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SUMMARY

Progress in computational drug discovery depends on our ability to process and exclude
large numbers of candidate compounds. This thesis describes the development of new tools
that improve the ability of Rosetta to design the surfaces of small globular proteins (Chap-
ter 1), and to more rapidly and efficiently screen libraries of small molecules for protein
ligand docking (chapters III-1V). A set of appendices (chapters A-F) address the tools and
techniques that are necessary for RosettalLigand to smoothly and efficiently perform High
Throughput Screening (HTS) studies. Additionally, we discuss the development of several
experimental energy functions, and discuss the current issues with these energy functions
and ways to move forward.

Chapter I is an introductory chapter outlining the background and significance of the
research described in the dissertation. Part of this chapter, specifically Section 1.1, was
partially based on text originally published as “Practically useful: what the Rosetta protein
modeling suite can do for you” (Kaufmann et al., 2010), To which I was a contributing
co-first author. The remainder of Chapter I is original to this dissertation.

Chapter II was originally published as “Design of Native-like Proteins through an
Exposure-Dependent Environment Potential” (DeLuca et al., 2011). This chapter describes
the implementation, optimization, and benchmarking of a novel energy term for protein
design. This energy term is a Knowledge-Based Potential (KBP) which computes a score
based on the propensity of an amino acid existing at a given degree of burial within a pro-
tein. A new metric for assessing the quality of designed proteins based on their Position
Specific Scoring Matrix (PSSM) score was introduced. The weights of the RosettaDesign
energy function were then optimized using Particle Swarm Optimization. The resulting op-
timized energy function incorporating the new KBP showed significantly improved protein
designs using the metrics of protein sequence recovery, sequence composition bias, and the

new PSSM recovery metric.
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Chapter III is a draft of a manuscript submitted to PLoS ONE and currently review on
which I will be the sole first author. This manuscript describes improvements in the ability
of RosettalLigand to identify correct ligand binding poses, as well as improvements in the
speed and efficiency of the simulation convergance. Specifically, the initial placement step
of the Rosettaligand algorithm was rewritten to more efficiently sample the binding site
space using a Metropolis Monte Carlo algorithm that simultaneously translates and rotates
the ligand. Code used to translate and rotate the ligand within the binding site was carefully
optimized to improve computational efficiency. The code modifications resulted in a 10-
15% increase in the number of protein targets to which ligands can be successfully docked.
The number of models needed to produce a high quality binding dropped from 1000 to 150,
the compute time for the model dropped from 45-90s to 5-15s. With these improvements
we can now use RosettalLigand for virtual High Throughput Screening (VHTS).

Chapter IV describes a vVHTS protocol which uses predictions generated by the Roset-
taligand protocol described in Chapter III as input into an Artificial Neural Network
(ANN) trained to predict ligand activity and binding affinity. This chapter describes the de-
sign of a set of data for training the ANN model which is both diverse in protein and chem-
ical space and also balanced in chemical space between active and inactive compounds.
A set of Radial Distribution Function (RDF) based fingerprint descriptors representing the
geometric and chemical properties of the protein-ligand interface are introduced. The goal
is to produce a model which is capable of accurately classifying compounds based on activ-
ity. While the ANN models described in this chapter do not significantly improve upon the
performance of RosettalLigand alone, the pattern recognition approach described here has
potential. Potential future research in training set curation, network training methodology,
and descriptor design is described.

Chapter V outlines the findings and future directions of the research presented in the
prior chapters.

Appendix A is an appendix describing the design and usage of a software processing



pipeline I developed to rapidly parameterize large numbers of ligands for input into Roset-
taligand. This pipeline makes it possible to prepare hundreds of thousands of ligands in a
matter of hours in a semiautomated fashion, and is a critical part of the work performed in
[T and IV.

Appendix B is an appendix describing the design of a software system for storing and
retrieving protein structural information generated by Rosetta using a Structured Query
Language (SQL) database. This system was developed in collaboration between myself and
three other members of the RosettaCommons, and decreases the disk space requirements
of Rosettaligand by approximately 99% in a vHTS protocol.

Appendix C is an appendix describing the development of novel scoring grids for use
with the Rosettalligand initial placement algorithm. These scoring grids did not signifi-
cantly improve upon the performance of Rosettal.igand, and the development of effective
KBP based scoring functions for initial placement remains an active area of research. Sev-
eral scoring grids are described here: A set of two dimensional scoring grids designed
to model shape complementarity and hydrogen bonding interactions, and a set of 3 di-
mensional grids designed to model favorable areas of ligand occupancy in the regions sur-
rounding the 20 canonical amino acids. While these scoring grids did not result in improved
performance beyond the results seen in Chapter III, the general techniques may be useful.

Appendix D is a protocol capture document describing the method by which the ex-
periments in Chapter II can be reproduced. This document was originally published as a
supplement to the manuscript (DeLuca et al., 2011).

Appendix E is a protocol capture document describing the method by which the exper-
iments in Chapter III can be reproduced. It will be published along side the manuscript as
supplemental information.

Appendix F is a protocol capture document describing the method by which the exper-
iments in Chapter IV can be reproduced.

Appendix G describes a ligand docking study performed in 2012 in collaboration with
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the Fesik and Chazin labs. In this study, a set of small molecules VHTS hits from Quantita-
tive Structure Activity Relationship (QSAR) studies of Kirsten Rat Sarcoma Virus (KRAS)
and Replication Protein A 70 (RPA70) were docked into crystal structures to predict po-
tential binding modes. In the course of this study, a predicted binding mode that differed
substantially from the binding modes previously experimentally observed. This prediction
is compared to a set of more recent X-Ray crystal structures obtained in 2014.

Appendix H is a discussion of the limitations of the Rosetta atom-typing system when
applied to small drug-like molecules. This appendix includes a discussion of a brief, pre-
liminary investigation performed in 2014 in which molecular orbitals computed with Den-
sity Functional Theory (DFT) were qualitatively compared to the orbital positions assigned

using the method developed by Combs et al.(Combs, 2013)
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CHAPTER1I

Introduction

I.1 Sampling and scoring methods used by the Rosetta software suite
Rosetta is a software package for protein structure prediction and functional design. It has
been applied to predict protein structures with and without the aid of sparse experimental
data, perform protein-protein and protein-small molecule docking, design novel proteins,
and redesign existing proteins for altered function. Rosetta allows for rapid tests of hy-
potheses in biomedical research which would be impossible or exorbitantly expensive to
perform via traditional experimental methods. As a result, Rosetta methods have gained
increasing importance in the interpretation of biological findings from genome projects, the
engineering of therapeutics, probe molecules, and model systems in biomedical research.
While the Rosetta suite is capable of performing a wide range of modeling tasks, it uses
a core set of sampling and scoring strategies to accomplish most of these. The majority of
conformational sampling protocols in Rosetta use the Metropolis Monte Carlo algorithm to
guide sampling. Gradient based minimization is often employed for last step refinement of
initial models. Since each Rosetta protocol allows degrees of freedom specific for the task,

Rosetta can perform a diverse set of protein modeling tasks (Wang et al., 2007).

I.1.1 Sampling strategies for backbone degrees of freedom

Rosetta separates large backbone conformational sampling from local backbone refine-
ment. Large backbone conformational changes are modeled by exchanging the backbone
conformations of 9 or 3 amino acid peptide fragments. Peptide conformations are collected
from the Protein DataBank (PDB) for homologous stretches of sequence (Simons et al.,
1997) which capture the structural bias of the local sequence (Bystroff et al., 1996). For
local refinement of protein models, Rosetta utilizes Metropolis Monte Carlo sampling of

phi and psi angles calculated not to disturb the global fold of the protein. Rohl (Rohl et al.,



2004) provides a review of the fragment selection and backbone refinement algorithms in

Rosetta.

I.1.2 Sampling strategies for side-chain degrees of freedom

Systematic sampling of side-chain degrees of freedom of even short peptides quickly be-
comes intractable (Levinthal, 1968). Rosetta drastically reduces the number of confor-
mations sampled by usage of discrete conformations of side-chains observed in the PDB
(Kuhlman and Baker, 2000; Dunbrack Jr and Karplus, 1993). These “rotamers” capture
allowed combinations between side-chain torsion angles as well as the backbone phi and
psi angles and thereby reduce the conformational space (Dunbrack Jr and Karplus, 1993).
A Metropolis Monte Carlo simulated annealing run is used to search for the combination
of rotamers occupying the global minimum in the energy function (Kuhlman and Baker,
2000; Leaver-Fay et al., 2005). This general approach is extended to protein design by
replacing a rotamer of amino acid A with a rotamer of amino acid B in the Monte Carlo

step.

I.1.3 Rosetta energy function

Simulations with Rosetta can be classified based on whether amino acid side-chains are
represented by super atoms or centroids in the low-resolution mode or at atomic detail in
the high-resolution mode. Both modes have optimized energy functions that have been

reviewed previously by Rohl (Rohl et al., 2004).

I[.1.3.1 Knowledge based centroid energy function

The Rosetta low-resolution energy function treats the side-chains as centroids (Simons
etal., 1997, 1999). This energy function models solvation, electrostatics, hydrogen bonding
between beta strands, and steric clashes. Solvation effects are modeled as the probability
of seeing a particular amino acid residue with a given number of alpha carbons within an

amino acid dependent cutoff distance. Electrostatic interactions are modeled as the proba-



bility of observing a given distance between centroids of amino acids. Hydrogen bonding
between beta strands is evaluated based on the relative geometric arrangement of strand
fragments. Backbone atom and side-chain centroid overlap is penalized providing the re-
pulsive component to a van der Waals force. A radius of gyration term is used to model the
effect of van der Waals attraction. All probability profiles are derived using Bayesian statis-
tics on crystal structures from the PDB. The lower resolution of this centroid-based energy
function smoothes the energy landscape at the expense of its accuracy. This smoother en-
ergy landscape allows structures which are close to the true global minima to maintain a
low energy even with structural defects that a full atom energy function would penalize

harshly.

1.1.3.2 Knowledge based all atom energy function

The all-atom high-resolution energy function used by Rosetta was originally developed
for protein design (Kuhlman and Baker, 2000; Kuhlman, 2003). It combines the 6-12
Lennard Jones potential for van der Waals forces, a solvation approximation (Lazaridis and
Karplus, 1999), an orientation dependent hydrogen bonding potential (Kortemme et al.,
2003), a knowledge based electrostatics term, and a knowledge based conformation depen-
dent amino acid internal free energy term (Dunbrack Jr and Karplus, 1993). An important
consideration when constructing this potential was that all energy terms are pairwise de-
composable. The pairwise decomposition of each of the terms limits the total number of
energy calculations to %N (N — 1) where N is the number of atoms within the system. This
limitation allows pre-computation and storage of many of these energy contributions in the
computer memory which is necessary for rapid execution of the Metropolis Monte Carlo
sampling strategies employed by Rosetta during protein design and atomic-detail protein

structure prediction.



I.2 Protein design using Rosetta

Protein design methods seek to determine an amino acid sequence that folds into a given
protein structure or performs a given function. The protein design problem of finding a
sequence that folds into a given tertiary structure is also known as the “inverse protein
folding problem”. The RosettaDesign (Kuhlman, 2003) algorithm is an iterative process
that energetically optimizes both the structure and sequence of a protein. RosettaDesign
alternates between rounds of fixed backbone sequence optimization and flexible backbone
energy minimization (Kuhlman, 2003). During the sequence optimization step, a Monte
Carlo simulated annealing search is used to sample the sequence space. Every amino acid
is considered at every position in the sequence, and rotamer positions are constrained using
the Dunbrack Library (Dunbrack Jr and Karplus, 1993). After each round of Monte Carlo
sequence optimization, the backbone is relaxed to accommodate the designed amino acids
(Kuhlman, 2003). The practical uses of RosettaDesign can be divided into five basic cate-
gories: Design of novel folds (Kuhlman, 2003), redesign of existing proteins (Korkegian,
2005), protein interface design, enzyme design (Jiang et al., 2008), and prediction of fibril

forming regions in proteins (Thompson et al., 2006).

I.2.1 De novo protein design

The RosettaDesign method has been used for the de novo design of a fold that was not
(yet) represented in the PDB. A starting backbone model consisting of a five stranded
beta-sheet and two packed alpha-helices was constructed with the Rosetta de novo protocol
using distance constraints derived from a two-dimensional sketch (Rohl et al., 2004). The
sequence was iteratively designed with five simulation trials of 15 cycles each. The final
sequence was expressed and the structure was determined using X-ray crystallography.
The experimental structure has an RMSD to the computational design of less than 1.1 A
(Kuhlman, 2003).

Similarly, a molecular switch which folded into a trimeric coiled coil in the absence



of zinc, and a monomeric zinc finger in the presence of zinc was designed by extending
RosettaDesign to simultaneously optimize a sequence in two different folds. The sequence
of an existing zinc finger domain was aligned with a coiled-coil hemaglutinin domain.
During the design protocol the sequence was optimized to fold into both tertiary structures

(Ambroggio and Kuhlman, 2006).

I.2.2 Redesign of existing proteins

When nine globular proteins were stripped of all side-chains and then redesigned using
RosettaDesign the average sequence recovery was 35% for all residues (Kuhlman, 2003).
In four out of nine cases the stability of the proteins improved as measured by chemi-
cal denaturation. The structure of a redesigned human procarboxypeptidase (PDB 1AYE)
(Garcia-Saez et al., 1997) was determined experimentally. RosettaDesign was then used to
systematically identify mutations of procarboxypeptidase that would improve the stability
of the proteins. All of the tested mutants were more stable than the wildtype protein with
the top scoring mutant having a reduction of free energy of 5.2 kcal/mol (Dantas et al.,
2007).

RosettaDesign has also been used to modify the structure of existing proteins. In one
study, the HisF TIM Barrel protein was selected as the basis for the design of a novel
symmetric protein. The backbone structure of half the barrel was duplicated, and Rosetta
was used to redesign the new structure to have both symmetric sequence and structure.
The new protein, named FLR, was expressed and crystallized. The two resulting crystal
structures had RMSDs of 0.49 A and 0.87 A to the computational prediction, demonstrating
the ability of RosettaDesign to make accurate predictions of side-chain conformation and

energies (Fortenberry et al., 2011).



1.3 Existing challenges with protein surface design
I.3.1 Electrostatic energy is insufficient to predict the impact of protein surface mu-
tations

While protein design has had frequent successes, there are outstanding challenges, partic-
ularly with respect to the design of the surfaces of soluble proteins. Solvent interactions
are critical to accurately measuring the electrostatics and stability of protein surfaces (Park
et al., 2004). However, due to the computational complexity associated with explicit sol-
vent modeling, implicit models are frequently used, and may not be sufficiently detailed
to make accurate energetic predictions. Furthermore, the network of interactions between
protein surface residues and the overall stability of the proteins are highly complex. Xiao
(Xjao et al., 2013) demonstrated that while electrostatic surface interactions are important
for stability, the impact of a single mutation on experimentally determined stability fre-

quently cannot be explained by the impact on computed electrostatic energy.

1.3.2 Computationally designed proteins frequently aggregate unless “supercharged”
In addition to issues with stability, computationally designed proteins often have issues with
aggregation. A study was performed in which RosettaDesign was used to fully redesign 10
proteins (Dantas et al., 2003). They found that 4 of the 10 designed proteins formed insol-
uble aggregates at 1 mM concentration. Aggregation appears to be a general phenomenon
affecting protein design, and it has been repeatedly demonstrated that “supercharging” pro-
teins by introducing large numbers of charged surface residues (Simeonov et al., 2011;
Kurnik et al., 2012; Lawrence et al., 2007) can reduce aggregation in designed proteins.
However, “supercharged” proteins are infrequently seen in nature, suggesting that evolved
mechanisms for retaining solubility and avoiding aggregation are more complex. Observa-
tion of the folding properties of supercharged proteins suggest that excessive charging can
inhibit folding (Lawrence et al., 2007), which may have acted as an evolutionary barrier to

natural supercharging.



1.4 The history of ligand docking

1.4.1 Early attempts at hand-docking ligands using physical models

Attempts to model and predict protein-drug interactions date began shortly after the publi-
cation of the X-ray structure of hemoglobin. To this end, Beddell et. al. published a proof
of concept method for structure based drug discovery in 1976 (Beddell et al., 1976). The
method developed by Beddell relied on the manual placement of physical molecular models
into a scale model of the hemoglobin electron density, which allowed the authors to identify
novel compounds with millimolar activity. While the identified compounds were relatively
poor by modern standards, and the method of manual placement into physical models did
not provide a means of postulating mechanism of action, the authors recognized the value

of the new technique, saying:

It has been common practice to design new drugs by modifying the chemical
structure of a known substance which has the desired biological properties, and
this procedure has imposed severe restraints on the choice. However, it is not
necessary for the novel compounds to be related to the original substance when

the structure of the receptor site is already known.

It is remarkable that this observation on the state of rational drug discovery continues to be

relevant, nearly 40 years after it was originally made.

1.4.2 Energy functions for protein-ligand docking

Over the past 40 years, a wide range of energy functions have been developed or adapted
for use in protein-ligand docking. While numerous scoring functions have been developed,
they can be generally categorized into 3 groups: Knowledge-Based, Empirical, and physics
based (Sliwoski et al., 2014). Knowledge-Based scoring functions are derived from sets of
experimental data, and are based on the idea that structures seen more frequently in nature

have a more favorable energy relative to those seen less frequently. Using this concept, it is



possible to model complex physical interactions in a computationally tractable way, even
if the underlying physics and chemistry driving these interactions is poorly understood.

Physics based functions exist at the other end of the spectrum. Physics based functions
are based on newtonian approximations of the quantum-physical interactions that govern
chemical interactions. Typically, these approximations are parameterized using either ex-
perimental information, or information derived from high accuracy quantum mechanical
calculations. Well parametrized physics based scoring functions are capable of making
highly accurate predictions, but rely on detailed knowledge of the underlying physical sys-
tem being modeled. Physics based functions are frequently used for molecular dynamics
calculations, and have been successfully employed in protein-ligand docking as the energy
function used by tools such as DOCK (Kuntz et al., 1982).

Like KBPs, empirical scoring functions are derived from experimental data. However,
rather than attempting to broadly model complex systems, empirical functions are derived
from statistical regressions of specific chemical measurements, such as hydrophobic con-
tacts. FlexX (Rarey et al., 1996) is an example of a ligand docking tool utilizing and
empirical scoring function.

In 2004, a comparative benchmark of nine commonly used scoring functions from all
three categories mentioned above provides some insight into the strengths and weaknesses
of these methods (Ferrara et al., 2004). In the Ferrara et al study, A set of 189 protein-
ligand complexes was used to study the ability of the nine tested scoring functions to cor-
rectly distinguish between correctly and incorrectly docked ligands. Of the tested scoring
functions, CHARMm, DOCK, DrugScore, ChemScore and AutoDock were most effec-
tive at correctly distinguishing between correctly an incorrectly docked models. Of these,
DrugScore is knowledge based, CHARMm and DOCK are physics based, and ChemScore
and AutoDock are empirical. The success of these methods, which had 80-90% success
rates at distinguishing between correctly and incorrectly docked position, indicates that all

three categories of scoring function can be successful when self-docking. DrugScore, as



a knowledge based potential, is relatively insensitive to small changes in protein atom po-
sitions. This insensitivity proved to be advantageous in many cases when distinguishing
between poses in cross-docked ligands. As the effect of cross-docking is to essentially in-
troduce structural noise, the insensitivity of the knowledge based potential to very small
perturbations means that these perturbations do not negatively impact the overall ability of

the system to correctly score the ligand.

1.4.3 An overview of influential protein-ligand docking methods

After the advent of relatively inexpensive general purpose computers in the early 1980s, the
promise of accurate and rapid computational design of novel small molecules has driven
a wide array of research into improved methods for predicting protein-ligand interfaces.
A successful protein-ligand docking tool must solve two basic problems: sampling and
scoring. To effectively solve the sampling problem, the software must be able to efficiently
explore both the rigid space of the protein binding site, as well as the conformational space
of both the protein and the ligand. To effectively solve the scoring problem, a score function
must be developed which can rapidly distinguish between energy favorable and unfavorable
conformations. Solving both of these problems has proven highly challenging, although

great progress has been made.

14.3.1 DOCK

In 1982, Kuntz et al. published DOCK, one of the earliest computational tools for modeling
protein-ligand interactions (Kuntz et al., 1982). DOCK used a relatively simple energy
function which modeled repulsive forces as hard spheres, and a rough approximation of
hydrogen bonding which favored binding positions in which hydrogen bond donor groups
on the ligand were within 3-5 A of acceptor nitrogens and oxygens on the protein backbone.
In concept, the DOCK algorithm is similar to the manual placement method described
by Beddell et al. above. The program uses the van der Waals radii of the protein and

ligand atoms to create “space filled” representations of both the receptor pocket and the



ligand. Pairs of protein and ligand spheres are then considered systematically, and the set
of pairings which minimizes sphere overlap is selected. This algorithm is driven almost
entirely by shape complementarity, and effectively models the “lock and key” hypothesis

of protein-ligand binding, in which a rigid protein is matched with a rigid ligand.

14.3.2 GRID

In 1984, Goodford et al published GRID, a computational method for predicting energet-
ically favorable protein-ligand binding conformations (Goodford, 1985). GRID differed
from previous attempts structure based drug discovery in that it used chemical informa-
tion rather than relying entirely on receptor fit. Specifically, it assessed the protein-ligand
interaction using an empirical energy function consisting of a Lennard-Jones term, elec-
trostatic term, and hydrogen bonding term. This energy function was precomputed as a
3-dimensional grid overlaid on the ligand binding site. Thus, the total score of the ligand
could be rapidly assessed as the sum of the grid squares the atoms are located in. Pre-
computation of the scoring grid enabled many ligand conformations and compositions to
be rapidly assessed, and the addition of chemical information in addition to shape proved
more effective than simply evaluating shape complementarity.

While the GRID method proved reasonably effective, several shortcomings which lim-
ited the effectiveness of the method. The physics based force field used was relatively
rudimentary, and the limited set of chemical probes used to create the grid. Additionally,
accurate docking into a full-atom grid based model requires a high degree of precision in
the position of the protein atoms, which limits the effectiveness of such a model in cases

where the accuracy of the protein structure is lower.

