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CHAPTER I 

Background and Objectives 

Molecular techniques for the study of biological systems are continuing to drive our 

understanding of cellular biology and are providing significant advances for prevention, 

diagnosis and treatment of disease. Genomics, transcriptomics and proteomics are among 

the chief technologies that enable the discovery and study of molecular events at the cell, 

tissue, organ and individual level while providing new insights into biological systems.1, 2 

Genomics, the study of genomes, reveals inherited variations of the genome such as 

mutations and polymorphisms as well as genomic alterations like chromosomal deletions 

and amplification or changes in DNA methylation status, all of which have important 

implications for the function of a cell. Transcriptomics reveals patterns of active gene 

expression measured by profiling of RNA’s that may result in protein synthesis. The 

ability of genomics and transcriptomics to predict the abundance, location, functional 

state and interactions of proteins in cells or tissues is limiting. Knowing the genomic 

sequence is helpful but gene expression alone does only partially explain the active 

biological processes especially as many of the regulatory functions controlling gene 

expression remain unknown. It is now clear that it is the proteins that execute nearly all 

of the cells functions. Proteomics, the large-scale study of the proteome, is therefore an 

important discipline that contributes at a direct level to a full description of cellular 

processes.3  
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Analytical Challenges in Proteomics 

The comprehensive analysis of proteins in a biological sample remains daunting 

analytical challenge. First, the number of protein forms expected in an organism can 

greatly exceed the number of genes. As an example, the number of known protein coding 

genes in humans is currently at 20,300. At this time, experimental evidence at the protein 

level for roughly 70 % of these genes has been found yet the total number of proteins and 

various protein forms remains unknown. Some estimations put the total number of human 

proteins at one million.4 Many factors that contribute to the complexity of proteomic 

samples are already known including single nucleotide polymorphism, alternative 

splicing of primary transcripts, post-translational modifications and protein truncations. 

These can vary with time, location, physiological and pathological as well as 

pharmacological perturbations.4 The dynamic nature of proteins, and the fact that protein 

expression levels can vary widely, make the analysis of proteins extremely challenging. 

Currently available proteomic workflows can detect several thousand proteins in one 

experiment. However, this requires time consuming fractionation of the samples as our 

ability to simultaneously detect low abundant proteins in the presence of higher abundant 

proteins remains rather limited due to limited dynamic range of current analytical 

platforms. As an example, in yeast cells, protein abundance can vary in the range 

between 50 – 106 copies per cell5 while the concentration range in blood can easily 

exceed more than 12 orders of magnitude.6 However, the dynamic range of mass 

spectrometers for complex mixtures analysis is estimated to be less than 103 for complex 

mixtures7 although fractionation and enrichment of proteins can extend this significantly 

and dynamic ranges in the order of 106 have been reported.8 
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Direct amplification strategies similar to PCR in genomic research are not available 

for proteins. Consequently, proteomic experiments depend on the availability of 

sufficient sample material for analysis. Moreover, extraction and processing of proteins, 

e.g. membrane proteins,9 can be challenging and introduce bias into proteomic 

experiments. Therefore, development of improved technologies that can provide higher 

sensitivity, protein coverage, while eliminating bias, is highly desirable. 

It is increasingly recognized that mapping of the complete proteome is a task that is 

not currently achievable by a single laboratory or technology. This has led to a global 

collaboration for the study of proteins that relies heavily on bioinformatics for data 

integration and analysis.4 Protein mining, quantification,10, 11 mapping of modifications,10 

protein-protein interaction11 and functional studies are all critical parts of this 

collaboration. Over time, a comprehensive systems view of all proteins will be generated 

that alone, or integrated with other omics datasets will provide a detailed picture of 

molecular processes. In this regard, proteomics experiments are designed to answer 

specific questions which in turn can lead to a better understanding of the biological 

systems at hand. 
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Proteomic Technologies for Marker Discovery in Tissues 

Mass spectrometry is a powerful tool for the study of proteins in tissues as it can 

provide high sensitivity and molecular specificity that enables the identification, 

characterization and quantitation of proteins. One increasingly important focus of tissue 

proteomics is the search for diagnostically useful protein markers that could improve the 

diagnosis and management of disease. 

A generally accepted workflow for protein marker discovery consists of the 

following steps: candidate discovery, qualification, verification, research assay 

optimization, marker validation and commercialization.12 Most of the early studies have 

focused on readily available body fluids such as blood and urine as they could be easily 

obtained in the clinic with minimal risk for the patient.6 However, as discussed, these 

samples proved challenging due to their complexity and limited dynamic range of current 

proteomic technologies. It is now recognized that cells from the original site of the 

pathology, which is often located in a tissue, could be a better source for marker 

discovery due to the generally lower concentration range of proteins in tissue compared 

with bodyfluids.13, 14 Shotgun proteomic strategies using bulk tissue remain common for 

marker discovery in tissue but these approaches require hundreds of µg up to mg 

quantities of protein, especially if multidimensional protein identification technology15 

(MudPIT) is used. This often limits the cellular specificity of these projects as enrichment 

of large quantities of specific cell populations from morphologically complex tissues is 

not practical. 

A number of alternative proteomic strategies that are useful for marker discovery 

directly in the tissue have been developed that can provide improved cellular specificity 
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and higher throughput. Two of these strategies will be discussed, Matrix-assisted laser 

desorption ionization (MALDI) Imaging MS (IMS) and laser capture microdissection 

(LCM)-based proteomics combined with MALDI MS. It is important to stress that 

neither approach, direct imaging by MALDI IMS nor LCM-based proteomics is superior. 

However, both approaches have unique advantages that can provide insight into the 

molecular makeup of tissues with high sensitivity and cellular specificity.  

Matrix-Assisted Laser Desorption Ionization  

MALDI is a soft ionization technique that has emerged as an indispensable tool for 

the analysis of organic (macro)molecules including peptides and proteins. The discovery 

of MALDI MS originates back to work of Tanaka.16 He used ultrafine cobalt powder as 

an inorganic matrix that was dispersed in glycerol for ionization of proteins as large as 34 

kDa. Independent from Tanaka, Karas and Hillenkamp demonstrated that an organic 

matrix such as nicotinic acid can act as a matrix for MALDI ionization of proteins.17 

Subsequent improvements in instrumentation and discovery of new organic matrix 

molecules and sample preparation protocols18 lead to widespread adoption of MALDI 

MS for biological research. Common analytes are drugs,19 metabolites and lipids,20, 21 

carbohydrates,22 nucleic acids,23 polymers24 and peptides and proteins.25 Recently, 

MALDI has become an important tool for bacterial fingerprinting26 and direct mapping of 

proteins and peptides in tissues and cells using imaging mass spectrometry (IMS).27, 28 

Today, MALDI has mostly replaced many of the earlier used desorption methods29 for 

peptides and proteins including laser desorption/ionization (LDI), field desorption (FD), 

secondary ion mass spectrometry (SIMS), fast atom bombardment (FAB) and 

californium plasma desorption (252Cf-PD). The importance of the new soft ionization 
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techniques Electrospray (ESI) and MALDI for biological mass spectrometry was 

underlined with the Nobel Prize in chemistry in 2002. 

The MALDI MS Experiment 

The general experimental protocol for MALDI MS of proteins and peptides requires 

extracting or mixing of the analytes with a solution containing the matrix compound and 

deposition of this solution onto a surface such as a stainless steel target. Good spectra are 

obtained if the molar matrix/analyte ratio is maintained between 200:1 and 10,000:1 for 

small molecules or large proteins respectively.25 As the solvent evaporates, co-

crystallization of matrix and analyte occur resulting in a layer of small crystals. Finally, 

the sample is introduced into a mass spectrometer and the co-crystals are irradiated with a 

pulsed laser for desorption/ionization of the sample.  

Matrix selection in MALDI MS remains largely empirical.30 Desirable features of a 

matrix compound are a high absorbance cross section for the laser, high tolerance 

towards contaminants, a high vacuum stability, the ability to form morphologically 

homogeneous evenly distributed crystals layers and most importantly, the ionization of 

the analyte providing high sensitivity detection.  

Figure 1 shows examples of some of the most commonly used matrix molecules for 

MALDI: 2,5-Dihydroxbenzoic acid  (DHB)31 (1) and α-Cyano-4-hydroxycinnamic acid  

(CHCA)32 (2) show good performance for the analysis of peptides. Sinapinic acid33  (SA) 

(3) is typically used for protein analysis but DHB remains a good alternative if the 

proteins are glycosylated. Finally, 2,5-Dihydroxyacetophenone34(DHA) (4) is an 

excellent choice for the ionization of many lipids.35 
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The exact mechanism of MALDI is still actively investigated and various models 

have been put forward to describe the ionization/desorption process.36, 37, 38, 39 While 

many questions remain concerning the exact mechanism of ion formation, its 

experimental implementation and practical parameters enabling reliable and reproducible 

analysis have been well characterized.  
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Figure 1: Structures for common MALDI matrix compounds. (1) 2,5-Dihydroxybenzoic 
acid (2) α-Cyano-4-hydroxycinnamic acid (3) Sinapinic acid (4) 2,5-Dihydroxy-
acetophenone (DHA) 
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Advantages of MALDI MS 

MALDI MS has several unique advantages that make this technique desirable for 

the analysis of proteins and peptides. First, MALDI is a soft ionization technique that can 

ionize small molecules, peptides and proteins with molecular weights up to the MDa 

mass range40 with high speed and sensitivity.41 Second, MALDI mostly produces singly 

charged ions which simplifies spectrum interpretation and provides high peak capacity 

for complex mixture analysis. Third, sample preparation and acquisition of samples in 

MALDI can be fast and automated allowing high-throughput analysis. Fourth, it can 

tolerate relatively high concentrations of common contaminants such as salts and 

detergents which are often present in protein samples.42 This reduces the need for time 

consuming sample preparation. Lastly, samples can be archived for several months if 

retrospective analysis is required.  

MALDI Imaging Mass Spectrometry for Spatial Mapping of Proteins in Tissues 

 An increasingly important application of MALDI MS is imaging mass 

spectrometry (IMS) a technology for spatial analysis of molecules in tissues. IMS was 

first described by Caprioli43 who demonstrated that the spatial arrangement and relative 

abundance of proteins in tissues can be revealed by systematically analyzing a matrix 

coated tissue with the use of MALDI TOF MS. The technology is rapidly evolving and 

applications for mapping of a wide range of compounds in tissues including small 

molecules like drugs44, 45, 46 and their metabolites,47, 48 lipids21, 49, 50, 51, 52, 53 proteins54, 55, 56, 

57, 58 and peptides59, 60 have been demonstrated. 

Figure 2 shows a typical workflow for MALDI Imaging MS. Tissue samples or 

whole animals are sectioned and placed onto target plate such as a conductive glass slide 
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or a gold coated MALDI target. Alternatively, cells of interest are deposited or grown on 

a MALDI target. The dried samples are coated with a layer of matrix and the sample is 

loaded in a mass spectrometer. A region of interest is selected and the laser is 

systematically rastered over the tissue to obtain a spectrum from each pixel. Finally, the 

resulting spectra are processed61 and assembled into an ion image. The result of this 

experiment is a 4 dimensional dataset consisting of the x and y pixel coordinates and the 

m/z and intensity values. By extracting single ion species or selected mass regions of 

interest, hundreds of ion images can be plotted revealing the distribution of the analyte 

molecules in or across tissues. Several of these ion images can be acquired from co-

registered serial sections enabling 3D imaging62, 63 of a tissue or whole animals.64  

IMS has a number of unique advantages compared with analysis of bulk tissue 

samples. First, it provides the relative abundance and distribution of molecules in a tissue 

creating an ion map that shows the distribution and relative abundance of molecules in a 

tissue. Second, it does not require molecule specific probes which enables discovery of a 

priori unknown protein forms including post-translational modified or truncated proteins. 

Lastly it requires minimal sample preparation, is easy to use and it can provide high-

throughput approaching cellular specificity.  
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Figure 2: A general workflow for MALDI Imaging MS.65  
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Laser Capture Microdissection for Tissue Proteomics 

Enrichment of well-defined pure cell populations from morphologically 

heterogeneous tissues is an important task in cell research, organ culture, tissue 

engineering and for the procurement of selected cell populations for molecular assays 

including DNA/RNA profiling and proteomics. In the past, mechanical isolation of pure 

cell populations has been accomplished by gross dissection of tissue prior to tissue 

extraction or the use of specialized tools such as tissue punches.66 Alternatively a 

combination of sharp needles and wires have been used for dissection of selected cells 

from thin tissue sections.67 Manual dissection with assistance of a microscope, especially 

if combined with micromanipulators, can achieve good precision but it is labor-intensive 

and requires a high degree of manual dexterity. The need to increase throughput and 

specificity of cell isolation led to the development of laser assisted dissection techniques; 

laser capture microdissection (LCM)68 and laser microdissection (LMD).69, 70 Both 

approaches are commonly referred to as laser microdissection but the underlying 

technology used for dissection is different.71  

The first generation of LCM instruments used a heat-generating pulse from a mid-

infrared laser to fuse cells of interest to a heat sensitive membrane attached to a cap 

placed in close proximity above the tissue (Figure 3A). Cells are removed from the 

section when the cap is lifted off the tissue. This approach has the advantage that the laser 

mainly interacts with the capture membrane thus enabling gentle cell isolation. The 

resolution of this technique is limited by the relatively large laser spot diameter although 

single cell dissection has been demonstrated.68       
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Figure 3: Laser assisted dissection of thin tissue sections. (A) LCM using a heat sensitive membrane activated with an IR laser. Cells 
underneath the activated membrane fuse with the membrane and are lifted off the tissue with the capture cap. (B) Laser 
microdissection of tissue. The tissue around the cells of interest is cut with a focused laser beam and cells of interest are laser 
catapulted into a capture vial above the sample. 
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The second generation of LCM instruments circumvents the use of capture caps 

which is advantageous for enrichment of cells from large tissue sections. LMD uses a 

three step process for dissection of tissue. Tissues are mounted onto a UV sensitive 

membrane or coating72 attached to a glass slide. In the first step, the membrane and tissue 

is cut with a focused low-energy UV laser that isolates the desired tissue region from the 

bulk tissue by cutting through the membrane and tissue matrix. In the second step cells 

are removed from the tissue by laser-induced forward transport a process known as laser 

pressure catapulting (LPC).73 Lastly, tissue is captured in a capture cap typically placed 

several millimeters away from the tissue. LMD has been commercialized on several 

instrument platforms. Leica uses an upright microscope allowing gravity assisted 

dissection.74 One potential disadvantage of this setup is that tissue debris can be deposited 

into the collection vessel which may result in contamination of the isolated cells. A 

solution to this problem is an inverted microscope design which is available from Carl 

Zeiss. Cells are collected upward into a collection vessel which eliminates contamination 

issue but it requires capturing of the cells in a hanging droplet such as a buffer or mineral 

oil although sticky capture caps are also available. The spatial resolution of LMD is 

allows routine dissection of single cells. Using a research grade instrument dissection at 

subcellular resolution has been demonstrated75 indicating the potential of this technique 

for subcellular enrichment of cell organelles. Frequency-tripled Nd:YAG lasers with 355 

nm wavelength have replaced nitrogen lasers on the newest generation of LMD systems 

because they offer improved beam homogeneity and shorter pulse duration which 

improves spatial resolution and reduces optical breakdown of the tissue.73 Tissue damage 

by the laser can be reduced by tightly focused beams. With this setup dissection of living 
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cells with cell progeny rates of 98 % could be demonstrated.76 However, the use of a laser 

absorbing material such as a polymer membrane is critical for dissection of histological 

specimen as dissection directly from the glass slide can result in excessive sample 

degradation.73 Mechanistic studies of LPC using membrane slides have shown that 

catapulting is driven by plasma formation for tightly focused beams or photothermal 

ablation for defocused laser beams with beam spot size sizes greater than 35 µm.73 In 

general, tightly focused beams used for LPC reduce sample degradation and are therefore 

desired for LMD from membrane slides. In summary, LCM and LMD are laser assisted 

dissection technologies soft enough to enable dissection of biomolecules including DNA 

and proteins at the single cell level without the risk of excessive sample degradation. 
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Instrumentation for MALDI MS 

MALDI has been interfaced with a wide variety of mass analyzers. Initially, most 

MALDI work was carried out with time of flight (TOF) analyzers but development of 

atmospheric and intermediate pressure ion sources has since resulted in broad adaption to 

a large number of analyzer geometries and hybrid instruments. A brief introduction into 

MALDI TOF MS and its ongoing adaption to alternative mass analyzers and hybrid 

instruments is provided. 

MALDI TOF MS 

MALDI is intrinsically a pulsed ionization method that creates discrete ion packets. 

Consequently it is an excellent match for TOF mass analyzers which are capable of 

recording the entire spectrum for each ionization event. The use of TOF analyzers for 

MALDI originates back to the work of Wiley and McLaren who introduced time-lag-

focusing77 for TOF analyzers. Advances in electronics and hardware design were 

required before the full potential of this technique could be realized. Some key milestones 

were the design of the reflector by Mamyrin78 and the development of post source 

decay79 which allowed peptide sequencing on reflector instruments. Further 

improvements in reliability and electronics such as lasers and ion gate technology led to 

the development of commercially available TOF/TOF instruments.80, 81 The improved 

performance and availability of these instruments has resulted in widespread adoption of 

MALDI TOF and TOF/TOF MS for protein analysis and characterization. 

A brief description of the principles of basic MALDI TOF instruments follows. 

Readers seeking a detailed discussion of the theory behind MALDI TOF instruments are 
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referred to the comprehensive overview by Vestal and Juhasz.82 Figure 4 shows a 

schematic overview of a typical linear MALDI TOF instrument. First a sample target 

with the co-crystalized sample is loaded into the ion source operated at 10-7 to 10-8 Torr. 

High voltage, typically 20-25 kV, is applied to the sample target and the extraction plate. 

A single pulse of a focused UV laser is then directed at the sample crystals, causing 

desorption/ionization while triggering data acquisition using a transient recorder 

connected to the detector and amplifier. Some of the typical lasers used for MALDI 

include a nitrogen laser operated at 337 nm, and a frequency tripled Nd:YAG or Nd:YLF 

laser at 355 and 349 nm respectively. Alternative laser sources, including IR lasers, can 

also be employed. Typical pulse lengths for the UV lasers are in the low ns range. The 

lasers are focused to the desired spot size, which is typically between 10 and 100 µm 

although smaller laser spots have been reported.59, 83, 84 Spatially structured and 

modulated laser beam profiles have also been explored to reduce sample consumption 

and to improve the performance of commercially available instruments.85, 86 The laser 

pulse desorbs/ionizes the samples, propelling the ions into the field-free space between 

the sample target and the extraction plate. Depending on the polarity of the potential 

applied, positive or negative ions can be selected for analysis. After a short delay, either 

the extraction plate or the sample plate is pulsed and ions are accelerated toward the 

field-free drift tube where they undergo separation in space due to their differences in 

velocity. The pulsed acceleration of the ions, also known as time lag focusing or delayed 

extraction, corrects for differences in the position and kinetic energy of the ions thereby 

improving resolution.    
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Figure 4: Scheme of a linear MALDI TOF instrument. Ionization takes place in the ion source by a short laser pulse. Ions are 
accelerated in an electric field towards the field-free drift tube. Ions of the same charge state have the same kinetic energy but differ in 
velocities according to their mass. As a result, ions with different m/z are separated in space resulting in a shorter TOF for smaller 
ions. 
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While the kinetic energy of all ions is constant after acceleration the velocity of the 

ions is inversely proportional to their m/z ratio. Therefore, ions with small m/z arrive 

earlier at the detector than heavier ions. This is illustrated in Equation 1 where the 

relationship between the drift time, td, and its m/z ratio is described. The drift time is 

proportional to the square root of the m/z ratio and depends on the length of the field-free 

drift tube (s), the acceleration voltage (U), and the electron charge (e), which are easily 

experimentally determined or are already known constants. The total time-of-flight (ttotal) 

is the sum of the laser pulse duration (to), the time needed for acceleration (ta), and the 

drift time. 
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Typical time-of-flight measurements for instruments with 20-25 kV acceleration 

voltage are in the low µs range for peptides and up to several 100 µs for proteins. The 

ability to detect a theoretically unlimited mass range from a single ionization event at 

high speeds combined with the high ion transmission of TOF analyzers renders MALDI 

TOF instruments a powerful tool for proteomic analysis. Challenges of the technique are 

the need for compound specific matrix materials, a drop off in sensitivity for high mass 

proteins and the need for careful optimization of the sample preparation protocols 

especially if high reproducibility is required. Overall, MALDI TOF MS is a powerful 

technology that continues to provide high performance for peptide sequencing and intact 
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protein mass determination. Recently, MALDI TOF MS has become an important tool 

for the direct spatial mapping of molecules such as drugs, lipids and proteins in tissues. 

Additional Mass Analyzers for MALDI MS 

The versatility and advantages of MALDI has led to its implementation with a 

number of mass analyzers and hybrid instruments. Here the operation principles and 

advantages of several of these instruments are briefly discussed, with a focus on mass 

analyzers like ion traps (3D-IT) and linear ion traps (LIT) and hybrid instruments such as 

QqTOF, Q-trap-TOF, and QqLIT. Moreover Fourier transform (FT) hybrid instruments 

including the LIT-Orbitrap and a QqFourier transform cyclotron resonance (FT-ICR) 

instrument will be described. Several advantages arise when these mass analyzers are 

combined with MALDI. First, the ion source is decoupled from the mass analysis which 

reduces the effect of the sample geometry on mass accuracy. Second, conductive sample 

targets which prevent sample charging and mass shift in axial TOF instruments are no 

longer needed. Hence, non-conductive targets can be analyzed, reducing the need for 

additional sample transfer and enabling the use of complex chip designs.87 Historically, 

most of these instruments were developed for atmospheric pressure ionization techniques 

like ESI. As a result, the atmospheric pressure MALDI (AP MALDI) source is 

maintained at elevated pressure, ranging from tens of mTorr to atmospheric pressure.88 

The higher pressure in the ion source rapidly cools the ions thereby reducing in-source 

fragmentation. This has the advantage that higher laser power can be used for each laser 

pulse providing higher ion yields for each laser shot. Moreover, the relatively high 

pressure in the source reduces sublimation of the matrix, which can be a concern for 

some matrix compounds (e.g. 2,5-DHB) in axial TOF instruments. As a result, decoupled 
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ion sources combined with the unique advantages of the corresponding mass analyzers 

provide new opportunities especially for the analysis of small molecules and peptides.  

Quadrupole Ion Trap and Linear Quadrupole Ion Traps 

Quadrupole ion trap instruments are extremely common in proteomic research. The 

original analyzer design was described by Paul89 in 1953. Its most widely used design 

consists of hyperbolic electrodes serving as end caps and a ring electrode. The operation 

of the quadrupole ion trap is based on the creation of stable trajectories for selected ions. 

Unwanted ions are removed from the trap by their collision with the wall or by resonant 

ejection. Essentially a potential well is created from which ions are ejected to a detector 

by applying a RF-voltage scan allowing sequential detection of the ions according to their 

m/z ratio.90 Tandem MS can be performed after removing unwanted ions from the trap 

(Figure 5A). The precursor ions are activated by their collision with a gas such as helium. 

