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CHAPTER I

INTRODUCTION

This dissertation comprises four chapters on networks and games. The first chap-

ter, "Trimmed Strategies: Achieving Sequentially Rational Equilibria With Only

Partially Specified Strategies," examines notions of sequential rationality underlying

two popular equilibrium refinements: subgame perfect equilibrium and weak perfect

Bayesian equilibrium. I start my analysis by showing that each strategy profile, to-

gether with a notion of sequential rationality, induces a partition of a game into two

parts: a "relevant" part and an "irrelevant part." It is shown that whether play on

the relevant part is sequentially rational (according to whichever notion of sequential

rationality is considered) is independent from the play on the irrelevant part. The

trimmed version of an equilibrium concept is then defined as a profile that satisfies

the equilibrium concept’s conditions on the relevant part that the profile induces. The

independence of sequentially rational behavior in the relevant part from play in the

irrelevant part ensures that a trimmed equilibrium is never sustained by sequentially

irrational play.

There are games for which a subgame perfect equilibrium does not exist because

Nash equilibrium does not exist in some of their subgames. The concept of trimmed

equilibrium is of interest for the analysis of such games. It demonstrates that even

if a certain equilibrium does not exist in a game, one might nonetheless be able to

identify an outcome that is consistent with the notion of rationality underlying that

equilibrium concept. Another motivation for this chapter is to establish robustness

properties of equilibria. Such robustness properties have recently received much in-

terest in the literature (see for example Kalai 2004 and the references therein). The

irrelevant part of an equilibrium profile is by definition such that the equilibrium is

robust to any changes made in that part.
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The second chapter, "A Characterization of Weakly Pairwise Nash Stable Net-

works," studies various aspects of pairwise Nash stability, a widely used concept in

the network literature. First, I characterize weakly pairwise Nash stable networks as

the Nash equilibrium networks of a well-defined game in strategic form. Second, I

define a two-stage game of network formation that models how cooperation can arise

as an outcome of noncooperative play.

The starting point for the characterization of weakly pairwise Nash stable networks

is Myerson’s linking game of network formation (Myerson 1991), which has received

much attention in the literature (see Jackson 2001 for a survey). In Myerson’s game,

each player announces a list of players, and links are formed if and only if two players

announce each other. A network is weakly pairwise Nash stable if it is supported by

a Nash equilibrium of Myerson’s linking game and there are no two players that are

not linked for whom it would be mutual beneficial to form a link. I extend Myerson’s

linking game by adding pairs of players to it and I call the game the linking game

with player pairs. The rules of the game and the payoffs for player pairs are designed

so that the set of its Nash equilibrium networks is equivalent to the set of weakly

pairwise Nash stable networks.

A benefit of the linking game with player pairs is that it allows to define mixed

strategies on the coordinated moves of pairs of players. The analysis of the mixed

extension of the linking game with player pairs is of interest because weakly pairwise

Nash stable networks need not exist.1 Examining these mixed strategy equilibria,

I find that networks that receive positive probability in equilibrium (a) might not

be part of any absorbing state of a process of dynamic network formation, and (b)

might not be supported by a Nash equilibrium of the linking game. Thus, the set of

networks supported by a mixed strategy equilibrium of the linking game with player

pairs is larger than the set of Nash equilibrium networks.

1This approach might be applicable to other games with cooperative elements. A solution often
does not exist for such games, but mixed strategies cannot be defined in any obvious way.
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To provide intuition for the presence of pairs of players, the next part of the chapter

defines and analyzes a game in which network formation occurs in two stages. In the

first stage, noncooperatively acting players can form links with others that allow them

to coordinate (at least to some degree) their moves in the second stage. In the second

stage, a constrained version of the linking game with player pairs is played. In the

constrained version, only pairs who formed links in the first stage can coordinate on

their links. I argue that the two-stage game displays natural features of real world

network formation. The game is used to show that, even if two players benefit from

forming a link, a network might be stable, simply because the two players have not

formed a "first stage link," which can be interpreted as not knowing much about each

other. In this vein, it is shown that the set of subgame perfect equilibrium networks

of the two-stage linking game is larger than the set of weakly pairwise Nash stable

networks. However, refining the set of equilibria by requiring undominated strategies

ensures that the corresponding outcomes of the two-stage game are weakly pairwise

Nash stable networks.

The third and fourth chapters turn to more applied questions of strategic equilib-

rium in networks and games.

The third chapter, "Competition Over Standards and Taxes," a joint work with

Myrna Wooders and Ben Zissimos, develops a model of interjurisdictional competi-

tion, in which governments choose standards and taxes to attract mobile firms. In

a setting in which firms have varying requirements for standards, we show that a

country that sets its standards and tax levels first provides higher standard levels

and sets higher taxes.

In our model, countries use revenue from taxation to enforce standards, such as

property rights, environmental standards, and child labor regulations. The standard

level in a firm’s chosen jurisdiction inflicts a nonnegative cost on the firm. That cost

could be directly or indirectly incurred by the firm. For example, the firm might have
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to install a filter to comply with an environmental standard, but there could also be

an indirect cost incurred by the firm through negative externalities from other firms.

The cost is heterogeneous across firms and non-monotonic in the level of standard:

Each firm has a unique level of standard at which its cost is minimized. This contrasts

with public good models where, all else equal, firms unanimously prefer higher levels

of public goods. Jurisdictions move sequentially rather than simultaneously. We

have in mind the case of a well developed country and a less developed country or an

emerging economy. In equilibrium the first-moving government sets a higher standard

level and charges a higher tax than the second-moving government. The majority of

firms locates in the jurisdiction of the second-moving government.

On the technical side, our model poses difficult problems for existence of subgame

perfect equilibrium in pure strategies since some subgames of the game may not have

an equilibrium in pure strategies. This difficulty is resolved by showing that these

subgames are never reached because they are in some sense dominated by other sub-

games. The argument uses concepts that are in spirit similar to the ones introduced

in Chapter 1.

The fourth chapter, "Lobbying in Networks," attempts to shed light on diffusion

of behavior and on optimal strategies to promote or prevent diffusion in a popula-

tion. In particular, the chapter examines how an interested agent would go about

influencing a group of individuals, exploiting their group structure. Examples can be

found in politics (lobbying, election campaigns), marketing (word-to-mouth market-

ing, viral marketing), and in numerous other situations. The chapter focuses on group

decisions.2 Voting decisions are at least partially influenced by interactions with oth-

ers, and we frequently observe that decided individuals (individuals with clear-cut

interests) try to influence the vote of others. So far, this observation has received

little attention in the literature.3 Here, I model a lobbyist who tries to influence the

2But the model is general enough to fit other applications.
3Even though group decisions are pervasive throughout most societies (group decisions are made
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decision of a group.

In the model, a group votes on a proposal and the lobbyist tries to persuade the

group to vote for the proposal. Interactions between individuals are represented by a

network (but in contrast to Chapter 2, here the network is taken as given). The main

idea, assuming individuals are influenced by their interactions, is that the lobbyist

can use information about group structure to engineer "persuading cascades." The

general goal of the chapter is to gain insight into diffusion. The more specific goal

is to identify key sets of influential group members and to show how the results of

lobbying depend on the network structure.

Finding the key sets of influential players in arbitrary networks is a difficult prob-

lem (see Ballester et al. 2009 for a discussion). So far the literature has approached

the problem by obtaining algorithms that approximate the solution to the problem

or by addressing related questions instead. Here, I take a different approach. By

restricting the class of networks in the first part of the chapter, I am able to provide

an exact solution to the problem: In networks with a core-periphery structure, the

lobbyist’s optimal strategy is to target those group members that have high degrees

and oppose the proposal. I also compute bounds on the number of voters that have

to be convinced to eventually reach unanimous support and show that more tightly

connected groups are harder to convince.

The second part of the chapter examines the process of opinion formation in

arbitrary networks. Using a result from Goles and Olivos (1980), I show that the

process becomes periodic after a finite number of periods, independent of the initial

opinions held in the network. Once the periodic state is reached, voters either do

not change their opinions anymore or switch back and forth between two different

opinions. The chapter concludes with a discussion of how diffusion in a network can

by congress, committees, corporations, families, juries, etc.), most of the literature has focused on
the case where one individual tries to persuade another individual. As Caillaud and Tirole (2007)
write "surprisingly little has been written on group persuasion."
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be interpreted in terms of hierarchies of groups within the network with some groups

being opinion leaders while others are followers.
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CHAPTER II

TRIMMED STRATEGIES: ACHIEVING SEQUENTIALLY
RATIONAL EQUILIBRIA WITH ONLY PARTIALLY SPECIFIED

STRATEGIES

Introduction

Many refinements of Nash equilibrium (NE) incorporate some notion of sequen-

tial rationality. Such refinements serve to rule out outcomes sustained by irrational

play off the equilibrium path, in particular by noncredible threats. For example, a

subgame-perfect equilibrium (SPE) incorporates sequential rationality by requiring

NE in each subgame, and a weak perfect Bayesian equilibrium (WPBE) incorporates

sequential rationality by requiring best responses at each information set given the

belief at this information set, and given future play. This paper establishes that both

SPE and WPBE can be more restrictive than necessary to ensure outcomes that are

consistent with their particular notions of sequential rationality. More precisely, given

a strategy profile (and a system of beliefs), this paper characterizes the maximal col-

lection of information sets off the equilibrium path such that choices within this set

never affect the rationality as imposed by a SPE (a WPBE) outside of the set.4 This

collection will be called the maximal collection of SPE-irrelevant (WPBE-irrelevant)

information sets.

Let V be a collection of information sets and let b be a profile of behavioral strate-

gies. If V is the maximal collection of SPE-irrelevant (WPBE-irrelevant) information

sets, then the requirement of sequentially rational play in V can be dropped while

making sure that the outcome of b is never sustained by sequentially irrational play

on V . A strategy profile b that satisfies sequential rationality as imposed by SPE

(WPBE) outside the maximal collection of irrelevant sets will be called a trimmed

4In principle the characterization of inessential game parts could be done for other equilibrium
concepts as well, but is not examined here further.
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SPE (trimmed WPBE). This terminology is chosen to emphasize that strategies in a

trimmed equilibrium can be viewed as smaller strategies, because the play at irrele-

vant sets can essentially be left unspecified.5 It will be shown that a trimmed SPE

(WPBE) can not be relaxed further. Its conditions are necessary and sufficient to

ensure that outcomes are not sustained by their respective notions of irrational play.

There are several motivations for the study of maximal collections of irrelevant

information sets and for the concept of trimmed equilibrium. First, there are games

in which a SPE does not exist, because on a subset of their subgames NE does not

exist. In such cases, knowing which parts of a game are irrelevant for a SPE can be

helpful. As Section 4 demonstrates via an example, the results of this paper can help

find an outcome which is, nonetheless, consistent with sequential rationality.6 For

a first illustration of this example (more details are provided in Section 4), consider

two profit-maximizing firms, i and j. Both firms produce the same homogenous good

and compete against each other in a Bertrand-Edgeworth world. In stage one, they

simultaneously build capacities xi and xj at a cost of K dollars per unit. In stage two,

they simultaneously announce prices pi and pj, and demand is realized.7 Suppose only

pure strategies are available to the firms and that we are interested in the SPE of this

game. Each capacity pair chosen in the first stage induces a pricing subgame in the

second stage. As Kreps and Scheinkman (1983) show, pure strategy equilibria exist

only for a subset of these subgames, as illustrated in Figure 1. There, the functions

ri(xj) and rj(xi) are the best response functions derived from a Cournot game in

which two firms simultaneously choose quantities xi and xj and each firm has a unit

5Another interpretation goes as follows. A maximal collection of irrelevant information sets for
some profile b and some notion of sequential rationality identifies an equivalence class of strategy
profiles. The class consists of all profiles that coincide with b on the relevant part of the game and
induce arbitrary play on the part of the game that is irrelevant for b.

6Theorems 7 and 14 and their corollaries show that the trimmed version of an equilibrium, even
though it is less restrictive, does not give up on the degree of rationality imposed: Provided the
original equilibrium exists, the sets of outcomes for the original concept and for its trimmed version
are the same.

7Demand is determined by a rationing rule.
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cost of 0 dollars per unit. Pure strategy pricing equilibria do not exist in subgames

where either firm i has chosen a capacity above ri(xj) or firm j has chosen a capacity

above rj(xi). Since a SPE requires NE play in all subgames, a pure strategy SPE

does not exist. In contrast, the definition of a trimmed SPE does not require Nash

equilibrium play in every subgame and as a consequence a pure strategy trimmed

SPE might exist. Section 4 demonstrates the application of a trimmed SPE in this

particular example.

10

2 1( )r x

1 2( )r x

Nonexistence of pure-strategy

Existence of 

10

pricing equilibria

pure-strategy
pricing equilibria

Figure 1: Nonexistence of SPE due to nonexistence of NE in some subgames

Second, determining the maximal collection of irrelevant information sets of an

equilibrium strategy profile, also determines the parts of the game whose specifica-

tions, be they players, payoffs, order of moves, or any other specification, are not

relevant for the equilibrium. In other words, the equilibrium is robust to any kind of

change in this part of the game. Such a robustness result is of interest in situations

where some specifications are uncertain in a way that does not allow for a probability

assessment (see Kalai 2004). For example, players at an initial stage of the game

might not know how many other players will enter the game at later stages.
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Third, the results in this paper call into question the standard game-theoretic

assertion that equilibrium play is the outcome of complete contingent plans made

by rational agents. As is shown, players can reach an equilibrium that is consistent

with sequentially rational play, via trimmed strategies. Indeed, one would expect

individuals to form a complete contingent plan only in simple strategic situations. In

more complex situations, it seems unlikely that individuals actually form such plans.8

Moreover, in a trimmed equilibrium players might form incorrect expectations about

some of the other players’ future moves. Neither are these incorrect expectations

ever uncovered when players follow their trimmed equilibrium strategies, nor do they

sustain a player’s strategy choice.9 By showing that the play at some information

sets is irrelevant, this paper provides a theoretical rationale of why players might not

form complete contingent plans or might not revise incorrect expectations.

While there is no directly related prior literature, a somewhat related strand of

the existing literature examines robustness of equilibrium towards a game’s specifica-

tions.10 Since strategic situations are often not completely specified, it is of interest to

know which properties of an equilibrium guarantee its robustness towards the game’s

specifications. One part of the literature deals with robust equilibria in large games,

where the number of players is uncertain (see for example Kalai 2004, 2005). Games

8It lies in the nature of game-theoretic experiments that the experimenter only observes the
participants’ actual play, but not their complete stratgegies. Selten et al. (1997) describe a method,
developed by Selten in previous work, which allows experimenters to observe complete strategies.
However, this method "forces" participants to form complete contingent plans. It is not clear
whether participants in experiments actually make complete contingent plans. To my knowledge,
an experimental study of this issue has not been conducted.

9A similar idea lies behind the concept of a self-confirming equilibrium (Fudenberg and Levine
1993). However, a self-confirming equilibrium need not even be a Nash equilibrium.
10A paper that seems related at first sight is Kalai and Neme (1992). They introduce the concept

of a p-subgame perfect equilibrium, which requires subgame perfection after histories with no more
than p deviations from the equilibrium path. However, p-subgame perfect equilibrium rationalizes
behavior beyond SPE play. After a certain number of deviations players do not to expect rational
behavior by other players. Accordingly, a p-subgame perfect equilibrium can result into outcomes
not sustainable by a SPE. This difference to a trimmed SPE also shows that the maximal collection
of irrelevant information sets cannot be characterized by simply looking at numbers of deviations.
In particular, the maximal collection of SPE-irrelevant information sets for a profile b is not the the
set of information sets that cannot be reached by a unilateral deviation.
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with uncertain features are usually called "partially specified." Instead of identifying

equilibrium properties that guarantee robustness of equilibrium to changes in certain

specifics of a game, this paper characterizes entire parts of a game, the specifics of

which do not affect the equilibrium.

Recently, and independently from my work, Briata et al. (2007) have addressed

similar questions. They identify what they call the "essential collection" of informa-

tion sets. However, our concepts do not coincide. In particular the complement of an

essential collection is not equivalent to a the maximal collection of irrelevant infor-

mation sets.11 Also, while they focus on providing a general and unified framework

for what they call essentializing equilibria, I focus on two widely used equilibrium

concepts, for which irrelevant sets can be particularly large.

The reader familiar with the repeated game literature might be aware that this

literature already uses the idea of trimmed strategies in the context of SPE. However,

to my knowledge, the concept has not been formalized, nor has it been generalized

to a wider class of games (the task of characterizing maximal collections of irrelevant

information sets for general games is not trivial). In addition, this paper introduces

a way of trimming strategies for belief-based concepts.

In summary, this paper (1) characterizes maximal collections of irrelevant informa-

tion sets for both SPE and WPBE, (2) defines trimmed versions of SPE and WPBE

and shows that their outcomes are never sustained by their respective notions of se-

quentially irrational play, and (3) demonstrates that a trimmed equilibrium can exist,

even though the original equilibrium does not exist.

The rest of the paper is organized as follows. Section 2 introduces basic notations.

Section 3 deals with the maximal collections of irrelevant information sets for SPE
11Basically, this is because they require essential collections to be closed under ≤ (roughly meaning

that if an information set is in the essential collection, so are all its predecessors). Another difference
originates in their definition of essential collections for belief-based concepts. An information set
belongs to the essential collection if it is relevant under some belief, while here irrelevant sets depend
on a specific belief.
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and the trimmed SPE. Section 4 provides a detailed example. Section 5 parallels

Section 3, but applies to WPBE. Section 6 concludes.

Preliminaries

This section introduces basic notations. Since the information structure of a game

plays an important role, I analyze extensive form games.12 The class of extensive form

games examined satisfies perfect recall and complete information. In addition, while

the game might be infinite, each player has a finite number of choices whenever the

player moves. At least the main results concerning SPE can be extended to games of

incomplete information and with an infinite number of choices. I restrict the class of

games mainly to avoid lading the exposition with more notation. All terminology not

introduced explicitly (for example, a path, a rooted tree etc.) is used in the standard

game-theoretic or graph-theoretic sense.13

Extensive form games

An extensive form is a tuple Γ = (T,P,W, C), where

1. T = (X,E) is a rooted tree withX being a countable set of vertices and E being

a set of (unordered) pairs from X. The origin (root) of the tree is denoted by

x0. For every vertex x, the sets of its immediate predecessors and its immediate

successors are denoted by s(x) and p(x).14 The (possibly empty) set of terminal

nodes is the set Z = {x ∈ X : s(x) = ∅}.

2. P = (P1, ..., Pn) is a partition of the set X \ Z into n sets, one for each player

i ∈ N = {1, ..., n}.
12An interesting topic for future reseach would be to examine what are the analogs of collections of

irrelevant information sets and trimmed equilibrium for normal form games. The remark in Footnote
5 points in that direction.
13The description of an extensive form game follows Selten (1975) and van Damme (1981).
14The order is naturally given by the distance to the origin.
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3. W = (W1, ...,Wn) is an information partition, whereWi is a partition of Pi into

information sets of player i so that

(a) every path from the origin intersects the information set at most once, and

(b) nodes in the same information sets have the same number of immediate

successors.

Let W = ∪Wi.

4. C = {Cw}w∈W is a collection of partitions. Each partition corresponds to choices

at w. The partition Cw divides nodes in ∪x∈ws(x) into the finite number of

choices available at information set w, so that every choice contains exactly

one element of s (x) for every x ∈ w. A generic choice at w (a member of the

partition Cw) is denoted by cw and the set of choices at w is denoted by Cw.

An extensive form game is a pair Σ = (Γ, u), where u = (u1, ..., un) are n real-

valued von Neumann-Morgenstern expected utility functions, one for each player

i ∈ N . The domain of each ui is the set of probability distributions over terminal

histories (see below for the definition of terminal histories).

Behavioral strategies

A behavioral strategy for player i is the collection bi = (bi(w))w∈Wi such that

bi(w)(cw) denotes the probability bi attaches to choice cw at w. If mixed strategies

are not available at w, the mapping bi(w) assigns either probabilities zero or one. A

profile of strategies is denoted by b and a system of beliefs is denoted by μ. Let μ(w)

denote the probability distribution over nodes in w induced by the system of beliefs

μ and let μ(x) denote the belief induced by μ that node x is reached given that the

information set to which x belongs is reached. A subform of Γ is denoted by γ, and

G is the set of subforms of Γ.15 A subgame of Σ = (Γ, u) is denoted by (γ, u|γ) where

15A subform of Γ is the analog to a subgame of Σ, that is it is an extensive form that can be
obtained by restriction of Γ on a subset X 0 of X.
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u|γ is the restriction of u to terminal histories in γ. The profile bγ is the strategy

profile for subform γ induced by strategy profile b.

Notation concerning the structure of a game tree

The player who moves at information set w is denoted by ι(w). Let h be a finite

or infinite path in T starting at x0. That is, h = (x0, x1, ..., xK) for some K < ∞

such that xk = s(xk−1) for k = 1, ...,K, or h = (x0, x1, ...) such that xk = s(xk−1) for

k = 1, 2, .... Such a path h is called a history of Γ. With a slight abuse of notation, I

will write h ⊆ h0 if h0 = (h, xk, xk+1, ..., xK) or h0 = (h, xk, xk+1, ...) and xk ∈ h if xk is

part of the sequence h. The set of all histories is denoted H. A history h is terminal

if there is no other history h0 ∈ H such that h ⊂ h0. The set of terminal histories

is denoted by H̄. For w ∈ W , let H (w) denote the set of histories ending at some

x ∈ w. The subpath of h with initial node x is denoted hx. Let ≤ be a partial order,

defined over both X and W , where (1) x ≤ x0 if and only if x0 is accessible from x,

that is there exists a history h such that x0 ∈ hx, and (2) w ≤ w0 if and only if there

exists a pair (x, x0) with x ∈ w, and x0 ∈ w0 such that x ≤ x0.

The information set that contains x is denoted by w(x). The set of information sets

that have, respectively, positive and zero probability to occur under b are denoted by

A(b) and B(b) (so {A(b), B(b)} is a partition of W ). The probability distribution

that b induces on H̄ is denoted by o(b).

Trimmed SPE

The first part of this section gives a precise definition of maximal collections of

irrelevant information sets and shows their existence and uniqueness. Let ρSPE stand

for "sequential rationality as imposed by SPE." For extensive form game Σ, strategy

profile b, and a set of information sets V ⊆ W , say that b satisfies ρSPE on V in Σ

if b induces NE in all subgames (γ, u|γ) with origin in V . For extensive form Γ and

strategy profile b, let V ⊆ B(b) be such that whether b satisfies ρSPE on W \ V is

14



independent of the play on V in any game Σ = (Γ, u). Call V a collection of SPE-

irrelevant information sets for b. A collection of SPE-irrelevant information sets

divides a game into two parts. Whether the play on the "relevant" part is consistent

with subgame-perfect rationality is independent from the play on the irrelevant part.

Let Wirr(b, ρSPE) be the set of all collections of SPE-irrelevant information sets for

b. The set Wirr(b, ρSPE) is partially ordered (under inclusion). Notice that it follows

directly from the definition that Wirr(b, ρSPE) is closed under union. Hence, every

chain in Wirr(b, ρSPE) has an upper bound in Wirr(b, ρSPE), namely the union of

all members of the chain. It follows from Zorn’s Lemma that there exists a unique,

though possibly empty, maximal collection of irrelevant information sets, which will

be denoted by Wirr(b, ρSPE). I show that whenever a strategy profile satisfies ρSPE

on the set of all relevant information sets, W \Wirr(b, ρSPE), one can find a strategy

profile that induces the same outcome and satisfies the original equilibrium conditions,

provided that equilibrium exists for the game.

To economize on notation, for the remainder of this section "b satisfies ρ" shall

always mean "b satisfies ρSPE." The first result in this section shows that the maximal

collection of SPE-irrelevant information sets for b consists of those sets that can be

reached from b’s outcome path only if at least two players deviate in the "first stage"

of some subform (the emphasis on "only" is made because a non-singleton information

set can be reached by different deviations). To make precise what is meant by the

"first stage" of a subform, let γw denote the minimal subform to which w belongs,

that is there is no proper subform of γw to which w belongs as well. Let {Wγ}γ∈G be

a partition of the set of information sets W where Wγ = {w ∈W : γw = γ}. The set

Wγ is referred to as the first stage of γ. Let bV denote the restriction of b to the set

V ⊆W .

Definition 1 (Information sets on and off the unilateral deviation path).

Fix an extensive form game Γ and a strategy profile b. The set of information sets

15



on the unilateral deviation path of b is denoted by B1(b). Information set w ∈ B1(b)

if and only if

1. w ∈ B(b), and

2. there exists b0 such that

(a) w ∈ A(b0), and

(b) for each Wγ, for at most one player i, b
Wγ

i 6= b
0Wγ

i .

The set B2(b) ≡ B(b)\B1(b) is the set of information sets off the unilateral deviation

path of b.

Furthermore, let WSPE(b) = A(b) ∪ B1(b) (so W\WSPE(b) = B2(b)). The sets

A(b) and B(b) partition W into information sets on the outcome path of b, and

information sets off the outcome path of b. The criterion of a unilateral deviation

path leads to a further partition of B (b) into two sets, the set of information sets on

the unilateral deviation path, B1(b), and the set of information sets off the unilateral

deviation path, B2(b). Figure 2 illustrates a set of information sets off the unilateral

deviation path for the profile that is indicated in the figure by the bold edges. The

arrows indicate the corresponding outcome path. The set of information sets off the

unilateral deviation path is B2(b) = {w0}. Note that the figure shows a game form

instead of a fully specified game with payoffs. Indeed, whether an information set is

off the unilateral deviation path depends only on the game form and a strategy profile.

As in this example, B2(b) does not necessarily coincide with the set of information

sets that can not be reached by a unilateral deviation from b. Here, both w and w0

can not be reached by a unilateral deviation. The reason why w is not in B2(b) is

that it can be reached by a sequence of unilateral deviations (that is via a unilateral

deviation path), one by player 2, and one by player 3 at her left information set.

These deviations occur in the first stages of different subforms.
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Figure 2: Information sets off the unilateral deviation path

The set WSPE(b) will be shown to contain all information sets that are possibly

relevant for b being consistent with subgame-perfect rationality. Notice the depen-

dency of this statement on the strategy profile b. While a particular equilibriummight

not be sensitive to specifics in some part of a game, the set of equilibria consistent

with a certain concept might be sensitive to these specifics.

To prove Theorem 3, the following observation concerning the collection of in-

formation sets which are relevant for a NE is useful. Suppose one wants to check

whether the profile b is a NE for Σ. Because a NE only requires that there are no

beneficial unilateral deviations, it is sufficient to compare the outcome of b with out-

comes obtained from a unilateral deviation from b. In terms of information sets, one

only needs to consider play at information sets in A(b) and the information sets in

B(b) that are reachable from A(b) by a unilateral deviation from b. The following

lemma is also useful for the proof of Theorem 3.

Lemma 2 Let b be a strategy profile for Γ. For any pair w, γ such that w ∈ B2(b),

17



w belongs to γ, and {x0γ} ∈ WSPE(b), it holds that w ∈ B2(b
γ), that is, w is off the

unilateral deviation path of bγ in γ.

Proof. Because {x0γ} ∈ WSPE(b), it can be reached through a sequence of

unilateral deviations from b, at most one on each set Wγ, γ ∈ G. Because w ∈ B2(b),

it can only be reached from b if there are at least two players deviating at information

sets in the first stage of some subform. Because {x0γ} is a singleton information set

and w belongs to γ, (a) only one history leads to x0γ and (b) any history leading

to w must pass through x0γ. Hence, w ∈ B2(b
γ) for otherwise, the concatenation of

the unilateral deviation path leading to x0γ and the path leading from x0γ to w, is a

unilateral deviation path as well, contradicting that w ∈ B2(b).

Theorem 3 For any b, Wirr(b, ρ) = B2(b), that is the maximal collection of SPE-

irrelevant information sets for b is the set of information sets off the unilateral devi-

ation path of b.

Proof.

