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CHAPTER I 

 

INTRODUCTION 

 

1. Mechanisms of NF-κB signaling  

1.1 General introduction to NF-κB family  

Nuclear factor-kappa B (NF-κB) was discovered more than 20 years ago as a nuclear factor that 

binds a site in the immunoglobulin κ enhancer and regulates expression of the κB light chain in B 

cells 
3
. There are five NF-κB/REL genes that encode seven proteins—p65 (RelA), c-Rel, RelB, NF-

κB1 (p50/p105), NF-κB2 (p52/p100) (reviewed in 
4, 2

) (Fig. 1.1 adapted from
2
 ). All members of the 

family share an N-terminal Rel homology domain (RHD) responsible for DNA binding, homo- and 

hetero-dimerization and interactions with IκB proteins
2
. The transcription activation domain (TAD) 

necessary for the positive regulation of gene expression is present in 3 family members: p65, c-Rel, 

and RelB. Two of the proteins, NF-κB1 (p105) and NF-κB2 (p100), contain multiple copies of the 

so-called ankyrin repeat at their C-termini with inhibitory function. Processing of these proteins 

leads to the production of the p50 and p52 subunits. 

NF-κB is active and binds DNA as a dimer. Classic NF-κB (the dimer of p50 and RelA) has been 

most intensively studied, although many other homo- and heterodimers have been described with 

some distinct characteristics attributed to. NF-κB dimers bind to κB sites within the 

promoters/enhancers of target genes and regulate transcription through the recruitment of co-

activators or co-repressors. Different NF-κB dimers prefer slightly different DNA sequences 

enabling differential and enhanced regulation of target gene expression. Dimers composed of 

p50/p65, p50/c-rel, p65/p65, and p65/c-rel possess transcriptional potential, whereas homodimers of 

p50 or p52 uniformly inhibit transcription when bound to DNA. More studies to determine 

biologically relevant targets for different NF-κB dimers are needed. Additional differences between 



2 

NF-κB dimers include: cell type specificity, differential subcellular localization, differential 

interactions with forms of IκB, and differential activation 
5,
 
6
. 

  

Fig. 1.1 The NF-κB/Rel and IκB families of proteins, adapted from
2
. The NF-κB/Rel family is 

characterized by the presence of the Rel homology domain.    

Figure 1.0.1 The NF-κB/Rel and IκB families of proteins 



3 

1.2 Regulation of NF-κB activation and nuclear translocation 

NF-κB is a ubiquitous eukaryotic transcription factor that resides in the cytoplasm of most cells in 

an inactive form bound to the inhibitor, IκB. Diverse signals such as inflammatory cytokines, UV, 

and LPS, trigger destruction of IκB and release of NF-κB which translocates to the nucleus where it 

regulates transcription of target genes. It is critical to note that NF-κB’s ability to respond to signals 

makes it an inducible factor, and since activation of NF-κB does not require new protein synthesis, 

the signal is transmitted rapidly 
7
. 

Two major NF-κB activating pathways have been characterized, canonical (or classical) and non-

canonical (or alternative) These distinct methods for NF-κB activation target different NF-κB 

homo/heterodimers via distinct kinases and IκB proteins (reviewed in
8
 and

9
). The canonical pathway 

activates NF-κB dimers consisting of combinations of  RelA (p65), c-Rel, RelB and p50 while the 

non-canonical pathway is responsible for the activation of p100/RelB complexes (Fig. 1.2 adapted 

from
10

). 

IκB binds to the RHD domain of NF-κB and sequesters it in the cytoplasm. Inhibitory activity of 

IκB requires direct binding to NF-κB dimers and is thought to be mediated through masking of the 

nuclear localization signals also located in the RHD
11

. Signaling through inflammatory cytokines 

such as TNFα and IL-1 activates a high molecular weight protein complex known as the signalsome 

that contains IκB kinases (IKKα/β/γ) responsible for phosphorylation of IκB. The IKK complex also 

has NF-κB regulatory functions (see below). Phosphorylation of IκB marks it for ubiquitination and 

subsequent degradation that is dependent on the 26S proteasome (Fig. 1.2). Degradation of IκB 

results in NF-κB nuclear localization and dependent on post-translational modification of Rel family 

proteins, transcription or transcriptional inhibition of NF-κB responsive genes. The elaborate system 

of sequestration of NF-κB in the cytoplasm allows rapid induction of NF-κB activity within cells 

following appropriate stimulation. 
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Fig. 1.2 Schema of canonical and non-canonical NF-κB activation. In the 

canonical NF-B activation pathway, stimulus-induced phosphorylation of two N-

terminal serines in the IκBs is mediated by the IKKs. After ubiquitination and 

degradation of IκB by the 26S proteasome complex, the liberated NF-κB 

heterodimer (p50:p65) translocates to the nucleus and regulates transcription of 

target genes dependent on post-translational modification. In the alterative (non-

canonical) pathway, IKK is activated by different members of the TNF-family 

(for example, BAFF and CD40). Along with NIK, IKK induces the 

phosphorylation-dependent processing of p100 and generation of p52:RelB 

heterodimers. p52:RelB translocates to the nucleus and regulates transcription 

target genes. 

 Figure 1.0.2 Schema of canonical and non-canonical NF-κB activation 
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1.3 Post-translational modification of RelA 

Like many transcription factors (e.g. E2F1 and p53), post-translational modification alters various 

physiological functions of the NF-κB including DNA binding, interactions with co-activators and co-

repressors, as well as, termination of the NF-κB response 
2, 12-14

. To date, most studies have focused 

on RelA modification, with reports related to modifications of other NF-κB subunits being extremely 

limited. Even with RelA, the complexity of its nuclear regulation and modification is only beginning 

to be understood. Basal and signal-induced phosphorylations of RelA are most thoroughly-

characterized. Site-specific phosphorylation is often a prerequisite for additional modifications 

(acetylation, ubiquitination, and isomerization of specific amino acid residues
15

) regulating RelA 

activity . As is frequently the case,  studies examining NF-κB post-translational modification present 

different levels of evidence that a specific enzyme is modifying a particular site, and it is recognized 

that modifications likely differ dependent on cell type and the nature of the NF-κB-inducing 

stimulus
16

. 

The RelA subunit of NF-κB is targeted for phosphorylation at many phospho-acceptor sites 

within both the RHD (S205, S276, S281, S311, T254) and TAD (S468, S529, S535, S536, T435, 

T505) (Table.1.1, adapted from 
10

 and 
14

). Phosphorylation of RelA occurs both within the cytoplasm 

and nucleus and many responsible kinases that are activated by a variety of stimuli have been 

identified (reviewed in 
2
). Phosphorylation of individual amino acids has been associated with 

different consequences, both activation and inactivation. Phosphorylation of S536 increases NF-κB 

transcriptional activity while phosphorylation of S529 increases NF-κB DNA binding and 

oligomerization. On the other hand, phosphorylation of T505 inhibits RelA transcription possibly 

through promoting association of RelA with HDAC
17

. A recent study shows that phosphorylation of 

S468 controls RelA COMMD1-dependent ubiquitination and target gene-specific proteasomal 

elimination.  
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Table 1.1 Summary of RelA PTM sites and functions (adapted from 
10

 and 
14

) 

 

  

Table 1.0.1 Summary of RelA PTM 

sites and functions 
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The serine 536 residue of RelA is conserved between human, mouse, chicken, and xenopus. 

Phosphorylation of S536 was first identified by Sakurai et al. through an in vitro kinase assay using 

TNFα stimulated whole cell lysate and immunoprecipitated IKKα or IKKβ
18

. Further, with inhibition 

of IκBα degradation by a proteasome inhibitor, N-acetylleucyl-leucyl-norleucinal (ALLN), this 

group demonstrated that the activity to phosphorylate Ser-536 could be induced in the cytoplasm
19

. 

Whether phosphorylation at S536 by IKKs is part of the activation mechanism leading to RelA 

nuclear translocation or a mechanism to prime RelA's transactivation potential before nuclear 

localization is unknown. However, phosphorylation of Ser-536 can also result in an IκB-independent 

mechanism of NF-κB activation
20,21

. Specifically, in some cell types, induction of the p53 tumor 

suppressor results in RSK1 kinase activation
20

, which phosphorylates RelA at S536. Since activation 

of RSK1 is associated with its cytoplasmic to nuclear translocation, it is proposed that, in this 

instance, Ser-536 phosphorylation occurs in the nucleus. This results in RelA nuclear accumulation 

through disruption of the cytoplasmic/nuclear shuttling of NF-κB/IκBα complexes that occurs in 

unstimulated cells
20

. 

The phosphorylation of highly conserved serine 276 and its critical role for RelA transcription 

activity was identified by Zhong et al. and protein kinase A (PKAc) was the first known kinase 

targeting this residue
22

. Ser-276 in RelA is also phosphorylated by the MSK1 kinase, although this is 

a nuclear event
12

. Phosphorylation of S276 promotes RelA interaction with transcriptional co-

activator CBP/p300
22

 altering the balance between transcriptionally repressed RelA bound to 

HDACs vs. transcriptionally activated RelA bound to p300/CBP
23

. The finding that the 

phosphorylation status of Rel proteins, especially of RelA, is the decisive parameter for their 

association with either transcriptional activators HATs (e.g. CBP/p300) or suppressors (e.g. HDACs) 

is important for understanding of NF-κB regulation.  Both S536 and S276 residues of RelA may be 

important for promoting association with HDACs since phosphorylation of both residues is required 

for RelA acetylation at K310
24

.  
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It is becoming more and more apparent that RelA phosphorylation at different sites serves as an 

integrator for multiple incoming signals, which likely serve to regulate the kinetics, strength and 

selectivity of RelA transcriptional activity.   

1.4 Down regulation of canonical NF-κB responses 

NF-κB is activated by various stimuli including: TNFα and bacterial/viral signal triggered 

danger-sensing receptors of the innate and adaptive immune systems. Active NF-κB binds to 

consensus target sequences in various promoters and induces the expression of a plethora of genes 

encoding molecules that promote proliferation, survival and differentiation of immune cells, as well 

as driving expression of factors such as proinflammatory cytokines that organize and execute 

immune and inflammatory responses. Thus, prompt activation of NF-κB is critical for host defense 

against various classes of pathogens; however, NF-κB activity can be deleterious resulting in tissue 

damage, uncontrolled immune response, and cancer if they are not appropriately down regulated
25, 26

. 

Many distinct negative regulatory mechanisms have evolved that operate at different molecular 

levels in the NF-κB signaling pathways to maintain homeostasis (review 
27

).  

1.4.1 Inhibition of canonical NF-κB activity by classical IκB proteins 

Degradation of IκB proteins is a decisive step in canonical NF-κB activation (see section 1.2); 

however, re-establishment of IκB serves as a critical regulator to limit excessive NF-κB activity
28

.  

Restoration of IκB following its proteasomal destruction is accomplished largely through a negative 

feedback loop, where IκBα genes are directly transcribed by active NF-κB
29-31

. Newly synthesized 

IκBα enters the nucleus and associates with DNA-bound NF-κB dimers
32

, resulting in cytoplasmic 

re-localization of NF-κB via the nuclear-export sequence present in IκBα., Acetylation of RelA by 

lysine acetyltransferase CBP (p300) complexes prevents IκBα binding to RelA and extends the 

promoter occupancy of functional RelA complexes 
33

. 
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1.4.2 Termination of canonical NF-κB responses in the nucleus 

Although IκB-mediated cytoplasmic export of nuclear NF-κB is important for deactivation of 

NF-κB responses, additional negative regulatory mechanism operate in the nucleus. These include 

IκB-independent displacement of active NF-κB from DNA and proteolytic degradation of active NF-

κB dimers. The SUMO E3 ligase PIAS1 can directly interfere with the binding of RelA dimers to 

DNA and regulates expression of distinct NF-κB target genes, particularly at early time points 

following NF-κB activation
34

. IKKα has additional negative regulatory roles in the termination of 

nuclear canonical NF-κB responses, as it accelerates the turnover of RelA and c-Rel
35,36

. While 

activated in the cytoplasm by pro-inflammatory signals, IKKα phosphorylates RelA specifically at 

Ser536 and thereby enhances its later proteasomal degradation in the nucleus. 

At least two E3 ubiquitin ligases control degradation of nuclear RelA
37

. One of these, PDLIM2, is 

essential to prevent uncontrolled inflammation in vivo
38

. PDLIM2 has a PDZ (postsynaptic density 

65–discs large–zonula occludens 1) domain in addition to its E3 ligase activity. The PDZ domain of 

PDLIM2 has chaperone function and promotes the transport of RelA to promyelocytic leukemia 

(PML) nuclear bodies. Thus, PDLIM2 not only targets nuclear RelA for proteasomal degradation but 

also re-localizes DNA-bound RelA to areas of transcriptional silencing. The other known E3 ligase 

that terminates the RelA responses in the nucleus is the EC2S complex, which contains SOCS1, 

Cullin-2 and COMMD1
39,40

. Functionally, COMMD1 bridges RelA to SOCS1 and Cullin-2 after 

pro-inflammatory stimulation where the EC2S complex mediates ubiquitin-dependent degradation of 

RelA. The EC2S complex appears to be particularly important for termination of NF-κB responses at 

later stages of cell stimulation
39

. Phosphorylation of p65 at Ser468 controls its COMMD1-dependent 

ubiquitination and target gene-specific proteasomal elimination 
41

. 

1.4.3 Dephosphorylation of RelA and responsible phosphatases 

Phosphorylation of RelA is dynamically regulated with a balance between protein 

serine/threonine kinases, and protein serine/threonine phosphatases. Time course experiments reveal 
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that nuclear RelA S536 phosphorylation markedly decreases 10-20 min after TNF-α stimulation. 

Pre-treatment with calyculin A (CalyA), a phosphatase inhibitor for protein phosphatase PP1 and 

PP2A partially inhibited dephosphorylation
18

, suggesting that CalyA-sensitive phosphatases 

dephosphorylate RelA after the nuclear translocation.  Nelson et al. showed that following TNFα 

stimulation, RelA dynamically oscillates between the nucleus and cytoplasm corresponding to rapid 

dephosphorylation at Ser-536, suggesting that dephosphorylation at S536 may be intricately involved 

in regulating the level and duration of NF-κB activity
42

. Despite these data that dephosphorylation of 

RelA is critical for RelA regulation; identification of involved phosphatases, as well as mechanisms 

regulating involved phosphatases is lacking. To date,  phosphatases implicated as direct or indirect 

regulators of NF-κB include only  serine/threonine type 2C protein phosphatase (PPM) family 

members (Wip1 (PPM1D, PPMδ), PPM1A and PPM1B) and the serine/threonine type 2A protein 

phosphatase (PP2A).  

RelA was found to bind protein phosphatase 2A (PP2A) subunit A (PR65) and was 

dephosphorylated by a purified PP2A core enzyme, a heterodimer formed by the catalytic subunit of 

PP2A (PP2Ac) and PR65, in a concentration-dependent manner
43

. Okadaic acid, an inhibitor of 

PP2A, increased  basal RelA phosphorylation in melanocytes and blocked dephosphorylation of 

RelA after interleukin-1 stimulation
43

. The PP2A family contains many different subunits and has 

been reported to have tumor suppressor-like function or oncogenic functions depending on context 

and the particular activated PP2A trimeric complex (reviewed in 
44,45

and
46

). An emerging view 

suggests that specific PP2A complexes play critical roles in cell transformation by regulating 

particular substrates. 

More recently, a genome-wide search for regulators of NF-κB using RNAi identified Wip1 as a 

negative regulator of NF-κB signaling. Wip1 was found to directly dephosphorylate RelA at S536, a 

residue critical for full activation of transcriptional activity
47

. Overexpression of Wip1 resulted in 

decreased RelA phosphorylation and NF-κB inhibition in a dose-dependent manner. Conversely, 

Wip1 knockdown resulted in increased NF-κB function. TNFα mRNA is increased in WIP1
-/-

 mice 
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where enhanced inflammation in many organs is also observed
47

. PPM1D, which encodes Wip1, is a 

transcriptional target of NF-κB, suggesting a potential negative feedback loop
48

. Inhibition or 

activation of NF-κB decreases or increases Wip1 expression, respectively. ChIP analysis showed 

basal binding of the p65 subunit to the PPM1D promoter region encompassing the κB site, which is 

enhanced after NF-κB activation by TNFα. Wip1 expression is induced by LPS-stimulation of mouse 

splenic B-cells and is required for maximum proliferation. Taken together, these data suggest that 

Wip1 likely regulates RelA activity through a negative feedback loop. 

PPM1A and PPM1B are the other members of PPM family and these PPM family members 

indirectly regulate NF-κB through dephosphorylation and inhibition of IKKβ
49

. Overexpression of 

PPM1A or PPM1B results in dephosphorylation of IKKβ at Ser177 and Ser181 and termination of 

IKKβ-induced NF-κB activation. PPM1A and PPM1B associate with the phosphorylated form of 

IKKβ, and the interaction between PPM1A/PPM1B and IKKβ is transiently induced by TNFα. 

Functionally, knockdown of PPM1A and PPM1B expression enhances TNFα-induced IKKβ 

phosphorylation, NF-κB nuclear translocation and NF-κB-dependent gene expression (IL-6). 

2. NF-κB signaling in cancer 

NF-κB target genes regulate development, inflammation, immune response, proliferation, 

apoptosis, cellular transformation, angiogenesis and differentiation (reviewed in 
50

). Given its 

involvement in multiple cellular processes, NF-κB activity is tightly and intricately controlled. 

Constitutive NF-κB activity is associated with human diseases including asthma, arthritis, 

Alzheimer’s disease, diabetes and inflammatory bowel disease (reviewed in 
51

) and aberrant NF-κB 

activity has been shown to directly contribute to tumorigenesis, neovascularization, tumor growth 

and metastases
25

 and reviewed in 
50

.  

NF-κB is amplified, overexpressed, or activated in various tumor types including breast, stomach, 

thyroid and colon cancer and NF-κB activities promotes many aspects of oncogenesis including 

cellular transformation and proliferation while protecting tumor cells from apoptosis (reviewed in 
52
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and 
53

). NF-κB activation and increased S276 phosphorylation has been described in head and neck 

squamous cell carcinoma (HNSCC) and adjacent dysplastic mucosa
54

 and multiple NF-κB 

responsive genes are overexpressed in these tumors 
55

.  

Experimental data also supports the role of NF-κB in tumorigenesis. Inhibition of NF-κB through 

expression of either IκB super repressor
56

 or dominant negative IKK
57

 markedly inhibits foci 

formation while increasing apoptosis. Many anti-apoptosis genes are NF-κB targets including: 

TRAF1, TRAF2, c-IAP1, c-IAP2, xIAP, BCL-XL (reviewed in 
53

 and 
58

). A genetically modified 

mouse model expressing c-Rel driven the mouse mammary tumor virus promoter revealed that c-Rel 

expression associated with development of breast adenocarcinomas in one-third of mice post-partum. 

Increased NF-κB signaling was associated with increased expression of anti-apoptotic and 

proliferation promoting genes in tumors 
59

. Inhibition of NF-κB activity in HNSCC cells was shown 

to inhibit xenograft tumor growth and since these tumors had no know activation of oncogenes, these 

data suggest that NF-κB activation may be important for tumors without known alteration of 

oncogenes 
60

. 

Dysregulation of NF-κB in prostate cancer has been identified as a major driver of distant 

metastasis, which is the primary cause of death in this common male cancer
61-63

. Comparison of 

metastatic prostate cancer and localized disease in multiple expression array profiling studies using 

the integrative microarray analysis of pathways (IMAP) revealed that NF-κB was the third most 

dysregulated pathway from a list of approximately 100 pathways that were significantly dysregulated  

in metastatic prostate cancer
64

. Min et al. substantiated the importance of NF-κB for prostate 

metastases using a murine model showing that an oncogene-tumor suppressor cascade drives 

metastatic prostate cancer by coordinately activating Ras and NF-κB
63

. One transcriptional target of 

NF-κB, monocyte chemotactic protein-1 (MCP-1), also known as chemokine (C-C motif) ligand 2 

(CCL2), has been implicated in prostate cancer migration, invasion and metastasis altering both 

tumor cells and the microenvironment
65

. MCP-1 is particularly implicated in bony prostate 

metastases as well as in other tumor types including renal cancer, bladder cancer, and breast cancer 
66

. 
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Mechanisms governing MCP-1 expression are not fully described; however the suspected 

importance of this cytokine in tumor progression is affirmed by the recent initiation of clinical trials 

using a neutralizing antibody targeting MCP-1. IL-6, another transcriptional target of NF-κB and a 

cytokine is also implicated in metastases, particularly in cancers of the prostate
67

, colon
68

, and 

breast
69

. Studies reveal that both MCP-1 and IL-6 facilitate the survival of myeloid monocytes within 

the tumor microenvironment, as well as their differentiation to tumor-promoting M2-type 

macrophages
70,71

 that are implicated in promotion of prostate and breast tumor metastasis. Inhibition 

of IL-6 and IL-6 receptor are also therapeutic targets for prevention of inflammation, tumor 

progression and metastasis and their targeting has shown promise in pre-clinical models and phase II 

clinical trials (prostate and ovarian cancer) 
72, 73

. Additional phase II clinical trials using an anti-IL-6 

monoclonal antibody are currently underway or have been recently completed. 

3. Serine/threonine protein phosphatase magnesium/manganese-dependent family (PPM/PP2C) 

3.1 The PPM family 

Ser/Thr protein phosphatases are divided into three super-families based on their unique sequence 

and structure composition, namely phospho-protein phosphatase (PPP), protein phosphatase 

magnesium/manganese-dependent (PPM) and transcription factor II F (TFIIF)-interacting carboxyl 

terminal domain (CTD) phosphatase (FCP)
74

. The PPP family, including PP1, PP2A and PP2B 

(calcineurin), consists of oligomeric holoenzymes, composed of a highly conserved catalytic subunit 

and one or two regulatory subunits essential for subcellular localization and substrate specificity. 

Two of the phosphatases involved in regulation of NF-κB signaling, PPM1A and Wip1/PPM1D, are 

members of the PPM family (formerly PP2C family). PPM family members (solely represented by 

PPM) have two structural domains, a conserved N-terminal catalytic domain and a C-terminal region 

with substantial structural and sequence variance among different isoforms. Unlike their PPP 

counterparts, which function as homo- and hetero-, di- and trimetric complexes, PPMs are functional 

as monomeric enzymes. Therefore, their activity is not regulated by inhibitory proteins or by 
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regulatory subunits. PPM phosphatase requires divalent cations (Mg
2+

 or Mn
2+

) for catalytic activity. 

Because intracellular concentrations of Mg
2+

 and Mn
2+

 do not fluctuate substantially under 

physiological conditions, it is also unlikely that these metal-dependent phosphatases are regulated by 

the availability of bivalent cations. Based on these two observations, it is expected that activities of 

type 2C protein phosphatases are controlled predominantly by: 1) tissue- or cell type-specific 

expression, 2) post-translational modification, 3) subcellular compartmentalization, or 4) protein 

stability or degradation. PPM phosphatases are insensitive to the potent inhibitor of the PP1 and 

PP2A phosphatases, okadaic acid. Sanguinarine was identified as a potent and specific PPM inhibitor 

with selectivity for PPM as compared with PP1, PP2A and PP3B in vitro
75

. 

PPM family members are evolutionarily conserved in prokaryotes and eukaryotes and in 

multicellular organisms ranging from plants to mammals, (reviewed in
76-78

). Following functional 

diversification via gene duplication in metazoa, PPM isoforms have gained specificity for various 

signaling pathways and tissue expression patterns. Recent studies in mammalian cells have revealed 

at least 18 PPM family members, namely PP2Cα/PPM1A, PP2Cβ/PPM1B, PP2Cγ, PP2Cɛ, PP2Cη, 

PP2Cm, T-cell activation-PPM (TA-PPM), integrin-linked kinase-associated serine/threonine 

phosphatase 2C (ILKAP), NERRP-2C, Wild-type p53-induced phosphatase (Wip1)/PPM1D, partner 

of Pix 1 and 2 (POPX1 and POPX2, respectively), PH domain and leucine-rich repeat protein 

phosphatase 1 and 2 (PHLPP1 and PHLPP2, respectively), pyruvate dehydrogenase phosphatase 

isoenzyme 1 and 2 (PDP1 and PDP2, respectively), PPM1H and PPM1J. These proteins are largely 

implicated in the regulation of stress signaling cascades, phosphatidylinositol 3-kinase (PI3-K)/Akt 

signaling, pre-mRNA splicing, protein ubiquitination and degradation and cell metabolism, as well 

as cell death/survival signaling 
74

.  

 

3.2 PPM1A/PP2Cα 

PPM1A is the best characterized member of the type 2C family of protein phosphatases. It was 

first identified in 1992, using a rat liver library and a human teratocarcinoma library
79

. A few years 
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later, the structure of human PPM1A 
80

revealed a novel protein fold that consists of two domains; an 

N-terminal catalytic domain, that is composed of a central β-sandwich surrounded by α-helices and 

that is common to all PPMs, and a 90-residue C-terminal domain, that merely contains α-helices and 

that is characteristic for mammalian PPMs. This latter domain is remote from the catalytic site, 

suggesting that it has a role in defining substrate specificity. PPM1A is expressed in virtually all 

tissues with both cytoplasmic and nuclear and localization 
81

.  

As an enzyme with broad substrate specificity, PPM1A participates in the regulation of several 

important signaling pathways including TGFβ/Smad
82

, MAPK (JNK/p38), AMPK, p53/MDM2, 

Wnt/Axin, Cdk2 and Cdk6 (reviewed in 
1
) and the nerve growth factor activated Akt/ERK pathway

83
.  

MAPK: The modular mitogen-activated protein kinase (MAPK) cascades contain a core of three 

protein kinases (MAPK kinase kinase (MAPKKK), MAPK kinase (MAPKK) and MAPK that are 

evolutionarily conserved from yeast to mammals. In mammals, MAPK cascades regulate various 

cellular activities, including gene expression, proliferation, survival/apoptosis, differentiation and 

embryogenesis. These functions mediated by MAPK signaling that transduces signals from G-

protein-coupled receptors (GPCR), tyrosine receptor kinases and oxidative stress sensors in response 

to diverse intracellular and extracellular cues. The activation of MAPKs is mediated through a 

phosphorylation relay mechanism from MAPKKK, MAPKK to MAPK. Activity of MAPKKK and 

MAPKK can be inhibited through phosphorylation suggesting that protein dephosphorylation by 

phosphatases can modulate MAPK pathways both positively and negatively
74

. In mammalian cells, 

three distinct MAPK cascades are found. The prototypic MAP kinases ERK1 and ERK2 are 

activated by mitogenic signaling through the MAPKKKs A-RAF, B-RAF, and C-RAF, and the 

MAPKKs MEK1 and MEK2 
84

. The two other MAPKs, JNK and p38, are activated by stress such as 

UV radiation, heat shock, osmotic shock, or wound stress 
85

. 