Numerous low-energy collisions provide sufficient energy for fragmentation and 

fragment ions are scanned out of the trap as described above. The ability to rapidly scan 

the trap and to perform multistage tandem MS make this analyzer a powerful tool for 

peptide sequencing. Resolving power of this analyzer is dependent on scan range and 

scan speed, but typically unit resolution is used with the ability to obtain higher resolving 

power for a narrow mass window operated at lower scan speed. Disadvantages of the 3D-

IT are the small trapping volume and limited ion storage capacity. This has led to the 

development of LIT instruments which have the same capabilities of a 3D-IT but provide 

higher sensitivity and dynamic range.91 Figure 5 shows a schematic of a linear ion trap. 

Ions are trapped in the center of a quadrupole device using RF potentials applied to the 

quadrupole rods and DC potentials applied to the front and back section of the trap. Ions 
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can be scanned out either axially (AB Sciex) or radially (e.g. Thermo Fisher LTQ) for 

detection. Both 3D-ITs and LITs have been applied for MALDI MS especially for the 

analysis of drugs and metabolites in tissues and peptide analysis.92, 93 The ability to 

perform MSn and the high sensitivity makes these instruments well-suited for structure 

elucidation of drugs and metabolites and for peptide sequencing.    
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Figure 5: Ion trap designs. (A) Schematic of the fragmentation of ions in a 3D quadrupole ion trap94 (B) Diagram of a linear 
quadrupole ion trap91 as implemented in the Thermo Fisher LTQ which is one of the most widely used LITs in proteomics. 
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Hybrid Instruments for MALDI MS 

A number of hybrid mass analyzers with MALDI MS ion sources have been 

developed, including QqTOF,95, 96 Q-trap-TOF, QqLIT,97 LIT-Orbitrap and Qq-FT-ICR. 

These advantages of two mass analyzers include improved performance and increased 

capabilities as compared to single mass analyzers. Specifically, ions formed by MALDI 

at a high laser repetition rate form a quasi-continuous ion beam that can be manipulated 

in the instrument similar to the ion beams in ESI instruments. As an example, ions can be 

mass selected with high resolution in the first quadrupole. Hence, QqTOF instruments 

and QqLIT combine the advantages of triple quadrupole instruments with the unique 

capabilities of the reflector TOF and the linear ion trap analyzer. The TOF analyzer 

allows simultaneous detection of fragment ions with high mass resolution and mass 

accuracy which can provide high scan speeds. As there is no low mass cut off, 

simultaneous detection of all fragment ions can be achieved with high speed, which is 

desirable for structure elucidation and peptide de novo sequencing. QqLITs have slower 

scan speed but they provide MSn capability and are well-suited for quantitative analysis 

as they can provide the functionality and sensitivity of a triple quadrupole instruments 

while providing the versatility of a linear ion trap. 

One increasingly important class of hybrid instruments incorporate Fourier 

transform analyzers such as the Orbitrap98 and FT-ICR.99 Typical hybrid instrument 

geometries for these analyzers are LIT-Orbitrap, and LIT-FT-ICR and Qq-FT-ICR. When 

combined with a linear ion trap or a quadrupole, they are versatile tools for MALDI that 

are well-suited for complex mixture analysis when high peak capacity and mass accuracy 

are required. The advantages of FT analyzers are high resolving power (up to 105 for the 
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orbitrap and 105-106 for FT-ICR) and high mass accuracy (in the low ppm range or 

better). The following discussion will focus on the function of FT-ICR analyzers. Readers 

interested in a detailed description of the Orbitrap and its application may refer to an 

excellent review by Perry.100 The operation principle of FT-ICR analyzers is the 

measurement of the cyclotron frequency of initially coherent ion packets in a uniform 

magnetic field. Figure 6A shows a schematic of an ICR cell placed in the field of a 

superconducting magnet. Ions are injected into the trap where they are axially trapped by 

applying a DC potential to the front and back trapping plates of the cell. The confined 

ions undergo cyclotron motion in the center of the trap (Figure 6B) but the ion motion is 

non-coherent and radii of this motion is too small to induce a measurable image charge 

on the detector plates.99 For detection the ions need to be brought into close proximity of 

the detection plates where they can induce a charge. Thus, excitation with an amplified 

radiofrequency chirp is carried out. When the excitation radiofrequency matches the 

cyclotron frequency of a ion, spatially coherent ion packets with large radii are generated 

which are suitable for detection. Useful measurement of all ions in the cell requires 

simultaneous excitation of all ions in the trap which is achieved with a frequency sweep 

or “chirp” (Figure 6C). The excited ion packets spiral outwards towards the detection 

plates where they induce an image charge that is amplified and recorded by a transient 

recorder. This recorded transient free induction decay (FID) represents the time domain 

signal which is then computed into the frequency domain using fast Fourier 

transformation. The measured frequency is inversely proportional to the m/z ratio of the 

ions and the amplitude of the signal is proportional to the number of ions in the trap.  
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Figure 6: Operation principle of a FT-ICR analyzer (A) Injection of ions into a ion trap and axial trapping. (B) Ions in the center of the 
trap undergo non-coherent cyclotron motion with small radii. (C) Excitation of the ions with RF energy creates coherent ion packets 
that orbit close to the detection electrodes. (D) Induction of an image charge on the detection plates for detection. 
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Several parameters directly depend on the strength of the magnetic field.90, 101 

Resolving power and scan speed increase linearly with higher magnetic field strength 

while the upper mass limit, ion trapping time, ion energy and number of trapped ions 

increase quadratically. Typical magnets have field strengths of 7, 9.4 and 12 tesla while 

high field magnets for FT-ICR MS with field strengths up to 21 tesla are under 

development.  
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Summary of Research Objectives 

Proteomic discovery in tissue samples with single cell specificity is challenging 

because the currently available technologies are limited by spatial resolution, sensitivity, 

or dynamic range. Single cell analysis is desirable because it can provide insight into the 

function of cells in their native tissue microenvironment. In addition, the complexity of 

the sample is reduced which is important for discovery of lower abundance proteins. 

Protein expression in cells is influenced by normal physiological and pathological stimuli 

in the tissue microenvironment, and mapping these changes is critical for biological 

research and for developing new diagnostic tools for disease. One emerging method for 

tissue analysis is MALDI IMS which is capable of directly mapping proteins in thin 

tissue sections with resolutions approaching single cells. IMS enables direct discovery 

and identification of proteins from a tissue. However, current sample preparation 

strategies, specifically the coating of the tissue with the matrix and reagents, limit the 

spatial resolution of IMS because the proteins tend to delocalize during this step. 

Therefore, improved methods for coating the tissue with the matrix solution are needed in 

order to provide higher spatial resolution and sensitivity.  

Indirect approaches for the analysis of cells in tissues require isolation of these cells 

prior to analysis. Enrichment of large numbers of cells has the potential to increase the 

sensitivity and dynamic range of the experiment. In this approach, cellular specificity is 

limited only by the method used for cell isolation. LCM has shown promise for the 

isolation of single cells and it is increasingly used for proteomic discovery. 

Unfortunately, proteomic experiments require enrichment of large numbers of cells, 

typically several thousand, to overcome sample losses during cell isolation, protein 



 

29 
 

extraction and analysis. Enrichment of large numbers of cells can be tedious or 

impractical when analyzing morphologically complex tissues or samples containing cells 

of interest at low abundance.  

Ideally, a method would be developed that combines the high spatial resolution and 

the speed of IMS with the ability to enrich cells prior to analysis. Not only would this 

increase the specificity of the molecular profiles but it would increase the throughput of 

LCM-based proteomics which is critical for development of the next generation of 

diagnostic tools. Importantly, by removing the cells from the tissue environment, new 

opportunities for protein processing and analysis can be explored. The goals of this work 

were to develop new analytical workflows that enable the analysis of proteins from a 

subset of cells in a heterogeneous tissue with single cell specificity and high sensitivity. 

These aims were accomplished through the following objectives: 

 

Objective 1:  To optimize automated sample preparation platforms for direct 

analysis of proteins in tissues using MALDI IMS. 

Objective 2:  To develop a workflow for the enrichment, processing and analysis 

of selected cell populations from tissues providing cell type specific 

protein analysis with high sensitivity. 
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CHAPTER II 

Mapping Proteins in Tissue by MALDI Imaging MS* 

Abstract 

Direct mapping of proteins in tissue sections by MALDI Imaging MS is emerging for the 

discovery of clinically useful proteins in tissue samples, as was described in chapter 1. 

There are several challenges to overcome to make IMS of proteins routine including 

reproducible and automated matrix application and improved strategies for identification 

of the proteins from the tissue. This chapter describes the optimization of two automatic 

matrix deposition robots for matrix application. One approach uses a computer controlled 

vibrational matrix deposition robot that is optimized and applied for imaging of proteins 

in mouse brain. The second device is an automated reagent multispotter (ARM) that is 

optimized for printing matrix spot arrays. Applications of the ARM for the imaging of 

proteins in mouse epididymis and in human clear cell renal cell carcinoma (ccRCC) 

tissue are discussed. Lastly, a new workflow for the identification of proteins using 

multidimensional protein fractionation and top-down protein sequencing is introduced. 

*  Reproduced in part with permission from H.R. Aerni, D.S. Cornett, and R.M. Caprioli, 
Automated Acoustic Matrix Deposition for MALDI Sample Preparation. Analytical 

Chemistry, 2006. 78: p. 827-834. Copyright 2006  
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Introduction 

Matrix Application for MALDI IMS of Proteins 

Localization of proteins in tissues using MALDI Imaging MS relies on a workflow 

for tissue processing that preserves the location of the protein in the tissue. The critical 

sample processing steps for IMS are known and have been discussed extensively.28, 102 

Briefly, animal tissues are surgically removed and immediately snap frozen in liquid 

nitrogen or alternate freezing agents such as fluorocarbons103 while taking care to 

preserve the original shape of the tissue. The frozen tissue is sectioned in a cryostat and 

thaw-mounted onto a conductive substrate such as an ITO-coated glass slide or a gold-

coated MALDI target. At these section thicknesses (typically 12 µm for IMS), most of 

the cells are cut open during sectioning, providing access of the matrix solution to the 

cells for protein extraction. The sections are dried in a vacuum desiccator and washed in 

series of graded solvents washes to remove salts and lipids that could interfere with the 

MALDI experiment.104, 105 If desired, staining with MALDI compatible stains can be 

performed, enabling simultaneous histology and MALDI IMS from the same tissue 

section.106 Matrix is applied after drying the washed tissue in a vacuum desiccator. The 

matrix application step remains one of the most challenging parts of the experiment as it 

needs to be carefully balanced to promote protein extraction while limiting potential 

delocalization of the proteins which would reduce the spatial resolution of the technique. 

If the applied coating is coated too dry, poor protein extraction and poor MALDI spectra 

quality is observed. Wetter coatings tend to improve spectra quality but coatings that are 

too wet may cause protein delocalization.107 Once the tissue is coated with the matrix it is 

systematically rastered by a focused laser. The resulting spectra are processed to remove 
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excessive background and assembled into an ion image that shows the distribution of the 

protein in the tissue.  

Several strategies have been developed for matrix application for protein imaging. 

Spotting approaches using fine capillaries or pipette tips permit rapid analysis of cells in a 

tissue but placement accuracy is limited. Typical spot sizes obtained with this technique 

are between 1-2 mm for matrix deposition with a pipette and 0.3-1 mm for matrix 

deposition with a capillary. Spectrum quality from spotted tissue can be excellent but the 

spatial resolution of spotting techniques is limited by the size of the matrix spot. 

Therefore, the mass spectrum obtained from each spot represent a composite spectrum 

from all the cells covered by the matrix. This can be limiting especially if the tissue is 

morphologically complex. To increase spatial resolution, spray based matrix applications 

have been developed. Among the spray techniques described are electrospray43 and 

pneumatically assisted sprayers such as airbrush108 and the TM sprayer61 and reagent 

sprayers for thin layer chromatography. Trained personnel can achieve uniform and 

reproducible coatings, but the process is difficult to standardize between users and 

laboratories. Recently, a new matrix application robot for vibrational matrix deposition 

has been developed enabling automated matrix coating of tissues while actively 

monitoring the matrix deposition process.109 Here, optimization of the sprayer for matrix 

deposition on mouse brain is described.  

Matrix application for MALDI IMS of proteins in tissues with spray-based 

approaches requires careful control of the matrix deposition process to balance protein 

extraction with delocalization of proteins over the tissue section. A solution to this 

problem would be to deposit the matrix as discrete micro spots that would limit protein 
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delocalization to the region wetted by the matrix solution. However, the problem with 

nozzle-based printers is that the high volatility of the solvents used for MALDI causes 

crystallization of the matrix in or around the nozzle resulting in clogging110, 111, 112 and 

inconsistent matrix deposition especially if high concentration matrix solutions are being 

used. To overcome this problem, an automated matrix deposition robot was developed 

and optimized for protein imaging.113 Here, the operation of this spotter and its use for 

matrix printing for protein imaging is discussed and applications that highlight the unique 

capabilities of this spotter are presented.  

Protein Identification 

Protein imaging can rapidly reveal the distribution of mass-to-charge ratios of 

proteins but identification of the detected peaks must be carried out separately. Direct 

approaches using MALDI TOF/TOF MS have been successful for this purpose especially 

if the molecular weight of the protein is below 12 kDa114 and the peak intensity is high.54 

However, this approach often fails for lower intensity peaks, and fragmentation of larger 

proteins tends to result in spectra with poor sequence coverage. Therefore, indirect 

protein identification strategies are required. In many cases homogenization of whole 

organs is carried out followed by protein fractionation. Among the most commonly used 

protein identification strategies are combinations of reversed phase separation and gel 

electrophoresis followed by in-gel digestion and protein identification by LC-MS. This 

method has been successfully applied for protein identification from biofluids115 and 

tissues.116 The gel-based workflow is especially useful as it can remove high molecular 

weight proteins that might generate many more peptide fragments than a low molecular 

weight protein of interest which complicates identification. Unfortunately, the direct link 
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to the protein is lost in this case because the intact mass of the enriched protein on the gel 

cannot be easily determined prior to digestion. To match the peptides to the intact mass of 

the protein, high sequence coverage and mapping of post-translational modifications may 

be required which can be difficult. Therefore, an alternative strategy for protein 

identification directly from serial sections of the imaged tissue was developed, enabling 

tracking of the protein throughout the protein identification workflow via its mass. 

 

Results 

Automated Matrix Deposition Using the ImagePrep 

An automated reagent sprayer for matrix coating of tissues using a prototype 

vibrational sprayer has been developed. The ImagePrep (Bruker Daltonics) controls 

matrix deposition by actively monitoring the tissue surface during matrix deposition 

while providing a controlled atmosphere in the spray chamber. Figure 7A shows a 

schematic of the sprayer. A prototype of this sprayer was optimized to coat mouse brain 

with sinapinic acid. A transparent sample support such as an ITO-coated glass slide is 

placed on top of a light scattering sensor. A computer controlled vibrational sprayer 

attached to a matrix reservoir generates a fine mist of matrix droplets that settles by 

gravity onto the tissue. The size of the matrix spray droplets is controlled by the diameter 

of the pinholes, which are ~ 20 µm. To determine the area wetted by a single solvent 

drop, 60 % acetonitrile was sprayed onto water sensitive paper and the resulting circular 

areas were measured with a light microscope to yield a typical diameter of 65 µm.  
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Figure 7: Matrix application using the ImagePrep. (A) Schematic of the sprayer. (B) 
Sensor signal monitored during spraying of sinapinic acid matrix solution showing 6 
consecutive spray cycles followed by a complete drying step. 
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The spray duration and intensity is actively controlled using real-time feedback 

from the light scattering sensor beneath the sample. Light scattering is measured on the 

glass slide next to the tissue. A higher voltage signal indicative of more scattering is 

recorded as the thickness of the dried matrix layer increases (Figure 7B). Sensor control 

has the advantage of providing consistent amounts of matrix solution to the sample. This 

can compensate for potential matrix crystal build up on the sprayer which is common if 

matrix solutions > 10 mg/ml are used. Typically, a series of controlled matrix sprays are 

applied and nitrogen gas is supplied to the chamber to assist with drying. In this way, the 

drying process can be controlled enabling extraction of proteins for prolonged time 

periods. After several such cycles, the sample is completely dried and the process is 

repeated until the desired matrix coating quality is obtained. By providing feedback from 

the sensor to the sprayer, controlled matrix deposition can be achieved. The time required 

for coating tissue is method dependent but is typically 1-2 h. In case of sinapinic acid, 

hundreds of spray cycles are needed to build up sufficient matrix for analysis. Systematic 

optimization of all parameters results in reproducible coatings for serial tissue sections 

showing excellent MALDI signal quality. Importantly, by controlling the wetness of the 

tissue, delocalization of proteins can be controlled. The optimized protocol can be saved 

for future use enabling unsupervised matrix application.  

Figure 8A shows a plot of the sensor signal for the optimized coating of mouse 

brain with sinapinic acid. Note that matrix is applied in several spray phases each 

consisting of a series of controlled matrix sprays to limit protein delocalization. As the 

method proceeds, the amount of matrix deposited is increased. This coating strategy 

limits protein delocalization especially if the initial spray phases are rather dry.  
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Overall parameters for 7 different spray segments were optimized for this method. 

A detailed description of the coating method can be found in Appendix A. The optimized 

coating showed good crystal homogeneity and coverage with crystal sizes between 20-50 

µm. Tissue imaging was carried out with a raster with of 75 µm. Figure 8B shows the 

averaged mass spectrum from the ion image of the mouse brain. Proteins with m/z up to 

33,000 were detected, but most were in the 3-15 kDa range. Ion images revealed 

localization of proteins to distinct tissue regions of the mouse brain (Figure 9) that 

matched anatomical structures revealed on a stained serial section. Advantages of this 

sprayer are that the matrix deposition is completely automated requiring minimum user 

interaction. Imaging at spatial resolutions of 50-100 µm is routine for a sinapinic acid 

matrix although tuning of the method may be required for different tissue types. The 

sprayer generates a homogeneous coating in close proximity to the sensor. However, the 

coating at the periphery of the slide tends to be too wet or too dry. Hence, placement of 

the tissue within 1.5 cm of the sensor is recommended. Under these circumstances, the 

coating process is completely automated, producing reproducible coatings between 

tissues which eliminate the need for time consuming manual matrix application. 
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Figure 8: Coating of mouse brain tissue with the ImagePrep using sinapinic acid. (A) 
Measured light scattering during matrix application. (B) Summed mass spectrum from 
the brain image showing the mass range from 2500-35000 Da. 
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Figure 9: Imaging of mouse brain after matrix coating with the ImagePrep showing localization of proteins to distinct brain regions. 
(A) Cresyl violet stained serial section. (B-E) Ion images showing m/z = 6276, 7345, 8450, 14135. (F) Overlay of ion images B-E. 

m/z = 6276 m/z = 7345Stain

m/z = 8450 m/z = 14135 Overlay 
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Automated Matrix Deposition Using the ARM 

Matrix application by matrix solution printing has the advantage that protein 

delocalization is limited to the area wetted by the matrix spot. However, nozzle-based 

methods such as inkjet printers tend to clog, resulting in poor performance for matrix 

printing. Recently, an automated reagent multispotter (ARM) was developed and 

optimized for protein imaging.113 This spotter uses a nozzle-free acoustic ejector for 

reagent printing allowing continuous matrix deposition with concentrated matrix 

solutions without clogging. Figure 10 shows a schematic of the ARM with translational 

stage, sample- and drop imaging systems and an acoustic ejector for matrix dispensing.  

Matrix deposition requires that a tissue sample is first mounted to a motorized stage 

and placed above a macro lens attached to a color camera. Using the control software, an 

optical image is acquired and a rectangular array or discrete regions of interest are 

marked for matrix deposition. Matrix solution is filled into a reservoir and mounted 

above a focused transducer. An imaging system consisting of an adjustable stroboscopic 

light for back-light illumination and a long distance video microscope is used for real 

time monitoring of the surface of the matrix solution in the reservoir during tuning of 

acoustic ejector. The focal position and rf power supplied to the transducer are optimized 

to obtain stable droplet ejection as shown in Figure 11. The droplet volume is solvent 

dependent, with increased droplet size for higher percentages of acetonitrile in the matrix. 

For a 50 % acetonitrile solution the droplet volume was determined to be 121 ± 16 pl 

resulting in a calculated droplet diameter of 62 µm. Once the ejector is optimized for 

stable droplet ejection, the sample is transferred above the matrix reservoir for solvent 

deposition. The droplet ejection rate can be systematically optimized, and the number of 
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droplets dispensed in a printing cycle has been performed. Readers seeking a detailed 

description of the optimization may refer to Aerni et al.117 For proteins, excellent results 

can be obtained with 3 dispensing cycles consisting of 13 droplets deposited at 10 Hz in 

start/stop printing mode. This generates matrix spots with 243 µm spot diameter on 

average. The spotter has shown promise for mapping proteins in tissues. For example, ion 

images from mouse brain were obtained that showed localization of proteins to distinct 

anatomical brain regions (Figure 12). Matrix printing reduces sample delocalization to 

the area wetted by the matrix solution and spotting conditions can be optimized for each 

tissue resulting in an excellent MALDI signal.  

Several hundred laser shots can be obtained from each matrix spot increasing the 

signal-to-noise ratio of low abundance peaks. The performance of the spotter was 

compared with manual matrix deposition using a capillary. The average spot diameters 

were 230 µm with a CV of 7.6 % for the spotter and 370 µm with a CV of 22.1 % for the 

spots deposited with the capillary, indicating robotic spotting can improve the 

reproducibility of the matrix application process. In addition, comparison of the resulting 

spectra on tissue showed improved spectral quality from tissues coated with the ARM. 

The placement accuracy of the spotter is high allowing deposition of matrix droplets 

within 8-26 µm depending on the spotting conditions used.113 

The spotter was used for mapping protein distributions in mouse epididymis. The 

epididymis displays a highly regionalized pattern of gene expression which is critical for 

the maintenance of a fully functional organ.118 Therefore, one would expect localization 

of proteins to distinct regions of the epididymis. 
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Figure 10: Schematic of the acoustic reagent multispotter.113 

 

Figure 11: Photo micrographs obtained from the surface of the matrix reservoir during 
tuning of the acoustic transducer.113 (A) The focal spot and amplitude of the acoustic 
wave produced by the transducer is adjusted to the point where a droplet is formed at the 
top of the liquid column (B) but not ejected (threshold energy). Adjusting of the energy 
above the threshold value ejects (C) a droplet toward the sample to be spotted (D) Matrix 
printing.
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Figure 12: Matrix spotting and MALDI imaging of an adult mouse brain tissue section. (A) Matrix spots were printed as a rectangular 
array with a total of 1118 spots and 240 μm spot to spot distance. (B) Example ion images reveal the structure within the brain: (C) 
14132 Da (D) 17885 Da (E) 6720 Da (F) 7338 Da (G) 11839 Da (H) 11790 Da. White represents the highest measured intensity.
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Mapping of the distribution of proteins in this tissue is important to gain insight into 

spermatogenesis and may assist in the development of male contraceptives. Figure 13 

shows ion images obtained from a mouse epididymis after matrix application with the 

ARM. Proteins are localized to distinct regions of the epididymis. For example the 

protein with m/z = 5613 was found only in the caput while the protein with m/z = 11206 

was mostly located in the cauda and corpus. Several hundred ion images could be 

generated from such a dataset which makes this approach extremely valuable for 

discovery. One challenge that remains is the identification of proteins. In the mouse 

epididymis study, identification of proteins from this tissue had been carried out 

previously119 and proteins could be matched via their corresponding m/z. Proteins with 

m/z = 7285, 8434, and 11206 were identified as ESPI (epididymal serine protease 

inhibitor), CRIP1(cysteine-rich protein 1), ACRBP (proacrosin-binding protein), 

respectively, while the protein with m/z = 5613 remains unknown.  

