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CHAPTER 1

INTRODUCTION

This dissertation comprises four chapters on networks and games. The first chap-
ter, "Trimmed Strategies: Achieving Sequentially Rational Equilibria With Only
Partially Specified Strategies," examines notions of sequential rationality underlying
two popular equilibrium refinements: subgame perfect equilibrium and weak perfect
Bayesian equilibrium. I start my analysis by showing that each strategy profile, to-
gether with a notion of sequential rationality, induces a partition of a game into two
parts: a "relevant" part and an "irrelevant part." It is shown that whether play on
the relevant part is sequentially rational (according to whichever notion of sequential
rationality is considered) is independent from the play on the irrelevant part. The
trimmed version of an equilibrium concept is then defined as a profile that satisfies
the equilibrium concept’s conditions on the relevant part that the profile induces. The
independence of sequentially rational behavior in the relevant part from play in the
irrelevant part ensures that a trimmed equilibrium is never sustained by sequentially
irrational play.

There are games for which a subgame perfect equilibrium does not exist because
Nash equilibrium does not exist in some of their subgames. The concept of trimmed
equilibrium is of interest for the analysis of such games. It demonstrates that even
if a certain equilibrium does not exist in a game, one might nonetheless be able to
identify an outcome that is consistent with the notion of rationality underlying that
equilibrium concept. Another motivation for this chapter is to establish robustness
properties of equilibria. Such robustness properties have recently received much in-
terest in the literature (see for example Kalai 2004 and the references therein). The
irrelevant part of an equilibrium profile is by definition such that the equilibrium is

robust to any changes made in that part.



The second chapter, "A Characterization of Weakly Pairwise Nash Stable Net-

works,"

studies various aspects of pairwise Nash stability, a widely used concept in
the network literature. First, I characterize weakly pairwise Nash stable networks as
the Nash equilibrium networks of a well-defined game in strategic form. Second, I
define a two-stage game of network formation that models how cooperation can arise
as an outcome of noncooperative play.

The starting point for the characterization of weakly pairwise Nash stable networks
is Myerson’s linking game of network formation (Myerson 1991), which has received
much attention in the literature (see Jackson 2001 for a survey). In Myerson’s game,
each player announces a list of players, and links are formed if and only if two players
announce each other. A network is weakly pairwise Nash stable if it is supported by
a Nash equilibrium of Myerson’s linking game and there are no two players that are
not linked for whom it would be mutual beneficial to form a link. I extend Myerson’s
linking game by adding pairs of players to it and I call the game the linking game
with player pairs. The rules of the game and the payoffs for player pairs are designed
so that the set of its Nash equilibrium networks is equivalent to the set of weakly
pairwise Nash stable networks.

A benefit of the linking game with player pairs is that it allows to define mixed
strategies on the coordinated moves of pairs of players. The analysis of the mixed
extension of the linking game with player pairs is of interest because weakly pairwise
Nash stable networks need not exist.! Examining these mixed strategy equilibria,
I find that networks that receive positive probability in equilibrium (a) might not
be part of any absorbing state of a process of dynamic network formation, and (b)
might not be supported by a Nash equilibrium of the linking game. Thus, the set of
networks supported by a mixed strategy equilibrium of the linking game with player

pairs is larger than the set of Nash equilibrium networks.

!This approach might be applicable to other games with cooperative elements. A solution often
does not exist for such games, but mixed strategies cannot be defined in any obvious way.



To provide intuition for the presence of pairs of players, the next part of the chapter
defines and analyzes a game in which network formation occurs in two stages. In the
first stage, noncooperatively acting players can form links with others that allow them
to coordinate (at least to some degree) their moves in the second stage. In the second
stage, a constrained version of the linking game with player pairs is played. In the
constrained version, only pairs who formed links in the first stage can coordinate on
their links. I argue that the two-stage game displays natural features of real world
network formation. The game is used to show that, even if two players benefit from
forming a link, a network might be stable, simply because the two players have not
formed a "first stage link," which can be interpreted as not knowing much about each
other. In this vein, it is shown that the set of subgame perfect equilibrium networks
of the two-stage linking game is larger than the set of weakly pairwise Nash stable
networks. However, refining the set of equilibria by requiring undominated strategies
ensures that the corresponding outcomes of the two-stage game are weakly pairwise
Nash stable networks.

The third and fourth chapters turn to more applied questions of strategic equilib-
rium in networks and games.

" a joint work with

The third chapter, "Competition Over Standards and Taxes,'
Myrna Wooders and Ben Zissimos, develops a model of interjurisdictional competi-
tion, in which governments choose standards and taxes to attract mobile firms. In
a setting in which firms have varying requirements for standards, we show that a
country that sets its standards and tax levels first provides higher standard levels
and sets higher taxes.

In our model, countries use revenue from taxation to enforce standards, such as
property rights, environmental standards, and child labor regulations. The standard

level in a firm’s chosen jurisdiction inflicts a nonnegative cost on the firm. That cost

could be directly or indirectly incurred by the firm. For example, the firm might have



to install a filter to comply with an environmental standard, but there could also be
an indirect cost incurred by the firm through negative externalities from other firms.
The cost is heterogeneous across firms and non-monotonic in the level of standard:
Each firm has a unique level of standard at which its cost is minimized. This contrasts
with public good models where, all else equal, firms unanimously prefer higher levels
of public goods. Jurisdictions move sequentially rather than simultaneously. We
have in mind the case of a well developed country and a less developed country or an
emerging economy. In equilibrium the first-moving government sets a higher standard
level and charges a higher tax than the second-moving government. The majority of
firms locates in the jurisdiction of the second-moving government.

On the technical side, our model poses difficult problems for existence of subgame
perfect equilibrium in pure strategies since some subgames of the game may not have
an equilibrium in pure strategies. This difficulty is resolved by showing that these
subgames are never reached because they are in some sense dominated by other sub-
games. The argument uses concepts that are in spirit similar to the ones introduced
in Chapter 1.

The fourth chapter, "Lobbying in Networks," attempts to shed light on diffusion
of behavior and on optimal strategies to promote or prevent diffusion in a popula-
tion. In particular, the chapter examines how an interested agent would go about
influencing a group of individuals, exploiting their group structure. Examples can be
found in politics (lobbying, election campaigns), marketing (word-to-mouth market-
ing, viral marketing), and in numerous other situations. The chapter focuses on group
decisions.? Voting decisions are at least partially influenced by interactions with oth-
ers, and we frequently observe that decided individuals (individuals with clear-cut
interests) try to influence the vote of others. So far, this observation has received

little attention in the literature.® Here, I model a lobbyist who tries to influence the

2But the model is general enough to fit other applications.
3Even though group decisions are pervasive throughout most societies (group decisions are made



decision of a group.

In the model, a group votes on a proposal and the lobbyist tries to persuade the
group to vote for the proposal. Interactions between individuals are represented by a
network (but in contrast to Chapter 2, here the network is taken as given). The main
idea, assuming individuals are influenced by their interactions, is that the lobbyist
can use information about group structure to engineer "persuading cascades." The
general goal of the chapter is to gain insight into diffusion. The more specific goal
is to identify key sets of influential group members and to show how the results of
lobbying depend on the network structure.

Finding the key sets of influential players in arbitrary networks is a difficult prob-
lem (see Ballester et al. 2009 for a discussion). So far the literature has approached
the problem by obtaining algorithms that approximate the solution to the problem
or by addressing related questions instead. Here, I take a different approach. By
restricting the class of networks in the first part of the chapter, I am able to provide
an exact solution to the problem: In networks with a core-periphery structure, the
lobbyist’s optimal strategy is to target those group members that have high degrees
and oppose the proposal. I also compute bounds on the number of voters that have
to be convinced to eventually reach unanimous support and show that more tightly
connected groups are harder to convince.

The second part of the chapter examines the process of opinion formation in
arbitrary networks. Using a result from Goles and Olivos (1980), I show that the
process becomes periodic after a finite number of periods, independent of the initial
opinions held in the network. Once the periodic state is reached, voters either do
not change their opinions anymore or switch back and forth between two different

opinions. The chapter concludes with a discussion of how diffusion in a network can

by congress, committees, corporations, families, juries, etc.), most of the literature has focused on
the case where one individual tries to persuade another individual. As Caillaud and Tirole (2007)
write "surprisingly little has been written on group persuasion."



be interpreted in terms of hierarchies of groups within the network with some groups

being opinion leaders while others are followers.



CHAPTER II

TRIMMED STRATEGIES: ACHIEVING SEQUENTIALLY
RATIONAL EQUILIBRIA WITH ONLY PARTIALLY SPECIFIED
STRATEGIES

Introduction

Many refinements of Nash equilibrium (NE) incorporate some notion of sequen-
tial rationality. Such refinements serve to rule out outcomes sustained by irrational
play off the equilibrium path, in particular by noncredible threats. For example, a
subgame-perfect equilibrium (SPE) incorporates sequential rationality by requiring
NE in each subgame, and a weak perfect Bayesian equilibrium (WPBE) incorporates
sequential rationality by requiring best responses at each information set given the
belief at this information set, and given future play. This paper establishes that both
SPE and WPBE can be more restrictive than necessary to ensure outcomes that are
consistent with their particular notions of sequential rationality. More precisely, given
a strategy profile (and a system of beliefs), this paper characterizes the maximal col-
lection of information sets off the equilibrium path such that choices within this set
never affect the rationality as imposed by a SPE (a WPBE) outside of the set.* This
collection will be called the maximal collection of SPE-irrelevant (WPBE-irrelevant)
information sets.

Let V be a collection of information sets and let b be a profile of behavioral strate-
gies. If V' is the maximal collection of SPE-irrelevant (WPBE-irrelevant) information
sets, then the requirement of sequentially rational play in V' can be dropped while
making sure that the outcome of b is never sustained by sequentially irrational play
on V. A strategy profile b that satisfies sequential rationality as imposed by SPE

(WPBE) outside the maximal collection of irrelevant sets will be called a trimmed

4In principle the characterization of inessential game parts could be done for other equilibrium
concepts as well, but is not examined here further.
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SPE (trimmed WPBE). This terminology is chosen to emphasize that strategies in a
trimmed equilibrium can be viewed as smaller strategies, because the play at irrele-
vant sets can essentially be left unspecified.” It will be shown that a trimmed SPE
(WPBE) can not be relaxed further. Its conditions are necessary and sufficient to
ensure that outcomes are not sustained by their respective notions of irrational play.

There are several motivations for the study of maximal collections of irrelevant
information sets and for the concept of trimmed equilibrium. First, there are games
in which a SPE does not exist, because on a subset of their subgames NE does not
exist. In such cases, knowing which parts of a game are irrelevant for a SPE can be
helpful. As Section 4 demonstrates via an example, the results of this paper can help
find an outcome which is, nonetheless, consistent with sequential rationality.® For
a first illustration of this example (more details are provided in Section 4), consider
two profit-maximizing firms, ¢ and j. Both firms produce the same homogenous good
and compete against each other in a Bertrand-Edgeworth world. In stage one, they
simultaneously build capacities x; and z; at a cost of K dollars per unit. In stage two,
they simultaneously announce prices p; and p;, and demand is realized.” Suppose only
pure strategies are available to the firms and that we are interested in the SPE of this
game. Each capacity pair chosen in the first stage induces a pricing subgame in the
second stage. As Kreps and Scheinkman (1983) show, pure strategy equilibria exist
only for a subset of these subgames, as illustrated in Figure 1. There, the functions
ri(x;) and r;j(x;) are the best response functions derived from a Cournot game in

which two firms simultaneously choose quantities ; and z; and each firm has a unit

5 Another interpretation goes as follows. A maximal collection of irrelevant information sets for
some profile b and some notion of sequential rationality identifies an equivalence class of strategy
profiles. The class consists of all profiles that coincide with b on the relevant part of the game and
induce arbitrary play on the part of the game that is irrelevant for b.

6Theorems 7 and 14 and their corollaries show that the trimmed version of an equilibrium, even
though it is less restrictive, does not give up on the degree of rationality imposed: Provided the
original equilibrium exists, the sets of outcomes for the original concept and for its trimmed version
are the same.

"Demand is determined by a rationing rule.



cost of 0 dollars per unit. Pure strategy pricing equilibria do not exist in subgames
where either firm ¢ has chosen a capacity above 7;(z;) or firm j has chosen a capacity
above 7;j(x;). Since a SPE requires NE play in all subgames, a pure strategy SPE
does not exist. In contrast, the definition of a trimmed SPE does not require Nash
equilibrium play in every subgame and as a consequence a pure strategy trimmed
SPE might exist. Section 4 demonstrates the application of a trimmed SPE in this

particular example.

Nonexistence of pure-strategy
pricing equilibria

Existence of
pure-strategy
pricing equilibria

n(x)

10

Figure 1: Nonexistence of SPE due to nonexistence of NE in some subgames

Second, determining the maximal collection of irrelevant information sets of an
equilibrium strategy profile, also determines the parts of the game whose specifica-
tions, be they players, payoffs, order of moves, or any other specification, are not
relevant for the equilibrium. In other words, the equilibrium is robust to any kind of
change in this part of the game. Such a robustness result is of interest in situations
where some specifications are uncertain in a way that does not allow for a probability
assessment (see Kalai 2004). For example, players at an initial stage of the game

might not know how many other players will enter the game at later stages.

9



Third, the results in this paper call into question the standard game-theoretic
assertion that equilibrium play is the outcome of complete contingent plans made
by rational agents. As is shown, players can reach an equilibrium that is consistent
with sequentially rational play, via trimmed strategies. Indeed, one would expect
individuals to form a complete contingent plan only in simple strategic situations. In
more complex situations, it seems unlikely that individuals actually form such plans.®
Moreover, in a trimmed equilibrium players might form incorrect expectations about
some of the other players’ future moves. Neither are these incorrect expectations
ever uncovered when players follow their trimmed equilibrium strategies, nor do they
sustain a player’s strategy choice.” By showing that the play at some information
sets is irrelevant, this paper provides a theoretical rationale of why players might not
form complete contingent plans or might not revise incorrect expectations.

While there is no directly related prior literature, a somewhat related strand of
the existing literature examines robustness of equilibrium towards a game’s specifica-
tions.!? Since strategic situations are often not completely specified, it is of interest to
know which properties of an equilibrium guarantee its robustness towards the game’s
specifications. One part of the literature deals with robust equilibria in large games,

where the number of players is uncertain (see for example Kalai 2004, 2005). Games

8Tt lies in the nature of game-theoretic experiments that the experimenter only observes the
participants’ actual play, but not their complete stratgegies. Selten et al. (1997) describe a method,
developed by Selten in previous work, which allows experimenters to observe complete strategies.
However, this method "forces" participants to form complete contingent plans. It is not clear
whether participants in experiments actually make complete contingent plans. To my knowledge,
an experimental study of this issue has not been conducted.

