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CHAPTER I 

 

INTRODUCTION 

 

Part I: Pulmonary Hypertension  

 

Definition of Pulmonary Hypertension  

Pulmonary hypertension (PH) is a progressive, fatal disease of the lung 

vasculature. In its simplest definition, PH is described as abnormal and sustained 

elevation of pulmonary arterial pressures during resting conditions. Traditionally, PH is 

define as mean pulmonary arterial pressures (mPAP) greater than 25mmHg at rest, as 

measured by right heart catheterization. However, recent advanced measures of 

pulmonary capillary wedge pressure (Ppcw), pulmonary vascular resistance (PVR), and 

cardiac output (CO) enable clinicians to effectively categorize PH heamodyanimic 

subtype as either pre-capillary (Groups 1, 3, 4, 5) and post-capillary (Group 2- PH due to 

left heart disease)(Galie, Hoeper, et al., 2009a).  

 

Classification of Pulmonary Hypertension 

 First discovered by Dresdale in the 1950’s (Dresdale et al., 1954), PH has gone 

through a series of classification systems. Most recently in 2008, the World Health 

Organization (WHO), at the Fourth World Symposium of Pulmonary Hypertension in 

Dana Point, California, categorized PH into five major groups listed in Table 1 (Galie, 

Hoeper, et al., 2009a; PAH-info.com, 2015; Simonneau et al., 2009). We will discuss these 

groups below.   
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Table 1: WHO Current Clinical Classification of Pulmonary Hypertension  

Adapted from (PAH-info.com, 2015) 

  

Group 1  Pulmonary Arterial Hypertension 

 1.1 Idiopathic pulmonary hypertension 

 1.2 Heritable pulmonary arterial hypertension (BMPR2, ALK1, ENDOGLIN, 
unknown) 

 1.3 Drug and toxin-induced pulmonary arterial hypertension 
 1.4 Associated with: connective tissue diseases, HIV infection, portal 

hypertension, congenital heart disease, schistosomiasis, chronic 
hemolytic anemia 

 1.5 Persistent pulmonary hypertension of the newborn  
 1’ Pulmonary veno-occlusive disease and/or pulmonary capillary 

hemangiomatosis 
Group 2  Pulmonary Hypertension as a result of left heart diseases 

 2.1 Systolic dysfunction 
 2.2 Diastolic dysfunction 
 2.3 Valvular disease 
Group 3  Pulmonary Hypertension associated with lung disease and/or 

hypoxia 
 3.1 Chronic obstructive pulmonary disease 
 3.2 Interstitial lung disease 
 3.3 Other pulmonary diseases with mixed restrictive and obstructive 

pattern 
 3.4 Sleep-disordered breathing 
 3.4 Alveolar hypoventilation disorders 
 3.6 Chronic exposure to high altitude 
 3.7 Developmental abnormalities 
Group 4  Chronic thromboembolic pulmonary hypertension 

Group 5  Pulmonary Hypertension with unclear multifactorial mechanisms 

 5.1 Hematologic disorders 
 5.2 Systemic disorders 
 5.3 Metabolic disorders 
 5.4 Others: tumor obstruction, chronic renal failure 



	
  3 

Group 1, which the bulk of this work will discuss, is composed of patients with 

pulmonary arterial hypertension (PAH). The term PAH differs from PH in that PAH is 

defined as the presence of pre-capillary PH that is not due to an accompanying lung 

disease; however, this manuscript will use both terms interchangeably. This group 

includes the following: 1) heritable forms of the disease associated with germline 

mutations, predominantly in the Bone Morphogenetic Protein Receptor Type 2 (BMPR2) 

gene, Activin-like Kinase Type 1 (ALK1) gene, and Endoglin and familial cases with no 

known germline mutations; idiopathic, or sporadic, PAH (IPAH); 2) drug and toxin-

induced PAH, notably the Fen-Phen epidemic of the late 20th century (Brenot et al., 

1993); 3) PAH associated with disorders/diseases including but not limited to connective 

tissue diseases(Hachulla et al., 2005), HIV (Degano et al., 2010), and portal 

hypertension(Rodriguez-Roisin et al., 2004); 4) persistent pulmonary hypertension of the 

newborn (Teixeira-Mendonca et al., 2013); 5) and pulmonary veno-occlusive disease 

(Montani et al., 2008). 

Group 2 makes up the largest population of PH patients and has a high rate of 

morbidity and mortality. It is the only post-capillary PH group and is composed of 

patients with PH as a result of left heart disease. Group 2 PH is suspected to occur in 

accordance with left heart disease due to “passive” pressures emanating from the left 

heart, though many suspect it is a combination of left heart pressures and preexisting 

pulmonary pathologies (Guazzi et al., 2012).  

Group 3 PH patients develop PH in association with other lung diseases and/or 

hypoxia. Development of this classification most often arises from alveolar hypoxia, a 

potent stimulant of vasoconstriction. Perhaps the most well known co-morbidity in this 

group is chronic obstructive pulmonary disease (COPD); however this group includes a 
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variety of factors including interstitial lung disease, alveolar hypoventilation disorders, 

chronic exposure to high altitude (hypoxia), and developmental abnormalities (Sajkov 

et al., 2013).  

Making up Group 4 PH are patients with chronic thromboembolic pulmonary 

hypertension (CTEPH). Development of CTEPH is the result of increased artery pressures 

due to obstruction of the pulmonary arteries with thromboembolic materials. While 

these patients exhibit high morbidity and mortality rates, CTEPH is the only severe PH in 

which medical intervention other than lung transplant may cure patients (McNeil et al., 

2007).  

Finally, Group 5 PH is composed of patients with unclear multifactorial 

mechanisms, including hematologic disorders, systemic disorders, metabolic disorders, 

tumor obstruction, and chronic renal failure. This group is predominantly a catchall for 

PH that does not fall into other categories. Given the heterogeneity of this group, Group 

5 is the least characterized and studied (Galie, Hoeper, et al., 2009a). 

 

Pathobiology of Pulmonary Hypertension 

 Several structural and functional abnormalities contribute to the development 

and progression of PH. Chief among these are structural changes in the pulmonary 

arteries [loss of the distal pulmonary vasculature (vascular pruning), development of 

neointima and plexiform lesions, and remodeling of the distal pulmonary arteries (Fig 1)] 

abnormal vascular reactivity, and right ventricle (RV) hypertrophy due to chronic RV 

pressure overload (Fig 2). It is this chronic RV overload that eventually results in patient 

death due to right heart failure (cor pulmonale) (Voelkel et al., 2012).  
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Figure 1: Structural changes associated with pulmonary arterial hypertension. 
Abnormalities throughout the pulmonary circulation: abnormal muscularization of distal 
and medial arteries, loss of distal arteries, thickening of large arteries, occlusive 
neointimal formation and plexiform lesions. From (Rabinovitch, 2012), Copyright 
Permission: License #3656590755289 
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Figure 2: Right heart hypertrophy in pulmonary arterial hypertension. Adaptive 
remodeling of the PH heart includes thickening right ventricle and reduction of the left 
ventricle.  
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Current thinking is that endothelial insult and/or molecular changes within 

endothelial cells (ECs) initiates a cascade of cellular and environmental changes within 

the pulmonary structure(Rabinovitch, 2012). The same processes that contribute to 

vascular lesion formation play a role in the generalized remodeling phenotype and 

vascular pruning phenomenon. This includes excessive proliferation of apoptotic-

resistant ECs (thought to be of monoclonal origins), recruitment of endothelial 

progenitor cells (EPCs) and inflammatory cells, and the differentiation and proliferation 

of smooth muscle cells (SMCs)(Cool et al., 1999; S.-D. Lee et al., 1998; Masri et al., 2007; 

Montani et al., 2011; Perros et al., 2012; Perros et al., 2007; Rabinovitch, 2012; 

Taraseviciene-Stewart et al., 2002). These events result in remodeling of all three arterial 

layers (intima, media, and adventitia) and in most cases are not reversible (Sakao et al., 

2010). 

Exactly how these changes occur within the vascular bed is unclear; however, 

recent evaluation has prompted comparison to cancer-like mechanisms(Guignabert et 

al., 2013). Indeed hallmarks of cancer such as increased proliferation and decreased 

apoptosis are clearly evident in the pulmonary vasculature of PH patients and can be 

attributed to the increased production and activity of pro-proliferative factors, such as 

FGF-2 and p130-CAS, and anti-apoptosis factors including Bcl-xI, Bcl-2, and Survivin 

(McMurtry et al., 2005; Tu et al., 2012; Tu et al., 2011). The result of this excessive 

proliferation and reduced apoptosis is the development of obstructive and obliterative 

lesions that prevent free blood flow and contribute to increased pulmonary pressures.  

In addition to expansion of existing cell populations within the arterial wall, 

muscularization of normally non-muscularized distal arteries occurs. Muscularization 

refers to the addition of SMCs to the normally bare EC layer. Extensively studied, this 
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process involves the migration of SMCs to the distal arteries, differentiation of precursor 

cells, and possibly endothelial-to-mesenchymal transition (EMT), all of which results in 

the thickening of the arterial wall and contributes to abnormal vasoreactivity (Frid et al., 

2006; Jones et al., 1998; Meyrick et al., 1980; Morrell et al., 2009; Sakao et al., 2009, 2010; 

Sheikh et al., 2014).  

Further contributing to increased pulmonary artery pressures is paradoxical 

pulmonary artery pruning. The reduced surface area forces the steady blood volume to 

pass through fewer blood vessels thereby increasing pressure. It is unclear why the lungs 

of PH patients undergo this process as there are an abundance of pro-angiogenic 

factors circulating in the blood of these patients; however, it seems that PH ECs no 

longer respond to angiogenic factors as normal ECs do (Guignabert et al., 2013; 

Hernndez et al., 2013).  

In addition to the expansive vascular remodeling that occurs in PH patients, the 

pulmonary arteries also exhibit abnormal vascular reactivity. These abnormalities 

include altered production of key vascular tone modulators including but not limited to, 

prostacyclin, endothelin-1, nitric oxide, and serotonin (Budhiraja et al., 2004; Farber et 

al., 2004), as well as altered responses to vasoactive stimuli (Frank et al., 2008), Together 

these defects lead to increased vasoconstriction and reduced vasodilation.  

Finally, RV hypertrophy and subsequent right heart failure is the main cause of 

death in PH patients. Despite this, little is known about the mechanisms that drive RV 

hypertrophy and failure; however, it is appreciated that increased afterload may be 

the predominant factor driving the progression to right heart failure. Collectively, the 

above remodeling events and aberrant vasoreactivity cause excessively high 

pulmonary pressures, forcing the heart to work harder (increase afterload) to push the 
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same blood volume through reduced vascular space. Due to its inherent compliance, 

the RV is able to adapt to these changes in volume by increasing contractility. Initially, 

the RV adapts to increased contractility, undergoing concentric remodeling by 

increasing muscle mass (hypertrophy). Once the RV has reached its limit of adaptive 

hypertrophy there is a switch to dilation, which increases wall tension, and thereby 

oxygen demands. Ultimately, the heart is unable to maintain normal function in the 

midst of remodeling, and suffering from low oxygen, eventually succumbs to ischemia 

(Voelkel et al., 2012; Vonk Noordegraaf et al., 2011).  

 

Incidence, Diagnosis, and Treatment of Pulmonary Hypertension 

 There are an estimated 2.4 to 7.6 new cases of Group 1 PH (PAH) per million 

people annually, with a markedly higher incidence in high-risk populations (Archer, 

Weir, et al., 2010; Humbert et al., 2006; Peacock et al., 2007). This large range reflects 

the difficulty of diagnosing patients, as well as missing data. The difficulty diagnosing 

PAH stems in part from the nondescript symptoms which patients present, including 

dyspnea (difficultly breathing), fatigue, syncope (fainting), and chest pain. Given the 

risks associated with invasive right heart catheterization (RHC) that is required for 

accurate diagnosis, physicians must play close attention to previous medical 

conditions, drug use, and family history when pursuing PAH as a diagnosis (Nauser et al., 

2001). A series of tests are performed to rule out PH Groups 2-5 and can include any 

and all of the following: electrocardiograph (ECG), Doppler electrocardiography, chest 

radiography, pulmonary function tests, high resolution computed tomography (HRCT), 

perfusion lung scan, CT pulmonary angiography, associated-disease tests (HIV, 

Sclerosis), and finally, the gold standard, RHC (Fig 3) (PAH-info.com, 2013).  
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Fig 3: Diagram of right heart catheterization. Right hearth catheterization can be 
achieved through multiple access points. Here shows entry through the internal jugular 
vein, brachial vein, and femoral vein.  
From: (Galie, Hoeper, Humbert, Torbicki, Vachiery, Barbera, Beghetti, Corris, Gaine, 
Gibbs, Gomez-Sanchez, Jondeau, Klepetko, Opitz, Peacock, Rubin, Zellweger, 
Simonneau, et al., 2009) Copyright Permission: License #3662810290910 
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RHC is required for accurate diagnosis of PAH and can be used to test vasoreactivity 

and determine if patients will respond to calcium channel blockers (Galie, Hoeper, et 

al., 2009b; Habib et al., 2010; McLaughlin et al., 2009).  

 Importantly, non-invasive imaging techniques such as ECG and cardiac 

magnetic resonance imaging (CMRI) on the heart can yield valuable information on 

survival and therapy response. For instance, clinicians traditionally measured changes in 

longitudinal shortening; however, recent indications suggest RV transverse shortening, 

large RV volume and impaired left ventricular filling, as well as RV ejection fraction are 

the strongest predictors of survival (Forfia et al., 2006; Mauritz et al., 2012; van de 

Veerdonk et al., 2011; van Wolferen et al., 2006; Voelkel et al., 2012). 

 There are various treatments available to PH patients, though none of these 

treatments are disease modifying. Some of the most basic therapies include oxygen 

delivery and diuretics and are used to ease symptoms of the disease without affecting 

patient prognosis. Other therapies that may prolong survival involve the use of 

vasoactive substances. The most common of these is prostacyclin, calcium channel 

blockers, Endothelin receptor antagonists, nitric oxide delivery, phosphodiesterase-5 

inhibitors, and vasoactive intestinal peptide (Humbert et al., 2004).  

