IGCIP) technique where electrode position is used to estimate the 

neural activation patterns created by the electrodes, which is unique information that audiologists 

can use to define patient-specific CI processor settings. It has been shown in a large clinical study 

that using IGCIP leads to improved average hearing outcomes3. Even though the clinical studies 

have shown that our IGCIP method leads to better hearing outcomes, it is possible that the method 

1.67 mm 
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could be improved with a better estimate of the electrodes’ neural activation patterns. In our current 

system, neural activation is estimated using only the distance from each electrode to the neural 

activation sites. This approach might be less accurate than a high-resolution electro-anatomical 

model (EAM) of the electrically stimulated cochlea.  

Several groups have used EAMs to study intra-cochlear voltage distribution and its effect 

on neural activation. Since one of the first volume conduction models created from an unrolled 

human cochlea using Finite Element Method8, several methods have been adopted by different 

groups. Frijns et al. used a rotationally symmetric model of a guinea pig cochlea9,10 and human 

cochlea11 to solve for the voltage distribution using boundary element method (BEM). Whiten12, 

and Kalkman et al.13 created EAMs of human cochlea from histological images using Finite 

Difference Method and BEM, respectively. Although these models have been shown to be useful, 

they cannot be applied in vivo thus, patient-specific differences cannot be incorporated into these 

models. It has been shown that human cochleae differ not only in volume, but also in shape, 

number of turns, and length, etc14,15. Considering these anatomical differences, Malherbe et al.16 

used CT images acquired from 3 patients in order to construct three-dimensional patient-specific 

EAMs of CI users. However the model relies on manual point selection on the 2D CT image slices. 

Manually determining points using CT images alone is not only arduous, it is also difficult if not 

impossible to do so with fine scale intra-cochlear structures, such as the modiolar wall or the 

partition between the ST from the SV, because they are not directly visible due to the lack of 

adequate resolution of the CT. To overcome this, Malherbe et al. used a high-resolution 

photomicrograph of a single cochlea and rigidly registered it to the patient CT image in order to 

approximate the dimensions of such fine scale patient-specific structures, which we have shown 

to be a less accurate approach than a high-resolution non-rigid model to estimate patient-specific 
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anatomy17. 

In a previous study we developed a high resolution EAM created using µCT images of 

cochlea specimens18. Preliminary tests were conducted to show that the model is stable and can be 

made patient-specific by spatially adapting the model to patient CT data19. However, this model 

does not account for patient-specific electrical characteristics, i.e., the resistivity of different tissue 

types. This is important because the ultimate goal of the model is to use it to estimate neural 

stimulation patterns, and to do so accurately will require accurately estimating the voltage 

distribution in the cochlea. Thus, in this study, our goal is to develop a modeling approach that 

permits not only spatial adaptation but also electrical adaptation. This requires a sampling of the 

voltage distribution in the patient’s cochlea. In the CI community, such a measurement is termed 

“electrical field imaging” (EFI). In this process, one electrode at a time is activated while voltage 

at each of the remaining electrodes in the cochlea is measured, thus sampling the intra-cochlear 

potentials at the sites where the electrodes sit. In this work, we propose a modeling approach that 

uses CT imaging to spatially adapt the model and EFI to electrically adapt the model to the patient. 

We demonstrate our approach for N=7 patients. Since our eventual goal is to estimate neural 

activation caused by the injected current, agreement between measured and simulated results in 

terms of voltage values at the electrodes would provide strong evidence that the estimated neural 

activations may be accurate. 

5.2 Methods 

5.2.1. Dataset 

The μCT images of 9 cadaveric cochlea specimens that are used to create our model were acquired 

using a ScanCo scanner. These images had voxel size of approximately 0.036 mm isotropic. N = 
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7 patients, with 6 unilateral and 1 bilateral implants, who had undergone CI surgery were pre-

operatively scanned using conventional radiological scanners with temporal bone imaging 

protocols and had voxel size of approximately 0.3 x 0.3 x 0.4 mm3, and post-operatively scanned 

using Xoran XCAT fpVCT scanner. The voxel dimensions in these images are 0.4 mm isotropic.  

In addition, EFI measurements were performed for the same patients using software 

provided by the CI manufacturer -- Advanced Bionics (Valencia, California USA). The EFI 

measurements were recorded for all of the 16 electrodes. Stimulation was performed at 32µA of 

current. The cochlear implant patients each had at least 6 months experience with their implants 

prior to the EFI measurements.  

 

5.2.2. Patient-specific EAM 

For each patient, pre- and post-implantation CT images were automatically segmented using 

previously published techniques4,5 to localize the position of the electrodes and the anatomical 

structures that we use to create EAMs, including ST, SV, and MO. The 3D meshes of the 

anatomical structures are surfaces composed of a set of points, and they are created using an active-

shape model approach20. High-resolution EAMs were created using μCT images of 9 cochlea 

specimens as previously described18. In brief, for each specimen a uniform 3D grid of nodes with 

spacing of 0.072 mm was defined over the field of view of the μCT image. Each node was assigned 

to a tissue class, including air, bone, soft tissue, neural tissue, and electrolytic fluid. Nodes that are 

enclosed by either ST or SV were assigned to electrolytic fluid tissue class, and nodes enclosed by 

MO were classified as neural tissue. For the remaining nodes, a simple thresholding of the µCT 

was applied in order to decide between air, bone, and soft tissue. The tissue classes correspond to 

different electrical resistivity values. The default values for these tissue classes are: ∞ Ωcm for air, 
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5000 Ωcm for bone, 300 Ωcm for soft tissue, 600 Ωcm for neural tissue, and 50 Ωcm for 

electrolytic fluid20.  

We warped each individual µCT to match the shape of the patient cochlea and combine the 

tissue segmentations using a voting scheme. To do this, the patient CT image was non-linearly 

registered to each of the high-resolution µCTs using thin-plate splines (TPS)21. The TPS 

formulation presented below is limited to 2D, but extension to the 3D formulation we use in this 

work is straightforward. TPS define a non-rigid transformation that minimizes the bending energy. 

The surface points of the segmented ST, SV, and MO were used as landmarks in the patient CT 

image. For a one-to-one point correspondence to exist between these surfaces and the manual 

segmentations of the ST, SV, and MO in the μCT images, the active shape model was registered 

to each of the µCT images. This was done in a semi-automated fashion where first, the active shape 

model was fit to the image, then visible errors between the active shape model and the manual 

segmentations were manually corrected using software designed for this purpose, and finally the 

closest points on the manual segmentation surfaces were found. These points were used as the 

landmarks in the µCT images for the TPS transformation. The TPS registration between the low-

resolution patient CT image and high-resolution µCTs allows us to create a high-resolution 

resistivity map for each patient. The TPS mapping between two different spaces defined by two 

corresponding landmark point sets (𝑥P,𝑦P,𝑧P) and (𝑥Py,𝑦Py,𝑧Py) has the form: 

 
𝑓(𝑥, 𝑦) = 𝑎; + 𝑎k𝑥 + 𝑎6𝑦 +{𝑤P𝑈(|(𝑥Py, 𝑦Py) − (𝑥, 𝑦)|)

~

P�k

 
  

(5.1) 

 
where 𝑈(𝑟) = 𝑟6𝑙𝑜𝑔𝑟 is the radial basis function, 𝑎;, 𝑎k, 𝑎6	 and 𝑎7 are the affine coefficients, and 

the 𝑤P is the weight vector. The coefficients and the weight vector are determined such that total 

bending energy, e.g. total curvature, is minimized while providing an exact transformation 
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between the two sets of landmark points.  

The patient resistivity map is created in the region around the patient’s cochlea and with 

the same resolution as the grids defined on the µCTs. The TPS registrations provide the non-linear 

mapping between the patient space and µCT spaces and were used to label each node in a new 

high-resolution patient resistivity map. For each node x in the patient resistivity map, the 

corresponding point y in a μCT can be found using the TPS registration. The tissue class of y is 

then stored as a candidate assignment for the tissue class of x. This procedure is followed for each 

μCT image, resulting in 9 different tissue candidates, 𝑧P, 𝑖 = [1,2, … ,9], for each node. A final 

resistivity map was achieved using a majority voting scheme between all of the 9 tissue candidates: 

 
𝐿 = argmax� {(𝑧P = 𝑙)

�

P�k

 
   

(5.2) 

where 𝑍 is the final tissue class. Once the resistivity map is created, we use the position of the 

electrode array and electrodes found using post-implantation CT images to determine the location 

of the 16 stimulating electrodes and the silicone electrode array in the high-resolution resistivity 

maps. In Figure 5.2, the silicone electrode array, the stimulating electrodes and the MO are shown 

in gray, black, and red, respectively. The silicone electrode array is modeled as a perfectly resistive 

material. In cochlear implants, the ground electrode is located near surface of the skull adjacent to 

the ear to which the electrode array is implanted. Thus, the ground electrode is located relatively 

far from the stimulating electrodes and the SG nerve cells. Since our model only includes 5 mm 

of space around the cochlea, to simulate a distant ground we define the entire border of the model 

to be ground. Then, one of the stimulating electrodes is chosen as a current source whose current 

sinks to ground. We then define the system of linear equations defined by Poisson’s equation for 

electrical current at each node: 
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 𝛻 · 𝐽 =  -σ𝛻6𝜙 (5.3) 

where ∅ is the voltage. Solving this system of equations using the bi-conjugate gradient method22, 

the final output of the model is the voltage map V, which contains the voltage at each of the nodes. 

This follows the approach proposed by Whiten11.  

 

 

Figure 5.2. The 3D meshes of the modiolus (MO), the silicone array, and the stimulating electrodes, in red, gray, and 
black. 

 
 
The second step of the approach we propose to creating patient-specific EAMs includes optimizing 

the resistivity values of different tissue classes to match the patient-specific values. Given that in-

vivo measurements of the resistivity values of different tissue classes is not possible, a different 

approach was taken to try to adjust these parameters. This approach is as follows: Intra-cochlear 

potentials are calculated for a given patient with default tissue resistivity values for each of the 16 

electrodes injecting 32 µA of current into the system. The simulated voltage distribution is then 

compared to the actual measured voltage distribution acquired from the patient, and new tissue 

resistivity values are selected to try to improve the agreement between the two.  We have designed 

a heuristic search approach that leverages our knowledge of how changes in the resistivity values 

of different tissue types affect the simulated voltage distribution. We found that a change in the 

electrolytic fluid resistivity has negligible effects, whereas a change in the resistivity values of soft 

tissue and neural tissue have different effects as shown in Figure 5.3. The principal effect when 
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changing the soft tissue resistivity value is a change in the average value of the voltage distribution 

across electrodes while the shape of the voltage distribution maintains the same slope. Changing 

neural tissue resistivity value on the other hand sharpens or flattens the curve, i.e. a decrease in the 

neural tissue resistivity value will result in a flattening of the curve and vice versa. 

 

 

Figure 5.3. The effect of the change in the different tissue resistivity values. 

 

Using this knowledge, we have developed an automatic heuristic search as shown in Algorithm 

5.1. In this algorithm, the resistivity values of the soft and neural tissues are adjusted based on 

average error, which is the average normalized mean percent difference between simulation 

results and the acquired patient data computed as shown in the pseudocode. The algorithm first 

calculates the error, the normalized mean percent difference between simulation voltage 

distribution vector and the voltage distribution vector acquired from the patient for a stimulating 

electrode, for each of the 16 electrodes. It then checks whether those values have all the same sign, 

i.e. whether simulation results are either bigger or smaller than the acquired patient data for all of 
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the 16 active electrodes. If they all have the same sign, then it adjusts the soft tissue resistivity 

value multiplying it by 1 plus the average error. If the signs are different, then it calculates the 

slope of each curve and adjusts the neural tissue resistivity value by multiplying it by the ratio of 

the two slopes. The heuristic search runs until the change in the absolute value of the average error 

is less than a threshold value or a maximum number of iterations are completed. This heuristic 

search, rather than a generic search scheme, was adopted because the heuristic search uses a priori 

knowledge of the effect of the two parameters to converge more quickly than a generic search 

could, which is important due to the high computation time required for each iteration in the search. 

Algorithm 5.1. Adjusting tissue resistivity values 

Input: VEFI = Patient EFI measurement, VS = Simulation results, RNT = Neural tissue resistivity, RST = Soft tissue 
resistivity, 
SlopeEFI = Slope of the EFI measurement, SlopeS = Slope of the simulation 
Initialize threshold, maxIteration, RNT, RST values 
While Δ |average error| > threshold and counter < maxIteration 
    Run simulation with RNT and RST 
    For each electrode i = 1:16 
        error[i] = mean((VEFI[i] - VS[i])/ VEFI[i]) 
    average error = mean(error) 
    If error has the same sign for all 16 electrodes 
        RST = RST * (1 + average error) 
    Else 
        Find 6 closest (Closest_6) and 6 furthest (Furthest_6) electrode to the active electrode 
        SlopeEFI = (VEFI_Closest_6 - VEFI_Furthest_6)/ VEFI_Closest_6  

        SlopeS = (VS_Closest_6 - VS_Furthest_6)/ VS_Closest_6  
        RNT = RNT * (SlopeEFI/SlopeS) 
    counter++ 

 
 

5.2.3. Evaluation 

A threshold value of 10-3 and a maximum number of iterations of 50 were used in the heuristic 

search. All the simulations were run on a special computer cluster, where the voltage distribution 

for each of the active electrodes can be calculated in parallel. We evaluated the accuracy of our 

EAM approach both qualitatively and quantitatively, in terms of the absolute value of the average 

error. A large difference between the initial and the final absolute value of the average error would 
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indicate that the electrical customization method provides a better fit between the simulation 

results and the EFI measurements. 