9A similar idea lies behind the concept of a self-confirming equilibrium (Fudenberg and Levine
1993). However, a self-confirming equilibrium need not even be a Nash equilibrium.

10A paper that seems related at first sight is Kalai and Neme (1992). They introduce the concept
of a p-subgame perfect equilibrium, which requires subgame perfection after histories with no more
than p deviations from the equilibrium path. However, p-subgame perfect equilibrium rationalizes
behavior beyond SPE play. After a certain number of deviations players do not to expect rational
behavior by other players. Accordingly, a p-subgame perfect equilibrium can result into outcomes
not sustainable by a SPE. This difference to a trimmed SPE also shows that the maximal collection
of irrelevant information sets cannot be characterized by simply looking at numbers of deviations.
In particular, the maximal collection of S P E-irrelevant information sets for a profile b is not the the
set of information sets that cannot be reached by a unilateral deviation.

10



with uncertain features are usually called "partially specified." Instead of identifying
equilibrium properties that guarantee robustness of equilibrium to changes in certain
specifics of a game, this paper characterizes entire parts of a game, the specifics of
which do not affect the equilibrium.

Recently, and independently from my work, Briata et al. (2007) have addressed
similar questions. They identify what they call the "essential collection" of informa-
tion sets. However, our concepts do not coincide. In particular the complement of an
essential collection is not equivalent to a the maximal collection of irrelevant infor-
mation sets.!! Also, while they focus on providing a general and unified framework
for what they call essentializing equilibria, I focus on two widely used equilibrium
concepts, for which irrelevant sets can be particularly large.

The reader familiar with the repeated game literature might be aware that this
literature already uses the idea of trimmed strategies in the context of SPE. However,
to my knowledge, the concept has not been formalized, nor has it been generalized
to a wider class of games (the task of characterizing maximal collections of irrelevant
information sets for general games is not trivial). In addition, this paper introduces
a way of trimming strategies for belief-based concepts.

In summary, this paper (1) characterizes maximal collections of irrelevant informa-
tion sets for both SPE and WPBE, (2) defines trimmed versions of SPE and WPBE
and shows that their outcomes are never sustained by their respective notions of se-
quentially irrational play, and (3) demonstrates that a trimmed equilibrium can exist,
even though the original equilibrium does not exist.

The rest of the paper is organized as follows. Section 2 introduces basic notations.

Section 3 deals with the maximal collections of irrelevant information sets for SPE

" Basically, this is because they require essential collections to be closed under < (roughly meaning
that if an information set is in the essential collection, so are all its predecessors). Another difference
originates in their definition of essential collections for belief-based concepts. An information set
belongs to the essential collection if it is relevant under some belief, while here irrelevant sets depend
on a specific belief.

11



and the trimmed SPE. Section 4 provides a detailed example. Section 5 parallels

Section 3, but applies to WPBE. Section 6 concludes.

Preliminaries

This section introduces basic notations. Since the information structure of a game
plays an important role, I analyze extensive form games.'? The class of extensive form
games examined satisfies perfect recall and complete information. In addition, while
the game might be infinite, each player has a finite number of choices whenever the
player moves. At least the main results concerning SPE can be extended to games of
incomplete information and with an infinite number of choices. I restrict the class of
games mainly to avoid lading the exposition with more notation. All terminology not
introduced explicitly (for example, a path, a rooted tree etc.) is used in the standard

game-theoretic or graph-theoretic sense.!

Extensive form games

An extensive form is a tuple I' = (T, P, W, C), where

1. T = (X, E) is arooted tree with X being a countable set of vertices and E being
a set of (unordered) pairs from X. The origin (root) of the tree is denoted by
xo. For every vertex x, the sets of its immediate predecessors and its immediate
successors are denoted by s(z) and p(x).!* The (possibly empty) set of terminal

nodes is the set Z = {x € X : s(x) = o}.

2. P=(P,..., P,) is a partition of the set X \ Z into n sets, one for each player
ie N={1,..,n}.

12 An interesting topic for future reseach would be to examine what are the analogs of collections of
irrelevant information sets and trimmed equilibrium for normal form games. The remark in Footnote
5 points in that direction.

13The description of an extensive form game follows Selten (1975) and van Damme (1981).

14The order is naturally given by the distance to the origin.

12



3. W= (Wh,...,W,) is an information partition, where W; is a partition of P; into

information sets of player ¢ so that

(a) every path from the origin intersects the information set at most once, and

(b) nodes in the same information sets have the same number of immediate

SUCCESSOTS.
Let W = UW,.

4. C = {Cu}ew is a collection of partitions. Each partition corresponds to choices
at w. The partition C, divides nodes in U,c,$(x) into the finite number of
choices available at information set w, so that every choice contains exactly
one element of s (z) for every x € w. A generic choice at w (a member of the

partition C,) is denoted by ¢, and the set of choices at w is denoted by C,,.

An extensive form game is a pair ¥ = (I',u), where u = (uy, ..., u,) are n real-
valued von Neumann-Morgenstern expected utility functions, one for each player
1 € N. The domain of each u; is the set of probability distributions over terminal

histories (see below for the definition of terminal histories).

Behavioral strategies

A behavioral strategy for player i is the collection b; = (b;(w)),ew, such that
b;(w)(c,) denotes the probability b; attaches to choice ¢, at w. If mixed strategies
are not available at w, the mapping b;(w) assigns either probabilities zero or one. A
profile of strategies is denoted by b and a system of beliefs is denoted by p. Let p(w)
denote the probability distribution over nodes in w induced by the system of beliefs
w and let pu(x) denote the belief induced by p that node x is reached given that the
information set to which x belongs is reached. A subform of I" is denoted by ~, and

G is the set of subforms of I'.' A subgame of ¥ = (I', u) is denoted by (v, w,) where

15 A subform of T is the analog to a subgame of ¥, that is it is an extensive form that can be
obtained by restriction of I on a subset X’ of X.

13



u)y is the restriction of u to terminal histories in . The profile 07 is the strategy

profile for subform ~ induced by strategy profile b.

Notation concerning the structure of a game tree

The player who moves at information set w is denoted by ¢(w). Let h be a finite
or infinite path in T starting at z. That is, h = (xo, 21, ...,2x) for some K < oo
such that zy = s(xy_) for k =1, ..., K, or h = (x¢, x1, ...) such that x; = s(xy_1) for
k=1,2,.... Such a path h is called a history of I'. With a slight abuse of notation, I
will write h C ' it b’ = (h, g, Tpi1, ..., ) or B = (h, xp, Taq, ...) and 2 € hif 2y, is
part of the sequence h. The set of all histories is denoted H. A history h is terminal
if there is no other history A’ € H such that h C h'. The set of terminal histories
is denoted by ‘H. For w € W, let H (w) denote the set of histories ending at some
x € w. The subpath of A with initial node x is denoted h,. Let < be a partial order,
defined over both X and W, where (1) < 2’ if and only if 2’ is accessible from =z,
that is there exists a history h such that 2’ € h,, and (2) w < w' if and only if there
exists a pair (z,2’) with z € w, and 2’ € w' such that = < '
The information set that contains x is denoted by w(z). The set of information sets
that have, respectively, positive and zero probability to occur under b are denoted by
A(b) and B(b) (so {A(b), B(b)} is a partition of W). The probability distribution

that b induces on H is denoted by o(b).

Trimmed SPE

The first part of this section gives a precise definition of maximal collections of
irrelevant information sets and shows their existence and uniqueness. Let pgpp stand
for "sequential rationality as imposed by SPE." For extensive form game 3, strategy
profile b, and a set of information sets V' C W, say that b satisfies pgpp on V in X
if b induces NE in all subgames (7y,u},) with origin in V. For extensive form I' and

strategy profile b, let V' C B(b) be such that whether b satisfies pgpp on W\ V' is

14



independent of the play on V in any game ¥ = (I", u). Call V' a collection of SPE-
irrelevant information sets for b. A collection of SPFE-irrelevant information sets
divides a game into two parts. Whether the play on the "relevant" part is consistent
with subgame-perfect rationality is independent from the play on the irrelevant part.
Let Wi (b, pgpp) be the set of all collections of S P E-irrelevant information sets for
b. The set W,.-(b, pgpg) is partially ordered (under inclusion). Notice that it follows
directly from the definition that Wi, (b, pgpg) is closed under union. Hence, every
chain in W;,..(b, pspr) has an upper bound in W,..(b, pspg), namely the union of
all members of the chain. It follows from Zorn’s Lemma that there exists a unique,
though possibly empty, maximal collection of irrelevant information sets, which will
be denoted by W;,..(b, pspg). 1 show that whenever a strategy profile satisfies pgpp
on the set of all relevant information sets, W \ W;,..(b, pgpg), one can find a strategy
profile that induces the same outcome and satisfies the original equilibrium conditions,
provided that equilibrium exists for the game.

To economize on notation, for the remainder of this section "b satisfies p" shall
always mean "b satisfies pgpp." The first result in this section shows that the maximal
collection of SP E-irrelevant information sets for b consists of those sets that can be
reached from b’s outcome path only if at least two players deviate in the "first stage"
of some subform (the emphasis on "only" is made because a non-singleton information
set can be reached by different deviations). To make precise what is meant by the
"first stage" of a subform, let v* denote the minimal subform to which w belongs,
that is there is no proper subform of v* to which w belongs as well. Let {W,},c¢ be
a partition of the set of information sets W where W, = {w € W : 4 = v}. The set
W, is referred to as the first stage of . Let b denote the restriction of b to the set
VCw.

Definition 1 (Information sets on and off the unilateral deviation path).

Fiz an extensive form game I' and a strategy profile b. The set of information sets
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on the unilateral deviation path of b is denoted by By(b). Information set w € By(b)
if and only if

1. w € B(b), and

2. there exists b’ such that

(a) we A(l), and

(b) for each W, for at most one player 1, bfv” #+ b;W”.

The set By(b) = B(b)\Bi(b) is the set of information sets off the unilateral deviation
path of b.

Furthermore, let Wspg(b) = A(b) U B1(b) (so W\Wspg(b) = By(b)). The sets
A(b) and B(b) partition W into information sets on the outcome path of b, and
information sets off the outcome path of b. The criterion of a unilateral deviation
path leads to a further partition of B (b) into two sets, the set of information sets on
the unilateral deviation path, B;(b), and the set of information sets off the unilateral
deviation path, Bs(b). Figure 2 illustrates a set of information sets off the unilateral
deviation path for the profile that is indicated in the figure by the bold edges. The
arrows indicate the corresponding outcome path. The set of information sets off the
unilateral deviation path is By(b) = {w'}. Note that the figure shows a game form
instead of a fully specified game with payoffs. Indeed, whether an information set is
off the unilateral deviation path depends only on the game form and a strategy profile.
As in this example, Bs(b) does not necessarily coincide with the set of information
sets that can not be reached by a unilateral deviation from b. Here, both w and w’
can not be reached by a unilateral deviation. The reason why w is not in By(b) is
that it can be reached by a sequence of unilateral deviations (that is via a unilateral
deviation path), one by player 2, and one by player 3 at her left information set.

These deviations occur in the first stages of different subforms.
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Figure 2: Information sets off the unilateral deviation path

The set Wspg(b) will be shown to contain all information sets that are possibly
relevant for b being consistent with subgame-perfect rationality. Notice the depen-
dency of this statement on the strategy profile b. While a particular equilibrium might
not be sensitive to specifics in some part of a game, the set of equilibria consistent
with a certain concept might be sensitive to these specifics.

To prove Theorem 3, the following observation concerning the collection of in-
formation sets which are relevant for a NE is useful. Suppose one wants to check
whether the profile b is a NE for ¥. Because a NE only requires that there are no
beneficial unilateral deviations, it is sufficient to compare the outcome of b with out-
comes obtained from a unilateral deviation from b. In terms of information sets, one
only needs to consider play at information sets in A(b) and the information sets in
B(b) that are reachable from A(b) by a unilateral deviation from b. The following

lemma is also useful for the proof of Theorem 3.

Lemma 2 Let b be a strategy profile for T'. For any pair w,~y such that w € Bs(b),
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w belongs to 7y, and {xo,} € Wspg(b), it holds that w € By(b"), that is, w is off the

unilateral deviation path of b7 in 7.

Proof. Because {z¢,} € Wspg(b), it can be reached through a sequence of
unilateral deviations from b, at most one on each set W.,, v € G. Because w € By(b),
it can only be reached from b if there are at least two players deviating at information
sets in the first stage of some subform. Because {x¢,} is a singleton information set
and w belongs to v, (a) only one history leads to zo, and (b) any history leading
to w must pass through x(,. Hence, w € By(b") for otherwise, the concatenation of
the unilateral deviation path leading to o, and the path leading from z, to w, is a

unilateral deviation path as well, contradicting that w € By(b). =

Theorem 3 For any b, W;,.(b, p) = Ba(b), that is the mazimal collection of SPE-
wrrelevant information sets for b is the set of information sets off the unilateral devi-

ation path of b.

Proof.

L. Wipy (b, p) € Ba(b).

To the contrary, suppose that W, (b, p) € By(b). By definition W;,,. (b, p) C B(b), so
we must have W;,,. (b, p) N By(b) # @. Case (1): There exists w € Wy, (b, p) N By(b)
such that the origin of 4", denoted by z¢yw, is not an element of W;,, (b,p) and
{zogw} # w. Since w € By(b), it can be reached from zy,» by a unilateral deviation
from b. Thus, there exists u|, such that the play at w matters for whether the play
at xo,w is a best response in the game (7", u,), contradicting that w € Wi, (b, p)
and {xoyw} & Wi (b, p). Case (2): There must exist a w € Wy, (b, p) N B;(b) such
that w = ~4". In this case, consider the origin of +/, the smallest subgame of which
7 is a subgame. Since w € By(b) C Wgpg(b), so is xo,, the origin of 7'. Moreover,
w can be reached from xy, by a unilateral deviation from b, Thus, there exists Uy

such that the play at w matters for whether the play at z¢, is a best response in
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subgame (7', uj,), contradicting that w € Wi, (b, p) and {zo, } & Wi (b, p). Since
Wi (b, p) N B1(b) C B(b) either Case 1 or Case 2 holds.