Upon such environmental stresses, PPM1A inhibits activation of both the JNK and the p38 

pathway. Down regulation of JNK signaling has been attributed to PPM1A inhibition of MAPKKs as 

both MKK4 and MKK7, two major upstream regulators of JNK, are dephosphorylated by PPM1A 
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under physiological as well as under stress conditions. Regulation of p38 activity, by PPM1A was 

also attributed to dephosphorylation and inhibition of p38 specific MAPKKs, f MKK3b and MKK6b. 

In addition, PPM1A and p38 co-immunoprecipitate in a single complex, indicating that they also 

interact directly. Interestingly, p38 and PPM1A could only be co-immunoprecipitated when 

following stress, suggesting that PPM1A may only complex with p38 when the latter is present in its 

phosphorylated (i.e., stress-activated) form. 

Recently, PPM1A has been shown to directly dephosphorylate the extracellular receptor-activated 

kinase (Erk). Using biochemistry techniques, Li et al. found that PPM1A negatively regulated ERK 

by directly dephosphorylating its Thr202 position after EGF stimulation. Additional kinetic studies 

revealed key residues involved in phospho-ERK recognition by PPM1A. Importantly, PPM1A 

preferred the phospho-ERK peptide sequence over a panel of other phosphopeptides through the 

interactions of basic residues in the active site of PPM1A with the pThr-Glu-pTyr motif of ERK. 

Whereas Lys165 and Arg33 were required for efficient catalysis or phospho-substrate binding of 

PPM1A, Gln185 and Arg186 determined of PPM1A substrate specificity. The interaction between 

Arg186 of PPM1A and Glu203 and pTyr204 of phospho-ERK was identified as a hot-spot for 

phospho-ERK-PPM1A interaction
86

.   

p53/MDM2: PPM1A increases the transcriptional activity of p53, in a p53 dose-dependent 

manner 
87

. Using cells that stably express the human papilloma virus E6 protein, inhibition of colony 

formation by PPM1A was mediated (at least in part) by p53. These findings indicated, for the first 

time, that PPM1A is an important physiological regulator of p53 signaling. While a phosphatase 

deficient mutant of PPM1A did not alter MDM2, PPM1A down regulates MDM2 expression and 

activity to inhibit of p53. The mechanism of PPM1A increasing the proteasomal degradation of 

MDM2 has yet to be elucidated. It is not clear if MDM2 is directly dephosphorylated by PPM1A or 

if MDM2 is regulated indirectly by PPM1A.  

IKKβ/NF-κB: Recently, PPM1A has been identified as an indirect regulator of NF-κB by 

dephosphorylating and inactivating IKKβ
49

. PPM1A and PPM1B were first identified as IKKβ 
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phosphatases through a functional genomic approach by screening a library of serine/threonine 

phosphatases and identifying those whose overexpression inhibits IKKβ-mediated NF-κB activation 

with dephosphorylation of IKKβ at the conserved residues Ser177 and Ser181 within the kinase 

activation loop. In vitro phosphatase assays confirmed that bacterially synthesized GST-PPM1A and 

GST-PPM1B dephosphorylated immunoprecipitated IKKβ while the phosphatase-dead mutants did 

not. Functionally PPM1A was shown to inhibit NF-κB transcription though inhibition of IKKβ. 

Expression of IL-6, a pleiotropic cytokine as well as target of NF-κB was inhibited by PPM1A 

following TNFα stimulation 
49

 or the hepatitis B virus X protein (HBx) perturbation
88

. 

Regulation of these pathways has been attributed to PPM1A phosphatase activity toward key 

components of the pathway in some cases (Smad2/3, MKK6, MKK4, p38 and Axin), but has not 

been fully characterized in others (Akt/ERK, p53/MDM2 and Cdk2 and Cdk6). In addition, PPM1A 

has been implicated in regulation of proliferation
1
, cell invasion and migration

89
, but PPM1A targets 

regulating these activities have not been identified.  

Little is known about the regulation of PPM1A expression and/or activity. Recently, protein N-

myristoylation, the irreversible covalent linkage of 14-carbon saturated fatty acid, myristic acid, to 

the N-terminal glycines was reported to be essential for PPM1A and PPM1B to dephosphorylate a 

physiological substrate, a subunit of AMPK (AMPKa) 
90

. An additional study revealed that hepatitis 

B virus X protein binds to endogenous PPM1A and that recombinant HBx dose-dependently reduced 

phosphatase activity of recombinant PPM1A in vitro
88

.  
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3.3 PPM1B 

 As was the case for PPM1A, PPM1B was first identified using a rat liver library and a human 

teratocarcinoma library 
79

. Investigation of the transcripts of the PPM1B gene revealed that there are 

at least five different isoforms. As these isoforms differed only in their C-terminal domains, it has 

been suggested that the C-terminus is responsible for substrate specificity
91

. Several studies provided 

evidence showing that PPM1B is an important negative regulator of cellular signaling with similar 

physiological functions as PPM1A. PPM1B participates in the regulation of MAPK (p38/JNK), 

IKKβ/NF-κB, TAK1, p53/MDM2 and BAD (reviewed in
1
). In regulation of pathways PPM1B shares 

with PPM1A, it is not clear if the two phosphatases have redundant roles or have different substrate 

specificities that may make their function complementary. 

 

3.4 Wip1/PPM1D 

The Wip1/PPM1D (wild- type p53-induced phosphatase 1) gene was originally identified by 

screening for p53 activated genes in WMN Burkitt lymphoma cells
92

. Tumor cell lines with wild-

type p53 consistently showed that IR increases Wip1 mRNA while p53-deficient cell lines showed 

little or no induction of Wip1 expression. Like other 2C family members, Wip1 is insensitive to 

Okadaic acid-mediated inhibition. Cellular fractionation and indirect immunofluorescence indicated 

that the 61kDa Wip1 protein localizes to the nucleus
92

. In independent studies, Tong and colleagues
93

 

identified human Wip1 as a ubiquitously expressed protein up regulated in response to different 

types of stress, e.g., UV radiation or ethanol incubation. Overexpression of Wip1 in HEK293 cells 

blocks cell cycle progression, induces cell cycle arrest in early S phase, inhibits DNA synthesis, and 

induces cell death. Because of these findings, and because of the fact that it was a p53-induced gene, 

Wip1 was initially assumed to be a protein with growth inhibitory functions. Later experiments, 

however, convincingly demonstrated that it possesses growth-promoting, rather than growth 

suppressing properties, and that it contributes substantially to the development of several different 

types of malignancy. As outlined below, over the past few years, a significant amount of evidence 
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suggests that Wip1 functions as an oncogene, and that it exerts its effects through a variety of 

downstream mechanisms, e.g. inhibiting p38, p53, and ATM, interfering with cell cycle checkpoints 

(Chk1 and Chk2), and negatively affecting base-excision repair. 

MAPK: The first report describing Wip1 as a regulator of cell growth and cellular stress 

signaling was provided by Imai and colleagues
94

. Besides being activated by IR- or UV-induced 

stress, they observed up regulation of Wip1 expression in response to oxidative (H2O2) and 

ribotoxic stress (anisomycin). In addition, Wip1 dephosphorylates and inactivates the MAPK, p38 

and attenuates the stress-induced p38- mediated phosphorylation of p53 on Serine 38 and Serine 46, 

resulting in a reduced transcriptional activity of p53 and in an inhibition of p53-mediated apoptosis
94

. 

Taking into account that p53 induces the expression of Wip1, that Wip1 dephosphorylates and 

inactivates p38, and that this reduced activity of p38 results in a reduced transcriptional activity of 

p53, these three proteins seem to promote and negative feedback loop that is of substantial 

importance for regulating both cell growth and cellular stress signaling.  

ERK activation by HER2/neu is also Wip1 dependent and crossing of MMTV-neu mice with 

Wip1 KO mice revealed that  in the absence of Wip1, ERK activation by HER2/neu in cells 

responsive to hormone signaling was significantly reduced 
95

. However, to date, it remains unclear if 

Wip1 functions as a direct ERK phosphatase. 

p53: In addition to inactivating p53 through a p38-dependent mechanism, Wip1 also directly 

dephosphorylates p53
96

. In an in vitro phosphatase assay, purified Wip1 robustly dephosphorylates 

p53 Serine 15 phospho-peptide as well as full-length Serine 15-phosphorylated p53 in a magnesium-

dependent and okadaic acid-independent fashion. Phosphorylation of p53 on Serine 15 is mediated 

by the kinases ATM and ATR in response to IR and UV irradiation, and it has been shown to be 

important for the apoptotic activity of p53
97

, as well as for p53 stability, as pS15 inhibits the 

interaction of p53 with MDM2
98

. Analyses of effects of IR and UV irradiation on protein levels and 

phosphorylation of p53 in mouse embryonic fibroblasts (MEFs) provided additional evidence for 

involvement of Wip1 in regulating p53 signaling
96

. Transfection of the cells with wild-type Wip1 
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attenuated Serine 15 phosphorylation, and reduced the overall level of p53 (by promoting its 

interaction with MDM2). Transfection with phosphatase-dead mutant Wip1, or co-expression of 

Wip1 siRNA did not inhibit p53 activity
96

. Taken together, these observations convincingly 

demonstrate that Wip1 plays an important role in regulating the activity and the stability of p53. 

MDM2: In addition to promoting MDM2 interaction with p53 by dephosphorylating p53 at S15, 

Wip1 also directly stabilizes Mdm2
99

. Wip1 interacts with and dephosphorylates Mdm2 at serine 395, 

a site phosphorylated by the ATM kinase. Dephosphorylated Mdm2 has increased stability and 

affinity for p53, facilitating p53 ubiquitination and degradation. 

ATM: Wip1 dephosphorylates the ataxia-telangietasia muted kinase (ATM) at Ser1981, a site 

critical for ATM monomerization and activation; moreover Wip1 is critical for resetting ATM 

phosphorylation as cells repair damaged DNA
100

. Wip1 physically interacts with ATM even in 

unstressed cells, which seems to point towards a mechanism by which Wip1 assists in setting a 

threshold for the initial activation of ATM. The tumor suppressor protein ATM is known to be a 

master regulator of cell cycle checkpoints after DNA damage, specifically after IR-induced DNA 

double-strand breaks. ATM (co-)controls the activities of several different signaling pathways 

involved in cell cycle regulation and in the cellular stress response (e.g. p53), and its net effects 

include cell cycle arrest, activation of DNA repair and induction of apoptosis
101

. Taking the 

abovementioned observations into account, it seems reasonable to assume that by dephosphorylating 

and inactivating ATM, Wip1 functions as a positive regulator of cell growth and as an inhibitor of 

cellular stress signaling. 

Chk1: Co-immunoprecipitation analyses, revealed that Wip1 also interacts with checkpoint 

kinase 1 (Chk1), yet another important regulator of cell cycle progression and cellular stress 

signaling
96

. Wip1 directly dephosphorylates Chk1 on Serine 345 and Serine 317, and as a result, 

overexpression of Wip1 significantly reduced the kinase activity of Chk1 following UV-induced 

stress. Several breast cancer cell lines that endogenously express high amounts of Wip1 exhibited an 

attenuated UV-induced Chk1 Ser-345 phosphorylation as compared to cells expressing low amounts 
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of the phosphatase, confirming that Wip1 plays a physiological role in regulating Chk1 signaling. 

Again Wip1 abrogates both the intra-S and the G2/M checkpoint after IR and UV radiation in U2OS 

cells. These findings suggest that one of the primary functions of Wip1 is to reverse the p53- and the 

Chk1-induced cell cycle arrest, and to return the cells to a homeostatic state following the 

completion of DNA repair 
96

. 

Chk2: Not long after Wip1 was identified as a Chk phosphatase, two groups showed that Wip1 

also dephosphorylates Checkpoint kinase 2 (Chk2)
102, 103

. Chk2 and Wip1 physically interact in a 

yeast two-hybrid screen and co-immunoprecipitated. After IR-induced Chk2 phosphorylation, Wip1 

dephosphorylates two Serines (S19 and S33/35) and two Threonine (T68 and T432) residues in Chk2. 

siRNA-mediated knockdown of Wip1 resulted in an abnormally sustained Threonine 68 

phosphorylation of Chk2 with increased susceptibility of several cell types to IR. As a result, 

overexpression of Wip1 suppressed the contribution of Chk2 to the IR-mediated induction of the 

G2/M checkpoint. Based on these studies, Wip1 can be considered not only a regulator of Chk1, but 

also an important physiological inhibitor of Chk2 signaling in response to DNA damage. 

RelA/NF-κB: Wip1 was recently identified as a negative regulator of NF-κB signaling pathway
47

 

in both a p38-dependent and independent manner. Wip1 inhibits expression of NF-κB target genes 

IL-6, IRF-1 and ICAM expression through p38 while Wip’s effect on expression of TNFα, IκBα and 

MCP-1 is p38-independent. In a dose dependent manner, overexpression of WIP1 decreases NF‑κB 

activation, whereas WIP1 knockdown increases NF‑κB function. In vitro phosphatase assays using 

full-length RelA or S536 phospho-peptide as substrates confirmed that WIP1 is a direct phosphatase 

targeting Ser536 of RelA. Phosphorylation of Ser536 is required for recruitment of the 

transcriptional co-activator p300 and is essential for the transactivation function of RelA.Wip1 

regulates binding of NF‑κB to p300 with downstream effects on chromatin remodeling. Consistent 

with the function of Wip1 to inhibit NF-κB activity, mice lacking WIP1 have phenotypic 

characteristics of enhanced inflammation providing the first genetic evidence that a phosphatase 
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directly regulates NF‑κB signaling in vivo. Wip1 activity to inhibit NF-κB including NF-κB 

oncogenic activities, suggest that in addition to the accepted role of Wip1 as an oncogene, it may 

also have tumor suppressor activities.  Although untested, the balance between Wip1’s oncogenic 

and tumor suppressive activities may depend on tissue, cellular or molecular context.  

 

Collectively, the findings outlined above demonstrate that PPM phosphatases (Wip1, PPM1A, 

and PPM1B) are widely regulate proteins critical for cell growth and cellular stress signaling. Table 

1.2 (adapted from
1
) summarizes the pathways and the proteins impacted by PPM-mediated 

dephosphorylation. The number of proteins with known activity as tumor suppressors or oncogenes 

regulated by PPM family members is remarkable. PPM1A and PPM1B share many targets, 

suggesting either a collaborative or redundant regulation of these signaling pathways. A smaller 

number of targets are shared between Wip1 and the other 2 PPM family members (PPM1A and 

PPM1B) possibly attributable to the high amino acid sequence homology of PPM1A and PPM1B, 

compared to Wip1. There are several cases where PPM1A and Wip1 target distinct proteins within 

the same pathway with the same effect to increase or decrease activity (e.g. p38, NF-κB). The major 

difference between PPM1A and Wip1 relates to their opposite roles in p53 regulation. Wip1 

activates MDM2 and directly inhibits p53, whereas PPM1A destabilizes and inhibits MDM2 (Fig. 

1.3, adapted from
1
). Given the direct and indirect targets of Wip1 (p53, ATM, Chk1, Chk2, MDM2, 

ARF, and p16), Wip1 has been implicated as an oncogene. Expression data from human cancers also 

revealed that the Wip1 gene is amplified in many tumor types including pancreas, lung, liver, 

bladder and breast cancers
104-106

.  It is not clear whether if PPM1A and Wip1 compete for substrates 

in these pathways or if they are selectively regulated by different upstream signals. Also the 

biological functions within the different pathways regulated by each of the PPM phosphatases 

suggest both oncogenic and tumor suppressor capacities. Regulation of PPM phosphatase activities 

toward specific targets with the ability to increase preference for one set of targets over others is 
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likely critical for determining cellular consequences. Given activities that have opposing tumor 

outcomes, it is likely that the biological consequences associated with PPM phosphatase activity 

reflect an orchestra of all regulated pathways.    

 

 

 

     
PPM 
phosphatase 

Signaling 
pathway 

Target protein(s) in this 
pathway 

Effect on 
cell growth 

Effect on 
stress 
signaling 

PPM1A AMPK AMPK — ↓ 

 
JNK MKK4,MKK7 — ↓ 

 
p38 p38, MKK3b, MKK6b — ↓ 

 
CDK Cdk2, Cdk6 ↓ — 

 
p53 MDM2 ↓ ↑ 

 
TGFβ Smad2/3 ↓ — 

 
NF-κB IKKα, IKKβ ↓ ↓ 

PPM1B JNK mkk4,MKK7, TAK1 — ↓ 

 
p38 MKK3b, MKK6b — ↓ 

 
NF-κB IKKα, IKKβ ↓ ↓ 

 
CDK Cdk2, Cdk6 ↓ — 

 
p53 MDM2 ↓ ↑ 

 
Bcl-xL BAD ↓ — 

Wip1/PPM1D p38 p38 — ↓ 

 
p53 p53, p38, ATM, MDM2 ↑ ↓ 

 
ATM ATM ↑ ↓ 

 
Chk Chk1, Chk2 ↑ — 

 
ARF p38 ↑ — 

 
INK4A p38 ↑ — 

  NF-κB RelA ↓ ↓ 

      

  

Table. 1.2 Overview of PPM phosphatases interaction with proteins regulating cell growth 

and cellular stress signaling (adapted from 
1
). ↓Indicates that the (over-)expression of the 

respective phosphatase results in an inactivation of the indicated pathway, ↑ indicates an 

activation of the pathway. 

 

 

Table 1.0.2 Overview of PPM phosphatases interaction with proteins 

regulating cell growth and cellular stress signaling. 
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Fig. 1.3 PPM phosphatases regulate p53 signaling (adapted from
1
). ┴ 

indicates inhibition of the respective protein, ↑ indicates activation. 

Figure 1.0.3 PPM 

phosphatases regulate p53 

signaling 
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4. LZAP 

4.1 General introduction to LZAP 

LZAP (also called CDK5rap3 or C53) was first described as a binding partner of the 35kDa 

CDK5 activator binding protein p35Nck5a in 2000
107

. Activity of CDK5rap3 related to p35Nck5a 

has not been further characterized and is unlikely to represent its major activity since expression of 

CDK5 and p35Nck5a is restricted to neurons while LZAP is ubiquitously but variably expressed in 

all tissues tested
82, 107

. Consistent with alternative roles for CDK5rap3, we have identified this protein 

as a novel binding partner for the tumor suppressor ARF (alternative reading frame) through an 

unbiased yeast two-hybrid screen approach in 2006. Based on these data, we renamed this protein 

LZAP for LXXLL/leucine zipper-containing ARF-binding protein. LZAP is a highly conserved 

protein in vertebrates, invertebrates and plants, but not in yeast and bacteria. Within the cell LZAP 

localizes to cytoplasmic and nuclear compartments. Database searches and publications have failed 

to identify homologs and amino acid or nucleotide alignment of suggest that LZAP shares no 

significant amino acid homology with any known protein and also lacks conserved functional 

domains, except for putative leucine zipper (amino acid 357-385) and LXXLL motifs. Human LZAP 

has two LXXLL motifs and one conserved LXXLL-like LXXFL motif. These motifs are of unknown 

significance for LZAP activity, but are important for nuclear hormone receptor co-regulator binding 

to steroid receptors and transcriptional co-activators
108, 109

. We previously demonstrated that loss of 

LZAP promotes tumor growth in vivo and that LZAP is lost in ~30% of human HNSCC
110

. We have 

targeted LZAP in mice and our preliminary findings suggest that homozygous knockout of LZAP is 

embryonic lethal in early stage of development with inability to identify LZAP-/- embryo as early as 

embryonic day 4.5 (unpublished data). Interestingly, heterozygous mice with targeted LZAP are 

susceptible to lung tumor formation (unpublished data). We further explored developmental roles of 

the LZAP gene during zebrafish morphogenesis
111

. LZAP is maternally deposited in the zebrafish 

embryo. Expression is initially ubiquitous during gastrulation, and later becomes more prominent in 

the pharyngeal arches, digestive tract, and brain. Morpholino-mediated depletion of LZAP delays 
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cell divisions and induces apoptosis during blastomere formation, resulting in fewer and larger cells 

before epiboly. Cell cycle analyses suggested that LZAP loss in early embryonic cells precipitates a 

G2/M arrest. Furthermore, the LZAP-deficient embryos failed to initiate epiboly--the earliest 

morphogenetic movement in animal development--which has few described requirements, but has 

been shown to depend on cell adhesion and migration of epithelial sheets. These functions provide 

further insight into LZAP activity and suggest that LZAP is required during early development and 

inhibits tumor formation. Molecular mechanisms of LZAP activities continue to emerge. We and 

others have described LZAP functions to regulate activities of ARF, p53, p38 MAPK, NF-κB, Wip1, 

Chk1 and Chk2. 

 

4.2 Mechanisms of LZAP activity 

RelA and NF-κB pathway: Our lab reported that LZAP directly binds to RelA and that amino 

acids 195-313 of RelA are required for the interaction
110

. LZAP inhibits RelA phosphorylation at 

S536 and decreases RelA transcriptional activity toward selective gene targets, as well as increases 

RelA association with HDAC1, HDAC2 and HDAC3. Conversely, loss of LZAP increases both 

basal and cytokine-induced RelA transcriptional activity. Based on ChIP analyses, LZAP is present 

on chromatin at select NF-κB-responsive promoters. These data suggest that LZAP is a potent NF-

κB inhibitor and that endogenous LZAP inhibits both basal and activated NF-κB, possibly by 

converting NF-κB to a transcriptional repressor through interaction with HDACs. Functionally, 

decreased expression of LZAP increases expression of MMP-9 and increases cellular invasion, both 

of which are dependent on NF-κB. Overexpression of LZAP sensitizes cells to TNFα-induced cell 

death similar to effects of the NF-κB inhibitor IκB likely through inhibition of NF-κB mediated anti-

apoptotic signaling. Knockdown LZAP in xenograft tumor cells promotes tumor growth and 

angiogenesis. In primary HNSCC tumors LZAP protein levels inversely correlated with expression 

of the NF-κB regulated genes IL-8 and IκBα. Collectively, these data suggest that LZAP is a putative 
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tumor suppressor and that LZAP regulation of NF-κB activity requires LZAP association with RelA 

and modification of RelA phosphorylation. 

ARF and p53 pathway: Our lab found that LZAP binds ARF in a yeast two-hybrid screen 

designed to identify ARF-interacting proteins potentially involved in regulation of ARF activity. 

LZAP binds ARF, co-localizes with ARF, and forms a ternary complex with ARF, HDM2 and p53 

in mammalian cells. Expression of LZAP in the presence of ARF further enhances p53-mediated 

expression of the cyclin-dependent kinase inhibitor p21/Cip1 and enhances the ARF-mediated G1 

cell cycle arrest. Upon direct binding to ARF, LZAP reverses ARF inhibition of HDM2’s p53 

ubiquitination activity, but despite its ability to restore HDM2-mediated p53 ubiquitination, LZAP 

expression does not decrease p53 stability in the presence of ARF. In fact, when expressed with 

HDM2 and ARF, LZAP stabilizes p53 protein by inhibiting p53 nuclear export and further 

augmentations p53 transcriptional activity. Ectopic expression of LZAP in mammalian cells induces 

a p53-dependent G1 cell cycle arrest. Remarkably, a similar pattern of p53 activation and a p53-

dependent G1 cell-cycle arrest were observed in ARF null cells. Because LZAP does not inhibit 

proliferation in cells lacking p53 activity, LZAP mediated cell cycle arrest is dependent on p53
112

. 

These findings suggest that LZAP regulates p53 through ARF-dependent and -independent 

mechanism(s), the later could be attributable to activity of novel LZAP-binding partners. 

Chk1/2: To date, there is a single publication describing LZAP activity towards the checkpoint 

kinases Chk1 and Chk2 (hereafter called Chk1/2)
113

. Passage through the G2/M checkpoint depends 

on activation of the CDK1/cyclin B complex and is tightly regulated by Chk1/2 through CDC25. 

Recent evidence indicates that in response to DNA damage, p38 MAPK also triggers the G2/M 

checkpoint through regulation of CDC25
114

. Endogenous and exogenous stresses, such as replication 

fork collapse or IR, result in DNA damage and activation of the apical serine/threonine protein 

kinases belonging to the PI3K family, including ATM, ATR and DNA-PK. Activated PI3Ks in turn 

phosphorylate and activate the downstream checkpoint kinases Chk1/2. Although both Chk1 and 

Chk2 can phosphorylate and inhibit CDC25, Chk1 seems to be the primary kinase responsible for the 
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G2/M checkpoint
115

. Chk1/2-mediated phosphorylation of CDC25C at S216 is required for its 

recruitment of 14-3-3. Binding of 14-3-3 to CDC25C, either directly or through cytoplasmic 

sequestration, inhibits CDC25C binding to the CDK1/cyclin B complexes
114

. Jiang et al. reported 

that during DNA damage response, LZAP inhibits Chk1/2 phosphorylation and activation. By 

counteracting Chk1, LZAP activates CDC25C resulting in downstream CDK1 activation
113

 (Fig. 1.4). 

It is well known that Chk1/2 are phosphorylated and activated after DNA damage by ATM and ATR. 

Expression of LZAP is associated with decreased phosphorylation and inhibition of Chk1/2, but this 

effect is not mediated through decreasing the activities of their upstream kinases. Since checkpoint 

kinases are inhibited by LZAP, their activity toward CDC25C is similarly inhibited, resulting in 

activation of CDK1 and inappropriate or early progression into mitosis
113

. Jiang et al. have shown 

that knockdown of LZAP inhibits CDK1 and delays mitotic entry
113

. These results are consistent 

with an earlier report by the same group that LZAP increases sensitivity to genotoxins related to 

inappropriate progression through the G2/M checkpoint
116

. These data show that LZAP binds and 

inhibits Chk1 resulting in dysregulation of cell cycle progression; however, Chk1 and Chk2 kinases 

phosphorylate and regulate targets in addition to CDK1, including p53. Mechanisms explaining how 

LZAP alters Chk1/2 phosphorylation and activity remain unclear. 

  

Fig. 1.4 LZAP Inhibits Checkpoint Kinases.  LZAP inhibits Chk1 and Chk2 causing 

activation of CDC25C and CDK1. Simplified, LZAP is an activator of CDK1 through 

inhibition of checkpoint kinases. Arrows indicate activation and T shapes indicate 

inhibition. 

