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ABSTRACT 

  

Objective: Supervised machine learning methods have shown good performance in text 

classification tasks in the biomedical domain, but they often require large annotated 

corpora, which are costly to develop. Our goal is to assess whether active learning 

strategies can be integrated with supervised machine learning methods, thus reducing the 

annotation cost while keeping or improving the quality of classification models for 

biomedical text.  

Methods: We have applied active learning to two biomedical natural language processing 

(NLP) tasks: 1) the assertion classification task in the 2010 i2b2/VA Clinical NLP 

Challenge, which was to determine the assertion status of clinical concepts; and 2) a 

supervised word sense disambiguation (WSD) task that was to disambiguate 197 

ambiguous words and abbreviations in MEDLINE abstracts. We developed Support 

Vector Machines (SVMs) based classifiers for both tasks. We then implemented several 

existing and newly developed active learning algorithms to integrate with SVM 

classifiers and evaluated their performance on both tasks.  

Results: In assertion classification task, our results showed that to achieve the same 

classification performance, active learning strategies required much fewer samples than 

the random sampling method. For example, to achieve an AUC of 0.79, the random 

sampling method used 32 samples, while our best active learning algorithm required only 

12 samples, a reduction of 62.5% in manual annotation effort. In the WSD task, our 

results also demonstrated that active learners significantly outperformed the passive 

learner, showing better performance for 177 out of 197 (89.8%) ambiguous terms. 
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Further analysis showed that to achieve an average accuracy of 90%, the passive learner 

needed 38 samples, while the active learners needed only 24 annotated samples, a 37% 

reduction of annotation effort. Moreover, we also analyzed cases where active learning 

algorithms did not achieve superior performance and summarized three causes: (1) poor 

model in early learning stage; (2) easy WSD cases; and (3) difficult WSD cases, which 

provide useful insight for future improvements. 

Conclusion: Both studies demonstrated that integrating active learning strategies with 

supervised learning methods could effectively reduce annotation cost and improve the 

classification models in biomedical text processing. 

  



1 

 

CHAPTER I 

 

INTRODUCTION 

 

1.1 Active learning 

Active learning is a technique under the subject of machine learning or, more 

generally, artificial intelligence. 
1
 The main hypothesis of active learning is that a 

learning machine could quickly improve its performance while using less training 

samples if it could actively select samples for learning. The active learner, which uses 

smart querying algorithms for sample selection, is highly suitable for supervised machine 

learning tasks where unlabeled data is plentifully available and easy to obtain, but 

labeling a sample is difficult, expensive, or time-consuming.  

The active learning process evolves the learning model when new samples are 

actively chosen from the large unlabeled pool and annotated in each iteration. The overall 

goal is to optimize the learning process by maximizing the quality of supervised learning 

model and minimizing human annotation effort. Active learning is often compared with 

passive learning that randomly selects samples for annotation when building 

classification models. Many studies have demonstrated that active learning could 

outperform passive learning in supervised machine learning tasks. 

Researchers have applied active learning to many areas such as image 

classification and retrieval, 
2
 gene expression analysis, 

3
 and drug discovery. 

4
 For these 

tasks, labeled samples are expensive to obtain or otherwise limited; however, unlabeled 

samples are largely available and inexpensive to access. In an image recognition task, 
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researchers showed that near-optimal performance could be reached using 25% less 

annotated images, when compared with traditional passive learning. 
2
 In another study, 

Liu demonstrated that a support vector machine classifier could achieve desired 

performance in the cancer classification task based on expression data from DNA 

microarray hybridization experiments, with a reduction of 82% in annotation cost. 
3
 In 

machine learning based drug discovery experiments, active learning was also 

successfully used to reduce biochemistry lab costs while improve the yield. 
4
 With the 

growth of available textual data such as web pages, active learning has also been applied 

to statistical natural language processing (NLP) tasks such as text classification 
5,6

 and 

information extraction, 
7
 and have shown promising results.  

 

1.2 Overview of active learning algorithms 

The pool-based active learning approach to classification 
5
 is practical for many 

real-world learning problems. It is often used in scenarios where a learner can access a 

large pool of unlabeled data with low cost and can then request true labels for selected 

samples. An active learning system mainly consists of a classification model and an 

active sample selection (also called querying) algorithm. The classification model can be 

built by using classical supervised machine learning algorithms. The querying step is to 

select the instances that are most promising in improving the predictive performance of 

the model. Many querying algorithms exist, and can be categorized into six types 

according to an active learning literature survey: 
1
 uncertainty sampling, 

8
 query-by-

committee (QBC), 
9
 expected gradient length (EGL), 

10
 fisher information, 

11
 estimated 

error reduction, 
12

 and information density. 
7
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Uncertainty sampling is the simplest and most commonly used query algorithm, 

which tends to query samples that are least certain about their labels. The uncertainty 

could be measured by different metrics, such as the confidence about the most possible 

label, the margin between two most possible labels, 
13

 and entropy. 
14

 For binary 

classification problem, uncertainty sampling algorithms based on different measurements 

are equivalent because they would query the samples with a class posterior probability 

closest to 0.5.  

The QBC algorithm tends to select samples that generate the most disagreement 

from a committee of models. The models in the committee are all trained on the same 

labeled set but represent different hypothesis. The level of disagreement could be 

computed based on different voting strategies, such as vote entropy 
15

 and Kullback-

Leibler (KL) divergence. 
16

 The QBC algorithm is, however, sensitive to the type of 

classification models selected. 

The EGL algorithm tends to select the samples that would have produced the 

greatest change to the current model if we knew their labels. It is not a very practical 

solution because the computational cost is huge if we find the gradient change by testing 

all possible labels for each unlabeled sample. However, this approach has been shown to 

work well in empirical studies. 
10

 A similar algorithm to EGL is called expected error 

reduction, which tends to query samples that reduce the generalization error of a model. 

But it is also the most computationally expensive querying algorithm. 

The fisher information algorithm selects the samples that could indirectly reduce 

the generalization error by minimizing output variance. It is equivalent to selecting 

samples that could maximize its fisher information. This is also an algorithm with high 
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computational complexity because to estimate output variance, it needs to compute a K 

by K matrix for each new sample, where K is the number of parameters in the model. 

The information density algorithm does not rely on classification models but only 

the distribution of the data. It tends to query the most representative samples based on 

similarity among samples. The information density method could sometimes be 

combined with uncertainty sampling algorithm in order to select the most informative 

samples that are not only uncertain, but also the representatives of a dataset (e.g. centers 

of dense regions of data). 

For a given dataset and a querying algorithm, a typical active learning protocol 

includes following steps:  

 (1) Initialize the labeled training set L = L0, the pool of unlabeled set U =U0, and a test 

set T.  

(2) Train the classification model based on L and predict the probability of class label for 

each instance in U and T. 

(3) Rank the instances in U based on the querying algorithm and assign labels (from 

human experts) for the top b(i) samples in U, where b(i), the batch size of active 

learning, is the number of querying samples at iteration i.  

(4) Add the b(i) instance(s) with label(s) to L and remove from U.  

(5) Compute the classification performance in AUC score or accuracy (ACC) on the test 

set T and store in AUC(i) or ACC(i). 

(6) Iterate steps (2) to (5) until the stop criterion (e.g. unlabeled samples in the pool are 

used up) is met.  
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(7) Evaluate this learning process by using the global learning score based on the learning 

curve that plots ACC(i) as a function of the batch size b(i). 

 

1.3 Active learning for NLP tasks in the general English domain 

Using the active learning protocol described in previous section, researchers have 

successfully applied it to various NLP tasks in the general English domain, such as 

named entity recognition, 
7
 part-of-speech tagging, 

17
 parsing, 

18
 word sense 

disambiguation, 
19

 automatic translation, 
20

 and sequence segmentation. 
21

  

Settles et al 
7
 proposed the density-weighted active learning algorithm, which 

combined diversity with uncertainty information, and outperformed uncertainty sampling, 

QBC, fisher information, and EGL algorithms, in eight named entity recognition tasks, on 

average. Ringger et al 
17

 applied Query-by-Uncertainty and Query-by-Committee active 

learning algorithms to accelerating the construction of a part-of-speech annotated corpus. 

Becker and Osborne 
18

 reported a two-stage model for learning grammars actively and 

showed that their method performed better than original form of uncertainty sampling 

and similar to a standard Query-by-Committee method. Chen et al 
19

 successfully used 

active learning to reduce the annotation effort while maintaining good performance for a 

word sense disambiguation task of five English verbs with coarse-grained senses. Kuo et 

al 
20

 effectively built an adaptive learning framework for automatic construction of 

transliteration lexicons and it minimized human supervision for data labeling. Sassano 
21

 

explored how active learning with support vector machine could be applied to Japanese 

word segmentation and showed that their technique outperformed the method in previous 
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research and could significantly reduce required labeled examples to achieve a given 

level of accuracy.  

 

1.4 Active learning for NLP tasks in the biomedical domain 

 

1.4.1 Clinical NLP 

In the past decade, increasing adoption of Electronic Medical Records (EMRs) in 

the healthcare industry has made practice-based clinical data available electronically. 

These detailed longitudinal clinical data are not only useful for clinical care but have also 

been increasingly used for clinical, genomic, and translational studies. 
22-25

 Because 

EMRs contain large amounts of textual data, studies of clinical NLP technologies have 

received great attention. 
26-28

 A number of clinical NLP systems have been developed, 

such as MedLEE (Medical Language Extraction and Encoding System), 
29-31

 cTAKES, 
32

 

MedEx, 
33

 MetaMap, 
34

 and KnowledgeMap. 
35

  

More recently, statistical NLP methods have been applied to clinical text and they 

often involve building classification models based on annotated corpora. For example, in 

the 2010 i2b2 clinical NLP challenge, researchers have developed various supervised 

machine learning methods to recognize clinical entities in discharge summaries. 
36

 Thus 

annotation for clinical textual data, such as discharge summary and progress report, is 

essential for the development and the evaluation of machine learning-based clinical NLP 

approaches. However, annotating clinical text often requires domain expert manual 

review, which can be very expensive and time-consuming. Therefore, we believe that 

active learning framework would be very valuable for clinical NLP research.  



7 

 

 

1.4.2 Biomedical literature text processing  

The phenomenal growth of biomedical literature has made it difficult for 

biomedical scientists in assimilating the high rate of new publications. 
37

 For example, 

MEDLINE, a medical citation database, currently contains over 20-million citations, with 

a growth rate of 4% over the past 20 years. 
38

 Text processing techniques that can 

automatically find relevant articles (information retrieval) and extract specific 

information (information extraction) are highly desirable. Therefore, many informatics 

researchers have focused on developing NLP methods and tools for biomedical literature 

(also called bioNLP). In many bioNLP tasks, supervised machine learning methods have 

shown great performance and more and more annotated biomedical corpora are being 

developed. 
39

 To improve the efficiency in building such annotated biomedical corpora, 

researchers have started investigating active learning methods, hoping to reduce 

annotation cost and improve machine learning model quality. 
40-42

 

 

1.4.3 Active learning in clinical and biomedical NLP tasks 

As mentioned previously, supervised machine learning for clinical and biomedical 

NLP tasks requires a large number of annotated samples, which are even more expensive 

to build than the ones in general English NLP tasks because of the involvement of 

clinical domain experts. Active learning is well motivated in this domain as an alternative 

solution. Although researchers have shown that active learning is beneficial in many 

domains, few studies have investigated active learning techniques in clinical and 

biomedical NLP tasks.  
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Figueroa et al. 
43

 applied active learning to two clinical text classification tasks 

including smoking status and depression status extraction, and one non-clinical 

classification task using SVM. They implemented distance-based (DIST), diversity-based 

(DIV), and the combination of both active learning algorithms (CMB), and compared the 

performance with passive learning.  Their results showed that DIST and CMB algorithms 

significantly performed better than passive learning. They also suggested that DIV 

performed better on data with higher diversity and DIST on data with lower uncertainty. 

