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CHAPTER I 

 

INTRODUCTION 

 

Children’s Resources for Causal Inferences about Mechanics  

The workings of the physical world are governed by many principles that seem to be 

understood by children from very early ages. For instance, multiple solid objects cannot 

occupy the same space, or move through one another; in addition, any changes in their 

movements are the result of internal or external forces (e.g., collisions, gravity). Some features 

of children’s early causal reasoning suggests its potential as a resource for understanding the 

mechanisms of physical systems. 

The research literature on infants’ conceptions of the properties of physical objects 

has significantly increased in the past two decades and demonstrates that even infants have 

intuitions about cause and effect relationships that help them anticipate how their physical 

environments work (Baillargeon, 1994). For instance, one class of study addresses young 

children’s intuitions about object permanence and solidity. By their fourth month, infants 

anticipate that solid objects cannot interpenetrate and continue to exist over space and time, 

even when out of sight. Baillargeon (1987a; Baillargeon, Spelke, & Wasserman, 1985) 

presented infants with a flat barrier swinging through 180-degrees of rotation on a surface, 

such as a table. Infants watched the 180-degree event several times until they became 

habituated to the stimulus. They were then shown a small, solid object placed behind the 

barrier in a way that would prevent the barrier from swinging through the full 180-degrees. 

Infants looked longer at displays in which the barrier appeared to travel through the full 180-



2 

 

degrees (i.e., impossibly going through the object) than at displays in which the barrier 

stopped at a place consistent with assumptions of object solidity and permanence. These 

findings seem to suggest that infants were surprised by the impossible condition. In other 

research, infants looked longer when a vertically dropped object seemed to end up in a 

position that implied it must have moved through an intervening, but occluded solid platform, 

indicating that they had seen an event that violated their expectations (Spelke, 1991). 

Although notions like the solidity of objects are in place very early, understanding of 

the physical world continues to develop over time. For example, young infants are sensitive 

only to large and obvious conflicts between the barrier and obscured block and do not notice 

smaller discrepancies, such as when the barrier stops 30 degrees too early (Baillargeon, 1995). 

Thus, they have not calibrated the geometry of physical events with their consequences. 

Similarly, Spelke and Kyeong (1992) showed that the development of an appreciation that an 

unsupported object will fall down also takes time. Irrespective of how quickly infants gain 

intuitions about the natural and physical world, there is agreement that, by the end of the first 

year, they have causal expectations consistent with many principles that govern the behaviors 

of physical objects. 

In spite of these results, there are good reasons to doubt that these causal attributions 

about mechanical systems that infants exhibit are identical to those of adults. Infants’ 

knowledge is probably intuitive and implicit, and is almost certainly not available to reflection 

in the same way that an older child’s knowledge is. Researchers have tried to determine how a 

one-year-old’s mental representations of the world can best be characterized. Leslie (1984) has 

investigated whether an infant’s ability to anticipate the causal behaviors of physical objects 

can be interpreted as having beliefs like those of an adult. Ongoing research may clarify not 
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only how older children’s physical knowledge becomes more explicit but also how that explicit 

knowledge interacts with earlier intuitive forms. Leslie (1982) has raised the possibility that 

young children have predisposed sensitivities to the behavior of physical objects that bear little 

relation to how adults make causal attributions. 

Given infants’ rich causal sensitivities about the properties of physical systems, it may 

seem unusual, but it is not altogether unexpected, that research has concluded that adults have 

difficulty making causal attributions about the mechanisms of similar systems. In particular 

adults have difficulty reconciling their intuitions about cause and effect with the forms of 

mechanistic explanations valued by disciplines. For example, Carmazza, McCloskey, and 

Green (1981) showed that college students typically did not correctly predict the trajectory of a 

metal ball suspended by a string, moving in an arc as a pendulum, after the string was cut, even 

when these students had taken college level physics courses. This gap between findings of 

early competency and later struggle suggests that our accounts of the development of this form 

of thinking are incomplete. Carmazza and colleagues argue that adults hold consistent and 

erroneous beliefs about the physical world, and that many of these beliefs are highly resistant 

to change by instruction. Much of that literature, especially in mechanics, has focused on high 

school and college students (Carmazza, McCloskey, & Green, 1981; Clement, 1982; Minstrell, 

1983). There have been many fewer studies of younger preschool or elementary schoolchildren 

(Ioannides & Vosniadou, 2002).  

There may, however, be more connection between the early infancy research and the 

later “misconceptions” research than has been acknowledged. For one thing, viewing adult 

forms of reasoning as misconceptions may be misleading (Smith, diSessa, & Roschelle, 1993). 

diSessa (1993), for example, argues that everyday physics is better thought of as both a large 
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and diverse number of low-level explanatory components that are evoked in different contexts. 

He further characterizes “misconceptions” as perfectly valid ideas that are used in 

inappropriate contexts. In addition, there are many areas where students’ causal intuitions 

accord with formal principles of mechanical reasoning. For example, although students may 

not perceive the balance of forces when considering a book resting on a table, they do when 

considering a book resting on an outstretched hand. Thus, neither students nor adults are as 

devoid of positive intuitions about cause as the misconceptions literature suggests. 

In general, little of the literature addresses the forms of reasoning about causal 

mechanism within STEM disciplines that emerge between the time when individuals enter 

school (i.e., age five) and the time they exit (i.e., high school and adulthood). Understanding 

the development of these forms of reasoning requires more than an understanding of mere 

beginning and endpoints. Moreover, good instruction for elementary and middle school 

students should capitalize on their naïve causal reasoning about these physical principles as 

educators engage students in causal explanations of physical mechanisms. To achieve a longer-

term portrait of causal reasoning about mechanisms, this dissertation study focuses on the 

reasoning of elementary school students, middle school students, high school students, lay 

adults, college undergraduates not enrolled in the hard sciences, and college undergraduates 

majoring in engineering. All of these populations were asked to make predictions (i.e., causal 

attributions) about the mechanisms behind the motion of levered machines. Levered machines 

are ubiquitous in the designed world (and, as well, in states’ science standards). The predictions 

were used as data for validating an assessment system that characterizes how people think 

about inspectable machines.  
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Mechanistic Reasoning about Simple Machines  

 

Mechanistic explanations are clear descriptions of how systems work based on physical 

laws at specified levels of description (Glennan, 2002). When reasoning about levered systems, 

mechanistic reasoning indicates an understanding of the “mechanisms” involved in the 

transmission of force through the system components; the transmission of forces occurs 

through the push-pull interactions of the connected levers. This research focuses on levered 

machines because they provide access to an important form of disciplinary reasoning in science 

and engineering (i.e., mechanistic reasoning) through their “simplicity” (i.e., all machine parts 

and mechanisms are visible and inspectable). Causal reasoning about mechanism, or 

“mechanistic reasoning,” is essential to understanding the ways things work in both natural and 

designed systems; accordingly, mechanistic explanation is an important practice to promote in 

STEM (Science, Technology, Engineering, and Mathematics) disciplines. Mechanistic 

explanations are considered complete when they have “bottomed out”; that is, when 

descriptions of lower-level mechanisms are irrelevant to the explainer’s current goals or 

interests (Machamer, Darden, & Craver, 2000). For instance, the fields of molecular biology 

and neurobiology do not typically regress to the quantum level of description to explain 

chemical bonding. It is important for students (as well as adults) to learn to reason at levels that 

are appropriate for their particular goals.  

Mechanistic reasoning involves not only associating causes with effects within specific 

systems (in particular domains) but also describing the processes responsible for these 

associations (Shultz, 1982). By focusing on the processes that produce cause-effect 

relationships, mechanistic explanations take into account how component entities affect one 
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another (Machamer, Darnden, & Carver, 2000). Machamer, et al., describe domain general 

mechanistic causal schemas as “descriptions of mechanisms [that] exhibit productive 

continuity without gaps from the set up to terminal conditions” (p. 3).  

In this study, causal mechanism is addressed within specific domains, systems, and at 

particular levels of description. The study’s foci are the resources individuals have for 

mechanistic reasoning, how these resources can be coordinated, and the extent to which this 

can be assessed within one inspectable system.  

Although children have resources for making causal attributions, they often ignore the 

very features of a mechanism that are critical to its function. This noticing (or lack of noticing) 

is context specific (diSessa, 1993), and the features of the mechanisms children tend to 

perceive are critical to their ability to reason mechanistically. Individuals tend to reason about 

causal mechanism in ways that are local and contextually driven. Thus, Bolger, Kobiela, 

Weinberg, and Lehrer (2012) have described “elements of mechanistic reasoning” that are 

specific to the system we have been investigating. In this case, we have been studying learning 

as students build simple toys that operate with inputs and outputs via combinations of levers. 

The diagnosis and causal tracing of these mechanistic elements (i.e., of these levered systems) 

from input to output comprise a complete causal explanation of this system (i.e., Machamer et 

al., 2000). However, one cannot necessarily perceive and diagnose the motion of a lever in one 

context and immediately perceive and diagnose all other levers’ motions in all contexts where 

they appear. Disciplining one’s perception to “see” in such a way as to diagnose lever motion, 

across lever types and arrangements, no doubt takes time and experience (Stevens & Hall, 

1998). With time and experience, these systems (i.e., simple levered machines) can become 

more generally useful for diagnosing and explaining the many simple and complex levered 
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machines in the designed world. For example, two levers and a screw are the constituent parts 

of a pair of scissors; bicycles and eggbeaters are other common examples of compound 

machines. Developing an understanding of the mechanisms within this system will hopefully 

aid children in understanding the causal mechanisms of many more systems, including both 

simple and compound machines.  

A predisposition for seeking out causal mechanism in the natural and designed world is 

valuable for inquiry in the STEM disciplines. There is evidence that focusing on mechanism is 

central to children’s development of capacities to engage in scientific explanation and 

argumentation (Bolger et al. 2012; Russ, Sherr, & Hammer, 2009).  

Regardless of the literature about early competencies, our previous studies (Bolger et 

al., 2012; Bolger, Weinberg, Kobiela, Rouse, Lehrer, 2011; Kobiela, Bolger, Weinberg, Rouse, 

Lehrer, 2011) indicate that even for simple systems, such as those we have investigated, 

constructing coherent mechanistic explanations is not trivial. Even though children have 

resources for these forms of reasoning under specific conditions (e.g., within developmental 

psychology studies where the materials are constructed to operate in obvious ways), they may 

not necessarily deploy these forms of reasoning spontaneously in unfamiliar or untutored 

contexts; this is the case because these forms of reasoning are heavily dependent on the cues 

that are provided (and attended to) when participants are considering which components are 

relevant to systems functioning. Many characteristics of simple machines, including aspects of 

their appearance, embeddedness within other components, and possibly other attributes as well, 

will likely influence the difficulty with which individuals can diagnose and causally trace their 

mechanisms. 
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In spite of the multitude of simple machines in our culture, most individuals continue to 

find explaining their causal mechanism challenging (Bolger et al., 2012; Bolger et al., 2011; 

Lehrer & Schauble, 1998; Metz, 1985; 1991). In their studies of reasoning about gear trains, 

Lehrer and Schauble as well as Metz explored children’s tendencies to use causal reasoning to 

explain visible mechanisms (i.e., in these cases, gears). Lehrer and Schauble compared 

explanations of gear trains by children in grades 2 and 5 and found that both age groups knew 

that contact between gears determined output direction and speed of the final gear in a train. In 

addition, some children also mentioned the push and pull interaction among teeth of the gears 

to explain the gears’ coordinated motion. These explanations included causal mechanistic 

tracings of the trains from input to output, involving gears, gear size, and the connection of 

gear teeth. However, most children did not mention the gear teeth when explaining why gears 

must be connected to transmit motion. In fact, even when asked, a significant number of the 

younger children provided no mechanism at all to explain the motion of the gear trains. For 

example, when children were asked to explain the motion of machines like eggbeaters (Lehrer 

& Schauble, 1998) they tended not to examine the machines and ignored the intermediate 

components (e.g., the gears). Children rarely traced the transmission of motion from the input 

through each of these intermediate parts to the output. In addition, students more frequently 

noticed structural features of the machines (e.g., how relevant parts of the system of levers 

were organized without attention to motion) rather than how motion was transmitted within the 

system. Even when presented with opportunities to manipulate mechanical components, 

children did not tend to spontaneously search for mechanistic explanations. They infrequently 

explained the mechanism governing the causal relations that they discerned. Instead, children 
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most frequently noticed the perceptual features of the linkages (e.g., overall appearance, 

individual parts or motions). 

In our previous work on toys with levers (Bolger et al., 2012; Bolger et al., 2011) most 

students had difficulty explaining the mechanism of the system with which they worked. In 

order to both develop and support children’s mechanistic reasoning we focused on mechanical 

linkages consisting of inputs and outputs (i.e., systems of levers and connecting 

pivots/fulcrums) with no components hidden from view. The intent was to make the linkages 

accessible to children, and, presumably, to provide optimal candidates for eliciting mechanistic 

reasoning and explanation. We developed and verified mechanistic elements from both our 

own sense of their workings and those of professionals in engineering and physics. The 

elements, were (a) linked direction (i.e., attention to the coordinated direction of the input and 

output of a linkage, “When you push the input up, the output goes down”), (b) rotation (i.e., 

attention to the rotary motion of the levers, “The output goes around”), (c) lever arms (i.e., 

attention to the coordinated opposite motion of the two lever arms, “When this side [of the 

lever] goes up, this side goes down”), and (d) constraint via the fixed pivot (i.e., attention to the 

causal relation between the pivot being fixed to the board and the resultant motion, “Because 

the brad is stuck to the board, the link is going to go that way”). These mechanistic elements 

accorded with the children’s predictions and explanations of the machines’ motions. We 

characterized mechanistic reasoning as comprised of these mechanistic elements for these 

simple levered systems (Bolger et al., 2012). Although all children’s explanations 

demonstrated some of these elements of mechanistic reasoning, few were able to orchestrate 

these elements to constitute “causal mechanistic tracing.” Causal mechanistic tracing was 

determined according to analysis that determined whether children sequentially animated the 
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components of linkages. First, it was determined whether they referred sequentially, in talk or 

gesture, to each of the links in linkages. Second, it was determined whether a correct 

determination, in talk or gesture, was expressed for the direction of motion for each component 

in the sequence. Within a tracing episode, children must have diagnosed all mechanistic 

elements. 

One student consistently supported the construction of such a complete mechanistic 

explanation through: (a) latching mechanistic elements together (e.g., how the constraint via 

the fixed pivot caused the rotation of the output link), (b) using linking words (e.g., because, 

and so, and then so) to coordinate entities and properties (e.g., “Because there’s two fixed 

brads this time (constraint via the fixed pivot), and so when you push it, these [the fixed pivots] 

will stay and and then so they’ll [the two horizontal links] kind of twist” (rotation), and (c) the 

gesturally tracing the motion of the system (Bolger et al., 2012). This performance, although 

rare in our sample, suggests that tracing is not out of reach of elementary-aged students. 

 

Assessment of Mechanistic Reasoning about Simple Machines 

 

The purpose of the current study was to develop an assessment instrument that is 

capable of characterizing mechanistic reasoning about basic mechanical systems (i.e., simple 

levered machines). Ideally, this assessment will play a role in the characterization and 

investigation of children’s mechanistic reasoning without a complete reliance on one-on-one 

interviews, which require a significant amount of time, personnel, and materials to conduct.  