Figure 1.0.4 LZAP 

Inhibits Checkpoint 

Kinases 
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p38: To better understand LZAP biological activities and to gain mechanistic insight, additional 

LZAP binding partners have been sought. Through a Scan Site Search (http://scansite.mit.edu/) using 

LZAP sequence, we found that LZAP contains sites predicted to bind to the common MAPK 

docking domain (D domain). LZAP binding to p38α MAPK was confirmed by in vivo binding assays 

and immunofluorescent staining of expressed proteins shows nuclear co-localization of p38α with 

LZAP
117

. LZAP expression is associated with a dose dependent decrease in p38 phosphorylation and 

activity, both at basal level and following cytokine stimulation while siRNA-mediated loss of LZAP 

increases p38 phosphorylation and activity after cytokine treatment indicating that LZAP regulates 

p38 phosphorylation at both basal and stimulated levels. LZAP’s activity to inhibit p38 

phosphorylation does not depend on upstream p38 activating MAPK kinases, MKK3 or MKK6. 

 

4.3 Regulation of LZAP 

To date, little is understood regarding regulation of LZAP in normal or tumor tissues. We and 

others have shown that LZAP is ubiquitously expressed in all human, rat and mouse tissues tested, 

including pancreas, brain, liver, heart, intestine, spleen, thymus, muscle and lung (
118, 119

 and 

unpublished data). Expression of LZAP is markedly decreased or undetectable in 30% of HNSCC, 

but mechanisms of LZAP loss are currently unknown
110

. LZAP can be phosphorylated in in vitro 

kinase assay by Cdk5
107

; however, it is not clear if LZAP is phosphorylated in vivo or what sites of 

LZAP are phospho-acceptor sites. LZAP homodimerization has been suggested by one publication 

that used LC/MALDI mass spectrometry of bands separated by polyacrylamide gel electrophoresis 

after Flag-LZAP immunoprecipitation
119

.   

Recently, a novel protein, KIAA0776 (also RCAD/NLBP/UFL1) was reported as a novel LZAP 

binding partner by four independent groups. KIAA0776 was first reported by Kwon et al. using 

tandem affinity purification of LZAP followed by mass spectrometry
120

. Binding domain mapping 

determined that amino acids 301-400 in LZAP and 121-250 in KIAA0776 is required for the 

interaction the two proteins. Loss of KIAA0776 by siRNA knockdown decreases LZAP stability 
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which could be mediated by binding between LZAP and KIAA0776, since co-expression of LZAP 

with a KIAA0776 deletion mutant lacking binding activity to LZAP did not influence ubiquitination 

levels of LZAP and vice versa. On the other hand, expression of wild-type KIAA0776 decreases 

LZAP ubiquitination
120

. Wu et al. reported the identification of two LZAP binding partners, 

KIAA0776 /RCAD and C20orf116 /DDRGK1
119

. LZAP forms a large protein complex with these 

two proteins as demonstrated by size exclusion chromatography.Loss of KIAA0776 decreases LZAP 

and C20orf116 protein half-life. LZAP and C20orf116 are fairly stable in control cells and are not 

very robustly subjected to  proteasome-mediated degradation; however, after siRNA knockdown of 

KIAA0776, they observed significant elevation of LZAP and C20orf116 proteins even by 2 hours 

after MG132 treatment. This is different from the result of the Kwon group where they showed that 

in control cells, the LZAP level is increased after treatment with MG132. Both of the groups showed 

that KIAA0776 inhibits cell invasion and negatively regulates the NF-κB signaling pathway thought 

to be through interaction with LZAP. Wu et al. also determined C20orf116, the second LZAP 

binding protein localizes to the endoplasmic reticulum (ER) and is anchored there by its amino (N)-

terminal signal peptide. A third group
121

 using Bergmann glia cells further showed that 

KIAA0776/Maxer is also a novel ER-associated protein and KIAA0776 anchors LZAP to the ER 

and inhibits LZAP  function in the nucleus, e.g. Cyclin D1 transcription repression though NF-κB. 

KIAA0776 shRNA knockdown shifted LZAP from the cytoplasm to nucleus. This is the first report 

demonstrating regulation of LZAP subcellular localization. Loss of KIAA0776 eventually induces 

cell accumulation at G1 phase and suppresses proliferation of C6 glioma cells which are rescued by 

simultaneous knockdown of LZAP
121

. These data are consistent with our finding that LZAP 

regulates cell cycle arrest in G1 phase
112

. The fourth paper by Lemaire et al, 2011
118

  identified 

another LZAP binding protein, UFM1 (ubiquitin fold modifier 1) which belongs to ubiquitin-like 

proteins family, a novel protein-conjugating system displaying a similar tertiary structure to 

ubiquitin
122

. Similar to ubiquitin, UFM1 also requires a three enzyme system to complete 

conjugation to targeted proteins. UFM1 is activated via the E1 enzyme, UBA5, and then conjugated 
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by the E2 enzyme, UFC1. UFL1 has very recently been identified as the E3 conjugating enzyme
123

. 

Interestingly, UFL1 is KIAA0776, one of the LZAP binding proteins; moreover, C20orf116/UFBP1, 

the other LZAP binding protein, is a substrate of UFM1
123

. In vitro pull down assays confirmed 

binding between LZAP and UFM1 and again LZAP and KIAA0776
118

. Co-immunoprecipitation data 

suggests UFM1, LZAP, KIAA0776 and C20orf116 do not directly interact with each other but rather 

are part of the complex. It is unclear whether LZAP is a substrate of UFM1 or the interaction 

between KIAA0776 and LZAP is dependent on KIAA0776 E3 ligase activity. Also there are no 

reports identifying lysine residue(s) in LZAP targeted for ubiquitination. Due to the consistent results 

that KIAA0776 decreases LZAP ubiquitination, it is possible that there is competition between 

KIAA0776 and E3 ubiquitin ligases for the same lysine residue(s) in LZAP. In addition to 

ubiquitination-mediated proteasome degradation, Jiang et al. mentioned as unpublished data in their 

recent paper that LZAP is cleaved by caspase-3 at three sites (D268, D282 and D311)
113

. 

 

5. Summary and Dissertation Goals 

NF-κB, a family of transcription factors, mediates effector function of almost all innate and 

adaptive immune responses and regulates cell proliferation, differentiation and apoptosis. Activated 

NF-κB also functions as an oncogene in tumorigenesis, progression and metastasis. Because of the 

role of NF-κB in important biological processes, NF-κB activity is intricately controlled at multiple 

levels with post-translational modification, in particular phosphorylation, serving a critical role. 

RelA is the most well studied transactivation-domain containing family member of NF-κB.  Our 

interest in RelA phosphorylation was peeked when we found that LZAP tumor suppressor activity 

was in part mediated by inhibition of RelA phosphorylation at serine 536
110

. Since LZAP has no 

known enzymatic activity and LZAP has no activity to inhibit RelA specific kinases (IKKα/β/ε, 

TBK1 and RSK, data not shown), the role of LZAP as a regulator of phosphatases was explored. 

Though dozens  kinases have been identified that modify specific serine or threonine residues in 
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RelA, less is known about RelA specific phosphatases. Given the number of RelA kinases, it is 

reasonable to expect that more than two phosphatases (PP2A and Wip1) target RelA for 

dephosphorylation as a mechanism to restore basal steady state RelA activity. I hypothesized that 

PPM1A, the PPM family member may function as a RelA phosphatase and that the tumor suppressor 

activity of PPM1A is at least partially dependent on its negative regulation of NF-κB. We noticed an 

overlap of LZAP regulated proteins and substrates of PPM1A, PPM1B and Wip1 (e.g. RelA, p53, 

Chk1/2 and p38) and developed preliminary data suggesting that PPM family members bound to 

LZAP. Based on these findings, I further hypothesized that LZAP regulated protein phosphorylation 

and activity through facilitating interaction of PPM phosphatases and target proteins. In this 

dissertation, RelA and p38 were chosen from the pool of LZAP targets and used as models to study 

the mechanism(s) of LZAP-mediated dephosphorylation and activity. Since a growing body of 

literature demonstrates pleiotropic roles of LZAP, including that of a putative tumor suppressor, it is 

important to understand the regulation of LZAP. Given that LZAP binds to phosphatases, I further 

hypothesized that post-translational phosphorylation and ubiquitination may regulate LZAP activity 

and protein stability. The primary objective of my work is to test these hypotheses and more 

importantly, contribute to the understanding of NF-κB and LZAP activities and regulation.   
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CHAPTER II 

 

PPM1A IS A RELA PHOSPHATASE WITH TUMOR SUPPRESSOR-LIKE ACTIVITY 

 

Part of the work presented in this chapter is published under the identical title in Oncogene, 2013. 

 

Abstract 

NF-κB signaling contributes to human disease processes, notably inflammatory diseases and 

cancer. NF-κB plays a role in tumorigenesis and tumor growth, as well as promotion of metastases. 

Mechanisms responsible for abnormal NF-κB activation are not fully elucidated; however, RelA 

phosphorylation, particularly at residues S536 and S276, is critical for RelA function. Kinases that 

phosphorylate RelA promote oncogenic behaviors suggesting that phosphatases targeting RelA 

could have tumor inhibiting activities; however, few RelA phosphatases have been identified. Here, 

we identified tumor inhibitory and RelA phosphatase activities of the PPM phosphatase family 

member, PPM1A. We show that PPM1A directly dephosphorylated RelA at residues S536 and 

S276 and selectively inhibited NF-κB transcriptional activity resulting in decreased expression of 

MCP-1/CCL2 and IL-6, cytokines implicated in cancer metastasis. PPM1A depletion enhanced NF-

κB-dependent cell invasion while PPM1A expression inhibited invasion. Analyses of human 

expression data revealed that metastatic prostate cancer deposits had lower PPM1A expression 

compared to primary tumors without distant metastases. A hematogenous metastasis mouse model 

revealed that PPM1A expression inhibited bony metastases of prostate cancer cells after vascular 

injection. In another xenograft model, PPM1A depletion facilitated tumor growth and cellular 

proliferation while inhibiting apoptosis. In summary, our findings suggest that PPM1A is a RelA 

phosphatase with NF-κB regulatory activity, and that PPM1A has tumor suppressor-like activity. 

Our analyses also suggest that PPM1A inhibits prostate cancer metastases and since neither gene 
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deletions nor inactivating mutations of PPM1A have been described, increasing PPM1A activity in 

tumors represents a potential therapeutic strategy to inhibit NF-κB signaling or bony metastases in 

human cancer. 

 

Introduction  

NF-κB, comprised of a family of pluripotent transcription factors, plays a fundamental role in 

inflammatory and immune responses and aberrant NF-κB activity can directly contribute to 

tumorigenesis, neovascularization, tumor growth and metastases
25, 50

. NF-κB activation has been 

described in many tumors including: HNSCC
54, 110 

and breast cancer
124, 125

. Dysregulation of NF-κB 

in prostate cancer has been identified as a major driver of distant metastasis, which is the primary 

cause of death in this common male cancer
61-63

. One transcriptional target of NF-κB, monocyte 

chemotactic protein-1 (MCP-1), also known as chemokine (C-C motif) ligand 2 (CCL2), has been 

implicated in prostate cancer migration, invasion and metastasis through effects on both tumor cells 

and the microenvironment
65

. MCP-1 seems to be particularly implicated in bony metastases for 

prostate cancer and in other tumor types including renal cancer, bladder cancer and breast cancer 
66

. 

Although mechanisms governing MCP-1 expression are not fully described, the suspected 

importance of this cytokine in tumor progression is affirmed by the recent initiation of clinical trials 

using neutralizing antibody targeting MCP-1.  

Because of the role of NF-κB in varied biological processes, NF-κB activity is intricately 

controlled at multiple levels. Inhibition of NF-κB through binding to IκBα with prevention of 

nuclear translocation has been well characterized; however, full activation of nuclear NF-κB 

transcriptional activity requires phosphorylation of RelA
126

. Phosphor-acceptor sites of RelA have 

been characterized
126, 15

 particularly implicating serine 536 and serine 276 as critical for NF-κB 

activation
19,23

. Although not as extensively studied, dephosphorylation of RelA is needed to prevent 

harmful effects of prolonged RelA signaling
42

. To date, only two phosphatases, PP2A and 



35 

Wip1/PPM1D, have been shown to directly dephosphorylate RelA, both having activity toward 

S536
43, 47

. Deficiency of PP2A contributes to the constitutive activation of RelA in melanoma cells
43

 

and mice lacking Wip1 have an inflammatory phenotype
47

 suggesting that loss of RelA-targeting 

phosphatases can impact pathological processes including cancer. 

PPM1A belongs to the protein phosphatase magnesium/manganese-dependent family (PPM) 

family together with Wip1 and PPM1B. PPM1A has been implicated in regulation of several 

signaling pathways including TGFβ/Smad 
82

, MAPK (JNK/p38), Cdk2 and Cdk6
1
 and the nerve 

growth factor activated Akt/ERK pathway
83

. Regulation of these pathways has been attributed to 

PPM1A phosphatase activity toward key pathway components in some cases (e.g. Smad2/3 and 

p38), but has not been fully characterized in others (e.g. Akt/ERK, Cdk2 and Cdk6). In addition, 

PPM1A has been implicated in regulation of proliferation
1
, cell invasion and migration

89
, but targets 

of PPM1A activity that regulate these activities have not been identified. Recently, PPM1A has 

been described as an indirect regulator of NF-κB through dephosphorylation and inactivation of 

IKKβ
49

. Here we show that PPM1A directly dephosphorylated RelA at Ser-536 and Ser-276 with 

resultant inhibition of NF-κB transactivation and decreased expression of target genes, notably 

including MCP-1/CCL2. We report that PPM1A expression was down-regulated in human 

metastatic prostate cancer, and that restoration of PPM1A decreased seeding and bony growth of 

prostate cancer cells in an animal vascular injection model. In addition, loss of PPM1A increased 

NF-κB dependent invasion and accelerated xenograft tumor growth. These data suggest that 

PPM1A has tumor suppressor-like qualities that are, at least partially, dependent on regulation of 

RelA. 

  



36 

Materials and Methods 

Expression Plasmid and small hairpin RNA expression Constructs 

Myc-PPM1A, Myc-PPM1A (R174G) mutant, GST-PPM1A and GST-PPM1A (R174G) were 

gifts from Dr. Sun
49

. His-Wip1 was a gift from Dr. Donehower
99

. PPM1A was PCR amplified and 

subcloned into the pHIT-dell2-puro retroviral expression vector. Other constructs were described 

previously 
110

. A pSuper-retro vector (provided by Dr. Reuven Agami) was used to generate shRNA 

plasmids for PPM1A with the following target sequence 5'-AAGTACCTGGAATGCAGAGTA-3' 

(ref.
49

). Lentiviral vector pGIPZ and plasmid coding for PPM1A-targeting shRNA (Clone ID 

V2LHS_35113) were from Open Biosystems, Waltham, MA. PPM1A-1 (catalog# SI02659258, 

Hs_PPM1A_5) and PPM1A-2 (catalog # SI02659265, Hs_PPM1A_6) siRNA were purchased from 

QIAGEN, Germantown, MD. Control siRNA (nontargeting#1) was from Dharmacon, Waltham, MA. 

Cell lines, cell culture, transfection and virus infection 

IKKalpha-/-, IKKbeta-/- (IKK1-/-, IKK2-/-) double null MEFs were a gift from Dr. Verma (the 

Salk Institute for Biological Studies, Laboratory of Genetics, San Diego, CA). PC3 and LNCaP cell 

lines were provided by Dr. Renjie Jin (Vanderbilt University, Nashville, TN). Cell lines were 

maintained according to ATCC protocol. TransIT-2020 (Mirus, Madison, WI) was used for MEFs 

transfection. SiRNA was transfected at 20nM using Lipofectamine RNAiMAX (Invitrogen, Carlsbad, 

CA). All transfection reagents were used according to the manufacturers’ instructions. Cells 

expressing PPM1A or shRNA targeting PPM1A were infected with indicated virus-containing 

medium with 4mg/ml polybrene (Sigma-Aldrich, St. Louis, MO). For transient expression, cells 

were used after 24 h of infection. Stable cell lines were selected for 10 days in puromycin (1ug/ml).  

Antibodies and reagents 

Rabbit anti-RelA (C20), anti-phospho-S276 RelA (sc101749), anti-GAPDH, anti-IκBα (C21), 

anti-IKKα/β (sc7607) and HRP-conjugated secondary donkey anti-mouse and anti-rabbit antibodies 

were from Santa Cruz Biotechnology, Santa Cruz, CA. Mouse and rabbit anti-PPM1A were from 

Abcam, Cambridge, MA (p6c7) and GeneTex, Irvine, CA (GTX109744), respectively. Rabbit anti-
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phospho-S468 RelA (Ab31473) was from Abcam. Mouse anti-Flag M2, anti-Flag M2 affinity gel 

and 3XFlag peptide were from Sigma-Aldrich. Anti-phospho-S536 RelA (Cell Signaling, Boston, 

MA). TNFα and IL-1β were from PeproTech, Rocky Hill, NJ. 

Immunoprecipitation and immunoblotting 

Cells were lysed in 0.5% (v/v) Nonidet P-40 lysis buffer supplemented with protease inhibitor 

cocktail (Roche, Indianapolis, IN) and phosphatase inhibitor III (Sigma-Aldrich). Total cell lysate 

was incubated with anti-Flag M2 affinity gel (Sigma-Aldrich) and immunoprecipitation was 

performed according to manufacturer’s instruction.  Immunoblotting was performed as previously 

described 
117

.  

In vitro phosphatase reaction and malachite green phosphatase assay  

The experiment was performed as described
49

 with modified phosphatase 2C buffer (50mM Tris-

HCl pH7.5, 0.1mM EGTA, 0.02% 2-mercaptoethanol ±25mM MgCl2). Flag-RelA protein was used 

as substrate after elution with using 3×Flag peptide (Sigma-Aldrich). Phospho-peptide analysis was 

performed as described 
47

 with modified PPM buffer and malachite green assay kit (#POMG-25H, 

BioAssay Systems, Hayward, CA). Phospho-peptides synthesized by LifeTein: RelAS536 

(GDEDFSpSIADMD), RelAS276 (QLRRPpSDRELS)
47

. His-Wip1 was purified using Ni-beads as 

described
99

.  

Luciferase reporter gene assay 

Dual-Luciferase Reporter Assay (Promega, Madison, WI) was performed as previously 

described
110

. 

cDNA synthesis and real-time PCR 

mRNA was extracted using RNeasy mini (QIAGEN). cDNA synthesis was performed using 

iScript cDNA synthesis kit (BIO-RAD, Hercules, CA). Real-time PCR was performed using iQ 

SYBR green supermix (BIO-RAD). RT-PCR Array (PAHS-025A, SABiosciences) was used 

according to manufacturer’s instructions. MCP-1 primer sequences: forward 

5’ctgctcatagcagccacctt3’, reverse 5’gcactgagatcttcctattggtg3’. GAPDH was used as control. 
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Chromatin Immunoprecipitation (ChIP) Assays 

ChIP assays were performed using Magna ChIP A/G (#17-10085, EMD Millipore, Billerica, MA) 

following manufacturer’s instructions. 3×10
6
 HeLa cells were used for each assay. Anti-RelA 

antibody (SC-109 X) and normal rabbit IgG (Santa Cruz) were used for immunoprecipitation. 

Purified DNA was analyzed by real time PCR. Primers ((NM_002982.3 (-) 03Kb) for the κB binding 

site on MCP-1 promoter were from SA Bioscience/Qiagen.  

In vitro cell invasion assay 

Transwell invasion assay was performed as described 
110

. 2×10
4 
HeLa cells, 5×10

4 
PC3-LUC cells 

or 1×10
5 

LNCaP cells were seeded into the upper chamber and analyzed after 21 h, 42 h and 46 h 

respectively. Membranes mounted to slides were scanned at 1.25×, 10× and 20× using the Ariol SL-

50 platform at Vanderbilt Epithelial Biology Center or under microscope with 200 × magnifications. 

Cell fractionation 

Cell fractionation was performed as described
127

 with modified hypotonic buffer (10mM HEPES 

pH 7.1, 50mM NaCl, 0.3M sucrose, 0.1mM EDTA, 0.5% TritonX100, 1mM DTT) and washing 

buffer (10mM HEPES pH 7.1, 0.1mM EDTA, 1mM DTT).  

DNA binding assay 

Assay was performed as described 
110

 using TransAM NF-κB p65 assay kit ( cat# 40096, Active 

Motif, Carlsbad, CA ). 

Obtaining conditioned medium (CM) and ELISA Assay 

Conditioned media were obtained from PC3 cell cultures as described
128

. Cell number from each 

well was counted to normalize data for differences. MCP-1 concentration was measured by MCP-1 

ELISA kit (R&D system, Minneapolis, MN) following manufacturer’s protocol.   

The Gene Expression Omnibus (GEO) analysis 

Normalized PPM1A expression data were downloaded from GEO 

(http://www.ncbi.nlm.nih.gov/projects/geo/) with citations for individual studies. Gene expression 

were analyzed and plotted with average ± SD in Prism 5.0 (GraphPad, La Jolla, CA). 

http://www.ncbi.nlm.nih.gov/projects/geo/
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In vivo tumor metastasis assay and BLI ex vivo analysis 

1×10
5
 PC3-LUC cells

 
infected with control or PPM1A-expressing retrovirus suspended in 0.1 ml 

of PBS were inoculated into the left cardiac ventricle of male nude mice. Metastases were monitored 

by bioluminescent imaging weekly (Xenogen IVIS 200 imaging system, Alameda, CA). Mice with 

bioluminescent signal in the chest cavity 1 h post-injection were excluded from the study since this 

indicated leakage of tumor cells during injection 
129

. Four weeks after injection mice were 

radiographed (Faxitron X-ray system, Tucson, Arizona), and long bones and spines were decalcified 

and paraffin embedded. Sections were stained with hematoxylin and eosin. 

In vivo xenograft tumor growth assay 

Animal protocols were approved by the Vanderbilt University Institutional Animal Care and Use 

Committee. Female nude mice (Harlan, Indianapolis, IN) were inoculated subcutaneously at 4 spots 

at age 6 to 10 weeks using 1×10
6
 HeLa cells infected with control retrovirus or retrovirus driving 

expression of PPM1A-specific shRNA. Tumor length (L) and width (W) was recorded weekly using 

calipers until the largest tumors approached 20 mm in length. Tumor volume was calculated using 

the formula: volume = ½ ×L×W
2
. Each mouse received 100ul (10mg/ml) BrdU i.p. injection 2 hrs 

before sacrifice. Excised tumors were weighed, and portions frozen or fixed in 4% paraformaldehyde 

before embedding in paraffin. PPM1A expression was determined in tumors by immunoblotting (10 

of 17 control tumors and 12 of 18 PPM1A knockdown tumors were large enough and with sufficient 

growth record) and tumor growth analyses stratified based on PPM1A expression (maintenance of 

knockdown). Hematoxylin and eosin staining and immunostaining of BrdU and cleaved Caspase3 

were performed by the Vanderbilt Immunohistochemistry Core Laboratory. At least five high-

powered fields were counted for each tumor. 

Statistical analysis 

Statistical analyses were performed using R version 2.14.1 for Windows, and data plotted and 

analyzed using student t-test, fisher exact test, Wilcoxon rank sum test or Kruskal-Wallis chi-square 

test. To take into account the correlation among repeated measurements from the same tumor, linear 
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mixed-effect models were fit to the tumor volume over time. *, **, *** represents p values less than 

0.05, 0.01 and 0.001, respectively, unless otherwise noted.  

 

Results 

PPM1A directly dephosphorylates RelA 

To better understand drivers of cancer progression and metastases, we sought to identify 

phosphatase inhibitors of NF-κB that work directly to dephosphorylate of RelA. Because the PPM 

family member Wip1 is one of the two described RelA phosphatases, we considered a PPM family 

member, PPM1A, as a candidate RelA phosphatase. To begin exploring this possibility, the effect of 

endogenous PPM1A on RelA phosphorylation was determined in U2OS and HeLa cells. Following 

PPM1A depletion using two independent siRNAs, RelA phosphorylation at S536 was increased in 

both cell lines while total RelA levels were not altered (Fig. 2.1A). Depletion of PPM1A further 

increased RelA phosphorylation following stimulation with TNFα (Fig. 2.2A). siRNA-mediated 

depletion of PPM1A did not alter total RelA levels (Fig. S1A) and did not affect PPM1B or Wip1 

protein expression (Fig. 2.2B). Expression of wild-type PPM1A decreased S536 phosphorylation of 

ectopically expressed RelA both with and without TNFα stimulation, whereas phosphatase-dead 

(R174G) PPM1A had no effect (Fig. 2.1B). Interestingly, RelA S276 phosphorylation was similarly 

decreased by expression of PPM1A (Fig. 1B) and siRNA-mediated depletion of PPM1A increased 

S276 phosphorylation after TNFα treatment (Fig. 2.2C). Phosphorylation of S468, a known 

transcriptional inhibition phosphorylation site of RelA
41, 111

 was unaffected by expression of PPM1A 

(Fig. 2.1B, 0.9 normalized to vector control as 1).   

We confirmed reports that PPM1A decreases IKKα and IKKβ phosphorylation
49

 (Fig. 2.2D); 

therefore, decreased RelA phosphorylation observed following expression of PPM1A could be a 

result of direct activity to dephosphorylate RelA or be mediated by IKKs. To begin exploring these 

possibilities, PPM1A was expressed in IKKalpha-/-, IKKbeta-/- double-null mouse embryonic 

fibroblasts. Notably, PPM1A expression resulted in decreased RelA S536 phosphorylation in the 
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absence of IKKα or IKKβ (Fig. 2.1C lanes 4, 5) indicating that PPM1A regulates RelA independent 

of IKKs. In these cells, decreased RelA phosphorylation was also dependent on PPM1A phosphatase 

activity and did not alter in RelA protein levels (Fig. 2.1C). 

Although PPM1A activity toward RelA was independent of IKKs, PPM1A regulation of RelA 

phosphorylation could be mediated through unknown indirect activities or through direct 

dephosphorylation of RelA. To begin distinguishing these possibilities, in vitro phosphatase assays 

using full-length RelA or RelA-specific phospho-peptides as substrates were performed. To 

determine PPM1A activity toward the full-length protein, expressed Flag-RelA was 

immunoprecipitated from 293T cells then incubated with bacterially synthesized GST-PPM1A 

proteins. Incubation with wild-type (Fig. 2.1D lanes 1-5) but not phosphatase-dead PPM1A (Fig. 

2.1D lane 6), decreased RelA phosphorylation at S536 in a dose-dependent fashion. As with all PPM 

family members, PPM1A phosphatase activity was magnesium dependent (Fig. 2.1D, compare lanes 

5 and 7). Because reliable phospho-specific antibodies are available only for S536 and to confirm 

findings of the full-length phosphatase assay, a peptide-based phosphatase assay was performed. 