Kim et al. 
44

 presented an active learning strategy in the biological named entity 

recognition task based on the data from MEDLINE abstracts and GENIA corpus. 
45

 Their 

method considered both entropy-based uncertainty from classifiers and the diversity of a 

corpus.  To achieve 67.17% in F-score, the proposed strategy used 11000 sentences, 

which reduced 35.43% of the training examples comparing with random sampling 

(passive learning). 

Wallace et al. 
41

 studied an application of active learning to the problem of 

biomedical citation screening for systematic reviews at the Tufts Evidence-based Practice 

Center. They proposed a novel active learning strategy that exploited a priori domain 

knowledge provided by the expert (specially, labeled features) and extended this model 

via a Linear Programming algorithm for situations where the expert can provide ranked 

labeled features. Uncertainty sampling with SVM performed better than random 

sampling when using accuracy as model evaluation metric; however, recall, which is 

important for citation screening, was not improved. This was probably due to the 

imbalanced class and the hasty generalization problem. But their results demonstrated 

that using the prior knowledge could positively guide active learning. 
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Miller et al. 
42

 explored various active learning methods for clinical coreference 

annotation workflows. Their paper indicated that traditional active learning approach 

might not be feasible for this task because coreference annotations required context 

information between entity mentions referring to the same entity. They finally proposed a 

hybrid sample selection approach that was primarily based on instance selection 

algorithms.  

This thesis presents two of our recent studies of applying active learning to 

clinical text and biomedical literature in chapter 2 and 3, respectively. The first study 

investigated the application of active learning to the assertion classification of concepts in 

clinical text. 
46

 The second study explored the use of active learning in supervised word 

sense disambiguation (WSD) in biomedical literature. 
47

 Both tasks are required to 

construct supervised machine learning models to accurately identify either binary or 

multiple classes. It was not known whether active learning could be helpful for clinical 

assertion classification task or biomedical WSD task before we conducted these two 

studies. Both studies in this thesis mainly focused on uncertainty sampling, the most 

widely used querying method in active learning. For the task of active learning in 

assertion classification, we also assessed our newly developed querying algorithms such 

as “model change” and “uncertainty sampling with bias”. 
48

 For biomedical WSD task, 

we applied three existing uncertainty sampling algorithms which could deal with 

multiple-class classification problems. Both studies demonstrated that integrating active 

learning strategies with supervised learning methods could effectively reduce annotation 

cost and improve the classification models in biomedical text processing.  
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CHAPTER II 

 

STUDY I: APPLYING ACTIVE LEARNING TO ASSERTION CLASSIFICATION OF 

CONCEPTS IN CLINICAL TEXT 

 

2.1 Introduction 

In this chapter, we describe an application of active learning to a clinical text 

classification task: to determine assertions of clinical concepts, using an annotated corpus 

from the 2010 i2b2 Clinical NLP Challenge. We implemented and evaluated several 

active learning algorithms, including some that are newly developed, and our results 

showed that some active learning strategies outperformed random sampling methods 

significantly. This chapter is organized as the following: Section 2 presents datasets and 

methods that we used in this study, such as cross validation experiments, active learning 

strategies including classification models and querying algorithms, and evaluation; 

Section 3 displays the experiment results; Section 4 discusses the significance of our 

results. 

 

2.2 Methods 

2.2.1 Datasets 

 We used the manually annotated training set for concept assertion classification in 

the 2010 i2b2/VA NLP challenge, 
36

 which was organized by i2b2 (the Center of 

Informatics for Integrating Biology and the Bedside) at Partners Health Care System and 

Veterans Affairs (VA), Salt Lake City Health Care System. The assertion classification 
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task is to assign one of six labels (“absent”, “associated with someone else”, 

“conditional”, “hypothetical”, “possible”, and “present”) to medical problems identified 

from clinical text (discharge summaries and some progress notes collected from three 

institutions). We participated in the challenge and developed an SVM-based system for 

the assertion classification task, and we ranked fourth among over 20 participating teams 

(no statistically significant difference from the top three systems). 
49

  

For this study, we used the same set of features as described in our previous work 

and we wanted to assess whether active learning algorithms could reduce sample size 

while retaining good performance. The feature set includes: (1) window of context, the 

size of which is optimized; (2) direction with distance in the window of context (e.g., 

third word on the left); (3) bi-grams identified within the context window; (4) part of 

speech tags of context words; (5) normalized concepts and semantic types identified by 

an NLP system (MedLEE), 
30

 such as certainty, UMLS CUIs, and semantic types; (6) 

source and section of its clinical note. 

The training set from the challenge contained 349 notes, with 11,967 medical 

problems annotated with one of the six assertion statuses. Given the availability of large 

annotated data, active learning may not be needed for this specific assertion classification 

task. However, we utilized this available large data set to evaluate the performance of 

different active learning algorithms, which should be useful for many other tasks where 

large annotated data are not available. Moreover, active learning on multi-class 

classification tasks is more complicated than that on binary classification tasks. 

Therefore, as an initial study, we focused on the investigation of active learning 

algorithms for binary classification problems. We converted the multi-class assertion 
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classification task into a binary classification problem, by considering “present” to be the 

positive class and all others as the negative class. We refer to this dataset as ASSERTION 

in this study and investigated active learning algorithms for the binary classification of 

assertion (“present” vs. “non-present”). 

In addition, we used NOVA, a dataset of English text from the 2010 active 

learning challenge, 
50

 as the benchmark for this study. NOVA comes from the 20-

Newsgroup dataset
51

, which is a popular benchmark dataset for experiments in text 

applications of machine learning techniques, such as text classification and text 

clustering. Each text to be classified comes from an email that was posted to one or 

several newsgroups. The NOVA data are selected from both politics and religion, topics 

considered as positive and negative class, respectively. The feature set of data is in binary 

representation using a bag-of-words with a vocabulary of approximately 17,000 words. 

Table 1 shows the comparison of the properties of the two datasets. They were 

both annotated with binary labels. All features for both datasets were binary only. Both 

datasets were very sparse (sparsity is equal to the ratio between the number of cells with 

value zero and the total number cells in the data matrix), but the class distribution also 

was different for two datasets. Additionally, the ASSERTION dataset contained 

information at the sentence level, while the NOVA dataset was at the document level. 

The ASSERTION dataset is probably more difficult to classify because it has much 

higher number of features than NOVA.  
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Table 1. Experimental datasets for Active Learning. 

Dataset 

Name 

Number 

of samples 

Number 

of Positive 

samples 

Positive 

Rate 

Number of 

Features 

Feature 

Type 
Sparsity 

Class 

Type 

ASSERTION 11,967 8,051 0.6728 71,986 Binary 0.9994 Binary 

NOVA 19,466 2,769 0.2845 16,969 Binary 0.9967 Binary 

 

2.2.2 Cross validation on active learning  

To set up a pool-based active learning framework, a pool of unlabeled samples 

and an independent test set were initialized. The variability in performance could have 

been high if many different partitions in the data were created for generating the 

unlabeled pool and test set. To fully use both datasets and generate reliable results, 3-fold 

stratified cross validation was performed on active learning. On each of the cross 

validation iterations, the pool of unlabeled samples was from two folds and the evaluation 

of performance was based on the remaining fold. The validation results were averaged 

over three iterations. 

 

2.2.3 Classification algorithm  

To mainly focus on improving the querying algorithm, the same classifier with 

the same parameter was used on each run of classification (training and testing). In our 

preliminary experiments for selecting the best classifier and parameter, the linear Logistic 

Regression classifier outperformed linear SVM and Naïve Bayesian classifiers in 3-fold 

cross validation for all samples in both the ASSERTION and NOVA datasets. Therefore, 
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the Logistic Regression model implemented in the package “Liblinear” 
52

 was used. It 

can output the posterior probability as the prediction value. This output would be used as 

the input for most querying algorithms. 

 

2.2.4 Active learning strategy 

Based on the protocol of active learning described in Section 2, the global 

performance (learning curve) is influenced by many factors during the active learning 

process, such as initial performance (the classification performance based on the initial 

training set), the batch size, the stop criteria, the querying algorithm, etc. However, we 

designed the active learning experiment so that the querying algorithm would be the most 

influential factor. We fixed the initial and the final performance points in the learning 

curve as well as the batch size for each querying algorithm as follows. 

We randomly selected three positive samples and three negative samples as the 

initial training set. In each iteration of the cross validation, all experiments with different 

querying algorithms would use the same initial training set and, therefore, have the same 

initial point in the learning curve. 

According to the stop criteria, the active learning process stopped when the entire 

pool of unlabeled samples was queried or U was empty. In each iteration of the cross 

validation, all experiments with different querying algorithms would have the same final 

point in the learning curve. 

For batch size selection, we used 2
i+2

 training samples with labels where i is the 

index of iteration in the active learning process up to the total number of training 
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samples. For example, the size of labeled training set L on each iteration would be 8, 16, 

32, 64, 128,…, 4096, …, and the maximum number. 

The querying algorithm is the function to assess how informative each instance x 

is in unlabeled pool U. x
*
 is selected as the most informative sample according to the 

function x
*
=argmaxQ(x), where Q(x) is the querying function that outputs the 

informativeness or querying value (Q value) for data matrix x in U. 

 

2.2.4.1 Uncertainty sampling based algorithms 

Uncertainty sampling queries the sample with the least certainty or on the 

decision boundary. The simplest uncertainty sampling algorithm is called Least 

Confidence (LC), which is straightforward for the probabilistic models: 

Q
LC

(x) = 1  P(y
*
|x; ) 

where y
*
 is the most likely label sequence for x. θ is the model that generates the 

posterior probability P of label y given data matrix x. In the binary classification case, LC 

is equivalent to querying the instance with the highest Q value (or uncertainty value) that 

is nearest the 0.5 posterior probability of being in the positive or negative class. In the 

case of the ASSERTION dataset, if the concept term was classified as “present” with the 

probability closer to 0.5 versus “non-present,” the term was more likely to be selected for 

annotation in the next iteration of active learning. 

During the active learning process, the class distribution of the training set could 

become imbalanced (with more positive/negative than negative/positive samples). At this 

point, we assume that the sample in the minority class is more informative. Moreover, we 
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would like to balance the training set as much as possible in the early iteration of active 

learning because the classifier would tend to ignore the minority class, resulting in a poor 

prediction model, especially with a small number of labeled training samples. Therefore, 

we implemented another uncertainty sampling algorithm called Least Confidence with 

Bias (LCB) 
48

 , which considers both the uncertainty value from the current prediction 

model and the proportion of class labels in the training set. LCB is more likely to query 

the instances around the decision boundary and compensates for class imbalance. 

Let pp be the percentage of positive labels in the current training set. We defined 

Pmax as the posterior probability that gives the highest Q value in LCB function Q
LCB

(x): 

max

max

max

( 1| ; )
;  if ( 1| ; )

( )
1 ( 1| ; )

;  otherwise 
1

LCB

P y x
P y x P

P
Q x

P y x

P







 


 

 
 

 

where Pmax = mean(0.5, 1 pp). When Pmax = 0.5 or pp = 0.5, it is equivalent to LC. 

Both LC and LCB methods depend on the quality of the prediction model because 

both algorithms control the sample selection based on the posterior probability output 

from the model. When the model is poor, it propagates the negative effect to the querying 

algorithm. LCB could bias the Q value so that the model can converge more quickly to a 

good one by balancing the training set in the early stage of active learning. However, 

when the model improves, the bias could increase too much. So we also proposed another 

modified version of uncertainty sampling called Least Confidence with Dynamic Bias 

(LCB2), which also considers the size of the current training set. Note that the model is 

likely to be more reliable when the classification model is trained by a larger set of 

samples. For the binary classification problem, we have more confidence that the highest 
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Q value is at the point closer to the posterior probability of 0.5 when more labeled 

training samples are used. Q
LCB2

(x) is the same as Q
LCB

(x) except for Pmax: 

Pmax = wb*(1 pp) + wu*0.5 

where wb is the weight of bias and wu is the weight of uncertainty, and wb = 1 – wu, where 

wu is the ratio of |L|, the size of the current labeled set, and |U0|, the size of initial 

unlabeled pool: wu = |L|/|U0|. When wu = 0, it is equivalent to LCB; when wu = 1, it is 

equivalent to LC. 