1. Wirr (b, ρ) ⊆ B2(b).

To the contrary, suppose that Wirr (b, ρ) 6⊆ B2(b). By definitionWirr (b, ρ) ⊆ B(b), so

we must have Wirr (b, ρ) ∩ B1(b) 6= ∅. Case (1): There exists w ∈ Wirr (b, ρ) ∩B1(b)

such that the origin of γw, denoted by x0γw , is not an element of Wirr (b, ρ) and

{x0gw} 6= w. Since w ∈ B1(b), it can be reached from x0γw by a unilateral deviation

from b. Thus, there exists u|γ such that the play at w matters for whether the play

at x0γw is a best response in the game (γw, u|γ), contradicting that w ∈ Wirr (b, ρ)

and {x0γw} 6∈ Wirr (b, ρ). Case (2): There must exist a w ∈ Wirr (b, ρ) ∩ B1(b) such

that w = γw. In this case, consider the origin of γ0, the smallest subgame of which

γ is a subgame. Since w ∈ B1(b) ⊆ WSPE(b), so is x0γ0, the origin of γ0. Moreover,

w can be reached from x0γ0 by a unilateral deviation from bγ
0
. Thus, there exists u|γ0

such that the play at w matters for whether the play at x0γ0 is a best response in
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subgame (γ0, u|γ0), contradicting that w ∈ Wirr (b, ρ) and {x0γ0} 6∈ Wirr (b, ρ). Since

Wirr (b, ρ) ∩B1(b) ⊆ B(b) either Case 1 or Case 2 holds.

2. B2(b) ⊆Wirr (b, ρ)

I will show that the play on the set B2(b) is irrelevant for whether b satisfies ρ in any

subform γ with origin in WSPE (b). Let γ be a subform with origin in WSPE(b).

Case 1) B2(b) ∩ {w ∈W : w belongs to γ} = ∅, so whether some profile bγ is a NE

for a subgame (γ, u|γ) is independent of the play on B2(b).

Case 2) B2(b) ∩ {w ∈W : w belongs to γ} 6= ∅. By Lemma 3 no w ∈ B2(b) ∩

{w ∈W : w belongs to γ} can be reached from bγ by unilateral deviation, so whether

bγ is a NE of a game (γ, u|γ) does not depend on the play on B2(b).

We are ready to define a trimmed SPE.

Definition 4 (Trimmed SPE). Strategy profile b∗ is a trimmed SPE for Σ if it induces

a NE in all subgames (γ, u|γ) with origin {x0γ} ∈WSPE(b
∗).

The following result relates trimmed SPE to SPE.

Theorem 5 (1) Every SPE is a trimmed SPE, but the converse does not hold. (2)

In a game of perfect information, B2(b) = ∅ for all b.

Proof.

(1) This follows trivially from the definitions of a SPE and a trimmed SPE.

Figure 3 shows an example of a trimmed SPE that is not a SPE. Bold edges indicate

the profile. Bold edges with arrows indicate the outcome path the profile induces.
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Figure 3: A trimmed SPE that is not a SPE

(2) In a game of perfect information every x ∈ X is the origin of some subform.

Therefore, we have {Wγ}γ∈G = W , implying that every w ∈ W can be reached from

any b by a sequence of unilateral deviations. Thus B2(b) = ∅ for any b.

Corollary 6 In a game of perfect information, every trimmed SPE is a SPE.

Since in perfect information games every move is the first move of some subgame,

every information set can be reached from any strategy profile through a sequence

of unilateral deviations, at most one per first stage of the game’s subgames. Thus,

Wirr (b, ρ) = ∅ and so a trimmed SPE requires NE in all subgames of a game of

perfect information.

A trimmed SPE is, by definition, less or at most as restrictive than a SPE. The

following theorem shows that it is just as "strong" as a SPE, in the sense that it does

not allow for equilibrium outcomes that cannot be supported by a SPE - provided NE

exists for all subgames. Together with Theorem 3, this is the main result concerning
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SPE. Let TSPE and SPE denote the sets of, respectively, trimmed subgame per-

fect equilibria and subgame perfect equilibria for some game Σ. Let O(TSPE) and

O(SPE) denote the sets of outcomes (probability distributions of the set of terminal

histories H̄) induced by, respectively, some b ∈ TSPE and some b ∈ SPE. Given

a set of information sets V ⊆ W , and two strategy profiles b and b0, let
¡
bV , b0W\V ¢

denote the profile obtained by playing b on V , and b0 on W\V .

Theorem 7 If SPE = ∅ for Σ, then O(TSPE) = O(SPE).

Proof.

1. O(SPE) ⊆ O(TSPE)

This follows from the fact that SPE ⊆ TSPE.

2. O(TSPE) ⊆ O(SPE)

Let o ∈ O(TSPE) be induced by b̃ ∈ TSPE. If b̃ ∈ SPE, then o ∈ O(SPE). If

not, pick some b ∈ SPE and consider the strategy profile bSPE =
³
b̃WSPE(b̃), bB2(b̃)

´
.

Notice that b and b̃ induce the same outcomes because they only differ at information

sets inB(b̃). Next, I will show that bSPE is a subgame perfect equilibrium for Σ. First,

consider subgame (γ, u|γ) with {x0γ} ∈ WSPE(b̃). By Lemma 3, all changes made in

subgame γ when moving from b̃ to bSPE were made at information sets w ∈ B2(b̃
γ).

Hence these changes do not affect play on the unilateral deviation path of b̃γ in γ, and

so, since b̃ is a trimmed SPE, bSPE induces a NE on (γ, u|γ). Second, consider any

subgame (γ, u|γ) with {x0γ} ∈ B2(b̃). All information sets belonging to γ are elements

of B2
³
b̃
´
because all histories leading to them pass through x0γ. Hence bSPE and b

induce the same play on γ, implying that bSPE induces a NE on (γ, u|γ). Thus bSPE

induces NE on all subgames and therefore bSPE ∈ SPE, showing that the outcome

induced by b̃ is also an outcome of some subgame perfect equilibrium.

Corollary 8 For b ∈ TSPE and any b00 =
¡
bWSPE(b), b0B2(b)

¢
where b0B2(b) induces NE

on all subgames (γ, u|γ) with origin in B2(b), the profile b00 is a SPE.
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To return to the motivations for the concept of trimming strategies, consider again

the example in Figure 3. It follows from the results in this section that: (1) Even if

the subgame at the left was such that a NE for it did not exist, the outcome path

of the trimmed SPE, indicated by the arrows, would be consistent with sequential

rationality as imposed by SPE; (2) Whatever changes are made to the subgame at the

left, the outcome remains consistent with SPE and is thus robust to such changes; and

(3) If a player considers to deviate from the indicated play, expecting, as is consistent

with subgame perfection, Nash equilibrium play at any subgame reached through the

deviation, the subgame at the left does not enter this player’s considerations.

An Example

The following example demonstrates the potential usefulness of a trimmed SPE.

Suppose two firms, i and j, produce the same homogenous good and compete against

each other in Bertrand-Edgeworth fashion. First, they simultaneously build capac-

ities, xi and xj, at a cost of K dollars per unit. Second, they simultaneously an-

nounce prices, pi and pj. After that, demand is realized. Market demand is given

by D = 20 − P . Due to its limited capacity, the low price firm might not be able

to serve everyone who demands to buy at the price it charges. Hence, a rationing

rule is needed. With a surplus maximizing rationing rule (Levitan and Shubik 1972

and Shubik 1955) the lower price firm serves the high demand consumers.16 That is,

if pi < pj, demand for firm i is 20 − pi. For simplicity, assume variable production

costs are zero. Firm i then produces Min{20 − pi, xi}. If the constraint binds for

firm i, firm j might serve some consumers as well, but only up to its capacity, that is

it produces Min{Max{20− pj − xi, 0}, xj}. If pi = pj = p, firm i’s demand is given

by Min{xi, D2 +Max{0, D
2
− xj}}, and similarly for firm j, which means that if p is

such that D(p) = xi + xj, firms simply produce up to their capacities.

16Suppose there is a mass of consumers of measure one, who all demand one unit of the good and
whose willingness to pay is uniformly distributed on the interval [0, 20].
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Suppose only pure strategies are available to the firms, and that we are interested

in the SPE of this game. Each capacity pair chosen in the first stage induces a

pricing subgame in the second stage. As Kreps and Scheinkman (1983) show, pure

strategy equilibria exist only for a subset of these subgames. More specifically, let

ri(xj) and rj(xi) denote the best reply correspondences of the Cournot game in which

firms i and j simultaneously choose how much to produce and both have no capacity

constraints and zero unit costs. Pure strategy price equilibria exist only for the set

M = {x ∈ R2+ : xi ≤ ri(xj) and xj ≤ rj(xi), or xi = xj = 20}.17 Hence, a SPE does

not exist. Kreps and Scheinkman compute the equilibrium for the mixed extension

of the game.18 In that equilibrium firms choose capacities equal to the equilibrium

quantities of the Cournot game when firms have unit costs ofK. Thus, the equilibrium

capacities are given by xi = xj =
20−K
3
. Except if xi = xj = 20, all pricing equilibria

inM are such that both firms charge D−1(xi+xj). If xi = xj = 20, both firms charge

zero.

Now suppose that, in addition, the cost of capacity is discontinuous and capacity

higher than some x̄ is prohibitively expensive. Suppose that 20−K
3

< x̄ ≤ 20
3
+ K

6
. For

this value, there remains a subset of subgames for which pure strategy equilibria do

not exist, as Figure 4 illustrates. However, given that firm j builds a capacity of 20−K
3
,

all feasible capacity levels for firm i are in the setM . Hence, for all subgames reachable

for firm i, conditional on firm j producing 20−K
3
, the expected pricing equilibrium will

have both firms charging P (xi+xj) (where P (·) is the inverse demand function), and

serving half of 20− P (xi + xj). It is easy to verify that then a deviation for firm i is

not worthwhile. Simply solve

max
xi≤x̄

xi(20−
µ
20−K

3

¶
− xi −K)

17For simplicity, assume that firms never build capacities beyond 20.
18They conduct a rather complicated analysis, owed to the continuous strategy set and because

they demonstrate uniqueness of the equilibrium.
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which yields x∗i =
20−K
3
. By symmetry the same holds for firm j.

Here, x∗i and x∗j together with the pricing equilibria on the subset of relevant

subgames (the cross in the figure) and arbitrary price choices on all other subgames

constitute a trimmed SPE. Note how the trimmed SPE rules out noncredible threats

here.
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Figure 4: A trimmed SPE can exist when a SPE does not.

Trimmed WPBE

The task remains in principle the same as before. Given a strategy profile b and

now also a system of beliefs μ, determine the maximal subset ofB(b) such that the play

inside this set does not affect the sequential rationality outside of the set. First, we

need a precise definition of maximal collections ofWPBE-irrelevant information sets.

Let ρWBPE stand for "sequential rationality as imposed by WBPE." For extensive
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form game Σ, strategy profile and system of beliefs (b, μ), and a set of information

sets V ⊆ W , say that (b, μ) satisfies ρWPBE on V in Σ if at each w ∈ V , the play b

specifies at w is optimal given μ(w) and given future play induced by b. In addition,

μ(w) has to be derived using Bayes’ rule if possible. For (b, μ) and extensive form

Γ, let V ⊆ B(b) be such that whether b satisfies ρWPBE on W \ V is independent

of the play on V in any game Σ = (Γ, u). Call V a collection of WPBE-irrelevant

information sets for (b, μ). As before, a collection of WPBE-irrelevant information

sets divides a game into two parts. Whether the play and beliefs on the "relevant" part

are consistent with weak-perfect Bayesian rationality is independent from the play

on the irrelevant part. Let Wirr(b, μ, ρWPBE) be the set of all collections of WPBE-

irrelevant information sets for (b, μ) and letWirr(b, μ, ρWPBE) be a maximal collection

ofWPBE-irrelevant information sets for (b, μ). The argument whyWirr(b, μ, ρWPBE)

exists and is unique is the same as for Wirr(b, ρSPE).

It will be shown that whenever a strategy profile and a system of beliefs satisfy

ρWPBE on the set of all relevant information sets, W \Wirr(b, μ, ρWPBE), one can find

a strategy profile and a system of beliefs with the same outcome path satisfying the

original equilibrium conditions, provided that equilibrium exists for the game.

In this section, "(b, μ) satisfies ρ" shall always mean "(b, μ) satisfies ρWPBE."

How can the set Wirr(b, μ, ρ) be characterized? It turns out that the characterization

is similar to the one for SPE, but incorporates beliefs. The idea is that for any

w /∈Wirr(b, μ, ρ) and any history leading from w toWirr(b, μ, ρ), a player whose move

it is some time before Wirr(b, μ, ρ) is reached does not believe that Wirr(b, μ, ρ) can

be reached. This belief is either due to his, possibly incorrect, belief about past play

or due to the fact that b attaches zero probability to another player’s future move in

the history. In other words, players do not believe that Wirr(b, μ, ρ) can be reached

by a unilateral deviation, but these beliefs need not be correct.

For x0 = s(x), let b(x, x0) denote the probability that b attaches to the choice
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leading from x to x0.

Definition 9 (Information sets on and off the believed unilateral deviation path).

Fix an extensive form Γ, a strategy profile b, and a system of beliefs μ. The set of

information sets off the believed unilateral deviation path of (b, μ) is denoted B2(b, μ).

lnformation set w ∈ B2(b, μ) if and only if

(i) w ∈ B(b), and

(ii) h = (x0, x1, ..., xK) ∈ H(w) implies that for each xk ∈ h

(a) w(xk) ∈ B2(b, μ), or

(b) μ(xk) = 0, or

(c) ∃xk0 ∈ h with k < k0 < K, w(xk0) /∈ B2(b, μ), and ι(xk0) 6= ι(xk) such that

b(xk0 , xk0+1) = 0.

Also B1(b, μ) = B(b)\B2(b, μ) is the set of information sets off the believed unilateral

deviation path of (b, μ) and WWPBE(b, μ) = A(b) ∪B1(b, μ).

Figure 5 illustrates the set of information sets off the believed unilateral deviation

path of the profile and beliefs indicated in the figure. Again, bold edges represent

the strategy profile and arrows represent the corresponding outcome path. If player

3 believes that the left node at his information set in the middle is reached with

probability μ = 0, then B2(b, μ) = {w}.19 As will be shown, {w} is the maximal

collection of WPBE-irrelevant information sets for the indicated profile and beliefs.

The information set w00 for example is not irrelevant because the play there matters

for the rationality of player 2’s choice at her right information set, which in turn

matters for the rationality of the choice by player 1 at the origin.

19Here, μ is used with a slight abuse of notation as it was previously defined as a system of beliefs.
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Figure 5: Information sets off the believed unilateral deviation path

The first result in this section parallels Theorem 3. It states that the set of information

sets off the believed unilateral deviation path of (b, μ) is indeed the maximal collection

of WPBE-irrelevant information sets for (b, μ).

Theorem 10 For any (b, μ), Wirr(b, μ, ρ) = B2(b, μ), that is the maximal collection

of WPBE-irrelevant information sets for (b, μ) is the set of information sets off the

believed unilateral deviation path of (b, μ).

Proof.

1. Wirr (b, μ, ρ) ⊆ B2(b, μ).

To the contrary, suppose that M ≡ Wirr(b, μ, ρ) ∩WWPBE(b, μ) 6= ∅. Because M ⊆

Wirr(b, μ, ρ) ⊆ B(b), we can pick ŵ ∈M such that for all w ≤ ŵ, we have that w /∈M

(because {x0} /∈ M). Since M ⊆ WWPBE(b, μ) = W\B2(b, μ), the information set

ŵ /∈ B2(b, μ). However, ŵ ∈ B(b) so there exists ĥ ∈ H(ŵ) for which none of the

conditions in part (ii) of Definition 9 holds. Write ĥ = (x0, x1, ..., xK) with xK ∈ ŵ.

By failure of (a), (b), and (c) in Definition 9, there exists a node xk0 ∈ ĥ such that

w(xk0) /∈ B2(b, μ), μ(xk0) > 0 and b(xk00 , xk00+1) > 0 for all (xk00 , xk00+1) ⊆ ĥ for
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which k00 > k0 and ι(k00) 6= ι(k0). Therefore, for some u the play at ŵ matters at

xk0 (given the other players’ strategies, ι(xk0) believes that he can choose a strategy

so that ŵ is reached). However, w(xk0) /∈ B2(b, μ) and w(xk0) /∈ M implies that

w(xk0) /∈Wirr(b, μ, ρ), contradicting that ŵ ∈Wirr(b, μ, ρ).

2. B2(b, μ) ⊆Wirr(b, μ, ρ)

It suffices to show that B2(b, μ) is a collection of WPBE-irrelevant information sets

for (b, μ). Pick w0 ∈ B2(b, μ) and w /∈ B2(b, μ).

Case 1) not (w ≤ w0).

In this case, no node in w has a choice that leads to w0. Then, given μ, the choice at

w0 does not matter for the sequential rationality at w in any game Σ = (Γ, u).

Case 2) w ≤ w0. Let L ⊆ H(w0) such that h ∈ L implies h∩w 6= ∅, that is L contains

the histories that can access w0 from w. Pick any xk0 ∈ w such that xk0 ∈ h for some

h ∈ L. Because w /∈ B2(b, μ), either (b) or (c) in part (ii) of the above definition must

hold. Therefore, either ι(w) does not believe to be at xk0 or believes that w0 cannot

be reached from xk0 because of the future play of other players. Therefore the play at

w0 does not matter for the sequential rationality of play at w in any game Σ = (Γ, u).

This shows that B2(b, μ) is a collection of WPBE-irrelevant sets for (b, μ).

In view of B2(b, μ) being the maximal collection ofWPBE-irrelevant information

sets for (b, μ), a trimmed WPBE is defined as follows

Definition 11 The pair (b, μ) is a trimmed WPBE of Σ if (b, μ) satisfies ρ on

WWPBE(b, μ).

The following result relates trimmed WPBE to WPBE. It parallels the result in

Theorem 5.

Theorem 12 (1) Every WPBE is a trimmed WPBE, but the converse does not hold.

(2) In a game of perfect information, B2(b, μ) = ∅ for all (b, μ).
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Proof.

(1) This follows trivially from the definitions of a WPBE and a trimmed WPBE.

Figure 6 shows an example of a trimmed WPBE that is not a WPBE.
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Figure 6: A trimmed WPBE that is not a WPBE

(2) Fix some (b, μ). Suppose B2(b, μ) 6= ∅. Pick w0 ∈ B2(b, μ) with w ≤ w0 implying

that w /∈ B2(b, μ). Let x ∈ p(w0), so w(x) /∈ B2(b, μ), so (a) does not hold. By perfect

information, μ(x) = 1, so (b) does not hold. Because x is an immediate predecessor

of w0, (c) cannot hold either, a contradiction.

Corollary 13 In a game of perfect information, every trimmed WPBE is a WPBE.

The next result parallels Theorem 7. It establishes that every trimmed WPBE

can be matched with a WPBE that induces the same outcome, provided that a WPBE

exists. Let WPBE and TWPBE be the sets of pairs (b, μ) that are, respectively,

a WPBE and a trimmed WPBE. Let O (WPBE) and O (TWPBE) be the sets of

outcomes induced by some (b, μ) in, respectively, WPBE and TWPBE.
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Theorem 14 IfWPBE 6= ∅ (the features of the game are such that a WPBE exists),

then O (TWPBE) = O (WPBE).

Proof.

1. O(WPBE) ⊆ O(TWPBE).

This follows from the fact that WPBE ⊆ TWPBE as shown in Theorem 12.

2. O(TWPBE) ⊆ O(WPBE)

Pick any (b, μ) ∈ TWPBE. Construct (b0, μ0) as follows.

(a) For each w ∈WWPBE (b, μ), let b0(w) = b(w) and let μ0(w) = μ (w).

(b) For information sets in B2 (b, μ), construct a reduced game from Γ and (b, μ) as

follows. Let XWPBE and XB2 denote the sets of nodes for which w(x) is an element

of WWPBE (b, μ) and B2 (b, μ), respectively.

Step 1. Remove all x ∈ XWPBE such that x0 ≤ x implies x0 ∈ XWPBE.

Step 2. For all x ∈ XWPBE such that x ≤ x0 implies x0 ∈ XWPBE, if p(x) ∈ XB2 ,

replace x by the expected payoff induced by b, and if p(x) ∈ XWPBE delete x.

Step 3. For the remaining x ∈ XWPBE, if p(x) ∈ XB2 , replace x with a move by

nature as follows. Each path emanating from x so that the path passes only through

XWPBE is replaced by a terminal node. Assign the payoff to the terminal node that

equals the expected payoff that b induces at x when this path is taken. Assign nature

a probability to choose this final node that equals the probability that b attaches

to the path emanating from x. For each x0 ≥ x such that x0 ∈ XB2 and for which

x0 ≥ x00 ≥ x implies x00 ∈ XWPBE, replace the path leading to x0 by a move by nature

leading directly to x0 with the probability as induced by b (which is well defined

because all nodes on this path belong to XWPBE).

After performing these three steps, all nodes in XWPBE were either deleted, replaced

by a final node, or replaced by a move by nature. Note that the resulting graph does

not need to be connected and that there might be several initial nodes. Add an initial

move by nature that attaches some positive probability to each initial node of the
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components obtained. Call the new game Γ∗. Apart from nature’s moves, the set

of information sets for Γ∗ is B2 (b, μ). Now, find a weak perfect equilibrium for Γ∗,

denoted (b∗, μ∗) and complete the specification of (b0, μ0) by letting b0(w) = b∗(w) and

μ0(w) = μ∗(w) for all w ∈ B2 (b, μ).

It remains to verify that (b0, μ0) is a weak perfect Bayesian equilibrium. For any

w ∈ WWPBE (b, μ) we know that b(w) satisfies ρ at w given b. Because we only

changed strategies and beliefs at information sets in B2 (b, μ), those changes could

not affect the sequential rationality at w.

For any w ∈ B2 (b, μ), sequential rationality follows from the fact that (b∗, μ∗) is a

weak perfect Bayesian equilibrium and that for each x ∈ w and each choice at x, the

expected payoff from that choice given b∗ is the same as the expected payoff given b0.

Notice that, because B2 (b, μ) ⊆ B (b), Bayes’ rule does not need to be satisfied on

B2 (b, μ).

Corollary 15 For (b, μ) ∈ TWPBE and any b00 =
¡
bWWPBE(b,μ), b0B2(b,μ)

¢
and μ00 =¡

μWWPBE(b,μ), μ0B2(b,μ)
¢
, where (b0B2(b,μ), μ0B2(b,μ)) induces sequentially rational play at

all w ∈ B2(b, μ), the pair (b00, μ00) is a WPBE.

Conclusion

This paper introduces the concept of equilibrium in trimmed strategies. The

concept is based on the notion of maximal collections of irrelevant information sets.

Trimmed equilibrium potentially can provide resolution when some parts of the game

are difficult to predict, be it due to nonexistence of equilibrium, uncertainties about

the game’s specifications, or computational difficulties. It is shown that the trimmed

version of an equilibrium is sufficiently restrictive to capture the notion of sequen-

tial rationality of the original concepts. At the same time, it disposes of restrictions

31



on entire parts of the game. The characterization of maximal collections of irrele-

vant information sets for both SPE and WPBE provides insight as to the kinds of

rationalities these concepts place on players.

It is pointed out that, while a trimmed equilibrium is invariant in the specifications

on the maximal collection of irrelevant information sets, the set of trimmed equilibria

is not. Also, since a trimmed equilibrium leaves strategies on the maximal collection

of irrelevant information sets essentially unspecified, it is not clear how to solve for

such an equilibrium. A process of backward induction does not seem suitable. Of

course, it is possible to determine the entire set of Nash equilibria and then check

whether they are trimmed equilibria. This, however, might not be practical as the

set of Nash equilibria in extensive form games can be very large. Constructing an

algorithm that solves for trimmed equilibria - or which at least narrows down the set

of candidates - remains an open task.

32



CHAPTER III

A CHARACTERIZATION OF WEAKLY PAIRWISE STABLE
NETWORKS

Introduction

Consider a dynamic process of network formation in which the network evolves

according to successive modifications by myopic players. In each modification, either

a single player severs a subset of his current links or a pair of players forms a link.

A stable state of this process is a weakly pairwise Nash stable network: No player

benefits from severing links and for no pair both players benefit from forming a link.20

However, a stable state, and therefore a weakly pairwise Nash stable network, might

not exist. This paper characterizes the set of weakly pairwise Nash stable networks

as the set of pure strategy Nash equilibrium networks of a network formation game

in strategic form. Since a weakly pairwise Nash stable network might not exist, it is

then natural to consider the equilibrium of the mixed extension of this strategic form

game. Because the game is finite, this equilibrium exists. Thus, my characterization

result makes possible a prediction of the network formation process in cases when a

weakly pairwise Nash stable network does not exist.

The network formation game I define is a variant of Myerson’s linking game (My-

erson 1991). In Myerson’s linking game all players simultaneously announce sets of

players with whom they wish to form links. Links are formed if and only if two players

announce each other. While in equilibrium no player wishes to cut links, equilibrium

networks do permit situations in which two players would both benefit from forming

a link.
20This paper uses the concept of weak pairwise Nash stability instead of the more familiar concept

of pairwise Nash stability for technical reasons, which will be explained in due course.
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To eliminate this coordination failure in Myerson’s linking game, I introduce pairs

of players as additional players to the game. The so modified game is called the

linking game with player pairs. Each player pair announces whether it wishes to

form a link. However, the strategy of a pair ij has an impact on the outcome of

the game only if neither of the two players announces the other. In this case, if ij

announces it wishes to form a link, the rules of the game are such that the link ij is

added. The payoffs for player pairs are defined so that a pair benefits from a link if

and only if both players benefit from it. Together with the rules of the game, this

payoff specification ensures that the set of equilibrium outcomes is precisely the set

of weakly pairwise Nash stable networks.

To provide intuition for the presence of pairs of players coordinating on the for-

mation of their link, I define and analyze a game in which network formation occurs

in two stages. In the first stage, players play Myerson’s linking game. In the second

stage, they play a constrained version of the linking game with player pairs in which

only pairs that have formed a link in the first stage are added as players to the game.

The outcome of the game is the network formed in the second stage. Thus, the only

purpose of a first stage link is that it allows players to coordinate in the second stage.

A pair that has formed a link in the first stage ensures its (actual) link is formed in

the second stage whenever both players benefit from doing so.

The two-stage linking game provides a natural model of link formation. Consider

friendship formation as an example. There, the first stage might correspond to some-

thing like joining a club or getting to know the friends of friends and the second stage

corresponds to actual friendship formation. The interpretation of stage one links

eliminating coordination failure in stage two is that once two people get to know each

other they will become friends provided they both like each other. Similarly, two peo-

ple might never become friends, simply because they do not know (much about) each

other. As a consequence, real-world networks might be stable even though they do not
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satisfy the definition of pairwise stability. For example, there are likely many people

whose friendship we would enjoy if we only knew them. In this vein, Proposition 17

shows that the set of subgame perfect equilibrium networks of the two-stage linking

game is larger than the set of pairwise Nash stable networks. However, as Propo-

sition 18 shows, refining the equilibria of the two-stage linking game (by requiring

undominated strategies) leads to weakly pairwise Nash stable equilibrium networks.

This paper relates to the literature of network formation that goes back to My-

erson (1991) and the seminal work by Jackson and Wolinsky (1996). Here, I address

the issue of existence of weakly pairwise Nash stable networks. The prior literature

on network formation that uses pairwise stability or closely related concepts and ad-

dresses existence issues has either focused on establishing conditions that guarantee

existence or shown existence in special settings (see e.g., Belleflamme and Bloch, 2004;

Calvo-Armengol 2004; Goyal and Joshi, 2006; Jackson and Watts, 2001). A novelty

in this paper is that it presents a way to incorporate mixed strategies into a network

formation game with coordinated moves. The paper thereby addresses the existence

of pairwise Nash stable equilibrium.