Synthesized RelA phospho-peptides corresponding to phospho-serine 536 and 276 (pS536, pS276) 

(LifeTein, South Plainfield, NJ) were used as substrates and dephosphorylation was quantified using 

malachite green assay
47

. Wild-type, but not phosphatase-dead PPM1A dephosphorylated the pS536 

peptide with equivalent efficacy as the known RelA S536 phosphatase, Wip1 (Fig. 2.1E, compare 

lanes 4 and 7). As opposed to Wip1, PPM1A also dephosphorylated the pS276 peptide (Fig. 2.1F, 

compare lanes 4 and7). As expected, magnesium was required for activity of both PPM1A and Wip1 

(Figs. 2.1E and F, lane 6) and the phosphatase-dead mutant of PPM1A had no activity toward either 

pS536 or pS276 peptides (Figs. 2.1E and F lane 5). Together, these data suggest that PPM1A is a 

direct RelA phosphatase and the first phosphatase with potential activity toward pS276 of RelA.
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Fig. 2.1 PPM1A is a RelA phosphatase. (A) U2OS and HeLa cells were 

transfected with indicated siRNAs. PPM1A as well as endogenous phospho- and 

total RelA were visualized by immunoblotting. GAPDH served as loading 

control. (B) U2OS cells were transfected with indicated plasmids and proteins 

visualized by immunoblotting with GAPDH serving as loading control. PPM1A-

wt, wild type PPM1A; PPM1A-PD, phosphatase dead PPM1A (C) Wild-type 

mouse embryonic fibroblasts (MEFs) and IKKα-/-, IKKβ-/- double null MEFs 

were transfected with indicated plasmids. Endogenous Ikkα and Ikkβ and 

transfected phospho- and total RelA, as well as PPM1A were visualized by 

immunoblotting. (D) Immunoprecipitated full-length Flag-RelA was used as 

substrate for in vitro phosphatase assay. Phospho- and total RelA were visualized 

by immunoblotting. Exclusion of PPM1A or magnesium in the phosphatase 

buffer served as negative controls.  (E and F) S536 and S276 specific-

phosphorylated RelA peptides were incubated with equal amounts of GST-

PPM1A or His-Wip1 and free phosphate measured by malachite green assay. 

 
Figure 2.0.1 PPM1A is a RelA phosphatase 
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Fig. 2.2 (A) U2OS and HeLa cells were transfected with indicated siRNA 

and stimulated with 10ng/ml TNFα for 10 min. Endogenous RelA 

phosphorylation at S536 was visualized by immunoblotting cell lysates. 

Total RelA was immunoblotted after stripping the membrane. PPM1A and 

GAPDH were also immunoblotted. (B) U2OS cells were transfected with 

indicated siRNA. PPM1A, PPM1B and Wip1 were visualized by 

immunoblotting.  (C) U2OS cells were transfected with indicated siRNA and 

stimulated with 10ng/ml TNFα for 10 min. Endogenous RelA 

phosphorylation at S276 was visualized by immunoblotting cell lysates. (D) 

U2OS cells were transfected with plasmids encoding Myc3-tagged RelA 

with empty vector, Myc3-tagged wild type PPM1A or phosphatase-dead 

(PD) mutant of PPM1A. Endogenous proteins of NF-κB pathway including 

phospho-IKKα and IKKβ, total IKKα and IKKβ and IκBα were visualized 

by immunoblotting. 

 
Figure 2.0.2 PPM1A regulates RelA phosphorylation under TNFα stimulation 
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PPM1A inhibits RelA transcription activity, decreases NF-B-dependent cell invasion, 

sensitizes cell to TNFα, but does not alter RelA nuclear localization or DNA binding 

Phosphorylation at serine residues S536 and S276 is critical for RelA transactivation activity
14

. 

To determine if dephosphorylation by PPM1A inhibits RelA transcriptional activity, a dual-

luciferase reporter assay was performed
110

. In U2OS cells, endogenous NF-κB transcriptional 

activity was decreased following ectopic co-expression of wild-type PPM1A and NF-κB responsive 

reporter (Fig. 2.3A). Likewise, PPM1A also inhibited endogenous NF-κB transcriptional activity 

after stimulation by TNF or IL-1 and reversed luciferase transcription increased by ectopic 

expression of RelA (Fig. 2.3B) while PPM1A did not inhibit transcription of control reporter without 

NF-κB responsive element (Fig. 2.4A). Consistent with our observations that phosphatase activity 

was required for PPM1A to alter RelA phosphorylation, phosphatase-dead PPM1A had no effect on 

RelA transcriptional activity (Fig. 2.3A and B). S536 and S276 contribute to RelA transcriptional 

activity and both residues were dephosphorylated by PPM1A in vitro. To explore the relative 

contribution of these two residues to PPM1A-mediated RelA inhibition, RelA mutants mimicking 

phosphorylation at these sites (RelAS536D and RelAS276D) were expressed with or without 

PPM1A. S536D and S276D mutants displayed increased transcriptional activity compared to wild-

type RelA (Fig. 2.3C). Ectopically expressed PPM1A inhibited transcription by RelAS276D 

(p<0.001), but not by RelA S536D (p=0.86). Of note, PPM1A inhibited slightly less efficiently the 

transcription by the S276D mutant than wild-type RelA (inhibition rate 56% vs. 64%, p<0.01). 

Taken together, these data suggest that dephosphorylation of S276 by PPM1A may contribute to 

inhibit RelA transcriptional activity, but the majority of PPM1A activity to inhibit RelA transcription 

relies on dephosphorylation of S536 of RelA.  

Given that PPM1A robustly inhibited RelA transcription (Fig. 2.3A-C), we explored NF-κB 

target genes regulated by endogenous PPM1A by comparing expression between HeLa cells with 

and without lentivirus-driven PPM1A knockdown. Of tested genes (RT² Profiler™ PCR Array, 
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SABiosciences, Valencia, CA), expression of selective RelA responsive genes (Table. 2.1) including 

MCP-1and IL6 were increased at least 1.5-fold following PPM1A depletion. These data are 

consistent with earlier reports
49,88

 that PPM1A regulates IL-6 expression as we confirmed in PC3 

(human prostate cancer) cells (Fig. 2.4B). Ability of PPM1A manipulation to alter expression of 

MCP-1, a chemokine that is linked to tumor progression and metastases, was confirmed by real time 

PCR (Fig. 2.3D). To determine if PPM1A directly alters ability of NF-κB to bind the promoter 

region of the MCP-1 gene
86, 130

 RelA chromatin immunoprecipitation was performed following 

PPM1A depletion in HeLa cells. Following PPM1A depletion, endogenous RelA association with 

the MCP-1 promoter was observed (Fig. 2.4C). Compared to control cells, cells with PPM1A knock 

down showed a moderate but significant increase (48 % increase, 20.8 % vs. 30.8 %, p<0.05) of 

endogenous RelA binding to the MCP-1 proximal promoter region (Fig. 2.3E). These data suggest 

that PPM1A selectively regulates NF-κB transcription activity.  
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Fig. 2.3 PPM1A inhibits NF-κB transcription activity, NF-κB-dependent cell invasion and 

sensitizes cells to TNFα. (A) U2OS cells were co-transfected with indicated plasmids and 

renilla luciferase and the NF-κB responsive reporter 3κB-ConA-luc firefly luciferase. In this 

and subsequent luciferase assays, firefly luciferase activity was normalized to renilla 

luciferase and normalized firefly luciferase activity from cells transfected with control 

plasmids was assigned a value of 1. Error bars, SD derived from 3 analyses. ** p<0.01 (B) 

NF-κB-dependent luciferase activity was determined as described in (A) in cells expressing 

wild-type or phosphatase dead PPM1A and either ectopic expression of RelA or 4 hr treatment 

with TNFα or IL-1β. ** p<0.01 (C) Luciferase activity was determined following transfection 

of U2OS  with plasmids encoding wild-type or mutant Flag-RelA (S536D or S276D) with or 

without PPM1A as indicated. ** p<0.01 (D) q-RT-PCR analyses of MCP-1 expression in 

HeLa cells selected after infection with PPM1A shRNA encoding lentivirus. Error bars = SD. 

* p<0.05 PPM1A, pS536RelA, and RelA levels were confirmed by immunoblotting. (E) ChIP 

assays of the binding of RelA to MCP-1 proximal promoter. Samples from HeLa cells as 

described in (D) were prepared and analyzed using antibodies specific for RelA or IgG as 

control. Immunoprecipitated DNA fragments and input DNA were analyzed by real-time PCR. 

Values were normalized to input DNA in each group. Error bars = SD. * p<0.05 (F) HeLa 

cells infected with indicated viruses were plated on matrigel coated transwells and invasion 

measured by direct counting of trespassed cells. Representative photomicrographs are shown 

(scale bars, 100µm). Quantification of cell invasion in results represents cell counts from ten 

randomly selected low-power fields (200×) ** p<0.01. PPM1A and IκBα-SR expression levels 

were confirmed by immunoblotting (Fig. S2D). (G) HT1080 cells were infected as indicated 

and treated with indicated doses of TNFα for 24 hr. Cells were stained with trypan blue and 

live cells were counted. Error bars = SD. *p<0.05 

 

 

 

 

   

  

Figure 2.0.3 PPM1A inhibits NF-κB transcription activity, NF-

κB-dependent cell invasion and sensitizes cells to TNFα 
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Fig. 2.4 (A) U2OS cells were co-transfected with plasmids encoding wild type 

PPM1A and control vector or Myc-tagged RelA in addition to renilla luciferase 

and the control reporter conA-luc firefly luciferase as indicated. Luciferase 

activities were determined by the dual-luciferase assay system 2 days after 

transfection. In this and subsequent luciferase assays, firefly luciferase activity 

was normalized to renilla luciferase from the CMV promoter as the internal 

control, and normalized firefly luciferase activity from cells transfected with 

control plasmids was assigned a value of 1. Error bars, SD over 3 analyses. (B) 

PPM1A decreased IL-6 expression in mRNA level. PC3-LUC infected with 

PPM1A expression or control retrovirus and selected by 1ng/ml puromycin for 

10 days. mRNA was extracted for q-RT-PCR analyses of IL-6 mRNA level  

(primer sequences: forward 5’gcccagctatgaactccttct3’, reverse 

5’gaaggcagcaggcaacac3’). GAPDH was used as control. PPM1A expression was 

confirmed by immunoblotting. Error bars, SD over 3 analyses. ** p<0.001 (C) 

PPM1A and IκBα-SR expression levels from cells described in (Fig. 2F) were 

confirmed by immunoblotting.  

 

  

Figure 2.0.4 PPM1A inhibits RelA transcriptional activity 
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We previously reported that the tumor suppressor LZAP inhibits NF-B activity and diminishes 

HeLa cell invasion
110

. To determine if PPM1A inhibition of RelA similarly decreased HeLa invasion, 

matrigel invasion was measured after PPM1A depletion. Knockdown of PPM1A increased HeLa cell 

invasion by approximately 5-fold (Fig. 2.3F). IBdegradation leads to release and nuclear 

localization of NF-κB dimmers with the RelA/p50 heterodimer representing the most abundant and 

the primary target of IB
131,132

 To determine if increased invasion associated with PPM1A 

depletion was dependent on NF-κB and especially RelA, a non-degradable IB, termed IB-super 

repressor (IB-SR), was expressed in PPM1A depleted cells. Inhibition of NF-κB abrogated the 

increased invasion observed following PPM1A knockdown (Fig. 2.3E). These data suggest that 

depletion of PPM1A enhances NF-κB-dependent cell invasion. 

TNFα activates apoptotic pathways but rarely results in massive cell death due to simultaneous 

induction of NF-κB transcription
133

. To determine if PPM1A-mediated inhibition of NF-κB would 

sensitize cells to TNFα, PPM1A was expressed in HT1080 cells before treatment with increasing 

doses of TNF. Remarkably, PPM1A sensitized HT1080 cells to TNF-induced cell death, albeit to 

a lesser extent than IB-SR (Fig. 2.3F). In the absence of expressed PPM1A or IB-SR, HT1080 

cell survival was minimally impacted by TNF concentrations tested. 

Inhibition of RelA nuclear translocation is a well described mechanism for regulation of NF-κB. 

Our data suggest that PPM1A is a direct RelA phosphatase, and although phosphorylation of RelA is 

not required for nuclear translocation, it is possible that PPM1A could inhibit both RelA 

phosphorylation and nuclear localization. To explore this possibility, subcellular distribution of 

expressed RelA and phospho-RelA were determined following co-expression of RelA with wild-type 

or phosphatase-dead PPM1A. Immunoblotting of cell fractions revealed that neither wild-type nor 

phosphatase-dead PPM1A inhibited nuclear translocation of RelA (Fig. 2.5A, compare lane 4 to 

lanes 5 and 6). Consistent with our finding that PPM1A decreased RelA phosphorylation (Fig. 2.1A-

C), phospho-S536 RelA was markedly decreased in the nuclear fraction following expression of 
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wild-type, but not phosphatase-dead, PPM1A. PPM1A was primarily localized to the nucleus (data 

not shown and
82

), suggesting that PPM1A may act to dephosphorylate RelA after translocation to the 

nucleus. Next we determined if overall DNA-binding activity of RelA was altered by PPM1A. RelA 

DNA binding was stimulated by TNFα and DNA-bound RelA identified and quantitated (Active 

Motif, Carlsbad, CA). PPM1A expression did not alter TNF-stimulated DNA-binding activity of 

RelA compared to control cells at any time point tested (Fig. 2.5B). As a positive control, ectopic 

expression of IB-SR efficiently inhibited DNA binding by RelA at all the time points. 

Collectively, these data suggest that PPM1A inhibition of RelA does not depend on inhibition of 

RelA nuclear translocation and that PPM1A regulation of RelA transcription is gene or promoter 

specific.  
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     gene PPM1AshRNA TNFα 

PPM1A 0.57 0.97 

CCL2/MCP-1 1.67 2.93 

HMOX1 3.29 0.52 

ICAM1 1.51 4.14 

IL1R1 2.14 0.68 

IL6 1.87 4.14 

IL8 2.14 7.73 

TNFAIP3 38.80 106.01 

TNFRSF10A 36.76 35.51 

TNFSF10 12.13 43.71 

 

 

 

Table 2.1. Fold changes of NF-κB target 

genes measured by RT² Profiler™ PCR 

Array. mRNA extraction and RT-PCR were 

performed according to manufacturer’s 

instructions. Compared to HeLa cells 

infected with control lentivirus, genes listed 

had more than 1.5 fold increased expression 

in HeLa cells infected with lentivirus 

delivering PPM1A shRNA. mRNA 

extracted from TNFα (10ng/ml 4hrs) 

stimulated HeLa cells was used as positive 

control and the fold changes were 

normalized to the gene expression level in 

untreated cells. 

 

Fig. 2.5 PPM1A does not interfere 

with nuclear translocation or DNA 

binding of RelA. (A) U2OS cells 

transfected with indicated plasmids 

were lysed and total or phospho-

RelA visualized by immunoblotting 

from total lysate or subcellular 

fractions. Nucleolin and β-actin 

served as nuclear and cytosol 

markers, respectively.  Amount of 

protein loaded is indicated.  (B) 

Following TNFα stimulation, 

nuclear extracts were prepared from 

HeLa cells stably expressing 

PPM1A, IκBα-SR or control. RelA 

DNA-binding activity was measured 

using TransAM NF-κB 

p65transcription factor kit. Error 

bars = SD. 

 

Table 2.0.1 Fold changes of NF-κB target 

genes measured by RT² Profiler™ PCR 

Array  

Figure 2.0.5 PPM1A does not interfere 

with nuclear translocation or DNA 

binding of RelA 
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PPM1A inhibits NF-κB activation, MCP-1 expression and cell invasion in prostate cancer cell 

lines  

We were intrigued that PPM1A regulated expression of MCP-1 (Fig. 2.3D), a chemokine whose 

expression has been strongly linked to bony metastasis in prostate and advanced breast cancers
71, 134

. 

To begin exploring a potential role of PPM1A in regulating bony metastases in prostate cancer, we 

explored PPM1A expression and the effect of PPM1A manipulation in a pair of prostate cancer cell 

lines with well-described metastatic and invasive potential, PC3 and LNCaP. LNCaP cells are 

androgen-dependent with low metastatic potential, whereas, PC3 cells are androgen-independent and 

highly metastatic. Perhaps related to their aggressive metastatic potential, PC3 express higher levels 

of MCP-1
128

. We observed that PPM1A protein (Fig. 2.6A) and mRNA (data not shown) expression 

were approximately 2-fold lower in PC3 cells compared to LNCaP. Although total RelA expression 

was similar in the two cell lines, RelA S536 phosphorylation was markedly higher in PC3 cells 

compared to LNCaP (Fig. 2.6A). 

Since LNCaP cells expressed higher levels of PPM1A, effects of PPM1A on RelA 

phosphorylation, MCP-1 expression and cellular invasion were determined by depletion of PPM1A. 

Consistent with results from other cell lines, PPM1A depletion in LNCaP cells increased RelA S536 

phosphorylation (Fig.2.6B), MCP-1 mRNA expression (Fig. 2.6C) and cell invasion (Fig. 2.6D). To 

determine the effect of PPM1A in PC3-LUC cells with lower endogenous levels of PPM1A, PPM1A 

was expressed. Ectopic PPM1A expression did not alter total RelA expression, but markedly 

decreased RelA S536 phosphorylation (Fig. 2.6E) and resulted in a 50% reduction of MCP-1 mRNA 

expression and a similar reduction of secreted MCP-1 detected in conditioned media (Fig. 2.6F). 

Remarkably, expression of PPM1A reduced invasion of otherwise aggressive PC3 cells by more than 

50% (Fig. 2.6G).  
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Fig. 2.6 PPM1A inhibits NF-κB and prostate cancer cell invasion (A) Endogenous total 

and phospho-RelA (S536) and PPM1A were visualized in LNCaP and PC3 cells by 

immunoblotting. GAPDH serves as loading control. (B) LNCaP cells were transfected 

with indicated siRNA and indicated phospho- or total proteins visualized by 

immunoblotting. (C) MCP-1 expression was measured by q-RT-PCR in LNCaP cells 

transfected as indicated. Error bars = SD. * p<0.05 (D) Transwell invasion of LNCaP 

cells following transfection with indicated constructs were quantified as described in Fig. 

2 (F). **p<0.001 (E) PC3-LUC cells were infected with indicated retrovirus, selected 

using puromycin and expression of indicated phospho- or total proteins visualized by 

immunoblotting. (F), PC3-LUC cells were infected with indicated retroviruses and 

expression of MCP-1 mRNA or protein, determined by q-RT-PCR or ELISA, Error bars 

= SD. * p<0.05 (G) PC3-LUC cells were infected with indicated retroviruses and 

transwell invasion determined as in (D). **p<0.001 

 

Figure 2.0.6 PPM1A inhibits NF-κB and prostate cancer cell invasion 
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PPM1A expression is lower in metastatic human prostate cancer and PPM1A expression 

inhibits metastases in a mouse model  

Since PPM1A expression inversely correlated with MCP-1 expression and invasiveness of two 

prostate cancer cell lines (Fig. 2.6), we examined PPM1A expression in publically available 

expression data derived from human prostate cancers to determine if PPM1A expression differed in 

metastatic lesions compared to primary tumors. Indeed PPM1A expression was 2-fold lower in 

distant prostate cancer metastases compared to primary prostate tumors in patients without distant 

metastases (Fig. 5A, NCBI GEO, GDS2546
135, 136

). To begin exploring a potential role of PPM1A in 

metastasis, an intracardiac injection model was used to study critical behaviors for prostate cancer 

cell metastases: extravasation and growth in distant sites. Aggressive PC3 cells were chosen since 

LNCaP cells fail to develop metastasis after intracardiac injection
137

. PC3 cells expressing luciferase 

(PC3-LUC) with or without stable PPM1A expression (Fig. 2.6E) were injected intracardially into 

nude mice and bony metastases quantified. Bioluminescent imaging was performed on mice 1 hour 

after injection and weekly for 4 weeks (example shown Fig. 2.7). Expression of PPM1A in PC3-

LUC cells significantly reduced the incidence of metastases in injected mice (38% vs. 93%, Fig. 

2.8B), as well as the number of metastases per mouse (Fig. 2.8C). Metastases were confirmed by X-

ray imaging (Fig. 2.8D, white arrows indicate osteolytic lesions) and hematoxylin/eosin staining 

showing metastases of control PC3-LUC cells to the bone marrow cavity (Fig. 2.8E left) and normal 

bone tissues from mice injected with PPM1A-expressing PC3-LUC cells for comparison (Fig. 2.8E 

right). Immunostaining of cleaved-caspase-3 revealed that apoptosis (cleaved-caspase-3 

positive/total cells) in metastases of PPM1A expression cells increased by roughly 50% compared to 

control tumors (Fig. 2.8F, 56.7% vs. 77%, p<0.01). 
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Fig. 2.7 Bioluminescent imaging of mice after intracardiac injection of PC3-LUC 

cells. Serial Xenogen bioluminescent images from representative mice are shown at 

indicated time points after intracardiac injection of PC3-LUC with or without 

expression of PPM1A (Fig. 2.6 E). Color scale of photon radiance is shown on the 

right. 

Figure 2.0.7 Bioluminescent imaging of mice after intracardiac injection 

of PC3-LUC cells 
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Fig. 2.8. PPM1A expression is lower in metastatic human prostate cancer and inhibits prostate cancer cell metastasis in vivo. (A) A GEO 

search indicated that PPM1A expression is lower in metastatic deposits of prostate cancer compared to: primary prostate cancers without 

distant metastases (p=2.43E-9, fold change 1.82); normal prostate tissue adjacent to cancer (p=9.77E-14, fold change 2.00); or normal 

prostate (p=2.17E-7, fold change 2.06). (B) Percentage of mice that developed metastases after intracardiac injection of PC3-LUC cells 

with or without expression of PPM1A. The number of mice with metastases/injected mice is indicated on top of each bar *p<0.05. (C) 

The number of metastases per mouse at 4 weeks after intracardiac injection of PC3-LUC cells with or without PPM1A expression is 

indicated  *p<0.05 (D) Xenogen bioluminescent images of representative mice 4 weeks after intracardiac injection of PC3-LUC cells 

infected with control retrovirus or retrovirus driving expression of PPM1A. (E) X-ray images of representative mice in (B). Lytic bone 

lesions are indicated by white arrows. (F) Representative hematoxylin/eosin staining of bone and adjacent tissue samples obtained from 

mice in (B) are shown. Magnification: top 40×, bottom 200×. (G) Sections of bony metastases described in (B) were immunostained with 

using anti-cleaved-caspase 3. Percentage of positive staining cells in each group was measured from at least 3 representative tumors and 

in each tumor at least 5 randomly selected fields (200×). Error bars, SD. **p<0.001.   

 

 

Figure 2.0.8 

PPM1A 

expression is 
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PPM1A decreases xenograft tumor growth 

Given that NF-κB signaling can enhance tumor growth in addition to cellular invasion and 

metastasis, we further explored the role of PPM1A depletion in primary tumor growth. HeLa cells 

with and without shRNA-mediated PPM1A-depletion were injected subcutaneously into the flank of 

nude mice. Immunoblotting confirmed PPM1A loss before injection (Fig. 2.9A). Mice were 

sacrificed and tumors harvested after 9 weeks. PPM1A knockdown was variably maintained in 

tumors despite selection of cells before injection. At the endpoint, 7 of 12 tumors derived from 

PPM1A knockdown cells maintained PPM1A depletion, whereas 5 tumors had regained PPM1A 

expression to levels equivalent to those observed in control tumors. Tumors that maintained PPM1A 

knockdown grew faster and were larger compared to control tumors (Fig. 2.9A, p<0.0001). 

Remarkably, tumors that did not maintain PPM1A knockdown were of similar size compared to 

control tumors (Fig. 2.9A). Analyses of tumor growth maintained statistical significance even if 

including tumors that failed to maintain PPM1A knockdown in the PPM1A knockdown group 

comparing to control ones (P<0.01, data not shown).  Consistent with tumor growth data, the mean 

wet weight of tumors maintaining PPM1A knockdown was greater than both control tumors and 

tumors that did not maintain PPM1A knockdown (Fig. 2.9B, p<0.05). Before sacrifice, mice were 

injected with BrdU and harvested tumors were immunostained to determine proliferative index 

(BrdU-positive cells/total cells). The proliferative index in tumors maintaining PPM1A knockdown 

was almost twice as high as that of control tumors (Fig. 2.9C, 33% vs. 17%, p<0.001) while the 

proliferative index in tumors not maintaining PPM1A knockdown was similar to that of control 

tumors (Fig. 2.10 B, 19% vs. 17%, p=0.62) and significantly lower than that of the tumors 

maintaining PPM1A knockdown (Fig. 2.10 B, p<0.05). Immunostaining of cleaved-caspase 3 in 

xenograft tumor sections was used to calculate an apoptotic index (cleaved-caspase 3 positive 

cells/total cells) revealing that apoptosis in PPM1A knockdown tumors was less than half of that in 

control tumors (Fig. 2.9D, 5% vs. 12%, p<0.001). As observed for the proliferative index, the 

apoptotic index in tumors not maintaining PPM1A knockdown was similar to control cells (Fig. 2.10 
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C 15% vs. 12%, p=0.28) and significantly higher than that of the tumors maintaining PPM1A 

knockdown (Fig. 2.10 C, p<0.0001). Although tumor latency and tumor size were altered by loss of 

PPM1A expression, tumor incidence was similar in this xenograft model (data not shown). These 

data suggest that loss of PPM1A increases tumor growth and is associated with increased 

proliferation and decreased apoptosis. Analyses of tumors that did not maintain PPM1A knockdown 

further support PPM1A loss as a driver of tumor growth, increased proliferation and decreased 

apoptosis. 
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Fig. 2.9 PPM1A inhibits tumor growth in vivo. (A) HeLa cells were infected with either control 

retrovirus or retrovirus delivering PPM1A shRNA and selected with 1ng/ml puromycin for 10 

days. Five mice (20 injections) in each group were inoculated with 1× 10
6
 manipulated HeLa cells. 

Tumor growth was monitored weekly by measurement of length (L) and width (W) using calipers 

until the largest tumors approached 20 mm in length. Tumor volumes were calculated by using the 

formula: volume = ½×L×W
2
. Error bars, mean ± SD. **p<0.01.***p<0.0001 (B), tumors from the 

indicated groups were weighed immediately after removal.  Medium xenograft tumor weight is 

indicated. Error bars, SD. *p<0.05. C and D, five micrometer sections of xenograft tumor 

described in (A) were immunostained with cleaved Caspase 3 or BrdU-specific antibodies 

respectively. Mice received 1mg BrdU i.p. injection 2 hr before sacrificing. Percentage of positive 

staining cells in each group was measured from at least 3 representative tumors and in each tumor 

at least 5 randomly chose fields (200×). Error bars, SD. **p<0.001. 

