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CHAPTER |

Introduction

Gene fusions are created when two or more discrete genes incorrectly join together.
They are common mutations in the human genome and often found to cause cancer (Nambiar,
Kari, & Raghavan, 2008). Since the advent of next generation sequencing (NGS) technology,
numerous gene fusions in cancer tissues have been discovered and catalogued. We utilized the
rapidly growing pool of information on gene fusions in human cancer to identify gene-fusion-
formation patterns. We hypothesized that understanding the mechanisms and risk for gene-
fusion formation could facilitate novel gene fusion detection in human cancers and lead to
better targeted treatments. This thesis project has three related computational analyses: 1) we
used a motif discovery tool to examine common sequence patterns at and around breakpoints
that form fusions, 2) we calculated entropy in a sliding-window manner to determine structural
characteristics at and around breakpoints that form fusions, and 3) we executed a gene-fusion
network analysis to visualize and compare cancer-associated gene fusion metrics versus

controls.

1.1. Gene fusion
A gene fusion is the result of two or more discrete genes incorrectly joining. These
mutations may results in fused mRNA transcripts. In most two-gene gene fusion events, the

promoter from the gene in the 5’ position controls transcription. Gene fusions result from



translocations, inversions, insertions or deletions and are common mutations. Nambiar et al.
(Nambiar et al., 2008) reports that approximately 20% of cancers are driven by gene fusions
caused by chromosomal locations. Figure 1-1 illustrates a gene fusion event. Because of the
estimated large percentage of cancers caused by gene fusions, the research community has
great interest in gene fusions that facilitate tumorigenesis. Identifying and determining
mechanisms by which gene fusions act lead to projections toward drug targets for cancer

treatment.

Gene B S’F i—ﬁ , ﬁﬁﬁ 3’
i

Fusion Event

Gene A/GeneB 5 | gho 2 o2 de 42 3

RNA [—

Figure 1-1: An illustration of a gene fusion event. Lines represent genomic DNA and boxes represent exons. Gene A (blue)
breaks (at the point designated by slanted line) and fuses with Gene B (red). Exons are numbered for clarification. Each gene
has a promoter designated by the colored arrows at the beginning of the DNA. Gene B’s promoter is lost and Gene A’s
promoter now controls transcription for the fusion.

One of the most successful gene fusion discoveries involves BCR-ABL in chronic
myelogenous leukemia (CML). As early as 1960, Nowell and Hungerford examined leukemia

cells from chronic phase CML patients and found a common abnormality - in each of their seven



samples, chromosomes 9 and 22 contained reciprocal translocations (P. C. Nowell, 1960). Their
finding ignited additional studies that began to answer why this abnormality, which they called
the Philadelphia Chromosome, is associated with CML. Two genes are disrupted in a
Philadelphia chromosome. Abelson murine leukemia viral oncogene (ABL), translocated from
chromosome 9, is a proto-oncogene that encodes a tyrosine kinase and is active during cell
differentiation, cell division, cell adhesion, and stress response. Breakpoint cluster region gene
(BCR), from chromosome 22, encodes a protein with serine/threonine kinase activity but is
otherwise uncharacterized at this time. Not only does a BCR-ABL gene fusion occur on the
Philadelphia chromosome, but a novel mRNA transcript is produced that contains components

from both genes (Ben-Neriah, Daley, Mes-Masson, Witte, & Baltimore, 1986).

Once the structural mutation on the Philadelphia chromosome was characterized,
researchers began answering questions about the relationship between the gene fusion and
CML. The fusion protein BCR-ABL behaves as an abnormal tyrosine kinase that over-
phosphorylates substrates and facilitates tumorigenesis (reviewed in (Wong & Witte, 2004)).
ABL tyrosine kinase activation is in part regulated by a SH3 domain which is lost during the gene
fusion event, thus turning ABL into an oncogene (Barild & Superti-Furga, 1998). The role BCR
plays in the gene fusion remains unclear. There is evidence that ABL oligomerization is sufficient
for tumorigenesis but in fusions with different BCR breakpoints or with other gene partners,

ABL tyrosine kinase activity levels change (reviewed in (Wong & Witte, 2004)).

Research identifying the BCR/ABL gene fusion and understanding how it leads to

tumorigenesis culminated into developing imatinib, a drug with success treating patients with



CML. Imatinib is a tyrosine-kinase inhibitor that prevents fusion protein BCR-ABL activity, thus
preventing cancer cell growth (reviewed in (Wong & Witte, 2004)). Since BCR-ABL is
predominantly expressed cancer cells, imatinib is classified as a targeted therapy. A randomized
study on 1106 CML patients ended with 96.7% of imatinib-treated patients, compared to 91.5%
of alternatively-treated patients, classified as “free from CML progression” (O’Brien et al.,
2003). The drug passed clinical trials and is on the market as first-line treatment since 2001

(http://www.accessdata.fda.gov).

BCR-ABL is only one of the tyrosine kinase gene fusions involved with malignancies.
Identified from epithelial tumors, there are currently ten tyrosine kinase genes that form
fusions with at least one partner gene (reviewed in (Shaw, Hsu, Awad, & Engelman, 2013)). The
mechanisms by which tyrosine kinase fusions lead to tumorigenesis are similar across different
types of cancer — they involve deregulation of tyrosine kinase activity. For example, receptor
tyrosine kinase and proto-oncogene RET (abbreviation of “rearranged during transfection”)
forms fusions with several partners in papillary thyroid cancer. These gene fusions contain RET’s
intact tyrosine kinase domain fused to the active promoter of the partner gene, which
ultimately leads to incessant MAPK (mitogen-activated protein kinase) signaling and

tumorigenesis in thyroid cells (reviewed in (Nikiforov & Nikiforova, 2011)).

Aberrant tyrosine kinase activity is not the only mechanism by which gene fusions
facilitate tumorigenesis. A class of gene fusions common in prostate cancer consist of an
androgen-controlled genomic regulatory element fused to an oncogenic transcription factor in

the ETS (E26 transformation specific, where E26 is leukemia virus) family (Kumar-Sinha,



Tomlins, & Chinnaiyan, 2008). The five prime partners in these gene fusions (for example,
TMPRSS2) are prostate-specific and have ubiquitous expression. Fusing their promoters onto an
ETS family member leads to overexpression of oncogenic transcription factors, which in turn
leads to cellular pathway alterations and loss of tumor suppressor activity (reviewed in (Kumar-

Sinha et al., 2008)).

There are two main mechanisms by which gene fusions can facilitate cancer: a fusion
gene can yield a chimeric protein with aberrant activity (e.g. BCR-ABL), or a promoter or
enhancer can fuse to a proto-oncogene and lead to overexpression of an oncogenic protein
(e.g. TMPRSS2 fusions) (Aman, 1999). As stated previously, not all gene fusions are pathogenic.
Cancer is a genetic disease in which cells accrue many mutations — some of which actively
participate in disease progression (called drivers), and some of which result from disease
progression (called passengers). Identifying gene fusions and differentiating drivers from

passengers are both current challenges in gene fusion research.