1.4.3.3 The importance of protein and ligand flexibility
In the years following the publication of DOCK and GRID, additional experimental study
of protein structure began to indicate that the rigid body lock and key model was not ade-

quate for the modeling of protein-ligand interactions. It had long been suspected (Koshland,

10



1958) that enzymes and receptors may be flexible to accommodate the fit of small molecules
(the so called “induced fit” hypothesis), however in 1995, Nicklaus et al. (Nicklaus et al.,
1995) published work suggesting that small molecules also undergo substantial confor-
mational shift on binding. This conclusion was arrived at by comparing the geometry
of flexible small molecules observed bound to proteins with the geometry of the same
small molecules when crystallized in the absence of a protein, or when computationally
minimized using molecular mechanics. The results of this study indicated that while the
conformations of rigid structures typically differed by < 0.1 A RMSD between the bound
and unbound context, flexible ligands typically differed significantly, frequently by several
angstroms. Furthermore, the difference in RMSD between bound and unbound ligands
was strongly correlated with the number of rotatable bonds in the ligand, with an R? cor-
relation of 0.82. In response to this research, the development of newer protein-ligand
docking methods began to focus on the flexibility of the system. While flexibility had pre-
viously been avoided due to the inherent increase in computational complexity associated
with modeling it, these findings made it clear that flexibility was a critical component of

protein-ligand interaction.

1.4.3.4 FlexX and GOLD

FlexX (Rarey et al., 1996) and Genetic Optimization of Ligand Docking (GOLD) (Jones
et al., 1997), are two of the early methods which attempted to model ligand flexibility.
FlexX represents the ligand binding site using a set of interaction sites, which are defined
as surfaces surrounding hydrogen bond donors and acceptors, metals and metal acceptors,
aromatic rings, methyls and amides. An empirical scoring function is used to score ligand
conformations based on the distance and angle between defined protein and ligand inter-
action sites. FlexX uses an incremental construction algorithm to model ligand flexibility.
An initial central fragment of the ligand is placed in the binding site using an incremental

construction algorithm, and the additional fragments necessary to build the entire ligand
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are then placed such that they can connect to the initial fragment and minimize the energy
function score. GOLD, on the other hand, relies on the user providing a reasonable initial
position for the ligand inside the protein binding site. From that initial position, a genetic
algorithm (Jones et al., 1995) was used to optimize the rotation angles of both the ligand
and the interacting protein side-chains. The genetic algorithm makes it possible to rapidly
find a high quality local minimum without the exhaustive sampling of bond angles that
had made the problem previously intractable. As a result of this new sampling technique,
GOLD was able to successfully recover the correct binding conformation in 71 out of 100

X-ray crystal structures in a benchmarking study.

1.4.3.5 Glide

In 2004, Glide (Friesner et al., 2004) was published as a novel method for protein-ligand
docking aimed at the screening of large libraries of small molecules. To improve the speed
of the algorithm, Glide models the receptor site using a set of cartesian scoring grids, and
keeps the receptor atoms fixed. This allows the ligand to be rapidly scored, making it
possible for a large number of ligand positions to be evaluated. Glide performs a set of
exhaustive searches along at cartesian grid overlaid on the receptor binding site. To reduce
the amount of sampling required, the step size of the grid is reduced over the course of the
search process, beginning with a 2.0 A pitch grid. Additionally, a set of filters based on
the empirical ChemScore (Eldridge et al., 1997) energy function are used to progressively
filter the set of allowable binding orientations using increasingly detailed metrics. After an
initial starting position is accepted, The conformational space of the ligand is exhaustively
searched, and the final pose is energy minimized. The use of a grid representation for the
energy function makes it possible to to screen large numbers of compounds very rapidly,
making Glide a popular choice for virtual screening studies (Yilmaz et al., 2013; Bauer

et al., 2013).
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L5 The history of RosettaLigand

Rosettaligand was originally published in 2006 (Meiler and Baker, 2006) as a protein-
ligand docking tool based off of the previously published RosettaDock (Gray et al., 2003)
protein-protein docking tool. The original RosettalLigand docking algorithm took advan-
tage of the knowledge based energy function used by RosettaDock. The use of a knowledge
based potential rather than a physics based potential is advantageous as knowledge based
potentials are capable of indirectly modeling effects that are difficult to model directly.
Additionally, the ability of Rosettaligand to rapidly optimize protein side-chain geometry
(Barth et al., 2007) made it possible to model protein-ligand interactions with full atomic
detail. While RosettalLigand was frequently able to accurately predict the binding orienta-
tion ligands (Meiler and Baker, 2006), it was unable to model backbone or ligand flexibility,
which have long been suspected to be critical for protein-ligand binding (Yang et al., 2014;
Koshland, 1958). To rectify this situation, further extensions were made to RosettalLigand
by Davis et al (Davis and Baker, 2009) which allowed Rosettaligand to fully consider the
flexibility of all parts of both the protein and the ligand. A blind benchmarking study com-
paring the pose recovery performance of the 2009 version of Rosettaligand suggested that
overall it performed similarly to other major ligand docking tools (Davis et al., 2009). A
notable conclusion of this study is that while most of the tools studied have a similar per-
formance overall, the performance in predicting docking pose for individual protein targets
varies wildly. This inconstant performance between protein targets and protein docking

tools is seem in other studies as well.

I.5.1 Rosettaligand is capable of successfully predicting binding based on compar-
ative models

One of the advantages of a knowledge based energy function is the ability to accurately

model complex physical effects without a direct physical model. In principle, this, com-

bined with the ability to model both backbone and side-chain flexibility would make Roset-
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talligand well suited to the docking of ligands into comparative models or other low resolu-
tion protein structures. To assess this, a benchmarking study was performed in which small
molecules with known binding positions were docked into homology models generated in
the Critical Assessment of protein Structure Prediction (CASP) experiment (Kaufmann and
Meiler, 2012). The results of this benchmark demonstrated that in most of the tested cases,
Rosetta was able to generate low energy binding positions within 2.0A of the crystallo-

graphic binding site.

I.5.2 Applications of RosettaLigand to drug discovery

In addition to benchmarking studies, Rosetta has been used to develop models of ligand
binding in G-Protein Coupled Receptor (GPCR)s. A comparative model of hSERT was
created based on the dSERT crystal structure. S- and R-citalopram were docked into this
comparative model using RosettalLigand, and the resulting predicted binding poses were
used to design mutational studies to identify residues critical for S-citalopram binding.
Rosetta was able to correctly predict that Y95 and E444 formed protein-ligand interactions
critical to binding (Combs et al., 2011). Similarly, RosettalLigand was used to model the
binding of Positive Allosteric Modulators in a comparative model of mGlus (Turlington
et al., 2013). In this case, the predictions made by Rosettal.igand were used to guide
mutation and radioligand binding studies, the results of which were used to further refine
models. These models made it possible to map out critical interactions between Positive
Allosteric Modulators and the mGlus binding site even in the absence of crystal structure

information.

1.6 Computational ligand docking has inconsistent predictive power

A common thread running through the ligand docking research described above is the dif-
ficulty of docking ligands into some proteins. For every protein-ligand method developed,
some percentage of protein-ligand interfaces cannot be effectively predicted. While the pre-

dictions generated by protein-ligand docking has made some major scientific contributions
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to drug discovery and molecular modeling, the unreliability of the method has historically
constrained its usefulness.

In 2006, a diverse set of 81 protein targets, each with a diverse set of known active
and predicted inactive ligands was assembled as the DEKOIS 2.0 dataset (Bauer et al.,
2013). Glide, GOLD and Autodock Vina were used to screen this dataset, and the pROC
AUC enrichment for each target and each screening method was computed. The results of
this benchmark showed a wide range in the predictive ability of the three screening meth-
ods. While all three docking methods had strong predictive power against some protein
targets (COX2, KIF11), there were several cases in which no method had predictive power
(HSP90, QPCT), and more cases in which some methods were able to make accurate pre-
dictions while others were not (COX1, ROCK-1). Furthermore, it was not possible for the
authors to identify straightforward patterns to predict which protein targets could be suc-
cessfully screened against and which could not. The phenomenon of structure based vHTS
methods having inconsistent performance depending on the protein target has been repli-
cated in other studies. For example, the Directory of Useful Decoys: Enhanced (DUD-E)
benchmark set was screened using DOCK, and the resulting predictions exhibited similar

inconsistencies to those seen in the DEKOIS 2.0 study (Mysinger et al., 2012).

1.7 Artificial Neural Network techniques have proven valuable for extracting com-
plex signals
Since the publication of the perceptron as a method of machine learning (Rosenblatt, 1958),
ANN techniques have become an area of great interest to the machine learning community.
While there was much initial optimism regarding the use of ANNSs to learn complex tasks,
early perceptron based models proved limited in their abilities (Gallant, 1990), and the
state of computational hardware at the time prevented ANN based techniques from living
up to the early optimism. In more recent years, the availability of large clusters of low

cost computer hardware as lead to a renaissance in both the development and application
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of ANN based machine learning techniques. ANNs have been used for tasks such as face
recognition (Zhao et al., 2003), cancer cell identification (Zhou et al., 2002), and drug
activity classification (Gohlke and Klebe, 2002). ANNs are popular choices for these tasks

due to their ability to extract the signal from complex patterns.

I.8 Over-training is a common pitfalls in the use of ANNs for pattern recognition

While ANN based approaches have been valuable to many fields, they are often difficult to
use in practice. Due to the very large number of free parameters in a neural network, they
are very prone to over-fitting. In over-fitting, the neural network effectively “memorizes”
the dataset, and becomes a model that exactly implements the set of data used for training
(Tetko et al., 1995). The consequence of overfitting is that the model will be capable of
exactly reproducing the training data set, but will have no ability to make predictions be-
yond that. The standard method for addressing this is to use as small a network as possible,
and to perform a “cross-validation”, in which part of the training dataset is withheld from
training and used to keep track of the network performance as training proceeds. cross-
validation makes it possible to determine when over-fitting is occurring and halt training,

resulting in a model that is well trained but still general.

1.8.1 Deep networks and node dropout as novel methods for improving network gen-
eralizability
Very recently, new methods in network training have been developed to improve the gener-
alizability of neural networks and prevent over-training. The development of inexpensive
General Purpose Graphical Processing Unit (GPU) hardware has made it possible for ex-
tremely large networks to be efficiently trained. Additionally, development of new training
methodologies (Hinton et al., 2006) has made it possible to train networks with very large
numbers of nodes, and more than 2 layers of hidden nodes. These so-called “deep net-
works” appear to be capable of learning abstract features and concepts in an un-supervised

fashion (Le, 2013), and appear to exhibit the kinds of learning behaviors that were orig-
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inally envisioned by the developers of early perceptron methods. Another promising and
broadly applicable new method in the training of neural networks is the so-called “node
dropout” method. In this method, every time a new training case is provided to the net-
work, 50% of the nodes in the network are excluded. This has the effect of preventing
nodes from becoming dependent on each other, which leads to over-training. By using
node dropout, it has been possible to both conventional shallow networks and deep net-
works using a larger number of nodes than would normally be allowable, increasing the

generalizability and performance of the models (Hinton et al., 2012).

1.9 Using ANNs to make predictions regarding drug activity is a major area of cur-
rent research
As aresult of their properties to model complex interactions in natural systems, ANN based
methods are a popular choice for constructing models of drug activity and binding. In many
ways, drug activity is a harder problem to solve than image recognition. Unlike images,
The activity of a drug depends in large part on its conformation (Nicklaus et al., 1995). A
cat does not become a bobsled if it folds its legs, but active small molecules can become in-
active in certain geometric conformations. To sidestep this, ANN based methods are often
used to make 2D ligand-based QSAR models which are trained using the 2 dimensional
structures of known active and inactive small molecules without including protein struc-
ture information (Myint et al., 2012). While 2D descriptors do frequently outperform 3D
descriptors, 3D descriptors can be made useful. By encoding 3D information in the form
of a RDF, the 3D geometry of the small molecule is described in a way that is rotationally
and translationally independent. Additionally, RDFs encode 3 dimensional protein data as
a one dimensional fingerprint, making them ideally suited as ANN descriptors. RDF based
descriptors, in conjunction with 2D descriptors, have been used to build a QSAR model ca-
pable of predicting novel active compounds (Mueller et al., 2010), demonstrating the value

of the technique as a whole.
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While ligand-based QSAR methods have proven valuable for predicting the activity
of drugs against specific targets, these models have a fundamental limitation in that they
can only be applied to the target they were trained against. Techniques exist to define and
maximize the domain of applicability of these models (Sahigara et al., 2012), but they are
fundamentally tuned to a specific target or subset of targets. Furthermore, the training of
a ligand based QSAR model requires that a set of experimentally known active and inac-
tive compounds exist, which limits the use of ligand based methods to targets which have
already been experimentally evaluated. As a result of this limitation, some recent research
has focused on using ANN based models to score protein-ligand docking positions. Be-
cause of the ability of modern ANN based methods to recognize very complex and noisy
signals, the potential exists to develop an ANN model which is capable of distinguishing
between active and inactive small molecule poses even in cases where the scoring function
of the docking system is unable to do so. A number of methods have been developed to do
this (Durrant et al., 2013), and while they have in general been successful (Durrant and Mc-
cammon, 2011), the dream of a vHTS method that acts as a generally applicable model of

protein-ligand binding affinity has not yet been realized, and research in the area continues.
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CHAPTER 11

Design of Native-Like Proteins through an Exposure-Dependent Environment

Potential

II.1 Introduction

II.1.1 Computational design of proteins is an active area of research

The design of protein surfaces with proper amino acid composition is critical to preventing
aggregation and allowing for correct protein folding (Chandler, 2005). Thermostabilization
of enzymes and design of proteins with novel folds are two possible applications of the

present research.

II.1.2 The current Rosetta solvation model does not penalize the burial of apolar
atoms
As there are relatively few explicit interactions of amino acids on the protein surface, the
total energy of a residue is dominated by Rosetta’s implicit solvation model. The solva-
tion model currently used by Rosetta is a function developed by Lazaridis and Karplus
(Lazaridis and Karplus, 1999). This potential estimates the solvation free energy of an
atom from a reference free energy, where the atom is essentially fully solvent-exposed.
For every nearby atom, a cost of “desolvation” is added in a pairwise decomposable and
distance-dependent manner. This procedure aligns with the protein folding process, where
amino acids move from a completely exposed location into varying degrees of burial. While
the model is parameterized for all amino acid atom types, it is driven by high desolvation
penalties of polar atoms. For this reason, it is quite insensitive to the burial of apolar atoms

because desolvation energies are small.
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II.1.3 RosettaDesign currently has difficulty designing protein surfaces

This paradigm of desolvation is useful for determining energy changes in the folding of a
monomeric protein. However, hydrophobic patches on the surface of a de novo designed
protein are hardly penalized, as the environment of these amino acids did not change in the
folding process. At present, RosettaDesign excels in the design of tightly packed protein
cores, while the protein surface is often poorly composed and requires manual adjustment
(Dantas et al., 2003). We hypothesize that native proteins have evolved to minimize unspe-
cific aggregation, a fact that is ignored by the desolvation potential. Evolutionary pressures
exerted on protein sequence composition by the requirement of protein solubility are dif-
ficult to model with a typical physics-based model, but can be modeled effectively with a

knowledge-based energy potential.

I1.1.4 Description of the RosettaDesign energy function

The RosettaDesign energy function is a weighted composite of the Lazaridis-Karplus sol-
vation free energy potential, attractive and repulsive interactions, an action center pair-
wise potential to approximate electrostatic interactions, an orientation-dependent hydrogen
bonding potential (Kortemme et al., 2003), and reference energies for amino acid type and
conformation (Dantas et al., 2003). Amino acid reference energies and scoring function
weights are optimized to maximize sequence recovery in a protein design benchmark. Ref-
erence energies can be viewed as the ground state energy of an amino acid in an essentially
fully exposed, unfolded peptide chain. Hence, these reference energies can disfavor apolar
amino acids on the surface, thereby representing some of the evolutionary pressure to pre-
vent aggregation. However, the same reference energies are also fitted to reflect amino acid
propensities in nature independently of burial. In addition, the reference energies are fitted
to maximize sequence recovery and thereby counterweight other inaccuracies in the Roset-
taDesign energy function. As a result, the reference energies form a container term that

combines multiple effects that can be difficult to disentangle, and it provides a corrective
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power against exposed hydrophobic amino acids on the surface.

II.1.5 A knowledge based environment potential was developed to improve the qual-
ity of protein surface designs

To improve upon the above shortcomings of RosettaDesign, we implemented the Neighbor

Vector (NV)-based KBP previously described by Durham et al. (Durham et al., 2009). This

neighbor vector environment KBP converts the likelihood to see an amino acid at a given

level of exposure into an environment energy. The NV environment KBP encapsulates

both desolvation energy and evolutionary biases against apolar amino acids at the protein

surface with amino acid level resolution.

I1.1.6 The development of a more accurate approximation of SASA

The usefulness of an environment potential based on burial is contingent on an accurate
measure of burial. Solvent Accessible Surface Area (SASA) is the most accurate means
of calculating amino acid burial but is generally time-consuming to compute, limiting its
usefulness in protein design. RosettaDesign currently uses a Neighbor Count (NCR) for
estimating solvent accessibility in the pair potential. While the NCR method correlates with
residue burial, high inaccuracies are common in surface and partially exposed positions

(Figure I1.1).

I1.1.6.1 The NV SASA approximation was previously developed by Durham et al.

To overcome the limitations of the NCR burial approximation, an NV approximation of
residue burial was implemented. For a schematic representation of the NV algorithm,
see Figure II.2. The NV algorithm and KBP generated and described by Durham et al
(Durham et al., 2009) was used in our implementation. Proteins selected for deriving the
KBP were monomeric, globular proteins, which do not engage in obligate, and therefore
strong, protein-protein interactions. It is expected that some of these proteins will engage

in transient interactions with other proteins, however, these interactions will be weaker. As
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Figure II.1: Comparison of NV and NCR measures to rSASA. In both panels, a color map
plots the difference between a surface approximation method and the normalized rSASA
value. A residue for which the SASA approximation matches rSASA exactly would have a
score of 0.0 and be colored white. Regions of the surface in red are categorized as more sol-
vent exposed than by rSASA, while regions in blue are categorized as less solvent exposed
than by rSASA. (A) protein 7DFR colored by the NCR approximation of surface acces-
sibility as used in Rosetta. (B) protein 7DFR colored using the NV approximation. The
NV measure has significantly smaller deviations from the rSASA standard with a mean of
0.14 compared to the mean deviation of 0.20 seen with the NCR measure. Additionally, the
NV measure is more consistent, with a standard deviation of 0.11 compared to the standard
deviation of 0.46 seen with the NCR metric. Panels A and B illustrate the improvement in
consistency, as areas of score deviation in Panel B are smaller and generally less “patchy”
in their appearance.
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Figure I1.2: (A) The left and right panels both have the same Rosetta neighbor count (Dan-
tas et al., 2003) but very different degrees of burial. The neighbor vector method is able to
distinguish between these cases by calculating the vectors between the query residue and
its neighbors. The length of the vector indicates the degree of burial, with shorter vectors
representing more buried residues. (B) The Weighted Neighbor Count (WNCR) method
gives a higher weight to neighbors near the query residue, smoothing the effect of small
changes in composition on the measured degree of burial. (C) The combination of the
NV and WNCR methods results in a more accurate measure of residue distribution. In all
panels, dotted lines represent lower and upper bounds for counts, the X marks the query
residue, and circles represent residues surrounding the query residue.

a result, the noise added to the KBP by these interactions will be of low magnitude and

uniform.

I1.1.6.2 NV is a more accurate approximation of SASA than other methods

The half sphere approximation method developed by Hamelryck in 2005 (Hamelryck,
2005) approximates surface accessibility by counting the number of residues in a half
sphere below the side chain of each amino acid. The half sphere count is directly re-
lated to residue burial. Half Sphere Exposure (HSE) is implemented in the freely available
BioPython library, and this library was used to compare performance of HSE and NV to

relative Solvent Accessible Surface Area (rSASA) (calculated using NACCESS). The per
residue exposure was calculated for each of the proteins in the 42 protein benchmark set,
and adjusted R? values were calculated for the correlation of each measure to rSASA. The

adjusted correlation factor R? value for HSE to rSASA was 0.68, while the adjusted corre-
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lation factor R? for the NV method was 0.86. This suggests that while HSE is conceptually

simpler, it does not perform as accurately as NV for proteins in our benchmark set.

I1.1.6.3 Mapping NV results to rSASA results

A linear regression modeling the correlation between rSASA values (in the range of O to
1 calculated using NACCESS) and NV score (range 0 to 1) was generated based on all
proteins in the 42 protein benchmark set. The equation for the resulting linear regression
model was rSASA = 1.29(NV) —0.11 and had an R? of 0.86. Based on this model, residues
with NV scores between 0.00 to 0.24 will have an approximate rSASA value of 0.0 to 0.19,
residues with NV scores from 0.25 to 0.39 will have an approximate rSASA value of 0.21
to 0.39, and residues with NV scores between 0.40 to 1.00 will have an approximate rSASA

value of 0.40 to 1.10.

II.1.7 Overview of Rosettaligand scoring term architecture

Terms in the RosettaDesign energy function can take the form of either single-body or
two-body terms. Two-body terms describe energies that pertain to the interaction between
residues, such as the energy associated with hydrogen bonding, while single-body terms
describe energies that pertain only to a single residue. The resulting NV environment KBP
was implemented as a single-body term in the RosettaDesign energy function. RosettaDe-

sign revision 39040 was used in all calculations.

I1.1.8 Sequence recovery is insufficient as a metric for assessing protein design

Computationally assessing the performance of a protein design algorithm is inherently
challenging. Historically, percent sequence recovery has been used as a metric for the
quality of a protein design, as it has been observed that protein sequences are frequently
close to optimal for a given fold (Kuhlman and Baker, 2000). However, many protein folds
having large variations in sequence are frequently seen in nature (Chothia and Lesk, 1986).

Of the 74,608 protein chains present in the Structural Classification of Proteins (SCOP)
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database as of 2009, only 1,280 individual folds are observed (Schaeffer et al., 2010). In
many positions, particularly on the surface of proteins, multiple residues can be tolerated
with similar energies. This finding limits sequence recovery as a measure for successful
protein design because the design of a different but tolerated amino acid is counted as a
failure. To resolve this problem, we introduce a metric based on sequence homology. A
PSSM is derived from a Basic Local Alignment Search Tool (BLAST) query of the native
sequence of a protein. The percent recovery of amino acids with positive values in the

PSSM determines recovery of evolutionarily tolerated amino acids.

I1.2 Experimental Procedures

II.2.1 Optimization of the weight of the new energy term

The RosettaDesign energy function is a linear combination of individual energy terms. As
a result, the addition of a new energy term will impact the energy function as a whole.
To address this, each energy term is multiplied by a weight, and these weights must be
carefully optimized following the introduction of a new term. In most cases, it iS not
necessary to optimize the entire scoring function when a new term is added. Instead, only
the terms that describe similar information as the new term are optimized. In the case of
the NV environment KBP, the solvation free energy potential and the reference energies

must also be optimized.