 

 

 

Figure 1.0.9 PPM1A inhibits tumor growth in vivo 



59 

  

Fig. 2.10 (A) HeLa cells were infected with either control retrovirus or 

retrovirus delivering PPM1A shRNA and selected with 1ng/ml puromycin for 

10 days. Before injection, decreased PPM1A expression was confirmed by 

immunoblotting. B and C, five micrometer sections of xenograft tumor 

described in (A) were immunostained with cleaved caspase 3 or BrdU-specific 

antibodies, respectively. Mice received 1mg BrdU i.p. injection 2 hr before 

sacrifice. The percentage of cells with immunostaining in each group was 

measured from at least 3 representative tumors and in each tumor at least 5 

randomly selected fields (200×). Error bars = SD. 

Figure 1.0.10 Comparing apoptotic and proliferative 

index of tumor maintain or not maintain PPM1A 

depletion 
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Discussion 

RelA phosphorylation is necessary for transcriptional competence of nuclear NF-κB
138

, and 

dephosphorylation of RelA is an important mechanism for homeostatic down-regulation of NF-κB 

activity
42

. In many human tumors NF-κB activity enhances tumorigenic behavior with upstream 

kinases largely implicated in triggering or maintaining inappropriate NF-κB transcription
139, 140

. Data 

we present here identify a new RelA phosphatase and suggest that loss of RelA phosphatases may be 

equally important or an alternative mechanism of NF-κB activation in human cancer.  

We found that PPM1A, a PPM family member, is a direct RelA phosphatase at S536 as indicated 

by activity of bacterially synthesized PPM1A toward both RelA phospho-peptides and 

immunoprecipitated full-length RelA. Data presented here also support PPM1A as a phosphatase for 

the S276 site of RelA. S/TQ and TXY are known consensus target sequences for PPM 

phosphatases
141,142

. Since S536 and S276 of RelA are not consensus targets, additional studies with 

more endogenous PPM targets may reveal additional consensus sequences. Previous reports show 

that PPM1A targets NF-κB through dephosphorylation of IKKα and IKKβ
49

. Our data reveal that 

PPM1A inhibited RelA phosphorylation independent of IKKs (Fig. 2.1C). Inability of PPM1A to 

inhibit RelA nuclear translocation further suggests that IKKs are not the dominant mechanism of 

RelA inhibition by PPM1A. Taken together, PPM1A inhibits NF-κB through at least two 

mechanisms: 1) inhibition of upstream IKKs, and 2) direct dephosphorylation of RelA. Further 

studies are required to determine if other kinases responsible for RelA phosphorylation at S536 or 

S276 (Table 1.1) are regulated by PPM1A.We observed PPM1A-mediated inhibition of RelA with 

and without stimulation, whereas PPM1A activity to inhibit IKKs was observed only at later time 

points and after TNFα stimulation
49

, suggesting that PPM1A regulation of RelA directly or through 

IKKs may depend on timing, as well as cellular and signaling context.  

NF-κB regulation to selectively alter transcription has been widely reported and also varies from 

cell type to cell type
110, 143, 144

. For example, the known RelA phosphatase, Wip1, inhibits a subset of 
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NF-κB targets
47

. We found that among others, PPM1A decreased expression of NF-κB targets IL-6 

as previously reported
49,88

 and MCP-1. ChIP assay showed depletion of PPM1A increased RelA 

associated with the MCP-1 proximal promoter (Fig. 2.3E), but the phosphorylation status of 

promoter-associated RelA could not be determined due to absence of suitable antibodies. Increased 

mRNA levels of MCP-1 under similar circumstances suggests that promoter associated NF-κB was 

transcriptionally active and therefore phosphorylated. These data suggest that PPM1A regulates 

RelA phosphorylation resulting in altered expression of select NF-κB targets. 

IL-6 and MCP-1 are implicated in metastases, particularly in cancers of the prostate
67

, colon
68,145

, 

and breast
71, 69

. Distant metastases in breast and prostate cancer are tightly associated with poor 

patient outcomes. Targeting MCP-1 is an effective therapeutic approach to prevent metastases in 

animal models of prostate and breast cancer
146

, and a phase II clinical trial using a neutralizing 

monoclonal antibody against MCP-1 is being conducted in metastatic prostate cancer patients 

(NCT00992186). IL-6 and IL-6 receptor are also therapeutic targets for prevention of inflammation, 

tumor progression and metastasis, and their inhibition has shown promise in pre-clinical models
72

. A 

phase II trial was completed to determine efficacy of anti-IL-6 chimeric monoclonal antibody in 

patients with metastatic hormone-resistant prostate cancer (NCT00433446) while the results have not 

been published yet. Given that PPM1A inhibited expression of IL-6 and MCP-1, we explored the 

role of PPM1A in metastases. Expression data from human prostate cancers revealed that metastatic 

prostate deposits had significantly lower PPM1A expression when compared to primary tumors in 

patients without metastases. This exciting finding combined with increased invasion associated with 

PPM1A depletion (Fig. 2.3E) led us to examine the effect of PPM1A expression in an androgen-

independent highly metastatic prostate cancer cell line, PC3. Interestingly, PC3 cells express lower 

levels of PPM1A when compared to androgen-dependent and less aggressive LNCaP cells. PPM1A 

expression significantly inhibited PC3 cell invasion (Fig. 2.6G) and abrogated PC3 bony metastases 

in an intravascular metastases model (Fig. 2.8B-D). Notably, mean PPM1A expression is also 

decreased in breast cancer and colorectal cancers compared to normal tissue (Oncomine, PPM1A 
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gene, TCGA breast, TCGA colorectal and colorectal 2 data sets), and a xenograft model of breast 

cancer MCF7 cells revealed that PPM1A depletion increases tumorigenic potential and tumor 

growth
147

. These data suggest that loss or decreased PPM1A activity may increase aggressive 

behavior in different tumor types. Although survival data was not included in the prostate cancer 

dataset to correlate PPM1A expression with prognosis, it will be informative to explore when larger 

public datasets become available.  

Our data suggest that PPM1A is a direct RelA phosphatase with tumor suppressor-like activity 

that, at least partially, depends on PPM1A ability to inhibit NF-κB. The pathway involves in PPM1A 

inhibition of xenograft tumor growth is not clear. In addition to NF-κB, PPM1A targets tumor centric 

proteins including smad2/3, p38 and cdk2 implicating PPM1A in cell cycle regulation, as well as 

TGFβ and MAPK signaling pathways
82, 1

. Although data presented here suggest that invasion in 

HeLa cells was completely dependent on NF-κB, regulation of tumor invasion, progression, and 

metastasis by PPM1A, likely involves additional PPM1A activities. Decreased expression of PPM1A 

in distant metastases of human prostate cancer coupled with in vivo data suggest that increased 

PPM1A expression inhibits prostate cancer bony metastases. Neither deletions nor inactivating 

mutations of PPM1A have been described, suggesting that strategies to increase PPM1A expression 

or activity in cancer cells could be explored as a therapeutic strategy in human cancers.   
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CHAPTER III 

 

LZAP REGULATES TARGET PROTEIN PHOSPHORYLATION BY FACILITATING TARGET 

PROTEIN ASSOCIATION WITH PHOSPHATASES OF PPM FAMILY 

 

Part of the work presented in this chapter is published under the title of “LZAP Inhibits p38 MAPK 

(p38) Phosphorylation and Activity by Facilitating p38 Association with the Wild-Type p53 Induced 

Phosphatase 1 (WIP1)” in PLoS one, 2011
117

 

 

Abstract 

LZAP (Cdk5rap3, C53) is a putative tumor suppressor that inhibits RelA, Chk1 and Chk2, and 

activates p53. LZAP is lost in a portion of human head and neck squamous cell carcinoma and 

experimental loss of LZAP expression is associated with enhanced invasion, xenograft tumor growth 

and angiogenesis. p38/MAPK can increase or decrease proliferation and cell death depending on 

cellular context. LZAP has no known enzymatic activity, implying that its biological functions are 

likely mediated by its protein-protein interactions. To gain further insight into LZAP activities, we 

searched for LZAP-associated proteins (LAPs). Here we show that the LZAP binds p38, alters p38 

cellular localization, and inhibits basal and cytokine-stimulated p38 activity. Expression of LZAP 

inhibits p38 phosphorylation in a dose-dependent fashion while loss of LZAP enhances 

phosphorylation and activation with resultant phosphorylation of p38 downstream targets. 

Mechanistically, the ability of LZAP to alter p38 phosphorylation depends, at least partially, on the 

p38 phosphatase, Wip1, a PPM family member. LZAP also binds Wip1. Expression of LZAP 

increased both LZAP and Wip1 binding to p38. In vitro phosphatase assay using full-length p38 as 

substrate revealed that LZAP enhances p38 dephosphorylation by Wip1 in a dose dependent fashion. 

LC-MS/MS was used to identify LZAP-associated proteins and found that LZAP interaction with 
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other PPM family members including PPM1A and PPM1B. Our previous study showed both LZAP 

and PPM1A inhibit RelA phosphorylation and negatively regulates NF-κB signaling. Here, we show 

that the ability of LZAP to alter RelA phosphorylation depends, at least partially, on the RelA 

phosphatase, PPM1A. Taken together, these data suggest that the ability of LZAP to decrease target 

protein phosphorylation and activity (e.g. p38 and RelA) is at least partially mediated through 

altering interaction of target proteins and phosphatases.  

 

Introduction 

LZAP (Cdk5rap3, C53) was originally identified as a binding partner of the Cdk5 activator p35
107

, 

but insight into LZAP activity was gained when it was found to bind the alternate reading frame 

protein of the INK4a gene locus, ARF (p14ARF in human and p19ARF in mice). LZAP activates 

p53 both in the presence and absence of ARF resulting in a G1 cell cycle arrest and inhibition of 

clonogenic growth
112

. Further, LZAP inhibits cellular transformation, xenograft tumor growth, and 

xenograft tumor vascularity at least partially mediated by LZAP's ability to bind and inhibit RelA
110

. 

Evidence of a tumor suppressor-like role for LZAP was bolstered when LZAP protein levels were 

found to be markedly decreased in  a subset of head neck squamous cell carcinoma (HNSCC) where 

its loss inversely correlates with expression of NF-κB target genes
110

. LZAP also inhibits the 

checkpoint kinases (Chk1 and Chk2), promotes mitotic entry and, in the presence of DNA damaging 

agents, sensitizes to cell death
113, 116

. Collectively, these data are consistent with a role of LZAP in 

tumor suppression. Intriguingly, morpholino-directed loss of LZAP expression in zebrafish was 

lethal during very early embryogenesis resulting in cell death and developmental delay
111

. Combined, 

these data suggest that either increased or decreased LZAP levels may have detrimental effects on 

cell survival. LZAP has no known enzymatic activity, implying that its biological functions are 

likely mediated by its protein-protein interactions. To identify proteins that may contribute to 

biological activities of LZAP, we screened human LZAP amino acid sequence for motifs recognized 

by modular signaling domains using the Scansite algorithm
148

. Using high stringency criteria, 
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Scansite analyses suggested that LZAP contained motifs predicted to bind 14-3-3-zeta and the 

docking domain (D domain) of mitogen activated protein kinases (MAPKs) (Table. 3.1). 

  

        RelA Chk1/2 p38 p53 MDM2 

LZAP + ↓ + ↓ + ? – ↑ – ↓ 

Wip1*    ↓    ↓   ↓    ↓    ↑ 

PPM1A*    ↓       ↓      ↓ 

 

 

    

Table 3.1 LZAP predicted motifs from Scansite. LZAP protein coding sequence 

was analyzed using high stringency criteria to identify possible binding motifs. 

 

 Table 3.2 Summary of LZAP, Wip1 and PPM1A activity and binding for 

shared target proteins. + direct binding, - no direct binding; ↑/↓ indicates 

stimulation or inhibition of activity, * not all Wip1 or PPM1A targets are listed. 

Table 3.0.2 LZAP 

predicted motifs from 

Scansite 

Table 3.0.1 Summary of LZAP, Wip1 

and PPM1A activity and binding for 

shared target proteins 
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p38MAPK belongs to a family of stress-activated MAPKs that respond to cellular stress and 

cytokines. Expression patterns suggest that p38α is the primary p38 kinase in most cell types
149

. 

Activity of p38 reflects a balance between the upstream activating kinases (MKK3 and MKK6) and 

inactivating protein phosphatases, primarily the wild-type p53-induced phosphatase 1 

(Wip1/PPM1D/PP2Cδ)
94, 150

. p38 activity results in pleiotropic downstream cellular and tissue effects 

including: cytokine production, inflammation, cellular differentiation, cell-cycle arrest, apoptosis, 

and senescence
149, 151,152-155

. Given the roles of p38 as an inducer of apoptosis and inhibitor of cellular 

proliferation, it is ironic that elevated p38 expression has been found in many cancer types, including 

breast, lung, thyroid and HNSCC, and that p38 has been implicated in promoting cell survival
152, 156-

159
. Given the conflicting cellular effects that can result from p38 activation, the role of p38 in human 

cancer as a tumor promoter or a tumor suppressor likely depends on tumor and cell specific 

context
149

. 

Including p38 as a potential LZAP binding partner, we noticed that LZAP and PPM family 

members, especially Wip1, shared a pool of target proteins. As summarized in table 3.2, the roles of 

LZAP, Wip1 and PPM1A in the regulation of RelA, p38, Chk1/2, p53, and MDM2 are detailed.  The 

phosphorylation and activity of RelA is inhibited by LZAP, Wip1 and PPM1A, and similarly, LZAP 

and Wip1 regulate phosphorylation and activity of Chk1/2 in the same direction. Since p38 is a target 

of Wip1 and PPM1A and because p38 and LZAP have been shown to activate p53 and to interact 

physically or functionally with Chk1
112,152,160

, we explored LZAP activity to bind and regulate p38 

activity. In addition, we examined if LZAP altered p38 phosphorylation and explored if this activity 

may be dependent on   co-factors such as PPM phosphatases.  
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Materials and Methods 

Plasmid constructs 

The full coding sequence and truncation mutants of LZAP were subcloned into pcDNA3-Myc3 

and pET-His expression vectors 
112

, 
110

. Plasmids Flag-p38α and Gal-ATF2 were generous gifts from 

Dr. Jiahuai Han (The Scripps Research Institute, La Jolla, CA). LZAP that was not a target of 

siRNA-2(sense strand: 5′-CAAGGTATGTGGACCGAGT) 
110

 was constructed by introducing the 

silent mutations G294A and G297A in pCI-Neo-LZAP. 

Antibodies and Reagents 

LZAP polyclonal rabbit antibody has been previously described
112

, Mouse monoclonal antibody 

were purchased as follows: Flag (M2), and anti-Flag M2 affinity gel (Sigma); mouse monoclonal 

antibodies specific to Myc (9E10), p38 (A-12), rabbit GAPDH, normal mouse and Rabbit IgG, and 

secondary mouse and rabbit antibodies (Santa Cruz Biotechnology); rabbit monoclonal to phospho-

T180/Y182 p38 (Cell Signaling); Wip1 rabbit polyclonal antibody (Bethyl); flurophore-conjugated 

secondary antibodies (Jackson ImmunoResearch Laboratories); chicken anti-human Myc-tag 

polyclonal antibody (Thermo Scientific); and all other antibodies (Cell Signaling). TNFα, IL-1β, and 

LPS were purchased from PeproTech. 

Cell culture and transfection 

Cell lines were maintained at 37°C with 5% CO2, in growth media with 10% fetal bovine serum 

(FBS) (Invitrogen, Carlsbad, CA). Cell lines were obtained from ATCC or collaborators and have 

been passed in the Yarbrough lab with biannual authentication of identity based on microsatellite 

analyses of 3 markers (D7S1482A, Mycl1A and DXS981C). Plasmids were transfected using 

FuGene6 (Roche, Indianapolis, IN) or TransIT-2020 (Mirus, Madison, WI) for MEFs according to 

the manufacturer's instructions. The total amount of transfected DNA in any single experiment was 

kept constant by adding control vector (pcDNA3). Small interfering RNA (siRNA) was transfected 

at 20 nM using Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA). Control siRNA duplex (non-
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targeting #1) was purchased from Dharmacon (Dharmacon, Chicago, IL). The LZAP siRNA-2 was 

previously described 
112

 with on-TARGETplus modification, 5′-CAAGGTATGTGGACCGAGT 

(sense strand); the sequence of Wip1 siRNA is: 5′- GGCUUUCUCGCUUGUCACC dTdT 
161

 

purchased from Dharmacon. 

Immunoprecipitation and immunoblotting 

Cells were lysed in 0.5%(v/v) Nonidet P40 lysis buffer
162

 supplemented with protease inhibitor 

cocktail (Roche). Total cell extracts were incubated with specific antibodies and precipitated with 

protein A or G sepharose beads (GE Healthcare) before washing and suspension in Laemmli and gel 

electrophoresis followed by immunoblotting as described 
163

. 

Immunofluorescence assay 

Briefly, cells were fixed with paraformaldehyde permeabilized with Triton X-100, and blocked 

with BSA. Target proteins were visualized following incubation with primary antibodies followed by 

fluorophore secondary antibodies and visualization as described
164

. 

Cell fractionation 

Cells were scraped in cytosolic lysis buffer (10 mM Tris-HCl [pH 7.5], 100 mM NaCl, 2.5 mM 

MgCl2, and 40 mg/ml digitonin). The lysate was incubated on ice for 5 min and centrifuged (2100 g, 

8 min, 4°C), and the supernatant was designated as soluble cytosolic fraction. The pellet was washed 

with the same buffer before adding RIPA lysis buffer (10 mM Tris-HCl [pH 7.4], 150 mM NaCl, 1% 

NP-40, 1 mM EDTA, 0.1% SDS, and 1 mM DTT), incubated on ice for 5 min and centrifuged 

(14,000 rpm, 10 min, 4°C), to obtain the nuclear fraction. Whole cell lysates were prepared using 

RIPA buffer, as described
127

. 

Luciferase reporter assay 

ATF2 reporter gene assay was performed using the Dual-Luciferase Reporter Assay System 

(Promega) as described 
110

. Reporter constructs were co-transfected into U2OS cells maintaining 

equal plasmid amounts. Luciferase activity was measured 24 hours after transfection following the 
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manufacturer's instructions. Luciferase activity was normalized to renilla activity as a control of 

transfection efficiency. 

Mass spectrometry 

Flag-tagged LZAP was expressed in HEK293T cells and purified using Flag-conjugated resin as 

described in Chapter 2. The elution buffer containing LZAP and other potential LZAP-binding 

proteins were submitted to Vanderbilt Mass Spectrometry Research core lab for LC-MS/MS assay 

and data analyses. 

 

Results 

LZAP interacts with p38 MAPK in vivo 

To confirm the predicted interaction between LZAP and p38, Myc-tagged LZAP was transiently 

expressed singly or with Flag-tagged p38 in mammalian U2OS cells before immunoprecipitation. 

When co-expressed, bands corresponding to Myc-tagged LZAP and untagged LZAP were detected 

in p38 immunoprecipitates (Fig. 3.1A, lane 2, top panel). Likewise, p38 was readily detected in 

LZAP immunoprecipitates (Fig. 3.1A, lane 4, top panel). Expressed LZAP was also detected in 

immunoprecipitates of endogenous p38; however, endogenous p38 could not be detected in LZAP 

immunoprecipitates following LZAP expression (Fig. 3.1A, lanes 1 and 3, top panels). Expression of 

proteins was confirmed (bottom panels) and non-immune mouse IgG (middle panels) was used as a 

control for non-specific immunoprecipitation. To determine if endogenous p38 and LZAP associated 

in mammalian cells, co-immunoprecipitation of LZAP and p38 was performed using asynchronously 

growing MCF7 cells, in which LZAP and p38 expression levels are relatively higher compared to 

U2OS cells (data not shown). p38 was detected in LZAP immunoprecipitates both with and without 

UV irradiation, but not in precipitates using non-immune rabbit IgG (Fig. 3.1B, compare lanes 3 and 

4 to lanes 5 and 6, where the arrow indicates p38). Reciprocal immunoprecipitation using p38-

specific antibody did not allow detection of LZAP (data not shown). These data suggest that 

expressed and endogenous LZAP and p38 exist in a common complex. 



70 

  

Fig. 3.1 LZAP binds to p38. (A) Ectopically expressed LZAP and p38 mutually co-

immunoprecipitate. U20S cells were transfected with indicated plasmids directing expression of 

tagged LZAP or p38. Immunoprecipitates were prepared using mouse antibodies recognizing Myc 

(LZAP) or p38, resolved on SDS-PAGE, and immunoblotted using rabbit antibodies recognizing 

LZAP or p38. Expression of LZAP and p38 was confirmed by immunoblotting (1% of each input 

lysate was loaded as reference.) Pre-immune IgG was used as control for non-specific 

immunoprecipitation. (B) Endogenous LZAP binds endogenous p38. Lysates from untransfected 

MCF7 cells without or with UV irradiation (20 J/m2) were immunoprecipitated using LZAP-specific 

rabbit antiserum or non-immune rabbit IgG, then immunoblotted with antibodies specific to p38 or 

LZAP as indicated. (C) LZAP co-localizes with p38 and alters p38 subcellular localization. U2OS 

cells were transfected with plasmids directing expression of Flag-p38 with or without LZAP. Cells 

were fixed and p38 and LZAP expression and localization determined by indirect 

immunofluorescence using anti-Flag monoclonal antibody and affinity-purified rabbit anti-LZAP 

antibody. Cytoplasmic, nuclear and peri-nuclear localization of p38 was determined by direct 

visualization and quantified based on at least 100 cells from at least 3 independent experiments. The 

shift of p38 localization from perinuclear region to nucleus was statistically significant (p<0.0001, 

using unpaired 2 tailed t test). (D) Increased p38 abundance in the nuclear following LZAP co-

expression. U2OS cells were transfected with plasmids directing expression of Flag-p38 with or 

without LZAP. Whole cell, cytoplasmic and nuclear cell lysate were prepared, then 

immunoprecipitates from each lysate were prepared using anti-Flag M2 affinity gel, resolved on SDS-

PAGE, and immunoblotted by rabbit p38 antibody. The levels of C23 (nucleolar protein) and β-actin 

(cytoplasmic protein) were used to monitor the quality of the fractionation and the even loading of 

samples (1% of each input lysate was loaded as reference.). Expression of LZAP was confirmed by 

immunoblotting (1% of each input lysate was loaded as reference). Endogenous LZAP was detected 

after longer exposure (data not shown). 

 
Figure 3.0.1 

LZAP binds to 

p38 
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To determine if LZAP and p38 co-localized or altered one another's subcellular localization, 

immunofluorescent staining of LZAP and p38 were performed following single or combined 

transient expression (Fig. 3.1C). When expressed without p38, LZAP localizes to both the nucleus 

and cytoplasm, but is excluded from nucleoli as previously described (data not shown and 
112, 110

). In 

the absence of LZAP, expressed p38 localized to both the cytoplasm and nucleoplasm with more 

than 60% of cells showing stronger localization to the peri-nuclear region (Fig. 3.1C, top panel 

arrows). LZAP localization was not altered by co-expression of p38; however, co-expression of 

LZAP with p38 resulted in a shift of p38 staining from predominantly peri-nuclear to predominantly 

nuclear (Fig. 3.1C, p38 stained panels and graph, p<0.0001). 

To confirm the observation that LZAP altered p38 subcellular localization, cellular fractionation 

was performed on cells expressing p38 with and without LZAP. As expected, both p38 and LZAP 

localized to both the nuclear and cytoplasmic fractions; however, expression of LZAP increased the 

amount of p38 detected in the nuclear fraction (Fig. 3.1D). Fidelity of the nuclear and cytoplasmic 

fractions was confirmed by expression of nucleolin/C23 and β-actin. Combined, 

immunofluorescence and cellular fractionation data suggest that LZAP and p38 co-localize and that 

expression of LZAP increases p38 nuclear localization. 

To begin defining regions of LZAP required for p38 interaction, LZAP truncation mutants were 

co-expressed with full length p38 (Fig. 3.2). p38 or LZAP immunoprecipitations revealed that an 

extended LZAP amino terminus region (αα1-303) was sufficient for binding to p38. Within the 

amino terminal region of LZAP, αα 1-111 was unable to bind p38, suggesting that αα 112-303 were 

required for this binding. A separate and non-overlapping extended carboxyl terminal region of 

LZAP (αα 329-506) was also sufficient for p38 binding. Truncation of the extended carboxyl 

terminal region abrogated p38 binding suggesting that αα 329-359 of LZAP are required for p38 

binding; however, amino acids 329-359 of LZAP were not sufficient for binding to p38 because a 

central LZAP truncation containing this region (αα 201-358) failed to bind. Within the central region, 

an LZAP fragment containing residues 112-358 was capable of binding p38 suggesting that a critical 
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domain for p38 binding exists between amino acids 112 and 201 of LZAP (Fig. 3.2). Results of these 

p38 binding experiments using LZAP truncations are summarized (Fig. 3.2). 

 

 

    

  

Fig. 3.2 Independent and non-overlapping areas of LZAP are sufficient for association 

with p38. U2OS cells were transfected with plasmids directing expression of Myc3-

tagged truncation mutants of LZAP and full-length Flag-tagged p38. P38 was 

immunoprecipitated using anti-Flag and LZAP truncation mutants were 

immunoprecipitated using anti-Myc antibodies before immunoblotting with anti-Myc (to 

detect LZAP truncations) or anti-p38. Expression of LZAP truncation mutants was 

confirmed by immunoblotting and binding activity of LZAP truncation mutants is 

schematically summarized. 

 

Figure 3.0.2 Independent 

and non-overlapping 

areas of LZAP are 

sufficient for association 

with p38 
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LZAP inhibits phosphorylation of p38 

MAPK family members are activated by phosphorylation and upon activation are translocated 

from the cytoplasm to the nucleus
165-167

. The dramatic re-localization of p38 from predominantly 

peri-nuclear to predominantly nuclear in the presence of LZAP (Fig. 3.1C and D) suggests that 

LZAP may alter p38 activity. To begin exploring effects of LZAP on p38 activity, total and 

phosphorylated p38 (phospho-T180/Y182) were detected following transient expression of p38 with 

or without increasing amounts of Myc-LZAP (Fig. 3.3A). Expression of LZAP decreased the amount 

of phospho-p38 detected in a dose dependent fashion, but did not alter total p38 levels. As expected, 

the amount of LZAP found in p38 immune-complexes increased as LZAP expression increased (Fig. 

3.3A, bottom panel). 