There are presently no assessments that (1) leverage children’s early capacities to 

reason causally about properties of mechanical objects and (2) promote a highly profitable 
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disciplinary form of reasoning. At this time the most widely used assessment of ideas about 

force and motion is the Force Concept Inventory (FCI) (Hestenes, Wells, & Swackhamer, 

1992). This instrument assesses how well high school and college students are prepared for 

introductory physics courses. It qualitatively discriminates between students who hold 

Newtonian compared with more naïve conceptions of mechanical force. The FCI takes a top-

down perspective on physics instruction. That is, it measures how closely students’ conceptions 

accord with those of Newtonian principles by asking students to reason about those principles 

in the context of real world situations. For example, the FCI assesses individuals’ 

understandings of Newton’s Third Law in the context of a collision of two marbles in terms of 

a “conflict metaphor” in action. In contrast, the assessment proposed here takes a different 

approach to understanding ideas about the properties of mechanical objects. That is, it tracks 

individuals’ abilities to mechanistically parse systems of simple machines, characterizing their 

forms of reasoning as they are observed without trying to fit them into a Newtonian framework. 

This assessment leverages children’s early capacities to make sense of forces such as pushes 

and pulls, force vectors, and geometry as an opportunity to develop their mechanical 

knowledge.  

From this perspective, introducing students to general mechanical principles through 

the causal mechanistic tracing of these simple systems may provide a foundation for the 

building of important knowledge about mechanical objects; for example, using vectors to 

consider force and motion problems. 

The assessment instrument being developed in this study assesses an individual’s use of 

the following mechanistic elements (i.e., machine mechanisms) common to many simple and 

compound machines: (1) linked direction, (2) rotation, (3) lever arms, and (4) constraint via 
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the fixed pivot. The instrument assesses children’s ability to diagnose these mechanistic 

elements as they attempt to predict and explain the operation of these levered systems from 

input to output.  

This assessment is being designed using IRT modeling that was outlined by Mark 

Wilson and the Berkeley Education Assessment Research (BEAR) Center. In psychometrics, 

item response theory (IRT), also known as latent trait theory, strong true score theory, or 

modern mental test theory, is a paradigm for the design, analysis, and scoring of tests, 

questionnaires, and similar instruments measuring abilities, attitudes, or other variables. It is 

based on the application of related mathematical models to testing data.  

Design of the assessment system was guided by Wilson’s (2005) “building blocks” for 

developing assessments. Wilson proposes that an assessment instrument should be precipitated 

by a theory of the structure and progression through the knowledge, ideas, or reasoning to be 

measured. This theoretical structure/progression is referred to as a construct or a progress 

variable. The construct is the first building block of the system. This study investigates one 

progress variable (i.e., causal mechanistic tracing) and defines learning performances that 

represent benchmarks of knowledge and skill.  

The remaining three building blocks include item design, the development of 

“exemplars” (i.e., scoring guides that are specific to different construct benchmarks), and the 

modeling of participant responses. 

 

Research Questions 

I hope to answer the following research questions through the development and 

administration of this assessment: (1) Can mechanistic reasoning be assessed via a standard 
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assessment instrument? And, (2) Can this assessment provide insight into the features of 

machines that are most likely to disrupt an individual’s capacity to reason mechanistically?  

Considering the resources even young children have to reason about causal mechanism, 

this assessment diagnoses which elements (Bolger et al., 2012) students are able to employ, 

how frequently they employ them, and what kinds of machine characteristics make mechanistic 

reasoning difficult. In addition, it assesses the extent to which participants can causally trace 

the mechanistic elements from a machine’s input to output (i.e., participant uses and causally 

connects all four elements). If the assessment system can measure children’s abilities to 

diagnose the mechanistic elements of these simple inspectable machines, it may be profitable 

to next attempt to extend the system to a wider variety of machines (e.g., compound machines), 

because of the ubiquity of both simple and compound machines in our culture. 

An important feature of this assessment is its capacity to make qualitative distinctions 

between individuals who do and do not causally connect mechanistic elements (e.g., “Because 

[causally connecting the mechanistic elements of constraint via the fixed pivot and rotation] the 

pivot is fixed to the board [constraint via the fixed pivot], this link will rotate [rotation]) as they 

explain the motion of these simple systems. This distinction has not been fully explored in our 

previous research because of the small number of individuals who causally connected the 

mechanistic elements. The larger sample explored here may provide further information about 

what makes this kind of thinking challenging.  
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CHAPTER II 

 

CONSTRUCT MAP DEVELOPMENT AND ITEM DESIGN:  
MECHANISTIC REASONING ABOUT SIMPLE LEVERED MACHINES 

 

The development of an assessment begins with three steps (i.e., “building blocks”; 

Wilson, 2005). First, the progress variable or construct is specified. The most important 

features of a construct are: (1) a coherent and substantive definition of the content of the 

construct; and (2) an ordering of ability or skill levels from lowest to highest. Research and 

theoretical considerations are presented to support these levels. Next, the item design is 

described. Finally, item “exemplars” are introduced. Item exemplars are scoring guides that 

map item responses to the construct map.  

 

Specifying the Progress Variable  

 

An assessment design begins with the specification of the construct or progress variable 

(Wilson, 2005). The specification of this progress variable is based on an analysis of the 

literature on reasoning about the workings of simple mechanical systems. This research 

focused on what was more and less difficult for children to understand when diagnosing these 

systems in one-on-one interviews (Metz, 1985; 1991; Lehrer & Schauble, 1998; Bolger et al., 

2012; Bolger et al., 2011). The analysis resulted in a distinct dimension of mechanistic 

reasoning about levered systems (in both instructional and everyday contexts), which is called 

“causal mechanistic tracing.” This construct refers specifically to an individual’s mechanistic 
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parsing of simple levered systems. It includes the four mechanistic elements described in 

Bolger et al. (2012) (linked direction, rotation, lever arms, and constraint via the fixed pivot) in 

addition to one additional element, tracing. These elements are ordered as levels in the 

construct.  The most sophisticated level, tracing, requires that a participant correctly diagnose 

and causally connect all mechanistic elements within a machine, from input to output, without 

gaps. The five construct levels, descriptions, and examples are listed in Table 2-1. 
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Table 2-1 

Construct map: Causal mechanistic tracing. 

Level Mechanistic Element Mechanistic Element 

Descriptions 

Mechanistic Element Example 

5 Tracing Participant predicts all 

the mechanistic 

elements correctly. 

 

4 Constraint via the Fixed 

Pivot 

Participant correctly 

draws the opposite 

and/or rotary motion of 

the two closest points on 

opposite sides of the 

fixed pivot. 

 

3 Lever Arms Participant draws 

arrows with opposite 

directions from stars on 

opposite sides of a 

lever’s arms. 
 

2 Rotation Participant draws arced 

paths (they may show 

the incorrect direction). 

However, the location 

of these paths must 

reasonably approximate 
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fractions of circles either 

centered around the 

fixed or floating 

pivot(s). 

1 Linked Directions Participant draws the 

correct motion of input 

and output(s). 
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The structure of this construct is motivated by previous research conducted with 

interview methodologies (Bolger et al., 2012). All the construct levels (i.e., linked direction, 

rotation, lever arms, constraint via the fixed pivot, and tracing) were designed to capture, 

within this paper-and-pencil assessment, how students had previously reasoned about the 

physical systems in the interview contexts. In the previous research, students found it more 

difficult to recognize some of these mechanistic elements, in comparison to others. In addition, 

it was more difficult for students to causally trace through the machines (from input to output), 

citing all the mechanistic elements, than to simply mention each of the elements, without fully 

explaining how motion was transmitted through the elements to predict the motion of the 

machines. 

The relative difficulty of mechanistic elements. This construct, which is called “causal 

mechanistic tracing,” indicates the differential difficulty of diagnosing machine motion with 

respect to the four mechanistic elements, based on the frequency with which they were cited 

within student explanations as they described and explained the motion of the machines 

(Bolger et al., 2012). In addition, the ordering of the construct levels is based on theoretical 

considerations concerning the machines’ workings. These two considerations for the ordering 

of the mechanistic elements will be presented. The mechanistic elements are ordered from least 

to most difficult as follows: linked direction, rotation, lever arms, and constraint via the fixed 

pivot. The mechanistic elements that are most related to correct prediction were not necessarily 

those cited most frequently by students. For example, constraint via the fixed pivot is less 

frequently used in explanations than the other mechanistic elements, but is highly associated 

with correct prediction. This is because the fixed pivot is the principal mechanism responsible 
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for lever motion. If a participant understands how the fixed pivot constrains the motion of the 

link, predicting its direction requires only noticing where the input is being applied. 

Frequency of mechanistic elements cited within children’s explanations. The 

construct levels follow from the overall frequency of mechanistic elements in children’s 

explanations in our previous work (Bolger et al., 2012; Bolger et al., 2011) and are determined 

by considering both each element’s salience and its difficulty. In these studies, elements could 

be cited in the explanation of every machine. More frequently cited elements were presumed to 

be easier to notice than less frequently cited elements; we did not count the citation of a 

specific mechanistic element more than once per machine. Of course, it is possible that failure 

to mention a mechanistic element may have been due to considering it obvious. In addition, it 

could be argued that a mechanistic element may be less salient, but not necessarily more 

difficult. In these prior studies, these possibilities were minimized by the design of the flexible 

interviews and the machines. For example, students were probed in order to elicit unspoken 

understandings about mechanistic elements. In addition, all of the machines were composed of 

visibly connected levers so that all their mechanistic elements were easily inspectable. 

Linked direction was the element most frequently cited for describing or explaining 

machine motion (Bolger et al., 2012). It was used to explain the motion in 46% of the machines. 

Rotation, lever arms, and constraint via the fixed pivot were cited in fewer than 20% of 

machines. This order of relative frequency was also reflected in data from a second previous 

study (Bolger et al., 2011) in which pretest data were analyzed from three students who 

exhibited a range in their ability to predict the output direction, given a specified input. These 

cases similarly showed that linked direction was the most frequently cited element, followed by 

rotation, lever arms, and constraint via the fixed pivot. 
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Frequency of mechanistic elements cited within children’s predictions. The ordering 

of the mechanistic elements within the construct (that is, our conjectures about their relative 

difficulties) is also informed by the frequency with which they were cited by children to 

correctly predict machine motion in previous research. Our previous work showed that students’ 

reasoning about different mechanistic elements (Bolger et al., 2012) enabled them to make 

correct predictions of machine motion (i.e., the direction of the output for a given input). For 

instance, if a child’s explanation (either before or after moving the machine) did not include 

any mechanistic elements, he was unlikely to predict correctly, because these mechanistic 

elements constitute the components of a mechanistic explanation of the motion of these 

machines. Without an understanding of any of a machine’s mechanisms, it is unlikely (though 

not impossible) that a participant would be able to correctly make predictions about its output 

motion. It is also unlikely that an individual would make incorrect predictions using multiple 

mechanistic elements. Figure 2-1 illustrates the percentage of student performances that 

corresponded with a correct or incorrect machine prediction. It shows that in the research that 

preceded this study, correct predictions were associated most strongly with mentioning two of 

the elements of mechanistic reasoning, linked direction and constraint via the fixed pivot. 

Reasoning about rotation was also observed more often with correct prediction (Bolger et al., 

2012). 
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Figure 2-1. Correct prediction by mechanistic element.  

 

Theoretical considerations. In addition to results from studies conducted with students 

in one-on-one interviews (Bolger et al., 2012; Bolger et al., 2011), the ordering of the elements 

is also influenced by a conceptual analysis of the cognitive demands of variants of these tasks. 

The difficulty orderings of the mechanistic elements were theorized as follows: Linked 

direction is the easiest element because it requires people to simply notice the direction and 

causal coordination of the input and output links, without referring to a specific path. Of the 

three mechanistic elements that require individuals to recognize the causal coordination of the 

links’ motion within the system (i.e., linked direction, lever arms, and constraint via the fixed 

pivot), the cause-and-effect relationship between the direction of the input and output seems to 

be the simplest because the input and output are the machine’s most salient components 

(Lehrer & Schauble, 1998; Metz, 1991). A child must simply notice the motion of these 

components and attribute a correct direction. To reason about the mechanistic element of 

rotation, participants need to notice the paths, and not just the endpoints (Piaget, Inhelder, & 
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Szeminska, 1960) of lever motion (i.e., that they are rotary and not linear). Perceiving a link’s 

path may require greater focus and short-term memory than simply noticing inputs and outputs. 

It is more difficult to reason about lever arms than rotation because in order to reason about 

lever arms, participants must be able to view the causal coordination of the two lever arms (i.e., 

on both sides of the fixed pivot) from both a global and local perspective. It is difficult to view 

both the causally coordinated global motion of the lever and the local directed motion of each 

lever arm simultaneously. Constraint via the fixed pivot is hypothesized to be the most difficult 

mechanistic element to recognize. Those assessed at the level of constraint via the fixed pivot 

can do more than perceive regularities in machine motion; they understand the causal 

relationship between: (1) the presence of a fixed pivot, (2) the resultant constraint, and (3) the 

subsequent lever motion.  

The leveling of the construct presumes that those participants who can diagnose the 

more difficult elements (e.g., constraint via the fixed pivot) should also be able to diagnose 

those that are less difficult (e.g., linked direction). For example, a participant who explains 

machine motion by referring to the constraint of the fixed pivot (i.e., the most difficult 

mechanistic element) should also be able to explain the role of the other three less difficult 

elements. This conjecture is consistent with findings from our previous research. 

Tracing. To be assessed at the level of tracing, the highest level, participants must 

reason about machine motion by explaining the role of all of the mechanistic elements, from 

input to output. This does not mean simply diagnosing them, but also causally connecting them 

by tracing the motion of the machine from input to output; that is, indicating how pushes and 

pulls are transmitted across the machine from one element to the next. In previous research, we 

have observed only a small number of students reasoning like this (Bolger et al., 2012). 
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Once the progress variable (i.e., construct) has been specified, items can be developed. 

 

Item Design  

 

After the construct levels and associated performances were specified, twenty-seven 

assessment items were developed to elicit performances specific to each of the levels. Items are 

the smallest scored unit in an assessment. It is assumed that the performance on a specific pool 

of items should generalize to (i.e., serve as a sample of) a universe of items assessing the same 

construct levels (Kane, 1992). To more validly assess each construct level, an item pool should 

include multiple items at every level of the construct (Wilson, 2005).  

Item format. Item format is critical to item design. Multiple-choice items are preferable 

when the nature of anticipated responses is clear and limited in scope (Briggs, Alonzo, Schwab, 

& Wilson, 2006). In addition, multiple-choice items may be preferable when the respondents 

are not skilled at communicating their thinking through writing; this can often be the case with 

younger participants. On the other hand, multiple-choice items are also subject to guessing or 

testing strategies (Martinez, 1999). Open-ended, short-answer questions are more appropriate 

when the anticipated responses are more complex or less clear. Both multiple-choice and 

minimally demanding short-answer responses (e.g., which require respondents to draw 

predicted motion) have been used because of the greater ease younger individuals have in 

responding to these items (i.e., as opposed to free response items that require participants to 

express complicated ideas through extensive writing). Moreover, the short-answer response 

items were motivated by research showing that it is easier to distinguish between different 

construct levels in open-ended than in multiple-choice items (Heuvel-Panhuizen, 1994). In 
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multiple-choice items, the distinctions that can most easily be drawn are between knowing and 

not knowing. Assessments that use drawing to make inferences about learning, as most of the 

items in this study do, have not been fully explored or exploited in the field (Quellmalz, Timms, 

& Schneider, 2012). However, there is a tradition within developmental and cognitive 

psychology of using children’s drawings as ways of understanding how they are thinking. 