 Despite decades of research and the availability of various treatment options, 

survival rates for PAH patients are alarmingly low. Though, Thenappan and associates 

have determined that these rates are higher than the NIH proposed survival rates that 

were calculated before the widespread use of therapeutic interventions. Thenappan et 

al used Kaplan-Meier survival method to determine long-term survival outcomes for PH 

patients and concluded that 5-year survival rates for the entire PH cohort rested at 61% 

while those with PAH landed at 66% (Thenappan et al., 2010). While this new rate is 
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double that of pre-1980 NIH estimates, there is vast room for improvement and 

development of disease modifying PH treatments.  

 

Part II: BMPR2 Mutations in Heritable Pulmonary Arterial Hypertension 

 The focus of this dissertation will be on the heritable form of pulmonary arterial 

hypertension (HPAH), a subsection of Group 1 PH. Originally termed familial PAH due to 

its tendency to affect entire families despite its rather rare occurrence in the human 

population, this term adapted to heritable PAH once it was discovered that a large 

proportion of these families harbored germ line mutations in the Bone Morphogenetic 

Protein Receptor Type 2 Gene, BMPR2(Deng et al., 2000; Lane et al., 2000). Since then, 

HPAH has come to include idiopathic cases of PAH that do not have BMPR2 mutations 

but are hereditary.  

Following the discovery of BMPR2 mutations in HPAH in 2000, BMPR2 mutations 

have been identified in 75% of PH patients with a family history of the disease, and 

nearly 25% of patients with so-called sporadic or idiopathic PH, with over 200 unique 

mutations identified (Fig 4) (E. D. Austin et al., 2014; J. D. Cogan et al., 2006; Joy D. 

Cogan et al., 2005; Loyd JE, 2012; Machado et al., 2006). Interestingly, evidence of 

reduced BMPR2 expression has been identified in patients without BMPR2 mutations, 

further demonstrating the importance of BMPR2 in the development of PH (Atkinson et 

al., 2002; Morrell et al., 2001; Richter et al., 2003).  

In addition to the commonality of BMPR2 mutations in HPAH, the significance of 

BMPR2 mutations in disease progression is apparent as BMPR2-mutation positive PH 

patients present roughly 10 years earlier, have more severe disease, are less likely to 

respond to vasodilator therapies, and die sooner than non-BMPR2 PH counterparts 
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(Elliott et al., 2006; Rosenzweig et al., 2008; Sztrymf et al., 2008). Despite comprehensive 

research over the past 15 years, how BMPR2 mutations drive the development of PH 

remains unclear. One thought is that defects in BMP signaling (the predominant ligand 

for BMPR2), may be the driving factor. This hypothesis derives in part due to the myriad 

of other BMP signaling pathways that are disrupted in HPAH including Endoglin, ALK1, 

Smad4 and Smad8 (Lowery et al., 2010; Nasim et al., 2011; Shintani et al., 2009). Studies 

using Bmpr2 mutant mice show that heterozygosity for Bmpr2 promotes the 

development of PH in response to hypoxia and is associated with reduced eNOS 

expression and activity (Hideyuki Beppu et al., 2004; Frank et al., 2008; Gangopahyay et 

al., 2011). These mice display impaired EC dependent vasodilation and enhanced 

vasoconstriction in isolated intrapulmonary artery (IPA) preparations (Frank et al., 2008), 

demonstrating loss of Bmpr2 expression impairs vascular reactivity within the pulmonary 

tree. Stimulation of Bmpr2 mutant IPAs or ECs with BMP2 ligand rescues eNOS expression 

and activity (Anderson et al., 2010; Gangopahyay et al., 2011), suggesting reduced 

BMP signaling in these mice deregulates eNOS and promotes endothelial dysfunction 

and abnormal vascular reactivity. Together these data demonstrate that Bmpr2 

expression is critical for pulmonary vascular function and that mutations that reduce 

BMPR2 expression or disrupt BMP signaling promote the development of pulmonary 

hypertension.  
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Figure 4: Germline BMPR2 mutational spectrum in primary pulmonary hypertension. 
Bone morphogenetic protein receptor type 2 (BMPR2) is a 13-exon gene that encodes 
a ligand-binding domain (red), transmembrane domain (TM), kinase domain (yellow) 
and cytoplasmic tail (dark blue). Truncating mutations are indicated above and 
missense mutations below. These are common mutations of the more than 200 known 
mutations.  
Adapted from: (Waite et al., 2003) Copyright Permission: License #3654430510977 
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Part III: Caveolae and Pulmonary Hypertension 

 Caveolae are small (50-100nm) invaginations of the plasma membrane. Found 

abundantly in ECs, adipocytes, and smooth muscle cells, these structures are enriched 

in sphingolipids and cholesterols and obtain their structure from two core caveolar 

proteins, Caveolin-1 (Cav-1) and Cavin-1 (Fig 5) (M.-O. Parat, 2009). Both Cav-1 and 

Cavin-1 are required for caveolae formation, and overexpression of Cav-1 is sufficient 

to drive formation of caveolae in cells normally devoid of caveolae (Drab et al., 2001; 

Fra et al., 1995; Hill et al., 2008). Interestingly, overexpression of Cav-1 does not further 

increase caveolar numbers (Bauer et al., 2005).  

 Caveolae have a variety of functions within the endothelium. The most obvious 

function, and the one we will discuss extensively in Chapter II, is endocytosis. Caveolar 

endocytosis is initiated by Src-mediated phosphorylation of both Cav-1 and Dynamin 

and is a GTP-dependent process (Fig 6) (Minshall et al., 2002; Shajahan, Timblin, et al., 

2004; Shajahan, Tiruppathi, et al., 2004). Endocytosis regulates endothelial barrier 

permeability, transport of materials into and through the cell (including cholesterol 

transport and regulation), and signaling transduction and regulation, which we will 

discuss below in more depth (M.-O. Parat, 2009).  

 Signal transduction and regulation via caveolae is a double-sided regulation in 

that both the caveolar body itself sequesters, transports, and recycles signaling 

receptors, and Cav-1 monomers bind to and often, but not always, repress protein 

function (Couet et al., 1997; Le Roy et al., 2005; Liu et al., 2002; White et al., 2005). The 

former is accomplished through the endocytosis of materials, and the latter is through 

protein-protein interactions involving Cav-1’s c-terminal scaffolding domain (CSD). This 
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domain, composed of 20 amino acids (81-101), is responsible for nearly all of Cav-1’s 

inhibitory protein interactions(S. Li et al., 1996a).  

Perhaps most extensively studied is Cav-1’s inhibition of Endothelial Nitric Oxide 

Synthase (eNOS). As it’s name implies, eNOS is an enzyme that produces nitric oxide 

(NO). NO is a potent vasodilator and permeability agent and deregulation of eNOS 

and NO production has been implicated in PH (Giaid et al., 1995). Caveolae regulate 

eNOS by controlling its localization in caveolar vesicles and by inhibiting its activity 

through Cav-1 binding (Sbaa et al., 2005). Indeed in Cav-1 null mice, eNOS is 

constitutively active and NO production is unregulated; however, despite the 

abundance of NO, these mice develop PH (Maniatis et al., 2008; Y.-Y. Zhao et al., 2009). 

This likely stems from aberrant localization of eNOS as the loss of Cav-1 results also in the 

complete loss of caveolar structures(Sbaa et al., 2005). Recent work using a Cav-1 CSD 

mutant that is unable to bind eNOS but does not disrupt caveolae results in similar 

increased NO production; however, its effects on PH is unknown (Bernatchez et al., 

2011). Further work using this CSD mutant will prove pivotal for our understanding of the 

dual caveolar regulation of eNOS.   
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Figure 5: Caveolar structure. Left: EM of caveolar structures at the cell surface. Right: 
Schematic of caveolar structures.  
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Figure 6: Src-mediated caveolar endocytosis. Src-mediated phosphorylation of Cav-1 
and Dynamin, followed by Dynamin-mediated, GTP-dependent caveolar bud scission 
and endocytosis.  
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Another noteworthy interaction is Cav-1 and Vascular Endothelial Growth Factor 

Receptor 2 (VEGFR-2)(Labrecque et al., 2003). VEGFR-2 is an endothelial specific 

mitogen that regulates angiogenesis and vascular permeability and has been 

implicated in the development of plexiform lesions in PH patients (Tuder et al., 2001). 

Interestingly, inhibition of VEGFR-2 through VEGFR-2 receptor inhibitors, most frequently, 

SU5416, has been used as an experimental PH model, suggesting tight regulation of 

VEGFR-2 signaling pathways is crucial in the context of PH (Stenmark et al., 2009).  

Much work has been done in regards to caveolae and PH. Patel et al has shown 

increased caveolae numbers in IPAH patients lungs, while other groups have shown 

Cav1 overexpression in mice impairs NO production and endothelial permeability 

(Bauer et al., 2005; Patel et al., 2007). Interestingly, in the monocrotaline-induced PH 

model, researchers saw reduced Cav-1 levels in the pulmonary endothelium (Mathew 

et al., 2004). Other groups note that loss of Cav-1 expression results in increased EC 

permeability, increased PVR, and induces the development of PH (Lin et al., 2007; 

Maniatis et al., 2008; Y.-Y. Zhao et al., 2009). And most recently, Austin et al discovered 

two novel frame-shift mutations in Cav-1 in IPAH patients without BMPR2 mutations (E. 

Austin et al., 2012). It is also worth noting that there is evidence of Cav1/caveolar-

BMPR2 regulatory interactions (Nohe et al., 2005; Ramos et al., 2006; Wertz et al., 2008). 

BMPR2 localizes to lipid rich caveolar rafts where caveolae regulate BMP signaling. Thus 

evidence of Cav-1 and caveolar defects in IPAH patients may be related to BMPR2 

function. Together these data highlight the importance of caveolae and Cav-1 within 

the endothelium and suggest that deregulation may drive the development of PH. 
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Part IV: Src Kinase and Pulmonary Hypertension 

Src kinase came to light in 1976, long after the discovery of the transforming 

proto-oncogene v-Src in 1910 (Rous, 1910; Stehelin et al., 1976). Since then eight 

additional Src family member kinases (SFKs) have been discovered- Lyk, Frk, Yes, Fyn, 

Fgr, Hck, Lyn, Blk (Dymecki et al., 1990; J. Lee et al., 1994; Quintrell et al., 1987; Semba et 

al., 1986; Semba et al., 1985; Thuveson et al., 1995; Tronick et al., 1985; Yamanashi et al., 

1987).  Their expression patterns can be divided into two classes: widely expressed (Src, 

Fyn, Yes) and restricted expression (Lck, Hck, Fgr, Blk, Lyn). While the remainder of this 

work will focus on solely on Src kinase many aspects remain applicable to other SFKs.  

Src family kinases have the same basic domain structure (Fig 7a). These domains 

help define where the protein is localized, proteins with which it may interact, and how 

it is regulated. At the N-terminus, a 14-carbon myristoylation modification in the Src-

homology (SH) 4 domain helps target Src to the plasma membrane (Resh, 1994). 

Following the SH4 domain, there is a “unique” domain, so-called as this domain differs 

among the different SFK members. While this domain is dispensable for the regulation of 

Src (Engen et al., 2008), it may help define which proteins interact with individual SFKs. 

Extensively involved in the regulation of Src are the SH3 and SH2 domains. These 

domains, found in a wide array of proteins, act as protein binding domains and 

function in signal transduction (Pawson et al., 1992). The SH3 domain, composed 

roughly of 60 amino acids, is a proline rich, left-handed helix predominantly involved in 

protein interactions (Cicchetti et al., 1992; Ren et al., 1993).  
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Figure 7. Src kinase structure. A) Open, active Src kinase conformation. This 
conformation shows the exposed kinase domain. In this conformation Y416 would be 
phosphorylated while Y530 would remain unphosphorylated. B) Closed, inactive Src 
kinase conformation. This conformation hides the ATP binding pocket of the kinase 
domain and blocks Y416 phosphorylation. Notice that Y530 is phosphorylated and 
bound to the SH2 domain.  
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The SH2 domain, also involved in protein interactions, recognizes and binds phospho-

tyrosine residues, most frequently pYEEI sequences, though other sequences have been 

identified (Mori et al., 1993; Pawson et al., 1992; Songyang et al., 1994). The SH1, or 

kinase domain, contains strictly conserved residues that are required for ATP binding 

and phosphorylation events (Hunter et al., 1985). This domain contains the crucial Tyr 

416 residue whose phosphorylation is responsible for Src kinase activation. Finally, there 

is a C-terminal regulatory domain that is responsible for the majority of Src’s negative 

regulation. This domain contains a few regulatory amino acid residues; however, the 

most characterized is the negative phosphorylation of Y530.  