 

2.2.4.2 Model change sampling based algorithms 

Model change sampling algorithm (MC) is a heuristic method to improve the 

querying method that relies on the classification model. For example, uncertainty 

sampling might fail to find the most uncertain samples when given a poor probabilistic 

model for classification. It is as difficult as finding the true decision boundary by 

classification model. We implemented the idea of model change for querying on top of 

model dependent querying methods such as uncertainty sampling. The MC algorithm 

considers the Q value from not only the current model but also the previous one. It 

controls the sample selection based on the change of Q values from different models 

during the active learning process. 

We derived the heuristic function based on the following assumption. When the 

classification model is improving during the active learning process, the posterior 

predictions for each sample will be closer to either zero or one. In other words, the Q 

value for each sample, which is the uncertainty value based on LC, LCB or LCB2, 
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becomes smaller and smaller. The heuristic function takes into account the change of Q 

values over different models. The model change sampling algorithm ranks the unlabeled 

instances based on the following rule: the instance with the most increasing Q values is 

the most informative one. If the Q values for all instances are decreasing, the instance 

with the least decreasing Q value is also considered as the most informative one in the 

dataset. It also needs to consider the improvement of the model during the active learning 

process. The Q value for the previous model is discounted because the current model is 

intuitively better than the previous one.  

Q
MC

(x) = Q(x, i) – wo*Q(x, i-1) 

where i represents the current iteration in the active learning process, i-1 is the index of 

the previous iteration; wo is the weight of the old model, which is equal to 1/|L| (|L| is the 

size of the current training set). We applied this formula to uncertainty sampling based 

querying methods (LC, LCB, and LCB2) so that we had three MC querying algorithms in 

our study: Least Confidence with Model Change (LCMC), Least Confidence with Bias 

and Model Change, (LCBMC), and Least Confidence with Dynamic Bias and Model 

Change (LCB2MC). 

 

2.2.4.3 Information density based algorithms 

The information density (ID) framework proposed by Settles and Craven
7
  

considers not only the uncertainty of instances but also the data distribution. The most 

uncertain instance lies on the decision boundary, but it is not necessarily representative of 
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other instances in the distribution. Thus knowing its label is not likely to improve the 

prediction model. Here is the ID-based querying function Q
ID

(x): 

Q
ID

(x) = Q
US

(x) * Q
D
(x)

β
 

where Q
US

(x) is the Q value by any uncertainty sampling based method (like LC, LCB, or 

LCB2); Q
D
(x) is the density function to compute how representative it is for any given 

instance in the unlabeled set; β is the control factor for the density term. In this study, we 

implemented an information density approach based on the Euclidean distance to the 

centers of labeled set L. These centers can represent the dense regions in the input 

space
16

. In our preliminary study, we only considered one center because it is difficult to 

determine the appropriate numbers of centers for selecting the most representative 

sample: 

1
( )

ˆ1 ( , )

DQ
dist x




x
x

 

where x̂   is the mean vector for each variable over all samples in the labeled set L; dist(.) 

is the function for computing the Euclidean distance to this mean vector for each sample 

in x. We called this method Information Density Based on Distance to Center (IDD). In 

our experiment, we used method LCB2 in the first term Q
US

(x) of IDD. 

 

2.2.5 Evaluation 

We applied the same evaluation measures used for the active learning challenge 

2010
53

. The prediction for the performance of active learning was evaluated according to 

the Area under the Learning Curve (ALC). The learning curve plotted the Area Under the 

ROC curve score (AUC) computed on all the samples in the test set as a function of the 
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number of labels queried. The global score or ALC score was normalized based on the 

following function: 

ALC
ALC score

max

Arand

A Arand





 

where Amax is the area under the best achievable learning curve (1.00 AUC on all points 

of the learning curve) and Arand is the area under the learning curve obtained by random 

prediction (0.50 AUC on all points of the learning curve). The learning curve of two 

neighbor points was interpolated linearly. 

In the x-axis of the learning curve, we used log2 scaling. It is consistent with the 

batch size (2
i+2

) of active learning, and this scaling actually increases the difficulty of 

getting a high global score because each additional labeled sample in the early stage of 

active learning is much more important than the one in the late stage. The performance in 

the early stages is more significant for the global score, so our target was also to improve 

the prediction model given a small number of training samples with labels.  

Three learning curves were generated in the 3-fold cross validation of active 

learning for the experiment of each querying algorithm. Then the average learning curve 

was determined by averaging the AUC scores on each corresponding point from the three 

learning curves. The final global score of each querying algorithm was the ALC score 

from the average learning curve. 

We ran the active learning experiments for eight querying algorithms and two 

datasets. The passive learner used the random querying method, while the active learner 

used other querying approaches. Since the passive learner generated results with high 

variance from the random factor for sampling, we averaged the learning curves of the 
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random querying method over 50 runs using the same start point, end point, and batch 

size.  

 

2.3 Results 

Results for the ASSERTION dataset showed that the ALC scores of all active 

learning methods except IDD outperformed the baseline using the random sampling 

method. In terms of the global performance, the active learner LCBMC had the best 

performance on both the ASSERTION and NOVA datasets. Most of the other active 

learners also performed better than passive leaner. LCB improved the performance by the 

basic uncertainty sampling method LC, while LCB2 could generate a better learning 

curve than LCB. The performances of LC, LCB, and LCB2 were consistent for both 

datasets. The model change-based method improved the uncertainty sampling methods 

LC and LCB in both datasets, but the performance of LCB2MC was poorer than LCB2. 

The active learners LC and IDD did not perform well in our experiments on both 

datasets. 

Table 2 shows the cross validation results of ALC scores for both datasets and the 

different querying algorithms. ALC scores from individual folds, as well as the average 

of the three folds, were reported.  
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Table 2. ALC results for Threefold Cross Validation of Active Learning for Two 

Datasets and Eight Querying Methods. 

Dataset 
Querying Method 

Fold1 Fold2 Fold3 Average 
Standard 

Deviation Category New/Existing Name 

ASSERTION 

Dataset 

Uncertainty Sampling 

Existing LC 0.7160 0.7524 0.7586 0.7423 0.0230 

Existing LCB 0.7423 0.7836 0.7560 0.7606 0.0210 

New LCB2 0.7536 0.7773 0.7597 0.7635 0.0123 

Model Change 

New LCMC 0.7171 0.7656 0.7644 0.7490 0.0277 

New LCBMC 0.7503 0.7839 0.7803 0.7715 0.0184 

New LCB2MC 0.7182 0.7624 0.7615 0.7474 0.0253 

Information Density Existing IDD 0.7144 0.7268 0.6947 0.7120 0.0162 

Baseline Existing 
Random 

(50 runs) 
0.7151 0.7647 0.7434 0.7411 0.0249 

NOVA 

Dataset 

Uncertainty Sampling 

Existing LC 0.7643 0.6805 0.7251 0.7233 0.0419 

Existing LCB 0.8524 0.8163 0.8603 0.8430 0.0235 

New LCB2 0.8722 0.8344 0.8546 0.8537 0.0189 

Model Change 

New LCMC 0.8771 0.8144 0.8472 0.8462 0.0314 

New LCBMC 0.8702 0.8289 0.8719 0.8570 0.0244 

New LCB2MC 0.8768 0.8323 0.8295 0.8462 0.0265 

Information Density Existing IDD 0.7297 0.6970 0.7161 0.7143 0.0164 

Baseline Existing 
Random 

(50 runs) 
0.8151 0.7847 0.8001 0.8000 0.0152 

Note: LC: Least Confidence; LCB: Least Confidence with Bias; LCB2: Least Confidence 

with Dynamic Bias; LCMC: Least Confidence with Model Change; LCBMC: Least 

Confidence with Bias and Model Change; LCB2MC: Least Confidence with Dynamic 

Bias and Model Change; IDD: Information Density based on Distance to Center. 

 

Figure 1 and Figure 2 show the average learning curves for datasets ASSERTION 

and NOVA, respectively, for all eight querying methods. In general, LCBMC, which had 

the highest global score, showed stability with small training sample sizes. On the other 

hand, the querying methods with low global scores performed poorly or were unstable in 

the early stage of the active learning process.  
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Figure 1. Average Learning Curves for 8 Querying Algorithms on the Assertion Dataset. 
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-0.9707

LC ALC score: 0.74232

LCB ALC score: 0.76062

LCB2 ALC score: 0.76355

LCMC ALC score: 0.74903

LCBMC ALC score: 0.77149

LCB2MC ALC score: 0.74739

IDD ALC score: 0.71197

Random ALC score: 0.74104
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Figure 2. Average Learning Curves for 8 Querying Algorithms on the NOVA Dataset. 
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reasonably well with a high average AUC and low standard deviation when only a small 

number of training samples was used. 

 

Table 3. Evaluation of the classification model for eight querying algorithms and two 

datasets on a small training set (with 16, 32, and 64 training samples) based on average 

AUC score and the standard deviation. 

Dataset 

Size of 

Training 

Set 

LC LCB LCB2 LCMC LCBMC LCB2MC IDD Random 

ASSERTION 

Dataset 

16 
71.52%  ± 

2.55% 

79.16%   ± 

3.85% 

80.91%   ± 

1.31% 

76.87%   ± 

5.89% 

81.92%  ± 

1.41% 

78.55%  ± 

4.73% 

69.10% ± 

2.70% 

75.65%  ± 

5.83% 

32 
78.85%  ± 

4.30% 

81.46%   ± 

2.77% 

82.04%   ± 

1.38% 

80.11%   ± 

1.91% 

81.87%  ± 

2.45% 

80.61%  ± 

1.31% 

78.77% ± 

2.55% 

79.00%  ± 

4.31% 

64 
84.16%  ± 

1.42% 

82.33%   ± 

2.05% 

84.16%   ± 

0.74% 

81.45%   ± 

2.34% 

85.42%  ± 

1.03% 

81.07%  ± 

1.45% 

80.88% ± 

3.18% 

83.12%  ± 

2.25% 

NOVA Dataset 

16 
73.98%  ± 

6.25% 

83.99%   ± 

4.93% 

84.42%   ± 

3.66% 

82.01%   ± 

4.00% 

83.98%  ± 

5.81% 

81.30%  ± 

4.61% 

78.91% ± 

4.22% 

76.70%  ± 

7.06% 

32 
70.88%  ± 

2.96% 

80.82%   ± 

5.35% 

85.33%   ± 

1.63% 

81.52%   ± 

6.97% 

85.69%   ± 

3.05% 

85.25%  ± 

3.15% 

77.27% ± 

2.50% 

79.03%  ± 

6.96% 

64 
69.38%  ± 

5.05% 

91.79%   ± 

0.54% 

91.82%   ± 

0.58% 

92.21%   ± 

0.71% 

91.03%   ± 

2.80% 

90.16%  ± 

1.04% 

71.77% ± 

2.63% 

83.57%  ± 

4.88% 

 

Table 4 presents the evaluation of the prediction model when the training set was 

large (with 1024, 2048, and 4096 samples). This table magnifies the intermediate results 

for the late stage of active learning. In this stage, the active learners performed better 

when compared with the passive learner on the ASSERTION dataset. It is also true for 

the NOVA dataset with training sample sizes of 2048 or higher. 

In addition, none of the experiments needed much computational time. The 

querying algorithms could rank or generate Q values for all samples in the unlabeled pool 

on both datasets (more than 8000 samples) in less than one second. The classifier 

Logistic Regression in the “Liblinear” package could complete three-fold cross validation 

(for the end point in the learning curve) in less than three seconds for the ASSERTION 



26 

 

dataset (with about 12,000 samples) and four seconds for the NOVA dataset (with about 

20,000 samples). 

 

Table 4. Evaluation of the classification model for eight querying algorithms and two 

datasets with a large training set (with 1024, 2048, and 4096 training samples) based on 

average AUC score and the standard deviation. 