While the spatial resolution of this approach is lower compared to the spray based 

approach, it provides spectra that show generally higher numbers of peaks thereby 

providing a more comprehensive inventory of the protein in the tissue. The nozzle-free 

design of the acoustic ejector allows printing of concentrated matrix solutions without the 

risk of clogging, a common problem with nozzle based printers used for matrix printing. 

Because the coordinates from each spot can be exported to the mass spectrometer, 

automated analysis of selected tissue regions spotted with discrete matrix spots becomes 

feasible. Cornett showed that such a workflow can be advantageous if high-throughput 

and cellular specificity are desired.120 

. 
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Figure 13: Imaging of mouse epididymis after matrix application using the ARM. (A) Optical image of an unstained serial section 
showing the distinct tissue regions. (B) Optical images for the spotted tissue. (C) Distribution of the protein with m/z = 5613 
(unknown, green), and m/z = 7285 (ESPI, red). (D) Distribution of protein with m/z = 11206 (ACRBP, green) and 8434 (CRIP1, red). 
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Strategy for Protein Identification for MALDI IMS 

The high sensitivity of MALDI IMS makes it a powerful technique for biomarker 

discovery in clinical tissues. As discussed earlier, protein identification is required to 

match the m/z value of a peak in the ion image to its corresponding protein. 

Homogenization of whole tissues and protein fractionation can be used in protein 

identification but homogenization of the whole tissue may increase the complexity of the 

sample rendering the identification more difficult.  

Ideally, proteins would be identified from a tissue region where it is highly 

expressed, providing the first step of enrichment for subsequent fractionation steps. A 

workflow for the identification of proteins from serial tissue sections was developed and 

applied for discovery of differentially expressed proteins in a human clear cell renal cell 

carcinoma tissue. First, protein imaging of the tissue was carried out to identify 

differentially expressed proteins between tumor and tumor-free kidney tissue. Figure 14A 

shows an H&E stained tissue section where the distinct tissue regions corresponding to 

the tumor, the medulla and the cortex have been marked by a trained pathologist. The 

tissue was coated with a matrix spot array with 450 µm array pitch using the ARM 

(Figure 14B). Imaging of the coated tissue revealed a number of differentially expressed 

proteins (Figure 14C-F). For example, the unknown protein with m/z = 12343 is localized 

throughout the tissue but its relative intensity is increased in the tumor region. Using this 

protein as an example, a new workflow for protein identification was optimized. First, the 

tumor region of 4 serial tissue sections was excised by macro dissection.   
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Figure 14: Discovery of proteins in a human kidney with clear cell renal cell carcinoma. (A) H&E stained serial section of the tissue. 
(B) Tissue after matrix application using the ARM. (C-F) Ion images showing the relative abundance of several proteins in the tissue.
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Following protein extraction, a two dimensional fractionation protocol that 

combines off-line strong cation fractionation (SXC) and reversed phase chromatography 

using a C4 column was used to separate the complex protein mixture. Interestingly, even 

after two modes of separation, several proteins peaks which were close in mass to the 

protein of interest were detected (Figure 15). 

Digestion of this fraction could make identification of the protein difficult 

especially if the protein was modified or if other high mass proteins were present in the 

sample. The low quantity of protein precludes the use of additional chromatographic 

fractionation steps which can severely diminish protein purification yields. Therefore, an 

alternative strategy using gas phase fractionation and top-down sequencing on a Qq-FT-

ICR MS was implemented. To improve sensitivity, a microspray ESI set-up consisting of 

a 2 µl injection loop connected to a low dead volume nano injection valve was optimized 

allowing detection of proteins with high sensitivity. For example, detection of 250 

fmol/µl ubiquitin delivered at 7µl/h could be demonstrated.   
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Figure 15: Workflow for protein identification from tissue. The protein with m/z = 12343 is enriched in one of the reversed phase 
fractions eluting around 36 min.
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The ESI MS spectrum in Figure 16A shows the fraction of interest containing 

several multiply charged peaks. The complexity of the spectrum confirms the presence of 

several other proteins in this sample. Thus, the [M+12H]12+ peak in the quadrupole was 

isolated and the ions were fragmented in the external collision cell. The resulting 

fragmentation spectrum (Figure 16B) was deconvoluted and submitted to database 

searching with ProSight PTM.121 The protein was identified as macrophage migration 

inhibitory factor MIF, Swiss-Prot P14174. This identification yielded a significant score, 

with the measured mass of the precursor ion and the calculated mass of the identified 

protein were within 0.16 ppm. Along with the several characteristic fragment ions 

detected, successful identification of the protein could be achieved (Appendix B). Several 

other proteins were identified with this workflow indicating that using 4 modes of 

separation (selective protein enrichment from the tissue, SCX, reversed phase and gas 

phase fractionation) provide a powerful strategy for protein identification in MALDI IMS 

projects. In the future, the sensitivity and versatility of this workflow could be improved 

by implemented of chip based nanospray122 which is expected to further improve 

sensitivity while reducing sample consumption. Alternative fragmentation techniques 

such as electron capture dissociation123 could be implemented which could provide 

additional sequence coverage and assist in identification of modified proteins. 
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Figure 16: ESI-MS and MS/MS of protein fraction containing the protein with m/z = 
12343. (A) ESI-MS spectrum showing multiply charged ions corresponding to the protein 
of interest. The inset shows the deconvoluted spectrum region for the protein of interest. 
(B) Fragment ion spectrum from [M+12]12+ showing annotated ions corresponding to 
MIF. 
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Conclusions 

Successful application of MALDI IMS for mapping of proteins in mouse brain and 

in human kidney tumor tissue has been demonstrated. First, tissue coating conditions 

were optimized for the analysis of proteins showing that robotic matrix deposition can 

generate high quality ion images which can reveal the relative abundance of proteins in a 

tissue. The ability to resolve small features is limited by the crystal size and matrix 

coverage for the spray-based technique and by the area covered by the matrix solution in 

the spotting approach. Typical spatial resolutions are 50-243 µm for the ImagePrep and 

ARM respectively. In general, the overall spectral quality seen with the ImagePrep 

compared with the ARM is probably due to less effective extraction of the proteins. IMS 

enables rapid detection of protein peaks in tissue regions that provide insight into the 

underlying biology. In that context, identification of the proteins is especially important 

as it links the m/z values in the ion images to a protein. A new highly sensitive workflow 

for protein identification has been described which can keep track of the proteins via their 

mass throughout the tissue purification steps. Top-down sequencing implemented here 

enabled gas phase enrichment of selected ions prior to fragmentation which provided 

additional selectivity. 
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Materials and Methods 

Material 

HPLC grade acetonitrile, trifluoroacetic acid (TFA), Freeze’it, halt protease 

cocktail, the Bradford protein assay kit and reagent grade ethanol were purchased from 

Thermo Fisher Scientific (Pittsburgh, PA). Protein standards, TRIS (2-Amino-2-

(hydroxymethyl)-1,3-propanediol), ammonium acetate, NaCl and the polypropylene SPE 

tubes with frits were from Sigma-Aldrich (St. Louis, MO). Sinapinic acid (3,5-

dimethoxy-4-hydroxycinnamic acid, 99% purity) was purchased from Fluka (Buchs, 

Switzerland) and used without further purification. The C4 HPLC column and C4 resin 

were obtained from The Nest Group (Southborough, MA) and the Sepax resin was from 

(Sepax Technologies Inc., Newark, Delaware). 

Tissue Sectioning and Staining 

Brain and epididymis tissue from adult CD1 mice was surgically removed and 

immediately snap frozen in liquid nitrogen or liquid Freeze’it, and stored at -80 °C until 

use. Human clear cell renal cell carcinoma tissue was obtained from the Vanderbilt 

University Ingram Cancer Center-Human Tissue Acquisition and Pathology Resource. 

This tissue was frozen in liquid nitrogen within 30 min of tissue harvest. Tissue 

sectioning was carried out in a microtome with section thicknesses of 12 µm. The tissue 

was thaw mounted onto cold ITO-coated glass slides106 or gold-clad stainless steel 

MALDI targets. The targets were immediately transferred to a vacuum desiccator and 

allowed to equilibrate to room temperature (10 min). Serial sections of the tissue were 

mounted onto glass slides and stained with H&E or cresyl violet according to a protocol 
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described earlier.106 Tissue for MALDI MS was subjected to a series of ethanol/water 

washes to fix the tissue while simultaneously removing MALDI contaminants such as 

physiological salts and other soluble low molecular weight compounds. Washing consists 

of gently agitating the plates in two successive 30 s baths of 25 mL of 70:30 % v/v 

ethanol/water followed by a 15 s wash in 25 mL of ethanol. Excess solvent was removed 

with a gentle blow of compressed dry air. The tissue was stored for at least 10 min but 

not longer than 24 h in a vacuum desiccator prior to matrix application. Magnified 

images from the spotted tissues were obtained on an Olympus BX 50 (Melville, NY) 

microscope equipped with a Q-Imaging 3.3 megapixel digital camera. Image-Pro-Plus 

Software from Media Cybernetics (Silver Spring, MD) was used for image analysis. 

Matrix Application 

ImagePrep: Matrix application with the ImagePrep (Bruker Daltonics, Billerica, 

MA) was carried out using sinapinic acid prepared at 10 mg/ml in 1:1 v/v mixture of 

ACN 0.2 % TFA as the matrix. The sensor signal was recorded using a 12 bit analog to 

digital converter (ADC) model NI USB- 6008 (National Instruments, Austin, Texas) 

operated with 5 Hz sampling rate and controlled by NI-DAQmx software provided with 

the ADC. A detailed description of the optimized method used for matrix application can 

be found in Appendix A.  

ARM: A detailed description of the method for protein imaging with the ARM can 

be found here.113 The spotting conditions for the clear cell renal cell specimen were 3 x 

13 DPS at 10 Hz and 450 µm array pitch. The epididymis tissue was spotted with 2 x 13 

DPS at 10 Hz with a 230 µm array pitch.   
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Protein Identification  

Protein extraction: Tissue was sectioned at 12 µm section thickness and the tumor 

region of the tissue was macro dissected with a razor blade. A total of 133 mg frozen 

tissue obtained from 4 tissue sections was transferred into a Kontes Dual 20 tissue grinder 

with glass pestle and protein was extracted with 1 ml cold extraction buffer consisting of 

a 50 mM, pH = 7.5 TRIS buffer with EDTA-free halt protease cocktail as recommended 

by the manufacturer. The lysate was spun down for 5 min at 16000 x g in the cold and the 

pellet was discarded. The protein yield was 777.5 µg as determined by the Bradford 

assay. An aliquot of the extract was diluted tenfold with the MALDI matrix for MALDI 

MS analysis to identify fractions containing the protein of interest. 

Fractionation of proteins: Fractions containing proteins of interest were separated 

by off-line SCX chromatography and reversed phase HPLC. For the SCX fractionation, a 

3 ml polypropylene SPE cartridge was custom packed with 80 mg of Sepax SCX-NP5 

resin with 5 µm particle size. The cartridge was conditioned with 2 x 1 ml loading buffer 

consisting of a 20 mM ammonium acetate prepared at pH = 4.5. Active sites on the 

column were blocked with 500 µl loading buffer containing 170 µg bovine albumin 

followed by a 1.5 ml wash with loading buffer and 2 washes with 1.5 ml of a 1.2 mol/l 

NaCl solution prepared in 20 mM ammonium acetate buffer with pH = 5.5. The column 

was then washed with 5 x 1.5 ml loading buffer. A total of 300 µg protein was dissolved 

in 1 ml loading buffer and loaded onto the SCX cartridge. The cartridge was washed with 

3 x 350 µl of the loading buffer. Proteins were sequentially eluted with 2 x 200 µl of each 

elution buffer consisting of 20 mM ammonium acetate (pH = 5.5) with 0, 50, 150, 400, 

650 and 1200 mmol/l NaCl respectively. The protein recovery for the SPE fractionation 
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was 31.5 % as determined by the Bradford protein assay. The pH of the salt fractions was 

adjusted to ~ 2.5 using TFA and fractions were subjected to reversed phase clean-up on 3 

ml SPE cartridges containing 75 mg C4 reversed phase material with 20 µm particle size 

(Vydac # 214 TPB 1520). Each cartridge was conditioned with 2 ml of 70:30 % v/v 

ACN/water with 0.1 % TFA and 2 ml washing buffer consisting of 5:95 % v/v 

ACN/water with 0.1 % TFA. Each SCX salt fraction was loaded onto a separate column 

and washed with 2x500 µl washing buffer. Finally, the protein was eluted with 2 x 300 µl 

50:50 % v/v ACN/water with 0.1 % TFA. The samples were dried in a rotary centrifuge 

operated for 15 min at 60 °C and then reconstituted in 15 µl of 5 % ACN 0.1 % TFA for 

MALDI MS analysis. The protein recovery as determined by the Bradford assay was 115 

% for the reversed phase clean-up step. Fractions were analyzed by MALDI MS to 

identify the fractions containing the protein of interest. 

Further fractionation was carried out using reversed phase HPLC carried out with 

an Agilent 1100 system which was equipped with a 25 cm, 2.1-mm ID C4 column with 5 

µm particle size. Four micrograms of protein were injected and the column was operated 

with a flow rate of 350 ul/min at 28 °C collecting fractions with an automated fraction 

collector with 1 min fraction collection intervals. Details of this set-up have been 

described earlier 124. Briefly, a binary gradient consisting of 0.1% TFA in water or 

acetonitrile (solvent B) was used for elution of the proteins. The separation was carried 

out using the following linear gradient program: 0-3 min 5 % B; 10 min 25 % B, 20 min 

35 % B, 59 min 55 % B, 62 min 95 % B followed by a 5 min wash at 95 % B. 

Chromatography was monitored by UV detection at 214 nm. Fractions were dried in a 

rotary centrifuge and reconstituted in 10 µl of solvent consisting of 50 % methanol and  
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2 % acetic acid. MALDI MS was carried out to identify the fractions containing the 

protein of interest. 

MALDI TOF MS 

Imaging of mouse epididymis: MALDI TOF MS for the epididymis image was 

performed on a Voyager-DE STR (Applied Biosystems, Framingham, MA) in linear 

positive mode using 25 kV acceleration voltage. Delayed extraction conditions were 

optimized for protein analysis between 2-70 kDa with a resolution of 1000 (FWHM) for 

m/z = 15000. Spectra were recorded at 20 Hz using a nitrogen laser with 337 nm 

wavelength focused to 100 µm. Signals between 2 and 70 kDa were recorded with 4-ns 

time bins. External calibration of the instruments was performed using a mixture of 

porcine insulin [M + H]+ = 5778.6 Da, horse heart cytochrome c [M + H]+ = 12361.2 Da 

and horse ampomyoglobin [M + H]+ = 16952.5 Da deposited with the dried droplet 

method. Spectra acquisition was accomplished manually or under instrument control 

using the Sequence Editor module of the Voyager Control software package. To facilitate 

automated spectrum acquisition, custom plate files based on the matrix spot locations 

were generated. Absolute stage coordinates for the center of a number of registration 

spots were transferred from the mass spectrometer software into a spreadsheet where a 

bilinear fit was performed to interpolate the coordinates of all spots in the array. The 

resulting list of interpolated spot coordinates was exported into a plate file format and 

submitted to Voyager Control for automated acquisition. For each matrix spot, 400 

individual spectra were summed in 40 spectra/location segments using a random search 

pattern confined within the area of the spots. Exclusion criteria rejected spectra with poor 

signal intensity (base peak <1000 counts) or containing peaks with intensity greater than 
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the 16-bit dynamic range of the digitizer. Programs written in our laboratory were used 

for automated processing of the spectra in Applied Biosystems Data Explorer software 

version 4.4. Operations performed on the data include a Gaussian smooth and removal of 

the baseline using the advanced baseline subtraction function. Individual spectra were 

then rendered into a modified Analyze 7.5 format (Mayo Clinic, Rochester, MN) 

compatible with the BioMap software (Novartis, Basel, Switzerland) package, 14 which 

was used for image analysis and extraction of selected ion images.  

Imaging of mouse brain and ccRCC: Mass spectrometry was performed on 

Bruker Daltonics Ultraflex II MALDI-TOF/TOF and Autoflex II Billerica, MA 

instruments equipped with SmartBeam technology and dedicated imaging software. 

Spectra were recorded over the mass range from 2-70 kDa using linear positive mode and 

4 ns time bins. Calibration of the instruments was carried out as described for the 

Voyager instrument. If not mentioned otherwise FlexAnalysis 3.0 and FlexImaging 2.0 

were used for data processing. A custom script in FlexAnalysis was used for baseline 

subtraction and Gaussian smoothing. All images were normalized in FlexAnalysis using 

the TIC normalization algorithm.  

The mouse brain image was acquired on the Ultraflex II instrument with a spherical 

laser beam focused to a diameter of 50 µm. Imaging was carried out in microprobe mode 

using 75 µm pixel pitch while summing 60 spectra from each sample location. The 

human kidney image was acquired on the Autoflex II instrument using a custom plate file 

generated as described above for the Voyager system. The spectra were the sum of 420 

individual laser shots obtained in 60 shots increments randomly sampled within each 



 

59 
 

matrix spot. Data were baseline subtracted and normalized by TIC normalization with a 

custom MATLAB script creating a BioMap compatible file format. 

MALDI TOF MS for protein identification: Samples for MALDI MS were 

prepared with the dried droplet sample preparation using sinapinic acid prepared at 20 

mg/ml in a 1:1 v/v mixture of ACN and 0.2 % TFA. The spectra were the sum of 1000 

individual laser shots obtained in 50 shots increments randomly sampled within each 

matrix spot. All spectra were baseline subtracted using automated scrip in FlexAnalysis  

ESI-FT-ICR MS for top-down protein sequencing: Top-down sequencing of 

proteins was carried out on an apex-Qe instrument (Bruker Daltonics, Billerica MA) 

equipped with an actively shielded 9.4 T magnet and Apollo II Dual ESI/MALDI source. 

ESI was performed using a custom micro ESI set-up consisting of a PicoTip emitter 

model # FS360-20-10-D-5 (New Objective, Woburn, MA) that was mounted into the 

Bruker nanospray source. The emitter was connected with a 50 cm fused silica capillary 

(360 OD, 50 µm ID) to a micro injection valve (Upchurch Scientific, Oak Harbor, WA) 

equipped with a 2 µl injection loop. The valve was used for sample injection into a 

continuous flow of ESI solvent consisting of a 1:1 v/v mixture of 50 % methanol and 2 % 

acetic acid which was delivered using an external syringe pump operated at a flow rate of 

7 ul/h. Calibration of the ICR cell was performed with bovine ubiquitin prepared at 250 

fmol/ul in the ESI solvent. At least 4 multiply charged ions spanning the mass range of 

interest were used for calibration providing mass accuracies better than 1.5 ppm. Top-

down sequencing was carried out by Qq-FT-ICR. First, ions were accumulated in the 

source hexapole for 2-5 s seconds to increase sensitivity and multiply charged precursor 

ions were isolated in the first mass selective quadrupole using an isolation window of 10 
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Da. Fragmentation of the selected ions was carried out in the in the external collision cell 

using Argon as the collision gas and a collision energy of 10-20 eV which was optimized 

individually for each precursor ion. Fragment ions were analyzed in the ICR cell using a 

256 kpoint transient and a mass range from 400 to 1500 Da. Between 10-40 scans were 

accumulated into a single file. Spectra were deconvoluted using DataAnalysis software 

provided with the instrument and subjected to database searching against a human 

database using ProSight PTM121. An intact mass tolerance of 2000 Da and fragment ion 

mass tolerance of 25 ppm was used for all searches. Significant protein hits were 

manually verified with help of the Biotools data software package (Bruker Daltonics).  
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CHAPTER III 

High-Throughput Profiling of FFPE Tissue Using Parallel 
Electrophoresis and MALDI MS* 

Abstract 

Analysis of formalin-fixed and paraffin-embedded tissues (FFPE) is increasingly 

recognized as a strategy for the discovery and validation of clinically useful biomarker 

candidates. Large tissue collections including tissue microarrays (TMA) are available but 

current analytical strategies for their characterization have limited throughput. In this 

chapter, a workflow for rapid analysis of hundreds of FFPE tissue specimens is 

described. The strategy combines parallel sample processing and on-chip electrophoresis 

with automated MALDI MS analysis. The method is optimized for small quantities of 

clinically valuable tissues allowing detection of hundreds of peptides from a single core 

in a TMA section. Results from the optimization of the method are described and the 

strategy is applied for the analysis of tissue microarrays containing formalin fixed tissue 

specimens from human kidney.  

 Reproduced with permission from H.-R., Aerni, D.S. Cornett, and R.M. Caprioli, 
High-Throughput Profiling of Formalin-Fixed Paraffin-Embedded Tissue Using 
Parallel Electrophoresis and Matrix-Assisted Laser Desorption Ionization Mass 
Spectrometry. Analytical Chemistry, 2009. 81(17): p. 7490-7495. Copyright 2009  
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Introduction 

Vast archival collections of formalin-fixed paraffin embedded (FFPE) tissue 

samples are a valuable discovery source for biomarker discovery since in many cases 

patient outcomes are known. FFPE procedures are routinely used to prepare surgical 

specimens for histological analysis and to render the tissue suitable for long-term storage. 

Unfortunately, direct protein analysis from FFPE specimens are not directly amenable to 

MS analysis as the chemical fixation with formalin creates a network of insoluble cross-

linked proteins.125 Recovery of proteins from FFPE tissue can be achieved through a 

procedure known as antigen retrieval (AR), which was developed to restore antigen-

antibody reactivity in immunohistochemistry.126 Antigen retrieval has been successfully 

adapted for analysis of FFPE tissue using MS127, 128 but can introduce MS-incompatible 

reagents such as detergents and buffers, making time consuming sample clean-up 

necessary prior to mass spectrometric analysis. In turn, sample clean-up and fractionation 

steps severely limits throughput.  

A new device for parallel electrophoretic sample processing for proteins and 

peptides has been developed129 and I have employed it in our FFPE tissue analysis 

strategy as a clean-up stage. Using native electrophoresis as the separation principle, up 

to 96 samples can be processed in parallel with typical run times of less than an hour. The 

charge and electrophoretic mobility of analytes is controlled by the sample buffer, the 

polarity of the electric potential applied and the pore size of the polyacrylamide gel plug 

in each separation well. By keeping the running buffer constant and using multiple 

individual wells, separation into distinct fractions can be achieved. Compounds such as 

proteins and peptides are then captured on a monolithic reversed phase capture chip 
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directly below the electrophoresis gel. The capture chip is removed, mounted into an 

extraction device and analytes are eluted with the MALDI matrix solution or solvent into 

microvials for direct MALDI MS or ESI MS analysis. MALDI MS is especially useful if 

large numbers of samples need to be analyzed as it offers extremely high-throughput.  