Src kinase activity is regulated by a combination of catalytic (phosphorylation) 

and non-catalytic (protein interactions) mechanisms. Though a variety of regulatory 

phosphorylation sites exist (Table 2) Y416 and Y530 are by far the most extensively 

characterized and seemingly most crucial. Phosphorylation of the C-term Y530 site 

results in a conformational change that sequesters the kinase activation loop by folding 

the protein in on itself (Fig 7b)(Cooper et al., 1986; Kmiecik et al., 1987; Piwnica-Worms 

et al., 1987). This phosphorylation is mediated by the ubiquitously expressed CSK (c-

terminal Src Kinase)(Nada et al., 1991; Okada et al., 1991; Okada et al., 1989) while 

removal, or dephosphorylation, is mediated by several Protein Tyrosine Phosphatases 

(PTPs)(Bjorge et al., 2000). Phosphorylation of Y416 is achieved through auto-

phosphorylation and is dephosphorylated by PTPs (Bjorge et al., 2000; Smart et al., 

1981). Phosphorylation of this residue requires an open conformation to allow access to 

the tyrosine residue (Fig 7a). Importantly, phosphorylation of Y416 is required for Src 

activation, so while many non-catalytic mechanisms exist to negatively regulate Src, 

non-catalytic activation also requires catalytic Src auto-phosphorylation.  
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Table 2: Phosphoregulation of Src Kinase 

Amino Acid Residue Protein Kinase Regulatory Effect 
Ser12 PKC No direct effect 
Ser17 PKA Unclear 
Thr34 CDK/cdc12 Activation  
Thr46 CDK/cdc12 Activation  
Ser72 CDK/cdc12 Activation  
Tyr138 PDGFR No direct effect 
Tyr213 PDGFR, ErbB2/HER2 Activation 
Tyr416 Src  Activation 
Tyr530 CSK Inhibition 
Adapted from: (Roskoski, 2005) 
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 Non-catalytic Src inhibitors exert their repression by inducing conformational 

changes that block access to the kinase domain. But in addition to physical disruption, 

non-catalytic inhibitors often recruit catalytic inhibitors in order to achieve long-term 

repression (Chong et al., 2005). One non-catalytic inhibitor is unique in that is also 

functions catalytically. CHK, a CSK homologue, physically binds to Src and represses its 

activity while actively phosphorylating the c-terminal tail. This repression does not 

require the dephosphorylation of Y416 and simply overrides the activating 

phosphorylation. It is considered a non-catalytic inhibitor as it is able to repress Src 

activity even when Y530 is mutated to phenylalanine and therefore can no longer be 

phosphorylated (Chong et al., 2004). Another non-catalytic inhibitor is RACK1 (Fig 8a). 

RACK1, an intracellular receptor for Protein Kinase C (PKC), binds to and inhibits Src. 

Interestingly, as RACK1 binds to both Src and PKC, one hypothesis is that RACK1 may 

also function as a dual inhibitor by facilitating the phosphorylation of Src by PKC 

(Chong et al., 2005; Mochly-Rosen et al., 1995; Yaciuk et al., 1989). However, the role of 

PKC-mediated Ser12 phosphorylation on Src activity is unclear (Roskoski, 2005). A true, 

single mechanism, non-catalytic Src inhibitor is WASP (Fig 8c). WASP inhibits Src activity 

by binding to both the SH3 and kinase domains thereby inducing conformational 

change and blocking the kinase domain(Schulte et al., 2003). And finally, and of 

special note, Cav-1 functions as a dual non-catalytic Src inhibitor (Fig 8b). Cav-1 binds 

Src kinase via Cav-1’s CSD while actively recruiting CSK to the c-terminus of Src (S. Li et 

al., 1996a). Together, Cav-1 is able to exert immediate and long-term inhibition of Src 

kinase.  
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Figure 8: Non-catalytic Src kinase inhibitors. These non-catalytic inhibitors bind to and 
inhibit Src kinase activity. (A) RACK1 binds to both Src and PKC. (B) Cav-1 binds to Src 
and recruits CSK to the c-terminus of Src. (C) WASP binds to and inhibits the SH3 and 
kinase domains of Src.  
Adapted from: (Chong et al., 2005) Copyright Permission: License #3654460133472 
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 These catalytic and non-catalytic measures work in concert to keep Src activity 

under proper control; however, aberrant regulation of Src kinase in PH is apparent and 

has become an active field of investigation. This may not be of surprise as Src activation 

has been implicated in many forms of cancer and may be exerting similar pro-

proliferative, anti-apoptotic functions in the pulmonary endothelium in PH (Kim et al., 

2009). Indeed, groups have identified Src activation in the pulmonary vasculature of PH 

patients (Paulin et al., 2014; Paulin et al., 2011). Using animal models of PH, other groups 

have shown that Src is activated in both monocrotaline and hypoxia induced PH and 

that inhibition of Src improved several parameters of PH including reduced RV 

pressures, RV hypertrophy, muscularization, and proliferation and increased apoptosis 

(Paulin et al., 2014; Pullamsetti et al., 2012). Insights as to how these effects may be 

mediated come from earlier studies that showed that increased Src activation in PH 

patients was associated with a downregulation of miR-204 via STAT3 (Brock et al., 2009; 

Courboulin et al., 2011). They show miR-204 downregulation correlates with PH severity 

and that delivery of miR-204 to animal lungs reduced PH severity in these animals 

(Courboulin et al., 2011). Interestingly, activation of Src-STAT3-miR-204 pathway led to a 

reduction of BMPR2 expression, providing a potential mechanism for reduced BMPR2 

expression in idiopathic PAH (Brock et al., 2009). All together these data provide 

evidence of the importance of Src kinase regulation and suggest Src kinase activation 

may be a critical step in the development of PH. 
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Summary 

In summation, pulmonary hypertension is a lethal disease with no known cure. 

There is evidence of BMPR2 mutations in a large subset of HPAH patients and reduced 

BMPR2 expression in IPAH patients, but how these changes drive the development of 

the disease is unclear. This work aims to elucidate how BMPR2 mutations contribute to 

the pathogenesis of PH and show how BMPR2 intersects with other known mediators of 

PH, specifically Src Kinase and caveolae.  
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CHAPTER II 

 

BMPR2+/- MUTATIONS PROMOTE SRC KINASE DEPENDENT CAVEOLAR TRAFFICKING 

DEFECTS AND ENDOTHELIAL DYSFUNCTION  

 

Introduction 

 Despite intensive research, there is no clear consensus on the role of BMPR2 in 

development of PH. However, given BMPR2’s high expression level in the pulmonary 

endothelium, it is reasonable to suspect the endothelium may be the primary target of 

vascular injury in HPAH patients (Atkinson et al., 2002; Frank et al., 2008; Ramos et al., 

2006; Takahashi et al., 2006). This hypothesis is supported by animal studies that show 

mice with conditional deletion of Bmpr2 in the endothelium develop spontaneous PH 

and have endothelial barrier dysfunction associated with increased pulmonary vascular 

leak and peri-vascular inflammation, a common occurrence in patients with PH (Burton, 

Ciuclan, et al., 2011; Burton, Holmes, et al., 2011; Hong et al., 2008) (Dorfmuller et al., 

2003; Savai et al., 2012; Stacher et al., 2012). Additional studies show heterozygous 

Bmpr2 mutant mice have pulmonary endothelial cell (PEC) dysfunction with decreased 

endothelial-dependent relaxation in isolated intrapulmonary pulmonary artery 

preparations(Frank et al., 2008). These data suggest that endothelial dysfunction 

associated with abnormal endothelium-dependent vasodilatation and with decreased 

endothelial barrier function contribute to pulmonary vascular pathophysiology in 

patients with HPAH.  

In the pulmonary vasculature, loss of Caveolin-1 (Cav-1) expression promotes PH 

in mice(Maniatis et al., 2008), and is associated with chronic activation of endothelial 
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NOS and enhanced pulmonary vasoconstriction(Y. Y. Zhao et al., 2009). Additionally, 

caveolar numbers are deregulated in the pulmonary vasculature of patients with 

idiopathic PAH(Patel et al., 2007), and recent studies have identified BMPR2 negative 

HPAH patients with frame shift mutations in the CAV-1 gene(Asosingh et al., 2012; E. 

Austin et al., 2012). These data suggest that caveolar defects can promote pulmonary 

vascular disease, but the relationship between caveolae and the pathogenesis of 

BMPR2 mutation-associated HPAH has not been established.  

In these studies we have used PECs derived from heterozygous null Bmpr2+/- 

mutant mice to establish that loss of a single Bmpr2 allele gives rise to enhanced, Src 

kinase-dependent caveolar trafficking. Late Outgrowth Endothelial Progenitor Cells 

(LO-EPCs) isolated from the peripheral blood of an HPAH patient have a similar defect 

in Src activation. We also show that Bmpr2+/- mutant PECs have decreased barrier 

function, and that treatment with a Src kinase inhibitor reverses the caveolar trafficking 

defect and reduces permeability in Bmpr2+/- PECs. These data establish for the first time 

a relationship between BMPR2 mutations and caveolar trafficking defects that may 

promote pulmonary vascular disease in HPAH, and suggest that Src kinase inhibitors 

may be used therapeutically to ameliorate these effects.  

 

Materials and Methods 

Chemicals and Reagents  

Recombinant human BMP2 (R&D Systems); 3-(4-chlorophenyl)-1-(1,1-dimethylethyl)-

1H-pyrazolo[3,4-d]pyrimidin-4-amine [PP2] (Cayman Chemical); Dynasore hydrate, 

70kD dextran-Rhodamine and FITC-conjugated albumin, SKI606 [Bosuntinib] (Sigma-

Aldrich); AlexaFluor-555 Albumin, AlexaFluor-488 ConA (Molecular Probes); interferon 
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gamma (IFNγ) (Peprotech); Dio-Ac-LDL (Biomedical Technologies Inc); PP3 (Millipore). 

Monoclonal antibodies include pY14-Cav1 [clone 56], Cav1 [clone 2234], Bmpr2 [clone 

18] and β-catenin [clone 14] (BD antibodies), and β-actin [clone AC-74] (Sigma). 

Polyclonal antibodies include Cav1, pY416-Src, and Src (Cell Signaling) and Cavin-1 

(Bethyl Laboratories). Antibodies for FACs analysis include CD31 [clone WM59], CD146 

[clone P1H12], CD14 [M5E2] and CD45 [clone HI30] (BD Biosciences).   

 

Mouse pulmonary endothelial cell (PEC) isolation, characterization and culture 

Six independent lines of PECs were generated from 3 wild type (W1, W2, W3) and 3 

Bmpr2Δex4-5/+ (Bmpr2+/-) (N1, N3, N6) mice (H. Beppu et al., 2005) as described above. For 

this, Bmpr2+/- mice were maintained on a C57Bl/6 background (>10 generations 

backcrossed) and crossed with C57Bl/6 H-2Kb-tsA58 SV40 large T Ag transgenic mice 

(Charles Rivers “immortomice”) to generate wild type and Bmpr2+/- immortomice. 

Genotype was confirmed by PCR using primers and conditions outlined in previous 

studies(Anderson et al., 2010; H. Beppu et al., 2000). To isolate PECs, mice were 

anesthetized with isoflurane prior to sacrifice by cervical dislocation. Lungs were 

perfused with a mixture of PBS/2mM EDTA followed by 0.25% Trypsin/2mM EDTA via right 

ventricle. Heart and lungs were removed en bloc and incubated at 37°C for 20 minutes. 

Finally, lungs were perfused again in complete endothelial microvascular media EGM-

2MV (Lonza) and the perfusate recovered for isolated cells. Cells were grown under 

permissive conditions in EGM-2MV + 10units/mL INFγ at 33°C before being transferred to 

37° C without INFγ for 3-5 days to inhibit SV40 large-T antigen activity for phenotyping 

and before conducting experiments. Endothelial cell phenotype was confirmed for all 

isolates with >90% VCAM and EPCR positive expression by FACS using mouse anti-
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VCAM-AlexaFluor 647 [clone 429] and EPCR-APC [clone eBio1560] (eBioscience), and 

by the ability to form tubes in 3D culture in Collagen 1, as described(Anderson et al., 

2010; Frank et al., 2005). For PP2 treatment, experiments were performed in complete 

media. Dynasore treatment was performed in serum-free basal EBM2 media. For BMP2 

treatment, cells were first serum starved in basal EBM2 media with 0.1% Bovine Serum 

Albumin (Sigma) for 18 hours.  

 

Isolation and characterization of late outgrowth endothelial progenitor cells (LO-EPCs) 

 Late outgrowth endothelial progenitor cells (LO-EPCs) were isolated from 

peripheral blood samples as previously described(Mead et al., 2008). Roughly 60mL of 

blood was collected from each patient and aliquoted into 50mL falcon tubes 

containing 3mLs 3.8% sodium citrate. Samples were collected from normal volunteers 

and PAH patients attending the Vanderbilt Pulmonary Hypertension Clinic after 

obtaining informed consent under a Vanderbilt University Institutional Review Board 

approved protocol (IRB #9401 “Genetic and Environmental Pathogenesis of PPH”). The 

blood was then diluted 1:1 with phosphate buffered saline (PBS) and slowly layered 

atop 10mL of Ficoll (GE healthcare) in a separate tube. Samples were then spun at 

400g for 35 minutes at room temperature with brake and accelerator turned off. The 

mononuclear cell layer was then collected from the Ficoll density gradient and diluted 

1:1 in PBS followed by centrifugation for 20 minutes at 300g at room temperature. The 

supernatant was discarded and the cell pellet was re-suspended in EGM-2MV + 20% ES 

grade fetal bovine serum (FBS, Hyclone). The cell suspension was then plated into T-75 

flasks coated with 5µg/cm2 collagen I (BD Biosciences). Media was changed every two 

days, and LO-EPC colonies pooled 2-3 weeks after plating, as described (Mead et al., 
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2008). Endothelial cell phenotype was confirmed by Dio-Ac-LDL uptake and by flow 

cytometry for EC markers CD31 and CD146, and negative for leukocyte and 

macrophage markers CD45 and CD14, respectively. Briefly, cells were plated on 

gelatin-coated coverslips before being incubated in 10ug/ml Dio-Ac-LDL for 4 hours at 

37°C. Cells were then rinsed in PBS and fixed in 4% PFA for imaging. For fluorescence-

activated cell sorting (FACS) cells were trypsinized, centrifuged and cell pellets re-

suspended in 100uL of EGM-2 basal serum with desired antibody. After incubation on 

ice for one hour, samples were centrifuged, re-suspended in basal EGM-2 media and 

evaluated by FACS using BD FACSCantoIIs.  

 

Characterization of caveolae numbers  

For transmission electron microscopy (TEM) PECs were fixed in 2.5% glutaraldehyde 

and 0.1M sodium cacodylate prior to ethanol dehydration. Cells were subsequently 

pelleted by gravity in propylene oxide and embedded in resin for imaging on Philips FEI 

T-12 transmission electron microscope. For tissue fixation, we performed tracheal 

perfusion with the same fixative. Total PEC caveolae were counted in 3 randomly 

selected images per mouse lung. Caveolae numbers were quantified by a blinded 

observer counting caveolar-like structures of 50-100nm size per micron of endothelial 

plasma membrane.  