I1.2.1.1 Development of a training data set

To ensure that the optimized weights would apply to a wide range of proteins, a set of
100 soluble protein crystal structures from the PDB were used in optimization. Structures
were selected to have a sequence homology of less than 25%, a length of 67-179 amino
acids, and a resolution better than 2.0 A. The optimization was conducted using a five-way
cross validation protocol. In this protocol, the 100 crystal structures described above were
split into 5 groups of 20 structures each. In each component of the five-way validation, 80

proteins were used during optimization, and the remaining 20 were used to benchmark the
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resulting weights. In statistics generated from the benchmarking phase of the optimization
process, results from all 5 sets of 20 proteins are combined, resulting in a total benchmark

set of 100 proteins.

I1.2.1.2 Particle Swarm Optimization scheme

An iterative particle swarm approach (Chen et al., 2007) was used to optimize the weights.
The RosettaDesign standard energy function was used as an initial point for optimization,
and the weight of the NV environment KBP was arbitrarily given an initial weight of 1.0.
Twenty rounds of particle swarm optimization were performed for each component of the
five-way cross validation described above. The weights were optimized to maximize the
PSSM score of proteins designed using the energy function (Table II.1). The PSSM for
each protein was generated from a PSI-PRED BLAST query of the protein structure se-
quence using an e threshold of 0.001 and 3 iterations. The Non-Redundant (NR) sequence
database was used. The average sequence identity between the query sequence and all other

sequences in the generated PSSMs was 30% for both benchmark sets.

I1.2.1.3 Reference energies were optimized in addition to the NV environment KBP
term

Because the standard deviation of the averaged reference averaged reference energies was

relatively high, the reference energies of the averaged energy function are optimized to

reduce the overall sequence composition biases introduced during design (Table I1.2).

I1.2.1.4 Two separate optimization experiments were performed

In the first experiment, the reference energies, solvation free energy potential, and the NV
environment KBP were optimized. In the second experiment, the NV environment KBP
was excluded from the energy function, and only the reference energies were optimized.
This second experiment acts as a control and makes it possible to distinguish between

design improvements due to reference energy optimization and design improvements due
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Five way cross validation sets

Rosetta Scoring term | Scoring term descrip-| 1 2 3 4 5 | Mean | Standard Deviation

tion
Free Weights fa_sol Solvat'%on Free Energy | 0.558|0.569 | 0.563 | 0.547 | 0.585| 0.564 0.014

Potential

neigh_vect NV environment KBP 1.025(1.013]0.996 | 1.059{0.978 | 1.014 0.030

fa_atr Attractive force 0.8 0.8 0.0

fa_rep Repulsive force 0.44 0.44 0.0

fa_intra_rep Intra-residue  repulsive 0.004 0.004 0.0
force

pro_close Proline closure bonus 1.0 1.0 0.0

fa_pair Pair energy 0.49 0.49 0.0

hbond_sr_bb Hydrogen bonding: 0.585 0.585 0.0
short range backbone

Fixed Weights || hbond_Ir_bb Hydrogen bonding: 1.17 1.17 0.0

long range backbone

hbond_bb_sc Hydrogren bonding: 1.17 1.17 0.0
backbone-sidechain

hbond_sc Hydrogen bonding: 1.1 1.1 0.0
sidechain-sidechain

dsIf_ss_dst Disulfide sidechain dis- 1 1 0.0
tance

dslf_cs_ang Disulfide cystine sulfur 1 1 0.0
angle

dslf_ss_dih Disulfide sidechain- 1 1 0.0
sidechain dihederal

dslf_ca_dih Disulfide Co-sidechain 1 1 0.0
dihederal

rama Ramachandran score 0.2 0.2 0.0

omega Omega angle score 0.5 0.5 0.0

p_aa_pp Probability of an AA 0.32 0.32 0.0
given phi/psi angle

fa_dun dunbrack rotamer 0.56 0.56 0.0
library

Table II.1: A table showing the individual weights included in the optimization, and their
values in each of the five cross validation sets. The mean and standard deviation of each
free weight is also shown.
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AA name

Five way cross validation sets

1] 2] 3] 4] 5 Mean | Standard Deviation | Re-optimized Energies
A -0.313519|-0.345577 | -0.332996 | -0.299376 | -0.311145| -0.3205226 0.018489708 -0.280778
C -0.186065 | -0.267899 | -0.251004 | -0.203121 | -0.273443| -0.2363064 0.039429392 -0.191836
D -0.0516543 | -0.152027 | -0.117976 -0.04581 | -0.158867 | -0.10526686 0.053922242 -0.0894836
E -0.116794 | -0.225243 | -0.221177 -0.13447 | -0.230275| -0.1855918 0.055185343 -0.163316
F 0.979346 1.00881 1.09867 | 0.976394 1.03573 1.01979 0.05028824 1.0029
G 0.187346 | 0.862973 | 0.681024 | 0.322192| 0.952133| 0.6011336 0.334354423 0.318222
H 0.773425 | 0.727736 | 0.727848 | 0.755789 | 0.683065| 0.7335726 0.034276949 0.738805
1 -0.0879415 | -0.063614 | -0.0662562 | -0.147069 | -0.0349584 | -0.07996782 0.041974551 -0.0892347
K -0.0356543 [ -0.113405 | -0.125976 | -0.0465226 | -0.104256 | -0.08516278 0.041146221 -0.0565743
L -0.288888 | -0.27654 | -0.302976 | -0.350292| -0.286631| -0.3010654 0.029090569 -0.295543
M -0.475654 | -0.472027 | -0.532784 | -0.514173| -0.478867 -0.494701 0.027189556 -0.488778
N -0.523683 | -0.559673 | -0.549976 | -0.500635| -0.582867 | -0.5433668 0.031950345 -0.532584
P -0.486622 | -0.556899 | -0.579705| -0.488828 | -0.551983| -0.5328074 0.042469908 -0.494263
Q -0.481516| -0.58252| -0.554953| -0.491584 | -0.569756| -0.5360658 0.046379036 -0.497717
R -0.280894 | -0.364054 | -0.324666 | -0.255467 | -0.389405| -0.3228972 0.055748092 -0.294276
S -0.396296 | -0.436734 | -0.438423 -0.37399 | -0.437601| -0.4166088 0.029793151 -0.393299
T -0.312536 | -0.375408 | -0.373141| -0.307255| -0.368256| -0.3473192 0.034311466 -0.332279
A% -0.175465 | -0.166283 | -0.166976 | -0.217204 | -0.134509| -0.1720874 0.029660029 -0.176609
W 1.43079 1.50528 1.52902 1.46971 1.42618 1.472196 0.045170863 1.47413
Y 0.842276 | 0.853102| 0.902422| 0.851712 0.81571 0.8530444 0.031423486 0.842514

Table I1.2: A table showing the optimized weights of the reference energies for each amino

acid.

to the addition of the NV environment KBP itself. While both NV environment KBP

and the solvation free energy potential describe overlapping but different phenomena at

different levels of resolution: The NV environment KBP is an indirect measure of solvation

free energy and evolutionary biases against aggregation. This energy term functions at

amino acid resolution and will be independent of side chain conformation. In contrast,

the solvation free energy potential is at atomic resolution incorporating a specific model of

solvation. While the solvation free energy potential does an inadequate job of accounting

for biases against aggregation on the protein surface, it is highly accurate in avoiding burial

of polar atoms, and is important to determine side chain conformation.

I1.2.2 Analysis of the optimization experiments

The optimization experiments described above produce five individual energy functions,

each generated from one Section of the five-way cross validation. To produce a single

optimized scoring function for general use, the weights from the five optimized energy

functions are averaged together, and the reference energies of the averaged energy function
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are optimized using the set of 100 proteins used in the initial cross validation. The averaged
energy function is benchmarked on an independent set of 42 protein crystal structures, in
which the proteins have a sequence homology of less than 15%, a size range of 150-225,
and a resolution less than 1.5 A. Note that these proteins are larger and more complex than
the proteins used in the more time-consuming weight optimization procedure. As a result,
this benchmark poses a formidable challenge for the RosettaDesign fixed backbone design
algorithm. Several different metrics were used during benchmarking to assess the quality
of designed proteins. Percent PSSM recovery was the primary benchmarking metric used
in the study. Percent PSSM recovery was calculated as the percentage of residues that were
designed as residues with a positive score in the PSSM of the native protein. In addition,
the percent sequence recovery was measured as the percentage of residues that remained in

as the native residue after design.

11.2.2.1 Percent PSSM recovery calculation
The percent PSSM recovery per residue, percent sequence recovery per residue, and the

change in overall sequence composition were also calculated for each designed protein.

num pssm recovered
num designed

Percent PSSM recovery per residue is calculated as where num pssm recovered
is the number of residues with a given identity which were designed to a residue with a

positive PSSM score, and num designed is the total number of residues designed. Percent

num recovered

nunt designed where num recovered is the

sequence recovery per residue was calculated as
number of residues with a given identity which were designed to an identical residue. In
addition to calculating overall percent sequence recovery, sequence recovery by chemical
group was also calculated. In this metric, residues were grouped into the categories polar
(Ser, Thr, Asn, Gln), non-polar (Ala, Val, Leu, Met, Ile), aromatic (Phe, Tyr, Trp), charged
(Lys, Arg, His, Asp, Glu), and other (Cys, Pro, Gly). A residue was counted as recovered

if it was mutated to another residue within the same group.
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I1.2.2.2 Percent sequence recovery calculation

d—n

Percent sequence composition change per amino acid type was calculated as st designed

where d 1s the count of designed residues of a given type, and n is the count of native
residues. To compute the change in overall sequence composition, a Root Mean Square
(RMS) method was used. RMS percent sequence composition change was calculated as
shown in equation 1.1, where statistical metric is one of the metrics described in Section

I1.2.2.1 (shown as black bars in figures I1.3 and IL.5).

20

1
RMS = | — Y (statistical metric)? (IL.1)
20, Tho

I1.2.2.3 Calculation of metrics by degree of burial
All of the above metrics were calculated for the entire protein, as well as the deeply buried
region, surface region, and a boundary layer between the two. For this study, the buried
region is defined as all residues with a NV score between 0.00 and 0.24, the boundary is
defined as 0.25 to 0.39, and the surface region is defined as 0.40 to 1.00. The performance
of the optimized energy functions via these benchmarks was compared to the performance
of the standard RosettaDesign energy function.

The benchmarks described above are intended as a measure of how well RosettaDesign
is accomplishing its goal of generating low-energy, native-like protein sequences. In a
well-optimized energy function, we expect that the percent PSSM recovery will increase
compared to the standard RosettaDesign energy function. We also expect that the percent
sequence recovery will remain similar to that obtained with the standard energy function.
Finally, we expect that a well-optimized energy function will exhibit smaller biases in

sequence composition compared to proteins designed with the standard energy function.

30



Percent PSSM Recovery [ Percent Sequence Recovery
Standard [ Reference [NV environment KBP | Standard | Reference [ NV environment KBP

Buried 73.4% 77.1% 78.9% 64.9% 66.5% 65.5%
Boundary 72.1% 75.3% 77.3% 44.3% 46.6% 45.5%
Surface 70.4% 74.4% 75.9% 32.8% 35.9% 35.5%
Overall 72.0% 75.6% 77.2% 45.7% 48.1% 47.3%

Table I1.3: Percent PSSM recovery and percent sequence recovery by degree of burial
for 100 proteins used in optimization. “Standard” refers to the standard energy function,
“Reference” refers to the modified standard energy function in which the reference energies
were re-optimized, and “NV environment KBP” refers to the optimized energy function
incorporating the NV environment energy term.

II.3 Results

The percent PSSM recovery and percent sequence recovery calculated for the 100 proteins
used in the five-way cross validation are shown in Table II.3. The results of PSSM recov-
ery and sequence recovery analysis show that the optimized NV environment KBP energy
function exhibits a 5.2% improvement in percent PSSM recovery compared to the stan-
dard energy function and that 3.6% of this improvement was a result of reference energy
optimization. The NV environment KBP energy function showed a 1.6% improvement in
percent sequence recovery compared to the standard RosettaDesign energy function and a

2.4% improvement if only reference energies are optimized.

I1.3.1 The NV environment KBP improves PSSM recovery and reduces sequence
composition bias
The percent change in composition between native and designed sequences for the 100
proteins used in the five-fold cross-validation is shown in Figure II1.3A. Proteins designed
with the NV environment KBP energy function show a decrease in the average magnitude
of sequence composition biases introduced during design compared to proteins designed
with the standard energy function. Proteins designed with the standard energy function
exhibit an RMS percent change in sequence composition of 2.0%, while proteins designed
with the NV environment KBP show an RMS percent change in sequence composition

of 1.0%. Figure I1.3B shows that RMS per residue PSSM recovery increased from 3.8%
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Figure I1.3: A) shows the percent change in overall sequence composition between native
and designed proteins for all 100 structures in the five-way cross-validation set. The black
bars show the RMS percent composition change. B) shows the percent PSSM recovery for
all 100 structures in the five-way cross-validation set. The black bars show RMS percent
PSSM recovery. C) percent sequence recovery for all 100 structures in the five-way cross-
validation set. The black bars show RMS percent sequence recovery.

with the standard energy function to 4.2% with the NV environment KBP, and I1.3C shows
that RMS per residue sequence recovery remained relatively constant between the standard

energy function and NV environment KBP.

I1.3.2 Independent benchmarking of a single averaged energy function shows im-
proved performance
The energy functions produced with the five-way validation were averaged to produce a
single energy function, the reference energies of this averaged function were optimized, and
the benchmarking analysis used above was repeated using the averaged energy function.
In this case, the independent benchmark set of 42 proteins was used. Table 1.4 shows
the percent PSSM recovery and percent sequence recovery calculated for the 42 proteins
designed using the averaged energy function. The NV environment KBP showed an 8.8%
improvement in PSSM recovery compared to the standard energy function and that 3.8% of
this improvement was a result of the reference energy optimization. The NV environment
KBP showed a 3.2% overall improvement in sequence recovery of which 1.9% was due to

the reference energy optimization.
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Percent PSSM Recovery [ Percent Sequence Recovery
Standard [ Reference [NV environment KBP | Standard | Reference [ NV environment KBP

Buried 68.0% 70.7% 76.0% 49.5% 49.8% 51.5%
Boundary 66.1% 70.6% 75.7% 32.1% 34.1% 35.3%
Surface 67.2% 72.2% 75.8% 22.7% 26.3% 27.3%
Overall 67.4% 71.2% 75.9% 35.7% 37.6% 38.9%

Table I1.4: Percent PSSM recovery and percent sequence recovery by degree of burial
for 42 proteins used in benchmarking. “Standard” refers to the standard energy function,
“Reference” refers to the modified standard energy function in which the reference energies
were reoptimized, and “NV environment KBP” refers to the optimized energy function
incorporating the NV environment energy term.

I1.3.3 Improvement in the quality of both buried and surface designs is seen

When sequence recovery is broken down by group (Figure 11.4 ), a large improvement (de-
crease) in the percentage of unrecovered buried charged residues is observed, from 8.78%
to 1.96% unrecovered residues function in the 100 protein benchmark set. Additionally, a
decrease from 8.77% to 3.46% unrecovered non-polar residues on the surface is observed.
Additionally, Figure I1.4 reveals a fundamental difference in the two datasets. The lower
recovery values seen in all categories in the 42-protein benchmark set suggest that it is a
much more challenging target for design than the 100-protein benchmark set used in op-
timization. The proteins of the 42-protein benchmark set are substantially larger (average
length of 207 residues) than those in the 100-protein benchmark set (average length of 120
residues). Each additional residue drastically increases the number of possible sequences to
consider, decreasing the probability of a high quality design. Despite this more challenging

independent benchmark, improvement was still observed.

I1.4 Discussion

The results of both the 100-protein five-way cross-validation and the 42-protein indepen-
dent benchmark set are consistent. In both cases, introduction of the NV environment KBP
into the energy function and optimization of the energy function weights lead to an overall
improvement in the quality of designed sequences. As the independent benchmark set tests

an averaged scoring function that would be generally useful, the remaining analysis will
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Figure 11.4: Percentage of unrecovered residues (number of recovered residues divided by
total number of residues in the benchmark set) by amino acid category in the 100 and 42
protein benchmark sets. The color scale ranges from white (small number of mistakes) to
red (large number of mistakes). In this metric, residues were grouped into the categories
polar (Ser, Thr, Asn, Gln), non-polar (Ala, Val, Leu, Met, Ile), aromatic (Phe, Tyr, Trp),
charged (Lys, Arg, His, Asp, Glu), and other (Cys, Pro, Gly). A residue was counted as
recovered if it was mutated to another residue within the same group.

focus on this benchmark set.

I1.4.1 Explanation for source of observed improvements in design

The results of the benchmarking show that, in general, structures designed using the NV
environment KBP exhibit smaller conformation biases and more evolutionarily favorable
mutations. A detailed analysis of these results also provides some insight into the behavior

of the RosettaDesign scoring function.

I1.4.1.1 The NV environment KBP energy counteracts limitations in the RosettaDe-
sign solvation potential

Due to the lack of an explicit water model in RosettaDesign, the standard RosettaDesign

energy function is dominated by the solvation free energy potential. As a result, there

are few constraints on amino acid mutations on the protein surface. Due to this lack of

constraints, proteins designed with the standard energy function exhibit large biases in
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sequence composition on the protein surface. Proteins designed with the standard energy
function show large numbers of aromatic residues on the protein surface. Specifically,
there is a 3.1% increase in phenylalanines, a 1.9% increase in tryptophans, and a 2.5%
increase in tyrosines on the protein surface in the benchmark set designed with the standard
RosettaDesign energy function compared to the native structure. Proteins designed with
the NV environment KBP show a large reduction in these biases. Proteins designed with
the NV environment KBP showed a 1.4% increase in phenylalanines, 0.8% increase in
tryptophans, and 1.5% increase in tyrosines compared to native proteins. While still large,

these biases are much smaller than the biases observed with the standard energy function.

I1.4.2 The NV environment KBP term improves design of buried residues as well as
surface residues

It was expected that improvements in the quality of surface sequence design would be the
primary benefit of the NV environment KBP. However, an analysis of the overall PSSM
recovery, sequence recovery, and sequence composition biases suggest that the improve-
ment given by the NV environment KBP implementation occurred across the board rather
than merely at the protein surface. Table II.4 shows the overall impact of the NV environ-
ment KBP at various levels of burial. The percent PSSM recovery improved using the NV
environment KBP by 8.0% in the buried region, 9.6% in the boundary region, and 8.5% on
the surface region compared to the standard energy function. The percent sequence recov-
ery improved by 2.0% in the buried region, 3.2% in the boundary region, and 4.6% in the
surface region compared to the standard energy function.

When percent sequence recovery is broken down by group (Figure 11.4), a large increase
in the recovery of buried charged residues is observed, with a 6.2% increase compared
to the standard energy function. Additionally, a 3.8% increase in recovery of non-polar
residues is observed on the surface. Not all groups show improvement, and this is expected,

as the scoring function was not directly optimized for percent sequence recovery.
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Percent PSSM Recovery Percent Sequence Recovery
Standard [ Reference [NV environment KBP | Standard | Reference [ NV environment KBP
Buried 8.9% 8.9% 8.4% 11.6% 10.8% 10.1%
Boundary 9.6% 11.7% 9.2% 10.7% 11.3% 11.2%
Surface 8.1% 6.6% 6.9% 7.0% 8.0% 7.9%
Overall 6.3% 6.0% 5.2% 7.0% T1% 6.5%

Table I1.5: Standard deviations for 100 protein benchmark set data. shown in table I1.3

Percent PSSM Recovery Percent Sequence Recovery
Standard [ Reference [NV environment KBP | Standard | Reference [ NV environment KBP
Buried 7.1% 6.7% 5.9% 8.1% 8.9% 7.7%
Boundary 9.2% 9.1% 8.7% 8.1% 8.0% 8.6%
Surface 6.9% 6.6% 7.4% 4.7% 6.8% 6.0%
Overall 5.5% 5.7% 5.7% 4.6% 5.5% 5.3%

Table I1.6: Standard deviations for 42 protein benchmark set data. shown in table 11.4

While the overall percent changes are relatively small, these changes are both statisti-
cally and scientifically significant. To assess the statistical significance of the data, standard
deviations were calculated in Tables II.5 and I1.6. The standard deviations were calculated
for both percent PSSM recovery and percent sequence recovery. Each of the five scoring
functions generated during the five-way cross validation weight optimization using 100
proteins was used to design the independent set of 42 proteins. The standard deviations of
PSSM and sequence recovery are listed in supplementary Tables I1.5 and I1.6. The standard
deviations range from 0.1-1.2%. The average error is 0.4% and therefore smaller that the

improvements in recovery rates observed.

I1.4.3 Sequence recovery values are near the expected maximum

It is important to consider not only the absolute change in percent recovery, but also the
change relative to the maximum possible recovery value. In the case of sequence recovery,
the maximum possible sequence recovery can be estimated by analyzing the amino acids
tolerated in each position in BLAST derived PSSMs. In this case, the average percentage
of time that the native residue is seen in the PSSM is used as an estimate for expected se-
quence recovery. For the 100 protein benchmark set, the average was 34%, with a standard

deviation of 12%, while in the 42 protein benchmark set, the average was 34% with a stan-
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dard deviation of 7%. While the achievable sequence recovery is somewhat higher due to
the correlation between individual positions, these values suggest that obtaining sequence
recovery rates of 40-50% would approach the maximum. Tables II.3 and II.4 show that for
the 100 protein benchmark set, total overall sequence recovery is 45.7% with the standard
energy function and 47.0% with the NV environment KBP. For the 42 protein benchmark
set, total overall sequence recovery is 35.7% with the standard energy function and 38.9%
with the NV environment KBP. This explains the relatively small increases in sequence re-
covery, as current recovery values are approaching the practical maximum. For that reason
we introduce the PSSM recovery metric. In this context it is important to note that the scor-
ing functions were not directly optimized for sequence recovery but rather PSSM recovery.
As a result, it is not surprising that the sequence recovery is not necessarily maximized

during optimization.

I1.4.4 PSSM recovery values improve substantially overall
In the case of PSSM recovery, it is reasonable to expect that 100% PSSM recovery is
unreachable as evolution might not have sampled all amino acids tolerated in a sequence
position. A more realistic value for maximum possible PSSM recovery is between 80%
and 90%, though the exact value of this upper bound is difficult to estimate. PSSM recov-
ery with the standard energy function was 72.0%. The observed increase to 77.2% with
the NV environment KBP represents a substantial increase relative to the 80-90% maxi-
mum and the 72% starting point. Generally, improvements in sequence recovery rates have
been moderate when altering the energy function (Kortemme et al., 2003), as the major
contributors to the overall energy are already fine-tuned and remain unaltered.
Comparison of PSSM and sequence recovery results between the 42 protein benchmark
set and the 100 protein set illustrates that the performance of the RosettaDesign algorithm
varies based on the characteristics of the protein being designed. For example, Table 11.3

and I1.4 show the overall sequence recovery for proteins designed with the standard energy
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function. The overall recovery for the 42 protein benchmark set was 35.7%, while the over-
all recovery for the 100 protein benchmark set was 45.7%. This substantial difference is
likely a result of the different criteria used to select the proteins in each set. The proteins in
the 42 protein benchmark set are larger than those in the 100 protein set, and will therefore

have a larger total surface area and thus be more challenging targets for design.