The next section defines the linking game with player pairs and shows that its

equilibrium outcomes are equivalent to the set of weakly Nash stable networks. At

the end of the section, I show that the mixed strategy equilibrium might put weight

on networks that are not part of an absorbing state of a dynamic process of network

formation. Section 3 defines the two-stage linking game and shows that networks

supported by its undominated subgame perfect equilibria are weakly pairwise Nash

stable. Section 4 concludes.

The Linking Game with Player Pairs

Let N = {1, 2, ..., n} be a finite set of players, let g ⊆ {ij : i, j ∈ N, i 6= j} be a

social network, and let G be the set of all networks. The payoff for individual i ∈ N

35



is given by the function ui : G → R. A network that is derived from network g by

adding (deleting) link ij is denoted by g+ ij (g− ij). The set of player i’s neighbors

in g is Ni(g) = {j ∈ N : ij ∈ g}.

In the linking game, each player i ∈ N has the strategy set Si = P (N\{i})

(the power set of N\{i}) with typical element si. Given a strategy profile s =

(s1, s2, ..., sn), the outcome of the game is the network g(s) defined by ij ∈ g(s) if

and only if i ∈ sj and j ∈ si. If g = g(s), the profile s supports g. A network is Nash

stable if it is supported by a Nash equilibrium of the linking game. In other words,

a network is Nash stable if there exists a strategy profile s for the linking game such

that

ui(g(s)) ≥ ui(g(s
0
i, s−i)) for all s

0
i ∈ Si, for all i ∈ N .

As has been pointed out in the literature, Nash stability is an unsatisfactory

concept in the context of network formation. Its predictive power is limited as the

set of Nash stable networks tends to be large. In particular, the empty network, a

network where no link is formed, is always Nash stable. This is due to the fact that a

network in which two players are not linked but both would benefit from the addition

of the link can be Nash stable if neither of the two players indicates the other player.

To overcome this coordination failure, Jackson and Wolinsky (1996) introduced the

concept of pairwise stability. A network is pairwise stable if

ui(g) ≥ ui(g − ij) for all i, for all ij ∈ g, and

ui(g + ij) > ui(g)⇒ uj(g + ij) < uj(g), for all ij 6∈ g.

In a pairwise stable network no single player wishes to sever a single link and no pair

of players wishes to add a link.

A network is pairwise Nash stable if it is pairwise stable and Nash stable. Pair-

wise Nash stability captures the idea that adding a link requires mutual consent but
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cutting a link is at the discretion of either of the linked players. Note that one could

decompose the concept into a noncooperative component, Nash stability, and a coop-

erative component, the second condition of pairwise stability. In this paper I consider

a slightly weaker version of pairwise stability: A network is weakly pairwise stable if

ui(g) ≥ ui(g − ij) for all i, for all ij ∈ g, and

ui(g + ij) > ui(g)⇒ uj(g + ij) ≤ uj(g), for all ij 6∈ g.

Here, the idea is that a coordinated deviation by two players requires that both players

benefit from that deviation. A network is weakly pairwise Nash stable if it is Nash

stable and weakly pairwise stable. Jackson and Wolinsky (1996) informally discuss

this notion in the last section of their paper. They point out that most of their results

are not sensitive to which notion of pairwise stability is used.

To see that a weak pairwise Nash stable network might not exist it is useful to

consider the following dynamic network formation process.21 The process starts out

with an arbitrary network. If the network is pairwise Nash stable, the process ends.

If not, there exists at least one pair of players who wishes to be linked or a at least

one single player who wishes to sever at least one of his links. One of the pairs who

wish to add links (if any) or one of the players who wish to sever links (if any) is

selected and the network is modified accordingly. If the modified network is pairwise

Nash stable, the process ends; if not, the procedure is repeated. This process itself

can be depicted as a (directed) network, called a supernetwork.22 The set of nodes

of the supernetwork is the set of networks G. A supernetwork is a directed network

21Such processes are examined by, e.g., Bala and Goyal (2000), Goyal and Vega-Redondo (2005),
Jackson and Watts (2002), and Watts (2001).
22Supernetworks were introduced by Page, Wooders, and Kamat, 2005.
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G ⊆ G×G such that (g, g0) ∈ G if and only if

(i) g0 = g − {ik}k∈B for some B ⊆ Ni(g) and ui(g
0) > ui(g), or

(ii) g0 = g + ij and ui(g
0) > ui(g) and uj(g

0) > uj(g).

An arc (g, g0) in the supernetwork precisely means that network g is not weakly

pairwise Nash stable because either (i) or (ii) holds. The usual terminology is to

say that network g0 defeats network g. Given supernetwork G, it is straightforward

to identify weakly pairwise Nash stable networks. One simply searches for networks

without outgoing arcs. Such a network is not defeated by any other network and

must be weakly pairwise Nash stable. If a weakly pairwise Nash stable network does

not exist, by the finiteness of G, the process must eventually end up in a cycle which

has no outgoing arc (see Lemma 1 in Jackson and Watts, 2002). Figure 7 shows how

a supernetwork could look like. Here, g8 is weakly pairwise Nash stable. In addition,

the networks g0, g2, g3, and g1 form a cycle.23

 

1g

3g

0g

2g

4g

5g

6g

7g

Figure 7: A supernetwork

23One could just as well define a supernetwork where a network is defeated by another network if
and only if it is not pairwise Nash stable. In that case a network without outgoing arcs would be
pairwise Nash stable.
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The possibility of a cycle in the supernetwork is demonstrated in more detail

in Panel (a) of Figure 8.24 The example is due to Jackson and Watts (2002), who

also provide more details. Deviations by the four individual players and the pairs of

players lead to a cycle. At g0, players 2 and 3 benefit from forming a link. So g0 is

defeated by g1. There, player 3 has an incentive to sever his link to player 4, so g2

defeats g1. Network g3 defeats g2 because player 2 has an incentive to sever her link

to player 3. Finally, at g3 players 3 and 4 benefit from forming a link. If they do so,

the process is back to g0, closing the cycle.

Such cycles are symptomatic not only for the nonexistence of pairwise Nash stable

networks. For example, when a pure strategy equilibrium of a finite noncooperative

game does not exist, there will be a cycle of outcomes such that each outcome in the

cycle can be reached from the previous outcome through a unilateral deviation that

is beneficial for the deviating player. The standard example to illustrate this point is

the game of Matching Pennies. Similarly, if the core of a finite cooperative game is

empty, there will be a cycle of outcomes that are linked through coalitional deviations

that are beneficial for the deviating coalition.

24The significance of Panel (b) will be explained later.
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4 7u = 3 7u =

1 7u = 2 7u = 1 7u = 2 7u =

4 0u = 3 0u =

1 13u =

4 13u = 3 8u =

2 8u =

4 0u = 3 11u =

1 11u = 2 6u =

(a) A cycle (b) Unused links 
0 :g

1:g 2 :g

3:g

Figure 8: A cycle in a supernetwork

In noncooperative games the problem of existence is resolved by reverting to mixed

strategies. Mixed strategies are probability distributions over sets of pure strategies.

However, since no well-defined strategic form network formation game underlies the

concept of weak pairwise Nash stability, it is not clear what a mixed strategy means

in this context.25 In the following, I define such a strategic form network formation

game. With that game at hand, a natural way to introduce mixed strategies is via

the mixed extension of that network formation game.

Formally, the linking game with player pairs is a noncooperative game with players

acting in their own interest. In fact though, the game incorporates cooperation. This

is done by treating pairs of players as players of the game, with strategies that are

independent from the individual players’ strategies. Each pair indicates whether it

wishes to form a link. The game is designed so that a pair’s indication of wanting

to form a link has an effect on the outcome only when the corresponding individual

players do not indicate each other. In addition, a pair’s payoff is specified so that a
25Bloch and Jackson (2006) define a pairwise Nash equilibrium as the Nash equilibrium profile s

of the linking game that satisfies ui(g(s)+ ij) > ui(g(s))⇒ uj(g(s)+ ij) < uj(g(s)). This, however,
does not permit the introduction of mixed strategies either.
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pair wishes to add their link if and only if both players benefit from it. This design

eliminates the possibility of two players failing to form a link even though both would

benefit from it.

The linking game with player-pairs

The set of players is N ∪ {ij : i, j ∈ N, i 6= j}.26 The set of pure strategies

available to each i ∈ N is the same as in the linking game, Si = P (N\{i}). A pair

ij has only two pure strategies, Sij = {Y,N}, with the interpretation that sij = Y

indicates the pair ij wants to form the link ij and sij = N that it does not want

to form the link. A strategy profile is denoted by (ss, sp) where ss is the subprofile

for individual players and sp is the subprofile for pairs. Whether or not the link ij

is formed for a given strategy profile depends on si, sj, and sij. Table 1 lists the

possible combinations of si, sj, and sij, showing that a pair’s strategy only affects

the outcome if neither of the individual players indicates the other player. Note also

that, at profiles for which the link is formed, individual players always have the power

to cut the link. In Cases 1 and 2, the individual player can switch to not indicating

the other player. In Case 7, he could switch to indicating the other player. This last

feature might seem somewhat paradoxical, but is necessary to avoid an equilibrium

in which a player would like to sever several of his connections.

26Compared to the linking game, there are n(n − 1)/2 additional players, one for each pair of
players.
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Table 1: Combinations of si, sj, and sij

Case si sj sij Outcome

1) j ∈ si i ∈ sj Y ij ∈ g

2) j ∈ si i ∈ sj N ij ∈ g

3) j 6∈ si i ∈ sj Y ij 6∈ g

4) j 6∈ si i ∈ sj N ij 6∈ g

5) j ∈ si i 6∈ sj Y ij 6∈ g

6) j ∈ si i 6∈ sj N ij 6∈ g

7) j 6∈ si i 6∈ sj Y ij ∈ g

8) j 6∈ si i 6∈ sj N ij 6∈ g

The individual players’ payoffs are the same as in the original game. The payoff

for a pair ij is

uij(g) =

⎧⎪⎨⎪⎩ 0

min {ui(g)− ui(g − ij), uj(g)− uj(g − ij)}

if ij /∈ g

if ij ∈ g.

Thus, if the current network is g − ij and both players benefit from the addition of

ij, then uij(g) > uij(g− ij) = 0. Whenever possible, the pair would then switch to a

strategy that induces the link in the network.27

If g is supported by a Nash equilibrium of the game with player pairs, I will say

that g is Nash stable for the linking game with player pairs.

Proposition 16 A network is Nash stable for the linking game with player pairs if

and only if it is weakly pairwise Nash stable.

27Note that, to induce the deviation, the payoff from uij(g) has to be strictly positive, which
requires that each of the individual players benefit from adding the link. This feature is what makes
it necessary to use the weak notion of pairwise stability to obtain the result in Proposition 16.
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(1) Let g be a Nash stable network for the game with player pairs with (ss, sp) being

the supporting Nash equilibrium strategy profile. The proof of this part proceeds by

first showing that g must be Nash stable, and then that g must be weakly pairwise

stable.

(i) Nash stability

Let s0 be a strategy profile for the linking game in which, for all i, j ∈ N , j ∈ s0i if

and only if ij ∈ g, that is s0 supports g. No player can gain by indicating additional

players because this would not change the outcome. Moreover, since in the linking

game with player pairs, every individual player can sever any number of his links in

g(ss, sp) by changing his strategy, and since (ss, sp) is a Nash equilibrium, severing

links cannot be beneficial.28 Thus g is Nash stable.

(ii) Weak pairwise stability

To see that g must be weakly pairwise stable, note that the first requirement of weak

pairwise stability, ui(g) ≥ ui(g−ij) for all ij ∈ g, is implied by the already established

fact that g is Nash stable. Next, consider some ij /∈ g (if any), and suppose that ui(g+

ij) > ui(g) and that uj(g+ ij) > uj(g), contrary to the requirement of weak pairwise

stability. In this case, uij(g + ij) = min {ui(g + ij)− ui(g), uj(g + ij)− uj(g)} >

0. There are two kinds of cases, in which ij /∈ g(ss, sp). Each case leads to a

contradiction:

(1) j 6∈ si, i 6∈ sj, and sij = N , a contradiction because ij can deviate to sij = Y and

increase the pair’s payoff from 0 to min {ui(g + ij)− ui(g), uj(g + ij)− uj(g)} > 0.

(2) j 6∈ si, i ∈ sj, and sij = N or sij = Y , a contradiction because i can deviate to

j ∈ si and induce the network g+ ij (the same holds true for the cases j ∈ si, i 6∈ sj,

and sij = N or sij = Y ).29

28If player i wishes to sever a link to player j, he can, if j ∈ si and i ∈ sj , simply change to a
strategy s0i such that j 6∈ si, and if j 6∈ si, i 6∈ sj , and sij = Y , to s0i such that j ∈ s0i.
29The case j ∈ si, i 6∈ sj , and sij = N is the one that requires a weakening of pairwise stability.

Here, j has to deviate in order to have the link added to the network. However, if one allows j to
be indifferent he would not necessarily want to deviate, not yielding the desired contradiction.
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Thus, g is Nash stable and weakly pairwise stable, implying that g is weakly pairwise

Nash stable.

(2) Conversely, suppose that g is weakly pairwise Nash stable. Let (ss, sp) be a

strategy profile for the linking game with player pairs, in which j ∈ si, i ∈ sj, and

sij = Y for all i, j such that ij ∈ g, and j 6∈ si, i 6∈ sj, and sij = N for all i, j such that

ij 6∈ g. The profile (ss, sp) supports g. By deviating, an individual player i can only

sever links, which is not beneficial for him because g is Nash stable. The deviation

of a pair of players ij can only lead to the addition of a link, which is not beneficial

both players in the pair because g is weakly pairwise stable. Thus, the profile (ss, sp)

is a Nash equilibrium, showing that g is Nash stable for the linking game with player

pairs.

Proposition 16 shows that a weakly pairwise Nash stable network can be viewed as the

outcome of a "noncooperative" game. Because this game is finite, a Nash equilibrium

of its mixed extension exists. The following example illustrates such a mixed strategy

equilibrium. The example is based on the one depicted in Figure 8.

An Example

To simplify the analysis, let the payoffs for networks containing any of the links,

14, 13, or 24 (the "unused" links in Panel (b) of Figure 8) be as follows. For all

i ∈ N , if g contains all three of these links, ui(g) = −3, if g contains exactly two of

these links, ui(g) = −2, and if g contains exactly one such link, ui(g) = −1 . All

other networks, except for the ones depicted in Panel (a), yield a payoff of zero to the

individual players. For this specification of payoffs, no network is pairwise stable.

Let us further simplify the analysis by eliminating weakly dominated strategies.

It is clear that for any player i, if si indicates the willingness to form any of the

links 14, 13, or 24, then si is is weakly dominated by s0i = si \ {14, 13, 24}. Similarly,

for every player pair ij = 14, 13, 24, the strategy sij = N weakly dominates sij = Y .

Furthermore, note that for player 3, a strategy s3 involving 2 6∈ s3 is weakly dominated
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by a strategy s03 = s3 ∪ {2}. Similarly, a strategy for player 4 with 3 6∈ s4 is weakly

dominated by s04 = s4 ∪ {3}, and a strategy for player 1 with 2 6∈ s1 is weakly

dominated by s01 = s1 ∪ {2}. Lastly, for player 2, the strategy s2 such that 3 ∈ s2 but

1 6∈ s2 is weakly dominated by a strategy s02 with 3 ∈ s02 and 1 ∈ s02, and for player

3 the strategy s3 such that 4 ∈ s3 but 2 6∈ s3 is weakly dominated by a strategy s03

with 4 ∈ s03 and 2 ∈ s03. Hence, in a Nash equilibrium in undominated strategies,

the following strategies are played with probability one: s1 = {2}, s4 = {3}, and

s13 = s14 = s24 = N . In addition, for players 2 and 3, the only strategies that are not

weakly dominated are s2 = {1}, s02 = {1, 3}, s3 = {2}, and s03 = {2, 4}.

Note that every combination of the individual players’ undominated pure strate-

gies is such that the strategies of the pairs 12, 23, or 34 will not affect the outcome

(recall that a pair ij only affects the outcome if i 6∈ sj and j 6∈ si). Therefore, if ρij

denotes the probability for sij = Y , then any ρij ∈ [0, 1], for ij = 12, 23, or 34, sup-

ports the equilibrium. Let α denote the probability that player 2 chooses s2 and let β

denote the probability that player 3 attaches to s3. In a mixed strategy equilibrium,

α and β must solve the following optimization problems for players 2 and 3.

Player 2:

max
α

α (β7 + (1− β)7) + (1− α)(β6 + (1− β)8)

Foc (interior solution)

β7 + (1− β)7 = β6 + (1− β)8⇔ β∗ =
1

2
.

Player 3:

max
β

β (α0 + (1− α)11) + (1− β)(α7 + (1− α)8)

Foc (interior solution)

(1− α)11 = α7 + (1− α)8⇔ α∗ =
3

10
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In summary, the set of equilibrium strategy profiles in undominated strategies for

the linking game with player pairs is as follows:

s1 = {2};

s2 = {1} and s02 = {1, 3} with probability
1

2
each;

s3 = {2} with probability 3

10
, s03 = {2, 4} with probability

7

10
;

s4 = {3};

sij = N , for ij = 13, 14, and 24;

sij = Y with probability ρij ∈ [0, 1] , for ij = 12, 23, and 34.

Only the four networks in Panel (a) occur with positive probability. Under the induced

distribution, g0, g1, g2, and g3 occur with probabilities 7
20
, 7
20
, 3
20
, and 3

20
, respectively.

It is worth noting that there are other specifications for the player pairs’ payoffs

that yield the result in Proposition 16. In particular, any specification such that

uij(g + ij) > uij(g) if and only if ui(g + ij) > ui(g) and uj(g + ij) > uj(g) yields the

same set of pure strategy equilibria of the linking game with player pairs. This fact

might lead to the concern that other payoff specifications result yield different mixed

strategy equilibrium outcomes. For affine transformations of the payoff function used

here, a standard result from expected utility theory guarantees that the set of mixed

strategy equilibria remains the same. All other kinds of transformations (that preserve

the above condition), might lead to different mixed strategy equilibria. However, I

believe that the specification chosen here is the most natural one. Moreover, it can

be applied to any set of preferences, while other specifications will likely work only

for a subset of preferences.

As already discussed, in the supernetworkG, the nonexistence of a weakly pairwise

Nash stable network implies at least one cycle with no outgoing arc to a network

outside the cycle. Such cycles of networks have been labeled basins of attraction (Page

46



and Wooders, 2008).30 Formally, a set of networks A ⊆ G is a basin of attraction if

(i) g ∈ A, g0 6∈ A implies that (g, g0) 6∈ G, and

(ii) g, g0 ∈ A, g 6= g0, implies that ∃ g0, g1,..., gL ∈ G such that

(glgl+1) ∈ G for l = 0, 1, ..., L− 1, where g0 = g and gL = g0.

Basins of attractions are "absorbing states." Once a basin is reached, the process

remains within the basin. Weakly pairwise Nash stable networks are precisely the

networks that belong to a singleton basin of attraction. Let A be the collection of

basins of attraction for the supernetwork G. A natural conjecture is that networks

that are supported by a mixed strategy equilibrium of the linking game with player

pairs must belong to a basin of attraction, or, more formally: If g occurs with positive

probability under some mixed strategy Nash equilibrium of the linking game with

player pairs, then g ∈ A for some A ∈ A.

However, the following example refutes this conjecture. Let N = {1, 2, 3, 4} and

consider the following four networks, depicted in Figure 9:

g0 = {14, 23}

g1 = {14, 23, 12}

g2 = {14, 23, 34}

g3 = {14, 23, 12, 34}.

30The term basin of attraction is used for similar concepts in mathematics and the sciences. Page
and Wooders (2008) have introduced it to the context of strategic network formation.
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2 3

40 :g 1

2 3

41 :g

1

2 3

42 :g 1

2 3

43 :g

Figure 9: Four networks

Suppose that the individual players’ preferences over networks are represented by the

following utility functions

u1
¡
g0
¢
= u1

¡
g1
¢
= 1 and u1 (g) = −1 for g ∈ G \ {g0, g1};

u2
¡
g0
¢
= u2

¡
g1
¢
= 1 and u2 (g) = −1 for g ∈ G \ {g0, g1};

u3
¡
g0
¢
= 0, u3

¡
g2
¢
= u3

¡
g3
¢
= 1, u3

¡
g1
¢
= 2, and

u3 (g) = −1 for g ∈ G \ {g0, g1, g2, g3};

u4
¡
g0
¢
= 0, u4

¡
g2
¢
= u4

¡
g3
¢
= 1, u4

¡
g1
¢
= 2, and

u4 (g) = −1 for g ∈ G \ {g0, g1, g2, g3},
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implying utilities for player pairs:

u14
¡
g0
¢
= 1, u14

¡
g1
¢
= 2, and u14 (g) = 0 for g ∈ G \ {g0, g1};

u23
¡
g0
¢
= 1, u23

¡
g1
¢
= 2, and u23 (g) = 0 for g ∈ G \ {g0, g1};

u12 (g) = 0 for g ∈ G;

u34
¡
g2
¢
= 1, u34(g3) = −1, and u34 (g) = 0 for g ∈ G \ {g2, g3};

u13(g) ≤ 0 for g ∈ G;

u24(g) ≤ 0 for g ∈ G.

The supernetwork G restricted to the networks in {g0, g1, g2, g3} contains only

two arcs: (g0, g2) and (g3, g1). Moreover, for any g ∈ {g0, g1, g2, g3} and g0 ∈ G \

{g0, g1, g2, g3}, we have (g, g0) 6∈ G, as illustrated in Figure 10. Therefore, networks

g1 and g2 each constitute a singleton basin of attraction while g3 does not belong to

any basin of attraction because it is defeated by g1.

0g 1g

2g 3g

g
x 

Figure 10: Network g3 does not belong to a singleton basin of attraction

It is straightforward (though somewhat tedious) to verify that a strategy profile

satisfying the following conditions constitutes a mixed strategy Nash equilibrium of
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the linking game with player pairs:

s1 = {4};

s2 = {3};

s3 = {2, 4};

s4 = {1, 3};

s12 = Y and s12 = N with probability
1

2
each;

s13 = N ;

s24 = N .31

No player (individual or pair) has an incentive to deviate. Under such a profile

networks g2 and g3 occur with equal probability 1
2
each. Since g3 does not belong to

any basin of attraction, the example shows that the above conjecture is false.

The Two-Stage Linking Game

This section models explicitly how coordination between two players might arise in

a noncooperative two-stage game. In the first stage, players play the linking game. A

stage-one link constitutes a coordination possibility in stage two. Given a network of

coordination possibilities formed in the first stage, players play a constrained version

of the linking game with player pairs in the second stage. In the constrained version,

only pairs that have formed a link in the first stage can coordinate on whether they

form a link. Thus, if the network of coordination possibilities formed in the first stage

is given by h ⊆ {ij : i, j ∈ N, i 6= j}, then the set of players in the constrained linking

game with player pairs is N ∪ h. The corresponding constrained game is denoted by

Γ̂ (h).

Intuitively, the two stages capture the idea that coordination as assumed by pair-

wise stability can arise between two individuals only if they have some sort of con-
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nection to each other; therefore the terminology of a coordination possibility. For ex-

ample, to form friendships, first people become acquainted with each other (through

work, by joining a club, because they have common friends, etc.). Then they might

form a closer friendship, which, arguably, will happen if and only if both sides wish

to establish that friendship.

I show that any network that can be supported by a Nash equilibrium of the

linking game can also be supported by a subgame perfect Nash equilibrium of the

two-stage linking game. However, if this network is not weakly pairwise stable, then

the subgame perfect Nash equilibrium that supports it will have at least one player

playing a weakly dominated strategy. Thus, a network supported by an undominated

subgame perfect Nash equilibrium of the two-stage linking game, must be weakly

pairwise stable.

As in the linking game with player pairs, the set of players in the two-stage linking

game is N ∪ {ij : i, j ∈ N, i 6= j}. A pure strategy for player i is denoted by ti and a

pure strategy for a player pair ij is denoted by qij. A strategy ti for player i consists

of a set ri ∈ Ri = P (N\{i}) and a function fi : G → Ri. The set ri indicates

with whom player i would like to form a coordination possibility. The function fi

indicates, for each first stage "network" formed in the first stage, the set of players

player i wishes to form a link with. Let Gij = {g : ij ∈ g}, that is Gij is the set of

networks in which players i and j are directly linked to each other. A strategy qij for

player pair ij is a function fij : Gij → {Y,N}. The corresponding mixed strategies

for a player (individual or pair) are probability distributions over the player’s set of

pure strategies. For ease of notation, mixed strategies are not formally introduced.

A profile of strategies and sets of strategies are denoted in the usual way.

Proposition 17 A network ĝ is Nash stable if and only if it is supported by a subgame

perfect Nash equilibrium of the two-stage linking game.
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Proof.

(1) Let s be a Nash equilibrium of the linking game that supports ĝ. The proof

proceeds by constructing a profile (t, q) = ((ri, fi)i∈N , q) that is subgame perfect and

supports ĝ. Let (t, q) be as follows.

Stage 1:

For all i, j ∈ N , let j ∈ ri if and only if ij ∈ ĝ.

Stage 2:

(a) Subgame ĝ: For all i ∈ N , let fi(ĝ) = ri. For all ij ∈ ĝ, let fij (ĝ) = N .

Let B ⊆ {ik : ik ∈ ĝ}.

(b) Subgames g = ĝ \B: For all i ∈ N , let fi(g) = ri. For all ij ∈ g, let fij (g) = N .

(c) All other subgames g: Pick a Nash equilibrium of the constrained linking game

with player pairs Γ̂ (g). (Note that this might be a Nash equilibrium in mixed strate-

gies).

The outcome of this profile is ĝ. It remains to verify that the profile is a subgame

perfect equilibrium. Because ĝ is Nash stable, the play induced on Γ̂(ĝ) is a Nash

equilibrium: No individual player wants to deviate, and since player pairs only have

the power to add links but not to delete them and there is no player pair in Γ̂(ĝ)

whose link is not in ĝ, no pair can deviate either. The same logic applies to the

play induced on subgames in (b). Lastly, the profile induces a Nash equilibrium on

subgames in (c). Next, we need to verify that the specified profile also induces a Nash

equilibrium on the entire game. It was already shown that no player can benefit from

a deviation in any of the subgames. A unilateral deviation by a single player in stage

1 can only lead to a subgame of type (b). However, the Nash equilibrium outcome

(t, q) induces on these subgames is the same as the outcome of subgame ĝ. Thus, the

profile is a Nash equilibrium for the entire game.

(2) Conversely, let ĝ be supported by a subgame perfect Nash equilibrium of the two-

stage linking game. Let g0 be the set of potential links formed in stage 1. Because ĝ
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is the outcome of a subgame perfect equilibrium, it is supported by a Nash equilib-

rium of the constrained linking game with player pairs Γ(g0). Therefore no individual

player wishes to delete any subset of his links in ĝ, showing that ĝ is Nash stable.

Proposition 17 shows that, even when individuals can form links to foster coop-

eration, the result can be a complete coordination failure. For example, as in the

linking game, the empty network is trivially supported by a subgame perfect Nash

equilibrium of the two-stage linking game. However, Proposition 18 shows that if a

subgame perfect equilibrium of the two-stage linking game supports a network that is

not weakly pairwise Nash stable, at least one player plays a weakly dominated strat-

egy. In other words, any undominated subgame perfect equilibrium of the two-stage

linking game will only support weakly pairwise Nash stable outcomes. This is not

true for the linking game. Jackson (2008, p. 374) provides an example of a network

which is supported by a Nash equilibrium in undominated strategies of the linking

game but is not weakly pairwise Nash stable.

Proposition 18 If a network is supported by a subgame perfect equilibrium in un-

dominated strategies of the two-stage linking game then it is weakly pairwise Nash

stable.