 

Dataset 

Size of 

Training 

Set 

LC LCB LCB2 LCMC LCBMC LCB2MC IDD Random 

ASSERTION 

Dataset 

1024 
93.73%   ± 

0.48% 

94.34%  ± 

0.53% 

94.09%  ± 

0.47% 

94.23%  ± 

0.57% 

94.64%  ± 

0.26% 

94.44%  ± 

0.41% 

93.57%  ± 

0.56% 

93.46% ± 

0.46% 

2048 
95.81%  ± 

0.26% 

95.94%  ± 

0.24% 

95.80%  ± 

0.41% 

95.67%  ± 

0.47% 

95.74%  ± 

0.29% 

95.88%  ± 

0.54% 

95.77%  ± 

0.11% 

94.99% ± 

0.33% 

4096 
96.67%  ± 

0.28% 

96.76%  ± 

0.28% 

96.66%  ± 

0.36% 

96.76%  ± 

0.26% 

96.74%  ± 

0.30% 

96.82%  ± 

0.32% 

96.70%  ± 

0.24% 

96.18% ± 

0.26% 

NOVA Dataset 

1024 
97.71%  ± 

0.62% 

98.26%  ± 

0.36% 

98.29%  ± 

0.22% 

98.10%  ± 

0.18% 

98.03%  ± 

0.51% 

98.10%  ± 

0.39% 

95.48%  ± 

0.46% 

97.05% ± 

0.42% 

2048 
98.66%  ± 

0.23% 

98.69%  ± 

0.25% 

98.38%  ± 

0.26% 

98.83%  ± 

0.22% 

98.65%  ± 

0.23% 

98.65%  ± 

0.41% 

98.39%  ± 

0.26% 

98.03% ± 

0.28% 

4096 
99.07%  ± 

0.20% 

99.10%  ± 

0.19% 

99.02%  ± 

0.28% 

99.11%  ± 

0.20% 

99.11%  ± 

0.25% 

99.08%  ± 

0.24% 

99.00%  ± 

0.20% 

98.63% ± 

0.21% 

 

 

To assess whether there are significant differences in terms of mean ALC global 

scores among different active learners and the passive learner, we conducted a statistical 

test based on results from bootstrapping. We re-sampled the test set by random sampling 

with replacement for 200 times and generated 200 bootstrapping data sets. For each 

bootstrapping data set, we evaluated and reported ALC global scores for different active 

learners and the passive learner. We used Wilcoxon signed rank test, 
54

 a non-parametric 

test for paired samples, to assess whether differences between two methods are 

statistically significant. As there were eight different methods (28 comparisons in total), 

we applied Bonferroni correction 
55

 to adjust for multiple comparisons, with family-wise 
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type I error control at alpha = 0.05. Therefore, if the p-value from Wilcoxon signed rank 

test was less than 0.0018 (0.05/28), we claimed that there was a statistically significant 

difference between two methods. Table 5 shows the results of the statistical test. Except 

the ones between Random and LC, Random and IDD, LC and IDD, and LCMC and 

LCB2MC, all other comparisons showed statistically significant differences.  

 

Table 5. Results of the statistical test (Wilcoxon signed rank test with Bonferroni 

correction for multiple testing) among ALC global scores from different active learners 

and the passive learner (“Y”: Statistically significant; “N”: Not statistically significant) 

 LC LCB LCB2 LCMC LCBMC LCB2MC IDD 

Random (50 Runs) N Y Y Y Y Y N 

LC  Y  Y Y Y Y N 

LCB   Y Y Y Y Y 

LCB2    Y Y Y Y 

LCMC     Y N Y 

LCBMC      Y Y 

LCB2MC       Y 

 

Table 6 shows the variance of bootstrapping process with means and 95% 

confidence intervals (CIs) of the ALC scores for all querying algorithms. Table 7 shows 

the mean and 95% CIs in difference of ALC score from 200 bootstrapping samples 

between random sampling method and each other querying algorithm. Based on the result 

in Table 7, LCMC and LCB2MC did not perform significantly better than random 

sampling because 0 was within the 95% CI of the ALC difference. The difference in 

conclusion could be due to the following reasons. Wilcoxon signed rank test found a 

significant difference with respect to mean averaged over 200 runs, but did not look at the 

distribution of the difference. Table 7, instead, found the distribution of the difference by 
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using 95% confidence interval from the mean difference, which gives a better 

representation of what we could expect in the actual use.  

 

Table 6. Mean and 95% confidence interval of 200 bootstrapping samples of ALC scores 

for 8 algorithms 

 
Random LC LCB LCB2 LCMC LCBMC LCB2MC IDD 

mean 0.714 0.715 0.742 0.753 0.716 0.750 0.718 0.714 

2.5% 

percentile 
0.695 0.696 0.724 0.730 0.697 0.730 0.696 0.696 

97.5% 

percentile 
0.734 0.734 0.758 0.772 0.736 0.769 0.737 0.731 

  

 

Table 7. Mean and 95% confidence interval of the ALC score difference between 

random sampling and other 7 querying methods from 200 bootstrapping samples 

 
LC LCB LCB2 LCMC LCBMC LCB2MC IDD 

mean 0.001 0.028 0.039 0.002 0.035 0.003 0.000 

2.5% 

percentile 
-0.010 0.017 0.030 -0.010 0.024 -0.008 -0.012 

97.5% 

percentile 
0.012 0.039 0.050 0.013 0.046 0.016 0.010 

 

2.4 Discussion 

For the concept assertion classification task, active learners generated better 

prediction models with higher AUC scores, and required less annotation effort than the 

passive learner (based on the results shown in Tables 3 and Table 4). Using the 

ASSERTION dataset, the prediction model trained by 32 randomly selected annotated 

samples had a 0.7900 average AUC score; however, LCBMC could achieve the 

prediction model with a 0.8192 average AUC by using 16 annotated samples, which 

saved half of the annotation cost. Overall, the active learning strategy was more efficient 
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in reducing annotation costs and improving prediction models for the clinical dataset 

ASSERTION. In Figure 1, the best learning curve by LCBMC lay above the average 

learning curve by random sampling. The result for the general English dataset NOVA 

was also consistent with the ASSERTION dataset. Such findings show that active 

learning strategies hold promise in solving similar clinical text classification problems 

when annotation is expensive and time-consuming.  

To further analyze the learning curves for the ASSERTION dataset, we calculated 

the approximate numbers of training cases at different levels of AUC, for both active 

learning approaches and random sampling approaches (Table 8). In the early stage of 

active learning, the random sampling method used 32 samples to achieve an AUC of 

0.79, while LCBMC used only 12 samples to achieve the same AUC, a 62.5% of 

reduction in sample size. In the middle stage of active learning, the random sampling 

method used 512 labeled cases to train a model with an AUC of 0.92, while LCB used 

about 369 samples to build the same model. In the late stage, the random sampling 

method required 4,096 samples to generate a model with an AUC of 0.96, while LCB 

used only 2,518 samples to reach the same AUC. This analysis demonstrates that active 

learning methods require fewer training samples than the random sampling method, with 

similar classification performances.  

The basic uncertainty sampling algorithm LC and the information density 

algorithm IDD did not perform well in active learning on both datasets. LC could not find 

the most informative samples when the annotated instances were insufficient, because LC 

relies on the performance of a probabilistic model that was poor in the early stage of 

active learning. However, LCB and LCB2 could improve the performance for both 
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datasets by also considering the imbalance of class and the quality of the classification 

model. The model change-based method LCBMC further improved the uncertainty-based 

method LCB by considering the change of informative values between models. The 

information density-based method IDD failed to improve the global score, because the 

density term based on distance to center did not find the most “representative” samples 

for both datasets. It negatively affected the overall performance, even though the 

uncertainty term by LCB2 could perform reasonably well by itself on both datasets. 

 

Table 8. Approximate numbers of training samples at different levels of AUCs for both 

active learning algorithms and the random sampling method.  

 

AUC 0.79 0.83 0.86 0.89 0.92 0.93 0.95 0.96 

Random 32 64 128 256 512 1024 2048 4096 

LC 33 56 103 232 435 903 1557 2768 

LCB 16 73 127 219 369 650 1354 2518 

LCB2 13 46 129 277 462 824 1471 2785 

LCMC 26 81 127 241 426 770 1473 2843 

LCBMC 12 41 118 225 414 713 1271 2784 

LCB2MC 19 91 166 298 524 812 1330 2555 

IDD 35 102 269 443 694 1002 1600 2790 

 

Although LCBMC was the best querying algorithm for both datasets based on the 

global score in our experiments, its learning curve for the ASSERTION dataset was not 

flawless. It could generate a classification model with 0.8192 and 0.8187 average AUC 

scores by using 16 and 32 annotated samples, respectively. Although the difference in 

AUC did not seem significant, we did not expect that the model would get worse with 

larger training sets. Further investigation of the querying algorithm is needed to improve 

the stability of the learning curve. One possible direction worth investigating is to 
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automatically select the batch size as a function of the probabilistic prediction and 

querying model in the iteration of active learning, instead of pre-setting this parameter.  
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CHAPTER III 

 

STUDY II: APPLYING ACTIVE LEARNING TO SUPERVISED WORD SENSE 

DISAMBIGUATION IN MEDLINE 

 

3.1 Introduction 

Word sense disambiguation (WSD) is the process of identifying the appropriate 

sense of an ambiguous word in a given context. WSD is important for many natural 

language processing (NLP) tasks, such as information extraction and information 

retrieval. 
56

 The ambiguity inherent in biomedical texts is a widely recognized problem. 

For example, “gene”, an important entity in biomedical research, can have ambiguous 

names referring to: 1) multiple genes; 2) a gene or an English word not related to a gene; 

3) RNA, protein, or gene; or 4) genes in different species. A gene name ambiguity study 

showed that 85.1% of correctly retrieved mouse genes were ambiguous, easily confused 

with other gene names from 21 organisms in a set of 45,000 abstracts associated with 

mouse genes
57

.  

Many different approaches have been developed for biomedical WSD tasks, as 

described in a review paper by Schuemie et al. 
58

 Among them, supervised machine 

learning-based WSD methods have received considerable attention and have shown very 

good results in both general English texts 
26,27,59-61

 and biomedical texts such as 

MEDLINE abstracts. 
28

 Supervised WSD approaches usually build a classification model 

for each ambiguous word by learning from an annotated corpus containing instances of 

each possible sense of the word. Despite its high performance, supervised WSD has 
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limited scalability it is a costly and time-consuming process to build a sense-annotated 

corpus for each ambiguous term in biomedical texts. Researchers have investigated 

different automated methods to create pseudo-corpora with labeled senses and have used 

them for supervised WSD methods (also called semi-supervised). 
62,63

 Despite the 

successes, WSD methods based on pseudo- corpora did not perform as well as supervised 

WSD systems that were based on annotated instances from the real corpus. 
58

 An 

alternative new approach presented in this study is to investigate how active learning 

strategies can be integrated with supervised WSD methods to reduce the number of 

annotated samples required by a satisfactory classification model.   

In this chapter, we describe a study where we applied three different active 

learning algorithms to Support Vector Machines (SVM) based disambiguation models for 

197 ambiguous terms from MEDLINE abstracts. We compared learning curves between 

three active learners and a passive learner, based on random sampling across 197 WSD 

tasks.  

 

3.2 Methods 

Three different uncertainty sampling-based active learning algorithms (Least 

Confidence (LC), Margin, and Entropy) and one passive learning method (random 

sampling) were integrated with an SVM classifier to disambiguate 197 ambiguous words 

and abbreviations in the MSH WSD collection derived from MEDLINE abstracts. For 

each ambiguous term and for each learning algorithm, an average learning curve was 

generated that plots the accuracy computed from the test set as a function of the number 
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of annotated samples used in the model via a 10-fold cross-validation. The Area under 

the average Learning Curve (ALC) was used as the primary metric for evaluation.  