5.3 Results 

 

Figure 5.4. Normalized change, with respect to the default values, in soft tissue resistivity and neural tissue resistivity, 
and absolute value of the average error over number of iterations. 

 

Table 5.1. Patient-specific neural and soft tissue resistivity values is shown for each ear. In addition, initial and final 
average error values as well as number of iterations that the heuristic search algorithm ran are shown. 

 Average error 
Default tissue 

resistivity 

 Average error  
Adjusted tissue 

resistivity 

 
Number of 
iterations 

Neural tissue 
Resistivity 

(Ωcm) 

Soft tissue 
Resistivity 

(Ωcm) 
Ear 1 0.333 0.221 20 46 300 
Ear 2 0.591 0.090 18 128 83 
Ear 3 0.635 0.106 16 148 78 
Ear 4 0.475 0.070 28 92 118 
Ear 5 0.597 0.128 24 89 121 
Ear 6 0.286 0.092 22 98 216 
Ear 7 0.491 0.106 15 306 59 
Ear 8 0.194 0.057 30 84 300 

Average 0.45 0.11 22 
 
 

Each iteration takes on average an hour and a half to complete. The heuristic search algorithm was 

able to converge in 22 iterations on average. In Figure 5.4, the change in soft and neural tissue 
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resistivity values along with the absolute value of average error over number of iterations are 

shown. Final soft and neural tissue resistivity values as well as initial and final absolute value of 

the average error, and number of iterations for each ear is shown in Table 5.1. As can be seen in 

the table, the mean value of the average error when default resistivity values are used is 0.45 and 

it drops down to 0.11 when tissue resistivity values are customized, indicating that adjusting tissue 

resistivity values lead to more accurate simulation of the EFI measurements, and that our patient-

specific electro-anatomical model is able to estimate patient EFI data with a high accuracy. The 

maximum absolute value of average error when tissue resistivity values are adjusted, is 0.22, as 

shown in the table. The algorithm was unable to find better resistivity values that will match the 

patient data for Ear 1 due to the noisiness of the acquired patient data (see Figure 5.5). 

 

 
 

Figure 5.5. Comparison between acquired patient data and the simulation results for ear 1 
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In Figure 5.6, a comparison between the acquired patient data and the simulation results are shown 

for ear number 8. As shown in the figure, the simulated and measured results show a very similar 

trend, however, the model tends to overestimate the width of the region of high voltage gradient 

at neighboring electrodes near the stimulating electrode for certain active electrodes. 

 

 

Figure 5.6. Comparison between acquired patient data and the simulation results for ear 8 

 

5.4 Conclusion 

To the best of our knowledge, this work presents the first time a high resolution patient specific 

model has been created for live CI recipients and compared to in vivo measurements. This 

represents a crucial step toward developing and validating the first in vivo patient-specific EAMs.  

Quantitative analysis of the results has shown that tuning resistivity values of different tissue types 



 

95  

for each patient increased the accuracy of our patient-specific EAMs by around 75%. However, it 

is important to note that currently we do not have an independent way to verify whether the 

simulation results are accurate or rather good fits. In the future, we plan to include a nerve model 

into which estimated voltage values will be input. Then, acquired electrically-evoked compound 

action potential measurements will be compared to the simulated action potentials in order to 

verify our results.  Accurate in vivo patient-specific EAMs will permit more accurately estimating 

neural stimulation patterns and lead to selection of better CI mapping parameters, which will 

ultimately lead to better hearing outcomes with CIs. 
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Abstract 

Cochlear implants (CIs) are considered the standard-of-care treatment for severe-to-profound, 

sensorineural hearing loss. The positioning of the array within the cochlea affects which auditory 

nerve fibers are stimulated by which electrode and is known to affect hearing outcomes. Image-

Guided CI Programming (IGCIP) techniques, where estimates of the position of the electrodes 

relative to the nerve fibers are provided to the programming audiologist, have been shown to lead 

to significantly improved hearing outcomes. With the current IGCIP approach, assumptions are 

made about electrical current spread to estimate which fiber groups are activated based on their 

distance to the electrode. To improve our estimates, we are developing an approach for creating 

patient-customized, high-resolution, electro-anatomical models of the electrically stimulated 

cochlea coupled with computational auditory nerve fiber models (ANFMs) to permit physics-

based estimation of neural stimulation patterns. In this chapter, our goal is to evaluate semi- and 

fully-automatic techniques for segmenting auditory nerve fibers that will be used in creating 

ANFMs, as well as to quantify the effect of change in fiber location on the neural activation 

patterns. Our semi-automatic approach uses path finding algorithms to connect automatically 
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estimated landmarks, and our automatic approach is atlas-based. We found that repeatability in 

fiber localization with semi-automatic segmentation is 0.1 mm on average and results in modeled 

activation patterns that have 83% overlap. The difference between the semi-automatic and 

automatic segmentations led to higher average differences of 0.19 mm and lower activation pattern 

overlap of 74%. 

6.1 Introduction 

With over 700,000 recipients worldwide, cochlear implants (CIs) are considered the standard-of-

care treatment for severe-to-profound sensoineural hearing loss1. Each CI has an array of 12 to 22 

electrodes that is surgically inserted into the cochlea. These electrodes electrically stimulate the 

auditory nerve fibers to create the sensation of sound and restore the sense of hearing. After 

surgical insertion, each CI is programmed by an audiologist. Programming involves determining 

program parameters, e.g., which electrodes will be activated or deactivated, stimulation levels 

assigned to each active electrode, sound frequency bands assigned to each electrode, etc. The 

programming process is one of the elements that has a high impact on the effectiveness of the 

implant in accurately representing the audiological signal2,3.  

The cochlea is composed of three principal cavities called the scala tympani (ST), scala 

vestibuli (SV) and scala media (SM). The ST and SM are separated by the basilar membrane (BM) 

and the SM and SV are separated by Reissner’s membrane. Anatomically, the SM is much smaller 

than the ST or SV, and, in practice, CI electrode arrays lie within either the ST or SV or cross the 

thin membranes and BM separating the two to lie partially in both cavities (e.g. one end will lie in 

ST and the other end will lie in ST). The placement of the array in the scalas and the distance from 

each electrode to the auditory nerve fibers they stimulate are positional factors that affect hearing 
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outcomes2–5. Since the electrode array is blindly threaded into the cochlea, with its location 

generally unknown, it has been difficult to determine how to optimize settings to account for 

variable intra-cochlear electrode position. Lacking an effective objective programming approach, 

audiologists typically make changes based entirely on subjective patient feedback. As weeks or 

months of experience with given settings can be required for hearing performance to stabilize with 

a given set of settings, the standard clinical approach can require many programming sessions over 

the course of years and does not result in optimal settings for many patients.  

To assist audiologists in programming CIs, our group has been developing image-guided 

CI programming (IGCIP) techniques3. In IGCIP, neural stimulation patterns of the electrodes are 

automatically estimated based on intra-cochlear electrode position measured from CT images on 

which image processing has been performed to estimate the final location of the electrode array 

and proximity to the neurons each electrode is intended to stimluate6.  This information is provided 

to the audiologist to assist with programming. We have shown in a large clinical study that using 

IGCIP leads to improved hearing outcomes3. However, in the current implementation of IGCIP, 

neural stimulation patterns of the electrodes are estimated in a coarse manner using only the 

distance from each electrode to the neural activation sites. We hypothesize that this approach might 

be less accurate than a physics-based model.  

Several methods have been developed allowing the creation of physics-based electro-

anatomical models (EAMs) of the electrically stimulated cochlea coupled with computational 

auditory nerve fiber models (ANFMs). EAMs allow a physics-based estimation of the voltage 

distribution within a given anatomical structure, and ANFMs permit estimation of neural 

stimulation patterns due to the electric field along the nerve fibers. We believe that such techniques 

may be more accurate than our current methods for estimating neural stimulation patterns as they 
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directly simulate current spread within the cochlea and the resulting neural activation. Several 

works from other groups have studied the effect of simulated intra-cochlear voltage distribution 

on auditory nerve fiber activation, ranging from using guinea pig cochleae7–9 and simplified 

approximations of human cochleae shape10–13to creating models from high-resolution 

histological14,15 as well as µCT images of individual human cochleae16,17. It has been shown by 

several studies that patient-specific cochlear geometry affects model predictions and thus must be 

addressed for the model to provide realistic results14. In light of such findings, several groups have 

studied the effects of individual morphologies on pitch placement18 as well as estimated neural 

activation19, strengthening the initial findings that computational models should incorporate the 

anatomical variances across individuals to offer better clinical predictions. Thus, more recent 

studies created EAMs using patient CT images, which enables the creation of patient-customized 

models20. In Malherbe et al.21, the creation of the EAM model relies on manual point selection on 

the two-dimensional (2-D) CT image slices, which do not have the adequate resolution to 

accurately visualize the fine intra-cochlear structures. To overcome this, a high-resolution image 

of a single cochlea was rigidly registered to the patient CT image, which we have shown to be a 

less accurate approach than a high-resolution non-rigid model for estimating patient specific 

anatomy19.   

We are developing an approach for creating patient-customized, high-resolution EAMs and 

ANFMs, which have the potential to provide a more accurate estimation of neural stimulation 

patterns for CI patients than has ever before been achievable. We have reported previously on the 

creation of EAMs in order to calculate the electric field along the auditory nerve fibers19,20. In this 

chapter, our goal is to evaluate techniques for segmenting auditory nerve fibers to enable neural 

stimulation modeling and estimation of neural stimulation patterns, and to quantify the effect of 
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fiber segmentation accuracy on neural activation. 

6.2 Methods 

EAMs were created for 5 CI users using previously described techniques19,20. The EAMs were 

constructed using CT images acquired with a Xoran XCAT scanner with voxel size of 0.4 mm 

isotropic. In this dataset, we localized the fibers using a semi-automated technique. Since CT 

images do not have adequate resolution to directly visualize nerve fibers, which are approximately 

2 µm in width, we must rely on a priori knowledge of the morphology of the fibers to estimate 

their position. We assume that (1) the unmyelinated terminal of the fiber is located where the 

osseous spiral lamina (OSL) meets the basilar membrane between the ST and SV, (2) the fiber 

proceeds through the OSL into the modiolus and then posteriorly to the nerve body (a.k.a. the 

soma) which is located within Rosenthal’s canal (RC) adjacent to the ST within the modiolus, and 

(3) the fiber proceeds radially outward from the modiolus into the internal auditory canal (IAC) 

where the auditory nerve is formed by the collection of nerve fibers and ultimately proceeds to the 

auditory cortex (see Figure 6.1)22,23.  

We aim to model the section of the fibers from the unmyelinated terminal to the IAC. We 

treat the fiber localization problem as a path-finding problem, where the aim is to find a path 

connecting the terminal to the soma to the IAC endpoint and with a shape that matches the expected 

shape of the fiber. To do this, first, using active-shape model-based methods we have previously 

developed and validated, we accurately localize the ST, SV, and modiolus24. These structures 

provide excellent landmarks for the fibers because, as shown in Figure 6.1, the fibers terminate 

between the ST and SV, proceed around the ST into RC within the modiolus, and then proceed out 

of the modiolus into the IAC. Within each of 9 cochleae that were used to construct the active-
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shape model, we also have defined a curve representing RC and another curve representing the 

location where OSL meets the BM (termed the OSL curve). We then project each reference RC 

curve onto the patient image through a thin-plate spline25 (TPS) that registers the reference ST 

surface to the one found by the active shape model search in the patient. We define final RC curves 

as the average of the 9 non-rigidly registered ones. The RC curve is used to define the soma 

location. The OSL curve, on the other hand, is determined using the ST mesh created as a result 

of the active shape model search and is used to define the terminal locations. Next, to define IAC 

endpoints we make a copy of RC, flatten the points to a plane, and automatically translate it into 

the IAC using the mid-modiolar axis (see Figure 6.2).  

 

 
 
Figure 6.1. A 2D view of a µCT image where scala tympani, scala vestibuli and modiolus are shown with blue, green, 
and red contours; RC and IAC endpoints are shown with light blue and white circles; and nerve fibers are shown with 
yellow lines, respectively. 

 

Next, we construct paths representing 75 fiber bundles that are evenly spaced along RC. 

For each fiber, we find the point on the OSL curve that falls in the plane normal to the RC at that 

fiber’s RC point. We use graph search techniques to find the shortest path around the ST that 

connects these two points26. Finally, we complete the fiber by similarly using graph search 
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techniques to find the shortest path through the modiolus connecting the RC point and its 

corresponding IAC endpoint. Because the paths are computed independently and are in close 

proximity, sometimes they overlap or cross. As a post-processing step, we manually edit paths 

where this occurs to obtain a more realistic representation of the auditory nerve fibers. Each of the 

resulting 75 nerve fiber paths represents a bundle of roughly 400 fibers, as it is thought that normal 

ears have around 30,000 auditory nerve fibers. 