Proof. I prove the contrapositive. Let ĝ be a network that is not weakly pairwise

Nash stable. If ĝ is not Nash stable, Proposition 17 implies that it cannot be supported

by a subgame perfect equilibrium of the two-stage linking game. If ĝ is not weakly

pairwise stable, pick a pair {i, j} such that ij 6∈ ĝ but ui(ĝ+ij) > ui(ĝ) and uj(ĝ+ij) >

uj(ĝ). Let (t, q) be a subgame perfect equilibrium profile of the two-stage linking game

that supports ĝ, and let h be the first stage links formed under the profile (t, q). Since

(t, q) supports ĝ, it must hold that ij 6∈ h for otherwise ĝ could not be supported

by a Nash equilibrium of the constrained game Γ̂(h) (a deviation by ij would make

sure that the link ij was formed). So either j 6∈ ri or i 6∈ rj. Without loss of

generality, suppose that j 6∈ ri. Now, consider the following strategy t0i = (r0i, f
0
i).
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Let t0i be a strategy for player i that coincides with ti except that j ∈ r0i and that

f 0i(ĝ + ij) = fi(ĝ). To show that t0i weakly dominates ti, we need to show that there

exists at least one play of all other players, say (t0−i, q
0) to which t0i is a better response

than ti, and so that t0i yields at least as much as ti to every other play by the remaining

players.

Let (t0−i, q
0) coincide with (t−i, q) except that i ∈ r0j, f

0
j(ĝ + ij) = fj(ĝ), and f 0ij(ĝ +

ij) = Y . The outcome of the profile (ti, t0−i, q
0) is ĝ, while the outcome of the profile

(t0i, t
0
−i, q

0) is ĝ + ij. Thus t0i is a better response to (t
0
−i, q

0) than ti.

Now, let (t0−i, q
0) be an arbitrary play. If t0j is such that i 6∈ r0j, then the same subgame

is reached under (ti, t0−i, q
0) and (t0i, t

0
−i, q

0), and it is not the subgame ĝ + ij. On all

these subgames the play induced by the two strategy profiles coincides, and therefore

i obtains the same utility from both profiles. If t0j is such that i ∈ r0j, then ĝ + ij is

reached under (t0i, t
0
−i, q

0) and ĝ is reached under (ti, t0−i, q
0). In this case, again, the

two profiles lead to the same outcome because f 0i(ĝ + ij) = fi(ĝ).

Thus t0i weakly dominates ti, which is what we wanted to show.

Conclusion

This paper demonstrates that weakly pairwise Nash stable networks are the equi-

librium networks a modified version of Myerson’s linking game, in which pairs of

players are treated as additional players. Two features of the game bring about the

type of coordination required by weak pairwise stability. First, pairs have the discre-

tion to add links whenever individual players fail to coordinate on the formation of

a link. Second, a pair’s payoff is designed so that the pair benefits from the addition

of the link if and only if both players benefit from it. My characterization allows to

introduce mixed strategies to coordinated moves.

The paper also defines a two-stage game of network formation which provides

a natural model of how coordination can arise in a noncooperative setting. The
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equilibrium of the two-stage game provides a rationale for networks in which players

are not linked even though both would benefit from being linked. In the game, such

networks can arise in equilibrium if players fail to form coordination links in the first

stage. In a real-world network, such networks might be stable simply because two

players do not know enough about each other (or do not know each other at all).

The nonexistence of solutions to games with cooperative elements has been studied

extensively in the literature with a focus on finding conditions when such a solution

exists. In all these games, reverting to mixed strategies is infeasible because they

have no well-defined strategic form. To resolve this, it might be feasible to define

equivalent strategic form noncooperative games, using methods similar to the ones

used in this paper.
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CHAPTER IV

COMPETITION OVER STANDARDS AND TAXES

Introduction

The recent integration of countries in Eastern Europe to the European Union

(EU) has provoked renewed concern about the aggressive competition by new mem-

bers for firms and other mobile factors.32 To investigate this issue, our paper develops

a model of international competition over standards and taxes. By a ‘standard’ we

have in mind such things as labor regulations, pollution control and property rights

enforcement. Firms who locate in a country are required to pay taxes which are

used, at least in part, to enforce the standard in that country. The main purpose of

this paper is to show that, through competition in standards and taxes, a develop-

ing/transition country may indeed have a ‘second-mover advantage’ over a developed

country in attracting firms and extracting rents. While this concern has circulated

in policy discussions for some time now, to our knowledge it has not been studied

formally before in the literature on fiscal competition.33

Although often modeled as a type of local public good, standards have an impor-

tant distinguishing feature. A reasonable assumption in the context of most public

goods is that (for a given tax outlay) all firms at least weakly prefer a higher level of

public good provision. On the other hand all firms do not unanimously prefer higher

32For example, although EU accession requirements demand moves towards harmonization of
environmental standards and some measures have been put onto statute books, there appears to
be widespread skepticism about the actual implementation of such measures. Citing the incentive
not to raise standards in order to attract firms, Post (2002) states that ‘there is a “deception
gap” between what is said on paper and what is done in practice’ with regard to environmental
policy. Andonova (2003) provides extensive details of these environmental standards. Although
environmental standards provide a good motivating example, our concern will be with standards
more broadly defined as we shall explain.
33This issue has been raised both with respect to developing countries and to countries from the

former Soviet Union often referred to as ‘transition countries/economies.’ For brevity, throughout
paper we will use ‘developing country’ as a catch-all term.
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standard levels. For example, a high level of property rights enforcement may benefit

a firm engaged in research and production of new pharmaceutical products while it

may hurt a firm engaged in the mass-production of generic drugs. To an otherwise

familiar model of fiscal competition, we introduce the assumption that firms have dif-

fering ideal standard levels. It is this assumption that gives rise to the second-mover

advantage in standard setting that we identify.

As the discussion so far suggests, we model competition for mobile firms as a se-

quential game between governments who choose standards and taxes. Due to monitor-

ing costs, the higher the standard set by a country the more costly it is to implement.

Following a common hypothesis in the literature (with Niskanen 1977 as its source)

national governments are run by bureaucrats who seek to maximize their budgets

(tax revenue minus the cost of implementing the standard). There is a continuum

of firms (while consumers are not explicitly considered). We refer to the difference

between a firm’s ideal standard level and the level actually set in a country as the

‘standard mismatch’ for that firm. A key parameter in the model is the ‘marginal cost

of standard mismatch’ which parameterizes how a given standard mismatch affects

a firm’s costs of production. Each firm (being small and behaving non-strategically)

chooses its location to maximize profits, taking as given the tax levels and its standard

mismatches in the two countries.

Our simple framework yields a surprisingly rich set of equilibrium predictions

which depend on the cost of standard mismatch. There are three possible outcomes.

(1) If the cost of standard mismatch is low then tax competition leads to an efficient

equilibrium outcome (as in Brennan and Buchanan’s 1980 model of tax competition).

(2) If the cost of standard mismatch is in an intermediate range then the developed

country sets standards inefficiently high and the developing country becomes a stan-

dard haven; a place where firms that prefer a low standard locate in order to escape

the high standard set in the developed country. It is especially interesting that inef-
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ficiently high standards in the developed country arise in equilibrium purely through

strategic interaction between governments in their competition for firms and not as a

result of attempts by governments to win the favor of a voting public. (3) If the cost

of standard mismatch is high then there is a race to the top; both governments set

standards inefficiently high and, because countries are differentiated by their stan-

dard levels, the intensity of tax competition is reduced as well. The precise set of

interactions that gives rise to these equilibrium outcomes will be described in due

course.

Much of the literature that examines fiscal competition where the public good in

question is a standard assumes that (for a given tax take) citizens at least weakly

prefer higher standards and that the standard in question is environmental. As a

result, insights from the literature on tax competition with local public goods extend

naturally; see Wilson (1996) for a survey. Broadly, the literature can be categorized

into three areas. The first category, following Tiebout (1956), focuses on situations

where competition among independent governments is like competition among firms

and enhances efficiency. The second category concerns the presence of a policy-

failure that allows or induces governments to set taxes on capital too high. This

in turn induces governments to try to offset the depressive effects of capital taxes

on investment by setting environmental standards too lax; this outcome is popularly

known as a ‘race to the bottom.’ See Oates and Schwab (1988) for further details, as

well as a discussion by Wilson (1996) of Oates and Schwab plus the related literature.

The third category considers situations in which there is strategic interaction, over

standards and taxes, between governments and a small number of firms. See for

examples Markusen et al. (1995) and Davies and Ellis (2007). In such settings,

strategic interactions over the market power held by firms and the policy failures of

governments are the source of inefficient policy choices.

Our model combines features of models from papers in the first two categories: on
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the one hand competition between governments introduces efficiency enhancing in-

centives; on the other hand the broader environment in which these incentives operate

is one of market - or policy - failures that preclude the attainment of a fully efficient

equilibrium. As in the literature that follows Tiebout, governments in our model are

rent (or profit) maximizing but are constrained by competition. For example, Fischel

(1975) and White (1975) share with the present paper the assumption that there

is variation over firms’ preferences for standards. In contrast to our model, Fischel

(1975) and White (1975) assume that individual firms can be targeted for transfers

and there is ‘free entry’ of jurisdictions, none of which has sufficient market power

to extract rents from firms. As a result, within such a setting, an efficient outcome

can be demonstrated in which firms ‘vote with their feet.’ In our model firms cannot

be targeted for transfers. Moreover, there is policy failure in the sense that once the

levels of public goods — in our model, standards — are fixed they cannot be altered.

Another difference is that we fix the number of countries (at two) which enables their

rent-maximizing governments to make positive rents and thus allows inefficiencies to

arise.34

Rent-maximizing governments are a source of policy inefficiency for Oates and

Schwab (1988) as well. Again, if governments are able to earn rents from taxation of

mobile resources (in their case, capital) then there is an incentive to simultaneously

set standards inefficiently low. Other papers in the literature build on these basic

features in various ways. Interestingly, although the source of excessive taxation

put forward by Oates and Schwab is the same as ours, their outcome in terms of

environmental standards is starkly different. In their setting the outcome is a race to

the bottom; in our setting, if the marginal cost of standard mismatch is sufficiently

34Our focus is on national governments while in much of the literature on standards and tax
competition governments preside over jurisdictions more broadly defined. The reason we interpret
the context of our model as international is that the range of policy options under consideration
is more limited than in a domestic or federal context. In particular, the feature of our model
that transfers between jurisdictions are not allowed appears to mirror more closely an international
setting.
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large, the outcome is a race to the top.35

The remainder of this paper is organized as follows. Section 2 introduces the

model, then defines strategies and the subgame perfect equilibrium. Section 3 solves

for the efficient allocation. Section 4 presents the equilibrium outcome, which is

defined in terms of the location decisions of firms and policies set by the developing

country and the developed country respectively. Conclusions are drawn in Section 5.

The Model

The governments of two countries, a developed country, L (for ‘leader’), and a

developing country, F (for ‘follower’), compete over standard levels and taxes in their

attempts to induce firms to locate in their respective countries. The governments are

assumed to be rent maximizers. There is a set of firms, each of which is able to sell a

single unit of a good. The production costs of a firm depend on the level of taxation

and the level of the standard in the country where it locates. We will first specify

the behavior of firms, and then we will turn to the governments. This is the natural

sequence of exposition given that we solve for equilibrium using backwards induction.

Firms

The world price of the unit that each firm sells is p, and each firm pays a private

per-unit production cost, c.36 The tax levied on the firm is τL if it locates in L and τF

if it locates in F . The value s ∈ [0, 1] uniquely identifies a firm and its ideal standard

level.37 The standard mismatch for a firm s is given by the difference between s and

the standard level actually set in the country where the firm locates. The impact of

standard mismatch on production costs is parameterized by k; we refer to k as the

35Wilson (1996) insightfully conjectures that, under certain parameterizations, it may be possible
to show that Oates and Schwab’s framework could motivate a race to the top as well.
36To increase realism, the price that each firm receives for the good that it sells could be made to

vary across firms without affecting the results.
37We choose the interval [0, 1] to simplify the exposition. The same qualitative results may be

obtained using an arbitrary interval [a, b].
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marginal cost of standard mismatch. If we let the variables lL, lF ∈ [0, 1] denote the

standard levels set by L and F respectively then we can express the profit function

for firm s as follows:

π (s) ≡

⎧⎪⎨⎪⎩ p− c− τL − k |lL − s|

p− c− τF − k |lF − s|

if the firm locates in L;

if the firm locates in F.

To focus the analysis on location decisions, it will be assumed throughout that p is

sufficiently high to ensure that all firms make positive profits. Also, p will serve as

an upper bound for the tax that a government can set.

A firm s makes equal profits in both countries if and only if

τL + k |lL − s| = τF + k |lF − s|

in which case the firm is indifferent between the two countries. If there is a single

indifferent firm, ŝ, then it holds that ŝ lies between lL and lF . Solving for ŝ in this

case we obtain:

ŝ ≡ ŝ (lL, τL, lF , τF ) =

⎧⎪⎨⎪⎩
τL−τF
2k

+ lL+lF
2

τF−τL
2k

+ lL+lF
2

if lF < lL

if lF > lL.

Firm s may prefer one country, say F , in terms of the tax that it sets; τF < τL. But

if L’s standard is sufficiently close to s (i.e. |s− lL| < |s− lF |) then L can attract

s to its country.38 If there is more than one firm that is indifferent between the

two countries, then it must hold that for any such firm s, either s ≤ min{lL, lF} or

s ≥ max{lL, lF}. If all firms are indifferent, then τL + klL = τF + klF . If no firms

are indifferent then clearly all firms locate in one country or the other. These cases

38Firms’ location decisions and hence the sizes of the countries, in terms of the measure of firms
in each country, are determined strictly by the interaction of policy choices with firms’ preferences.
Additional features could be introduced to make the model more realistic including, for example,
infrastructure and an ‘attachment to home’ but this would obscure the effects we want to focus on.
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are treated in the rent functions of the countries defined in Section 2.2.39

Three more assumptions are needed to obtain clear-cut solutions for firm locations:

(1) Given taxes and standards, firms that are indifferent between the two countries

locate in the country with the lower standard mismatch, i.e. firms care more about

the persistence of an established standard level than the constancy of a given tax

level;

(2) If all firms are indifferent between the two countries, then half locate in one

country and half locate in the other;

(3) If a government has multiple best responses, it chooses the best response that

maximizes its share of firms.

These assumptions will be discussed further when we derive equilibrium in Section

4. The location decisions of firms described above are illustrated in Figure 11.
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Figure 11: Firms’ location decisions

Figure 11 is reminiscent of ‘Hotelling’s umbrella,’ and reflects the underlying struc-

ture of our model which has some Hotelling features (see Hotelling 1929). The figure

shows illustrative levels of standards and taxes set by governments F and L. For

39See the Appendix for additional details.
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standards and taxes as shown, the point ŝ represents the ideal standard level of the

indifferent firm ŝ. For ŝ, the absolute cost of standard mismatch is lower in L, but

the tax in F is lower than the tax in L.

Governments

Rents are given by tax revenues minus the cost of standard provision. A gov-

ernment’s cost of enforcing a standard level l ∈ [0, 1] is l per firm that is located in

its country. Thus the cost of enforcing a standard is assumed to be proportional to

the level of the standard and the number of firms over which it must be enforced.

Government F takes lL and τL as parameters and chooses lF and τF to maximize its

rents. Discontinuities arise in the rent function at points where, given L’s strategy,

F ’s strategy is such that ŝ = lF or ŝ = lL, and additionally when lF = lL and τF = τL.

Below is the rent function for F . The rent function for L is symmetric:
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rF (lF , τF ; lL, τL) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(τF − lF )
1
2

(τF − lF )

(τF − lF )ŝ

(τF − lF )(1− ŝ)

0

if τF = τL and lF = lL

if τF < τL − k |lL − lF |

if |τF − τL| ≤ k(lL − lF )

and lF < lL

if |τF − τL| ≤ k(lF − lL)

and lF > lL

if τF > τL + k |lL − lF | .

Case 1.

Case 2.

Case 3.

Case 4.

Case 5.
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Figure 12: Strategy sets for Government F

Figure 12 depicts the sets in the strategy space of F corresponding to the different

cases of rF (·). Case 1 arises when both governments choose the same standard and

tax levels. By assumption, half of the firms then locate in F . In Case 2, which we

will refer to as undercutting, the combination of standard levels and taxes induces all

firms to locate in F . Cases 3 and 4 arise when strategies result in a positive fraction

64



of firms locating in each of the countries, with F setting a lower standard than L in

Case 3 and a higher standard than L in Case 4. We will refer to these third and fourth

cases, where firms are shared between the two countries, as sharing I and sharing II.

Finally, Case 5 arises when F chooses its strategy so that it attracts no firms.

Efficiency

Within the context of our model, an allocation is efficient if it maximizes the

aggregate surplus realized by firms plus the governments’ rents. An allocation con-

sists of two ES levels and an assignment of firms to countries, denoted by (lF , lL, ŝ).

Formally, the allocation (lF , lL, ŝ) is efficient if it solves40

max
{lF ,lL,ŝ}

Z ŝ

0

(p− c− τF − k |lF − s|)ds+ (τF − lF ) ŝ

+

Z 1

ŝ

(p− c− τL − k |lL − s|)ds+ (τL − lL) (1− ŝ)

s.t. lF ∈ [0, 1] , lL ∈ [lF , 1] , and ŝ ∈ [0, 1].

The integrals are the profits of firms that are allocated to the two countries. The

other two terms are the rents of the two governments. The problem can be simplified

to

min
{lF ,lL,ŝ}

Z ŝ

0

k |lF − s| ds+ lF ŝ+

Z 1

ŝ

k |lL − s| ds+ lL (1− ŝ)

s.t. lF ∈ [0, 1] , lL ∈ [lF , 1] , and ŝ ∈ [0, 1].

Thus the efficient allocation minimizes the sum of the aggregate costs of standard

mismatch and the costs of ES setting. We use superscript e to denote an efficient

allocation. To express dependencies on k, we write leF (k), l
e
L (k), and ŝe (k).

40If it is efficient that the two countries set different standard levels, it does not matter for the
efficiency of the allocation whether F or L sets the higher standard. Here, we pose the problem so
that L sets a standard not lower than F . Since the roles of F and L can be exchanged, the results
in this section are unique only up to a relabelling of countries.
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It is immediate that, if k < 1, the set of efficient outcomes is given by leF (k) = 0,

leL (k) = 0, and ŝe (k) ∈ [0, 1]. That is, for k < 1 it is efficient to set a zero ES with

the share of firms that locates in each country being indeterminate. Even for the firm

s = 1, it is more efficient to incur the costs of standard mismatch, k, than to pay for a

positive ES level l that would lower mismatch costs: k < l+ k (1− l) = k+ l (1− k).

If k = 1, any allocation for which leF = 0 and leL = ŝe ∈ [0, 1] is efficient. In addition,

for leF = leL = 0 any ŝe ∈ (0, 1] is efficient as well. Since the mcsm and the marginal

cost of enforcing the standard for an additional firm are equal if k = 1, there exists a

continuum of efficient allocations.

For k > 1, solving the minimization problem above yields the efficient allocation:

leF (k) =
k − 1
4k

;

leL (k) =
3k − 1
4k

;

ŝe (k) =
1

2
.

The efficient standard levels are increasing in k. Figure 13 illustrates the efficient ES

levels and the allocation of firms to countries depending on k for the case k > 1.

k

ˆ, ,l l sF L

1/ 4

3/ 4

1 10

1/ 2
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ŝ

Figure 13: Efficient allocation for k > 1
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Given the Hotelling features of our underlying model, one might have expected the

efficient solution to have the form leF (k) =
1
4
and leL (k) =

3
4
familiar from Hotelling

(1929). In our model the efficient levels of enforcement are lower, starting at just

above leF (k) = 0 and just above l
e
L (k) =

1
2
respectively for k → 1 (from above) and

converging towards leF (k) =
1
4
and leL (k) =

3
4
respectively as k becomes large. To

understand why our efficient ES levels are lower than they would have been in a direct

application of Hotelling, recall that in our model one has to take into account the

costs of enforcing the ES for each firm assigned to a country as well as the costs of

standard mismatch. If our model were a direct application of Hotelling then the level

of the ES would not have affected its cost of enforcement. Efficient ES levels in our

model approach the efficient levels that would have arisen in a direct application of

Hotelling’s model as k becomes large because the cost of standard mismatch becomes

large relative to the cost of enforcement. Finally, as in Hotelling’s model, in our model

the share of firms between countries is equal. This efficient solution will serve as a

benchmark against which to compare the equilibrium outcome.

Competition over Standards and Taxes

In this section we will derive and discuss the equilibrium outcome. Our approach

will be to first define equilibrium and then state our main theorem in which equilib-

rium is characterized. The derivation of equilibrium will be undertaken subsequently.

As mentioned above, standard provision and tax setting are modeled as a two-

stage game. The sequence of events is as follows. Government L sets its standard

level and tax and then, observing L’s choices, Government F sets its standard level

and tax. Taking government policies as given, firms then make location decisions to

maximize profits. As usual, a subgame perfect Nash equilibrium is a strategy profile
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with the property that the governments’ strategies constitute a Nash equilibrium in

every subgame of the game.

A strategy for Government L is a pair consisting of a standard level and a tax. A

strategy is feasible if the tax is high enough to cover the cost of standard provision.41

Formally, the set of feasible strategies is

SL = {(lL, τL) ∈ [0, 1]× [0, p] | τL ≥ lL} .

A strategy for Government F is a mapping that assigns a pair, consisting of a

standard level and a tax, to each possible strategy choice made by Government L

in the first stage of the game. Formally, this mapping is described by f : SL →

[0, 1] × [0, p] where f (lL, τL) = (lF , τF ). Let F be the set that contains all such

mappings. The set of feasible strategies for Government F consists of those members

of F with the property that tax revenue covers the cost of the associated standard

level; that is,

SF = {f ∈ F | for all (lL, τL) ∈ SL, f (lL, τL) satisfies τF ≥ lF } .

We are interested in the pure strategy subgame-perfect Nash equilibrium of the

game, which can be viewed as a Stackelberg game.42

Definition 19 A pure strategy subgame-perfect Nash equilibrium in taxes and stan-

dard levels is a pair of strategies ((l∗L, τ
∗
L), f

∗) such that

1. (l∗L, τ
∗
L) ∈ SL is a best response to f∗.

2. f∗ ∈ SF and f∗(lL, τL) is a best response to (lL, τL) for all (lL, τL) ∈ SL.
41Thus we make the simplifying assumption that there are no other sources of government revenue

and no international capital market which governments can tap. We do not think that allowing such
a possibility would change our results, wherein governments make positive rents in equilibrium.
42It will be assumed throughout that mixed strategies in tax rates are not available to governments.

This is generally deemed to be an acceptable assumption in the applied literature on policy setting
in a perfect information environment.
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With the structure of the model in place and equilibrium defined, we are now

ready to state our main theorem which characterizes equilibrium.

Theorem 20 The outcome of the subgame-perfect equilibrium.43

The subgame-perfect equilibrium is as follows.

(a) (Efficient outcome) If k ≤ 1
3
, both countries set the minimum standard level and

set zero taxes. Firms split equally between the two countries; that is, (l∗L, τ
∗
L) = (0, 0)

and (l∗F , τ
∗
F ) = (0, 0), and ŝ

∗ = 1
2
.

(b) (Standard haven) If 1
3
< k ≤ 1, the differentiation in standard levels between the

two countries is high; the developed country sets a standard close to the maximum

level and the developing country sets a zero standard level. Both countries set taxes

that lead to positive rents, and rents are always higher for the developing country than

for the developed country. The majority of firms locates in the developing country.

Specifically, it holds that l∗L ≥ 8
9
, τ ∗L ∈ (l∗L, 2l∗L), and l∗F = 0, τ ∗F ∈

¡
3
4
, 4
3

¢
, and ŝ∗ > 2

3
.

(c) (Race to the top) If k > 1, the standard level is above 1
2
in both countries, with the

developed country setting a higher standard than the developing country. The standard

levels do not vary with k. Both governments make positive rents, requiring firms to

pay more than twice the cost of standard provision. The developing country sets a

higher tax than the developed country and earns higher rents. Two-thirds of the firms

locate in the developing country, and every firm with strictly higher ideal standard

level than set in the developing country locates in the developed country. Specifically,

it holds that l∗L =
8
9
, τ ∗L =

4
3
+ 4

9
k > 2l∗L, and l

∗
F =

2
3
, τ ∗F =

4
3
+ 2

3
k > 3l∗F , and ŝ

∗ = 2
3
.

Figure 14 shows the equilibrium standard levels set in the two countries depending

on k. The subgame-perfect standard and tax levels differ considerably across the

three regions of k: A small k leads to an efficient outcome; for k in an intermediate

range there is almost maximum differentiation in standards; for large k there is some

43The theorem is restated in the Appendix with formulae for all the equilibrium values shown
explicitly.
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differentiation but it is substantially smaller than for k in the intermediate range.

The reason is that F sets two-thirds of the maximum standard instead of zero as in

the ranges where k is low and high. For low k, taxes are the same in both countries.

For 1
3
< k ≤ 1, the developed country sets a higher tax than the developing country,

whereas for k > 1, the developing country sets a higher tax than the developed

country.
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Figure 14: Equilibrium standard levels depending on k

The common characteristic of equilibrium across all levels of k is that the devel-

oping country attracts at least as many firms as the developed country. Also, for

k > 1
3
, both the developed and developing country are able to extract rents.44 This

arises as a result of the monopolistic power that each government has over location

44The result is particularly striking for the country that supplies zero standard even though it
levies a positive tax.
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within its country. Each firm must locate in one country or the other in order to

produce, and the government of the country where it does locate is able to exploit

its resultant power when setting taxes. An additional interesting aspect is that F ,

who sets a lower standard, makes more rents because it both attracts more firms and

makes more rents per firm. Except for k ≤ 1
3
, countries set inefficiently high standard

levels.

The intuition behind the result for low marginal cost of standard mismatch, case

(a), is straightforward. For k ≤ 1
3
, the costliness of standard mismatch is so low that

countries do not succeed in differentiating themselves via standard levels. This is due

to the fact that firms do not perceive countries with different standard levels as suf-

ficiently distinct from each other. Therefore a country cannot extract a monopolistic

rent by setting a standard level different from the one set in another country. All

competition occurs in taxes, which brings about an efficient outcome.

Turning to case (b), the intuition behind the maximum differentiation in standards

that occurs when the marginal cost of standard mismatch is in an intermediate range

is as follows. The developing country has a second-mover advantage and so creates

a standard haven for firms whose costs are affected more by taxes than by standard

mismatch. The developed country can extract some rents (because k is not too

small), but only by differentiating itself substantially (because k is not too large)

from the developing country. Because it is a dominant strategy for the developing

country to become a standard haven, the developed country can only differentiate

itself by setting its standard at a high level. As a result there is close to maximum

differentiation between the two countries.

Regarding case (c), when the cost of standard mismatch is high relative to taxes,

both countries offer inefficiently high standard levels. (Recall from Section 3 that the

efficient outcome calls for the countries offering up to, respectively, 12% and 35% of

the maximum standard level.) Because firms value a lower standard mismatch more
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than lower taxes, the developing country has an incentive to choose a standard level

close to the standard level that the developed country sets. Whether the developing

country chooses a standard level that is lower or higher than the one in the developed

country depends on whether the developed country sets a relatively high standard

level (in which case the developing country would set a lower standard level) or

whether it sets a relatively low standard level (in which case the developing country

would set a higher standard level). In equilibrium, the developed country chooses a

high standard level even though a lower standard level would be less costly. This is

because the developed country has to allow the developing country to extract high

rents to prevent the developing country from undercutting.

Notice that case (c) is the case which one would expect to be least stable among

the three cases. Because F sets the highest tax that still attracts a positive fraction

of firms to its country (all firms ‘to the left of F ’ with an ideal standard level not

higher than the one F sets), Government L - if able to do so - could marginally lower

its tax, and by doing so attract all firms to its country. An additional fraction of

two-thirds of all firms would be attracted, from which L could extract rents.

Now that we have stated our main result and given the basic intuition behind

it, we will next provide a detailed analysis of its derivation. To do so, the next

subsection provides a characterization of F ’s best response, and this is followed by

a characterization of L’s best response in the subsection that follows. All proofs are

given in the Appendix.

