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Preface

This dissertation covers two broad topics. The title, “Methods for Probing New Physics at High
Energies,” hopefully encompasses both of them. The first topic is located in part I of this work
and is about integral dispersion relations. This is a technique to probe for new physics at energy
scales near to the machine energy of a collider. For example, a hadron collider taking data at a
given energy is typically only sensitive to new physics occurring at energy scales about a factor of
five to ten beneath the actual machine energy due to parton distribution functions. This technique
is sensitive to physics happening directly beneath the machine energy in addition to the even more
interesting case: directly above. Precisely where this technique is sensitive is one of the main topics
of this area of research.

The other topic is located in part II and is about cosmic ray anisotropy at the highest en-
ergies. The unanswered questions about cosmic rays at the highest energies are numerous and
interconnected in complicated ways. What may be the first piece of the puzzle to fall into place is
determining their sources. This work looks to determine if and when the use of spherical harmonics
becomes sensitive enough to determine these sources.

The completed papers for this work can be found online. For part I on integral dispersion
relations see reference [1] published in Physical Review D. For part II on cosmic ray anisotropy,
there are conference proceedings [2] published in the Journal of Physics: Conference Series. The
analysis of the location of an experiment on anisotropy reconstruction is [3], and the comparison
of different experiments’ abilities to reconstruct anisotropies is [4] published in The Astrophysical
Journal and the Journal of High Energy Astrophysics respectively.

While this dissertation is focused on three papers completed with Tom Weiler at Vanderbilt
University, other papers were completed at the same time. The first was with Nicusor Arsene,
Lauretiu Caramete, and Octavian Micu in Romania on the detectability of quantum black holes
in extensive air showers [5]. The next was with Luis Anchordoqui, Haim Goldberg, Thomas Paul,
Luiz da Silva, Brian Vlcek, and Tom Weiler on placing limits on Weinberg’s Higgs portal, originally
written to explain anomalous Neff values, from direct detection and collider experiments [6] which
was published in Physical Review D. The final was completed at Fermilab with Stephen Parke
and Hisakazu Minakata on a perturbative description of neutrino oscillations in matter [7] which
was published in the Journal of High Energy Physics, and the code behind this paper is publicly
available [8].
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Chapter 1

Introduction and Motivation

1.1 Introduction

This part of the thesis is focused on integral dispersion relations (IDRs). IDRs were widely used
to study the nonperturbative aspects of the strong interaction, but are still a useful tool to relate
core principles such as unitarity and analyticity to physical observables. An article containing this
work can be found at reference [1]. In the remainder of this chapter we will outline the path of
this part and motivate using IDRs to probe new physics. In chapter 2 we derive the IDRs from
analyticity arguments and the optical theorem. A brief history of IDRs is also included. Chapter 3
contains a discussion of analytic solutions in simplifying cases as well as some numerical results for
comparison to the nonsimplified, full equations. We also discuss several of the commonly proposed
solutions to this evidence. In chapter 4 we will present the current status of pp, pp̄ total cross section
measurements. We also will discuss the experiments and how they measure the parameter ρ without
the use of IDRs. In chapter 5 we turn some of these new physics models into modifications of the
total pp cross section. In chapter 6 we compile all the results from the various models. Finally, in
chapter 7 the conclusions are discussed.

1.2 Motivation

There is a host of evidence that the standard model (SM) of particle physics is not the entire
picture. To this end many experiments have been looking for new physics at various energy scales.

IDRs make use of analyticity to probe energies above (and below) the machine energy at a
collider experiment such as the Large Hadron Collider (LHC). Since IDRs relate the scattering
amplitude at one energy to that at every energy up to infinity, they are sensitive to the gross
features of the scattering amplitude at all energies, although they are the most sensitive to changes
near the machine energy. Previously strong neutrino interactions at high energy have been discussed
in the context of cosmic rays beyond the GZK limit (see part II for more on the GZK limit) [13].
This part will focus on hadronic processes only, specifically pp and pp̄ interactions and generalized
deviations from SM physics. This work describes several possible deviations (chapter 5) from the
canonical cross section (§2.4.1) and how big of an effect they might have.
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Chapter 2

Review of Integral Dispersion Relations

2.1 Historical

The history of the development of IDRs stretches back nearly 75 years. The initial steps towards
their derivation started even earlier. In 1926 Kronig [14] and in 1927 Kramers [15] each derived
what is known as the Kramers-Kronig relations in the context of measuring the index of refraction.
For a given complex valued function χ(ω) = χ1(ω) + iχ2(ω) where χ1,2 ∈ R, they showed,

χ1(ω) =
1

π
P
∫ ∞

−∞

χ2(ω
′)

ω′ − ω
dω′ ,

χ2(ω) = − 1

π
P
∫ ∞

−∞

χ1(ω
′)

ω′ − ω
dω′ ,

(2.1)

where P
∫

is the principal value. These relations are known to mathematicians as Hilbert Trans-
forms. They contain some of the key mathematical ideas that IDRs exploit. That is, they relate
the real part of χ to an integral over the imaginary part of χ, which is physically related to the
total cross section by the optical theorem.

The first example of IDRs used with rigor comparable to that used today was in 1954 by
M. Gell-Mann, M. L. Goldberg, and W. E. Thirring [16] who helped put IDRs on a sound footing.
It was more difficult at the time because the Pomeranchuk theorem lacked the sound experimental
evidence it has since gained at the Tevatron and the LHC (see §2.4.2). The first use of IDRs with
pp scattering was in 1964 by P. Söding [17]. Finally, the main reference used in this chapter is from
1985 by M. M. Block and R. N. Cahn [18], which covers a broad collection of high energy hadronic
scattering topics.

2.2 Mathematics

IDRs are an extension of Cauchy’s integral formula which states that

f(a) =
1

2πi

∮

∂A

f(z)

z − a
dz , (2.2)

where A is a region in C, complex space, and ∂A is its boundary and a ∈ A. We also require
that f is analytic everywhere in A. Analyticity of a function can be understood simply as being
locally “sufficiently smooth.” More precisely, a function f(z) is analytic in region A if f is complex
differentiable everywhere in A. f(z) is complex differentiable on a region if its first derivative
calculated in the usual fashion is continuous and it satisfies the Cauchy-Riemann equations. We
write f(z) = u(x, y) + iv(x, y) and z = x + iy with u, v, x, y ∈ R. Then the Cauchy-Riemann
equations are,

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

(2.3)
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2.3 Scattering Kinematics

The scattering discussion will be presented in two reference frames. The first is the center of mass
(momentum) (COM) that is commonly used today. The second is the so called “lab-frame” in
which one of the particles is considered to be at rest with the necessary boost applied to the other
particle. Here we will be considering the high energy collisions of particles with equal mass such as
pp or pp̄ collisions probed by the Tevatron [19], the Large Hadron Collider (LHC) [20], and extensive
air showers (EAS) measured at experiments like Fly’s Eye (the precursor to the modern Telescope
Array) [21], the Akeno Giant Air Shower Array [22], and the Pierre Auger Observatory [23] through
the Glauber model [24].

This lab frame approach follows that of Martin M. Block among others and its gained simplicity
can be seen in the symmetry of fig. 2.1 [18]. For an example of what IDRs look like using the center
of mass frame see [25].

Throughout this part we will use the so called “natural units” where ~ = c = 1.

2.3.1 Mandelstam Variables

This discussion of scattering and the derivation of IDRs in section 2.4 generally follow from [18].
First, in the COM frame we consider the general 2 → 2 scattering process, where two initial protons
approaching each other at high energy with 4-momenta p1, p2, elastically scattering (p+p → p+p)
to final states with momenta p3, p4. Then the CM energy squared is

s = (p1 + p2)
2 = (p3 + p4)

2 = 4(k2 +m2) , (2.4)

where k is the COM momentum, m is the proton mass, and s is the typical Mandelstam variable
[26]1.

We can similarly define the transfer energy squared as the next Mandelstam variable t

t = (p1 − p3)
2 = (p2 − p4)

2 = −4k2 sin2
(

θ

2

)

, (2.5)

where θ is the scattering angle in the COM frame. The final Mandelstam variable is the square of
the transfer energy plus a switch,

u = (p1 − p4)
2 = (p2 − p3)

2 = −4k2 cos2
(

θ

2

)

, (2.6)

which gives rise to the useful relation

s+ t+ u = 4m2 . (2.7)

We note that while s ≥ 0, both t, u ≤ 0.
In the lab frame,

s = 2(m2 +mE) , (2.8)

where the momentum of the moving particle p and the energy E are related by the usual relation
E =

√

p2 +m2. For forward elastic scattering, t = 0, so combining eqs. 2.7 and 2.8 allows us to
write

E =
s− u

4m2
, (2.9)

which has the nice property that interchanging pp ↔ pp̄ corresponds to the sign change E ↔ −E
since the first interchange is the same as interchanging p2 ↔ −p4. This fact is the justification for
working in the lab frame.

1Interestingly, these commonly used variables were initially introduced in the context of IDRs.
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2.3.2 Cross Sections

Next we look to relate scattering amplitudes to differential cross sections. Back in the COM frame
we have

dσ

dΩCOM
= |fCOM|2 , (2.10)

or
dσ

dt
=

π

k2
|fCOM|2 . (2.11)

In the lab frame these formulas look very similar.

dσ

dΩlab
= |f |2 , (2.12)

or
dσ

dt
=

π

p2
|f |2 , (2.13)

where for simplicity we define the lab frame scattering amplitude just f .
Next we write down the crucial optical theorem in both reference frames.

σtot =
4π

k
ℑfCOM(θ = 0) , (2.14)

and

σtot =
4π

p
ℑf(θL = 0) , (2.15)

where θL is the lab frame scattering angle. Note that θ = 0 ⇒ θL = 0. For several derivations of
the optical theorem, see [27].

2.4 Derivation of IDRs

We write the scattering amplitude f as the limit of an analytic complex valued function F at t = 0
by

fpp,pp̄(E) = lim
ǫ→0+

F (±E ± iǫ) , (2.16)

using the interchange property of E mentioned after eq. 2.9. That is, the argument of F is a
complex variable.

From the optical theorem, ℑf is related to the cross section which describes physical processes,
so ℑF = 0 on, and near, the real axis when there is no physical process at the given energy, and is
analytic there. Everywhere else along the real axis, pp or pp̄ can interact and ℑF flips sign from
above to below the real axis. This leads to a branch cut2 for |ℜE| > mp as shown by the dashed
lines in fig. 2.1.

Since only the imaginary part of F is discontinuous in the imaginary direction and it changes
sign across the branch cuts while the real part remains the same, we can write

ℑF (E′ + iǫ) = −ℑF (E′ − iǫ) ,

ℜF (E′ + iǫ) = ℜF (E′ − iǫ) ,
(2.17)

2There are additional singularities at lower energies where the protons can interact via pion states, but the
contribution to the IDR from these low energy considerations is negligible, as will be shown in chapter 3.
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m−m

Figure 2.1: In the complex E plane there are two branch cuts as shown by the blue dashed lines
from ±m to ±∞ respectively. The contour shown is that over which the line integral is taken.
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F (E′ + iǫ)− F (E′ − iǫ) = 2iℑF (E′ + iǫ) ,

F (E′ + iǫ)− F (E′ − iǫ) = −2iℑF (E′ − iǫ) .
(2.18)

We then integrate around a loop where F is analytic. A sketch of this contour is shown in
fig. 2.1 where the outer curves are taken to the limit |E| → ∞. For the moment we will assume
that the contribution to the integral from the outer curves is zero. From eq. 2.2 we have that

F (E) =
1

2πi

[

∫ ∞

mp

dE′F (E′ + iǫ)− F (E′ − iǫ)

E′ − E
+

∫ −mp

−∞
dE′F (E′ + iǫ)− F (E′ − iǫ)

E′ −E

]

, (2.19)

where the four contributions come from the four straight sections along each side of the two cuts
and the small inner curves are negligibly small as ǫ → 0.

Using eq. 2.18, eq. 2.19 becomes

F (E) =
1

π

[

∫ ∞

mp

dE′ℑF (E′ + iǫ)

E′ − E
+

∫ ∞

mp

dE′ℑF (−E′ − iǫ)

E′ + E

]

. (2.20)

We consider that F may be even or odd in its argument, denoted F+ or F− respectively. Then,

F±(E) =
1

π

∫ ∞

mp

dE′ℑF±(E
′ + iǫ)

(

1

E′ − E
± 1

E′ + E

)

. (2.21)

or

F+(E) =
1

π

∫ ∞

mp

dE′ℑF+(E
′ + iǫ)

2E′

E′2 − E2
,

F−(E) =
1

π

∫ ∞

mp

dE′ℑF−(E
′ + iǫ)

2E

E′2 − E2
.

(2.22)

We write the pp, pp̄ scattering amplitudes in terms of their even and odd (under E ↔ −E
interchange) components,

fpp̄,pp = f+ ± f− , where f± =
1

2
(fpp̄ ± fpp) . (2.23)

We define the principal value integral in the traditional sense,

P
∫ c

a
f(x)dx = lim

ǫ→0+

[
∫ b−ǫ

a
f(x)dx+

∫ c

b+ǫ
f(x)dx

]

, (2.24)

for a < b < c under the conditions that

∫ b

a
f(x)dx = ±∞ ∀a < b and

∫ c

b
f(x)dx = ∓∞ ∀c > b ,

(2.25)

as is the case, for example, for a simple pole, f(x) = g(x)/(x − b) for g(x) continuous. More
generally we have that

lim
ǫ→0+

∫ c

a

g(x)

x− b± iǫ
dx = P

∫ c

a

g(x)

x− b
dx∓ iπg(b) , (2.26)
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the Sokhotski-Plemelj theorem, which makes use of Cauchy’s integral formula, eq. 2.2, for the final
term. We use the version with the lower signs and substitute x = E′ + iǫ on the LHS to get

lim
ǫ→0+

∫ c

a

g(E′ + iǫ)

E′ − b
dE′ = P

∫ c

a

g(x)

x− b
dx+ iπg(b) . (2.27)

The LHS is eq. 2.22 after the substitution g → 2E′ℑF+/(E
′ + E), 2EℑF−/(E′ + E) and a →

mp, b → E, c → ∞. Then,

F+(E) =
1

π
P
∫ ∞

mp

dE′ℑF+(E
′)

2E′

E′2 − E2
+ iℑF+(E) ,

F−(E) =
1

π
P
∫ ∞

mp

dE′ℑF−(E
′)

2E

E′2 − E2
+ iℑF−(E) ,

(2.28)

ℜF+(E) =
1

π
P
∫ ∞

mp

dE′ℑF+(E
′)

2E′

E′2 − E2
,

ℜF−(E) =
1

π
P
∫ ∞

mp

dE′ℑF−(E
′)

2E

E′2 − E2
,

(2.29)

which is the simplest version of the IDRs. We pause to note, at this point, the similarity of eqs. 2.1
and 2.29.

We now use some forward thinking and admit that we know the shape of ℑF as E′ → ∞. By the
optical theorem (eq. 2.15), ℑf+ ∝ pσtot, and as E′ → ∞, the integrand of the even integral scales
like σtot which, from the Froissart bound (§2.4.1) and experiments (§4.2), scales like σtot ∝ log2E′.
This integral does not converge at infinity, so we must perform a subtraction to gain convergence.
In the odd integral we consider a new function G−(E) = F+(E)/E. The odd function from eq. 2.29
is,

ℜF+(E) = ℜF+(0) +
1

π
P
∫ ∞

mp

dE′ℑF+(E
′)

2E2

E′(E′2 − E2)
. (2.30)

This new form has several important features. The first is that the integrand is log2 E′/E′2 as
E′ → ∞ which goes to zero faster than 1/E′ so the integral converges. The next is that there is an
additional F+(E = 0) term which comes from the pole at E = 0.

On the other hand, ℑf− ∝ p∆σtot, where ∆σtot is the difference between the pp and pp̄ scattering
amplitudes. The Pomeranchuk theorem (§2.4.2) says that ∆σtot → 0 as E′ → ∞ so the resulting
integrand goes to zero faster than 1/E′ and needs no additional subtraction term.

We now take the ǫ → 0 limit and recover the physical amplitude f from the analytic extension
F we have been using. The odd dispersion relation from eq. 2.29 and the singly subtracted IDR,
eq. 2.30 are,

ℜf−(E) =
1

π
P
∫ ∞

mp

dE′ℑf−(E′)
2E

E′2 − E2
,

ℜf+(E) = ℜf+(0) +
1

π
P
∫ ∞

mp

dE′ℑf+(E′)
2E2

E′(E′2 − E2)
.

(2.31)

We can now combine eqs. 2.15, 2.23, 2.31, and the fact that fpp(0) = fpp̄(0) as described at eq. 2.9
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to write the useful singly subtracted IDRs:

ℜfpp(E) = ℜfpp(0) +
E

4π2
P
∫ ∞

mp

dE′ p
′

E′

[

σpp(E
′)

E′ − E
− σpp̄(E

′)
E′ + E

]

,

ℜfpp̄(E) = ℜfpp̄(0) +
E

4π2
P
∫ ∞

mp

dE′ p
′

E′

[

σpp̄(E
′)

E′ − E
− σpp(E

′)

E′ + E

]

.

(2.32)

Before continuing, a few features of these integral dispersion relations should be noted. The
first is that the scattering amplitude at one energy E (typically referred to as the “machine” energy
throughout this part) is dependent on the behavior of the scattering amplitude and thus the cross
section at all energies. It is this fact that we make particular use of in this part. The next is the
pole. Both integrals have a pole at E′ = E. So it is at E′ = E where the value of σtot contributes
the most to the integral. Moreover, this pole only occurs for the same process as on the LHS (pp
or pp̄). We also note that the total cross section for the other process is always scaled down since
E′ + E > E′ − E. Finally there is the addition of a new subtraction term, ℜf(0) which can only
be determined experimentally.