2. By(b) € Wipr (b, p)

I will show that the play on the set By(b) is irrelevant for whether b satisfies p in any
subform ~ with origin in Wgpg (b). Let v be a subform with origin in Wspg(b).
Case 1) By(b) N {w € W : w belongs to v} = &, so whether some profile b” is a NE
for a subgame (v, u},) is independent of the play on Bs(b).

Case 2) By(b) N {w € W : w belongs to v} # @. By Lemma 3 no w € Bs(b) N
{w € W : w belongs to v} can be reached from b” by unilateral deviation, so whether

b7 is a NE of a game (7, u|,) does not depend on the play on By(b). m

We are ready to define a trimmed SPE.

Definition 4 (Trimmed SPE). Strategy profile b* is a trimmed SPE for X if it induces

a NE in all subgames (v, uj,) with origin {x¢,} € Wspgp(b*).

The following result relates trimmed SPE to SPE.

Theorem 5 (1) Every SPE is a trimmed SPE, but the converse does not hold. (2)

In a game of perfect information, By(b) = & for all b.

Proof.
(1) This follows trivially from the definitions of a SPE and a trimmed SPE.
Figure 3 shows an example of a trimmed SPE that is not a SPE. Bold edges indicate

the profile. Bold edges with arrows indicate the outcome path the profile induces.
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Figure 3: A trimmed SPE that is not a SPE

(2) In a game of perfect information every z € X is the origin of some subform.
Therefore, we have {W, },c¢ = W, implying that every w € W can be reached from

any b by a sequence of unilateral deviations. Thus By (b) = & for any b. =

Corollary 6 In a game of perfect information, every trimmed SPE is a SPE.

Since in perfect information games every move is the first move of some subgame,
every information set can be reached from any strategy profile through a sequence
of unilateral deviations, at most one per first stage of the game’s subgames. Thus,
Wi (b,p) = @ and so a trimmed SPE requires NE in all subgames of a game of
perfect information.

A trimmed SPE is, by definition, less or at most as restrictive than a SPE. The
following theorem shows that it is just as "strong" as a SPE, in the sense that it does
not allow for equilibrium outcomes that cannot be supported by a SPE - provided NE

exists for all subgames. Together with Theorem 3, this is the main result concerning
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SPE. Let TSPE and SPE denote the sets of, respectively, trimmed subgame per-
fect equilibria and subgame perfect equilibria for some game Y. Let O(T'SPE) and
O(SPE) denote the sets of outcomes (probability distributions of the set of terminal
histories H) induced by, respectively, some b € TSPE and some b € SPE. Given
a set of information sets V' C W, and two strategy profiles b and v/, let (bV, b’W\V)

denote the profile obtained by playing b on V', and ¥ on W\V.

Theorem 7 If SPE = & for ¥, then O(TSPE) = O(SPE).

Proof.

1. O(SPE) CO(TSPE)

This follows from the fact that SPE C T'SPE.

2. O(TSPE) CO(SPE)

Let 0 € O(TSPE) be induced by b € TSPE. If b € SPE, then o € O(SPE). If
not, pick some b € SPE and consider the strategy profile b57'F = (BWSPE(B), sz(i’)).
Notice that b and b induce the same outcomes because they only differ at information
sets in B(I;) Next, I will show that b°FF is a subgame perfect equilibrium for ¥. First,

consider subgame (7, u,) with {z¢,} € Wgpg(b). By Lemma 3, all changes made in

bSPE were made at information sets w € By (b?).

subgame v when moving from b to
Hence these changes do not affect play on the unilateral deviation path of b in v, and
so, since b is a trimmed SPE, bFZ induces a NE on (7,u}y). Second, consider any
subgame (7, u},) with {zo,} € By(b). All information sets belonging to + are elements
of By (5) because all histories leading to them pass through zg,. Hence b°F and b
induce the same play on -, implying that ¥ induces a NE on (7, uj). Thus boPE

induces NE on all subgames and therefore b°F € SPE, showing that the outcome

induced by b is also an outcome of some subgame perfect equilibrium. m

Corollary 8 Forb € TSPE and any b" = (bWsre®) 5:0)) where b/52® induces NE

on all subgames (7, uj,) with origin in By(b), the profile V" is a SPE.
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To return to the motivations for the concept of trimming strategies, consider again
the example in Figure 3. It follows from the results in this section that: (1) Even if
the subgame at the left was such that a NE for it did not exist, the outcome path
of the trimmed SPE, indicated by the arrows, would be consistent with sequential
rationality as imposed by SPE; (2) Whatever changes are made to the subgame at the
left, the outcome remains consistent with SPE and is thus robust to such changes; and
(3) If a player considers to deviate from the indicated play, expecting, as is consistent
with subgame perfection, Nash equilibrium play at any subgame reached through the

deviation, the subgame at the left does not enter this player’s considerations.

An Example

The following example demonstrates the potential usefulness of a trimmed SPE.
Suppose two firms, ¢ and j, produce the same homogenous good and compete against
each other in Bertrand-Edgeworth fashion. First, they simultaneously build capac-
ities, x; and z;, at a cost of K dollars per unit. Second, they simultaneously an-
nounce prices, p; and p;. After that, demand is realized. Market demand is given
by D = 20 — P. Due to its limited capacity, the low price firm might not be able
to serve everyone who demands to buy at the price it charges. Hence, a rationing
rule is needed. With a surplus maximizing rationing rule (Levitan and Shubik 1972
and Shubik 1955) the lower price firm serves the high demand consumers.'® That is,
if p; < p;, demand for firm ¢ is 20 — p;. For simplicity, assume variable production
costs are zero. Firm ¢ then produces Min{20 — p;,x;}. If the constraint binds for
firm 4, firm j might serve some consumers as well, but only up to its capacity, that is
it produces Min{Max{20 — p; — z;,0},z;}. If p; = p; = p, firm 4’s demand is given
by Min{z;, 2 + Maz{0,2 — z;}}, and similarly for firm j, which means that if p is

such that D(p) = z; + x;, firms simply produce up to their capacities.

16Suppose there is a mass of consumers of measure one, who all demand one unit of the good and
whose willingness to pay is uniformly distributed on the interval [0, 20].
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Suppose only pure strategies are available to the firms, and that we are interested
in the SPE of this game. Each capacity pair chosen in the first stage induces a
pricing subgame in the second stage. As Kreps and Scheinkman (1983) show, pure
strategy equilibria exist only for a subset of these subgames. More specifically, let
ri(x;) and r;(x;) denote the best reply correspondences of the Cournot game in which
firms ¢ and j simultaneously choose how much to produce and both have no capacity
constraints and zero unit costs. Pure strategy price equilibria exist only for the set
M ={z e R% : z; <ri(z;) and z; < rj(z;), or z; = x; = 20}.'7 Hence, a SPE does
not exist. Kreps and Scheinkman compute the equilibrium for the mixed extension
of the game.!® In that equilibrium firms choose capacities equal to the equilibrium
quantities of the Cournot game when firms have unit costs of K. Thus, the equilibrium

20

capacities are given by x; = x; = gK . Except if x; = x; = 20, all pricing equilibria

in M are such that both firms charge D! (z; + ;). If z; = 2; = 20, both firms charge
Z€ero.

Now suppose that, in addition, the cost of capacity is discontinuous and capacity
higher than some 7 is prohibitively expensive. Suppose that % <z < % + %. For
this value, there remains a subset of subgames for which pure strategy equilibria do
not exist, as Figure 4 illustrates. However, given that firm j builds a capacity of %,

all feasible capacity levels for firm i are in the set M. Hence, for all subgames reachable

20—-K
3

for firm ¢, conditional on firm j producing , the expected pricing equilibrium will
have both firms charging P(z; +x;) (where P(-) is the inverse demand function), and
serving half of 20 — P(z; + x;). It is easy to verify that then a deviation for firm ¢ is
not worthwhile. Simply solve

20 - K
ma:g:z:i(20—( 03 )—xi—K)

;<%

1TFor simplicity, assume that firms never build capacities beyond 20.
18They conduct a rather complicated analysis, owed to the continuous strategy set and because
they demonstrate uniqueness of the equilibrium.
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which yields z} = 20§K . By symmetry the same holds for firm j.

Here, 27 and zj together with the pricing equilibria on the subset of relevant
subgames (the cross in the figure) and arbitrary price choices on all other subgames
constitute a trimmed SPE. Note how the trimmed SPE rules out noncredible threats

here.

r(x,)

10 Nonexistence of pure strategy
price equilibria

Set of releva\nt X

subgames «

2Kl (%)

20-K X 10
3

Figure 4: A trimmed SPE can exist when a SPE does not.

Trimmed WPBE

The task remains in principle the same as before. Given a strategy profile b and
now also a system of beliefs yi, determine the maximal subset of B(b) such that the play
inside this set does not affect the sequential rationality outside of the set. First, we
need a precise definition of maximal collections of W P B E-irrelevant information sets.

Let pyppe stand for "sequential rationality as imposed by WBPE." For extensive
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form game 3, strategy profile and system of beliefs (b, 1), and a set of information
sets V. C W, say that (b, 1) satisfies pyypgr on V in X if at each w € V, the play b
specifies at w is optimal given u(w) and given future play induced by b. In addition,
p(w) has to be derived using Bayes’ rule if possible. For (b, 1) and extensive form
[, let V' C B(b) be such that whether b satisfies py ppr on W\ V is independent
of the play on V' in any game ¥ = (I', u). Call V' a collection of W PBE-irrelevant
information sets for (b, ). As before, a collection of W PB E-irrelevant information
sets divides a game into two parts. Whether the play and beliefs on the "relevant" part
are consistent with weak-perfect Bayesian rationality is independent from the play
on the irrelevant part. Let W;..(b, i, pyyppr) be the set of all collections of W PBE-
irrelevant information sets for (b, ) and let W;,..(b, i, py ppr) be @ maximal collection
of W P B E-irrelevant information sets for (b, ). The argument why W;,.,.(b, 1, pyw ppr)
exists and is unique is the same as for Wi, (b, pgpp)-

It will be shown that whenever a strategy profile and a system of beliefs satisfy
pwppe on the set of all relevant information sets, W\ Wi,..(b, 4, pwppg), one can find
a strategy profile and a system of beliefs with the same outcome path satisfying the
original equilibrium conditions, provided that equilibrium exists for the game.

In this section, "(b, ) satisfies p" shall always mean "(b, u) satisfies py ppp."
How can the set W;,..(b, 1, p) be characterized? It turns out that the characterization
is similar to the one for SPE, but incorporates beliefs. The idea is that for any
w ¢ Wi (b, i1, p) and any history leading from w to W;,..(b, i, p), a player whose move
it is some time before W;,..(b, i, p) is reached does not believe that Wi,..(b, i, p) can
be reached. This belief is either due to his, possibly incorrect, belief about past play
or due to the fact that b attaches zero probability to another player’s future move in
the history. In other words, players do not believe that W;,..(b, i, p) can be reached

by a unilateral deviation, but these beliefs need not be correct.

For 2’ = s(x), let b(z,2") denote the probability that b attaches to the choice
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leading from z to z’.

Definition 9 (Information sets on and off the believed unilateral deviation path).
Fix an extensive form T, a strategy profile b, and a system of beliefs . The set of
information sets off the believed unilateral deviation path of (b, 1) is denoted Ba(b, ).
Information set w € Bo(b, 1) if and only if

(i) w € B(b), and

(ii) h = (o, 1, ...,xx) € H(w) implies that for each x), € h

(a) w(zy) € By(b, 1), or

(b) (k) =0, or

(¢c) Az € h with k < K < K, w(zy) ¢ Ba(b,p), and v(xy) # t(xy) such that
b(zy, xgr41) = 0.

Also By(b, 1) = B(b)\Ba(b, 1) is the set of information sets off the believed unilateral
deviation path of (b, ) and Wy ppgr(b, 1) = A(b) U By (b, i).

Figure 5 illustrates the set of information sets off the believed unilateral deviation
path of the profile and beliefs indicated in the figure. Again, bold edges represent
the strategy profile and arrows represent the corresponding outcome path. If player
3 believes that the left node at his information set in the middle is reached with
probability ¢ = 0, then By(b, ) = {w}.!* As will be shown, {w} is the maximal
collection of W PBFE-irrelevant information sets for the indicated profile and beliefs.
The information set w” for example is not irrelevant because the play there matters
for the rationality of player 2’s choice at her right information set, which in turn

matters for the rationality of the choice by player 1 at the origin.

YHere, p is used with a slight abuse of notation as it was previously defined as a system of beliefs.
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Figure 5: Information sets off the believed unilateral deviation path

The first result in this section parallels Theorem 3. It states that the set of information
sets off the believed unilateral deviation path of (b, i) is indeed the maximal collection

of W PBE-irrelevant information sets for (b, u).

Theorem 10 For any (b, i), Wiw (b, i1, p) = Ba(b, ), that is the mazximal collection
of W P BE-irrelevant information sets for (b, 1) is the set of information sets off the

believed unilateral deviation path of (b, 11).

Proof.

1. Wigy (b, 11, p) € Ba(b, 11).

To the contrary, suppose that M = W,,..(b, 1, p) N Wwppr(b, 1) # @. Because M C
Wi (b, 11, p) C B(b), we can pick @ € M such that for all w < b, we have that w ¢ M
(because {zo} ¢ M). Since M C Wwppg(b,u) = W\Bs(b, 1), the information set
W ¢ By(b, 11). However, i € B(b) so there exists h € H(w) for which none of the
conditions in part (i) of Definition 9 holds. Write h = (xg, 1, ..., tx) with zx € .
By failure of (a), (b), and (c) in Definition 9, there exists a node zy € h such that

w(xk/) §&L Bg(b,u), ,LL(ZL‘k/) > 0 and b(fL‘k:’Hmk:"-&-l) > 0 for all (ZL’kN,l’kN+1) g ]Al for
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which £” > k" and (k") # «(k'). Therefore, for some u the play at @ matters at
xy (given the other players’ strategies, ¢(zx) believes that he can choose a strategy
so that w is reached). However, w(xy) ¢ Ba(b,u) and w(xy) ¢ M implies that

w(xg) & Wi (b, 1, p), contradicting that @ € Wi,..(b, u, p).