 

3.2.1 WSD Dataset 

In this study, we used the MSH WSD dataset developed by Jimeno-Yepes et al. 
64

 

This benchmark dataset was downloaded from the National Library of Medicine (NLM) 

WSD test collection collaboration. 
65

 The generation of MSH WSD is based on exploiting 

MeSH indexing in MEDLINE abstracts. It consists of 106 ambiguous abbreviations, 88 

ambiguous terms and 9 of which are a combination of both, for a total of 203 ambiguous 

words. 
64

 Each instance containing the ambiguous word is assigned an appropriate sense 

that is represented using a Concept Unique Identifier (CUI) from the 2009AB version of 

the UMLS (Unified Medical Language System). For each ambiguous term/abbreviation, 

the dataset contains a maximum of 100 instances obtained from MEDLINE for each 

sense, resulting in 37,888 ambiguous cases in 37,090 MEDLINE citations. 
64

 Jimeno-

Yepes et al. 
64

 also evaluated machine learning based WSD algorithms on this data set 

and reported an accuracy of 0.9386 for the entire MSH WSD data set, when words from 

titles and abstracts were used as features. To ensure that we had enough samples for 

training and testing, we included ambiguous words that have more than 100 instances in 

total for all senses in this study, resulting in 197 words. Among them, 111 are 

abbreviations and 86 are unabbreviated terms. In addition, 14 out of 197 words have 

more than two senses and the remaining 183 words have exactly two senses. Table A1 in 

appendix shows the frequency distribution of the senses for each ambiguous word in the 

data set. 



35 

 

 

3.2.2 Active Learning-Enabled Supervised WSD 

3.2.2.1 The Pool-Based Active Learning Approach to Classification 

An active learning-based classification system mainly consists of two core 

components: a classification model and an active sample selection or a querying model. 

The pool-based active learning approach to classification 
5
 was used in this study. The 

approach starts with a pool of unlabeled samples and it iteratively selects informative 

samples for annotation and model development. 

In the MSH WSD dataset, the pool size varies from 100 to 500, depending on the 

ambiguous word. We pretended that labels of samples were not available when running 

the querying algorithms. For the initial training set, we randomly selected two samples 

from the entire pool. All experiments with different querying algorithms used the same 

initial training set and, therefore, have the same initial point in the learning curve. In this 

study, we used a batch size of one in all experiments so that we could closely monitor the 

performance increase by every incremental training sample. As the minimum number of 

training samples for an ambiguous word was 100 and we used 10-fold cross validation in 

the evaluation (see Section 3.2.3), we stopped the active learning process when 90 

training samples were queried. 

 

3.2.2.2 The WSD Classification Model 

The WSD classification model was built on the Support Vector Machines (SVMs) 

algorithm with linear kernel in the package “Liblinear”. 
52

 We used a one-vs.-all multi-
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class classification model if the ambiguous term has more than two senses. As optimized 

parameters of SVM were different for 197 words in the data set, we used a common 

setting: s = 1 (L2-regularized L2-loss support vector classification) and c = 1, for all 

words in this study, which performed comparably to the previous study. 
64

 The numeric 

outputs by SVM were mapped into the probabilistic domain (values from 0 to 1) by a 

sigmoid/logistic function. All words (except the ambiguous word itself) occurring in the 

title and abstract of a citation where the ambiguous term appears were used as features 

for SVM classifiers, similarly to the previously reported study. 
64

  

 

3.2.2.3 Active Learner and Passive Learner 

The second core component of active learning is the querying method. In general, 

there are two types of learners: active learner and passive learner. The passive learner (PL) 

randomly queries instances from the pool of unlabeled samples, without considering the 

information about samples in the pool. The active learner (AL), on the other hand, will 

select the instances that are the most promising, improving the predictive performance of 

the model. x
*
 is selected as the most informative sample according to the function 

x
*
=argmax Q(x), where Q(x) is the querying algorithm that outputs the informativeness 

or querying value (Q value) for data matrix x in U. In this study, we implemented three 

uncertainty sampling-based querying algorithms that query the sample with the least 

certainty or closest to the decision boundary. It is applicable to multi-class classification 

problems such as supervised WSD tasks. 



37 

 

The simplest uncertainty sampling algorithm is called Least Confidence (LC), 

which is straightforward for the probabilistic models: 

Q
LC

(x) = 1  P(y
*
|x; θ) 

where y
*
 is the most likely label sequence for x. θ is the model that generates the 

posterior probability P of label y given data matrix x. In the binary classification case, LC 

is equivalent to querying the instance with the highest Q value (or uncertainty value) that 

is nearest the 0.5 posterior probability of being in the positive or negative class. 

As LC only considers information about the most probable label, we also used a 

different multi-class uncertainty sampling method called margin sampling (Margin): 

Q
margin

(x) = P(y2
*
|x; θ) - P(y1

*
|x; θ), 

where y1* and y2* are the first and second most probable class labels under the model, 

respectively. The intuition of this algorithm is that the samples with larger margins are 

easier to differentiate between the two most likely class labels, while the samples with 

smaller margins are more ambiguous. Thus, the margin sampling algorithm outputs the 

sample with the smallest difference between the two most likely class labels. 

For problems with very large label sets, however, the margin method still ignores 

much of the output distribution for the remaining classes. Thus we implemented a more 

general uncertainty sampling strategy called Entropy: 

 

where yi ranges over all possible labels. Entropy is a measure of uncertainty or impurity 

over all possible labels in a machine-learning task.  

 entropyQ  - ( | ; ) log ( | ; )i i

i

x P y x P y x  
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For binary classification, all three are equivalent to querying the instance with a 

class posterior closest to 0.5. All three querying algorithms were expected to have 

identical performance on 183 ambiguous words that have only two possible senses. 

Therefore we focused the comparison study among three querying algorithms only on the 

14 ambiguous words with more than two senses.  

 

3.2.3 Evaluation 

In this study, we used the evaluation measurements similar to those in the 2010 

active learning challenge. 
50

 The performance of the active learning-enabled classification 

system was evaluated by a learning curve, which plotted the accuracy (ACC) computed 

using the test set as a function of the number of labels annotated. ACC was defined as the 

ratio between the number of correctly identified samples and the number of all samples in 

the test set. A commonly used global measure for active learning systems, the Area under 

the Learning Curve (ALC), was also reported in this study. The global ALC score was 

normalized by the area under the best achievable learning curve (1.00 ACC on all points 

of the learning curve). When measuring the area under a learning curve, two neighbor 

points on the curve were interpolated linearly. 

To evaluate a pool-based active learning framework, we need not only a pool of 

unlabeled samples (that will be labeled during the querying step), but also an 

independently labeled test set. To generate reliable results, 10-fold cross validation (CV) 

was performed on active learning. At each cross validation iteration, nine folds formed 

the pool of unlabeled samples and the remaining fold was used for the evaluation of 
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performance. For each ambiguous word in the MSH WSD dataset and a given querying 

algorithm (LC, Margin, or Entropy), ten learning curves were generated from 10-fold CV 

experiments. Each learning curve started from two initial training samples and stopped at 

90 training samples. An average learning curve was then created by averaging the ACC 

scores at each corresponding point for these ten individual learning curves. The global 

score for each querying algorithm was then the ALC score from the averaged learning 

curve. Since the passive learner generated results with high variance due to random 

sampling, we averaged the results of the random querying method over 10 runs using the 

same start point, end point, and batch size. 

To better summarize and compare the three querying methods and random 

sampling method, we generated a global average learning curve for each method from all 

learning curves of 197 words in the WSD data set. The global learning curve for a given 

method was generated by averaging points with the same number of training samples 

from all 197 average learning curves.  

To assess whether there is a significant difference between any two learners (three 

active learners and one passive learner) in terms of average ALC scores from 197 

ambiguous words, we used the Wilcoxon signed rank test, 
54

 a non-parametric test for 

paired samples. As there were four different methods (6 pair-wise comparisons in total), 

we applied a Bonferroni correction 
55

 to adjust for multiple comparisons, with family-

wise type I error control at alpha = 0.05. Therefore, if the p-value from the Wilcoxon 

signed rank test was less than 0.0083 (0.05/6), we claimed that there was a statistically 

significant difference between two methods. 
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3.3 Results 

For each of 197 ambiguous words, we evaluated four learning methods (three 

active learners and one passive learner) and generated corresponding learning curves and 

global ALC scores. Table 9 shows the average ALC scores for all 197 words and some 

subsets. Detailed ALC scores for each ambiguous word and each learning algorithm are 

available at the Appendix (Table A1). For any subsets in Table 9, the three active 

learning algorithms had close average ALC scores, but they were better than the passive 

learning method (random sampling). Wilcoxon signed rank tests showed that the average 

ALC scores generated by active learners using LC, Margin, or Entropy querying 

algorithms were statistically significantly better than ALC scores by the passive learner, 

in all subsets. However, the tests also revealed that the three active learners were not 

statistically significantly different. As shown in the last column of Table 9, active 

learners outperformed the passive learner for 177 out of all 197 words (89.84%), 101 out 

of 111 abbreviations (90.99%), 76 out of 86 non-abbreviated terms (88.37%), and 13 out 

of 14 terms with more than two senses (92.85%).  

Figure 3 shows the global learning curves across 197 words for the three active 

learning algorithms (LC, Margin, and Entropy) and the passive learning algorithm 

(Random). The learning curves of the three active learning algorithms almost overlapped, 

but they were clearly above the random sampling curve.  
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Table 9. Average ALC scores for three active learning algorithms (LC, Margin, and 

Entropy) and one passive learning method (Random), across all 197 ambiguous words 

and their subsets from the MSH WSD dataset. 

 

MSH WSD dataset (subset) 
Average ALC score Active learner 

advantage percentage LC Margin Entropy Random 

197 words 0.838 0.838 0.838 0.804 177 out of 197 (89.84%) 

111 abbreviations 0.885 0.885 0.885 0.845 101 out of 111 (90.99%) 

86 non-abbreviated terms 0.778 0.777 0.778 0.752 76 out of 86 (88.37%) 

14 words with more than 2 senses 0.764 0.761 0.761 0.723 13 out of 14 (92.85%) 

 

 

 

Figure 3. Average Learning Curves comparison over 197 words in MSH WSD dataset 

 

Based on the learning curves, we further reported the approximate numbers of 

training samples needed on average at different performance levels of supervised WSD 

systems for both active learning algorithms and random sampling (Table 10). We 

0.58 
0.6 

0.62 
0.64 
0.66 
0.68 

0.7 
0.72 
0.74 
0.76 
0.78 

0.8 
0.82 
0.84 
0.86 
0.88 

0.9 
0.92 
0.94 
0.96 

2 12 22 32 42 52 62 72 82 

A
cc

u
ra

cy
 

Number of training samples 

LC 

Margin 

Entropy 

Random 



42 

 

calculated the numbers of required training samples for different methods at different 

ACC values (0.75-0.90). It was clear that the active learners required fewer annotated 

training samples than the passive learner in order to reach the same accuracy for WSD 

tasks. For example, to train the WSD system to achieve an accuracy of 0.90, we needed 

38 training samples for the random sampling method. But the active learners needed 24 

training samples only, indicating a 37% (14/38) decrease in annotated training samples. 

 

Table 10. Approximate numbers of training samples needed on average at different 

accuracy values for both active learners and passive learner. 