We also note the existence of doubly subtracted IDRs where the replacement G− = F−/E2 is
also made. These may be necessary in certain cases for convergence, but do not seem to be required
by experimental data. That is, if the Pomeranchuk theorem isn’t valid (∆σ 6→ 0 as E → ∞) or if
the total cross section grows like Eα for α ≥ 1 or faster, an additional subtraction (or more) may
be necessary to guarantee convergence.

We define the ratio,

ρpp,pp̄(E) =
ℜfpp,pp̄(E, t = 0)

ℑfpp,pp̄(E, t = 0)
, (2.33)

which allows us to rewrite eq. 2.32 as,

ρpp(E)σpp(E) =
4π

p
ℜfpp(0) +

E

pπ
P
∫ ∞

mp

dE′ p
′

E′

[

σpp(E
′)

E′ − E
− σpp̄(E

′)
E′ + E

]

,

ρpp̄(E)σpp̄(E) =
4π

p
ℜfpp̄(0) +

E

pπ
P
∫ ∞

mp

dE′ p
′

E′

[

σpp̄(E
′)

E′ − E
− σpp(E

′)
E′ + E

]

.

(2.34)

This equation presents the IDRs in the form to be used throughout the remainder of this part.

2.4.1 Froissart Bound

The Froissart bound states that the total hadronic cross section is σ ≤ C log2(E/E0) for some
coefficients C,E0 as E → ∞ [28]. Various proofs of this exist in the literature, and the nature of
the constants C,E0 have been and still are vigorously debated. Values of C are typically about two
orders of magnitude above those from present experimental reaches [29–31]. This point is important
in that it puts no limits on increasing the cross section so long as it asymptotically (E → ∞) grows
no faster than log2E.

2.4.2 Pomeranchuk Theorem

The Pomeranchuk theorem states that at high energies ∆σ ≡ σpp − σpp̄ → 0 [32]. Moreover, the
difference grows no more quickly than log s [33,34]. This fact has been well established by collider
experiments, where ∆σ ∝∼ s−0.5 [35].

With an understanding of the underlying theory of quantum chromodynamics (QCD), the
Pomeranchuk theorem can be more simply understood as a statement that at sufficiently high
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energies baryons are composed of sea quarks and gluons while the valence quarks barely contribute
to their composition. As such, p+ p scattering looks identical to p + p̄ scattering for sufficiently
high energies.
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Chapter 3

A Simplified Integral Dispersion Relation to Set Expectations

In this chapter we make three assumptions to reduce the IDRs in eq. 2.34 to a form that can
be integrated analytically to get a feel for the reach and nature of the IDRs. While none of the
assumptions are strictly valid, they are useful to reveal the gross features of the dispersion integral.
The first assumption is to set mp to zero. Besides replacing the lower limit of integration with
zero, this assumption also sets p′/E′ equal to one. The second assumption is to set σpp and σpp̄
equal to each other, and to a constant which we call σ0. The final assumption is to set f(0) = 0,
a fact that is moderately supported by the data (§4.2). With these assumptions, both dispersion
integrals become

ρσ0 =
2σ0
π

P
∫ ∞

0

dx

x2 − 1
, (3.1)

which can then be integrated to

ρ =
2

π
log

[ |1− x|
1 + x

]∞

0

, (3.2)

where x ≡ E′/E and we note that the integral is singular at x = 1. Blind evaluation of the definite
integral over the range [0,∞] then gives zero. That this is correct can also be seen in the following
way: by definition of a principal value integral, the definite integral from eq. 3.1 is

lim
ǫ→0

[
∫ 1−ǫ

0

dx

x2 − 1
+

∫ ∞

1+ǫ

dx

x2 − 1

]

. (3.3)

Replacing x by u ≡ 1
x in either integral, maps the integration region into that of the other integral

(for ǫ small), and reveals that the two integrals are equal but with opposite sign. Thus the total
integral vanishes. In particular, the singularity in the integrand vanishes in the principal value.

In fig. 3.1, we plot the integrand (x2 − 1)−1 of our simplified dispersion integral. As the lower
limit of integration xmin is moved up from zero, the cancellation above and below the singularity
is no longer complete. However, the vanishing of the total integral when integrated from from
zero to infinity allows us replace the integration across the singularity with a simple, manifestly
nonsingular integral as follows:

I(xmin) ≡
∫ ∞

xmin

dx

x2 − 1
=

∫ xmin

0

dx

1− x2
. (3.4)

For xmin = 1, the cancellation is maximally incomplete and the integral is infinite. We plot I(xmin)
in fig. 3.2. As expected, the integral is everywhere positive, and diverges at xmin = 1. The
divergence seems unphysical in that it corresponds to either ℑf = 0 ⇒ σtot = 0 by the optical
theorem which shouldn’t be the case or that ℜf → ∞ ⇒ σtot → ∞ which is also unphysical. In
reality, a step function increase in the integrand is unphysical as the phase space alone requires a
continuous rise in the cross section which then keeps the integral finite.

We may ask how the singularity is approached, from the two cases: above or below. Writing
xmin = 1−∆ and 1+∆, we have the two integrals

∫∞
1−∆

dx
x2−1 and

∫∞
1+∆

dx
x2−1 . We restrict ourselves

to 0 < ∆ < 1. The first integral crosses the singularity and according to eq. 3.4 is equal to the
clearly finite integral

∫ 1−∆
0

dx
1−x2 . With the replacement x → 1/x, the second integral becomes

∫

1
1+∆

0
dx

1−x2 . Thus, the two integrations differ only in the upper limit of integration. At first order
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Figure 3.1: The integrand of the IDRs with the σ = constant and mp → 0 limits taken.
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Figure 3.2: The integral of the IDRs with the σ = constant, mp → 0, and f(0) = 0 limits taken.
We see the expected singularity at xmin = 1. For the new physics contribution, xmin = Etr/E.
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in ∆ they are identical, as they must be to give a finite principal value integral. At higher order
in ∆, the second integral exceeds the first integral. So we expect I(xmin) to show symmetry about
the singular value xmin = 1 for small deviations, but a larger value above xmin = 1 than below for
larger deviations. This expectation is visible in fig. 3.2.

The simplest (and as such perhaps most informative) model of new physics discussed here that
of a simple step function described in §5.2. In that model we have the standard cross section
(considered here as σ0) that then increases by a factor of D at a threshold Etr and then continues
in the same fashion in E. In the context of these approximations, the part of the cross section that
does not change does not contribute to the observable, ρ, but the increase does. When new physics
enters at a threshold energy Etr, the contribution of the new physics to the dispersion integral
begins at xmin = Etr

E , where E is the energy of the accelerator. Thus, fig. 3.2 gives the shape of
the new physics contribution as a function of the new physics threshold. In what follows, our much
more realistic parametrizations of new physics will present curves that qualitative have the form
given by the simplistic model discussed in this chapter.

We may summarize this chapter by saying that the SM cross section is expected to give a modest
contribution to the dispersion integral (zero in our simplistic model of constant and equal pp and
pp̄ cross sections with vanishing proton mass). On the other hand, new physics enters at a nonzero
threshold which implies an incomplete cancellation in the dispersion integral, and thus a possibly
significant contribution to the dispersion integral. Therefore, the ratio of new physics to total
physics as revealed in the IDR potentially offers an observable window to new physics even with
threshold energy above the direct reach of the LHC. As we will see in §4.2, it is the non-uniform
and non-identical assumption of σpp, σpp̄ rather than the non-zero mass of the proton assumption
that accounts for the difference between this simplifying case and the complete description.
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Chapter 4

Experimental Overview

4.1 New Physics in the ρ Parameter

4.1.1 Approach

While eq. 2.34 and the other versions of the IDRs relate the total cross section, σtot, at one energy
to that at all other energies, this alone does not allow for the discovery of new physics. If the cross
section has a measurable change at the machine’s energy from IDRs due to new physics at higher
energy scales, the presence of new physics can already be inferred via direct production of the new
states without the additional use of IDRs. On the other hand, if the new physics cannot yet be
produced directly, IDRs can infer the presence of new physics near the machine energy without any
change in the cross section. A separate measurement must be made that makes proper use of the
power of IDRs, and that is where the ρ parameter, defined in eq. 2.33, comes in.

The general strategy that we will use to explore new physics is to first use the IDR to calculate
ρ at a particular energy (an LHC energy) without the inclusion of new physics by assuming that the
cross section continues to rise in the expected fashion. Then we calculate ρ at the same energy with
the inclusion of the new physics cross section. Since ρ can be calculated at experiments without
IDRs in a model-independent fashion, as described in §4.1.2, enhancements of the cross section can
be either identified or ruled out by comparing theoretical and experimental values of ρ(E).

4.1.2 IDR Independent Calculation of ρ

To extract a value for ρ in an IDR independent fashion, one invokes the optical theorem and
extrapolates dσ/dt to t = 0, as shown below. The cross section is related to the scattering amplitude
by a simple exponential at low |t|. Recall from eq. 2.11 that the differential cross section in the
COM is

dσ

dt
=

π

k2
|f |2 . (4.1)

At t = 0 one has

dσ

dt

∣

∣

∣

∣

t=0

=
π

k2
|ℜf(t = 0) + iℑf(t = 0)|2

=
π

k2
|(ρ+ i)ℑf(t = 0)|2 .

(4.2)

Making use of the optical theorem, σtot = (4π/k)ℑf(t = 0), one arrives at

16π
dσ

dt

∣

∣

∣

∣

t=0

= (ρ2 + 1)σ2
tot . (4.3)

From [18], the pp differential cross section in the low t limit is well approximated by

dσ

dt
∝ eBt , (4.4)

where B is the “slope parameter,” assumed and measured to be very nearly constant. Thus, a
measurement or estimate of σtot and an extrapolation of dσ/dt to t = 0 via the measured slope

14



Table 4.1: Fit parameters to eq. 4.5 from [9] with various analyticity constraints.

c0(mb) 36.95

c1(mb) −1.350

c2(mb) 0.2782

c3(mb) 37.17

c4(mb) −24.42

α 0.453

parameter are sufficient to determine ρ independently from the IDRs. While σtot is often evaluated
in the “luminosity-independent” sense which includes an estimation of ρ, it can also be evaluated
(although, less precisely) using a luminosity calculated through particle counting or beam sweeping
techniques.

We also note that since the determination of ρ actually gives a value for ρ2 there is an additional
sign ambiguity. There are two approaches to dealing with this. The first is to compare results from
modified cross sections in IDRs to either the positive or negative values, treating each equally. The
second is to note that the IDR results for ρ from all of the fits done to the pp, pp̄ cross sections
(regardless of whether or not they follow the Froissart bound) yield a positive value for ρ. In
practice we use TOTEM’s quoted upper limit on ρ statistically calculated from ρ2 which accounts
for the possibility that ρ could be negative and only places an upper limit on ρ (in essence an upper
limit on |ρ|).

4.2 Forward Scattering Measurements and Fits

Fits to data suggest that the cross sections decrease with E until E ∼ 60 GeV (
√
s = 10.6 GeV) and

E ∼ 250 GeV (
√
s = 21.8 GeV) for pp, pp̄ respectively, before increasing. Furthermore, Froissart

theory (§2.4.1) tells us that σtot asymptotically (s → ∞) grows no faster than log2 of the energy,
a fact that has been confirmed at currently available with fits to present experimental data [36].

The SM total pp, pp̄ cross section σSM is typically parameterized as

σSM (E) = c0 + c1 log

(

E

mp

)

+ c2 log
2

(

E

mp

)

+ c3

(

E

mp

)− 1
2

± c4

(

E

mp

)α−1

, (4.5)

where mp, the proton mass, is used as the energy scale. ci, α are fit parameters with α < 1. The

E− 1
2 term is a result of invoking Regge behavior. The upper sign refers to pp scattering and the

lower to pp̄ scattering. The form of eq. 4.5 is motivated by being the most general and fastest rising
form allowed by the Froissart bound. The values of the ci and α from [9] are shown in table 4.1.
The total pp cross section for the SM is included in fig. 5.1 (solid line, labeled as the h0 case).

Note that our results are indifferent to different fits for the pp, pp̄ cross sections because the
current limits on the pp total cross section are predominately derived from data at and below
the LHC. Fits to functions that behave differently than log2(s) such as log(s) and sǫ have been
essentially ruled out [36,37]. Auger does quote a value for the pp total cross section at 57 TeV [23],
but the precision is low (a fractional error of 0.20) and depends on specifics built into the Glauber
model. It does not severely limit the behavior of the cross section to high energies.

Concerning the first approximation of chapter 3, namely mp = 0, we find that returning the
physical, nonzero mp to the integral eq. 3.4, which approximates ρ, (including p′/E′ 6= 1) gives
nonzero but negligible integral values of the integral of 2.649 × 10−8 and 5.966 × 10−9 at LHC
energies

√
s = 7 and 14 TeV. On the other hand, keeping mp zero but returning to σpp and σpp̄
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their realistic energy dependences yields nonzero integral values of 0.1345 and 0.1309 at
√
s = 7

and 14 TeV. And finally, using nonzero mp and realistic pp and pp̄ cross sections returns the values
0.1345 and 0.1309 at

√
s = 7 and 14 TeV. The final two integration sets (realistic σ’s and zero

or nonzero mp) agree to about seven to eight decimal places respectively (on the order of m2
p/s).

The conclusion is that the mp → 0 approximation is generally a valid one, whereas the constant
and equal SM cross section approximation in the previous section is not. However, the integral
contributions of the SM to the IDRs (the solid lines in fig. 6.1) are not large, and we are encouraged
to pursue further the contributions that might arise due to physics beyond the SM.

For the subtraction constant, we will take f(0) = 0, since the value from the fits above is
f(0) = −0.073 ± 0.67 mb GeV. We note that even at the value 1σ away from zero, the term
4π f(0)/(p σpp) at LHC energies contributes less than one part in 105 to ρ.

4.3 The TOTEM Experiment

The TOTal Elastic and diffractive cross section Measurement (TOTEM) experiment at the LHC
is designed to measure forward cross sections by probing very low |t| regions [38]. TOTEM places
a series of Roman pot detectors very close to the beam and very far from the interaction point.
With improved LHC optics, TOTEM should be able to provide an improved measurement of ρ
independent of IDRs [39]. A comparison of TOTEM’s ρ, so determined, with the IDR prediction
of ρ, then provides the potential evidence for new physics.

Similarly, the Absolute Luminosity For ATLAS (ALFA) [40] experiment, the LHC forward
(LHCf [41] experiment, along with a host of others will also make comparable measurements in an
attempt to improve the precision of the luminosity calculation, which is necessary to infer σtot, and
then to infer ρ without the use of IDRs [42] (see §4.1). Thus, there are several experiments that
aim to measure the total cross section. These offer hope for smaller error bars on IDR independent
determinations of the crucial parameter ρ(E).

A
√
s = 7 TeV, the TOTEM article presented a state of the art value for the IDR independent ρ,

of ρ = 0.145 with error bars of ∼ 60% [20]. TOTEM cited a 95% significance level (roughly speaking,
a 2σ bound) that ρ < 0.32. Comparing this to the SM prediction of ρ(

√
s = 7 TeV) = 0.1345 gives

an upper limit of the fractional increase (ρ − ρSM)/ρSM = 1.38 at the 95% significance level. For
brevity, in what follows we denote (ρ − ρSM)/ρSM as ∆ρ/ρ. In addition, an early report from
TOTEM gives their error estimate as ∼ 0.04 from their

√
s = 8 TeV analysis [43] corresponding to

a fractional error of 30%, thus cutting the error in half.
As an illustrative example of what a future determination of ρmight mean for the IDR technique,

we investigate a definite value for ρ; we choose as the definite value the experimentally inferred
mean value ρ(

√
s = 7 TeV) = 0.145. For this example, the fractional increase in ρ is ∆ρ/ρ = 7.8%.

This value for ρ is chosen for illustration only, as it offers insight into the merit of IDRs should
experiments greatly reduce their errors in the inference of ρ.

Compared to the presently published TOTEM error of 63%, the “new physics increase” has
negligible significance, ∼ 0.1σ. With the ongoing analysis at TOTEM, the new significance is
expected to be ∼ 0.25σ [43]. Clearly, further improvement in the inference of ρ is needed for the
program constructed in this part. Another reduction in error by about a factor of four (eight) would
give a 1(2)σ significance to our illustrative example. One must hope that either the measured error
is reduced significantly in the next LHC run, the new physics contribution to the cross section is
larger than our chosen example, or both.
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Chapter 5

Modifying the Cross Section

5.1 General Modification

We consider a class of modifications to the total pp cross section of the form

σ(s) = σSM(s)[1 + hi(s)] , (5.1)

where σSM is the SM cross section. That is, it is the cross section that has been observed so far
consistent with SM physics. σ is the true cross section. In general, the hi will be zero up to some
threshold str and 0 ≤ lims→∞ hi(s) < ∞. We apply the same enhancement to both σpp and σpp̄
since, by the Pomeranchuk theorem discussed in §2.4.2, each cross section should respond to new
physics in the same way at energies well above the proton mass.

We use this form as it allows for modifications to turn on at an arbitrary energy, preserving the
measured fit, but also retaining the asymptotic limit predicted by the Froissart bound in §2.4.1.
This form guarantees that σ will continue to grow at the same rate at σSM.