2. By(b, 1) € Wipr (b, 1, p)
It suffices to show that By (b, i) is a collection of W PBE-irrelevant information sets
for (b, ). Pick w' € By(b, u) and w ¢ Ba(b, ).
Case 1) not (w < w').
In this case, no node in w has a choice that leads to w’. Then, given u, the choice at
w’ does not matter for the sequential rationality at w in any game ¥ = (I", u).
Case 2) w < w'. Let L C H(w') such that h € L implies hNw # &, that is L contains
the histories that can access w’ from w. Pick any xp € w such that x; € h for some
h € L. Because w ¢ Bs(b, 1), either (b) or (c) in part (ii) of the above definition must
hold. Therefore, either +(w) does not believe to be at xy or believes that w' cannot
be reached from ;. because of the future play of other players. Therefore the play at
w’ does not matter for the sequential rationality of play at w in any game ¥ = (', u).
This shows that By(b, 11) is a collection of W PBE-irrelevant sets for (b, ). =

In view of By(b, i) being the maximal collection of W P B E-irrelevant information

sets for (b, i), a trimmed WPBE is defined as follows

Definition 11 The pair (b,p) is a trimmed WPBE of ¥ if (b, ) satisfies p on

WWPBE(ba ,U)-

The following result relates trimmed WPBE to WPBE. It parallels the result in

Theorem 5.

Theorem 12 (1) Every WPBE is a trimmed WPBE, but the converse does not hold.

(2) In a game of perfect information, By(b, 1) = & for all (b, ).
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Proof.
(1) This follows trivially from the definitions of a WPBE and a trimmed WPBE.

Figure 6 shows an example of a trimmed WPBE that is not a WPBE.

Figure 6: A trimmed WPBE that is not a WPBE

(2) Fix some (b, pt). Suppose Ba(b, ) # &. Pick w' € By(b, p) with w < w’ implying
that w ¢ By(b, ). Let x € p(w'), so w(x) ¢ Ba(b, 1), so (a) does not hold. By perfect
information, p(x) = 1, so (b) does not hold. Because x is an immediate predecessor

of w', (c) cannot hold either, a contradiction. =

Corollary 13 In a game of perfect information, every trimmed WPBE is a WPBE.

The next result parallels Theorem 7. It establishes that every trimmed WPBE
can be matched with a WPBE that induces the same outcome, provided that a WPBE
exists. Let WPBE and TW PBE be the sets of pairs (b, 1) that are, respectively,
a WPBE and a trimmed WPBE. Let O (W PBE) and O (TW PBE) be the sets of
outcomes induced by some (b, i) in, respectively, W PBE and TW PBE.
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Theorem 14 [fW PBE # & (the features of the game are such that a WPBE exists),
then O (TW PBE) = O (W PBE).

Proof.
1. OOWPBE) C O(TWPBE).
This follows from the fact that WPBE C TW PBE as shown in Theorem 12.
2. O(TWPBE) C O(WPBE)
Pick any (b, 1) € TWPBE. Construct (V, ') as follows.
(a) For each w € Wy ppg (b, u), let b'(w) = b(w) and let p/(w) = p (w).
(b) For information sets in Bj (b, i), construct a reduced game from I' and (b, i) as
follows. Let Xwppr and Xp, denote the sets of nodes for which w(z) is an element
of Wi ppg (b, 1) and By (b, 1), respectively.
Step 1. Remove all © € Xy ppr such that 2’ < x implies 2’ € Xy ppE.
Step 2. For all x € Xyppr such that x < 2/ implies 2’ € Xwppg, if p(z) € Xp,,
replace x by the expected payoff induced by b, and if p(x) € Xy ppg delete x.
Step 3. For the remaining © € Xyppg, if p(r) € Xp,, replace x with a move by
nature as follows. Each path emanating from x so that the path passes only through
Xwpge is replaced by a terminal node. Assign the payoff to the terminal node that
equals the expected payoff that b induces at = when this path is taken. Assign nature
a probability to choose this final node that equals the probability that b attaches
to the path emanating from z. For each 2’ > x such that 2’ € Xp, and for which
' > 2" > x implies 2" € Xy pgg, replace the path leading to 2’ by a move by nature
leading directly to 2’ with the probability as induced by b (which is well defined
because all nodes on this path belong to Xwppg).
After performing these three steps, all nodes in Xy pgg were either deleted, replaced
by a final node, or replaced by a move by nature. Note that the resulting graph does
not need to be connected and that there might be several initial nodes. Add an initial

move by nature that attaches some positive probability to each initial node of the
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components obtained. Call the new game I'*. Apart from nature’s moves, the set
of information sets for I'* is By (b, 1t). Now, find a weak perfect equilibrium for I'*,
denoted (b*, 1*) and complete the specification of (¥, i) by letting ¢/ (w) = b*(w) and
W (w) = p*(w) for all w € By (b, p).

It remains to verify that (¢, y') is a weak perfect Bayesian equilibrium. For any
w € Wwppg (b, ) we know that b(w) satisfies p at w given b. Because we only
changed strategies and beliefs at information sets in Bs (b, i), those changes could
not affect the sequential rationality at w.

For any w € By (b, 11), sequential rationality follows from the fact that (b*, p*) is a
weak perfect Bayesian equilibrium and that for each x € w and each choice at z, the
expected payoff from that choice given b* is the same as the expected payoff given b'.
Notice that, because By (b, 1) C B (b), Bayes’ rule does not need to be satisfied on

B, (b, /L) |

Corollary 15 For (b,1) € TWPBE and any b’ = (bWwesst» yB20m) and p" =
(MWWPBE(’W), u’BZ(b’“)), where (bB20:4) /B2 induces sequentially rational play at

all w € By(b, ), the pair (b, u") is a WPBE.

Conclusion

This paper introduces the concept of equilibrium in trimmed strategies. The
concept is based on the notion of maximal collections of irrelevant information sets.
Trimmed equilibrium potentially can provide resolution when some parts of the game
are difficult to predict, be it due to nonexistence of equilibrium, uncertainties about
the game’s specifications, or computational difficulties. It is shown that the trimmed
version of an equilibrium is sufficiently restrictive to capture the notion of sequen-

tial rationality of the original concepts. At the same time, it disposes of restrictions
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on entire parts of the game. The characterization of maximal collections of irrele-
vant information sets for both SPE and WPBE provides insight as to the kinds of
rationalities these concepts place on players.

It is pointed out that, while a trimmed equilibrium is invariant in the specifications
on the maximal collection of irrelevant information sets, the set of trimmed equilibria
is not. Also, since a trimmed equilibrium leaves strategies on the maximal collection
of irrelevant information sets essentially unspecified, it is not clear how to solve for
such an equilibrium. A process of backward induction does not seem suitable. Of
course, it is possible to determine the entire set of Nash equilibria and then check
whether they are trimmed equilibria. This, however, might not be practical as the
set of Nash equilibria in extensive form games can be very large. Constructing an
algorithm that solves for trimmed equilibria - or which at least narrows down the set

of candidates - remains an open task.
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CHAPTER III

A CHARACTERIZATION OF WEAKLY PAIRWISE STABLE
NETWORKS

Introduction

Consider a dynamic process of network formation in which the network evolves
according to successive modifications by myopic players. In each modification, either
a single player severs a subset of his current links or a pair of players forms a link.
A stable state of this process is a weakly pairwise Nash stable network: No player
benefits from severing links and for no pair both players benefit from forming a link.2
However, a stable state, and therefore a weakly pairwise Nash stable network, might
not exist. This paper characterizes the set of weakly pairwise Nash stable networks
as the set of pure strategy Nash equilibrium networks of a network formation game
in strategic form. Since a weakly pairwise Nash stable network might not exist, it is
then natural to consider the equilibrium of the mixed extension of this strategic form
game. Because the game is finite, this equilibrium exists. Thus, my characterization
result makes possible a prediction of the network formation process in cases when a
weakly pairwise Nash stable network does not exist.

The network formation game I define is a variant of Myerson’s linking game (My-
erson 1991). In Myerson’s linking game all players simultaneously announce sets of
players with whom they wish to form links. Links are formed if and only if two players
announce each other. While in equilibrium no player wishes to cut links, equilibrium
networks do permit situations in which two players would both benefit from forming

a link.

20This paper uses the concept of weak pairwise Nash stability instead of the more familiar concept
of pairwise Nash stability for technical reasons, which will be explained in due course.
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To eliminate this coordination failure in Myerson’s linking game, I introduce pairs
of players as additional players to the game. The so modified game is called the
linking game with player pairs. Each player pair announces whether it wishes to
form a link. However, the strategy of a pair ij has an impact on the outcome of
the game only if neither of the two players announces the other. In this case, if ij
announces it wishes to form a link, the rules of the game are such that the link ij is
added. The payoffs for player pairs are defined so that a pair benefits from a link if
and only if both players benefit from it. Together with the rules of the game, this
payoff specification ensures that the set of equilibrium outcomes is precisely the set
of weakly pairwise Nash stable networks.

To provide intuition for the presence of pairs of players coordinating on the for-
mation of their link, I define and analyze a game in which network formation occurs
in two stages. In the first stage, players play Myerson’s linking game. In the second
stage, they play a constrained version of the linking game with player pairs in which
only pairs that have formed a link in the first stage are added as players to the game.
The outcome of the game is the network formed in the second stage. Thus, the only
purpose of a first stage link is that it allows players to coordinate in the second stage.
A pair that has formed a link in the first stage ensures its (actual) link is formed in
the second stage whenever both players benefit from doing so.

The two-stage linking game provides a natural model of link formation. Consider
friendship formation as an example. There, the first stage might correspond to some-
thing like joining a club or getting to know the friends of friends and the second stage
corresponds to actual friendship formation. The interpretation of stage one links
eliminating coordination failure in stage two is that once two people get to know each
other they will become friends provided they both like each other. Similarly, two peo-
ple might never become friends, simply because they do not know (much about) each

other. As a consequence, real-world networks might be stable even though they do not
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satisfy the definition of pairwise stability. For example, there are likely many people
whose friendship we would enjoy if we only knew them. In this vein, Proposition 17
shows that the set of subgame perfect equilibrium networks of the two-stage linking
game is larger than the set of pairwise Nash stable networks. However, as Propo-
sition 18 shows, refining the equilibria of the two-stage linking game (by requiring
undominated strategies) leads to weakly pairwise Nash stable equilibrium networks.

This paper relates to the literature of network formation that goes back to My-
erson (1991) and the seminal work by Jackson and Wolinsky (1996). Here, I address
the issue of existence of weakly pairwise Nash stable networks. The prior literature
on network formation that uses pairwise stability or closely related concepts and ad-
dresses existence issues has either focused on establishing conditions that guarantee
existence or shown existence in special settings (see e.g., Belleflamme and Bloch, 2004;
Calvo-Armengol 2004; Goyal and Joshi, 2006; Jackson and Watts, 2001). A novelty
in this paper is that it presents a way to incorporate mixed strategies into a network
formation game with coordinated moves. The paper thereby addresses the existence
of pairwise Nash stable equilibrium.

The next section defines the linking game with player pairs and shows that its
equilibrium outcomes are equivalent to the set of weakly Nash stable networks. At
the end of the section, I show that the mixed strategy equilibrium might put weight
on networks that are not part of an absorbing state of a dynamic process of network
formation. Section 3 defines the two-stage linking game and shows that networks
supported by its undominated subgame perfect equilibria are weakly pairwise Nash

stable. Section 4 concludes.

The Linking Game with Player Pairs

Let N = {1,2,...,n} be a finite set of players, let ¢ C {ij : 4,7 € N,i # j} be a

social network, and let G be the set of all networks. The payoff for individual i € N
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is given by the function u; : G — R. A network that is derived from network g by
adding (deleting) link ij is denoted by g +ij (g — 7). The set of player i’s neighbors
ingis Ni(g)={jeN:ij€g}

In the linking game, each player i € N has the strategy set S; = P(N\{i})
(the power set of N\{i}) with typical element s;. Given a strategy profile s =
(81,82, ..., Sn), the outcome of the game is the network g(s) defined by ij € g(s) if
and only if i € s; and j € s;. If g = ¢(s), the profile s supports g. A network is Nash
stable if it is supported by a Nash equilibrium of the linking game. In other words,
a network is Nash stable if there exists a strategy profile s for the linking game such
that

ui(g(s)) > ui(g(si,s_;)) for all s} € S;, for all i € N.

As has been pointed out in the literature, Nash stability is an unsatisfactory
concept in the context of network formation. Its predictive power is limited as the
set of Nash stable networks tends to be large. In particular, the empty network, a
network where no link is formed, is always Nash stable. This is due to the fact that a
network in which two players are not linked but both would benefit from the addition
of the link can be Nash stable if neither of the two players indicates the other player.
To overcome this coordination failure, Jackson and Wolinsky (1996) introduced the

concept of pairwise stability. A network is pairwise stable if

ui(g) > wi(g—1j) for all ¢, for all 7j € g, and

ui(g+1j) > u(9) = ui(g+1ij) <uy(g), for all ij & g.

In a pairwise stable network no single player wishes to sever a single link and no pair
of players wishes to add a link.
A network is pairwise Nash stable if it is pairwise stable and Nash stable. Pair-

wise Nash stability captures the idea that adding a link requires mutual consent but
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cutting a link is at the discretion of either of the linked players. Note that one could
decompose the concept into a noncooperative component, Nash stability, and a coop-
erative component, the second condition of pairwise stability. In this paper I consider

a slightly weaker version of pairwise stability: A network is weakly pairwise stable if

wi(g) > wi(g—1j) for all i, for all ij € g, and

ui(g+1ij) > wi(g) = u;(g+ij) <u;(g), for all ij & g.

Here, the idea is that a coordinated deviation by two players requires that both players
benefit from that deviation. A network is weakly pairwise Nash stable if it is Nash
stable and weakly pairwise stable. Jackson and Wolinsky (1996) informally discuss
this notion in the last section of their paper. They point out that most of their results
are not sensitive to which notion of pairwise stability is used.

To see that a weak pairwise Nash stable network might not exist it is useful to
consider the following dynamic network formation process.?! The process starts out
with an arbitrary network. If the network is pairwise Nash stable, the process ends.
If not, there exists at least one pair of players who wishes to be linked or a at least
one single player who wishes to sever at least one of his links. One of the pairs who
wish to add links (if any) or one of the players who wish to sever links (if any) is
selected and the network is modified accordingly. If the modified network is pairwise
Nash stable, the process ends; if not, the procedure is repeated. This process itself
can be depicted as a (directed) network, called a supernetwork.?> The set of nodes

of the supernetwork is the set of networks G. A supernetwork is a directed network

21Such processes are examined by, e.g., Bala and Goyal (2000), Goyal and Vega-Redondo (2005),
Jackson and Watts (2002), and Watts (2001).
22Supernetworks were introduced by Page, Wooders, and Kamat, 2005.
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G C G x G such that (g,¢') € G if and only if

(1) g = g—{ik}rep for some B C N;(g) and u;(g’) > u;(g), or

(it) ¢ = g+ij and u;(¢') > u;(g) and u;(g") > u;(g).