NGS is a sequencing strategy that yields high-throughput and low-cost sequence data.
NGS augments the amount of available whole genome, exome, and transcriptome sequence
data, including data from cancer tissues with gene fusions. The number of reported gene
fusions from tumor tissue has grown exponentially during the last six years. Mitelman et al.
(Mitelman, Johansson, & Mertens, 2004) estimated that the number of fusion genes in a cell is
a linear function of the number of chromosomal aberrations and Futreal et al. (Futreal et al.,
2004) reported that the most common mutations in cancer are translocations that create

chimeric genes. Nevertheless, generating raw sequence data does not guarantee gene fusion



identification. Detecting novel gene fusions in cancer enhances the current catalog, and
detecting targeted gene fusions facilitates classifying cancer types in patients. There are

targeted and unguided methods for detecting gene fusions in cancer tissue.

Targeted gene fusion identification is a necessary tool for translating gene fusion
research to clinical treatment. The type of cancer dictates cancer treatment - it is advantageous
to prescribe a tyrosine kinase inhibitor to a patient with abnormal-tyrosine-kinase-driven
cancer, but that treatment will be ineffective if the cancer stems from a different cause. To help
determine treatment, detecting the presence of a gene fusion driver from tumor tissue is
necessary. Exploring regions surrounding breakpoints highlights targets for directed gene fusion
identification. For example, specific sequence patters may indicate gene fusion presence. This is
the drive for motif discovery on sets of gene fusions (further discussed in section 1.2).
Chmielecki et al. (Chmielecki et al., 2010) discovered that GXGXXG motifs exist near tyrosine
kinase fusions, and they performed targeted next generation sequencing around those motifs
to identify fusions. Targeted sequencing could identify suspected gene fusions from patient
samples and obviate extraneous sequencing. Another example where targeted gene fusion
detection assists in patient diagnostics involves ETS family gene fusions. ETS family gene fusions
act as biomarkers for prostate cancer and exist in up to 70% of the cases (Thieme & Groth,

2013). The company KREATECH (http://www.kreatech.com) produces kits to detect ETS family

gene fusions with the aim of diagnosing prostate cancer.

Novel gene fusion identification is a tough problem to tackle and several research

groups have published methods to detect fusions from RNA-Seq and DNA-Seq data. Solutions



involve constructing an algorithm that can align sequences and highlight anomalies suggesting
gene fusion events, such as exons from discrete genes present on the same sequence read.
Trans-splicing, intergenic splicing, and a plethora of genomic mutations in tumor cells augments
type I and type Il errors in fusion-event screening against background sequences. To date, there
is no robustly tested and error-free algorithm that identifies novel gene fusions from
sequencing data. Table 1 lists five recent algorithms for gene fusion detection, and includes a
brief summary of their results. The algorithms have different input sequence requirements and

limitations, and have each identified at least one novel gene fusion when evaluated.

The number of reported gene fusions increases, and it befits researchers to have access
to descriptive information on them. Public databases such as Mitelman and COSMIC hold
records on gene fusions for research aid. Information on the gene fusions includes, at
minimum, the name and position (5’/3’) of genes participating in the fusion. Additional
information can consist of sequence information, the type of cancer in which the fusion was
found, the reference paper, etc. Table 2 lists four of the current databases that curate

information on gene fusions.



Table 1: Summary of selected recent methods for detecting novel gene fusions

Tool Input Technique/advantages Limitations Reference

deFuse RNA-Seq Considers all alignments  Requires at least five McPherson et
data rather than best-fit discordant read pairs to al.,, 2011

alignments. Considers detect a gene fusion, which
all locations for fusion leads to missed fusions with
boundaries rather than  low-expression.

focus at ends of known

exons.

Genome SNP-array  Detects genes at the Detects fusion genes from Thieme & Groth,

Fusion data transition regions where only unbalanced mutation 2013

Detection copy number variations  events.

occur. Can detect non-
functional, silenced and
novel fusions

FusionMap RNA-seq Aligns fusion reads to Relies on long read lengths Ge et al., 2011
data the genome without and requires longer

prior knowledge of computational time
probable fusion regions. compared to other methods.
Can detect fusions from

single or paired-end

reads.

FusionQ Paired- In addition to detecting  Reports less gene fusions Liu, Ma, Chang,
end RNA-  gene fusions, this tool compared to other methods & Zhou, 2013
seq data constructs the due to increased filter

chimerical transcript constrictions.
structures and estimates
their quantity.

FusionSeq Paired- Ranks gene fusion Fusion detection depends on  Sboner et al.,
end RNA-  candidates by several a gene annotation set for 2010
seq data statistics and identifies information on genes and

sequence at exact
breakpoints.

their isoforms, so candidate
fusion identification is limited
to the set.




Table 2: Descriptions of the selected databases of gene fusions

Database Content Number of Website Reference
gene fusion
records
ChimerDB Fusion transcripts 11,747 http://biome.ewha.ac.kr:8080/Fusi  Kim et al.,
collected from onGene/ 2010
public resources
COsSMIC Gene fusions, 9,054 cancer.sanger.ac.uk/ Forbes et
genomic al., 2010
rearrangements,
and copy number
variations
Mitelman Chromosome 2,038 http://cgap.nci.nih.gov/Chromoso Mitelman F,
aberrations and mes/Mitelman Johansson B,
gene fusions Mertens F,
2014
TIiCdb Translocation 1,374 http://www.unav.es/genetica/TICd  Novo, de
breakpoints in b/ Mendibil, &
cancer Vizmanos,
2007

Gene fusions are classified as drivers or passengers — drivers play an active role in

facilitating tumorigenesis while passengers do not. The pool of known gene fusions grows, and

there is strong demand to identify the gene fusions drivers for targeted studies. Research

groups put forth several approaches in attempt to accomplish this. Wang et al. (Wang et al.,

2009) published a method to predict a gene fusion’s driver likelihood with a ConSig score. The

ConSig score, derived from gene ontologies, assumes the driver probability for a gene is

correlated with the gene’s association to oncogenic-related gene ontologies. The authors report

with low power that cancer-related fusion genes share common gene ontologies. Shugay et el

(Shugay, Ortiz de Mendibil, Vizmanos, & Novo, 2013) developed Oncogene, an algorithm to

predict oncogenic potential of gene fusions based on known features in gene fusion drivers.

They focused on sequences including fusion protein domains and protein interaction interfaces



to rank driver potential. They had positive results with validation tests, but they depend on the
current set of validated gene fusion drivers. Despite the algorithm development toward

classifying gene fusion drivers, we lack a robustly tested method with positive results.

Gene fusions drive an estimated 20% of human cancer (Nambiar et al., 2008) and are of
great interest in cancer research and treatment. There is clinical success from translating BCR-
ABL research into a usable drug and in diagnosing prostate cancer via targeted gene fusion
detection. There is room for improvement in methods for detecting gene fusions and
differentiating drivers from passengers. Additionally, there are knowledge gaps in what the
scientific community understands about gene fusions. It is mostly unclear how gene fusions
form. Radiation plays a role in gene fusion formation in papillary thyroid carcinomas (Mizuno,
Kyoizumi, Suzuki, lwamoto, & Seyama, 1997), and a handful of sequences common at
breakpoints in leukemia and lymphoma are reported (reviewed in (Aman, 1999)). A
comprehensive study on where gene fusions form is lacking. Gene fusion research is in a

positive direction and, with enhanced sequencing technologies, continues to move forward.