Balanced, meaningful, and worthwhile assessments. It is ideal for different item 

responses to span multiple construct levels within the same item, so that a respondent’s 

thinking can be more precisely diagnosed (Heuvel-Panhuizen, 1994). Each item can be 

designed to generate responses that span as many construct levels (at minimum two) as are 

present in the total number of constructs (Wilson, 2005). It is even possible to create items that 

generate responses that span the entire construct (i.e., apply to each level). For example, items 

have been developed (e.g., Causal Mechanistic Tracing Item- A1, see Appendix B) that can be 

classified on all five levels on the construct map, based on: (1) which element(s) a participant 

diagnoses and (2) whether he causally connects the mechanistic elements from input to output. 

The use of a construct map to guide item design ensures adequate construct coverage. 

Heuvel-Panhuizen (1994) describes the importance of including a variety of problem 

formats (e.g., multiple-choice, short free-response) for a balanced assessment.  

An assessment is judged to be “meaningful and worthwhile” based on item content and 

presentation. Heuvel-Panhuizen described problem format (e.g., interview item, free response 

item, multiple choice item) as a relevant consideration when designing an item. The item 

format may make reasoning tasks more or less accessible to participants. The available item 

formats and task contexts are further constrained by the assessment media (e.g., paper and 

pencil items). One might wonder whether paper and pencil items are an effective media for 
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assessing participants’ causal mechanistic reasoning about the motion of pegboard levered 

machines. Research by Hagerty (1992; 2004) and Schwartz (1995; 1999; Schwartz & Black, 

1996a; 1996b; 1999) seems to suggest that they can be. In research that asked respondents to 

reason about diagrams drawn on paper, Hagerty and Schwartz found that mechanical reasoning 

by mental simulation is analogous to the physical processes that are being simulated. However, 

in their work they were not demanding written responses. In the present research, care has been 

taken to preserve within the paper and pencil context the important elements of the levered 

machines about which the participants will reason. However, the problem context has 

undeniably changed, to some extent, what the participant is reasoning about, and therefore, 

there may be effects that are unforeseen. 

 

Cognitive Interviews 

 

Many of the paper and pencil items were adapted from interview questions used in the 

three studies previously conducted (Bolger et al., 2012; Bolger et al., 2011) with pegboard 

linkages. In some cases, flexible interviews (Ginsburg, Jacobs, & Lopez, 1998) established that 

the claims that can be made about responses to these interview items could also be extended to 

the current paper and pencil format. For example, when individuals drew rotary paths around 

fixed pivots on paper and pencil items, their talk and gesture were typically consistent with 

responses that would have been coded in our previous studies as reflecting an understanding of 

the mechanistic element of rotation.  

In spite of their advantages (e.g., efficiency, scalability), paper and pencil tasks are 

limited in the information they can provide about an individual’s knowledge. In some cases, it 
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may be difficult to determine how participant reasoning motivates the responses. To gain a 

better understanding of what the items assess, pilot cognitive interviews were conducted as 

participants worked with these items to increase our understanding of what the items assessed. 

For example, if a participant drew an arced path that was approximately centered around a 

fixed pivot, it was nonetheless important to confirm that he was reasoning about rotary motion. 

The purpose of the interviews was to provide evidence to confirm the construct validity for 

each mechanistic element.  

In these interviews, participants explained their reasoning as they responded to the 

assessment items (i.e., think-alouds). After they had completed the item, they were asked again 

to explain their reasoning. Then any remaining clarifying questions were asked. The conduct of 

these and cognitive interviews conducted during the study is further described in the Method 

section.  

Earlier small scale pilot studies suggest that paper and pencil items can be reliable 

predictors of how individuals would predict the output motion for a given input on actual 

pegboard machines. In these pilot studies, participants were presented with one sheet of paper 

showing representations of six pegboard machines. The directions read: “For each of the 

mechanisms below, draw an arrow showing how each little person [a small figure drawn to 

mark the machine’s output] would move if you PUSHED UP on the blue handle [tape 

indicating the machine’s input] (just like the red arrow shows).” A key indicated the difference 

between fixed and floating pivots. After students made these paper and pencil predictions, they 

went on to predict the motion of the pegboard machines in the one-on-one interviews. Of the 

266 total predictions made, 77% (n=204) were consistent across paper items and machine 

predictions. The mean consistency across students was 76% (median=82%, mode=83%, 
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SD=21%). This suggests that these paper items provide reliable data about how students 

perform when reasoning about real pegboard machines within flexible interviews.  

 

Developing Scoring Exemplars 

 

Once items were developed, scoring “exemplars,” (Wilson, 2005) (i.e., scoring guides 

that relate item responses to the construct map) were created. They qualitatively describe and 

provide concrete examples of all potential types of participant responses for each item, and 

associate the responses with different construct levels. An item’s exemplar, structured like the 

construct map, is ordered from the least to most sophisticated response. However, in the 

exemplar, only those construct levels relevant to that particular item are represented. 

These exemplars contain a minimum of three scoring categories: (1) the construct 

linkage code (i.e., scores for responses that link to the construct); (2) the no link code (i.e., 

scores for responses that do not link to the construct), and (3) a missing code (i.e., a score for 

missing responses). The exemplars for constructed response items often include more than one 

construct linkage code (i.e., multiple different responses that map to different construct levels). 

There are 25 items in which linked direction could be scored, 23 items in which rotation could 

be scored, 15 items in which lever arms could be scored, 16 items in which constraint via the 

fixed pivot could be scored, and 14 items in which tracing could be scored. Table 2-2, in 

Appendix C, shows the construct coverage for each developed item. 
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CHAPTER III 

 

METHOD 

 

Participants 

Table 3-1 shows the participant groups that comprise the sample. College 

undergraduates and private high school students were originally included to ensure complete 

construct coverage. However, as is explained in greater detail below, there was little variability 

in many of these individuals’ responses, because of a ceiling effect with the assessment 

instrument. All these students scored at the highest level on at least all but 2 items. Removing 

these individuals was desirable because these twenty-eight participants, 20% of the total 

sample, scored at the highest construct level on almost every item where this was possible. This 

made the most difficult mechanistic element appear easier than other elements because of the 

high frequency of responses at this level. In order to increase the variability of responses, these 

28 participants were excluded from analysis. 
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Table 3-1 

Participants 

Participants Number 

Enrolled 

Number Included 

in Analysis 

Elementary School Students 28 (female=17) 28 (female=17) 

Middle School Students 25 (female=16) 25 (female=16) 

High School Students 23 (female=5) 20 (female=4) 

University Undergraduates (Non-Science 

majors) 

26 (female=19) 16 (female=13) 

University Undergraduates (Engineering 

majors) 

28 (female=8) 13 (female=5) 

Adults (without college education) 10 (female=8) 10 (female=8) 

The elementary, middle, and high school students come from public and private 

schools in the southeastern United States. The university undergraduates come from three 

universities, two in the southeastern (one is private) and one in the mid-western (which is 

private) United States. Of the two universities in the southeastern United States, one is a highly 

ranked private university and the other is a large lower ranked public university. The university 

in the mid-western United States is a highly ranked private liberal arts college.  

These public elementary, middle, and high schools belong to Centennial Public School 

District (a pseudonym). Demographic information is presented in Table 3-2. The percent of 

children attending these three schools qualifying for free or reduced lunch ranges between 60 

to 90 from year to year.  
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Table 3-2 

Demographic information for Centennial Public School District.  

Race/Ethnicity Percentage 

Caucasian 34% 

African-American 48% 

Hispanic 14% 

Asian 3% 

Other 1% 

 

The demographic information for one of the two private schools, Wordsworth 

Academy (a pseudonym), is presented in Table 3-3. 

Table 3-3 

Demographic information for Wordsworth Academy.  

Race/Ethnicity Percentage 

Caucasian 92% 

African-American 7% 

Hispanic 1% 

Asian 1% 

Other 0% 

 

The demographic information for the other private school, University Lab Academy (a 

pseudonym), is presented in Table 3-4. 
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Table 3-4 

Demographic information for University Lab Academy.  

Race/Ethnicity Percentage 

Caucasian 75% 

African-American 11% 

Hispanic 1% 

Asian 7% 

Other 6% 

 

The undergraduate majors come from courses at the three universities as well as 

through snowball recruitment. The demographic information is presented in Tables 3-5, 3-6, 

and 3-7. 

 

 

 

 

 

 

 

 

 

 

 

Table 3-5 

Demographic information for Private Research University.  

Race/Ethnicity Percentage 

Caucasian 60% 

African-American 8% 

Hispanic 4% 
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The adults without college degrees (n=10) are 10% Caucasian and 90% African-

American. 

Individuals in the study represent various ethnic backgrounds and life experiences. 

Participants were deliberately chosen to represent a very wide variety of ages and experience 

levels. The purpose was to ensure that the entire range of the conjectured construct would be 

adequately represented with participant responses. This is important because it is impossible to 

assess the difficulty of the highest construct levels without responses at these levels. The 

participants in elementary, middle, and high school, according to their teachers, represent a 

Table 3-7 

Demographic information for Public University.  

Race/Ethnicity Percentage 

Caucasian 78% 

African-American 15% 

Hispanic 2% 

Asian 3% 

Other 1% 

Table 3-6 

Demographic information for Private Liberal Arts College.  

Race/Ethnicity Percentage 

Caucasian 76% 

African-American 5% 

Hispanic 5% 

Asian 8% 

Other 6% 
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wide spectrum of academic achievement. The undergraduates, both engineering majors and 

non-science majors, represent students along a continuum of academic success (i.e., from less 

to more highly rated universities). I conjectured that the engineering majors would perform 

well on this assessment because of the benefit of their academic engineering training. The 

adults without college degrees are likely from different populations than the other adults in the 

study (i.e., college undergraduates) and their experiences are also likely different. This 

population should increase the diversity of item responses as well as the resources they draw 

upon as they reason about the assessment items.  

Twenty-eight private high school students (n=3) and undergraduate adults (n=25; 

engineering majors=15) were removed from the sample before IRT analysis was conducted 

because there was little variability in their responses. All these students scored at the highest 

level on at least all but 2 items.  Removing these individuals was necessary because these 

twenty-eight participants, 20% of the total sample, scored at the highest construct level on 

almost every item where this was possible. This made tracing appear easier than other 

elements because of the high frequency of responses at this level. In order to increase the 

variability of responses, these 28 participants were excluded from analysis. 

 

Procedure 

 

Some of the third grade students (n=13) took the assessment after participating in 

instruction oriented around the design and construction of levered toys. These students were 

included in order to populate the sample with individuals who had some experience reasoning 



34 

 

about levered machines. The rest of the sample took the assessment uncoupled from any 

particular kind of instructional treatment.  

Each participant responded to a cognitive interview while they worked on each item. 

The total interview (i.e., assessment administration) was completed during one day and lasted 

an average of 37.5 minutes (ranging from 17 minutes to 78 minutes). Interviews were recorded 

using one camera, with a table microphone. The camera was positioned at the side of the 

participant, about one half foot away from the table, angled down to capture what he was 

looking at as well as gestures he made over the paper; the camera view is shown in Figure 3-1. 

Interview sessions were digitally rendered for further analysis. 

 

Figure 3-1. Camera positioning for cognitive interviews. 

Participants who did not take part in the instructional sequence about the design and 

construction of levered toys were given a five-minute introduction. The respondents were 

shown how a levered machine could be built with brads and linkages made from pegboard 



35 

 

(with researcher assistance). Participants were provided with two links, a pegboard, and brads, 

and then guided through the process of making a fixed and floating pivot. The purpose was to 

ensure that participants were familiar with the relevant materials and vocabulary (e.g., fixed 

pivot, floating pivot) before proceeding to the next phase of the interview, in which they 

responded to paper and pencil items that were based on the pegboard linkages.   

The paper and pencil items were presented to participants across seven forms to 

maximize the number of items to which participants could respond. There were three common 

items (or link items) across all forms so that scores and item difficulties across the forms could 

be compared. Link items are central to the process of test equating in IRT. Herein, the 

interchangeable use of alternate test forms is built to the same content and statistical 

specifications because scores and item difficulties based on different sets of items must be 

placed on a common scale. Various data collection designs and analytical procedures have 

been used for test equating, but for this assessment, the method relied on included items 

common to all test forms. This is an example of the “common-item nonequivalent groups 

design” (Kolen & Brennan, 1995).  

Elementary and middle school students completed ten items per form, while high 

school students, undergraduates, and non-college educated adults completed fifteen items per 

form. Five items were indicated in each form that elementary and middle school students were 

instructed to skip. 

Four item categories were included on each assessment: (1) Lever Arms Prediction 

(one or two items), (2) Rotation Constraint (one item), (3) Machine Prediction (six or seven 

items), and (4) Sequential Tracing (six or seven items). These categories were sampled, 

without replacement, to determine the items and their order on the assessment forms. Each 
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form began with the same relatively easy link item. This was done to check for independence 

of assessment items by comparing them to this first item. 

 

Conduct of the Interview 

 

While participants responded to each item, they were asked to: (1) read the problem 

aloud and (2) think aloud as they read and responded to each item. When the participant 

completed the item, he was asked to explain again, if necessary, the rationale for the observed 

item response based on interviewer probes. Finally, participants were asked to report any 

words that they found confusing, as well as whether there was any confusion about what the 

item was asking. The interview was conducted in this order to: (1) determine spontaneous 

thinking throughout participant experience with each item (i.e., think-aloud); (2) assess 

mechanistic reasoning that was present, but possibly not elicited during the think aloud (i.e., 

retrospective explanations) with interviewer probes; and (3) assess item validity by checking 

participant comprehension of both item instructions and the nature of item tasks. 

 

Analysis 

 

Scoring items. Each item was scored according to the exemplar developed for it. The 

exemplar levels were transformed into raw scores. Ten percent of the total items were scored 

by an outside researcher. The agreement was 85%. 

Coding talk and gesture. In order to check the construct validity of the exemplars, 

participant talk and gesture were coded according to the analytic framework used in previous 
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studies to code these mechanistic elements as participants noticed, described, and explained the 

motion of the pegboard linkages (Bolger et al., 2012). The purpose was to determine whether 

the hypothesized item outcome space was consistent with the actual participant explanations of 

the items. More importantly, it indicated whether the exemplars were sufficient for assessing 

participants’ mechanistic reasoning in a way that was consistent with our previous work. 