The developing country’s best response function

In this section, we analyze Government F ’s best response to a given strategy

(lL, τL) of Government L. We can ignore Case 1 since setting the same standard level

and tax as L is never a best response for F except if (lL, τL) = (0, 0) and k ≤ 1, which

is treated below. We can also ignore Case 5 since choosing a response that does not

attract any firm is never a best response for F .
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To find Government F ’s best response to a given strategy of L, we proceed in

two steps. First, we maximize F ’s rents separately over the three response subsets,

sharing I, sharing II, and undercutting.

Government F ’s optimization problem:

(a) Maximize rents over sharing I

max
τF ,lF

(τF − lF )ŝ

s.t.

lF ∈ [0, lL)

τF ∈ [lF , p]

τF ∈ [τL − k (lL − lF ) , τL + k (lL − lF )]

(b) Maximize rents over sharing II

max
τF ,lF

(τF − lF )(1− ŝ)

s.t.

lF ∈ (lL, 1]

τF ∈ [lF , p]

τF ∈ [τL − k (lF − lL) , τL + k (lF − lL)]

(c) Maximize rents over undercutting

max
τF ,lF

(τF − lF )

s.t.

lF ∈ [0, 1]

τF < τL − k |lL − lF | .
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Second, given the solutions to (a), (b), and (c), the best response is found by com-

paring the maximized rents across the three sets of possible solutions.

There are two issues that can arise when solving for the developing country’s best

response to (lL, τL): First, a best response might not exist; second, a best response

might not be unique. The existence of a best response to (lL, τL) is not guaranteed

because an optimal undercutting strategy does not exist. The reason is that the rent

function does not have a well-defined maximum on the set of undercutting strategies.

That is, for each undercutting strategy with τF = τL − k |lL − lF | − ε where ε > 0,

we can find a slightly higher tax (i.e., a smaller ε) that still undercuts L’s strategy.

Because such a tax would yield higher rents, the optimal undercutting strategy is not

well defined.45

In our model this difficulty can be resolved in a straightforward way. Even though

one cannot determine an optimal undercutting strategy, one can determine when Gov-

ernment F will undercut L and when it will share firms with L. Because Government

L will avoid strategies that induce F to undercut (i.e., undercutting happens only

off the equilibrium path), we can solve our model without determining the specific

undercutting strategy. We determine which of L’s strategies lead F to undercut by

assuming that F undercuts whenever there exists some undercutting strategy that

yields more rents than the best sharing strategy.

To be more specific, let rsF (lL, τL) be F ’s rent from an optimal sharing strategy

after L has chosen (lL, τL), and, given ε > 0, let ruF (lL, τL; ε) be F ’s rent from

undercutting where τF = τL − k |lL − lF | − ε. Let ruF (lL, τL) = limε→0 r
u
F (lL, τL; ε).

Note that, by choosing ε sufficiently small, F can obtain a rent arbitrarily close to

ruF (lL, τL), but still r
u
F (lL, τL; ε) < ruF (lL, τL) no matter how small is ε. By solving

rsF (lL, τL) = ruF (lL, τL) we obtain a critical tax τL that depends on lL. We denote

45The literature on entry deterrence through pricing strategy has also had to broach the issue of
what constitutes a best response when payoff functions defined by the game are discontinuous and
might not have a well defined maximum. This issue carries over to the present setting.
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this tax by τ̂L (lL) and will refer to it as the sharing tax limit. The sharing tax limit

can be used to classify payoffs to F ’s standard and tax as follows:

If τL ≤ τ̂L (lL) then for all ε > 0, it holds that rsF (lL, τL) > ruF (lL, τL; ε) ;

if τL > τ̂L (lL) then there exists an ε > 0 such that rsF (lL, τL) < ruF (lL, τL; ε) .

In other words, if L’s tax is higher than the sharing tax limit, then F can find an

ε small enough to make the rents earned from undercutting higher than the rents

earned by sharing. However, if L sets its tax no higher than the sharing tax limit,

F finds that sharing yields strictly higher rents than undercutting, no matter how

small is ε. Figure 15 depicts the situation (the significance of l̂L in the figure will be

explained later).
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Figure 15: Sharing tax limit for k < 1

To deal with the fact that Government F might have multiple best responses

recall our assumption that, if a government has multiple best responses, it chooses
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the best response that maximizes its share of firms. This implies that of the best

responses available, F chooses the one that requires the lowest level of standard.

Moreover, if in addition (lL, τL) = (0, 0), we assume that F sets τF = 0. We only

require these properties in two situations. First, if k < 1 and (lL, τL) = (0, 0), there

is no response that yields positive rents for F . Our assumption then implies that F

chooses (lF , τF ) = (0, 0). Notice that any other feasible strategy for F would induce

all firms to locate in L. Second, if k = 1 then for any (lL, τL) Government F has

a whole range of best responses. More specifically, there is a best response at each

standard level lF . The reason is that standard mismatch and taxes are equally costly

for firms. Therefore if a country decides, for example, to set a lower standard and use

the resources that it saves to reduce its tax, it will attract the same share of firms as

before and it will make the same rents per firm. For this case, our assumption implies

that lF = 0.

Before stating our first result, to keep track of the different kinds of sets charac-

terizing our results, we introduce the following notation. The responses that max-

imize rF (lF , τF ; lL, τL) over undercutting, sharing I, and sharing II are denoted by

(luF , τ
u
F ), (l

s1
F , τ

s1
F ) , and (l

s2
F , τ

s2
F ), respectively. The corresponding rents are denoted

by ruF , r
s1
F , and rs2F , respectively. The responses and revenues all depend on lL and

τL. For notational ease, we will use (l∗F , τ
∗
F ) to denote the response that maximizes

rF (lF , τF ; lL, τL) over {(luF , τuF ), (ls1F , τ s1F ) , (ls2F , τ s2F )}.

The nature of the results we obtain differs across three intervals, k ∈
¡
0, 1

3

¤
,

k ∈
¡
1
3
, 1
¤
, and k ∈ (1,∞). For each of the three regions of k, Proposition 21

summarizes the best response of Government F to any standard level and tax that

Government L has chosen in the first stage.

Proposition 21 (The developing country’s best response)

(a) If the marginal cost of standard mismatch for firms is low (k ≤ 1
3
), Government

F ’s best response to any of Government L’s feasible strategies is to set zero standard,
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and to set an undercutting tax if τL > 0 and to set τF = 0 if τL = 0. Specifically, if

τL > 0 then (l∗F , τ
∗
F ) = (0, τ

u
F (lL, τL)) , and if τL = 0 then (l

∗
F , τ

∗
F ) = (0, 0).

(b) If the marginal cost of standard mismatch is at an intermediate level (1
3
< k ≤ 1)

there exists, for each standard level set by L, a corresponding sharing tax limit. If

L sets its tax above (equal to or below) the sharing tax limit, then Government F ’s

best response is to set no standard and to set the corresponding optimal undercutting

tax (optimal sharing tax). Specifically, for each lL there exists a sharing tax limit,

τ̂L(lL), such that if τL > τ̂L(lL) then (l∗F , τ
∗
F ) = (0, τ

u
F (lL, τL)) and if τL ≤ τ̂L(lL) then

(l∗F , τ
∗
F ) = (0, τ

s1
F (lL, τL)). F ’s optimal sharing tax is given by τ

s1
F (lL, τL) =

1
2
τL+

k
2
lL.

(c) If the marginal cost of standard mismatch is high (k > 1) there exists, for each

standard level set by L, a corresponding sharing tax limit. If L sets its tax above (equal

to or below) the sharing tax limit, then Government F ’s best response is to set the

optimal undercutting tax while setting the same standard level as L (set the optimal

sharing tax and set either a lower or higher standard than L). Specifically, for each

lL there exists a sharing tax limit, τ̂L(lL), such that if τL > τ̂L(lL) then (l∗F , τ
∗
F ) =

(lL, τ
u
F (lL, τL)) and if τL ≤ τ̂L(lL) then (l∗F , τ

∗
F ) ∈ {(ls1F , τ s1F (lL, τL)), (ls2F , τ s2F (lL, τL))}.

If the marginal cost of standard mismatch is low or at an intermediate level (k ≤

1), it does not pay for Government F to compete in the standard at all. Thus l∗F = 0

in parts (a) and (b). However, if the marginal cost of standard mismatch is high

(k > 1), F has an incentive to set a positive standard level. Moreover, the cheapest

way to attract all firms is to set exactly the same level of standard as L. In this

way F does not need to compensate any of the firms for a higher standard mismatch.

The optimal sharing I and sharing II taxes for case (c) are both boundary solutions.

Government F sets the highest tax that still attracts some firms to its country (the

firms in the intervals [0, lF ] and [lF , 1], respectively).

Part (a) of Proposition 21 shows that for small k undercutting dominates sharing.

All firms can be attracted without having to set the tax much below L’s tax. At the
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same time, the area in policy space over which firms are shared is reduced - as k is

reduced, a given tax set by F will induce all firms to locate in country L. Figure 16

illustrates the situation. A reduction of k increases undercutting possibilities while

at the same time it reduces sharing possibilities. In particular, as k → 0, the set of

sharing possibilities shrinks to the empty set. For τL = 0 there is no strategy for F

that yields a positive rent, meaning that F is indifferent among all feasible strategies.

Thus, (by assumption) F sets a zero standard and sets τF = 0.
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Figure 16: Undercutting dominates for small k

Part (b) of Proposition 21 illustrates the role of the sharing limit tax, τ̂L(lL), in

the model. Government F shares if L’s tax does not exceed τ̂L(lL) but undercuts if

L’s tax is above it. To see why suppose that, for some standard and tax levels, L

and F are sharing firms. If L increases its tax, F will raise its own tax by only half

the amount (τ s1F = 1
2
τL +

k
2
lL). When raising its own tax, F has to consider a ‘tax

level effect’ - F will earn more rent per firm - and a ‘tax base effect’ - fewer firms

will locate in F . Since, when k ≤ 1, firms’ location decisions are relatively elastic
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with respect to taxes (recall that ŝ = τL−τF
2k

+ lL+lF
2
) the tax base effect dominates

the tax level effect and F increases its tax less than L does. Thus the share of firms

locating in F increases. The more L raises its tax, the more firms it will lose to F .

Eventually all firms with s ≤ lL will locate in F . At this point, F will want to switch

to an undercutting strategy because F has to lower τF only marginally to induce an

additional share of (1− lL) firms to locate in its country.

Similarly, there exists a sharing tax limit in part (c). In Figure 17 the sharing

tax limit is given by τ̂L(lL) = max
©
τ̂ 1L(lL), τ̂

2
L(lL)

ª
, where τ̂ 1L(lL) is the tax up to

which an optimal sharing I strategy is better for F than any undercutting strategy

and τ̂ 2L(lL) is the tax up to which an optimal sharing II strategy is better for F than

any undercutting strategy. Notice that the proposition only states that F shares

firms up to that tax level, but not whether it does so by setting a lower or higher

standard than L. It is possible (as shown in the proof) to identify two subsets of

SL so that F chooses (ls1F , τ
s1
F ) or (l

s2
F , τ

s2
F ) if (lL, τL) is in the first or second of the

subsets respectively. Intuitively, if L sets a relatively low standard level then sharing

with a higher standard level tends to yield higher rents for F ; if L sets a relatively

high standard level then sharing with a lower standard level will yield higher rents

for F . More specifically, we show in the appendix that if lL ≥ 1
2
then setting an even

higher standard and sharing is never a best response for Government F . In this case,

instead of setting a standard that exceeds L’s standard by x, i.e., lF = lL + x, and

set some tax, F can set lF = lL−x, without changing the tax. Doing so will increase

F ’s rent per firm, and the share of firms attracted will be at least as large.
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Figure 17: Sharing tax limit for k > 1

The developed country’s best response

Government L takes Government F ’s subgame-perfect strategy f∗ (lL, τL) as given

and maximizes its rent function over SL. Formally L’s problem is

max
{lL,τL}

rL (lL, τL, f
∗ (lL, τL))

s.t.

lL ∈ [0, 1]

τL ∈ [lL, p]

Just like Government F ’s rent function, L’s rent function evaluated at f∗ is not con-

tinuous. For example, discontinuities arise at the sharing tax limit τ̂L(lL). But given

f∗, we can safely exclude from the set of candidates for best response all strategies

with τL > τ̂L(lL) (except (lL, τL) = (0, 0)), because such strategies would induce F

to undercut and hence would leave L with zero rents. Accounting for F ’s response in

the second stage, those taxes will yield zero rents for L, while a tax that induces F
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to share firms yields positive rents. Thus, we can formulate a reduced problem for L.

Government L’s reduced optimization problem:

max
{lL,τL}

rL (lL, τL, f
∗ (lL, τL))

s.t.

lL ∈ [0, 1]

τL ∈ [lL, τ̂L(lL)]

Figure 18 depicts L’s rent function, rL (lL, τL, f∗ (lL, τL)), depending on τL and fixing

some standard level lL. Rents are zero when L sets τL = lL, but then increase at low

levels of τL when F is willing to share firms. Rents jump to zero at τL = τ̂L(lL).

As with Government F , Government L’s best response to f might not be unique.

Government L’s best response to F ’s equilibrium strategy f∗ is not unique if and only

if k ≤ 1
3
. In this case L cannot make any positive rents because F always undercuts

L. Paralleling our assumption for Government F , we assume that L then chooses

(lL, τL) = (0, 0). As before, this assumption reflects a preference for strategies that

attract larger shares of firms.

 

Lτ

Lr

L Llτ = ˆ ( )L Llτ

( , )L L Lr lτ

Figure 18: Government L’s payoff function
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Since the nature of f∗ depends on k, so will the nature of Government L’s optimal

strategy; Proposition 22 summarizes. We use l̂L to denote the critical standard level

so that the sharing tax limit is at least as large as the cost to cover the standard if

and only if lL ≥ l̂L. See Figure 15 for an illustration.46

Proposition 22 (The developed country’s best response to f∗).

(a) If the marginal cost of standard mismatch is low (k ≤ 1
3
), Government L’s best

response to f∗ is to set no standard and set zero tax. Specifically, (l∗L, τ
∗
L) = (0, 0).

(b) If the marginal cost of standard mismatch is at an intermediate level (1
3
< k ≤ 1),

Government L’s best response to f∗ is to set a standard strictly larger than l̂L and set

its tax at the sharing tax limit, τ̂L(lL), the highest tax that induces F to share firms.

This tax is higher than the tax set by F . As k is increased, standard provision by L

decreases from l∗L / 1 to l∗L ' 22
25
, and rents per firm increase.

(c) If the marginal cost of standard mismatch is high (k > 1), Government L’s best

response to f∗ is to set a standard of l∗L =
8
9
and to set τL = τ̂ 1L(lL), the highest

tax that induces F to share firms and which exceeds costs by at least a factor of 2.

Specifically, (l∗L, τ
∗
L) =

¡
8
9
, 4
3
+ 4

9
k
¢
.

If k ≤ 1
3
, Government F chooses an undercutting strategy for each tax that

exceeds the cost of the standard (Proposition 21). Thus each of L’s strategies yields

zero rents and, by assumption, Government L picks (l∗L, τ
∗
L) = (0, 0). Rents for both

governments are zero.

To derive the results for 1
3
< k ≤ 1, we show that for k ≤ 1, there exists a

(k-dependent) critical standard level l̂L such that τ̂L(lL) = lL for all lL ≤ l̂L and

τ̂L(lL) > lL for all lL > l̂L, as a result of which we can focus on standard levels

46Proposition 22 is restated in the Appendix with the exact expressions for the optimal strategies.
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lL ∈ [l̂L, 1]. From this we can see immediately that L chooses the tax τ̂L(lL) since, as

shown in Figure 15, L’s rents are increasing in τL up to τ̂L(lL).

At first sight it seems surprising that for 1
3
< k ≤ 1 only a standard of more

than l̂L =
8k(1−k)
(1+k)2

allows L to earn positive rents (see Lemma 27 in the Appendix).

On the face of it, there is of course an incentive for L to set a low standard level

since this saves monitoring costs and would increase the share of firms locating in L.

However, the lower the standard level that L sets, the greater the incentive for F to

switch to an undercutting strategy because switching from a sharing strategy to an

undercutting strategy induces all firms located in L to move to F . Therefore, so that

it does not induce F to undercut, L puts itself into a situation in which it attracts

only a relatively small share of firms by setting a high standard level. This happens

despite the fact that standard mismatch is not very important to firms.

When k > 1, L sets a high standard level. Intuitively, for L, setting a low standard

level in order to induce F to set a higher standard level might seem a better strategy.

However, it is in fact better for L to let F be the country that sets a low standard. This

guarantees F higher rents from sharing, which means that F accommodates higher

taxes by L without undercutting. For example, suppose that L chooses lL = 1
9
and

sets a tax τL = τ̂L
¡
1
9

¢
instead of its actual equilibrium choice l∗L =

8
9
and τ ∗L = τ̂L

¡
8
9

¢
.

Government F ’s best response would be to set lF = 1
3
instead of l∗F =

2
3
. As with

the actual equilibrium strategies, L attracts one third of the firms. But the tax L is

able to set, τ̂L
¡
1
9

¢
, is so much lower than τ̂L

¡
8
9

¢
that rents per firm are only 4

9
k − 4

9

compared to 4
9
k + 4

9
with the equilibrium strategy. In order to obtain the ability to

set a higher tax without losing firms, L accepts that it has to set a costlier standard

level.

Notice also that, for k > 1, in contrast to the situation where k ≤ 1, the standard

level set by L does not vary with k. As standard mismatch becomes more costly for

firms, L extracts more rents through an increase in taxes.
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It should now be clear that Propositions 21 and 22 can be used to solve for the

mutual best responses of the strategies of F and L, thus yielding the subgame-perfect

Nash equilibrium in pure strategies presented in Theorem 20 above.

Conclusion

We began this paper by noting concerns in policy circles that developing countries

resembling those of recent entrants to the EU may, under certain circumstances,

have a second mover advantage in setting standards and taxes. This paper sets out

a formal framework which makes precise a set of circumstances under which such

a second mover advantage may arise. Three possible predictions are made about

the outcome of fiscal competition when the public good in question is a standard.

The particular prediction that emerges in equilibrium depends on the marginal cost

of standard mismatch. The model focuses on the interplay between governments’

incentives to manipulate policy - standards and taxes - in order to maximize rents

and firms’ incentives to locate where these policies have the most favorable impact

on profits. The key point is that the government of the developed country wants to

avoid inducing the developing country to undercut because being undercut implies

losing all firms and hence all rents. If the marginal cost of standard mismatch is

low, then standards are not important enough to firms for governments to be able

to use them strategically. In this case, the forces of tax competition envisaged by

Brennan and Buchanan are strong enough to dominate, and the outcome is efficient.

If the marginal cost of standard mismatch is high enough, the developed country

government successfully induces sharing by setting a sufficiently high standard relative

to the tax. A proportion of firms will then find it beneficial to locate in each country.

Governments are able to use policy to make rents, and the resulting outcome is

inefficient in that either the developed country government or both governments set

standards too high.
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It is worth drawing parallels between our work and the large literature, primarily

in the field of international trade, that has focused on pollution havens. While our

work addresses the issue of ‘standard havens’ more broadly defined, it is in the area

of the environment that the idea of a haven has attracted the most attention and

so it seems worth evaluating the contribution of our work in that context. The

pollution haven hypothesis is that, as economies open up to each other, dirty industry

will tend to become concentrated in the country with the weakest environmental

standards. Standard international trade theory provides a natural explanation for

this, which explains why it forms the cornerstone of the main explanation that is

put forward for the possible existence of pollution havens. The idea is that, all else

equal, thinking of pollution as an ‘input’ to the production process, lax environmental

standards are a source of comparative advantage since they make the opportunity cost

of pollution low. Antweiler, Copeland and Taylor (2001) construct a model around

this idea and present cross-country empirical evidence that provides some support for

the existence of pollution havens (also see Taylor 2004). More recent empirical work

calls into question the existence of pollution havens on the basis that the pollution

content of trade flows do not appear to support the predictions of the trade model; see

Ederington et al. (2004). Part (b) of our Theorem 20 is helpful in this regard since

it presents an alternative strategic motivation for the existence of pollution havens in

developing countries based solely on the feature that developed countries have tended

to introduce environmental standards earlier than developing countries.

Inevitably, the theoretical framework developed here simplifies the situation in a

number of key respects. For example, to keep the analysis manageable we have not

explicitly treated consumers in our analysis and we have restricted the number of

countries to just two. A promising direction for future research would be to extend

our model to give consumers a more prominent role. One potential limitation to our

conclusions is that the government in the developing country does not set standards
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‘too low.’ While it seems reasonable to argue that developed countries may set stan-

dards too high, a concern is that developing countries actually set their standards too

low from the perspective of consumers. The introduction of consumers to the model

could make it possible for standards to be set too low in the developing country.

Another promising direction for future research would be to ask how robust our

results would be to the introduction of a larger number of countries to the model.

From our analysis of the present framework it is not obvious how the outcome would

be changed by the introduction of more countries. One conjecture would be that the

nth country to move would always have the greatest advantage, with prior countries

being constrained by those that would set policy subsequently. A different conjecture

about the outcome would be that only two countries could make positive rents and

that the presence of more countries would be irrelevant. If the analysis of a larger

number of countries turned out to be analytically intractable then it might be possible

to obtain characterizations through numerical simulation.47

Finally, a question that could be addressed in the future is whether incentives

exist for governments to coordinate/harmonize policy within our framework. Under

perfect collusion in our model, governments would simply agree that neither of them

would set a positive standard level and they would set taxes at the level of prices,

thereby extracting all surplus. Such an outcome would be efficient in our framework

in the case where k ≤ 1 because in that case the efficient outcome has zero standards;

for k > 1 the efficient outcome does have a positive level of standard provision.

However, such perfect collusion would require a strong enforcement mechanism and,

in the absence of an international enforcement body, the incentives to break such

an agreement may be overwhelming. This may explain why in practice proposals

for collusion have tended to be weaker, entailing for example the introduction of

47It is tempting to think that one could analyze a model in which a ‘core’ country sets policy first
and a larger number of periphery countries set policy subsequently (but at the same time as each
other). However, the difficulty here is that in the present framework in general there may not exist
an equilibrium in pure strategies when countries set policies simultaneously.
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minimum standards. A surprising implication of our framework is that it is not in

the interest of the developed country to introduce a binding minimum standard. The

reason is that the developed country benefits from being able to differentiate itself

from the developing country and putting in place a minimum standard wouls limit

the scope for doing so. Thus our model presents a possible way of understanding

situations in which standards have been called for but none have actually emerged.

Appendix

Indifference set

The following is an application of the approach taken by d’Aspremont et al. (1979)

to the present setting. Given (lL, τL, lF , τF ), there may be more than one firm that

is just indifferent between the two countries. To deal with this possibility, we define

the indifferent set of firms and denote it by I (lL, τL, lF , τF ). If the Indifferent Set

is not a singleton, a tie breaking rule is needed to determine where indifferent firms

locate. With two exceptions, the indifferent set I (lL, τL, lF , τF ) will be a singleton

set, i.e., ŝ (lL, τL, lF , τF ) is the only member of I (lL, τL, lF , τF ). The two exceptions

are as follows.

(1) Suppose that lF < lL so that F sets a lower standard than L. For s satisfying

s = lF , if s ∈ I (lL, τL, lF , τF ) then for all s0 < s, it holds that s0 ∈ I (lL, τL, lF , τF ).

To see this, first note that for firm s ∈ I (lL, τL, lF , τF ), s = lF , the extent to which

the tax in F exceeds the tax in L exactly matches the cost of standard mismatch

in L, i.e. τF − τL = k (lL − lF ). Compared to the costs the firm s = lF has in F

and L, respectively, a firm s < lF has an additional cost of standard mismatch of

k(lF − s) in either F or L, implying that those firms must be indifferent as well and

that I (lL, τL, lF , τF ) = [0, lF ]. By analogous reasoning, if firm s = lL is indifferent,

then I (lL, τL, lF , τF ) = [lL, 1]. The case lL < lF is symmetric.

(2) Suppose that lF = lL; in this case a firm’s choice of location is determined by
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taxes. If τF = τL then all firms are indifferent and again I (lL, τL, lF , τF ) is not a

singleton set but equals [0, 1].

Note that it might also be the case that no firm is indifferent. For example if lL =

lF and τF 6= τL, all firms prefer whichever country sets the lower tax; consequently

I (lL, τL, lF , τF ) is the empty set. More generally, whenever one country undercuts

the tax of the other country by more than the cost of the standard difference between

the two countries, the indifferent set will be empty.

Proofs

The proof of Proposition 21 uses a sequence of auxiliary results, which are stated

and proven separately in the following Lemmas.

Lemma 23 1. If k < 1, undercutting is feasible if and only if (lL, τL) ∈ SL \{(0, 0)}.

Undercutting with lF > 0 is never a best response.

2. If k = 1, undercutting is feasible if and only if τL > lL. For every undercutting

strategy with lF > 0, there exists an undercutting strategy with lF = 0 that yields the

same rent for F .

3. If k > 1, undercutting is feasible if and only if (lL, τL) ∈ SL such that τL > lL.

Undercutting with lF 6= lL is never a best response.

Proof.

1. We will first show that undercutting I is non-empty if k < 1 and (lL, τL) 6= (0, 0).

Let (lL, τL) be any strategy in SL \ {(0, 0)}. Set lF = 0. Then for small enough ε, lF

together with the tax τF = τL − klL − ε ≥ 0 is a feasible undercutting strategy. If

(lL, τL) = (0, 0) undercutting is not feasible, because it requires to set a tax strictly

below zero, which is not feasible. Next, we show that (luF , τ
u
u) = (0, τL − klL − ε)

for some ε > 0. Take any undercutting strategy with lF > 0 and a corresponding

undercutting tax τF = τL−k |lL − lF |−ε. Using the same ε to undercut, the strategy

l0F = 0 with undercutting tax τ
0
F = τL−klL− ε is feasible (i.e., τL−klL− ε > 0) and
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yields more rents per firm because it saves costs of lF per firm and reduces revenue

per firm by at most kl0F . Thus, undercutting with lF > 0 is never a best response.

2. If k = 1, it is obvious that undercutting is feasible if τL > lL: simply let lF = lL

and choose ε such that τF = τL − ε ≥ lL.To see that the reverse implication holds,

suppose that τL = lL. In this case F cannot find a strategy so that the firm s = lL

prefers the tax and the standard level offered in F to the ones offered in L because

if lF 6= lL, F will have to compensate s = lL for more than its standard mismatch

meaning that F ’s tax would have to undercut L’s tax by more than |lL − lF | which

is not feasible. Next, fix (lL, τL) and let (lF , τF ) be a feasible undercutting strategy

with lF > 0. The strategy (l0F , τ
0
F ) with l

0
F = 0 and τ

0
F = τF − lF yields the same rent

per firm as (lF , τF ). Moreover, the fact that every firm preferred (lF , τF ) to (lL, τL)

implies that every firm also prefers (l0F , τ
0
F ) to (lL, τL) (all firms s < lF strictly prefer

(l0F , τ
0
F ) to (lF , τF ) and all other firms are indifferent).

3. Suppose that k > 1. If τL > lL, undercutting is obviously feasible. If τL = lL,

undercutting is not feasible. Take any lF ∈ [0, 1]. We have

τF = τL − k |lL − lF |− ε < lF .

Next, we show that if undercutting is feasible then (luF , τ
u
u) = (lL, τL − ε) for some

ε > 0. Assume that τL > lL. Take any undercutting strategy with lF 6= lL and a cor-

responding undercutting tax τF = τL−k |lL − lF |− ε. Using the same ε to undercut,

the strategy l0F = lL with undercutting tax τ 0F = τL − ε is feasible. Comparing rents

per firm if lF < lL, we get that

τL − ε− lL > τL − k(lL − lF )− ε− lF ⇐⇒

lL (k − 1) > lF (k − 1) ,
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which is true for k > 1. If lF > lL, we get that

τL − ε− lL > τL − k(lF − lL)− ε− lF ⇐⇒

lL (1− k) > lF (1− k) ,

which is true as well, showing that for any undercutting strategy lF 6= lL there exists

another undercutting strategy yielding more rents.