We completed this semi-automated fiber localization process twice for each dataset in 

order to quantify the effect of nerve fiber angle on voltage gradient along the nerve fiber, and 

consequently, the effect of small differences in fiber shape on neural activation. To do this, we 

have moved the endpoints in IAC in a random direction that is perpendicular to the mid-modiolar 

axis for each patient (see Figure 6.2). The amount by which the endpoints were moved were chosen 

such that the endpoints were located as close as possible to the bony structure while still being 

located within the IAC (between 0.15 and 0.5 mm). As we do not have any a priori information on 

the exact location of the endpoints, this allows us to quantify the effect of choosing arbitrary 

endpoints on neural activation.  

 

 
 

Figure 6.2. A 3D view of Scala Tympani (in grey), mid-modiolar axis (in cyan), the two different endpoints used in 
semi-automatic nerve fiber segmentation, shown in black and red, and the mid-point between basilar membrane and 
osseous spiral lamina (in green). 
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We also evaluated a method for fully automatic localization of the fibers by using the TPS 

discussed above to project fibers from a reference case onto the target cases. To evaluate our fiber 

localization results, we measure mean Euclidean distances between the different sets of nerve 

fibers, the percent difference between the gradient of the calculated voltage values measured at the 

active parts of the fiber, and differences in activation patterns produced when ANFM models are 

executed using the localized fibers. To measure activation patterns, a nerve model was created 

following the work done by Rattay et al.12 using the Neuron package27. Briefly, a compartmental 

nerve model consisting of several different subunits—nodes, internodes, soma, and pre- and post-

somatic regions—was created. The activation due to the voltage changes at nodes of Ranvier was 

modeled using the “warm” Hodgkin-Huxley (HH) model where the gating processes are 

accelerated compared to the original HH model.  Activation patterns were determined as the states 

of nerve fibers; active or non-active. A nerve fiber is active when the changes in the voltage values 

along the fiber cause an action potential which is then propagated along the nerve fiber. When an 

action potential occurs, the potassium and sodium gates located at the nodes of Ranvier open 

causing changes in the inter-node voltage values.  

6.3 Results 

A visual comparison of localized fibers for one of the patients is shown in Figure 6.3 where only 

15 out of 75 nerve fibers are shown. Each color represents a different set of auditory nerve fibers; 

black and red are semi-automatically segmented nerve fibers and cyan are automatically 

segmented nerve fibers using TPS. As shown in the figure, the differences between the different 

sets of nerve fibers are relatively small.  
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Figure 6.3. A 3D mesh of scala tympani, shown in gray, as well as different sets of auditory nerve fibers, shown in 
cyan, black and red.  

 

In order to quantify the difference, we measured the Euclidian distances between each of the active 

compartments, namely nodes of Ranvier, and averaged them. These measurements are as follows: 

semi-auto difference is the average distance between the semi-automatically segmented nerve 

fibers; auto1 difference is the distance between the automatic and one of the semi-automatic nerve 

fibers; and finally, auto2 difference is the distance between the automatic and the other semi-

automatic nerve fibers. The results are shown in Table 6.1. Semi-auto localization #1 in Patient 1 

was used to define the reference for the automatic TPS results, and thus there is no automatic 

localization for this patient. 

 

Table 6.1. The average Euclidian distance (mm) between different sets of nerve fibers. 

Euclidian distance (mm) Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 
semi-auto difference 0.08±0.06 0.10±0.08 0.09±0.05 0.06±0.04 0.15±0.11 

auto1 difference N/A 0.18±0.08 0.11±0.05 0.16±0.10 0.27±0.17 
auto2 difference N/A 0.20±0.11 0.13±0.07 0.18±0.11 0.29±0.21 

 
 
 
Additionally, we have quantified the difference across voltage gradient values for each patient as 

percent mean differences as shown in Table 6.2. A qualitative comparison between the gradients 

created by electrode number 1 between the semi-automatic segmentations are shown in Figure 6.4. 

Semi-automatic1 

Semi-automatic2 

Automatic 
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Figure 6.4. A comparison of the voltage gradient caused by electrode 
 
 
 

Table 6.2. The average percent difference between gradient of the voltage values for different sets of fibers. 

Gradient difference (%) Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 
semi-auto difference 28.1±33.5 25.8±32.7 29.7±35.6 26.5±32.1 31.0±32.9 

auto1 difference N/A 33.7±32.3 28.6±34.2 37.8±34.1 37.8±34.7 
auto2 difference N/A 37.6±36.8 31.6±36.3 38.4±34.7 39.7±36.4 

 
 

The similarities between neural activation patterns across different sets of segmented nerve fibers 

are quantified as the fraction of fibers across two sets that lead to the same states, active vs. non-

active, when the ANFM is executed simulating stimulation by each of the electrodes injecting 600 

μA. These results are shown in Table 6.3, and a qualitative comparison for patient 4, where 

electrode 3 (located at 360 degree-depth) was used as the active electrode is shown in Figure 6.5. 

 

 

 

Semi-automatic1 

Semi-automatic2 
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Table 6.3. Agreement between neural activation patterns of different sets of nerve fibers. 

Similarity (%) Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 
semi-auto difference 81±12 87±9 83±10 88±9 76±14 

auto1 difference N/A 78±12 77±12 69±22 85±10 
auto2 difference N/A 80±11 74±15 60±21 66±13 

 
 
 

 
 

Figure 6.5. Neural activation comparison. The angular depth of the electrode is shown with X in red. 

 
 

6.4 Conclusion 

As shown in Table 6.3, the agreement in neural activation patterns between semi-automatically 

segmented nerve fibers is high, indicating that neural activation modeling estimates are not 

sensitive to moderate changes in fiber shape. Even in the case where the endpoints in IAC are 

translated by 0.5 mm, as done for patient 5, the neural activation similarity is relatively high ~76%. 

The similarities in neural activation patterns between the automatically and semi-automatically 

segmented nerve fibers were not as high. We believe that this could be due to errors in the 

automatic fiber localization that occur in the IAC. Since we are only using the ST to drive the TPS 

registration, it is effectively an extrapolating transformation far from the ST in the region of the 

X 

Semi-automatic1 

Semi-automatic2 

Automatic 
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IAC and likely inaccurate. We are currently investigating whether the TPS accuracy can be 

improved in this region by designing a process to automatically segment the walls of the IAC, 

which are well visible in CT, and including the resulting segmentation as a landmark in the TPS 

transformation.  
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Abstract 

Cochlear implants (CIs) are considered the standard-of-care treatment for severe-to-profound 

sensorineural hearing loss. Studies have shown that hearing outcomes with CIs are dependent on 

several factors, including the health of the auditory nerve fibers. We have developed a model-

based approach to estimate the health of auditory nerve fibers (ANFs) by: (1) parameterizing our 

ANF models according to neural health; and (2) using a constrained optimization algorithm to tune 

the neural health of the ANFs in order to minimize the sum of squared differences between 

simulated and the measured physiological measurements available via patients’ CIs. We refer to 

this process as Auditory Neural Health Imaging (ANHI). We have evaluated our ANHI approach 

with 5 patients. Since a comparison of monopolar and tripolar thresholds has been proposed as a 

surrogate for neural health, linear regression models (LRMs) were created in order to determine 

the correlation of clinically measured tripolar thresholds with electrode distance, monopolar 

thresholds, ANF model tripolar thresholds, and ANHI. LRMs revealed monopolar thresholds to 

be uncorrelated with tripolar thresholds. However, electrode distance, ANF model tripolar 

thresholds and ANHI were found to be significantly associated with tripolar thresholds with strong 



 

114  

LRM average correlation of R=0.81 across the 5 cases.  This work represents the first clinical 

validation of our patient-specific EAMs. Our results demonstrate the validity of our ANHI 

estimates and confirm that tripolar thresholds contain neural health information. However, unlike 

raw tripolar threshold data, ANHI provides an estimate of which specific fiber bundles are healthy. 

Ultimately, we envision these models will not only permit design and implementation of novel 

patient-customized programming strategies, but also may provide further insight into factors that 

affect patient outcomes.  

7.1 Introduction 

Hearing is the outcome of a series of complex steps that translate sound wave signals into electrical 

signals. Incoming sound waves traveling through the ear canal reach the cochlea, which is the 

snail-shaped fluid-filled cavity. These sound waves cause a ripple effect within the cochlea which 

results in movement of the hair cells that correspond to the frequencies of the received sound. The 

hair cells are tonotopically mapped, e.g. they are fine-tuned to respond to different frequency 

levels. The hair cells located within the lower part of the cochlea correspond to higher frequency 

of sounds, and those that correspond to lower frequency sounds are located in the upper part of the 

cochlea. The movement of the corresponding hair cells releases chemicals into the ear inner 

electrically activating the spiral ganglion nerve cells. This electrical stimulation is propagated 

along the auditory nerve fiber traveling through the brain stem and finally reaching the auditory 

cortex allowing the brain to process and hear the sound. 

The inner ear performs a frequency spectrum decomposition of incoming signals, and the 

auditory nerve fibers send this information to the brain for further processing. In patients suffering 

from sensorineural hearing loss caused by abnormalities in hair cells, direct electrical stimulation 
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of auditory nerve fibers is possible. This is done with a neural prosthesis called a cochlear implant 

(CI)1. The main components of a CI are an electrode array with up to 22 contacts that is surgically 

implanted into the cochlea, an externally-worn processor with microphone that picks up and 

decomposes the incoming signals, and a stimulator that transforms the output of the processor into 

biphasic electrical pulses that are sent to the appropriate contact in the electrode array.  

With over 700,000 recipients worldwide and significant speech understanding benefits in 

the majority of those recipients, CIs are arguably the most successful neural prostheses to date. 

Yet, a significant number of recipients achieve poor outcomes and restoration to normal fidelity is 

rare even among the best performers. This is due, in part, to difficulties associated with selection 

of optimum stimulation parameters. Patient-specific parameter values for the processor are set by 

an audiologist in a series of audiological visits, resulting in a so-called MAP. Mapping involves 

determining program parameters, e.g., which electrodes will be activated or deactivated, 

stimulation levels assigned to each active electrode, sound frequency bands assigned to each 

electrode, etc.   The mapping process is one of the elements that has a high impact on the 

effectiveness of the implant in accurately representing the audiological signal. However, the 

process has not fundamentally changed since CIs first became available and relies heavily on 

subjective patient feedback. Without access to objective information that can help the mapping 

process, audiologists go through a trial-and-error process that can take weeks or months and often 

leads to sub-optimal solutions. 

Our group has been developing image-guided CI programming (IGCIP) techniques in order 

to provide objective information that can assist audiologists in mapping, which includes scalar, i.e. 

whether the electrode lies within the ST or SV,  and angular location as well as estimated neural 

stimulation patterns of each electrode2–4. Angular location of an electrode is measured as the angle 
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along the spiral of the cochlea, where the round window (RW) corresponds to zero degrees (0°). 

Neural stimulation patterns are automatically estimated based on intra-cochlear electrode position 

with respect to the neurons each electrode is intended to stimulate. However, in the current 

implementation of IGCIP, neural stimulation patterns of the electrodes are estimated in a coarse 

manner using only the distance from each electrode to the neural activation sites. We hypothesize 

that this approach might be less accurate than a physics-based model.  

Several groups have worked on predicting neural activation caused by electrical 

stimulation. In one of the earliest works, Rattay5 used a current term generated from an EAM 

which is proportional to the second spatial derivative of the extracellular field and concluded that 

the activity of the axon depends on the second derivative of the extracellular medium, denoted as 

the “activating function”. This was the method of choice in 6–8. However, the activating function 

is a first approximation which assumes that the axon is infinitely long and thus, in a resting state9 

when stimulated by a constant source, which would not hold true for a finite length axon placed in 

a non-uniform extracellular field.  

Most common models that are integrated into non-uniform electro-anatomical models 

(EAMs), which allow a physics-based estimation of the voltage distribution within a given 

anatomical structure, are physiologically-based active membrane nerve models. The potential at 

the active sites calculated by the EAMs are used to predict the activation of auditory nerve fibers. 

Such models were employed by several different groups in their studies7,10–14. In a 2000 study, 

Rattay developed a compartmental auditory nerve fiber model using a modified Hodgkin-Huxley 

(HH)15 formulation and used this model to study the influence of the effect of different nerve 

subunits on the excitation of the nerve fibers7. Frijns et al. modified Schwarz-Eikhof formulation 

to develop so-called generalized Schwarz-Eikhof-Frijns (gSEF) model16 and integrated into a 3-D 
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EAM in order to predict excitation thresholds and spatial selectivity17, and to calculate electrically 

evoked compound action potentials (eCAPs)18.  eCAPs are far-field measurements of the response 

of multiple auditory nerve fibers to an electrical stimulation measured via intra-cochlear 

electrodes. The amplitude of an eCAP is measured as the difference between the negative and 

positive voltage peaks that result due to the generated activation potential19. Malherbe et al.20 also 

used the gSEF model and integrated into a patient-specific EAM constructed from clinical CT 

image data in order to study the difference in neural activation not only between different 

individuals but also right and left ear.  