1.2. Motifs and motif discovery

Motifs are short conserved sequences associated with biological functions. Among other
roles, motifs denote binding sites or splice junctions in DNA, and active sites or domains in
proteins. Type Il restriction enzymes, which cut DNA in bacteria, must bind to specific motifs.
EcoRI binds to 6-mer 5-GAATTC-3’ and incorrect binding leads to detrimental DNA shearing
(Pingoud & Jeltsch, 2001). Motifs become more complicated with degenerative properties.

Escherichia coli require two conserved regions for transcription initiation: a “TATA box” 10 base

10



pairs (bps) upstream and a TTGACA motif 35 bps downstream from the start site. Actual
transcription initiation sites match 54-82% (7-9 out of 12 base pairs) of these motifs (reviewed
in (D’haeseleer, 2006)). Despite exchanged base pairs, transcription executes proving that

motifs do not always need to be exact sequences to be functional.

The scientific community uses sequence logos to represent motifs with degenerative
properties. A sequence logo is a position-dependent symbol-probability matrix — it depicts the
probability of possible symbols at each position in a graph. Figure 1-2 shows a sequence logo
for repressor enzyme LexA’s binding motif. The y-axis on the sequence logo represents “bits,”
which are binary digits with the information required to distinguish between two possibilities.
Two bits are required for the four nucleotides A, T, C and G (00, 01, 10, and 11). Bits measure
the information content at a given position (Section 1.3 explains information content in detail).
A site with no sequence conservation will have 0 bits of information content, or an equal
chance of having A, T, C, or G. A completely conserved site will have 2 bits of information
content. The total information content at a position follows the equation 2 — the uncertainty of
that position, and the height of a symbol at that position is the information content multiplied

by the nucleotide’s relative frequency.

2
| C
L C CA _T
0 N % B P -y < —="—w— 8 - "N _E_
- N ® & 1 © ~N ©®© O O ** N ® « 1 O
5 - - - - - - - 3

weblogo. berkeley.edu

bits

Figure 1-2: Sequence logo representing LexA binding motif. On the y-axis, “bits” is a measure of the relative base frequency
via information content.
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When an n-mer repeats itself across polymer sequences, there is evidence that it does
not occur by chance and may be a motif. This is the basis for motif discovery. Identifying a
known motif in a sequence gives good indication on what biochemical process occurs at that
region. ldentifying common motifs among sequences evinces that there are mutual biological
mechanisms acting at those regions. Motif discovery among sequences is a computational
process and there are three different categories of motif discovery algorithms: enumeration,

probabilistic optimization, and deterministic optimization (D’haeseleer, 2006).

Enumerative motif discovery algorithms use exhaustive search on all possible motifs in a
search space (Sinha & Tompa, 2002). An enumerative algorithm keeps a running total of n-mer
occurrence in the target sequences, then reports those with the highest totals. Since
enumerative motif search is so thorough, these algorithms are not limited to a local optimum.
Nevertheless, restricting searches to exact nucleotide sequences may lead to overlooked actual

binding sites, which are often degenerate. These algorithms may miss flexible motifs.

Probabilistic optimization (or stochastic) algorithms depend on Gibbs sampling for motif
discovery. Gibbs sampling is sampling by one variable at a time conditioned on all other
variables. Probabilistic optimization algorithms work by sampling for motif start points, building
a position specific scoring matrix for all points excluding one, then setting the excluded point to
the position that best matches the matrix model (Thijs et al., 2002). The probability that a
symbol exists at a given position serves as a measure for sequence scores. Scores converge until

alignment no longer changes, resulting in a projected motif.

12



Deterministic optimization algorithms depend on expectation maximization for motif
discovery. These algorithms iterate through two steps: the expectation step where current
parameters project an “expected” structure, and the maximization step where the expected
structure feeds back to re-estimate parameters (Dempster, 1977). Over iterations, the initial
structure converges to one with maximum log likelihood in the search space, and results in a
final motif. Expectation maximization is a local optimization — the final motif is sensitive to the
initial expected structure. Therefore, it does guarantee the model with global maximum log
likelihood for the search space (Blekas, Fotiadis, & Likas, 2003). For optimization, one can

repeat these algorithms under different initial parameters to better chances of finding motifs.

Sequence data quality limits performance for each of these motif discovery methods.
For best results, one should restrict data to high-quality sequences. It is important to consider
nucleotide background frequencies in the motif search space. Otherwise, most motif-discovery
tools will assume equal probabilities for all nucleotides, skewing the motif’s statistical

significance measurements.

If motifs existed near gene fusion regions, they would help explain where and why gene
fusions happen, and improve the detection of gene fusions from complex data generated by
NGS. Gene fusion-associated motifs may act as markers for fragile DNA regions or suggest
implication of a binding factor on gene fusion formation. Myers et al. (Myers, Freeman, Auton,
Donnelly, & McVean, 2008) identified two sequence motifs associated with recombination hot
spots and genome instability: a 7-mer CCTCCCT and 13-mer CCNCCNTNNCCNC (“N” denotes

any base type). If these motifs are enriched near gene fusion breakpoints in cancers, we have

13



evidence to predict cancer-associated gene fusion formation results from aberrant crossover
events. Chmielecki et al. (Chmielecki et al., 2010) found that tyrosine-kinase gene fusion
breakpoints occur upstream from a GXGXXG amino acid motif (“G” signifies glycine and
“X” signifies any amino acid). Finding a motif when limited to tyrosine-kinase gene fusions
supports that gene-fusion motifs are probable and performing motif discovery across many

cancer-associated gene fusions may yield significant information.

After motif discovery and function identification, motifs are curated in public databases
like TRANSFAC (Matys et al., 2006) and JASPAR (Bryne et al., 2008). TRANSFAC (TRANScription
FACtor database) contains information on eukaryotic transcription factors with their respective
genomic binding sites and DNA binding profiles. The database offers tools to facilitate motif
based research. Match is a weight matrix-based program that predicts transcription factor
binding sites from their database in DNA sequences. F-Match builds off Match and identifies
statistically over-represented transcription factor binding sites in a set of sequences compared
against a control sequence set. If a known binding factor is implicated in gene-fusion formation,
it will have enriched binding sites near breakpoints that form fusions. F-Match is an appropriate

tool to identify those binding sites and evince differences compared to control sequences.