The first model we will present in §5.2 is a simple step function at str. This model results in an
especially close analogy to the idealized IDRs we discussed in chapter 3. In particular, this model
yields a singularity in the IDR integrand at E = Etr and therefore a singular value for ρ(E = Etr).

More realistically, we expect phase space to present a cross section for new physics that has no
jump discontinuity at threshold. For example, two body phase space is β/8π, where β is either
particle velocity in the COM frame; at threshold, β is identically zero. Furthermore, including
parton distribution functions to the model also yields a zero cross section at threshold. The new
physics matrix elements may also vanish right at threshold. So we are led to the next two models
of BSM physics. The second model we present in §5.3 involves hard-scattering parton production
of new particles, while the third model in §5.4 is constructed from diffractive phenomenology. The
second and third models provide cross section modifications that vanish at threshold, leading to
finite values for ρ(E = Etr).

Since only the first model, the step function, yields a nonzero change in the cross section
at threshold, the ρ-value resulting from model h1 should be considered an upper bound to the
contribution of new physics BSM. The bounding of cross sections by the h1 step function model is
evident in fig. 5.1, where we show the SM cross section (given by zero enhancement and labeled by
h0 = 0) and its enhancements (hi, i = 1, 2, 3) by the three new physics models that are presented
in detail below.

No new conserved quantum number is assumed in our models (valid, e.g., for broken R-parity
SUSY models). Thus, energy is the only impediment to production of heavy new single particles,
and the heavy single mass value Mχ determines Etr. Without a new quantum number, the new
particle would decay to SM particles, and due to its large mass, decay very quickly. Consequently,
other than invariant mass combinatorics, there is no good signature of the new particle’s production.
One may have to rely on IDRs and/or an anomalous ∆σ for new particle identification. Thus, we
plot ∆ρ/ρ and ∆σ/σ versus Mχ (Mχ =

√
str − 2mp ≈ √

str), to see if the IDR technique can
identify new physics via an anomalous ρ measurement, before the new physics would be directly
noticeable in the cross section increase at the next high energy collider.
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Figure 5.1: The pp total cross sections σSM + σBSM are plotted, for the choice
√
str = Mχ = 103

GeV. Doubling of the cross section at threshold is assumed for the h1 model, i.e., D = 1. The SM
cross section uses the parameters [9] shown in table 4.1, and leads to an error in the SM value of ρ of
less than 1% [10]. The slow initial rise in h2 is a result of the parton distribution functions. While
the high energy behavior of h3 is small compared to other models, it rises quickly at threshold, in
contrast to h2.
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5.2 Step Function Modification

A simple example function for BSM physics is

h1(s) = DΘ(s− str) , (5.2)

a step-wise jump in cross section at the threshold COM energy
√
str. The parameter D is a measure

of the size of the new cross section relative to the SM. For example, in the event that new physics
exactly doubles the cross section at s = str, then D = 1. Modifying σSM in the form of eq. 5.2
guarantees that the new total cross section σ continues to grow as fast as σSM ∝ log2 s (but not
faster), and that the new physics contribution remains large over a sizable energy range beyond
the threshold energy.

As mentioned above, an unphysical aspect of the step function enhancement is a non-vanishing
cross section at threshold, which leads to the uncanceled singularity in the IDR integrand at E = Etr

and a singular value for ρ(E = Etr) as shown in figs. 3.1 and 3.2. However, the model has redeemable
value in that the width of the singularity is small since it is valid away from the singularity. Thus,
the model offers a meaningful upper bound to new particle production away from the singularity.

5.3 A Partonic Model of New Physics

The most popular model of new physics at the electroweak symmetry breaking scale is R-parity
preserving supersymmetry (SUSY), with masses tuned to the EW scale to stabilize the ratio
mh/MPlanck (the “hierarchy problem”). Unfortunately, R-parity conservation requires s, t, and
u to have EW-scale values, which severely suppresses the SUSY cross section to ∼ 10−10 times
the SM cross section. However, as LHC limits on R-parity conserving SUSY are becoming more
constraining, R-parity violating (RPV) models are getting a closer look by theorists and the LHC
experimentalists alike [44–48]. If R-parity is violated, we can replace one final state particle from a
SM process with an effectively identical heavier counterpart for each possible final state. Then the
only difference between the modified cross section and the SM cross section comes in the form of
the reduced final state phase space and the threshold parton energy. Importantly, the fast growing
log2 s contribution to the SM σtot, which arises from soft and collinear gluon divergences, may be
maintained. Also, other exotic models with extra dimensions [49] and a non-conserved Kaluza-
Klein number resulting from additional compactified dimensions [50, 51] might grow a large cross
section as a power law instead of the Froissart log2 s limit. In what follows we present the phase
space modification necessary to describe such a new physics modification on the total cross section.

Let σi(s) = σi(pp → . . . ) be the SM cross section and σBSM
i (s) = σi(pp → χ + . . . ) be the

new physics contribution, where i = {el, inel, tot}, and dots denote additional SM particles in
the final states. Hats will denote parton cross sections instead of pp cross sections. We note
that since σBSM

el = 0, then σBSM
inel must equal σBSM

tot . Then the physical total pp cross section is
σtot +DσBSM

inel = σtot(1 +Dh2(s)) where h2 = σBSM
inel /σtot, in the form of eq. 5.1.

We start with a partonic expression of the conservation of momentum for the new physics
contribution.

σBSM
tot (s) =

∑

i,j

∫

(ŝ>M2
χ)
dx1dx2fi(x1)fj(x2)

ˆσBSM
tot(ŝ) , (5.3)

where ŝ ≈ x1x2s is the parton COM energy and the fi are the various parton distribution functions
(pdfs). Let the SM final state masses be zero. The summations are over parton types and the
integrals are over the accessible x1, x2 space: ŝ > M2

χ.
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If we assume that for each SM particle in the final state, there is an analogous new particle χ
produced with the same coupling, then there is little t or u-channel propagator suppression (see
appendix A), and so the matrix elements will be similar. The new, heavier final state masses
suppress only the available phase space. The two body phase space is

√

λ(s,m2
3,m

2
4)

8πs
. (5.4)

So we can set parameter D = 1, and write

ˆσBSM
tot(ŝ)

√

λ(ŝ,M2
χ, 0)

=
σ̂inel(ŝ)

√

λ(ŝ, 0, 0)
, (5.5)

where the triangle function (symmetric in its arguments) is defined as

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2bc− 2ca , (5.6)

and the two body phase space is
1

8πs

√

λ(s,m2
3,m

2
4) . (5.7)

The inelastic cross section shows up in the SM equivalent case since the related new particle cross
sections must be inelastic.

It is easy to see that the relevant ratio can be simplified to

√

λ(ŝ,M2
χ, 0)

λ(ŝ, 0, 0)
= 1−

M2
χ

ŝ
. (5.8)

Then, combining eqs. 5.3, 5.5, and 5.8, and integrating out the internal σtot(ŝ) which leaves behind
a factor of ŝ/s = x1x2, we obtain

σBSM
inel (s) = σinel(s)

∑

i,j

∫

dx1dx2fi(x1)fj(x2)x1x2

(

1−
M2

χ

ŝ

)

. (5.9)

Consistency of this model derivation gains support by noting that as either Mχ → 0 or s →
∞, we recover the SM cross section (recalling that

∑

i

∫

dxfi(x)x = 1 expresses conservation of
momentum when the momentum of the parent nucleon is partitioned among partons).

Let us introduce the ratio z ≡ σinel/σtot. As suggested by the black disk limit, z → 1
2 as s → ∞.

However, data for the LHC
√
s = 7 TeV run, and cosmic ray data in the vicinity of

√
s = 57 TeV

suggest that z is well (and conservatively) approximated as a constant z ≈ 0.7 [37].3 Our interest
is the upcoming

√
s = 14 TeV LHC run, for which z ≈ 0.7 is the appropriate value.

Finally, we arrive at our model of new physics:

h2(s,Mχ) = z
∑

i,j

∫

x1x2>M2
χ/s

dx1dx2fi(x1,Mχ)fj(x2,Mχ)x1x2

(

1−
M2

χ

ŝ

)

. (5.10)

Of course, the pdfs fi(x,Q) also depend on the transfer energy Q, which we take to be Mχ. For
our numerical work with pdfs, we use the CT10 parton distribution functions [52].

3We note that while z ≈ 0.7 at LHC and Auger energies, the fit from [37] has z → 0.509 ± 0.021 as s → ∞ as
expected from the black disk limit; z converges to 1

2
rather slowly on the scale of presently accessible energies.
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Note that this model has a vanishing cross section right at threshold, (at ŝ = M2
χ), due to the

(1−M2
χ/ŝ) phase space ffactor, and due to the vanishing parton distributions at threshold. Thus,

ρ is finite for all E values, including the peak at E = Etr. Furthermore, the rise from threshold is
very slow, a notable feature of the h2 model. This slow rise in h2 is evident in fig. 5.1. We find
that the slow rise is due to the suppressed pdfs near threshold; the phase-space reduction factor
contributes a negligible suppression to the rise. We conclude that any deep inelastic model with
partons as initial state particles will experience a similar slow rise from threshold. Finally, we note
from eq. 5.10 that h2 has a finite asymptotic value. In particular, lims→∞ h2 = z. For our purposes
we have fixed z at 0.7, yet extrapolating z as s → ∞ likely gives z = 1

2 . This discrepancy in the
constant value of z does not affect our results as IDRs are only sensitive to the local effects of the
machine energy. In addition, we note that for comparison with Auger cross section measurements
at 57 TeV, for new physics Mχ = 1, 5, 10 TeV we have h2(57 TeV) = 0.32, 0.053, 0.0099 respectively,
while the fractional uncertainty in σtot at 57 TeV is ∼ 0.21 [23].

5.4 A Diffractive Model of New Physics

An alternative to the partonic approach presented in §5.3 is to consider general descriptions of pp
inelastic cross sections without reference to partonic substructure. Inelastic cross sections can be
described by the parameter ξ ≡ M2

X/s. MX is defined by first making a pseudorapidity,4 η, cut
at the mean η of the two tracks with the greatest difference in η. MX is then taken as the larger
invariant mass of the two halves. Ref. [53] provides a model form for the inelastic cross section. It
is

dσ

dξ
∝ 1 + ξ

ξ1+ǫ
, (5.11)

where ǫ = α(0)−1 and α(0) is the Pomeron trajectory intercept at t = 0. Values for ǫ are typically
in the [0.06, 0.1] range. We take the mean of this range, ǫ = 0.08, in this part. Next, we note that
1 ≥ ξ > m2

p/s ≡ ξp, since ξmin = ξp describes elastic scattering. To find the total cross section, we
integrate eq. 5.11 across ξ ∈ [ξp, 1] and get

σ ∝
(1− 2ǫ) + (ǫ− 1)ξ−ǫ

p + ǫξ1−ǫ
p

ǫ (ǫ− 1)
. (5.12)

As an interesting aside, we note that to O(ǫ1) in eq. 5.12, the leading energy behavior grows like
log2(s/m2

p), thereby providing the expected asymptotic Froissart growth.5 However, higher order
terms in ǫ lead to higher logarithmic orders, indicating that eq. 5.12 is pre-asymptotic, more than
sufficient for our use since IDRs are most sensitive to local effects.

We now consider a rapidity cluster containing a new particle of mass Mχ. With the substitution
ξp → ξχ ≡ M2

χ/s in eq. 5.12, divided by the SM case, we arrive at the useful ratio

R(Mχ, s) ≡
σBSM
diff

σSM
diff

=
1− 2ǫ+ (ǫ− 1)ξ−ǫ

χ + ǫξ1−ǫ
χ

1− 2ǫ+ (ǫ− 1)ξ−ǫ
p + ǫξ1−ǫ

p
. (5.13)

Next we note the relation in eq. 5.11 describes single dissociative processes, which constitute only
15% of the inelastic cross section. We make the model assumption that the remaining 85% of the
inelastic cross section, including double dissociative and non-diffractive processes, are also governed

4Pseudorapidity, defined by η ≡ − log
(

tan θ
2

)

, provides a measure of the separation of tracks in a detector.
5The log2(s/m2

p) growth is perhaps best revealed by first expanding eq. 5.11 in ǫ, as dσ
dξ

∝ 1+ξ

ξ
(1 − ǫ ln ξ + · · · )

and then integrating.
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by the form in eq. 5.11. Finally, we include the factor z = σinel/σtot ≈ 0.7 described in §5.3, and
make explicit the on-shell requirement M2

χ ≤ s with a Heaviside function, to arrive at our final
model expression

h3(s) = z
1− 2ǫ+ (ǫ− 1)ξ−ǫ

χ + ǫξ1−ǫ
χ

1− 2ǫ+ (ǫ− 1)ξ−ǫ
p + ǫξ1−ǫ

p
Θ(1− ξχ) . (5.14)

As with model h2, model h3 has the desirable feature that the BSM cross section vanishes at
threshold (here, ξχ = 1). Thus, ρ is finite all energies, including the peak at E = Etr.

In fig. 5.1 we see that the h3 model rises more quickly at threshold than the h2 model, but
attains a smaller asymptotic value:

lim
s→∞

h3(s) = z

(

mp

Mχ

)2ǫ

≈ 0.23

(

1 TeV

Mχ

)2ǫ

, (5.15)

i.e., about a 25% increase beyond the SM cross section. This faster rise but lower asymptotic value
for h3 compared to h2 is evident in fig. 5.1. Note that with the appropriate z → 1

2 correction
discussed in the previous subsection, the coefficient drops from 0.23 → 0.16. In addition, we note
that for comparison with Auger results at 57 TeV, for Mχ = 1, 5, or 10 TeV we have h3(57
TeV) = 0.14, 0.080, or 0.058 respectively.
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Chapter 6

Results

For each of the three models discussed in chapter 5, we calculate the effect they have on ρ. The
parameter considered is the fractional increase in ρ, given as ∆ρ/ρ ≡ (ρ− ρSM)/ρSM. This is then
related to the TOTEM results at

√
s = 7 TeV. We consider the mean value from their experiment

as an example signal: ρ = 0.145 (±0.091, 1σ confidence level) is compared to the SM prediction
of ρ = 0.1345, a value which implies a fractional increase of ∆ρ/ρ = 0.0781. The error in the
theoretical calculation of ρ from existing measurements is < 1% [10]. This error is negligibly small
compared to the effects presented here; we are justified in neglecting this error. We also look at the
TOTEM upper limit, given as ρ < 0.32 at the 2σ confidence level, leading to a maximum fractional
increase of ∆ρ/ρ < 1.38 (2σ).

In what follows we conservatively neglect the increase in the elastic cross section due to new
physics. This increase is model dependent. With the simplest assumptions, unitarity yields

σel
σinel

=
η

2− η
, (6.1)

where 0 < η ≤ 1 is a measure of the absorption [54]. In general η may vary with the partial wave
value J . We also note that η = 1 corresponds to the black disk limit, but the LHC is pre-asymptotic.

6.1 Results From the Step Function Model

The step function enhancement of ρ is shown in fig. 6.1. As expected, a shape very similar to that
of fig. 3.2 results. For comparison, the SM behavior of ρ is also shown. Here we have taken D = 1
and

√
str = 20 TeV. We see for a doubling of the cross section at

√
str = 20 TeV, a small increase in

ρ is evident already at an energy an order of magnitude below
√
str = 20 TeV, and that ρ increases

by nearly a factor of four at
√
sobs = 14 TeV.

Next, we look at what range of
√
str and D values will give an large increase in ρ. The left

and right panels of fig. 6.2 show contours of ∆ρ/ρ in the ranges D ∈ [0, 1] and D ∈ [0, 10]. The
D ∈ [0, 1] range of the left panel may be relevant to broken R-parity violating SUSY-like models,
in which some or all of the SM particles might be doubled. The larger D range is plotted in the
right panel, to show the increased reach of IDRs for still larger cross sections, as might be the case
with extra-dimensional models. For the simple case of a step function with a significant increase
in cross section, we see that IDRs offer a very powerful window to physics BSM.

Also displayed in fig. 6.2 are the regions of the generous h1 step function model that are ruled
out at 95% significance by these TOTEM results. The IDR technique is sensitive to a large range
of (

√
str,D) parameter space of the h1 step function model, even with the currently large TOTEM

errors on the IDR independent ρ. In particular, the IDR technique is sensitive to new energy
thresholds well beyond the direct energy reach of the LHC. A minimal inference to be drawn from
the 95% confidence level exclusion in the figure is that the cross section cannot increase particularly
quickly near the LHC energy

√
s = 7 TeV.

Going forward, improvements are planned for the TOTEM optics, which will reduce the errors
on ρ and thereby increase the sensitivity of the IDR toolkit to BSM physics.