 

Accuracy LC Margin Entropy Random 

0.70 5 5 5 7 

0.75 6 6 6 10 

0.80 9 9 9 15 

0.85 13 13 13 21 

0.90 24 24 24 38 

 

Furthermore, we also reported the performance of WSD systems integrated with 

different active learners and the passive learner when the number of training samples was 

fixed. Table 11 shows the accuracy of active learners and the passive learner when the 

number of training samples was set from 10 to 90, in increments of 10 samples. Our 

results showed that active learners could always generate higher accuracy than the 

passive learner when the same number of training samples was used. Additionally, the 

improvement of active learners was greater in the early stage (lower numbers of training 

samples needed).  
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Table 11. Accuracy of active learners and the passive learner across 197 ambiguous 

words when different numbers of training samples were used 

 

Number of 

Training Samples 
LC Margin Entropy Random 

10 0.819 0.819 0.820 0.751 

20 0.887 0.887 0.886 0.844 

30 0.915 0.914 0.915 0.884 

40 0.927 0.928 0.927 0.903 

50 0.932 0.932 0.932 0.914 

60 0.937 0.937 0.937 0.922 

70 0.939 0.940 0.940 0.927 

80 0.941 0.942 0.941 0.931 

90 0.942 0.942 0.942 0.934 

 

As active learners may perform differently on multi-class classification tasks, we 

further conducted stratified analysis on the subset of 14 ambiguous words that had more 

than two senses. Table 12, Table 13, and Table 14 show the detailed ALC scores of four 

learners for these individual words. Active learners consistently showed better 

performance than the passive learner. Although LC achieved a slightly higher average 

ALC score (0.764) than Margin and Entropy (0.761), these differences were still not 

statistically significant according to the test.  We also conducted stratified analysis on 111 

abbreviations and detailed results can be found in Table 15 and Table 16. We noticed that 

abbreviations were relatively easier to disambiguate; active learners needed 50% fewer 

training samples on average than passive learner (33 versus 67) in order to achieve an 

accuracy of 96%. This could be because acronyms are often accompanied by the 

expanded (unambiguous) forms, e.g., “extraction of acylcarnitine (AC) and amino acids 

(AA)”. In addition, senses of the same abbreviation are generally quite unrelated, which 

probably makes the disambiguation task easier than others. 
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Table 12. Active learning result for 14 words with more than two senses in MSH WSD 

test collection 

 

Words 

Sense Distribution 10-fold CV ALC scores 

S1 S2 S3 S4 S5 LC Margin Entropy Random 

Ala 98 97 98 0 0 0.825 0.812 0.824 0.762 

Ca 89 98 98 98 0 0.615 0.620 0.601 0.580 

Cold 93 96 62 0 0 0.686 0.683 0.683 0.668 

Cortical 95 99 98 0 0 0.748 0.727 0.733 0.675 

CP 97 99 98 0 0 0.868 0.864 0.866 0.822 

DDS 99 98 20 0 0 0.827 0.829 0.828 0.772 

Ice 98 37 98 0 0 0.755 0.759 0.762 0.759 

Lens 97 99 99 0 0 0.716 0.681 0.689 0.662 

Lupus 99 99 91 0 0 0.671 0.671 0.671 0.659 

PCA 99 99 99 95 98 0.796 0.827 0.808 0.769 

PCP 99 99 54 0 0 0.865 0.862 0.869 0.814 

RA 99 99 99 0 0 0.869 0.872 0.872 0.795 

TAT 99 99 99 0 0 0.719 0.714 0.711 0.672 

THYMUS 99 96 99 0 0 0.735 0.734 0.743 0.711 

Average      0.764 0.761 0.761 0.723 

 

Table 13, Approximate numbers of training samples needed on average at different 

accuracy values for both active learners and passive learner over 14 words with more 

than two senses 

 

Accuracy LC Margin Entropy Random 

0.50 4 4 4 6 

0.60 6 7 6 10 

0.70 11 11 10 17 

0.75 14 15 15 22 

0.80 19 19 20 27 

0.85 28 27 27 38 

0.90 49 49 53 69 

0.91 59 60 61 80 

0.92 86 82 81 >90 

 



45 

 

 

Table 14. Accuracy of active learners and the passive learner across 14 words with more 

than two senses when different numbers of training samples were used 

 

Number of Training 

Samples 
LC Margin Entropy Random 

10 0.6862 0.6880 0.6997 0.5913 

20 0.8149 0.8105 0.7998 0.7310 

30 0.8659 0.8608 0.8644 0.8158 

40 0.8836 0.8870 0.8812 0.8542 

50 0.9019 0.9006 0.8957 0.8731 

60 0.9116 0.9102 0.9082 0.8927 

70 0.9120 0.9190 0.9130 0.9009 

80 0.9157 0.9206 0.9169 0.9104 

90 0.9226 0.9232 0.9241 0.9128 

 

 

Table 15. Approximate numbers of training samples needed on average at different 

accuracy values for both active learners and passive learner over 111 abbreviations 

 

Accuracy LC Margin Entropy Random 

0.75 5 5 5 7 

0.80 6 6 6 10 

0.85 8 8 8 14 

0.90 13 13 13 21 

0.95 26 26 26 46 

0.96 32 33 32 67 
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Table 16. Accuracy of active learners and the passive learner across 111 abbreviations 

when different numbers of training samples were used 

 

Number of Training 

Samples 
LC Margin Entropy Random 

10 0.8808 0.8821 0.8826 0.8011 

20 0.9377 0.9379 0.9380 0.8948 

30 0.9570 0.9563 0.9575 0.9302 

40 0.9637 0.9641 0.9642 0.9449 

50 0.9669 0.9670 0.9666 0.9524 

60 0.9692 0.9698 0.9691 0.9585 

70 0.9701 0.9710 0.9700 0.9612 

80 0.9707 0.9710 0.9707 0.9637 

90 0.9707 0.9707 0.9707 0.9662 

 

In addition, we tested the SVM-based WSD system alone by using all samples in 

the dataset, similar to the experiment in the previous study. Our SVM-based WSD system 

achieved an average accuracy of 0.944 (via 10-fold cross validation) for all 197 words, 

which was similar to the previously reported result. 
64

 

 

3.4 Discussion 

In this study, we applied three different active learning algorithms to word sense 

disambiguation tasks in the MEDLINE corpus. To the best of our knowledge, this is the 

first attempt to explore the use of active learning in supervised WSD tasks in the 

biomedical domain. Our results based on the MSH WSD dataset showed that WSD 

systems integrated with active learners significantly outperformed the one with the 

passive learner (random sampling) in terms of average ALC score. Further analysis 

demonstrated that active learning strategies could not only reduce the number of training 
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samples required for supervised WSD systems, but could also improve classification 

models when the same number of training samples was used. These findings suggest the 

great potential of active learning in improving the scalability of supervised WSD 

approaches in the biomedical domain. To achieve high performance on this data set (over 

90% accuracy), supervised WSD systems would require a few dozens of sense-tagged 

instances for each ambiguous term when random sampling was used (Table 10). By 

applying our current active learning strategies, we observed a reduction of 30-40% in 

annotation labor, which is promising. However, it is still not clear if such a reduction is 

good enough for building supervised WSD systems with a broad coverage, because the 

ambiguity problem is pervasive in the biomedical domain. For example, Fundel and 

Zimmer 
66

 found that approximately 65% of 2.2 million human or rat related MEDLINE 

abstracts contained protein names that are ambiguous between the human and rat 

synonym lists. Liu and colleagues
67

 also reported that 33.1% of clinical abbreviations 

found in the UMLS 2001 were ambiguous. In addition, annotation cost is also highly 

associated with the required performance of a task. If a WSD accuracy of 85% is good 

enough for a specific task, our active learning strategies would require only about a dozen 

of sense-tagged instances on this data set (see Table 10). Therefore, a formal study is 

needed to further assess the feasibility of developing real-world WSD systems based on 

active learning, which should evaluate annotation costs at different levels of required 

performance.   

We implemented three different querying algorithms for multi-class WSD tasks: 

LC, Margin, and Entropy. Although they are all uncertainty sampling-based algorithms, 

they are different when computing the uncertainty based on probabilities generated by the 
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classifier: the LC algorithm considers the sense with the most confidence only; the 

Margin algorithm considers the two most likely senses; and the Entropy algorithm 

considers information for all possible senses. For the 14 words that had more than two 

senses in the dataset, we noticed a slight difference between LC and Margin/Entropy, but 

it was not statistically significant based on the statistical test, likely due to the small 

sample size (N=14). Another limitation of this study was that the pools for active learning 

were relatively small (maximum pool size was 500), as we used annotated samples in the 

MSH WSD dataset only. In a real-world application of active learning, we could collect a 

large number of unlabeled samples from MEDLINE for each ambiguous term, thus 

forming a much bigger pool for active learning experiments. We expect that larger pools 

will make the performance of active learning even better. We also noticed that most 

words in the MSH WSD data set had almost equally distributed senses and only 17 out of 

197 words had highly skewed senses. During the creation of MSH WSD data set, some 

minor senses were removed according to the procedure. In practice, imbalanced sense 

distribution will be observed more often, which could make WSD tasks more challenging.  

We analyzed the learning curves of the 20 words where active learners did not 

perform better than the passive learner. We categorized the patterns of these cases as 

follows. (1) Poor model in the early stage: there was a cutoff point where the learning 

curves of AL and PL crossed over in the early stage of learning. AL performed poorly in 

the early stage before the cutoff but could outperform PL in the later stage. This pattern 

happened in 11 out of 20 cases. The reason could be that uncertainty sampling algorithms 

are sensitive to the quality of models. When the model is poor, the learning curve could 

be very unstable. The “hasty generalization” problem pointed out by Wallace et al. 
68
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could be one of the reasons for poor models in early stage. Samples selected based on 

early uncertainty models could be not representative enough, especially for cases with 

skewed class distribution. As suggested by Wallace et al, one solution could be applying 

diversity-based algorithms in the early stage. When the learning process passes the cutoff, 

active learning performs better than random because the classification model gets better. 

(2) Easy WSD cases: for some ambiguous words, high performance WSD models could 

be built based on only a small number of labeled samples. Basically they are easy WSD 

cases. For these cases, the informativeness or informative value of each sample is equally 

high and active learning is not necessary, as random sampling does the same job. We 

found 3 easy cases (lymphogranulomatosis, PCD, and SLS) out of 20 words. (3) Difficult 

WSD cases: this pattern was almost opposite to the second one. Even though we used all 

available samples with labels in the training set, the performance was not improved much. 

This indicates that the difference in informativeness or informative value among samples 

is small, and the informative value of each sample is equally low. We found three of 

these difficult cases (Coffee, TMJ, and veterinary). For the remaining three cases, the 

learning curves between AL and PL looked very similar. This could be due to the equal 

informativeness or informative value of each sample, or the querying algorithms failed to 

distinguish the difference of informativeness among unlabeled samples. These cases are 

also difficult cases because it is difficult to distinguish their samples. 

Based on the above analysis, in order to further improve active learning for WSD 

tasks, we should investigate more robust active learning algorithms that can tolerate low 

quality models, or methods that can select good initial samples to build high quality 

models in the early stage. In addition to uncertainty sampling algorithms, other methods 
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that consider different types of information (e.g., sample diversity 
44

) also need to be 

studied. We also plan to look into other available WSD datasets that have more multiple 

senses so that we can test active learning algorithms on multi-class classification 

problems. Moreover, we are interested in applying active learning to real-world WSD 

tasks by developing an annotation interface that implements active learning querying 

algorithms for sample selection.  
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CHAPTER IV 

 

CONCLUSION 

 

Both studies demonstrated that active learning algorithms can be applied to 

clinical text and biomedical literature classification tasks effectively. Overall, active 

learning algorithms improved the performance of supervised machine learning models 

while reduced annotation effort. Results for concept assertion classification task showed 

that when the same number of annotated samples was used, active learning strategies 

could generate better classification models (best ALC – 0.77) than the passive learning 

method (random sampling) (ALC – 0.74). Result for supervised WSD tasks showed that 

active learners significantly outperformed the passive learner for 177 out of 197 (89.8%) 

ambiguous terms.  

Active learning strategies enable the learning machine to build the predictive 

models with required quality much faster than traditional machine learning or passive 

learning. For concept assertion classification task, to achieve an AUC of 0.79, the random 

sampling method used 32 samples, while our best active learning algorithm required only 

12 samples, a reduction of 62.5% in manual annotation effort. For supervised WSD task, 

to achieve an average accuracy of 90%, the passive learner needed 38 samples, while the 

active learners needed only 24 annotated samples, a 37% reduction of annotation effort. 

In addition, we analyzed cases where active learning algorithms did not achieve 

superior performance and analyzed three causes for supervised WSD tasks: (1) poor 
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model in early learning stage; (2) easy WSD cases; and (3) difficult WSD cases, which 

provide useful insight for future improvements. For concept assertion classification class, 

we developed a new “model change” querying method which could improve the cases 

caused by poor models in the early stage. It was, however, limited to binary classification 

tasks. 