 

Cav-1 and Cavin-1 localization in isolated PECs 

PECs were grown to confluence in non-permissive conditions on gelatin-coated 

coverslips. Cells were then fixed in 4% paraformaldehyde (PFA) (Electron Microscopy 

Sciences) and permeabilized in 0.2% Saponin (Sigma) in PBS at room temperature. 
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Coverslips were incubated in primary antibody in 3% donkey serum in PBS overnight at 

4°C, followed by secondary antibody for 1 hour at room temperature. Nuclei were 

stained with Topro3 (Molecular Probes). Digital images were obtained by confocal 

microscopy using a Zeiss LSM510-Meta microscope. To quantify subcellular localization 

of Cav-1 and Cavin-1, x-axis digital slices were taken across the middle of each cell, 

and immunofluorescence localization of Cav-1 and Cavin-1 quantified by generating 

intensity plots using ImageJ software “plot profile” function. To correct for differing cell 

size during fluorescent quantification, the distance across the cell was normalized to 100 

arbitrary units. Intensity of Cav-1 and Cavin-1 fluorescence at the plasma membrane 

was quantified by averaging the fluorescent intensity of the first and last 20 distance 

units and dividing by the average intensity of the middle 21-79 distance units. We 

evaluated between 10 and 30 cells for each cell line under each condition, pooling 

results for each genotype or treatment condition, as indicated in the figure legends. 

Serial z-stack sections were also gathered at the time of analysis and reconstructed 

using LSM510 software to evaluate the intracellular distribution of Cav-1.  

 

Western blots 

Cells were lysed in 1x lysis buffer containing 150mM NaCl, 25mM HEPEs, 5mM EDTA, 

1% TritonX-100, 10% glycerol and phosphatase and protease inhibitors (1:100 Sigma) on 

ice for 15 minutes before centrifugation at 5000xg for 30 minutes.  Western blots were 

blocked in 5% milk before incubation in primary antibody in either 5% milk or bovine 

serum albumin (BSA) for phosphorylation site-specific antibodies overnight at 4°C. 

Primary antibodies were detected using species-specific HRP-conjugated secondary 

antibodies and Perkin-Elmer Western Lightning Plus ECL reagent. Films were exposed 
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over a range of times, digitally scanned and densitometry performed using ImageJ on 

films exposed for intermediate time periods in order to avoid non-linear ECL signals 

associated with very short or long exposure times. 

 

Albumin endocytosis in isolated PECs 

Cells were grown to confluence in non-permissive conditions on gelatin-coated 

coverslips in complete EGM-2MV media before being switched to basal EGM-2 media 

immediately prior to start of experiment. Cells were incubated with or without Dynasore 

for 30 minutes at 37°C prior to the addition of 1mg/ml AlexaFluor555-Albumin in chilled 

basal EGM-2. Cells were then incubated at 4°C for 30 minutes to inhibit 

endocytosis(Brickman et al., 1995; Rode et al., 1997; Silverstein et al., 1977) while 

allowing fluorophore attachment before being transferred to 37°C for 5 minutes to 

initiate endocytosis. Cells were then place on ice and stripped of all membrane bound 

flourophore by three rounds of acid stripping in 100mM glycine pH 2.0 followed by 

Hanks Balanced Salt Solutions (HBSS) pH 7.4 each for 5 minutes on ice. Cells were then 

transferred to 37°C for 10 seconds in HBSS pH 7.4 to remove any remaining fluorophore. 

Immediately following, cells were washed two times in PBS and fixed in 4% PFA. 

Following fixation cells were processed for confocal imaging.  

 

Albumin exocytosis in isolated PECs 

Cells were grown to confluence in non-permissive conditions on gelatin-coated 

coverslips in complete EGM-2MV media. Cells were incubated in chilled media 

containing 1mg/ml AlexaFluor555-Albumin and subsequently placed at 4°C for 30 

minutes to allow fluorophore binding. Cells were then transferred to 37°C for 5 minutes 
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to initiate endocytosis. Following endocytosis cells were immediately incubated on ice 

and received one round of acid stripping (100mM glycine, pH2.0, HBSS pH 7.4 for five 

minutes each) to remove fluorophore bound to the cell surface. Cells were rinsed twice 

in PBS before addition of complete media. Time zero was collected at this point and 

placed on ice while the remaining dishes were returned to 37°C to allow exocytosis of 

the remaining internalized fluorophore. Cells were placed on ice at the indicated time 

points before receiving two final rounds of acid stripping and subsequent fixation in 4% 

PFA.  

 

Endothelial Permeability 

Transwell filters, 12-mm in size with 0.4mm pore size, were coated in 0.1% gelatin in 

PBS and further prepared according to manufacturer recommendations. PECs were 

plated and grown to confluence in EGM-2MV on these filters 3-4 days at 37°C prior to 

treatment. Transendothelial electrical resistance (TEER) was tracked throughout the 

experiment using EVOM2 voltometer and STX2 electrode (WPI). Permeability 

assessments began once TEER measurements plateaued. FITC-Albumin (10mg/ml) and 

70kd Rhodamine-Dextran (1mg/ml) were added to the upper chamber and complete 

media without additional fluorophores added to the lower chamber. For parallel 

4°C/37°C studies, cells were grown to confluence in EGM-2MV media and transferred 

to 4°C 30 minutes prior to fluorophore addition, to block endocytosis(Brickman et al., 

1995; Rode et al., 1997; Silverstein et al., 1977). Samples were taken from the lower 

chamber at specified time points and FITC-Albumin and Rhodamine-Dextran measured 

on the Molecular Probes SpectraMax at Em488/Ex530 and Em570/Ex590. Studies were 
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performed using 1-3 wild type and Bmpr2+/- PEC lines, as indicated in the figure legends, 

and repeated in triplicate for each line.  

 

Statistical Analyses 

Statistical analyses were performed by Student’s T-Test for paired group 

comparisons, or One-Way or two-way ANOVA for multiple between group comparisons 

using Dunnett’s or Sidek’s correction for multiple post-hoc between group comparisons, 

as indicated. The minimal level of significance was set at p<0.05. Statistical analyses 

were performed using Graph Pad Prism 5 software.  

 

Results 

Altered Cav-1 and Cavin-1 localization in Bmpr2+/- PECs 

In order to evaluate the effects of heterozygous Bmpr2 mutations on caveolar 

localization and function in PECs, we first isolated and characterized 6 separate lines of 

conditionally immortalized PECs from 3 wild type mice and 3 mice carrying 

heterozygous null Bmpr2 mutations (Bmpr2+/- mice). When cultured under non-

permissive temperatures, all 6 of these cell lines have typical endothelial cobblestone 

morphology, rapidly form tube-like structures in 3D cultures, and >90% express 

endothelial-specific markers VCAM and EPCR by FACS. These cells are advantageous 

over primary cultured endothelial cells since they can be maintained and expanded 

over numerous passages at permissive temperatures, but re-differentiate and express 

endothelial specific markers at non-permissive temperatures(Anderson et al., 2010; 

Frank et al., 2005; Frank et al., 2008).  
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Figure 9: Mis-localization of caveolar structural proteins in Bmpr2+/- PECs. (A) 
Representative immunofluorescence images of Caveolin-1 (Cav-1/red) and Cavin-1 
(green) in wild type and Bmpr2+/- PECs. Scale bars: 10µm. (B) Left panels: Single x/y 
plane from z-stack images. Caveolin-1 (red) and beta-catenin (green). Scale bar: 
50µm. Right panels: Orthogonal views reconstructed from z-stack images depicting 
caveolin-1 localization in x/z and y/z planes of a single cell magnified from left panels. 
(C) Fluorescent intensity plots depicting Cav-1 and Cavin-1 distribution across the cells.  
Grey lines delineate plasma membrane (PM) from non-PM. Plots generated from 
multiple cells from 3 wild type (n=12) and 3 Bmpr2+/- (n=14) cell lines. Fluorescent in 
arbitrary units and distance in percentage of cell diameter (D) Quantitative analysis of 
Cav-1 and Cavin-1 localization. Values are expressed as the mean +/- SEM ratio of PM 
to non-PM fluorescence intensities. T-test *p<0.05 vs. wild type controls. 
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Using these cells we show that there is altered localization of Cav-1 and Cavin-1 in 

Bmpr2+/- PECs from a predominantly plasma membrane localization in wild type PECs to 

an intracellular localization in Bmpr2+/- PECs (Fig. 9). This is apparent both from 

representative immunofluorescence images (Fig. 9A) and from fluorescence intensity 

plots obtained across multiple PECs lines isolated from wild type and Bmpr2+/- mice (Fig. 

9C). Quantitative analysis of these fluorescence intensity plots confirms that there is a 

significant reduction in Cav-1 and Cavin-1 localization at the plasma membrane in 

Bmpr2+/- PECs (Fig. 9D). This effect is not associated with a change in cell shape or size 

as shown in orthogonal slices constructed from serial z-stacks of the entire cell (Fig 9B) 

and is not associated with a generalized defect in plasma membrane markers since the 

adherens junction marker β-catenin was similarly membrane localized in both wild-type 

and Bmpr2+/- PECs (Fig. 9B). Taken together, these data indicate that there is an 

increase in intracellular localization of Cav-1 and Cavin-1 in Bmpr2+/- PECs.   

 

Increased number of caveolae in Bmpr2+/- mouse lungs and PECs 

We used transmission electron microscopy (TEM) to determine whether changes in 

Cav-1 and Cavin-1 localization are associated with alterations in caveolar structures in 

Bmpr2+/- mouse PECs. There are increased numbers of intracellular caveolar-like 

structures in PECs from Bmpr2+/- mice (Fig. 10A). Quantitative analysis of caveolar 

numbers in lung sections indicates that there are also increased numbers of caveolar-

like structures in the intact pulmonary endothelium of Bmpr2+/- mice (Fig. 10B/C). These 

data indicate that changes in intracellular localization of Cav-1 and Cavin-1 are 

associated with increased numbers and intracellular localization of caveolae in 

Bmpr2+/- PECs.   
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Figure 10. Increased caveolar structures in Bmpr2+/- PECs and lungs. (A) Transmission 
electron microscopy (TEM) of cultured PECs from wild type and Bmpr2+/- mice. Arrows 
indicate caveolar structures. (B) TEM of lung sections from wild type and Bmpr2+/- mice. 
Arrows indicate caveolar structures in the endothelium. Scale bars: 500nm. (C) 
Quantitative analysis of caveolar structures in the lung endothelium from wild type and 
Bmpr2+/- mice (5 mice per group/3 images per mouse). Values are expressed as the 
number of caveolae per µm of endothelium. Mean +/- SEM. T-test *p<0.01 vs. wild type 
controls.  
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Dynamin-2 inhibition restores Cav-1 localization to the plasma membrane 

Increased numbers of intracellular caveolae may result from enhanced Dynamin-2-

mediated caveolar scission and endocytosis(Henley et al., 1998). We therefore 

evaluated the effect of Dynasore, a selective cell permeable Dynamin-2 

inhibitor(Kirchhausen et al., 2008; Macia et al., 2006), on Cav-1 localization in Bmpr2+/- 

PECs. Dynasore restores Cav-1 localization to the plasma membrane in Bmpr2+/- PECs 

(Fig. 11A/B). These data suggest that increased intracellular localization of Cav-1 in 

Bmpr2+/- PECs results from increased caveolar endocytosis. 

 

Increased caveolar endocytosis in Bmpr2+/- PECs 

 To determine if Bmpr2+/- PECs have increased endocytosis we evaluated the 

uptake of fluorescently label albumin in wild-type and Bmpr2+/- PECs. Using the assay 

outlined in Fig12A, we show Bmpr2+/- PECs have increased uptake of Albumin-

AlexaFluor-555 and that this is blocked in cells pre-treated with Dynasore (Fig. 12B/C), 

suggesting Bmpr2+/- PECs have increased caveolar endocytosis. However, this assay 

does not rule out potential defects in exocytosis. To exclude this possibility, we 

evaluated exocytosis in wild-type and Bmpr2+/- PECs as outlined in Fig12D. We 

demonstrate Bmpr2+/- PECs have no defect in exocytosis as intracellular albumin levels 

return to levels similar to wild-type as early as 15 minutes following endocytosis of 

albumin (Fig. 12E/F). These data demonstrate Bmpr2+/- PECs have increased 

endocytosis contributing to mislocalization of Cav1 and accumulation of intracellular 

albumin while exhibiting no defects in exocytosis.  
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Figure 11: Dynamin-2 inhibition restores Cav-1 localization to the plasma membrane in 
Bmpr2+/- PECs. (A) Cav-1 and Cavin-1 localization after Dynasore treatment. 
Representative immunofluorescence images demonstrating Cav-1 and Cavin-1 
localization following vehicle or 80µM Dynasore treatment for 30 minutes. Scale Bar: 
10µM (B) Quantitative analysis of Cav-1 localization after Dynasore treatment. Values 
expressed as the Mean +/- SEM ratios of PM to non-PM fluorescence intensities in 
multiple cells from 3 wild-type lines (n=100), 3 untreated Bmpr2+/- lines (n=100) and 2 
Bmpr2+/- lines after Dynasore treatment (n=60). One-way ANOVA with Dunnett’s 
correction for repeated comparisons with untreated Bmpr2+/- PECs, *p<0.001.  
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Figure 12: Bmpr2+/- PECs have increased caveolar endocytosis but exhibit normal 
exocytosis. (A) Schematic illustrating experimental setup in (B). (B) Increased Albumin 
uptake in Bmpr2+/- PECs is ablated in Bmpr2+/- PECs pre-treated with Dynasore. 
Representative immunofluorescence images demonstrating albumin localization 
following vehicle or 80µM Dynasore treatment for 30 minutes. Cells were incubated in 
0.1mg/ml Albumin-AlexaFluor-555 for 5 minutes at 37°C in DMSO or Dynasore as 
indicated followed by acid stripping to removed membrane bound albumin as outlined 
in (A). Scale bars: 50µm. (C) Quantitative analysis of Albumin uptake in (B). Values are 
expressed as the mean fluorescent intensity divided by total cell number +/- SEM. One-
way ANOVA with Dunnett’s correction for multiple comparisons with untreated Bmpr2+/- 

PECs, *p<0.05. (D) Schematic illustrating experimental setup in (E). (E) Representative 
immunofluorescence images demonstrating albumin exocytosis following 5 minutes 
endocytosis. Cells were incubated in 0.1 mg/ml Albumin-AlexaFluor-555 for 5 minutes at 
37°C, followed by one round of acid stripping. Cells were then returned to 37°C for the 
indicated times and subsequently fixed. Scale bars: 50µm. (F) Quantitative analysis of 
Albumin exocytosis in (E). Values are expressed as the mean fluorescent intensity 
divided by total cell number +/- SEM. Two-way RM ANOVA with Sidak’s correction for 
multiple comparisons with Bmpr2+/- PECs, **p<0.0001, *p<0.01, ns= not significant.  
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Increased Src kinase activity in Bmpr2+/- PECs 

Dynamin-dependent caveolar endocytosis is initiated by the Src-mediated 

phosphorylation of Cav-1 on Tyr14(Hu et al., 2009; M.-O. Parat, 2009; Shajahan, Timblin, 

et al., 2004). Western blot analysis indicates that there is increased phosphorylated 

(pY14) Cav-1, as well as increased expression of activated phosphorylated (pY416) Src 

kinase in Bmpr2+/- PECs (Fig. 13A/B).  