Shown also in fig. 6.2 is the contour corresponding to our ρ = 0.145 example signal. Our
example value of ρ is taken from the TOTEM experiment’s inferred mean value. If such a signal
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Figure 6.1: At observational energies around LHC energies, the SM ρ (solid line) remains roughly
constant. Using the step function enhancement h1 with D = 1 and

√
str = 20 TeV, we find a

dramatic increase in ρ well below the new particle threshold. The right panel is an expanded piece
of the left panel with a width of ∼ 500 GeV on each side of the threshold energy, better showing
the asymmetry of ρ about its singular peak value.
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Figure 6.2: At
√
sobs = 7 TeV, the contours are parameterized by ∆ρ/ρ. The form of the

enhancement that includes new physics is h1 – the step function. The left panel considers D in the
range [0,1], which is the relevant parameter space for SUSY-type models. The right panel considers
D values up to 10, relevant for extra-dimensional theories that have arbitrarily large increases in
the cross section. The shaded regions have already been ruled out by TOTEM’s

√
s = 7 TeV

preliminary results. The dotted green contours correspond to the ρ = 0.145 example signal.
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Figure 6.3: The fractional increases in ρ and σ using h2(s) at
√
sobs = 7 TeV, versus Mχ. With

the present significance of ρ data, the exclusion region is well above the top of the graph. The
location of the peak is determined by the pdfs. The dotted green line labeled example presents the
value of ∆ρ/ρ corresponding to the ρ = 0.145 example signature; from intersecting lines, a new
Mχ = 5.1 TeV threshold is predicted.

were statistically and systematically significant, we would expect new physics to show up as an
increase in the pp cross section of height D and threshold

√
str somewhere on this contour. (We

don’t consider a signal of new physics at energies much below the machine energy, as direct detection
of new event topologies or increased cross section would likely provide a better signal than a change
in ρ as inferred through IDRs.)

We now turn to our more realistic models, h2 and h3, describing the onset of new physics. The
h1 model contains two parameters, D and Etr, and so for this model we showed the prediction
for ∆ρ/ρ as a contour plot. With the h2 and h3 models, there is no analog of D, and the only
parameter is Etr. Thus, we may show ∆ρ/ρ and ∆σ/σ for these models as simple ordinates versus
the mass Mχ of the new particle, and we do so. With these models, our enthusiasm for the IDR
approach will be somewhat tempered.

6.2 Results From the Partonic Model

Results for the partonic h2 model are displayed in fig. 6.3, for future runs of the LHC at
√
s = 14

TeV.
For a small range of Mχ values, it is seen that ∆ρ/ρ is significantly larger than ∆σ/σ. However,

at present, the errors on the IDR independent ρ measurement (∆ρ/ρ . 1.38 at 2σ) are much larger
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than the accuracy (∼5%) with which energy-dependent changes in the total cross section can be
inferred, so care is warranted here. From fig. 6.3 we can estimate a region of energy in the 2-5 TeV
range for which ∆ρ/ρ & 0.1 and ∆σ/σ . 0.05.

Our inference is that for new particle masses in the ∼2-5 TeV energy range, IDR independent
measurements of ρ to an accuracy of one part in ten could reveal new physics of the type described
by h2 in section 5.3 at

√
sobs = 7 TeV.

One may wonder why the peak in ρ occurs so far below the machine energy of 14 TeV. The
reason is the slow rise of the BSM cross section due to suppression from the pdfs: a peak at energy
Etr ∼ √

s weighted by the mean value of the parton momenta product, 〈x1x2〉, gives a peak at
roughly an order of magnitude below the machine energy. A second inference is that models with
new physics arising from initial state partons will enhance the value of ρ mainly below the machine
energy. Of course, such models will also enhance the cross section below the machine energy, as
seen in fig. 6.3.

There is still a small increase in ρ at the machine energy of
√
str > 7 TeV due to particle masses

beyond 7 TeV. Beyond the machine energy, it is impossible for direct production to occur, so an
inference of nonzero ∆ρ/ρ > 0 due to particle masses beyond

√
str > 7 TeV would present a unique,

and striking, discovery. Unfortunately, in the h2 model, such an inference does not seem possible,
as ∆ρ/ρ is . 0.01 for new particle masses just beyond 7 TeV. A more optimistic inference is that,
if the cross section were to rise much more quickly than that of the h2 model, as happens with
a Kaluza-Klein tower of new particles, it may be possible to infer such new physics even if the
threshold energies/new masses exceed the LHC energy.

We see that our example signal, plotted in fig. 6.3, implicates a new mass-scale Mχ = 5.1 TeV.
(The example ∆ρ/ρ also crosses the continuous curve at an energy below the machine energy; we
assume that any new physics at this lower energy would be detected through more direct means.)

6.3 Results From the Diffractive Model

Finally, the h3 model is plotted in fig. 6.4 at
√
sobs = 7 TeV. We see a modest contribution to

ρ from the h3 modification, as compared to that of the h2 model. The larger contribution is due
to the faster rise of the h3 model from threshold (str = M2

χ). The non-partonic nature of model
h3 is at the heart of the larger, higher-energy peak. On the other hand, the effect of the smaller
increase as s → ∞ as described by eq. 5.15 can be seen in fig. 6.4 by the fast fall off in ∆ρ/ρ beyond√
s = Mχ.
We note that while no regions of Mχ parameter space can yet be excluded, our example signal

implicates a new Mχ = 9.1 TeV mass-scale. (We again ignore the lower energy crossing, where any
new physics might be probed in a more direct manner.) This ∼ 9 TeV mass-scale has not been
directly probed at the LHC, and likely will be only weakly probed even at the 14 TeV run.
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Figure 6.4: The fractional increase in ρ and σ for the h3 model, at
√
s = 7 TeV. The increase in

ρ compared to its SM value shows a peak of 0.23 at Mχ =
√
sobs. We also see that ρ has increased

compared to its SM value slightly across a range of energies beyond the observation energy. With
the present significance of ρ data, the exclusion region is well above the top of the graph. The
location of the peak is at threshold since h3, like h1, is discontinuous at threshold. The dotted
green line presents the value of ∆ρ/ρ corresponding to the ρ = 0.145 example signature; from
intersecting lines, a new Mχ = 9.1 TeV threshold is predicted.
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Chapter 7

Conclusions

In the h1 and h3 models, the peak sensitivity of ∆ρ/ρ occurs when the new mass/new physics
threshold is right at the machine energy. The sensitivity then falls off rapidly with increasing
mass/threshold. However, the phase space for new particle production with mass at the machine
energy is zero. Thus, a cross section measurement will not show an increase for such a mass value.
However, the ρ-parameter will show a peak increase. Thus, the IDR technique primarily extends
the reach of the LHC, to particle masses at the very end point of the machine energy. The LHC
discovery potential is also extended beyond the machine energy, but with less sensitivity. In the
h2 model, the parton fractional momenta move the peak sensitivity to lower energies (by about
an order of magnitude), thereby lessening the utility of the IDR technique for extending the LHC
discovery potential to the machine energy and beyond.

It appears that this IDR technique may be sensitive to some reasonable models with large
changes to the pp cross section, which have thresholds exceeding the reach of more direct detection.

The outlook for the near future is dependent on new measurements of ρ from experiments like
TOTEM. The

√
s = 8 TeV data from TOTEM is in the process of being analyzed [55], and we

eagerly await data from future LHC runs probing higher energies.
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Appendix

A Minimum Transfer Energy in Two Lights to Light + One Heavy Processes

We need |t| small in h2 (see §5.3) to avoid amplitude suppression by propagators. Here we calculate
the kinematic range of t in the 2 → 2 process p1 + p2 → k1 + k2, with p21 = p22 = k22 = 0 all labeling
SM particles and k21 = M2

χ labeling a new heavy particle. We will see that t = 0 is allowed, leading
to an unsuppressed amplitude for massless particle exchange.

Let θ be the angle between p1 and k1 in the COM frame. Then the transfer energy squared is

t = (p1 − k1)
2 (A.1)

= M2
χ − 2(p01k

0
1 − |p1| |k1| cos θ) , (A.2)

where k01 = k1
2 +M2

χ. So, tmax /min are given by

tmax /min = M2
χ − 2p01k

0
1 ± 2|p1| |k1| , (A.3)

at θ = 0, π respectively. Then we have

p01 =

√
ŝ

2
, k01 =

ŝ+M2
χ

2
√
ŝ

, and (A.4)

|p1| = p01, |k1| =
ŝ−M2

χ

2
√
ŝ

, and so (A.5)

p01k
0
1 =

ŝ+M2
χ

4
, |p1| |k1| =

ŝ−M2
χ

4
. (A.6)

Then, the maximum/minimum values of t are

t = M2
χ −

ŝ+M2
χ

2
±

ŝ−M2
χ

2
=

(

0

M2
χ − ŝ

)

, (A.7)

where t = 0 occurs for the forward scattering θ = 0 case, and the maximum |t| transfer occurs for
the backward scattering θ = π case. The tmin = 0 result confirms that pp → χ+light particles will
favor small |t|.
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Part II

Ultra High Energy Cosmic Ray Anisotropy
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Chapter 8

Introduction

8.1 Introduction

This part of the thesis is focused on ultra high energy cosmic ray (UHECR) anisotropy. A confer-
ence proceeding outlining this work can be found at reference [2]. Two articles on this can be found
at references [3, 4]. The former of those two references is largely contained in chapter 12 while the
later contains the content in the remaining chapters. In the remainder of this chapter we will out-
line the path of this part and motivate the study of UHECR anisotropy as well as discuss previous
anisotropy searches. In chapter 9 we discuss the relevant modern UHECR experiments and the
parameters used for the comparison between partial sky ground based experiments and space based
full sky experiments. We present the tools we will be using to search for anisotropies in chapter 10.
In chapter 11 we discuss the various approaches for reconstructing dipolar and quadrupolar aniso-
tropies for experiments with full sky or partial sky exposure. Chapter 12 explains how anisotropies
on certain scales, the quadrupole for the relevant experimental parameters, can be reconstrcuted
for ground based partial sky experiments while using the simpler and more accurate approaches
designed only for space based full sky experiments. We discuss the difficulties of distinguishing
between dipoles and quadrupoles with partial sky experiments and how they are resolved by full
sky experiments in chapter 13. Chapter 14 contains the results of the general comparison between
full sky and partial sky experiments and chapter 15 contains our conclusions.

8.2 Motivation

Pierre Auger kicked off the field of high energy cosmic ray research when he realized that extensive
air showers (EASs) implied the existence of very high energy cosmic rays in 1938 [56]. At the
highest energies, ∼ 1020 eV, the flux drops to about one event per square kilometer per century.
Measuring this flux requires extremely large experiments as have been built and proposed, see
chapter 9.

Despite measuring the cosmic ray flux up to and beyond energies of 1020 eV (1011 GeV, 100
EeV), determining their properties has been less successful. It is unknown if the UHECRs6 are
protons or heavier nuclei [57, 58] or what their sources are. It is also unknown if the apparent
suppression that lines up with that predicted from the GZK phenomenon is, in fact, due to the
GZK phenomenon or if sources naturally end at the same energy. The properties of galactic [59,60]
and extragalactic magnetic fields [61] are also poorly understood with the latter being nearly
completely unconstrained. Finally, the sources and acceleration methods of UHECRs are not yet
understood and most models struggle to account for both the large maximum energy of UHECRs
and the flux at those energies [62–67].

In light of this impressive list of unknowns, determining the sources of UHECRs is a top priority
in disentangling these related questions. Once the identification of UHECR sources is complete, the
path towards understanding the remaining questions will become more clear. To this end, however,
little progress has been made. While Auger has noted some weakly significant signals [68], their
current status is unclear [69]. TA recently found a 20◦ “hotspot” [70] at global significance of

6UHECR typically means E & 1019 eV or so, although this varies in the literature.
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3.4σ with an expanded data set. None of these analyses have yet identified the source of UHECRs
despite a plethora of different search techniques.

In this part, we take a simplifying approach. We attempt to maximize the ability for experiments
to identify any deviation from isotropy using a maximally generalized mathematical framework.
We adopt spherical harmonics as a tool to identify anisotropies at varying scales and address the
strengths and weaknesses of them at partial sky ground based experiments and full sky space based
experiments.

8.3 Previous Anisotropy Searches

No all sky observatory has yet flown. Consequently, the first full sky large anisotropy search
was based on combined northern and southern hemisphere ground based data. The respective
data came from the SUGAR [71] and AGASA [72] experiments, taken over a 10 year period. No
significant deviation from isotropy was seen by these experiments, even at energies beyond 4×1019

eV [73]. More recently, the Pierre Auger Collaboration carried out various searches for large scale
anisotropies in the distribution of arrival directions of cosmic rays above 1018 eV (an EeV) [74,75].
At the energies exceeding 6 × 1019 eV = 60 EeV, early hints for a dipole anisotropy existed, but
these hints have grown increasingly weaker in statistical strength [76]. The latest Auger study was
performed as a function of both declination and right ascension (RA) in several energy ranges above
1018 eV. Their results were reported in terms of dipole and quadrupole amplitudes. Assuming that
any cosmic ray anisotropy is dominated by dipole and quadrupole moments in this energy range, the
Pierre Auger Collaboration derived upper limits on their amplitudes. Such upper limits challenge
an origin of cosmic rays above 1018 eV from long lived galactic sources densely distributed in the
galactic disk [77]. In the E > 8 EeV bin, they did report a dipolar signal with a p value of 6.4×10−5

(not including a “look elsewhere” penalty factor) [78]. Their cutoff of ∼ 8 EeV is above the galactic
to extragalactic transition energy of ∼ 1 EeV, but still below the GZK cutoff energy of ∼ 55 EeV.
Also, Telescope Array (TA), the largest cosmic ray experiment in the northern hemisphere, has
reported a different weak anisotropy signal above their highest energy cut of 57 EeV [70].
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Chapter 9

Experiments

The Pierre Auger Observatory is an excellent, largest in its class, ground based experiment. How-
ever, in the natural progression of science, it is expected that eventually ground based observation
will be superseded by space based observatories. The Extreme Universe Space Observatory (EUSO)
is proposed to be the first of its class, space based observatory, building upon ground based successes.
In this chapter we outline the relevant parameters of the two main ground based experiments, the
Pierre Auger Observatory and the Telescope Array, and a proposed space based experiment, the
Extreme Universe Space Observatory.

9.1 Current Ground Based Experiments

The largest cosmic ray experiments currently are the Pierre Auger Observatory (Auger) and the
Telescope Array (TA). These experiments will be the focus of this section.

9.1.1 Pierre Auger Observatory

The Pierre Auger Observatory (Auger) is situated in Argentina at 35.2◦S, 69.5◦W and is a hybrid
detector designed to detect the extensive air showers (EASs) that result from the interaction of
UHECRs and air particles using the atmosphere as a calorimeter. The experiment is made up of
a surface detector (SD) and a fluorescence detector (FD). The SD is a collection of 1,600 tanks
covering an area of 3,000 km2. As a useful comparison, this is roughly the size of the state of
Rhode Island. The tanks of water are about a meter deep and a meter and a half in radius
to detect Cherenkov radiation charged particles with photomultiplier tubes and a reflective inner
surface.

At about 1 km from the core of the EAS, muons saturate the signal, while the contribution from
photons and electrons is negligible [79,80]. The FD is a collection of 24 telescopes positioned across
four sites overlooking the SD array. The FD is designed to measure the light yield from nitrogen
fluorescence of EASs on dark moonless nights [81]. This provides a more accurate calorimetric
measurement that is then used to calibrate the SD for the remaining of the data [79].

A major success of this experiment is the measurement of the flux suppression above ∼ 4×1019

eV due to the so called GZK7 phenomenon [82–84]. The focus of UHECR anisotropy is in looking
at the events with energies large enough that their sources must be relatively nearby due to the
GZK phenomenon – this typically means with E & 55 EeV which implies d . 100 Mpc. Above
these energies anisotropies are expected to appear.

9.1.2 Telescope Array

Telescope Array (TA) in Utah at 39.3◦N, 112.9◦W provides a northern hemisphere complement to
the southern hemisphere’s Auger. TA is also a hybrid detector with a similar FD design as Auger
with three sites each composed of multiple telescopes overlooking the SD array [85]. The TA SD

7The GZK process is where high energy protons lose energy when scattering off the cosmic microwave background
radiation (CMB), mainly resonantly through a ∆ baryon: p+γCMB → ∆ → N+π. There are also additional channels
for protons to lose energy by scattering off the CMB, including higher ∆ resonances and alternate decay channels
that typically include more pions.
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array covers an area of 700 km2 made up of 507 SDs. The TA SDs are plastic scintillators which
detect the electromagnetic component of showers [86]. In addition to covering the other part of
the sky, TA also complements Auger by providing an important systematic check on Auger for key
UHECR observables such as the spectrum of the flux and the composition of the UHECRs.

Recently, TA has announced the location of a “hotspot” – a 20◦ window with a slightly higher
flux than expected – with global significance of 3.4σ [70].

9.1.3 Partial Sky Exposure

The exposure functions of ground based experiments cover only part of the sky, and are highly
nonuniform across that part of the sky that they do see.

The relative exposure of a ground based cosmic ray experiment [87] is given explicitly by,

ω(δ) ∝ cos a0 cos δ sinαm + αm sin a0 sin δ

with αm ≡











0 for ξ > 1

π for ξ < −1

cos−1 ξ otherwise

and ξ =
cos θm − sin a0 sin δ

cos a cos δ
.

(9.1)

Both Auger and TA are fully efficient at energies above 10 EeV [88], well below the threshold
typically considered for UHECRs, ∼ 50 EeV. The exposure is seen to depend on two experimental
parameters, the latitude of the experiment, termed a0 in conventional language, and the exper-
iment’s acceptance angle, θm. Also appearing in the formula is δ, the declination at which the
relative exposure is to be calculated. Auger’s latitude is −35.2◦, and θm = 80◦ is the new [69]
maximum zenith angle Auger accepts. The corresponding numbers for TA are a0 = 39.3◦; the
value of θm varies across the literature, but does not affect this analysis – we take it to be θm = 45◦

from [89]. We have assumed that any longitudinal variation in exposure due to weather, down time
of the machine, etc., is a random process whose average is independent of right ascension (RA).
Thus, the detector is effectively uniform in RA. Auger recently modified their acceptance from
θm = 60◦ → 80◦ with the extension calculated using a different metric. The S(1000) technique is
used for zenith angles θ ∈ [0◦, 60◦], and the N19 muon based technique is used for the new range,
θ ∈ [60◦, 80◦]. These inclined events extend Auger’s reach up to a declination on the sky of +45◦,
as can be seen in fig. 9.1. In contrast, a space based observatory such as EUSO would see in all
directions with nearly uniform exposure as shown in fig. 9.2. Throughout this work we will take
EUSO’s exposure to be exactly flat since the corrections are small.