The methods developed in the aforementioned studies either lack the capacity to be applied 

in-vivo7,10–14,16 or only confine themselves to anatomical customization20 and do not make use of 

the physiological measurements that are clinically available to construct both anatomically and 

electrically customized models. It is possible that these models need to be fully customized in order 

to prove useful for clinical use. Such models might not only allow a better understanding of the 

patient-specific differences in CI recipients’ performances, but also a prediction of certain factors 

such as neural survival, which is currently not possible to correctly estimate. Thus, in this work 

we are proposing an approach for creating patient-customized, computational auditory nerve fiber 

models (ANFMs) coupled with high-resolution electro-anatomical models (EAM) of the 

electrically stimulated cochlea. These models can be used to simulate physiological measurements 

available via CIs as well as to estimate the heath of auditory nerve fibers along the length of the 

cochlea. The methods developed to create EAMs have already been published in several 

conference and journal articles21,22. In this study, our goal is to develop methods that enable 

customization of ANFMs and clinically verify model findings. 
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7.2 Methods 

7.2.1. Overview 

An overview of the method presented in this chapter is shown in Figure 7.1. We have developed a 

model-based approach for estimating the health of auditory nerve fibers as it varies along the length 

of the cochlea. Our models include a physics-based patient-specific EAM of current spread 

induced by the electrodes coupled with ANFMs. Our EAMs were geometrically customized using 

patient CT images, and the electrical properties were customized using EFI measurements (see 

Figure 7.1). Patient-specific ANFMs were created by segmenting the auditory nerve fibers within 

the EAM space and modeling auditory fiber activation using active membrane models similarly to 

Rattay et al. 20017. In this work, we represent 30,000 auditory nerve fibers that exist in a healthy 

human cochlea23 by 75 distinct auditory nerve bundles that are segmented along the length of the 

cochlea, each of which roughly represents 400 fibers. Due to this simplification, our ANFMs can 

only determine whether a nerve bundle is activated or not but not how many nerve fibers are 

activated. Thus, we make the assumption that the model threshold level at which a nerve bundle 

is activated is the 50% activation level, e.g. 50% of the fibers in the said bundle is activated.  Even 

though, this approach significantly reduces the computational cost of our approach, it also renders 

it impossible to determine clinical thresholds and requires us to rely on clinically measured 

monopolar thresholds, which are used as the model monopolar thresholds. 

We estimate the ANHI by: (1) parameterizing our ANFMs according to neural health; and 

(2) using a constrained optimization algorithm to tune the neural health of the ANFMs in order to 

minimize the sum of squared differences between simulated and the  measured physiological 

measurements available via patients’ CIs. We refer to this process of estimating neural health for 
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fibers along the length of the cochlea as Auditory Neural Health Imaging (ANHI), an example 

result of which is shown in Figure 7.1. 

 

7.2.2. Dataset 

N = 7 patients with unilateral implants, who had undergone CI surgery, were preoperatively 

scanned using conventional radiological scanners with temporal bone imaging protocols with a 

voxel size of ∼0.3x0.3x0.4 mm3 and postoperatively scanned using a Xoran XCAT fpVCT 

scanner. The voxel dimensions in these images were 0.4 mm isotropic. 

Electric field imaging (EFI)23 measurements were performed for the same patients using 

software provided by the CI manufacturer— Advanced Bionics (Valencia, California). EFI is the 

simultaneous measurement of voltage values at every other electrode relative to a far field ground 

when one electrode at a time is activated to inject 32 μA of current into the cochlea. The EFI 

measurements were recorded for all of the 16 electrodes.  

 The amplitude of an eCAP is expected to increase with increased amounts of current19,24–

26.  The amplitude of an eCAP can be plotted with respect to the amount of current injected into 

the cochlea resulting in an amplitude growth function (AGF). The amount of the injected current 

is increased at each step and the time intervals are chosen such that the activated auditory nerve 

fibers can return to their resting state between measurements. eCAPs can also be used to measure 

spread of excitation (SOE) which allows the study of the overlapping excitation fields between 

different electrodes. The SOE measurements represent the relative amount of overlapping auditory 

nerve fibers that are activated by two electrodes, denoted as the masker and the probe. SOE is 

expected to be the maximum when the masker and the probe electrodes are the same and to be the 

minimum when two different electrodes with the highest spatial distance are used. AGF and SOE 
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measurements were collected for the same 7 patients, and an example of these measurements for 

representative electrodes is shown in Figure 7.1.  

 

Head CT image Cropped CT image Intra-cochlear structures and 
the electrode array 

Auditory nerve fibers 

 

 

 

 

 

 

 

Patient resistivity map  

  
 

Auditory neural health  

 

 

 
 
Figure 7.1. An overview of the construction of patient-specific electro-anatomical and auditory nerve fiber models. 
The first row demonstrates the segmentation of intra-cochlear structures as well as auditory nerve fibers. The second 
and third rows are example results after customizing the electro-anatomical and auditory nerve fiber models, 
respectively. 

 
 
7.2.3. Electro-anatomical model customization 

We created physics-based EAMs to determine the patient-specific voltage profiles caused by the 

current injected via intra-cochlear electrodes. This was achieved by first constructing an active 

shape model (ASM) using the structures, i.e. scala tympani (ST), scala vestibuli (SV), and 

modiolus (MO), that were manually segmented in high-resolution μCT images27. ST and SV are 
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fluid-filled cavities and together form the cochlea. MO, on the other hand, is the bony region that 

encases the spiral ganglion nerve cells. The ASM is automatically fitted to the external boundary 

of the cochlea that is visible in conventional CT images. This procedure is used to segment the 

intra-cochlear structures in a new patient image27 with a Dice similarity score of 0.8. We have 

shown in Chapter 4 that that improvements in intra-cochlear structure segmentation can lead to 

more accurate models. Patient-specific models created from manually segmented cochleae in high-

resolution images had a higher accuracy of 87.5% compared to an accuracy of 81.2% when the 

same models were created from automatically segmented intra-cochlear structures using the 

aforementioned methods.  

 High-resolution EAMs were created using patient CT images as previously published21,22. 

Briefly, high resolution resistivity maps, which are tissue class label maps used to define the 

electrical resistivity of the tissue in the image, were created from µCT images of ex-vivo specimens 

and were projected onto the patient CT image through a thin-plate spline (TPS)28 transformation 

that registers segmentations in the new patient image with segmentations in the µCTs. A combined 

resistivity map is created using a majority voting scheme between all of the 9 possible resistivity 

maps. A node was defined at the center of each voxel representing the tissue type to which the 

voxel belongs. These tissue types are electrolytic fluid, neural tissue, soft tissue, bone, and air. The 

voxels enclosed within ST and SV were assigned to electrolytic fluid class, and those within MO 

were assigned to neural tissue class. A decision between soft tissue, bone and air was performed 

following a thresholding procedure. Voxels with a Hounsfield unit of over 1200 and less than -800 

were assigned to bone and air classes, respectively. The remaining voxels were assigned to soft 

tissue class. Finally, spatially customized EAMs were used to solve the Poisson’s equation for 

electrostatics, which is given by: 



 

122  

 𝛻 · 𝐽 =  -σ𝛻6F (7.1) 

Where F is the potential, J is the current density and s is the conductivity. This system of equations 

was solved using the bi-conjugate gradient method29.  The final output of the model is the voltage 

map F, which contains the voltage at each of the nodes. This follows the approach proposed by 

Whiten24. 

Electrical customization is achieved by optimizing the resistivity values used in creating 

the EAMs so that the difference between the measured EFI and the simulated EFI values is 

minimized. We have extended the previously published method22 by including the bone and 

electrolytic fluid tissue classes into the customization process. A grid search algorithm was used 

in order to find the resistivity values that minimize the difference between the measured and 

simulated EFI, denoted as average error, which is defined as: 
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(7.2) 

where 𝐸𝐹𝐼�  is the clinically measured EFI, 𝐸𝐹𝐼� is the simulated EFI, and M is the number of 

electrodes. The average error value was calculated after normalizing the EFI values, which allows 

us to determine the scaling factor of the resistivity values after the optimization step reducing the 

number of search parameters by 1. 4D grid consisting of the resistivity values for soft, neural, bone 

and electrolytic fluid was created. For each tissue class, values ranging from 50 to 150% of the 

default resistivity value with a uniform step of 25% were chosen. Default resistivity values for 

soft, electrolytic fluid, neural tissue, and bone are 300, 50, 600, and 5000 Ωcm, respectively. The 

air on the other hand was modeled as perfectly resistive rather than with a high resistivity value in 

order to eliminate the rounding off errors that occur due to high order difference between the 
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resistivity values of air and other tissue types. After the grid search is completed, the final 

resistivity set with the lowest average error was scaled by 		∑𝐸𝐹𝐼� ∑𝐸𝐹𝐼�⁄ .   

Additionally, we compute the difference between the measured and the simulated EFI 

values for each electrode in order to determine the electrodes around which fibrous tissue might 

have grown by assuming that the higher differences seen between the measured and the simulated 

EFI values are only due to tissue growth phenomenon. This is a phenomenon seen with CI users, 

where after the insertion the body treats the electrode array as a foreign object and starts forming 

scar/fibrous tissue around it30–33. It has also been shown that the efficiency of CIs is affected by 

such tissue growths consisting of inflammation or fibrosis34. In order to capture the changes in 

electrical impedances caused by tissue growth, we first optimize the set of resistivity values that 

minimize the average error aforementioned above. We then determine the electrodes for which 

the difference between the simulated and measured EFI values are more than thrice the average 

error calculated using the optimized resistivity values. We chose this value because the optimized 

soft tissue resistivity values were at least three-folds the optimized electrolytic fluid resistivity 

value. We then automatically create a ‘tissue growth region’ by dilating the electrode array. It is 

important to note here that it is not possible to determine the thickness of the tissue growth region 

from patient CT images because the metallic electrodes distort the intensity around the electrode 

array due to the beam hardening artifacts. Thus, we assume a uniform tissue growth region 

thickness across patients and dilate the electrode array by 2 voxels in each direction. The scar 

tissue region was assumed to span the halfway points between the electrode itself and the 

neighboring electrodes, i.e., the scar tissue growth for electrode x is assumed to be between j�j	j�T�
6

 

and j�j	j�U�
6

 where j is the angular depth of electrodes. Angular depth of an electrode is measured 

as the angle along the spiral of the cochlea, where the round window (the entrance of the cochlea) 
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corresponds to zero degrees (0°). For the most basal electrode, the scar tissue growth region is 

assumed to be between the electrode and the round window. Finally, the grid-search optimization 

algorithm is then rerun including the tissue growth region which is parameterized as soft tissue.  

Another approach would be to leave the soft tissue parameter fixed and change the scar tissue 

thickness to optimize the EFI fit, which will be evaluated in future work.  

 

7.2.4. Nerve Model 

We followed the work done by Rattay et al.7 to compute patient-specific neural response from 75 

auditory nerve bundles to the current injected by the CI contacts. For each fiber bundle, we follow 

the approach of Rattay et al., where the ‘warmed’ HH (wHH) model was used. With wHH, the 

gating processes are accelerated compared to the original HH model.   wHH includes sodium, 

potassium and leakage currents and has the following form15:  

where 𝑉, 𝑉P, 𝑉1 and 𝑉�1�� are the membrane, internal, external and resting voltages, and  𝑉��, 𝑉� 

and  𝑉  are the sodium, potassium and leakage battery voltages, respectively. 𝑔��, 𝑔�, 𝑔  are the 

maximum conductance and 𝑚, ℎ, 𝑛 are probabilities with which the maximum conductance is 

 𝑑𝑉
𝑑𝑡 =

[−𝑔��𝑚7ℎ(𝑉 − 𝑉��) −	𝑔�𝑛¡(𝑉 − 	𝑉�) −	𝑔 (𝑉 − 	𝑉 ) +	 𝑖��P¢£�£�]/𝑐 (7.3) 

 𝑑𝑚
𝑑𝑡 =

[−(𝛼¢ +	𝛽¢)𝑚 + 	𝛼¢]𝑘 (7.4) 

 𝑑ℎ
𝑑𝑡 =

[−(𝛼§ +	𝛽§)ℎ + 	𝛼§]𝑘 (7.5) 

 𝑑𝑛
𝑑𝑡 =

[−(𝛼~ +	𝛽~)𝑛 + 	𝛼~]𝑘 (7.6) 

 𝑘 = 	3Er©.7 (7.7) 

 𝑉 = 	𝑉P −	𝑉1 − 𝑉�1�� (7.8) 
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reduced with respect to measured gating data, for sodium, potassium and leakage, respectively. 

Finally, 𝛼 and 𝛽 are voltage dependent variable that were fitted from measured data and 𝑘 is the 

temperature coefficient, which is required in the original HH model. The original experiment 

temperature was 6.3 °C, which is modified to 29.0 °C as done in Rattay7.  

 

 
Figure 7.2. The geometrical properties of the auditory nerve fiber. 