I1.4.5 The sequence recovery values observed are realistic, given previous values re-
ported in the literature
Despite the differences inherent to different design targets, these values are similar to those
obtained in the literature. Schneider et al. designed a set of proteins of size between 89-223
amino acids based on high resolution crystal structures. They observed surface sequence
recovery rates of 22% + 11%, and buried recovery rates of 56% =+ 13.7% when designing
with RosettaDesign (Schneider et al., 2009). These values are similar to those seen in
Tables 1.3 and I1.4. Additionally, Sharabi et al. reported overall sequence recovery values
of between 40% and 70% depending on the weights of the scoring function used during
their design (Sharabi et al., 2011). These numbers are within the range of the sequence

recovery values obtained during the experiments described in this manuscript.

I1.4.6 NV environment KBP term reduces sequence bias

In addition to improvements in PSSM and sequence recovery, the degree of sequence bias
seen in the buried and boundary regions of designs made using the NV environment KBP
decreased. When all residues in the benchmark set are considered, proteins designed with
the NV environment KBP have an RMS percent composition change of 2.8% compared
to the native protein, while proteins designed with the standard energy function have an
RMS percent composition change of 2.9% (Figure I1.5A). When this overall value is bro-
ken down by region, the buried region designed with the NV environment KBP shows an
increase in RMS percent composition change compared to the standard energy function

from 4.2% to 4.5%, the boundary region shows a decrease from 3.4% to 2.7%, and the
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Figure I1.5: A) shows the percent change in overall sequence composition between native
and designed proteins for all 42 structures in the independent benchmark set. The black
bars show the RMS percent composition change. B) shows the percent PSSM recovery
for all 42 structures in the independent benchmark set. The black bars show RMS percent
PSSM recovery. C) percent sequence recovery for all 42 structures in the independent
benchmark set. The black bars show RMS percent sequence recovery.

surface region shows a reduction from 2.9% to 2.4%. While the improvements in sequence
composition bias are minimal, Figure II.5B shows an increase in RMS per residue PSSM
recovery from 3.8% with the standard energy function to 4.2% with the NV environment
KBP. Additionally, Figure I1.5C shows an increase in RMS per residue sequence recov-
ery from 2.4% with the standard energy function to 2.6% with the NV environment KBP
energy function, which is expected given the optimization of the scoring function towards

PSSM improvement.

I1.4.7 Addition of the NV environment KBP term results in reduction of solvation
term weight
An investigation of the optimized weights lends some insight into the cause of the im-
provements in sequence design. Table II.1 and II.2 show the scoring function and reference
energy weights of the standard energy function and the optimized NV environment KBP.
When the NV environment KBP term is added to the energy function, the weight of the
free energy solvation potential decreases from 0.65 in the standard energy function to 0.56
in the NV environment KBP. The NV environment KBP term has a value of 1.01. As

discussed earlier, in the standard energy function, the reference energies and solvation free

39



100%
90%
80% M other
70% M reference
60% - NV environment
KBP
0,
0% - solvation
40% free energy
30% - attract.ive and
repulsive
20%
10%
0%

buried surface

Figure I1.6: The contribution of individual scoring terms towards the overall score of buried
and surface residues. The introduction of the NV environment KBP reduces the reliance
on solvation free energy and the attractive/repulsive forces at both levels of exposure.

energy potential are the dominant forces on surface residues due to the lack of explicit
inter-residue interactions. Because the penalty given by the solvation free energy potential
for apolar residues on the surface is relatively weak, the weight of this potential will need
to be increased for it to adequately effect surface residues. However, because the energy
function is applied evenly, regardless of degree of burial, the increase in weight necessary
to maintain a reasonable protein surface may cause the solvation free energy potential to
apply too strongly to the boundary region. As the burial level increases, the number of
inter-residue interactions will also increase, which explains the decrease in improvement in
sequence bias seen at more highly buried regions of the protein. This idea is supported by
the decrease in free energy solvation potential weight observed in the NV environment KBP
energy function. The NV environment KBP provides additional information about protein

surface composition, reducing the dominance of the free energy solvation potential.
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11.4.8 The NV environment KBP term reduces the influence of the solvation term on
total score
Figure II.6 shows the effect of the NV environment KBP on the overall scoring function.
All proteins used in the 100 protein benchmark set were scored using both the standard
RosettaDesign energy function and the optimized NV environment KBP energy function.
The average magnitude of each scoring term for each buried and surface residue was cal-
culated, and converted to percentage of the total energy for each residue to measure the
influence of each scoring term. We observe that the addition of the NV environment KBP
term decreases the influence of the reference energies, solvation free energy term, and the
attractive and repulsive terms throughout all degrees of burial. Specifically, the influence
of the solvation free energy decreases from 21% to 16% for buried residues, and from 24%
to 21% for surface residues. Additionally, the influence of the reference energy decreases
from 8% to 5% on the surface, though it remains relatively unchanged for buried residues.
The attractive and repulsive forces also change somewhat, with a decrease in influence from
60% to 57% in buried residues, and 48 to 46% in surface residues. This change in influ-
ence is significantly less than the change in influence seen in the reference and solvation
free energy functions. The NV environment KBP was designed to address shortcomings in
the design of the protein surface. These shortcomings are the result of the energy function
failing to model aspects of the protein surface that are not completely described through the
solvation and reference energies. To achieve reasonably good performance despite these
inaccuracies, both energy terms are overweighted in the standard energy function. As ex-
pected, addition of the NV environment KBP term reduces the impact of solvation and
reference energies on the surface. As these adjustments apply throughout all degrees of
burial, the artificially inflated weight of the solvation and reference energies can be de-

creased, improving performance also in the buried regions of the protein as well.
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I11.4.9 The NV environment KBP term may encode environmental effects reducing
aggregation potential
In addition to providing information about solvation effects, the NV environment potential
also sheds light on the evolutionary and environmental forces on protein composition. Sol-
uble proteins have evolved to be non-aggregative and generally stable in the environment
of a cell. These properties are difficult to model via physics-based methods, as they arise
from numerous inter-protein interactions that are difficult to explicitly model. The implicit
modeling of these environmental effects accounts in part for the improvements in native-
like sequence design seen during design with the NV environment KBP. By optimizing
the NV environment KBP energy function to maximize PSSM score rather than sequence
recovery, the energy function is optimized to design proteins similar to those which are

favored evolutionarily, rather than to merely reproduce the native sequence.

42



CHAPTER III

Improving Rosettaligand Speed and Sampling Efficiency through the Development

of a Novel Sampling Algorithm

III.1 Abstract

Rosettaligand has been successfully used to predict protein-ligand binding positions in a
number of cases (Turlington et al., 2013; Davis et al., 2009; Combs et al., 2013). How-
ever, the Rosettalligand docking protocol is relatively inefficient at sampling the ligand
binding site space, making it unfeasibly slow for use as a VHTS tool. We show here that
the development of a new sampling algorithm for initially placing the ligand in the protein
binding site dramatically improves both the overall success rate of small molecule docking
as well as speed of Rosettaligand. The new algorithm improves the docking success rate
by 10-15% in a 43 protein benchmarking set, reduces the average time to generate a model
from 50 seconds to 10 seconds, and reduces the necessary number of models to generate
from 1000 to 150 resulting in an effective 10-fold speed increase. We also demonstrate that
accurate initial placement of the ligand prior to full atom refinement is critical to successful

prediction of an accurate binding position.

III.2 Introduction

III.2.1 Ligand docking background

Computational ligand docking has been a historically successful method for predicting the
binding position of small molecules to a protein. Beginning with PJ Goodford’s work in
computational drug design (Goodford, 1985), many methods have been developed to pre-
dict the interactions between proteins and small molecules. Early tools focused primarily
on rigid body goodness of fit between a small molecule and a protein crystal structure.
However, further study of the changes observed in protein conformation upon the binding

of a small molecule (Bystroff and Kraut, 1991) suggested that modeling of protein and
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ligand flexibility was important to correctly model protein-ligand interactions.

II1.2.1.1 An overview of popular ligand docking tools

Over the past several decades, numerous tools have been developed to attempt to better ad-
dress the ligand docking problem. DOCK (Ewing et al., 2001), FlexX (Hindle et al., 2002),
AutoDock (Morris et al., 1998), and Glide (Friesner et al., 2004) are currently among the
most popular tools. They utilize a wide range of protein representations, sampling algo-
rithms and scoring functions in order to accurately predict protein-ligand binding positions.
Approximations in scoring and sampling must be made in order to allow ligand binding pre-
dictions to be made in a reasonable time. To accomplish this, most ligand docking tools
operate in stages, so that the size of the search space is limited as the complexity of the

scoring function and sampling density within the search space is increased.

II1.2.1.2 Summary of popularly used docking algorithms

Docking methods differ in their means of accomplishing this step-wise increase in sampling
resolution coupled with the reduction of search space. For example, the DOCK algorithm
creates a “negative space” model of the binding site created by placing spheres inside the
solvent accessible area of the binding site, and uses this model to guide docking of the lig-
and, while an Assisted Model Building with Energy Refinement (AMBER) based molecu-
lar mechanics force field is used to score the resulting binding positions (Moustakas et al.,
2006). FlexX, on the other hand, represents the protein by “interaction centers” consist-
ing of surfaces surrounding common ligand interaction groups (hydrogen bond donors and
acceptors, metals, aromatic rings, etc.). Atoms in a based fragment of the ligand are then
matched to the interaction centers to provide an ensemble of potential initial placements
(Rarey et al., 1996). AutoDock represents the receptor using a cartesian scoring grid popu-
lated with information from an empirically derived energy function. A Lamarckian Genetic
Algorithm (LGA) in combination with simulated annealing is then used to optimize both

the ligand conformation and position (Morris et al., 1998). Glide uses a grid based repre-

44



sentation of the protein binding site. A rapid exhaustive search is first performed to find
generally favorable areas for ligand placement. A size filter is then used to exclude areas
without sufficient space for ligand placement. Finally, MCM of the binding position using
the grid based scoring function is performed. The scoring girds themselves are generated

using a scoring function derived from ChemScore (Friesner et al., 2004).

I11.2.2  Algorithm details

II1.2.2.1 Performance of ligand docking tools is inconsistent

Despite the large differences between scoring and sampling algorithm implementations
across the different ligand docking tools, a blind study of ligand docking performance con-
ducted by Davis et al. (Davis et al., 2009) suggested that while certain methods of docking
perform better than others for a given protein target, in the aggregate the commonly used
systems have a similar range of performance. Interestingly, while some protein systems
appear to be relatively successful (Chk1 kinase) or difficult (Hepatitis C RNA Polymerase)
for most ligand docking tools to predict, the results for most systems vary depending on
the ligand docking tool. The difficulty of predicting whether a given protein-ligand dock-
ing system will be easily docked by a given docking tool has been previously established
(Mysinger et al., 2012; Bauer et al., 2013), and there is a clear need for more reliable

protein-ligand docking tools.

II1.2.3 Limitations of RosettalLigand low resolution docking

II1.2.3.1 Description of the binary scoring grid and Translate step

The work presented in this manuscript consists of a set of improvements to the previously
implemented Rosettal.igand docking algorithm. As previously implemented, Rosettal.i-
gand used a two stage docking process consisting of an initial placement stage followed by
a refinement stage. The overall effect of the initial placement algorithm is to place the lig-
and in a non-clashing position at random. The initial placement algorithm consists of three

steps, which were initially described in Davis et al. (Davis and Baker, 2009) The algorithm
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uses a scoring grid to identify non-clashing regions of the protein. Two sets of scoring
grids were evaluated. The binary scoring grid consists of “attractive” rings between 2.25
and 4.75 A of every heavy atom, and “repulsive” spheres between 0 and 2.25 A of each
backbone heavy atom.

The first step of the initial placement algorithm (“Translate”) consists of up to 50 ran-
dom translations within 5.0 A of the starting position. After each translation, the heavy
atom closest to the geometric center of the ligand, termed the “neighbor atom”, is scored
using the binary scoring grid. If the score is -1 or O (attractive or neutral) the move is
accepted and the translation step terminates. The aim of the Translate step is to place the

ligand in a region of the binding site that does not result in a complete clash with the protein.

I11.2.3.2 Description of the Rotate step

The second step in the previously implemented RosettalLigand initial placement algorithm
is the Rotate step. The Rotate step consists of up to 500 random rotations with a maxi-
mum of 360° from the starting orientation. The Rotate step accumulates a set of diverse
non-clashing ligand orientations, and then selects one of these orientations at random for
further refinement. The size of the set of diverse orientations is either 5 or 5 times the
number of rotatable bonds in the ligand, whichever is larger. The ligand is randomly reori-
ented and then accepted into the set of diverse orientations if the following conditions are
met: No atoms are located in repulsive squares, 85% of the atoms are located on attrac-

tive squares, and the RMSD of the new orientation with respect to all previously accepted

conformations is greater than 0.65+/number of heavy atoms. After either 500 orientations
have been created or the maximum set size has been achieved, a random orientation from

the set is selected, and the Rotate step terminates.

I11.2.3.3 Description of the Slide Together step
The third and final step in the previously implemented RosettalLigand initial placement

algorithm is the Slide Together step. Due to the relatively small amount of information
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provided by the binary scoring grid, it is possible for the ligand to be placed in a region
where it does not contact any protein atoms at the end of the translate and rotate steps. In
this case the apparent interaction energy at the beginning of the refinement stage would
be 0, reducing the efficiency and sometimes causing failure in the following Monte Carlo
refinement stage. To avoid this situation, the ligand must be brought in contact with the
protein. The Slide Together step moves the ligand towards the center of mass of the protein
until the full atom repulsive score increases. Following this initial placement, a refinement
stage is carried out in which small perturbations of the ligand and repacking of the protein
side-chains are performed using MCM. Finally, all atoms in the binding site are minimized

using gradient minimization, and the final structure is scored.

I11.2.3.4 Possible limitations of the low resolution placement in RosettalLigand

We hypothesize that independent sampling of translation and rotation will complicate sam-
pling of all favorable initial placements, particularly if the ligand is not globular. For exam-
ple, a rod-shaped ligand would easily enter a rod-shaped pocket but only if it is brought into
the correct orientation first. A ligand with a bent shape might require reorientation while
entering the binding pocket in order to avoid clashes. Therefore, RosettalLigand will miss
out on favorable initial placements for other ligands but spend substantial time performing
refinement and minimization moves on ligands placed in unfavorable initial positions. Fig-
ure III.1 schematically illustrates this hypothesis. The Translate step described in Section
II1.2.3.1 only takes into account the geometric center of the ligand. As a result, a ligand
with a narrow binding pocket is likely to be initially translated unfavorably (Figure I11.1B).
Once the ligand has been translated into an undesirable locations the rotational sampling
(Figure III.1C) has no possibility of arriving at a high quality binding position, and the
mistake in translation can only be corrected by completing refinement and beginning a new
binding position. The result of this inefficiency would be an increased failure rate as some

ligands are never placed in favorable starting positions, and for other ligands an effectively
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TrANsRoT

Figure III.1: A schematic indicating the hypothetical mechanism by which the TRANS-
FORM algorithm exhibits improved performance compared to the TRANSROT algorithm.
A) When the TRANSROT algorithm is used, a cartesian starting coordinate is specified as
the starting position for the ligand. B) This starting point is then translated to a random
location which does not overlap with the protein backbone. C) The ligand is centered at the
new random location within a user specified starting radius, and a set of diverse, minimally-
clashing rotational binding positions are selected. D) A single random binding position is
selected for refinement. E) When the TRANSFORM algorithm is used, the starting cartesian
coordinate is specified as the starting position for the ligand. F) The simultaneous transla-
tions and rotations within a user specified radius is sampled using a MCM algorithm. G)
The best scoring model is selected from step (F) for refinement.

increased runtime as the number of ligand binding positions which must be generated to
reliably produce a high quality binding position is increased. Lemmon et al. (Lemmon
and Meiler, 2013) determined that as many as 1000 models may be necessary to produce at
least one high quality binding position in a challenging docking case. Given this, improv-
ing the efficiency of protein binding site sampling by starting from more favorable initial
placements has the potential to drastically reduce the computational cost of Rosettal.igand,
allowing for a larger number of predictions to be made given a fixed amount of computing
resources. The new TRANSFORM algorithm samples both translation and rotation simul-
taneously (Figure III.1F), and increases the likelihood of arriving at a reasonable binding
conformation prior to refinement relative to the separate translation and rotation steps of

the previously published TRANSROT algorithm.
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III.3 Results

The improved initial placement algorithm, here referred to as the TRANSFORM algorithm
has two components: A modular grid based scoring function and a MCM based sampling
algorithm. Both components are fully independent. The implementation described here
allows for the rapid implementation of new score terms and sampling methodologies, and

the easy integration of these methods into the existing RosettalLigand pipeline.

II1.3.1 Score function development

II1.3.1.1 Description of scoring grids and manager

Scoring of ligand binding positions in the new TRANSFORM algorithm is handled using a
set of scoring grids which are controlled by a scoring manager (Figure I11.2). Each scoring
grid is responsible for computing a single term in the energy function. In this study, a single
scoring grid, identical to that used by the TRANSROT algorithm, and described in Section
I1.2.3.1, was used for scoring. The scoring manager consists of a 3D tensor of floating
point values representing cartesian space and software functions to populate the tensor, and
score ligands positioned in it. The scoring manager is responsible for keeping every scoring
grid up to date with respect to the protein binding position, and for making sure that the
ligand is scored in every grid. Additionally, the scoring manager is responsible for handling
the weighting of the individual scoring terms to compute the total score. For this study, the
tensor is a 30 A3 cube, with a spacing of 0.25 A between grid points. While the size and
density of the grid does not need to be rigorously optimized, there are some guidelines
for setting the parameters. The size of the grid must be large enough to accommodate the
perturbation of the ligand, that is, if the ligand is translated as far as possible within the
docking algorithm settings (5.0 A in this study) the grid must be large enough for every
ligand atom to exist within the grid. Rosettaligand will reject any move that results in
ligand atoms placed outside the grid, so a grid which is too small will artificially constrain

ligand sampling. On the other hand, the amount of memory required to store a scoring grid
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v updates

Grid Manager =========
l score eval

Grid Score

Figure II1.2: A schematic showing the architecture of the scoring grid manager. The grid
manager takes as input protein and ligand models and computes a score based on these
scoring grids. Additionally, the grid manager is responsible for generating and updating
the information encoded in the scoring grids.

increases with the cube of the grid side length. Smaller scoring grids can be handled more
efficiently by the CPU, so making the grid too large may result in a substantial decrease
in algorithm speed. Similarly, the spacing between grid points must be small enough to
capture the differences between nearby atoms, but not so small that the grid is too large
to be efficiently handled. The overall guideline then is that a scoring grid should be large

enough to encompass the entire protein-ligand binding site, but no larger.

I11.3.2 Sampling architecture

II1.3.2.1 Description of grid MCM

An MCM algorithm is used to compute the initial binding position for the ligand. Fig-
ure III.3 shows a flow chart of the overall steps in the sampling process. At each step in
the sampling process the ligand is either randomly perturbed in the binding site, or the
conformation of the ligand is changed. Ligand perturbation is performed as a combina-
tion of a random translation and rotation, and the conformation of the ligand is perturbed

by selecting a random conformation from a library of pre-computed conformers. After
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Figure II1.3: A general schematic of the docking protocols described in this paper. Because
the initial placement and refinement steps are independent, the two initial placement algo-
rithms can be alternatively selected to produce a total of four ligand docking algorithms.

the perturbation, the ligand is scored using the scoring grids described above, and, the
Metropolis criterion is applied to either accept or reject the new binding position. After
500 cycles of sampling are performed, the best scoring ligand binding position is saved.
During sampling, only the scoring grids are used to provide scoring information, and the
protein is therefore rigid. By only using scoring grid information, it is possible to perform

500 cycles of sampling in roughly 1-3 seconds.

II1.3.3 Docking Protocol

II1.3.3.1 Introduction to the docking process

The overall docking protocol is illustrated in the schematic flowchart in Figure I11.3. The
study compares different configurations of both the initial placement step and the refine-
ment step, described below. Complete RosettaScripts eXtensible Markup Language (XML)

files for each experiment can be found in Chapter E. As a baseline we use the TRANSROT
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initial placement algorithm, in which translation and rotation moves are performed sepa-
rately using the binary scoring grids summarized in Section II1.2.3.1. The specific TransRot
protocol used here is originally described in Fleishman et al. (Fleishman et al., 2011), and is
functionally identical to the process described in the Davis paper, though the user interface

is different.

I11.3.3.2 Description of the TRANSFORM based initial placement algorithm

In the new TRANSFORM based initial placement algorithm, translation and rotation are
performed simultaneously. Five hundred Monte Carlo (MC) steps are carried out. At each
step, the ligand position is either transformed or the ligand conformation is changed using
the ligand conformers described in Section II1.6.2.1. When a transformation move is se-
lected, the ligand is randomly translated within 0.1 A of its current position, and rotated
within 20°. The degree of rotation and translation selected is based on a random gaussian
around the current position. The ligand is constrained to only move within 5 A of the
starting position. After each move, the score is evaluated as the sum of the values at each
grid square occupied by a ligand atom. The move is then accepted or rejected using the

Metropolis criterion, and the best scoring accepted move after all 500 steps is returned.

II1.3.3.3 Description of the MCM refinement algorithm

During MCM refinement, the full atom Rosetta energy function is used for energy compu-
tation rather than the scoring grids. MCM refinement consists of two steps: high resolution
docking and gradient-based minimization. Six steps of high resolution docking are per-
formed. Steps 1, 3 and 6 consist of repacking followed by minimization, while steps 2 and
5 consist of small perturbations of the ligand. In the repacking and minimization step, the
side-chain positions are optimized using side-chain rotamers from the Dunbrack rotamer
library (Shapovalov and Dunbrack, 2011), and the ligand is allowed to change conforma-
tion using the pre-computed ligand conformers. Following repacking, a gradient based

minimization is applied to minimize the energy of the side-chain and ligand atoms. In the
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perturbation step, the ligand is randomly perturbed within a range of 0.1 A and rotated
within a range of 20° per move. These perturbation and rotation ranges have not been
rigorously optimized but are sufficient to provide full coverage of the rotational and trans-
lational space. The two moves are alternated such that the first, third and final moves are
repacking and minimization, while the remaining are ligand perturbations. The six moves
are performed using a MCM algorithm, and the best scoring binding position of the six
moves is selected. After the high resolution docking step, a final minimization is carried
out in which the protein side-chain and backbone atoms in the binding site, as well as the

ligand atoms, are all minimized using a gradient based minimization algorithm.