9.2 Future Space Based Experiments

Proposals currently exist for all sky, space based cosmic ray detectors such as the Extreme Universe
Space Observatory (EUSO) [90] and the Orbiting Wide Angle Lens (OWL) [91]. In addition, work
is currently underway to combine datasets from the two large ground based experiments, Auger in
the southern hemisphere and TA in the northern hemisphere [88]. This work will use EUSO as the
example for a full sky observatory, but our conclusions will apply to any full sky observatory.

EUSO is a down looking telescope optimized for near ultraviolet fluorescence produced by
extended air showers in the atmosphere of the Earth in a similar fashion to the FDs of Auger
and TA. EUSO was originally proposed for the International Space Station (ISS), where it would
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Figure 9.1: Auger’s exposure function normalized to
∫

ω(Ω)dΩ = 4π. Note that the exposure is
exactly zero for declinations 45◦ and above.
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collect up to 1000 cosmic ray events at and above 55 EeV (1 EeV = 1018 eV) over a 5 year lifetime,
surpassing the reach of any ground based project.

It must be emphasized that because previous data from ground based experiments were so
sparse at energies which would be accessible to EUSO, upper limits on anisotropy were necessarily
restricted to energies below the threshold of EUSO. EUSO expects many more events at ∼ 1020

eV, allowing an enhanced anisotropy reach. In addition, EUSO would observe more events with a
higher rigidity R = E/Z, events less bent by magnetic fields which may be helpful in identifying
point sources on the sky.

EUSO brings two new, major advantages to the search for the origins of UHECRs. One advan-
tage is the large field of view (FOV), attainable only with a space based observatory. With a 60◦

opening angle for the telescope, the down pointing (“nadir”) FOV is

π(hISS tan(30
◦))2 ≈ h2ISS ≈ 150, 000 km2 . (9.2)

We will compare the ability to detect large scale anisotropies at a space based, full sky exper-
iment with that of a ground based partial sky experiment. For reference, we will use the largest
ground based cosmic ray observatory, Auger [92]. Thus the proposed EUSO FOV, given in eq. 9.2, is
50 times larger for instantaneous measurements (e.g., for observing transient sources). Multiplying
the proposed EUSO FOV by an expected 18% duty cycle, yields a time averaged nine fold increase
in acceptance for the EUSO design compared to Auger, at energies where the EUSO efficiency has
peaked (at and above & 50−100 EeV). Tilting the telescope turns the circular FOV given in eq. 9.2
into a larger elliptical FOV. The price paid for “tilt mode” is an increase in the threshold energy
of the experiment.

The second advantage of a space based experiment over a ground based one is the coverage
of the full sky (4π steradians) with nearly constant exposure and consistent systematic errors on
the energy and angle resolution, again attainable only with a space based observatory. This part
compares full sky studies of possible anisotropies to partial sky studies. The reach benefits from
the 4π sky coverage, but also from the increased statistics resulting from the greater FOV.

9.3 Event Rates

The 231 event sample published by Auger over 9.25 years of recording cosmic rays at and above
∼ 52 EeV [69] allows us to estimate the flux at these energies. The annual rate of such events at
Auger is ∼ 231/9.25 = 25. For simplicity, we consider a 250 event sample for Auger, as might be
collected over a full decade.

Including the suppressed efficiency of EUSO down to ∼ 55 EeV reduces the factor of 9 relative
to Auger down to a factor ∼6 for energies at and above 55 EeV. We arrive at the 450 event sample
as the EUSO expectation at and above 55 EeV after three years running in nadir mode (or, as is
under discussion, in tilt mode with an increased aperture but a reduced number of photons). A 750
event sample is then expected for five years of EUSO running in a combination of nadir and tilt
mode. Finally, the event rate at an energy measured by TA is known to significantly exceed that
of Auger. This leads to a five year event rate at EUSO of about 1000 events. Thus, we consider
the motivated data samples of 250, 450, 750, and 1000 events in the simulations that follow.
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Chapter 10

Tools for Anisotropy Searches

10.1 Spherical harmonics

The real spatial event distribution, I(Ω), normalized to
∫

dΩI(Ω) = 1, can be expressed as the sum
of spherical harmonics,

I(Ω) =
∞
∑

ℓ=0

∑

|m|≤ℓ

amℓ Y m
ℓ (Ω) , (10.1)

where Ω denotes the solid angle parameterized by the pair of zenith (θ) and azimuthal (φ) angles.
The Y m

ℓ ’s are the angular part of the solution to Laplace’s equation in spherical coordinates. They
can be enumerated as

Yℓm(θ, φ) = (−1)m

√

2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
P ℓ
m(x)eimφ , (10.2)

where P ℓ
m is the associated Legendre polynomial. The set {Y m

ℓ } is complete, and so the expansion
eq. 10.1 is unique. Besides being complete, the set {Y m

ℓ } is also orthonormal, with orthonormality
condition

∫

dΩY m1

ℓ1
(Ω)Y m2∗

ℓ2
(Ω) = δℓ1ℓ2δm1m2

. (10.3)

The asterisk denotes complex conjugation of the spherical harmonic; the complex Y m
ℓ ’s satisfy the

relation Y m
ℓ

∗ = (−1)m Y −m
ℓ . Since the Y 0

ℓ are real, so are the a0ℓ , while those with m 6= 0 are,
in general, complex. The amℓ coefficients contain all the information about the flux distribution.
Inversion of eq. 10.1 gives the coefficients

amℓ =

∫

dΩY m
ℓ

∗(Ω) I(Ω) . (10.4)

This relation makes it clear that a0ℓ is real (since Y 0
ℓ is real), and that amℓ , m 6= 0, is complex

(because Y m
ℓ , m 6= 0, is complex).

In practice the observed flux is the sum of Dirac delta functions,

Ī(Ω) =
1

N

N
∑

i=1

δ(ui,Ω) , (10.5)

where {ui}Ni=1 is the set of N directions of cosmic rays and the Dirac delta function is defined on
the sphere in the usual fashion,

∫

f(u)δ(u,v)du = f(v) , (10.6)

for some function on the sphere f . This allows us to estimate the coefficients in eq. 10.4 as

āmℓ =
1

N

N
∑

i=1

Y m∗
ℓ (ui) , (10.7)
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where ui is the unit direction vector to the ith cosmic ray, 1 ≤ i ≤ N . āmℓ converges to the actual
amℓ as N → ∞.

The lowest multipole is the ℓ = 0 monopole term which contains no anisotropy information.
The normalization of the all sky event distribution to unity fixes the value a00 = 1√

4π
. Guaranteed

by the orthogonality of the Y m
ℓ ’s, the higher multipoles (i.e., ℓ ≥ 1) when integrated over the whole

sky equate to zero. Their coefficients amℓ , when nonzero, correspond to anisotropies.

10.1.1 Dipole Overview

Dipoles excite the specific spherical harmonics corresponding to Y m
1 , with the three Y m

1 ’s propor-
tional to x̂, ŷ, and ẑ. A dipolar distribution is theoretically motivated by a single point source
producing the majority of UHECRs whose trajectories are subsequently smeared by galactic and
extragalactic magnetic fields.

With full sky coverage it is straightforward to reconstruct the dipole moment so long as the
exposure function is always nonzero (and possibly nonuniform). For the full sky case (EUSO), we
use the description presented in §11.1.1, which even allows for a nonuniform exposure, provided
that the flux does not become too close to zero anywhere on the sky.

Reconstructing any anisotropy, including the dipole, with partial sky exposure is challenging.
One approach for dipole reconstruction is that presented in §11.2.1. We refer to this approach
as the AP method. We note that continuing the AP approach becomes very cumbersome for
reconstructing the quadrupole and higher multipoles. Another approach for reconstructing any
Y m
ℓ with partial coverage is presented in §11.2.2, which we refer to as the K-matrix approach. A

comparison of these approaches is presented in §11.2.3

10.1.2 Quadrupole Overview

The physically motivated quadrupoles are characterized by the spherical harmonics corresponding
to Y 0

2 ∝ 3z2 − 1. Y 0
2 represents an anisotropy that is maximal along the equator and minimal

along the poles (or, depending on the sign of a02, the opposite). Such a distribution is motivated by
the presence of many sources distributed along a plane, such as is the case with the supergalactic
plane. As a real, physical example of a well known source distribution distributed with a quadrupole
contribution, we calculate the power spectrum, Cℓ, (defined in eq. 10.8 which quantifies the the
anisotropy of a distribution at each ℓ) as might be seen at the Earth for the 2MRS catalog of
the closest 5310 galaxies above a minimum intrinsic brightness [12]. The catalog contains redshift
information and contains all galaxies above a minimum intrinsic brightness out to z = 0.028 ∼ 120
Mpc. As such, it is reasonable to suppose that UHECRs come from these galaxies and, for simplicity,
we implement uniform flux from each galaxy.

In the left panel of fig. 10.1 we show the power spectrum that results for the known physical
locations of these galaxies. In the right panel we show the power spectrum that results when
each galaxy is weighted by the number of events expected from it, i.e., by the inverse square of
the distance to the galaxy, a 1/d2 weighting. We remark that for the closest ∼ 200 galaxies, the
distance to each galaxy is known better from the direct “cosmic distance ladder” approach than it
is from the redshift, and we use these direct distances. For the farther galaxies, direct distances
are less reliable, and we use the redshift inferred distances. In this way, we also avoid any (possibly
large) peculiar velocity contributions to the redshifts of the nearer galaxies.

It is instructive to compare the two panels. Without the 1/d2 weighting (left panel), the intrinsic
quadrupole nature of the distribution of 2MRS galaxies dominates the power spectrum; C2 exceeds
the other Cℓ’s in the panel by a factor of & 5. In the right panel, galaxies are weighted by their
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Figure 10.1: The power spectrum (see eq. 10.8) for nearby galaxies out to z = 0.028 (to d = 120
Mpc) based on their positions (left panel), and weighted according to 1/d2 (right panel). The
2MRS catalog [12] includes a cut on Milky Way latitudes |b| < 10◦ which is accounted for in the
calculation of the power spectrum, see appendix B. C2 is large because the galaxies roughly form
a planar (quadrupolar) structure; C1 in the right panel is large because we are not in the center of
the super cluster, thereby inducing a dipole contribution. (The relative scale between the ordinates
of the two figures carries no information.)

apparent fluxes so the closest galaxies dominate. The large dipole is due to the proximity of Cen
A, and the fact that the next closest galaxy, M87, is ∼ 4 times farther from the Earth. When
determinations of the Cℓ’s are made, it is likely to be the dipole and quadrupole that will first
emerge from the data based on the distributions of nearby galaxies. This quantifiably motivates
our choice made in this part to examine the dipole and quadrupole anisotropies. While the actual
distribution is likely a combination of dipole and quadrupole components, throughout this part we
consider the simpler cases where the distribution of sources has either a pure dipole anisotropy or
a pure quadrupole anisotropy.

The quadrupole distribution that will be considered in this part is of the form I(Ω) ∝ 1−B cos2 θ
for 0 ≤ B ≤ 1, aligned with a particular quadrupole axis where θ is the angle between the axis
and Ω. The quadrupolar distribution is a linear combination of the monopole term Y 0

0 and Y 0
2

oriented along the quadrupole axis. The distribution has two minima at opposite ends of the
quadrupole axis and a maximum in the plane perpendicular to this axis. The quadrupolar data
and the reconstruction of the quadrupole axis are shown in the lower panel of fig. 10.3.

For the full sky case, we will use the method outlined by Sommers in [87] and §11.1.2 to recon-
struct the quadrupole amplitude and axis. As discussed in chapter 12, it is possible to accurately
reconstruct the quadrupole moment for experiments with partial sky exposure at particular lat-
itudes, independently of their exposure function. This is because there is very little quadrupole
moment in the exposure function. By some chance, Auger is exactly at the optimal latitude in
the southern hemisphere, and TA is very close to the optimal latitude in the northern hemisphere.
Therefore we can use Sommers’s technique for quadrupole reconstruction of both full sky EUSO
and partial sky Auger.
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Figure 10.2: Nodal lines separating excess and deficit regions of sky for various (ℓ,m) pairs. The
top row shows the (0, 0) monopole, and the partition of the sky into two dipoles, (1, 0) and (1, 1).
The middle row shows the quadrupoles (2, 0), (2, 1), and (2, 2). The bottom row shows the ℓ = 3
partitions, (3, 0), (3, 1), (3, 2), and (3, 3).

10.2 Power Spectrum

The power spectrum is defined as

Cℓ ≡
1

2ℓ+ 1

ℓ
∑

m=−ℓ

|amℓ |2 , (10.8)

The following subsections discuss various properties of the power spectrum.

10.2.1 Nodal Lines

A Y m
ℓ with a nonzero m corresponds to 2 |m| longitudinal “slices” (|m| nodal meridians) on the

sky. There are ℓ − |m| + 1 latitudinal “zones” (ℓ − |m| nodal latitudes). In fig. 10.2 we show the
partitioning described by some low multipole moments. Useful visualizations of spherical harmonics
can also be found in [93]. The configurations with (ℓ,−|m|) are related to those with (ℓ,+|m|) by
a longitudinal phase advance φ ⇒ φ+ π

2 , or cosφ ⇒ sinφ.
A simple approximation for the number of cosmic rays necessary to resolve power at a particular

level is to count the number NZ(ℓ,m) of nodal zones in each Y m
ℓ . Each Y m

ℓ has

NZ(ℓ,m) =

{

ℓ+ 1 m = 0

2|m|(ℓ− |m|+ 1) m 6= 0
, (10.9)

nodal zones. The average over m of the number nodal zones at a given ℓ is,

〈NZ(ℓ)〉 =
ℓ+ 1

3(2ℓ+ 1)
(2ℓ2 + 4ℓ+ 3) . (10.10)

For low values of ℓ, this returns the obvious results,

〈NZ(ℓ = 0)〉 = 1 , 〈NZ(ℓ = 1)〉 = 2 . (10.11)
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For large ℓ,

〈NZ(ℓ)〉 →
ℓ2

3
. (10.12)

If we make the simple assumption of requiring O(1) event per nodal zone to resolve a particular
term in the power spectrum, then, for large ℓ we require ∼ ℓ2/3 events to resolve Cℓ. Thus, the rule
of thumb is that our EUSO fiducial samples of 450, 750, and 1000 events can resolve the Cℓ’s up
to an ℓ value of the mid 30’s, mid 40’s, and mid 50’s, respectively, i.e., (using θ ∼ 90◦

ℓ ) can resolve
structures on the sky down to 2− 3◦. A ground based observatory, due to having fewer events and
no full sky coverage, would do much worse. We note that the statistical error in angle estimated
here for EUSO event numbers is well matched to the expected systematic angular resolution error
∼ 1◦ of EUSO.

10.2.2 Proof of the Rotational Invariance of the Power Spectrum

While calculating the coefficients of the spherical harmonics, the amℓ ’s, is useful, the amℓ ’s suffer
the disadvantage that they are frame dependent. The spherical harmonics coefficients, the amℓ ’s
given in eq. 10.1, are clearly coordinate dependent, as a simple rotation in the φ coordinate will
change the eimφ part of the spherical harmonic for m 6= 0, and a rotation in the θ coordinate will
change the associated Legendre polynomial part Pm

ℓ (θ) for ℓ 6= 0. So only the ℓ = m = 0 monopole
coefficient is coordinate independent.

To combat this problem of rotational noninvariance of the spherical harmonic coefficients, we
turn to the power spectrum, defined in eq. 10.8. While it may be intuitive that the Cℓ should be
rotationally (coordinate) invariant, this attribute is not obvious. The purpose of this subsection is
to prove the rotational invariance of the power spectrum.

For a discrete set of sources, the normalized intensity function is given by eq. 10.5. In terms of
spherical harmonics, one finds that the spherical harmonic coefficients are given by eq. 10.7 where
ui is the unit direction vector to the ith cosmic ray, 1 ≤ i ≤ N .

To construct the estimation of the associated power spectrum, we square these amℓ ’s followed
by a sum over m:

C̄ℓ ≡
1

2ℓ+ 1

∑

|m|≤ℓ

|āmℓ |2

=
1

N2(2ℓ+ 1)

∑

|m|≤ℓ

∣

∣

∣

∣

∣

N
∑

i=1

Y m∗
ℓ (ui)

∣

∣

∣

∣

∣

2

.

(10.13)

Since the sums are finite they may be rearranged and expanded to

C̄ℓ =
1

N2(2ℓ+ 1)

N
∑

i=1

∑

|m|≤ℓ

|Y m
ℓ (ui)|2 ++

2

N2(2ℓ+ 1)

∑

i<j

∑

|m|≤ℓ

Y m∗
ℓ (ui)Y

m
ℓ (uj) . (10.14)

The addition formula [94] for spherical harmonics is

Pℓ(x · y) = 4π

2ℓ+ 1

∑

|m|≤ℓ

Y m∗
ℓ (x)Y m

ℓ (y) , (10.15)

where Pℓ(cos θ) is the Legendre polynomial. Since Pℓ(1) = 1, setting the unit direction vectors x

and y to be equal in eq. 10.15, one gets

2ℓ+ 1

4π
=
∑

|m|≤ℓ

|Y m
ℓ (x)|2 . (10.16)
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Combining eqs. 10.14, 10.15, and 10.16 gives

C̄ℓ =
1

4πN
+

1

2πN2

∑

i<j

Pℓ(ui · uj) . (10.17)

Experimentally only āmℓ and C̄ℓ may be measured, but these are estimates of their continuous
counterparts amℓ , Cℓ respectively. Finally, since inner products are invariant under rotations, the
Cℓ are also invariant under rotations. This completes the proof.