Defining and coding episodes. A participant’s work on one item is defined as a 

“performance.” Each performance was broken up into “codable instances” according to the two 

interview phases (i.e., “think-alouds,” conducted as participants worked with the materials and 

“retrospective reflections” determined after participants had made their initial judgments). The 

codeable instance is a logical unit of analysis because it captures the mechanistic elements each 

participant cites when responding to the two interview phases. Ericsson and Simon (1993) 

showed that providing simultaneous verbalizations (e.g., think-alouds) provides more 

consistent verbal reports of participant thinking than retrospective reports (e.g., student 

rationales for their response) because in retrospective reporting people generate inferences to 

fill out and generalize incomplete or missing memories. The written responses to the items 

were compared with what was coded during the think-alouds. Finally, the retrospective 

reflections provide insight into the resources participants may have for using mechanistic 

elements that might not have been captured by their written responses or the think-alouds. Thus, 

these responses provided data for an additional validity check of the exemplars. All codeable 

instances were coded using Nvivo 9.0 software. 

Participants’ assessments were coded according to the exemplars and compared with 

the coding of their talk and gesture (according to the analytic framework) while responding to 
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the items. This showed whether there were consistent patterns across item responses and talk 

and gesture. 

Ten percent of the total instances were coded by an outside researcher. The agreement 

was 82%. 

 

Analysis of Items 

 

Item initial analysis provided substantial information for revising the items. The 

following was determined: (1) the extent to which item responses populated all of the construct 

levels and (2) the consistency between the mechanistic elements that individuals used to 

respond to the items and those hypothesized in the exemplars.  

Construct coverage. The items elicited responses that covered the entire construct. 

However, six items were removed from the sample before IRT analysis (and after the data from 

the 28 high-responding students had been removed) because although they targeted important 

mechanistic elements, either: (1) the majority of the sample scored at the highest level(s) (4 

items) or (2) the distribution of responses was bimodal, with the vast majority of responses 

divided between the highest and lowest levels (2 items). When the majority of responses are at 

the same level, items provide limited information about that level in relation to the entire scale. 

Similarly, in items where the majority of responses are at either the highest or the lowest level, 

these items provide little information about the intermediate levels. The omitted items are 

being redesigned for future administration.  

Exemplar adequacy. All item responses could be scored according to the exemplar 

levels.  
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Descriptive Item Statistics 

 

The means of the item scores and variances were calculated and reported.  

Mean of item !. This is the average of the scores of an item for all respondents. It is 

calculated by dividing the sum of item scores of all respondents ( !!"!
! ) by the total number of 

respondents (!) as follows: 

!! =
!!"!
!
! . 

The item mean is a rough measure of performance on that item across all participants.  

Variance of item !. The variance of the above mean can be calculated by summing the 

squares of differences between the item mean and the item score from each individual 

respondent, and then dividing that sum by the total number of respondents as follows: 

!!! =
(!!"!!!)!!
!

! . 

 

The variance tells us how variable participant performance was on this item, on the 

average. 
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Item Analysis with Classical Test Theory (CTT)  
and Item Response Theory (IRT) 

 

To model the data from respondents, both CTT and IRT were considered. Although the 

two modeling approaches are generally consistent and complementary, there are a number of 

points of difference: (1) measurement errors can be obtained for each person in IRT (i.e., each 

person ability estimate has a standard error of measurement); (2) IRT provides several 

improvements in scaling items and people. IRT models scale the difficulty of items and the 

ability of people on the same latent continuum (thus, the difficulty of an item and the ability 

score of a person can be meaningfully compared); and (3) another improvement provided by 

IRT is that the parameters of IRT models are generally not sample- or test-dependent when the 

dimensionality is assumed to be the same across samples or tests, whereas true-score is defined 

in CTT in the context of a specific test. Embertson (1996) has compared important points of 

difference between CTT and IRT. These differences are summarized in Table 3-8. For the 

purpose of comparison, statistics were calculated from both CTT and IRT approaches.  
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Table 3-8 

The Old and New Rules of Measurement (Embretson, 1996, p. 342) 

CTT IRT 

1. The standard error of measurement 

applies to all scores in a particular 

population. 

The standard error of measurement differs across 

scores, but generalizes across populations. 

2. Comparing test scores across multiple 

forms depends on test parallelism or 

adequate equating. 

Comparing scores from multiple forms is optimal 

when test difficulty levels vary across persons. 

3. Unbiased assessment of item properties 

depends on representative samples from 

the population. 

Unbiased estimates of item properties may be 

obtained from unrepresentative samples. 

4. Meaningful scale scores are obtained by 

comparisons of position in a score 

distribution. 

Meaningful scale scores are obtained by 

comparisons of distances from various items. 

" "

Classical test theory (CTT). Two item indices based on CTT are presented to analyze 

the item characteristics: (1) item difficulty and (2) item discrimination. 

Item difficulty. This assessment contains both dichotomous and polytomous items. 

When an item is dichotomously scored its difficulty equals its mean item score (i.e., the 

proportion of respondents who answer the item correctly). When an item is polytomously 

scored its difficulty calculation is adjusted by dividing the mean item score by the difference 

between the possible maximum and minimum scores, so that its result will be on a scale similar 

to that of the dichotomously scored items: 
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p! = !!
!!"#!!!"#

. 

Item discrimination. Item discrimination indicates how effectively an item 

discriminates between respondents who are relatively high on the criterion of interest and those 

who are relatively low. Different measures of item discrimination are available. Some, such as 

the index of discrimination, are applicable only to dichotomously scored items. The Pearson 

product moment correlation was used to measure the item discrimination because many 

polytomously scored items as well as dichotomously scored items were included in the 

assessment instrument: 

!! !!! =
!! !!!
!!! !!!

. 

"

Here  is the sample variance of item !,  is the sample variance of the total score 

excluding item !, and  is the covariance between individual item scores and total test 

scores. 

Item response theory (IRT). Two Wright Maps obtained from a Rasch model for 

polytomous item responses, called a partial credit model (Masters, 1982), were generated: (1) 

the Item Map and (2) the Item-step Map. These Wright maps are used to characterize item 

difficulty decomposed into the average item location across steps and steps for each item. The 

item map presents the person’s ability score on the same scale as the average item location 

across steps for each item; the item-step map presents the person’s ability score on the same 

scale as each step for each item. In addition, the mean squared (MNSQ) statistics were 

calculated in order to investigate the item fit.  
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Although Rasch analysis characterizes items with respect to their difficulty, the notion 

of item difficulty in IRT analysis differs from that in classical item analysis based on CTT. In 

the classical item analysis, the item difficulty is essentially a characteristic of the observed 

scores; in IRT, the item difficulty is parameterized in the model. In IRT, the item difficulty and 

person ability score are placed on the same latent continuum. For example, an item’s difficulty 

corresponds with the ability score of persons who have a 0.5 probability of correctly answering 

the item. 

A one-dimensional PCM was used to fit the data. This model was specified based on 

the following considerations: 

1. Dimensionality: The domain of causal mechanistic tracing is hypothesized to be one 

dimension, as shown in the construct map. 

2. Scoring categories: This assessment contains polytomous items. The polytomous 

categories are ordered, but without the assumption of equal distance between adjacent 

categories. 

The PCM was conducted using the ConQuest software (Wu, Adams, Wilson, & 

Haldane, 2007).  

Wright map. On a Wright Map, a vertical line is marked out in logits; person estimates 

and item locations are positioned on the left- and right-hand sides, respectively, of the vertical 

line. The zero point of the logit scale is where θ!!β! = 0. A person’s ability in logits is his 

natural log odds for succeeding on items that are chosen to define the “zero” point of the scale; 

and an item’s difficulty in logits is its natural log odds for eliciting failure from persons with 

“zero” ability. The closer to the bottom of the Wright Map, the less capable the respondent and 

the less difficult the item; the reverse is true at the top of the Wright Map.  
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The item location is the item difficulty (i.e., the point at which the item difficulty 

corresponds to the ability score of persons who have 0.5 probability of correctly answering the 

item). For polytomously scored item, the item locations are thresholds for reaching successive 

response categories. In other words, the item locations for polytomously response categories 

indicate the ability score of persons who are more likely to reach level  once they reach level 

.  Graphically, the item locations are the point at which the item response function curves 

of two adjacent response categories (e.g., 0 vs. 1, 1 vs. 2) cross.   

The item thresholds that are plotted on the Wright Map, however, are Thurstone 

thresholds. Thurstone thresholds are cumulative; a threshold is the point at which the 

probability of responding below a category is equal to responding in or above that category.  

For example, for a four category item (i.e., 0, 1, 2, 3), the Thurstone threshold for score 

category 2 is the point at which participants are as likely to be observed below 2 as being 

observed in or above 2 (i.e., 0 & 1 vs. 2 & 3); the Thurstone threshold for score category 3 is 

the point at which participants have a 0.5 probability of responding in 3 and a 0.5 probability 

responding below 3 (i.e., 0&1&2 vs. 3).  

Mean square statistic (MNSQ). In Rasch analysis, item fit indexes are reported for 

individual items. The MNSQ statistic is sensitive to response patterns of persons whose ability 

estimates match an item’s difficulty estimate. Overfit indicates that the observations contain 

less variance than is predicted by the model; underfit indicates more variance in the 

observations than is predicted by the model (e.g., the presence of idiosyncratic groups).  An 

item that equals 1 indicates perfect fit.  In general, a value between 0.75 and 1.33 is considered 

to provide reasonable fit (Wilson, 2005).  
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Reliability and Validity  

 

The reliability of this causal mechanistic tracing assessment will be demonstrated using 

evidence from several sources. The first source of evidence is Chronbach’s alpha, from CTT; 

the last two sources are based on IRT.  

Reliability 

Classical test theory (CTT). In CTT reliability cannot be estimated directly, since that 

would require one to know the true scores (denoted by T) (defined as the expected number of 

correct scores (X) over an infinite number of independent administrations of the test), which, 

according to CTT, is impossible. In CTT, the use of various parallel forms can obtain estimates 

of reliability. However, the reliability coefficient, !p!!' =
!!!
!!!

, was not calculated because this 

would have required test-retest administrations using parallel forms for individual participants.  

Instead, Chronbach’s alpha was reported. Cronbach’s alpha can be shown to provide a lower 

bound for reliability under rather mild assumptions. Thus, the reliability of test scores in a 

population is always higher than the value of Cronbach’s alpha in that population. Chronbach’s 

alpha was calculated as a measure of reliability. 

Cronbach’s alpha. Chronbach’s alpha measures the internal consistency of all items in 

a scale. Cronbach’s alpha was computed for the construct as follows:  

α = !
!!! 1! !!!

!!!
. 

Here, k indicates the number of items. 

Item response theory (IRT). This section describes ways to investigate whether the 

assessment instrument operates with sufficient consistency across individuals. In creating a 
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construct and developing an instrument, it is assumed that each respondent can be placed 

somewhere on that construct and measured reliably. The separation reliability was calculated. 

This measure indicates the proportion of the model variance that is accounted for by the total 

variance. In addition, the standard error of measurement (SEM) was calculated.  

Separation reliability. In Rasch Measurement the person separation index is used 

instead of reliability indices (as used in CTT). The separation index is a summary of the 

genuine separation as a ratio to separation including measurement error. The amount of 

measurement error is not uniform across the range of a test, but is larger for more extreme 

scores (low and high). Separation reliability indicates how well the item parameters are 

separated; it has a maximum of one and a minimum of zero. ConQuest reports separation 

reliability, which indicates the extent to which observed total variance,  is accounted for 

by the model variance, Var ! : 

!!!!! =
Var !
Var !  

=
1
J!1 !!!! !1J SEM !!

!!
!!!

!
!!!

1
J!1 !!!!!

!!!
. 

Standard error of measurement (SEM). An important difference between CTT and IRT 

is the treatment of measurement error, indexed by the standard error of measurement. All tests, 

questionnaires, and inventories are imprecise tools; we can never know a person’s true score, 

but can only have an estimate, the observed score. There is some amount of random error that 

may push the observed score higher or lower than the true score. CTT assumes that the amount 

of error is the same for each examinee, but IRT allows it to vary; for this reason, the SEM will 

be calculated from the IRT analysis. 
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Construct Validity 

This section describes evidence, obtained from IRT analysis, that the instrument targets 

the construct map. The item-step Wright map was used to determine whether the item 

responses are consistent with the hypotheses from the construct map. The item-step Wright 

map was used to empirically determine whether participant responses confirmed hypotheses 

about the difficulty of the mechanistic elements from the construct map. 
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CHAPTER IV 

 

RESULTS 

 

The Results section reflects the following structure: First, descriptive item statistics are 

presented. These data show that the majority (89%) of participants responded to the assessment 

items by citing at least one mechanistic element, suggesting they have resources to engage in 

causal mechanistic tracing. Next, item analyses based on CTT and IRT are shown. From the 

IRT analysis, an item Wright map is presented. Results show that the relative difficulty of 

items was based on three characteristics of the machines with which participants worked: (1) 

number of levers, (2) lever type, and (3) the presence of intermediate links. Next, reliability and 

validity measures are presented from both CTT and IRT. Here, an item-step Wright map is 

presented, which shows the difficulty ordering of the mechanistic elements for each item. As a 

next step, the differences between participants who scored many items at the construct map’s 

top two levels (i.e., constraint via the fixed pivot and tracing) are reviewed. Although 

participants who scored in each category can diagnose a machine’s motion according to all of 

its mechanistic elements, only those scored at the highest level can causally connect each 

mechanistic element from input to output. Then, an investigation of differences across 

members of the top construct level (i.e., tracing) is presented in order to determine whether 

increasing complexity of the machines that they work with can disrupt participants’ diagnosis 

and causal connection of a machine’s mechanisms from input to output. The section concludes 

with a discussion concerning the stability of causal mechanistic reasoning.   
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Descriptive Item Statistics 

 

The means of the item scores and variances were calculated to present the typical 

scores as well as their spread for each item. In order to further investigate these items, the 

distribution of scores is presented for the three link items (because these items had the most 

responses and would likely have smaller variances and more stable distributions). In addition, 

the score distributions of the items with the most extreme variances, both small and large, were 

evaluated. This was all done in order to determine whether the distribution of item scores were 

consistent with the construct’s hypothesized difficulty orderings.  

Item responses were scored as follows: linked direction=1; rotation=2; lever arms=3; 

constraint via the fixed pivot=4; and tracing=5. This ordering was based on the hypothesized 

difficulty rankings for each mechanistic element, from easiest to most difficult.  

Mean of item i. The mean item scores, across all respondents, ranged from 0.38 to 3.09. 

Table 4-1, in Appendix B, shows the means for each item. Other descriptive statistics (e.g., 

median, mode, and standard deviation) that present a clearer sense of the distributions of scores 

are also shown in this table. The average of the item means was 1.65; this is similar to the 

average of the item medians (1.60) and modes (1.19), with a mean item standard deviation of 

1.27 (ranging from 0.49 to 2.01). On average, items were scored just above the hypothesized 

lowest level (i.e., linked direction=1); however, because of the large item variances, the 95% 

confidence interval likely locate the item means anywhere along the score distribution, across 

multiple test administrations.  

Variance of item i. The item variance is the variance of each score across persons. 

These variances are small to large; they range from 0.24 to 4.04. However, this is not 
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unexpected due to the small sample of diverse populations. The variance of each item is 

displayed in Table 4-1 in Appendix B. 