1.3. DNA entropy

Entropy measures the number of ways a thermodynamic system can be arranged and is
commonly thought of as a gauge for disorder and uncertainty. Entropy is inversely correlated
with information content, making information content a measure of certainty. The base of

these measurements requires determining the number of binary decisions required to ascertain
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information. The formula for determining the number of binary decisions (nq) for a set of N

options is:
ng = logaN (1)

As a simple example, imagine the set for four nucleotides {A, C, T, G} where one
nucleotide is selected and a person must determine which nucleotide it is using binary
guestions. The person may probe if the nucleotide is in the set {A, C}, then further reduce the
set into single nucleotides. Logp4 = 2 questions are needed to determine the nucleotide. This
equation assumes the probability for all elements of the set are equal. When elements have
disparate probabilities, we can gauge aberrancy for a element’s occurrence with the expanded
equation below, where h; signifies aberrancy from seeing that element, and p; signifies the
element’s probability for occurrence (Schneider, Stormo, Gold, & Ehrenfeucht, 1986). Figure 1-3

shows the aberrancy curve h for element probabilities in the range 0 to 1.

hi = —logap; (2)
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Figure 1-3: A curve showing the measure of aberrancy (h) for element probabilities in the range 0 to 1, as calculated from
equation 2.

Claude Shannon coined the “uncertainty measure,” or Shannon Entropy, which is the
average aberrancies weighted by their occurrence probability. Shannon entropy is calculated by

the equation below (C. E. Shannon, 2001).
H = ¥ipihi = — Xipilogzp; (3)

Schneider defines information content, based on Shannon’s uncertainty, as the
difference in global uncertainty and uncertainty at a given position (j), calculated by the

equation below (Schneider et al., 1986).
ICj=Hg —Hj (4)

Entropy estimates on DNA provide information about genomic complexity and

arrangement. Fragments of DNA under selective pressure have lower entropy than those that
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are not — exons have lower entropy than introns and older fragments of DNA have lower
entropy than younger (Koslicki, 2011). Farach et al. used entropy measurements as a way to
detect DNA splice junctions (Farach et al., 1995). A second way to think of Shannon entropy is a
measure for how efficiently data could be compressed without loss. Higher the entropy means
less redundancy and lesser compression. Gatlin proposes that high redundancy DNA molecules
with optimum composition may have lower probability of error, therefore it is appropriate that

exons and conserved regions have lower entropy (Gatlin, 1968).

A sliding window entropy analysis reveals changes in complexity throughout a DNA
sequence. The sliding window works by setting a frame length and start position on a DNA
sequence. The region within the frame yields a Shannon entropy measure, which is recorded,
then the frame shifts a determined number of base pairs downstream and another read is
taken. Once graphed, the entropy measures show changes, oscillations, and conserved regions
that describe the sequence. Performed at gene fusion breakpoints, we can gauge patterns in
entropy that may help explain where gene fusions happen and why. We hypothesize an

entropy increase at breakpoint regions that signifies higher probability for error.

1.4. Network analysis

A network is a graphical representation of data that consists of nodes, which represent
entities, and edges, which represent relationships. A network can be directed or undirected.
Directed networks have edges that are one way denoting X acts on Y but Y does not act on X.
An example of a directed network is a food chain — a fox eats the rabbit and the rabbit does not

eat the fox. Undirected networks denote mutual relationships. An example of an undirected
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network is a social network — Anne is friends with Beth therefore Beth is friends with Anne. To
differentiate between the two graphically, directed networks have arrows for edges while

undirected networks have lines Figure 1-4.

Directed Network Undirected Network

Figure 1-4: lllustrations of directed and undirected networks.

A mathematical descriptor of nodes is centrality, a measure of weight or importance in a
network. There are three categories of centrality: degree centrality, closeness centrality, and

betweenness centrality.

Degree centrality is based on the node’s degree, which is the number of connections, or
edges, it has to other nodes. In directed networks, degree is categorized by in-degree and out-
degree (the number of edges directed away from the node and the number of edges directed
toward it. A node’s degree centrality can be interpreted as the probability of intercepting that

node when moving through the network.

Closeness centrality is a measure for how easily one can move to the rest of the network
from the given node. The lowest number of edges that need to be traversed to reach one node
from another defines their distance. The “farness” of a node is the sum of its distances to all of

the other nodes, and its “closeness” is the inverse of the “farness” (Sabidussi, 1966).
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Betweenness centrality is the total number of times a node acts as a bridge along the
shortest path between two other nodes. It is interpreted as a measure for control of movement
through the network (Freeman, 1977). Nodes with high betweenness have regulatory power

over information flow through the network.

Networks are classified by their degree distribution (Figure 1-5). Random networks
manifest a normal degree distribution — the degrees of all nodes are distributed around and
average. Scale-free networks manifest a power-law distribution in which most nodes have low
degrees and a few nodes have high degrees. When observing any sub-region of the network,
the degree distribution will always follow the power-law, hence the name scale-free. Biological
networks, such as those that depict gene regulation and signaling are scale-free (Albert, 2005).
Hoglund et al. built the first gene fusion network where nodes represent participating genes
and edges represent a gene fusion event. They reported that the network’s organization
demonstrates a scale-free network topology with the power law degree distribution found in

naturally occurring networks (Hoglund, Frigyesi, & Mitelman, 2006).
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Figure 1-5: Example of a random network and its degree distribution (left column) and a real (or scale-free) network and its
degree distribution (right column).

Protein-protein interaction (PPI) networks reflect functional interactions such as cellular
pathways — nodes represent proteins and edges denote interactions with other proteins. A PPI
network depicts which proteins interact, which protein groups are modular, and where
feedback loops occur. Wu et al. (Wu, Kannan, Lin, Yen, & Milosavljevic, 2013) mapped gene
fusions to a PPI network for the purpose of highlighting gene fusion drivers. They hypothesized

that a gene fusion is more likely to be a driver if one or more participating genes act as a hub in
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a PPl network. The more connected a gene is, the more deregulation it would cause if
disrupted. Their study used data on known cancer fusions from the Cancer Gene Census
database (Futreal et al., 2004) and their method correctly predicted most of the 38 fusions with

oncogenic importance in their test set (with 19% false positive rate).

We chose to explore the role gene fusions have in cancer and their impact on cellular
pathways with network analysis. We tested the hypothesis that gene fusions in cancer are more
disruptive compared to passive mutations by comparing network metrics across true gene
fusions and randomly generated gene fusions. We used two-gene gene fusion data from
COSMIC and randomly generated gene fusion sets. After mapping fusion genes in the PPI

network, we compared the control and real-data gene fusion’s degree measurements.
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CHAPTER Il

Methods

2.1. Data Sources

All gene fusion records were collected from the Catalog of Somatic Mutations in Cancer
(COSMIC) (http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/download) (Forbes et
al., 2010). COSMIC is a public database for information on gene fusions, genomic
rearrangements, and copy number variations in human cancers. The database curates
mutations reported in scientific literature, and mutations reported from the Cancer Genome
Project (CGP) at the Sanger Institute UK. Table 3 shows general statistics on COSMIC’s gene
fusion dataset as of the date 7/25/2013. Figure 0-1 shows the chromosomal distribution of
genes participating in fusions for our dataset, and Figure 0-2 shows the distribution by the

primary tissue type that the gene fusions were reported from.