This chapter describes the protocol and its optimization for high-throughput 

analysis of FFPE tissues using parallel electrophoresis and analysis by MALDI FT-ICR. 

Uniquely, after completion of the dissection step, the optimized workflow is capable of 

analyzing several hundred samples per day, permitting rapid screening of vast FFPE 

tissue depositories for markers in disease of clinically relevant queries. 

 

Results and Discussion 

A new workflow for protein biomarker discovery in FFPE tissues is presented 

(Scheme 1). The strategy combines parallel sample processing and on-chip 

electrophoresis with MALDI-FT-ICR to enable high sample throughput. Differentially 

expressed peptides can be sequenced and identified using LC MALDI MS/MS. In this 

case, peaks from the profiles are linked to the sequence of the peptide using accurate 

precursor ion mass measurements on the FT-ICR instrument. Here we present this 

protocol and its optimization and apply it for the analysis of small FFPE tissue biopsies 

and TMAs.  
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Scheme 1: Workflow for high-throughput molecular discovery from FFPE tissue. 
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Tissue Microdissection 

Microdissection with a tissue micropunch was used for tissue isolation from 

selected regions of the specimen determined from histology. Previous work used sections 

of 200-300 µm thickness mounted on glass slides and a tissue micropunch for 

dissection.66 In the current paper, we modified this protocol to allow use of thinner 

sections, typically 5-40 µm thick. Tissue is placed onto a layer of laboratory parafilm and 

the membrane is mounted onto a self-healing punching mat. Stained serial sections can be 

used as a guide for dissection. Punching accuracy and the size of the punch, typically 

0.35 to 4 mm defines the spatial resolution. The ability to rapidly obtain relatively large 

amounts of tissue combined with the possibility to visually track the dissected material 

during sample handling make this approach a valuable tool for tissue collection in high-

throughput applications.  

Antigen Retrieval and Tryptic Digestion 

Optimization of the antigen retrieval protocol was performed using a TRIS buffer 

which is commonly used for antigen retrieval in immunohistochemistry. The basic 

composition of the buffer before optimization was 10 mM TRIS (pH 8.6 at 20 °C), 1 mM 

EDTA, 10 mM DTE and 0.05 % (6.7 x CMC) Tween-20. TRIS18 and EDTA19 are 

common AR buffer components and their efficiency has been discussed extensively. DTE 

was added for reduction of cysteines, reducing the number of steps in the workflow. 

Optimization of antigen retrieval conditions was carried out using a FFPE mouse liver 

tissue that was dewaxed and then homogenized with a mortar and pestle. The average 

particle size of this homogenized material, determined by microscopic analysis of 50 

randomly selected particles, was 2 µm ± 1 µm, rendering this material useful for all 
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subsequent optimization experiments. The first set of experiments investigated the effect 

of temperature and incubation time on tissue solubility. FFPE standard tissue was mixed 

with the antigen retrieval buffer and subjected to antigen retrieval at 95 °C in a sand bath 

or in a laboratory autoclave operated at 121 °C. Visual inspection of the samples showed 

that tissue treated for 1 or 2 h in the sand bath was mostly intact while a single 50 minute 

autoclave treatment at 121 °C successfully dissolved most of the tissue. Hence, AR in the 

autoclave was used for all further experiments. The effect of sample pH and detergent 

was also investigated. Lowering the pH from 8.6 to 4.0 did not improve tissue solubility 

as judged by both visual inspection of the reaction and by analysis of peptides after 

subsequent digestion. These results support evidence that the pH of the antigen solution 

may be optimized for different tissue types.130 The effect of the detergent was studied by 

varying the concentration of Tween-20 (CMC = 0.06 mM) and octyl-β-D-maltoside 

(CMC = 0.17 mM) at 0, 6.7, 27 and 270  the detergent CMC. Detergent was found to 

improve tissue solubility when compared to the negative control. No improvement of 

tissue solubility was observed above 27  the CMC. Follow-up experiments studying 

digestion of BSA in the presence of the detergents were performed. Improved sequence 

coverage was observed for Tween-20 compared with octyl-β-D-maltoside which showed 

lower performance at all detergent concentrations tested probably due to interference 

with the digestion. Hence, Tween-20 at a concentration of 27  its CMC was selected as 

the detergent. The final composition of the antigen retrieval solution was 10 mM TRIS 

(pH 8.6), 1 mM EDTA, 10 mM DTE and 0.2 % (27 x CMC) Tween-20. The advantage of 

this buffer is that it is compatible with downstream sample processing including tryptic 
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digestion and electrophoresis. This eliminates potential sample loss and improves the 

speed of the analysis.  

Detergent Removal and Peptide Fractionation with Parallel On-Chip 

Electrophoresis 

Tolerance of MALDI MS toward salts and detergents is limited and efficient 

sample clean-up can increase sensitivity and remove spectral interferences. Direct 

MALDI MS of peptides obtained from antigen retrieved and digested FFPE tissue 

showed poor matrix crystallization and the mass spectra were dominated by detergent-

related peaks. Removal of the detergent together with peptide fractionation was initially 

attempted using strong cation exchange (SCX) chromatography. Peptides were 

distributed between several fractions and the approach was difficult to automate, resulting 

in limited throughput. Therefore, electrophoretic on-chip sample preparation129 was 

investigated as an alternative. For this purpose, samples were mixed with a pH 5.35 

running buffer and loaded into wells of an electrophoresis cartridge consisting of 96 

individually controlled wells. Electrophoresis was carried out under constant current 

control (1 mA). Charged molecules were separated on a short acryl amide gel plug and 

captured on a hydrophobic monolithic capture column for subsequent extraction with the 

MALDI matrix solution. Fractionation of the peptides can be controlled by the duration 

of electrophoresis and the polarity and potential applied to the sample reservoir; positive 

for cation capture and negative for anion capture. Initial optimization of the process was 

carried out using a tryptic digest of BSA mixed with the antigen retrieval solution. Figure 

17A shows successful removal of the detergent and fractionation of the peptides into two 

complementary fractions. It is noted that detergent-related peaks were completely absent 
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after electrophoresis. Detailed analysis of the data (Figure 17B) revealed that peptide 

fractionation can be predicted by the theoretical pI of a peptide. Importantly, detergent 

removal and fractionation allowed detection of 42 peptides from BSA while only 19 

peptides were identified in the detergent containing raw sample. 

Electrophoresis running conditions were further optimized for the analysis of a 

tissue digest from antigen retrieved mouse liver FFPE tissue. Aliquots corresponding to 5 

µg FFPE tissue digests were loaded into each well and the charge applied for 

electrophoresis was varied between 1 and 3 coulombs. The number of detectable 

monoisotopic ions for each polarity is reported in Table 1 

 

Table 1: Optimization of running conditions for electrophoresis of 5 µg of FFPE mouse 
liver tissue. 

Mode Cation               Anion 

Charge 
C 

# 
peaks 

Confidence
Interval 

N=4 

Confidence 
Interval 

% 
# 

peaks 

Confidence 
Interval 

N=4 

Confidence 
Interval 

% 
1 319 36 11 289 53 19 
2 282 33 12 269 30 11 
3 285 60 21 245 42 17 
 

Sample processing time and reproducibility of the data were used as criteria for 

selection of optimized running conditions; 1 coulomb for cation and 2 coulombs for 

anion capture respectively. Under these conditions, 588 ions could be detected from the 

combined cation and anion fractions. Importantly, the spectra showed that most of the 

peptides in the individual fractions were unique (Figure 18) thereby maximizing peak 

capacity of the mass spectrometer.   
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Figure 17: Electrophoretic fractionation of a BSA raw digest containing tween-20 detergent. (A) The raw sample shows a strong 
interference in the mass spectrum from the detergent which is completely absent after electrophoresis. (B) BSA peptides are 
fractionated into two complementary fractions defined by the pH of the electrophoresis running buffer. The total number of detected 
BSA peptides increases from 29 in the detergent containing raw sample to 42 after fractionation. 
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Figure 18: Complementary peptide patterns are observed from the analysis of 5 µg FFPE 
mouse liver in both anion and cation capture mode maximizing peak capacity in the mass 
spectrometer. The total number of detected monoisotopic peptides was 588. 
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Performance Evaluation 

The performance of the method was assessed by comparing fresh frozen and FFPE 

mouse liver tissue. It is reasonable to expect that similar peptide profiles should be 

obtained assuming that the antigen retrieval step is optimized. Sections of 30 µm 

thickness were subjected to microdissection using a 600 µm diameter punch. Six punches 

from each tissue were combined and processed using the workflow described above. The 

protein concentration and cell numbers for this experiment were estimated by assuming 

that 18 %131 of the total mass of a cell is protein and the average diameter of a cell is 10 

µm. In this case, 97,200 cells corresponding to 9.2 µg of protein were used in each 

experiment. Electrophoresis was performed in cation capture mode and spectra from 3 

technical repeats were averaged (Figure 19A). Automatic peak picking using the SNAP-2 

algorithm resulted in detection of 422 ions from fresh frozen and 366 ions for FFPE 

tissue. A total of 114 common peaks were detected by binning the peak lists with a 0.01 

Da window and common bins were identified by filtering the data in Excel. It is 

understood that this approach may reduce the number of common peaks, as common 

peaks split between two bins may be lost. Nevertheless, the average peak intensity ratio 

of the selected peaks was evenly distributed around the expected value of 1 (Figure 19B). 

This indicates that this method can successfully generate peptide patterns from FFPE 

tissue that are similar the peak patterns from fresh frozen tissue.  
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Figure 19: (A) Comparison of MALDI FT-ICR spectra obtained after electrophoretic 
clean-up of fresh frozen and FFPE mouse liver tissue after antigen retrieval and digestion. 
Spectra from cation capture experiments are presented showing similar peak patterns. (B) 
Distribution of the peak intensity ratios of common peaks are centered around the 
expected peak ratio of 1. 
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The sensitivity and reproducibility of the method was investigated using single 

tissue micropunches obtained from serial 10 µm thick FFPE mouse liver tissue. 

Micropunches with 500 µm and 2 mm diameter were used to isolate an estimated 15,000 

or 60,000 cells corresponding to 1.4 and 5.7 µg of protein respectively. The sensitivity of 

the method permits detection of peptide signals from as little as 15,000 cells, although the 

quality of the spectra was improved if 60,000 cells were used. In this case 423 and 303 

peptides were detectable from cation and anion capture fractions, respectively. Repeated 

analysis of single punches consisting of 60,000 cells generated spectra that were 

extremely similar. The 95 % confidence interval for the number of detected peaks was 

better than 12 % for both anion and cation capture mode (N=4).  

We also applied this protocol for the analysis of TMA specimens and tissue 

biopsies. For this purpose, a 3 x 3 TMA from FFPE mouse liver and kidney tissue with 1 

mm diameter tissue cores was used. The TMA was cut at 10 µm thickness and individual 

array spots were isolated using a 2 mm tissue micropunch resulting in isolation of an 

estimated 15000 cells. Mass spectra obtained from these samples showed organ specific 

peptide patterns indicating that the method has the potential to identify tissue specific 

peptides. FFPE tissue biopsies from the clinic were also investigated. Figure 20 shows 

the results from the analysis of a human clear cell renal cell carcinoma after 

microdissection with the micropunch. Spectra from the tumor and adjacent healthy 

control tissue show distinct peak patterns indicating that this method can discriminate 

pathologically relevant tissue regions.  
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Identification of Differentially Expressed Peptides. 

Identification of differentially expressed peptides was achieved using a modified 

LC MALDI workflow. Scheme 1 shows the overall process. Peptides are eluted from the 

electrophoresis chip and subjected to LC fractionation, spotting onto anchor chip and 

accurate mass measurement using MALDI FT-IRC followed by automated sequencing 

from the same target using MALDI TOF/TOF MS. A detailed summary of the identified 

peptides from a LC MALDI experiment of mouse liver tissue is included in Appendix D 

showing the identification of 240 peptides. This corresponds to 138 proteins assuming a 

false discovery rate of 5 % at the peptide level and a minimum of 2 peptides for each 

protein as a criterion for successful protein identification. The identified peptides can be 

linked to the profiling data using accurate mass measurement. This process was tested 

using FFPE mouse liver. It was possible to identify nominally isobaric peptides as they 

were separated during the LC experiment. As an example, the peptides 

KHHLDGETEEER from glutathione S-transferase and LGEYGFQNAILVR and 

GLVLIAFSQYLQK, both from serum albumin, with calculated monoisotopic m/z of 

1479.6823, 1479.7954 and 1479.8570, respectively, were identified.   
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Figure 20: H&E stained section of a human clear cell renal cell carcinoma sample (Fuhrman grade III) obtained from a FFPE tissue 
repository with the punched regions marked. Representative spectra after electrophoresis in cation capture mode show distinctly 
different peak patterns. 
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Conclusion 

A high-throughput workflow for the analysis of FFPE tissues is described. The 

method takes advantage of parallel on-chip electrophoresis and MALDI-FT-ICR 

allowing rapid sample processing. We estimate that several hundred samples can be 

processed per day making this method an ideal choice for screening of large tissue 

archives. Over 700 peptides were detected starting with only 60,000 cells but peptides 

could be detected from as few as 15,000 cells. Peptide profiles from FFPE tissue were 

similar to profiles obtained from fresh frozen tissue, allowing this technology to be used 

with large collections of FFPE tissues which have long-term clinical data. A modified 

micropunching technique was developed allowing rapid microdissection from tissue 

sections as thin as 5 µm. Situations requiring higher dissection accuracy may require 

LCM, but this can lower throughput. Detergent removal and pI based fractionation using 

on-chip parallel electrophoresis was critical for efficient sample preparation prior to 

MALDI MS analysis. Electrophoresis generates peptide fractions that are complementary 

which reduces spectra complexity, maximizes peak capacity and simplifies downstream 

data interpretation. Mass spectrometers that provide high mass accuracy and resolving 

power like FT-ICR, QTOF and Orbitraps are ideally suited for this application. 

Identification of the differentially expressed peptides is an important part of overall 

process as it enables linking of the data to underlying biological processes.  
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Materials and Methods 

Reagents. All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, 

USA) and were of highest purity available. HPLC grade acetonitrile (ACN) and ethanol, 

enzyme grade Tween-20 detergent, histological grade xylenes, diammonium citrate and 

parafilm M were purchased from Fisher Scientific (Air Lawn, NJ). Trifluoroacetic acid 

(TFA) and α-cyano-4-hydroxycinnamic acid (CHCA) were purchased from Fluka 

(Buchs, Switzerland). TRIS base was from J.T. Baker. (The CHCA matrix was 2x 

recrystallized from ethanol and water. Ammonium bicarbonate (AMBIC), iodoacetamide 

(IAA), 1,4-Dithioerythritol (DTE) and neutral buffered formalin solution 10 % were 

obtained from Sigma-Aldrich. Sequencing grade modified trypsin was purchased from 

Promega (Madison, WI, USA). Peptide standard mix and protein standard mix for 

MALDI-TOF-(TOF) calibration were from Bruker-Daltonics (Billerica, MA).  

Tissue processing. Adult CD-1 mice were sacrificed and dissected organs were 

immediately snap-frozen in liquid nitrogen or subjected to fixation in 10 % neutral 

buffered formalin. Sectioning of the fresh frozen tissue was described in detail 

elsewhere102. Formalin fixation was performed on tissue specimens not thicker than 500 

µm to allow rapid penetration of the fixative. Fixation was carried out for 41.5 h at room 

temperature and tissue was transferred into 70 % ethanol. Further tissue processing 

including paraffin embedding and sectioning was carried out at the Vanderbilt Human 

Tissue Acquisition Core. Sections were cut with a microtome with section thicknesses of 

5-40 µm. The tissue was mounted onto 1-8 layers of laboratory Parafilm M for punching 

experiments or standard glass slides for H&E staining. The tissue micropunch consisted 

of a 21.5 gauge guide wire assembly (Small Parts, Inc, Miramar, FL) or commercially 
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available 0.35 and 2 mm diameter Harris uni-core punches (Ted Pella Inc, Redding, CA). 

Punching was carried out on a self-healing punching mat from the same manufacturer 

and the punch was carefully cleaned between punching to prevent cross contamination.  

Antigen retrieval and digestion. Tissue punches corresponding to roughly 60,000 

cells or up to 15 µg of FFPE tissue were collected in a 150 µl well of an Eppendorf 

(Hamburg, Germany) 96 well twin.tec PCR plate. Twenty µl of the antigen retrieval 

solution consisting of 10 mM TRIS, 1 mM EDTA, 10 mM DTE and detergent (see 

results section for details) was added. Antigen retrieval was carried out in a sand bath at 

95 °C or in a STERIS (Mentor, OH) model SV120 laboratory autoclave operated with the 

standard liquid cycle at 121 °C. In this case, samples were covered with aluminum foil 

allowing pressure exchange and preventing sample spill during autoclaving. The reaction 

was allowed to cool for 15 min and 2 µl of a 300 mM IAA(aq.) was added. Alkylation was 

carried out for 15 min in the dark. Excess IAA was quenched by adding 5 µl of 100 mM 

DTE(aq.). Finally, 20 µl 100 mM AMBIC (pH = 8.0, 20 °C) and trypsin was added and 

digestion was carried out at 37 °C for 15 h. Note that the protein to enzyme ratio was 

20:1 but enzyme concentration was at least 1 µg/100 µl if the protein concentration was 

low. The sample was taken to dryness in a vacuum centrifuge operated at 60 °C. It is 

noted that this protocol scales well for processing of up to 500 µg tissue.  

Electrophoresis. Electrophoresis was carried out on a Passport 1200 instrument 

from Protein Discovery (Knoxville, TN) using Passport RP sample prep cartridges. A 

detailed description of this instrument can be found somewhere else.129 Briefly, a sample 

cartridge comprised of 96 individually controlled wells was filled with the running buffer 

consisting of 689 mM MES pH 5.35 (20 °C). Peptides were reconstituted in 40 µl of the 
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sample buffer, 30 % (w/v) sucrose and 45 mM octyl β-D-glucopyranoside prepared in 

running buffer, and aliquots of this mixture were transferred into the sample cartridge. 

Electrophoresis was carried out at 1 mA with a total of 2 coulombs passed-charge for 

cation and anion capture mode respectively. Cation and anion capture experiments were 

performed in series using a single sample cartridge. Sample buffer (350 µl) was 

exchanged at 0.5 coulomb for cation capture and 1 coulomb for anion capture 

experiments. The cartridge was disassembled and the capture chip located beneath the gel 

plug and the sample well was removed. All 96 capture surfaces were washed 

simultaneously by immersing the capture chip for 4-6 h in 0.1 % TFA. The capture chip 

was allowed to dry and mounted into the extraction device provided with the instrument. 

Peptides were extracted with 3 µl of the matrix solution consisting of 12 mg/ml CHCA 

and 10 mM diammonium hydrogen citrate prepared in 1:1 acetonitrile/0.2 % TFA (aq.). 

The extraction was carried out for 60 s prior to 5 aspiration/dispensing cycles with a 

mechanical pipette for mixing the well content. Finally, 1.5 µl of the well content was 

directly spotted onto a Bruker MTP 384 polished steel target for MALDI MS analysis. 

Calculation of peptide pI values was carried out using GPMAW software ver. 8.1 

(Lighthouse Data, Denmark) with the Skoog-Wichman algorithm. 

Mass Spectrometry. MALDI FT-ICR MS was carried out on a 9.4 T Bruker Apex 

Qe equipped with an Apollo 2 ion source and a modulated Nd : YAG laser86 operated at 

100 Hz. External calibration was performed using a custom peptide mixture consisting of 

Bradykinin 1-7, Angiotensin II, [Glu1]-Fibrinopepdide β, ACTH fragment 18-39 and 

Insulin chain B oxidized with theoretical m/z ratios of 757.39915, 1046.54179, 

1570.67684, 2465.19833 and 3494.65077, respectively. Typical mass accuracy was better 
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than 5 ppm over the observed mass range from 600-4000 Da. The external storage 

quadrupole was used to accumulate 250 laser shots from a single sample position prior to 

FT-ICR analysis. A total of twenty scans were accumulated from each sample spot and 

saved into a file. Data acquisition was automated using custom software tools written to 

generate sequences files for the Hystar software (ver. 3.4) supplied with the instrument. 

Spectra were processed using customized scripts for Bruker DataAnalyis version 4.0 

which performed peak picking and export of the peak lists and raw spectra in ASCII 

format for further processing in OriginPro 7 and MATLAB. Monoisotopic peaks were 

determined using the SNAP-2 algorithm with a minimal signal-to-noise (S/N) of 3:1 and 

a quality factor of 0.4. 

LC MALDI for peptide identification. LC-MALDI was carried out on a Agilent 

1100 binary pump attached to a flow splitter, manual injection valve with 2 µl sample 

loop and a 125 µm ID capillary column packed with 8.5 cm 3 µm Monitor C18 resin 

(Column Engineering. Ontario, CA). The column was attached to an Accuspot spotter 

(Shimadzu Biotech) for eluent deposition onto a 384 well, 600 µm stainless steel anchor 

chip from Bruker Daltonics. The chip was prepared with CHCA according to the 

instructions provided by the manufacturer. The fraction collection interval was set to 30 s 

and a sheath flow of 0.1 % TFA at 2.8 µl/min was delivered with the matrix pump to 

assist deposition of the eluting peptides. Peptide separation took place at a flow rate of 1 

µl/min using water and acetonitrile with 0.1 % TFA as the eluent. The gradient was 

ramped from 2-45 % acetonitrile in a 45 minute time window resulting in collection of 90 

fractions. MALDI FT-ICR MS was performed to determine the accurate mass of the 

peptides and peptides were automatically sequenced from the same target using an 
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Ultraflex II MALDI TOF/TOF instrument from Bruker Daltonics equipped with Warp 

LC v 1.1. Finally, database searching was performed using Myrimatch132 and search 

results were filtered using IdPicker133 software ver. 2.2.2 with a peptide false discovery 

rate of 5 %. Detailed information about the software parameters used for peptide 

identifications can be found in the Appendix C. 