10.3 Anisotropy Measure

Commonly, a major component of the anisotropy is defined via a max/min directional asymmetry,

α ≡ Imax − Imin

Imax + Imin
∈ [0, 1] . (10.18)

A dipole (plus monopole) distribution is defined by a dipole axis and an intensity map given by

I(Ω) ∝ 1 +A cos θ , (10.19)

where θ is the angle between the direction of observation, denoted by Ω, and the dipole axis. This
form contains a linear combination of the Y m

1 ’s. In particular, a monopole term is required to keep
the intensity map positive definite. One readily finds that the anisotropy due to a dipole is simply
αD = A.

A quadrupole distribution (with a monopole term but without a dipole term) is similarly defined,
as

I(Ω) ∝ 1−B cos2 θ . (10.20)

In the frame where the ẑ axis is aligned with the quadrupole axis, the quadrupole contribution is
composed of just the Y 0

2 term. In any other frame, this Y 0
2 is then related to all the Y m

2 ’s, by the
constraint of rotational invariance of the Cℓ’s mentioned above. In any frame, one finds that the
anisotropy measure is

αQ =
B

2−B
, (10.21)

and the inverse result is

B =
2α

1 + α
. (10.22)

An advantage of using a spherical harmonic based approach to anisotropy is that it is model
independent. See [95] for a discussion of anisotropies as seen by full sky experiments for two
different source models.

Sample sky maps of dipole and quadrupole distributions are shown in fig. 10.3 for both full sky
acceptance and for Auger’s acceptance, along with the actual and reconstructed symmetry axes.
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Figure 10.3: Shown are sample sky maps of 500 cosmic rays. The top row corresponds to the
αD,true = 1 dipole, while the bottom row corresponds to the αQ,true = 1 quadrupole distribution.
The left and right panels correspond to all sky, space based and partial sky, ground based coverage,
respectively. The injected dipole or quadrupole axis is shown as a blue diamond, and the recon-
structed direction is shown as a red star. We see that reconstruction of the multipole direction
with an event number of 500 is excellent for an all sky observatory (left panels) and quite good
for partial sky Auger (right panels). In practice, αD and αQ are likely much less than unity, and
the event rate for all sky EUSO is expected to be ∼ 9 times that of Auger. Both effects on the
comparison of Auger and EUSO are shown in figs. 14.1 and 14.2.
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Chapter 11

Reconstructing Anisotropies

Detecting any deviation from isotropy in UHECRs has been a long sought after goal. For example,
at high energies above the GZK suppression, the anisotropies are expected to reveal the distribution
of cosmic ray sources among nearby galaxies. One common approach for measuring anisotropies is
to partition the sky into regions of various sizes with the use of spherical harmonics. The low order
spherical harmonics correspond to simple structures. The lowest nontrivial order, ℓ = 1, called the
dipole, may correspond to a single source where the cosmic rays have been smeared out by magnetic
fields during propagation. The next order, ℓ = 2, called the quadrupole, can correspond to a planar
distribution of sources, such as might be the case if the sources are spread across the galactic
or supergalactic plane. Unfortunately partial sky experiments cannot, in principle, distinguish
between dipoles and quadrupoles. For example, Auger would see a dipole with a maximum towards
the north pole as a band of maxima along the equator and would be indistinguishable from a planar
quadrupole with the same axis.

11.1 Full Sky Coverage

Reconstructing the spherical harmonics in general, including the quadrupole anisotropy magnitude
arising from a planar distribution of sources, is straightforward with full sky (even nonuniform)
coverage. In this section we will explain the standard approaches in the literature for reconstructing
the ℓ = 1, 2 spherical harmonics with full sky coverage. We also present a new approach for
reconstructing a quadrupole with either full or partial sky coverage that is more transparent than
the standard approach.

11.1.1 Sommers’s Approach for Dipoles

P. Sommers presented a straightforward approach to reconstruct dipolar anisotropies with full sky
coverage but possibly nonuniform exposure, hereafter referred to as Sommers’s approach [87]. Given
N events at directions û(i) with relative exposures ωi at each event, under the assumption that ω
is zero nowhere on the sphere, the dipole anisotropy magnitude and direction is given simply by

αDDa =
3

N
N
∑

i=1

1

ωi
u(i)a , (11.1)

where i ∈ {x, y, z}, D̂ is the unit vector in the dipole direction, and

N =

N
∑

i=1

1

ωi
, (11.2)

is the appropriate normalization factor given the relative exposure.

11.1.2 Sommers’s Approach for Quadrupoles

P. Sommers also presented an approach to reconstruct quadrupolar anisotropies with full sky cov-
erage but possibly nonuniform exposure, hereafter referred to as Sommers’s approach [87]. He
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presents his quadrupolar matrix,

Sab =

∫

I(Ω)uaubdΩ , (11.3)

with a, b ∈ {x, y, z}, so ua is a particular component of u. For discrete sources, this can be estimated
in the typical fashion,

Sab =
1

N
N
∑

i=1

1

ω(ui)
u(i)a u

(i)
b , (11.4)

with N given by eq. 11.2. Then, for λ1 < λ2 < λ3 the eigenvalues of S,

∆ =
λ2 + λ3

2
− λ1 , ξ =

2− 10∆

2 + 5∆
. (11.5)

Finally, the anisotropy from a quadrupolar distribution is given by,

αQ =
1− ξ

1 + ξ
. (11.6)

11.1.3 New Approach for Quadrupoles

Sommers outlines one method for calculating the anisotropy from a pure quadrupolar distribution
[87] as discussed in §11.1.2. His approach assumes full sky (possibly nonuniform) exposure. Based
on the results from chapter 12, that same approach can be applied for Auger and TA by ignoring
their exposure.

Since the power spectrum is rotationally invariant as shown in §10.2.2, we can consider a new
alternate derivation of the quadrupole strength. Begin by choosing a coordinate frame that aligns
the z-axis with the symmetry axis of the quadrupole. Then only a00 and a02 are nonzero.

In terms of Cartesian coordinates,

Y 0
2 = A(3z2 − 1) , (11.7)

with A = 1
4

√

5
π . The intensity function in Cartesian coordinates aligned with the quadrupole axis

is
I = B(1− Cz2) , (11.8)

where the normalization requirement sets 1
B = 4π(1 − C

3 ). We then invert eq. 11.7 to write the
intensity as a function of Y 0

0 and Y 0
2 .

I =
1√
4π

Y 0
0 − BC

3A
Y 0
2 . (11.9)

In the coordinate frame where the quadrupole symmetry axis is aligned with the z axis, only a00
and a02 are nonzero and are given by eq. 11.9. Then a02 = −

√
5C2 where we used the definition of

the power spectrum from eq. 10.8 and the sign is because a02 in eq. 11.9 is negative definite. This
form is reminiscient of some aspects of that presented by Sommers in §11.1.2.

Then we have a new prescription to find αQ as defined in eq. 10.18. First calculate the power
spectrum for ℓ = 2 in any coordinate frame for data with either full sky coverage or from experiments
at latitudes 30◦ . |a0| . 40◦ (see chapter 12 for further discussion on reconstructing quadrupoles
with partial sky exposure). Then get a02 and then find C as described in eq. 11.9 and this gives αQ

from eq. 12.21.
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Figure 11.1: 500 directions were simulated with a quadrupolar distribution aligned in a random
direction, and with Auger’s exposure. Here, αQ is set to unity. The quadrupole strength was
then reconstructed with each of the two techniques. This process was repeated 1000 times. Both
approaches are correlated - that is when one approach gives a small value of α, the other will as
well.
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We compare this approach to that described by Sommers in [87]. We note that this new
technique does not provide directional information, which is available in the eigenvectors of the Q
tensor as described by Sommers. A plot of the comparison is shown in fig. 11.1 of the reconstructed
quadrupole amplitude. The results are consistent with each other. In particular, the means and
standard deviation for each approach are 1.033 ± 0.099 for this new approach and 1.017 ± 0.098
for Sommers’s approach, compared to a correct value of 1. The nonnegligible deviations in the
reconstructed values are not due to the small corrections mentioned in eq. 12.19, rather they are
due to the fact that a discrete sampling with finite N number of delta functions of a continuous
distribution tends to lend itself to larger anisotropies. Nonetheless, this approach has value due to
its straightforward derivation from the power spectrum.

11.2 Partial Sky Coverage

Reconstructing spherical harmonics with partial sky coverage complicates things dramatically com-
pared to the full sky case. While the techniques in the literature for dealing with the dipole on
partial sky coverage are fairly simple, those for a quadrupole are not [75, 96, 97]. In this section
we present two approaches for reconstructing dipoles with partial sky coverage and a comparison
of the two. We present no approach for reconstructing the quadrupole with partial sky coverage
because we will show in chapter 12 that either of the full sky approaches presented can be used for
partial sky due to the particular locations of the two ground based UHECR experiments.

11.2.1 AP Approach for Dipoles

J. Aublin and E. Parizot presented one approach for reconstructing dipoles with partial sky an-
isotropy, hereafter referred to as the AP approach [98]. We summarize the AP approach in this
subsection. They made the important observation that the nonuniformity of the exposure function
of ground based experiments is much less important than the regions where it is zero.

They begin by defining a number of useful intermediate variables.

d = cos θmin − cos θmax , (11.10)

s = cos θmin + cos θmax , (11.11)

p = cos θmin × cos θmax , (11.12)

γ =
s2 − p

3
, (11.13)

where θmin = 90◦−θm−a0 and θmax = 90◦. Next, they calculate the zeroth and first order moments
of the flux.

I0 =

∫ θmax

θmin

dθ sin θ

∫ 2π

0
dφΦ(u) , (11.14)

I =

∫ θmax

θmin

dθ sin θ

∫ 2π

0
dφuΦ(u) . (11.15)
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From this they invert and find that the dipole magnitude and direction is given by

αDDx =
Ix

sIz − 2γI0

γ − p

γ − 1
, (11.16)

αDDy =
Iy

sIz − 2γI0

γ − p

γ − 1
, (11.17)

αDDz =
sI0 − 2Iz
sIz − 2γI0

. (11.18)

This approach provided a significant improvement over the standard at the time, which was a one
dimensional Rayleigh analysis which discards all declination information [99].

11.2.2 K-matrix Approach

P. Billoir and O. Deligny present an approach to reconstruct anisotropies of any order hereafter
referred to as the K-matrix approach [97]. They begin by writing down the K-matrix for a given
exposure function (generally defined for ground based experiments in eq. 9.1),

[K]mm′

ℓℓ′ =

∫

dΩY m
ℓ (Ω)ω(Ω)Y m′

ℓ′ . (11.19)

This matrix describes how the exposure function ω causes the various spherical harmonics to
interfere. From this the uncorrected spherical harmonic coefficients observed at a ground based
experiment,

bmℓ =

∫

dΩY m∗
ℓ (Ω)ω(Ω)I(Ω) , (11.20)

can be exactly related to the true spherical harmonic coefficients,

amℓ =

∫

dΩY m∗
ℓ (Ω)I(Ω) , (11.21)

by the relation

bmℓ =
∑

ℓ′,m′

[K]mm′

ℓℓ′ am
′

ℓ′ . (11.22)

Of course, we are interested in turning uncorrected coefficients into true coefficients which involves
inverting an infinite matrix. To this end, an ℓmax must be introduced to truncate the matrix. This
approach is completely generalizable to calculate any ℓ. Once the estimate of the true coefficients
are acquired, the anisotropy measure can be calculated using either Sommers’s approach for full sky
discussed in §11.1.1 for dipoles or the new approach presented in §11.1.3 for quadrupoles, although
we will show in chapter 12 that the K-matrix step can be skipped for partial sky experiments
with certain experimental parameters, which both Auger and TA satisfy when they are measuring
quadrupoles. A numerical comparison of this approach applied to reconstructing dipoles and the
AP approach presented in §11.2.1 is presented in §11.2.3.

11.2.3 Comparison of Partial Sky Dipole Approaches

§11.2.1 and §11.2.2 present the AP and K-matrix approaches, respectively, for reconstructing
dipoles measured at a ground based partial sky experiment. We compare these two approaches to
determine which optimally reconstructs a given dipole distribution. Our result is most clearly pre-
sented in fig. 11.2. We consider 500 cosmic rays with a dipole distribution of magnitude αD,true = 1
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Figure 11.2: We simulated 500 cosmic rays with a dipole of amplitude of αD,true = 1 pointing in
a random direction, and with the Auger exposure. Then we reconstructed both the direction and
the dipole amplitude 500 times with both reconstruction techniques (AP and K-matrix). In the
left panel we show a histogram of the reconstructed values of αD,true, and in the right panel the
angle (in degrees) between the correct dipole direction and the reconstructed direction.

oriented in a random direction. Using Auger’s exposure map, we then reconstruct the strength of
the dipole using each method. This entire process was repeated 500 times. The reconstructed values
of αD are αD,rec = 1.017± 0.104 and αD,rec = 1.009± 0.084 for the AP and K-matrix approaches,
respectively, where the uncertainty is one standard deviation. The mean angles between the actual
dipole direction and the reconstructed dipole direction are θ = 9.25◦ and θ = 6.41◦ for the AP and
K-matrix approaches respectively. The the results of the two approaches are comparable. Since the
K-matrix approach does slightly better than the AP method, we will use the K-matrix approach
for partial sky dipole reconstructions in what follows.
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Chapter 12

Reconstructing Quadrupoles at the With Partial Sky Coverage

In this chapter we present a new formalism for reconstructing anisotropies. This formalism has
some similarities to the K-matrix approach presented in §11.2.2, but it allows for experiments to
take advantage of terms that may happen to be zero.

The result of this chapter is two fold. The first is that exposure function of Auger (and,
to a lesser extent, TA) has no quadrupole component. The next is that this fact is enough to
reconstruct a quadrupole with a partial sky experiment with essentially the same accuracy of a full
sky experiment. These claims will be derived analytically in this chapter and verified numerically
in chapter 14.

12.1 Square Brackets

We will continue to use the notation presented in §11.2.2, where the bmℓ are the uncorrected co-
efficients observed at earth, and āmℓ , b̄mℓ are the approximate coefficients from the sum of discrete
sources that approximates the true flux.

Instead of writing down an infinite matrix to relate amℓ , bmℓ , we take a different approach. We
first expand the exposure function in spherical harmonics,

ω(Ω) =
∞
∑

ℓ=0

∑

|m|≤ℓ

cmℓ Y m
ℓ (Ω) , (12.1)

where the cmℓ coefficients can be calculated by

cmℓ =

∫

dΩY m∗
ℓ (Ω)ω(Ω) . (12.2)

Again, the c0ℓ ’s are real and the cmℓ ’s, m 6= 0, are complex. From the normalization of the exposure
function given above, we infer that c00 = 4πY 0

0 =
√
4π. The key ingredient of this chapter will

be the claim that the c02 coefficient, the amount of quadrupole in the Auger and TA exposure
functions, is nearly zero (and so can be neglected). Furthermore, the normalization choice on the
directly inferred event distribution implies that

∑

ℓ,m(am∗
ℓ cmℓ ) = 1 where

∑

ℓ,m is shorthand for
∑∞

ℓ=0

∑m=+ℓ
m=−ℓ (or in a related notation, for

∑∞
ℓ=0

∑

|m|≤ℓ). Since we have seen that a00 and c00 are
real with a product equal to unity, this constraint may be written as

∑

ℓ≥1,m(am∗
ℓ cmℓ ) = 0.

We pause here to collect the inferences of our normalization choices. The a0ℓ , b
0
ℓ , and c0ℓ ’s are

real. The amℓ , bmℓ , and cmℓ ’s with m 6= 0 are complex. In addition, the monopole coefficients are
fixed to be a00 = b00 = 1√

4π
and c00 =

√
4π. The sum

∑

ℓ≥1,m(am∗
ℓ cmℓ ) is zero. We also recall the

definitions of the various coefficients:

amℓ ⇒ Nature’s true distribution,

bmℓ ⇒ seen by a partial sky experiment,

cmℓ ⇒ the partial sky exposure function.

Inserting eqs. 10.1 and 12.1 into eq. 11.20 yields

bmℓ = (−1)m
∑

ℓ1,m1

∑

ℓ2,m2

am1

ℓ1
cm2

ℓ2

[

ℓ1 ℓ2 ℓ
m1 m2 −m

]

, (12.3)
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where we define our bracket as8

[

ℓ1 ℓ2 ℓ3
m1 m2 m3

]

≡
∫

dΩY m1

ℓ1
(Ω)Y m2

ℓ2
(Ω)Y m3

ℓ3
(Ω) . (12.6)

It is clear from the integral definition of the bracket that the bracket is invariant under the
interchange of indices. As is well known, this bracket, or triple Y m

ℓ integral, is non vanishing only
if several important requirements are met [94]. The first is that m1 + m2 + m3 = 0, the m-rule.
The next is that |ℓi − ℓj | ≤ ℓk ≤ ℓi + ℓj for different i, j, k, the triangle inequality rule. The third
is that ℓ1 + ℓ2 + ℓ3 must be even, the parity rule.