Table 3: An overview of the gene fusion data deposited in COSMIC database as of 7/25/2013

Number of reported gene fusions 9054

Number of gene fusions with sequence data 662

Number of participating genes 222
Number of unique gene pairs 200
Number of unique gene fusion sequences 462
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Figure 0-1: The distribution by chromosome position for the COSMIC reported genes participating in fusions.
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Figure 0-2: Percentages of COSMIC gene fusion records in given primary tissue types.
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We filtered the gene fusion dataset for records with 5" and 3’ gene names, mRNA
transcripts, and first/last transcript nucleotide numbers. We excluded fusions involving more
than two genes and those with additional insertion or deletion sequences. In Table 3, the
number of unique sequences is higher than that of the unique gene pairs because, in some
cases, a fusion pair exhibits different breakpoints. Sequence data is from the human genome
reference 37.72, which we downloaded from Ensembl (ftp://ftp.ensembl.org/pub/release-
72/fasta/homo_sapiens/dna/) (Flicek et al., 2014). The protein-protein interaction network

data comes from PINA: Protein Interaction Network Analysis version 2 (Cowley et al., 2012).

2.2. Software and Tools

All data processing was performed with programming languages Perl and R. Motif
discovery was performed with Multiple EM for Motif Elicitation (MEME) version 4.9.0
(http://ebi.edu.au/ftp/software/MEME/4.9.0/) (Bailey et al., 2009). We chose this tool because
it uses a deterministic optimization algorithm — it does not require a motif to exist in each input
sequence and it determines likely motif lengths for the user (which is helpful when there are no
a priori assumptions about potential motifs). We used TRANSFAC F-Match to search for
statistically over-represented binding sites near breakpoints that form fusions (Matys et al.,
2006). The network analysis was performed with the network construction and visualization
software, Cytoscape (P. Shannon et al., 2003). Network statistics were calculated using the
Cytoscape plug-in CentiScaPe (Scardoni, Petterlini, & Laudanna, 2009). The list of known
protein-protein interactions was downloaded from PINA: Protein Interaction Network Analysis

Platform version 2 (http://cbg.garvan.unsw.edu.au/pina/download/) (Cowley et al., 2012).
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2.3.  Gene fusion motif discovery

The goal for motif discovery in this study is to identify motifs enriched at gene fusion
breakpoints, which help explain where they occur and why. The results may further help us
predict novel fusion breakpoints in future. We performed in silico motif discovery on gene-
fusion breakpoint sequences and compared results to motifs found at recombination hot spots

and motifs identified by transcription factor binding sites.

To perform motif discovery on gene fusion breakpoints, it is necessary to know the
nucleotide position on the genome where the break has occurred. Gene fusion data was
collected from mRNA transcripts where introns were removed. If, upon mapping the mRNA
transcripts back to the genome, we find that the breakpoint occurred within an exon, we know
the exact position for the breakpoint. Otherwise, if we find that the breakpoint happened
between two exons, we only know the intron region in which the breakpoint occurred. Since
intron regions can be long, we did not find it appropriate to compare them to specific regions
symmetric around an exonic breakpoint. Therefore, intron-region breakpoints were excluded
from this study. It is more likely that gene fusions occur in intronic regions than in exonic
regions — breakpoints in transcribed areas may be more disruptive and selected against. Gene-
fusion discovery methods bias toward finding fusion with exonic breakpoints since they are
easier to detect in mRNA transcripts. After filtering for exon-region breakpoints, we removed
repeats and close-range breakpoints (those that exist more proximal to a breakpoint than the
range of our desired excerpt length). Our input consisted of 142 genomic breakpoints that

formed gene fusions.
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Since some regulators act on regions several hundred base pairs away from where they
bind, we strove to make our search space as wide as possible. One limiting factor was
computational power. We found the maximum capacity for MEME with 142 input sequences is
approximately 600 base pairs per sequence. Therefore, we extracted 600 base pair regions of
genomic DNA centered on gene fusion breakpoints to serve as input. We want to uncover
motifs that exist in a subset of gene fusions, which requires motif output beyond that of most
statistical significance in the whole dataset. For this reason, we also extracted 300 base pair

regions for input.

In our MEME command, we specified that sequences have zero or one occurrence of a
given motif, that motifs may occur on the provided DNA strand or its reverse compliment, and
that the maximum motif length could be 20 base pairs (longer than the previously mentioned
recombination hot spot motifs). MEME produced all summary statistics and graphs used in our
analysis. We were most interested in motif E-values, which is an estimate for the expected
number of motifs with its log likelihood ratio or higher that would exist in a like set of random
sequences. Lower e-values denote greater significance. We also examined the position of the
motifs within the sequences to determine position patterns (i.e. a given motif always exists

upstream from breakpoint opposed to downstream).

Next, we chose to search for known transcription factor binding sites with the aim of
uncovering enrichment at breakpoints that form fusions. Motif discovery should report
enriched sites and obviate a targeted search, but the targeted search is beneficial in that it has

much less probability for type Il error. The targeted search is restricted to confirmed motifs
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rather than motifs falling within a set or parameters. There is greater sensitivity for spotting
those motifs, which is favorable in the event that motif discovery misses sequences with global
maximum log likelihood. Of course, since the targeted search is restricted to known
transcription factor binding sites, motif discovery remains beneficial when undocumented
motifs exist. We used TRANSFAC’s F-Match for the targeted search. Our input files included the
breakpoint-centered 600 base pair sequences, plus 600 base pair control sequences centered at
random exonic nucleotides within our gene set. We were interested in over represented sites

with p-values less than 0.05.

2.4. Gene fusion entropy analysis

For the entropy analysis, we used 142 sequences of 600 base pairs centered at
breakpoints that form gene fusions. These are the same sequences used in motif discovery —
non-repeating, non-overlapping, exonic breakpoints. We also used 142 control sequences
centered at random exonic breakpoints. We wrote a Perl program to set up the sliding frame
and calculate entropies. We chose to take measurements in 20 base pair frames and shifted 5
base pairs with each measurement. Then, split by test and control, we averaged the reads in
the same frame positions and plotted measurements on a line graph. We calculated local

maximum and minimum reads and compared across the test and control set.

2.5. Gene fusion network analysis
We collected all gene fusion entries with 5" and 3’ genes from the COSMIC. Unlike the
motif discovery and entropy analysis, this study does not require sequence data so records

without specific sequence data were included. Each unique gene fusion is represented once in
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the network and there are 200 fusions pairs with 222 unique genes participating in fusions. We
generated a control gene fusion dataset that complements our test set with 200 fusions and

222 unique genes by randomly sampling a list of all human genes.

We mapped the genes participating in fusions (in both the test and control data sets) to
their respective proteins in a protein-protein interaction network and extracted all first-
neighbor proteins. Then we built network files where each gene fusion is assigned a node and
that node is connected to the union of proteins that interact with the 5’ and 3’ fusion genes.
We used Cytoscape (P. Shannon et al., 2003) to visualize the networks and the Cytoscape plug-
in CentiScaPe (Scardoni et al., 2009) to calculate degree for all of the nodes. We compared the

gene fusion degrees from the test network to those from the control network.
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CHAPTER 1l

Results

3.1. Gene fusion motif discovery

The letter frequencies for the 600 base pair sequences input file is 0.283 A, 0.217 C,
0.217 G, and 0.283 T. These proportions served as the base frequencies for calculating
significance for motifs in this dataset. Table 4 displays the motif output for the 600 base pair
sequence file. Each of the four motifs are highly significant (e-value less than 0.05) but contain
the maximum number of base pairs allotted. Motif number 600-4 has maximum conservation
for G at nucleotides five and eight. Density maps of the motif sequence positions show
homogenous distribution — there is no sharp skew upstream, downstream, or in a particular

range for any of the four motif positions on the sequences (shown in Figure 0-1).
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Table 4: Details on motifs found within 600 base-pair regions of breakpoints that form gene fusions.