 

The geometry of the auditory nerve fiber used in this study is shown in Figure 7.2. As 

shown in the figure, a nerve fiber consists of several different subunits which are peripheral nodes 

and internodes, somatic, pre- and post-somatic regions, and central nodes and internodes. Each of 

these subunits can be thought as a compartment that is modeled by an electrical circuit with 

distinctive electrical properties. In our study, we have used the same electrical and geometrical 

properties as Rattay did in his work7. Briefly, the peripheral part of the axon contains an 

unmyelinated terminal, 5 nodes of Ranvier, 6 internodes and a presomatic region and has a 

diameter of 1 µm. The central part of the axon contains the postsomatic region, 16 internodes and 

15 nodes of Ranvier and has a diameter of 2 µm. The peripheral internodes have a length of 430 

µm, with the exception of the last internode, whereas the central internodes have a length of 150 

µm. The terminal, presomatic and postsomatic regions are 100, 10 and 5 µm long, respectively. 

Both peripheral and central nodes of Ranvier are 2.5 µm long. The peripheral internodes are 

covered with 40 shielding layers, whereas the central ones are covered with 80 layers. Finally, 
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soma is modeled as a perfect circle with a diameter of 30 µm and is covered with 3 shielding 

layers. 

 The original electrical properties of the HH model were modified in order to compensate 

for the lower temperature, which was assumed to be 6.3 °C at the original HH model, and to reach 

10-fold channel density. Thus, the gating variables associated with sodium channel 

activation/inactivation and potassium channel activation, 𝑚,	ℎ, and 𝑛 respectively, were multiplied 

by a factor of 𝑘 as defined in Equation 7.7 where T is temperature in Celsius. Additionally, 𝑔��,

𝑔�, 𝑔  which are the maximum conductances for sodium, potassium and leakage, respectively, 

were multiplied by a factor of 10. 

 

7.2.5. Nerve segmentation 

Auditory nerve fibers along the cochlea are segment using the method explained in Chapter 6. The 

segmentation of the section of the fibers from the unmyelinated terminal to the internal auditory 

canal (IAC) were carried out relying on the a priori knowledge of the morphology of the fibers as 

well as the accurate localization of the landmarks that provide useful information with respect to 

the location of the nerve fibers. The unmyelinated terminals are located between the basilar 

membrane and the osseous spiral lamina (OSL), which will be referred to as the OSL curve. The 

fiber then proceeds into the MO where the nerve body cells, namely soma, are located within 

Rosenthal’s Canal (RC).  It then radially proceeds outwards into the internal auditory canal (IAC) 

passing through what we refer to as IAC end points35,36. The location of the OSL curve as well as 

RC can be accurately localized using the methods that we have previously developed21. The 

location of the IAC endpoints on the other hand were estimated by flattening the points that make 

up the RC curve onto a plane located along the mid-modiolar axis around which the cochlea spirals. 
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We have shown in our previous studies that the model output is insensitive to moderate changes 

in the location of the IAC endpoints37. The fiber segmentation is treated as a path-finding problem, 

where the aim is to find a path connecting the unmyelinated terminal to the soma to the IAC 

endpoint with a shape that matches the expected shape of the fiber. Using Dijkstra’s algorithm37, 

the paths connecting the corresponding points on the OSL, RC and IAC endpoint curves were 

found. Finally, a spline was fit to the path in order to create a shape that matches the anatomically 

expected shape of the nerve fibers. Segmented nerve bundles are shown in red in Figure 7.3. 

 

 

Figure 7.3. Scala tympani (ST) and segmented auditory nerve fibers are shown in blue and red, respectively. 

 
 
7.2.6. Physiological CI measurements 

The amplitude of an eCAP is measured by the difference between the negative and positive peaks. 

There are several methods to measure eCAPs using cochlear implants, the first of which is the 

alternating polarity (AP) method where eCAP is measured as the average response from the 

auditory nerves when both cathodic and anodic current pulses are used. The AGF measurements 

were collected using the AP method (see Figure 7.4). An intra-cochlear electrode is chosen as the 

active electrode that injects both cathodic and anodic pulses. The amplitude of the injected current 

is increased at each step and the step intervals are chosen such that the activated auditory nerve 

fibers can return to their resting state.  For each patient, AGF measurements were taken for all the 
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active electrodes, and 10 current levels increasing incrementally were injected into the cochlea 

ranging from 20 µA to maximum amount of current deemed comfortable but loud by the patient. 

 

  

(a) (b) 
Figure 7.4. Explanation of the forward-masking subtraction (FMS — (a)), and the alternating polarity (AP — (b)) 
method. Figures extracted from 19. 

 

These levels were clinically chosen by the audiologists. Finally, eCAP measured at each step as 

the difference between the negative and the positive peaks, is plotted with respect to the injected 

amount of current at that step (see Figure 7.5).  

MPI 
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Figure 7.5. An example of amplitude growth function (AGF). 

 

Another method that is used to measure eCAPs is the forward-masking subtraction (FMS) method 

which takes advantage of the physiological properties of the auditory nerves in order to extract 

eCAP data (see Figure 7.4). In FMS, two distinct pulses are used, namely masker and probe pulses, 

which are injected into the cochlea with a masker-probe interval (MPI – see Figure 7.4). When the 

MPI is sufficiently short, the nerve fibers that are activated by the masker will be in refractory state 

when the probe pulse is injected. In order to extract the neural response data created by the probe, 

the recorded responses from the individual masker and probe pulses will be added from which the 

recorded data for when masker and probe are used together as well as the system noise will be 

subtracted, resulting in the eCAP signature. By keeping the probe electrode constant and varying 

the masker electrode, the overlapping excitation fields between different electrode pairs can be 

calculated, which is referred to as the spread of excitation (SOE) function. The SOE function 

represents the relative amount of overlapping auditory nerve fibers that are activated by both the 

masker and the probe. SOE function is expected to increase as the spatial distance between the 

masker and the probe electrode decrease and vice versa (see figure 7.6) The SOE data were 
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measured for each pair of active electrodes injecting an amount of current deemed comfortable but 

loud by the patient while being within the compliance limits.  

 

 

Figure 7.6. Spread of excitation (SOE) function for probe electrode number 7. 
 
 

7.2.7. Nerve model customization 

A healthy human being is assumed to have around 30,000 auditory nerve fibers35, which are 

represented with 75 nerve bundles in our ANFM. Thus, for a healthy human being, each of these 

nerve bundles roughly contain 400 fibers. We can model the health of each nerve bundle by 

varying the number as well as the ratio of myelinated vs unmyelinated fibers a bundle contains. 

The myelination ratio is defined as the ratio of the fibers in a bundle with myelinated peripheral 

axons to those with unmyelinated peripheral axons (see Figure 7.2) We refer to this process of 

determining the health of an auditory nerve bundle as auditory nerve health imaging (ANHI) and 

propose to calculate it as shown below: 

 
𝐴𝑁𝐻𝐼P = 𝑁P¬1���§V ∗ ­0.5 +

𝑅𝑎𝑡𝑖𝑜PFV1�P~��1¯
2° ± 

(7.9) 

where 𝑁P and 𝑅𝑎𝑡𝑖𝑜P are the number and ratio of nerve fibers in a given bundle i. The Equation 
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7.9 indicates that when the number of healthy fibers in a bundle is bigger than 0, the estimated 

ANHI is the average of the total and myelinated number of fibers in that bundle. However, when 

the number of healthy fibers is 0, then the estimated ANHI will be 0 regardless of the myelination 

ratio. 

The health of such bundles can be parameterized in order to minimize the difference 

between simulated and measured AGF and SOE values. Auditory neural survival has been shown 

to be highly variable among subjects with profound hearing loss38–41. Thus, we customize each 

nerve model to the patient in order to estimate patient-specific ANHI. We define n+1 control points 

along the cochlea where n is the total number of active electrodes. One control point is placed at 

the basal part and another is placed at the apical part of the cochlea. The remaining n-1 points are 

placed midway between every consecutive electrode pair. In 23 Spoendlin et al. found that for a 

healthy human cochlea, average number of fibers can vary between 500 fibers per millimeter (mm) 

to 1400 fiber per mm depending on the location within the cochlea. Given that a nerve bundle in 

our model can represent a region as wide as 0.4 mm, we have set the boundary values for number 

of healthy nerve fibers to be between 0 (completely dead) and 550 (completely healthy). The n+1 

control points were initially randomly assigned weights between 0 and 550 and myelination ratios 

between 0 and 1. The weight of each control point corresponds to the number of nerve fibers within 

a bundle, and the myelination ratio corresponds to the ratio of the fibers whose axons are 

myelinated. The weight and myelination ratio of each nerve bundle is linearly interpolated along 

the length of the cochlea using the n+1 control points. The summary of the algorithm is shown in 

Algorithm 7.1. 

As shown in the algorithm above, we use a modified version of the unconstrained Nelder-

Mead optimization algorithm42. The cost function is calculated as the mean of the sum of the 
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difference between the simulated and measured AGF values and the measured and the simulated 

SOE values only for when the probe and the masker are the same electrodes. We chose to use SOE 

as well as AGF measurements in our cost function because the AGF and SOE data are calculated 

using two different methods, AP and FMS, respectively. Thus, using the SOE measurement 

provides information that is not available only with AGF. We chose to use the SOE data points 

only for when the masker and the probe are the same so that the remaining SOE data points can be 

used to test and quantify the accuracy of our optimization algorithm. 

Algorithm 7.1. Estimate the patient specific ANHI 
Input: PAGF = Patient AGF measurement, PSOE = Patient SOE measurement 
Variables: SAGF = Simulated AGF data, SSOE = Simulated SOE data, HNB = Number of nerve fibers 
within bundles, MNB = Myelination ratio of fibers within bundles 
Output: WCNB = Weight assigned to each control point, MCNB = Myelination ratio assigned to 
each control point 
Start: Assign threshold and maxIteration, randomly assign WCNB and MCNB 
While Δ | error| > threshold and counter < maxIteration 
    Interpolate HNB and MNB using WCNB and MCNB 
    Calculate SAGF and SSOE  using HNB and MNB 
    For each electrode i = 1:16 
        errorAGF [i] = mean(abs(PAGF [i] - SAGF [i])) 
        errorSOE [i] =abs( PSOE [i][i] - SSOE [i][i]) 
    error = mean(errorAGF + errorSOE) 
    Optimize WCNB and MCNB using a constrained nonlinear search algorithm based on Nelder-
Mead simplex   
    counter++ 

 
AGF values that were less than 50 µA were not included in the training process because low AGF 

values tend to be noisy and are usually excluded from clinical threshold calculations. Given that 

AGF and SOE responses carry information regarding two different stimuli, i.e. cathodic and 

anodic, equal weights were assigned to these measurements in the training process. For each 

patient, the neural optimization step is run 250 times each time with a different starting point. The 

final weight and the myelination ratio for each nerve bundle is determined as the median values 

using the results with the 10 lowest average error. This procedure diminishes the likelihood of 
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choosing a sub-optimal local minima over another given that there can be several local minima 

that equally minimize the difference between the simulated and measured data. 

 

7.2.8. Clinical ANFM verification 

In order to test the validity of our patient-specific EAM, we have clinically conducted a channel 

discriminability task and compared the results to our simulation results. Channels are created such 

that when a sound from a pre-determined filter bank is received, the corresponding channel is 

activated. In CIs, different stimulation techniques can be used to create different channels, such as 

monopolar, bipolar, tripolar, virtual, etc43–45. In the case of monopolar channel, a single electrode 

is used to inject current into the cochlea, whereas in bipolar and tripolar channels, in addition to 

the current injecting electrode, one or two neighboring electrodes are used to pull current from the 

system, respectively. Virtual channels (VC) on the other hand differ from other stimulation 

techniques in that two electrodes rather than one are used to inject current into the system. Different 

virtual channels assumed to activate different regions of the cochlea can be created by changing 

the ratio of currents injected from two neighboring electrodes. It has been shown that as many as 

7 virtual channels could be created between each pair of intra-cochlear electrodes using Advanced 

Bionics CI46. An example explaining different stimulation techniques is shown in Figure 7.7. 

 

           Current steering (CS)     Bipolar (BP) stimulation    Tripolar (TP) stimulation 

 

Figure 7.7. Comparison between different stimulation methods.  
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The goal in performing the channel discrimination test is to determine how difficult it is for a 

patient to discriminate the perceived sounds created by two distinct neighboring electrodes. In 

order to clinically measure the discriminability of electrode x from electrode x+1 or x-1, we first 

created 15 virtual channels between the two neighboring electrodes. These virtual channels were 

created such that the volume of the perceived sound across different channels is constant and that 

the region activated by both electrode x and VCs is expected to decrease as the channel number 

increases. Thus, discriminating electrode x from VCs gets more difficult as we move from VC #15 

to VC #1. The test we have set up is as follows: The patient is presented with 4 ‘beep’ sounds one 

after the other created using two distinct channels; one being the monopolar channel x and the 

other is one of the VCs. Three out of the 4 sounds have the same pitch and, the patient is asked to 

find the sound with the different pitch, which is always either the 2nd or the 3rd sound presented. 