Figure 4-1 (a, b, and c) shows the distribution of scores for the three link items. These 

items best show trends in the score distributions because they have the most responses. On item 

HFPO (Figure 4-1a), respondents had a mean score of 0.69 and a variance of 0.58. This item 

shows the type of distribution one would expect for a well functioning item; the frequency of 

responses decreases as the hypothesized difficulty increases. For example, more respondents 

were scored at the level of linked direction than rotation. On item MPA2 (Figure 4-1b), 

respondents had a mean score of 1.00 and a variance of 0.61. This item similarly shows the 

expected distribution, with more responses for linked direction than for rotation. On item STD1 

(Figure 4-1c), respondents had a mean score of 1.98 and a variance of 4.04 (the highest 

variance of all items). The distribution of scores on this item shows a bimodal distribution; 

forty-six percent (n=51) of the item responses were not scored on the construct map (i.e., 

indicating the absence of any mechanistic elements in their item responses). However, of those 

who were scored on the construct map, the pattern of responses was not consistent with the 

hypothesized construct level difficulty orderings. This item presents a machine built from four 

levers (the greatest number of levers for any item on the assessment) and has an intermediate 

lever. There are also two outputs, which move in opposite directions. It is clear that 

coordinating the direction of input and output (linked direction) is difficult on this item (and, 

thus, scored so infrequently). In addition, this item’s numerous “holder constraints” (i.e., 

constraints that forced the outputs into approximately linear paths) may have disguised the 

machines rotary motion, making rotation less salient. However, it is not clear why constraint 

via the fixed pivot and tracing were scored so frequently. On this item, participants either failed 
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to diagnose any mechanistic elements or were able to diagnose them all (thirty-three percent of 

the sample was scored at constraint via the fixed pivot or tracing).  

 

 

             

  

 

On item MPD1 (Figure 4-1d), respondents had a mean score of 0.38 and a variance of 

0.24 (the lowest variance of all items). This is a dichotomous item (i.e., participants were either 

scored at the level of linked direction or were not scored on the construct). On item STA3’ 

(Figure 4-1e), respondents had a mean score of 1.83 and a variance of 2.05 (the lowest variance 

for an item with all six score categories). On this item, with the exception of linked direction, 
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Figure 4-1a: Score 

distribution (HFPO). 

Figure 4-1b: Score 

distribution (MPA2). 
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the distribution of scores is consistent with the hypothesized construct levels. On this item, 

linked direction is scored less frequently than constraint via the fixed pivot. I conjecture that 

because this is a class 3 lever, where the input and output move in opposite directions; this 

made being assessed at the level of linked direction difficult unless participants had an 

understanding of fixed pivot constraint, in which case they would have been scored at the level 

of constraint via the fixed pivot. 

 

 

 

Eighty-nine percent (n=100) of respondents scored on the construct map (i.e., showed 

an element of mechanistic reasoning) on at least one item. This result is consistent with Bolger 
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and colleagues (2012) as well as Shultz’s (1982) findings that individuals show competencies 

in reasoning about mechanism from early ages.  

 

Item Analysis with Classical Test Theory (CTT)  
and Item Response Theory (IRT) 

 

Classical test theory (CTT) 

Two CTT statistics are presented to analyze the item characteristics: (1) item difficulty 

and (2) item discrimination.  

Item difficulty. The items range in difficulty from 0.99 (easy item) to 0.24 (difficult 

item). However, all the items have a mean (and median) item difficulty of 0.50, with a 90% 

confidence interval ranging from 0.24-0.76. Thus, the items have average (or typical) high to 

moderate difficulty. The item difficulty indices for all items can be seen in Table 4-2. 

Assessments may be rejected as unreliable if item difficulty is not consistent with person 

ability. Tests that are too difficult or too easy for the respondents who take them often show 

low reliability (Henning, 1987). Thus, because the items are predominantly (90%) in the 

medium difficulty range, the assessment is likely to have good reliability. 

Table 4-2 

Item difficulty. 

High 

(Difficult) 

Medium 

(Moderate) 

Low 

(Easy) 

<0.30 0.30-0.80 >0.80 

 

Item discrimination. Item discrimination refers to the ability of an item to discriminate 
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between those participants who are relatively high on the criterion of interest and those who are 

relatively low. It provides an estimate of whether each individual item is measuring the same 

criteria as all other assessment items. These assessment items range from 0.58 (fair) to 0.91 

(good). All item discrimination values can be seen in Table 4-1 in Appendix C. Table 4-3 

classifies an item’s ability to discriminate between participants at different ability levels by its 

item discrimination estimate. The mean of the item discrimination estimates is 0.77 (good). 

Nineteen of the twenty-one items (90%) have a good ability to discriminate between 

participants’ reasoning about different mechanistic elements; the remaining two items have a 

fair ability to make this discrimination. 

 

 

Table 4-3 

Item discrimination estimates. 

Poor Fair Good 

<0 0-0.60 >0.60 

Item response theory (IRT) 

Two Wright Maps were generated by the item analysis: (1) the Item Map and (2) the 

Item-step Map. The Wright Map shows the distribution of items/item thresholds and 

respondents along a unidimensional logit scale. The item map presents the persons’ scores on 

the same scale as the average item location across steps for each item; the item-step map 

presents the persons’ scores on the same scale as each step (i.e., Thurston threshold) for each 

item. Together these maps provide insight into what is difficult about reasoning about groups 

of items as well as reasoning about the mechanistic elements, across all items. Standard errors 
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of item difficulty estimates are large because of the small sample size. Therefore, it can be less 

reliable to check if common items function similarly across test forms with IRT equating 

procedures. Thus, item difficulty parameters have been calibrated with the assumption 

that common items function equally across test forms. 

This section first presents results that show that the item responses are consistent with 

IRT scoring assumptions. Next, the item Wright map is presented in order to analyze the 

behavior of the items. Then, the MNSQs are presented in order to determine the item fit. 

Finally, the item-step Wright Map is presented in order to characterize item difficulty with 

respect to the Thurston steps for each item. 

IRT scoring assumption. According to IRT modeling, participants who are scored at 

one level should be capable of performances specified at all lower levels. In these data, across 

all items, 82% percent of all respondents (n=92) were scored at all levels of the construct map 

easier than the highest level at which they were scored. This finding indicates that participants 

who can reason about an item by diagnosing one mechanistic element (or a combination of 

mechanistic elements) can, in most cases, also diagnose easier elements.  

Item Wright map. The item Wright Map, shown in Figure 4-2, makes it possible to 

compare the mean difficulty of each item across the sample. For example, Sequential Tracing 

E1 (STE1) is the most difficult item, with a mean item difficulty of 0.92 logits. The easiest 

item is STA3, with a mean item difficulty of -0.76 logits. Table 4-4 presents all item estimates 

and their corresponding standard errors. The standard errors indicate the precision of the 

estimates. 
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"
Figure'4)2.'Item'Wright'Map.'
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Table 4-4 

Item difficulty estimates and standard errors. 

Item Item Difficulty Estimate (logits) Standard 

Error 

Hands Fixed Pivot-Opposite   0.587 0.115 

Machine Prediction-A2  -0.426 0.114 

Sequential Tracing-D1   0.171 0.079 

Sequential Tracing-E2   0.323 0.109 

Hands Fixed Pivot-Same   0.008 0.128 

Machine Prediction-A1  -0.547  0.133 

Machine Prediction-A3  -0.319  0.133 

Machine Prediction-A3’  0.259  0.133 

Machine Prediction-B2   0.286  0.131 

Machine Prediction-B2’ -0.391  0.135 

Machine Prediction-D1   0.711  0.144 

Machine Prediction-D1’  0.543    0.142 

Sequential Tracing-A1  -0.700  0.117 

Sequential Tracing-A3  -0.760 0.115 

Sequential Tracing-A3’ -0.169  0.120 

Sequential Tracing-B1  -0.519 0.117 

Sequential Tracing-B1’  0.134 0.105 

Sequential Tracing-B2  -0.487  0.114 

Sequential Tracing- D1’  0.578   0.113 

Sequential Tracing-E1   0.923     0.113 

Sequential Tracing-CMT -0.205*   

Note: *Estimate is constrained 
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This item Wright map helps us consider the specific properties of these items that make 

causally tracing from input to output more or less difficult. In order to trace, participants need 

to reason about all of a machine’s mechanistic elements and their causal coordination. A 

participant’s ability to do this may be dependent on item type (e.g., are participants better at 

predicting the motions of the output lever than they are at predicting the motion of any of a 

machine’s internal levers?). This section reports how the following machine characteristics 

impact participants’ diagnosis and causal connection of a machine’s mechanisms: (1) number 

of levers, (2) the arrangement of levers, (3) lever type (e.g., class one levers), and (4) the 

presence of specialized and unfamiliar levers (e.g., a bent crank). The “number of levers,” 

“arrangement of levers,” and inclusion of a “bent crank” are not independent machine 

characteristics. However, each is included in this analysis in order to determine the effect each 

singularly has on causal mechanistic tracing. 

Item Type. There were two item types used in the final version of this assessment: (1) 

machine prediction items and (2) sequential tracing items. Machine prediction items ask 

respondents to predict the motion of machine outputs, whereas sequential tracing items ask 

respondents to predict the motion of all the different machine parts from input to output. There 

was no difference in item difficulty estimates between the two item types. Thus, it is not more 

difficult to predict motion of the output than to predict the motion of any other machine lever.  

Number of levers. The number of the levers in a machine contributes to its visual 

complexity and impacts participants’ ability to recognize mechanistic elements and causally 

trace from input to output. This is because added links require that respondents diagnose more 

mechanistic elements in multiple places. Participants had greater difficulty in diagnosing 
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machines composed of three or more levers (M = 0.19 logits) than those with two or fewer (M 

= -0.38 logits; p=0.003, one-tailed). 

Lever type. The type of lever in the machines impacts difficulty as well. Five items 

include machines composed of class one levers; five items feature machines composed of class 

three levers. Participants had greater difficulty with class three levers (M = -0.03) than the 

corresponding class one levers (M = -0.41; p=0.08, one-tailed). In class one levers the input 

and output move in the same direction. It appears easier to imagine this simple translation than 

the opposite directed motion of the input and output that is characteristic of the class 3 lever.  

Arrangement of levers. In addition to the number of levers in a machine, their 

arrangement is also important. Of the twenty-one items, seven were constructed with one or 

more intermediate link(s) between the input and output. These seven items were more difficult 

(M = 0.43 logits) than the remaining fourteen (M = -0.22; p=0.001, one-tailed), which had no 

intermediate links between the input and output.   

Bent Crank. Participants also had difficulty diagnosing the mechanistic elements of, as 

well as causally tracing through, machines that used intermediate links that were not standard 

levers (e.g., bent cranks). The most difficult item was STE1; this is shown in Figure 4-2. This 

item contains an input link, an output link, and an intermediate link that is a bent crank. The 

cognitive interviews suggested that the motion of this intermediate piece was confusing to 

many participants. They found it difficult to predict the rotary path or the coordinated motion 

of the lever arms of the bent crank. In addition, it was not obvious how this intermediate link 

transmitted motion from the input to the output. Many participants who could predict the 

correct motion of the bent crank were unable to trace that motion correctly to the output. 
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Another item with a bent crank as the intermediate link, STE2, was also one of the most 

difficult items on the assessment. 

Mean square statistic (MNSQ). In Rasch analysis, item fit indices can be reported for 

individual items. An item that has a mean squared statistic equal to 1 indicates perfect fit. In 

general, a value between 0.75 and 1.33 indicates good fit (Wilson, 2005). Table 4-5 shows the 

mean squared statistic for all of the items. Of the twenty-one items, seventeen (81%) are good 

fits. Two items, Hands Fixed Pivot- Opposite and Sequential Tracing-B1’ are slightly out of 

the good fit range. An additional two items are farther out of this range: Machine Prediction-B2’ 

(0.60) and Sequential Tracing-D1’ (MNSQ=1.66). Wright and Linacre (1994) suggest that only 

Sequential Tracing-D1’ (MNSQ= 1.66) would produce a misfit that would be unproductive for 

assessment, but would not degrade the assessment. This is shown in Table 4-6. Moreover, the 

inclusion of only one item (5% of the total items) with a problematic fit statistic does not 

compromise the assessment. Practice dictates that if more than 10% of the values are outside 

the 0.75-1.33 range, the most misfitting items should be reworded, omitted, or placed in a sub 

scale (Wright & Masters, 1982).  
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Table 4-5 

MNSQ fit statistic for each item. 

. 

Item 

Mean Squared 

Statistic (MNSQ) 

Hands Fixed Pivot-

Opposite  

1.34* 

Machine 

Prediction-A2  

1.22 

Hands Fixed Pivot-

Same  

1.13 

Machine 

Prediction-A1  

1.23 

Machine 

Prediction-A3  

1.16 

Machine 

Prediction-A3' 

0.90 

Machine 

Prediction-B2  

0.97 

Machine 

Prediction-B2' 

0.60** 

Machine 

Prediction-D1  

0.98 

Machine 

Prediction-D1' 

0.94 

Sequential Tracing-

A1  

1.10 

Sequential Tracing-

A3  

1.02 

Sequential Tracing-

A3' 

0.78 

Sequential Tracing- 0.78 
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B1  

Sequential Tracing-

B1' 

1.37* 

Sequential Tracing-

B2  

1.10 

Sequential Tracing-

D1 

1.07 

Sequential Tracing- 

D1' 

1.66** 

Sequential Tracing-

E1  

1.21 

Sequential Tracing-

E2  

1.03 

Sequential Tracing-

CMT 

1.15 

Note: **Not considered a good fit, *Marginally out of good fit 

range 

%

%

Table 4-6 

Interpretation of parameter-level mean-square fit statistics (Wright & Linacre, 1994). 

Mean-square Value  Implication for Measurement 

> 2.0 Distorts or degrades the measurement system. May 

be caused by only one or two observations. 

1.5 - 2.0 Unproductive for construction of measurement, but 

not degrading. 

0.5 - 1.5 Productive for measurement. 

< 0.5 Less productive for measurement, but not degrading. 

May produce misleadingly high reliability and 

separation coefficients. 
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Wilson (2005) states that one way to judge the severity of the misfit is to compare the 

expected proportion (based on the estimated item parameters) scored at each construct level to 

the actual proportion. Figure 4-3 shows (at top) an item with a fit at the extreme of the .75-1.33 

range (MNSQ=1.3) and (at bottom) an item with perfect fit (1.0) The continuous line shows the 

expected cumulative probabilities and the dots show observed cumulative proportions who 

responded at each level. Where the dots lie along the line the fit is good; as they depart from 

the line the fit gets somewhat worse. It can be valuable to explore the degree of misfit in order 

to determine the severity of the misfit. Figure 4-4 presents the fit plot for Sequential Tracing-

D1’, where the proportion of responses, per ability level, are greatly inconsistent with that 

expected by the model. This is significantly worse than a misfit, as in Figure 4-3 (top), where 

the proportion of responses slightly deviate from the model in many places. 

%

%

%

%

Figure'4)3.'Fit'plots'for'two'items.'This'figure'illustrates'an'item'fit'

(upper'panel)'that'is'just'within'the'good'fit'range'and'another'item'

(bottom'panel)'that'is'a'perfect'fit'(Wilson,'2005;'p.'131).'

'
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Figure'4)4.'Fit'plot'for'item'Sequential'Tracing)D1’.'This'figure'illustrates'a'misfit.'

Sequential Tracing-D1’. In Figure 4-5 the actual variance is greater than expected. 