Eq. 12.3, relating the inferred anisotropy coefficients (bmℓ ’s) to the true coefficients (amℓ ’s) and
exposure coefficients (cmℓ ’s), is completely general.

The exposures of ground based experiments are essentially constant in the equatorial coordinate
“right ascension” (RA). Therefore, expansions of the exposure have non-vanishing coefficients only
when the m-value of the cm2

ℓ2
expansion coefficient is zero, i.e., m2 = 0. Thus, for experiments with

constant efficiency in RA, we may remove the m summations in eq. 12.3 to get

bmℓ = (−1)m
∑

ℓ1

∑

ℓ2

amℓ1c
0
ℓ2

[

ℓ ℓ1 ℓ2
m −m 0

]

. (12.7)

With m2 identically zero, the m-rule then requires m1 = m, i.e. inferred bmℓ and true amℓ1 will share
the same m-value. However, the ℓ values will in general differ.

The values of nonzero, independent brackets with ℓ values up to four, and one m value equal to
zero, are listed in tables C.1 and C.2 of appendix C. It is seen that the brackets remain sizable even
as ℓ increases. In particular, the brackets with one ℓ1 or ℓ2 equal to ℓ and the other equal to zero
retain their value 1√

4π
for all values of ℓ by orthonormality. The cutoff in the summation in eq. 12.7

must therefore come from the amℓ and c0ℓ coefficients. The set of amℓ ’s are determined by Nature and
are awaiting discovery by our experiments. The set of c0ℓ ’s are determined by the location (latitude)
of the ground based experiment, and by the experiment’s opening angle of acceptance on the sky,
and are thus more amenable to providing information about a cutoff.

Since exposures are relatively smooth functions of declination, fits to exposures will be dom-
inated by lower multipoles (small ℓ values). Moreover, as the ground based experiment moves
farther from the equator, the symmetry about the equator of its exposure function decreases; this
latter fact diminishes the participation of even parity (even ℓ) multipoles in the fits. Thus, we
expect the dominant fitted multipole to be the ℓ = 1 dipole, characterized by c01 (in tandem with
an ℓ = 0 monopole to ensure a positive definite flux across the sky).

8The triple Y m
ℓ integral is equal to a product of Clebsch-Gordan coefficients,

∫

dΩY m1

ℓ1
(Ω)Y m2

ℓ2
(Ω)Y m

ℓ (Ω) = N(ℓ1, ℓ2, ℓ)× (−1)m 〈ℓ1ℓ2;m1m2|ℓ;−m〉 , (12.4)

where the normalization factor N depends only on the ℓ’s and not on the m’s

N =

√

(2ℓ1 + 1)(2ℓ2 + 1)

4π (2ℓ+ 1)
× 〈ℓ1ℓ2; 00|ℓ; 0〉 . (12.5)

The triple Y m
ℓ integral is also related to Wigner’s 3j symbol. But our bracket notation is more streamlined for the

present problem.

51



12.2 Low Order Multipoles

In this section we look at several illuminating cases of eq. 12.7 for various small values of ℓ (which
corresponds to the scale of the observed coefficient, bmℓ ). We have seen that the inferred monopole
(ℓ = 0) is simply given by normalization to be b00 =

1√
4π
.

The inferred dipole expansion is more interesting. With ℓ = 1, the triangle rule and the parity
rule restrict the values of, say ℓ2 relative to ℓ1, to be ±1. From eq. 12.7, the dipole sum becomes

bm1 = (−1)m
∑

ℓ1

∑

Z=±1

amℓ1c
0
ℓ1+Z

[

1 ℓ1 ℓ1 + Z
m −m 0

]

. (12.8)

We learn a lesson here, that an inferred dipole can be “faked” by a non-dipole multipole when
multiplied by a multipole component of the exposure differing by one unit of ℓ. As with any
angular momentum addition, a true multipole and an exposure multipole can add constructively
or destructively.

Finally, we write down the expansion for the inferred quadrupole. Here the triangle rule and
the parity rule restrict ℓ2 to be equal to ℓ1 or to differ from ℓ1 by two. The result is

bm2 = (−1)m
∑

ℓ1

∑

Z=0,±2

amℓ1c
0
ℓ1+Z

[

2 ℓ1 ℓ1 + Z
m −m 0

]

. (12.9)

Here we learn that an apparent quadrupole can also be faked by a true multipole and a multipole
moment of the experimental exposure. For example, a true monopole event distribution (a00) would
appear without correction as a quadrupole (bm2 ) if the experimental exposure were quadrupolar
(c02). To take a more relevant example, a true dipole distribution observed with a dipole exposure
(c01) may appear as a quadrupole distribution (bm2 ).

Experiments with less than 4π exposure, which includes all ground based experiments, are
subject to this ambiguity. Assumptions, such as which particular moments Nature chooses to
present, must be made. There are two ways around this ambiguity. Both ways require all sky
coverage. The first way is to consider space based experiments, such as EUSO. The second way is
to combine data from different experiments so that the whole sky is effectively observed. The latter
method introduces the sticky problem of combining experiments which have different systematic
errors and requires the usage of “fudge” parameters. Combining the data of Auger and TA is an
example of the latter approach [88].

12.3 Vanishing Quadrupole Component of the Exposure Function

We turn now to our claim that the quadrupole component of the Auger and TA exposure func-
tions (i.e., the c02 coefficient) is nearly zero in equatorial coordinates at the latitudes of these two
experiments. This claim is neither clear nor automatic.

To understand the plausibility of vanishing c02, notice that if experiments were near the equator,
then their exposures would show a clear Y 0

2 shape aligned along the pole. On the other hand, if
the experiments were at a pole, there would be a quadrupole moment in the exposure, although
the exposure would only sense half of it. Moreover, the value of c02 for an experiment at a pole
would have the sign of c02 opposite to that of an experiment at the equator. Therefore, we infer
that there is some latitude δ in each hemisphere at which c02 must vanish. That unique |δ| at which
c02 vanishes turns out to be very near the latitudes of Auger and TA, as we now show.

In fig. 12.2, we show the first four spherical harmonic coefficients for the exposure function
of ground based (fixed latitude δ) experiments. The values of ℓ 6= 2 are included for scale and
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Figure 12.1: The relative exposure of Auger as a function of declination. Note that the exposure
is zero for declinations above 45◦. The dashed line is the dipole contribution; the contributions
from the higher order multipoles are comparatively small as shown in fig. 12.2.
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Figure 12.2: In the left panel are the coefficients of the experimental exposure, expressed in terms
of spherical harmonics at various latitudes, with θm = 60◦ fixed. In the right panel are the same
coefficients in terms of θm, with a0 = −35.2◦ fixed to the Auger latitude. In the right panel, the
solid green ℓ = 2 line lies nearly on top of the c0ℓ = 0 line, which implies not only that c02 is nearly
vanishing at the Auger latitude, but also that it is independent of θm.
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comparison. The left panel plots the first four c0ℓ coefficients versus the experimental latitude a0, in
degrees. It is seen that the ±latitude for which c02 vanishes agrees very accurately with the latitudes
of Auger and TA. In fact, Auger’s latitude is −35.21◦ (termed a0 in conventional notation), while
the unique latitude at which c02 vanishes is −35.26◦. The difference between these two latitudes is
∼ 7 km – much smaller than the scale of Auger. That is, the latitude at which c02 vanishes runs
right through Auger.

It is also seen that the higher ℓ coefficients are small. The values of the fitted coefficients c00,
c01, c

0
2, c

0
3, and c04 at the Auger latitude, and with the Auger opening angle of 80◦, are

√
4π, −2.42,

−0.003, 0.019, and 0.218, respectively.
The dependence on the acceptance angle θm is shown in the right panel of fig. 12.2. Note that

the c02 curve is zero to within the line thickness of the plot for all θm. It is seen that variations in
this angle does not affect this vanishing of c02 at the Auger latitude.

At Auger’s latitude, we see that the largest exposure coefficient in magnitude is c01, and that it
is negative. This agrees with the expectation from fig. 12.1, which appears to be largely dipolar in
Nature. (We also note that at the equator c01 vanished, while c02 is large as expected. We briefly
comment on this case in §12.8.)

A conceptual complication is that the exposure function is necessarily evaluated in equatorial
coordinates, while anisotropies of interest are best considered in galactic coordinates. Any rotation
in coordinates mixes the set of (2ℓ + 1) Y m

ℓ ’s with fixed ℓ. However, it is possible to reconstruct
anisotropy information in the coordinate frame of one’s choosing by using the rotationally invariant
(see §10.2.2) power spectrum defined in eq. 10.8.

12.4 A Simplifying Cutoff

Armed with the result that the Auger exposure is dominantly dipole (c01) in shape, with a for-
tuitously small quadrupole (c02 ≪ c01), and small higher multipoles, we expand the dipole and
quadrupole sums up to order ℓ2 = 2. This is high enough order to reveal the gift that comes with
the justified neglect of c02 for Auger and TA.

Applying a cutoff at ℓ2 = 2 in the expansion of the exposure function, eqs. 12.8, and 12.9 are

bm1 = δm0
c01
4π

+ am1 + (−1)m
{

am1 c02

[

1 1 2
m −m 0

]

+am2 c01

[

1 2 1
m −m 0

]

+ am3 c02

[

1 3 2
m −m 0

]}

, (12.10)

and

bm2 = δm0
c02
4π

+ am2 + (−1)m
{

am1 c01

[

2 1 1
m −m 0

]

+ am2 c02

[

2 2 2
m −m 0

]

+ am3 c01

[

2 3 1
m −m 0

]

+am4 c02

[

2 4 2
m −m 0

]}

. (12.11)

With |c02(δ, θm)| set to its minimum value of zero, a very good approximation for the latitudes
of Auger and TA, we get

bm1 = δm0
c01
4π

+ am1 + (−1)mam2 c01

[

1 2 1
m −m 0

]

, (12.12)
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and

bm2 = am2 + (−1)mc01

{

am1

[

2 1 1
m −m 0

]

+ am3

[

2 3 1
m −m 0

]}

. (12.13)

The dependence of bm1 on am3 , and the dependence of bm2 on am4 , has vanished with c02 set to zero.
However, the uncorrected dipole bm1 still depends on c01 and am2 , in addition to am1 ; while the
uncorrected quadrupole bm2 depends on c01 and am1 , and am3 , in addition to am2 .

From the fit to the Auger exposure function, the value of c01 is −2.42. All of the nonzero brackets
in eqs. 12.12 and 12.13 have a factor of (−1)m, and in absolute value are ∈ [0.18, 0.26]. Thus the
observed bmℓ , a mixture of the actual amℓ ’s, actually contain significant influence from amℓ ’s with
other ℓ and m values.

We now consider further simplifications on top of the cutoff in the expansion of the exposure
function. If it is assumed that Nature’s distribution of sources is a true dipole (plus monopole, of
course), then all amℓ vanish except for am1 . Then the dipole and quadrupole eqs. 12.12 and 12.13
become simply

bm1 = δm0
c01
4π

+ am1 , (12.14)

and

bm2 = (−1)mam1 c01

[

2 1 1
m −m 0

]

, (12.15)

reasserting the notion that the bmℓ include a mixture of the amℓ . Here the correction to the dipole
term is numerically −0.193δm0 in eq. 12.14 and in eq. 12.15 it is bm2 = −0.611am1 ,−0.529am1 , 0 for
|m| = 0, 1, 2 respectively. Thus the corrections may well be quite significant.

On the other hand, if it is assumed that Nature’s distribution of sources is a true quadrupole
(plus monopole), then all amℓ vanish except for am2 , and the dipole and quadrupole eqs. 12.12–12.13
become simply

bm1 = δm0
c01
4π

+ (−1)mam2 c01

[

1 2 1
m −m 0

]

, (12.16)

and
bm2 = am2 . (12.17)

Then the dipole term will be notably nonzero, while the quadrupole will be reconstructed correctly
and exactly without accounting for the exposure function in any fashion (including the initial cutoff
at ℓ2 > 2).

The b̄mℓ ’s are determined experimentally and in the limit of N → ∞, b̄mℓ = bmℓ . Thus, eqs. 12.12–
12.13 could be inverted to yield the desired amℓ ’s. That approach – applying an ℓ2 cutoff to the
expansion of the exposure function and inverting – is similar to the K-matrix approach described
in §11.2.2. The mixing of coefficients shows up in the K-matrix approach as taking the inverse of
a non-diagonal matrix.

The description presented here has two slight advantages over the K-matrix approach. First,
the symmetries making some terms equivalent or zero are made explicit by the properties of the
bracket object. Second, the fact that c02 is zero or sufficiently small for Auger and TA respectively
can be explicitly taken advantage of. While the K-matrix approach is easily extended to arbitrary
order in the ℓ2 cutoff, the resolution falls off very quickly as the cutoff ℓ2 is increased; the practicality
of the approach fails for ℓ2 & 2. Auger uses this K-matrix approach, but only up to a cutoff of
ℓ2 = 2. Auger obtains a result easily reproduced here.

In the next section of this chapter, we follow a similar path, but we include the full expansion
of the exposure function and consider the case when Nature provides just a quadrupole anisotropy.
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12.5 Pure Quadrupole

When a pure quadrupole moment distribution is assumed, only the reconstructed bmℓ=2 terms are
of interest. The pure quadrupolar flux distribution is given by IQuad(Ω) =

1
4π +

∑2
m=−2 a

m
2 Y m

2 (Ω).
Then the near vanishing of c02 for Auger and TA leads to the simple relation

bm2 = am2 (−1)m
{

c00

[

2 2 0
m −m 0

]

+ c04

[

2 2 4
m −m 0

]}

. (12.18)

The first bracket is (−1)m/
√
4π and so the first term is simply am2 . According to values from

table C.1 of appendix C, the second bracket is f(m)/7
√
4π, where f(m) = 6, 4, 1 for |m| = 0, 1, 2,

respectively. Inputing these values, the above expression becomes

bm2 = am2

[

1 +
(−1)m c04 f(m)

7
√
4π

]

. (12.19)

Using the Auger exposure function yields the value of c04 fitted to the Auger exposure is 0.218, so
that the final term is 0.0528, −0.0352, and 0.00880 for |m| = 0, 1, 2, respectively. So bm2 ≈ am2 up
to a correction of . 5%. We note that the mixing of the am2 ’s with different m values, mentioned
previously, actually improves the precision here as the errors are smaller and, in general, with
different signs, in the |m| = 1, 2 cases than in the m = 0 case.

To summarize this section, the fortuitous positioning of Auger and TA at mid-latitudes in
the range ±(30 to 40) degrees presents an exposure with no c02 component. In turn, this allows
these experiments to equate the experimental b02 with the true a02 quadrupole coefficient to . 5%,
assuming a negligible true dipole contribution, without any consideration of the experiment’s partial
sky exposure.

The standard technique in the literature to reconstruct the quadrupole moment with full sky
exposure is that outlined by Sommers in [87]. Since Auger and TA’s partial sky exposures can be
ignored when reconstructing a pure quadrupole, we have shown that it is possible to reconstruct
the pure quadrupole amplitude using a uniform exposure technique even when the exposure is
nonuniform. An explicit presentation of a new approach to reconstruct the quadrupole and a
comparison with Sommers’s approach can be found in §11.1.3. We note that for the success of
either approach, the experiment must be at or near the optimal latitude (or the experiment must
have uniform full sky exposure for which it is also the case that c0ℓ = 0 for all ℓ ≥ 1), and all the
multipoles other than the true quadrupole must be small.

12.6 Numerical Verification for the Pure Quadrupole Case

For numerical confirmation that Auger and TA’s exposures do not need to be accounted for when
reconstructing the quadrupole anisotropy measure, we simulate pure quadrupole distributions of
cosmic rays and apply a partial sky exposure at various latitudes. We then reconstruct the pure
quadrupole moment.

The process for generating a quadrupole distribution is to first pick a symmetry axis. Then, we
generate cosmic rays with a flux

I(Ω) ∝ 1−B cos2 θ , (12.20)

where θ is the angle between the symmetry axis and Ω, and B ∈ [0, 1] is some constant. We use
the standard measure for anisotropy defined in eq. 10.18. For a purely quadrupolar distribution,

αQ =
B

2−B
. (12.21)
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Figure 12.3: Quadrupoles with magnitudes shown on the horizontal axis are injected into an
experiment at the shown latitudes. The error bars for the inferred quadrupoles correspond to one
standard deviation over 500 repetitions with a different symmetry axis in each repetition. The
black line is αQ,rec = αQ,true. The behavior of the inference at a0 = −35.2◦ away from the line at
low values of αQ,true is due to random fluctuations. The horizontal shift within one value of αQ,true

for different latitudes is implemented for clarity only.

The reconstructed pure quadrupole magnitude is shown in fig. 12.3 for several true quadrupole
magnitudes and several latitudes. In each simulation, a symmetry axis was randomly chosen. Then
500 cosmic rays were distributed according to the quadrupolar distribution and the experiment’s
exposure at the given latitude. This process was repeated 500 times and the mean and standard
deviation is shown. We see that a0 = −35.2◦ (Auger) reconstructs the quadrupole well. In addition,
a0 = 39.3◦ (TA) reconstructs the quadrupole well (but slightly less so than |a0| = 35.2◦). In between
the two optimal latitudes, a0 = ±35.2◦, we see that the ability to simply reconstruct the quadrupole
moment vanishes by the large discrepancy in the a0 = 0◦ reconstruction attempts. In addition,
locating the experiments closer to the poles also nullifies this effect as seen in the a0 = −60◦ case.
Finally, at a0 = −45◦ we see how this effect begins to fall off as we move outside the 30◦ . |a0| . 40◦

region.