I11.3.3.4 Description of MIN refinement

Minimization (MIN) refinement is carried out similarly to MCM refinement, except that
in the case of MIN refinement only a single round of repacking is performed prior to the
final minimization. Because no ligand perturbation is performed during MIN refinement,
the ligand binding position generated during the initial placement stage is more important

to the final binding position and score of the ligand.

I11.3.4 Benchmarking setup

I11.3.4.1 Overview of the CSAR benchmarking scheme

To benchmark the performance of the new initial placement algorithm, a docking bench-
mark derived from the Community Structure-Activity Resource (CSAR) (Dunbar Jr. et al.,
2011) dataset was used. A subset of 43 proteins from the CSAR data set was used (table
II.1). This subset omits protein/ligand complexes with co-factors, metal ions, or water
molecules that bridge ligand and protein. While Rosetta has successfully been used in such
cases (Lemmon and Meiler, 2013), the inclusion of critical waters, co-factors or metal ions
greatly increases the number of degrees of freedom in the docking simulation, which in

turn would make the results of benchmarking more complex to interpret.
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Table III.1

the proteins in the 43 protein benchmark set derived from CSAR.
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I11.3.4.2 Description of the three sets of input models used in the CSAR based bench-
mark
Because the new initial placement algorithm relies on a pre-computed scoring grid, the ini-
tial positions of the protein atoms will have an impact on the quality of the generated bind-
ing positions. To assess the extent of this impact, three sets of input structures were used in
docking: the crystal structures provided in the CSAR dataset, repacked structures in which
the backbone was held fixed and the side-chains re-optimized without the co-crystallized
ligand present, and relaxed structures in which both the side-chain and backbone atoms
were minimized in absence of the small molecule. In the case of the crystal and repacked
structures, only a single protein structure was used for docking. In the case of the relaxed

structures, the ligand was docked into an ensemble of ten models.

I11.3.4.3 Twelve benchmark experiments were performed

Each experiment is a combination of one set of input protein structures above (crystal,
repacked, relaxed or homology model) and one docking protocol. Four docking protocols
were selected to investigate the behaviors of each component of the docking algorithms. A
docking protocol consists of an initial placement algorithm (TRANSROT or TRANSFORM),
and a refinement algorithm (MCM or MIN). Figure II1.3 is a schematic describing the

overall docking process.

II1.3.5 Summary of results

II1.3.5.1 The TRANSFORM algorithm decreases the amount of time required to make
one model

Figure II1.4 shows the change in the average time necessary to generate a single model with

each of the four tested algorithms. The average time needed to generate a model using the

previously published TRANSROT/MCM protocol is 49.4 seconds per model. Changing the

Refinement protocol from MCM to MIN reduces the time per model to 33.3 seconds, and

changing both the refinement protocol to MIN and the initial placement model from TRAN-
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SROT to TRANSFORM further reduces the time per model to 9.3 seconds. The distribution
of per-model timing is not uniform, and varies based on the docking protocol used. We
see that the standard deviations of the time to generate models using TRANSFORM based
algorithms are lower than those of the TRANSROT based algorithms. Specifically, the dis-
tribution time to generate TRANSFORM/MCM models has a standard deviation of 10.51
and the standard deviation of the distribution for TRANSFORM/MIN is 3.98, On the other
hand, the timing distribution of the TRANSROT/MCM models has a standard deviation of
26.6, and the timing distribution of the TRANSROT/MIN models has a standard deviation
of 20.96.

In addition to a narrower timing distribution, the choice of algorithm also appears to
affect the skewness of the distribution. Specifically, the timing distribution for models
generated using TRANSFORM algorithm exhibit a lower skewness value and therefore a
more normal distribution than models generated using the TRANSROT algorithm. Specif-
ically, we see skewness values of 1.67 and 0.67 for the TRANSFORM/MCM and TRANS-
FORM/MIN protocols, and skewness values of 2.81 and 2.42 for the TRANSROT/MCM and
TRANSROT/MIN protocols.

From this timing data we can conclude that that the majority of computational time
spent by the previously published TRANSROT/MCM algorithm is split roughly evenly be-
tween the initial placement stage and the refinement stage. A combination of the new
TRANSFORM initial placement algorithm and MIN refinement is capable of consistently
generating models approximately 5-10 times faster than the previously published docking

algorithm.

II1.3.5.2 Use of the TRANSFORM mover improves sampling efficiency
The use of the sampling mover increases the probability of sampling low RMSD bind-
ing positions. 150 initial placement docking trajectories for each protein in the 43 protein

CSAR benchmark set were generated using the TRANSFORM and TRANSROT initial place-
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Figure I11.4: Kernel Density Estimate curves showing the distribution of time necessary to
generate a single model using various RosettalLigand protocols. TRANSROT/MCM is the
protocol previously published by Davis et al. (Davis and Baker, 2009).

ment algorithms. After each sampled position, the RMSD to the crystallographic ligand po-
sition was computed. Figure IIL.5 illustrates the impact of the TRANSFORM algorithm on
sampling efficiency. While the TRANSROT algorithm rarely samples models with RMSD
to the crystal structure < 2.0A, the TRANSFORM algorithm is far more frequently capable
of sampling these native-like models. Specifically, the TRANSFORM algorithm samples
native-like models 7.0% of the time, while the TRANSROT algorithm produces native-like

structures 0.16% of the time.

I11.3.5.3 Use of the MIN refinement algorithm improves consistency in run time
compared to MCM refinement

Further timing consistency is seen when the MIN refinement stage is used in place of MCM

refinement. Each round of repacking in MCM refinement requires that the interactions

between atoms in the binding site be recomputed. As the computational complexity of this

operation increases with the square of the number of atoms in the protein-ligand interface,

the docking of ligands into larger binding pockets takes substantially longer when using

MCM refinement compared to the docking of ligands into smaller binding pockets, which
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the TRANSROT and TRANSFORM initial placement algorithms. 2A cutoff indicated with a
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contributes to the observed changes in timing consistency.

II1.3.5.4 The TRANSFORM algorithm improves docking success rate

Figure II1.6 and Figure I11.7 plot the fraction of protein-ligand systems for which the lowest
scoring binding position is < 2.0 A RMSD as a function of total Central Processing Unit
(CPU) time and number of models generated, respectively. These figures indicate that
the choice of the initial placement algorithm is far more important than choice of low
resolution scoring method or refinement method. Docking protocols which make use of
the TRANSFORM initial placement algorithm can reliably dock an additional 10-15% of
models within roughly 15 minutes of CPU time, or 150 models, compared to protocols
which use the previously published TRANSROT initial placement algorithm. The choice of
refinement algorithm appears to play little role in the overall performance of the docking
protocol, except in the case of the previously published algorithm (TRANSROT/MCM),
in which case docking performance begins to approach the TRANSFORM based protocols

after roughly 800-1000 models have been generated (Figure I11.6). This observed behavior
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Figure I11.6: The fraction of protein systems in which the lowest scoring model has an
RMSD < 2.0 A to the native structure as a function of CPU time using the 3 evaluated
Rosettaligand docking algorithms when docked into A) Crystal structures, B) Repacked
crystal structures, and C) Relaxed crystal structures. A large pool of models were gener-
ated, and random subsamples were taken corresponding to time points at 5 minute inter-
vals. The number of structures included in each time point was based on the average time
to generate a model for each algorithm. 20 random samples were taken for each time point,
and the means are plotted, with the error bars representing the standard deviation. Dock-
ing protocols which make use of the TRANSFORM algorithm are reliably converged after
approximately 15 minutes (dotted line).

is consistent with previously published studies of Rosettalligand performance using this
protocol (Davis et al., 2009; Combs et al., 2013; Lemmon et al., 2012).

Figure II1.8 shows illustrates the statistical significance of the apparent differences in
performance between pairs of experiments illustrated in Figure III.7 and provides some
insight into the relative effectiveness of the methods studied. Figure III.8 was generated
using the Welches T-test to measure statistical significance. For each set of experiments
plotted in Figure II1.7, a Welches T-test was computed to determine the likelihood that the
distribution of success rates between a pair of methods was statistically significant. The
moving average of the T-Test p-value with a window of 5 was then plotted. A moving
average was used to smooth the plot and aid in visualization. We consider p-values be-
low 0.05 (indicated with a dotted line) to represent statistically significant differences in
performance. From this analysis, several interesting conclusions can be drawn. There ap-
pears to be minimal difference between the performance of the TRANSFORM/MCM and

TRANSFORM/MIN metrics when docking ligands into crystal structures or repacked mod-

59



>
w
0

Fraction of successfully docked systems

Fraction of successfully docked systems
Fraction of successfully docked systems

I TransRot/MCM | | - TransRot/MCM
- Transform/MCM

i
T TransRot/MIN - TransRot/MIN - TransRot/MIN

[~ Transform/MIN [~ Transform/MIN [~ Transform/MIN

- TransRot/MCM

- Transform/MCM - Transform/MCM

0.0 0.1 0.0
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Number of models generated Number of models generated Number of models generated

Figure II1.7: The fraction of protein systems in which the lowest scoring model has an
RMSD < 2.0 A to the native structure as function of the total number of structures gener-
ated using the 3 evaluated RosettalLigand docking algorithms when docked into A) Crystal
structures, B) Repacked crystal structures, and C) Relaxed crystal structures. A large pool
of models were generated, and random subsamples were taken. 20 random samples were
taken for each point, and the means are plotted, with the error bars representing the standard
deviation. Docking protocols which make use of the TRANSFORM algorithm are reliably
converged after approximately 150 models (dotted line).

els, suggesting that when the TRANSFORM sampling algorithm is used when self-docking,
the impact of the refinement algorithm is minimal. The major conclusion that can be drawn
from this data is that docking protocols using the TRANSFORM algorithm are significantly
improved over the TRANSROT algorithm based protocols regardless of the number of mod-
els generated. Interestingly, there does appear to be a significant improvement in perfor-
mance when TRANSROT/MCM is used rather than TRANSROT/MIN and more than 600
models are sampled. Given the very low sampling efficiency afforded by the TRANSROT
algorithm, it is likely that this high number of models is necessary to generate an initial
placement position capable of resulting in a good score after refinement. We also see that
when applied to relaxed models, the TRANSFORM/MIN algorithm performs slightly better
than TRANSFORM/MCM. The MCM refinement algorithm conducts alternating rounds of
side-chain repacking and ligand perturbation. It is therefore possible that in the case of the
relaxed protein model set, these small perturbations are adding noise, rather than improving

the quality of binding prediction.
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Figure II1.8: A Welch’s T-Test was computed comparing the success rates between pairs
of protocols across a range of numbers of generated models. The T-Test values for
TRANSFORM/MCM-TRANSFORM/MIN comparisons are in Blue, TRANSFORM/MCM-
TRANSROT/MCM are in Green, TRANSFORM/MIN-TRANSROT/MIN are in red, and
TRANSROT/MCM-TRANSROT-/MIN are in teal To reduce noise, a moving average of the
T-Test p-value is plotted for each of the three sets of models ( A) Crystal structures, B)
Repacked crystal structures, and C) Relaxed crystal structures). The horizontal dotted line
indicates the statistical significance threshold of 0.05.

I11.3.5.5 The new TRANSFORM algorithm is still tolerant of backbone and side-
chain perturbations while improving success rate
It is clear from Figure III1.6 and Figure III.7 that despite using a pre-computed scoring
grid during initial placement, RosettalLigand with the new initial placement algorithm is
still tolerant of changes to the side-chain and backbone conformations of the protein bind-
ing site. In all tested protocols, the success rate of Rosettaligand decreases as the un-
certainty associated with the protein side-chain and backbone atoms increases. In other
words, after 1000 models have been generated docking ligands into crystal structures (Fig-
ure III.7A), The TRANSROT/MCM protocol has successfully docked 81% of models, while
the TRANSFORM/MCM protocol has successfully docked 87%. When ligands are docked
into relaxed models in which both backbone and side-chain atoms are perturbed (Figure
II1.7C), The TRANSROT/MCM protocol has successfully docked 60% of models, while
the TRANSFORM/MCM protocol has successfully docked 75%. The reduction in success
rate is expected because the addition of side-chain and backbone perturbation effectively

adds noise to the protein structure. However, we see that the TRANSFORM/MCM proto-
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col results in a 12% decrease in success rate between relaxed and crystal structures, rather
than 21% for the TRANSROT/MCM protocol, so the new TRANSFORM protocol is more
tolerant of inaccurate protein structures than the original protocol. Because the new initial
placement algorithm is more likely to place the ligand in a high quality binding position,
a greater percentage of total docking time is spent in proximity of the correct binding site
and binding position. As a result, the sampling density increases and thereby the overall

success rate of RosettalLigand increases relative to the TRANSROT/MCM algorithm.

III.4 Discussion

I1I.4.1 Explanation for time decrease

As the rotation step of the TRANSROT/MCM initial placement algorithm uses the number
of rotatable bonds to determine how many rotations to perform, the amount of time re-
quired for the rotation step varies linearly with the number of rotatable bonds. Because the
TRANSFORM initial placement algorithm uses an MCM algorithm with a fixed number of
cycles, the time to complete a single model is more consistent compared to protocols that

use the TRANSROT algorithm.

I11.4.2 Details of performance optimization in the TRANSFORM algorithm

While the TRANSFORM initial placement algorithm performs roughly the same number of
sampling moves during initial placement as the TRANSROT algorithm, the speed improve-
ments seen are a result of differences in how those moves are computed. Rosetta uses a
system called the “fold tree” to represent the relationships between rigid body regions of
the protein system (Davis and Baker, 2009; Das and Baker, 2008). Since permutations of
the protein structure made using the fold tree are performed in internal coordinate space,
it is possible to rapidly modify a large system. In the case of ligand docking, however,
the system being manipulated is quite small, and the computation of fold tree based per-
mutations quickly becomes dominated by conversions between internal and cartesian co-

ordinate space. As only the scoring grids are used for binding position evaluation during
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the initial placement step, the TRANSFORM algorithm can represent the ligand as a list of
points, which are directly transformed using a rotation and translation matrix. This method
of computing ligand permutations is substantially faster than the previous fold tree based

method, and accounts for the majority of the observed speed improvement.

II1.4.3 The new algorithm improves sampling efficiency and speed

Based on the results of the benchmarking studies described above, the overall effect of the
new TRANSFORM sampling algorithm is two-fold. First, the quality of binding positions
generated during the initial placement stage is improved, and second, the amount of time
required to generate the initial placement is reduced. The improvement of the binding
positions generated by the initial placement stage results in additional speed improvements
by reducing the amount of sampling necessary to produce a high quality binding position.
The improved sampling efficiency afforded by the new initial placement algorithm both
reduces the time that must be spent in high resolution docking, and reduces the total number

of models which must be created to reliably produce a correct predicted binding position.

II1.4.4 The majority of performance improvement is driven by the improvements to
the initial placement sampling algorithm
Figure I11.9 compares the performance of several of the tested RosettalLigand protocols, and
provides further insight into the impact of the various components of the protocol on over-
all performance. The RMSD vs. RMSD plots illustrate specific performance differences
comparison between pairs of Rosetta protocols when 1000 models are generated. When the
original TRANSROT initial placement algorithm is used, minimal improvement is observed
when the MIN refinement algorithm is used as compared to MCM initial placement (Left).
While 21 of the 43 proteins show improvement in RMSD, only 4 exhibit sufficient improve-
ment to cross the 2.0 A cutoff. Comparison of the TRANSROT and TRANSFORM initial
placement (Center) shows substantial improvement when the TRANSFORM initial place-

ment algorithm is used, with 24/43 proteins having improved RMSD, and 15/43 having
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Figure I11.9: RMSD vs. RMSD plots comparing the performance of various docking pro-
tocols when docking ligands into relaxed structures. 20 samples of 150 models were col-
lected, and the average of the RMSD of the lowest scoring model is plotted for each protein-
ligand system. The standard deviation of these 20 samples is shown with error bars. Dotted
lines indicate the 2.0 A RMSD cutoff used to classify correct vs incorrect binding positions.

enough improvement to cross the 2.0 A threshold. Comparison of the MCM and MIN re-
finement algorithms when the TRANSFORM initial placement algorithm is used shows that
in this context the two refinement algorithms have nearly identical performance (Right).
From this data we can conclude that the improvements seen are driven primarily by the

new initial placement algorithm.

II1.4.5 Examination of the successes and failures of Rosettaligand illustrates the
impact of the TRANSFORM algorithm
Figure III.10 illustrates several examples of the successes and failures of Rosettal.igand.
Figure III.10A illustrates a case in which the TRANSFORM/MCM protocol successfully
docks a ligand that the TRANSROT/MCM algorithm cannot dock. The ligand in ques-
tion is somewhat flexible and is capable of engaging in hydrogen bonding interactions
from both sides. As a result, there are likely multiple possible binding positions with rel-
atively low Rosetta energy scores, meaning that the more efficient sampling afforded by
the TRANSFORM initial placement algorithm will increase the probability of sampling a
correct binding position. In certain cases, the TRANSROTinitial placement algorithm re-

sults in improved results over TRANSFORM algorithm. Figure III.10B is one such case.
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In this case, the ligand is extremely small, and can, as such, be placed in a number of
similar positions with varying RMSDs. We have seen from previous studies(Combs et al.,
2013) that it 1s difficult for the Rosetta energy function to distinguish between accurate and
inaccurate binding positions of very small ligands. It is likely that in this case the TRAN-
SROTinitial placement algorithm arrived at a nearly native binding position by chance,
while the TRANSFORM algorithm did not. Figure III.10C is a case in which both proto-
cols were successfully able to dock the ligand. This case represents a “best case scenario”
from the point of view of the Rosetta energy function and and sampling algorithm. The
ligand is asymmetric and 2 dimensional, with no rotatable bonds, and the ligand binding
site is compact and deeply buried. As a result of this, the sampling space is sufficiently
constrained that the additional initial placement sampling afforded by the TRANSFORM
mover is unnecessary. Conversely, Figure III.10D is close to a worst case scenario. Here,
a very small ligand is bound to a shallow pocket near the surface of the protein. Inspection
of the crystal structure shows that the ligand is involved in a 7-stacking interaction with
two phenylalanine protein residues. This interaction is likely responsible for a substantial
part of the total binding energy, but 7-stacking interactions are not directly modeled by the

Rosetta energy function and as a result will not be correctly recovered.

I11.4.6 The TRANSFORM algorithm improves performance by improving sampling

The improvements yielded by the introduction of the TRANSFORM algorithm are likely a
result of the types of moves performed during sampling. Because the original TRANSROT
algorithm performs translation and rotation steps separately, it will be difficult to produce
a move from the starting position that requires simultaneous translation and rotation. By
simultaneously transforming the ligand in all dimensions, the space of the binding site can

be more effectively sampled.
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Figure II1.10: Comparison of specific successes and failures between the Rosettal.igand
protocols. Native structures are in grey, lowest scoring models generated by the TRANS-
FORM/MCM protocol in blue, and lowest scoring models generated by TRANSROT/MCM
in pink. A) A case in which the TRANSROT/MCM protocol was unsuccessful but the
TRANSFORM/MCM protocol was successful (PDB ID: 1fhd). B) A case in which the
TRANSFORM/MCM protocol was unsuccessful but the TRANSROT/MCM protocol was
successful (PDB ID: 2otz). C) A case in which both methods were successful (PDB ID:
1bky). D) A case in which neither method was successful (PDB ID: 1g4w).
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Figure III.11: Scatterplots showing the change in average all-atom Rosetta score of the
lowest scoring model produced by several pairs of docking algorithms.

I11.4.7 The MCM initial placement algorithm improves the scores of generated mod-
els
Comparison of the scores of the lowest RMSD models generated by protocols using the
TRANSFORM and TRANSROT models demonstrates that the use of the TRANSFORM initial
placement algorithm results in models with slightly lower all-atom scores compared to
those generated with the TRANSROT algorithm (Figure III.11). As the energy function
which produces these scores is identical between the two protocols, these lower scores
indicate that the lower RMSD models generated by the TRANSFORM based protocol are
also more favorable according to the Rosetta energy function. Because the TRANSFORM
initial placement algorithm is capable of more efficiently sampling the binding site, it is
more likely to place the ligand in a favorable position prior to refinement and final scoring.

Table II1.2 summarizes the data seen in figures III.11 and II1.9

I11.4.8 Despite improved sampling efficiency, K; prediction is difficult

While the TRANSFORM algorithm results in slightly lower scores, it has no impact on the
correlation between Rosetta score and experimentally derived K, (Figure I11.12). The R?
correlation between log(K,;) and the Rosetta energy of the models made with the TRAN-
SROT/MCM protocol is 0.24, while the R?> correlation for models made with TRANS-

FORM/MCM is 0.29. This observation is in line with previous published studies(Lemmon
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PDB ID Score of lowest scoring model RMSD of lowest scoring model
TRANSROT/MCM [ TRANSFORM/MCM | TRANSROT/MCM [ TRANSFORM/MCM

2q89 -17.05645 -16.1337 1.02925 0.7834
3bgz -15.78875 -15.48785 6.73195 4.53105
Tukb -9.8015 -10.37875 4.26405 1.24235
Ivot -13.5644 -13.63745 4.04415 2.8081
2pTg -16.54995 -15.8481 1.57715 0.84315
2rca -14.78235 -13.98525 1.0863 1.08875
2vuk -15.1821 -14.24355 2.1848 1.2578
2nta -13.64955 -15.64855 0.9989 1.1451
2are -11.6824 -9.3915 2.24865 1.3767
274b -14.2266 -13.24475 2.33705 1.3088
2jj3 -18.87045 -17.31715 1.701 3.80675
2b3f -14.77755 -13.2687 2.6562 2.7313
2bbf -17.02835 -17.43075 1.60725 1.93445
2pwg  |-11.53405 -12.87725 243515 3.74805
2otz -9.8603 -10.957 0.9874 1.04625
20u0 -9.20305 -9.4244 2.0506 0.86025
2pzv -8.64085 -7.6027 3.12625 5.0221
2q88 -16.8035 -16.66835 1.43145 1.2881
1ui0 -8.7612 -9.63995 2.07845 2.2449
luzl -12.87105 -9.8404 3.29545 1.28635
luzd -11.37255 -10.25565 3.2094 1.82905
1v0l -11.31775 -11.0844 2.55955 1.53555
Tws4 -9.63965 -10.2396 3.6352 3.72855
1y20 -14.73825 -14.3057 0.4692 0.35425
2fai -14.9162 -14.53665 2.08935 1.82305
2fqw -17.10135 -15.1967 2.1882 1.39745
2j78 -13.59105 -12.6966 3.92555 3.28615
1bky -8.46035 -9.36075 4.429 4.30845
1q4w -14.60255 -13.47 1.6188 1.16905
1fex -23.6791 -22.2225 1.35465 1.30715
1fh8 -10.96435 -9.32295 2.65895 1.9014
1y93 -6.86775 -7.1999 3.06125 1.6985
1Thw -16.89405 -15.0563 3.2851 1.14035
1fh9 -12.94845 -11.12155 6.047 5.8786
19t -11.2194 -10.4868 4.906 5.02605
1fhd -12.96275 -11.3485 5.5551 3.51735
1Inm -17.99695 -17.3451 5.2465 1.1052
Inli -15.5466 -13.8951 0.9861 0.7264
low4 -16.2282 -14.7894 29311 1.3489
1r5y -14.1599 -14.2713 1.17925 1.1798
1538 -15.3163 -15.02655 1.2923 0.7658
1539 -12.2389 -11.9154 1.44685 1.80105
Iswl -13.4979 -13.4037 2.23155 1.90315

Table II1.2: A table showing the the PDB IDs, scores and RMSDs for the lowest scoring
models generated by the TRANSFORM/MCM and the TRANSROT/MCM protocols docking
ligands into the set of 43 relaxed protein models. For each of the 43 protein-ligand pairs,
1000 models were generated.
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et al., 2012) which indicates that the Rosetta energy function, as well as other popular
energy functions (Bauer et al., 2013) are frequently unable to effectively predict binding
affinity. Given that the binding affinity prediction problem appears to be driven by a lack
of detail in the Rosetta refinement energy function, it would not be expected that improved
sampling would have a significant impact on this correlation, and indeed we find this to be

the case.