 

82 
 

CHAPTER IV 

Combining LCM and On-Chip MALDI MS for the Analysis of 
Selected Cells in Tissue 

Abstract 

Enrichment of cells with single cell type specificity for proteomics is desirable 

because it allows cell type specific protein discovery in tissues. Not only does this reduce 

the complexity of the sample but it provides increased sensitivity and dynamic range as 

large numbers of cells can be accumulated prior to analysis. However, isolation of single 

cells from a tissue using LCM can be time-consuming which renders proteomic analysis 

tedious or impractical especially if the availability of tissue is limiting. This led to the 

development of new workflows for the analysis of LCM captured cells from fresh frozen 

and FFPE tissue. By combining the spatial selectivity of LCM with on-chip processing, 

high sensitivity and unprecedented tissue resolution was achieved. Dissection and on-

chip capture of dissected tissue on a Zeiss MicroBeam LCM were optimized. Antigen 

retrieval, protein extraction, digestion, clean-up and analysis of peptides were directly 

carried out on the capture chip which reduced the potential for sample loss. Special care 

was taken to ensure compatibility of on-chip chemistry with downstream MALDI FT-

ICR MS analysis. The high peak capacity and sensitivity of this technique allowed 

detection of 3,000 peaks from less than 100 dissected cells. The overall reproducibility 

and sensitivity of the workflow was determined for the fresh frozen and the formalin 

fixed tissue allowing detection of proteins from as few as 20 cells. 
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Introduction 

Spatial proteomics of tissue samples using MALDI MS is an emerging tool for 

molecular pathology because it enables discovery of diagnostically useful protein 

markers that can be correlated with disease.134, 135, 136, 137, 138 An ongoing challenge is 

mapping protein changes in tissues with morphologically complex architecture, which 

requires methods with high spatial resolution to distinguish between the cells. As the 

spatial resolution of surface sensitive methods such as MALDI MS is increased, its 

sensitivity is reduced.38, 139 One solution to this problem is to enrich cells prior to 

analysis. In order to maintain single cell selectivity, a method capable of isolating single 

cells from tissue is required. Laser capture micro dissection (LCM) is widely used for this 

purpose.68, 72, 140, 141 The advantage of LCM is that it combines the function of a 

microscope with the ability to dissect cells with single cell specificity. Proteomic studies 

typically require several thousand127 cells for analysis as the overall sensitivity is limited 

by sample loss occurring during processing and sample analysis. Indeed, sample losses in 

proteomics can be significant. As an example, I have developed a new workflow for 

protein marker discovery in tissues87 (Chapter III) which required at least 15,000 cells for 

analysis because of sample losses during sample clean-up and fractionation. Sample 

losses in proteomics are most likely the result of multistep workflows where sample 

losses accumulate for each processing and transfer step resulting in overall poor 

sensitivity.142, 143 These sample losses are relevant for single cell population proteomics 

as enrichment of large cell numbers by LCM is extremely time-consuming especially if 

single cells need to be dissected from a morphologically complex tissue. For example, 

dissection of 15,000 single mammalian cells with 20 µm diameter from a heterogeneous 
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tissue would require at least 8 h for the dissection alone using current LCM technology. 

Clearly, this limits the usability of this technique for potential clinical applications where 

high-throughput and cellular specificity are desired. In addition, there are many cases 

where the availability of pathologically interesting cells is limited such as in small tissue 

biopsies or in cytology.144 Therefore, there is a clear need to develop methods that can 

analyze small numbers of isolated cells with high sensitivity. I hypothesized that 

sensitivity could be improved if contact of the tissue with surfaces could be reduced 

throughout the analysis. The ongoing miniaturization of sample handling devices is 

promising as this is an effective way to reduce the surface in contact with the proteins 

which maximizes sensitivity.145 Indeed, lab-on-a-chip devices are being developed for 

protein analysis including protein enrichment, processing146 and detection.147, 148 At this 

time, most platforms focus on cultured cells or protein extracts and analysis of cells 

dissected from tissues remains a novelty. Here I describe a new workflow that combines 

on-chip processing and MALDI MS for profiling of cell populations from fresh frozen 

and FFPE tissue enabling protein analysis from less than 20 cells. 
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Results 

Systematic optimization of an on-chip workflow for mapping proteins from laser 

captured cells was performed. Figure 21 summarizes the individual steps of the 

workflow. Cells of interest are marked for cutting with a focused laser. Dissected cells 

are transferred onto a capture chip above the tissue using contact-free laser pressure 

catapulting (LPC). A hanging droplet of a capture fluid is used for cell capture ensuring 

effective cell transfer from the tissue onto the chip. These cells can be directly analyzed 

from the chip using MALDI MS if desired. In turn, on-chip processing of the cells, such 

as antigen retrieval, protein extraction, reduction and alkylation and digestion with 

trypsin, can be performed. If necessary, on-chip clean-up can be carried out if reagents 

incompatible with MALDI MS are required. Here, we combine MALDI with FT-ICR MS 

which provides high sample throughput while taking advantage of the high peak capacity 

and mass accuracy of the FT-ICR analyzer. This strategy provides high information 

content without the need for time consuming protein fractionation. The optimization of 

the individual steps of this workflow is described below. 
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Figure 21: Workflow for cell type specific protein profiling using LCM and MALDI FT-ICR MS. 
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Optimization of LCM for On-Chip Cell Capture 

A Zeiss MicroBeam LCM instrument was optimized for dissection and contact-free 

transfer of single cells onto newly developed chips for cell processing. The use of chip 

technology was necessary to increase sensitivity. Initial studies with standard LCM 

collection devices such as PCR tube caps showed poor sensitivity. I dissected up to 5,000 

cells into caps of 200 and 500 µl PCR tubes using the hanging droplet approach for cell 

capture. After evaporation of the capture buffer, cells were extracted with the MALDI 

matrix and analyzed using MALDI MS. It was discovered that at least 5,000 cells were 

required for reliable protein detection. Visual inspection of the collection vessel showed 

that dissected cells tend to adhere to the walls of the cap and are not accessible during 

extraction with the matrix solution. Clearly, the high surface area of these devices 

promotes sample loss, and it was hypothesized that sensitivity could be increased if cells 

could be directly captured on a surface suitable for protein processing and analysis. 

Obviously, isolation of cells directly onto a MALDI target would be ideal as this would 

eliminate the need for sample transfer. Therefore, I modified the robotic sample stage of 

the LCM system with a custom holder (Figure 22A-B). This allowed capture of cells 

directly onto a standard MALDI target (alternative capture devices will be discussed in 

detail below). Importantly, the full functionally of the robomover for cell capture was 

maintained enabling accurate positioning of the chip for cell capturing during dissection 

and LPC. 

The sensitivity of a MALDI MS experiment depends on the analyte density on the 

target41, 149 and thus focusing cells to a small area on the capture chip is desired. The 

overall spread of LCM-dissected material after LPC on the capture chip was investigated. 



 

88 
 

A glass slide fitted with double-sided tape was used to capture and immobilize cells that 

were transported by LPC from a 100 x 150 µm rectangular area of 10 µm thick mouse 

liver tissue that was mounted onto a Director slide (Figure 22C). In this experiment, the 

capture chip was positioned 1-1.5 mm away from the tissue, which is typical for LCM 

using caps as a capture device. Figure 22D shows that the catapulted material is deposited 

over an area almost 1400 µm in diameter (note that the black features in the picture are an 

artifact of the double-sided tape). For clarity cell debris were marked by yellow dots. 

LPC tends to dissociate the tissue into small pieces that may be beneficial for subsequent 

processing. Previous studies show that a plume of dissected cell debris is formed during 

laser catapulting which radially expands from the point of dissection.76 One way to 

reduce sample spread would be to place the chip closer to the glass slide. This was tested 

by reducing the distance between the glass slide and the capture chip to 284 µm, the 

minimum distance that can be achieved with this holder design. It is noted that the spread 

of the dissected cells on the capture chip depend on dissection conditions and the power 

applied for laser catapulting. However, the reduced distance between tissue and the chip 

enabled capturing of cells within a sample well of 1 mm diameter.  

Cell capture for subsequent MALDI MS analysis does not permit the use of 

adhesive tape as a capture strategy as it can interfere with the experiment. Therefore, I 

investigated whether cells can be captured in a hanging droplet of capture fluid attached 

to a glass slide. Aqueous buffers were not suitable due to rapid evaporation; for example, 

a 1 µl water droplet evaporated within 1-2 min of cell capturing. Moreover, as the droplet 

was undergoing evaporation, it would physically move which resulted in poor cell 

capture. Consequently, alternative capture fluids were explored. The high boiling point 
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solvent 1,2-propanediol (bp = 188.2 °C) proved superior for this application. Using only 

0.3 µl of this solvent enabled dissection of cells for hours while providing a 2 mm wetted 

area that is ideal for cell capture. This solvent can be rapidly removed in a vacuum 

centrifuge to prevent signal suppression for downstream MALDI MS analysis.  

Sample preparation is an important factor that affects dissection accuracy and cell 

transfer during LCM. I optimized tissue processing protocols including tissue staining 

and washing that enabled effective dissection from 3 different sample supports, namely 

positively charged microscope slides, Zeiss membrane slides and Director slides. 

Dissection of fresh frozen and FFPE tissue was feasible for all slides tested. The best 

performance was observed with tissue thicknesses between 6-8 µm, although tissue as 

thick as 40 µm could be dissected. Dissection with the charged microscope slide required 

higher laser power than with the other slides. Cutting accuracy is limited with the charged 

slides as cells close to the area cut by the laser tend to detach and catapult nearby cells, 

probably due to a shockwave caused by the laser impact on the glass slide. This is 

undesirable as it can contaminate the sample with unwanted cells. The Zeiss PEN 

membrane slides showed excellent performance for dissection of fresh frozen and FFPE 

tissue, providing that areas larger than ~ 20 µm in diameter were dissected. Large tissue 

regions can be rapidly dissected as the cells adhere to the PEN membrane which requires 

a single laser pulse for tissue transfer with LPC. Importantly, the PEN membrane is 

compatible with subsequent MALDI MS analysis. Dissection of cells smaller than 20 µm 

is difficult with these slides because cells adhere to the edge of the melting PEN 

membrane and are partially lost from the analysis. Therefore I tested a new type of LCM 

slide which are layered with a thin energy absorbing coating.  
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Figure 22: Modification of the Zeiss MicroBeam LCM system with a custom holder for 
on-chip cell capture. (A) Schematic of the LCM system showing the robomover with the 
capture holder attached. (B) Capture devices such as glass slides are mounted into the 
custom holder using a MALDI target plate adapter. (C) Experimental set-up for testing of 
cell spread on capture chip. (D) Cell debris (yellow) are scattered almost ~ 0.9 mm away 
from the center of point of dissection (white mark). 
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These so-called Director slides showed the best performance for single cell dissection 

(Figure 23), providing excellent cutting accuracy for single cells smaller than 10 µm 

while enabling efficient tissue transfer onto the capture device. Using these slides, 

dissection conditions for the LCM system were optimized for each cutting objective 

available (Table 2). 
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Figure 23: LCM of a single mouse liver cell from fresh frozen mouse liver tissue on a 
Director slide. (A) Cell marked for dissection. (B) Tissue after dissection of a single cell. 

 

Table 2: Optimized cutting conditions for dissection of mouse liver tissue from Director 
slides. Single cell dissection was performed with the 40x or 63x objectives. 

Magnification 
Focus 
setting 

Cutting 
Energy 

% 

Energy 
Delta 
LPC 

% 

Focus 
Delta 
LPC 
µm 

Dist. 
AutoLPC 

Shots 
µm 

Dist. 
AutoLPC 
from line 

µm 
10x 82 31 15 3 5 3 
20x 70 29 8 0 3 2 
40x 55 24 10 0 2 1 
63x 16 19 12 -2 8 2 
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Chip Designs for Cell Capture 

The performance of 3 different capture chip designs was evaluated for cell capture 

and on-chip processing. The first design was a commercially available stainless steel 

anchor chip with 600 µm diameter hydrophilic anchors. Successful capturing of fresh 

frozen mouse liver cells could be demonstrated using a hanging droplet consisting of 2 µl 

of 1,2-propanediol as the capture fluid. However, the chip is non-transparent which made 

its accurate positioning difficult as the chip is placed between the objective and the light 

source. On-chip processing including digestion with trypsin showed extensive peptide 

oxidation characterized by a mass shift of 16 Da. Oxidation of peptides has been cited 

previously as a known problem with anchor chips.149  

The second chip investigated was a polydimethylsiloxane (PDMS) chip (Figure 24). 

It was manufactured by cast molding of PDMS followed by plasma oxidation of the chip 

and mounting it to an oxidized glass slide. The capacity of each sample well was 4.8 µl. 

Using the hanging droplet method successful cell capture could be demonstrated. 

Digestion protocols with trypsin were optimized, allowing digestion of the captured cells. 

Unfortunately, the design of this chip did not facilitate direct analysis of the reaction 

products by MALDI MS as the laser beam was unable to reach the matrix at the bottom 

of the well. The laser angle of incidence on the Apollo II ion source is estimated to be ~ 

30 ° and calculations confirmed that the laser beam would be intercepted by the walls of 

the chip. Therefore, removal of the chip from the glass slide was attempted but this 

proved difficult due to the tight bound between the two. Transfer of the peptides to a 

standard MALDI target was necessary for analysis. Hydrophobic pipette tips (ZipTips) 

were used for sample transfer that enabled desalting of the sample prior to MALDI 
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analysis. The overall sensitivity of this chip was lower than the anchor chip probably due 

to the large surface area in contact with the sample and the additional sample processing 

steps required for MALDI MS.  

The third chip design investigated was a commercially available Teflon printed 

glass slide with 2 mm well diameter (Figure 25A). Up to 10 µl of reaction buffer can be 

deposited into each well of the chip. The wells are optically transparent which is useful 

for positioning of the chip during cell capture, allowing inspection of the dissected cells. 

Control experiments showed that peptides can be detected with high sensitivity directly 

from the chip using MALDI FT-ICR MS. On-chip digestion of BSA protein was carried 

out to test the sensitivity of on-chip digestion. Detection of several peptides from as little 

as 10 fmol could be demonstrated (Figure 25B). The high sensitivity and versatility of 

this chip are advantageous for cell capture and on-chip processing. Therefore, this chip 

was used for all subsequent experiments. 
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Figure 24: PDMS chip for processing of LCM captured cells. 
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Optimization of Chemistry for On-Chip Processing of LCM Captured Cells 

Strategies were optimized that supported direct on-chip processing of captured cells 

using chemical approaches. One challenge of working with an open chip design and 

small reaction volumes is the rapid evaporation of the reaction buffers. For example, 

spotting of 1 µl of aqueous reaction buffer resulted in evaporation of the fluid in 1-3 min 

depending on the relative air humidity in the laboratory. Therefore, active humidity 

control using a humidified chamber for chip processing and incubation was implemented. 

This was sufficient to enable digestion of proteins for 18 h in as little as 2 µl buffer.  

Even longer incubation times were possible if the high boiling point solvent 1,2-

propanediol was used as a buffer additive. At a concentration of 30 % successful 

digestion of protein could be achieved without concern for sample evaporation with 

incubation times exceeding 30 h.  

Workflow for On-Chip Digestion of Fresh Frozen Tissue 

A protocol for on-chip digestion of LCM captured cells with trypsin was developed. 

Cells are digested directly on the chip using a digestion buffer containing ammonium 

bicarbonate (AMBIC) that is removed upon drying to allow direct MALDI MS analysis 

of the peptides from the chip with high sensitivity. Optimization of the digestion buffer 

was carried out using BSA as a model protein. I observed that the digestion of BSA was 

improved if 30 % of 1-propanol was added to the digestion buffer (Figure 26). Control 

experiments with this new buffer were carried out in PCR tubes demonstrating similar 

performance improvements. This buffer showed excellent performance for on-chip 

digestion enabling detection of peptides from as little as 10 fmol BSA (Figure 25B). 
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Figure 25: Testing of Teflon printed glass chip for on-chip digestion with trypsin. (A) 
Teflon printed glass chip showing efficient trapping of 1, 2, 4 and 6 µl of aqueous buffer. 
(B) MALDI-FT-ICR MS analysis of a 10 fmol BSA digest carried out of the chip. Six 
BSA matching peptides were detected with a sequence coverage of 11 %. 
 

 

Figure 26: MALDI FT-ICR MS spectra obtained from a 1 h on-chip digests of 200 fmol 
BSA. The use of 30 % 1-propanol in the digestion buffer increased sequence coverage 
and sensitivity. 
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This workflow was applied for on-chip digestion of proteins from LCM captured 

fresh frozen mouse liver tissue. Spectra with several thousand peaks could be detected for 

the analysis of tissue corresponding to 100 cells (see below). The number of detectable 

peptides decreased as fewer cells were analyzed but detection of peptides from as few as 

9.6 fresh frozen mouse liver cells could be demonstrated (Figure 27). 

On-Chip Processing of FFPE Tissue 

The optimized protocol for on-chip digestion was applied to FFPE mouse liver 

tissue. Figure 28A shows a comparison of spectrum obtained after on-chip digestion of an 

estimated 99 cells from fresh frozen and FFPE mouse liver tissue from the same animal. 

Antigen retrieval of the FFPE tissue was carried out on the glass slide using a standard 

protocol and tissue was dissected. As expected, lower numbers of peaks were observed 

for the FFPE tissue using the workflow developed for the fresh frozen tissue (Figure 

29A). I hypothesized that the offline antigen retrieval step, developed for histological 

applications, is only partially effective for proteomic applications as it has to preserve the 

morphology of the tissue on the glass slide. Therefore, an improved antigen retrieval 

protocol for on-chip processing was developed. As described in chapter 3, heat and 

detergent are important factors for successful antigen retrieval. However, the antigen 

retrieval buffer in this work contained the MALDI incompatible detergent Tween-20 

which required extensive sample clean-up prior to MALDI MS reducing sensitivity. 
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Figure 27: Profiling spectra of LCM captured mouse liver tissue after on-chip digestion 
and analysis by MALDIFT-ICR MS. (A) Spectrum obtained after on-chip digestion of 
tissue dissected from an estimated 19 cells resulting in detection of 143 ions. (B) 
Magnified region showing the m/z range from 1570-1620. C) Spectrum from the on-chip 
digestion and analysis of an estimated 9.6 cells. (D) Spectrum from a control digest 
carried out without the tissue. 
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To eliminate the need for extensive detergent removal, we tested whether the acid-

cleavable detergent ALS-II could replace Tween-20 during antigen retrieval. Experiments 

demonstrated that cleavage of ALS-II with acid can be achieved directly on the chip in as 

little as 10 min. Cells from FFPE tissue were mixed with the new AR buffer and 

incubated for 1 h at 90 °C for antigen retrieval. Subsequently, alkylation of cysteines was 

carried out on the chip and the detergent was cleaved prior to digestion with trypsin. 

Direct detection of peptides from the chip was feasible although a reverse phase clean-up 

with C18 ZipTips was added to remove salts and detergent artifacts. This significantly 

improved sensitivity compared to experiments carried out without clean-up. Figure 28 

shows photomicrographs of cells during on-chip cell capture and processing. As observed 

earlier, LPC generates cell debris that are amenable for protein extraction. Note that the 

structure of the captured material changes significantly as it is being processed by 

chemical and enzymatic means. 

The optimized protocol for processing of FFPE tissue was compared with the 

workflow for fresh frozen tissue. As shown in Figure 29B, significantly higher numbers 

of peaks could be detected for FFPE tissue with peak numbers similar to the analysis of 

fresh frozen tissue. Importantly, most of the peaks detected in the fresh frozen tissue 

sample were also detected in the FFPE tissue indicating that proteomic discovery in 

FFPE tissue using this workflow is feasible.  
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Figure 28: On-chip processing of FFPE mouse liver tissue. (A) Capturing of LCM-
dissected cells in a hanging droplet. (B) Cells on the chip after evaporation of the capture 
buffer. (C) Cells after antigen retrieval. (D) Extracted cells after digestion. 
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Figure 29: Comparison of average spectra (N = 3) from the processing of fresh frozen 
and FFPE mouse liver tissue with two optimized workflows for on-chip processing of 
LCM captured cells. Peaks were detected with a minimal signal-to-noise ratio of 6:1. The 
confidence interval was calculated at the 95 % confidence level. (A) Comparison of 
spectra from FFPE and fresh frozen tissue processed using the fresh frozen workflow without 
antigen retrieval. (B) Analysis of FFPE tissue with on-chip AR and alkylation of cysteines 
improves the number of detected peptides.  
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Performance Evaluation 

The performance of the FFPE workflow for on-chip processing of cells was 

evaluated for the analysis of fresh frozen and FFPE tissue. Table 3 summarizes the results 

obtained from 3 technical repeats of the analysis of FFPE and fresh frozen mouse liver 

tissue from the same animal. For FFPE tissue, up to 2,774 peaks were observed from an 

estimated 196 cells with a standard deviation of only 1 %, indicating good 

reproducibility. Slightly lower numbers of peaks were detected for the analysis of 98 

cells. Importantly, peaks observed in the blanks were not present in the spectra from 98 

cells. However, for the 19 FFPE cells, only peaks identified in the blank samples were 

detected while peaks detected from 196 and 98 cells were not present. The fresh frozen 

tissue showed higher peak numbers compared with the FFPE tissue but overall 

reproducibility was similar.  

The day-to-day performance of the assay was tested for the analysis of FFPE tissue. 

Figure 30 shows representative spectra obtained for the analysis of 99 FFPE mouse liver 

cells processed several days apart from the experiment presented in Table 3. The number 

of detected peaks is within 11.2 % of the early measurements and the overall 

reproducibility judged by inspection of the spectra is excellent. These results demonstrate 

that reproducible and analysis of LCM-dissected tissue is feasible showing outstanding 

reproducibility between analyses. 
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Table 3: Sensitivity and reproducibility for on-chip processing of FFPE and fresh frozen 
(FF) mouse liver tissue using the FFPE tissue workflow. Peak detection was carried out 
using a signal-to-noise cut-off of 4:1. 

Sample FFPE FF Blank 

# of cells 196 98 19 98 0 

Analysis # 1 2743 2639 1665 3138 1479 

Analysis # 2 2804 2763 1621 3279 1426 

Analysis # 3 2774 2646 1506 3253 1758 

Average  2774 2683 1597 3223 1554 

sx 31 70 82 75 178 

sx (%) 1 3 5 2 11 

Confidence 35 79 93 85 202 
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Figure 30: (A) Reproducible MALDI-FT-ICR MS profiles obtained from 3 technical repeats from the analysis of 99 LCM-dissected 
FFPE mouse liver cells after on-chip processing with the FFPE workflow. The average number of detected peaks with signal-to-noise 
> 4:1 prior to deisotoping was 2983 ±51. (B) Expanded 8 Da window from (A). 
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Discussion 

New tools for molecular analysis of tissue samples that enable single cell type 

protein discovery are needed for the development of the next generation of proteomic 

technology. Single cell type protein profiling in tissues has remained difficult because of 

the need to dissect several thousand cells prior to analysis. Here, a new workflow for 

protein discovery in selected cell populations was optimized, allowing cell type specific 

protein analysis from less than 20 cells. This innovative work can lead to future 

discoveries in the identification of distinct cell subpopulations from seemingly similar 

cell types. 

Systematic optimization of the workflow was necessary to approach single cell 

sensitivity. Modification of the LCM system with a custom holder was necessary to 

reduce nonspecific cell losses to the wall of the collection container during laser 

catapulting of dissected cells. This improves sensitivity and has the advantage that 

sample transfer steps are eliminated. Several chip designs were tested for cell capture and 

processing including a Teflon printed chip with a 2 mm well diameter. The hydrophilic 

wells of this chip supported effective cell capture as the capture fluid is anchored in place 

above the tissue. Moreover, Teflon printed slides are chemically inert while providing a 

defined reaction zone thereby controlling the risk of well-to-well contamination. Up to 30 

reactions can be carried out in parallel and custom chips are available if higher 

throughput is required. Chips with 3 mm and 60 µm well diameters were tested to study 

the effect of the well size on sensitivity. As expected, sensitivity was reduced for the chip 

with larger wells. Interestingly, experiments with the chip with 60 µm wells enabled 

detection of protein signals from fewer than 10 cells. In this case, a large droplet of 
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capture fluid was attached to the hydrophilic well, enabling effective cell capturing while 

concentrating the cells in the hydrophilic well upon evaporation of the capture fluid. The 

improved sensitivity is expected because of the higher analyte density achieved using the 

smaller well. Unfortunately, liquid handling for these small reaction wells remains 

tedious and microdispensing of reagents and matrix solution is necessary for on-chip 

manipulations. This will require additional optimization in future studies to enable 

reasonable throughput. 