According to the Wright Map that is presented in Figure 4-2, this item was one of the most 

difficult. The probability of scoring at the level of tracing (i.e., this item’s most difficult level) 

is consistent with the model (probability = 0) from the person ability level of -3 logits to 0 

logits (i.e., 0, 0). At approximately (0.8, 0.2), the respondents have a significantly higher 

probability (i.e., 0.2) of scoring at this level than the model predicts. However, at 

approximately ability level 1.2 logits, the respondents again have a 0 probability that they will 

score at the level of tracing. This shows that on this item, as ability increases, the probability of 

being scored at tracing decreases. This indicates item misfit.  

The three easiest mechanistic elements for this item, lever arms, rotation, and 

constraint via the fixed pivot, substantially deviate from the model from person ability estimate 

0.4 logits to 2.5 logits. Lever arms dips from (0.4, 0.9) to (0.8, 0.6), below the model value for 
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rotation. This shows that participants with a person ability estimate of 0.4 logits have a 

probability of 0.9 of scoring at the level of lever arms on this item (this item’s easiest level), 

while those with a person ability estimate of 0.8 logits have a probability of only 0.6 of scoring 

at the level of lever arms on this item. In addition, rotation dips from (-0.4, 0.8) to (0.4, 0.5). 

This shows that participants with person ability estimates of -0.4 logits have a probability of 

0.8 of scoring at the level of rotation, but participants with person ability estimates of 0.4 have 

a probability of only 0.5 of scoring at this level. This indicates misfit.  

The item-step Wright map. Figure 5-6 presents an item-step Wright map that places 

respondent ability and each item Thurston threshold (i.e., difficulty for each mechanistic 

element by item) on the same latent continuum. For instance, the element tracing has an item 

difficulty estimate of 3.04 logits for the item Sequential Tracing-E1 (an item with a bent crank 

as an intermediate link). This indicates that those respondents who have person ability 

estimates of 3.04 logits will have a 0.5 probability of being scored at this level for this item. 

Table 4-6 presents the item-step estimates for each item with its corresponding standard error. 

The standard error indicates the precision of the estimates.  
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Tracing: 
Mean = 1.78 logits 

 

Constraint via the Fixed Pivot: 
Mean = 0.24 logits Rotation; 

Mean = -0.31 logits 
Linked Direction: 
Mean = -0.56 logits 

Lever Arms: 
Mean = -0.82 logits 

Figure 4-5. Item-step Wright 

Map 
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Reliability and Validity 

 

Reliability 

This section describes ways to investigate whether the assessment instrument 

operates with sufficient consistency across individuals. In creating a construct and 

developing an instrument it is assumed that each respondent can be placed somewhere on 

that construct and measured reliably. 

Classical test theory (CTT) 

Cronbach's alpha. Chronbach’s alpha is a measure of internal consistency; it 

determines how closely related a set of items is as a group.  A “high” value of alpha is often 

used (along with substantive arguments and possibly other statistical measures) as evidence 

that the items measure an underlying (or latent) construct. As a rule of thumb, many 

professionals require a value of at least 0.70 before they will use an instrument. Here 

Cronbach's alpha  is equal to 0.54; however, though these items did not reach the 0.70 

threshold, this criteria should be loosened with items that are not altogether correlated. For 

example, ten of the items were not capable of assessing the three highest construct levels 

(lever arms, constraint via the fixed pivot, and tracing), whereas eleven were. Clearly, 

responses across these items would not correlate highly. In addition, it should be 

considered that the sample size was necessarily small in order to accommodate the 

cognitive interviews conducted. These two factors account for this low reliability measure. 

Thus, Chronbach’s alpha is not the ideal measure of reliability for this assessment. In IRT, 

the standard error of measure provides a measure of reliability that is better suited. 
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Item response theory (IRT)  

Separation reliability. In Rasch Measurement separation reliability indicates how well 

the item parameters are separated; it has a maximum of one and a minimum of zero. This value 

is typically high and increases with increasing sample sizes. These items have a separation 

reliability equal to 0.94; suggesting that most observed total variance, Var ! , is accounted for 

by the model variance,!Var ! . There is no professional standard; however, the state of 

California has accepted the separation reliability value of 0.90 as a minimum for achievement 

tests used in schools for individual testing. However, this level has not been consistently 

applied (Wilson, 2005). 

Standard error of measurement (SEM). In IRT, unlike CTT, person abilities are 

reported with standard errors of measurement (SEM) that indicate how reliable a person’s 

ability estimate is. Figure 4-4 shows that for this assessment a participant whose ability 

estimate is in the middle of the logit scale tends to have smaller SEM values, whereas those on 

the two extremes tend to have larger SEM values. The smaller the SEM, the more reliable the 

ability estimates. The mean SEM for these items is equal to 0.49, with a range from 0.27 to 

1.10. The person estimates range from -3.69 logits to 3.29 logits. The highest SEM values may 

be too high to precisely indicate the person ability estimates; however, the person ability 

estimates are reasonably good approximations for all but the most extreme ability estimates. 

The relationship between person ability estimate and standard error of measurement (SEM) in 

Figure 4-6 indicates reliability. 
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!
Figure'4)6.'Scatter'plot:'Person'ability'estimates'v.'standard'error'of'measurement'(SEM).'

Validity. This section describes evidence that the instrument targets the construct map. 

First, results from the item-step Wright map are compared with the hypotheses from the 

construct map. The item-step Wright map is used to empirically determine whether participant 

responses confirm hypotheses about the difficulty of the mechanistic elements from the 

construct map (i.e., Table 2-1). The item-step Wright map makes it possible to consider the 

specific properties of these machines that make causally tracing from input to output more and 

less difficult. In order to trace, participants need to reason about all of a machine’s mechanistic 

elements and their coordination. This section reports how the following machine characteristics 

impacted participants’ diagnosis and causal connection of a machine’s mechanistic elements: 

(1) lever type (e.g., class one levers) and (2) the presence of specialized and unfamiliar levers 

(e.g., a bent crank).  

Correspondence between item responses and participant talk and gesture. Items were 

scored according to the exemplars, whereas participant talk and gesture (while responding to 

the items) were coded independently according to the analytic framework developed in earlier 
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research (Bolger et al., 2012). This coding was completed for 715 items (across participants) 

that were scored on the construct; the talk and gesture for item responses that were not scored 

on the construct were not considered. Because item responses are nested in items and persons, 

a one-way chi-square goodness-of-fit test compared the mechanistic elements scored for each 

item with the corresponding interview coding. For example, 219 items were coded as linked 

direction using the exemplar. Of those 219 items, during the interview 44 (20%) were coded as 

“no mechanistic elements,” 136 (62%) were coded as “linked direction,” 38 (17%) were coded 

as “rotation,” 1 (0%) was coded as “lever arms,” and none (0%) were coded as either 

“constraint via the fixed pivot” or “tracing.” This distribution of coded mechanistic elements 

for linked direction is different (p<0.0001) from the expected proportions, based on how all 

715 items were scored according to Bolger and colleagues. Table 4-7 shows how all items were 

both scored and coded. For instance, Table 4-7 shows that seventy-four percent of those items 

scored at the level of rotation on the exemplar were also coded at that level in the cognitive 

interview. This relationship is consistent across all the mechanistic elements: (1) linked 

direction (62%); (2) rotation (74%); (3) lever arms (61%); (4) constraint via the fixed pivot 

(45%); and (5) tracing (46%). This suggests that when participants are responding to the paper 

and pencil items they are reasoning about physical levered machines. This is an indication of 

construct validity and shows that the assessment is measuring participants’ capacity to reason 

about the targeted mechanistic elements. Some items, according to the exemplars, could not be 

scored at all levels even though their explanations, according to Bolger and colleagues (2012) 

could. In these cases, participants were coded at the highest level scoreable on the exemplar. 



 71 

Table 4-7 

Percentage of mechanistic elements (scored on items) compared with how they were coded in the cognitive interviews. 

 Exemplars 
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 Linked Direction* 

(n=219) 

Rotation* 

(n=199) 

Lever Arms* 

(n=114) 

Constraint via the 

Fixed Pivot* 

(n=109) 

Tracing* 

(n=74) 

Total 

(N=715) 

No Mechanistic 

Elements 

20% 

 

13% 

 

14% 4% 3% 13% 

Linked Direction 62% 

 

8% 

 

0% 1% 0% 21% 

Rotation 17% 

 

74% 

 

4% 4% 3% 27% 

Lever Arms 0% 5% 

 

61% 33% 22% 19% 

Constraint via the 

Fixed Pivot 

0% 0% 11% 45% 27% 11% 

Tracing 0% 1% 9% 14% 46% 8% 

Note: Chi-squared goodness-of-fit (*p<0.0001, non-directional) 
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Ordering the mechanistic elements according to difficulty. The item thresholds for 

each of the five mechanistic elements are presented in Table 4-8 and graphically 

represented in Figure 4-5 (the item-step Wright Map). The means of these thresholds for 

each mechanistic element are presented and are rank ordered according to difficulty as 

follows (from the easiest to most difficult mechanistic elements across the twenty-one 

items): (1) lever arms, (2) linked direction, (3) rotation, (4) constraint via the fixed pivot, 

and (5) tracing. There were mean differences in difficulty between rotation (M = -0.36) 

and constraint via the fixed pivot (M = 0.52; p<0.1, one-tailed), as well as constraint via the 

fixed pivot and causal mechanistic tracing (M = 1.80; p<0.0001, one-tailed). Thus, tracing 

is the most difficult mechanistic element, more difficult than both constraint via the fixed 

pivot and rotation. There is no difference between the three easiest levels. I conjecture that 

this is a result of the diverse and small sample.  

The following section explains how participants diagnosed each of the mechanistic 

elements. Then the section examines differences between participants who can diagnose all 

of the mechanistic elements (i.e., assessed at the level of constraint via the fixed pivot) and 

those who can, further, causally connect them (i.e., assessed at the level of tracing). The 

section concludes with a discussion of those machine characteristics that seem to disrupt a 

participant’s ability to diagnose and causally connect all of a machine’s mechanistic 

elements. That is, why does a participant who can diagnose and causally connect all 

mechanistic elements on one item fail to do so consistently?
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Table 4-8 

Item thresholds.!

 

Item 

Lever 

Arms 

Linked 

Direction 

Rotation Constraint 

via the Fixed 

Pivot 

Tracing 

Hands Fixed Pivot-

Opposite  

 -0.41 1.59   

Machine Prediction-A2   -1.55 0.70   

Sequential Tracing-D1  -0.59 0.25 -0.45 -0.36 1.83 

Hands Fixed Pivot-Same   0.38 -0.37   

Machine Prediction-A1   -1.17 -0.08   

Machine Prediction-A3   -0.84 0.20   

Machine Prediction-A3'  -0.98 1.49   

Machine Prediction-B2   -0.20 0.77   

Machine Prediction-B2'  -1.59 0.80   

Machine Prediction-D1   0.71    

Machine Prediction-D1'  0.55    

Sequential Tracing-A1  -2.12 -1.79 -1.68 1.51 0.61 

Sequential Tracing-A3  -1.07 -1.73 -2.41 1.04 0.38 

Sequential Tracing-A3' -1.44 -1.22 0.38 1.54  

Sequential Tracing-B1  -1.00 -2.18 -1.52 0.20 1.89 

Sequential Tracing-B1' -0.83 -0.07 -0.69 -0.55 2.65 

Sequential Tracing-B2  -1.87 -1.11 -1.46 0.50 1.48 

Sequential Tracing- D1' -0.37 0.95 -0.27 -0.08 2.48 

Sequential Tracing-E1  1.19 0.96 -0.60 0.01 3.04 

Sequential Tracing-E2  0.35 -0.46 -0.29 1.57  

Sequential Tracing-CMT -1.24 -1.00 -1.07 0.33 1.86 

Mean -0.82 -0.60 -0.36 0.52* 1.80** 

Note: **p<0.01, *p<0.1; Machine Prediction and Hands items can only 

assess linked direction and rotation. Levels that could not be scored are highlighted in 

black; levels with no scores are highlighted in gray.   

!
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Lever arms. I hypothesized that lever arms would be more difficult than both linked 

direction and rotation. Lever arms was the most frequently scored mechanistic element 

according to the exemplars. To explain why, I refer back to the interview data. These data show 

that two dissimilar groups of participants were scored at the level of lever arms on the items: 

the first group was participants able to recognize few or no mechanistic elements (i.e., in the 

cognitive interview) and the second included those able to recognize most, if not all, 

mechanistic elements (i.e., in the interview). For example, of those scored at the level of lever 

arms on the exemplar, 14% were coded as using no mechanistic elements in their explanations 

in the interview, while 20% were coded as using either constraint via the fixed pivot or tracing. 

The first group may have been assessed at the level of lever arms on the items, but not in the 

interviews because participants with little understanding of the machines’ mechanisms could 

conceive of a lever being “like a seesaw.” Participants alluded to “weight,” “gravity,” or 

“pressure” on one side being greater than on the other to justify their predictions. However, 

their explanations did not describe the causally coordinated motion of the two lever arms. 

These participants primarily described one lever arm being up and the other being down, 

without indicating: (1) a causal coordination  (i.e., that the motion of one arm would cause the 

motion of the other) or (2) a dynamic system (i.e., the presence of motion). For example, one 

participant noted: “this side is kind of tilted up, so it will go up and this side is kind of tilting 

down, so it will go down.” This example was characteristic of those not invoking a causal 

coordination.  

Alternatively, other participants who were scored at the level of lever arms, but coded 

at the level of constraint via the fixed pivot or tracing (i.e., in the cognitive interview), were 

typically those who had ideas about constraint, but failed to specify (on the items) that the 
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entire lever would be revolving around the fixed pivot. These participants were predominantly 

college undergraduates (50%, n=9; engineering majors=4). Figure 5-3a shows how a 

participant, Sarah, responded to an item that was scored at the level of lever arms, but coded at 

the level of constraint via the fixed pivot in the cognitive interview. Sarah was scored at lever 

arms on the item because she indicated that stars C and E would move in coordinated opposite 

directions. Note, however, that she did not indicate that A and B would move in coordinated 

opposite directions; in addition, she did not indicate the direction of the motion of star D. 

According to the exemplar, this suggests that she is not capable of diagnosing constraint via 

the fixed pivot. However, the interview data does not support this conclusion.   

As Sarah began diagnosing the machine (see Figure 5-3a), she first noted that when the 

input lever was pushed up, “this thing (indicates right end of right lever arm, A’) turns that way 

(indicates rotary motion in the counterclockwise direction). This side (indicates left end of left 

lever arm, B’) goes that way (indicates rotary motion in the counterclockwise direction). So 

this star (A) goes that way (indicates the counterclockwise direction) and this star (B) goes that 

way (indicates counterclockwise direction, but does not indicate rotation around the fixed 

pivot).” Next, the participant correctly predicts the direction of the rotary motion of stars E and 

C, without attending to the motion of D. She then provides a mechanistic explanation for the 

predicted motion of A’ and B’: “If I push this up (if A’ is pushed up with the input), it pulls this 

(B’) down because it's fixed right there (she points at the fixed pivot between A and B; Figure 

4-7 shows her indication of the fixed pivot as the mechanism that generates the coordinated 

opposite motion from each lever arm).” 
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  Figure 4-7a. Item response. This 

presents the item response from a 

student scored at the level of lever arms.