II1.4.9 The benefit of the MIN refinement is primarily logistical, but important for
vHTS studies
While Figure I11.6 and Figure II1.7 indicate that both the MIN and MCM refinement algo-
rithms have a similar impact on sampling performance and average run time, the substan-
tially reduced variability in run time of the MIN refinement algorithm illustrated in Figure
II1.4 provides a major practical advantage to using MIN rather than MCM for refinement.
When docking a large number of ligands on a computing cluster, a protocol with a pre-
dictable run time is highly advantageous as it allows for more efficient utilization of the
available resources of the cluster. For this reason, while the two refinement methods have
similar scientific performance, we recommend using MIN refinement, rather than MCM

refinement.

I11.4.10 Improving the speed of Rosettaligand increases the number of compounds
that can be feasibly screened, enabling vHTS studies

Given that RosettalLigand is an “Embarrassingly Parallel” application, and thus scales lin-

early with the amount of available CPU resources, a substantial reduction in required run-

time per ligand is extremely valuable. By reducing the total processing time per ligand

from several hours to approximately 15 minutes, it now becomes possible to screen large

libraries of compounds. This development makes the use of Rosettal.igand as a vHTS tool

computationally feasible for the first time.
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Figure II1.12: Scatter plots showing the weak correlation between experimental log(K,)
and predicted Rosetta energy score for models in the 43 protein benchmark. Scores from
models generated using the TRANSFORM/MCM protocol are in red while scores from mod-
els generated using the TRANSROT/MCM protocol are in black.
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II1.4.11 The TRANSFORM initial placement algorithm improves the ability of Rosetta
to dock difficult protein-ligand pairs
A recurring theme in the development of protein-ligand docking tools is irregular perfor-
mance of these tools in correctly predicting binding position(Kaufmann and Meiler, 2012;
Lemmon and Meiler, 2013; Mysinger et al., 2012; Bauer et al., 2013; Davis et al., 2009).
While the TRANSFORM mover appears to dramatically improve the ability of Rosetta to
accurately predict ligand binding position, some ligands still cannot be correctly docked.
The ability to predict a priori whether a ligand can be effectively docked, or at least de-
velop some heuristics to aid in such a prediction, would be highly valuable. Figure I11.13
plots the distribution of several ligand descriptors as a function of the ability of Rosetta
to successfully dock the ligand. The number of atoms, rotatable bonds, stereo centers,
hydrogen bond donors and acceptors are computed, as is the molecular weight, Van Der
Waals (VDW) volume and surface area, and girth. Girth is computed as the longest distance
between any pair of atoms in the small molecule. All ligand descriptors were computed us-
ing the BioChemical Library (BCL). Additionally Figure III.14 plots the distribution of
several protein-ligand pair descriptors using the native crystal structure. Specifically, the
ratio of Rosetta binding Energy to SASA, the total SASA, the Rosetta Hydrogen bonding
energy, the number of residues in the complete protein and at the protein ligand interface,
and the packing statistic(Sheffler and Baker, 2009). As before, a ligand is considered to
be successfully docked if the lowest scoring model is within 2.0 A of the crystal structure.
Taken as a whole, figures III.13 and III.14 suggest that smaller, less flexible, and more
deeply buried ligands are easier for both TRANSFORM and TRANSROT based docking pro-
tocols to handle, and that the TRANSFORM protocol is able to recover the binding mode
in larger, more flexible, less deeply buried ligands that the TRANSROT protocol is unable
to correctly model. Unfortunately, while the ligands that cannot be successfully docked by
either model tend to be larger and more flexible, we can identify no hard rules for predict-

ing reliably if a ligand will be be successfully docked by Rosetta, as the distributions of
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Figure I11.13: Box and whisker plots showing the distribution of various ligand properties
amongst subsets of protein-ligand pairs in the 34 protein binding set. “Both fail” is the set of
pairs for which both TRANSFORM and TRANSROT protocols were unable to successfully
dock a a ligand. “Both succeed” is the set of pairs in which both protocol are successful,
and “Transform fix” is the set of pairs for which the TRANSROT protocol is successful and
the TRANSFORM protocol is unsuccessful.
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successful and unsuccessful ligands overlap for every descriptor evaluated.

III.5 Conclusion and Future Directions

IIL.5.1 The impact of improvements in low resolution sampling

Here we have shown that improvement in sampling efficiency can have a large impact on
ligand docking performance, even in the absence of improvements to the energy function.
Despite the relatively small number of degrees of freedom present in a preotein-ligand
docking simulation compared to other types of protein simulations, the sampling space is
still sufficiently complex that care must be taken to intelligently sample the binding space.
We also demonstrate that even a highly simplistic scoring function such as the binary scor-
ing grid described in Section III.2.3.1 contains more information than may be immediately
apparent. While the binary scoring grid scores all clashing and non-clashing atomic posi-

tions as equally unfavorable and favorable respectively, we found that the addition of MC
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Figure II1.14: Box and whisker plots showing the distribution of various protein properties
amongst subsets of protein-ligand pairs in the 34 protein binding set. “Both fail” is the set of
pairs for which both TRANSFORM and TRANSROT protocols were unable to successfully
dock a a ligand. “Both suceed” is the set of pairs in which both protocol are successful, and
“Transform fix” is the set of pairs for which the TRANSROT protocol is successful and the

TRANSFORM protocol is unsuccessful.
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sampling caused a dramatic improvement in the quality of ligand binding positions during
the initial placement phase of docking. This suggests that while the energy function is very
flat with respect to the position of individual atoms, it still contains enough information to
distinguish between generally bad and generally good binding positions when the entire

protein-ligand complex is taken into account.

IIL.5.2 The scientific value of increased algorithm speed

In addition to improvements in scientific performance, the TRANSFORM initial placement
algorithm described here also results in a dramatic decrease in the total runtime of the lig-
and docking simulation relative to the TRANSROT algorithm. This improvement in speed
has important scientific implications. First, increased speed increases the number of com-
pounds which can be computationally tested given a fixed amount of CPU resources. As
a result of the tremendous size of chemical space(Reymond et al., 2012), the probability
of an active compound existing in a randomly selected subset of chemical space is small,
therefore the size of the database screened should be as large as possible. The analysis
described in this manuscript suggests that in a high throughput screening workflow, a two
stage docking process would make the best use of availible CPU time. In this process,
both the TRANSFORM/MIN and TRANSFORM/MCM docking protocols would be used.
The primary advantage of the TRANSFORM/MIN protocol is the speed of computation.
TRANSFORM/MIN takes an average of 9.3 seconds to generate a model, and requires ap-
proximately 150 models to reliably generate a high quality binding position, for a total
of 1395 seconds per model (23.25 minutes). The previously published TRANSROT/MCM
protocol takes an average of 49.4 seconds per model and requires approximately 1000
models to generate a high quality binding position for a total of 49400 seconds (823 min-
utes). This represents an approximately 35 fold decrease in CPU time, and allows a far
larger number of models to be screened in a reasonable amount of time. For example, the

ZINC(Irwin et al., 2012) “Clean Drug-Like” database currently contains 13 million com-
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pounds. Using the new TRANSFORM/MIN protocol, this database could be screened on a
10000 CPU cluster in approximately 20.7 days, as opbinding positiond to 742 days with the
TRANSROT/MCM protocol. After screening the entire database, a smaller subset of com-
pounds would be selected for further study. At this point, the TRANSFORM/MCM protocol
would be used to re-dock the compounds, taking advantage of the improved scores obtained
through the use of the slightly slower MCM refinement algorithm which were observed and
described in Section II1.4.7. This two stage approach would allow us to leverage the dras-
tically increased speed of the TRANSFORM/MIN protocol with the improved refinement of

the TRANSFORM/MCM protocol.

III.6 Methods

I11.6.1 Complete docking protocol with high resolution refinement

I11.6.1.1 Introduction to protein preparation

Complete command lines and instructions for the protein preparation are detailed in Chap-

ter E.

I11.6.1.2 Description of CSAR crystal structure preparation
The original crystal structures from the CSAR dataset were processed to remove existing
water molecules, and hydrogens were added using Rosetta. The side-chains and protein

backbone were left at the crystallographic positions.

I11.6.1.3 Description of CSAR repacked structure preparation
The crystal structures prepared above were repacked in the absence of the ligand using the
Rosetta fixbb application. The backbone was kept fixed, and all side-chain positions were

allowed to repack (Kortemme et al., 2004).
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I11.6.1.4 Description of CSAR relaxed structure preparation

For each of the crystal structures prepared above, 10 relaxed models were produced using
the Rosetta relax application. During the Rosetta relax protocol, cyclic repacking of the
side-chains and gradient based minimization of the backbone are used to perform MCM of
the entire protein structure. In this case, all CA atoms were restrained to within 0.3A of
the crystallographic coordinates, to prevent major conformational shifts. Relaxation was

performed in the absence of the ligand.

II1.6.2 Ligand Conformer preparation

I11.6.2.1 Description of ligand conformer generation

Conformers were generated for each ligand using the BCL::ConformerGeneration appli-
cation(unpublished). BCL::ConformerGeneration uses a stochastic fragment assembly ap-
proach to conformer generation, utilizing a database of fragment conformations derived
from the Cambridge Structural Database. A maximum of 100 conformers were generated
per ligand, though the actual number of generated conformers varies based on the structure
of the ligand and the number of rotatable bonds. The generated conformers were used to

produce params files and ligand rotamer libraries using the protocol detailed in Chapter E.
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CHAPTER IV

RosettaHTS: A virtual High Throughput Screening tool integrating structure and

ligand based information

IV.1 Introduction

IV.1.1 Ligand docking methods are inconsistently able to predict binding affinity
While protein-ligand docking tools are frequently capable of correctly predicting poses
(Trott and Olson, 2009; Friesner et al., 2004; Ewing et al., 2001), these methods have
proven limited in their ability to distinguish between active and inactive compounds (Bauer
et al., 2013; Huang et al., 2006; Davis et al., 2009). The DEKOIS 2.0 benchmark (Bauer
et al., 2013) and a blind study of protein-ligand docking tools (Davis et al., 2009) demon-
strated that the majority of protein-targets can successfully be studied with protein-ligand
docking tools, although the tool with the best performance varies based on the target. Here,
success is defined as the ability for the protein-ligand docking tool to assign the lowest score
to a model with a low RMSD structure. This suggests that in general, protein-ligand dock-
ing algorithms have the ability to be successful. However, the overall variance in ligand
docking performance also suggests that while active and inactive ligands can be classified
for most protein systems by at least one available tool, no tool is universally reliable. Fur-
thermore, it has not been possible to easily predict which protein systems can be accurately

targeted by which by which ligand docking tools.

IV.1.2 Target-specific models are fundamentally limited in modern drug discovery
Target specific models for vHTS screening have frequently been employed to identify novel
hit compounds for drug development. These models are specific to a protein target of drug
discovery and cannot be used to make effective predictions about drug activity outside of
the narrow range of targets on which they are trained.

vHTS models can be broadly grouped into two categories: ligand-based models, and
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structure-based models. Ligand-based models are trained using only ligand information,
and attempt to learn the differences between the chemistry of known active, and known
inactive ligands as a means of predicting the activity of unknown compounds. Structure-
based models, on the other hand, are trained using a combination of protein structure and
ligand information and attempt to learn the differences in protein-ligand interactions be-
tween active and inactive compounds. Because ligand-based models include no protein
structure information, it is extremely difficult to make a generic ligand-based model.

Despite the historic success of target specific models, there are downsides to the ap-
proach. First, a substantial volume of known active and inactive compounds must exist for
the target molecule in order for a model to be trained. For this reason, successful mod-
els have been created for many popular targets, such as metabotropic Glutamate Receptor
5 (mGIuRS) (Mueller et al., 2012), human Ether-a-go-go-Related Gene (hERG) (Kratz
et al., 2014), and kinsases (Dranchak et al., 2013). Unfortunately, novel drug targets such
as Odd-Skipped Related 1 (OSR1) (Austin et al., 2014; Villa et al., 2007) for which few (or
no) existing inhibitors are known cannot make use of these techniques. This is problem-
atic, as many critical areas of modern drug discovery, such as antibiotic discovery (Lewis,
2013), increasingly rely on novel protein targets to develop effective drugs.

Furthermore, vVHTS methods that focus on protein-specific models are frequently biased
to predict compounds similar to those that have already been predicted. In order to be truly
successful, vHTS models must be capable of scaffold hopping (Bohm et al., 2004), or iden-
tifying compounds with substantially different structure than existing known compounds.
While protein-specific models have been able to do this in the past (Butkiewicz et al., 2013;
Gardiner et al., 2011), existing solutions exhibit high false positive rates. By combining
pattern recognition techniques with ligand docking, it may be possible to create a general-
ized model capable of predicting ligand binding affinity independent of protein structure or
ligand scaffold, potentially leading to a wider diversity of predicted compounds. This task

will be aided by the increasing number of publicly available HTS datasets. Specifically,
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datasets such as PubChem, the PDB, and ChEMBL (Gaulton et al., 2012), provide increas-
ingly large sets of public small molecule and protein structure information that can be used

to train models.

IV.1.3 Neural network based methods can be used to re-score protein-ligand binding
prediction

IV.1.3.1 NNScore

In recent years, tools have been developed to re-score protein-ligand binding predictions

using neural networks. NNScore 1.0 (Durrant and Mccammon, 2010) and NNScore 2.0

(Durrant and Mccammon, 2011) are two such tools.

NNScore 1.0 is a neural network based scoring function intended to overcome the lim-
itations of traditional knowledge and physics based scoring functions through the use of
pattern recognition. The network itself is constructed as a feed forward network with a sin-
gle hidden layer, 194 input nodes, and two outputs. The input descriptors to the NNScore
1.0 network consist of protein-ligand atom pair counts within 2.0 and 4.0 A shells, an
electrostatic-interaction energy between protein-ligand atom pairs within a 4.0 A shell, the
total count of ligand atom elements, and the number of rotatable bonds in the ligand being
evaluated. In this way, the NNScore inputs contain information regarding both the protein-
ligand environment and the ligand composition. NNScore 2.0 (Durrant and Mccammon,
2011) expands upon these descriptors by adding steric hinderance information, hydropho-
bic information, and hydrogen-bonding information computed by AutoDock Vina (Trott
and Olson, 2009).

In both cases, the initial benchmarking of these models indicated their ability to distin-
guish accurately between well and poorly docked models, as well as their ability to act as a
scoring function. (Durrant and Mccammon, 2011, 2010). However, a larger benchmark of
NNScore 1.0 and 2.0 published in 2013 suggested that while these methods are frequently

capable of improving activity classification and binding affinity prediction beyond protein-
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ligand docking, the success of the method remains highly dependent on the protein target.

(Durrant et al., 2013)

IV.1.3.2 Predicting binding mode with ANNs
Another recent ANN-based approach to predicting ligand binding activity was described
by Chupakhin, et al. (Chupakhin et al., 2013). Rather than using predicted binding mode
as an input to a model predicting binding affinity, the Chupakhin method uses 3D fragment
descriptors as an input and attempts to predict the interaction fingerprint of the protein-
ligand pair. These predicted fingerprints are then used as the input to a similarity based
virtual screening system to predict ligand activity. The advantage of this approach is that it
is potentially possible to obtain results similar to those obtained by docking simulation and
similarity based screening without actually performing computationally intensive docking
studies.

In the initial implementation and benchmarking paper, Chupakhin, ez al. report that they
were able to accurately predict both interaction fingerprint and ligand activity classification
for many protein targets. However, as with other methods, it appears that there remain

many cases for which the method is unsuccessful.

IV.1.4 Using protein-ligand interaction similarity to predict binding affinity

In addition to the NNScore method, the properties of protein-ligand interactions can be
used more directly as a predictor of small molecule affinity. The FEATURE method
(Halperin et al., 2008; Tang and Altman, 2014) provides a means of describing the micro-
environment of a small-molecule ligand interaction, and building a model of affinity based
on that micro-environment. In this method, descriptor vectors are computed based on a set
of chemical and physical properties computed for spherical shells surrounding each atom
in the molecule. While spherical shells lack directional information, they are rapid to com-
pute, and allow for a simple, orientation independent, description of the micro-environment

of the small molecule. These simple vectors can then be used as the input to supervised
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machine learning methods to produce models of binding affinity.

IV.1.5 Existing limitations in data sources used for training and validation

One of the difficulties facing the successful implementation of any vVHTS method is the
selection of high quality datasets for model testing and validation. Having such a dataset
is critical, so substantial existing literature is dedicated to the development of screening
datasets, as well as characterization of the difficulties in curating them. Here, we discuss
these limitations as they apply to the generation of a training dataset containing high quality

active and inactive compounds.

IV.1.5.1 The limitations of existing sources of known active ligands

As the goal of RosettaHTS is to train a model capable of distinguishing between active
and inactive small molecules across a range of protein targets and small molecule chemi-
cal space, the selection of a high quality training set was crucial. As discussed in Section
IV.1.2, it may be possible to create models based on focused libraries of known active and
inactive compounds for targets with substantial amounts of available vHTS data. However,
if the goal is to create a model that can predict activity across a range of targets, or for tar-
gets with no currently known inhibitors, these focused libraries are insufficient for training
purposes.

There are several additional factors that complicate the curation of a training set for a
general classifier. First, compounds with known binding affinity must be located across a
wide range of protein targets. ICsg and K; are the two major means by which drug activity
is measured. ICsg is defined as the concentration of an inhibitor necessary to cause a 50%
reduction in biochemical function. On the other hand, K; is a thermodynamic equilibrium
constant which measures the ability of the protein-ligand complex to dissociate. As ICs
is a measurement of biochemical function, it is affected by a wide range of physical and
chemical factors. For this reason, the ICsg of a single compound with respect to two dif-

ferent proteins cannot be easily compared. Because the goal is to compare the activity of
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ligands independent of the protein target, K; must be used instead of ICsy.

Because ICs( values are often more challenging to obtain than K; values, this substan-
tially reduces the availability of data from public databases, such as ChEMBL or PubChem.
Furthermore, the active compounds selected must bind to a wide and evenly distributed
range of targets and have a wide and evenly distributed range of known activities.

Due to the Intellectual Property concerns associated with the drug discovery process,
neither publicly nor privately available compound databases meet these requirements. For
example, while ChEMBL contains 481,050 K; value measurements across 164 distinct
targets with known K; values, 90% of these targets have fewer than 891 measurements
each. In other words, nearly all of the available K; values are confined to a small handful

of protein targets.

IV.1.5.2 The limitations of existing sources of known inactive ligands

The difficulty of selecting a high quality training dataset is compounded by the availability
of known inactive ligands. Binding affinity data of inactive ligands is less frequently pub-
lished than active ligands. Additionally, most inactive ligands are measured as inactive by
IC5 rather than K;. Because ICsg and K; are distinct properties, these experimental values
are unusable for a model predicting K;, as a compound with no measurable ICsy does not
necessarily have measurable binding affinity.

The lack of known inactive compounds is most frequently addressed by the use of prop-
erty matching techniques. In this process, compounds that have similar chemical properties
to the known active ligands but dissimilar structures are selected and designated as pre-
sumed inactive compounds. Directory of Useful Decoys (DUD) (Huang et al., 2006) is one
of the earlier attempts at a large scale library of inactive putative inactive compounds. The
DUD dataset consists of a set of known active compounds with available crystal structural
data, and unknown putative inactive compounds across a set of 40 protein targets. In the

case of DUD, putative inactive decoy compounds were selected by a process of histogram
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matching across molecular weight, hydrogen-bond donor and acceptor weight, rotatable
bond count, and logP, followed by topological dissimilarity, to select compounds with sim-
ilar chemical properties but dissimilar physical properties.

While such a method can be useful for predicting inactivity, there is a substantial risk
of inadvertently including active ligands among the set of predicted inactives. This concern
was borne out in the case of the DUD dataset, as several of the decoys in the DUD dataset
were found to have activity against the target ligand (Vogel et al., 2011). Additionally, the
five parameters used for histogram matching in the original DUD dataset were determined
to be insufficient for the purposes of dataset balancing. As an example, the original DUD
dataset was found to have a charge imbalance, in which the set of active ligands was sig-
nificantly more charged than the inactive decoys (Irwin, 2008). As an attempt to remedy
these issues, the Directory of Useful Decoys Enhanced (DUD-E) (Mysinger et al., 2012),
DEKOIS(Vogel et al., 2011), and later, DEKOIS 2.0 (Bauer et al., 2013) benchmarking
sets were developed. These benchmarking sets take varying approaches to generating more
balanced datasets.

DUD-E attempts to improve upon the original DUD dataset by increasing the size and
scope of the benchmarking set, removing homology model based protein target structures,
and improving the method of ligand clustering and decoy property matching. To reduce the
2D similarity of decoy compounds to known active compounds, the 2D similarity filtering
method was refined to exclude a greater percentage of compounds. DUD-E thus represents
an iterative refinement in the library design methods established by the original DUD pub-
lication rather than an entirely novel approach. Regardless, DUD-E effectively resolves
the charge imbalance issue in the original dataset and improves the degree of dissimilarity
between ligands and predicted decoys.