Motif Percent of sequences E-value
exhibiting motif
600-1.
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Figure 0-1: Density plot for the start positions of motifs found in the 600 base pair breakpoint sequences. The x-axis
represents nucleotide position and breakpoints occur in the center at 300 base pairs.

The letter frequencies for the 300 base pair sequences input file is 0.279 A, 0.221 C,
0.221 G, and 0.279 T. These proportions served as the base frequencies for calculating
significance for motifs in this dataset. Table 5 displays the significant (e-value less than 0.05)
motifs for the 300 base pair sequence file. Like results in the 600 base pair input file, all motifs
are at the maximum 20 base pairs in length and the motif-sequence position maps show
homogenous distribution for all motifs (shown in Figure 0-2). Motif number 600-1 and 300-2
are similar in that they are T-rich. However, other motifs from the two input files matched at

high information content positions even though they have overlapping e-values.
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Table 5: Details on motifs found within 300 base-pair regions of breakpoints that form gene fusions.

Motif Percent of sequences E-value
exhibiting motif
300-1.
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Figure 0-2: Density plot for the start positions of motifs found in the 300 base pair breakpoint sequences. The x-axis
represents nucleotide position and breakpoints occur in the center at 150 base pairs.

The transcription factor binding site search by F-Match identified three sites over-
represented in breakpoint regions that form gene fusions. Table 6 lists the sites with their test
to control ratios and p-values. Each of the three sites had statistically significant p-values (less

than 0.05).

Table 6: Over-represented transcription factor binding sites in 600 base pair regions centered at breakpoints that form gene
fusions compared to control sequences

Matrix Identifier Name Ratio (Test : P-value
Control)
VSMINI19 B Muscle initiator 3.12 6.72e-4
sequences-19
VSTATA_01 TATA Box 1.46 4.35e-4
VSMUSCLE_INI_B Muscle initiator 4.03 2.36e-4
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3.2. Gene fusion entropy analysis

Figure 0-3 graphs the average entropy reads with standard error for 142 sequences
centered at gene-fusion breakpoints. On average, the standard deviation is 10.4% of the
entropy. The red portion of line represents reads the overlap breakpoints. The break occursin a
local high entropy area followed by a local low entropy area. Figure 0-4 graphs average entropy
reads with standard error for 142 control sequences centered at random exonic breakpoints.
On average, the standard deviation is 10.7% of the entropy. The red portion of line represents
reads the overlap random breakpoints. Table 7 lists the maximum and minimum entropy reads
for the test and control sets with their p-values from t-tests. The distance between the
maximum and minimum average entropies is approximately 45 base pairs in the test set and
320 base pairs in the control set. The largest percent change in the test set is 17.29% over 45

base pairs and 15.15% over 45 base pairs in the control set.
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Figure 0-3: Average entropy values across 600 base pair sequences centered at gene fusion breakpoints. Reads are in 20 base
pair frames with 5 bases per shift. The red fragment of line represents reads overlapping the breakpoints.

2.2
2 -
B /M
1.8 SR8 = il H G B -
LU N NN N NN NATTT] f] TNU \ /’ /’/ TN\A
M T N
T
1.6
1.4
1.2
0 100 200 300 400 500
Frame start position

Figure 0-4: Average entropy values across 600 base pair control sequences centered at random exonic breakpoints. Reads are
in 20 base pair frames with 5 bases per shift. The red fragment of line represents reads overlapping the random breakpoints.
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Table 7: The maximum and minimum average entropy reads for test and control sequences with p-values from t-tests.

Test Control p-value
Max H 1.819 1.822 0.88
Min H 1.710 1.729 0.55
p-value 0.0004 0.0001

3.3. Gene fusion network analysis

The gene fusion network is very large with 2,941 nodes and 14,812 edges. It is too
complex to illustrate in a figure here. The degree distribution for the overall network follows
the power-law (Figure 0-5) as does the degree distribution for only the nodes representing gene
fusions (Figure 0-6). These results match those from Hoglund et al. (Hoglund et al., 2006) who

also reported a scale-free gene fusion network.
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Figure 0-5: Degree distribution for the 2,941 nodes in the gene fusion network (fusions and protein interactors). The
distribution follows a power-law, making the network scale-free.
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Figure 0-6: Degree distribution for the 200 gene fusion nodes in the network. The distribution follows a power-law.

The control network has 2,593 nodes and 6,384 edges — 348 nodes and 8,428 edges less
than the fusion network. This network is also scale-free. Since degree distribution follows a
power law in these two networks, we log transformed the degrees to achieve normal
distribution. Figure 0-7 shows a boxplot for the log transformed degree of nodes in the gene
fusion test set compared to the control set. The test set average log degree is 1.635 with
standard deviation 0.520 and the control set average log degree is 1.242 with standard
deviation 0.440. The two averages are significantly different with a p-value less than 0.001

(calculated with a T-test).
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Figure 0-7: Box plot showing the degrees of nodes in the test gene fusion network and the control gene fusion network.

RNA-binding protein EWS, coded by the Ewing sarcoma breakpoint region 1 (EWSR1)
gene, has the most protein-protein interactions out of the set of resultant proteins in our gene
fusion dataset. Gene fusions involving the gene EWSR1 have the highest degrees. Table 8 lists

gene fusions with tenth percentile degrees in the network, which we define as hubs.

Table 8: Gene fusions with tenth percentile degrees in the true gene fusion network.

Rank Gene Fusion Degree Rank  Gene Fusion Degree

1 YY1/EWSR1 275 9 EWSR1/ATF1 207
1 EWSR1/YY1 275 10 EWSR1/PBX1 203
2 EWSR1/CREB1 272 11 EWSR1/WT1 203
3 PLAG1/CTNNB1 258 12 EWSR1/FLI1 203
3 CTNNB1/PLAG1 258 13 ACTB/GLI1 197
4 EWSR1/POUSF1 235 14 EWSR1/ETV1 197
5 EWSR1/SMARCAS5 229 15 EWSRI1/ERG 196
6 EWSR1/DDIT3 218 16 EWSR1/NFATC1 194
7 EWSR1/SP3 215 17 EWSR1/ZNF384 193
8 EWSR1/NFATC2 209 18 EWSR1/NR4A3 192
8 NFATC2/EWSR1 209 19 EWSR1/PATZ1 191
9 ATF1/EWSR1 207 20 EWSR1/ETV4 190
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CHAPTER IV

Discussion

From these analyses we gained three overarching conclusions: 1) Motif discovery with
broad parameters at mixed-cancer gene fusion breakpoints does not produce dependable
output, 2) Gene fusion breakpoints likely occur at regions of relatively high entropy followed by
regions of relatively low entropy, and 3) Network metrics may be useful toward understanding

the role gene fusions have in cancers.