An arc (g,¢’) in the supernetwork precisely means that network ¢ is not weakly
pairwise Nash stable because either (i) or (i7) holds. The usual terminology is to
say that network ¢’ defeats network g. Given supernetwork G, it is straightforward
to identify weakly pairwise Nash stable networks. One simply searches for networks
without outgoing arcs. Such a network is not defeated by any other network and
must be weakly pairwise Nash stable. If a weakly pairwise Nash stable network does
not exist, by the finiteness of GG, the process must eventually end up in a cycle which
has no outgoing arc (see Lemma 1 in Jackson and Watts, 2002). Figure 7 shows how
a supernetwork could look like. Here, ¢® is weakly pairwise Nash stable. In addition,

the networks ¢°, g2, ¢3, and ¢' form a cycle.?

Figure 7: A supernetwork

230ne could just as well define a supernetwork where a network is defeated by another network if
and only if it is not pairwise Nash stable. In that case a network without outgoing arcs would be
pairwise Nash stable.
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The possibility of a cycle in the supernetwork is demonstrated in more detail
in Panel (a) of Figure 8. The example is due to Jackson and Watts (2002), who
also provide more details. Deviations by the four individual players and the pairs of
players lead to a cycle. At ¢°, players 2 and 3 benefit from forming a link. So ¢° is
defeated by g'. There, player 3 has an incentive to sever his link to player 4, so g?
defeats ¢g'. Network ¢ defeats g? because player 2 has an incentive to sever her link
to player 3. Finally, at ¢* players 3 and 4 benefit from forming a link. If they do so,
the process is back to ¢°, closing the cycle.

Such cycles are symptomatic not only for the nonexistence of pairwise Nash stable
networks. For example, when a pure strategy equilibrium of a finite noncooperative
game does not exist, there will be a cycle of outcomes such that each outcome in the
cycle can be reached from the previous outcome through a unilateral deviation that
is beneficial for the deviating player. The standard example to illustrate this point is
the game of Matching Pennies. Similarly, if the core of a finite cooperative game is
empty, there will be a cycle of outcomes that are linked through coalitional deviations

that are beneficial for the deviating coalition.

24The significance of Panel (b) will be explained later.
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(a) A cycle (b) Unused links

o:u,=7 u,=7 g:u,=0 U, =0
*r—0
——
r—® r—e
U =7 l u,=7 U =7 I U,=7
g:u,=13 U, =8 g U,z 0 U, =11
—_—
e
U =13 U, =8 U =11 U, =6

Figure 8: A cycle in a supernetwork

In noncooperative games the problem of existence is resolved by reverting to mixed
strategies. Mixed strategies are probability distributions over sets of pure strategies.
However, since no well-defined strategic form network formation game underlies the
concept of weak pairwise Nash stability, it is not clear what a mixed strategy means
in this context.?” In the following, I define such a strategic form network formation
game. With that game at hand, a natural way to introduce mixed strategies is via
the mixed extension of that network formation game.

Formally, the linking game with player pairs is a noncooperative game with players
acting in their own interest. In fact though, the game incorporates cooperation. This
is done by treating pairs of players as players of the game, with strategies that are
independent from the individual players’ strategies. Each pair indicates whether it
wishes to form a link. The game is designed so that a pair’s indication of wanting
to form a link has an effect on the outcome only when the corresponding individual

players do not indicate each other. In addition, a pair’s payoff is specified so that a

25Bloch and Jackson (2006) define a pairwise Nash equilibrium as the Nash equilibrium profile s
of the linking game that satisfies u;(g(s)+14j) > ui(g(s)) = u;(g(s) +ij) < u;(g(s)). This, however,
does not permit the introduction of mixed strategies either.
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pair wishes to add their link if and only if both players benefit from it. This design
eliminates the possibility of two players failing to form a link even though both would

benefit from it.

The linking game with player-pairs

The set of players is N U {ij : 1,5 € N, ¢ # j}.*0 The set of pure strategies
available to each i € N is the same as in the linking game, S; = P(N\{i}). A pair
ij has only two pure strategies, S;; = {Y, N}, with the interpretation that s;; =Y
indicates the pair ij wants to form the link 75 and s;; = N that it does not want
to form the link. A strategy profile is denoted by (s°, s?) where s® is the subprofile
for individual players and sP is the subprofile for pairs. Whether or not the link ij
is formed for a given strategy profile depends on s;, s;, and s;;. Table 1 lists the
possible combinations of s;, s;, and s;;, showing that a pair’s strategy only affects
the outcome if neither of the individual players indicates the other player. Note also
that, at profiles for which the link is formed, individual players always have the power
to cut the link. In Cases 1 and 2, the individual player can switch to not indicating
the other player. In Case 7, he could switch to indicating the other player. This last
feature might seem somewhat paradoxical, but is necessary to avoid an equilibrium

in which a player would like to sever several of his connections.

26 Compared to the linking game, there are n(n — 1)/2 additional players, one for each pair of
players.

41



Table 1: Combinations of s;, s;, and s;;

Case | s; s; | sij | Outcome
1) |jesi|ies;|Y | ijeg
2) |jesi|ies; | N| ijeyg
3) |Jgsi|ies; | Y| ijéy
4) |Jjgsi|ies; | N| ijéyg
5) |j€si|igs; |Y | ijdyg
6) |jesi|idgs; | N| ijéyg
) |Jgsi|igs; | Y | ijey
8) |Jjgsi|igs; | N| ijéyg

The individual players’ payoffs are the same as in the original game. The payoff

for a pair 4j is

0 ifij ¢ g

min {u;(g) — wi(g —ij), u;(9) —u;(g —ij)} ifijeg.

Uz‘j(g) =

Thus, if the current network is ¢ — ij and both players benefit from the addition of
ij, then u;;(g) > w;;(g —ij) = 0. Whenever possible, the pair would then switch to a
strategy that induces the link in the network.?”

If g is supported by a Nash equilibrium of the game with player pairs, I will say

that g is Nash stable for the linking game with player pairs.

Proposition 16 A network is Nash stable for the linking game with player pairs if

and only if it is weakly pairwise Nash stable.

2"Note that, to induce the deviation, the payoff from u;;(g) has to be strictly positive, which
requires that each of the individual players benefit from adding the link. This feature is what makes
it necessary to use the weak notion of pairwise stability to obtain the result in Proposition 16.
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(1) Let g be a Nash stable network for the game with player pairs with (s*, s?) being
the supporting Nash equilibrium strategy profile. The proof of this part proceeds by
first showing that g must be Nash stable, and then that g must be weakly pairwise
stable.

(i) Nash stability

Let s' be a strategy profile for the linking game in which, for all i,j € N, j € s if
and only if 7j € g, that is s’ supports g. No player can gain by indicating additional
players because this would not change the outcome. Moreover, since in the linking
game with player pairs, every individual player can sever any number of his links in
g(s®,sP) by changing his strategy, and since (s°, s”) is a Nash equilibrium, severing
links cannot be beneficial.?® Thus ¢ is Nash stable.

(ii) Weak pairwise stability

To see that g must be weakly pairwise stable, note that the first requirement of weak
pairwise stability, u;(g) > u;(g—ij) for all ij € g, is implied by the already established
fact that ¢ is Nash stable. Next, consider some ij ¢ g (if any), and suppose that u;(g+
ij) > u;(g) and that u;(g +1ij) > u;(g), contrary to the requirement of weak pairwise
stability. In this case, u;;(g + ij) = min{u;(g +ij) — wi(g), u;(g +ij) —u;(g)} >
0. There are two kinds of cases, in which ij ¢ g¢(s®,s?). Each case leads to a
contradiction:

(1) j & si,1 ¢ sj, and s;; = N, a contradiction because ij can deviate to s;; =Y and
increase the pair’s payoff from 0 to min {u;(g + ij) — ui(g),u;(g + 1j) — u;(g)} > 0.
(2) j & si, i €55, and s;;j = N or s;; =Y, a contradiction because ¢ can deviate to
J € s; and induce the network g+ ij (the same holds true for the cases j € s;, ¢ € s,

and s;; = N or s;; = Y).%

28f player i wishes to sever a link to player j, he can, if j € s; and i € s;, simply change to a
strategy s, such that j & s;, and if j € s, ¢ € s;, and s;; =Y, to s; such that j € s].

29The case j € s;, i € sj, and s;; = N is the one that requires a weakening of pairwise stability.
Here, j has to deviate in order to have the link added to the network. However, if one allows j to
be indifferent he would not necessarily want to deviate, not yielding the desired contradiction.
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Thus, g is Nash stable and weakly pairwise stable, implying that g is weakly pairwise
Nash stable.

(2) Conversely, suppose that ¢ is weakly pairwise Nash stable. Let (s° s?) be a
strategy profile for the linking game with player pairs, in which j € s;, 7 € s;, and
s;j = Y for all 7, j such that ij € g, and j & s;, ¢ &€ s;, and s;; = N for all 4, j such that
ij & g. The profile (s*, s?) supports g. By deviating, an individual player i can only
sever links, which is not beneficial for him because g is Nash stable. The deviation
of a pair of players ij can only lead to the addition of a link, which is not beneficial
both players in the pair because g is weakly pairwise stable. Thus, the profile (s*, s?)
is a Nash equilibrium, showing that g is Nash stable for the linking game with player
pairs.

Proposition 16 shows that a weakly pairwise Nash stable network can be viewed as the
outcome of a "noncooperative" game. Because this game is finite, a Nash equilibrium
of its mixed extension exists. The following example illustrates such a mixed strategy

equilibrium. The example is based on the one depicted in Figure 8.

An Example

To simplify the analysis, let the payoffs for networks containing any of the links,
14,13, or 24 (the "unused" links in Panel (b) of Figure 8) be as follows. For all
i € N, if g contains all three of these links, u;(g) = —3, if g contains exactly two of
these links, u;(g) = —2, and if g contains exactly one such link, u;(g) = —1 . All
other networks, except for the ones depicted in Panel (a), yield a payoff of zero to the
individual players. For this specification of payoffs, no network is pairwise stable.

Let us further simplify the analysis by eliminating weakly dominated strategies.
It is clear that for any player i, if s; indicates the willingness to form any of the
links 14,13, or 24, then s; is is weakly dominated by s, = s; \ {14, 13,24}. Similarly,
for every player pair ij = 14, 13, 24, the strategy s;; = N weakly dominates s;; =Y.

Furthermore, note that for player 3, a strategy s3 involving 2 ¢ s3 is weakly dominated
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by a strategy s; = s3 U {2}. Similarly, a strategy for player 4 with 3 ¢ s, is weakly
dominated by s}, = sy U {3}, and a strategy for player 1 with 2 ¢ s; is weakly
dominated by s} = s; U{2}. Lastly, for player 2, the strategy s such that 3 € s, but
1 & sy is weakly dominated by a strategy s, with 3 € s, and 1 € s}, and for player
3 the strategy ss such that 4 € s3 but 2 & s3 is weakly dominated by a strategy s
with 4 € s; and 2 € s}. Hence, in a Nash equilibrium in undominated strategies,
the following strategies are played with probability one: s; = {2}, s4 = {3}, and
S13 = S14 = S94 = N. In addition, for players 2 and 3, the only strategies that are not
weakly dominated are sy = {1}, s5 = {1,3}, s3 = {2}, and s§ = {2,4}.

Note that every combination of the individual players’” undominated pure strate-
gies is such that the strategies of the pairs 12,23, or 34 will not affect the outcome
(recall that a pair ij only affects the outcome if i ¢ s; and j & s;). Therefore, if p;;
denotes the probability for s;; = Y, then any p,; € [0,1], for ij = 12,23, or 34, sup-
ports the equilibrium. Let o denote the probability that player 2 chooses s, and let (3
denote the probability that player 3 attaches to s3. In a mixed strategy equilibrium,
a and 8 must solve the following optimization problems for players 2 and 3.

Player 2:

max o (67 + (1 = 5)7) + (1 = a) (56 + (1 = §)8)
Foc (interior solution)

BT+ (1—B)T = 56+(1—5)8@6*:%.
Player 3:

mgxﬁ (@0+ (1 —a)ll)+ (1 —B)(a7+ (1 —a)8)
Foc (interior solution)

(1-—a)ll = a7+(1—a)8<:>a*:%
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In summary, the set of equilibrium strategy profiles in undominated strategies for

the linking game with player pairs is as follows:

st = {2k
1
sy = {1} and s}, = {1,3} with probability 3 each;
s3 = {2} with probability %, s3 = {2,4} with probability 1—70;

ss = {3}
sij = N, forij =13,14, and 24;

sij = Y with probability p;; € [0,1], for ij = 12,23, and 34.

Only the four networks in Panel (a) occur with positive probability. Under the induced

distribution, ¢°, ¢, ¢2, and ¢* occur with probabilities =, &, 2 and <, respectively.

20° 207 20’ 20°
It is worth noting that there are other specifications for the player pairs’ payoffs
that yield the result in Proposition 16. In particular, any specification such that
w;j(g+1ij) > w;j(g) if and only if u;(g +7j) > w;(g) and u;(g +ij) > u;(g) yields the
same set of pure strategy equilibria of the linking game with player pairs. This fact
might lead to the concern that other payoff specifications result yield different mixed
strategy equilibrium outcomes. For affine transformations of the payoff function used
here, a standard result from expected utility theory guarantees that the set of mixed
strategy equilibria remains the same. All other kinds of transformations (that preserve
the above condition), might lead to different mixed strategy equilibria. However, I
believe that the specification chosen here is the most natural one. Moreover, it can
be applied to any set of preferences, while other specifications will likely work only
for a subset of preferences.
As already discussed, in the supernetwork G, the nonexistence of a weakly pairwise
Nash stable network implies at least one cycle with no outgoing arc to a network

outside the cycle. Such cycles of networks have been labeled basins of attraction (Page
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and Wooders, 2008).3° Formally, a set of networks A C G is a basin of attraction if

(i)g € A, g ¢ Aimplies that (g,¢') € G, and
(it) g, € A, g+# ¢, implies that 3 go, g1...., g1 € G such that

(q19141) € Gforl=0,1,...,L — 1, where go = g and g = ¢'.