DEKOIS is an independent attempt to improve upon the DUD dataset. Like DUD,
the DEKOIS protocol for identifying predicted inactive compound begins with the iden-

tification of a large pool of potential decoys through property matching. The potentially
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inactive ligands are then clustered to be similar in chemical property to the known active
compounds and then filtered to be structurally dissimilar. However, DEKOIS adds a novel
filtering function for removing latent actives from the decoy set while maintaining suffi-
cient physiochemical similarity between the known actives and putative inactives. Latent
activity is predicted using functional fingerprint bitstrings. Bitstrings for the known active
compounds are analyzed to produce a set of substructure fingerprints associated with lig-
and activity, and ligands with a high degree of substructural similarity are removed from
the set.

DEKOIS 2.0 expands upon the filtering algorithm presented in the original DEKOIS
benchmarking set through the addition of descriptors representing the population of neg-
atively and positively charged state and aromatic ring count. Incremental improvements
were also made to the scoring function used to predict latent activity in the decoy set. Ad-
ditionally, the DEKOIS 2.0 benchmarking set expands the size and breadth of the original
DEKOIS set.

While property matching methods have been relatively effective for the development
of ligand docking benchmarking tools, they are insufficient for training machine learning
models, particularly ANNs. While ANNSs are best known for their ability to model complex
patterns, they are also generally capable of approximating arbitrary polynomial functions
(Lindsey, 1997). This means that any ANN model trained using a set of algorithmically
trained decoys may learn the decoy selection algorithm rather than the actual chemical and

physical patterns distinguishing active and inactive compounds.
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IV.2 Methods

IV.2.1 Development of a balanced training dataset

IV.2.1.1 Cross-docking a diverse set of ligands to create a balanced set of training
dataset

To overcome the difficulties with synthetic benchmarking sets described in I'V.1.2, the inac-

tive component of the training dataset used for RosettaHTS is generated via cross-docking.

In this approach, a diverse set of compounds with known binding affinity against a diverse

set of protein targets is selected as a source of active ligands. Presumed inactive decoys are

then generated by cross-docking each known active ligand into each protein. The advantage

of this approach from an ANN training perspective is that it ensures that the distribution of

active and inactive compounds is absolutely identical from a chemical standpoint. By using

a diverse set of non-overlapping protein targets, the probability that cross-docked ligands

in the inactive set actually have activity against the cross-docked targets is low.

PDBBind (Wang et al., 2004) is a collection of protein-ligand binding pairs for which
known binding affinities and X-ray crystal structures exist. Since its original publication
in 2004, The PDBBind database has been periodically updated. As of 2013, it contains
10,776 total complexes, of which 2,959 have known K; values, are non-covalently bound,
have only a single ligand in the binding site, and have crystal structures with a resolution
of less than 2.5 A. Compounds from this “refined” subset of the PDBBind database were
used as the basis of the training dataset, which was further filtered as described in Section

IV.2.1.2 to produce a training dataset.

IV.2.1.2 Additional filtering of PDBBind “refined” to produce a diverse set of high
quality active compounds

For the purposes of this training set, all active ligands must have the following properties

beyond those described in Section IV.2.1.1: The set of proteins must be diverse in that every

protein in the set should come from a different family to avoid biasing training towards
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a particular class of receptors. Additionally, while Rosettal.igand is capable of docking
ligands into proteins of any size, extremely large proteins require the allocation of large
amounts of memory, which makes screening more time consuming. As a result, all proteins
in the training set were required to have fewer than 1,000 total residues across all chains.
Rosettaligand must also be capable of predicting the pose of each complex such that the
lowest Rosetta score has an RMSD of < 2.0 A to the crystal structure. The rationale for
this requirement is that the goal of the model is to predict ligand binding affinity. Including
protein-ligand complexes which cannot be successfully docked will serve only to increase
the noise in the model. As some of the compounds in PDBBind are large molecules, natural
products, and peptides, the set of protein-ligand complexes considered was limited to those
with ligands obeying Lipinski’s rule of Five (Lipinski et al., 2001). The 2959 complexes in
the PDBBind refined set were filtered based on the criteria described above and then docked
using the Rosettal.igand protocol described previously, resulting in a set of 120 unique
protein-ligand complexes (summarized in Table IV.1). The resulting set of compounds
represents a divers group of small, drug-like molecules. Specifically, the number of atoms
ranges from 6 to 62, with a median of 25, and the number of rings ranges from 0 to 5 with
a median of 1. The number of rotatable bonds ranges from 0 to 13 with a median of 2, The
number of hydrogen-bond acceptors ranges from 1 to 5, with a median of 4, the number of
hydrogen-bond donors ranges from 0 to 5 with a median of 2, and the log(K;) ranges from
2.2 t0 9.7 with a median of 4.38, the weight ranges from 87.06 to 496.51, with a median
of 183.35. Figure IV.1 plots the overall distribution of these properties across the training

dataset.

IV.2.1.3 Crossdocking active compounds to produce presumed inactive binding data
The active component of the training dataset was based on the lowest scoring of 200 Roset-
taLigand models produced for each known active protein-ligand pair described in Section

IV.2.1.2. The specific protocol used for all Rosettal.igand docking described in this study is
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Figure IV.1: The basic property distribution of ligands in the training dataset. Histograms
are plotted of the atom count, rotatable bond count, ring count, Topological Polar Surface
Area, log(K;), count of hydrogen-bond donors, acceptors, and molecular weight of the 120
ligands in the binding site.

87



[PDB 1D | Ligand 1D | Ligand Formula | Protein name [Tog(K;) | Weight | AA Count | Citation ]

3pwk [Lid C3H1204 ans & acid 335 |12 [732 (Paviovsky et al., 2012)
3t Cy3 a5 BREN; 053 | 3-ex0)-3-15 V-2 bicycloB3 2.1 T@-bromo-3-methyl-5 TyDmethanone 721 | 495448 [ 980 (Liang et al 2012b)
3idy CoMaCL20; 35 T.2-diol 705 | 179.001 | 270 (Matera et al

Tngv C12H>5BRO bromo-dodecanol 603 26523 [224 (Campanac

2pql TN, 2-(Th-indol-3-y1 728 | 160216 | 145 (Becker et al., 1999)
3oyz Ci0M1603 (22)-9-ox0dec-2-enoic acid 722185 | 184.232 | 238 (Pesenti et al., 2009)
3lka C7H9NO3S 4 y fi 282 187.216 | 158 (Borsi et al., 2010)
Td7t CyH308, ‘methyl methylsulf Sulfide 36 124235 | 214 (Burkhard et al., 2000)
Juxi Ci5H1205 3@ T-(2,4.6-trihy pan-T 73 274.269 | 420 (Alguel et al., 2007)
N5 CHsN;05 Asparagine 577 [ 132117318 (Muller et al., 2007)
3uxk C7HINOy benzhydroxamic acid 493 137.136 | 1532 (Lietzan et al., 2012)
dnl Cl1HyNOS 2-(@-methylphenyl)-1 3-thiazole-4-carboxylic acid 448 [21936 | 1704 (Feder et al., 2012)
£ Ci4H1 1 F3N;08 @ pheny1]-7.8-dihydro-3h-thiop: S dipyrimidina-ol 81 31231480 (Rarlberg etal., 2010b)
Tenu CyH7N:05 Faminophthalhydrazide 508 [ 17716 | 386 (Gradler etal., 2001)
Tui0 C4HsN>0, uracil 7.06 112.087 | 205 (Hoseki et al., 2003)
Tefy C5H3N; 05 e y i 7 i 832 | 267.283 | 350 (White et al., 2000)
hjb CyHy NO @ ypheny 139 | 137.079 [992 (Hothi et al_, 2007)

Taft CsHyNs Tistamine 877 [ 111145 [350 (Pacsen et al_, 1999)
Dafw C7H N30 n-[2-(Th-imidazol-4-yDethylJacetamide 177 153.182 | 658 (Huang et al., 2005)
Thsl CoHoN3 05 Histidine 719 155.154 [ 476 (Yao etal., 1994)

g C1oH17NO5S Gar,3r.6s.7r.7an)5-(hy )2-propy hyd pyrano[3.2-dJ[ 1 3]thiazole: 66 247311 | 1430 (Whitworth et al., 2007)
20jg Ci6H16N:0 ‘n.n-dimethy|-4-(4-phenyl- Th-pyrazol-3-yD)- 1h-p; 564 | 28054 (Aronov etal, 2007)
llgw CeHgFN 2 4 111117 (Wei et al., 2002)

Sebi CioHyuNOG P @9 35T P yI(hydroxy)phosphoryl] y ic acid 361372 (McGowan et al., 2009)
Tpu CyH;NO,PS (T-amino-3-methylsulfany -propyl)-phosphinic 169.182 (Crepin et al_, 2003)
3p%p CioHa1 N304 0501 ylI-Fornithine 215.293 (Cluis et al, 2011
Taid CyHy 0y 4-DIHYDROXYPHENYL)ACETIC ACID 168.15 (Done et al., 1998)
3p7i C,HgNO3P [ ic acid 125.064 (Alicea etal., 2011)
Tceb C3HsNOy trans-4-aminomethy[cyclohexane- 1-carboxylic acid 1571 (Mathews et al., 1996)
Teoc ColsNO; chol 155.108 (Vetting et al., 2000)
1299 CaliNy 8151 (Vassylyev etal., 1998)
2hzl C3H 05 88.062 (Gonin et al., 2007)
a6l CosHy3 FN;0; y y Ty 3 02461 (Liang et al., 2012a)
Bais Col7Ns 3-methyl-3h-purin-6-ylamine 207 | 149.153 (Zhu etal, 2012)

2vba CrHpN,05 2-phenylamino-4-methyl-5-acetyl thiazole 6 232,301 (Pappenberger et al., 2007)
3f6g CoH13NOy Tsoleucine 472 13117 (Zhang et al., 2009b)
2q7q CHsCIN @ 53 41598 (FHothi et al_, 2007)
Wi Col13NO3 (25.35.41,51)-2.3 4-trihydroxy-3-hydroxymethyl-piperidine GOIT | 163,172 (Prehna et al., 2012)
Sodu CortaNaSy (6.6-dimethy y 2.1-b[1.3 Tmethyl n.n"dicy y 8§14 | 406651 (Waetal, 2010)

Jagl CiaHa0hN20 2.4-bis(iodanyl)-6-[[methyl-(1 4 3.65 436.13 (Wilcken et al., 2012)]
o1 CsHNO, trimethyl glycine 54 118.154 (Schiefner et al_, 20042)
2ok CyHsNOS T-nitrophenyl 493554 | 170209 (Axarli et al., 2009)
Teyx CyHs 0y benzoic acid 248 | 122101 (Almrud et al., 2002)
st CoH1aN20; Lysine 785 | 146.19E (Oh etal., 1993)

Siog CrH;CL05PS | [(0-04 r acid 55 213073 (Lassaux et al., 2010)
Shmp CiaHpCLNs chl y 4a 549 | 233.697 (Chu et al., 2010)

2dua 04 oxalate fon 477 | 88019 (Chen et al., 2006)
VI8 CorHaNs ethidium 554 [314404 (Bolla et al., 2012)
3rdq CioH15N203 6-(5-methyl- 4-yD)-h acid 931 214262 (Magalhdes et al., 2011)
Tpot (S Spermidine 549 | 145246 (Sugiyama et al., 1996)
2vuk CioHisNs 1-(9-cthy[-Oh-carbazol-3y1 390309 (Boeckler et al., 2008)
Tnli CsHsNs adenine 359 (Shaw et al., 2003)
3sus CgH13N04S (Bar5r.6r,7r.7ar)-5 ymethyl)-2-methyl-5,6.7,7a-tetrahydro-3ah-pyrano[3,2-d][1,3]thiazole-6. 7-diol 415 (Sumida et al., 2012)
258 Ci3HoBRy N5 [XEX Jpyrido2.3 diamine 908619 (Miller et al., 2009)
3nq3 CioH0, G 378 (Coch et al., 2011)
295 Cy1Ha0s 17,21-dihy 53 (Klicber et al., 2007)
2i80 CipHi3CLFSNO 3-chloro-2,2-d 14 P 5.4 (Liu et al., 2006)

Tnki CH;05P I 67 (Rigsby et al., 2004)
3671 CroHs03 Shydroxy T4-dione 516749 (Kong et al., 2008)
3678 CyH,CLIS0 T-chloro-2,2.2 ether 31 (Zhang ctal., 2009a)
3ime CoHyNO 5-methoxy-Th-indole 2.95861 (Hung et al., 2009)
309 CsH sNOSP 163 (Lee ctal., 2012)

Zrin CyH16NO, 7 (Oswald et al., 2008)
Sacw Ciolh NO (31)-3-biphenyl-4-yI-I-azabicyclo[2.2.2Joctan-3-ol 476 (Lin et al, 2010)

2xn3 Ci5H15NO, 2@ y acid (Qietal., 2011)

s CyHy NO3 Tyrosine (Brick and Blow, 1987)
ket Ci5H1005 enistein (Trivella et al., 2010)
4b0b C1H10M0 3-(pyridin-2-yloxy)aniline (Moynié etal., 2013)
315 CioH | NO3 2-[(furan-2-ylmethyDamino]benzoic acid (Cho etal., 2011)

3Kiv CoH13NOy ic acid (Mochalkin et al., 1999)
16T CyHsNOs 4 § y acid (Shin et al., 2004)

Tirh CiaM1005 ‘naphthalen-1-yI-acetic acid (Woo et al., 2002)

Thps CygH13NO4S 68,71, 7ar-5 2-methyl hydro-3ah-p [3.2-d]thiazole-6.7-diol (Mark et al., 2001)
ddkp Cy7H sCLFN;0; | n-{(15,25)-2-amino-2,3-dihydro-Th-inden-T-y T-chloro-3 (LaLonde et al., 2012)
Tikt CyuHe011 oxtoxynol- 10 v et al., 2001)
Txk9 C7H17V305 02 0 2 -dimethyl-n 1 -(6-0x0-5,6-dihy TyDglycina 295336 (Yates et al., 2005)
2v3d CioH2 1 NOy (2r3r,41,55)-1-butyl-2-(hydroxymethyl) piperidine-3,4,5-triol 219.278 (Brumshtein et al., 2007)
Syas 331505 L1133, 184.037 (Zuegg etal., 1999)
27k 1503 2-hydroxybenzoic acid 138121 (Devesse et al., 2011)
Tqy2 CyH 12N, 0 2-isopropyl-3-methoxypyrazine 152194 (Bingham et al., 2004)
3g0e n-[. y 5-[(2)-(5-fluoro-2-0xo-1,2-dihydro-3h-indol-3: yl]-2,4-d hyl-Th-pyrrole-3- 7.69897 | 398.474 (Gajiwala et al., 2009)
3n7h non-diethyl y i3 191269 (Tsitsanou et al., 2012)
Than 1,23 4-tetrahydro-isoquinoline-7-sulfonic acid amide 624 [ 212269 (Martin et al., 2001)
378 2-aminobenzoic acid 424413 | 137.136 (Bera et al., 2009)
320w 2-chloro-4-[(1r,3z,7s. Tas)-7-hydroxy-1 yDtetrahydro-Th-pyrrolo[ I, 2-c][1,3]oxazol-3 3 ¥ 9.52288 | 359.731 (Nirschl et al., 2009)
Tdg i form) 74 150.13 (Bjorkman et al., 1994)
TdiE CioH16N2055 biotin 97 244311 (Hyre et al., 2000

gkl CyH5NO; pyridine-24-dicarboxylic acid 535 [ 167019 (Horsfall et al_, 2007)
2buv C7HgO4 g 4 154.12 (Brown et al., 2004)
cgf Ci7H15CI05 8.9.10-hexahydro-Th- ine-1,11(12h)-dione GAT__ | 338.783 (Proisy et al., 2006)
17 CsH3NOP Teucine phosphonic acid 518 | 167.143 (Stamper et al, 2001
Toju C1aH13CINGO @ 3G I8 PEENEP) (Presnell et al., 1998)
3k CyH50,5 2-sulfanylbenzoic acid 426 | 154.19E (Wilder etal., 2010)
Tebx CriH1204 T-benzylsuccinic acid 635 | 208211 (Mangani et al_, 1992)
3ic3 Ci7H 5N, 058 T5-G4 T i 2 523 [314402 (Wang et al., 2010)
Tx8d Col1205 T-thamnose 221 | 164.156 (Ryu et al., 2005)

Zpep CiythsN T-(phenyl- I-cyclohexyD piperidine Z (Lim et al., 1998)

Suxd CoH3CLyN: dichloro-1h (Rhersonsky et al, 2012)
Tiys CsHsNs adenine (Lee etal., 2001)

3bdp CiaH N0, y y acid (Ahuja et al., 2008)
3Kjd CiaHiN;0 @1)-2-(7-carbamoyl-Th 72 (Rarlberg et al., 20102)
Twml C11H17N305 3 4-oxadiazol-2-yD[(2n)-pyrrolidin-2-y 3 (Inoue et al_, 2003)
2488 CoHoN2 05 (ds)-2-methyl-1,4.5 6-tetrahydropyrimidine-4-carboxylic acid 257 (Hanekop et al., 2007)
3jrs CisH04 (2z.4e)-5-[(15)--hydroxy-2.6,6-trimethyl Ten 15113 7d-dienoic acid 7284 | 264317 [ 624 (Miyazono et al_, 2009)
3ebl Ciof05 630103 | 332,391 | 2190 (Shimada et al., 2008)
2ra6 CyH10 4-ethylphenol 457288 | 122,164 | 664 (Watson et al_, 2007)
Tupf Cy4H3FN, 09 5-fluorouracil 4.6 130.077 | 896 etal., 1998)
Tepk Ci5HisN20 Tuperzine a 537 | 242316 [ 537 (Dvir et al., 2002)
3692 C13H16055; 3-4-(ut-2yn- Tyl y y T-thiol 3 284,394 | 239 (Bandarage et al., 2008)
3905 Ciall; NO; “iminodibenzoie acid 582 | 25741 | 1508 (Castell etal., 2013)
2aac CeH1205 beta-d-fucose 222 164.156 | 354 (Soisson et al., 1997)
3ip8 CyHyO3P acid 2284 | 172118 | 248 (Okrasa et al., 2009)
Toif Col13NO3 S-hydroxymethy|-3 4-dihydroxy 772 | 147172 [ 936 (Zechel et al., 2003)
172 Ci7H N0y cocaine 64 303,353 | 878 (Larsen etal., 2001)
3hp9 Cy5H1 | CLF3NO; 2-[2-chloro-5 -5 acid 459 345701 [ 482 (Luetal., 2010)

Teez C12H1005 T-hydrony-2-oxo-chromene-3-carboxylic acid ethyl ester 513 | 234205 [ 366 (Orita et al., 2001)
2kd C3H;05P 3 acid 272125 | 154.058 | 624 (Stiffin et al., 2008)
2gvv CiolNOsP y 39 244|314 (Blum ct al., 2006)
ledh CeHBrsO 8.41 488.592 [ 254 (Ghosh et al., 2000)
ipz CrHN; I i 396 | 133.151 [980 (McGrath et al., 2006)

Table IV.1: The PDB IDs of the protein-ligand complexes selected for use in the training
dataset.
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laid out in detail in Chapter F. While crystal structures were available for the active protein-
ligand pairs, high quality Rosettal.igand models were used to expose the model to the types
of noise introduced in the process of RosettalLigand docking.

As this set does not contain any known inactive compounds, the inactive component of
the training set was generated through cross-docking. By using the same set of ligands for
both the active and inactive datasets, it is impossible for the ANN to learn any algorithm
used to select inactive compounds. For this reason, we can use this approach to avoid
some of the challenges described in Section IV.1.5.2. Each ligand in the 120-compound
set was docked into each of the proteins in the set except the one with measured activity
data. Due to the size of chemical space (Reymond et al., 2012) and the fact that each ligand
in the set of active ligands binds natively to a protein from a different family, we assume
that every cross-docked complex has no (or minimal) binding affinity. The lowest scoring
Rosetta model for each cross-docked complex was selected, and the resultant set of 59,295

protein-ligand complexes will comprise the inactive component of the training set.

IV.2.2 Development and description of ligand descriptors

IV.2.2.1 Sources of descriptor data

In addition to the design of a training model, the proper selection of descriptors is criti-
cal for the training of an effective model. It is frequently difficult to determine a priori
which descriptors will be the most useful, so three classes of descriptor information were
evaluated. Specifically: scalar scores and statistics describing the protein-ligand interface,
RDF descriptors representing the arrangement of atoms in the protein-ligand interface, and

scalar metrics describing the ligand chemistry.

IV.2.2.2 Scalar protein-ligand interface descriptors
The Rosettaligand energy function directly provides a number of metrics that can be used
as scalar descriptors of the chemistry of the protein-ligand interface. In addition to these

scores, Rosetta implements an “Interface Analyzer”, which generates additional descrip-
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Rosetta energy descriptors

Property name [ Description
if_X_fa_atr Attractive force of the protein-ligand interface
if_X_fa_rep Repulsive force of the protein-ligand interface
if X fa_intra_rep Repulsive force between atoms in each residue and the ligand
if_X_fa_elec Electrostatic force of the protein-ligand interface
if_X_fa_pair The value of the Rosetta pair energy between protein and ligand residues
if_X_fa_sol The desolvation energy of the protein-ligand interface
if_X_hbond_bb_sc | The hydrogen bonding energy between protein backbone atoms and ligand atoms
if_X_hbond_sc The hydrogen bonding energy between protein side chain atoms and ligand atoms
hbond_lIr_bb The long range hydrogen bonding energy between protein backbone atoms in the entire complex
hbond_sc The hydrogen bonding energy between all side chain atoms in the entire complex
hbond_sr_bb The long range hydrogen bonding energy between protein backbone atoms in the entire complex
interface_delta_X The total Rosetta score associated with the protein-ligand interface
total_score/nres_all | The total complex score divided by the total number of protein residues

Rosetta Interface Analyzer descriptors
Property name Description
dSASA_hydrophobic | The hydrophobic SASA at the protein-ligand interface
dSASA_int The total SASA at the protein-ligand interface
dSASA_polar The polar SASA at the protein-ligand interface
delta_unsatHbonds | The number of unsaturated hydrogen bonds at the protein-ligand interface
hbond_E_fraction The fraction of the interface energy associated with hydrogen bonding
nres_int The number of protein residues at the protein-ligand interfaec
packstat The protein-ligand interface packing statistic originally described by Sheffler (Sheffler and Baker, 2009)

Table IV.2: A summary of the names and definitions of the scalar descriptors generated by
Rosetta. Originally described by Rohl (Rohl et al., 2004)

tors of the protein-ligand interface. Between these two descriptor sources, a set of 20
descriptors can be computed, describing the van der Waals, hydrogen-bonding, desolvation
and electrostatic energy of the protein-ligand interface, as well as the size of the protein
binding pocket, the number of unsatisfied hydrogen-bonds, and the SASA of the interface.