Expression of LZAP was associated with increased nuclear p38 levels, but surprisingly, LZAP 

was also found to decrease total cellular phospho-p38 levels (Fig. 3.1C, D, and 3.3A). To determine 

if nuclear p38 was phosphorylated in the presence of LZAP, immunofluorescent staining of p38, 

phospho-p38, and LZAP was performed following transient expression of Flag-p38 with or without 

Myc-LZAP and activation of p38 using UV irradiation (20 J/m2). Consistent with our previous 

findings, LZAP expression increased nuclear localization of p38 as indicated by 

immunofluorescence (Fig. 3.3B, lower panel green). Despite its ability to increase levels of nuclear 

p38, LZAP strongly inhibited accumulation of nuclear phospho-p38 following UV irradiation (Fig. 

3.3B, compare upper and lower red panels). Quantification of phospho-p38 results revealed that 48% 

of p38 expressing cells were positive for nuclear phospho-p38 in the absence of expressed LZAP, 

compared to only 11% of p38 expressing cells positive for nuclear phospho-p38 in the presence of 

expressed LZAP (Fig. 3.3B, p<0.0001). Regardless of LZAP expression, cytoplasmic phospho-38 

was not detected. Data represent examination of more than 100 cells from 3 independent experiments. 

Combined, these data suggest that LZAP inhibits phosphorylation of nuclear p38. 
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Fig. 3.3 LZAP regulates p38 phosphorylation. 

(A) LZAP inhibits phosphorylation of p38 at Thr180/Tyr182. U2OS 

cells were transfected with plasmids encoding Flag-p38 and with or 

without increasing amounts of Myc3-LZAP plasmid as indicated. p38 

was immunoprecipitated using anti-Flag antibody and p38 

phosphorylation at Thr180/Tyr182 determined by immunoblotting. 

Levels of p38 and LZAP in p38 immunoprecipitates were determined 

by immunoblotting with antibodies recognizing p38 or LZAP as 

described [2]). (B) LZAP inhibits accumulation of phosphorylated 

p38 in the nucleus. U2OS cells were transfected with plasmids 

directing expression of Flag-p38 with or without Myc3-LZAP. After 

UV irradiation (20 J/m2), cells were triply immunostained with anti-

phopho-p38, anti-Flag, and anti-Myc. The fraction of p38 expressing 

cells with detectable phosphorylated p38 was determined by direct 

visualization. Expression of LZAP was associated with a significant 

decrease in detection of phosphorylated p38 in p38 expressing cells 

((p<0.0001, using unpaired 2 tailed t test). Data are derived from 

examination of at least 200 cells from at least three independent 

experiments. (C) Depletion of LZAP increases phosphorylation of 

p38 in U2OS cells. U2OS cells were transiently transfected with 

control siRNA or siRNA specific to LZAP. Activating 

phosphorylation of p38 at Thr180/Tyr182 was determined in 

untreated cells or in cell treated with TNFα or IL-1β by 

immunoblotting. Expression of LZAP and total p38 was confirmed 

and GAPDH was used as a loading control. (D) Depletion of the 

LZAP protein correlates with p38 activation. Twenty-four hours after 

transfection with control siRNA or siRNA targeting LZAP, U2OS 

cells were transfected with plasmid encoding RNAi-insensitive 

LZAP. Transfected cells were selected with G-418 stimulated using 

TNFα and p38 phosphorylation determined by immunoblotting. 

Immunoblotting confirmed expression of p38 and si-RNA insensitive 

LZAP as described [2]. Immunoblotting of GAPDH served as control. 

(E) Depletion of LZAP increases phosphorylation of p38 in other cell 

types. MCF7, UM-SCC47 and FaDu cells were transiently transfected 

with control siRNA or siRNA specific to LZAP. Activating 

phosphorylation of p38 at Thr180/Tyr182 was determined by 

immunoblotting in cells treated with IL-1β. Expression of LZAP and 

total p38 was confirmed and GAPDH was used as a loading control. 

 

 

Figure 3.0.3 LZAP 

regulates p38 

phosphorylation 
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Depletion of endogenous LZAP activates p38 

To determine if endogenous LZAP regulates p38, LZAP was depleted by siRNA and p38 

phosphorylation determined. Knockdown of LZAP in U2OS cells did not alter p38 expression; 

however, loss of LZAP was associated with increased levels of phospho-p38 levels in either the 

presence or absence of activating cytokines, TNFα and IL-1β (Fig. 3.3C). LZAP loss following 

siRNA treatment was confirmed and GAPDH was used as a loading control (Fig. 3.3C). Off target 

effects of siRNA were explored by simultaneous siRNA mediated knockdown and expression of 

LZAP containing silent mutations within the targeting siRNA sequence (RNAi-insensitive LZAP). 

As described above, cells were treated with TNFα to activate p38 resulting in robust phospho-p38 

signal following LZAP knockdown (Fig. 3.3D, lane 1). Regardless of transfection with siRNA 

targeting LZAP, expression of RNAi-insensitive LZAP resulted in marked inhibition of phospho-p38 

levels (Fig. 3.3D, lanes 2 and 3). To determine if LZAP activity was cell type specific, p38 

phosphorylation after LZAP knockdown and IL-1β stimulation was determined in 1 breast cancer 

cell line (MCF-7) and in 2 head and neck squamous cell carcinoma lines (UM-SCC47, FaDu). As 

observed in U2OS cells, siRNA-mediated loss of LZAP was associated with increased p38 

phosphorylation (Fig. 3.3E). Taken together, these data suggest that endogenous LZAP alters p38 

phosphorylation both in the presence or absence of activating cytokines. 

Upstream MAPK kinases (MKK3 or MKK6) activate p38 through direct phosphorylation at 

Thr180 and Tyr182
168

. Once activated, p38 phosphorylates downstream target proteins including: 

MAPKAPK2 and the transcription factor ATF2. To determine if increased p38 phosphorylation 

observed upon loss of endogenous LZAP correlates with p38 kinase activity, phosphorylation of p38 

target proteins was measured in the presence or absence of siRNA targeting LZAP (Fig. 3.4A). After 

cytokine or LPS stimulation, knockdown of LZAP resulted in increased phosphorylation of p38 

targets ATF2 and MAPKAPK2. MAPKAPK2 is itself a kinase that directly phosphorylates HSP27. 

siRNA-mediated loss of LZAP was associated with increased HSP27 phosphorylation suggesting 

that a kinase cascade downstream of p38 was activated upon LZAP loss. To begin exploring 
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potential mechanisms of LZAP activity toward p38, the effect of LZAP loss on MKK3 and MKK6 

phosphorylation was determined. LZAP knockdown was not associated with increased 

phosphorylation of upstream p38 kinases, MKK3 or MKK6 (Fig. 3.4A). Decreased LZAP 

expression was confirmed by immunoblotting following siRNA treatment (data not shown). 

p38-mediated phosphorylation of ATF2 activates ATF2 transcriptional activity 
169

. In the 

presence of cytokines, loss of LZAP expression was associated with increased ATF2 

phosphorylation (Fig. 3.4A), suggesting that LZAP expression may inhibit ATF2 transcriptional 

activity. To explore this possibility, a luciferase reporter system relying on a chimeric transcription 

factor construct containing the GAL4 DNA binding domain fused to ATF2 transcriptional activating 

domain was used as a surrogate for measurement of ATF2 transcriptional activity
170

. In the presence 

of p38, expression of LZAP resulted in a dose-dependent decrease in ATF2 transcriptional activity 

(Fig. 3.4B). Data represent 3 independent experiments. Taken together, these data suggest that 

phosphorylation and activity of p38 and downstream p38 targets are inhibited by endogenous LZAP 

and  upstream MKKs are not mediating LZAP activity toward p38. 
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  Fig. 3.4 Loss of LZAP increases p38 kinase activity, but does not alter MKK activation. 

(A) Depletion of LZAP increases phosphorylation of p38 targets, but does not alter 

phosphorylation of MKK3/MKK6. U2OS cells were transfected with control siRNA or 

siRNA targeting LZAP before stimulation with TNFα, IL-1β, or LPS. Phosphorylation of 

direct or indirect p38 targets ATF2, MAPKAPK2, HSP27 and activators of p38, MKK3 and 

MKK6, was visualized by immunoblotting. LZAP knockdown was confirmed by 

immunoblotting and expression of GAPDH was used as a loading control. (B) LZAP inhibits 

transcriptional activity of the p38 target ATF2. U2OS cells were transfected with plasmids 

directing expression of GAL-ATF2 and p38, with or without increasing amounts of LZAP 

along with a luciferase reporter containing the GAL DNA binding sequence, as indicated. 

Firefly luciferase activity was normalized based on renilla luciferase activity and assigned a 

value of 1 in cells without transfected LZAP. All normalized luciferase assay data are 

expressed as the mean with the standard error and are the result of the least three independent 

experiments. 

 

Figure 1.0.4 Loss of LZAP increases 

p38 kinase activity, but does not alter 

MKK activation 
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LZAP regulates p38 phosphorylation through altering Wip1 association with p38 

Loss of LZAP did not result in activation of upstream p38-activating kinases MKK3 or MKK6 

(Fig. 3.4A), suggesting that LZAP-mediated inhibition of p38 occurred through an alternate 

mechanisms. Activity and phosphorylation of p38 reflects a balance between upstream activating 

kinases and inactivating protein phosphatases. Wip1 is a nuclear protein phosphatase that is 

expressed in response to p53 completing a negative feedback loop through inhibition of p53
99

. In 

addition to its role in abrogating p53 activity, Wip1 was found to form a physical complex with p38 

in vivo and to directly dephosphorylate and inactivate p38 
94, 96, 99, 114, 171

. 

To determine if the Wip1 phosphatase was involved in LZAP's inhibition of p38, binding of 

Wip1 to p38 was determined following transient expression of p38 singly or with increasing 

expression of LZAP. Before p38 immunoprecipitation, cells were UV treated to increase p38 

phosphorylation and expression of endogenous Wip1
92, 94

. Wip1 was not detected in p38 co-

immunoprecipitation in the absence of LZAP (Fig. 3.5A, lane 2); however, with increasing LZAP 

expression, Wip1 association with p38 became detectable and increased concordant with LZAP 

expression (Fig. 3.5A, lanes 3–5). In agreement with our earlier findings (Fig. 3.1A), LZAP 

expression had no effect on total p38 level; however, increased expression of LZAP correlated with 

detection of Wip1 in p38 immunoprecipitates (Fig. 3.5A). 

Expression of LZAP resulted in increased association between p38 and its direct phosphatase, 

Wip1, suggesting that decreased phosphorylation and activity of p38 following LZAP expression 

may be mediated by Wip1. To explore this possibility, phosphorylation of p38 was compared 

following transient expression of LZAP with or without siRNA mediated inhibition of Wip1 

expression. As expected, expression of LZAP resulted in decreased p38 phosphorylation (Fig. 3.5B, 

top panel compare lanes 1 and 2). In the presence of LZAP, loss of Wip1 expression restored p38 

phosphorylation suggesting that LZAP-mediated inhibition of p38 phosphorylation was at least 

partially dependent on Wip1 (Fig. 3.5B). Increased p38 phosphorylation following Wip1 loss in the 
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absence of expressed LZAP has been previously demonstrated 
171,172

 and was confirmed in U2OS 

cells following transfection of siRNA targeting Wip1 (Fig. 3.5B, right panel). 

We showed that LZAP binds (Fig. 3.1A, B) and inhibits phosphorylation of p38 (Fig. 3.3) and 

increases p38 interaction with the Wip1 phosphatase (Fig. 3.5 A). To elucidate mechanisms 

connecting these observations, an in vitro phosphatase assay was performed using bacterially 

synthesized His-Wip1 and His-LZAP. Expressed full-length Flag-p38 was immunoprecipitated from 

293T cells to be used as substrate then incubated with His-Wip1 or LZAP only (Fig. 3.5C lane 1, 2 

and 7). p38 was dephosphorylated in vitro by Wip1 but not LZAP, which is consistent with the 

literature and confirms that under these conditions, LZAP has no phosphatase activity. Interestingly, 

increasing the amount of LZAP incubated with a fixed amount of p38 and Wip1 decreased p38 

phosphorylation at lower doses (Fig. 3.5C lane 3,4) which is consistent with our data in vivo (Fig. 

3.5A). Further increases of LZAP however, reversed this trend resulting in increased levels of 

phospho-p38 (Fig. 3.5C lane 5, 6).  Reactions lacking Mg
2+

 in the buffer served as negative control 

(Fig. 3.5 lane 8-10). These data suggest LZAP regulates p38 through directly mediating Wip1 

binding and/or activity toward p38 and probably in a stoichiometric way. Similarly, in vitro 

phosphatase assays using synthesized pT180 site-specific p38 peptide as substrate (Fig. 3.5D) were 

performed with bacterially synthesized Wip1 and LZAP
47

. LZAP did not increase p38 peptide 

dephosphorylation by Wip1 in the peptide assay suggesting that a correct protein structure of p38 is 

required for LZAP to enhance Wip1 activity.  These data suggest that LZAP does not increase Wip1 

intrinsic phosphatase activity, but that LZAP may enhance interaction between phosphatase and 

substrate.  

  



80 

  

Fig. 3.5 LZAP regulation of p38 phosphorylation involves Wip1. (A) LZAP increases Wip1 

association with p38 in vivo. U2OS cells were transfected with plasmids directing expression 

of Flag-p38 with or without increasing amounts of Myc3-LZAP as indicated. 

Immunoprecipitation of Flag-tagged p38 was followed by immunoblotting using antibodies 

specific to Wip1, or p38. (B) Wip1 is required for inhibition of p38 phosphorylation directed 

by LZAP. U2OS cells were transfected with control siRNA or siRNA targeting Wip1, and 

after 1 day co-transfected with Flag-p38 with and without Myc3-LZAP, as indicated. 

Phosphorylation of p38 was visualized by immunoblotting after Flag-p38 

immunoprecipitation. Immunoblotting was used to confirm expression of p38 and GAPDH as 

an indicator of loading. (C) Flag-p38 expression vector was transfected into HEK 293T cells, 

immunoprecipitated with the anti-Flag M2 affinity gel and eluted by 3× Flag peptide, then 

incubated with indicated amount of recombinant His-Wip1 or His-LZAP in PP2C phosphatase 

buffer for 30 min before analyzed by immunoblotting as in (A). Magnesium was removed in 

lane 8-10 as negative control.  (D) p38MAPK T180 specific-phosphorylated peptides were 

incubated with recombinant His-Wip1 with or without His-LZAP in PP2C phosphatase buffer 

for 30 min. Free phosphate was measured by malachite green assay and absorbance at 650nm. 

 
Figure 3.0.5 LZAP regulation of p38 phosphorylation involves 

Wip1 
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LZAP interacts with Wip1 in vivo 

To continue explore the mechanism of LZAP-mediated Wip1 and p38 interaction, LZAP and 

Wip1 interaction was determined. Overexpression of Flag-LZAP and Myc-Wip1 in both U2OS and 

MCF-7 cells followed by immunoprecipitation with either Flag conjugated beads (Fig. 3.6 A left 

panel) or Myc antibody (Fig. 3.6 A right panel) showed co-immunoprecipitation of Wip1 or LZAP, 

respectively Non-specific IgG was unable to immunoprecipitate either protein. Also 

immunoprecipitation using LZAP specific antibody for endogenous protein showed co-

immunoprecipitation of endogenous Wip1 (Fig. 3.6 B). Following expression of LZAP and Wip1, 

immunofluorescent staining revealed that Wip1 co-localized with LZAP in the nucleus (Fig. 3.6 C). 

And interestingly, after co-expression, LZAP nuclear staining changed from a pattern that excluded 

the nucleolus (98%) to a more evenly distributed pattern including nucleolar staining (17% nucleolar 

excusive). Together, these experiments suggest a direct interaction between LZAP and Wip1 in vivo. 

In addition, these data suggest that LZAP regulates p38 phosphorylation and activity by enhancing or 

stabilizing a protein complex containing both Wip1 and p38. 

LZAP partially depends on PPM phosphatases to regulate RelA phosphorylation 

Immunoprecipitation and LC-MS/MS identified PPM1A (sequence coverage 33%) and PPM1B 

(sequence coverage 77%) as potential LZAP binding partners (chapter 4). Since both Wip1 and 

PPM1A are RelA phosphatases targeting Ser536, which is also a LZAP regulated phosphorylation 

site, we hypothesize that like p38, LZAP regulation of RelA phosphorylation and activity is may be 

mediated by phosphatase(s) in a manner similar to what we found for p38. To begin testing this 

hypothesis, the effect of LZAP on RelA Ser536 phosphorylation was determined in cells with or 

without siRNA-mediated depletion of PPM1A. As expected, expression of LZAP resulted in 

decreased RelA phosphorylation in control cells without PPM1A depletion (Fig. 3.7 A, compare 

lanes 1 and 2). On the other hand, loss of PPM1A expression partially abrogated the ability of LZAP 

to decrease RelA phosphorylation (Fig. 3.7 A, compare lanes 2 and 4); however, LZAP regulation of 

PPM1A was not completely dependent on PPM1A (compare lanes 3 and 4). These data suggest that: 
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1) LZAP-mediated inhibition of RelA phosphorylation was at least partially dependent on PPM1A, 2) 

there may be additional LZAP-mediated RelA phosphatase(s).  

 

 

  
Fig. 3.6 LZAP binds to Wip1. (A) Ectopically expressed LZAP and Wip1 mutually co-

immunoprecipitate. U20S and MCF-7 cells were transfected with indicated plasmids directing 

expression of tagged LZAP or Wip1. Immunoprecipitates were prepared using mouse 

antibodies recognizing Myc (LZAP) or Flag (Wip1), resolved on SDS-PAGE, and 

immunoblotted by rabbit antibodies recognizing LZAP or Wip1. Expression of LZAP and 

Wip1 was confirmed by immunoblotting (1% of each input lysate was loaded as reference.) 

Pre-immune IgG was used to control for non-specific immunoprecipitation. (B) Endogenous 

LZAP binds endogenous Wip1. Lysates from untransfected MCF7 cells were 

immunoprecipitated using LZAP-specific rabbit antiserum or non-immune rabbit IgG, then 

immunoblotted with antibodies specific to Wip1 or LZAP as indicated. (C) Wip1 co-localizes 

with LZAP and alters LZAP nuclear localization. U2OS cells were transfected with plasmids 

directing expression of Myc3-LZAP with or without Wip1. Cells were fixed and LZAP and 

Wip1 expression and localization visualized by indirect immunofluorescence using anti-Flag 

monoclonal antibody and affinity-purified rabbit anti-LZAP antibody. Nucleolar localization 

of LZAP was determined by direct visualization and quantified based on at least 100 cells 

from at least 3 independent experiments. The shift of LZAP localization from exclusion of the 

nucleolus to the whole nucleus (including nucleolus) was statistically significant (p<0.0001, 

using unpaired 2 tailed t test). 
Figure 3.0.6 LZAP 

binds to Wip1 
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 Then to determine if PPM1A dephosphorylation of RelA can be regulated by the presence of 

endogenous LZAP, phosphorylation of S536 RelA was compared in cells expressing PPM1A, but 

with or without LZAP depletion by siRNA. As expected, ectopic expression of PPM1A decreased 

RelA phosphorylation (Fig. 3.7 B, compare lanes 1 and 3) and depletion of LZAP alone increased 

RelA phosphorylation (Fig. 3.7 B compare lines 1 and 2). Interestingly in the absence of LZAP, 

expressed PPM1A was not associated with the level of  RelA dephosphorylation seen in cells 

expressing endogenous levels of LZAP (Fig. 3.7 B, compare lanes 3 and 4) though there was still a 

moderate decrease of RelA phosphorylation compared to LZAP knockdown only (Fig. 3.7 B, 

compare lanes 2 and 4). In vitro PPM1A phosphatase assay using full-length RelA as substrate also 

revealed that addition of LZAP increases RelA dephosphorylation in a dose dependent manner(Fig. 

3.7 C).LZAP alone, even at the highest dose, did not alter RelA phosphorylation (Fig. 3.7 C lane 7). 

These results indicate that LZAP regulates RelA at least partially through mediating PPM1A 

dephosphorylation of RelA. Since Wip1 is also reported as a RelA phosphatase 
47

 and we showed 

here that Wip1 binds LZAP (Fig. 3.6), Wip1-/-, p53-/- double null mouse embryonic fibroblasts 

(MEFs) were used to determine the dependency of LZAP on Wip1 to regulate RelA. As expected, 

Wip1 knockout was associated with higher basal RelA phosphorylation levels compared to wild-type 

MEFs (1.64 fold) (Fig. 3.7 D, compare lanes 1 and 3). LZAP decreased RelA phosphorylation in the 

absence of Wip1, but the amount of decreased phosphorylation was less than in MEFs with 

endogenous Wip1 (35% vs. 18%, normalized to pS536RelA level in vector control of each group as 

100%). These data suggest that part of LZAP’s activity toward RelA depends on Wip1. Taking 

together, these results suggest that the ability of LZAP to regulate RelA phosphorylation largely 

depends on PPM phosphatases, PPM1A and Wip1. 
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Fig. 3.7 LZAP PP2C phosphatases require one another for efficient regulation of RelA 

phosphorylation. (A) PPM1A is required for inhibition of RelA phosphorylation directed by 

LZAP. U2OS cells were transfected with control siRNA or siRNA targeting PPM1A, and 

after 1 day co-transfected with or without Myc3-LZAP, as indicated. Phosphorylation of 

endogenous RelA at S536 was visualized by immunoblotting. Immunoblotting was used to 

confirm expression of RelA and GAPDH as an indicator of loading.  (B) LZAP is required for 

PPM1A to efficiently dephosphorylate RelA. U2OS cells were transfected with control siRNA 

or siRNA targeting LZAP, and after 1 day co-transfected with Myc3-RelA with and without 

Myc3-PPM1A, as indicated. Phosphorylation of RelA, total RelA, LZAP and GAPDH was 

detected as described in (A). (C) Flag-RelA expression vector was transfected into HEK 293T 

cells, immunoprecipitated with the anti-Flag M2 affinity gel and eluted by 3× Flag peptide, 

then incubated with indicated amount of recombinant GST-PPM1A with or without His-

LZAP in PP2C phosphatase buffer for 30 min before analysis by immunoblotting as described 

in (A). (D) Wild-type or Wip1-/-, p53-/- double null MEFs were co-transfected with Myc3-

RelA and control or Flag-LZAP plasmids, as indicated. RelA phosphorylation and LZAP 

expression level were determined as described in (A). 

Figure 3.0.7 LZAP PP2C phosphatases require one another 

for efficient regulation of RelA phosphorylation 
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Discussion 

Based on loss of LZAP expression observed in human HNSCC, as well as cellular effects 

associated with LZAP loss such as enhanced invasion, anchorage independent growth, angiogenesis, 

and growth of xenograft tumors, LZAP has been identified as a putative tumor suppressor 
110

. LZAP 

contains no enzymatic motifs suggesting that its activities may be derived through protein-protein 

interactions. A remarkable number of molecules that are implicated in tumorigenesis (e.g. ARF, 

RelA, Chk1, Chk2, and p38) bind to LZAP suggesting that LZAP activity may be protean
110, 112, 113, 

116
. Although identification of binding partners has provided insight into LZAP functions, satisfying 

mechanisms of pleiotropic LZAP activities have been lacking. 

Here we report that LZAP bound to the stress activated protein kinase p38, altered p38 

subcellular localization and inhibited p38 phosphorylation and activity. Mechanistically, our data 

suggest that LZAP inhibition of p38 phosphorylation depends on the Wip1 phosphatase, and that in 

the presence of LZAP, more Wip1 is associated with p38. Conceivably, LZAP may sequester p38 in 

the nucleus in a complex with Wip1 as a means of p38 inactivation. Alternatively, unphosphorylated 

nuclear p38 may have unknown activities or may be sequestered in the nucleus so that upon loss of 

LZAP, rapid activation of p38 could occur through phosphorylation by nuclear kinases. 

Depending on cellular context, p38 can mediate opposing cellular responses as an inducer or 

inhibitor of proliferation and apoptosis
149

. To date, most data highlights LZAP as a tumor suppressor, 

but its role as a p38 regulator implies that LZAP could also have opposing cellular effects or that 

LZAP inhibition of p38 could be restricted to circumstances where inhibition of p38 suppresses 

tumor promoting activity. 

The mechanism of LZAP activity toward the growing list of LZAP-associated proteins (LAPs) is 

not well understood. The finding that a portion of LZAP exists in large molecular weight complexes 

combined with a potential for LZAP to oligomerize (chapter 4) lends credence to this argument and 

further suggests that LZAP may serve to bring together effector proteins. A large portion of LZAP 

interacting proteins are phosphorylated, and LZAP expression has been associated with decreased 
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phosphorylation of these proteins. These observations led us to explore if LZAP had activity to 

inhibit p38 upstream kinases or to activate p38 phosphatases. We found that LZAP did not alter 

kinase activity, as measured by phosphorylation, of MKK3 or MKK6; however, LZAP was found to 

increase association of p38 with its direct phosphatase Wip1in vivo (Fig. 3.5A) and increase Wip1-

mediated dephosphorylation of p38 in vitro (Fig. 3.5.B). Also depletion of Wip1 reversed the 

decrease of p38 phosphorylation by LZAP, suggesting at least part of the LZAP activity toward p38 

depends on Wip1. To explore if this is a mechanism for LZAP regulated RelA phosphorylation, 

similar experiments were performed with RelA and suggest that LZAP and RelA phosphatases, 

PPM1A and Wip1, depend on each other to dephosphorylate RelA (Fig. 3.7). Identification of the 

interaction between LZAP and Wip1 or other PPM phosphatases (Fig. 3.6 and data not shown), 

which are phosphatases for several LZAP target proteins, further add to the possibility that LZAP 

form a multi-protein complex with key proteins and  their cognate phosphatases to regulate signaling 

pathways.  However, it is still unclear if regulation of phosphatases is a general mechanism of LZAP 

activity, but it is clear that it is not a universal mechanism since phosphorylation has not been 

described to play a role in LZAP-mediated ARF activity. It is intriguing that additional described 

LAPs including Chk1 and Chk2 are also targets of phosphatases, including Wip1
96,102

. We have 

previously shown that LZAP activates p53 in the absence of ARF
112

 raising the possibility that this 

ARF-independent activity of LZAP may also depend on Wip1, PPM1A or PPM1B. 

  



87 

CHAPTER IV 

 

REGULATION OF LZAP 

 

Abstract 

Our studies and those from other groups suggest that LZAP is a putative tumor suppressor with 

critical activities to regulate key proteins in cancer signaling pathways including: p53, RelA, Chk1 

and Chk2 and p38. However little is known about through which LZAP activity is regulated. The 

activity of many proteins is regulated by post-translational modification (PTM), protein stability, and 

association with binding partners. Here, we began to explore these mechanisms as well as LZAP 

self-association as potential means of LZAP regulation. Inorganic 
32

P isotope labeling revealed that 

LZAP is phosphorylated in vivo, and in vitro phosphatase assays using synthesized LZAP phospho-

peptides as substrate suggested that Wip1, PPM1A and PPM1B may directly dephosphorylate LZAP. 