Basins of attractions are "absorbing states." Once a basin is reached, the process
remains within the basin. Weakly pairwise Nash stable networks are precisely the
networks that belong to a singleton basin of attraction. Let A be the collection of
basins of attraction for the supernetwork G. A natural conjecture is that networks
that are supported by a mixed strategy equilibrium of the linking game with player
pairs must belong to a basin of attraction, or, more formally: If g occurs with positive
probability under some mixed strategy Nash equilibrium of the linking game with
player pairs, then g € A for some A € A.

However, the following example refutes this conjecture. Let N = {1,2,3,4} and

consider the following four networks, depicted in Figure 9:

9’ = {14,23}
gt = {14,23,12}
g> = {14,23,34}

g® = {14,23,12,34}.

30The term basin of attraction is used for similar concepts in mathematics and the sciences. Page
and Wooders (2008) have introduced it to the context of strategic network formation.
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Figure 9: Four networks

Suppose that the individual players’ preferences over networks are represented by the

following utility functions

= U (gl) =1and u; (g) = —1 for g € G\ {¢°, ¢*};

)
uz (¢°) = w2 (g') =1land up(9) =—1forge G\ {¢’ g'};
)

uz (¢°) = 0,u3(¢°) =us(¢°) =1, us (¢') =2, and
uz(9) = —lforgeG\{¢’,q" 9" ¢’};

i (6°) = 0, (6?) = s (6°) = 1, s () = 2, and
ug(9) = —lforgeG\{¢’ ¢ ¢* ¢’}
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implying utilities for player pairs:

= 1, us (gl) =2, and ui4 (g) =0 for g € G\ {¢°, ¢*};
= 1, up(9') =2, and ups (9) = 0 for g € G\ {¢°, ¢' };

ui2(9) = 0for g € Gj

<
w
h g
—~
<
M
SN—
I

1, uza(g®) = —1, and uzq (g) = 0 for g € G\ {¢*, ¢*};

<
—_
w
~~
=)
~—
IN

0 for g € G}

uga(g) < 0for geG.

The supernetwork G restricted to the networks in {¢°, ¢', g%, ¢} contains only
two arcs: (¢° ¢%) and (g, g'). Moreover, for any g € {¢°,¢*,¢% ¢°} and ¢ € G\
{6° g*, 9%, g*}, we have (g,¢') € G, as illustrated in Figure 10. Therefore, networks
g' and ¢? each constitute a singleton basin of attraction while ¢ does not belong to

any basin of attraction because it is defeated by g'.

-
-

Figure 10: Network ¢® does not belong to a singleton basin of attraction

It is straightforward (though somewhat tedious) to verify that a strategy profile

satisfying the following conditions constitutes a mixed strategy Nash equilibrium of

49



the linking game with player pairs:

s1 = {4}

s2 = {3}

s3 = {2,4};

s = {1,3};

si2 = Y and sy = N with probability % each;
si3 = N

Soq4 = N.31

No player (individual or pair) has an incentive to deviate. Under such a profile
networks ¢? and ¢® occur with equal probability % each. Since ¢ does not belong to

any basin of attraction, the example shows that the above conjecture is false.

The Two-Stage Linking Game

This section models explicitly how coordination between two players might arise in
a noncooperative two-stage game. In the first stage, players play the linking game. A
stage-one link constitutes a coordination possibility in stage two. Given a network of
coordination possibilities formed in the first stage, players play a constrained version
of the linking game with player pairs in the second stage. In the constrained version,
only pairs that have formed a link in the first stage can coordinate on whether they
form a link. Thus, if the network of coordination possibilities formed in the first stage
is given by h C {ij : i,j € N,i # j}, then the set of players in the constrained linking
game with player pairs is N U h. The corresponding constrained game is denoted by
I'(h).

Intuitively, the two stages capture the idea that coordination as assumed by pair-

wise stability can arise between two individuals only if they have some sort of con-

50



nection to each other; therefore the terminology of a coordination possibility. For ex-
ample, to form friendships, first people become acquainted with each other (through
work, by joining a club, because they have common friends, etc.). Then they might
form a closer friendship, which, arguably, will happen if and only if both sides wish
to establish that friendship.

I show that any network that can be supported by a Nash equilibrium of the
linking game can also be supported by a subgame perfect Nash equilibrium of the
two-stage linking game. However, if this network is not weakly pairwise stable, then
the subgame perfect Nash equilibrium that supports it will have at least one player
playing a weakly dominated strategy. Thus, a network supported by an undominated
subgame perfect Nash equilibrium of the two-stage linking game, must be weakly
pairwise stable.

As in the linking game with player pairs, the set of players in the two-stage linking
game is NU{ij : 1,7 € N, i # j}. A pure strategy for player i is denoted by ¢; and a
pure strategy for a player pair ¢j is denoted by ¢;;. A strategy ¢; for player ¢ consists
of a set r; € R, = P(N\{i}) and a function f; : G — R;. The set r; indicates
with whom player 7 would like to form a coordination possibility. The function f;
indicates, for each first stage "network" formed in the first stage, the set of players
player ¢ wishes to form a link with. Let G;; = {g : ij € g}, that is G;; is the set of
networks in which players ¢ and j are directly linked to each other. A strategy g;; for
player pair ij is a function f;; : G;; — {Y, N}. The corresponding mixed strategies
for a player (individual or pair) are probability distributions over the player’s set of
pure strategies. For ease of notation, mixed strategies are not formally introduced.

A profile of strategies and sets of strategies are denoted in the usual way.

Proposition 17 A network g is Nash stable if and only if it is supported by a subgame

perfect Nash equilibrium of the two-stage linking game.
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Proof.
(1) Let s be a Nash equilibrium of the linking game that supports §g. The proof
proceeds by constructing a profile (¢,q) = ((r, fi)ien, q) that is subgame perfect and
supports g. Let (¢, q) be as follows.
Stage 1:
For all 7,5 € N, let j € r; if and only if ij € g.
Stage 2:
(a) Subgame g: For all i € N, let f;(§) = r;. For all ij € g, let fi; (§) = N.
Let B C {ik : ik € g}.
(b) Subgames g = g\ B: For alli € N, let fi(g) =r;. For all ij € g, let fi; (9) = N.
(c) All other subgames g: Pick a Nash equilibrium of the constrained linking game
with player pairs I' (). (Note that this might be a Nash equilibrium in mixed strate-
gies).
The outcome of this profile is §. It remains to verify that the profile is a subgame
perfect equilibrium. Because § is Nash stable, the play induced on f(g) is a Nash
equilibrium: No individual player wants to deviate, and since player pairs only have
the power to add links but not to delete them and there is no player pair in I'(§)
whose link is not in ¢, no pair can deviate either. The same logic applies to the
play induced on subgames in (b). Lastly, the profile induces a Nash equilibrium on
subgames in (c). Next, we need to verify that the specified profile also induces a Nash
equilibrium on the entire game. It was already shown that no player can benefit from
a deviation in any of the subgames. A unilateral deviation by a single player in stage
1 can only lead to a subgame of type (b). However, the Nash equilibrium outcome
(t,q) induces on these subgames is the same as the outcome of subgame §. Thus, the
profile is a Nash equilibrium for the entire game.
(2) Conversely, let ¢ be supported by a subgame perfect Nash equilibrium of the two-

stage linking game. Let ¢’ be the set of potential links formed in stage 1. Because §
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is the outcome of a subgame perfect equilibrium, it is supported by a Nash equilib-
rium of the constrained linking game with player pairs I'(¢'). Therefore no individual
player wishes to delete any subset of his links in ¢, showing that g is Nash stable. m

Proposition 17 shows that, even when individuals can form links to foster coop-
eration, the result can be a complete coordination failure. For example, as in the
linking game, the empty network is trivially supported by a subgame perfect Nash
equilibrium of the two-stage linking game. However, Proposition 18 shows that if a
subgame perfect equilibrium of the two-stage linking game supports a network that is
not weakly pairwise Nash stable, at least one player plays a weakly dominated strat-
egy. In other words, any undominated subgame perfect equilibrium of the two-stage
linking game will only support weakly pairwise Nash stable outcomes. This is not
true for the linking game. Jackson (2008, p. 374) provides an example of a network
which is supported by a Nash equilibrium in undominated strategies of the linking

game but is not weakly pairwise Nash stable.

Proposition 18 If a network is supported by a subgame perfect equilibrium in un-
dominated strategies of the two-stage linking game then it is weakly pairwise Nash

stable.

Proof. I prove the contrapositive. Let g be a network that is not weakly pairwise
Nash stable. If g is not Nash stable, Proposition 17 implies that it cannot be supported
by a subgame perfect equilibrium of the two-stage linking game. If § is not weakly
pairwise stable, pick a pair {7, j} such that ij ¢ g but u;(§+ij) > u;(¢) and w;(g+ij) >
u;(g). Let (, q) be a subgame perfect equilibrium profile of the two-stage linking game
that supports g, and let h be the first stage links formed under the profile (¢, ¢). Since
(t,q) supports ¢, it must hold that ij ¢ h for otherwise ¢ could not be supported
by a Nash equilibrium of the constrained game I'(h) (a deviation by ij would make
sure that the link 7j was formed). So either j & r; or i ¢ r;. Without loss of

generality, suppose that j & r;. Now, consider the following strategy t. = (rl, f!).
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Let t; be a strategy for player i that coincides with t; except that j € 7} and that
fi(g+1ij) = fi(g). To show that ¢, weakly dominates t;, we need to show that there
exists at least one play of all other players, say (t'_;, ¢’) to which ¢} is a better response
than ¢;, and so that ¢ yields at least as much as ¢; to every other play by the remaining
players.

Let (' ;,q') coincide with (¢_;,q) except that i € ), fi(§+1ij) = f;(9), and fi;(g +
ij) =Y. The outcome of the profile (¢;,t" ;,¢’) is g, while the outcome of the profile
(t:,t",,q") is g +ij. Thus t} is a better response to (t'_;,¢") than ;.

Now, let (', ¢') be an arbitrary play. If ¢/ is such that i € r, then the same subgame
is reached under (¢;,t';,¢') and (t;,t",,¢'), and it is not the subgame § + ij. On all
these subgames the play induced by the two strategy profiles coincides, and therefore
i obtains the same utility from both profiles. If ¢’ is such that i € 77, then g +ij is
reached under (¢,t",,¢’) and ¢ is reached under (¢;,t';,¢'). In this case, again, the
two profiles lead to the same outcome because f/(g +ij) = fi(9).

Thus ¢, weakly dominates ¢;, which is what we wanted to show. m

Conclusion

This paper demonstrates that weakly pairwise Nash stable networks are the equi-
librium networks a modified version of Myerson’s linking game, in which pairs of
players are treated as additional players. Two features of the game bring about the
type of coordination required by weak pairwise stability. First, pairs have the discre-
tion to add links whenever individual players fail to coordinate on the formation of
a link. Second, a pair’s payoff is designed so that the pair benefits from the addition
of the link if and only if both players benefit from it. My characterization allows to
introduce mixed strategies to coordinated moves.

The paper also defines a two-stage game of network formation which provides

a natural model of how coordination can arise in a noncooperative setting. The
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equilibrium of the two-stage game provides a rationale for networks in which players
are not linked even though both would benefit from being linked. In the game, such
networks can arise in equilibrium if players fail to form coordination links in the first
stage. In a real-world network, such networks might be stable simply because two
players do not know enough about each other (or do not know each other at all).
The nonexistence of solutions to games with cooperative elements has been studied
extensively in the literature with a focus on finding conditions when such a solution
exists. In all these games, reverting to mixed strategies is infeasible because they
have no well-defined strategic form. To resolve this, it might be feasible to define
equivalent strategic form noncooperative games, using methods similar to the ones

used in this paper.
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CHAPTER IV

COMPETITION OVER STANDARDS AND TAXES

Introduction

The recent integration of countries in Eastern FEurope to the European Union
(EU) has provoked renewed concern about the aggressive competition by new mem-
bers for firms and other mobile factors.?? To investigate this issue, our paper develops
a model of international competition over standards and taxes. By a ‘standard’ we
have in mind such things as labor regulations, pollution control and property rights
enforcement. Firms who locate in a country are required to pay taxes which are
used, at least in part, to enforce the standard in that country. The main purpose of
this paper is to show that, through competition in standards and taxes, a develop-
ing /transition country may indeed have a ‘second-mover advantage’ over a developed
country in attracting firms and extracting rents. While this concern has circulated
in policy discussions for some time now, to our knowledge it has not been studied
formally before in the literature on fiscal competition.®?

Although often modeled as a type of local public good, standards have an impor-
tant distinguishing feature. A reasonable assumption in the context of most public

goods is that (for a given tax outlay) all firms at least weakly prefer a higher level of

public good provision. On the other hand all firms do not unanimously prefer higher

32For example, although EU accession requirements demand moves towards harmonization of
environmental standards and some measures have been put onto statute books, there appears to
be widespread skepticism about the actual implementation of such measures. Citing the incentive
not to raise standards in order to attract firms, Post (2002) states that ‘there is a “deception
gap” between what is said on paper and what is done in practice’ with regard to environmental
policy. Andonova (2003) provides extensive details of these environmental standards. Although
environmental standards provide a good motivating example, our concern will be with standards
more broadly defined as we shall explain.

33This issue has been raised both with respect to developing countries and to countries from the
former Soviet Union often referred to as ‘transition countries/economies.” For brevity, throughout
paper we will use ‘developing country’ as a catch-all term.
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standard levels. For example, a high level of property rights enforcement may benefit
a firm engaged in research and production of new pharmaceutical products while it
may hurt a firm engaged in the mass-production of generic drugs. To an otherwise
familiar model of fiscal competition, we introduce the assumption that firms have dif-
fering ideal standard levels. It is this assumption that gives rise to the second-mover
advantage in standard setting that we identify.

As the discussion so far suggests, we model competition for mobile firms as a se-
quential game between governments who choose standards and taxes. Due to monitor-
ing costs, the higher the standard set by a country the more costly it is to implement.
Following a common hypothesis in the literature (with Niskanen 1977 as its source)
national governments are run by bureaucrats who seek to maximize their budgets
(tax revenue minus the cost of implementing the standard). There is a continuum
of firms (while consumers are not explicitly considered). We refer to the difference
between a firm’s ideal standard level and the level actually set in a country as the
‘standard mismatch’ for that firm. A key parameter in the model is the ‘marginal cost
of standard mismatch’ which parameterizes how a given standard mismatch affects
a firm’s costs of production. Each firm (being small and behaving non-strategically)
chooses its location to maximize profits, taking as given the tax levels and its standard
mismatches in the two countries.