Previous studies have shown that BMPR2 interacts with Src, and that BMPs reduce 

basal pY416-Src expression in pulmonary artery smooth muscle cells(Wong et al., 2005). 

We were unable to detect interaction between Src and Bmpr2 in wild type PECs after 

immunoprecipitation with Src or Bmpr2 antibodies (S.G, data not shown). Moreover, 

BMP2 had no effect on basal pY14-Cav-1 or pY416-Src expression in wild type PECs (Fig. 

14A/B). However, treatment with BMP2 reduces pY14-Cav1 and pY416-Src expression in 

Bmpr2+/- PECs, indicating that BMP2 reverses aberrant Src-dependent Cav-1 

phosphorylation in Bmpr2+/- PECs. Since treatment with BMP ligands activates basal 

BMPR2 signaling, these data suggest that defective BMPR2 signaling promotes 

constitutive Src activation in Bmpr2+/- PECs.  

 

Increased Src activation in HPAH patient late outgrowth endothelial progenitor cells 

(LO-EPCs) 

To determine whether Src activation also occurs in endothelial cells from HPAH 

patients carrying germ-line heterozygous null mutations at the BMPR2 locus, we isolated 

late outgrowth endothelial progenitor cells (LO-EPCs) from an HPAH patient with a 

known BMPR2 mutation [Family 164, BMPR2 V299 FsX1 (BMPR2 893 ins GG)] and an IPAH 

patient without a known BMPR2 mutation. As previously described(Reinisch et al., 2009),  
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Figure 13: Increased Src and Cav-1 phosphorylation in Bmpr2+/- PECs. (A) Western blots 
demonstrating basal expression of phosphorylated Y14-Cav-1 and Y416-Src, and total 
Bmpr2, Cav-1 and Src kinase from 3 wild-type (W1, W2, W3) and 3 Bmpr2+/- (N1, N3, N6) 
PEC lines. β-actin as a loading control. (B) Quantitative analysis of Western blots band 
densitometry values from 4 independent experimental replicates for a total of twelve 
samples per genotype. Values expressed as the Mean +/-SEM ratios of band densities, 
as indicated. T-test, *p <0.0001 and **p<0.001 vs. wild type controls. Gels were run and 
probed as follows: Gel 1-Bmpr2; Gel 2- pY14-Cav1, pY416-Src, β-actin; Gel 3- Cav1, Src. 
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Figure 14. BMP2 stimulation reduces Src activity in Bmpr2+/- PECs. (A) Western blot 
analysis of pY14 and total Cav-1, and pY416 and total Src following vehicle or 10ng/mL 
BMP2 ligand treatment for 1 hour in 3 wild-type (W1, W2, W3) and 3 Bmpr2+/- (N1, N3, N6) 
PEC lines. (B) Quantification of band densitometry in (A). Values expressed as the mean 
+/-SEM ratios of band densities, as indicated. One-way ANOVA with Dunnett’s 
correction for comparisons with untreated Bmpr2+/- PECs, *p<0.05, **p<0.01, ***p<0.001. 
Gels were run and probed as follows: Gel 1- pY14-Cav1, pY416-Src, β-actin; Gel 2- Cav1, 
Src.  
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LO-EPCs are rapidly proliferating cells with endothelial morphology that express 

endothelial cell markers CD31 and CD146 and take up Dio-Ac-LDL but unlike early 

outgrowth EPCs, do not express markers of the macrophage lineage (Fig 15A/B). They 

therefore provide a readily accessible, renewable source of endothelial cells from 

patients with this rare genetic disorder. Using these cells we show there is an increase in 

pY416-Src and pY14-Cav1 expression in the HPAH patient-derived LO-EPCs compared 

with two normal controls and the IPAH patient-derived cells (Fig 15C), suggesting 

defects in Src kinase and Cav-1 may be applicable to human disease.  

 

Src inhibition restores Cav-1 localization to the plasma membrane in Bmpr2+/- PECs  

To determine whether increased intracellular localization of Cav-1 results from 

constitutive activation of Src in Bmpr2+/- PECs, we first determined whether inhibition of 

Src kinase activity reduces basal Y14-Cav-1 phosphorylation in Bmpr2+/- PECs. Treatment 

with the selective Src family kinase inhibitor, PP2 (Hanke et al., 1996), decreases Cav-1 

Y14 phosphorylation in Bmpr2+/- PECs (Fig. 16A/B). These findings indicate that increased 

Src kinase activity causes the increase in basal Cav1 phosphorylation in Bmpr2+/- PECs. 

Since Src-dependent phosphorylation of Y14-Cav-1 promotes caveolar endocytosis(Hu 

et al., 2009; M.-O. Parat, 2009; Shajahan, Timblin, et al., 2004), we sought to determine 

whether constitutive activation of Src kinase also increases intracellular localization 

Cav-1 in Bmpr2+/- PECs. Treatment with PP2 restores plasma membrane localization of 

Cav-1 in Bmpr2+/- PECs (Fig. 16C/D), suggesting that caveolar defects result from 

increased Src-dependent caveolar endocytosis in Bmpr2+/- PECs. 
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Figure 15. Increased Src activity in HPAH patient-derived late-outgrowth endothelial 
progenitor cells (LO-EPCs).  (A) LO-EPCs express endothelial cell markers. Fluorescence-
assisted cell sorting (FACS) of patient-derived LO-EPCs are positive for two endothelial 
cell markers CD146 and CD31 and negative for leukocyte and macrophage markers 
CD45 and CD14. (B) Dio-Ac-LDL uptake. LO-EPCs take up endothelial specific Dio-Ac-
LDL and exhibit cobblestone-like morphology. Bovine aortic smooth muscle cells (SMCs) 
serve as negative controls. (C) Increased Src activity in HPAH patient-derived LO-PECs. 
Western blot depicting basal protein expression of pY14 and total Cav1 and pY416 and 
total Src in LO-PECs from two disease-free controls (C1, C2), one HPAH patient (BMPR2 
V299, FsX1), and one IPAH patient negative for BMPR2 mutations. β-actin as a loading 
control. Gels were run and probed as follows: Gel 1- pY14-Cav1, pY416-Src, β-actin; Gel 
2- Cav1, Src.  
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To confirm these effects were due to inhibition of Src kinase and not off-target effects, 

we used an additional Src kinase inhibitor, SKI606 (Vultur et al., 2008), and a PP2 

analogue with no activity, PP3. We show SKI606 reduces Src phosphorylation at Y416 in 

Bmpr2+/- PECs, while PP3 has no effect (Fig. 16E). Furthermore, we show that SKI606 is 

able to rescue Cav1 localization to the plasma membrane in Bmpr2+/- PECs, similar to 

PP2, while PP3 had no effects on Cav1 localization (Fig. 16C/D), demonstrating 

restoration of Cav1 to the plasma membrane is due to inhibition of Src kinase activity. 

 

Impaired endothelial barrier function in Bmpr2+/- PECs 

Since enhanced caveolar endocytosis promotes increased endothelial cell 

permeability(Minshall et al., 2003; Y. Sun et al., 2011) we determined whether Bmpr2+/- 

PEC monolayers have decreased barrier function. There is a significant reduction in 

trans-endothelial electrical resistance (TEER) across confluent monolayers of Bmpr2+/- 

PECs compared with wild type controls (Fig. 17A), indicating endothelial barrier 

dysfunction. To determine whether impaired endothelial barrier function in Bmpr2+/- 

PECs is associated with enhanced transcellular permeability, we used Transwell assays 

to assess permeability to two high molecular weight solutes that are transported 

through the endothelium by caveolar endocytosis, Albumin and 70kD Dextran(Minshall 

et al., 2002). Bmpr2+/- PECs have increased permeability to both Albumin and 70kD 

Dextran compared to wild type PECs (Fig. 17B/C). Taken together, these data suggest 

that there is a defect in paracellular and transcellular barrier function in Bmpr2+/- PECs. 

To determine whether increased endothelial permeability to high molecular weight 

solutes result from differences in active endocytic trafficking rather than a paracellular 

defect in permeability, we repeated this assay in cells cultured at 4°C, since 
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endocytosis is a temperature-sensitive process that is completely blocked at 

4°C(Brickman et al., 1995; Rode et al., 1997; Silverstein et al., 1977). As anticipated, 

when cultured at 4°C wild type and Bmpr2+/- PECs exhibit reduced permeability to 70kD 

Dextran, but there is no discernable difference between genotypes (Fig. 17D). Similar 

effects were seen with FITC-Albumin (data not shown A.P.). These data indicate that 

enhanced permeability to high molecular weight solutes results from enhanced 

endocytic transcellular and not paracellular transport in Bmpr2+/- PECs.  

 

Src inhibition partially restores endothelial barrier function in Bmpr2+/- PECs 

To determine whether defective endothelial barrier function is due to increased Src 

activity, we assessed whether Src inhibition would ameliorate endothelial barrier 

dysfunction in Bmpr2+/- PECs. TEER and permeability to 70kD dextran in Bmpr2+/- PECs is 

restored to wild type levels following Src inhibition with PP2 (Fig. 18A/B). There is also a 

reduction in permeability Albumin after treatment with PP2, but these levels do not 

return to those of wild-type PECs (Fig. 18C). These data indicate Bmpr2+/- PECs have 

impaired barrier function due in part to constitutive activation of Src kinase. Since Src 

inhibition restores the caveolar trafficking in Bmpr2+/- PECs, our findings also suggest that 

abnormal Src-mediated caveolar trafficking plays a role in promoting decreased 

barrier function in Bmpr2+/- PECs.  
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Figure 16: Src inhibition with PP2 reduces pY14-Cav-1 and restores Cav-1 localization to 
the plasma membrane in Bmpr2+/- PECs. (A) PP2 inhibits Tyr14-CAV-1 phosphorylation. 
Cells treated with 30µM PP2 for 30 minutes prior to cell lysis. Performed in triplicate in one 
wild-type line (W1) and one Bmpr2+/-  line (N1). SRC inhibition demonstrated by reduced 
phosphorylation of SRC target Tyr(P)14-CAV-1. (B) Quantification of band densitometry in 
(A). Values expressed as the Mean ratios of band densities, as indicated. Error bars 
represent S.E.  T-test, *p <0.01 vs. wild type controls. (C) CAV-1 and Cavin-1 localization 
after PP2, PP3, or SKI606 treatment. Representative immunofluorescence images 
showing CAV-1 and Cavin-1 localization after treatment. Scale bars: 10µm. (D) 
Quantitative analysis of CAV-1 localization after treatment. Values are expressed as the 
ratio of PM to non-PM fluorescence intensities in multiple cells from one wild type (W1, 
n=45) and one Bmpr2+/- line (N1, n=75) before and after PP2 treatment, and (W1, n=33; 
N1, n=35; N1 PP3, n=10; N1 SKI, n=14) mean. Error bars represent S.E. One-way ANOVA 
with Dunnett’s and Holm-Sidak correction for comparisons with untreated Bmpr2+/- PECs, 
respectively, *p<0.05, **p<0.01, ***p<0.0001. (E) SKI606 inhibits SRC phospohorylation at 
Tyr416. Cells treated with 30µM PP2, 30µM PP3, or 1µM SKI606 for 30 minutes prior to cell 
lysis. Gels were run and probed as follows: (A) Gel 1- Tyr(P)14-CAV-1, Tyr(P)416-SRC, β-
actin; Gel 2- CAV-1, SRC. (E) Gel 1- Tyr(P)416-SRC; Gel 2- SRC, β-actin. 
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Figure 17: Impaired endothelial barrier function in Bmrp2+/- PECs. (A) Trans-endothelial 
electrical resistance (TEER) in 3 wild type and 3 Bmpr2+/- PEC lines. (B/C) Transwell 
permeability assays for (B) FITC-albumin, and (C) Rhodamine 70kDa dextran. Studies 
performed in triplicate in 3 wild-type lines and 3 Bmpr2+/- lines. (D) Comparison of 
permeability to Rhodamine 70kDa dextran at 37°C and 4°C. Transwell permeability 
assays in wild type (W1) and Bmpr2+/- (N6) PECs, 6 replicates/genotype/condition. All 
results expressed as mean+/-SEM. T-test, *p<0.01, **p<0.001 vs. wild type controls.  
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Figure 18: Src inhibition with PP2 improves endothelial barrier function in Bmrp2+/- PECs. 
(A) TEER. TEER was evaluated 30 minutes after treatment with 30µM PP2. (B/C) Transwell 
permeability for (B) Rhodamine 70kD-dextran, and (C) FITC-Albumin. Cells treated with 
30µM PP2 for 30 minutes before adding fluorophore-conjugated solutes. Studies 
performed in wild type (W1) and Bmpr2+/- PECs (N6) in triplicate. Results expressed as 
mean+/-SEM. T-test, *p<0.05, **p<0.01 vs. untreated Bmpr2+/- PECs.  
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Discussion 

Several studies implicate altered caveolae and Cav-1 in endothelial dysfunction 

and in the pathogenesis of PH(Asosingh et al., 2012; E. Austin et al., 2012; Maniatis et al., 

2008; Mathew et al., 2004; Patel et al., 2007), but to date the link between caveolar 

dysfunction and BMPR2 mutations in HPAH has not been established. In these studies we 

have used PECs from Bmpr2+/- mice to show that a heterozygous null Bmpr2 mutation 

gives rise to increased numbers of internalized caveolae and core caveolar structural 

proteins, Cav-1 and Cavin-1 in the pulmonary endothelium. We have also shown that 

aberrant intracellular localization of Cav-1 in Bmpr2+/- PECs is restored to the plasma 

membrane after treatment with either a Dynamin-2 or Src kinase inhibitor. This suggests 

that increased numbers caveolae in Bmpr2+/- PECs results from increased dynamin-

dependent caveolar endocytosis, and that this defect is the result of constitutive 

activation of Src kinase that we have also observed in Bmpr2+/- PECs. We also show 

increased Src activity in late-outgrowth endothelial progenitor cells (LO-EPCs) isolated 

from HPAH patients. These findings are consistent with previous studies showing 

increased numbers of caveolae and increased Src activity in the lungs of patients with 

idiopathic PAH(Courboulin et al., 2011; Paulin et al., 2011), and suggest a mechanism 

by which BMPR2 mutations give rise to endothelial dysfunction in HPAH.  