In the following, we will deal with the case (lL, τL) 6= (0, 0). If (lL, τL) = (0, 0) ,

by Lemma 23, undercutting is not feasible, and any feasible strategy for F yields zero

rents. By assumption, F chooses (lF , τF ) = (0, 0).

Lemma 24 1. If k < 1, for any (lL, τL), a sharing strategy is optimal among strate-

gies in sharing I and sharing II only if lF = 0.

2. If k = 1, for any (lL, τL) , there exists a best response (lF , τF ) to (lL, τL) such that

lF = 0.

Proof.

1. Take any sharing strategy (lF , τF ) such that 0 < lF ≤ lL. Let (l0F , τ
0
F ) =

(0, τF − klF ). This strategy is feasible, attracts the same fraction of firms, and F

makes strictly higher rents per firm. Next, take any sharing strategy (lF , τF ) such

that lF > lL. The strategy (l0F , τ
0
F ) = (lF − ε, τF − ε) such that lF − ε > lL is feasible

for small enough ε and yields strictly higher rents for jurisdiction F .

2. We will proof the statement by showing that for any sharing strategy with lF > 0

there exists a sharing strategy with lF = 0 that yields the same rent. Fix (lL, τL) and

let (lF , τF ) ∈ sharing I. Consider the strategy (l0F , τ
0
F ) with l

0
F = 0 and τ

0
F = τF−lF .

This strategy yields the same rent per firm, so it suffices to show that the same firms

locate in F under ((lL, τL) , (lF , τF )) as under ((lL, τL) , (lF , τF )). Suppose s (weakly)
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preferred F to L under ((lL, τL) , (lF , τF )). If s ≤ lF , then

|l0F − s|+ τ 0F = s+ τF − lF ≤ s− lF + τF ,

so s (at least weakly) prefers (l0F , τ
0
F ) to (lF , τF ), implying that s also prefers (l

0
F , τ

0
F )

to (lL, τL). If s > lF , then

|l0F − s|+ τ 0F = s− lF + τF ,

so s is indifferent between (l0F , τ
0
F ) to (lF , τF ). The proof for (lF , τF ) ∈ sharing II is

analogous.

Lemma 25 1. If k < 1, the unique rent maximizing sharing strategy for F is

(lsF , τ
s
F ) =

⎧⎪⎨⎪⎩
¡
0, 1

2
τL +

k
2
lL
¢

(0, τL − klL)
if

τL ≤ 3klL

τL > 3klL

.

2. If k = 1, the sharing strategy

(lsF , τ
s
F ) =

⎧⎪⎨⎪⎩
¡
0, 1

2
τL +

1
2
lL
¢

(0, τL − lL)
if

τL ≤ 3lL

τL > 3lL

.

maximizes rents.

Proof.

1. From Lemmas 23 and 24 we know that lF = 0 at any best response of F . We

will derive the optimal sharing tax and show that there always exists an ε such that

undercutting yields more rents. Given (τL, lL), government F faces the following
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optimization problem for sharing,

max
τF

½
τF

µ
τL − τF
2k

+
lL
2

¶¾
((∗))

s.t. ŝ (lL, τL, 0, τF ) ∈ [0, lL]

τF ≥ 0.

We will ignore the constraints for the moment. The revenue function is strictly

concave in τF , so our solution will be unique and we only need to consider first-order

conditions

∂

∂τF

µ
τF

µ
τL − τF
2k

+
lL
2

¶¶
=

1

2
lL −

1

2k
τ ∗F +

1

2k
(τL − τ ∗F ) = 0

⇐⇒ τ ∗F =
1

2
τL +

k

2
lL.

Obviously, τ ∗F ≥ 0, so we only need to verify whether ŝ (lL, τL, 0, τ ∗F ) ∈ [0, lL]. We

have

ŝ (lL, τL, 0, τ
∗
F ) =

1

4k
τL +

lL
4
,

which is strictly larger than zero. But

ŝ (lL, τL, 0, τ
∗
F ) ≤ lL ⇐⇒ τL ≤ 3klL.

If τL ≤ 3klL one of the constraints binds. Strategies with τF = 0 or ŝ (τL, lL, τF , 0) =

0 yield zero rents. A strategy with ŝ (lL, τL, 0, τF ) = lL, i.e. τF = τL − klL, yields

rF (lL, τL) = (τL − klL) lL > 0 if lL > 0 (if lL = 0, then τL ≤ 3klL implies τL = 0,

and we do not consider such strategies here).

2. The proof is analogous to the proof or Part 1, except that we do not get uniqueness.
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Lemma 26 If k ≤ 1
3
, the rent maximizing undercutting strategy yields higher rents

than the rent maximizing sharing strategy for all (lL, τL) such that τL > lL.

Proof. For k ≤ 1
3
, we have τL > 3klL for all strategies with τL > lL. so by Lemma

25 the optimal sharing strategy is (lsF .τ
s
F ) = (0, τL − klL). The corresponding rents

are rsF (lL, τL) = (τL − klL) lL (note that our assumptions imply that, for τF such that

ŝ (lL, τL, 0, τF ) = lL, all firms s ≥ lL locate in L) Comparing this to the rents from

undercutting shows that, for ε small enough (notice ε depends on lL), undercutting

rents are better. If lL < 1,

rυF (τL, lL) = (τL − klL − ε) > (τL − klL) lL = rs1F (τL, lL)

for ε sufficiently small. If lL = 1, the optimal sharing strategy is in fact an undercut-

ting strategy (it attracts all firms but a set of firms of measure zero).

Lemma 27 Let 1
3
< k ≤ 1. For each lL ∈ [0, 1], there exists a τ̂L (lL; k) such that

rsF > ruF for all τL ≤ τ̂L (lL; k) and ruF > rsF for all τL > τ̂L (lL; k).

Proof. By Lemma 25, if τL > 3klL, then the optimal sharing strategy is not

interior, and the proof of Lemma 26 shows that undercutting is better than sharing.48

It only remains to consider the case τL ≤ 3klL. Optimal sharing revenues are given

by

rsF (τL, lL) =

µ
1

2
τL +

k

2
lL

¶µ
1

4k
τL +

lL
4

¶
.

For lL < 1, sharing yields more rents than undercutting if and only if

µ
1

2
τL +

k

2
lL

¶µ
1

4k
τL +

lL
4

¶
> (τL − klL − ε) .

We now set ε = 0 and solve for the tax at which both sides are equal. This tax will

be the highest tax that L can set so that F does not undercut. No matter how small
48Notice that at lL = 0, this always holds so that undercutting is always better.
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F sets ε, the right hand side will be smaller then the left hand side at this tax. On

the other hand, for a tax that is larger than the tax at which both sides are equal,

F can find an ε sufficiently small that undercutting yields higher rents than sharing.

We solve

µ
1

2
τL +

k

2
lL

¶µ
1

4k
τL +

lL
4

¶
= (τL − klL)⇐⇒

klL − τL +
1

8k

¡
2klLτL + τ 2L + k2l2L

¢
= 0.

The left hand side expression is a quadratic function of τL. Solving the equation

yields two solutions, which we denote by τ̃ 1L (lL, k) and τ̃ 2L (lL, k). They are given by

τ̃ 1L (lL, k) = k
³
4− 4

p
1− lL − lL

´
τ̃ 2L (lL, k) = k

³
4 + 4

p
1− lL − lL

´
.

Notice that the factor in front of τ 2L is positive. Sharing revenues are therefore larger

than undercutting revenues for τL ≤ τ̃ 1L (lL, k). Because τ̃
2
L (lL, k) > 3klL > τ̃ 1L (lL, k)

undercutting revenues are higher for all τL > τ̃ 1L (lL, k). It can be verified that

τ̃ 1L (lL, k) ≤ lL for lL ≤ 8k 1−k
(1+k)2

, and τ̃ 1L (lL, k) > lL for lL > 8k 1−k
(1+k)2

(we omit the

derivation). Therefore the critical tax beyond which F will undercut is given by

τ̂L (lL, k) =

⎧⎪⎨⎪⎩ lL

k
¡
4− 4

√
1− lL − lL

¢ if lL ≤ 8k 1−k
(1+k)2

otherwise
.

See also Figure 15 in Section 4.

Lemma 28 Let k > 1. The strategy that maximizes rF (lF , τF ; lL, τL) over shar-

ing I is given by ls1F = klL+τL
2(k+1)

and τ s1F = (τL+klL)(k+2)
2(k+1)

. The strategy that maxi-

mizes rF (lF , τF ; lL, τL) over sharing II is given by ls2F = k(1+lL)−(1+τL)
2(k−1) and τ s2F =

(τL−klL)(k−2)+k(k−1)
2(k−1) .
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Proof. We start with deriving the optimal sharing strategy over sharing I. Gov-

ernment F ’s problem is

max
(lF ,τF )

½
(τF − lF )

µ
τL − τF
2k

+
lL + lF
2

¶¾
s.t.

τF ≥ lF

lF ∈ [0, lL)

τF ∈ [τL − k (lL − lF ) , τL + k (lL − lF )] .

Without doing the calculus, we will reduce the optimization problem by first showing

that a necessary condition for (lF , τF ) being a solution to the problem is that τF =

τL + k(lL − lF ), i.e., given some lF , Government F will set the highest tax that

possibly attracts some firms to its jurisdiction. Take any strategy (lF , τF ) with τF <

τL+ k (lL − lF ) (notice that these are the strategies that are not at the upper bound

of the sharing I set, see also Figure 12). Compare this strategy to another strategy

(l0F , τ
0
F ) with l0F = lF + δ and τ 0F = τF + δ, where δ > 0. For δ small enough, (l0F , τ

0
F )

is in sharing I. This strategy yields the same rents per firm but attracts more firms

to F because

ŝ (lF , τF , lL, τL) < ŝ (l0F , τ
0
F , lL, τL)⇐⇒

τL − τF
2k

+
lL + lF
2

<
τL − τ 0F
2k

+
lL + l0F
2

⇐⇒

−τF + klF < −τF − δ + k (lF + δ)⇐⇒

1 < k,

for δ > 0.
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Therefore, we can reduce F ’s problem to

max
lF
{(τL + k (lL − lF )− lF ) lF}

s.t.

lF ∈ [0, lL) .

The objective function is strictly concave in lF , so second order conditions will be

satisfied, and the maximizer is unique. Ignoring the constraint for the moment and

solving for an interior solution yields

∂

∂lF
((τL + k (lL − lF )− lF ) lF ) = −2lFk + lLk − 2lF + τL = 0⇐⇒

ls1F =
klL + τL
2 (k + 1)

.

Obviously, ls1F ≥ 0. But

ls1F ≤ lL ⇐⇒

klL + τL ≤ lL2 (k + 1)⇐⇒

τL ≤ lL (k + 2) .

For higher τL, sharing with less standard is not the optimal strategy. At the boundary

solution ls1F = lL undercutting yields more than sharing. The corresponding tax F

would set would be τF = τL = lL (k + 2). By assumption, it would attract half of the

firms and therefore

rs1F (lL, τL) = (τL − lL)
1

2

< (τL − ε− lL)

= ruF (lL, τL) ,
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for small enough ε. Therefore undercutting is better than the optimal sharing I

strategy if τL > lL (k + 2).

The strategy that maximizes rF over sharing II can be derived analogously. We omit

this derivation here, but notice that

ls2F ≥ lL ⇐⇒

1− lLk − k + τL ≤ lL (2− 2k)⇐⇒

τL ≤ −1 + 2lL + k − klL.

So again, we get a bound for τL so that the optimal undercutting strategy yields

higher rents than the strategy that maximizes rF over sharing II if τL is larger than

this bound.

Lemma 29 Let k > 1. For each lL ∈ [0, 1], there exists a τ̂ 1L (lL; k) such that rs1F > ruF

for all τL ≤ τ̂ 1L (lL; k) and ruF > rs1F for all τL > τ̂ 1L (lL; k), and a τ̂ 2L (lL; k) such that

rs2F > ruF for all τL ≤ τ̂ 2L (lL; k) and r
u
F > rs2F for all τL > τ̂ 2L (lL; k).

Proof. We first derive τ̂ 1L (lL; k). Suppose τL ≤ (1− lL) (k + 2) (recall from the

proof of Lemma 28 that this was the upper bound for τL, so that the constraint

lF ≤ 1 − lL was not binding). We will derive τ̂ 1L (lL; k) and then verify that it is

indeed not larger than this bound, so that undercutting is better than the optimal

sharing I strategy for all τL > τ̂ 1L (lL; k). For given (lL, τL) rents from the optimal

sharing 1 strategy are given by

rs1F (lL, τL) =
1

4
(k + 1)−1 (lLk + τL)

2 .

The derivation of τ̂ 1L (lL; k) is analogous to the derivation of τ̂L (lL; k) in the proof of

Lemma 27, so we provide less detail. Let ε = 0, and set the difference of this rent

and undercutting rents equal to zero. We can solve for the highest tax of government
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L depending on lL such that F prefers sharing to undercutting49:

rs1F (lL, τL)− ruF (lL, τL) =
1

4
(k + 1)−1 (lLk + τL)

2 − (τL − lL) = 0

⇐⇒ τ̂ 1L (lL; k) = 2− lLk + 2k − 2 (k + 1)
p
1− lL.

It can be verified that lL ≤ τ̂ 1L (lL) ≤ lL (k + 2) , and therefore, for all τL ≤ τ̂ 1L (lL)

Government F prefers the strategy with ls1F and the highest sharing tax to the optimal

undercutting strategy, and prefers undercutting otherwise.

The derivation for τ̂ 2L (lL) exactly parallels the one for τ̂
1
L (lL). The rent difference for

ε = 0 can be solved to obtain τ̂ 2L (lL), which can also be verified to be no smaller than

lL

rs2F (lL, τL)− ruF (τL, lL) =
1

4
(k − 1)−1 (k − lLk − 1 + τL)

2 − (τL − lL) = 0

⇐⇒ τ̂ 2L (lL) = −z + lLk + k − 2 (k − 1)
p
lL.

Again we can verify that lL ≤ τ̂ 2L (lL) ≤ −1 + 2lL + k − klL, and therefore, for all

τL ≤ τ̂ 2L (lL) Government F prefers the strategy with ls2F and the highest sharing tax

to the optimal undercutting strategy, and prefers undercutting otherwise.

With Lemmas 23-29 at hand Proposition 21 can be proved as follows.

Proof of Proposition 1.

Part a follows from Lemmas 23, 24, 25, and 26.

Part b follows from Lemmas 23, 24, 25, and 27.

Part c follows from Lemmas 28 and 29.

Proposition 30 restates Proposition 22 with exact expressions for all variables.

Proposition 30 (The developed country’s best response to f∗)

(a) If k ≤ 1
3
, then (l∗L, τ

∗
L) = (0, 0).

49As in the proof of Lemma 27, we obtain two solutions but the second one will be larger than
lL (2 + k)
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(b) If 1
3
< k ≤ 1, then (l∗L, τ ∗L)

=

⎛⎜⎝ 1−
¡

1
3k+3

¡
4k −

√
3− 6k + 7k2

¢¢2
,

2k
9
(k + 1)−2

¡
k2 + 6

√
7k2 − 6k + 3 + 2k

√
7k2 − 6k + 3 + 15

¢
⎞⎟⎠.

(c) If k > 1, then (l∗L, τ
∗
L) =

¡
8
9
, 4
3
+ 4

9
k
¢
.

Proof.

(a) By Proposition 21, f∗ (lL, τL) = (0, τuF (lL, τL)) for all (lL, τL) ∈ SL \ {(0, 0)}. By

assumption, f∗ (0, 0) = (0, 0). Therefore rL (lL, τL, f (lL, τL)) = 0 for all (lL, τL) ∈ SL.

Using our assumptions again, we obtain (l∗L, τ
∗
L) = (0, 0).

(b) From Proposition 21, we know that, for each level lL, Government F is going

to locate at lF = 0 and undercut if τL > τ̂L (lL). Such strategies can therefore not

be optimal for government L, because it can assure itself of positive rents by setting

lL = 1 and τL ∈ (1, 3k) (by Lemma 27, F would choose a sharing strategy in this

case). We can also exclude strategies with lL = 0 as F is going to undercut then for

every positive tax. The reduced optimization problem for L is therefore

max
(τL,lL)

{(τL − lL) (1− ŝ (τL, lL, τ
s
F , 0))}

s.t. lL ∈ [0, 1]

τL ∈ [lL, τ̂L (lL)] .

The objective function is continuous and the feasible set is compact. Hence, there

exists a solution to the problem. As previously, we will first ignore the constraints,

which yields

lL = 4k (k + 1)
−1 > 1.

So, an interior solution does not exist. At least one of the four constraints is binding.

We can exclude τL = lL and lL = 0 as both strategies yield zero rents.

Case 1) Suppose τL = τ̂L (lL). We will derive the optimal lL by considering the two

cases, lL = 1 and lL ∈ (0, 1), separately and then compare the corresponding rents.
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(i) lL = 1

This yields rents of rL (τ̂L (1) , 0) = 0 (because ŝ = 1).

(ii) lL ∈ (0, 1)

The maximization problem is

max
lL(³
k
³
4− 4

p
1− lL − lL

´
− lL

´Ã
1−

1
2

¡
k
¡
4− 4

√
1− lL − lL

¢¢
− k

2
lL

2k
− lL
2

!)
s.t. lL ∈ (0, 1) .

The solution to which is l∗L = 1 −
¡

1
3k+3

¡
4k −

√
3− 6k + 7k2

¢¢2 ∈ (0, 1). It can be
verified that at l∗L indeed τ̂(l∗L, k) > l∗L (i.e., l

∗
L > l̂L). We denote the corresponding

rents by r1L (τ
∗
F , 0). They are given by

r1L (τ
∗
F , 0)

=

µ
2

27

¶
(k + 1)−2

³
6k + k2 + 2k

√
7k2 − 6k + 3− 3

´³
4k −

√
7k2 − 6k + 3

´
> 0.

Case 2) Consider a strategy with lL = 1. Maximizing rents with respect tax yields

τ ∗L =
3
2
k + 1

2
, which is indeed less than τ̂L (1) = 3k. We denote the corresponding

rents by r2L (τ
∗
F , 0). They are given by r

2
L (τ

∗
F , 0) =

1
16
k−1 (3k − 1)2.

It can be verified that the inequality

r1L (τ
∗
F , 0) > r2L (τ

∗
F , 0)⇐⇒

µ
2

27

¶
(k + 1)−2

³
6k + k2 + 2k

√
7k2 − 6k + 3− 3

´³
4k −

√
7k2 − 6k + 3

´
>

1

16
k−1 (3k − 1)2
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holds. We omit the details.

The corresponding tax for government L is

τ ∗L =
2

9
(k + 1)−2

³
k2 + 6

√
7k2 − 6k + 3 + 2k

√
7k2 − 6k + 3 + 15

´
k.

(c) By Lemma 29, we know that ruF (lL, τL) > rs1F (lL, τL) if τL > τ̂ 1L (lL) and

ruF (lL, τL) > rs2F (lL, τL) if τL > τ̂ 2L (lL). If follows that f∗ (lL, τL) = (luF , τ
u
F ) if

τL > max
£
τ̂ 1L (lL) , τ̂

2
L (lL)

¤
. If not we, we need to compare rs1F with rs2F . If r

s1
F ≥ rs2F ,

the optimal strategy must be f∗ (lL, τL) = (ls1F , τ
s1
F ), as stated in Lemma 28. If

rs2F ≥ rs1F , the optimal strategy must be f
∗ (lL, τL) = (l

s2
F , τ

s2
F ), as stated in Lemma

28.

Turning to L, we take f∗ as given and first exclude strategies such that τL >

max
£
τ̂ 1L (lL) , τ̂

2
L (lL)

¤
as those yield zero rents, while the strategy (lL, τL) =

¡
0, τ̂ 2L (0)

¢
yields strictly positive rents (for this choice, F ’s best response is (ls2F , τ

s2
F ), L attracts

a positive fraction of firms, and τ̂ 2L (0) > 0). From the reduced set of possibly optimal

strategies for L, we proceed as follows to determine the rent maximizing strategy.

First, we show that for (lL, τL) with lL ≥ 1
2
, (ls2F , τ

s2
F ) is not a best response for F . We

then separately derive the optimal strategies for Government L under two different

assumptions:

1. rs1F ≥ rs2F so that, in the second stage, F chooses (ls1F , τ
s1
F ) if τL ≤ τ̂ 1L (lL) and

undercuts otherwise.

2. lL ∈
£
0, 1

2

¤
, rs2F ≥ rs1F , so that, in the second stage, F chooses (l

s2
F , τ

s2
F ) if τL ≤ τ̂ 2L (lL)

and lL ∈
£
0, 1

2

¤
, and undercuts otherwise.

We will then show that the optimal strategy under supposition 1 yields more rents

than the one under supposition 2, and verify that, under this optimal strategy, gov-

ernment F indeed sets less standard and sets the highest sharing tax.

To see that, if lL ≥ 1
2
, setting more standard and setting the highest sharing tax
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can never be the best response for government F , observe that any strategy (lF , τF )

with lF > lL and τF = τL + k (lF − lL) is dominated by the strategy (l0F , τ
0
F ) with

l0F = lL − (lF − lL) = 2lL − lF and τ 0F = τF .

1. Now suppose that rs1F ≥ rs2F . Under this supposition, government L’s problem is

max
(τL,lL)

©
(τL − lL)

¡
1− ls1F

¢ª
max
(τL,lL)

½
(τL − lL)

µ
1− klL + τL

2 (k + 1)

¶¾
s.t. lL ∈ [0, 1]

τL ∈
£
lL, τ̂

1
L (lL)

¤
.

Solving for an interior solution yields τL = 1+ 1
2
lL− 1

2
lLk+k. But 1+ 1

2
lL− 1

2
lLk+k ≤

τ̂ 1L (lL) if and only if lL ≥ 4
√
3− 6 ≈ 0.9282. Hence, the tax constraint binds for all

lL ≤ 4
√
3− 6. Substituting τ̂ 1L (lL) into the objective function, we solve the following

problem

max
lL

½¡
τ̂ 1L (lL)− lL

¢µ
1− klL + τ̂ 1L (lL)

2 (k + 1)

¶¾
s.t. lL ∈

h
0, 4
√
3− 6

i
.

Solving this for l∗L yields two solutions, l
∗1
L = 8

9
and l∗2L = 0. Checking the second-

order condition clarifies that only l∗1L = 8
9
is a maximizer. For simpler notation we

write l∗1L = l∗L. Notice that, indeed,
8
9
≤ 4
√
3 − 6. The corresponding revenues are

given by rL
¡
τ̂ 1L, l

∗
L, τ

s1
F , l

s1
F

¢
= 4

27
(k + 1). We also need to verify whether a strategy

with lL > 4
√
3 − 6 and no binding tax constraint yields more revenue. The partial

derivative with respect to lL is always positive, and therefore government L wants to

set lL as high as possible. We only need to check lL = 4
√
3 − 6. It can be verified

that this strategy does not yield higher rents. The derivation is omitted.

2. Next, suppose that rs2F ≥ rs1F for lL ∈
£
0, 1

2

¤
. Under this supposition, government
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L’s problem is

max
(τL,lL)

©
(τL − lL)

¡
1− ls2F

¢ª
max
(τL,lL)

½
(τL − lL)

µ
1− lLk − k + τL

2− 2k

¶¾
s.t. lL ∈

∙
0,
1

2

¸
τL ∈

£
lL, τ̂

2
L (lL)

¤
Solving for an interior solution yields τL = 1

2
k+ 1

2
lLk− 1

2
+ 1
2
lL. But 12k+

1
2
lLk− 1

2
+ 1
2
lL

≤ τ̂ 2L (lL) if and only if lL ≤ 7− 4
√
3 ≈ 0.072. Hence, the tax constraint binds for all

lL ≥ 7− 4
√
3. Substituting τ̂ 2L (lL) into the objective function, we solve the following

problem

max
lL

½¡
τ̂ 2L (lL)− lL

¢µ1− lLk − k + τ̂ 2L (lL)

2− 2k

¶¾
s.t. lL ∈

∙
7− 4

√
3,
1

2

¸
.

Solving this for an interior solution yields two solutions, l∗∗1L = 1 and l∗∗2L = 1
9
. Only

the second is a maximizer. Indeed, we have that l∗∗2L = 1
9
≥ 7 − 4

√
3. For simpler

notation, we write l∗∗2L = l∗∗L . Corresponding profits are given by rL
¡
τ̂ 2L, l

∗∗
L , τ s2F , l

s2
F

¢
=

4
27
(k − 1). One can also verify that a strategy with lL < 7− 4

√
3 and no binding tax

constraint does not yield more revenue. Again, the derivation is omitted.

It is immediate to see that L prefers the strategy with high standard-provision to the

one with low standard provision. It only remains to verify that at this strategy choice

of L, Government F indeed wants to set less standard level and set the highest firm

sharing tax. Since the tax L sets is, by derivation, the highest one at which F prefers

sharing and less provision to undercutting, we only need to verify that F does not

want to set more standard and share. But we showed already that this cannot be the

case since l∗L ≥ 1
2
. The optimal strategy for L is therefore (l∗L, τ

∗
L) =

¡
8
9
, 4
3
+ 4

9
k
¢
.
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The derivations showing that the strategy choices, if k varies, behave in the way as

stated in the proposition are omitted (all omitted parts of the proofs are available

upon request).

Theorem 31 restates Theorem 20 with the exact expressions for all variables.

Theorem 31 The outcome of a subgame-perfect equilibrium.

The subgame-perfect equilibrium is as follows

(a) (Efficient outcome) If k ≤ 1
3
, then (l∗L, τ

∗
L) = (0, 0), and (l∗F , τ

∗
F ) = (0, 0), and

ŝ∗ = 1
2
.

(b) (Standard haven) If 1
3
< k ≤ 1, then l∗L ≥ 8

9
, τ ∗L ∈ (l∗L, 2l

∗
L), and l∗F = 0,

τ ∗F =
2
3

¡√
7k2 − 6k + 3− k + 3

¢
(k + 1)−1 k ∈ (3

4
, 4
3
),

and ŝ∗ = 1
3

¡√
7k2 − 6k + 3− k + 3

¢
(k + 1)−1 > 2

3
.

(c) (Race to the top) If k > 1, then l∗L =
8
9
, τ ∗L =

4
3
+ 4

9
k > 2l∗L, and l∗F = 2

3
,

τ ∗F =
4
3
+ 2

3
k > 3l∗F , and ŝ

∗ = 2
3
.

Proof. The subgame perfect equilibrium strategy for Government L is the one

derived in Proposition 22. For Government F the outcome is obtained by plugging

(l∗L, τ
∗
L) into f

∗ as specified in Proposition 21. It is straightforward to verify that, for

part b, the taxes lie indeed in the specified range. The equilibrium marginal type of

firm is obtained by plugging the equilibrium strategies into ŝ(lL, τL, lF , τF ). Plugging

all values into the rent functions yields the corresponding rents. For parts b and c,

simple comparison shows that the follower makes higher rents. It is straightforward

to verify that ŝ∗ > 2
3
in part b.
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CHAPTER V

LOBBYING IN A NETWORK

Introduction

Our actions and decisions are influenced by the actions and decisions of those

around us. This effect is empirically well documented. A doctor’s adoption of a

new drug depends on her connections to other doctors who have already adopted the

drug (Coleman et al., 1957). People adopt new technologies that their friends and

colleagues have adopted (Rogers 2003). They are more likely to commit crimes if

many around them commit crimes (Glaeser et al., 1996). Teenagers are more likely

to use drugs, drink alcohol, smoke cigarettes, drop out of school, and go to church if

their peers do so (Gaviria and Raphael, 2001). Even a woman’s contraceptive decision

can be influenced by contraceptive decisions of other women she knows (Kohler et

al., 2001). Finally, our views and opinions are shaped by interactions with family,

friends, colleagues, and others with whom we interact (Zuckerman et al., 1994). At

the same time, there are agents (individuals, groups, institutions, etc.) that seek

to reduce the number of crimes committed, influence which technology is adopted or

which party we vote for. This paper examines optimal strategies of such an interested

agent, assuming that the agent anticipates how individuals affect each other (or, how

behavior is diffused). I assume that the agent is able to convince individuals through

direct interaction and that resource constraints limit the number of individuals that

he can convince. Thus, the agent’s problem is to determine a set of individuals with

maximum impact on others.