A surprising discovery was the improved digestion performance when using 1-

propanol in the digestion buffer (Figure 26). Solvent additives such as trifluoroethanol,150 

methanol151 and acetonitrile152 are known to improve the digestion of protein with trypsin 

but the use of 1-propanol for this purpose has not been reported. 1-Propanol has a higher 

boiling point compared with the other solvents, which is especially useful for on-chip 

applications where evaporation of solvents is a concern. 

Two workflows for on-chip processing of fresh frozen and FFPE tissues have been 

optimized that show similar peak patterns. Up to 3,000 peaks could be detected from the 

analysis of either fresh frozen or FFPE mouse liver from the same animal. The resulting 

peak patterns were similar for both tissue types. This indicates that the newly developed 

antigen retrieval protocol is effective. Compared with antigen retrieval carried out on the 

tissue section before LCM, higher numbers of peaks could be detected after on-chip 

antigen retrieval. This highlights the ability for effective on-chip processing of cells prior 

to MALDI MS analysis.  

Protocols for the analysis of FFPE tissues provide access to large collections of 

FFPE tissues that are often associated with long-term clinical follow-up data, which is 
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critical for the development of new diagnostic strategies. This new approach compares 

favorably with direct approaches such as in situ tissue digestion.153 In this case, the 

spatial resolution is limited by the size of reaction zone (typically 175 µm). The LCM-

based workflow enables parallel processing of many samples indicating that this would 

be a good complement for the analysis of TMAs, which are increasingly used for 

proteomic studies.153, 154, 155  

The reproducibility of the method is excellent, generating similar spectra and 

numbers of peaks for analyses carried out on the same or separate days. Thus the method 

is robust, providing opportunities for large scale protein marker discovery carried out 

over extended periods of time. 

The overall sensitivity of the method was assessed with fresh frozen and FFPE 

tissues and generated meaningful spectra from less than 20 and 100 cells, respectively. 

This is a significant improvement over currently available methods because dissection of 

such few cells can be done within the timeframe demanded in clinics. Depending on the 

complexity of the samples, dissection of 100 cells can be achieved within 10-30 min for 

each sample, and this is likely to be further shortened as new LCM platforms capable of 

automated cell recognition and dissection emerge.  
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Conclusion 

Systematic optimization of workflows for the isolation, processing and analysis of 

cells from fresh frozen and FFPE tissues has been demonstrated for protein analysis of 

LCM-dissected cells. Cells of interest can be enriched with single cell specificity onto a 

capture chip for processing and analysis. The chip is disposable, reducing the potential 

for carryover. Up to 30 samples can be analyzed in parallel with the possibility of on-chip 

chemistry automation. On-chip antigen retrieval, protein extraction and digestion have 

been optimized with the goal to minimize sample loss. The high sensitivity of the method 

allows single cell type specific protein marker discovery with the advantage that cells can 

be sampled from relevant regions of a tissue. A method with such sensitivity and 

resolution provides opportunities for development of improved diagnostic tools. 

Importantly, one or more cell populations can be isolated, opening up the possibility to 

study the interactions of cells within their microenvironment. Compared with our earlier 

work, a significant increase in sensitivity is achieved, reducing the minimum number of 

cells for FFPE tissue analysis from 15,000113 to less than 100 cells. 
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Materials and Methods 

Reagents. All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, 

USA) and were of highest purity available. HPLC grade acetonitrile (ACN) and ethanol, 

histological grade xylenes, diammonium citrate (DAC) were purchased from Fisher 

Scientific (Air Lawn, NJ). Tris base and calcium chloride was from J.T. Baker. The acid 

cleavable detergent ALS-II was obtained from Progenta (Morgantown, WV). 

Trifluoroacetic acid (TFA) and α-cyano-4-hydroxycinnamic acid (CHCA) were 

purchased from Fluka (Buchs, Switzerland). The CHCA matrix was 2x recrystallized 

from ethanol and water. Ammonium bicarbonate (AMBIC), iodoacetamide (IAA), 1,4-

Dithioerythritol (DTE) were obtained from Sigma-Aldrich. Sequencing grade modified 

trypsin was purchased from Promega (Madison, WI, USA). Peptide standard mix and 

protein standard mix for MALDI-TOF-(TOF) calibration were from Bruker-Daltonics 

(Billerica, MA).  

Tissue processing for fresh frozen tissue. Adult CD-1 mice were sacrificed and 

dissected organs were immediately snap-frozen in liquid nitrogen and stored at -80 °C 

until use. A sample of each tissue was formalin fixed as described in Chapter 3. Sections 

were cut with a Leica cryomicrotome with section thicknesses of 5-40 µm and thaw 

mounted102 onto superfrost slides obtained from Fisher Scientific (Air Lawn, NJ), 1 mm 

PEN membrane slides from Carl Zeiss Inc (Thornwood, NY) or Director slides received 

from Expression Pathology (Rockville, MD). Note that the PEN slides were activated 

with a UV lamp for 30 min prior to mounting of fresh frozen tissue. For protein work, 

tissue was washed using sequential 2 minute washes in 70, 95, 100 % ethanol followed 

by an additional 2 minute wash in 100 % ethanol. The dehydrated tissue slides were 
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stored in a vacuum desiccator until use or subjected to staining with cresyl violet. For this 

purpose, tissue was rehydrated for 1 minute in 70 % ethanol followed by a 15 s dip in 

water. Staining was performed for 30 s in 0.5 % cresyl violet stain106 followed by 3 

consecutive 30 s washes in 70, 70 and 95 % reagent grade ethanol.  

Tissue processing for FFPE tissue. Sections were cut with a microtome with 

section thicknesses of 6-8 µm and tissue was mounted onto Director slides. Slides were 

dried overnight at 37 °C. In the morning a washing protocol for paraffin removal and 

stepwise hydration was performed using a series of solvent washes: 2 x 5 min xylenes, 2 

x 3 min ethanol, 1 x 3 min 95 % ethanol, 1 x 3 min 70 % ethanol and 2 x 5 min Milli-Q 

water. At this stage, staining of the tissue can be performed as described above for the 

fresh tissue. If no stain is necessary, tissue is stepwise dehydrated using a 70 % ethanol (1 

min) and reagent grade ethanol (1 min). Tissue is stored for at least 1 h in a vacuum 

desiccator prior to LCM. 

LCM. LCM was carried out using a ZEISS MicroBeam instrument. Objectives with 

10, 20, 40 and 63x magnification were used for sample inspection and LCM. Optimized 

dissection conditions for Director slides are provided in Table 2. Cells were dissected 

using the close cut & AutoLPC method with the following settings for AutoLPC: 

Distance of AutoLPC shots = 5 and Distance of AutoLPC shots from line = 3. Cells were 

captured on the 2 mm Teflon chip using 0.3 µl 1,2-propanediol as the capture fluid or in 

200 µl PCR tube caps using 20 µl water for cell capture. The distance between the 

capture chip and the tissue was 284 µm during dissection. The capture buffer was 

removed by placing the chip into a closed petridish followed by a 25 min drying step in a 
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rotary centrifuge operated at 45 °C and 1-4 mbar pressure without spinning (rotor 

removed).  

Estimation of protein content and cell numbers based on area. A rough 

estimation for the protein content of tissue can be obtained by assuming that 18 %131 of 

the wet weight of a cell is protein. It is assumed that a cell is spherical and there is no 

space between the cells. For mouse liver, we measured an average cell diameter of 17.2 

µm. In this case, dissection of an area of 44328 µm2 from a tissue section cut at 6 µm 

thickness corresponds to 100 cells or 47.9 ng protein. 

On-chip digestion for the PDMS chip. BSA protein was dissolved in the digestion 

buffer consisting of 10 mM Tris, 1 mM EDTA, 10 mM DTE, 2 mM CaCl2, 30 % 1- 

propanol and 0.5 % ALS-II. Two µl of this mixture was loaded into each well of the chip 

during digestion. The chip was briefly spun in a centrifuge to remove air bubbles. The 

chip was covered with aluminum foil and subjected to heating in an autoclave using the 

liquid program which heated the sample to 121°C for 20 min The chip is immediately 

removed after completion of the autoclave program and 2 µl of the digestion buffer was 

added. Alkylation of the protein is performed by adding 0.4 µl of freshly prepared, 

aqueous iodoacetamide solution prepared at 150 mmol/l. The reaction is allowed to 

proceed for 15 min in the dark. Excess alkylation reagent was destroyed by adding 0.5 µl 

of a 50 mM DTE solution. Sequencing grade porcine trypsin is dissolve in 1 µl of 

digestion buffer and spiked into the well. The enzyme concentration was variable but a 

E/S ratio between 1/20 to 1/5 showed the best performance. The digestion is incubated in 

a humidified chamber with controlled temperature of 37.5 °C. After 1 h, 1 µl of a 2 % 

aqueous TFA solution was added to quench the reaction. The reaction mixture was 
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subjected to ZipTip clean up using Millipore P10 tips of the C18 variety according to the 

recommendations of the manufacturer. The peptides were eluted from the chip using 6 µl 

of the matrix solution consisting of 6 mg/ml CHCA prepared in 70 % ACN 0.1 % TFA 

and 2 µl of this sample were spotted onto a standard stainless steel Bruker plate for 

MALDI-MS analysis.  

On-chip processing for Teflon printed slides with the fresh frozen tissue 

workflow. Teflon printed glass slides with 2 mm hydrophilic wells were obtained from 

Electron Microscope Science (Hatfield, PA). Protein and sequencing grade porcine 

trypsin were diluted in the digestion buffer consisting of 10 mM TRIS, 1 mM EDTA, 10 

mM DTE, 2 mM CaCl2, 30 % 1-propanol. A mechanical pipette was used to deposit 1 µl 

of the protein standard and 1 µl of the enzyme solution onto a hydrophobic region of the 

capture chip for digestion of BSA. For digestion of LCM captured cells, 2 µl of the 

digestion buffer were used. The enzyme concentration was adjusted to obtain a E/S ratio 

of 1:5. The chip is placed into a petridish lined with water soaked filter paper and 

incubated for 1-16 h in a temperature controlled oven operated at 37.5 °C. The reaction is 

quenched with 2 µl of 1 % TFA solution and the chip is placed in a vacuum centrifuge 

operated at a temperature of 45 °C and 1-4 mbar pressure without spinning (rotor 

removed). Complete evaporation of the droplets is typically observed after 5-8 min but 

extended drying for 20 min is carried out to ensure complete removal of all solvent. 

Finally, 2 µl of a 6 mg/ml CHCA matrix solution prepared in 70 % ACN 0.1 % TFA is 

deposited onto the chip and allowed to crystallize with the sample.  

On-chip processing for Teflon printed slides with the FFPE tissue workflow.  

LCM-dissected cells captured on the Teflon printed chip were subjected to antigen 



 

114 
 

retrieval using 2 µl of antigen retrieval buffer consisting of 10 mM Tris buffer, 1 mM 

EDTA, 10 mM DTE, 30 % 1,2-Propanediol and 0.5 % ALS-II. The chip is placed into a 

humidified chamber (see above) and incubated for 1 h at 90 °C in a laboratory convection 

oven. Upon removal of the chip from the oven, the chip is transferred into humidified 

chamber that is operated at room temperature and allowed to cool for 10 min. This is 

important to prevent excessive condensation of vapor on the chip. Alkylation of cysteine 

containing peptides is carried out in the humidified chamber by adding 0.8 µl of a freshly 

prepared aqueous IAA solution. The reaction is allowed to proceed for 20 min in the 

dark. Excess alkylation reagent is quenched with 0.7 µl of a 25 mM DTE solution. 

Following 5 min incubation, 1.3 µl of a 4 % formic acid solution is added and acid 

cleavable detergent is allowed to cleave for 15 min in a humidified chamber. The chip is 

placed into a petridish and subjected to 25 min of drying at 70 °C in a rotary centrifuge as 

described above. For digestion of cells, 2 µl of the digestion buffer consisting of 30 % 1-

propanol, 70 mM TRIS with pH=8.1 (23°), 1.4 mM CaCl2, and trypsin is spotted onto the 

chip and the chip is incubated at 37.5 °C overnight in a humidified petridish. The trypsin 

concentration in the digestion buffer was adjusted depending on the number of dissected 

cells to obtain an E/S ratio of 1:5. For example, for the analysis of 100 mouse liver cells 

we estimated 47.9 ng total protein. In this case 9.6 ng of trypsin were added for digestion. 

The reaction is quenched with 1 µl of a 4 % formic acid solution and the chip is dried for 

15 min in a vacuum centrifuge operated at 70 °C. On-chip clean-up is performed using 

C18 micro ZipTips (Millipore). The tips are activated as recommended by the 

manufacturer. Peptides are solubilized on the chip with 5 µl of a 0.1 % TFA solution. 

Peptides are extracted from the chip using 10 aspiration and dispense cycles. The tip is 
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washed 4 x with 10 µl 0.1 % TFA for salt removal. Peptides are eluted into a 200 ul PCR 

tube containing 2 µl matrix solution consisting of 2mg/ml CHCA prepared in 70 % ACN 

with 0.1 % TFA and 1.7 mM DAC. For spotting of the peptides onto a stainless steel 

target, 1 µl of 0.1 % TFA is added to the tube and the whole tube content is deposited 

onto a stainless steel MALDI target for analysis. 

Mass Spectrometry. MALDI FT-ICR MS was carried out on a 9.4 T Bruker Apex 

Qe equipped with an Apollo II ion source and a modulated Nd:YAG laser86 operated at 

100 Hz. External calibration was performed using a custom peptide mixture consisting of 

Bradykinin 1-7, Angiotensin II, [Glu1]-Fibrinopepdide β, ACTH fragment 18-39 and 

Insulin chain B oxidized with theoretical m/z ratios of 757.39915, 1046.54179, 

1570.67684, 2465.19833 and 3494.65077 respectively. Typical mass accuracy was better 

than 5 ppm over the observed mass range from 600-4000 Da. The external storage 

quadrupole was used to accumulate 250 laser shots from a single sample position prior to 

FT-ICR analysis. A total of twenty scans were accumulated from each sample spot and 

saved into a file. Data acquisition was automated using custom software tools written to 

generate sequences files for the Hystar software (ver. 3.4) supplied with the instrument. 

Spectra were processed using customized scripts for Bruker DataAnalyis version 4.0 

which performed peak picking and export of the peak lists and raw spectra in ASCII 

format for further processing in OriginPro 7 and MATLAB. Monoisotopic peaks were 

determined using the SNAP-2 algorithm with a minimal S/N of 3:1 and a quality factor of 

0.4. The total number of peaks were determined with the FTMS algorithm with a S/N 

cut-off of 4:1. 
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CHAPTER V 

Applications: Profiling of LCM-Enriched Cells with MALDI FT-
ICR MS  

Introduction 

The results in the previous chapter established innovative methods for the 

enrichment and analysis of selected cells populations from fresh frozen and FFPE tissues, 

but the suitability of the methods for morphologically complex tissues, and how specific 

labeling approaches for identification of specific cell populations affects the analysis 

remained unknown. This chapter addresses these challenges by describing the successful 

application of these methods to several protein profiling studies. Specifically, human 

prostate FFPE tissues and striatal medium spiny neurons (MSNs) in rat brain were 

profiled.  

Prostate cancer (PCa) is the most common cancer in men156 in the United States. 

The disease incidence is strongly correlated with age, and the lifetime risk of developing 

prostate cancer is 1 in 5 for African Americans and 1 in 6 for Caucasians. Diagnosis of 

PCa with digital rectal exams and blood tests which measure prostate specific antigen 

(PSA) are available. The usefulness of the PSA test is controversial due to its low 

specificity,157 and often a subsequent invasive biopsy is required for PCa diagnosis. 

Radical prostatectomy, the surgical removal of the prostate, is invasive and can have 

severe side effects such as impotence and incontinence. Therefore, pathological risk 
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stratification using initial biopsies obtained for suspected PCa is important as it can often 

provide clues about the stage and severity of the disease, including the potential for 

invasion of neighboring tissues, which can influence treatment. Unfortunately, the 

samples obtained from these biopsies tend to be small so the number of cancer cells can 

be limiting. A method that could obtain unique molecular profiles from these few cells 

could provide the molecular clues needed to diagnose and appropriately manage the 

disease.  

The second application presented here is the molecular profiling of striatal MSNs 

in rat brain. MSNs are striatal projection neurons into the basal ganglia that are involved 

in motor control and habit and reward learning.158 These neurons have been associated 

with neurological diseases such as schizophrenia and Parkinson’s disease.159 At least two 

MSN types exist within the striatum, the striatopallidal (indirect pathway) and the 

striatonigral (direct pathway) neurons. The striatopallidal neurons project from the 

striatum to their corresponding output nuclei in the medial globus pallidus (GP), while 

the striatonigral neurons project from the striatum to the substantia nigra (SN).160 The 

degeneration of nigrostriatal dopamine neurons causes a decrease in striatal dopamine 

concentrations, which gives rise to the motor defects in Parkinson’s disease. 

Consequently, most of the research in Parkinson’s disease has focused on the mechanism 

of degeneration of dopamine neurons in the SN. However, the consequences of dopamine 

loss on the striatal target cells of nigrostriatal neurons are not well understood. The two 

MSN cell types in the striatum are morphologically identical except in their projections to 

their corresponding output nuclei.160 This makes molecular characterization of these 

MSN types difficult and new strategies for the analysis of these neurons are desired.  
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Results and Discussion 

Analysis of Human FFPE Prostate Tissue 

A method for protein profiling normal epithelial cells and tumor cells in FFPE 

prostate tissue was developed. Prostate tissue staining protocols were optimized for 

histopathological analysis to enable the marking of desired cell populations for LCM. 

Experiments with H&E-stained FFPE tissue showed that H&E staining significantly 

reduced the number of detected peaks compared with unstained tissue. We investigated 

whether cresyl violet could be used as an alternative stain to increase the sensitivity of the 

method. Peptide profiles from FFPE mouse liver tissue stained with cresyl violet showed 

similar peak patterns and intensities compared with non-stained tissue, indicating that this 

stain is compatible with our workflow. Figure 31A and B demonstrate that the quality of 

cresyl violet-stained prostate tissue is sufficient for identification of epithelial and tumor 

cells as judged by a trained pathologist.  

One advantage of LCM is that tumor cells can be enriched from selected tissue 

regions, such as from nerve invading tumor cells (Figure 31C and D), which are a 

significant route of metastatic disease in PCa. This process, known as perineural 

invasion, has been associated with poor clinical outcome.161, 162 The ability to enrich cells 

from pathologically relevant cell populations is an important advantage of this workflow 

because it enables specific cell type and location proteome analysis in the tissue.
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Figure 31: Staining and dissection of human prostate tissue. (A) H&E stain and (B) cresyl 
violet stain from serial sections. (C) Cresyl violet-stained tissue samples with tumor cells 
surrounding a nerve marked for dissection. (D) Tissue after dissection. 
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Dissected cells were subjected to on-chip processing using the FFPE workflow 

described earlier (chapter IV). Examples of the quality of peptide spectra from LCM-

dissected normal epithelial cells and prostate cancer cells obtained from the same patient 

are shown in Figure 32A. Distinct peptide patterns could be obtained from only 98 LCM-

dissected cells. The profiles differ significantly between the two cell populations as 

indicated by differential analysis of the spectra (Figure 32B). Clearly, a much larger 

study with a sample cohort that is correlated with long-term clinical outcome will be 

needed to establish a method for risk assessment for prostate tissue biopsies. It is noted 

that dissection of cells in the prostate is relatively fast as the tumor and normal epithelial 

cells tend to form large connected areas which improves the speed of LCM dissection. 

For example, dissection of 98 cells could be achieved in less than 10 min. The high 

sensitivity of this workflow combined with the ability to isolate pathologically relevant 

cells from selected tissue regions highlight the potential of this approach for future 

applications in clinical discovery and diagnostics. 
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Figure 32: Marker discovery in human prostate cancer. (A) Comparison of averaged 
spectra (N = 3) from normal and cancer epithelial cells. (B) Differential spectrum from 
(A) revealing differentially expressed peaks. 
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Proteomic Profiling of MSNs in Rat Brain 

Fresh frozen rat brain tissue with retrograde labeled MSNs were subjected to cell 

type specific dissection using fluorescence-assisted LCM. Figure 33 shows microscope 

images from the striatum obtained by bright field and fluorescence imaging, respectively. 

The two MSN populations can be easily identified based on the different fluorescent 

tracker dyes used for labeling. Dissection of MSNs was carried out using optimized 

dissection conditions described in chapter IV. MSNs were roughly 10-20 µm in diameter 

which allowed rapid dissection with single cell specificity (Figure 34). Tissue 

corresponding to 200 MSN cells was dissected for each MSN type. Dissection of 

myelinated axon bundles (Figure 33A) located between the MSN cells in the striatum 

was also performed to interrogate differences in the proteome of these two neurological 

structures. Processing of dissected cells was performed as described in chapter IV using 

the FFPE tissue workflow. Although fresh tissue was used for this project, on-chip 

reduction and alkylation improved protein extraction and digestion from fresh frozen 

tissue.  

Peptide profiles obtained from the two MSN types did not show any statistically 

significant differences as judged by the t-test and a minimum two fold intensity 

difference indicating that they are molecularly similar (Figure 35A). However, distinct 

differences in the profiles from the MSN and myelinated axons (Figure 35B) 

demonstrated that cell type specific profiles can distinguish between different 

neurological structures in rat brain. Importantly, retrograde labeling was compatible with 

this workflow, enabling cell type specific enrichment with LCM.  
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Figure 33: Bright field (A, C) and fluorescent images (B, D) of rat brain striatum showing 
retrograde labeled MSNs. Striatonigral neurons were labeled with a fluorescent probe 
detected with the Cy3 fluorescence filter (red) set and striatopallidal MSNs with a FITC 
filter set (green) respectively. 

 

Figure 34: Dissection of a single striatonigral neuron from rat striatum. (A, B) Bright 
field images showing the tissue before and after dissection and (B, D) corresponding 
fluorescence images showing the tissue before and after dissection.  
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Figure 35: Average spectra from 200 dissected direct and indirect pathway MSNs from 
rat brain (N = 2).  

 

Figure 36: Comparison of averaged spectra from 200 MSNs (N = 3) and 100 myelinated 
axons (N = 2) after on-chip digestion. Peptides identified by MALDI TOF/TOF MS are 
marked (*). Spectra were normalized using TIC normalization. 
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Studies using microarray profiling from FACS-enriched MSNs have revealed 

only a few differentially expressed protein transcripts that are low abundance, supporting 

my findings at the protein level. It is expected that strategies to increase the dynamic 

range of the method (chapter VI) could increase the detection of lower abundance 

proteins.  

Identification of some of the high intensity peptides in the myelinated axons was 

carried out using MALDI TOF/TOF followed by database searching with Mascot. 

Identification of myelin protein in the axon bundles could be confirmed (Table 4) along 

with other proteins such as tubulin and α-internexin which is involved in axon growth163. 