We also observed that manipulation of Wip1 levels resulted in symmetric changes in LZAP protein 

levels while the ubiquitination of LZAP was decreased upon Wip1 expression. Together with data 

that PPM phosphatases bind LZAP, these data suggest PPM family phosphatases likely regulate 

LZAP phosphorylation and stability in vivo. The embryonic lethal phenotype of LZAP homozygous 

knockout mouse model, as well as the impaired zebrafish embryonic development after LZAP knock 

down indicate that LZAP is an essential protein during vertebrate embryonic development; however 

functions of LZAP responsible for its requirement for normal development are not clear.  To identify 

potential LZAP regulators or effectors proteins in a complex with LZAP were immunoprecipitated 

and subjected to LC-MS/MS. Members of the PPM family, PPM1B and PPM1A, were identify and 

the PPM1B-LZAP interaction was confirmed in vivo. Additional proteins, KIAA0776, DDRGK1 

and UFM1, have since been described as LZAP binding proteins involved in regulation of LZAP 

protein level were also identified in the LC-MS/MS analysis. We noted that several proteins involved 
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in ufmylation were identified as LZAP associated proteins. KIAA0776 has recently been described 

as an E3-ligase in the ufmylation pathway. UFM1 is the small ubiquitin-like protein that is 

conjugated to proteins, and DDRGK1 is substrate of KIAA0776. Together these data suggest that 

LZAP may be regulated by this ubiquitin-like conjugation system or perhaps regulate the ufmylation 

pathway. To identify the domains of LZAP responsible for interaction with associated proteins, 

truncation mutants of LZAP were created. Both N-terminal and C-terminal non-overlapping regions 

of LZAP associate with RelA, p38 and PPM1B suggesting to us that LZAP may be forming homo-

dimers or homo-oligomers. Co-immunoprecipitation using differentially tagged LZAP confirmed the 

existence of at least LZAP dimers.  These preliminary data suggest that LZAP activity and protein 

level are regulated by phosphorylation through interaction with PPM family phosphatase and 

ubiquitination, and that in addition, LZAP may be modified or regulate the ufmylation pathway.  

 

Introduction 

The function, activity, and/or stability of many proteins are controlled by post-translational 

modification (PTM), by interaction with other proteins or by self-association of proteins to form 

dimers and higher-order oligomers. 

Protein post-translational modification (PTM) increases the functional diversity of the proteome 

by the covalent addition of functional groups or proteins, proteolytic cleavage of regulatory subunits 

or degradation of entire proteins. These modifications include, amongst others, phosphorylation, 

glycosylation, ubiquitination, nitrosylation, methylation, acetylation, lipidation and proteolysis and 

influence almost all aspects of normal cell biology and pathogenesis. Post-translational modification 

can occur at any step in the "life cycle" of a protein and can dramatically alter a protein’s activity, 

localization and stability (Thermo Scientific website/Overview of post translational modification). 

Many proteins are modified shortly after completion of translation to mediate proper protein folding 

or stability or to direct the nascent protein to distinct cellular compartments (e.g. nucleus, membrane). 

Other modifications occur after folding and localization are completed to activate or inactivate 
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catalytic activity or to otherwise influence biological activity. Phosphorylation of proteins by kinases 

at specific amino acid side chains, principally on serine, threonine or tyrosine residues, is a common 

method of catalytic activation or inactivation and the most important and well-studied PTM. 

Conversely, phosphatases hydrolyze the phosphate group to remove it from the protein acting as a 

counterbalance to kinases. Proteolytic cleavage of peptide bonds is a thermodynamically favorable 

reaction and therefore permanently removes peptide sequences or regulatory domains. Proteases 

comprise a family of enzymes that cleave peptide bonds and are critical for many normal cellular 

processes including: antigen processing, apoptosis, surface protein shedding and cell signaling. 

Proteins are also covalently linked to tags that target a protein for degradation or can direct 

subcellular localization. Ubiquitination is a common modification of this type. Ubiquitin is an 8-kDa 

polypeptide consisting of 76 amino acids that is appended to the NH2 of lysine in target proteins via 

the C-terminal glycine of ubiquitin. Following an initial mono-ubiquitination event, a ubiquitin 

polymer can be created by linking ubiquitin to ubiquitin and creating poly-ubiquitinated proteins that 

are the targeted for degradation by the 26S proteasome Proteins can also be sequentially modified by 

processes such as post-translational cleavage and the addition of functional groups for production of 

mature and active proteins. For some proteins, phosphorylation and  ubiquitination are tightly linked 

as illustrated by examples like IκBα
173

, RelA
174

 and GSK
175

 in which phosphorylation within target 

proteins (phosphodegrons) is required to trigger ubiquitination and degradation. Consequently, 

characterization of PTMs, although challenging, provides invaluable insight into the cellular 

functions of proteins. 

Protein-protein interactions are intrinsic to virtually every cellular process. Any listing of major 

research topics in biology—for example, DNA replication, DNA repair, transcription, translation, 

splicing, secretion, cell cycle control, signal transduction, and intermediary metabolism—is also a 

listing of processes in which protein complexes have been implicated as essential components
176

. In 

addition to well-known examples of multi-subunit proteins, there are also a large number of transient 

protein-protein interactions, which in turn control a large number of cellular processes. All 
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modifications of proteins mentioned above necessarily involve such transient interactions. Transient 

protein-protein interactions are also involved in the recruitment and assembly of the transcription 

complex on specific promoters, the transport of proteins across membranes, the folding of native 

proteins catalyzed by chaperones, individual steps of the translation cycle, and the breakdown and 

re-formation of subcellular structures during the cell cycle (such as the cytoplasmic microtubules, the 

spindle apparatus, nuclear lamina, and the nuclear pore complex)
176

. Thus, identification of binding 

partners can help advance understanding of protein activity and regulation. Co-immunoprecipitation 

coupled with liquid chromatography–mass spectrometry (LC-MS/MS) and provides a powerful tool 

for identification of large number of potential binding proteins.  

The self-association of proteins to form dimers and higher-order oligomers is a common 

phenomenon contributing to numerous cellular processes. Dimerization and oligomerization confers 

structural and functional advantages to proteins, including improved stability, control of accessibility 

and specificity of active sites, and increased complexity. Oligomerization or dimerization expands 

the opportunities for regulation by providing combinatorial specificity, allostery, activation and 

inhibition. Recent structural and biophysical studies show that protein dimerization or 

oligomerization is a key factor in the regulation of proteins such as enzymes, ion channels, receptors 

and transcription factors contributing to increased enzyme activity by concentrating the active site, 

facilitation of local concentration of molecules, transmission of signals, and channeling of reagents 

(small molecules and ions) across membranes. In addition, self-association can help to minimize 

genome size, while maintaining the advantages of modular complex formation. However, 

inappropriate formation of oligomers can be associated with pathogenic states. Specific protein 

dimerization is integral to biological function, structure and control, and must be under substantial 

selection pressure to be maintained with such frequency throughout biology
177

.  

Upon initiation of this project, information related to regulation of LZAP including modification, 

enzymes responsible for potential modification (except for Cdk5
107

), LZAP-associated proteins, and 

self-association status were not well described. With the emerging results indicating that LZAP has 
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tumor suppressor-like activity, regulates major cancer signaling pathways, is essential for early 

vertebrate development exploration of LZAP regulation under both physiological and pathological 

conditions is warranted. Here we present preliminary and hypothesis generating data exploring 

aspects of LZAP regulation. 

 

Materials and Methods 

Plasmid constructs and mutagenesis 

His-LZAP was PCR from pCDNA3-LZAP and subcloned in to pCDNA3 vector. Truncation 

mutants of LZAP were as described in chapter 3. Single deletion mutations of LZAP were PCR from 

pCDNA3-Flag-LZAP wild type construct and mutations of LZAP containing multiple deletions were 

PCR from the single and double mutations. Primers use for deletion mutagenesis: LZAPD1 forward 

GTC AAC TAT GAG ATC CCC TCA GGG GCT GCC GAG ATG CGG GAG, LZAPD1 reverse 

CTC CCG CAT CTC GGC AGC CCC TGA GGG GAT CTC ATA GTT GAC, LZAPD2 forward 

CCA GAT GCC CTG ACA CTG CTT GAA ATC TTC TTA GCC CAG AGA GCA GTG, 

LZAPD2 reverse CAC TGC TCT CTG GGC TAA GAA GAT TTC AAG CAG TGT CAG GGC 

ATC TGG, LZAPD3 forward TCC CAG CTG CTG GCT TTG AAG AAA GAC ATC TCC AAG 

AGG TAC AGC GG, LZAPD3 reverse CC GCT GTA CCT CTT GGA GAT GTC TTT CTT CAA 

AGC CAG CAG CTG GGA. 

Antibodies and reagents 

Anti-His antibody was from Qiagen (#34698). Anti-HA antibody was from Santa Cruz (sc-

7392).EZ view anti-Flag M2 affinity gel (F2426-5X1ML) and anti-c-Myc Agarose Affinity Gel 

(A7470) were purchased from Sigma-Aldrich.  

in vivo 
32

P orthophosphate labeling  

24 hrs after transfection of His-LZAP or control vector, U2OS cells were washed and maintained 

in phosphate-free DMEM (Life Technologies #11971) supplied with 10% dialyzed FBS (Life 

Technologies #26400) for 24 hrs. After metabolically labeled with 100 µCi/ml [
32

P] orthophosphate 
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(Perkin Elmer) for 6 hrs, supernatant from cell lysate in 0.5%NP-40 lysis buffer were incubated with 

anti-His or LZAP antibody. Immunoprecipitates were analyzed by SDS-PAGE and subsequent 

autoradiography using auto-radiography film. 

 

Results 

LZAP is phosphorylated and ubiquitinated 

LZAP can be phosphorylated in vitro by Cdk5
107

; however, Cdk5 expression is limited to cells of 

neural derivation and LZAP phosphorylation had not been observed in vivo. 
32

[P] orthophosphate 

labeling of cells ectopically expressing His-tagged or un-tagged LZAP followed by 

immunoprecipitation with anti-His or anti-LZAP antibodies revealed that both His-tagged and un-

tagged LZAP were phosphorylated in vivo (Fig. 4.1 A). Our findings that LZAP is a phosphoprotein 

that binds to PPM phosphatases coupled with the observation that alteration of Wip1 levels changes 

LZAP levels (Fig. 4.1C) led us do examine PPM phosphatase activity toward potential 

phosphorylation sites of LZAP. We also suspected that residues dephosphorylated by PPM 

phosphatases may indicate residues of LZAP that are phosphorylated in vivo. In vitro phosphatase 

assays using LZAP phospho-peptides (S91, T237 and S426) as substrate were performed. S426 was 

reported to be phosphorylated by cdk5 in the in vitro kinase assay
107

 whileS91 (S91Q92) and T237 

(T237V238Y239) are consensus motifs, S/TQ or TXY, for Wip1 and PPM phosphatases
141, 142

. 

Bacterially synthesized His-Wip1, GST-PPM1A and GST-PPM1B were incubated with LZAP-

specific peptides All three phosphatases dephosphorylated pS91 and pT237 sites robustly while 

dephosphorylation of pS426, the in vitro cdk5 site, was not observed except by the control lambda 

phosphatase (Fig. 4.1 B).  

Interestingly, we found that endogenous LZAP protein levels were decreased after siRNA 

knockdown of Wip1 (Fig. 4.1 C) suggesting that expression or stability of LZAP might be regulated 

by phosphorylation. Since phosphorylation is sometimes required as marker triggering ubiquitin 
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conjugation, LZAP ubiquitination status was measured by co-expression of Myc3-LZAP with HA-

ubiquitin. After immunoprecipitation with anti-Myc antibody, ladder of ubiquitin conjugated LZAP 

was detected by anti-HA antibody (Fig. 4.1 C compare lanes 1 and 2). Consistent with decreased 

LZAP after depletion of Wip1 LZAP levels were increased with co-expression of Wip1 (Fig. 4.1 D 

compare lanes 5 and 6). It is possible that LZAP stability is increased upon Wip1 expression as 

indicated by decreased ubiquitination of LZAP when co-expressed with Wip1 (Fig. 4.1D compare 

lanes 2 and 3). 

 

  

Fig. 4.1 LZAP phosphorylation and ubiquitination. (A) U2OS cells overexpressing His-

tagged or untagged LZAP was phosphate starved overnight before incubation with 
32

[P] 

orthophosphate for 6 hr. After immunoprecipitation with His or LZAP antibody, samples 

were separated by SDS-PAGE and autoradiography performed. (B) LZAP-specific 

peptides with phosphorylation at residues corresponding to S91, T237 and S426 

specific-phosphorylated LZAP peptides were incubated with recombinant His-Wip1, 

GST-PPM1A, or PPM1B in PP2C phosphatase buffer for 30 min. Free phosphate 

released into the buffer was measured by addition of malachite green and absorbance at 

650nm. λ-phage phosphatase (λ-PPase) was used as positive control. (C) Cell lysate 

from U2OS cells with transient transfection of control or Wip1 siRNA was subjected to 

SDS-PAGE and Wip1, LZAP and GAPDH detected by immunoblotting. (D) Myc3-

LZAP was co-expressed with or without HA-ubiquitin (HA-Ub) and Flag-Wip1 in 

U2OS cells treated with the proteasome inhibitor, MG132. LZAP immunoprecipitates 

were separated by SDS-PAGE and ubiquitin or LZAP  detected by immunoblotting. 
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Identification of LZAP binding partners and LZAP binding domain mapping 

To date, understanding of LZAP tumor suppressor pathways has been expanded by identification 

and understanding of the pathways and proteins LZAP regulates, but we still understand very little 

about pathways and proteins that LZAP regulates that are important in causing embryonic lethality 

associated with LZAP loss during early vertebrate development. To identify LZAP activities, we 

used an unbiased approach to identify additional LZAP binding proteins which might function as 

LZAP regulators or effector in cancer and/or normal development. Initially yeast two hybrid 

screening was performed on a human placenta library using full-length LZAP as bait (HybriGenics). 

However the pilot experiment showed that LZAP has a self-activation activity which prevented 

further screening. Therefore we turned to co-immunoprecipitation coupled with LC-MS/MS 

(Vanderbilt mass spectrometry research core lab). Flag-LZAP was ectopically expressed in 

HEK293T cells followed by immunoprecipitation using Flag-antibody conjugated beads. 

Immunoprecipitated proteins were eluted using 3x Flag peptide enzymatically digested then peptides 

analyzed by LC-MS/MS. More than 500 proteins and 1000 of their isoforms were identified by two 

or more peptides (Table 4.1) Putative LZAP binding proteins included:  PPM1A and PPM1B, the 

two PPM family members and several enzymes related to PTM. A high portion of PPM1B protein 

sequence was covered (75%) and subsequent co-immunoprecipitation using Flag-PPM1B and Myc3-

LZAP confirmed interaction between these proteins (Fig. 4.2 A lane 2). The interaction between 

nucleolin/C23 and LZAP was also recently confirmed using co-immunoprecipitation (data not 

shown). After our findings, other groups have reported that KIAA0776, DDRGK1 and UFM1 are 

LZAP-associated proteins
118-121

. Interestingly, these reports suggest that KIAA0776, DDRGK1 and 

UFM1 are involved in regulation of LZAP ubiquitination, stability and localization.  

To identify domains of LZAP mediating its binding to LZAP-associated proteins, binding 

between LZAP truncation mutants and known binding partners (p38, RelA and PPM1B) was 

determined. As described in chapter 3 (Fig. 3.2), both N-terminal (αα 112-358, M3) and C-terminal 
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(αα 329-506, M7) of LZAP bound to p38. Similar results were observed from co-

immunoprecipitation of selective LZAP mutants and PPM1B (Fig. 4.2 A) or RelA (Fig. 4.2 B and 

data not shown). PPM1B binds to LZAP N-terminal mutants M2 (αα 1-303) and M3 (αα 112-358) 

and C-terminal mutant M7 (αα 329-506). RelA binds to the majority of LZAP truncations excluding 

a domain of LZAP occupying the mid portion of the protein (M4, αα 201-358). The results of 

binding domains from our lab and the literature suggest that binding of LZAP to effectors or 

regulators is not straight forward (diagrammatically displayed, Fig. 4.3).  

 

 

 

  

Fig. 4.2 Mapping of LZAP domains involved in binding to LZAP-associated 

proteins. (A) Flag-PPM1B was co-expressed with indicated Myc3-tagged full 

length or truncated LZAP in U2OS cells. Cell lysates were immunoprecipitated 

using anti-Flag M2 affinity gel and samples analyzed by SDS-PAGE and 

immunoblotting with Myc antibody. Arrows on the right panel indicate the bound 

LZAP truncations. (B)  Flag-RelA was co-expressed with indicated Myc3-tagged 

full length or truncated LZAP or in U2OS cells. Cell lysate were 

immunoprecipitated using Myc antibody conjugated agarose beads. Samples were 

analyzed by SDS-PAGE and immunoblotting with anti-Flag and anti-Myc antibody. 

Figure 4.0.2 Mapping of LZAP domains 

involved in binding to LZAP-associated 

proteins 
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   Gene Name Coverage % Description 

CDK5RAP3 93 LZAP 
UBC 87 Ubiquitin 
KIAA0776 81 UPF0555 protein  
WDR77 79 Methylosome protein 50, Androgen receptor cofactor p44 
PPM1B 75 Protein phosphatase 2C isoform beta. 
MYCBP 72 C-Myc-binding protein 
PRMT5 71 Protein arginine N-methyltransferase 5 
UFM1 68 Ubiquitin-fold modifier 1 
DDRGK1 61 DDRGK domain-containing protein 1  
HSPA8 52 Heat shock cognate 71 kDa protein 
SPIN1 52 Spindlin-1, Ovarian cancer-related protein 
STK8 50 Serine/threonine-protein kinase 38, NDR1 protein kinase 
NMP1 44 Nucleophosmin, Nucleolar phosphoprotein B23 
UFC1 44 Ufm1-conjugating enzyme 1, Ubiquitin-fold modifier-conjugating enzyme 1 
EIF5A 43 Eukaryotic translation initiation factor 5A-1 
HUWE1 36 E3 ubiquitin-protein ligase HUWE1, ARF-binding protein 1 
PPM1A 33 Protein phosphatase 1A, Protein phosphatase 2C isoform alpha 
NCL 30 Nucleolin, Protein C23 
PPP1CA 21 Serine/threonine-protein phosphatase PP1-alpha catalytic subunit 
MAP3K7 11 Mitogen-activated protein kinase kinase kinase 7 

HDAC2 11 Histone deacetylase 2 

  

 

 

 

Table 4.2 Summary of LZAP truncations interaction with RelA or LZAP. The number of  “+” 

indicates the signaling strength based on immunoblotting following co-immunoprecipitation, (-) 

indicates no detectable binding. 

 

Myc-LZAP wt M1 M2 M3 M4 M5 M6 M7 M8 

aa residues 

Full 

length 

1-

111 

1-

303 

112-

358 

201-

358 

428-

506 

359-

506 

329-

506 

226-

506 

RelA ++ - ++++ +++ – NA ++ +++ ++++ 

LZAP  ++  NA  +++  ++   +   NA   +++   ++++  +++  

 

 

 

  

Table 4.1 selective results from LZAP binding partner analysis. Proteins identified by others are yellow 

highlighted 

Table 4.0.1 Selective results from LZAP 

binding partner analysis 

Table 4.2 Summary of LZAP 

truncations interaction with RelA or 

LZAP 
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Fig. 4.3 LZAP motifs and binding of LZAP truncations to known LZAP associated proteins and diagram for LZAP protein motifs.  

The number of “+” indicates the signaling strength based on immunoblotting following co-immunoprecipitation, (-) indicates no detectable binding. 
Protein name in black indicates results of our studies, protein names in blue indicate results from the literature. 
 

 

Figure 4.0.3 LZAP 

motifs and binding of 

LZAP truncations to 

known LZAP 

associated proteins 

and diagram for 

LZAP protein motifs 
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Binding domain mapping was complex with non-overlapping fragments of LZAP binding to 

multiple proteins suggesting two binding scenarios 1) both N-terminal and C-terminal LZAP contain 

motifs that directly bind p38, RelA and PPM1B, and/or 2) full length endogenous LZAP dimerizes 

with LZAP truncation mutants and bridges interaction between truncations and LZAP-associated 

proteins.  LC/MALDI mass spectrometry suggested that some higher molecular weight bands 

following PAGE and silver staining of Flag-LZAP immunoprecipitation represent LZAP dimers 
119

. 

To determine if LZAP self-associates, full-length Flag-LZAP was co-expressed with either full-

length Myc3-LZAP or Myc3-LZAP truncation mutants in U2OS cells followed by 

immunoprecipitation using anti-Flag affinity gel. Full-length LZAP and the mutants M2 and M8 co-

immunoprecipitated with LZAP respectively (Fig. 4.4 A, co-IP results of LZAP truncation mutants 

are summarized in Table 4.2). These results suggest that LZAP indeed can self-associate forming at 

least dimers. To determine the domain of LZAP mediating self-association, Flag-tagged C-terminal 

LZAP truncation M6 was co-expressed with Myc-M6 or Myc-tagged N-terminal LZAP truncation, 

M2. Immunoprecipitation of Flag-M6 revealed binding to M6 itself and N-terminal truncation 

mutant M2 (Fig. 4.4 B lanes 5 and 7). These experiments highlight the requirement for further 

experiments to distinguish if the interaction of truncation mutant association is direct or mediated by 

full-length LZAP that is expressed in all cells. In addition to testing truncation mutants of LZAP, a 

coiled coil domain predicted to be involved in protein-protein interaction was also deleted in LZAP 

and tested for binding activity. Coiled-coil motifs are characterized by two or more helices wound 

around one another. In some proteins (e.g. c-Jun), a two-stranded coiled coil is responsible for 

dimerization
178

. Amino acids 129-152, and 452-488 in LZAP are regions likely to form coiled-coil 

motif (COILS
131

, score 95 of 100) and amino acids 346-361 is also predicted to form a coiled coil 

motif (score 50 of  100) (Fig. 4.4 C). These predicted regions are part of the N- and C- terminal 

truncation mutants which bind full length LZAP suggesting that they may be involved in 

dimerization. Flag-tagged deletion mutant 123, lacking all three coiled-coil domains, was co-
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expressed with Myc3-LZAP. Interestingly, the deletion mutation still co-immunoprecipitated with 

LZAP with affinity based on band intensity similar to wild-type LZAP suggesting that either these 

domains are not necessary or that more residues and larger domain(s) are involved in LZAP self-

association. 

 

 

  

Fig. 4.4 Mapping of LZAP self-association domains (A) Flag-LZAP was co-expressed with 

indicated Myc3-tagged LZAP species, full length or truncations, in U2OS cells. Cell lysate were 

immunoprecipitated using anti-Flag M2 affinity gel and samples analyzed by SDS-PAGE and 

immunoblotting with Myc antibody. Arrows on the right panel indicate bound LZAP species. 

(B) Flag-LZAP M6 mutant was co-expressed with indicated Myc3-tagged LZAP species, full 

length or truncations, in U2OS cells. Binding was determined as described in (A). (C) Upper 

panel: diagram of analyses predicting the coiled-coil domains in LZAP. Lower panel: Myc3-

LZAP was co-expressed with Flag-tagged LZAP species, full length or deletions, in U2OS cells. 

Binding was determined as described in (A).  

Figure 4.0.4 Mapping of LZAP self-association domains 
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Discussion 

Since we reported that LZAP binds and activates the alternate reading frame protein p14
ARF 

in 

humans and activates p53
82

, LZAP’s role in tumorigenesis has continued to emerge. We and others 

have described LZAP functions to regulate activities of ARF, p53, p38 MAPK
117

, NF-κB
110

, Wip1, 

Chk1 and Chk2
113, 116

. Tumor suppressor qualities of LZAP were highlighted by our findings that 

LZAP is lost in 30% of head and neck squamous cell carcinomas (HNSCC)
110

. However, the 

mechanism(s) loss of LZAP expression in cancer remains unknown as does regulation of LZAP 

activity, stability or subcellular localization. The importance of LZAP biological functions calls for 

the studies to elucidate the mechanisms of LZAP regulation.  

Here, we showed LZAP is phosphorylated and that LZAP binds PPM phosphatase Wip1, PPM1A 

and PPM1B and may itself be a substrate through PPM family members targeting amino acids S91 

and T237. Peptide phosphatase assays suggest that PPM members cannot dephosphorylate the S426 

residue of LZAP; however, S426 may still be a phosphorylated site of LZAP. Since LZAP may be 

targeted for dephosphorylation by Wip1 and phosphorylation can be associated with protein stability 

(e.g. IκBα
173

, RelA
174

 and GSK
175

), we examined effects of Wip1 on LZAP expression levels. 

Interestingly, depletion of Wip1 was accompanied by a decrease of LZAP protein. In the absence of 

phospho-specific LZAP antibodies, we could not directly correlate LZAP phosphorylation status 

with stability, but we did explore if LZAP was ubiquitinated and if ubiquitination of LZAP was 

altered in the presence of Wip1 (Fig. 4.1 D). Remarkably, expression of Wip1 with LZAP was 

associated with increased LZAP protein levels, but decreased LZAP ubiquitination (Fig. 4.1 D). 

Interestingly, liquid chromatography and tandem mass spectrometry (LC-MS/MS) used for detection 

of LZAP-associated proteins identified several proteins involved in ubiquitination including 

ubiquitin and an E3 ubiquitin ligase. Perhaps just as interesting, several proteins including UFM1, 

UFC1 and KIAA0776 were also identified as LZAP associated proteins.  These three proteins belong 

to a novel ubiquitin-like protein conjugating system, of which UFM1 is ubiquitin-like protein, UFC1 
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functions as the E2 enzyme
122

 and KIAA0776/UFL1 is recently identified as the E3 ufmylation 

ligase
123

. While there is no data to suggest LZAP is modified by UFM1, it is interesting that another 

LZAP associated proteinDDRGK1, is a substrate of this small protein conjugating system
123

. Studies 

have confirmed that KIAA0776 binds LZAP and these two proteins form a complex with UFM1
118

 

suggesting that LZAP may be a substrate for ufmylation or potentially regulate the E3 ligase 

KIAA0776. LZAP is reported as a stable protein that is not rapidly degraded in control cells (
119

 and 

our data not shown). Both Wip1 and KIAA0776 decrease LZAP ubiquitination
120, 119

 and KIAA0776 

is an E3 ligase for the novel UFM1 conjugating system, it is possible that UFM1 and ubiquitin 

compete for the modification on LZAP and dephosphorylation of LZAP by Wip1 at specific residues 

favors ufmylation over ubiquitination.  