For focus, I assume that there is a lobbyist who wants to convince a group of

voters to vote for a proposal. Each voter has an initial opinion. Over time, opinions

evolve through interactions with others as well as with the lobbyist. Interactions
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between voters are represented by a social network. If two voters are linked they have

an impact on each other’s views on the proposal. More specifically, if a sufficient

number of a voter’s neighbors are in favor of the proposal at period t− 1, the voter

will be in favor of the proposal in period t. Which number is sufficient depends on

an idiosyncratic cutoff. For motivation, imagine that in each period voters poll their

neighbors and determine their next-period opinion based on the poll and their own

current opinions.

Due to the impact voters have on each other’s opinions, the lobbyist’s activities

can have a direct as well as an indirect effect. A voter’s opinion is directly affected

if the lobbyist approaches her. A voter’s opinion is indirectly affected if she interacts

with voters whose opinions were affected by the lobbyist or through interactions with

neighbors of voters whose opinions were affected by the lobbyist, and so on.

Taking the empirical observation that individuals are influenced by their interac-

tions as a basic premise, to gain insight into the diffusion of behavior, the theoretical

literature has primarily focused on network models. Typically, the literature studies

models in which each player in the network chooses whether to adopt an action. The

basic primitives of the models are the network, the diffusion rule at the local level

(such as the voters’ cutoff rule in this paper), and in some cases, the objectives of

external agents (such as the lobbyist in this paper). The network models can be di-

vided roughly according to two criteria: whether agents in the networks are strategic,

and whether the model is dynamic. I will now discuss two closely related papers that

address questions similar to those in this paper. More discussion as to how the results

in this paper relate to the literature more broadly will be provided throughout the

paper.

A closely related work that follows a nonstrategic-dynamic approach is Kempe

et al. (2003, 2005). This work studies models with two types of diffusion rules: a
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threshold model and a cascade model.50 In the threshold model, the effect individual

i has on individual j is given by a parameter bij. Each individual has a threshold,

a random draw from a distribution, and adopts the action if the total effect of his

neighbors who adopted the action exceeds his threshold. The cascade model is a

model with a probabilistic diffusion rule in which the probability that j adopts the

action given that i adopted it is given by a parameter pij. The authors are interested

in finding a set of individuals, called a seed, of size k that maximizes the expected

spread. However, they show that this is an NP -hard problem.51 In view of this result,

they develop an algorithm that finds a seed with an expected spread of at least 63%

of the optimal spread. In each step of the algorithm the seed is enlarged by adding

the individual with the largest marginal impact (a hill-climbing strategy). This paper

takes a different approach. It shows that by considering a restricted class of networks,

it is possible to obtain an exact characterization of the optimal seed.

Another closely related paper is Caillaud and Tirole (2008). As in my paper, a

sponsor of a proposal tries to persuade a group to vote for the proposal by targeting

voters that have maximum impact on others. However, in their paper voters affect

each other through information flows. Voters are uncertain about their payoffs if

the proposal is passed. The sponsor can resolve a voter’s uncertainty by sending the

voter a report. Voters are assumed to share reports with each other. Since the voters’

payoffs are correlated, learning about other voters’ payoffs leads a voter to update

his belief about his own payoff. These features make indirect persuasion possible.52

However, Caillaud and Tirole do not consider a network structure, implicitly assuming

that all voters can and in fact do communicate with each other. Therefore, the

sponsor’s optimal strategy depends only on the voters’ initial opinions. In contrast,

50See Kleinberg (2007) for a survey of these and related papers, for example by Morris (2000).
51NP-hardness measures the computational complexity of a problem. Loosely speaking, a problem

is NP-hard if it is not possible to program an algorithm that can solve the problem within a reasonable
time (at least no such algorithm has been found yet for any NP-hard problem).
52The appendix of this paper contains a behavioral background model that tells a similar story.

107



in this paper network structure plays an important role: whether a lobbyist targets

a voter depends both on the voter’s initial opinion as well as on his position in the

network.

I also follow a nonstrategic-dynamic approach. Even though insights can be gained

from a static setup, the dynamic aspect is important as diffusion is inherently a

dynamic phenomenon. I use the label "nonstrategic" to refer to an approach where

individuals in the network use a decision rule that is exogenous to the model. Here,

this approach is chosen for reasons of tractability. The appendix contains a behavioral

model that generates the "updating rule" voters are assumed to use. Thus the decision

rule can be viewed as the reduced form of that behavioral model. A model of strategic

interaction that would generate the same type of behavior appears in Morris (2000),

where individuals in a network play coordination games with each of their neighbors.

The corresponding best-response dynamics lead to a similar cutoff rule as the one

used by voters in this paper (see the discussion at the end of Section 3 for a more

details).

The focus of this paper is on so-called threshold networks. These are networks

in which some individuals have many connections and others have relatively few

connections. I show that the lobbyist’s optimal strategy follows a simple rule. In any

period in which the lobbyist’s resources permit her to approach at most c voters, it

is optimal to approach the c voters with the highest number of links that currently

oppose the proposal (Proposition 33). This result confirms the general intuition that

better connected people are more influential.

While intuitive, the result is not obvious. In arbitrary networks, to determine

who is influential, it is not sufficient to take into account only the impact individuals

have on their neighbors. Second-, third-, and higher-order effects of an individual’s

influence trickling through the network have to be considered as well. The idea is

that it does not only matter how many connections a person has, but also whether
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this person is connected to other important people. An additional complication is

that the lobbyist’s problem is to find a most influential group of individuals. Since

a group’s impact does not necessarily equal the sum of its members’ impacts, the

lobbyist’s optimal strategy need not be monotone in the constraint. That is if c < c0,

then the set of size c of the jointly most influential people need not be a subset of the

set of size c0 of the jointly most influential people. My results show that these kinds

of considerations can be ignored in the class of threshold networks.

While the main result (Proposition 33) holds for a restricted class of networks, it

is obtained for a class of the lobbyist’s objective function where all that is assumed is

that an additional supporter at any point in time does not hurt the lobbyist’s payoff.

Moreover, it also holds that the optimal strategy remains essentially the same, even

if the lobbyist’s resources change over time.

Section 3.2 focuses on the special case where the lobbyist’s goal is to bring about

a unanimous decision in favor of the proposal. Using the result on optimal lobbying

strategies from the previous section, I obtain upper bounds on the number of voters

that need to be convinced directly to obtain unanimous support (Proposition 34). If

voters support the proposal whenever at least a certain number of their neighbors

support it, the upper bound does not change with the size of the network. Thus, as

the network grows the fraction of voters that need to be convinced shrinks. If voters

support the proposal whenever at least a certain fraction of their neighbors support

it, the bound grows with the size of the network. So in this case, as the network

grows the fraction of voters that need to be convinced remains constant. I also show

that it is more difficult for the lobbyist to convince more tightly connected groups

(Proposition 35).

Section 4 examines the process of opinion formation in arbitrary networks (without

any external agent trying to influence opinion). After a finite number of periods,

opinions become periodic. Each individual’s opinion either remains unchanged or
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oscillates between two opinions. Thus there are voters who continuously support or

oppose the proposal and there are "swing voters" who keep changing their minds.

The remainder of the paper is organized as follows: Section 2 describes the model;

Section 3 examines lobbying in threshold networks; Section 4 examines the opinion

formation process in arbitrary networks; Section 5 concludes.

The Model

A lobbyist tries to convince a group of voters N = {1, 2, ..., n} to vote for a

proposal, on which the voters vote at time t = d <∞. Voter i’s opinion at time t is

denoted by pti, an element of the set P = {−1,+1}, where if pti = −1, voter i opposes

the proposal, and if pti = +1, voter i supports the proposal. The corresponding vector

of opinions at time t is denoted by pt, an element of P n. Let π = {p0, p1, p2, ...} ∈

(P n)N0 denote a sequence of opinions. The lobbyist’s payoff is u (π). Since the lobbyist

pursues the acceptance of the proposal, u is assumed to be a non-decreasing function

of π, that is π0 ≥ π implies u(π0) ≥ u(π). This payoff function accommodates a

number of different situations. Three examples are

(1) u(π) = f
³X

pdi

´
, where f is an increasing function;

(2) u(π) =

⎧⎪⎨⎪⎩ q

0

if pd1 = pd2 = +1, and
¯̄©
i : pdi = +1

ª¯̄
≥ k

otherwise,

where q > 0;

(3) u(π) =
∞X
t=0

φt

nX
i=1

wip
t
i,

where 0 ≤ φt < 1, and 0 ≤ wi <∞.

In the first two specifications the lobbyist cares only about the outcome at the time

of the vote. In (1) the lobbyist’s payoff depends solely on the difference between

positive and negative votes. As an example, suppose the group decides by majority
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vote and the lobbyist cares only about whether the proposal is accepted.53 Because

the number of voters is fixed and abstaining from voting is not permitted, (1) also fits

cases where the lobbyist cares only about attaining a certain number of positive votes.

In (2) the lobbyist’s payoff depends on whether she succeeds to convince voters 1 and

2 in addition to convincing at least k voters (the UN security council, for example,

adopts a proposal if it gets affirmative votes by each of the permanent members and

at least nine affirmative votes in total). In (3) the lobbyist’s payoff depends on the

entire sequence of opinions. Each voter’s opinion is weighted by some nonnegative

factor. For example, some members of the group might not be allowed to vote, so

their opinion has no direct influence on the lobbyist’s payoff. In addition, the lobbyist

weighs the outcome according to time.54 For example, the lobbyist might only care

about the opinions leading up to period d (so φt = 0 for t > d).55

Voters’ opinions evolve over time through interactions with the lobbyist and with

each other. Each period until the vote takes place in t = d, the lobbyist can approach

and directly influence the opinions of at most c < n voters.56 Here, c can be thought

of as the result of some kind of constraint, for example, a time constraint. A strategy

for the lobbyist is a list (S1, ..., Sd) ∈ Sd where S ={S ⊆ N : |S| ≤ c}d. If opinions

at the beginning of period t are given by pt−1 and the lobbyist approaches voters in

53So the function f would be of the form f (
P

vi) = 0 if
P

vi ≤ 0 and f (
P

vi) = q > 0 ifP
vi > 0.
54To make sure (3) is well-defined, assume that φt is bounded away from zero.
55Having the payoff function depend not only on the outcome in period d is of particular interest

for other applications of the model. For example, an organization that wishes to reduce the number
of drug users in a community cares about drug usage at each point in time, not only at a specific
date. The influencing agent (a government, a lobbyist, a teacher, a non-profit organization, etc.)
might have a finite or infinite horizon and value short-term outcomes more than long-term outcomes
or vice versa. All these cases can be accommodated.
56The constraint c could change over time, but that does not change the qualitative nature of any

of the results. See Footnote 61.
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St, opinions adjust to

pt−1[St] =

⎧⎪⎨⎪⎩ −1+1
if pt−1i = −1 and i 6∈ St

else.

Therefore, the lobbyist has the ability to sway a voter’s opinion, at least temporarily,

in favor of the proposal.

Interactions among voters are captured by a social network, a collection of links

g ⊆ {ij : i, j ∈ N, i 6= j}. If ij ∈ g, voters i and j interact and therefore influence each

other’s opinions. Voter i’s neighborhood in the network is the set Ni = {j : ij ∈ g}

and his degree is the number of his neighbors ni = |Ni|; his closed neighborhood is

the set N̄i = Ni ∪ {i}. In each period t, first the lobbyist approaches voters in St.

After that voters exchange their opinions, which are at that point given by pt−1[St].

The outcome of that opinion exchange is determined by the function 4i : P
n → P ,

where

pti = 4i

¡
pt−1

£
St
¤¢
=

⎧⎪⎨⎪⎩ −1+1
if
P

j∈N̄i
pt−1j [St] < αi

if
P

j∈N̄i
pt−1j [St] ≥ αi,

where αi ∈ R. Also, let 4 = (4i)i∈N .
57 In the model presented here, voters are not

optimizers. A model in which voters optimize a payoff function and which generates

the decision rule 4i is detailed in the appendix. There, voters are uncertain about

their payoffs from implementing the proposal. Their payoffs could be higher or lower

than their status quo payoffs (the payoffs they obtain if the proposal is rejected),

depending on the future state of the world. The belief about the future state of the

world is influenced by conversations with network neighbors. The more of a voter’s

neighbors root for the proposal, the stronger the belief that the state of the world

57In the setting of opinion formation it is appropriate to assume that individuals can costlessly
change their opinions in each time period. In other settings, such as adoption of a technology or
formation of habits, this assumption is only appropriate in the long-run (that is, when each time
period is sufficiently long).
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will be favorable for implementing the proposal.

Notice that the cutoffs αi, which determine when a voter switches from one opinion

to another, can vary across individuals. One might interpret small cutoffs as leaning

towards the proposal and large cutoffs as leaning against the proposal. For example,

if αi is large, in order to be persuaded, i needs to have many more neighbors who

agree with the proposal than neighbors who disagree with it. In the extreme cases,

i never supports the proposal (if αi is larger than ni + 1) or never opposes it (if αi

is smaller than −ni). Note also that the model is consistent with absolute cutoffs,

which are independent of the size of a voter’s neighborhood, as well as relative cutoffs,

which depend on the size of a voter’s neighborhood.

The lobbyist maximizes her payoff by choosing a feasible lobbying strategy. Thus,

her optimization problem is

maxS∈Sdu (π) .

The main parameters of this problem are the initial opinions p0, the resource con-

straint c, the network g, and the cutoffs α.

Lobbying in a Threshold Network

This section examines lobbying in a class of networks called threshold networks.

A threshold network is a network that can be constructed starting with a single vertex

and sequentially adding vertices in one of the following two ways:

1. The added vertex becomes an isolated vertex of the existing network.

2. The added vertex forms a link with every existing vertex of the network.

Let {I,K} be a partition of the set of vertices N (or, here, the set of voters) so

that I contains all vertices added using Step 1 andK contains all vertices added using

Step 2. The "starting vertex" is contained in K if the next vertex is added by using
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Step 2, and is contained in I otherwise. Note that no two vertices in I are linked, and

every two vertices in K are linked (K is a clique). Also note that every individual

in K has at least as many neighbors as any other individual in I. Loosely speaking,

a group with the structure of a threshold network has two types of individuals, well

connected ones and poorly connected ones. An example of a threshold network is

given in Figure 19. Vertices are added in the order indicated by their labels. Starting

from vertex 1, vertices 2, 3, 4, 6 and 7 are added as isolated vertices, and vertices 5

and 8 form links with every previously added vertex. Here, I = {1, 2, 3, 4, 6, 7} and

K = {5, 8}.

1

2

3

4

5

6

7

8

Figure 19: A threshold network

Special cases of threshold networks include the empty network, the complete net-

work, the star network and the interlinked star network.58 Except for the empty

network, one would expect to see such networks in relatively small groups, where

every pair of individuals either knows each other or has a common acquaintance.

This seems also a reasonable assumption for groups with hierarchies that have only

58An interlinked star network has two sets of vertices. The first is completely connected and the
second forms an independent set, in which everybody is connected to everyone in the first set.
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two layers. Indeed, for a variety of settings, the theoretical literature on network

formation has found that equilibrium outcomes of network formation games display

core-periphery patterns with short average distances (see for example, Galeotti et al.,

2006; Goyal and Joshi, 2003; Hojman and Szeidl, 2008).

Let I = {1, 2, ..., x} and K = {x + 1, x + 2, ..., n} so that in I, vertices with

smaller labels were added later and in K, vertices with higher labels were added

later. Henceforth, voters in N = I ∪K are assumed to be labeled in that way. The

following facts about threshold networks will be useful later on. The proof of Fact 4

is given in Footnote 10. All other proofs are straightforward and therefore omitted.

Fact 1. If i < j, then ni ≤ nj;

Fact 2. If i ∈ I, then Ni ⊆ K;

Fact 3. If i ∈ K, then K ⊆ N̄i;

Fact 4. nx < nx+1.59

The main result

As was mentioned, it will be shown that it is optimal for the lobbyist to ap-

proach each period the c best connected voters that currently oppose the proposal

(Proposition 33). To formally describe the lobbyist’s strategy, requires some addi-

tional notation. Let δ1 < δ2 < · · · < δL be the distinct degrees occurring in g. Let

Dl = {i ∈ N : ni = δl}. The collection D =
©
D1,D2, ..., DL

ª
is the degree partition

of g.60 Let N t
− = {i ∈ N : pti = −1} and let N t

+ = {i ∈ N : pti = +1}. Let Dt
− =n

D1,t
− , D2,t

− , ..., DL,t
−

o
where Dl,t

− = Dl ∩N t
−. Define l̂t to be the smallest integer such

59Proof of Fact 4.
Either x or x + 1 is the starting vertex. Case 1: x is the starting vertex. Then nx+1 ≥ n− (x +

1)+2 = n−x+1, because there were at least two existing vertices before x+1 was added. Because
x is the starting vertex, the upper bound of neighbors of x is n− x, the number of vertices in K.
Case 2: x + 1 is the starting vertex. In this case nx+1 = n− x− 1, the number of vertices in K

minus 1. Because the second vertex added is added in Step 2 (vertex x + 2), the first vertex added
in Step 1, which is x, does not connect to x+ 1 or x + 2. Therefore, nx ≤ n− x− 2.
60Note that in a threshold network, if i, j ∈ Dl ⊆ I, then Ni = Nj , and if i, j ∈ Dl ⊆ K, then

N̄i = N̄j .
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that
¯̄̄
Dl̂t,t
−

¯̄̄
+ · · ·+

¯̄̄
DL,t
−

¯̄̄
≤ c. For t = 0, 1, ..., d− 1, let

St+1∗ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n
S ∈ S : S = Dl̂t,t

− ∪ · · · ∪DL,t
− ∪Dt

− where

Dt
− ⊆ Dl̂t−1,t

− with
¯̄
Dt
−
¯̄
= c−

³¯̄̄
Dl̂t,t
−

¯̄̄
+ · · ·+

¯̄̄
DL,t
−

¯̄̄´o
N t
−

if l̂t ≥ 2

else

St+1∗ is the collection of sets of c voters that have the largest number of connections

among those who oppose the proposal at the beginning of period t+1. Since individ-

uals can have the same number of connections, there might be more than one such

strategy. If less than c voters oppose the proposal the strategy simply prescribes to

approach every voter who opposes the proposal.

As is shown in Proposition 33, a strategy (S1, S2, ..., Sd) ∈ S1∗ × S2∗ × · · · × Sd∗

maximizes u (π) over Sd. The key condition that leads to this result is that threshold

networks have nested neighborhoods. Since this property is crucial, it is stated and

proven in the next lemma.

Lemma 32 Let g be a threshold network with I = {1, ..., x} and K = {x+ 1, ..., n},

where x ∈ N ∪ {0} (with the understanding that if x = 0, then I = ∅, and if x = n,

then K = ∅). The neighborhoods of individuals in N are nested as follows

N1 ⊆ N2 ⊆ · · · ⊆ Nx ⊆ N̄x+1 ⊆ · · · ⊆ N̄n.

Proof.

Case (1): i, j ∈ I

Suppose that i < j, and that k ∈ Ni. By Fact 2, Ni ⊆ K. This means that k ∈ K and

that k is added to the network after i. However, since j is added before i (remember

that in I individuals with smaller labels are added later), k is also added after j.

Therefore, k ∈ Nj, showing that Ni ⊆ Nj.

Case (2): x ∈ I and x+ 1 ∈ K
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The result follows from the fact that x ∈ I, so Nx ⊆ K (by Fact 2), and x+ 1 ∈ K,

so K ⊆ N̄x+1 (by Fact 3).

Case (3): i, j ∈ K

Suppose that i < j, and that k ∈ N̄i. If k ∈ K, then k ∈ N̄j because K ⊆ N̄j by Fact

3. If k ∈ I, then k must be added to the network before i. However, since j is added

after i, this means that k is also added before j, so j connects to k. Thus k ∈ N̄j,

showing that N̄i ⊆ N̄j.

The converse of Lemma 32 holds as well. If a network’s neighborhoods can be

nested in the way described above, then it is a threshold network. The fact that it is

optimal for the lobbyist to convince a set of c voters that have the highest number of

connections among the opposition relies crucially on the nestedness of neighborhoods.

Intuitively, it ensures that convincing a well connected individual is always at least

as effective as convincing a less well connected individual.

The following assumption on the cutoff αi is needed to show that strategies of the

type described above are optimal.

Assumption 1. For each i ∈ N , αi ≤ ni − 1

The assumption says that if, after lobbying, all of a voter’s neighbors are in favor of

the proposal in period t− 1, the voter will be in favor of the proposal in period t.

Proposition 33 Under the above assumption, any strategy in S1∗ × S2∗ × · · · × Sd∗

is optimal for the lobbyist.

The proof of Proposition 33 is long and appears in the appendix. Note that Propo-

sition 33 does not rule out that other strategies than the ones in S1∗×S2∗×· · ·×Sd∗

are optimal. However, this can only happen in two cases. First, the strategies in

S1∗ × S2∗ × · · · × Sd∗ might be "stronger" than what is needed to achieve a cer-

tain outcome (the trivial case being that everyone already is in favor of the proposal

to start with, so that every strategy yields the same result). Second, strategies in
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S1∗×S2∗×· · ·×Sd∗ might achieve more than what the lobbyist wants to achieve (for

example, suppose the lobbyist needs to convince 10 voters to get the proposal passed

and does not care about additional votes).

The following two examples illustrate optimal lobbying strategies and indirect

persuasion effects.

Example 1.

Figure 20 shows the same threshold graph as Figure 19 with the vertices labeled

in ascending order of their degrees. Let p0 = (−1,−1,+1,+1,−1,−1,+1,−1) be

the voters’ initial opinions. For simplicity assume that αi = 0 for all i, c = 2, and

d = 2. It follows from Proposition 33 that (S1∗, S2∗) = ({6, 8},∅) is an optimal

strategy for the lobbyist. Approaching voters 6 and 8 in t = 1, yields p0 [{6, 8}] =

(−1,−1,+1,+1,−1,+1,+1,+1) and then p1 = 4 (p0 [{6, 8}])

= (+1,+1,+1,+1,+1,+1,+1,+1). Thus there is no use for lobbying in t = 2, and

the final outcome is p2 = 4 (p1 [∅]) = (+1,+1,+1,+1,+1,+1,+1,+1). Without

lobbying, opinions in t = 2 would be p2 = (−1,−1,+1,+1,−1,−1,+1,−1). Even

though the lobbyist approaches only two voters in period 1, in period 2 five more

voters are in favor of the proposal than would have been without any lobbying. Here,

voters 1, 2, and 5 have been persuaded indirectly.
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6 7

8

Figure 20: Relabeling of nodes in a threshold network

Example 2.

This example illustrates that the lobbyist might visit a voter multiple times. This

can only happen if a voter keeps switching back to opposing the proposal. However,

lobbying need not necessarily be ineffective in this case. At first, a lobbyist might be

able to convince a particular voter only temporarily, but this can translate into long-

term indirect persuasion effects on this and other voters. For example, suppose that in

the threshold network in Figure 21 (for which I = {1, 2, 3, 4, 5, 6} and K = {7, 8, 9})

all voters initially oppose the proposal and that c = 2 and d = 3. Let the cutoffs

be α9 = −5, α1 = α2 = 0, α3 = α4 = 1, α5 = α6 = α7 = 2, and α8 = 4.

According to Proposition 33, the lobbyist’s optimal strategy for the first three periods
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is (S1∗, S2∗, S3∗) = ({8, 9}, {7, 8}, {7, 8}), yielding the following sequence of opinions:

p0 = (−1,−1,−1,−1,−1,−1,−1,−1,−1) ,

p0
£
S1∗
¤
= (−1,−1,−1,−1,−1,−1,−1,+1,+1) ,

p1 = (+1,+1,+1,+1,−1,−1,−1,−1,+1) ,

p1
£
S2∗
¤
= (+1,+1,+1,+1,−1,−1,+1,+1,+1) ,

p2 = (+1,+1,+1,+1,+1,+1,−1,−1,+1) ,

p2
£
S3∗
¤
= (+1,+1,+1,+1,+1,+1,+1,+1,+1) ,

p3 = (+1,+1,+1,+1,+1,+1,+1,+1,+1) .

Voters 7 and 8 are visited multiple times, voter 8 in each of the three periods. Even

though lobbying has no lasting effect on them at first, it has an indirect and lasting

effect on voters 3, 4, and 9 and then also 5 and 6. In turn, the changes in their

opinions help persuading 7 and 8 permanently.

 5

1

2 3

4

6

7 8

9

Figure 21: Threshold network of Example 2

Note again that Proposition 33 holds for a very broad class of the lobbyist’s
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objective. Moreover, the result can be generalized to a case where the lobbyist’s

resource changes over time.61 The main contribution of Proposition 33, however, is

that it explicitly characterizes the set of voters with maximum indirect persuasion

effects on other voters. Because determining the most influential group is NP -hard

in general networks (see Kempe et al., 2003; Ballester et al., 2009), the literature has

focused on obtaining other types of results. Kempe et al. (2003, 2005) and Ballester et

al. (2009) construct algorithms that search for approximately influential groups and

provide bounds on the goodness of the approximation. In an earlier paper, Ballester

et al. (2006) are able to determine the single most influential player in their model

(which is quite different from this paper’s model; in their model, individuals in the

network play a one-shot game). Galeotti and Goyal (2007) build a tractable model by

assuming that the targeting problem consists of deciding on what large of a fraction

of individuals to target. The influencing agent is a firm that decides on the level

of advertising. A continuum of consumers forms a network of which the firm knows

only the degree distribution. The firm chooses an action x ∈ [0, 1], thought of as

the fraction of consumers it reaches through costly advertising. Caillaud and Tirole

(2008), as discussed in the introduction, determine which voters are targeted by the

sponsor of a proposal, but abstract from a network structure. As a result, who is

targeted by the sponsor depends solely on the voters’ initial stand on the matter.62

In contrast, Proposition 33 shows that the network structure matters for the question

of who is influential.

Bringing about unanimous decisions

How much does it take to bring about unanimous support for the proposal? And

how does the answer to this question depend on the group structure and the voters’

61In this case, if the lobbyist can approach ct voters in period t, it is optimal to visit the ct best
connected voters that currently oppose the proposal.
62Their model is more refined in other aspects. For example, a voter’s initial opinion is a point

in the unit interval, and the voters’ influence on each other is generated through a combination of
uncertainty about the proposal and correlation in payoffs.
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cutoffs? This subsection addresses these questions. Since the voters’ initial opinions

will affect the answers and dilute comparisons across network structures, I assume

that all voters initially oppose the proposal. This approach can also be interpreted

as a worst-case scenario for the lobbyist. Any other set of initial opinions constitutes

a more favorable environment for her. To emphasize that the lobbyist has to plant

proponents of the proposal in the network, a strategy in this subsection is called

a "seed." For simplicity, I examine cases where all voters have the same absolute

or relative cutoff, and where the lobbyist has only one shot at seeding the network

(therefore, superfluous time superscripts are dropped). Proposition 34 provides upper

bounds on the minimum size of a seed that suffices to turn everybody into a supporter.

Proposition 35 shows that it can only hurt the lobbyist if connections are added to

the network while preserving its threshold property.

A complete seed is a strategy S ⊆ N that leads to unanimous support at some

time t <∞. A seed S is aminimum complete seed if there is no seed S0 with |S0| < |S|

that is also a complete seed. Consider two scenarios: (a) Every voter supports the

proposal if and only if at least θa ∈ N0 individuals in his closed neighborhood support

the proposal; (b) Every voter supports the proposal if and only if at least a fraction

θr of his closed neighborhood supports the proposal. Let n̄i = ni + 1 be the size of

i’s closed neighborhood. Scenario (a) translates into the cutoffs αi = min{θa− (n̄i−

θa), ni − 1} = min{2θa − n̄i, ni − 1} for all i ∈ N , where the upper bound ni − 1 is a

result of the above assumption). Let c(g, θa) and c(g, θr) denote the sizes of minimum

complete seeds in, respectively, scenarios (a) and (b). Let dθrne denote the smallest

integer at least as large as θrn.