Direct identification of lower abundance peptides in the spectra proved more difficult as 

the ability to select precursor ions in the MALDI TOF/TOF instrument can be limiting. 

This resulted in complex fragmentation patterns from multiple peptide precursors that did 

not yield statistically significant hits. An identification strategy using LC-MALDI MS 

(chapter III) would be beneficial for identification of these lower abundance peptides. It 

is estimated that identification of these peptides with LC-MALDI MS could be achieved 

with as few as 400-500 neurons which can be readily dissected as sufficient tissue is 

available. 
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Table 4: Identification of peptides with MALDI TOF/TOF MS from an estimated 100 
myelinated axons in rat striatum.  

m/z Protein 
1130.5990 Tubulin beta-2C chain, 
1352.6340 Myelin basic protein S (MBP S) 
1460.7220 Myelin basic protein S (MBP S) 
1701.9140 Tubulin alpha-1 chain (Alpha-tubulin 1) 
1864.9230 Tubulin alpha-1 chain (Alpha-tubulin 1) 
2175.0370 Alpha-internexin (Alpha-Inx) 
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Conclusions 

Successful application of LCM and on-chip processing for protein profiling of 

human PCa and for profiling of morphologically indistinguishable neuron subpopulations 

in rat brain has been described. The PCa project demonstrates that the method has great 

potential for molecular analysis of small tissue samples such as biopsies that might be 

used for risk stratification in PCa patients. Distinct peptide profiles were obtained from 

FFPE tissue that distinguished between normal epithelial and cancer cells. The ability to 

analyze FFPE tissue will be critical to extend this study to a larger sample cohort for 

correlation with clinical outcome. The high sensitivity of the method indicates that it 

might be applicable for the study of tissue microarrays, which would enable analysis of 

large numbers of samples with high-throughput.  

The use of fluorescent tracker dyes for retrograde labeling and dissection of 

MSNs in rat brain was demonstrated and peptides specific to neurological structures in 

the striatum could be identified. Fluorescent trackers are advantageous as they can 

provide high cellular specificity. Dissection of single cells was time-consuming because 

each cell had to be marked individually, requiring at least 1 hour for marking 200 cells. 

Initial studies with automated software scripts enabled automated cell marking for 

dissection of fluorescent cells, significantly reducing the time. Automated cell marking 

tends to fail at the edges of tissues and in regions with non-specific fluorescence. 

However, development of new multi-modal algorithms164 for automated cell recognition 

have been described and it is anticipated that such approaches might be useful to improve 

automated single cell dissection.  
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Materials and Methods 

Tissue samples 

Rat brain tissue: Adult male Sprague Dawley rats (age 90-110d) were 

stereotaxically injected with the fluorescent retrograde tracers AlexaFluor 488-conjugated 

cholera toxin B (CTb; InVitrogen) and red fluorescent latex microspheres (FLMs; 

LumaFluor). 250 nl of the CTb tracer was injected into the SN, and 100 nl of the FLMs 

into the GP of the contralateral hemisphere. Two weeks later rats were deeply 

anesthetized with isoflurane and decapitated. The brain was removed within 30 s from the 

point of death and snap frozen in Freeze’it. Tissue was stored at -80 °C until use. 

Sectioning was performed in a cryostat with a section thickness of 8 µm. Sections were 

thaw mounted onto Director slides and dried for 10 min in a vacuum desiccator. 

Inspection of the sections using fluorescence microscopy demonstrated specific labeling 

of MSNs. 

FFPE prostate tissue. FFPE prostate tissue was a gift from Dr. Axel Wellmann from the 

Pathologische Institut Zelle in Germany. All tissues blocks for this study had undergone 

prior histopathological analysis and only blocks with a Gleason score of 4-7 were 

selected for these experiments. Tissue was sectioned at a section thickness of 6 µm using 

a microtome. Paraffin removal and rehydration was carried out as described in Chapter 

IV. The cresyl violet staining protocol optimized for prostate tissue consisted of a 1 min 

staining step in in 0.1 % cresyl violet stain106 and two 1 min destaining steps in 70 % 

ethanol and reagent grade ethanol respectively. Tissue was stored in a vacuum desiccator 

for at least 1 h prior to LCM. LCM and on-chip processing, using the FFPE workflow, 

was carried out as described in chapter IV. 
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Tissue processing and Fluorescence assisted LCM for dissection of MSNs. Tissue 

sections were dehydrated with consecutive 2 minute solvent rinses in 70, 95 and 100 % 

ethanol followed by an additional 2 minute wash in 100 % ethanol. Remaining solvent 

was removed by storing the tissue in a vacuum desiccator for at least one hour before 

LCM was carried out. A ZEISS MicroBeam LCM system, equipped for fluorescence 

assisted LCM, was used for dissection. The 63x objective and the FS17C adv. (FITC) and 

the FS00C adv. (Cy3) filter sets were used for fluorescence imaging and marking of the 

cells. An estimated 200 MSNs corresponding to a tissue area of 66,492 µm2 were 

dissected for each MSN subpopulation as described in chapter IV. Dissection of the 

myelinated axons in the striatum, on-chip processing of dissected cells using the FFPE 

workflow and MALDI FT-ICR MS were carried out as described in chapter IV.  

MALDI TOF/TOF MS for protein identification. MALDI TOF/TOF MS and database 

searching for peptide sequencing was carried out as described in detail elsewhere.153  
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CHAPTER VI 

Research Summary 

Methods for mapping proteins using direct and indirect proteomic strategies with 

high cellular specificity have been optimized for protein discovery in tissues. In chapter 

II, the optimization of two matrix deposition robots for coating tissues with matrix for 

MALDI IMS has been described. Optimized protocols for matrix deposition onto tissues 

including brain and epididymis from the mouse and human clear cell renal cell carcinoma 

were developed which provided highly reproducible spectra. The resulting ion images 

revealed the location and relative abundance of hundreds of proteins in the tissue. Indeed, 

MALDI IMS provides very high sensitivity for protein detection because sample loss is 

minimal due to the few processing steps required prior to mass spectrometry analysis. 

Overall, MALDI IMS is a powerful tool for biological discovery with vast potential for 

clinical applications.165, 166, 167 As demonstrated in chapter II, automated matrix 

application using a vibrational matrix deposition robot can generate highly reproducible 

protein spectra for routine IMS experiments with a spatial resolution in the range of 50 

µm. This corresponds to an estimated 9 cells for mouse liver tissue (cut at a section 

thickness of 12 µm) highlighting the excellent sensitivity of this method. However, 

imaging of proteins with single cell resolution remains challenging. First, the sensitivity 

decreases due to the smaller laser spot size. Oversampling approaches, which are often 

used if the laser spot size is limiting, exacerbates this problem.168 Second, acquisition of 

large datasets at high spatial resolution, especially if large tissue samples are analyzed, is 
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time consuming. Lastly, protein identification is difficult and requires separate 

experiments which have limited sensitivity and throughput. These challenges were 

addressed using a newly developed workflow for protein identification that combines 

multidimensional chromatography and top-down sequencing for identification of proteins 

with high sensitivity. 

An alternative strategy for protein identification is in situ digestion with trypsin 

which has shown excellent performance for the analysis of FFPE tissues allowing direct 

identification of proteins from the tissue.169 Unfortunately, the spatial resolution of this 

method is limited due to the need for robotic spotting of trypsin, and the placement 

accuracy for reagent deposition can be influenced by the tissue microenvironment. 

Consequently, protein profiles obtained by this approach may represent an average from 

several different cell types limiting the specificity of these profiles.  

To address this issue, several new strategies for protein analysis from tissue sections 

have been developed. In chapter III, a high-throughput method for rapid profiling of 

FFPE tissue was described. The method combines off-line tissue processing and 

electrophoretic peptide fractionation for detergent removal enabling detection of 

differentially expressed peptides in selected tissue regions. At least 15,000 cells were 

needed for this workflow although 60,000 cells provided improved performance. Sample 

losses during processing and fractionation were identified as the source for the relatively 

low sensitivity. It was concluded that this approach is advantageous for the analysis of 

samples that show relatively homogeneous cell morphology and if high-throughput is 

required. 



 

132 
 

Isolation of cells with single cell specificity from morphologically complex tissues 

is time consuming due to the limited speed of LCM for single cell dissection. However, 

dissection time is critical for enrichment of cells from morphologically complex tissues 

where dissection of thousands of single cells might not be reasonable. Hence, 

development of new highly sensitive workflows (Figure 37) for processing and analysis 

of LCM-dissected cells from fresh frozen and FFPE tissue was performed. Cells are 

dissected with single cell specificity using LCM and directly captured on a chip for 

processing, which can include protein extraction, antigen retrieval and digestion. The 

resulting tryptic peptides can be analyzed by MALDI FT-ICR MS which can provide cell 

type specific profiles for the enriched cell population. Excellent reproducibility for 

routine analysis from as few as 100 cells could be demonstrated and detection of proteins 

from fewer than 20 cells is feasible. The ability to enrich cells prior to analysis increases 

the sensitivity of the method. More than 3,000 peaks could be detected which compared 

favorability to in situ digestion where detection of up to 1,000 peaks has been reported.153 

Importantly, the new workflows can provide single cell population specificity. The 

throughput of the LCM-based workflow is lower compared with MALDI IMS. However, 

it is expected that progress in LCM technology could soon overcome this limitation. 

Applications of the new workflows for discovery of differentially expressed 

proteins in prostate cancer and in rat neurons are presented in chapter V. The prostate 

cancer study revealed several differentially expressed peaks between tumor cells and 

normal epithelial cells. The profiling of neurons in rat demonstrated that proteins from 

distinct neuron populations can be profiled with single cell population specificity. This 

provides new possibilities to study molecular processes in neural signaling. 
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Figure 37: Summary of the new workflows for on-chip processing of LCM-dissected 
cells. 
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Perspectives  

The promise of protein analysis in tissues is that the discovery of proteins is 

facilitated by studying them at the site of pathology.170 Mass spectrometry is a powerful 

tool for molecular discovery in tissues as it can provide molecular specificity and high 

sensitivity. Emerging techniques for mapping proteins in tissue are MALDI IMS and 

LCM assisted profiling of cells with MALDI MS. Sample preparation is one of the most 

critical steps in MALDI IMS as it can limit spatial resolution and sensitivity. Reliable 

matrix deposition is critical to obtain reproducible IMS results. In this study, we 

developed new robotic strategies for matrix deposition allowing reproducible matrix 

deposition and high spatial resolution. Importantly, the platforms are completely 

automated, providing an opportunity for standardized matrix application and improved 

reproducibility within and between laboratories. This will be critical for the integration of 

MALDI IMS for applications in diagnostics especially molecular pathology.  

Although direct analysis of proteins with IMS shows great promise it remains 

limited for the analysis at the single cell level. This study focused on the development of 

new strategies that can overcome this challenge by enriching specific cell populations 

prior to MALDI MS analysis. The use of LCM for MALDI MS profiling of cells from 

fresh frozen tissue has been described prior to this work. However, the integration of 

contact-free cell transfer with laser pressure catapulting enables rapid enrichment of large 

numbers of cells. Concentrating and manipulating the cells on a chip allows higher 

sensitivity for the analysis of tissues such as FFPE which are clinically relevant. 

Importantly, several samples can be captured on a single chip and analyzed in parallel. 

By combining LCM, on-chip processing and MALDI FT-ICR, the discovery of large 
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numbers of proteins can be accomplished by working with as few as 20 cells. Even 

higher sensitivities105 have been described for LCM-based protein profiling, but in this 

case intact proteins were analyzed which requires subsequent identification with time- 

and sample-consuming fractionation approaches. The new chip based strategy eliminates 

these steps as identification of proteins directly from the chip can be performed.  

While the scope of this work is limited in terms of applications of the technology, it 

clearly demonstrates the potential for analysis of single cell populations in 

morphologically complex tissues. Aside from applications in fresh frozen and FFPE 

tissues, this method may also prove useful in cytology where the availability of cells is 

often limiting.  

The sensitivity and capabilities of this workflow may be even further enhanced in 

the future. As discussed in chapter IV, initial results indicate that reduction of the size of 

the hydrophilic anchors on the capture chip could further improve sensitivity. Analyte 

density is critical for sensitivity in MALDI MS and smaller wells are expected to 

significantly improve performance.41 In theory, the sensitivity of the peptide workflow is 

expected to improve over 1,100-fold if the well size was reduced from a diameter of 2 

mm to 60 µm. This may open opportunities for protein profiling at high resolution with 

sensitivities for single cell or subcellular proteomic analysis. 
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Future Work 

Selective Chemistry for On-Chip Enrichment 

On-chip processing provides unique new opportunities for chemical and physical 

approaches than can be applied to increase the dynamic range of the experiment. For 

example, the capture chip could be coated with analyte-selective surfaces that would 

enable enrichment of proteins or peptides. One way to achieve this would be the use of 

functionalized surfaces, e.g. a strong anion exchanger, which may provide the possibility 

of enriching phosphorylated peptides. Alternative methods for on-chip enrichment and 

separation of specific proteins classes could be explored e.g. using antibodies or activity 

based probes.171 This is expected to significantly reduce the complexity of the sample 

thereby increasing dynamic range.  

Higher Peak Capacity and Sensitivity for MALDI FT-ICR MS 

The ability to detect low abundance peptides in complex mixtures without 

separation requires methods that can provide high peak capacity. As shown in this work, 

FT-ICR MS allowed the detection of 3,000 peaks in a single analysis. The number of 

detected peaks could be increased by improving the resolution and sensitivity of the FT-

ICR instrument. Initial experiments with narrow-band172 detection demonstrated a 

resolving power exceeding 1 million for the triply charged peptide angiotensin II. 

However, narrowband detection limits the useable mass range for each scan event. 

Therefore, an algorithm is needed post-acquisition that combines several narrowband 

scan windows into a spectrum that covers the entire mass range for peptides. This 

approach could be especially useful if combined with methods that improve sensitivity. 
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CASI (Continuous Accumulation of Selected Ions), is a new method for ion 

accumulation in the external hexapole prior to mass analysis in the FT-ICR cell.173 

Significant improvements for detection of low abundance peaks for lipids and small 

molecules using MALDI ionization have been demonstrated in our laboratory, and we 

anticipate that this approach will be useful for detection of lower abundance peptides 

from on-chip digested cells. CASI would be especially useful if combined with 

narrowband detection. The availability of sufficient MALDI sample is critical for this 

approach as it requires a large number of laser shots for ion accumulation. Calculations 

indicate that currently less than 1 % of the available matrix spot is consumed (assuming a 

130 µm laser spot diameter and random sampling of 20 positions on a matrix spot with 2 

mm diameter). Thus there is significant potential for this method to increase sensitivity. 

Imaging 

On-chip processing provides unique advantages, namely the ability to extract and 

process proteins prior to analysis. As the sensitivity of the method is further increased, 

the complete analysis of all cells in a tissue with single cell specificity could be 

envisioned. If the isolated cells are correlated with the corresponding location in the 

original tissue, molecular images could be generated that combine the advantages of 

MALDI IMS and on-chip processing. Automated parallel dissection of cells would be 

desirable for such an approach to provide high-throughput. Several possibilities for 

improved laser dissection could be envisioned. First, a micro lens array, proposed for 

high-throughput laser fabrication, could be adapted for parallel LCM.174 Second, dynamic 

laser beam patterning using a next generation digital micromirror device175 could be 

developed. Dissected cells could be captured on a stretchable membrane that is placed in 



 

138 
 

direct contact with the tissue, preventing the spread of the dissected material during laser 

catapulting (chapter IV). Once the tissue is dissected, membrane stretching could be 

performed176 which would create an array of isolated cells on the membrane accessible 

for on-chip chemistry and MALDI MS.  

Quantitative Proteomics 

One focus of current proteomic developments is the reliable and reproducible 

quantitation of proteins.14 Development and validation of methods for protein 

quantitation remains difficult and time consuming which can be limiting for antibody 

based quantitation e.g. with ELISA. A limitation of ELISA is the requirement of specific 

antibody probes for protein capturing and quantitation of proteins with post-translational 

modifications. Therefore, there is an increasing trend to use mass spectrometry, 

specifically LC-MS with MRM, for protein quantitation. These assays can rapidly map 

multiple relevant peptides for each protein in a complex mixture while providing 

relatively high sample throughput (3-10 min/sample).177  

On-chip quantitation of proteins using MALDI could provide a useful strategy for 

rapid targeted quantitation of a large number of samples. MALDI MS is powerful for 

high-throughput analysis because sample processing times are in the range of seconds or 

faster depending on the instrument used. Indeed, MALDI MS has been successfully used 

for protein quantitation.178 Sensitivity of the method could be modified by varying the 

number of cells enriched. Stable isotope labeled peptides or proteins179, 180 are available 

and can be added to the chip prior to processing and analysis. By using a chemically 

identical protein or peptide as a standard for quantitation, issues with ionization and 

sample loss during processing can be addressed. Quantitation is then carried out by 



 

139 
 

monitoring peptide specific ions or fragment ions for the labeled and unlabeled peptide. 

The intensity ratio between these ions can then be used for absolute quantitation. 

Alternatively, chemical labeling of peptides on the chip, which could be combined with 

on-chip enrichment, could be performed. Potential chemistries are isotope-coded affinity 

tags181 (ICAT) which reduce the complexity of the sample since labeled peptides could 

be enriched from the chip. With this approach and using a pooled sample internal 

standard, relative quantitation of peptides would be feasible. Such quantification 

strategies are successfully used in proteomics (e.g. two-dimensional difference gel 

electrophoresis, 2-D DIGE).182 

 

Conclusions 

On-chip based proteomics of selected cell populations enables highly sensitive 

protein analysis with single cell population specificity. The versatility and sensitivity of 

the new workflows has been demonstrated providing new possibilities for tissue 

proteomics. Undoubtedly, cell type specific profiling has great potential and will enable 

novel insights into the complex interplay of cells in tissues, yet it provides exciting 

opportunities for biological discovery and diagnostics. This research will continue to 

advance, driven by the need to map proteins in cells at ever higher sensitivity and 

resolution and it will be critical for the development of the next generation tools for 

individualized medicine.  
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Appendix A 

Protein Method for ImagePrep 
     
     
Method Name SA10gl-9t 

Matrix 
10 mg/ml sinapinic acid in 1:1 mix of 50 % ACN 0.2 
% TFA 

Application Protein imaging, washed tissue, 12 µm  
Global spray power adjustment 0 
Spray error handling Start detecting after  2.5 s 

Minimal slope 0.5  V/s 
Spray power boost 10 % 

Phase # 1: 0.3 V Initialization 
Thickness 
Fixed number of cycles No 1     
Sensor Control Yes       
Final Voltage Difference 0.3 ± 0 V 
Within  2 AND 90 Cycles 
Nebulize 
Spray Power 15     % 
Modulation 12     % 
Spray Time: Fixed Time -     s 
Spray Time: Sensor control 0.03     V 
Duty sequence 20     s 
Wait before Start 5     s 
Sequence, Curr. Spray Time 20     s 
Break Time 0.1     s 
Incubation 
Incubation Time 3 ± 0 s 
Dry 
Fixed Dry Time -     s 
Sensor control Yes       
Residual Wetness Grade 0 ±   % 
Complete drying ever….. Cycle 5     Cycle 
Safe Dry 4     s 
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Protein Method for ImagePrep (cont.) 
Phase # 

2: 60 s 
drying 

Thickness 
Fixed number of cycles Yes 1    
Sensor Control No      
Final Voltage Difference   ±  V 

Within    

A
N
D  

Cyc
les 

Nebulize 
Spray Power 1    % 
Modulation 0    % 
Spray Time: Fixed Time 0.01    s 
Spray Time: Sensor control No    V 
Duty sequence 20    s 
Wait before Start 3    s 
Sequence, Curr. Spray Time 20    s 
Break Time 0.1    s 
Incubation 
Incubation Time 0 ± 0 s 
Dry 
Fixed Dry Time 60    s 
Sensor control No      
Residual Wetness Grade   ±  % 

Complete drying ever….. Cycle      
Cyc
le 

Safe Dry      s 
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Protein Method for ImagePrep (cont.) 
Phase # 

3:0.2 V 
Coating 

Thickness 
Fixed number of cycles No 1     
Sensor Control Yes       
Final Voltage Difference 0.2 ± 0 V 

Within  6 

A
N
D 

9
5 

Cy
cles

Nebulize 
Spray Power 14     % 
Modulation 20     % 
Spray Time: Fixed Time No     s 
Spray Time: Sensor control 0.05     V 
Duty sequence 20     s 
Wait before Start 0     s 
Sequence, Curr. Spray Time 20     s 
Break Time 0.1     s 

 
Incubation 
Incubation Time 15 ± 30 s 
Dry 
Fixed Dry Time No     s 
Sensor control Yes       
Residual Wetness Grade 20 ± 0 % 
Complete drying ever….. Cycle 3     Cycle 
Safe Dry 20     s 

Phase # 4: 0.2 V coating
Thickness 
Fixed number of cycles No 1     
Sensor Control Yes       
Final Voltage Difference 0.2 ± 0 V 
Within  6 AND 138 Cycles 
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Protein Method for ImagePrep 
Nebulize 
Spray Power 14     % 
Modulation 20     % 
Spray Time: Fixed Time No     s 
Spray Time: Sensor control 0.15     V 
Duty sequence 20     s 
Wait before Start 1     s 
Sequence, Curr. Spray Time 20     s 
Break Time 0.1     s 
 
Incubation 

Incubation Time 15 ± 
1
5 s 

Dry 
Fixed Dry Time No     s 
Sensor control Yes       

Residual Wetness Grade 30 ± 
1
0 % 

Complete drying ever….. Cycle 5     
Cy
cle 

Safe Dry 30     s 

Phase # 
5: 0.2V 
coating 

Thickness 
Fixed number of cycles No 1     
Sensor Control Yes       

Final Voltage Difference 0.2 ± 

0
.
2 V 

Within  8 

A
N
D 

9
5 

Cy
cles

Nebulize 
Spray Power 30     % 
Modulation 25     % 
Spray Time: Fixed Time No     s 
Spray Time: Sensor control 0.3     V 
Duty sequence 20     s 
Wait before Start 1     s 
Sequence, Curr. Spray Time 20     s 
Break Time 0.1     s 
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Protein Method for ImagePrep 
Incubation 

Incubation Time 25 ± 
3
0 s 

Dry 
Fixed Dry Time No     s 
Sensor control Yes       

Residual Wetness Grade 50 ± 
1
0 % 

Complete drying ever….. Cycle 6     
Cy
cle 

Safe Dry 45     s 

Phase # 
6: 0.2V 
coating 

Thickness 
Fixed number of cycles No 1     
Sensor Control Yes       

Final Voltage Difference 0.2 ± 

0
.
4 V 

Within  5 

A
N
D 

3
0 

Cy
cles

Nebulize 
Spray Power 34     % 
Modulation 27     % 
Spray Time: Fixed Time No     s 
Spray Time: Sensor control 0.6     V 
Duty sequence 20     s 
Wait before Start 1     s 
Sequence, Curr. Spray Time 20     s 
Break Time 0.1     s 
Incubation 

Incubation Time 35 ± 
3
0 s 
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Protein Method for ImagePrep 
Dry 
Fixed Dry Time No     s 
Sensor control Yes       

Residual Wetness Grade 70 ± 
1
0 % 

Complete drying ever….. Cycle 6     
Cy
cle 

Safe Dry 40     s 

Phase # 
7: 0.4V 
coating 

Thickness 
Fixed number of cycles No 1     
Sensor Control Yes       

Final Voltage Difference 0.4 ± 

0
.
4 V 

Within  5 

A
N
D 

1
5 

Cy
cles

Nebulize 
Spray Power 25     % 
Modulation 21     % 
Spray Time: Fixed Time No     s 
Spray Time: Sensor control 0.85     V 
Duty sequence 20     s 
Wait before Start 1     s 
Sequence, Curr. Spray Time 20     s 
Break Time 0.1     s 
Incubation 

Incubation Time 40 ± 
3
0 s 

Dry 
Fixed Dry Time No     s 
Sensor control Yes       

Residual Wetness Grade 90 ± 
1
0 % 

Complete drying every    Cycle 8     
Cy
cle 

Safe Dry 45     s 
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Appendix B 

Matching fragment ions from the fragmentation of [M+12H]12+ = 1029.4 for the protein 
MIF (Swiss-Prot P14174). 