Figure 4-7b. Interview gesture. Student indicates 

that the fixed pivot is responsible for lever motion 
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How did this participant diagnose constraint via the fixed pivot, but not correctly 

characterize the direction of motion on opposite sides of the fixed pivot? The way that Sarah 

diagnosed this machine provides insight into what makes causal mechanistic tracing difficult. 

She diagnosed this machine according to the global motion of its parts (e.g., entire levers). She 

began by predicting the motion of A’; she then moved to diagnosing B’. She correctly 

diagnosed the motion of the entire lever. Considering these correct predictions and her 

subsequent recognition of fixed pivot constraint, she clearly understood the relationship 

between constraint via the fixed pivot and the general motion of the lever. However, after 

diagnosing A’, she retraced her steps and attempted to predict the motion of A and B. Here, 

Sarah’s tracing seems to have been disrupted. She was unable to replicate the same causal 

coordination of the lever arms around the fixed pivot. Sarah’s correct prediction of the 

coordinated opposite rotary motion of the lever arms of lever two (i.e., points C and E) 

supports the hypothesis that Sarah can diagnose the coordinated motion of the lever around the 

fixed pivot globally. However, she seems to have difficulty coordinating the local lever arm 

motion around the fixed pivot. A total of 18 participants had similar difficulties diagnosing the 

directions of the stars surrounding the fixed pivot across twenty-three items. 

Even though lever arms was the easiest mechanistic element to diagnose, its diagnosis 

is essential to causal mechanistic tracing. A participant may diagnose this mechanistic element 

by seeing the machine globally and recognizing that the motion of one lever arm implies 

opposite directed motion on the opposite side of the fulcrum. However, in order to causally 

trace, participants must recognize the importance of the fulcrum, because its location 

determines the path and direction of the lever (for a given input). 
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The other mechanistic elements. Linked direction, rotation, constraint via the fixed 

pivot, and tracing were rank ordered as was hypothesized. However, there were only mean 

differences between rotation, constraint via the fixed pivot, and tracing. Next, what accounts 

for the difficulty of the remaining mechanistic elements and how they contribute to causal 

mechanistic tracing are addressed. 

Linked direction. After lever arms, linked direction was the easiest element to diagnose 

because it simply requires participants to notice the direction and causal coordination of the 

input and output links without referring to a specific path. Although this element is necessary 

for causal mechanistic tracing, it is not sufficient, because one can simply notice these relations 

without understanding the direction of the lever motion produced (i.e., rotary). 

Rotation. After linked direction, rotation was the most difficult mechanistic element 

(according to a rank ordering of means across items). In order to identify rotation, participants 

must notice that the paths of the levers are rotary. Even having mastered the combination of 

rotation and linked direction, one might not necessarily be capable of causally tracing. Taken 

together, being able to diagnose these two mechanistic elements enables one to recognize the 

direction of specific links, but does not ensure that participants are thinking about what 

constrains the system to determine lever motion (i.e., the fixed pivot).  

Constraint via the fixed pivot. After rotation, constraint via the fixed pivot was the most 

difficult mechanistic element. To recognize the mechanistic element of constraint via the fixed 

pivot, an individual must understand that the way in which the pivot is fixed to the board 

determines lever motion. This understanding is exemplified in the following explanation, 

coded at the level of constraint via the fixed pivot during a cognitive interview: “The fixed 

pivot is keeping it [the output link] from going up straight and it’s going around in a circle.”  
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Scoring constraint via the fixed pivot indicated that a participant recognized all of the 

easier mechanistic elements and thus should be prepared to causally trace through every 

machine, correctly diagnosing its mechanistic elements. However, being able to diagnose all of 

a machine’s mechanisms does not seem to be sufficient to predict an individual’s propensity to 

apply tracing. Across all items, there is a mean difference between constraint via the fixed 

pivot and tracing, showing that being able to diagnose and causally connect each mechanistic 

element is harder than simply being able to diagnose them. 

Tracing. The most difficult level on the construct map, tracing, requires participants to 

be able to diagnose all of the easier elements, from input to output. Doing so on even one 

occasion is difficult; it is even more difficult to do so consistently across items, suggesting that 

mechanistic reasoning may very with context (i.e., that is, specific features they are asked to 

respond to or features of the machines themselves). 

 

Causal Mechanistic Tracing and Machine Characteristics 

 

Twenty-five participants showed the ability to causally connect all four mechanistic 

elements on at least one item. However, two of the machine characteristics (lever type and the 

inclusion of a bent crank), discussed earlier, made a significant difference in these participants’ 

ability to consistently causally coordinate all four mechanistic elements when responding to an 

item. There were a total of 11 items in which tracing could be assessed. The number of items 

per form where this level could be assessed ranged from 3 to 8, with a mean of 6 (median = 6).  

Lever type. The mean percentage of items scored at the level of tracing (across all 

respondents who had scored at least one item at this level) was 0% on items with machines 
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with class 3 levers, in contrast to 80% for items with class 1 levers. Table 4-9 shows the mean 

percentage scores for this group across these two machine characteristics. The number of 

participants who increased the percent of items scored at the level of tracing across these 

machine features (p=0.0005, sign test) shows that the lever type has an impact on whether 

participants who have shown the capacity at least on one item to recognize and causally 

connect all four mechanistic elements, will do so on other items.   

Bent cranks. The mean percentage of items scored at the level of tracing was 26% on 

items with machines with bent cranks, in contrast to 71% for items without bent cranks This is 

shown in Table 4-9. The number of participants who increased the percent of items scored at 

the level of tracing across these machine features (p=0.01, sign test) shows that the presence of 

a bent crank has an impact on whether participants who can recognize and causally connect all 

four mechanistic elements will do so.  
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Table 4-9 

Tracing by machine characteristics. 

Machine Characteristics  Scored at the 

level of tracing  

Lever Type Class 3 lever(s) 0% 

Class 1 lever(s) 80%** 

Bent Crank With Bent Crank 26% 

Without Bent Crank 71%* 

Note: Sign test:  **p<0.001; *p<0.01 

!

!

The presence of different lever types and bent cranks made a significant difference in 

the ability of those who could diagnose and trace all four mechanistic elements from input to 

output on one item, to do so on others. This suggests that mechanistic reasoning can be 

unstable across machines, even when people are reasoning about simple, inspectable 

mechanisms. 



 

 

82 

CHAPTER V 

 

DISCUSSION 

 

Children’s Causal Mechanistic Reasoning  

Mechanistic reasoning is fundamental for predicting and explaining the behavior of 

both designed and physical systems and, thus, is necessary for disciplinary practices (e.g., 

argumentation) in STEM fields (Bolger et al., 2012; Russ et al., 2009). Although intuitions 

about causes and effects emerges very early in life (e.g., Baillargeon, 1994; 1987a; 1987b; 

Baillargeon, Kim & Spelke, 1992; Baillargeon, Spelke, & Wasserman, 1985; Spelke, Katz, 

Purcell, Ehrlich, & Breinlinger, 1992), these resources do not necessarily translate into well-

formed system reasoning later in life. In this study, 89% (n=100) of participants were able to 

diagnose at least one mechanistic element (i.e., one machine mechanism on at least one item), 

indicating that these early resources are present and functioning in this context. However, the 

mastery of this disciplined form of reasoning is not an all or nothing accomplishment, nor is its 

utility always transparent (Bolger et al., 2012; Bolger et al., 2011; Metz, 1991; Lehrer & 

Schauble, 1998).  

Infants’ rich naïve intuitions about cause within physical systems are apparently not 

systematically developed in schooling to assist adults (high school aged and older) in making 

consistent causal attributions about mechanisms within systems like those featured in this 

study (Carmazza, McCloskey, & Green, 1981; Clement, 1982; Minstrell, 1983). In this study, 

78% (n=87) of all the participants failed on all the items to causally trace from input to 

output.  
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Making sense of the development of causal mechanistic reasoning requires more than 

an understanding of early resources and later “misconceptions.” The assessment reported here 

has characterized this form of reasoning about simple levered systems. In addition, it has 

helped to explain why this form of reasoning is difficult and what accounts for this difficulty. 

This study shows that machine characteristics such as number of levers, lever type, 

arrangement of levers, and inclusion of a bent crank can affect the difficulty of causal 

reasoning. In addition, even when participants do, on at least one occasion, trace pushes and 

pulls through a machine, inclusion of class 3 levers or bent cranks can disrupt their propensity 

to do so. During subsequent iterations of the design of this instrument, items that introduce 

additional machine features may lead to deeper understanding about features that tend to 

disrupt this kind of system reasoning. 

 

Assessment Development (Research Question #1):  
Can mechanistic reasoning be assessed via a standard assessment instrument?  

 

This study reports the first iteration of the design of an assessment instrument for 

characterizing reasoning about basic mechanical systems. The instrument assesses 

individuals’ use of four mechanistic elements of levered machines: (1) lever arms, (2) linked 

direction, (3) rotation, and (4) constraint via the fixed pivot. The assessment instrument also 

assesses individuals’ ability to diagnose and causally trace all the mechanistic elements from 

input to output (i.e., tracing). The study has shown that when participants are responding to 

the paper and pencil items they are reasoning about the motion of actual physical levered 

systems. This is shown in Table 4-7. 
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This assessment showed good reliability and validity, using measures from both 

classical test theory (CTT) and item response theory (IRT). The large item variance is likely a 

result of the diverse and necessarily small sample to accommodate the interviews. I conjecture 

that this contributed to the low value of Chronbach’s alpha and the absence of clear average 

difficulty difference between three easiest mechanistic elements. Small sample sizes produce 

large standard errors of item estimates.  

However, it is also possible that the variance in Thurston threshold estimates across the 

three easiest mechanistic elements may be a consequence of the greater difficulty of being 

assessed at some construct levels (e.g., rotation) on items with certain machine characteristics 

(e.g., class 3 levers, intermediate links).   

 

Next Design Iteration  

 

This small and diverse sample was identified to assure, via cognitive interviews, that 

the items were assessing what they were intended to assess. Now that this has been established, 

it would be useful to administer the assessment to a larger sample to provide more evidence 

about item difficulty estimates, and to learn whether there are differences in the difficulty 

ordering of the three easiest mechanistic elements. A larger sample should provide more 

insight about the two different groups of participants that were scored at the level of lever arms 

(i.e., those citing no mechanistic elements and those citing constraint via the fixed pivot and 

tracing during the cognitive interviews). For instance: (1) will both of these groups continue to 

be scored at the level of lever arms with a larger sample; (2) can items be developed that will 
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differentiate between these groups; and (3) if so, how will this affect the difficulty of lever 

arms across the assessment items? 

In addition, a larger sample will allow the further investigation of types of machine 

characteristics (e.g., number of levers, lever type, lever arrangement, and type of intermediate 

link) that affect individuals’ ability to diagnose and causally trace a machine’s mechanistic 

elements from input to output. This data can be modeled to determine the extent to which these 

machine characteristics contribute to item difficulty (e.g., a linear logistic latent trait model, 

Fischer). 

This assessment administration provided substantial information with which to revise 

these items. Participant responses consistently populated all the construct levels and the 

mechanisms diagnosed in the item responses are consistent with those hypothesized in the 

exemplars. However, there were six items that were eliminated from the assessment before the 

analysis; these items should be revised, tested in cognitive interviews, and used in the next 

assessment administration. Moreover, in the next iteration of design, the assessment should be 

administered to elementary and middle school students to avoid the ceiling effect observed 

with twenty-eight participants from an elite private high school and university. 

 

Additional Forms of Reasoning to Be Assessed 

 

As the assessment is further developed, it may also be expandable to additional 

important learning targets. In a previous study of children’s naïve mechanistic reasoning 

(Bolger et al., 2012), we noted that children rarely paid attention to how far links moved, even 

when a paired contrast was used to draw their attention to this feature. Moreover, no child’s 
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explanation of this phenomenon went beyond the noticing of an empirical pattern (e.g., when 

the brads are closer to each other, the link moves more). This may be because explaining the 

relative input to output distances relies upon mathematical relationships that were not apparent 

to the children.  

It could be valuable to develop items that target (at least qualitatively) the distance 

relationship between the amount of input and output. This relationship blends mechanistic and 

quantitative reasoning. Bolger and colleagues (2011) showed that by mathematizing these 

levered systems, participants can develop an understanding of both mechanism and 

mathematics. For instance, being able to map the mathematics of circles onto the physical 

systems may both focus students’ mechanistic reasoning and lend it additional precision. In the 

present study, 68%  (n=17) of those who were assessed at the level of tracing on at least one 

item made a reference to the mathematics of circles during the cognitive interview. For 

example, participants used the following terms to explain the machine motion: “circle,” “center 

of the circle,” “radius,” “circumference,” “axis of rotation.” These findings strongly suggest 

that the mathematization (Freudenthal, 1973; Kline, 1982) of these systems makes their 

mechanisms more visible.  

 

The Stability of Mechanistic Reasoning (Research Question #2):  
Can this assessment provide insight into the features of machines that are  
most likely to disrupt an individual’s capacity to reason mechanistically?  

 

In their work with mechanistic reasoning about simple machines, Bolger and 

colleagues (2012), Metz (1985, 1991), and Lehrer and Schauble (1998) have not addressed the 

extent to which mechanistic reasoning generalizes across machines within a single system (e.g., 
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gears, levered machines). For example, to what extent does a participant’s ability to reason 

mechanistically about one levered machine generalize to other similar machines? What 

supports or disrupts the ability for an individual to see multiple levered machines as variants of 

those that they can diagnose and causally trace? In this study, some items disrupted participants’ 

abilities to diagnose and causally trace a machine’s mechanistic elements from input to output, 

when they had previously exhibited this ability on other items. For example, all individuals 

(n=25) who were assessed at least once at the level of tracing, showed a decrease in their 

ability to perform at this level when diagnosing machines with class 3 levers and bent cranks. 

This shows that certain machine characteristics can disrupt the coordination of all of these 

mechanistic elements. diSessa (1993) provides an example of how Newton’s third law of 

motion can be understood differently in two different contexts. He notes that students are more 

likely to cite the relevant “equal and opposite forces” when a book is supported by a person’s 

hand, rather than a table. In the assessment developed in this study, what mechanistic elements 

are cued (and causally connected) seems dependent on processes that could be further 

investigated in subsequent research.  

 

System Tracing  

 

In order to diagnose this system, individuals must recognize the push-pull interactions 

of the various components as they trace the transmission of force. Similar diagnosis is essential 

in systems across engineering, physics, as well as in the designed world. Forbus (1987) models 

the cognitive processes involved in making observations and inferences about physical systems. 

Qualitative Process (QP) theory may be used to model how individuals reason about the 



 

 

88 

motion of these simple levered systems. In QP theory, the way time is segmented (i.e., the 

frequency with which observations are made) determines what inferences will be drawn about 

phenomena being observed. Individuals similarly segment time when inspecting the levers. 