The number of the VC against which the discriminability of monopolar channel x is being tested 

is changed based on the answer of the patient. If the patient is successful twice in a row in 

identifying the sound with the different pitch, then the number of the VC is decreased, making the 

discrimination task more difficult. If the patient is unsuccessful, the number of the VC is then 

increased making the task easier. The task is repeated in an adaptive way with the goal of finding 

the number of the VC y from which the patient has successfully discriminated the monopolar 

channel x with a 67% ratio48. The adaptive test is repeated 3 times for each electrode pairs and the 

final discriminability ratio is calculated as the mean value across all 3 trials. A total of 15 electrode 

pairs for 4 patients was clinically tested. 

The discriminability of different channels is also estimated using the ANFMs. The model 

estimated discriminability ratio between neighboring electrodes were calculated as follows: 



 

135  
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 (7.10) 

where 𝐷S,V is the discriminability of monopolar channel x from monopolar channel y, 𝑛𝐴SP  is the 

number of activated nerve fibers in bundle i by monopolar channel x, and 𝑛𝐴S,VP  is the number of 

activated nerve fibers in bundle i by monopolar channels x and y both.   

 Additionally, neural health estimation of our ANMs were tested. In CI community, the 

ratio of monopolar to tripolar channel thresholds has been proposed as a surrogate for neural 

health47–50. The higher the ratio between tripolar and monopolar channel thresholds, the lower the 

number of healthy SG nerve cells located around the active electrode. Thus, linear regression 

models (LRMs) were created in order to determine the correlation of clinically measured tripolar 

thresholds with model tripolar thresholds, number of healthy fibers, and myelination ratio.  

7.3 Results 

 
 
7.3.1. Tissue growth 

The average error for scar tissue growth correction is shown in Table 7.1. As shown in the table, 

our optimization algorithm did not reveal any tissue growth region for Patient 1 and Patient 4. For 

the remaining patients, including tissue growth in optimizing the resistivity values lead to either 

lower (Patient 2, 3, 6, and 7) or equal (Patient 5) average errors. Comparisons between the 

simulated and measured EFI data for Patient 5 before and after the tissue growth correction are 

shown in Figure 7.8 and 7.9, respectively. The optimization algorithm revealed a relatively large 

tissue growth region for Patient 5, from electrode 9 to 16. The assumption that the tissue that forms 

around the electrode array is homogenous might be the reason why the algorithm could not further 

reduce the average error for Patient 5. 
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Table 7.1. average error calculated as the mean difference between simulated and measured EFI values before and 
after tissue growth correction is shown. 

 average error 
before tissue 
growth (%) 

average error after 
tissue growth 
correction (%) 

Patient 1 4.3 NA 

Patient 2 5.1 4.6 

 Patient 3 9.8 9.5 

Patient 4 3.9 NA 

Patient 5 6.6 6.6 

Patient 6 4.1 3.7 

Patient 7 8.2 7.9 

 

 

 

Figure 7.8. Comparison between simulated and measured EFI data before tissue growth correction 
 

 

In addition, increasing the resolution of the grid might further improve the results. However, our 
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algorithm is already able to produce results with low average errors, and increasing the grid 

resolution would lead to a quartic increase of the computational cost.  

 
 

 

 
Figure 7.9. Comparison between simulated and measured EFI data after tissue growth correction 

 
 
 
7.3.2. Auditory neural health imaging 

The average absolute differences between the simulated and measured AGF and SOE 

values are shown below. It is important to remember that all the available AGF data and the SOE 

data only for when the same electrode is used to inject both the masker and probe pulses were used 

in the optimization process. Thus, the average absolute difference between the simulated and the 

measured AGF values could be interpreted as the training error, whereas the error between the 

simulated and the measured SOE can be interpreted as the testing error.  
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Table 7.2. Average mean absolute difference between simulated and measured training and testing data, AGF and 
SOE, respectively. 

 AGF error - before 
customization (µV) 

AGF error - 
training (µV) 

SOE error - 
testing (µV) 

Patient 1 131 11 29 

Patient 2 187 19 32 

Patient 3 58 16 33 

Patient 4 66 37 44 

Patient 5 299 39 37 

Patient 6 78 14 35 

Patient 7 124 22 52 

Average 134.7 22.6 37.4 

 

 
As shown in the table above, the average difference across all patients for AGF and SOE 

optimization are 22.6 and 37.4 µV, respectively. A qualitative comparison between simulated and 

measured training and testing data are shown in Figure 7.10 and Figure 7.11, respectively. Both 

quantitative and qualitative comparisons show good agreement between the simulated and 

measured AGF and SOE values.  Our optimization algorithm is able to optimize the neural health 

information and minimize the mean difference between the simulated and measured training AGF 

data from as high as 187.34 µV  to 18.93 µV for Patient 2 (see Table 7.2). Similar results are also 

found for the testing SOE data, around 90% reduction in mean difference between measured and 

simulated results for Patient 2. These results are especially remarkable because even though the 

training data does not contain any information with respect to the overlapping excitation fields 
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between different electrodes, our model is able to accurately estimate the SOE measurements. 

 

 

 

 

(b) 

 

(a) (c) 

Figure 7.10. Comparison between simulated and measured training data for Patient 1; amplitude growth function 
(AGF – (a)) and spread of excitation (SOE – (b)).  The ANHI estimates are shown in (c). The health of each nerve 
bundle is color-coded ranging from red (healthy) to blue (unhealthy).  

 
 
7.2.3. Clinical verification 

The resulting clinical discriminability levels, model discriminability ratio as well as average 

modiolar distance for each pair are shown in Table 7.3. The lower the average clinical 

discriminability ratio, the less difficult it is for the patient to discriminate Electrode1 from 

Electrode2. The same principal applies to model discriminability ratio 𝐷¹�1���º¯1�¹�1���º¯1x   as well 

average modiolar distance. It has been shown in the CI community that the electrode distance is 

positively correlated with spread of excitation2. A correlation coefficient (CC) value was 

calculated between model estimated and clinically measured discriminability level as well as 

Measured Simulated 



 

140  

average modiolar distance and the clinically measured levels. 

 

 
Figure 7.11. Comparison between simulated and measured testing data for Patient 2. 

 

All data were zero centered before the CCs were computed. CC values of 0.69 and 0.4 were found 

between the model estimates and clinical measurements and between average modiolar distance 

and clinical measurements, respectively (see Figure 7.12). It has already been showed by Noble et 

al.2 that electrode distance can be used as a surrogate in estimating neural activation patterns, which 

in turn can be used to determine channel interaction artifacts. Electrode pairs with high 

discriminability ratios are expected to have higher channel interaction artifacts. Clinical studies 

conducted by the same group have shown that turning off electrodes with high channel interaction 

artifacts calculated based on the modiolar distance leads to higher hearing outcomes2. Our results 
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indicate that our model discriminability ratio is a better estimate for channel interaction than 

modiolar distance. 

 

Table 7.3. The resulting clinical discriminability levels, model discriminability ratio as well as average modiolar 
distance for 15 pairs of clinically tested electrodes. 

Patients Eletrode1 Electrode2 1st trial 2nd trial 3rd trial Average 𝐷¹�1���º¯1�,¹�1���º¯1x Average 
modiolar 

distance (mm) 
 

Patient 1 

7 6 9 7 11 9.0 0.657 0.723 

7 8 5 8 8 7.0 0.717 0.811 

14 13 4 2 2 2.7 0.262 0.432 

 

Patient 2 

3 4 2 4 5 3.7 0.949 0.560 

8 9 5 3 2 3.3 0.605 0.825 

10 11 2 4 2 2.7 0.440 0.576 

 

 

Patient 3 

4 3 3 2 3 2.7 0.229 0.082 

7 8 2 2 2 2.0 0.543 0.409 

8 9 5 7 2 4.7 0.639 0.480 

9 8 2 2 4 2.7 0.404 0.480 

9 10 2 3 2 2.3 0.265 0.585 

10 9 2 5 3 3.3 0.639 0.585 

 

Patient 4 

3 4 7 11 8 8.7 0.906 0.509 

11 12 12 2 9 7.7 0.468 0.812 

12 13 8 5 5 6.0 0.344 0.542 

 
 

Thus, we believe that IGCIP techniques would lead to even better hearing scores when model 

discriminability ratio instead of modiolar distance is used to determine channel interaction 

artifacts. We have evaluated our ANHI approach using clinical measurements from N = 5 patients 

with varying number of electrodes (see Table 7.4). Data plots revealed a small but consistent shift 

(1 mm) in the ANHI data relative to the tripolar thresholds, likely due to small inaccuracies in how 

the model permits flow of electrical current through the round window (see Figure 7.13). In CIs, 
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the current injected by an intra-cochlear electrode flows to the far ground located by the patient’s 

ear. In our EAM, we simulate the far ground by modeling the entire border of the EAM as ground. 

The border of an EAM is approximately 5 mm away from the cochlea in each direction (see section 

4.3.2). It is possible that the far ground in our model biases the current path toward the apex of the 

cochlea causing more current than what realistically plausible to escape the cochlea toward the 

apical end, creating the bias shown in Figure 7.13. 

 

 

 

 

 

 

 

Figure 7.12. Comparison between clinical discriminability levels and model discriminability ratio (left) as well as 
average modiolar distance (right). 

These shifts were corrected in the ANHI data prior to the following analyses. The amount of the 

shift (1.2 mm) was kept consistent among all patients. An LRM was created using the zero-

centered aggregate data in order to determine the correlation of clinically measured tripolar 

thresholds with modiolar distance, ANHI, model tripolar thresholds, and monopolar thresholds. It 

has been shown in other clinical studies49,50,53 that the ratio of tripolar thresholds to monopolar 

thresholds were correlated with electrode modiolar distance. We also included our ANHI estimates 

because clinical tripolar thresholds are thought to contain auditory neural health information. 
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Figure 7.13. ANHI estimates before and after the 1 mm shift correction (blue) as well clinical tripolar thresholds (red) 
are shown. 

 
 
Additionally, model tripolar thresholds were included as they provide information that might not 

otherwise be available via other factors such as voltage profile the along auditory nerve fibers and 

electrode distance to nodes of Ranvier (see Figure 7.14 – (a)). The correlation of the LRM with 

aggregated data was R = 0.28, and both modiolar distance and ANHI were statistically significant 

(p < 0.05).  It is not unexpected that this LRM with only four variables was not able to capture a 

high degree of variance that exist between different patients. Differences in auditory nerve fiber 

physiology as well as demographics might be some of such factors that contribute to this variance. 

Thus, we instead created individual LRMs for each of the patients. The monopolar thresholds were 

not included in the final LRMs as they were not found to be statistically significant for any of the 

patients. The LRMs were initially created with factors outlined above, and the factors with p-

values less than 0.05 were eliminated using backward elimination. For patients where the 

correlation coefficients between the number of nerve fibers and the myelination ratios were less 
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than 0.5, these two factors were used instead of ANHI as the two factors might provide more 

information that is otherwise unavailable with solely ANHI. In addition, the number of nerve fibers 

and the myelination ratio may be independent for cases where some damage occurred to the 

peripheral part of the auditory nerve fibers either during or after the insertion and dependent 

otherwise. The R values listed below are the final R values computed with only statistically 

significant factors are shown Table 7.4.  

 

Table 7.4. Final LRMs for all 5 patients after the shift was corrected is shown. * is used to indicate statistically 
significant factors.  

Patients Number of 
electrodes tested 

pANHI pNumber of fibers pMyelination ratio  pModiolar distance pModel-threshold R 

Patient 1 15 NA 2.4e-02* 2.9e-05* 7.1e-10* 4.4e-01 0.95 

Patient 2 13 NA 1.2e-04* 1.1e-01 1.9e-01 7.6e-01 0.50 

Patient 3 11 1.8e-09* NA NA 1.3-e14* 8.9e-01 0.89 

Patient 4 11 2.0e-05* NA NA 8.4e-04* 3.2e-02* 0.78 

Patient 6 11 NA 1.4e-10* 2.7e-15* 7.5e-08* 2.1e-01 0.93 

 
 

As expected, either ANHI or number of fibers and/or myelination ratio estimates were negatively 

correlated with clinical tripolar thresholds for all patients except for Patient 2. The model tripolar 

threshold as well as modiolar distance on the other hand were not as consistent.  