Our simple framework yields a surprisingly rich set of equilibrium predictions
which depend on the cost of standard mismatch. There are three possible outcomes.
(1) If the cost of standard mismatch is low then tax competition leads to an efficient
equilibrium outcome (as in Brennan and Buchanan’s 1980 model of tax competition).
(2) If the cost of standard mismatch is in an intermediate range then the developed
country sets standards inefficiently high and the developing country becomes a stan-
dard haven; a place where firms that prefer a low standard locate in order to escape

the high standard set in the developed country. It is especially interesting that inef-

o7



ficiently high standards in the developed country arise in equilibrium purely through
strategic interaction between governments in their competition for firms and not as a
result of attempts by governments to win the favor of a voting public. (3) If the cost
of standard mismatch is high then there is a race to the top; both governments set
standards inefficiently high and, because countries are differentiated by their stan-
dard levels, the intensity of tax competition is reduced as well. The precise set of
interactions that gives rise to these equilibrium outcomes will be described in due
course.

Much of the literature that examines fiscal competition where the public good in
question is a standard assumes that (for a given tax take) citizens at least weakly
prefer higher standards and that the standard in question is environmental. As a
result, insights from the literature on tax competition with local public goods extend
naturally; see Wilson (1996) for a survey. Broadly, the literature can be categorized
into three areas. The first category, following Tiebout (1956), focuses on situations
where competition among independent governments is like competition among firms
and enhances efficiency. The second category concerns the presence of a policy-
failure that allows or induces governments to set taxes on capital too high. This
in turn induces governments to try to offset the depressive effects of capital taxes
on investment by setting environmental standards too lax; this outcome is popularly
known as a ‘race to the bottom.” See Oates and Schwab (1988) for further details, as
well as a discussion by Wilson (1996) of Oates and Schwab plus the related literature.
The third category considers situations in which there is strategic interaction, over
standards and taxes, between governments and a small number of firms. See for
examples Markusen et al. (1995) and Davies and Ellis (2007). In such settings,
strategic interactions over the market power held by firms and the policy failures of
governments are the source of inefficient policy choices.

Our model combines features of models from papers in the first two categories: on
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the one hand competition between governments introduces efficiency enhancing in-
centives; on the other hand the broader environment in which these incentives operate
is one of market - or policy - failures that preclude the attainment of a fully efficient
equilibrium. As in the literature that follows Tiebout, governments in our model are
rent (or profit) maximizing but are constrained by competition. For example, Fischel
(1975) and White (1975) share with the present paper the assumption that there
is variation over firms’ preferences for standards. In contrast to our model, Fischel
(1975) and White (1975) assume that individual firms can be targeted for transfers
and there is ‘free entry’ of jurisdictions, none of which has sufficient market power
to extract rents from firms. As a result, within such a setting, an efficient outcome
can be demonstrated in which firms ‘vote with their feet.” In our model firms cannot
be targeted for transfers. Moreover, there is policy failure in the sense that once the
levels of public goods — in our model, standards — are fixed they cannot be altered.
Another difference is that we fix the number of countries (at two) which enables their
rent-maximizing governments to make positive rents and thus allows inefficiencies to
arise.34

Rent-maximizing governments are a source of policy inefficiency for Oates and
Schwab (1988) as well. Again, if governments are able to earn rents from taxation of
mobile resources (in their case, capital) then there is an incentive to simultaneously
set standards inefficiently low. Other papers in the literature build on these basic
features in various ways. Interestingly, although the source of excessive taxation
put forward by Oates and Schwab is the same as ours, their outcome in terms of
environmental standards is starkly different. In their setting the outcome is a race to

the bottom; in our setting, if the marginal cost of standard mismatch is sufficiently

340ur focus is on national governments while in much of the literature on standards and tax
competition governments preside over jurisdictions more broadly defined. The reason we interpret
the context of our model as international is that the range of policy options under consideration
is more limited than in a domestic or federal context. In particular, the feature of our model
that transfers between jurisdictions are not allowed appears to mirror more closely an international
setting.
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large, the outcome is a race to the top.*

The remainder of this paper is organized as follows. Section 2 introduces the
model, then defines strategies and the subgame perfect equilibrium. Section 3 solves
for the efficient allocation. Section 4 presents the equilibrium outcome, which is
defined in terms of the location decisions of firms and policies set by the developing

country and the developed country respectively. Conclusions are drawn in Section 5.

The Model

The governments of two countries, a developed country, L (for ‘leader’), and a
developing country, F' (for ‘follower’), compete over standard levels and taxes in their
attempts to induce firms to locate in their respective countries. The governments are
assumed to be rent maximizers. There is a set of firms, each of which is able to sell a
single unit of a good. The production costs of a firm depend on the level of taxation
and the level of the standard in the country where it locates. We will first specify
the behavior of firms, and then we will turn to the governments. This is the natural

sequence of exposition given that we solve for equilibrium using backwards induction.

Firms

The world price of the unit that each firm sells is p, and each firm pays a private
per-unit production cost, ¢.3¢ The tax levied on the firm is 7, if it locates in L and 75
if it locates in F'. The value s € [0, 1] uniquely identifies a firm and its ideal standard
level.3” The standard mismatch for a firm s is given by the difference between s and
the standard level actually set in the country where the firm locates. The impact of

standard mismatch on production costs is parameterized by k; we refer to k as the

35Wilson (1996) insightfully conjectures that, under certain parameterizations, it may be possible
to show that Oates and Schwab’s framework could motivate a race to the top as well.

36To increase realism, the price that each firm receives for the good that it sells could be made to
vary across firms without affecting the results.

3T"We choose the interval [0, 1] to simplify the exposition. The same qualitative results may be
obtained using an arbitrary interval [a, b].
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marginal cost of standard mismatch. If we let the variables 1, [r € [0, 1] denote the
standard levels set by L and F' respectively then we can express the profit function
for firm s as follows:

p—c—71r—k|lp —s| if the firm locates in L;

7 (s) =

p—c—71p—kl|lp—s| if the firm locates in F.
To focus the analysis on location decisions, it will be assumed throughout that p is
sufficiently high to ensure that all firms make positive profits. Also, p will serve as
an upper bound for the tax that a government can set.

A firm s makes equal profits in both countries if and only if

in which case the firm is indifferent between the two countries. If there is a single
indifferent firm, s, then it holds that s lies between [, and [p. Solving for § in this

case we obtain:

TL—TF lp+lr ;
5 + ) if lp <1y,

§E§(ZL,TL,ZF,TF):

TF—TL I+ :
BT —I——2 if lp > 1.

Firm s may prefer one country, say F', in terms of the tax that it sets; 7p < 7. But
if L’s standard is sufficiently close to s (i.e. |s — | < |s —lp|) then L can attract
s to its country.®® If there is more than one firm that is indifferent between the
two countries, then it must hold that for any such firm s, either s < min{l;,lr} or
s > max{ly,lr}. If all firms are indifferent, then 7, + kiy, = 7p + klp. If no firms

are indifferent then clearly all firms locate in one country or the other. These cases

38Firms’ location decisions and hence the sizes of the countries, in terms of the measure of firms
in each country, are determined strictly by the interaction of policy choices with firms’ preferences.
Additional features could be introduced to make the model more realistic including, for example,
infrastructure and an ‘attachment to home’ but this would obscure the effects we want to focus on.
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are treated in the rent functions of the countries defined in Section 2.2.%

Three more assumptions are needed to obtain clear-cut solutions for firm locations:
(1) Given taxes and standards, firms that are indifferent between the two countries
locate in the country with the lower standard mismatch, i.e. firms care more about
the persistence of an established standard level than the constancy of a given tax
level;
(2) If all firms are indifferent between the two countries, then half locate in one
country and half locate in the other;
(3) If a government has multiple best responses, it chooses the best response that
maximizes its share of firms.

These assumptions will be discussed further when we derive equilibrium in Section

4. The location decisions of firms described above are illustrated in Figure 11.

cost of standard mismatch for §

} cost of standard

mismatch for §

inF

inL

Figure 11: Firms’ location decisions

Figure 11 is reminiscent of ‘Hotelling’s umbrella,” and reflects the underlying struc-
ture of our model which has some Hotelling features (see Hotelling 1929). The figure

shows illustrative levels of standards and taxes set by governments F' and L. For

39Gee the Appendix for additional details.
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standards and taxes as shown, the point § represents the ideal standard level of the
indifferent firm §. For §, the absolute cost of standard mismatch is lower in L, but

the tax in F' is lower than the tax in L.

Governments

Rents are given by tax revenues minus the cost of standard provision. A gov-
ernment’s cost of enforcing a standard level [ € [0, 1] is [ per firm that is located in
its country. Thus the cost of enforcing a standard is assumed to be proportional to
the level of the standard and the number of firms over which it must be enforced.
Government F' takes [;, and 7, as parameters and chooses [ and 7 to maximize its
rents. Discontinuities arise in the rent function at points where, given L’s strategy,
F’s strategy is such that § = [z or § = [}, and additionally when I = I, and 7p = 7.

Below is the rent function for F'. The rent function for L is symmetric:
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Figure 12: Strategy sets for Government F

Figure 12 depicts the sets in the strategy space of F' corresponding to the different
cases of rp (). Case 1 arises when both governments choose the same standard and
tax levels. By assumption, half of the firms then locate in F'. In Case 2, which we
will refer to as undercutting, the combination of standard levels and taxes induces all

firms to locate in F'. Cases 3 and 4 arise when strategies result in a positive fraction
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of firms locating in each of the countries, with F’ setting a lower standard than L in
Case 3 and a higher standard than L in Case 4. We will refer to these third and fourth
cases, where firms are shared between the two countries, as sharing I and sharing II.

Finally, Case 5 arises when F' chooses its strategy so that it attracts no firms.

Efficiency

Within the context of our model, an allocation is efficient if it maximizes the
aggregate surplus realized by firms plus the governments’ rents. An allocation con-
sists of two ES levels and an assignment of firms to countries, denoted by (Ig, [y, $).

Formally, the allocation (Ir,[r, §) is efficient if it solves*’

mwﬁ/Yp—c—TF—kuF—ﬂms+@T—wﬂ§
{lFJL,é} 0

1
+/ (p—C—TL—/ﬂ”L—SDdS—i‘(TL—lL)(l—g)

st. lpel0,1],1; €lp,1], and § € [0,1].

The integrals are the profits of firms that are allocated to the two countries. The
other two terms are the rents of the two governments. The problem can be simplified

to

8 1
min /k’llF—S|d8+lF§+/ k’llL—S|dS+lL(1—§)
0 8

{lF,lL,3}

s.t. lp € [0, 1] , l;, € UF,l] , and § € [O, 1]

Thus the efficient allocation minimizes the sum of the aggregate costs of standard
mismatch and the costs of ES setting. We use superscript e to denote an efficient

allocation. To express dependencies on k, we write I% (k), (5 (k), and 5° (k).

40Tf it is efficient that the two countries set different standard levels, it does not matter for the
efficiency of the allocation whether F' or L sets the higher standard. Here, we pose the problem so
that L sets a standard not lower than F'. Since the roles of F' and L can be exchanged, the results
in this section are unique only up to a relabelling of countries.
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It is immediate that, if & < 1, the set of efficient outcomes is given by % (k) = 0,
19 (k) =0, and $° (k) € [0,1]. That is, for k < 1 it is efficient to set a zero ES with
the share of firms that locates in each country being indeterminate. Even for the firm
s = 1, it is more efficient to incur the costs of standard mismatch, &, than to pay for a
positive ES level [ that would lower mismatch costs: k <!+k(1—1)=k+1(1 — k).
If k =1, any allocation for which I% = 0 and [ = §° € [0, 1] is efficient. In addition,
for I =19 = 0 any §° € (0,1] is efficient as well. Since the mesm and the marginal
cost of enforcing the standard for an additional firm are equal if £ = 1, there exists a
continuum of efficient allocations.

For k£ > 1, solving the minimization problem above yields the efficient allocation:

. k—1
ZF (k) = —4k )

. 3k—1

lL (k) = AL )
o 1

The efficient standard levels are increasing in k. Figure 13 illustrates the efficient ES

levels and the allocation of firms to countries depending on k for the case k > 1.

IF,IL,§
Qlrmmmm e e e [
1/2 $
1/4fp=mmmmmmmmmmmmm e e e oo oo oo 1€
E
1 10 k

Figure 13: Efficient allocation for k& > 1

66



Given the Hotelling features of our underlying model, one might have expected the
efficient solution to have the form i% (k) = ; and [§ (k) = 2 familiar from Hotelling
(1929). In our model the efficient levels of enforcement are lower, starting at just
above I% (k) = 0 and just above I§ (k) = 1 respectively for k — 1 (from above) and
converging towards 1% (k) = ; and I$ (k) = 2 respectively as k becomes large. To
understand why our efficient ES levels are lower than they would have been in a direct
application of Hotelling, recall that in our model one has to take into account the
costs of enforcing the ES for each firm assigned to a country as well as the costs of
standard mismatch. If our model were a direct application of Hotelling then the level
of the ES would not have affected its cost of enforcement. Efficient ES levels in our
model approach the efficient levels that would have arisen in a direct application of
Hotelling’s model as k& becomes large because the cost of standard mismatch becomes
large relative to the cost of enforcement. Finally, as in Hotelling’s model, in our model

the share of firms between countries is equal. This efficient solution will serve as a

benchmark against which to compare the equilibrium outcome.

Competition over Standards and Taxes

In this section we will derive and discuss the equilibrium outcome. Our approach
will be to first define equilibrium and then state our main theorem in which equilib-
rium is characterized. The derivation of equilibrium will be undertaken subsequently.

As mentioned above, standard provision and tax setting are modeled as a two-
stage game. The sequence of events is as follows. Government L sets its standard
level and tax and then, observing L’s choices, Government F’ sets its standard level
and tax. Taking government policies as given, firms then make location decisions to

maximize profits. As usual, a subgame perfect Nash equilibrium is a strategy profile
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with the property that the governments’ strategies constitute a Nash equilibrium in
every subgame of the game.

A strategy for Government L is a pair consisting of a standard level and a tax. A
41

strategy is feasible if the tax is high enough to cover the cost of standard provision.