This work is novel by the following points. Previously, no large-scale motif discovery has
been performed at breakpoints that form gene fusions, nor have there been sliding-window
entropy analyses to determine patterns in entropy at breakpoints. While gene fusion networks
have been built, our network is built from a large, composite, gene fusion dataset and our

networks metrics are unique to that dataset.

4.1. Gene fusion motif discovery

Motif discovery at regions surrounding gene-fusion breakpoints yields eight statistically
significant motifs from the 600 and 300 base pair datasets. Nevertheless, closer examination of
the output shows evidence for overfitting, one of the limitations for motif discovery (Simcha,
Price, & Geman, 2012). Each of the motifs contains the maximum number of base pairs
permitted at run-time, which suggests generous substitutions were allowed to find a match. To

address overfitting, Maclsaac et al. (Maclsaac & Fraenkel, 2006) suggested to perform motif
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discovery on a fraction of the dataset followed by the evaluation of the motifs using the held-
out data. This will yield an unbiased estimate of how well the motifs generalize to new data.
MEME automatically performs this function, so as an alternative investigation for overfitting,
we tried motif discovery against a similar size, similar GC content dataset of random sequences
and looked for like significance values in any motifs found. Unfortunately, output from control
sequences looked very similar to output from test sequences. We again saw highly significant
20-base-pair long motifs evenly distributed evenly across sequences. More evidence for
overfitting comes from comparing the motifs and their e-values from the 600 base pair
sequences and the 300 base pair sequences. None of the motifs across the two files matches
although the e-values fall in the same range. If a motif from the 300 base pair sequence output
was truly highly significant, it would certainly appear as a significant motif in the 600 base pair
sequence output as well. Based on the results from random sequence motifs and the lack of
motif overlap across 600 and 300 base pair test sequences, we conclude that motifs from our

test set are not reliable.

It is likely that the size and range of the gene-fusion breakpoint datasets are in part
responsible for poor performance from motif discovery. Nevertheless, there is currently no
information that helps predict targeted regions where motifs exist in relation to gene-fusion
breakpoints. Segregating the dataset into smaller ranges may reduce overfitting, but new
complications arise. For example, if motifs exist in different ranges in different genes, they will
be partitioned from one another, and not appear as statistically significant motifs in the split
data set. Refining motif discovery for this dataset is an achievable task, but it requires planning
to preempt potential drawbacks.

40



The three over-represented transcription factor binding sites near breakpoints are
muscle initiator sequences-19, TATA box, and muscle initiator. The TATA box is ubiquitous and
at a test to control ratio of 1.45, it is statistically enriched. Muscle initiator sequences-19 and
muscle initiator are two similar muscle promoters — they are both 21 bps long and 62% identical
(13 matched nucleotides). This is an interesting finding that raises questions about gene fusion
formation across tissue types. Does gene fusion formation occur by similar mechanisms
regardless of tissue type or are there tissue-specific expedients? Although we know these two
muscle-promoter sequences are enriched near breakpoints in this dataset, it is necessary to
check for similar enrichment in a different dataset to make definitive conclusions. As COSMIC
gathers additional gene fusion data and their cancer type of origin, we can test for the same
enrichment pattern at new breakpoints, and thus gain support or dissuasion that these

transcription factor binding sites are of interest in gene fusion research.

4.2. Gene fusion entropy analysis

The sliding entropy analysis shows a pattern that breakpoints occur at relatively high
entropy regions followed by relatively low entropy regions. Nevertheless, the high entropy and
low entropy regions are not significantly higher or lower than entropy measurements in control
sequences. The difference between the test and control entropy reads is in the spatial distance
between the maximum and minimum entropy sequences. In the test set, the change from the
maximum to minimum entropy occurs over 45 base pairs, while in the control set the change
occurs over 320 base pairs. The sharpest change in the control set is 15.15% over 45 base pairs,
compared to 17.29% over 45 base pairs in the test set, and the percentages are significantly
different with a p-value less than 0.0001.
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Although error bars overlap, the difference between maximum and minimum entropy in
the test set is significant with a p-value of 0.0004. The breakpoints occurring at relatively high
entropy regions is in accordance with Gatlin’s statement that low redundancy (high entropy)
DNA molecules may have higher probability of error (Gatlin, 1968). A relatively high entropy
region followed by a relatively low entropy region may be a structure that facilitates gene

fusion formation.

Entropy signatures are less specific than motifs, but these results support that gene
fusions do not occur randomly and are more likely to occur at region of relatively high entropy
shortly followed by a region of relatively low entropy. This observation could be applied to gene
fusion detection — gene fusion detection algorithms can include entropy-change checks to
correct type Il errors (false negatives). If a gene-fusion-detection algorithm based on sequence
alone overlooks a gene fusion, a second pass checking changes in entropy could bring attention
to the break for validation. However, before expanding gene-fusion-detection algorithms based
on these findings, it is first necessary to collect gene fusion data from intronic breakpoints, and
determine if the breaks happen at similar patterns. These results only define breaks in exonic

regions, which is an unknown fraction of the total number of breakpoints that form fusions.

4.3. Gene fusion network analysis
The network analysis affirms two observations on gene fusion networks: gene fusion
networks conform to power-law degree distributions found in naturally occurring networks,

and average log degree is higher in true gene fusion networks compared to controls.
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The gene-fusion network’s degree distribution follows a power-law, therefore the
network is scale-free rather than random (which would have a normal degree distribution) and
contains hub genes. The hub genes in the network support that selection for gene fusion occurs
during tumorigenesis. There are “promiscuous” genes that are more likely to form fusions in
cancer, and they do so with a range of partners. If gene fusion formation is a random process,
than there would be equal distribution for the genes involved in fusions. These results agree
with the entropy analysis, which supports that gene fusion breakpoints do not occur at random
sequences, but are more likely to occur at regions of relatively high entropy regions followed by
relatively low entropy regions. If these regions are enriched in a specific gene, the gene will

have a higher probability to form fusions.

Degree can be thought of as a measure for the impact a gene fusion has within the cell —
the more interactions a gene’s protein product has, the more disruptions will occur after fusion
events. We reject the hypothesis that average log degrees are the same in observed-gene-
fusion networks and networks built with randomly generated gene fusions with a p-value
<0.001. We support the idea that gene fusions are more likely to be cancer-causal if the genes

participating in the fusion interact with many proteins (higher than average degree).