Protein-protein interactions are essential, especially in the regulation of biochemical pathways 

and signaling cascades in the cells. With the increase in numbers of LZAP-associated proteins we 

sought to map critical binding domains to see if distinct functions for LZAP could be separated. 

Using truncations of LZAP, we found that both N- and C-terminal portions bind to p38 suggesting 

that independent regions in LZAP may bind p38; however, similar results found with two additional 

LZAP binding partners, RelA and PPM1B, suggested that LZAP self-association could also explain 

the propensity of non-overlapping regions of LZAP to bind a wide variety of proteins. This 

hypothesis was supported by findings that Myc3-LZAP co-immunoprecipitated with Flag-LAZP and 

that N- and C-terminal truncation mutants bound not only to full length LZAP but also other 

truncations. In an attempt to identify LZAP residues critical or required for self-association, 3 of 3 

predicted coiled-coil domains were interrupted by deletion (129-152, 346-361 and 452-488, a total of 

76 amino acid deletion). Unfortunately, co-immunoprecipitation experiments continued to display 

the binding of this triple-deletion mutant to full length LZAP suggesting additional or distinct 

residues in LZAP are required for self-association. Further, it is not clear if LZAP forms dimers or 



 

 

 

102 

higher-order oligomers or whether the activity of LZAP and the binding to other proteins depends on 

self-association. 

In summary, we identified that LZAP is phosphorylated and ubiquitinated in vivo and that LZAP 

binds to PPM phosphatases Wip1 and PPM1B, as well as, to components of ubiquitin and UFM1 

conjugation systems. Binding domain mapping revealed that LZAP is a self-association protein. All 

these primary findings raise questions and will lead to further study of the regulation of LZAP.       
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CHAPTER V 

 

SUMMARY AND FUTURE DIRECTIONS 

 

1. Summary 

The objective of this work was to: 1) improve mechanistic understanding of LZAP activity 

through identification of binding partners and co-effectors of LZAP activity; 2) determine 

mechanism(s) through which LZAP is regulated. Known LZAP associated proteins, RelA and p38, 

were used as model LZAP target proteins for many studies dissecting LZAP activity. Findings 

presented in this dissertation demonstrate that: 1) PPM1A, a PPM family member, is a novel RelA 

phosphatase with tumor suppressor-like activity; 2) LZAP’s ability to decrease target protein (e.g. 

RelA and p38) phosphorylation is at least partially dependent on PPM phosphatases (PPM1A and 

Wip1 respectively); 3) LZAP alters PPM activity, at least in some cases (e.g. p38) by enhancing the 

association of phosphatase and substrate; 4) LZAP is phosphorylated and ubiquitinated, 5) LZAP 

protein levels are altered by Wip1, suggesting that phosphorylation of LZAP may regulate its 

stability, 6) LZAP self-associates to form dimer or high-order oligomer with both N- and C-terminal 

regions of LZAP capable of self-association, and 7) LZAP has many potential binding partners some 

of which are unexplored, such as ubiquitination and ufmylation pathway components .  

Dysregulation of the NF-κB pathway contributes to tumorigenesis in varied cancer types and is a 

driving force of prostate cancer metastasis. Previous studies in the Yarbrough lab revealed that 

LZAP is lost in 30% of head and neck squamous cell carcinomas (HNSCC) and those tumors with 

LZAP loss overexpress select RelA targets. The work here identified a new regulator of NF-κB, 

PPM1A, and provided evidence that PPM1A expression is decreased in human prostate cancer 

metastases. Excitingly, restoration of PPM1A expression inhibited NF-κB activity and growth of 

bony metastases after intravascular injection of prostate cancer cells. Thus, expression status of 
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LZAP and PPM1A may be used to identify tumors for therapies targeting   NF-κB. In addition, since 

neither deletions of the PPM1A gene nor inactivating mutations of PPM1A have been described in 

cancer, enhancing expression or activity of PPM1A is potential therapeutic strategy that may inhibit 

bony metastasis or tumor growth. 

 

2. Future directions 

Our findings have provided insight into mechanisms of LZAP activity and LZAP regulation. In 

particular, regulation of PPM phosphatase activity toward substrates appears to be a central theme in 

LZAP activity; however, our findings have also raised exciting questions and generated a number of 

ideas yet to be explored. 

 

2.1. Additional NF-κB target genes and NF-κB related proteins regulated by PPM1A 

In this study, we used a NF-κB signaling pathway real time PCR array as the initial tool to 

identify genes regulated by PPM1A. This array profiles the expression of 84 genes related to NF-κB-

mediated signaling transduction, of which about 30 genes are NF-κB responsive genes including 

cytokines and receptors. A large number of NF-κB regulated genes are not tested in this array 

indicating that PPM1A may regulate additional NF-κB target genes. An explorative study using 

RNAseq or microarray comparing gene expression between cells with or without PPM1A depletion 

will provide more candidate genes whose expression are regulated by PPM1A and may identify 

additional pathways impacted by PPM1A. Our data indicate that PPM1A decreases tumor cell 

invasion and prostate cancer cell bony metastasis, which at least partially depends on the inhibition 

of NF-κB pathway; therefore, a more extensive study identifying additional NF-κB genes regulated 

by PPM1A may find additional effectors of cancer cell invasion and metastasis.  

The RANK/RANKL/OPG triad is one potential group of such genes. Osteoclastic bone resorption 

contributes to the establishment of tumors in the skeleton. It is now widely understood that the 
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molecular triad--receptor activator of NF-κB ligand (RANKL), its receptor RANK, and the 

endogenous soluble RANKL inhibitor, osteoprotegerin (OPG)--play direct and essential roles in the 

formation, function, and survival of osteoclasts
179

. Recently Jin et al. showed that the activation of 

NF-κB signaling in prostate cancer cells increased the expression of the osteoclast inducing genes 

RANKL and PTHrP
130

. It is unclear if NF-κB is a direct transcriptional activator that increases 

expression of RANKL
180

, but indirect effects of NF-κB activation, namely TNFα and IL-1, stimulate 

RANKL expression in cells through activation of gp130 signal transducer following IL-1 stimulated 

expression of IL-6-type cytokines 
181, 182

. Although our data do not suggest that PPM1A alters TNFα 

or IL-1 expression, effects of PPM1A on RANKL, RANK or OPG expression should still be tested. 

PPM1A activity to inhibit metastases also suggest that its effects on parathyroid hormone-related 

protein (PTHrP), which induces both mRNA and protein expression of MCP-1 in human bone 

marrow endothelial cells and osteoblasts
183

, should be explored.  

Pathways and key proteins controlling epithelial-mesenchymal transition (EMT) are additional 

and interesting potential target of PPM1A. EMT is a complex stepwise phenomenon that occurs 

during embryonic development and tumor progression. EMT is characterized by the disruption of 

intercellular junctions, replacement of apical-basolateral polarity with front-to-back polarity and 

acquisition of migratory and invasive phenotypes
184

. The loss of E-cadherin, a cell-cell adhesion 

molecule is the hallmark of EMT and E-cadherin is regulated by the transcriptional repressor, Snail. 

Absence of Snail results in embryonic lethality because of severe defects of gastrulation
185

. 

Overexpression of Snail and its function in promoting tumor metastasis has been reported in breast 

cancer
186,187

 and, more recently in prostate cancer
188

. NF-κB is one of the major regulators of Snail at 

both the translational and post-translational levels. NF-κB has been shown to associate with the 

Snail1a promoter in zebrafish and directly activate Snail1a expression resulting in altered cell cycle 

during gastrulation
189

. NF-κB also binds the human snail promoter between −194 and −78 bp, 

leading to increased Snail transcription
190

. Raf kinase inhibitor protein (RKIP), a metastatic 
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suppressor, was shown to inhibit NF-κB activity, and conversely, Snail can repress the expression of 

RKIP. Therefore, there is a positive feedback circuitry between RKIP, NF-κB and Snail, in which 

overexpression of Snail in tumors inhibits RKIP and induce EMT
191,192

. Dysregulated NF-

κB/Snail/RKIP circuitry promotes tumor persistence and metastasis through activation of the 

epithelial to mesenchymal transition program
193

. Since PPM1A inhibits NF-κB transcription activity 

and decreases prostate cancer cell metastasis, it will be interesting to determine PPM1A activities 

can inhibit the NF- κB /Snail pathway and EMT. 

In this study, we showed PPM1A inhibited RelA phosphorylation in vivo independent of IKKα 

and IKKβ,and PPM1A dephosphorylated RelA in vitro which suggest PPM1A is a RelA phosphatase 

in vivo. However, these data do not exclude the possibility that PPM1A might also regulate other 

upstream kinases (e.g. IKKε) or proteins in NF-κB activation to indirectly inhibit RelA 

phosphorylation. Recently, Hildebrand et al. reported that IκBζ, the atypical IκB family member, is a 

key transcription regulator of MCP-1/CCL2
132

. IκBζ-deficient macrophages exhibited impaired 

secretion of MCP-1 when challenged with diverse inflammatory stimuli, such as LPS or 

peptidoglycan. Chromatin immunoprecipitation demonstrate that IκBζ is directly recruited to the 

proximal promoter region of the Ccl2 gene and is required for transcription-enhancing histone H3 

trimethylation at lysine-4. We showed that MCP-1 expression in cancer cells is inhibited by PPM1A, 

at least partially, through decreasing RelA binding to the CCL2 promoter. Given the recent finding 

that IκBζ is critical for transcription of Ccl2, effects of PPM1A to regulate IκBζ, phosphorylation 

and downstream effects on MCP-1 expression should be explored. Moreover, it is not clear whether 

PPM1A regulates phosphorylation of other NF-κB family members such as p50 and RelB. These 

possibilities could be explored using phospho-specific antibodies, kinase inhibitors and MEFs with 

knockout of gene(s) coding kinases. 
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2.2 Mechanisms of decreased PPM1A expression in prostate cancer and the role of PPM1A in other 

cancer types 

Available public cancer datasets revealed that PPM1A mRNA expression was decreased 

approximately 2-fold in distant metastases of prostate tumors compared to primary prostate tumors 

without distant metastases (Fig. 2.8A). However, since the distant metastases and primary tumors 

were from different patients, it is not clear 1) whether the patients with distant metastasis had pre-

existing lower PPM1A expression in their primary tumors vs. PPM1A expression decreasing during 

metastases, or 2) if there is heterogeneity of PPM1A expression in primary tumors and the 

metastases were derived from this subpopulation. Additionally, metastases usually in patients after 

primary cancer treatment; therefore, it is possible that the treatment selects for cells with decreased 

PPM1A expression. To efficiently answer these questions, a PPM1A antibody useful for IHC and 

tissue microarray is needed. A cohort study comparing PPM1A expression in samples from the same 

patient at different time points and disease stages (e.g. initial diagnostic biopsy, primary tumor 

without distant metastasis, primary tumor with lymph node metastasis and tumor from metastatic 

sites) will help to understand how and when PPM1A expression is altered in prostate cancer cells.  

Microarray/next generation sequencing can be used to determine PPM1A mRNA levels and tissue 

microarray using an anti-PPM1A antibody would determine PPM1A protein levels and expression 

patterns in tumor and adjacent tissues.  

Interestingly, PPM1A expression is also decreased in breast cancer and colorectal cancers 

compared to normal tissue, suggesting that PPM1A loss may also be important in progression of 

these tumors (Oncomine, PPM1A gene, TCGA breast, TCGA colorectal and colorectal 2 data sets). 

To determine if PPM1A expression level is different based on the aggressiveness or subtypes of 

breast cancer or colorectal cancers, further analyses of the TCGA data could be helpful. The role of 

PPM1A in colorectal cancer has not been studied, but a single study, using xenograft of breast cancer 

MCF7 cells, revealed that PPM1A depletion increases MCF7 tumorigenic potential and tumor 
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growth
147

 suggesting that loss or decreased PPM1A activity may increase aggressive behavior in 

breast cancer. While the molecular mechanisms of PPM1A’s activity are not elucidated, 

dephosphorylation of RelA and inhibition of NF-κB activation could play a major role. IL-6 and 

MCP-1, two of the NF-κB targets inhibited by PPM1A, are also implicated in metastases in cancers 

of colon
68,145

, and breast
69, 71

. Experiments using cancer cells, as well as, metastatic mouse models are 

proposed to determine PPM1A’s activity in breast or colorectal cancer progression and metastasis. 

Little is known about the mechanism(s) regulating expression of PPM1A in cancer. Both genetic 

and epigenetic mechanisms may play a role and should be investigated. To date, neither loss of 

function mutations nor deletions mutation have been reported for PPM1A. Congruent with the lack 

of reported mutations and deletions, we have not found point mutations in the catalytic domain of 

PPM1A using TCGA data for head and neck squamous cell carcinoma, lung adenocarcinoma, breast 

cancer, and colorectal cancer. PPM1A promoter methylation and histone acetylation status could 

contribute to expression defects. Given the effect of PPM1A to decrease metastases in a prostate 

cancer intracardiac injection model, exploration into mechanisms that could restore PPM1A 

expression or activity in tumor may provide ideas for development of therapy.  

 

2.3 LZAP as a potential regulator of PPM phosphatase activity toward LZAP-associated proteins  

In chapter 3, we described that in cells with decreased PPM phosphatase expression (Wip1 or 

PPM1A) LZAP has diminished ability to inhibit target protein phosphorylation (p38 and RelA 

respectively).  Conversely, PPM phosphatases have diminished activity to dephosphorylate targets in 

cells with depleted LZAP (Fig. 3.5 B and Fig.3.7 A and B). Together, these data suggest that LZAP 

and PPM phosphatases are, at least partially, dependent on each other to regulate target protein 

phosphorylation. Mechanistically, at least for p38, LZAP increases association of Wip1 with p38 

potentially by directly bridging these proteins since LZAP binds both Wip1 and p38. Based on these 

data, the current working model is that LZAP facilitates protein dephosphorylation through 



 

 

 

109 

increasing the binding of phosphatase to substrate. This model is supported by the results of Wip1 

and PPM1A in vitro phosphatase assays revealing that while LZAP increased PPM mediated 

dephosphorylation of full-length substrate, LZAP had no effect on dephosphorylation of peptide 

substrates which, due to the short sequence, probably lack the structure for LZAP to bind. 

Experiments with finer tuned concentration of each component in the reaction will be performed to 

test this working model.  

Because we do not have LZAP mutants that lack binding ability toward PPM phosphatases or 

substrates, we have not been able to directly test the requirement of LZAP binding to increase 

dephosphorylation. LZAP self-association combined with the absence of cells lacking LZAP 

expression has increased the difficulty of binding domain mapping.  Generation of a new conditional 

LZAP knockout mouse and experiments where mutant LZAP and binding proteins are created by 

IVT or in bacteria should help with these inquiries.   

The interplay and role of LZAP in regulating RelA in the presence of PPM1A is slightly different 

compared to p38 in the presence of Wip1. Although we showed that: PPM1A is a RelA phosphatase, 

LZAP binds RelA and decreases RelA phosphorylation, and  LZAP and PPM1A partially depend on 

one another to inhibit RelA phosphorylation, we did not observe RelA-PPM1A binding or LZAP-

PPM1A binding in co-immunoprecipitation experiments; however, PPM1A was detected as an 

LZAP-associated protein by LC-MS/MS. LC-MS/MS may be more sensitive compared to antibody-

based immunoblotting, which could explain why we saw PPM1A in the LZAP co-IP experiment by 

LC-MS/MS but not by SDS-PAGE and immunoblotting. To determine if the working model is a 

unifying mechanism for LZAP, we need to show more evidence of LZAP-PPM1A interaction and 

LZAP regulated PPM1A-RelA interaction, which may be transient interactions.  A typical binding 

constant for a tight interaction (for example, antibody–antigen or protease–protease inhibitor) is 10
-12

 

to 10
-9

M, yielding a half-life of 12 min–19 h and facile isolation by co-purification. A typical binding 

constant for a transient interaction is 10
-5

–10
-6

M, which yields a half-life of 0.1–1 s, which is a 
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typical half-life of an enzymatic reaction
194

. These transit times hamper co-purification and co-

crystallization and require other methods to detect protein-protein interaction. Cross-linking was 

used to identify RelA interaction with PP2A, another RelA phosphatase, since PP2A could not be 

detected by RelA immunoprecipitation in the absence of cross-linker
43

. To better define the 

interaction of PPM1A with RelA, we will treat cells with cleavable or non-cleavable cross-linker 

then perform co-immunoprecipitation of RelA complexes and examine to determine if PPM1A and 

and/or LZAP can be detected. Recently, a PPM1A knockout mouse was created and reported by 

Yang et al.
195

. PPM1A-/- null mouse embryonic fibroblast cells will be a useful tool to test the 

molecular mechanism of the dependency of LZAP on PPM1A. Without endogenous wild-type 

PPM1A, it is easier to determine the interaction between LZAP and PPM1A by ectopic expression of 

mutants of PPM1A. Soft agar assays will be used to determine transformation of wild-type and 

PPM1A-/- MEFs with or without siRNA knockdown or ectopic expression of LZAP and with 

oncogenic stimulation.. Human cancer cell lines with LZAP and PPM1A stable double knockdown 

by shRNA could also be used to test for xenograft tumor formation and growth as well as tumor cell 

metastasis following intravascular injection. 

 

2.4 Regulation of LZAP expression, post-translational modification and stability 

2.4.1 LZAP promoter regulation 

Yarbrough lab found that LZAP is lost in 30% of head and neck squamous cell carcinomas 

(HNSCC) 
110

, but the mechanism(s) for the LZAP loss remains unknown. No genomic alteration (e.g. 

deletion mutation or point mutation) of LZAP has been identified including TCGA database searches, 

suggesting that epigenetic mechanism(s) are likely responsible for diminished  expression of LZAP. 

Studies to determine LZAP promoter regulation including identification of transcription factors and 

co-factors responsible for LZAP gene transcription and promoter methylation may shed light on 

regulation of LZAP expression.  
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Interestingly, NF-κB and p53 binding sites were predicted in the LZAP gene promoter region (-20 

kb to +10 kb relative to the transcription start site, SABioscience, Champion ChIP Transcription 

Factor Search Portal) (Fig. 5.1). We reported that LZAP regulates NF-κB
110

 and p53
112

 activity. It is 

possible that both transcription factors have feedback regulation of LZAP expression so the 

dysregulation of NF-κB or p53 in cancer cells might not only be the results of LZAP loss but also 

function to further suppress LZAP expression. Chromatin immunoprecipitation (ChIP) assay will be 

the first step to determine if NF-κB or p53 binds to LZAP promoter region followed by cloning the 

predicted binding region(s) in the LZAP promoter to luciferase reporter construct to measure the 

effect of NF-κB or p53 on transcription. Histone acetylation status in this region will be evaluated by 

ChIP and HDAC inhibitors will be used to treat cancer cells to determine if it will increase LZAP 

expression.  

  

Fig. 5.1 Relevant transcription factor binding sites in LZAP gene promoter (predicted by 

SABiosciences' Text Mining Application and the UCSC Genome Browser) 

Figure 5.0.1 Relevant transcription 

factor binding sites in LZAP gene 

promoter 
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DNA methylation, occurring at cytosines in CpG dinucleotides, is a potent mechanism of 

transcriptional repression. CpG islands are defined as DNA sequences that contain CpG 

dinucleotides at a frequency that is significantly higher than expected for a random distribution based 

on the base composition of the mammalian genome
196

. Many tumor suppressor genes (TSGs) 

including p14
ARF

 and p16
INK4A

 have their promoter situated in a CpG island and are silenced by 

aberrant methylation in cancer, which appears to be a significant pathway for TSG inactivation in 

neoplasia
197

. There are two predicted CpG islands located in -1.5kb to 0.5kb region of LZAP gene 

(predicted using MethPrimer). FaDu cells express the lowest level of LZAP protein among the 13 

HNSCC cell lines tested. To determine if the CpG island in LZAP is methylated, bisulphite 

sequencing will be determined.  

 

2.4.2 Phosphorylation sites in LZAP 

Here, we showed that LZAP is a phosphoprotein and our data suggest that PPM phosphatase 

Wip1, PPM1A and PPM1B may dephosphorylate LZAP at amino acid residues S91 and T237. To 

explore the phosphorylation sites of LZAP in vivo, liquid chromatography and tandem mass 

spectrometry (LC-MS/MS) will be performed on immunoprecipitated Flag-tagged LZAP affinity 

purified after expression in 293T cells using Flag M2 gel (Sigma). We used this system to detect 

LZAP-associated proteins and have determined that more than 90% of LZAP is covered by MS data, 

including all conserved potential phosphorylated residues. Phosphorylation will be maximized by 

inhibition of phosphatases during the last 1 hour of cell growth using peroxovanadate 

(vanadate/H2O2 mixture) and calyculin A and/or through use of Wip1-/- MEFs. Some 

phosphorylation sites (especially clusters of sites) can be very challenging to the LC-MS/MS method 

due to limitations in enzyme specificity and because of the potential for some phospho-groups to be 

especially labile in the gas phase (most often through beta elimination of T-phos and S-phos). As an 

alternative method, phosphorylation of 13 S, T or Y sites (Fig. 5.2), conservative or within SP/Q, 
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TXY motif, as well as sites identified in LC-MS/MS above will be assessed through site-directed 

mutagenesis (Tyr to Phe, Ser to Ala, and Thr to Ala) and 2D gel electrophoretic mapping of LZAP 

tryptic phospho-peptides. In case a single mutant does not inhibit phosphorylation, multiple 

simultaneous mutants will be made to identify critical sites of Ser, Thr, and Tyr phosphorylation. 

Phosphorylated residues will be identified by comparing wild-type and mutant LZAP tryptic 

phospho-peptide maps. Digestion of LZAP by trypsin should yield 26 peptides containing 

Ser/Thr/Tyr residues 8 of which contain the 9 highly conserved sites mentioned above. In vivo 
32

[P]-

phospho-labeling followed by immunoprecipitation, SDS-PAGE and autoradiography will be 

performed on an LZAP mutant containing all identified phosphorylation sites to verify results from 

LC-MS/MS and phospho-peptide mapping and to determine if all phospho-acceptor sites of LZAP 

have been identified.  Data from mass spectrometry may identify phosphorylated sites that are not as 

evolutionarily conserved as those that are chosen for initial analyses. Likewise, mutational analyses 

using phospho-peptide mapping can determine which Ser, Thr, or Tyr residues in tryptic fragments 

are phospho-acceptor sites.   

 

 

  
Fig. 5.2. Potential phosphorylation sites on LZAP.  Human LZAP protein sequence was 

analyzed using NetPhos 2.0 and GPS 2.1 to identify potential phosphorylation sites. 

Evolutionarily conserved potential phospho-Thr (circle), Ser (square), and Tyr (triangle) are 

indicated above the line representation of LZAP. Potential kinases are listed above and 

potential Wip1 targets below target residues. 

 



 

 

 

114 

Sequence analyses of identified phosphorylation sites of LZAP will provide insight into kinases 

and phosphatases that may regulate LZAP phosphorylation. Once phosphorylation sites of LZAP are 

identified, phospho-specific LZAP antibodies can be created to those phospho-acceptor residues that 

alter LZAP activity. These antibodies will be critical for correlation of LZAP phosphorylation and 

activity.  

Once phosphorylation sites of LZAP are identified and confirmed by mutagenesis, LZAP mutants 

targeting identified phosphorylated sites will be examined to determine consequences on LZAP half-

life, subcellular localization, and association/activity toward RelA, Chk1/2, and p38 using techniques 

as described in chapter II-IV above. Mutants that alter LZAP stability or activity will provide insight 

into phosphorylation-dependent regulation of LZAP. 

 

2.4.3 LZAP post-translational modification by ubiquitin or ubiquitin-like conjugating systems 

LZAP is ubiquitinated and binds to components of an ubiquitin-like conjugating (ufmylation) 

system (UFM1, UFC1 and KIAA0776). Consistent with  our data, Wu et al. showed LZAP was a 

stable protein that was protected from  proteasome-mediated degradation unless KIAA0776 was 

depleted
119

. Since both ubiquitin and UFM1 are conjugated to lysine residues, it is possible that the 

two compete for the conjugating sites on LZAP. In this scenario, UFM1 conjugation would protect 

LZAP from ubiquitination-mediated proteasomal degradation. Experiments to measure the level of 

UFM1 conjugation on LZAP and the role of ufmylation in regulation of LZAP protein stability 

would be interesting, but to date studies examining physiological target(s) and biological functions 

of ufmylation remain largely undefined. Recently, components of the ufmylation system were shown 

to be transcriptionally up-regulated in HCT116 (colon cancer cell line), HepG2 (hepatocellular 

carcinoma cells) and MEFs by disturbance of the ER homeostasis and inhibition of vesicle 

trafficking
198

 and similar results were reported in pancreatic cells
118

. Interestingly, LZAP was shown 

to be anchored to ER by KIAA0776, the E3 ligase of UFM1
121

 and another LZAP binding protein 
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C20orf116 /DDRGK1 was reported to be a target of ufmylation and to reside in the ER
123,118

. 

KIAA0776 and LZAP have been implicated in ufmylation of endogenous Ufm1 targets and 

depletion of either KIAA0776 or LZAP resulted in unfolded protein response, an ER stress response 

activated in response to an accumulation of unfolded or misfolded proteins in the lumen of the 

endoplasmic reticulum suggesting that LZAP and KIAA0776 might be involved in normal ER 

function through regulation of ufmylation
198

. Our data suggest that endogenous LZAP localizes 

preferentially in the nucleus and para-nuclear regions. It will be interesting to determine 1) if LZAP 

exerts different functions based on its subcellular localization, 2) if LZAP plays a similar role in 

ufmylation as it does in target protein phosphorylation by binding and introducing the substrate to 

the enzyme responsible for the specific post-translational modification, and 3) if the role of LZAP in 

normal ER functions makes LZAP indispensable in the early vertebrate embryonic development. 

 

2.4.4 Additional post-translational modifications of LZAP 

In addition to phosphorylation and ubiquitination, there are many types of PTM that can also 

regulate protein activity, stability and cellular localization . Specific antibodies are available for 

many known PTMs and sites; however, it is not practical or possible to localize unknown PTM sites 

by immunoblotting. Recent advances in mass spectrometry have increased the power of these 

techniques to identify protein post-translational modifications including: phosphorylation, 

acetylation, methylation and nitration.  Recently, tyrosine nitration has been explored using 

electrospray ionization-tandem mass spectrometry using electron capture dissociation
199, 200

. Non-

biased identification of lysine acetylation
201

, protein oxidation
202

 and sumoylation
203

 can be 

efficiently performed using high performance liquid chromatography tandem MS analysis. An 

unbiased approach to determine modifications of LZAP following alterations in subcellular 

localization (as was seen with expression of Wip1, Fig. 3.6) or following cellular stress or following 

inhibition of the proteasome will provide further insight into mechanisms of LZAP regulation.  
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