In the future, we will be exploring the application of active learning in clinical 

named entity recognition tasks, which is a sequencing labeling task that is different from 

the classification tasks discussed in this thesis. Uncertainty sampling algorithms could 

find the most informative samples, labeling these samples, however, may take much 

more effort than samples which are less informative. As the cost of labeling a sentence or 

a document may not be uniformly distributed, it is interesting to investigate cost-sensitive 

active learning which takes into account the real annotation cost for each sample instead 

of just the number of annotated samples. Moreover, uncertainty sampling would perform 

slowly in the sequencing labeling tasks because they rely on learning algorithm that is not 

fast when the size of labeled samples is large. Therefore, we are interested in discovering 

diversity based active learning algorithms, which do not depend on the classifier with 

annotation information but just the clinical text itself such as distribution of samples and 

semantic and syntactic information. Finally, we will develop a real-time active learning 

enabled annotation system which could assist to build high-performance supervised 

learning model as the ultimate solution for clinical text classification problems.  
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Appendix 

Table A1. Active learning results for 197 ambiguous words. (Note: Type “A” represents 

Abbreviation; type “T” represents Term; type “AT” represents Abbreviation and Term.) 

ID Words Type 

Number of Sentences 10-

fold 

CV 

ACC 

Average ALC score 
AL 

VS 

PL Total 
M

1 

M

2 

M

3 

M

4 

M

5 
LC Margin Entropy 

Rando

m (10 

runs) 

1 AA A 192 99 93 0 0 0 0.9948 0.9169 0.9169 0.9169 0.8705 1 

2 ADA A 198 99 99 0 0 0 0.9949 0.9179 0.9179 0.9179 0.8888 1 

3 ADH A 197 98 99 0 0 0 0.9898 0.9066 0.9066 0.9066 0.8741 1 

4 ADP A 139 89 50 0 0 0 0.9424 0.8926 0.8926 0.8926 0.8174 1 

5 Adrenal T 186 93 93 0 0 0 0.8710 0.6877 0.6877 0.6877 0.6704 1 

6 Ala A 293 98 97 98 0 0 0.9727 0.8252 0.8115 0.8244 0.7624 1 

7 ALS A 191 92 99 0 0 0 0.9686 0.9236 0.9236 0.9236 0.8865 1 

8 ANA A 193 97 96 0 0 0 0.9896 0.9642 0.9642 0.9642 0.9267 1 

9 Arteriovenous Anastomoses T 129 99 30 0 0 0 0.9380 0.8844 0.8844 0.8844 0.8628 1 

10 Astragalus T 195 96 99 0 0 0 0.9795 0.8806 0.8806 0.8806 0.8355 1 

11 B-Cell Leukemia AT 157 65 92 0 0 0 0.8153 0.7033 0.7033 0.7033 0.6908 1 

12 BAT T 192 98 94 0 0 0 0.9740 0.8435 0.8435 0.8435 0.8505 0 

13 BLM A 194 96 98 0 0 0 0.9948 0.9220 0.9220 0.9220 0.8794 1 

14 Borrelia T 196 98 98 0 0 0 0.7959 0.6861 0.6861 0.6861 0.6463 1 

15 BPD A 196 98 98 0 0 0 0.9949 0.9304 0.9304 0.9304 0.9018 1 

16 BR A 166 69 97 0 0 0 0.9699 0.8362 0.8362 0.8362 0.7863 1 

17 Brucella abortus T 177 98 79 0 0 0 0.9266 0.8027 0.8027 0.8027 0.7551 1 

18 BSA A 185 98 87 0 0 0 1.0000 0.9377 0.9377 0.9377 0.8801 1 

19 BSE A 197 98 99 0 0 0 1.0000 0.9546 0.9546 0.9546 0.9115 1 

20 Ca A 383 89 98 98 98 0 0.8564 0.6148 0.6201 0.6008 0.5800 1 

21 CAD A 194 98 96 0 0 0 0.9845 0.9159 0.9159 0.9159 0.8997 1 

22 Callus T 150 99 51 0 0 0 0.9333 0.8958 0.8958 0.8958 0.8301 1 

23 CAM A 195 97 98 0 0 0 0.9897 0.9071 0.9071 0.9071 0.8606 1 

24 Cardiac pacemaker T 198 99 99 0 0 0 0.9091 0.8333 0.8333 0.8333 0.7996 1 

25 CCD A 137 95 42 0 0 0 1.0000 0.9516 0.9516 0.9516 0.9045 1 

26 CCl4 A 195 97 98 0 0 0 0.9897 0.9356 0.9356 0.9356 0.8983 1 

27 CDA A 190 99 91 0 0 0 1.0000 0.9470 0.9470 0.9470 0.8970 1 

28 CDR A 143 48 95 0 0 0 1.0000 0.9214 0.9214 0.9214 0.8614 1 

29 Cell AT 193 97 96 0 0 0 0.9637 0.8494 0.8494 0.8494 0.8028 1 

30 Cement T 174 86 88 0 0 0 0.9195 0.7479 0.7479 0.7479 0.7310 1 

31 CH A 148 91 57 0 0 0 0.9324 0.8150 0.8150 0.8150 0.7647 1 

32 Cholera T 196 98 98 0 0 0 0.9541 0.8228 0.8228 0.8228 0.7714 1 

33 CI A 183 99 84 0 0 0 0.9617 0.8608 0.8608 0.8608 0.8004 1 
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34 Cilia T 151 96 55 0 0 0 0.9272 0.8514 0.8514 0.8514 0.8070 1 

35 CIS A 153 99 54 0 0 0 1.0000 0.9535 0.9535 0.9535 0.8849 1 

36 CNS A 195 99 96 0 0 0 0.9795 0.8720 0.8720 0.8720 0.8494 1 

37 Coffee T 193 96 97 0 0 0 0.7772 0.6476 0.6476 0.6476 0.6695 0 

38 Cold AT 251 93 96 62 0 0 0.8884 0.6861 0.6831 0.6833 0.6683 1 

39 Compliance T 196 99 97 0 0 0 0.9133 0.7603 0.7603 0.7603 0.7315 1 

40 Cortex T 152 99 53 0 0 0 0.9737 0.8756 0.8756 0.8756 0.8231 1 

41 Cortical T 292 95 99 98 0 0 0.9623 0.7477 0.7271 0.7330 0.6747 1 

42 CP A 294 97 99 98 0 0 1.0000 0.8681 0.8636 0.8655 0.8224 1 

43 Crack T 163 64 99 0 0 0 0.9755 0.8594 0.8594 0.8594 0.8301 1 

44 CRF A 196 97 99 0 0 0 1.0000 0.9317 0.9317 0.9317 0.8806 1 

45 cRNA A 197 99 98 0 0 0 0.9949 0.7354 0.7354 0.7354 0.8251 0 

46 Crown T 185 96 89 0 0 0 0.8703 0.7431 0.7431 0.7431 0.7142 1 

47 CTX A 179 95 84 0 0 0 1.0000 0.9350 0.9350 0.9350 0.8788 1 

48 DAT A 196 99 97 0 0 0 0.9949 0.9388 0.9388 0.9388 0.8863 1 

49 DBA A 179 96 83 0 0 0 1.0000 0.9469 0.9469 0.9483 0.9028 1 

50 dC A 198 99 99 0 0 0 0.9899 0.9077 0.9077 0.9077 0.8452 1 

51 DDD A 198 99 99 0 0 0 0.9495 0.8516 0.8516 0.8516 0.8133 1 

52 DDS A 217 99 98 20 0 0 0.9954 0.8270 0.8287 0.8281 0.7719 1 

53 DE A 124 27 97 0 0 0 0.8710 0.7582 0.7582 0.7582 0.7950 0 

54 DI A 194 96 98 0 0 0 0.9948 0.9606 0.9606 0.9606 0.9117 1 

55 Digestive T 195 98 97 0 0 0 0.8667 0.7440 0.7440 0.7440 0.7050 1 

56 DON A 126 99 27 0 0 0 0.9762 0.9335 0.9335 0.9335 0.8874 1 

57 drinking T 198 99 99 0 0 0 0.9646 0.8072 0.8072 0.8072 0.7800 1 

58 eCG A 198 99 99 0 0 0 0.9798 0.9021 0.9021 0.9021 0.8832 1 

59 Eels AT 126 98 28 0 0 0 0.9524 0.8972 0.8972 0.8972 0.8394 1 

60 EGG T 187 95 92 0 0 0 0.8877 0.7369 0.7369 0.7369 0.7216 1 

61 EM A 127 30 97 0 0 0 0.9843 0.9433 0.9433 0.9433 0.8793 1 

62 EMS A 197 99 98 0 0 0 0.9848 0.9049 0.9049 0.9049 0.8408 1 

63 Epi A 192 97 95 0 0 0 0.9896 0.8530 0.8530 0.8530 0.8265 1 

64 ERP A 193 99 94 0 0 0 1.0000 0.9665 0.9665 0.9665 0.9130 1 

65 ERUPTION T 193 98 95 0 0 0 0.9741 0.8843 0.8843 0.8843 0.8416 1 

66 Erythrocytes T 183 95 88 0 0 0 0.8033 0.6972 0.6972 0.6972 0.6668 1 

67 Exercises T 194 96 98 0 0 0 0.8711 0.6928 0.6928 0.6928 0.6878 1 

68 FA A 195 97 98 0 0 0 1.0000 0.9365 0.9365 0.9365 0.8848 1 

69 
Familial Adenomatous 

Polyposis 
T 198 99 99 0 0 0 0.8333 0.7475 0.7475 0.7475 0.7347 1 

70 FAS A 197 99 98 0 0 0 1.0000 0.9636 0.9636 0.9636 0.9138 1 

71 Fe A 188 89 99 0 0 0 0.9153 0.8251 0.8251 0.8251 0.7988 1 

72 Fish AT 186 93 93 0 0 0 0.9624 0.8568 0.8568 0.8568 0.7874 1 

73 Follicles T 194 96 98 0 0 0 0.9897 0.8673 0.8673 0.8673 0.8282 1 

74 FTC A 198 99 99 0 0 0 1.0000 0.9672 0.9672 0.9672 0.9193 1 
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75 GAG A 177 78 99 0 0 0 0.9887 0.8882 0.8882 0.8882 0.8347 1 