Out of the 5 patients listed above, Patient 1 and Patient 2 had scalar translocations, e.g. the 

electrode array translocated from the ST into the SV. The translocation occurred around 180-

degree depth for both Patient 1 and 2. Patient 1 has 9 electrodes and Patient 2 has 7 electrodes 

located in the SV. However, these two patients have highly contrasting tripolar threshold profiles 

(see Figure 7.14). For Patient 1, out of 15 electrodes, we were unable to measure a tripolar 

threshold for 6 electrodes, from electrode 6 to 11, within the current limitation set by the 

manufacturer. Thus, these electrodes were not included in the linear regression analyses. As seen 
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in the figure below, the biggest difference in clinical tripolar thresholds between Patient 1 and 2 

occurs around the region where the translocation occurs. For Patient 1, the electrodes that sit in 

that region have the highest thresholds compared to the other electrodes, whereas for Patient 2, 

electrodes that sit at where the translocation occurs have the lowest thresholds. This difference 

might be due to two reasons: (1) Even though both electrode arrays have translocated around the 

same region, the closest distance from the electrodes around the translocation region to the auditory 

nerve fibers are relatively different with average distances of 0.49 and 0.37 mm for Patient 1 and 

2, respectively. (2) The trauma caused by the electrode array insertion might be different for Patient 

1 and 2. Our hypothesis is that the peripheral part of the auditory nerve fibers located between the 

ST and SV were damaged during or after the insertion for Patient 1 but not for Patient 2. These 

differences in clinical tripolar thresholds for electrodes around the translocation region were 

captured by our ANFM where the model tripolar thresholds are highly correlated with clinical 

thresholds. In addition, our neural health estimate for Patient 1 shows a fairly large region of the 

cochlea (between 180 and 300 degree-depth) with a low ANHI estimate, whereas the ANHI 

estimate for Patient 2 is relatively consistent except around 180 degree-depth, which is where the 

translocation as well as the lowest ANHI estimate occur (see Figure 7.14). As shown in Figure 

7.14, the ANHI estimate for Patient 2 between 30 and 150 degree-depth is noisy even though the 

clinical tripolar thresholds are relatively consistent for when the closest distance to the auditory 

nerve fibers is controlled. The closest distance from the electrodes to the auditory nerve fibers is 

the lowest for the 8th electrode sitting at 144 degree-depth and gradually increases for the electrodes 

sitting more apically and basally. Controlling for the smoothness of the ANHI estimate would 

allow us to more consistently estimate the auditory health in such regions where the neural health 

is relatively consistent, and might increase the variance explained by our LRM for Patient 2. For 
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Patient 1, our model estimates that there is a ‘dead region’ where the 2 most apical electrodes sit. 

Less accurate results are expected here because we do not have any clinically measured AGF data 

for these electrodes. Thus, our algorithm could find many different solutions around the last 3 

electrodes and in this case likely erroneously found these apical 2 electrodes to sit near a dead 

region.  

 

 

 
 

 

 

(a) (b) 

Figure 7.14. Comparison between different factors as well as clinical tripolar thresholds are shown in for Patient 1 
and 2 in (a). The scala tympani, electrodes and auditory nerve fibers are shown in blue, cyan and red in (b). 
Additionally, an example of the auditory fiber with the shortest distance to the most apical electrode is shown in 
yellow. 

 
 

For both Patient 1 and 2, correlation between the model tripolar thresholds and the clinical 

measurements is lower for the 2 most apical electrodes. This could be because the auditory nerve 

fibers in our model are only segmented to be between the RW and the 2nd turn of the cochlea (720 

degree-depth). In the case of a translocation, a more extreme version of a cross-turn stimulation 

might occur, e.g. an electrode located at the 1st turn of the cochlea (360 degree-depth) might 

stimulate auditory nerve fibers that sit beyond the 2nd turn of the cochlea, given that the closest SG 

Scala tympani 

Auditory 
nerve fibers 

Electrodes 
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nerve cells to the translocated most apical electrodes would be located within the bundles that sit 

closer to the third turn of the cochlea.  

 

 

 
 
Figure 7.15. Comparison between estimated auditory health information and clinical tripolar thresholds for Patient 3, 
4, and 6. 

 

Clinical tripolar thresholds as well as ANHI estimates for Patient 3, 4, and 6 are shown in Figure 

7.15. As shown in the figure above, there is a high correlation between the model neural health 

estimate and the clinical tripolar thresholds. As expected, when the model neural health estimate 

is low, the measured tripolar thresholds are high, and vice versa. We have omitted the clinical 

tripolar threshold for Patient 4 electrode #11 from LR analyses as it was not possible to measure 

the threshold within the current limits set by the manufacturer. And, as shown in the figure, our 

model is not able to accurately predict the possible neural dead spot located around 11th electrode. 

In addition, this difference in thresholds between the 11th and its neighboring electrode was not 

captured by the ANFM model. Thus, the linear model’s predictability would be slightly worse 

were we to include a high threshold for electrode #11.  
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7.2.3. Sensitivity of ANHI to EAM resistivity values 

The grid search algorithm used in optimizing the resistivity values of different tissue types 

produces several local minima that provide a good fit between simulated and measured EFI values. 

We examined the effect of choosing different sets of resistivity values on ANHI by randomly 

choosing 5 out of 30 sets of resistivity values with the lowest average error, and comparing the 

estimated ANHI across these different sets. Coefficient of variation (CoV) between the ANHI 

estimates are shown in the table below: 

 

Table 7.5. Coefficient of variation (CoV) values between the ANHI estimates for when 5 different sets of resistivity 
values were used in creating the electro-anatomical models (EAMs). 

 Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 

CoV 0.299 0.257 0.199 0.197 0.313 0.358 0.269 

 
 

As shown in the Table 7.5, the CoV values between the different sets of resistivity values are 

relatively low. In addition to calculating the CoV values, we also created LRMs using ANHI 

estimates when different sets of resistivity values were used. The results for Patient 6 where the 

CoV value is the highest is shown in Figure 7.16 and in Table 7.6. These results indicate that our 

ANHI estimates are relatively insensitive to the selection of resistivity values. However, as shown 

on the figure, the ANHI estimate between 200 and 400 degree-depth is noisy. Thus, adding a 

smoothness factor to the optimization step would further lower the CoV values between the 

different sets of resistivity values and increase the consistency amongst different ANHI estimates. 
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Figure 7.16. Mean and standard 
deviation ANHI estimates are shown in 
solid blue line and shaded region, 
respectively. 

 
 
 
Table 7.6. 5 different sets of resistivity values used in creating 
electrode-anatomical models (EAMs) as well as the R values for 
LRMs created with 1 mm shift is shown. 

 
 Soft tissue 

(Ωcm) 
Electrolytic 
fluid (Ωcm) 

Bone 
(Ωcm) 

Neural tissue 
(Ωcm) 

R 

Set #1 61 25 3071 676 0.78 

Set #2 64 25 3181 509 0.91 

Set #3 58 23 3476 463 0.82 

Set #4 82 29 2881 391 0.83 

Set #5 101 20 2520 554 0.76 
 

7.4 Conclusion 

This work represents the first approach for in-vivo estimation of the health of auditory nerve fiber 

bundles for cochlear implant recipients. Our clinical validation results demonstrate the validity of 

our ANHI estimates and confirm that tripolar thresholds contain neural health information.  After 

integrating neural health, our models permit accurate prediction of psychophysical measurements 

with an average CC of R=0.81 for the first five subjects we have evaluated. In addition, our results 

show that the model discriminability ratios that we propose in this chapter has a higher CC with 

clinically measured discriminability ratios (R = 0.69) than average modiolar distances (R = 0.4), 

which has been the standard factor used thus far enabling patient-specific programming parameters 

that lead to better hearing outcomes.  

ANHI provides an estimate of which specific fiber bundles are healthy. Further, our models 

can estimate which fiber bundles are activated for any electric stimulus, permitting comprehensive 

CI simulation. This breakthrough could provide an unprecedented window into the health of the 

inner ear, opening the door for studying population variability and intra-subject neural health 
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dynamics. It could further potentially transform the CI rehabilitation process by permitting 

comprehensive subject-specific simulation and optimization of the neural stimulation strategy 

based on the health of the electro-neural interface. Ultimately, we envision these models will not 

only permit design and implementation of novel patient-customized programming strategies, but 

also may provide further insight into factors that affect patient outcomes.  
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Chapter VIII 

 

SUMMARY AND FUTURE WORK 

This dissertation introduces several innovative biomedical modeling and image processing 

techniques in order to develop patient-specific electro-anatomical models (EAMs) and auditory 

nerve fiber models (ANFMs) and clinically verify them. Prior to this dissertation, neural health 

could only be estimated using generic biomedical models, which we have shown to be less 

accurate, or by using raw clinical measurements used as a surrogate for neural health, which can 

only provide information with respect to the region around an electrode unlike bundle-specific 

estimate our models can provide.  This is significant because it could provide an unprecedented 

window into the health of the inner ear, opening the door for studying population variability and 

intra-subject neural health dynamics. Further, unlike clinical measurements, our models can 

estimate which fiber bundles are activated for any electric stimulus, permitting comprehensive CI 

simulation. This could potentially transform the cochlear implant rehabilitation process by 

permitting comprehensive subject-specific simulation and optimization of the neural stimulation 

strategy based on the health of the electro-neural interface. Ultimately, we envision these models 

will not only permit design and implementation of novel patient-customized programming 

strategies, but also may provide further insight into factors that affect patient outcomes. In this 

dissertation we have made several different contributions: (1) we have shown that non-rigid 

variations in the cochlea across individuals exist and significantly affect electrode localization 

measurements as shown in Chapter II1. Quantifying electrode position accurately is important not 

only for studying the relationship between electrode positions and hearing outcomes but also for 

image-guided cochlear implant programming techniques as well as constructing accurate patient-
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specific models as they rely on measurements of electrode positions. We have also shown that, as 

described in Chapter III, manually measuring cochlea length leads to high variance across 

measurements and significantly impact electrode choice, whereas the automatic method we 

propose is less time consuming and generates repeatable results2. (2) We developed an automatic 

method to create both anatomically and electrically customized electro-anatomical models which 

are a necessary step in constructing auditory nerve fiber models3,4.  These methods are described 

in Chapter IV and V. (3) Finally, we proposed several methods to create patient-specific auditory 

nerve fiber models, as described in Chapter VI and VII5,6. We use a set of physiological 

measurements to customize our model to each patient parameterizing neural health and use a 

different set of measurements to verify our results. We also clinically verify the model estimations. 

 In Chapter II, we propose a method to quantify the effect of non-rigid variations on 

electrode localization. First, we create seven rigid models by manually segmenting µCT images of 

seven different ex-vivo specimens.  We also localize the intra-cochlear structures like scala 

tympani (ST), scala vestibuli (SV) and modiolus in the pre-implantation CT images of 93 patients 

using the approach described in7. We then fit individual rigid models of cochlear anatomy we have 

created from seven different cochleae to each of the CI ears using well known point-based 

registration techniques8. Finally, we measure the relative position of the electrodes with respect to 

basilar membrane, which allows us to determine both the scala, either scala tympani or scala 

vestibuli, in which the electrode is located as well as the proximity of the electrode to the neural 

activation sites. Standard deviations of electrode position measures across rigid models are 

relatively high (0.11 mm relative to basilar membrane and 0.15 mm relative to neural activation 

sites), and lead to potentially different findings regarding the scalar position of electrodes and their 

proximity to the modiolus depending on which rigid model is used. The rigid models disagreed on 
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scalar position for 19% of the electrodes in our dataset and on modiolar proximity for 50% of the 

electrodes. These results motivate the use of non-rigid models of cochlear anatomy and indicate 

the importance of capturing non-rigid variations.  

 In Chapter III, we describe two different automatic methods we developed to measure 

cochlea duct length and compare the results to other measurement techniques. Briefly, the first 

method involves directly measuring the cochlea duct length at two turns, denoted as CDLDirect-Auto. 

We map the cochlea duct points defined along the outer wall of the cochlea in a cochlea model to 

each patient then measure the length of the curve from round window to two-turns.  The second 

method involves measuring the length A, defined as the length of the line from the center of the 

round window through the modiolus to the farthest point on the lateral wall of the basal turn of the 

cochlea. The Equation 3.1, proposed by Escude et al.9, can be used to calculate the length of the 

cochlear duct along the outer wall from the center of round window to a specific angular depth. 

We have measured length A both automatically, denoted as AAuto, and manually, performed by two 

trained neurotologists denoted as AS1 and AS2. In addition to comparing direct and indirect cochlear 

duct length measurements, we also investigated the effect of these measurement techniques on 

electrode array selection. We found significant differences between different measurements of 

length A as well as cochlear duct length. On the other hand, our analyses showed that the difference 

between CDLDirect-Auto and indirect cochlear duct length measurement is minimum when AAuto is 

used, denoted as CDLA-Auto, resulting in a mean and maximum difference of 0.27 and 1.35 mm, 

respectively. The same measurements between CDLDirect-Auto and indirect measurements when 

either AS1 or AS2 is used, denoted as CDLS1 and CDLS2, on the other hand, have relatively high 

values, with mean absolute differences greater than 1.4 mm. CDLDirect-Auto or CDLA-Auto 

measurements resulted approximately in the same electrode array type selections, with the biggest 
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difference of 38 ears out of 309 occurring when a threshold value of 9.74 mm was used to choose 

between two different electrode array types. Manual measurements by the first and second 

surgeon, on the other hand, led to a larger number of differences in the selected electrode array 

type between each other and the automated measures. Measuring A and CDL automatically is less 

time consuming and generates more repeatable results. Our automatic approach could make the 

use of CDL for patient-customized treatment more clinically adoptable. 