There is evidence that endothelial barrier dysfunction and perivascular inflammation 

contribute to pathogenesis of PAH(Dorfmuller et al., 2003; Savai et al., 2012; Stacher et 

al., 2012). Our findings that PECs from Bmpr2+/- mice have decreased barrier function 

are also consistent with data showing that mice with conditional Bmpr2 deletion in the 

endothelium develop spontaneous pulmonary hypertension and have increased 

vascular leak and peri-vascular inflammation(Burton, Ciuclan, et al., 2011; Burton, 



	
  56 

Holmes, et al., 2011; Hong et al., 2008). However the mechanism by which Bmpr2 

deficiency decreases endothelial barrier function was unknown. Caveolae regulate 

endothelial cell permeability by promoting endocytic transcellular transport of 

macromolecules(Minshall et al., 2003; Sowa, 2012; Y. Sun et al., 2011), and to a lesser 

extent by recycling components of the endothelial tight junctions to increase 

paracellular transport(Shen et al., 2005; Stamatovic et al., 2009). Our data show that 

both paracellular and transcellular barrier function is impaired in Bmpr2+/- PECs. While 

there is cross talk between transcellular and paracellular permeability pathways in 

endothelial cells(Driessche et al., 2007), we also show that increased permeability to the 

high molecular weight solutes is diminished by culturing Bmpr2+/- PECs at 4°C, indicating 

that Bmpr2+/- PECs have a defect in endocytic transcellular permeability. However, Src 

kinase also increases paracellular permeability in endothelial cells by promoting 

cytoskeletal contraction and by inducing dissociation of junctional complexes(Kim et 

al., 2009), so it is possible that some of the effects of the Src family kinase inhibitor, PP2, 

on paracellular permeability in Bmpr2+/- PECs are mediated through non-caveolar 

mechanisms.  

We also show that there is increased intracellular accumulation of another core 

caveolar structural protein, Cavin-1, and that there are increased numbers of 

intracellular caveolar structures in the pulmonary endothelium of Bmpr2+/- mice. These 

findings suggest that mis-localization of Cav-1 results from abnormalities in caveolae 

rather than mis-trafficking of individual protein monomers in Bmpr2+/- PECs. In addition, 

we show that blocking phosphorylation of Y14-Cav-1 with PP2 restores Cav-1 

localization to the plasma membrane in Bmpr2+/- PECs, suggesting that intracellular 

accumulation of endogenously expressed Cav-1 in Bmpr2+/- PEC is dependent on Src-
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mediated pY14-Cav-1 phosphorylation. This effect is distinct from the intracellular 

accumulation of Cav-1 that occurs when Cav-1 levels are increased, as this has been 

shown to occur without Y14-Cav-1 phosphorylation(Hanson et al., 2013).  

The mechanism by which heterozygous loss of Bmpr2 expression in Bmpr2+/- PECs 

promotes constitutive activation of Src kinase remains to be established. However, there 

is evidence that Src kinase is activated in the lungs of patients with idiopathic 

PAH(Courboulin et al., 2011; Paulin et al., 2011).  Furthermore, published data suggests 

the C-terminus of BMPR2 binds to and inhibits Src kinase activity, and that BMP 

stimulation reduces Src activity in pulmonary artery smooth muscle cells(Wong et al., 

2005). We were unable to reproduce these findings in wild type PECs. This discrepancy is 

likely to reflect transient and weak interactions between Src and Bmpr2, and/or 

differences in molecular behavior of these proteins in two distinct cell types. However 

we did observe a marked reduction of pY416 Src and pY14 Cav-1 in Bmpr2+/- PECs after 

treatment with BMP2, suggesting that restoration of BMP signaling in these cells is 

sufficient to reverse these effects. These findings have therapeutic implications since 

they suggest that activation of the BMP signaling pathway with BMP agonists, either 

secreted ligands or small molecule activators such as THR-123 or FK506 (Spiekerkoetter 

et al., 2013; Sugimoto et al., 2012), might be used to reverse Src-dependent endothelial 

dysfunction in HPAH patients with BMPR2 mutations.   

Therapeutic strategies targeted towards restoring endothelial barrier integrity may 

be beneficial for the treatment of patients with PAH. Here we have shown Src kinase 

inhibition with the pharmacological inhibitor PP2 improves endothelial barrier function in 

Bmpr2+/- PECs, suggesting that the constitutive activation of Src kinase in pulmonary 

endothelium of HPAH patients carrying heterozygous BMPR2 mutations may provide an 
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attractive therapeutic target for this disease. Src activation has also been identified in 

patients with idiopathic PAH(Courboulin et al., 2011; Paulin et al., 2011) suggesting that 

therapeutic inhibition of Src activity may be applicable to a wider range of patients 

with this disease. Furthermore, since Src-dependent caveolar dysfunction may also 

promote endothelial dysfunction through de-regulation of eNOS activity(M. O. Parat, 

2009; Sbaa et al., 2005), this strategy may have more extensive beneficial effects on 

pulmonary vascular disease pathophysiology in patients with HPAH.  

 

This work is published in the Journal of Biological Chemistry under the citation 

“Prewitt, A. R., Ghose, S., Frump, A. L., Datta, A., Austin, E. D., Kenworthy, A. K., & de 

Caestecker, M. P. (2015). Heterozygous null bone morphogenetic protein receptor type 

2 mutations promote SRC kinase-dependent caveolar trafficking defects and 

endothelial dysfunction in pulmonary arterial hypertension. J Biol Chem, 290(2), 960-971. 

doi: 10.1074/jbc.M114.591057.” 
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CHAPTER III 

 

BMPR2 REGULATION OF SRC KINASE ACTIVATION 

 

Introduction 

 Several studies have implicated Src kinase activation in PH; however until 

recently, the relationship between BMPR2 and Src kinase in PH had not yet been 

established(Brock et al., 2009; Courboulin et al., 2011; Paulin et al., 2014; Paulin et al., 

2011; Pullamsetti et al., 2012). Studies from our lab now show Bmpr2+/- mutant mice have 

increased Src kinase activity; however, the mechanism for this increased activity 

remains unknown (Prewitt et al., 2015). Published data suggests the C-terminus of BMPR2 

binds to and inhibits Src kinase activity, and that BMP stimulation reduces Src activity in 

pulmonary artery smooth muscle cells(Wong et al., 2005). While we were unable to 

reproduce these findings in wild type pulmonary endothelial cells (PECs) (data not 

shown), we did observe a marked reduction of pY416 Src and pY14 Cav-1 in Bmpr2+/- 

PECs after treatment with BMP2, suggesting that restoration of BMP signaling in these 

cells is sufficient to reverse these effects(Prewitt et al., 2015). Interestingly, mice 

overexpressing a BMPR2 C-term tail domain mutation develop PH, while PH patients 

express a higher ratio of Exon 12 BMPR2 splice variants which lack the tail domain(J. 

Cogan et al., 2012; Johnson et al., 2012; West et al., 2008), suggesting the BMPR2 tail 

domain may play a critical role in preventing PH. Here, we have set out to determine 

how BMPR2 regulates Src kinase activity. Using BMPR2 truncation mutation constructs 

and Bmpr2f/+ PECs, we will assess BMPR2 dose responses and define the domains 

responsible for Src regulation.  
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Materials and Methods 

Chemicals and Reagents 

 Interferon gamma (INFγ) (Peprotech). Monoclonal antibodies include Bmpr2 

[clone 18] (BD antibodies) and β–actin [clone AC-74] (Sigma). Polyclonal antibodies 

include pY416-Src, pY530-Src and Src (Cell Signaling). FACS antibodies include anti-

VCAM-AlexFluor 647 [clone 429] and EPCR-APC [clone eBio1560] (eBioscience). 

 

PHBI patient endothelial cells 

 Distal, resistance levels PECs (EC3s) from control and IPAH patients were 

obtained from and characterized by the PHBI Cell Core. Cells were grown in complete 

EGM-2MV media (Lonza) and culture at 37°C. Src kinase activation was assessed 

between passages 3-5 as detailed below.  

 

Mouse pulmonary endothelial cell (PEC) isolation, characterization and culture 

PECs from Bmpr2Δex2/+ mice had been previously generated and characterized in 

the lab(Frank et al., 2008). Four independent lines of PECs were generated from 2 wild 

type (++2, ++3) and 2 Bmpr2fl/+ (Bmpr2- flox) (F/+ 10, F/+ 12) mice (H. Beppu et al., 2005). 

For this, Bmpr2-flox mice were crossed with C57Bl/6 H-2Kb-tsA58 SV40 large T Ag 

transgenic mice (Charles Rivers “immortomice”) to generate wild type and Bmpr2-flox 

immortomice. Genotype was confirmed by PCR using primers and conditions outlined 

in previous studies(H. Beppu et al., 2005). To isolate PECs, mice were anesthetized with 

isoflurane prior to sacrifice by cervical dislocation. Lungs were perfused with a mixture 

of PBS/2mM EDTA followed by 0.25% Trypsin/2mM EDTA via right ventricle. Heart and 
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lungs were removed en bloc and incubated at 37°C for 20 minutes. Finally, lungs were 

perfused again in complete endothelial microvascular media EGM-2MV (Lonza) and 

the perfusate recovered for isolated cells. Cells were grown under permissive conditions 

in EGM-2MV + 10units/mL INFγ at 33°C before being transferred to 37° C without INFγ for 

3-5 days to inhibit SV40 large-T antigen activity for phenotyping and before conducting 

experiments. Endothelial cell phenotype was confirmed for all isolates with VCAM and 

EPCR positive expression by FACS using mouse anti-VCAM-AlexaFluor 647 [clone 429] 

and EPCR-APC [clone eBio1560] (eBioscience). Bmpr2 was excised from Bmpr2-flox 

PECs using adenoviral cre transfection. Briefly, for each 50% confluent 100mm dish, 2ml 

Basal EBM-2 (Lonza) + 20uL Ad-Cre were prepared. Media was removed from each dish 

and cells were washed in HBSS. The virus/media mixture was added to each dish and 

incubated over night 16-18 hours at 33°C. Following incubation, media was removed 

and complete EGM-2MV was added.  

 

Western blots 

Cells were lysed in 1x lysis buffer containing 150mM NaCl, 25mM HEPEs, 5mM EDTA, 

1% TritonX-100, 10% glycerol and phosphatase and protease inhibitors (1:100 Sigma) on 

ice for 15 minutes before centrifugation at 5000xg for 30 minutes.  Western blots were 

blocked in 5% milk before incubation in primary antibody in either 5% milk or bovine 

serum albumin (BSA) for phosphorylation site-specific antibodies overnight at 4°C. 

Primary antibodies were detected using species-specific HRP-conjugated secondary 

antibodies and Perkin-Elmer Western Lightning Plus ECL reagent. Films were exposed 

over a range of times, digitally scanned and densitometry performed using ImageJ on 
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films exposed for intermediate time periods in order to avoid non-linear ECL signals 

associated with very short or long exposure times. 

 

Results 

 Previous studies in our lab have shown increased Src kinase activation in Bmpr2+/- 

mouse PECs and late-outgrowth endothelial progenitor cells (LO-EPCs) from IPAH 

patients (Prewitt et al., 2015). We now show that distal, small resistance pulmonary 

endothelial cells (EC3s) isolated from multiple IPAH patients also have increased Src 

activation (Fig 19), suggesting deregulated Src kinase may be a common disease 

mechanism in PAH.  

The mechanism of increased Src activation in Bmpr2+/- PECs is unclear; however, 

we see no changes in Src activation in an additional Bmpr2 mutant, Bmpr2Δex2/+ (Fig 20). 

This mutant lacks 56 amino acids in the extracellular domain but expresses similar levels 

of the cytoplasmic domain (kinase and tail domain) as wild-type BMPR2(Frump et al., 

2013), suggesting it is dosing of these domains that regulate Src kinase activity.  