76 Gamma-Interferon T 194 98 96 0 0 0 0.8557 0.7136 0.7136 0.7136 0.6728 1 

77 Ganglion T 197 98 99 0 0 0 0.9188 0.8215 0.8215 0.8215 0.7842 1 

78 Gas T 193 98 95 0 0 0 0.9326 0.7944 0.7944 0.7944 0.7861 1 

79 Glycoside T 197 99 98 0 0 0 1.0000 0.8788 0.8788 0.8788 0.8084 1 

80 Haemophilus ducreyi T 153 54 99 0 0 0 0.9216 0.8641 0.8641 0.8641 0.8263 1 

81 HCl A 195 96 99 0 0 0 1.0000 0.9382 0.9382 0.9382 0.8810 1 

82 Heregulin T 173 99 74 0 0 0 0.8786 0.7194 0.7194 0.7194 0.7078 1 

83 HGF A 190 93 97 0 0 0 0.9368 0.8064 0.8064 0.8064 0.7835 1 

84 HHV 8 A 171 76 95 0 0 0 0.8596 0.6698 0.6698 0.6698 0.7216 0 

85 Hip T 164 98 66 0 0 0 0.7805 0.6668 0.6668 0.6668 0.6851 0 

86 HIV A 194 96 98 0 0 0 0.8557 0.6801 0.6801 0.6801 0.6972 0 

87 HPS A 177 98 79 0 0 0 1.0000 0.9670 0.9670 0.9670 0.9314 1 

88 HR A 106 10 96 0 0 0 0.9528 0.9292 0.9292 0.9292 0.9069 1 

89 Hybridization T 191 97 94 0 0 0 0.9372 0.8362 0.8362 0.8362 0.7864 1 

90 IA A 134 99 35 0 0 0 0.9776 0.8764 0.8764 0.8764 0.8464 1 

91 Ice AT 233 98 37 98 0 0 0.9614 0.7553 0.7586 0.7622 0.7594 0 

92 INDO A 121 98 23 0 0 0 0.9835 0.9213 0.9213 0.9213 0.8717 1 

93 Ion T 196 97 99 0 0 0 0.9133 0.7996 0.7996 0.7996 0.7604 1 

94 IP A 196 97 99 0 0 0 1.0000 0.9490 0.9490 0.9490 0.8739 1 

95 Iris T 156 94 62 0 0 0 0.9231 0.7947 0.7947 0.7947 0.7660 1 

96 ITP A 186 99 87 0 0 0 0.9946 0.8843 0.8843 0.8843 0.8622 1 

97 JP A 192 99 93 0 0 0 0.9948 0.9263 0.9263 0.9263 0.8815 1 

98 LABOR T 195 97 98 0 0 0 0.8974 0.7714 0.7714 0.7714 0.7229 1 

99 Lactation T 167 83 84 0 0 0 0.9162 0.7482 0.7482 0.7482 0.7682 0 

100 Language T 197 98 99 0 0 0 0.9645 0.8202 0.8202 0.8202 0.7775 1 

101 Laryngeal T 197 98 99 0 0 0 0.8680 0.6899 0.6899 0.6899 0.6847 1 

102 Lawsonia T 115 99 16 0 0 0 0.9565 0.9420 0.9420 0.9420 0.8853 1 

103 Leishmaniasis T 161 99 62 0 0 0 0.9317 0.8152 0.8152 0.8152 0.7891 1 

104 lens T 295 97 99 99 0 0 0.8780 0.7160 0.6813 0.6889 0.6615 1 

105 Lupus T 289 99 99 91 0 0 0.8893 0.6711 0.6713 0.6711 0.6586 1 

106 lymphogranulomatosis T 119 99 20 0 0 0 0.9748 0.7946 0.7946 0.7946 0.8664 0 

107 MAF A 119 98 21 0 0 0 0.9832 0.9331 0.9331 0.9331 0.8833 1 

108 Malaria T 196 97 99 0 0 0 0.9388 0.7005 0.7005 0.7005 0.7468 0 

109 MBP A 140 96 44 0 0 0 0.9786 0.8966 0.8966 0.8966 0.8284 1 

110 MCC A 131 99 32 0 0 0 1.0000 0.9495 0.9495 0.9495 0.8821 1 

111 Medullary T 197 99 98 0 0 0 0.9695 0.8226 0.8226 0.8226 0.7707 1 

112 MHC A 193 96 97 0 0 0 0.9896 0.9172 0.9172 0.9172 0.8760 1 

113 Milk T 193 96 97 0 0 0 0.8964 0.7768 0.7768 0.7768 0.7414 1 

114 Moles T 171 72 99 0 0 0 0.9357 0.8152 0.8152 0.8152 0.7625 1 

115 MRS A 163 97 66 0 0 0 1.0000 0.9487 0.9487 0.9487 0.9029 1 
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116 Murine sarcoma virus T 180 81 99 0 0 0 0.8000 0.6645 0.6645 0.6645 0.6412 1 

117 NBS A 145 98 47 0 0 0 1.0000 0.9550 0.9550 0.9550 0.8943 1 

118 NEUROFIBROMATOSIS T 197 99 98 0 0 0 0.8782 0.7861 0.7861 0.7861 0.7377 1 

119 NM A 122 38 84 0 0 0 0.9590 0.8943 0.8943 0.8943 0.8311 1 

120 NPC A 162 98 64 0 0 0 1.0000 0.9604 0.9604 0.9604 0.9201 1 

121 Nurse T 192 94 98 0 0 0 0.8542 0.6836 0.6836 0.6836 0.6782 1 

122 Nursing T 198 99 99 0 0 0 0.8990 0.7837 0.7837 0.7837 0.7441 1 

123 OCD A 198 99 99 0 0 0 0.9949 0.8997 0.8997 0.8997 0.8742 1 

124 OH A 198 99 99 0 0 0 0.9899 0.8952 0.8952 0.8952 0.8669 1 

125 Orf AT 197 99 98 0 0 0 0.9695 0.8391 0.8391 0.8391 0.8528 0 

126 ORI A 123 24 99 0 0 0 0.9919 0.9662 0.9662 0.9662 0.9345 1 

127 PAF A 115 99 16 0 0 0 1.0000 0.9830 0.9830 0.9830 0.9205 1 

128 Parotitis T 193 94 99 0 0 0 0.9016 0.7174 0.7174 0.7174 0.7145 1 

129 PCA A 490 99 99 99 95 
9

8 
0.9939 0.7964 0.8270 0.8077 0.7694 1 

130 PCB A 127 99 28 0 0 0 0.9921 0.9267 0.9267 0.9267 0.8790 1 

131 PCD A 197 99 98 0 0 0 1.0000 0.9160 0.9160 0.9160 0.9217 0 

132 PCP A 252 99 99 54 0 0 0.9881 0.8647 0.8618 0.8691 0.8137 1 

133 PEP A 198 99 99 0 0 0 0.9899 0.9376 0.9376 0.9376 0.8768 1 

134 PHA A 110 11 99 0 0 0 0.9909 0.9500 0.9500 0.9500 0.9210 1 

135 Pharmaceutical T 195 96 99 0 0 0 0.9282 0.8346 0.8346 0.8346 0.7883 1 

136 Phosphorus T 181 93 88 0 0 0 0.8508 0.7618 0.7618 0.7618 0.6988 1 

137 Phosphorylase T 166 99 67 0 0 0 0.8614 0.7400 0.7400 0.7400 0.7147 1 

138 pI A 156 99 57 0 0 0 0.9808 0.9067 0.9067 0.9067 0.8637 1 

139 Plague T 167 98 69 0 0 0 0.9162 0.7740 0.7740 0.7740 0.7490 1 

140 Plaque T 196 97 99 0 0 0 0.9898 0.9205 0.9205 0.9205 0.8881 1 

141 Platelet T 196 98 98 0 0 0 0.8316 0.7077 0.7077 0.7077 0.6910 1 

142 Pleuropneumonia T 197 99 98 0 0 0 0.9137 0.7897 0.7897 0.7897 0.7580 1 

143 Pneumocystis T 198 99 99 0 0 0 0.9091 0.7750 0.7750 0.7750 0.7558 1 

144 POL A 162 99 63 0 0 0 0.9877 0.9266 0.9266 0.9266 0.8863 1 

145 Polymyalgia Rheumatica T 198 99 99 0 0 0 0.9394 0.7504 0.7504 0.7504 0.7649 0 

146 posterior pituitary T 194 99 95 0 0 0 0.9021 0.8224 0.8224 0.8224 0.7790 1 

147 Potassium T 172 86 86 0 0 0 0.8953 0.7403 0.7403 0.7403 0.7222 1 

148 PR A 164 65 99 0 0 0 0.9939 0.8840 0.8840 0.8840 0.8319 1 

149 Projection T 194 99 95 0 0 0 0.9433 0.8108 0.8108 0.8108 0.7956 1 

150 PVC A 195 96 99 0 0 0 0.9949 0.9148 0.9148 0.9148 0.8581 1 

151 RA A 297 99 99 99 0 0 0.9933 0.8691 0.8724 0.8719 0.7953 1 

152 Radiation T 195 96 99 0 0 0 0.8513 0.7104 0.7104 0.7104 0.6990 1 

153 RB A 197 99 98 0 0 0 1.0000 0.9010 0.9010 0.9010 0.8471 1 

154 RBC A 195 99 96 0 0 0 0.8615 0.7329 0.7329 0.7329 0.7036 1 

155 rDNA A 198 99 99 0 0 0 0.9192 0.7626 0.7626 0.7626 0.7368 1 

156 Respiration T 196 98 98 0 0 0 0.9541 0.7965 0.7965 0.7965 0.7766 1 
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157 Retinal T 193 94 99 0 0 0 0.9067 0.7835 0.7835 0.7835 0.7676 1 

158 Root T 194 99 95 0 0 0 0.9691 0.8461 0.8461 0.8461 0.7832 1 

159 RSV A 134 99 35 0 0 0 0.9776 0.9188 0.9188 0.9188 0.8301 1 

160 
SARS-associated 

coronavirus 
A 118 47 71 0 0 0 0.9322 0.8236 0.8236 0.8236 0.7960 1 

161 SARS T 197 99 98 0 0 0 0.9492 0.8551 0.8551 0.8551 0.8362 1 

162 SCD A 196 99 97 0 0 0 0.9949 0.9307 0.9307 0.9307 0.8783 1 

163 Schistosoma mansoni T 198 99 99 0 0 0 0.8737 0.7588 0.7588 0.7588 0.7091 1 

164 Semen T 186 87 99 0 0 0 0.9247 0.7581 0.7581 0.7581 0.7430 1 

165 sex factor T 131 96 35 0 0 0 0.9313 0.8006 0.8006 0.8006 0.8030 0 

166 SLS A 163 65 98 0 0 0 1.0000 0.9604 0.9604 0.9604 0.9670 0 

167 Sodium T 194 96 98 0 0 0 0.8660 0.7233 0.7233 0.7233 0.6846 1 

168 SPR A 198 99 99 0 0 0 1.0000 0.9479 0.9479 0.9479 0.9043 1 

169 SS A 144 98 46 0 0 0 1.0000 0.9696 0.9696 0.9696 0.9253 1 

170 Staph T 187 95 92 0 0 0 0.8663 0.7479 0.7479 0.7479 0.7386 1 

171 STEM T 198 99 99 0 0 0 0.9596 0.8806 0.8806 0.8806 0.8320 1 

172 Sterilization T 196 98 98 0 0 0 0.9286 0.7473 0.7473 0.7473 0.7178 1 

173 Strep T 197 98 99 0 0 0 0.8274 0.7581 0.7581 0.7581 0.7276 1 

174 Synapsis T 134 35 99 0 0 0 0.9328 0.7369 0.7369 0.7369 0.7740 0 

175 TAT A 297 99 99 99 0 0 0.8822 0.7186 0.7135 0.7113 0.6722 1 

176 Tax AT 178 97 81 0 0 0 0.9663 0.9258 0.9258 0.9258 0.8572 1 

177 TEM A 196 99 97 0 0 0 0.9847 0.7848 0.7848 0.7848 0.8194 0 

178 THYMUS T 294 99 96 99 0 0 0.8980 0.7352 0.7338 0.7426 0.7112 1 

179 TLC A 197 98 99 0 0 0 1.0000 0.9460 0.9460 0.9460 0.9008 1 

180 TMJ A 197 98 99 0 0 0 0.7868 0.6537 0.6537 0.6537 0.6548 0 

181 TMP A 150 51 99 0 0 0 0.9867 0.8786 0.8786 0.8786 0.7953 1 

182 TNC A 164 68 96 0 0 0 1.0000 0.9236 0.9236 0.9236 0.8691 1 

183 TNT A 197 99 98 0 0 0 1.0000 0.9263 0.9263 0.9263 0.8625 1 

184 Tolerance T 198 99 99 0 0 0 0.9293 0.8010 0.8010 0.8010 0.7792 1 

185 tomography T 198 99 99 0 0 0 0.8838 0.7941 0.7941 0.7941 0.7393 1 

186 Torula T 122 34 88 0 0 0 0.8607 0.7228 0.7228 0.7228 0.7090 1 

187 TPA A 198 99 99 0 0 0 0.9848 0.9429 0.9429 0.9429 0.9018 1 

188 TPO A 198 99 99 0 0 0 0.9949 0.8575 0.8575 0.8575 0.8292 1 

189 TRF A 179 80 99 0 0 0 0.9944 0.9380 0.9380 0.9380 0.8975 1 

190 TYR A 190 92 98 0 0 0 0.9421 0.8370 0.8370 0.8370 0.7759 1 

191 US A 197 98 99 0 0 0 0.9594 0.8139 0.8139 0.8139 0.7726 1 

192 Ventricles T 197 99 98 0 0 0 0.9543 0.8137 0.8137 0.8137 0.7789 1 

193 veterinary T 181 99 82 0 0 0 0.8232 0.6311 0.6311 0.6311 0.6586 0 

194 Wasp AT 198 99 99 0 0 0 0.9747 0.8949 0.8949 0.8949 0.8332 1 

195 WBS A 128 35 93 0 0 0 0.9922 0.9316 0.9316 0.9316 0.8780 1 

196 WT1 A 198 99 99 0 0 0 0.8485 0.7213 0.7213 0.7213 0.6779 1 

197 Yellow Fever T 181 98 83 0 0 0 0.9061 0.7488 0.7488 0.7488 0.7171 1 
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