Fourteen out of sixteen fusions with top ten highest degrees contain the gene EWSR1.
EWSR1 encodes a protein involved in meiotic cell division, DNA repair mechanisms, and cellular
ageing (Li et al., 2007). It is a promiscuous gene that form fusions with several partner genes in
a variety of soft tissue tumors (reviewed in (Fisher, 2014)). The large number of EWSR1 fusions

found in cancer tissue suggests driver ability and selection. The fusions with degrees falling in
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the top ten that do not involve EWSR1 are those with pleiomorphic adenoma gene 1 (PLAG1)
and catenin beta 1 (CTNNB1). PLAG1 encodes a zinc finger protein, and activation is a recurrent
observation in lipoblastomas (Astrom et al., n.d.). CTNNB1 mutations are found in prostate
cancer (Gerstein et al., 2002) and ovarian carcinomas (Palacios & Gamallo, 1998). High-degree
gene fusions involve genes reported in literature with roles in cancer. The roles of the individual
genes prior to fusion events are indicators of their role after gene fusion events. Therefore, the
union of interactions for the resultant proteins in the gene fusion network acts as an indicator

for the fusion’s impact.

The gene fusion network is a useful tool for visualizing and measuring the impact a gene
fusion has within the cell. The network shows that some genes (hubs) are more likely than
others to form fusions, therefore could be positively selected for during tumorigenesis, and

have more driver potential compared to fusions with less-common genes.

4.4. Project Limitations

The currently available algorithms for motif discovery have individual limitations. In an
assessment on the DNA motif discovery algorithms, Simcha et al. reported that algorithms
dependent on background models (like MEME) are “too null” which means they result in overly
optimistic significance assessments (Simcha et al., 2012). This explains the overfitting that
occurred in our analysis, and suggests that to reduce limitations, try alternative motif discovery

tools and compare results.

The motif discovery and entropy analysis are limited by the reliability of the data

sources. We depend on sequencing data and exact breakpoint positions in these studies, and
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recognize that error in the reported nucleotide types and numbers can dampen results.
COSMIC collects gene fusion records from various sources, and if the breakpoint positions are
reported in different ways depending on the source (for example, the first nucleotide is number
0 from some sources and 1 from others), the entropy analysis loses some of its power. Motif
results are less affected by small shifts because the sequences are aligned around the
breakpoints. Nevertheless, incorrect sequencing data inhibits motif discovery algorithms from
finding best fits, and may even lead to false positives if multiple incorrect sequences are
incorporated. We very much depend on the data quality and integrity of others in the scientific

community for these analyses.

Motif discovery, entropy analysis, and network analysis are all limited by our data set’s
size. COSMIC holds records for over nine thousand gene fusions, but less than 10% of those
records have sequence information, and only a third of those are unique records. There is a
plethora of unrecorded gene fusion information that, once collected, will give studies like these
and many others a significant amount of power. As more information on gene fusions becomes
publicly available, all of these studies can be repeated to yield results that are more

dependable.

4.5. Future Work

We plan to improve upon the motif discovery analysis by repeating our steps with
alternative motif discovery tools. In this study we utilized MEME suite, which uses a
deterministic optimization algorithm. We found two alternative motif discovery tools with

competitive performance: W-AlignACE, which uses Gibb sampling and a probabilistic
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optimization algorithm (Chen, Guo, Fan, & Jiang, 2008), and Weeder, an enumerative motif
discovery program (Pavesi, Mereghetti, Mauri, & Pesole, 2004). We hope that by comparing
results from these three tools, we will gain power and be able to definitively conclude
overfitting or lessen it. We plan to perform motif discovery at the amino acid level around
exonic breakpoints. Degeneracy in the genetic code may lead to false negatives in motif
discovery. Checking for motifs at the amino acid level may help reduce differences in the

sequences caused by degeneracy.

We plan to expand out entropy analysis by validating our exonic-breakpoint-entropy-
pattern against intronic-breakpoint-entropy-patterns. We must find data sources for gene
fusions sequences from genomic DNA rather than mRNA to account for intronic breakpoints.
Data is the limiting factor for this study, but we will collect sequence data as it becomes
available. The rapidly evolving NGS technologies have helped investigators to generate more
and more whole genome sequencing data, which will provide gene fusion breakpoints in
intronic regions. If we are able to confirm our entropy pattern in both exonic and intronic
breakpoints that form fusions, we can expand on a gene-fusion-detection algorithm by using

entropy checks as a means to reduce false negatives in gene-fusion detection.

To further our network analysis, we plan to map Gene Ontology terms to genes
participating in fusions and examine their functional enrichment. We believe this will highlight
gene fusion groups common in cancer, like the tyrosine kinase fusions. Preliminary work for this

step yielded hundreds of overrepresented Gene Ontology terms. Our current focus is reducing
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noise by parsing the network into like-components (i.e. extracting subnetworks based on tissue

of origin).

To advance this project, we plan to take advantage of the available gene-fusion
sequence data and perform a survey on protein domain shuffling. We will explore the
possibility of differentiating gene fusion drivers through shuffled substrate binding sites. We
appreciate that the growing pool of gene fusion information incites creative investigations to

answer questions about gene fusions and tumorigenesis.
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APPENDIX

Code for sliding-window entropy calculations

#!/usr/bin/perl
#

#This program designates a window of width S$FL (frame length) in which to
calculate entropy

#fand move the window along input sequences shifting width $SL (shift length)

along the desired

#region 2*DL (desired length) centered at a breakpoint
#

#Author: Morgan Harrell

#FRAME LENGTH

SFL = 20;

#SHIFT LENGTH

SSL = 5;

#HALF LENGTH DESIRED AROUND BREAKPOINT
SDL = 300;

#Open exon breakpoint ID list
#Form:
#mRNA, breakpoint position,gene name chromosome
#NM 004083.4,837,DDIT3 12
open (EID, "exonBP.info.NoRepeats") || die ("Cannot find input list\n");
while (<EID>)
{
chomp (5 ) ;
my @values = split(',', 5 );
#Get DNA sequence for the gene with an exonic breakpoint

open (mRNA, "/gpfs22/home/harrelm/data/COSMIC/geneSeqg/genes/$values[2]")

|| print "Cannot find
/gpfs22/home/harrelm/data/COSMIC/geneSeq/genes/Svalues|[2]\n";
my @sequence = <DNA>;
close (DNA) ;

#Prep output
print "Svalues[2]\t";

#Set up slider loop
my Slength = length(Ssequence[l]l);
my Sstart = Svalues[l] - SDL;

#Prevents negative number in the event that the breakpoint is not more

than DL nucleotides
#into the sequence
if (Sstart < 0)
{
Sstart = 0;

}
my Send = Svalues[l] + SDL;
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#Prevents overarching number in the event that the breakpoint

than DL nucleotides

}

#from the end of the sequence
if (Sstart > Slength)
{
$start = $Slength;
}

#Slide and calculate entropy
for (my Si = Sstart; Si+SFL < Send; Si+=S5S5L)
{
my SsegSub = substr(Ssequence[l], $i, SFL);
#Sequence entropy
my Ssse = &entropy(SsegSub);
#Print entropy
print "Ssse\t'";
}

print "\n";

close (EMID) ;

sub entropy

{

my Sstring = € [0];

my Count;

my Stotal = 0;

foreach my Schar (split(//, Sstring))
{

SCount{Schar}++;
Stotal++;
}
my SH = 0;
foreach my Schar (keys %Count)
{
my Sp = SCount{Schar}/Stotal;
S 4= o % log(p);
}

SH = =SH/log(2) ;
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