Formally, the set of feasible strategies is

SL:{(ZL,TL) € [0,1] X {O,p]|7’L ZZL}

A strategy for Government F' is a mapping that assigns a pair, consisting of a
standard level and a tax, to each possible strategy choice made by Government L
in the first stage of the game. Formally, this mapping is described by f : S, —
[0,1] x [0,p] where f(lp,7.) = (lp,7r). Let F be the set that contains all such
mappings. The set of feasible strategies for Government F' consists of those members
of F' with the property that tax revenue covers the cost of the associated standard

level; that is,

Sp = {f el ’ for all (ZL,TL) € SL, f(lL,TL) satisfies 7 > Ip }

We are interested in the pure strategy subgame-perfect Nash equilibrium of the

game, which can be viewed as a Stackelberg game.*?

Definition 19 A pure strategy subgame-perfect Nash equilibrium in tazes and stan-

dard levels is a pair of strategies ((I3,7%), f*) such that
1. (I3,73) € Sr is a best response to f*.

2. f* e Spand f*(Ip, 1) is a best response to (Ip, 1) for all (I, 71) € Si.

“IThus we make the simplifying assumption that there are no other sources of government revenue
and no international capital market which governments can tap. We do not think that allowing such
a possibility would change our results, wherein governments make positive rents in equilibrium.

42Tt will be assumed throughout that mixed strategies in tax rates are not available to governments.
This is generally deemed to be an acceptable assumption in the applied literature on policy setting
in a perfect information environment.
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With the structure of the model in place and equilibrium defined, we are now

ready to state our main theorem which characterizes equilibrium.

Theorem 20 The outcome of the subgame-perfect equilibrium.*3

The subgame-perfect equilibrium is as follows.

(a) (Efficient outcome) If k < %, both countries set the minimum standard level and
set zero taxes. Firms split equally between the two countries; that is, (I5,73) = (0,0)
and (I, 75) = (0,0), and §* = 1.
(b) (Standard haven) If 3 < k < 1, the differentiation in standard levels between the
two countries is high; the developed country sets a standard close to the mazimum
level and the developing country sets a zero standard level. Both countries set taxes
that lead to positive rents, and rents are always higher for the developing country than
for the developed country. The magority of firms locates in the developing country.
Specifically, it holds that Ij > 8, 73 € (I3,21}), and [ =0, 7 € (3,5), and §* > 2.
(¢) (Race to the top) If k > 1, the standard level is above 5 in both countries, with the
developed country setting a higher standard than the developing country. The standard
levels do not vary with k. Both governments make positive rents, requiring firms to
pay more than twice the cost of standard provision. The developing country sets a
higher tax than the developed country and earns higher rents. Two-thirds of the firms
locate in the developing country, and every firm with strictly higher ideal standard

level than set in the developing country locates in the developed country. Specifically,

it holds that I} = &, 77

243k >20;, and Uy = 2, 1%

442 o 2
3+ 3k >3, and §* = 3.

Figure 14 shows the equilibrium standard levels set in the two countries depending
on k. The subgame-perfect standard and tax levels differ considerably across the
three regions of k: A small k leads to an efficient outcome; for k in an intermediate

range there is almost maximum differentiation in standards; for large k there is some

43The theorem is restated in the Appendix with formulae for all the equilibrium values shown
explicitly.
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differentiation but it is substantially smaller than for k£ in the intermediate range.
The reason is that F' sets two-thirds of the maximum standard instead of zero as in
the ranges where k is low and high. For low k, taxes are the same in both countries.
For é < k <1, the developed country sets a higher tax than the developing country,
whereas for £ > 1, the developing country sets a higher tax than the developed

country.
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Figure 14: Equilibrium standard levels depending on &

The common characteristic of equilibrium across all levels of £ is that the devel-
oping country attracts at least as many firms as the developed country. Also, for
k > %, both the developed and developing country are able to extract rents.** This

arises as a result of the monopolistic power that each government has over location

4“4 The result is particularly striking for the country that supplies zero standard even though it
levies a positive tax.
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within its country. Each firm must locate in one country or the other in order to
produce, and the government of the country where it does locate is able to exploit
its resultant power when setting taxes. An additional interesting aspect is that F,
who sets a lower standard, makes more rents because it both attracts more firms and
makes more rents per firm. Except for £ < %, countries set inefficiently high standard
levels.

The intuition behind the result for low marginal cost of standard mismatch, case
(a), is straightforward. For k < %, the costliness of standard mismatch is so low that
countries do not succeed in differentiating themselves via standard levels. This is due
to the fact that firms do not perceive countries with different standard levels as suf-
ficiently distinct from each other. Therefore a country cannot extract a monopolistic
rent by setting a standard level different from the one set in another country. All
competition occurs in taxes, which brings about an efficient outcome.

Turning to case (b), the intuition behind the maximum differentiation in standards
that occurs when the marginal cost of standard mismatch is in an intermediate range
is as follows. The developing country has a second-mover advantage and so creates
a standard haven for firms whose costs are affected more by taxes than by standard
mismatch. The developed country can extract some rents (because k is not too
small), but only by differentiating itself substantially (because k is not too large)
from the developing country. Because it is a dominant strategy for the developing
country to become a standard haven, the developed country can only differentiate
itself by setting its standard at a high level. As a result there is close to maximum
differentiation between the two countries.

Regarding case (c), when the cost of standard mismatch is high relative to taxes,
both countries offer inefficiently high standard levels. (Recall from Section 3 that the
efficient outcome calls for the countries offering up to, respectively, 12% and 35% of

the maximum standard level.) Because firms value a lower standard mismatch more
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than lower taxes, the developing country has an incentive to choose a standard level
close to the standard level that the developed country sets. Whether the developing
country chooses a standard level that is lower or higher than the one in the developed
country depends on whether the developed country sets a relatively high standard
level (in which case the developing country would set a lower standard level) or
whether it sets a relatively low standard level (in which case the developing country
would set a higher standard level). In equilibrium, the developed country chooses a
high standard level even though a lower standard level would be less costly. This is
because the developed country has to allow the developing country to extract high
rents to prevent the developing country from undercutting.

Notice that case (c) is the case which one would expect to be least stable among
the three cases. Because F' sets the highest tax that still attracts a positive fraction
of firms to its country (all firms ‘to the left of F” with an ideal standard level not
higher than the one F' sets), Government L - if able to do so - could marginally lower
its tax, and by doing so attract all firms to its country. An additional fraction of
two-thirds of all firms would be attracted, from which L could extract rents.

Now that we have stated our main result and given the basic intuition behind
it, we will next provide a detailed analysis of its derivation. To do so, the next
subsection provides a characterization of F’s best response, and this is followed by
a characterization of L’s best response in the subsection that follows. All proofs are

given in the Appendix.

The developing country’s best response function

In this section, we analyze Government F’s best response to a given strategy
(Ip,71) of Government L. We can ignore Case 1 since setting the same standard level
and tax as L is never a best response for F' except if (I;,77) = (0,0) and k& < 1, which
is treated below. We can also ignore Case 5 since choosing a response that does not

attract any firm is never a best response for F'.
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To find Government F’s best response to a given strategy of L, we proceed in

two steps. First, we maximize F’s rents separately over the three response subsets,

sharing I, sharing 11, and undercutting.
Government F’s optimization problem:

(a) Maximize rents over sharing I

max(7p — lp)S$

Trlr

s.t.
lr € 1[0,11)
Tr € |[lp,p]

T € [TL—ICUL—ZF),TL+]€(ZL—ZF)]

(b) Maximize rents over sharing II

max(7r — lp)(1 — 8)

TRlF

s.t.
lF & (lL,l]
Tr € UF7p]

Tp € [TL—k(lF—lL),TL+k(lF—lL>]

(c) Maximize rents over undercutting

HlaX(TF—lF)
TElF
s.t.

lr € [0,1]

T < TL—k’”L—lF’.
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Second, given the solutions to (a), (b), and (c), the best response is found by com-
paring the maximized rents across the three sets of possible solutions.

There are two issues that can arise when solving for the developing country’s best
response to (I, 7p): First, a best response might not exist; second, a best response
might not be unique. The existence of a best response to (I1,7.) is not guaranteed
because an optimal undercutting strategy does not exist. The reason is that the rent
function does not have a well-defined maximum on the set of undercutting strategies.
That is, for each undercutting strategy with 7o = 7, — k|l — lp| — € where £ > 0,
we can find a slightly higher tax (i.e., a smaller €) that still undercuts L’s strategy.
Because such a tax would yield higher rents, the optimal undercutting strategy is not
well defined.*®

In our model this difficulty can be resolved in a straightforward way. Even though
one cannot determine an optimal undercutting strategy, one can determine when Gov-
ernment F' will undercut L and when it will share firms with L. Because Government
L will avoid strategies that induce F' to undercut (i.e., undercutting happens only
off the equilibrium path), we can solve our model without determining the specific
undercutting strategy. We determine which of L’s strategies lead F' to undercut by
assuming that F' undercuts whenever there exists some undercutting strategy that
yields more rents than the best sharing strategy.

To be more specific, let 75 (I, 7.) be F’s rent from an optimal sharing strategy
after L has chosen (I1,7r), and, given ¢ > 0, let 7% (1, 7;¢) be F’s rent from
undercutting where 7p = 7 — k|l — lp| —e. Let ri (I, 71) = lime_o 7% (Ip, 715 €).
Note that, by choosing ¢ sufficiently small, F' can obtain a rent arbitrarily close to
s (I, 7)), but still % (Ip, 71;¢) < r% (I, 71) no matter how small is €. By solving

5 (lp,7r) = 1% (lp, 7) we obtain a critical tax 7, that depends on I;,. We denote

45The literature on entry deterrence through pricing strategy has also had to broach the issue of
what constitutes a best response when payoff functions defined by the game are discontinuous and
might not have a well defined maximum. This issue carries over to the present setting.
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this tax by 71, (I;) and will refer to it as the sharing tax limit. The sharing tax limit

can be used to classify payoffs to F’s standard and tax as follows:

If 7, < 7. (lz) then for all € > 0, it holds that 73 (I, 7r) > rg (IL, TL;€) ;

if 7, > 7. (lz) then there exists an € > 0 such that 3. (I, 7.) <71} (lL, 7€) -

In other words, if L’s tax is higher than the sharing tax limit, then F' can find an
¢ small enough to make the rents earned from undercutting higher than the rents
earned by sharing. However, if L sets its tax no higher than the sharing tax limit,
F' finds that sharing yields strictly higher rents than undercutting, no matter how
small is €. Figure 15 depicts the situation (the significance of [, in the figure will be

explained later).
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Figure 15: Sharing tax limit for k£ < 1

To deal with the fact that Government F' might have multiple best responses

recall our assumption that, if a government has multiple best responses, it chooses

[0)



the best response that maximizes its share of firms. This implies that of the best
responses available, F' chooses the one that requires the lowest level of standard.
Moreover, if in addition (I1,77) = (0,0), we assume that F' sets 7 = 0. We only
require these properties in two situations. First, if £ < 1 and (Iz,7.) = (0,0), there
is no response that yields positive rents for F'. Our assumption then implies that F'
chooses (Ip, 7r) = (0,0). Notice that any other feasible strategy for F' would induce
all firms to locate in L. Second, if k = 1 then for any (I;,7,) Government F' has
a whole range of best responses. More specifically, there is a best response at each
standard level [r. The reason is that standard mismatch and taxes are equally costly
for firms. Therefore if a country decides, for example, to set a lower standard and use
the resources that it saves to reduce its tax, it will attract the same share of firms as
before and it will make the same rents per firm. For this case, our assumption implies
that [ = 0.

Before stating our first result, to keep track of the different kinds of sets charac-
terizing our results, we introduce the following notation. The responses that max-
imize rp (g, Tr; 11, 71) over undercutting, sharing I, and sharing II are denoted by
(1%, 7%, (154, 75), and (152, 732), respectively. The corresponding rents are denoted
by %, rit, and 72, respectively. The responses and revenues all depend on [;, and
7. For notational ease, we will use (I}, 75) to denote the response that maximizes
e (lp Trylp, 7r) over {(lg, 7%), (I3, 73), (13, 78) -

The nature of the results we obtain differs across three intervals, k € (0, %],

k € (%, 1}, and k € (1,00). For each of the three regions of k, Proposition 21
summarizes the best response of Government F' to any standard level and tax that

Government L has chosen in the first stage.

Proposition 21 (The developing country’s best response)
(a) If the marginal cost of standard mismatch for firms is low (k < 5), Government

F'’s best response to any of Government L’s feasible strategies is to set zero standard,
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and to set an undercutting tax if T, > 0 and to set Tp = 0 if 7, = 0. Specifically, if
7 >0 then (I3, 7%) = (0,7%(lp, 7)) , and if T, =0 then (I}, 75) = (0,0).

(b) If the marginal cost of standard mismatch is at an intermediate level (3 <k <1)
there exists, for each standard level set by L, a corresponding sharing tax limit. If
L sets its tax above (equal to or below) the sharing tax limit, then Government F'’s
best response is to set no standard and to set the corresponding optimal undercutting
tax (optimal sharing tax). Specifically, for each lj, there exists a sharing tax limit,
7r(lL), such that if Tr, > 7p(I1) then (I, 73%) = (0, 7%(lp, 7)) and if T, < 7r(I1) then
(I, 73) = (0,733 (lp, 7). F’s optimal sharing tax is given by 75 (I, 71) = 27+ %1,
(c¢) If the marginal cost of standard mismatch is high (k > 1) there exists, for each
standard level set by L, a corresponding sharing tax limit. If L sets its tax above (equal
to or below) the sharing tax limit, then Government F'’s best response is to set the
optimal undercutting tax while setting the same standard level as L (set the optimal
sharing tax and set either a lower or higher standard than L ). Specifically, for each
I, there exists a sharing tax limit, 71(l), such that if T, > Tr(l5) then (I}, 75) =

(I, 7¢I, 71)) and if 7, < 7(1g) then (I, 73) € {5, 73 (I, 71)), (17, 75 (L, 7)) }-

If the marginal cost of standard mismatch is low or at an intermediate level (k <
1), it does not pay for Government F' to compete in the standard at all. Thus [, =0
in parts (a) and (b). However, if the marginal cost of standard mismatch is high
(k > 1), F has an incentive to set a positive standard level. Moreover, the cheapest
way to attract all firms is to set exactly the same level of standard as L. In this
way F' does not need to compensate any of the firms for a higher standard 