 In Chapter IV, we propose our method that could be used to create electro-anatomical 

models (EAMs) of electrically stimulated cochlea from µCT images of ex-vivo specimens10 and 

then extend this method by projecting such high-resolution EAMs to patient CT space4. This 

allows us to create in-vivo EAMs from patient CT images that are anatomically customized to the 

shape of individual cochlea. Briefly, we use µCT images of ex-vivo specimens to create high 

resolution resistivity maps, which are tissue class label maps used to define the electrical resistivity 

of the tissue in the image, which are then projected onto the patient CT image using thin-plate 

splines (TPS)11. A combined resistivity map is created using a majority voting scheme between all 

of the possible resistivity maps. Using the combined resistivity map and the patient's known 

electrode position, a patient-specific model is created. A system of linear equations was created to 

solve Poisson’s equation for electrical current, as shown in Equation 4.1. Finally, patient-specific 

neural activation is estimated as the current density profile (CDP) along Rosenthal's Canal (RC), 

which is where spiral ganglion nerve cells are located. In order to evaluate the accuracy of our 

patient-specific models, we also created generic models using leave-one-out strategy and 

compared the patient-specific and generic CDPs to the ground truth CDPs. The average accuracy 

of our patient-specific model was found to be 81.2% compared to 77.4% for the generic models. 

In addition, the minimum accuracy of the patient-specific model 76.9% was relatively higher than 
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that of the generic model, 66.8%. In general, models created using manual anatomy localizations 

were more accurate than those created using automatic anatomy localizations. Quantitative 

analysis of the results indicate that patient-specific models are on average more accurate than 

generic models, which is currently the community standard approach. These results motivate the 

use of patient-specific models. 

 In Chapter V, we extend our patient-specific EAM by developing an optimization 

algorithm that customizes the resistivity values assigned to different tissue classes in order to 

minimize the difference between simulated and measured physiological measurements, namely 

electric field imaging (EFI). EFI is the simultaneous measurement of the voltage values across the 

electrode array when one electrode at a time is used to inject current into the cochlea. In this 

chapter, we present an automatic heuristic search algorithm which leverages our knowledge of 

how changes in the resistivity values of different tissue types affect the simulated voltage 

distribution. We found that a change in the electrolytic fluid resistivity has negligible effects, 

whereas a change in the resistivity values of soft tissue and neural tissue have different effects. 

The principal effect when changing the soft tissue resistivity value is a change in the average value 

of the voltage distribution across electrodes while the shape of the voltage distribution maintains 

the same slope. Changing neural tissue resistivity value on the other hand sharpens or flattens the 

curve, i.e., a decrease in the neural tissue resistivity value will result in a flattening of the curve 

and vice versa. Using this information, the resistivity values assigned to soft tissue and neural 

tissue are adjusted based on average error, which is the average normalized mean difference 

between simulation results and the acquired patient data. We have demonstrated our approach for 

N = 7 patients with 6 unilateral and 1 bilateral implants. The search algorithm was able to converge 

in 22 iteration on average, and the mean average error dropped from 45.0% to 10.9%.	
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	 In Chapter VI, we introduce a graph-based search algorithm to segment the auditory nerve 

fibers. Our goal was to evaluate techniques for segmenting auditory nerve fibers to enable neural 

stimulation modeling and estimation of neural stimulation patterns, and to quantify the effect of 

fiber segmentation accuracy on neural activation. For this purpose, we developed semi- and fully-

automatic techniques for segmenting auditory nerve fibers that will be used in creating ANFMs. 

Our semi-automatic approach uses path finding algorithms to connect automatically estimated 

landmarks and models the section of the fibers from the unmyelinated terminal to the internal 

auditory canal (IAC). Using scala tympani (ST), scala vestibuli (SV) and modiolus, certain 

structures that provide excellent landmarks for fibers, such as osseous spiral lamina and 

Rosenthal’s Canal, can be determined. The location of IAC endpoints, through which auditory 

nerve fibers proceed into the IAC, on the other hand cannot be determined using such structures 

like ST or SV and need to be estimated. Since the location of IAC endpoints will affect the shape 

of auditory nerve fibers, we completed the semi-automated fiber localization process twice where 

the IAC endpoints were moved in between trials in a random direction by a maximum amount that 

still leaves the points within IAC. This allows us to quantify the effect of fiber shape on neural 

activation. We found that neural activation modeling estimates were not sensitive to moderate 

changes in fiber shape. The two different sets of auditory fibers had an average Euclidian distance 

of 0.15 mm, and a neural activation similarity of 83%. 

 In Chapter VII, we introduce our patient-specific auditory nerve fiber models (ANFMs). 

The activation of the auditory nerve fibers in our ANFMs is modeled similarly to Rattay et al12. 

Using these models, we can simulate any electric stimulus delivery as well as acquisition of 

objective measurements, such as electrically evoked compound action potential (ECAP), which 

allowed us to simulate physiological measurements such as amplitude growth functions (AGFs) 
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as well as spread of excitations (SOEs). We estimate the health of the ANFs by: (1) parameterizing 

our ANF models according to neural health; and (2) using a constrained optimization algorithm to 

tune the neural health of the ANFs in order to minimize the sum of squared differences between 

simulated and the measured AGFs. We refer to this process of estimating neural health for fibers 

along the length of the cochlea as Auditory Neural Health Imaging (ANHI). We have evaluated 

our ANHI approach with 5 patients. Since a comparison of monopolar and tripolar thresholds has 

been proposed as a surrogate for neural health, linear regression models (LRMs) were created in 

order to determine the correlation of clinically measured tripolar thresholds with modiolar 

distance, monopolar thresholds, ANHI, and model tripolar thresholds. LRMs revealed monopolar 

thresholds to be uncorrelated with tripolar thresholds. However, modiolar distance and ANHI were 

found to be significantly associated with tripolar thresholds with high LRM average correlation of 

R = 0.81 across the 5 cases. The correlation between modiolar distance alone and tripolar 

thresholds is R = 0.48 on average. In addition, a total of 15 electrode pairs for 4 patients were tested 

to determine the channel discriminability between each pairs. An average correlation coefficient 

(CC) of 0.69 was found between the estimated and clinically measured discriminability ratios. The 

average CC values between the clinically measured discriminability ratios and the average 

electrode pair distance to the neural activation sites, on the other hand, were 0.4. This work 

represents the first clinical validation of our patient-specific EAMs. Ultimately, we envision these 

models will not only permit design and implementation of novel patient-customized programming 

strategies, but also may provide further insight into factors that affect patient outcomes. 

 Even though we have made substantial progress in creating patient-specific EAMs and 

ANFMs, further improvements and clinical verifications are possible. As explained in Chapter 

VII, data plots revealed a small but consistent shift of around ~1 mm in the ANHI data relative to 
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the tripolar thresholds. We believe that this is likely due to small inaccuracies in how the model 

permits flow of electrical current through the round window. In CIs, the current injected by an 

intra-cochlear electrode flows to the far ground located by the patient’s ear. In our EAM, we 

simulate the far ground by modeling the entire border of the EAM as ground. The border of an 

EAM is approximately 5 mm away from the cochlea in each direction (see section 4.3.2). It is 

possible that the far ground in our model biases the current path toward the apex of the cochlea 

causing more current than what realistically plausible to escape the cochlea toward the apical end, 

creating the bias shown in Figure 7.13. Another potential cause for the small shift could be the 

way in which we determine air voxels around the round window unrelated to the surgical 

procedure. Given that a simple thresholding was used to determine air voxels, which were modeled 

as perfectly resistive, better segmentations of these voxels might help get rid of the small bias in 

current paths that seem to be present in our results. 

 When creating EAMs as explained in Chapter 7.2.3, we have assumed that the only cause 

to the relatively higher disagreements seen between the measured and simulated EFI values is the 

tissue growth phenomenon. However, this remains an assumption and the only way to prove it is 

a post-mortem analysis. In order to independently verify whether our estimate of tissue growth 

regions is accurate, it would be ideal if patients studied in this thesis were asked to donate their 

temporal bones to the temporal bone registries at the time of death for a post-mortem 

histopathology analysis13,14.  

 We have verified our EAM and ANFM approach by both comparing simulated 

physiological measurements, such as EFI, AGF, and SOE, to the measured patient data as well as 

performing two different clinical tests. We have so far created models for N = 7 patients, 5 of 

whom were clinically tested. Even though we have found relatively high correlations between 
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different clinical tests and our results, it is imperative that models for new patients be created and 

clinically tested. Additionally, it is important to note that neither the SOE measurements used to 

test the accuracy nor the clinical measurements used to quantify the validity our models are 

completely independent from the AGF and SOE measurements used in the training process. We 

did not have access to any independent information that can be used as a ground truth against 

which the model results can be tested. As a future work, we propose to create the models outlined 

in this dissertation for unique patient populations as a way to independently test the validity of 

such models. One such patient population is those with residual hearing after the implantation. It 

could be assumed with a high confidence that the regions of the cochlea that correspond to the 

frequencies for which the patients have residual hearing are intact and healthy. Thus, future work 

could include verifying whether the neural health estimates agree with high neural health in aforementioned 

cochlea regions. The inverse which states that no residual hearing implies poor neural health, on the other 

hand, would be inaccurate given that the hearing loss might be due to the damage to hair cells rather than 

the auditory fibers. Finally, there are known genetic types of hearing loss where the neural survival pattern 

is known, an example of which is the hearing loss caused by TMPRSS3 genetic mutations. Thus, the models 

could be created for such patients, and the models’ estimates can be compared to known neural survival 

patterns. 

In addition, different clinical tests such as investigating neural response via different 

stimulation techniques, can be performed. The patient-specific EAMs and ANFMs created in this 

thesis could be used to develop new model-based CI programming techniques that exploit other 

settings made available via patients’ CIs. CIs attempt to reproduce the original sound spectrum 

(~30,000 different channels) with at most 22 different electrodes, which limits the spectral 

selectivity13. In current clinical programs, CIs typically use a monopolar (MP) configuration, i.e. 

an electrode is chosen as the current source injecting certain amount of current into the cochlea 
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while an extra-cochlear electrode, typically the casing of the CI, is chosen as the ground electrode 

to which the current sinks. In such clinical programs, electrodes are activated one after the other 

and the activation order of the electrodes is not optimized. We have shown in Chapter VII that our 

patient-specific models can simulate SOE measurements with a high accuracy. These 

measurements include information about the overlapping regions that are activated by two 

potentially distinct electrodes. Thus, using the patient-specific ANFMs, we can optimize the 

activation order of electrodes in such a way that the fibers that are activated by a previously 

activated electrode can go back to its resting state before another nearby electrode is activated. 

This could significantly reduce the channel interaction artifacts14,15 and increase hearing outcomes. 

In MP configurations, the current path between the source and the ground is largely 

uncontrolled as the distance between an active intra-cochlear electrode and the CI case ring is 

relatively larger. This might cause neural activations in sites that do not correspond to the selected 

channel of the active electrode16. A technique that could be used to minimize activation in 

mismatching channels is current steering (CS), which has been widely studied in the CI 

community17,18. The idea in CS is to stimulate adjacent intra-cochlear electrodes so that “virtual 

channels” in between two or more fixed channels can be created13. It has been shown that as many 

as 7 virtual channels could be created between each pair of intra-cochlear electrodes using 

Advanced Bionics CI16. CS might also further improve spectral resolution as the neural activation 

is expected to occur at sites located in between the stimulated adjacent electrodes. Even though it 

has been shown that spectral resolution on average is increased with CS, no significant 

improvement in speech recognition compared to the monopolar configuration was found16. In other 

studies conducted, CS was found to increase hearing performances for some patients while 

decreasing for others19–21. In such studies, CS technique was applied blindly, i.e. virtual channels 
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were created between each pair of electrodes with the goal of increasing spectral selectivity as 

much as possible. However, using CS between electrodes that have a high degree of stimulation 

overlap might be counterproductive as the nerve fibers that sit in between the two electrodes suffer 

from spectral smearing. We hypothesize that model-guided CS could increase spectral resolution 

and be more beneficial than blindly applying CS to each pair of electrodes. This could be achieved 

by enabling CS only between neighboring electrodes that stimulate groups of nerves that are as 

independent from each other as possible, and such pairs of electrodes could easily be determined 

using the electro-anatomical and auditory nerve fiber models as presented in Chapter VII. Current 

focusing (CF) is another technique that could improve spectral resolution. In CF, an intra-cochlear 

electrode is used to deliver current to the neural activation sites while one or more neighboring 

electrodes are chosen as the ground. Even though CF has great potential for increasing the number 

of possible channels, it has been shown to lead to both positive and negative outcomes in CI 

patients16,22–25. We believe that this might be due to blindly implementing CF with the assumption 

of ideal electrode placement and the use of symmetrically distributed signal levels. We believe 

that the effectiveness of CF could also be improved with model-guidance because we have shown 

in Chapter VII that our patient-specific models enable estimation of neural activation. 

This dissertation presents methods that can be used to create patient-specific electro-

anatomical and auditory nerve fiber models as presented in Chapter IV, V, VI and VII and outlines 

a possible future use as described in this chapter. The model estimates have already been clinically 

tested, however more clinical verification is imperative. Even though the techniques developed 

herein may not be the final solutions for creating models of electrically stimulated cochlea, we 

believe this work has made valuable contributions towards improving hearing outcomes for CI 

recipients and that it provides efficient tools for future research related to programming.  
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