12.7 A Quadrupole Purity Test

In order to determine if a measured quadrupole is pure or if it is tainted by the other spherical
harmonics, we propose a simple statistical test. We only consider contamination from the ℓ = 1
dipole contribution. For a given reconstructed αQ we want to know that the dipole amplitude αD,
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Figure 12.4: Distributions with 500 cosmic rays, Auger’s exposure, maximal quadrupolar an-
isotropy, and varying dipolar anisotropies were simulated. αD was then reconstructed using the
K-matrix approach. Plotted on the vertical axis is the fraction of simulations with αD,rec not
consistent with zero at a 95% confidence level.

our test statistic, is small.
We simulated 500 cosmic rays with Auger’s exposure and maximal quadrupole anisotropy,

αQ = 1. We then added in increasing amounts of dipole contribution, αD and reconstructed αD

using the K-matrix approach defined in §11.2.2. After repeating this process 10,000 times we
counted how often αD,rec was greater than the 95% limit for the αD = 0 pure quadrupole case. The
results are shown in fig. 12.4.

For example, for a dipole contribution corresponding to αD = 0.5 compared with αQ = 1, there
is a 49% chance that αD = 0 could be rejected at the 95% confidence level. As the contaminating
dipole gets weaker, so does this probability.

We see that, as we expected, it is not particularly easy to determine if a quadrupole is pure or
not with partial sky coverage. As shown in eqs. 12.12–12.13, a quadrupolar signal may mimic a
dipolar signal and vice versa.

12.8 Pure Dipole

For completeness, we address the pure dipole analogy to the pure quadrupole discussion of §12.5.
When a pure dipole distribution is assumed, we have IDipole =

1
4π +

∑1
m=−1 a

m
1 Y m

1 (Ω). Then the
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near vanishing of c02 reduces eq. 12.10 to simply

bm1 = δm0
c01
4π

+ am1 , (12.22)

the same result as in the ℓ2 cutoff case shown in eq. 12.14. In the pure quadrupole case, we found
that bm2 was equal to am2 times a multiplicative factor that was within a few percent of unity. Here
we find the equality between am1 and bm1 is exact for m 6= 0, but is broken by an additive factor for
m = 0. The additive factor is neither large nor small, but rather it is −0.193. This additive factor
will also show up with the same relative strength in the power spectrum coefficient C1.

Referring back to fig. 12.2, one sees that an experiment near the equator would have vanishing
c0ℓ ’s except for the quadrupole c02 ∼ −1.08. It is amusing to ask what pure dipole reconstruction
might be possible with such an experimental location. Eq. 12.22 is replaced with the following
equation:

bm1 = am1

{

1 + (−1)mc02

[

1 1 2
m −m 0

]}

= am1 [1 + 0.14(1 − 3δm0)] .

(12.23)

Unfortunately, the multiplicative correction from the now nonzero c02 coefficient is large.
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Chapter 13

Distinguishing Between Dipoles and Quadrupoles

One topic of concern is determining at what significance an injected dipole (quadrupole) distribu-
tion can be distinguished from a quadrupole (dipole), and from isotropy. Generally, the level of
significance will depend on the number of observed cosmic ray events, the strength of the anisotropy,
etc. Fig. 13.1 shows what happens when Auger or EUSO attempt to reconstruct a pure dipole or
a pure quadrupole when the signal is actually the opposite. The mean values and one standard
deviation error bars are derived from 500 repetitions of the given number of cosmic ray events,
where the dipole or quadrupole axis direction is randomly distributed on the sphere. The dashed
lines in each plot are the 95% upper limit for an isotropic distribution (i.e., αtrue = 0). We see
that as the actual anisotropy strength increases, quite a significant region of the parameter space
would show an anisotropy in the absent multipole at the 95% confidence level when reconstructed
by Auger. We also see that the relative size of the error bars reflects the statistical advantage of
space based observatories, while the central values of the data points, falsely rising with αtrue for
Auger but constant for EUSO, reveals the systematic difference of partial sky coverage versus full
sky coverage.

This entire discussion is easily understood in the context of the “interference” of spherical
harmonics which have been effectively truncated on the part of the sky where the exposure vanishes.
The various truncated harmonics interfere heavily, a fact that is built into the K-matrix method
(and into any method that attempts to reconstruct spherical harmonics based on only partial sky
exposure). Even though the true exposure of EUSO won’t be exactly uniform, the fact that it sees
the entire sky with nearly comparable coverage means that the individual spherical harmonics are
noninterfering, and so can be treated independently.
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Figure 13.1: These panels show the results of attempting to reconstruct a dipole (quadrupole)
when there is actually a quadrupole (dipole). The top two panels show the effect of attempting
to infer a quadrupole moment from a pure dipole state of varying magnitudes while the bottom
two panels show the effect of attempting to infer the dipole moment from a pure quadrupole state
of varying magnitudes. The left two panels assume Auger’s partial coverage and 250 cosmic rays,
while the right panels assume uniform exposure and the estimated number of events for EUSO
(450 minimally, and 1000 maximally). The mean values and the one standard deviation error bars
are derived from 500 samplings. Note that the left most data point in each plot (α(D,Q),true = 0)
corresponds to the isotropic case, for which the dashed lines are the 95% upper limit. Finally, note
that the vertical scales vary significantly between the partial sky low statistics and full sky larger
statistics figures.
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Chapter 14

Results

In this chapter we tally our results of the comparison of space based full sky and ground based
partial sky experiments’ abilities to reconstruct anisotropies. The standard procedure involves
simulating a number of cosmic rays with a given dipolar or quadrupolar anisotropy shape and
amplitude (αtrue) aligned in a random direction. We then reconstruct the amplitude (αrec) and
direction (here we assume knowledge of the kind of anisotropy – dipole or quadrupole – unlike in
chapter 13) and compare to the true values. This process is repeated 500 times and the shown
uncertainties are one standard deviation over the 500 repetitions.

14.1 Dipole results

In fig. 14.1 we compare the capabilities of design EUSO and Auger to reconstruct a dipole aniso-
tropy. In this comparison, both advantages of EUSO, namely the increased FOV and the 4π sky
coverage, are evident.

The first panel shows how changing only the exposure function between Auger and EUSO affects
the value of the reconstructed dipole amplitude. For the same number of cosmic ray events, the
EUSO reconstruction is a bit closer to the expected value and has a smaller variation than does the
Auger reconstruction. In the next panel we show the angular separation between the actual dipole
direction and the reconstructed direction for Auger after a maximal amount of Auger data of ∼ 250
cosmic ray events, compared to EUSO’s minimal and maximal data sizes: 450 and 1000 cosmic ray
events, respectively. Even for a pure dipole, Auger will only reach 10◦ accuracy in dipole direction
for a maximum strength dipole, αD = 1, while EUSO does much better. In the third panel we
compare both experiments at the same number of cosmic rays across a range of dipole strengths.
Even if we assume that Auger will see significantly more cosmic rays than it is expected to, it still
has a larger error in its ability to reconstruct a dipole of any amplitude than EUSO. The low dipole
magnitudes will always lead to a small erroneously reconstructed dipole due to random walking
away from zero. Finally, in the fourth panel we show the discovery power of each experiment to
distinguish a dipole amplitude from isotropy. We see that Auger with 250 events would claim a
discovery at five standard deviations above isotropy only if the dipole strength is 0.62 or greater
– a situation that is unlikely given Auger’s anisotropy results to date [88]. EUSO could claim the
same significance if the dipole amplitude is 0.37, 0.30, 0.27, or greater, for 450, 750, or 1000 events,
respectively. The EUSO significance should be enough to probe at high significance the weak signal
currently reported by Auger.

14.2 Quadrupole results

In fig. 14.2 we again compare Auger and design EUSO in the context of quadrupole anisotropies.
The same panels are plotted here as in fig. 14.1 except with an initial quadrupole rather than dipole
anisotropy, and a quadrupole reconstructed. We note that while the increased number of events
that EUSO will detect will certainly lead to a better resolution of the quadrupole amplitude (as
shown in the first and fourth panels) and direction (as shown in the second panel), we see that
the full sky coverage does not provide any benefit in this case (as deduced from the first and third
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Figure 14.1: Reconstruction of the dipole amplitude and direction across various parameters.
Each data point is the mean value (and one standard deviation error bar as applicable) determined
from 500 independent simulations. The dipole amplitude and direction for Auger’s partial coverage
were reconstructed with the K-matrix approach. The ordinate on the fourth panel, αtrue

∆αrec
, labels

the number of standard deviations above αD = 0.

63



panels). This result numerically confirms the claims made in chapter 12 that Auger with c02 = 0
does well with assumed quadrupole.

Even though EUSO gains no benefit from its full sky exposure for the determination of a
quadrupole anisotropy, EUSO’s increased statistics will still lead to a detection sooner than Auger.
Auger with 250 events would only be expected to claim a quadrupole discovery at five standard
deviations above isotropy if the quadrupole strength is 0.67 or greater. EUSO could claim the same
significance if the quadrupole amplitude is 0.47, 0.36, 0.29, or greater, for 450, 750, or 1000 events,
respectively.
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Figure 14.2: Reconstruction of the quadrupole amplitude and direction across various parameters.
Each data point is the mean value (and one standard deviation error bar as applicable) determined
from 500 independent simulations. The quadrupole amplitude and direction for Auger’s partial
coverage and the full sky (EUSO) case were reconstructed with Sommers’s approach using the
result of chapter 12. The ordinate on the fourth panel, αtrue

∆αrec
, labels the number of standard

deviations above αQ = 0.
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Chapter 15

Conclusions

The interesting result from chapter 12, bm2 ≈ am2 as given in eq. 12.19, occurs only in the case where
the experimental latitude is near ±35◦. At these special latitudes, the reconstruction of a pure
quadrupole source distribution is not disadvantaged by partial sky coverage. By a lucky chance,
Auger is located at precisely the correct latitude to benefit from the vanishing of c02. TA’s latitude
is sufficiently close to 35◦ to also benefit.

If Auger and TA reconstruct both a dipole and a quadrupole simultaneously, then the simpli-
fication fails, since both experiments have significant dipole moments in their exposure functions.
The confusion is apparent in the mixing within eqs. 12.12 and 12.13. With any source distribution
that contains more than a single nontrivial multipole, the partial sky coverage inherent in these
ground based experiments exacts a significant price as shown in figs. 14.1 and 14.2.

Considering that an experiment 5◦ away from the optimal latitude reconstructs the quadrupole
well while 10◦ does not, we claim that experiments at latitudes 30◦ . |a0| . 40◦ can reconstruct a
pure quadrupole moment while ignoring their experiment’s particular exposure.

Many well motivated models predict, in the simplest limit, a dipolar or quadrupolar anisotropy
in the UHECR flux. The importance of the two lowest nontrivial orders (ℓ = 1, 2) can be seen from
the 2MRS distribution of the 5310 nearest galaxies that was demonstrated in fig. 10.1. Due to the
lack of any conclusive anisotropy from the partial sky ground based experiments, we explored the
possible benefits that a full sky space based experiment, such as proposed EUSO, has over a ground
based experiment for detecting dipolar or quadrupolar anisotropies. In particular, we see that in
addition to the increased statistics that proposed EUSO brings over any ground based experiment,
proposed EUSO significantly outperforms Auger when reconstructing a dipole. Moreover, for infer-
ences of both the dipole and the quadrupole, partial sky experiments fail to differentiate between
the two due to the mixing of the spherical harmonics when truncated by the exposure function.
This situation is not present with all sky observation, where the exposure function is nearly uniform
and nonzero everywhere.
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Appendix

B b10-cut

The source catalog from the 2MRS [12] has a ‘b10-cut’ applied to it. That is, only galaxies with
|b| > 10◦ are included due to the obscuring effects of our own Milky Way galaxy. In order to
calculate the spherical harmonics correctly on a partial sky-map, this effect can be analytically
considered due to the simple nature of the “exposure map” unlike that of Auger which has a highly
non-linear shape and misses much of the sky.

A uniform intensity distribution is given by

Iu(Ω) =
1

4π
. (B.1)

We then define another distribution over part of the sky by

Iu,<10(Ω) =
1

4π

{

1 | cos θ| < cos(80◦)

0 else
. (B.2)

where θ is the polar angle measured from the galactic north pole. Then the remaining sky looks
like

Iu,>10(Ω) = Iu(Ω)− Iu,<10(Ω) , (B.3)

Iu,>10(Ω) =
1

4π

{

0 | cos θ| < cos(80◦)

1 else
. (B.4)

Next we express the distribution of local galaxies by splitting the sky as expected,

Ig(Ω) = Ig,>10(Ω) + Ig,<10(Ω) . (B.5)

Since there is not complete information about Ig,<10, we replace it with a uniform distribution,

Ig(Ω) = Ig,>10(Ω) + Iu,<10(Ω) . (B.6)

We take the usual definition of amℓ from eq. 10.1,

I(Ω) =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

amℓ Y m
ℓ (Ω) . (B.7)

By orthogonality of the Y m
ℓ ,

amℓ =

∫

Y m
ℓ (u)I(u)dΩ . (B.8)

By linearity, the coefficients are then,

(amℓ )g = (amℓ )g,>10 + (amℓ )u,<10 , (B.9)

where (amℓ )g,>10 is the quantity that will be measured and (amℓ )u,<10 is a correction to be applied
to give the desired quantity (amℓ )g. From eq. B.2 we note that Iu,<10(Ω) isn’t a function of φ and
use

∫

dφeimφ = 2πδm0 . (B.10)
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Figure 15.1: The red x’s are the analytic calculation of eq. B.13 which line up with the large
spikes as expected. On the left is a uniformly generated sky map with a ‘b10-cut’. The data on
the right is the unmodified amℓ ’s calculated from the positions of the galactic data set.

Then we have

amℓ = 2π

√

2ℓ+ 1

4π

∫

Pℓ(x)I(x)d(x)δm0 , (B.11)

where x = cos θ. Next, since Iu,<10(Ω) is even in cos θ and the Pℓ have definite parity, only ℓ = 2k
for 0 < k ∈ Z remain. From eq. B.3,

(a02k)u,>10 = −(a02k)u,<10 0 < k ∈ Z , (B.12)

since (a02k)u = 0 for k > 0. So we have that (amℓ )u,<10 6= 0 only for m = 0, ℓ = 2k and those
coefficients are given by

(a0ℓ )u,<10 =

√

2ℓ+ 1

4π

∫ cos(80◦)

0
Pℓ(x)dx . (B.13)

Numerical confirmation is shown in fig. 15.1. All relevant calculations in the paper have been
modified according to eqs. B.9 and B.13.

C Tables of Low Multipole Square Brackets

Eq. 12.7 describes the general relation between the experimentally inferred raw multipole coefficients
bmℓ , and the true multipole coefficients amℓ and exposure coefficients c0ℓ , in terms of a bracket of the
form

[

ℓ ℓ1 ℓ2
m −m 0

]

, (C.1)

for an experiment with uniform exposure in RA, where we recall from their definition in eq. 12.6 that
the square bracket is the integral of three Y m

ℓ ’s. In this appendix, we list the nonzero, independent
such bracket objects and their values, including all ℓ values up to four in tables C.1 and C.2. We
note that the nonzero brackets remain large in magnitude as ℓ, ℓ1, ℓ2 are increased. In particular,
they do not generally go to zero with increasing ℓ values.
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ℓ ℓ1 ℓ2 m
√
4π

[

ℓ ℓ1 ℓ2
m −m 0

]

(m) (−m) (m2 = 0)

0 ℓ1 ℓ2 = ℓ1 0 1

ℓ 0 ℓ2 = ℓ 0 1

ℓ ℓ1 = ℓ 0 any |m| ≤ ℓ (−1)m

1 1 2 0 2√
5

±1 1√
5

1 2 1 ±1 −
√

3
5

1 2 3 0 3
√

3
35

±1 3√
35

1 3 2 ±1 −3
√

2
35

1 3 4 0 4√
21

±1
√

2
7

1 4 3 ±1 −
√

10
21

2 2 2 0 2
√
5

7

±1 −
√
5
7

±2 −2
√
5

7

2 2 4 0 6
7

±1 4
7

±2 1
7

2 3 1 ±1 −2
√

6
35

±2
√

3
7

2 3 3 0 4
3
√
5

±1 −1
3

√

2
5

±2 −2
3

2 4 2 ±1 −
√
30
7

±2
√
15
7

2 4 4 0 20
√
5

77

±1 −5
√
6

77

±2 −30
√
3

77

Table C.1: Values for independent, non-vanishing brackets with ℓ = 0, 1, and 2, when m2 = 0.
When m = 0 as well, the brackets are symmetric under interchange of any ℓ values.
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ℓ ℓ1 ℓ2 m
√
4π

[

ℓ ℓ1 ℓ2
m −m 0

]

(m) (−m) (m2 = 0)

3 3 2 ±1 − 1√
5

±2 0

±3
√
5
3

3 3 4 0 6
11

±1 − 1
11

±2 − 7
11

±3 − 3
11

3 4 1 ±1 −
√

5
7

±2 2√
7

±3 − 1√
3

3 4 3 ±1 −
√
15
11

±2 −
√
3

11

±3 3
√
7

11

4 4 2 ±1 −17
√
5

77

±2 8
√
5

77

±3
√
5

11

±4 −4
√
5

11

4 4 4 0 486
1,001

±1 − 243
1,001

±2 −27
91

±3 81
143

±4 54
143

Table C.2: Values for independent, non-vanishing brackets for ℓ = 3 and 4, when m2 = 0. When
m = 0 as well, the brackets are symmetric under interchange of any ℓ values.
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