As discussed in the main introduction, Src kinase is regulated by catalytic and 

non-catalytic means. The major inhibitory catalytic regulation is through 

phosphorylation of Y530 which induces conformational change and blocks the 

activating Y416 site. Given the dramatic increase in Y416 phosphorylation in Bmpr2+/- 

PECs, we assessed pY530-Src levels in control and Bmpr2+/- PECs. We show no difference 

in Y530-Src phosphorylation in Bmpr2+/- PECs (Fig 21), suggesting BMPR2 is not regulating 

Src activity by acting upon Src’s C-terminal Y530 regulatory domain. Given that BMPR2 

does not appear to affect Y530-Src phosphorylation status and Bmpr2Δex2/+ mutants, 

which have intact kinase and tail domains, do not have increased Src kinase 
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activation, we reasoned that the levels of these cytoplasmic domains may regulate Src 

kinase. To test this we have developed a new Bmpr2 mutant cell line in which BMPR2 

has been deleted to yield Bmpr2f/+ cells (Bmpr2-flox). These cells express endothelial cell 

markers and exhibit cobblestone-like morphology (Fig 22 and data not shown). 

Following adenoviral cre transfection, we show loss of BMPR2 expression and increased 

expression of phosphorylated Y416-Src in Bmpr2-flox PECS, similar to that of Bmpr2+/- 

PECs (Fig 23). These data suggest that BMPR2 dosing is critical for Src kinase regulation. 

This is an ongoing project for which we will discuss future directions and implications 

below.    
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Figure 19: Src kinase activation in distal, resistance endothelial cells from IPAH patients. 
Western blots demonstrating basal expression of phosphorylated Y416-Src and total Src 
kinase from control patients and IPAH patients. β-actin as a loading control. 
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Figure 20: Src kinase is activated in Bmpr2+/- PECs but not in Bmpr2Δex2/+ PECs. Western 
blots demonstrating basal expression of phosphorylated Y416-Src from control, Bmpr2+/-, 
and Bmpr2Δex2/+ PECs. β-actin as a loading control. 
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Figure 21: Bmpr2+/- PECs exhibit no change in pY530-Src expression. Western blots 
demonstrating basal expression of phosphorylated Y530-Src and total Src kinase from 
control and Bmpr2+/- PECs. β-actin as a loading control. 
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Figure 22: Bmpr2-flox cells express endothelial specific markers. FACS analysis of Bmpr2 
wild-type and flox cells expressing VCAM and EPCR. Two wild-type lines (++2 and ++3) 
and two Bmpr2 flox lines (F/+ 10 and F/+ 12).  
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Figure 23: Increased Src activation in Bmpr2-flox PECs. Western blots demonstrating 
basal expression of phosphorylated Y416-Src and total Src kinase from control, Bmpr2+/+, 
and Bmpr2Fl/+ PECs. β-actin as a loading control. 
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Discussion 

 BMPR2 mutations and Src kinase activation in PH have previously been identified, 

but the relationship between BMPR2 and Src kinase was only recently 

established(Prewitt et al., 2015). In this current work, we aim to establish how BMPR2 

mutations regulate Src kinase activity. We have developed a new system using Bmpr2-

floxed PECs and BMPR2-PiggyBac expression constructs to help us define the domains 

necessary for Src kinase regulation and determine the dosing of these domains required 

to inhibit Src kinase activity. Initial data from these studies show Bmpr2-flox PECs have 

increased Src kinase activation (pY416) that is not due to reduced Y530 inhibitory 

phosphorylation, suggesting that BMPR2 may be regulating Src through non-catalytic 

mechanisms (ie by inducing conformational change through direct binding). Given 

that Bmpr2Δex2/+ PECs, which have intact kinase and tail domains, do not exhibit 

increased Src activation and previous studies that suggest BMPR2 tail domain interacts 

with Src(Wong et al., 2005), we hypothesize that BMPR2 tail domain physically interacts 

with Src kinase and that decreased expression of BMPR2 tail domain results in increased 

Src kinase activation. Insights from these studies are significant as unintended toxicities 

from global Src kinase inhibition may preclude their use in clinical settings. For example, 

Dasatinib, a broad Src and Abl kinase inhibitor that reverses PH in experimental models, 

also induces sever pre-capillary PAH in a subset of patients treated with this for CML 

(Montani et al., 2013; Pullamsetti et al., 2012). Therefore there is a need to understand 

the mechanisms regulating Src kinase to develop more selective therapies that only 

target the pathological Src activation in the pulmonary vasculature of PH patients.  

 To determine the role of BMPR2 in Src regulation, we have developed four 

BMPR2 expression constructs including full-length and three mutation constructs that 
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represent three common BMPR2 mutations found in PH patients (Fig 24). These 

constructs are based on a novel PiggyBac transposon based system in which Myc-

tagged BMPR2 constructs have been inserted into a cumate controlled transposon 

flanked plasmid (Fig 25). Expression remains ‘off’ until cumate is added to the system 

and can be tightly titrated (Fig 26) (Mullick et al., 2006). Using the Virofect system, we 

will transfect the BMPR2-PiggyBac constructs along with the PiggyBac transposase 

vector to integrate the Myc-Tagged BMPR2 constructs into the genomic DNA (Fig 27). 

We will then select for puromycin resistant clones and flow sort for the extracellular Myc 

tag in cells in which BMPR2 has been properly trafficked to the cell surface.  

The tight control of the PiggyBac system means we will be able to accurately 

assess BMPR2 dosing effects on Src Kinase activation. Our initial results suggest that the 

level of BMPR2 expression may be critical for Src kinase regulation as Bmpr2+/- PECs 

have increased Src activation while Bmpr2Δ/ex2 PECs, which have similar BMPR2 

expression levels as wild-type PECs, do not show this increase. Using BMPR2 rescue 

constructs we will definitely test whether the level of BMPR2 expression effects Src kinase 

activation in Bmpr2-flox PECs. Our initial studies will utilize full-length BMPR2 to establish 

amount of BMPR2 expression required to reduce Src Y416 phosphorylation. Following 

these studies, we will test our additional BMPR2 constructs to determine which domain is 

required for this inhibition. Our constructs include a BMPR2 truncation mutation just 

downstream of the Myc-tag that eliminates the transmembrane domain, kinase 

domain, and tail domain (R147X); a kinase domain point mutation that renders the 

kinase domain inactive (K230R); and a tail domain deletion (R899X). These mutations will 

allow us to effectively define which domain is required for Src kinase inhibition.  

Once we have defined BMPR2 dosing requirements and defined the domains 
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necessary, we will elucidate the mechanism by which BMPR2 exerts these effects. 

Previous studies suggest BMPR2 and Src physically interact and that this interaction 

inhibits Src kinase. We were unable to detect interactions between BMPR2 and Src in 

our cells and suspect this may be due to the transient nature of the interaction. To get a 

better understanding of potential interactions between BMPR2 and Src we will utilize 

complementary approaches to evaluate the interactions between full-length BMPR2 

and any constructs that reduced Src activation and determine if these interactions are 

disrupted in BMPR2 constructs that did not reduce Src kinase activation. These 

approaches include co-immunoprecipitation using low stringency lysis buffers and 

reversible crosslinkers, immunolocalization, and cell fractionation studies. The co-

immunoprecipitation studies will determine if BMPR2 is exerting control over Src kinase 

activity through direct inhibitory mechanisms, while subsequent studies will determine 

whether BMPR2 may be exerting indirect inhibitory control. For instance, BMPR2 is often 

localized to caveolae and therefore may be helping sequester Src into Src-Cav-1 

inhibitory complexes within caveolae via its relationship with Cav-1 (S. Li et al., 1996a; 

Nohe et al., 2005; Ramos et al., 2006; Wertz et al., 2008). We have evidence that BMP2 

stimulation reduces Src activation in Bmpr2+/- PECS, suggesting that BMP signaling may 

strengthen these interactions. Therefore we will perform the above experiments both 

with and without BMP2 stimulation.  

In summary, we have shown Bmpr2+/- PECs have increased Src kinase activation 

while Bmpr2Δex/2 PECs do not exhibit this increase. We go on to show that increased Src 

activation in Bmpr2+/- PECs is not due to reduced phosphorylation of the Y530 regulatory 

domain, suggesting that BMPR2 is regulating Src activation through non-catalytic 

means and maybe inhibiting Src through direct binding or through sequestration into 
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inactivating complexes (ie Src-Cav-1 inhibitory complexes). We previously showed that 

BMP2 stimulation reduces Src activation in Bmpr2+/- PECs, suggesting a role for BMP 

signaling in BMPR2-Src interactions. Interestingly, recent work has shown stimulation with 

BMP9 in Bmpr2+/R899X mutant mice, which also show increased Src activation, reverses 

established PH in these mice (Johnson et al., 2012; Long et al., 2015). These data 

suggest that BMP agonists may be an attractive therapeutic option for reducing Src-

mediated development of PH. Our current studies will help to define the relationship 

between BMPR2 and Src kinase and may provide clues for more direct interventions 

that precisely target the BMPR2-Src axis in PH.  

  



	
  73 

 

 

 

Figure 24. BMPR2 PiggyBac expression constructs. Schematic of BMPR2 expression 
constructs inserted into the PiggyBac transposon vector. Constructs include full-length 
BMPR2, transmembrane, kinase, and tail domain truncation (BMPR2 R147X), kinase 
domain point mutation (BMPR2 K230R), and tail domain truncation (BMPR2 R899X). LB= 
ligand binding domain, Myc= Myc tag, TM= transmembrane domain.  
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Figure 25: Linearized BMPR2-Piggybac constructs. BMPR2 constructs were excised from 
PCS2+ vectors (Zefrang) using EcoRI and BamHI restriction enzymes (New England 
Biolabs). BMPR2 inserts were PCR amplified using primers with roughly 15 bp extensions 
homologous to the PiggyBac vector (Table 3). The PiggyBac vector was linearized with 
NotI (New England Biolabs). BMPR2 inserts were subsequently ligated into the linearized 
PiggyBac vector using the In-Fusion cloning kit (Clonetech Laboratories). The newly 
formed BMPR2-PiggyBac constructs were then transformed into competent E. coli and 
screened for ampicillin resistance. Plasmid constructs were purified using plasmid 
purification kits (Qiagen). The transposon-based PiggyBac system (PB 3’ TR and PB 5’ TR) 
contains a puromycin resistance cassette (PuroR) and CymR repressor. Wild-type BMPR2 
is shown here for simplicity. Image generated using SnapGene.  
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BMPR2 
construct 

Primer 

BMPR2 Forward: agcacagtggcggccgatccGCCACCatggctt 
Reverse: tagactcgagcggccctcacagacagttcattcctatatctttagacac 

BMPR2 R147X Forward: agcacagtggcggccgatccGCCACCatggctt 
Reverse: tagactcgagcggccctcacagacagttcattcctatatctttagacac 

BMRP2 K230R Forward: agcacagtggcggccgatccGCCACCatggctt 
Reverse: tagactcgagcggccctcacagacagttcattcctatatctttagacac 

BMPR2 R899X Forward: agcacagtggcggccgatccGCCACCatgGctt 
Reverse: tagactcgagcggccctcacagacagttcattcctatatctttagacac 

 
Table 3: BMPR2 PCR amplification primers. Bmpr2 amplification primers were designed 
with ~15bp PiggyBac homologous overhangs.  
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Figure 26: Schematic of CymRepressor configuration. The bacterial repressor, CymR, 
can bind to the operator sequence (CuO) placed downstream of CMV5, a strong viral 
promoter that is active in mammalian cells. Once bound, CymR blocks transcription 
from the CMV5 promoter. CymR bound to cumate is unable to bind to CuO. 
Transcription from CMV5 can proceed unhindered. 
  



	
  77 

 

 

Figure 27: BMPR2-PiggyBac schematic. BMPR2-PiggBac transposon constructs are co-
transfected with the PiggyBac Transposase to insert BMPR2 constructs into the genome.   
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CHAPTER IV 

 

DISCUSSION AND FUTURE DIRECTIONS 

 

Src Kinase Activation and Endothelial Dysfunction 

The studies outlined in this dissertation were designed to identify a mechanism by 

which BMPR2 mutations may give rise to the development of Pulmonary Arterial 

Hypertension (PAH). Our studies show for the first time a link between BMPR2 mutations 

and Src-mediated endothelial permeability. We show that increased Src activation is a 

common feature in both Heritable and Idiopathic PAH, suggesting that aberrant Src 

regulation may be an underlying cause for multiple forms of PH.  

Endothelial permeability defects have been identified in mouse models of PH in 

which BMPR2 has been deleted in the endothelium of mice(Burton, Ciuclan, et al., 2011; 

Hong et al., 2008; Soon et al., 2015), while PH patients show impaired endothelial barrier 

function giving rise to increased inflammatory infiltration (Burton, Holmes, et al., 2011; 

Hong et al., 2008; Stacher et al., 2012) (Dorfmuller et al., 2003; Savai et al., 2012). It is 

increasingly appreciated that inflammation may be a driving factor for PH. Indeed, 

exposure of underlying the pulmonary tissues to various growth factors, blood proteins, 

and inflammatory cytokines may dictate the proproliferative and antiapoptotic 

phenotype seen in endothelial cells and smooth muscle cells (Guignabert et al., 2013). 

While these studies demonstrate endothelial permeability defects in BMPR2 mutants, 

the mechanism for increased permeability was not fully understood. Here we have 

shown that endothelial barrier dysfunction in Bmpr2+/- PECs is due to enhanced Src-
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mediated caveolar endocytosis and that these defects can be reversed using Src 

kinase inhibitors(Prewitt et al., 2015). 

Src has been shown to mediate permeability in a variety of situations in addition to 

its role in initiating caveolar endocytosis. For instance, Src has been implicated in 

neutrophil extravasion in endothelial cells via disruption of endothelial junctions, 

predominantly β-catenin, leading to a state of hyperpermeability (Tinsley et al., 2002). 