Proposition 34 Let g be a threshold network. Under the above assumption, c(g, θa) ≤

θa and c(g, θr) ≤ dθrne.

Proof. By Proposition 33, we can consider seeds of the form S = {i, i+ 1, ..., n}.
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(a) Let S = {n− θa + 1, n− θa + 2, ..., n}. For any i, we have

X
j∈N̄i

p0j [S] = min{θa − (n̄i − θa), ni − 1} = αi.

Thus4i (p
0[S]) = +1 for all i ∈ N , so S is a complete seed, showing that c(g, θa) ≤ θa.

(b) Consider the seed S = {n−dθrne+1, n−dθrne+2, ..., n}. If i ∈ K, we have N̄i =

{j, j+1, .., n} for some j ∈ N . Thus, at least a fraction θr of i’s closed neighborhood

is in S, so 4i (p
0[S]) = +1 for all i ∈ K. If i ∈ I, we have N̄i = {i} ∪ {j, j + 1, .., n}

for some j ∈ N . If j < n− dθrne+ 1 at least a fraction θr of i’s closed neighborhood

is in S. If not, all of i’s neighbors are in S. Either way, 4i (p
0[S]) = +1 for all i ∈ I.

Therefore, S is a complete seed, showing that c(g, θr) ≤ dθrne.

The bounds on minimum complete seeds provide measures of the ease of diffusion

in the network. Similar measures are examined by Morris (2000) and Lopez-Pintado

(2008). In Morris (2000), networked players choose whether to adopt an action in a

coordination game. Coordinating on taking the action yields a payoff of 1 − q and

coordinating on not taking the action yields a payoff of q ∈ (0, 1). Players make their

decisions according to whatever is the best response to their neighbors’ decisions in

the previous period. As mentioned in the introduction, this model generates a cutoff

rule of the kind that is assumed here. The best-response dynamics of the coordination

game lead players to adopt the action whenever at least a fraction q of their neighbors

adopted the action in the previous period. Morris defines the "contagion threshold,"

to be the maximum q such that there exists a finite seed that eventually leads the

entire population (which is countably infinite) to adopt the action. His main finding

is that the diffusion threshold is at most 1/2 for any network. Lopez-Pintado (2008)

analyzes diffusion in networks with a probabilistic diffusion rule (as in the cascade

model by Kempe et al., 2003, discussed in the introduction). As in Morris (2000) the

population is countably infinite. She derives a closed-form solution for the "diffusion
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threshold," a minimum bound on the effective (local) spreading rate such that starting

with an infinitely small seed ultimately leads to a positive fraction of adopters.

The bounds θa and dθrne are attained in a complete network of size at least θa+1

in (a) and of size n in (b). This suggests that it might be harder to bring about

unanimous support in better connected threshold networks. Proposition 35 shows

that this is the case if the goal is to generate complete support after one period. Let

c(g, α, t) be the size of a minimum complete seed that generates full support in period

t in a threshold network with cutoffs α = (α1, α2, ..., αn).

Proposition 35 Let g and g0 be two threshold networks such that g ⊆ g0. Under the

above assumption, c(g, α, 1) ≤ c(g0, α, 1).

Proof. Note that, when moving from network g0 to g, the order of individuals in

terms of their degrees might change. Let N 0 = {1, 2, ..., n} be such that the labels are

in ascending order according to degrees in g0. Let f : N 0 → N be a one-to-one and

onto function that produces a relabeling so that nf(1) ≤ nf(2) ≤ ... ≤ nf(n) in g.

Let S0 = {ı̂, ı̂+1, ..., n} be a minimum complete seed for g0 that generates full support

in t = 1. Consider the seed S = {f (̂ı), f (̂ı+1), ..., f(n)} for g. Let N̄f(i) = {f(h), f(h+

1), ..., f(n)}∪{f(i)} be i’s closed neighborhood in network g, and let N̄ 0
i = {h−k, h−

k + 1, ..., n} ∪ {i} be i’s closed neighborhood in network g0 (because g ⊆ g0, we know

that k ≥ 0). If ı̂ ≤ h, then S ⊆ Nf(i) and, by the assumption, p1i = 4i (p
0 [S]) = +1

in g. If h < ı̂, then S0 ⊆ N̄ 0
i and S ⊆ N̄f(i). Because g ⊆ g0, the degree of any i ∈ N 0

in g0 is at least as large as that individual’s degree in g, that is, nf(i) ≤ n0i for all

i ∈ N 0. It follows that

X
j∈N̄i

p1j [S] = n− ı̂+ 1− (nf(i) + 1− (n− ı̂+ 1))

≥ n− ı̂+ 1− (n0i + 1− (n− ı̂+ 1)) =
X
j∈N̄ 0

i

p1j [S
0] .
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So if 4i (p
0 [S0]) = +1 in g0, then 4i (p

0 [S]) = +1 in g, showing that S is a complete

seed for g that generates full support in t = 1. Thus c(g, α, 1) ≤ c(g0, α, 1).

Proposition 35 says that more tightly connected groups are harder to convince in

the short run. This might not seem intuitive at first. To see why the result holds,

consider a threshold network and a complete seed that generates full support after

one period. By Proposition 33, it is without loss of generality to consider a seed

that contains the voters with the highest number of connections. Now remove a link

between i and j. To maintain the threshold property, i and j must be the lowest

labeled neighbors for each other. Consider i. If j is not in the seed, removing the link

cannot hurt. If j is in the seed, so is every other of i’s neighbors and after removing the

link, again all of i’s neighbors are in the seed. So, the above assumption, i supports

the proposal in period 1. A symmetric argument holds for j.

The question of whether better connected networks help diffusion is also addressed

by Jackson and Yariv (2007). In their model, players choose whether to adopt an

action in strategic interactions with others in the network. They only know the degree

distribution but not the details of the network structure. Accordingly, Jackson and

Yariv examine the effects of shifts in the network’s degree distribution on the fraction

of adopters. They find that an upward shift in the degree distribution facilitates

diffusion of the action if actions are strategic complements. This contrasts with

Proposition 35. Even though voters here are not strategic, if anything, their actions

are complements. Yet, better connected networks hinder diffusion.63

Opinion Formation in General Networks

This section focuses on the process of opinion formation in arbitrary networks in

the absence of lobbying. A slightly more general model is analyzed, in which voters

63Galeotti and Goyal (2007, 2008) also address what happens in their model as the degree distri-
bution shifts, but their results are not directly comparable to Proposition 35 as their model is too
different from this paper’s model.
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are allowed to be indifferent (and can abstain from voting). Voters either agree

with the proposal (+1), disagree with it (−1), or are indifferent to it (0). In some

settings, such as adoption of a new technology, there is no natural interpretation of

abstaining, so that a more accurate model would be the one analyzed so far. This

is not a problem since all results in this section extend straightforwardly when the

possibility of indifference is removed. All notation is adjusted in the obvious way

(P = {−1, 0,+1}, N t
0 = {i ∈ N : pti = 0}, etc.). In each period, a voter agrees

(disagrees) with the proposal if in the previous period in i’s closed neighborhood the

difference between proponents and opponents of the proposal was sufficiently large

(small). Otherwise, the voter is indifferent to the proposal and intends to abstain from

voting. This process is captured by the function 4i : {−1, 0,+1}n → {−1, 0,+1},

where

pti = 4i

¡
pt−1

¢
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1

0

+1

if
P

j∈N̄i
pt−1j < αi

if αi ≤
P

j∈N̄i
pt−1j ≤ βi

if βi <
P

j∈N̄i
pt−1j ,

and where ai ≤ 0 ≤ βi. In this section, no further assumption is made on the cutoffs.

The process of opinion formation does not necessarily reach a stable state, that is,

there might not exist a t <∞ such that4t (p0) = 4t+1 (p0). To see this, consider the

four voters in the network in Figure 22. Their initial opinions are the ones indicated

in the figure.
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2

3
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1−

1−
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Figure 22: A stable state might not exist

Let αi = −12 and βi =
1
2
for all i ∈ N . Thus, in t = 1, voters 1 and 3 will disagree

with the proposal while voters 2 and 4 will agree with the proposal, and in t = 2 the

situation reverses. Thus, we get

p0, p1, p2, p3, ...

= (+1,−1,+1,−1) , (−1,+1,−1,+1) , (+1,−1,+1,−1) , (−1,+1,−1,+1) , ...

All voters’ opinions switch back and forth between agreement and disagreement,

indefinitely.

The following proposition is an extension of a result on generalized threshold

function in Goles and Olivos (1980). It asserts that, while a stable state might not

exist, eventually opinions become periodic, with the period being either one or two.

The proof of Proposition 36 appears in the appendix.

Proposition 36 There exists t̂ <∞ such that either4t (p0) = 4t+1 (p0) for all t ≥ t̂

or 4t (p0) = 4t+2 (p0) for all t ≥ t̂.

Thus, from time t̂ onwards, there are three (possibly empty) stable groups: Sup-

porters, opponents, and a group of indifferent voters. In addition, there might be a
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fourth group, which one might label undecided or "swing voters," whose opinions keep

swinging back and forth. There is a notion of swing voters being the ones sought after

in election campaigns. It would be interesting to see how, depending on the network

structure, targeting swing voters affects the other groups in the network.

A remark on the robustness of Proposition 36 is in order. The result carries over

to settings in which each link ij ∈ g has a weight, measuring to which degree i and

j influence each other.64 It is also possible to introduce a weight on own opinion -

one might imagine that an individual’s own current opinion weighs more than the

opinions of others - and still obtain the above result.65

However, when influence is asymmetric (i’s impact on j is not the same as j’s

impact on i), Proposition 36 does not hold. An example is given in Figure 23 below.

The network consists of three individuals with influences as indicated in the figure. For

simplicity, suppose that an individual’s own current opinion does not have an impact

on the individual’s opinion in the next period. Further, suppose that αi = βi = 0 for

i = 1, 2, 3, and that p0 = (−1,+1, 0). We get

p1 = (+1,−1,+1)

p2 = (+1,+1,−1)

p3 = (−1, 0, 0)

p4 = (0,−1,+1)

p5 = (+1,+1,−1).

Hence, the system becomes periodic in period 2 with a period of length 3, which

shows that the conclusion of the proposition does not hold.

64In the proof a link is represented by gij = 1. Since the proof does not depend on the value of
gij , the result extends straightforwardly.
65Proofs of these claims are available upon request.

128



 

1 1 / 3

1 / 3

1 / 3

1 / 31 / 3−

1

23

Figure 23: A network with asymmetric influences

As discussed, it is hard to say something about the outcome of opinion formation

in general networks, without making any kind of concession in other parts of the

model (see the discussion of the literature at the end of Section 3.1). Nonetheless,

it might be possible to obtain results that improve the understanding of diffusion in

networks. In the following I will informally discuss such a result.

Recall that a clique is a completely connected group. What seems to be a fruitful

approach to deal with arbitrary networks is to examine a network’s clique structure

(the analysis in Chwe (2000) points in that direction). Each network can be viewed

as a structure of cliques that have overlaps.66 Thus diffusion could be imagined

as something that is passed from one group to another whenever their overlap is

sufficiently big. This idea can be formalized by constructing a directed network of

cliques (so that each clique is a node of the network). A directed link from clique a to

clique b means that whenever clique a has adopted some behavior so does b. Notice

that the link should be directed because even if b follows a, it might not be the case

that a follows b. More specifically, this would happen if the intersection of a and b

66For the reader who is interested in the formalization of this idea, here are the formal definitions
of the underlying concepts. A clique is a complete subgraph of g. A clique h is maximal in g if there
does not exist a clique h0 such that h ⊂ h0. The union of two graphs g and g0 with vertex sets N
and N 0 is the graph g ∪ g0 on vertex set N ∪N 0. The collection of cliques H = {h1, h2, ..., hK} is a
clique cover of g if it contains all maximal cliques of g and if ∪h∈Hh = g. Every graph has a unique
clique cover.
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constitutes a large fraction of b but only a small fraction of a (in other words, a is a

bigger group than b).

In such a directed network of cliques one can then identify those cliques or cycles

of cliques that have no arcs pointing toward them, but only paths emanating from

them. In graph-theoretic terminology, those cliques are the sources of the graph. A

path emanating from a source can be interpreted as a hierarchy of cliques. Individuals

belonging to cliques closer towards the tail of a path are early adopters and individuals

belonging to cliques closer to the head of a path are later adopters. For somebody

who wants to maximize the spread of a certain behavior those cliques should be of

particular interest.

Conclusion

This paper examines networks with a core-periphery structure and shows that

the group of most influential individual in the network can be explicitly determined.

The story told here was one of lobbying but the model is more broadly applicable.

Here, the lobbyist is shown to target those group members that have high degrees and

oppose the proposal. Using this result, bounds are provided on the number of voters

that have to be convinced to eventually reach unanimous support. These bounds

depend on whether cutoffs are absolute or relative. In the case of absolute cutoffs,

the bound depends only on the value of the cutoff, but not on the size of the network.

In addition, it is shown that, for any cutoffs, more tightly connected groups are harder

to convince, at least in the short-run.

The process of opinion formation in any network is shown to become periodic

eventually, with individuals either holding the same opinion each period or switching

back and forth between two opinions. Thus, in the periodic state there might be

stable groups of supporters, opponents, and indifferent individuals, as well as a group

of undecided, or swing voters.
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There are two natural extensions of this paper. One is to pursue further the un-

derstanding of diffusion in general networks. The second is to examine what happens

when there are two agents with opposing interests. For example, it would be interest-

ing to see what happens when two lobbyists (one lobbying in favor of the proposal,

the other lobbying against the proposal) try to persuade a group. These extensions

are left for future work.

Appendix

A behavioral model of voters

The following is a behavioral model that generates the behavior of voters in the

paper. Suppose that whether the proposal benefits a voter depends on the future

state of the world X ∈ {L,H}, which is unknown to the voters. Let A stand for an

outcome where the proposal is accepted and R for an outcome where the proposal is

rejected. Suppose the payoffs for voter i, depending on approval or rejection of the

proposal and of the state of the world, are

ui (A | H) = Hi,

ui (A | L) = Li, and

ui (R | H) = ui (R | L) = 0,

where Li ≤ 0 ≤ Hi. For i ∈ N , let n̄i = ni + 1, and let n̄ti (A) and n̄ti (R) be the

numbers of voters in i’s closed neighborhood who, respectively, accept and reject the

proposal in period t. Let i’s belief in period t + 1 be P t+1
i (X = H) =

n̄ti(A)

n̄i
. Thus i

will be in favor of the proposal in period t+ 1 if and only if

P t+1
i (X = H)ui (A | H) + P t+1

i (X = L)ui (A | L) ≥ 0

⇒ n̄ti (A) ≥
−Li

Hi − Li
n̄i ≡ n̂i,
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which translates into a threshold of αi = n̂i − (n̄i − n̂i) = 2n̂i − n̄i =
Hi+Li
Li−Hi

n̄i.

Proofs

The following lemma is useful to prove Proposition 33.

Lemma 37 If p ≥ p0, then 4t (p) ≥ 4t (p0) for any t = 1, 2, ....

Proof. If p ≥ p0, then
P

j∈N̄i
pj ≥

P
j∈N̄i

p0j for all i, which implies that 4i (p) ≥

4i (p
0). Therefore, at any time t, we have 4t (p) ≥ 4t (p0).

Proof of Proposition 33. (If g is a threshold network, then any strategy in

S1∗ × S2∗ × · · · × Sd∗ is optimal for the lobbyist.)

An optimal strategy maximizes u(π). The proof proceeds by showing that a strategy

in S1∗×S2∗×· · ·×Sd∗ generates a π∗ such that π∗ ≥ π (and therefore u(π∗) ≥ u(π)) for

any π generated by some other strategy. Step 1 below shows that if π∗ is the sequence

of opinions resulting from a strategy (S1∗, S2∗, ..., Sd∗) ∈ S1∗ ×S2∗ × · · · × Sd∗ and π

is the sequence of opinions from a strategy (S1, S2, ..., Sd), then π∗ ≥ π. Step 2 shows

that if π∗ and π∗∗ result from two different strategies in S1∗ × S2∗ × · · · × Sd∗, then

π∗ = π∗∗.

Step 1. Fix a strategy (S1∗, S2∗, ..., Sd∗) ∈ S1∗ × S2∗ × · · · × Sd∗ and a strategy

(S1, S2, ..., Sd) 6∈ S1∗×S2∗×· · ·×Sd∗, and let π∗ and π be the corresponding sequences

of opinions. In view of Lemma 37 and since lobbying only takes place until period

d, it is sufficient to show that pt∗ ≥ pt for t = 1, ..., d. The proof of this part is by

induction on t.

(i) t = 1

To show that p1∗ ≥ p1, is equivalent to showing that 4 (p0[S1∗]) ≥ 4 (p0[S1]). If¯̄
N0
−
¯̄
≤ c, it is clear that S1∗∪N0

+ = N , and by the assumption,4i (p
0[S1∗]) for all i, so

this case is trivial. For ease of exposition, I drop the superscript 1 from the strategies

in this part of the proof (so S1∗ = S∗ and S1 = S). If
¯̄
N0
−
¯̄
> c, then |S∗| = c, and,

without loss of generality, I consider only alternative strategies S such that S ⊆ N0
−
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and |S| = c. Thus the cardinality of both S∗ and S is c, so that |S∗ \ S| = |S \ S∗|.

Now, let |S \ S∗| = R and move from S to S∗ in R steps by successively replacing one

individual in S \ S∗ by an individual in S∗ \ S. Denote the set obtained after r steps

by Sr with S0 = S and SR = S∗. Furthermore, let ir denote the individual removed

from Sr−1 in step r, and let f(ir) denote the individual that is added to Sr−1 in the

same step. This can be done in a way such that at each step r, ir is the individual

with the lowest label in Sr−1 \ S∗ and f(ir) is the individual with the highest label

in S∗ \ Sr−1. Therefore f : S \ S∗ → S∗ \ S is a one-to-one and onto mapping with

f(i) > i for all i ∈ S \ S∗.67 We have Sr = (S \ {i1, ..., ir}) ∪ ({f(i1), ..., f(ir)}),

for r = 1, ..., R. I will show that p0 [S∗] ≥ p0 [S] by showing p0 [Sr+1] ≥ p0 [Sr] for

r = 1, ..., R− 1. So consider Sr and Sr+1 for an arbitrary r = 1, ..., R− 1.

Case (1) ir+1 ∈ K

Because f(ir+1) > ir+1, it also holds that f(ir+1) ∈ K, and therefore, by Lemma 32,

N̄ir+1 ⊆ N̄f(ir+1). Since S
r and Sr+1 only differ in that Sr+1 contains f(ir+1) instead

of ir+1, this implies that p0 [Sr+1] ≥ p0 [Sr].

Case (2) ir+1 ∈ I

In this case Nir+1 ⊆ N̄f(ir+1), again by Lemma 32, so the only person for whom we

could have p0i [S
r] = +1 and p0i [S

r+1] = −1 is ir+1 itself. This can happen only

if ir+1 6∈ Nf(ir+1). So suppose that this is the case. Note that for any i ∈ I we

have Ni = {r, r + 1, ..., n} for some r. Therefore, since ir+1 6∈ Nf(ir+1), we have

Nir+1 = {r, r + 1, ..., n} where r > f(ir+1). However, for every j > f(ir+1) we have,

by construction, j ∈ Sr+1 or j ∈ N+. It follows then from the assumption that

p0i [S
r+1] = +1.

Thus p0 [S∗] ≥ p0 [S], implying that, reverting to the original notation, 4 (p0[S1∗]) ≥

4 (p0[S1]).
67Here the assumption that S1 6∈ S1∗ is needed.
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(ii) 1 < t ≤ d

Now suppose that pt̂∗ ≥ pt̂ for t̂ = 1, ..., t−1. We need to show that pt∗ ≥ pt. Consider

the sequence of lobbying (S1∗, ..., St−1∗, St), and let p̃t be the corresponding vector

of opinions in period t. Part (i) of this proof implies that p̃t ≤ pt∗. Moreover, from

the induction hypothesis, we know that pt−1∗ ≥ pt−1. Thus, we get
P

j∈N̄i\St p
t−1∗
j +P

j∈N̄i∩St 1 ≥
P

j∈N̄i\St p
t−1
j +

P
j∈N̄i∩St 1 for all i ∈ N , implying that p̃t ≥ pt. Putting

everything together, we get pt ≤ p̃t ≤ pt∗.

Thus pt∗ ≥ pt for t = 1, ..., d. Together with Lemma 37, this shows that π∗ ≥ π.

Step 2. Let (S1∗, S2∗, ..., Sd∗) and (S1∗∗, S2∗∗, ..., Sd∗∗) be two strategies in S1∗×S2∗×

· · · × Sd∗ and let π∗ and π∗∗ be the resulting sequences of opinions. Consider S1∗

and S1∗∗. They can only differ on the set of c − (
¯̄̄
Dl̂t
−

¯̄̄
+ · · · +

¯̄
DL
−
¯̄
) individuals in

D−. However, for any pair i, j ∈ D−, we have N̄i = N̄j. Therefore, each individual

is equally affected by the strategy S1∗ and by the strategy S1∗∗, and therefore p1∗ =

p0 [S1∗] = p0 [S1∗∗] = p1∗∗. This argument can be repeated an arbitrary number of

times, showing that π∗ = π∗∗.

Combining Step 1 and 2 together shows that π∗ ≥ π for all π generated from some

strategy (S1, S2, ..., Sd) ∈ S1 × S2 × · · · × Sd.

Proof of Proposition 36. (There exists t̂ < ∞ such that either 4t (p0) =

4t+1 (p0) for all t ≥ t̂ or 4t (p0) = 4t+2 (p0) for all t ≥ t̂. )

The proof is an extension of a proof on generalized threshold functions in Goles

and Olivos (1980). Let P denote the set of all possible opinion vectors, i.e. P =

{−1, 0,+1}n. Consider (p0,4 (p0) ,42 (p0) , ...) = (p0, p1, p2, ...). Since pj ∈ P for

all j = 0, 1, ... and P is a finite set, the sequence of opinions becomes periodic after

a finite number of steps. Let t̂ be the first period in which the sequence becomes

periodic. Let z > 0 be the least period, i.e.,

4t+z
¡
p0
¢
= 4t

¡
p0
¢
and 4t+r

¡
p0
¢
6= 4t

¡
p0
¢
for r = 1, 2, ..., z − 1, for all t ≥ t̂.
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Define the n× z matrix

X(p0, z) =

⎡⎢⎢⎢⎢⎣
x1(0) · · · x1(z − 1)
...

...

xn(0) · · · xn(z − 1)

⎤⎥⎥⎥⎥⎦
=

³
4t̂
¡
p0
¢
,4t̂+1

¡
p0
¢
, ...,4t̂+z−1 ¡p0¢´ .

For every i ∈ N and every k ∈ {0, 1, ..., z − 1}, xi(k) indicates the state of voter i in

the kth time period following t̂. Note that, for i ∈ N ,

(i) xi(0) = 4i (x1(z − 1), ..., xn(z − 1))

and

(ii) xi(l + 1) = 4i (x1(l), ..., xn(l)) for l = 0, 1, ..., z − 2.

Let ζ i be the smallest period of row xi (note that ζi must be a divisor of z). Let S

be the set of rows of X(p0, z), and let gij = 1 if ij ∈ g, and gij = 0 otherwise. Let

xi(l) = xi ((l)mod z) and define

L : S × S → R

where

L (xi, xj) = gij

z−1X
l=0

(xj(l + 1)− xj(l − 1))xi (l)

The following three facts are useful and are proven separately.

1. L (xi, xj) + L (xj, xi) = 0 for all i, j ∈ N.
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Straightforward algebra yields

L (xi, xj) + L (xj, xi)

= gij

z−1X
l=0

(xj(l + 1)− xj(l − 1)) xi (l)

+gij

z−1X
l=0

(xi(l + 1)− xi(l − 1))xj (l)

= gij

z−1X
l=0

xj (l) [xi (l + 1)− xi (l + 1) + xi(l − 1)− xi (l − 1)]

= 0.

2. If ζ i ≤ 2, then L(xi, xj) = 0 for all j ∈ N.

This holds because

L(xi, xj)

= gij

z−1X
l=0

(xj(l + 1)− xj(l − 1))xi (l)

= gij

z−1X
l=0

(xi(l − 1)− xi(l + 1))xj (l)

= 0

(since xi(l − 1) = xi(l + 1) for l = 0, 1, ..., z − 1).

3. Let i ∈ N s.t. γi ≥ 3. Then it holds that
Pn

j=1 L(xi, xj) < 0.
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To see this, fix some i so that ζi ≥ 3. We have

nX
j=1

L(xi, xj)

=
nX

j=1

gij

z−1X
l=0

[xj(l + 1)− xj (l − 1)]xi(l)

=
z−1X
l=0

X
j∈N̄i

xj(l) (xi (l − 1)− xi(l + 1))

=
z−1X
l=0

(xi(l − 1)− xi(l + 1))
X
j∈N̄i

xj(l).

Define bl ≡ (xi(l − 1)− xi(l + 1))
P

j∈N̄i
xj(l) for l = 0, 1, ..., z − 1 so thatPn

j=1 L(xi, xj) = b0 + b1 + ...bz−1. Because (xi(l − 1), xi(l + 1)) ∈ {−1, 0,+1}2 there

are only nine different combinations of xi(l−1) and xi(l+1) with different implications

for the value of bl. The nine cases are summarized in Table 2 below. Notice that except

for cases 4 and 6 the implied values for bl are all nonpositive. If z is odd, we will

consider the sequence {xi (0) , xi (2) , ..., xi (z − 1) , xi (1) , xi (3) , ..., xi (z − 2)}, listing

every other element of xi, beginning with xi(0) and starting over from xi(1) after

xi(z − 1) is reached. Because ζi ≥ 3, it cannot be the case that all elements of the

sequence are the same. Therefore, there exists some k such that (xi(k), xi(k+2)) is as

in one of the cases 1, 2, 4, 6, 8, or 9. If cases 4 and 6 do not occur it follows immediately

that
Pz−1

l=0 bl < 0. Suppose that case 4 occurs so that (xi (k) , xi (k + 2)) = (+1, 0)

and bk+1 ≤ βi. Search the sequence for the next occurring transition to +1, starting

over from the beginning of the sequence if no such transition exists until the end of

the sequence. Say this transition occurs at k0. This must either be a switch from 0 to

+1 or from −1 to +1. In either case we have bk0+1 < −βi. And so bk+1 + bk0+1 < 0.

The argument if case 6 occurs is analogous. Therefore, if cases 4 or 6 occur, we

can match any bl such that bl > 0 with a bl0 such that bl0 < −bl, implying thatPz−1
l=0 bl < 0. If z is even we examine the two sequences {xi (0) , xi (2) , ..., xi (z − 2)}
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and {xi (1) , xi (3) , ..., xi (z − 1)}. In either case because ζi ≥ 3 at least one sequence

must be such that not all of its elements are the same. The rest of the argument is

analogous to the case when z is odd.

Finally to prove the result, for p ∈ P let X (p, z) be the corresponding matrix as

before. If z ≥ 3, then at least one ζ i ≥ 3, and by the facts proven under points 2 and

3 above we have
nX
i=1

nX
j=1

L (xi, xj) < 0.

However, by the fact proven under point 1

nX
i=1

nX
j=1

L (xi, xj) = 0,

a contradiction. Therefore, z ≤ 2.

Table 2: Nine cases

Case xi (l − 1) xi(l + 1) implies for
P

j∈N̄i
xj(l) implies for bl

1) +1 −1 < αi < 2αi

2) 0 −1 < αi < αi

3) −1 −1 < αi = 0

4) +1 0 ∈ [αi, βi] ≤ βi

5) 0 0 ∈ [αi, βi] = 0

6) −1 0 ∈ [αi, βi] ≤ −αi

7) +1 +1 > βi = 0

8) 0 +1 > βi < −βi
9) −1 +1 > βi < −2βi
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