How they segment their inspections of the machines makes the difference between seeing 

endpoints of motion (i.e., linked direction) or complete paths of levers (i.e., rotation). Forbus 

describes how a computer program, FROB, fills in gaps in sparse data. This ability may 

account for those participants who were able to recognize the global motion of the lever around 

the fixed pivot, but were unable to replicate the same causal coordination of the lever arms 

closer to, but on opposite sides of, the fixed pivot. These participants were able to indicate the 

correct global direction of motion of the lever (i.e., lever arms), based on the fixed pivot, but 

were unable to “fill in the gaps” (i.e., recognize lever arms) closer to the fixed pivot. The 

capacity to impute mechanisms based on other visible mechanisms and an understanding of the 

system seems critical to tracing. This form of system tracing is productive when diagnosing 

mechanisms in systems where forces are transmitted through visible components. Simple 

levered machines make good candidates for systems in which individuals can gain access to 

mechanistic reasoning. However, this form of system tracing is also fundamental to diagnosing 

mechanisms in other systems where forces are transmitted through components, such as those 

featured in mechanics and engineering. 
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Key:  Fixed Pivot (attaches link(s) to base)  

 Floating Pivot (attaches link to link) 

  

APPENDIX A 

 

EXEMPLAR EXAMPLES 

 

Hands Fixed Pivots -Opposite  

 

 

 

Draw how the left hand and the right hand would move if you pushed UP on the 

black part. (Draw an arrow starting at each hand and show how they will move). 
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Item Exemplar 

Table 5: Hands A- Fixed Pivots on Opposite Sides of the Input 

This item assesses students’ ability to use the mechanistic elements of linked direction and rotation. “No link” 

(NL) indicates an item response that does not provide any evidence of mechanistic reasoning (i.e., use of 

mechanistic elements). “Missing” indicates that item was left completely blank. 

 

1 Element 

 

Rotation Participant draws an arced path (they 

may show the incorrect direction). The 

location of this path must reasonably 

approximate fractions of circles either 

centered around the fixed or floating 

pivot. 

 

Note: Although these paths are actually 

centered around the fixed pivot, this element 

of mechanistic reasoning can be assessed 

without a clear understanding of the 

location of the center of rotation.  

 

Linked 

Direction 

Participant draws the correct output 

motion of both outputs. 
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No Elements Participant 

Uses No 

Mechanistic 

Element 

No mechanistic elements are shown. 

 

No Link  It is unclear whether the participant 

understood the nature of the task. 

“I don’t know” 

Missing  Missing Response  
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Key:  Fixed Pivot (attaches link(s) to base)  

 Floating Pivot (attaches link to link) 

Sequential Tracing A1 

 

 

Draw an arrow, like one of these below, to show how each star would move if 

you pushed up on the black handle. (Draw an arrow starting at EACH star and 

show how they will move) 
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This item assesses students’ ability to use the mechanistic elements of linked direction, rotation, lever arms, 

constraint via the fixed pivot, and tracing. No link (NL) indicates an item response that does not provide any 

evidence of mechanistic reasoning (i.e., use of mechanistic elements). “Missing” indicates that the item was left 

completely blank. 

4 Elements 

 

Tracing 

 

Student is assessed at the 

level of constraint via the 

fixed pivot and diagnoses 

motion correctly (and 

without gaps) on all stars 

from input to output. 

 

 

1 Element 

 

Constraint 

via the Fixed 

Pivot 

Participant correctly draws 

the opposite and/or rotary 

motion of the two closest 

points on opposite sides of 

the fixed pivot. 

 

Lever Arms Student draws arrows with 

opposite directions from 

stars on opposite sides of a 

lever’s arms. 

 

To code lever arms alone the 

direction must be incorrect. 
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Rotation Student draws arced paths 

(they may show the 

incorrect direction). 

However, the location of 

these paths must 

reasonably approximate 

fractions of circles either 

centered around the fixed 

or floating pivot. 

 

Note: Although these paths are 

centered around the fixed 

pivot, this element of 

mechanistic reasoning does 

not make this distinction. 

 

Linked 

Direction 

Student draws the correct 

input motion; the correct 

output motion is drawn at 

least once. 

 

No 

Elements 

 

Student Uses 

No 

Mechanistic 

Elements 

No mechanistic elements 

are shown. 
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NL  It is not clear if the student 

understood the nature of 

the task. 

“I don’t know” 

Missing  Missing Response  
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APPENDIX B 

 

TABLES 

 

Table 2-2 

Item Coverage Matrix 

 

Items\Levels 1  

Linked 

Direction 

(LD) 

2 

Rotation 

 

(R) 

3 

Lever Arms 

  

(LA) 

4 

Constraint Fixed Pivot 

 

(CFP) 

5 

Tracing 

 

(T) 

1. Hands A- FP 

Opposite 

1 1    

2. Hands A- FP 

Same 

1 1    

3. Machine 

Prediction A1 

1 1    

4. Machine 

Prediction A2 

1 1    

5. Machine 

Prediction A3 

1 1    

6. Machine 

Prediction A3' 

1 1    

7. Machine 

Prediction B2 

1 1    

8. Machine 

Prediction B2' 

1 1    

9. Machine 

Prediction D1 

1     

10. Machine 

Prediction D1' 

1     
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11. Sequential 

Tracing A4 

1 1 1 1 1               

12. Sequential 

Tracing A1 

1 1 1 1 1               

13. Sequential 

Tracing A2 

1 1 1 1 1               

14. Sequential 

Tracing A3 

1 1 1 1 1               

15. Sequential 

Tracing A3' 

1 1 1 1 1               

16. Sequential 

Tracing B1 

1 1 1 1 1               

17. Sequential 

Tracing B1' 

1 1 1 1 1               

18. Sequential 

Tracing B2 

1 1 1 1 1               

19. Sequential 

Tracing C1 

1 1 1 1 1               

20. Sequential 

Tracing D1 

1 1 1 1 1              

21. Sequential 

Tracing D1' 

1 1 1 1  1            

22. Sequential 

Tracing E1 

1 1 1 1 1               

23. Sequential 

Tracing E2 

1 1 1 1 1               

24. Sequential 

Tracing- 

Tracing 

Mechanism A 

1 1 1 1 1               

25. Rotation-

Constraint B 

   1  

26. Constraint 

Fixed Pivot 

   1  
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Item 

27. Lever Arms 

Prediction B 

1 1 1   
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Table 4-1 

Descriptive and classical test theory (CTT) statistics. 

 HFP MP ST ST HFP MP MP MP MP MP MP MP ST ST ST ST ST ST ST HFP MP ST 

 O A2 D1 E2 S A1 A3 A3’ B2 B2’ D1 D1’ A1 A3 A3’ B1 B1’ B2 D1’ O A2 D1 

Mean of item  0.69 1 1.98 1.22 0.82 1.26 1.15 0.87 0.91 1.1 0.38 0.4 3.05 3.09 1.83 2.88 2.13 2.83 2.65 0.69 1 1.98 

Median of item  1 1 1.5 0 0.5 1.5 1 1 1 1 0 0 3 3 2 3 3 3 3 1 1 1.5 

Mode of item  0 1 0 0 0 2 2 1 0 1 0 0 3 3 2 4 0 3 0 0 1 0 

SD 0.76 0.78 2.01 1.52 0.9 0.83 0.89 0.75 0.89 0.77 0.49 0.5 1.63 1.64 1.43 1.68 1.95 1.78 1.86 0.76 0.78 2.01 

Variance !

!
0.58 0.61 4.04 2.32 0.8 0.69 0.8 0.56 0.8 0.59 0.24 0.25 2.65 2.69 2.05 2.81 3.81 3.17 3.46 0.58 0.61 4.04 

Item difficulty  0.34 0.5 0.4 0.24 0.34 0.5 0.99 0.61 0.41 0.63 0.58 0.43 0.61 0.62 0.37 0.58 0.43 0.57 0.53 0.34 0.5 0.4 

Item 

discrimination  
0.58 0.62 0.87 0.83 0.64 0.63 0.76 0.75 0.75 0.87 0.63 0.6 0.85 0.85 0.9 0.91 0.83 0.88 0.73 0.58 0.62 0.87 
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Table B-1 

Item-step estimates and standard errors. 

Item Item-step  Item-step 

Estimate 

Standard 

Error 

Hands Fixed 

Pivot-

Opposite  

Linked Direction -0.859  0.216 

 Rotation  0.859*       

                

Machine 

Prediction-A2  

Linked Direction -1.008  0.206 

 Rotation  1.008*       

                

Sequential 

Tracing-D1  

Linked Direction  0.843  0.236 

 Rotation -0.287  0.244 

 Lever Arms -2.005  0.248 

 Constraint via the 

Fixed Pivot 

-0.039  0.275 

 Tracing  1.488*       

                

Sequential 

Tracing-E2 

Linked Direction  0.845  0.330 

 Rotation -1.740  0.348 

 Lever Arms -0.102  0.429 

 Constraint via the 

Fixed Pivot 

 0.997*       

                

Hands Fixed 

Pivot-Same 

Linked Direction  0.257  0.402 
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Pivot-Same 

 Rotation -0.257*       

                

Machine 

Prediction-A1  

Linked Direction -0.291  0.382 

 Rotation  0.291*       

                

Machine 

Prediction-A3  

Linked Direction -0.086  0.385 

 Rotation  0.086*       

                

Machine 

Prediction-

A3' 

Linked Direction -1.144  0.318 

 Rotation  1.144*       

                

Machine 

Prediction-B2  

Linked Direction -0.011  0.387 

 Rotation  0.011*       

                

Machine 

Prediction-

B2' 

Linked Direction -1.099  0.337 

 Rotation  1.099*       

                

Sequential 

Tracing-A1  

Linked Direction -0.476  0.395 

 Rotation -0.217  0.395 

 Lever Arms -2.809  0.389 
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 Constraint via the 

Fixed Pivot 

 1.817  0.438 

 Tracing  1.684*       

                

Sequential 

Tracing-A3  

Linked Direction -1.100  0.396 

 Rotation -0.999  0.384 

 Lever Arms -0.699  0.352 

 Constraint via the 

Fixed Pivot 

 1.674  0.456 

 Tracing  1.124*       

                

Sequential 

Tracing-A3' 

Linked Direction  0.285  0.396 

 Rotation -2.468  0.393 

 Lever Arms  0.823  0.451 

 Constraint via the 

Fixed Pivot 

 1.361*       

         

Sequential 

Tracing-B1  

Linked Direction -1.125  0.387 

 Rotation -0.923  0.386 

 Lever Arms -0.871  0.382 

 Constraint via the 

Fixed Pivot 

 0.684  0.395 

 Tracing  2.235*       

                

Sequential 

Tracing-B1' 

Linked Direction  0.634  0.395 
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 Rotation -0.921  0.403 

 Lever Arms -1.529  0.399 

 Constraint via the 

Fixed Pivot 

-0.658  0.396 

 Tracing  2.475*       

                

Sequential 

Tracing-B2  

Linked Direction -0.566  0.368 

 Rotation -0.854  0.375 

 Lever Arms -1.457  0.365 

 Constraint via the 

Fixed Pivot 

 1.348  0.417 

 Tracing  1.529*       

                

Sequential 

Tracing- D1' 

Linked Direction  0.990  0.406 

 Rotation -1.438  0.412 

 Lever Arms -1.689  0.409 

 Constraint via the 

Fixed Pivot 

 0.444  0.422 

 Tracing  1.693*       

    

Sequential 

Tracing-E1  

Linked Direction -0.831  0.380 

 Rotation -1.416  0.397 

 Lever Arms  1.158  0.462 

 Constraint via the 

Fixed Pivot 

-0.970  0.495 

 Tracing  2.059*  
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Sequential 

Tracing-

CMT 

Linked Direction  0.389  0.370 

 Rotation -0.056  0.374 

 Lever Arms -2.878  0.366 

 Constraint via the 

Fixed Pivot 

 0.709  0.362 

 Tracing  1.837*  

Note: *Item-step is constrained 
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Table B-2 

Person ability estimates and standard errors. 

Person ID Person Ability 

Estimates 

Standard 

Errors 

1 -0.34705 0.43664 

2 -3.14015 0.99836 

3 3.29444 0.85285 

4 -0.5222 0.417 

5 -2.63867 1.09581 

6 0.05227 0.41603 

7 0.49562 0.4328 

8 -2.13783 0.79435 

9 -1.95691 0.82123 

10 -1.71847 0.56025 

11 -0.5222 0.417 

12 -1.61741 0.4983 

13 -0.91794 0.38413 

14 -0.55382 0.3396 

15 -0.23414 0.31514 

16 -2.42174 0.77759 

17 -0.55382 0.3396 

18 -3.1926 0.97751 

19 0.35095 0.33043 

20 2.86093 0.59541 

21 0.96899 0.36331 

22 -2.40931 0.59396 
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23 -0.19906 0.28522 

24 -1.30784 0.32993 

25 -0.36524 0.29291 

26 -0.63456 0.30351 

27 1.10296 0.36985 

28 0.4637 0.34105 

29 -3.48725 0.90121 

30 -0.19906 0.28522 

31 -3.56483 0.89996 

32 -0.23434 0.32648 

33 3.12318 0.85686 

34 -2.74831 0.7554 

35 -0.93038 0.40107 

36 -0.77105 0.39706 

37 0.61006 0.37338 

38 -0.07532 0.30691 

39 -1.35772 0.32608 

40 -1.35772 0.32608 

41 -0.16845 0.30421 

42 0.9013 0.38854 

43 -3.08351 0.718 

44 -1.15338 0.31515 

45 -1.82964 0.52778 

46 -0.16498 0.32687 

47 -2.63626 0.75904 

48 0.186 0.3663 



 

 

107 

49 -3.35792 0.94078 

50 -1.82964 0.52778 

51 1.54509 0.46096 

52 -0.61478 0.30989 

53 -1.57048 0.377 

54 1.01019 0.39328 

55 0.71296 0.3782 

56 1.34581 0.43191 

57 -2.48939 0.60853 

58 -1.31926 0.33737 

59 -1.47999 0.43153 

60 -1.93539 0.53608 

61 0.51076 0.45296 

62 0.67939 0.50069 

63 -3.42773 0.92511 

64 -0.13788 0.41165 

65 2.19211 0.51053 

66 -0.82444 0.3067 

67 0.06255 0.2983 

68 0.06255 0.2983 

69 0.82634 0.35589 

70 1.54399 0.42665 

71 2.47496 0.55265 

72 0.95388 0.35849 

73 -0.87111 0.41739 

74 -3.43475 0.94907 
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75 1.42886 0.53126 

76 -3.43475 0.94907 

77 0.10547 0.36249 

78 -0.20271 0.31082 

79 0.56707 0.37168 

80 -0.10696 0.30901 

81 -0.01058 0.31272 

82 1.01624 0.40165 

83 -0.10696 0.30901 

84 -1.73772 0.47972 

85 0.1032 0.43185 

86 0.514 0.47528 

87 -1.73772 0.47972 

88 -3.44816 0.91306 

89 -3.44816 0.91306 

90 0.75073 0.39061 

91 2.54647 0.60956 

92 -0.10304 0.31256 

93 1.43749 0.45584 

94 1.9125 0.51971 

95 1.24266 0.42782 

96 0.60166 0.38099 

97 -1.32292 0.34599 

98 -0.96936 0.36091 

99 -1.42241 0.43669 

100 -1.25071 0.39575 
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101 -1.96059 0.62312 

102 -2.45173 0.78357 

103 -1.10367 0.37326 

104 2.94662 0.58677 

105 -0.09256 0.26739 

106 0.62268 0.33351 

107 1.88477 0.44948 

108 0.13829 0.2891 

109 1.35768 0.38424 

110 1.51493 0.40872 

111 0.73614 0.33965 

112 -3.68772 0.88744 
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