Ion 
 

Observed Mass 
(Da) 

Theoretical Mass 
(Da) 

Mass Error 
(Da) 

Mass Error 
(PPM) 

B14 1526.81 1526.815 -0.005 -3.4 

B17 1795.91 1795.916 -0.006 -3.5 

B18 1942.98 1942.985 -0.005 -2.4 

B19 2056.06 2056.069 -0.009 -4.3 

B21 2272.14 2272.143 -0.003 -1.5 

B41 4416.3 4416.318 -0.018 -4 

B42 4515.37 4515.386 -0.016 -3.5 

B46 4968.6 4968.608 -0.008 -1.7 

Y8 896.389 896.392 -0.003 -3.3 

Y61 6732.28 6732.327 -0.047 -7 

Y64 6964.4 6964.42 -0.02 -2.9 

Y67 7238.48 7238.539 -0.059 -8.2 
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Appendix C 

Parameters for database searching with Myrimatch and IdPicker software. 

Identification 
Parameter Value 
Software name MyriMatch 
Software version 1.2.9 
AdjustPrecursorMass 1 
CalculateRelativeScores 0 
ClassSizeMultiplier 2 
CleavageRules [|[M|K|R . . ] 
ComplementMzTolerance 0.5 
DeisotopingMode 0 
DuplicateSpectra 1 
DynamicMods M * 15.994915 (Q! % -17.026549 
EndProteinIndex -1 
EndSpectraScanNum -1 
FragmentMzTolerance 0.5 
IsotopeMzTolerance 0.25 
MakeScoreHistograms 0 
MakeSpectrumGraphs 0 
MaxDynamicMods 2 
MaxFragmentChargeState 1 
MaxPrecursorAdjustment 1.008665 
MaxResults 5 
MaxScoreHistogramValues 100 
MaxSequenceMass 10000 
MinCandidateLength 5 
MinPrecursorAdjustment -1.008665 
MinResultScore 0 
MinSequenceMass 0 
NumBatches 50 
NumChargeStates 3 
NumIntensityClasses 3 
NumMaxMissedCleavages -1 
NumMinTerminiCleavages 1 
NumMzFidelityClasses 3 
NumScoreHistogramBins 100 
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Parameters for database searching with Myrimatch and IdPicker software (cont.) 

Parameter Value 
NumSearchBestAdjustments 3 
OutputSuffix   
PeakCounts: 1stQuartile: 
Filtered 

116 

PeakCounts: 1stQuartile: 
Original 

137 

PeakCounts: 2ndQuartile: 
Filtered 

137 

PeakCounts: 2ndQuartile: 
Original 

159 

PeakCounts: 3rdQuartile: 
Filtered 

154 

PeakCounts: 3rdQuartile: 
Original 

176 

PeakCounts: Mean: Filtered 132 
PeakCounts: Mean: Original 153 
PeakCounts: Min/Max: 
Filtered 

17 / 183 

PeakCounts: Min/Max: 
Original 

32 / 200 

PrecursorAdjustmentStep 1.008665 
PrecursorMzTolerance 0.5 
PreferIntenseComplements 1 
ProteinDatabase /hactar/fasta/20080430-IPIMouse342-Cntms-reverse.fasta 
ProteinSampleSize 100 
ScoreHistogramHeight 600 
ScoreHistogramWidth 800 
SearchStats: Nodes 32 
SearchStats: Overall 188776 proteins; 787196833 candidates; 317543051 

queries; 559060514 comparisons 
SearchTime: Duration 141.7816 seconds 
StartProteinIndex 0 
StartSpectraScanNum 0 
StaticMods C 57.021464 
StatusUpdateFrequency 5 
ThreadCountMultiplier 10 
TicCutoffPercentage 0.95 
UseAvgMassOfSequences 0 
UseChargeStateFromMS 1 
UseMultipleProcessors 1 
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Parameters for database searching with Myrimatch and IdPicker software (cont.) 

UseSmartPlusThreeModel 1 
WorkingDirectory /hactar/data/unorganized/20080717-Aerni-Mouse-Liver 
Validation 
  
Parameter Value 
Software name idpQonvert 
Software version 2.1.4 
DecoyPrefix rev_ 
HasDecoyDatabase 1 
MaxFDR 0.05 
MaxResultRank 1 
NormalizeSearchScores 0 
NumChargeStates 3 
OptimizeScorePermutations 200 
OptimizeScoreWeights 0 
OutputSuffix   
PreserveInputHierarchy 0 
ProteinDatabase c:Êliburdatabase 80430-IPIMouse342-Cntms-

reverse.fasta 
SearchScoreWeights mvh 1 xcorr 1 expect -1 ionscore 1 
StatusUpdateFrequency 5 
WorkingDirectory   
WriteQonversionDetails 0 
Presentation/filtration 
  
Parameter Value 
Software name idpReport 
Software version 2.1.1 (4/8/2008) 
MinAdditionalPeptides 1 
GenerateBipartiteGraphs FALSE 
ModsAreDistinctByDefault TRUE 
DistinctModsOverride   
IndistinctModsOverride   
RawSourceHostURL http://localhost/ 
RawSourceExtension .* 
RawSourcePath   
MaxFDR 0.05 
MaxResultRank 1 
MinPeptideLength 5 
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Parameters for database searching with Myrimatch and IdPicker software (cont.) 

MinDistinctPeptides 1 
MaxAmbiguousIds 2 
AllowSharedSourceNames TRUE 
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Appendix D 

IdPicker report showing the results from a LC MALDI run from mouse liver. 

Peptide Decoy Mass of 
unmodified 

peptide 

Protein 

AFAISGPFNVQFLVK No 1636.887 IPI00111908.8 
EIEYEVVR No 1035.524 IPI00111908.8 
FLEEATR No 864.4341 IPI00111908.8 
FLGVAEQLHNEGFK No 1587.794 IPI00111908.8 
FVHDNYVIR No 1161.593 IPI00111908.8 
GILIGIQQSFR No 1230.708 IPI00111908.8 
GILIGIQQSFRPR No 1483.862 IPI00111908.8 
GQNQPVLNITNR No 1352.716 IPI00111908.8 
GYSFGHPSSVAGEVVFNTGLGG
YPEALTDPAYK 

No 3386.598 IPI00111908.8 

IAPSFAVESM(15.9949)EDALK No 1606.78 IPI00111908.8 
QADAVYFLPITPQFVTEVIK No 2278.214 IPI00111908.8 
Q(-
17.0265)ADAVYFLPITPQFVTEVI
K 

No 2278.214 IPI00111908.8 

RLPTLEQPIIPSDYVAIK No 2052.151 IPI00111908.8 
SIFSAVLDELK No 1220.654 IPI00111908.8 
SLFHYR No 821.4184 IPI00111908.8 
VPAIYGVDTR No 1089.582 IPI00111908.8 
DFTPAAQAAFQK No 1293.624 IPI00762198.2/I

PI00553333.2  
LHVDPENFR No 1125.557 IPI00762198.2/I

PI00553333.2  
LLGNM(15.9949)IVIVLGHHLGK No 1713.002 IPI00762198.2/I

PI00553333.2  
LLVVYPWTQR No 1273.718 IPI00762198.2/I

PI00553333.2  
VITAFNDGLNHLDSLK No 1755.905 IPI00762198.2/I

PI00553333.2  
YFDSFGDLSSASAIM(15.9949)GN
AK 

No 1979.882 IPI00762198.2/I
PI00553333.2  

VNADEVGGEALGR No 1285.626 IPI00762198.2 
VNSDEVGGEALGR No 1301.621 IPI00553333.2  
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IdPicker report showing the results from a LC MALDI run from mouse liver (cont.) 

AGFAGDDAPR No 975.4409 IPI00110850.1 
AVFPSIVGR No 944.5444 IPI00110850.1 
AVFPSIVGRPR No 1197.698 IPI00110850.1 
GYSFTTTAER No 1131.52 IPI00110850.1 
QEYDESGPSIVHR No 1515.695 IPI00110850.1 
Q(-17.0265)EYDESGPSIVHR No 1515.695 IPI00110850.1 
SYELPDGQVITIGNER No 1789.885 IPI00110850.1 
VAPEEHPVLLTEAPLNPK No 1953.046 IPI00110850.1 
FNSANEDNVTQVR No 1492.69 IPI00231742.5 
FSTVAGESGSADTVRDPR No 1850.876 IPI00231742.5 
GAGAFGYFEVTHDITR No 1739.827 IPI00231742.5 
GPLLVQDVVFTDEM(15.9949)AH
FDR 

No 2188.062 IPI00231742.5 

LAQEDPDYGLR No 1275.609 IPI00231742.5 
LFAYPDTHR No 1118.551 IPI00231742.5 
NFTDVHPDYGAR No 1390.626 IPI00231742.5 
GIYETPAGTILYHAHLDIEAFTM(
15.9949)DR 

No 2833.374 IPI00134746.5 

GQVYILGR No 904.5131 IPI00134746.5 
MPEFYNR No 955.4222 IPI00134746.5 
NQAPPGLYTK No 1087.555 IPI00134746.5 
Q(-17.0265)HGIPIPVTPK No 1185.676 IPI00134746.5 
RQVEIAQR No 998.5622 IPI00134746.5 
AHGGYSVFAGVGER No 1405.674 IPI00468481.2 
AIAELGIYPAVDPLDSTSR No 1987.026 IPI00468481.2 
DQEGQDVLLFIDNIFR No 1920.958 IPI00468481.2 
IM(15.9949)DPNIVGNEHYDVAR No 1841.873 IPI00468481.2 
LVLEVAQHLGESTVR No 1649.91 IPI00468481.2 
VALTGLTVAEYFR No 1438.782 IPI00468481.2 
DGFNPAHVEAGLYGSR No 1688.791 IPI00623845.3 
LAGQIFLGGSIVR No 1329.777 IPI00623845.3 
LNPNFLVDFGKEPLGPALAHELR No 2546.354 IPI00623845.3 
Q(-17.0265)YDISNPQKPR No 1344.668 IPI00623845.3 
SPQYSQVIHR No 1213.62 IPI00623845.3 
APQVSTPTLVEAAR No 1438.778 IPI00131695.3 
DVFLGTFLYEYSR No 1608.782 IPI00131695.3 
GLVLIAFSQYLQK No 1478.839 IPI00131695.3 
LGEYGFQNAILVR No 1478.788 IPI00131695.3 
RHPDYSVSLLLR No 1454.799 IPI00131695.3 
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IdPicker report showing the results from a LC MALDI run from mouse liver (cont.) 

NQTAEKEEFEHQQK No 1744.78 IPI00208205.1 
QTQTFTTYSDNQPGVLIQVYEGE
R 

No 2773.319 IPI00208205.1 

SQIHDIVLVGGSTR No 1480.8 IPI00208205.1 
STAGDTHLGGEDFDNR No 1690.718 IPI00208205.1 
TVTNAVVTVPAYFNDSQR No 1980.99 IPI00208205.1 
DLGEAALNEYLR No 1362.678 IPI00153317.3 
DTNHGPQNHEAHLR No 1624.745 IPI00153317.3 
HGSIIYHPSLLPR No 1488.82 IPI00153317.3 
PGFFFQPTVFTDVEDHM(15.9949)
YIAK 

No 2488.166 IPI00153317.3 

RPQPEEGATYEGIQK No 1701.821 IPI00153317.3 
AGPWTPEAAVEHPEAVR No 1815.89 IPI00130950.1 
EATTEQQLR No 1074.531 IPI00130950.1 
EAYNLGVR No 920.4716 IPI00130950.1 
QGFIDLPEFPFGLEPR No 1860.941 IPI00130950.1 
DIVYIGLR No 947.544 IPI00117914.3 
LKETEYDVR No 1151.571 IPI00117914.3 
VM(15.9949)EETFSYLLGR No 1443.707 IPI00117914.3 
VSVVLGGDHSLAVGSISGHAR No 2017.07 IPI00117914.3 
IGGHGAEYGAEALER No 1528.727 IPI00110658.1 
LRVDPVNFK No 1086.608 IPI00110658.1 
M(15.9949)FASFPTTK No 1028.489 IPI00110658.1 
TYFPHFDVSHGSAQVK No 1818.858 IPI00110658.1 
FPGQLNADLR No 1129.588 IPI00109061.1 
GHYTEGAELVDSVLDVVR No 1957.974 IPI00109061.1 
IREEYPDR No 1076.525 IPI00109061.1 
EQAGGDATENFEDVGHSTDAR No 2204.92 IPI00230113.5 
FLEEHPGGEEVLR No 1510.742 IPI00230113.5 
TYIIGELHPDDR No 1427.704 IPI00230113.5 
DVLFPGYTHLQR No 1444.746 IPI00314788.5 
INVLPLGSGAIAGNPLGVDR No 1932.079 IPI00314788.5 
LHPNDEDIHTANER No 1659.76 IPI00314788.5 
TEQGPQVDETQFK No 1505.689 IPI00197770.1 
TFVQEDVYDEFVER No 1774.805 IPI00197770.1 
VVGNPFDSR No 989.493 IPI00197770.1 
HNFTPLAR No 954.5036 IPI00201413.1 
ITAHLVHELR No 1187.677 IPI00201413.1 
YALQSQQR No 992.504 IPI00201413.1 
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IdPicker reprt showing the results from a LC MALDI run from mouse liver (cont.) 

HGGTIPVVPTAEFQDR No 1722.869 IPI00114209.1 
IIAEGANGPTTPEADKIFLER No 2241.153 IPI00114209.1 
NLNHVSYGR No 1058.526 IPI00114209.1 
DNIQGITKPAIR No 1324.735 IPI00231340.8 
VFLENVIR No 988.5706 IPI00231340.8 
EAYPGDVFYLHSR No 1552.731 IPI00130280.1 
TGAIVDVPVGEELLGR No 1623.883 IPI00130280.1 
FAVELEGEQPISVPPSTNHTVYR No 2569.281 IPI00405699.2 
STGSVVGQQPFGGAR No 1446.722 IPI00405699.2 
EKIEDNGNFR No 1220.568 IPI00466399.1 
LFLEQIHVLENSLVLK No 1894.082 IPI00466399.1 
EGHPVTSEPSRPEPAVFK No 1962.969 IPI00223216.5 
YLGTQPEPDIVGLDSGHIR No 2066.043 IPI00223216.5 
DSQGNLFR No 935.4461 IPI00127206.6 
ELSEIAQR No 944.4929 IPI00127206.6 
AEELGLPILGVLR No 1378.818 IPI00121833.3 
IAQFLSGIPETVPLSTVNR No 2041.121 IPI00121833.3 
AAYQVAALPR No 1058.587 IPI00130640.5 
APAAIGPYSQAVQVDR No 1641.847 IPI00130640.5 
DILQDVLDADLSNEAFPFSTHQL
VR 

No 2842.413 IPI00136213.5 

FHHSLTDHTR No 1249.595 IPI00136213.5 
AHPLFTFLR No 1100.613 IPI00192301.2 
YVRPGGGFEPNFTLFEK No 1956.962 IPI00192301.2 
FEDGDLTLYQSNAILR No 1853.916 IPI00231229.9 
PPYTIVYFPVR No 1350.733 IPI00231229.9 
HHLDGETEEER No 1350.58 IPI00230212.5 
KHHLDGETEEER No 1478.664 IPI00230212.5 
GKPDVVVKEDEEYKR No 1789.888 IPI00154054.1 
Q(-17.0265)EQDTYALSSYTR No 1560.705 IPI00154054.1 
HIDGAYVYHNEHEVGEAIR No 2208.035 IPI00122657.1 
SLGVSNFNR No 992.504 IPI00122657.1 
LISWYDNEYGYSNR No 1778.79 IPI00554039.1 
LVNNGKPITIFQER No 1627.894 IPI00554039.1 
KFLQPGSQR No 1059.572 IPI00116055.6 
SHGQDYLVGNR No 1244.59 IPI00116055.6 
FYGPEGPYGVFAGR No 1515.714 IPI00319973.3 
KFYGPEGPYGVFAGR No 1643.799 IPI00319973.3 
FHHTIGGSR No 1010.505 IPI00231445.5 
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IdPicker report showing the results from a LC MALDI run from mouse liver (cont.) 

GATYGKPVHHGVNQLK No 1704.884 IPI00231445.5 
GAYPVFFNFTR No 1317.651 IPI00308328.3 
ILEEGSFLLEVLR No 1516.85 IPI00308328.3 
GGPLSGPYR No 902.461 IPI00221890.6 
VVFDDTYDR No 1128.509 IPI00221890.6 
GFFVQPTVFSNVTDEM(15.9949)R No 1972.935 IPI00626662.3 
IHGQTIPSDGDIFTYTR No 1919.938 IPI00626662.3 
FAFQAEVNR No 1080.535 IPI00129526.1 
KPEEVDDEVFYSPR No 1708.783 IPI00116603.1 
NAVTQEFGPVPDTAR No 1600.784 IPI00116074.1 
QASGGPVDIGPEYQQDLDR No 2043.95 IPI00125460.1 
HAYGDQYR No 1008.441 IPI00135231.2 
GFVVQGSTGEFPFLTSLER No 2070.042 IPI00560967.1 
HEYQANGPEDLNR No 1541.686 IPI00127942.4 
HGRPGIGATHSSR No 1331.681 IPI00231692.5 
AAATFNPELITHILDGSPENTR No 2366.186 IPI00409360.3 
GENLSLVVHGPGDIR No 1561.821 IPI00753038.1 
FVEGLPINDFSR No 1392.704 IPI00198717.8 
FTPGTFTNQIQAAFR No 1697.852 IPI00123604.4 
GAGVKGPPASTSR No 1183.62 IPI00387452.1 
GAM(15.9949)KGLGTDEDTLIEIL
TTR 

No 2133.088 IPI00230395.5 

ADHGEPIGR No 950.457 IPI00229080.7 
IQTQPGYANTLR No 1360.71 IPI00124771.1 
INEAFDLLR No 1089.582 IPI00221400.5 
IYHTIAYLTPLPQPNR No 1896.026 IPI00230889.5 
AGLQFPVGR No 943.524 IPI00153400.2 
KANGTVVDSGFDPQSRQLNLPTP
IAPK 

Yes 2849.481 IPI:IPI00664248.
3 

IISQEILNLIELR No 1552.919 IPI00323496.5 
HQGSLYSLFPDHSVK No 1713.836 IPI00133456.1 
HGVYNPNK No 927.4453 IPI00197696.2 
HYNGEAYEDDEHHPR No 1867.75 IPI00132208.1 
IGHHSTSDDSSAYR No 1531.665 IPI00331555.2 
IFFYDAENPPGSEVLR No 1852.899 IPI00317356.10 
FALDGFFSTIR No 1272.65 IPI00115599.6 
ALLELQLEPEELYQTFQR No 2219.148 IPI00203214.6 
ALHGEQYLELYKPLPR No 1926.025 IPI00331628.5 
APLVLEQGLR No 1094.645 IPI00210444.5 

 

  



 

157 
 

IdPicker report showing the results from a LC MALDI run from mouse liver (cont.) 

AQFGQPEILLGTIPGAGGTQR No 2110.117 IPI00207217.1 
AQELAQRLKQEQR No 1596.859 IPI00468895.2 
ALETASQDFSLDLR No 1564.773 IPI00108982.1 
AGVPPGVINIVFGTGPR No 1649.925 IPI00267407.1 
AFEEEQALR No 1091.525 IPI00211507.3 
AHHDLGYFYGSSYVAAPDGSR No 2269.018 IPI00121639.1 
ALESPERPFLAILGGAK No 1767.978 IPI00231426.6 
AISFVGSNQAGEYIFER No 1886.916 IPI00205018.2 
ELNDFISYLQR No 1396.699 IPI00230108.6 
EADNPGILHPFGSVPFGYGVR No 2228.101 IPI00119685.1 
EVSVFGAVSELFTR No 1539.793 IPI00127625.1 
FAGPYDKGEYSPSVQK No 1771.82 IPI00223367.5 
AEAVQSFLAFIQHLR No 1728.931 IPI00212316.1 
DVNQQEFVR No 1133.546 IPI00113241.7 
AVIGDHGDEIFSVFGSPFLK No 2134.062 IPI00387289.3 
ASGGGVPTDEEQATGLER No 1772.818 IPI00116154.2 
DFIDYFLIQR No 1328.676 IPI00114781.1 
DLGTQLAPIIQEFFHSEQYR No 2391.186 IPI00339188.2 
DFVENVTSGNAVDFFPVLR No 2125.048 IPI00128287.1 
KSSLSLDSLKR Yes 1232.687 IPI00368909.3 
TSYAQHQQVR No 1216.595 IPI00231693.5 
TLIEFLLR No 1003.607 IPI00331436.4 
TTPDVIFVFGFR No 1397.734 IPI00214654.1 
VAAFDLDGVLALPSIAGAFR No 2002.089 IPI00321617.1 
TVLGVPEVLLGILPGAGGTQR No 2046.184 IPI00212622.2 
TATPQQAQEVHEK No 1465.705 IPI00231767.5 
SLRPGVAIADFVIFPPR No 1854.051 IPI00114330.3 
SGYQQAASEHGLVVIAPDTSPR No 2282.129 IPI00109142.4 
SSGSPYGGGYGSGGGSGGYGSR No 1909.783 IPI00269661.1 
SSQQEHKR Yes 998.4786 IPI00206433.3 
SSPKKPR No 798.4494 IPI00226378.1 
VAGHPDVVINNAAGNFISPSER No 2263.134 IPI00213659.3 
DFDPAINEYIQR/DFDPAINEYLQ
R 

No 1479.699 IPI00228630.5 

YYVTIIDAPGHR No 1403.72 IPI00195372.1 
IQDKEGIPPDQQR/IQDKEGLPPD
QQR 

No 1522.763 IPI00138892.2 

YTDQSGEEEEDYESEEQIQHR/YT
DQSGEEEEDYESEEQLQHR 

No 2600.042 IPI00169862.1 
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IdPicker report showing the results from a LC MALDI run from mouse liver (cont.) 

SLGVAAEGIPDQYADGEAAR/SL
GVAAEGLPDQYADGEAAR 

No 1988.944 IPI00231648.5 
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