Additionally, Src mediates oxidant induced endothelial hyperpermeability via both 

caveolar endocytosis and endothelial junction disruption (Hu et al., 2008). Oxidant 

exposure is a common theme in EC dysfunction and may be linked to defects in 

mitochondrial function, which we will discuss in more detail later on. Src is also required 

VEGF induced permeability and participates in a positive feedback loop in which VEGF 

induces activation of Src kinase and Src kinase promotes VEGF production via HIF1α 

(Abu-Ghazaleh et al., 2001; Cheranov et al., 2008; Chou et al., 2002; Z. Sun et al., 2012; 

Weis et al., 2004). Interestingly we have noted increased VEGF receptor activation in 

Bmpr2+/- PECs, suggesting Src may be promoting endothelial permeability through this 

pathway as well (data not shown). All together, Src activation in the pulmonary 

endothelium gives rise to endothelial barrier dysfunction via a variety of mechanisms. 

Our data suggest Src activation in Bmpr2+/- PECs promotes endothelial permeability 

through increased caveolar endocytosis, and possibly also through paracellular 

pathways and VEGFR2 activation.  

Though we have mentioned the role of caveolae in promoting endothelial 

permeability through the direct uptake of materials in caveolar bodies, less has been 

discussed on caveolae’s role in promoting paracellular permeability through 

endocytosis. The scission and internalization of caveolae results in dramatic remodeling 
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of the actin cytoskeleton which in turn results in tension on endothelial junctions and 

often results in gaps between endothelial cells(Shen et al., 2005). Thus, in addition to the 

direct modification of endothelial junctions by Src, Src-mediated caveolar endocytosis 

also promotes permeability through paracellular pathways.  

In addition to regulating endothelial permeability through endocytosis, caveolae 

regulate the critical enzyme, eNOS, a potent vasodilator and permeability factor. 

Several studies have detailed the relationship of caveolae and eNOS, demonstrating 

that caveolae negatively regulate eNOS activity and therefore NO production (Sbaa et 

al., 2005). This is a two-part regulation in that caveolae sequester eNOS into inactive 

domains while Cav-1 physically binds to and inhibits eNOS activity (Y. Xu et al., 2008). 

Importantly, inhibition of NO production impairs endothelial barrier function and results 

in increased leukocyte infiltration, both hallmarks of PH (Burton, Ciuclan, et al., 2011; 

Giaid et al., 1995; Kubes et al., 1992; Stacher et al., 2012). Therefore, increased 

caveolae numbers and caveolar endocytosis in Bmpr2+/- mice may be further 

contributing to the endothelial permeability phenotype by actively inhibiting eNOS 

activity.  

The significance of eNOS inhibition extends beyond the permeability phenotype 

since in addition to regulating endothelial permeability eNOS also regulates vascular 

tone by promoting smooth muscle cell relaxation (vasodilation)(Frank et al., 2008). 

Deregulation of eNOS has been implicated in various vascular diseases not limited to 

hypertension (H. Li et al., 2000; Shesely et al., 1996). NO protects against platelet 

aggregation and leukocyte adhesion, preventing exposure of underlying smooth 

muscle cells to cytokines that promote proliferation (H. Li et al., 2000). Thus in addition to 

promoting vasodilation, NO production protects against vascular remodeling in the 
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pulmonary bed, another common PH phenotype that contributes to increased 

pulmonary pressures. 

Together these data demonstrate that increased Src kinase activation in Bmpr2+/- 

PECs may play a significant role in the development of PH. Here we have shown that 

increased Src activation leads to endothelial barrier dysfunction and present evidence 

that increased Src activation may promote endothelial dysfunction in a variety of 

pathways. Information from these studies provides a potential link between BMPR2 

mutations and endothelial dysfunction in PAH and thereby lays the groundwork for 

future therapeutic intervention in the clinical setting.  

Future studies for this project should include further characterization of the 

paracellular permeability defect. Our studies indicate that Bmpr2+/- PECs have 

endothelial barrier dysfunction at the site of endothelial junctions and that inhibition of 

Src kinase with PP2 rescues this defect. These data suggest increased paracelluar 

permeability in Bmpr2 mutants is Src mediated; however, the mechanism has not yet 

been elucidated. One promising avenue is through the direct phosphorylation of 

junctional proteins by Src kinase. This includes β-catenin and VE-Cadherin in adherens 

junctions and Occludin and ZO1 in tight junctions(Dorfel et al., 2012; Hu et al., 2008). 

However, as caveolar endocytosis remodels the actin cytoskeleton and thus creates 

tension and breaks of endothelial junctions, it is prudent to investigate actin remodeling 

and cytoskeletal defects in these mutants as well.  

Additional studies could include investigating the consequences and mechanism of 

VEGFR2 activation in Bmpr2+/- PECs. VEGF-the predominant ligand for VEGFR2- is critical 

for angiogenesis and permeability of the vasculature(Hoeben et al., 2004). Increased 

VEGFR2 activation is implicated in the development of plexiform lesions in PH 
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patients(Tuder et al., 2001), while VEGFR2 receptor blockade is an emerging animal 

model for PH(Stenmark et al., 2009). These data suggest tight regulation of VEGFR2 

signaling is crucial for vascular homeostasis and prevention of PH related phenotypes. 

Preliminary data in our lab show VEGFR2 is activated in Bmpr2+/- PECs suggesting VEGF 

signaling is deregulated in Bmpr2 mutants. Additional studies could include investigating 

how activated VEGF signaling affects vascular remodeling and endothelial 

permeability in Bmpr2+/- mice. Additionally, as VEGF and Src are known to participate in 

a positive feedback look with each other, further work elucidating how Src activation 

may contribute to VEGFR2 activation and vice versa is worth exploring.  

And finally, studies elucidating the effects of enhanced Src-mediated caveolar 

endocytosis on eNOS regulation are key studies for the field. Unfortunately, a 

consequence of conditionally immortalized endothelial cells is that they quickly lose 

their expression of eNOs after a few passages. As such, studies involving eNOS were not 

immediately feasible. Future experiments using either isolated primary cells or low 

passage conditionally immortalized cells will overcome this barrier and allow accurate 

assessment of eNOS localization and activity- aspects regulated by caveolae/Cav-1.  

 

Src-Mediated Mitochondrial Dysfunction in PAH 

There is increasing evidence of metabolic reprogramming in PAH(Archer, 

Marsboom, et al., 2010; Bonnet et al., 2006; Fessel et al., 2012; Fijalkowska et al., 2010; 

Marsboom et al., 2012; Tuder et al., 2012). Under normoxic conditions, cells typically 

favor oxidative phosphorylation over aerobic glycolysis, as this pathway yields up to 38 

ATP per glucose molecule versus 2 under glycolysis(Tuder et al., 2012). However, several 

studies using PH mouse models as well as PAH patient samples indicate that pulmonary 
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vascular cells undergo a shift in metabolic pathways from oxidative phosphorylation to 

aerobic glycolysis, even with sufficient oxygen(Archer, Marsboom, et al., 2010; Fessel et 

al., 2012; Fijalkowska et al., 2010; Marsboom et al., 2012; W. Xu et al., 2007). This 

phenomenon is considered a hallmark of cancer progression, and indeed, PAH 

vascular cells exhibit a malignancy-like state in which proliferation abounds and 

apoptosis is minimal(Tuder et al., 2012). Recent evidence suggests that this shift in 

metabolism is due in part to upregulation of Hypoxia Inducible Factor 1 

(Hif1α)(Fijalkowska et al., 2010; Tuder et al., 2012). Importantly, Src kinase upregulates 

Hif1α expression in malignant conditions, and may be playing a similar role in PAH(Jiang 

et al., 1997; Karni et al., 2002). Additionally, Src activation in cultured cells increases 

aerobic glycolysis and inhibition of Src by PP2 decreases Hif1α expression and reverses 

aerobic glycolysis induction in cells(Carroll et al., 1978; Karni et al., 2002). Taken 

together, these data suggest regulation of Src kinase through Src kinase inhibitors may 

be an attractive therapeutic option for metabolic reprogramming in PAH.  

The role of BMPR2 mutations in metabolic reprogramming is an emerging area of 

study. Recent work suggests BMPR2 mutants exhibit a range of metabolic defects(Fessel 

et al., 2012). Given the role of Src in promoting metabolic shift, we hypothesize that Src 

kinase activation in Bmpr2+/- mice as well as IPAH patients without BMPR2 mutations 

leads to metabolic reprogramming. To test this hypothesis we first would need to 

establish that metabolic reprogramming occurs in Bmpr2 mutants. These studies would 

include assessing cellular bioenergetics in Bmpr2+/- PECs and IPAH patient samples using 

the Seahorse Bioanalyzer in the Vanderbilt High Throughput Sequence Core. This 

machine analyzes, among other things, oxygen consumption and extracellular 

acidification rates- both markers of mitochondrial dynamics. Further studies would 
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elucidate the role of Src kinase activation on metabolic reprogramming, if any, in 

Bmpr2 mutants. These studies would be instrumental in advancing our collective 

understanding of mitochondrial dynamics, PH, and BMPR2 mutations.  

 

Mechanisms of Src Activation  

The mechanism of increased Src kinase activation in Bmpr2+/- PECs has not yet been 

elucidated. Src is regulated in two distinct, yet complementary ways: catalytically and 

non-catalytically. Catalytic regulation refers to activation or repression by 

phosphorylation of key residues (see Table 2), while non-catalytic regulation refers to 

activation or repression by conformational change caused by direct protein-protein 

binding. Non-catalytic inhibitors often exploit catalytic inhibitors to ensure long-term 

inhibition of Src kinase activity. This long-term repression is achieved through the 

phosphorylation of the c-terminal Y530 residue. Under basal conditions, 90-95% of src is 

phosphorylated at Y530(Doerks et al., 2002), suggesting that phosphorylation of this 

residue is the predominant mechanism for negative Src regulation. Indeed, loss of Y530 

is the defining feature of transforming v-Src (Parsons et al., 1989). This led us to 

investigate whether Y530 phosphorylation was reduced in Bmpr2+/- PECs. Our results 

demonstrate there is no change in Y530 phosphorylation in Bmpr2+/- PECs compared to 

wild-type, indicating BMPR2 does not promote Src activation through deregulation of 

Src’s c-terminal domain. Therefore, BMPR2 is likely regulating Src through non-catalytic 

mechanism. There is limited evidence that BMPR2 physically interacts with Src and that 

this interaction represses Src activity(Wong et al., 2005). Thus, future work will aim to 

identify and detail these interactions in wild-type PECs and in the context of Bmpr2 

mutations. We have detailed these experiments in Chapter III.  
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In our initial studies we were unable to detect interactions between BMPR2 and Src 

in wild-type PECs (data not shown). Though this may be the result of technical 

difficulties, we are aware that these results may indicate BMPR2 and Src do not 

physically interact in our cell type. Therefore, alternative mechanisms for BMPR2 

regulation of Src should be explored. One such mechanism is BMPR2 acting as an 

indirect non-catalytic inhibitor, that is, BMPR2 may promote the interaction and 

establishment of non-catalytic inhibition between Src and an additional protein. A 

candidate for this interaction is Cav-1. Cav-1 and BMPR2 have been shown to 

physically interact in caveolae (Nohe et al., 2005; Ramos et al., 2006; Wertz et al., 2008), 

and it is well established that Cav-1 inhibits Src through Cav-1’s CSD(S. Li et al., 1996b). 

Thus, BMPR2 may promote Cav-1/Src inhibitory complexes within caveolae and a 

reduction of BMPR2 expression in Bmpr2+/- PECs reduces these interactions. This 

hypothesis could be readily tested using the experimental setup outlined in Chapter III.  

In addition to direct physical interactions and indirect inhibition through a secondary 

protein, BMPR2 may be inhibiting Src activation through downstream BMP signaling. Our 

studies show that treatment of Bmpr2+/- PECs with BMP2 reduces Src Y416 to levels similar 

to wild-type, suggesting that BMP signaling regulates Src kinase activity. This could 

conceivably be accomplished through modulation of PDGFR signaling. PDGFR is a 

known activator of Src kinase (Roskoski, 2005; Stover et al., 1996), and BMP signaling has 

been shown to inhibit PDGFR downstream signaling (Ghosh-Choundhury et al., 1999). 

Therefore, the reduction in BMP signaling in Bmpr2+/- PECs may enhance Src kinase 

activation by reduced inhibition of PDGFR. Future studies could assess Src kinase and 

PDGFR dynamics in Bmpr2+/- mutants.  

Alternatively, BMP signaling may work to help strengthen BMPR2-Src interactions or 
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BMPR2-Cav-1-Src interactions. Wong et al demonstrate that BMP stimulation reduced 

Src kinase activation in pulmonary arterial smooth muscle cells with wild-type BMPR2 but 

not in cells with BMPR2 tail domain truncations in which BMPR2 and Src no long interact 

(Wong et al., 2005). These data support our hypothesis that BMPR2 inhibits Src activity by 

physically interacting with Src and that BMP stimulation strengthens or stabilizes these 

interactions. Future studies detailed in Chapter III will effectively test this hypothesis.  

 

Summary 

The work presented in this dissertation adds to our understanding as to how BMPR2 

mutations may promote the development of pulmonary hypertension. Here we show 

that BMPR2 mutations cause increased Src Kinase activation in pulmonary endothelial 

cells and that this activation, in turn, enhances caveolar endocytosis. We go on to show 

that Bmpr2+/- PECs have endothelial barrier defects, due in part, to enhanced Src-

mediated caveolar endocytosis. We show that inhibition of Src kinase with 

pharmacological inhibitors reverses these barrier defects, suggesting treatment with Src 

kinase inhibitors may be a viable option for therapeutic intervention in PH. However, 

recent evidence suggests Src inhibitors in some contexts actually promote the 

development of PH in some patients (Montani et al., 2012). Therefore, the need for 

alternative therapeutic strategies is apparent. Our proposed work in Chapter III 

addresses how we may overcome this complication by defining the mechanism by 

which BMPR2 mutations promote Src kinase activation in the pulmonary endothelium. 

All together these data contribute to our understanding of the development of PH and 

lay the groundwork for future studies that may provide new and effective therapeutic 

strategies for PH.   
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