Table I'V.2 summarizes the specific scalar interface descriptors used.

IV.2.2.3 Scalar ligand descriptors

The scalar descriptors discussed in Section 1V.2.2.2 encode only information related to
the protein-ligand interface. To provide information about the chemistry of the ligand,
an additional set of ligand descriptors was computed using the BCL (Butkiewicz et al.,
2013). These descriptors provide information about the weight of the ligand, the number
of hydrogen-bond donors and acceptors, predicted logP, number of rings, number of rotat-
able bonds and the circumference of the ligand around the widest dimension. Table IV.3

summarizes the scalar ligand descriptors. The number of descriptors used to describe the
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[ Property name [ Description

Weight The molecular weight of the ligand

HbondDonor The number of hydrogen bond donors in the ligand
HbondAcceptor The number of hydrogenn bond acceptors in the ligand

LogP The predicted logP (partition coefficient) of the ligand
TotalCharge The total calculated charge of the ligand

NRotBond The number of rotatable bonds of the ligand
NAromaticRings The number of aromatic rings of the ligand

NRings The total number of rings of the ligand
TopologicalPolarSurfaceArea | The topological polar surface area of the ligand

Girth The circumference of the ligand around the widest dimension

Table IV.3: A summary of the names and definitions of the scalar descriptors generated by
the BCL.

ligand is relatively small compared to previous machine learning studies performed using
the BCL (Mueller et al., 2010). The rationale for including a smaller number of descriptors
is that a relatively small number of ligands is being used to train the classifier. As a result,
the descriptions of the ligand chemistry used should be broad enough that the range of the

descriptor space is well covered.

IV.2.2.4 Protein-ligand fingerprint descriptors
In addition to the scalar descriptors discussed in Sections IV.2.2.2 and 1V.2.2.3, a novel
set of protein-ligand interface descriptors were added. These fingerprint descriptors are

implemented as RDFs, which take the following form:

g(r)= Z’scoreije_B(r_r’?f)2 (IV.1)
iJ

Where i and j are a protein and ligand atom respectively, score;; is a score computed based
on those two atoms, B is a smoothing factor, r is the radius of the sphere being currently
considered, and r;; is that distance between the two atoms. The function g(r) computes
the RDF for a single distance. To compute the complete fingerprint, g(r) is computed for
a range of values of of r. The resulting fingerprint represents the probability of two atoms
existing within a sphere of radius r with some property. More broadly, these fingerprints

can be interpreted as a 1-D representation of the 3-D distribution of geometric and chemical
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[ Property name [ Description

atr_interface_rdf RDF using the Rosetta attractive score between pairs of atoms

solv_interface_rdf RDF using the Rosetta desolvation score between pairs of atoms

elec_interface_rdf RDF using the Rosetta electrostatic score between pairs of atoms

rep_interface_rdf RDF using the Rosetta repulsive score between pairs of atoms

hbond_acceptor_interface_rdf RDF using the Rosetta hydrogen bonding term between ligand acceptor atoms and protein donors
hbond_donor_interface_rdf RDF using the Rosetta hydrogen bonding term between ligand donor atoms and protein acceptors

RDF using the product of atom charges where the Tigand atom is negatively charged

charge_minus_interface_rdf and the protein atom positively charged

RDF using the product of atom charges where the Tigand atom is positively charged

charge_plus_interface_rdf and the protein atom negatively charged

charge_unsigned_interface_rdf RDF using the product of atom charges where the sign of both atom charges is matched

hbond_binary_acceptor_interface_rdf | RDF which returns 1.0 if the ligand atom is a hydrogen bond acceptor and the protein atom is a donor

hbond_binary_donor_interface_rdf | RDF which returns 1.0 if the ligand atom is a hydrogen bond donor and the protein atom is a acceptor

hbond_matching_pair_interface_rdf | RDF which returns 1.0 if the ligand and protein atom are both donors or both acceptors

Table IV.4: A summary of the names and definitions of the RDF fingerprint descriptors
generated by Rosetta.

properties in the protein-ligand interface. A range of fingerprints were computed using this
method, with various chemical properties used to compute score;;.

Fingerprints are computed using the attractive, repulsive, electrostatic, solvation, and
hydrogen-bonding scores used by Rosetta. Additionally, a charge-based function is im-
plemented, in which score;; is computed as the product of the charges of each atom pair,
and a hydrogen-bond count function is computed, in which score;; is 1.0 if the pair of
atoms are a hydrogen-bond donor and acceptor, and 0.0 otherwise. The fingerprints are
computed directly by Rosetta. Table IV.4 summarizes the RDF fingerprints computed by
Rosetta. Based on previous experience with RDF fingerprints in the BCL, all fingerprints
are computed using 24 evenly spaced distance steps between 0.0 and 6.0 A. The smoothing
factor B was set to 100. This fingerprint parameters (B, bin count, and overall fingerprint
radius), were not rigorously optimized in this study. In future work, optimization of both
the bin width and the smoothing factor should be performed. For the bin width of 0.25, the
smoothing factor of 100 may be too high and result in loss of information. A smoothing
factor of around 50 may be preferable, based on previous experience in the Meiler lab. The

12 RDF functions resulted in a total of 288 descriptor columns.
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IV.2.3 ANN training protocol

IV.2.3.1 Cross validation scheme

In addition to selecting a set of input descriptors and a training dataset, a reasonable training
mechanism and neural network architecture must be selected. As described in the introduc-
tory chapter, ANNs are prone to overtraining, and the proper design of a training protocol
is critical to avoid this problem. Based on previous experience using ANNSs to predict drug
activity (Mueller et al., 2010, 2012; Butkiewicz et al., 2013), a 10-fold cross-validation
was used. In this scheme, the combined set of active and inactive compounds described
in Section IV.2.1 was randomized and split into 10 evenly sized blocks. In each round of
cross validation, one block is selected as an “independent” set, one block is selected as a
“monitoring” set, and the remaining blocks are selected for training. Figure IV.2 provides
a schematic illustration of this cross validation scheme. Note that the cross validation is set
up such that each block in the dataset plays a role as both an independent and a monitoring
set. During training, the training dataset is used to train the ANN, and after every itera-
tion of training, enrichment is calculated using the monitoring set. At the conclusion of
the training process for each round of cross validation, the model with the best enrichment
according to the monitoring dataset is output. The 10 fold cross-validation training scheme
results in an ensemble of 90 models. When all rounds of cross validation are complete, the
final enrichment of the ensemble of models is computed using the independent dataset from
each round of cross validation. By using this type of cross validation, it is possible to create
an ensemble of models that cover the complete range of training data while confirming that

over-training is not taking place.

IV.2.3.2 Network architecture and training
For the purposes of this study, a feed-forward network with two hidden layers of 100 nodes
each was used. The network was trained using a back-propagation algorithm with network

dropout (Hinton et al., 2012). At each iteration, network dropout disabled 12.5% of input
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Figure IV.2: A schematic of the cross validation scheme used. The dataset is partitioned,
and sufficient rounds of cross validation are performed such that every block in the partition
is used for training, monitoring, and independent validation.

nodes and 50% of hidden nodes. The network dropout method described by Hinton et al.
allows for larger numbers of hidden nodes to be used relative to a traditional ANN archi-
tecture. However, in future study, the size of the network should potentially be reduced,
as the training dataset used in this study may not be large enough to support a network of
this size. The purpose of network dropout is to prevent the neural network from becoming
dependent on the relationships between specific input and hidden nodes in its representa-
tion of the model. This so-called “co-adaptation” can contribute to over-fitting, and thus
network dropout makes it possible to conduct many more iterations of network training
without over-fitting. The network was trained to classify active and inactive ligands, where
activity is measured as log(K;). A log(K;) cutoff of 0.5 was used, and average enrichment

was selected as a metric of classification. Here, we define enrichment as:

TP P
enrichment = / (IV.2)
TP+FP P+N

Where TP and FP are the true positive and false positive rate, P is the total number of
positives, and N is the total number of negatives. Enrichment is typically computed using
a cutoff, and average enrichment is computed as the mean enrichment over a range of cut-
offs. In this case the cutoff range used is between 0.0-1.0% of the total database. The goal
of the average enrichment metric is to have as many true positives as possible relative to

false positives within the first 1% of models selected. The network is trained for 800 itera-
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tions, and the model with the highest average enrichment according to the monitoring data
block is selected. A strategy for more rigorous optimization of ANN network parameters

is described in Section V.2.2.2.

IV.2.4 Summary of Results

IV.2.4.1 Summary of networks trained

Several networks were trained using a variety of input descriptors. The “Rosetta scalar”
network was trained using only the Rosetta generated scalar descriptors in table IV.2, the
“Rosetta and BCL scalar” network was trained using the Rosetta scalar descriptors com-
bined with the BCL descriptors in table IV.3, and the “Rosetta fingerprint + scalar” network
is trained using both the Rosetta scalar, and Rosetta fingerprint descriptors in table IV.4. As
a control, the “BCL scalar” network is trained using only the BCL descriptors. Because
the set of training data is balanced in chemical space, we expect that the BCL scalar net-
work should not achieve any reasonable enrichment, as no signal should be available for

classification.

IV.2.4.2 Results of network training

Because the networks described in Section IV.2.4.1 were trained using a cross-validation
scheme, the performance of each of the 90 models generated can be evaluated using the
independent dataset for each model. The 90 independent predictions produced by the en-
semble of models were merged to produced a single set of independent predictions span-
ning the entire training dataset. These prediction sets were then compared to the classi-
fication performance obtained by using the RosettalLigand interface score. Three predic-
tion performance metrics are presented here: Enrichment (Equation IV.2), Positive Predic-
tive Value (PPV), Receiver Operating Characteristic Area Under Curve (ROC-AUC) and
log(AUC). As described previously, enrichment provides a metric for the ability of the
model to correctly make positive predictions early on. Receiver Operating Characteris-

tic (ROC) are measurements of the overall performance of the classifier, which provide a
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convenient means of visualizing classification performance.

IV.2.4.3 Description of the ROC-AUC metric

To compute a ROC curve, the True Positive Rate (TPR) is computed as TPR = TP /P where
TP is the number of true positive predictions, and P is the number of total positive values
in the given dataset, and the False Positive Rate (FPR) is computed as FPR = FP/N where
F'P is the number of false positive predictions, and N is the total number of negative values
in the dataset. The predictions made by each model are sorted by predicted score, with the
best scores first, and the TPR and FPR values are computed for each cumulative fraction
of the sorted dataset. The resulting curve provides a metric of the overall classification
performance. The area under the curve can be computed by integration, resulting in a value
between 0.0 and 1.0. A ROC-AUC value of 1.0 indicates a perfect classifier, a value of
0.5 indicates a classifier with a performance equivalent to a coin-toss, and a value of 0.0
indicates a classifier which is always incorrect.

Additionally, we can compute the log(Area Under the Curve (AUC)). By taking the log
of the false positive rate, we effectively compute the stringency of the model (Clark and
Webster-Clark, 2008). In other words, the log(AUC) corresponds to the average negative
logarithm of the false positive rate. Thus, higher values of log(AUC) are more desirable for
our purposes. In the analysis of these models we will use both ROC-AUC and log(AUC) as
methods for evaluating model performance. Additionally, we take the log of the FPR when
plotting ROC curves, to more effectively illustrate the differences in performance between

the models during the early stages of screening.

IV.2.4.4 Description of the PPV metric
PPV is a measure of the accuracy of a classifier. PPV is computed as PPV =TP/TP+FP,
and can be interpreted as the fraction of positive predictions that are actually positive. Thus,

higher PPV indicates a more accurate classifier.
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[ Classifier [ Average Enrichment [ ROC-AUC [ log(AUC) |

Rosetta Interface scores 27.88 0.83 1.34
ANN: BCL Scalar descriptors 0.04 0.54 0.49
ANN: Rosetta and BCL Scalar descriptors 54.28 0.850 1.55
ANN: Rosetta Fingerprint and Scalar descriptors | 42.62 0.849 1.48
ANN: Rosetta Scalar descriptors 54.69 0.845 1.51

Table IV.5: ROC-AUC and average enrichment for the classification models being evalu-
ated. The Rosetta Interface Scores classifier uses only the sorted Rosettal.igand interface
scores for classification. all “ANN” classifiers are neural nets using the specified descrip-
tors. ROC-AUC is the area under the ROC curve generated from each descriptor (Figure
IV.3) Average enrichment is the average enrichment within the first 1% of the each dataset.

IV.2.4.5 Summary of classifier performance

The ROC and PPV metrics can be used to produce a concise visual comparison of the per-
formance of the various evaluated networks. Figure IV.3 plots ROC curves formed using
the networks trained in Section IV.2.4.1, as well as a classifier which consists entirely of
the RosettalLigand interface scores. In this experiment, the Rosettal.igand interface score
based classifier and the “BCL Scalar descriptor” network act as controls. We expect a
successful ANN to have significant improvement compared to the RosettalLigand interface
score classifier and that the BCL scalar descriptor network have performance roughly equal
to a random coin toss. As shown in the figure, we see that this is indeed the case. The three
networks trained using Rosetta interface information all exhibit similar ROC curve param-
eters, all of which are significantly improved over the RosettalLigand interface score clas-
sifier. As expected, the BCL scalar descriptor has no classification ability. Table IV.5 lists
the ROC-AUC and average enrichment of each of the plotted classifiers. We see that the
three networks trained with Rosettal.igand interface score information have similar perfor-
mance in terms of average enrichment, ROC-AUC, and log(AUC). The three non-control
ANN classifiers evaluated show substantially improved enrichment over the RosettalLigand
interface score classifier, and slightly improved ROC-AUC and log(AUC) performance.
Specifically, the ROC-AUC of the ANN classifiers is increased by 0.026-0.036 over the
Rosettaligand interface classifier, the log(ROC) is increased by 0.14-0.21 and the average

Enrichment is increased by 14.74-26.81.
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Figure IV.3: ROC curves showing the performance of the various networks trained using
the 120 protein training set. Performance is plotted using the independent dataset from
each of the 90 neural networks used. The ROC curve is plotted as the ratio of TPR to FPR.
To accentuate the differences in early classification, the X axis is plotted on a log scale.
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While the three ANN models show similar values for enrichment and AUC, inspection
of the PPV of the models demonstrates significant performance differences. Figure IV.4
plots the PPV of each model as a function of the FPR. These plots provide a visual depic-
tion of the accuracy of each classifier. We can see from these models that the models using
Rosetta scalar descriptors or a combination of Rosetta and BCL scalar descriptors have sig-
nificantly improved performance relative to the model using Rosetta scalar and fingerprint
information. Specifically, the peak PPV drops from 0.50 to 0.25. This suggests that the

introduction of fingerprint data results in a loss of model accuracy early in screening.

IV.2.4.6 Classification vs. regression models

The bulk of the analysis in this Chapter involves binary classification models. However,
ANNSs trained to predict K; directly rather than simple binary classification were also in-
vestigated. As with the models described above, the filtered set of 120 protein-ligand pairs
was used as a training set, and an ensemble of neural networks was trained using 90-fold
cross-validation. However, rather than optimizing the networks to maximize classification
enrichment, the RMSD between the predicted activity and experimental K; was minimized
instead. Figure IV.5 plots the correlation between the scores generated by ANNs trained to
predict ligand activity, as well as Rosetta interface score alone. We see from these figures
that there is minimal correlation between experimental K; and model score. The Pearson
correlations of the six classifiers depicted in Figure IV.5 are shown in Table IV.6, in no case
is there a significant correlation. This lack of performance stands in contrast to the more
successful classification models described above. The failure of these models to accurately
predict K; does not invalidate the overall concept of a regression model for ligand binding
affinity. The lack of known experimental K; values for non-binding ligands necessitated
the use of 0.0 as a K; value for the inactive ligands in the training data. As these ligands
almost certainly do not have a binding affinity of exactly 0, it is likely that this practice

introduces noise into the model, reducing the quality of the overall correlation. A useful
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Figure IV.4: Plots showing the PPV as a function of FPR for the various networks trained
using the 120 protein training set. Performance is plotted using the independent dataset
from each of the 90 neural networks used. The PPV vs FPR curve of an ideal classifier is
also plotted, for reference. To accentuate the differences in early classification, the X axis
is plotted on a log scale.
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Figure IV.5: A plot of the correlations between ANN and Rosetta model score and experi-
mental K;.

future experiment to address this concern would be obtain a larger set of known active lig-

ands with a wide range of experimental K; values. This set of ligands would be used to

train a regression model over active ligands only and would be used in conjunction with

the classification model. The classification model would then be used in an initial filtering

stage to identify likely active compounds, and the K; prediction model would be used as

refinement stage to rank the likely active compounds by binding affinity for further investi-

gation. Successfully training this model would likely require a far larger set of ligands than

the 120 protein-ligand pairs used in this study.

IV.2.4.7 Benchmarking of trained networks using DEKOIS 2.0

The performance metrics described in Section IV.2.4.5 clearly indicate that the ANN-based

classifiers have some value at classifying ligand activity beyond the Rosettaligand inter-

face score and have not been over-trained. However, the ability of the networks to gen-
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[Model Name [ Pearson Correlation |

ANN: BCL Scalar descriptors -0.0005
ANN: Rosetta and BCL Scalar descriptors 0.0873
ANN: Rosetta Fingerprint descriptors 0.0385
ANN: Rosetta Fingerprint and Scalar descriptors | 0.0594
Rosetta interface scores -0.0654

Table IV.6: The Pearson correlations between experimentally measured K; and model
score.

eralize beyond the training dataset needs to be assessed. In order to answer the question
of whether the ANN models demonstrated here are capable of making general predictions,
the DEKOIS 2.0 (Bauer et al., 2013) dataset was used for benchmarking. All proteins
and ligands were prepared in the same manner as the training dataset, and the best scoring
model for each protein-ligand complex was selected. The DEKOIS 2.0 benchmarking set
consists of 81 sets of known active and predicted inactive ligands across 80 proteins. As
DEKOIS 2.0 is intended for the benchmarking of structure based screening methods, all
known active ligands were confirmed to bind the same binding site on the protein. Un-
like the training dataset in which putative inactives were generated by cross-docking, the
inactive compounds in the DEKOIS benchmarking set are generated through a parameter
matching approach, which is described in detail by Bauer ef al. (Bauer et al., 2013).

As ANN models are known to be relatively ineffective at making predictions on input
data outside of the range of their training set, the original DEKOIS 2.0 dataset was filtered
using Lipinski’s rule to contain only small drug like molecules with a range of properties
similar to that in the initial set. This filtering process resulted in a total of 16,080 active and
inactive ligands across 74 of the original 80 protein systems. The DEKOIS 2.0 dataset has
a low overlap with the training dataset. Of the 120 ligands in the training set described in
Section IV.2.1.2, 3 were identical to any ligand in the DEKOIS 2.0 set. Despite this, there
is broad similarity in chemical properties between the 120 ligands in the training dataset
and the ligands in the DEKOIS benchmarking set, as can be seen by comparing figures
IV.6 and IV.1. This is important, as a low rate of structural overlap between training and

benchmarking datasets is necessary to avoid artificially inflating success rates by allowing
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Figure IV.6: The basic property distribution of ligands in the DEKOIS 2.0 benchmark-
ing dataset. Histograms are plotted of the hydrogen-bond donor and acceptor count, atom
count, rotatable bond count, ring count, Topological Polar Surface Area, log(K;) and molec-
ular weight of the ligands.

the ANN to predict what it has already seen.

First, the classifiers were used to screen the entire DEKOIS 2.0 benchmarking set, and
ROC curve plots were generated using each classifier. As the DEKOIS benchmarking set
does not include experimentally determined binding information for each ligand, Rosettal_-
igand was used to provide models as input to the classifiers. The protocol used to obtain
models for this screen is described in Chapter F. Specifically, 200 models were created for
each protein-ligand complex, and the lowest scoring model by Rosettal.igand score was
scored using as input into the classifiers. The protocol used here is identical to the proto-
col used to generate both the active and inactive models used for classifier training. The
ROC curves are shown in Figure IV.8. Table IV.7 summarizes the average enrichment,
ROC-AUC and log(AUC) for the benchmark. As expected, the control network (ANN:
BCL Scalar Descriptors) has performance equivalent with a random classifier ROC-AUC
and log(AUC) Specifically, we see a ROC-AUC of 0.48 and a log(AUC) of 0.34. The in-

troduction of Rosetta scoring information into the ANN slightly increases ROC-AUC by
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0.15-0.20, and log(AUC) by 0.28-0.40. There is no significant change in the Average En-
richment. These performance metrics were computed based on the combined set of all
16080 actives and inactive compounds described in Section IV.2.4.7. As shown in Chapter
III, RosettalLigand is not capable of successfully docking ligands into all protein systems.
As a result, the relatively low enrichments seen here are likely a combination of both limi-
tations in the RosettalLigand docking algorithm, and the ANN classifiers themselves.

We can obtain further insight into the details of the ANN model performance by eval-
uating each of the 74 protein systems independently. It is possible that there are some sets
of compounds that are easier or more difficult for the model to predict. Understanding any
differences between the properties of successfully and unsuccessfully docked ligands could
potentially lead to insights into how the models could be improved. Additionally, if there
is a distinct subset of chemical space for which ligand activity can be effectively predicted,
the models may have value in screening of those parts of chemical space. The distribution
of ROC-AUC across each of the 74 protein-ligand systems is plotted in Figure IV.7A. As
expected, the model created using only BCL ligand descriptors has no predictive power, and
the three ANN-based classifiers have similar but positive predictive power. Figure IV.7B
shows the Rosetta fingerprint and scalar model, the Rosettaligand interface score model,
and the BCL-only descriptors. As expected, the non-control models have slightly better
performance than the random model generated with only BCL ligand based descriptors.
However, there appears to be no significant difference between the ANN based models and
the use of Rosetta scores as a classifier. Further analysis and discussion of these results is

presented in Section IV.3.2.
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Figure IV.7: A) A plot of the distribution of ROC-AUC values for each of the 74 protein
targets in the DEKOIS 2.0 benchmarking set when models were re-scored with each of the
classifiers being evaluated. B) A plot of the distributions for 3 of the evaluated models. The
dotted vertical line indicates the ROC-AUC associated with a random model. ROC-AUC
values less than 0.5 are worse than random.

| Classifier | Average Enrichment [ ROC-AUC [ log(AUC) |
Rosetta Interface scores 3.81 0.62 0.62
ANN: BCL Scalar descriptors 5.79 0.48 0.34
ANN: Rosetta and BCL Scalar descriptors 5.51 0.63 0.62
ANN: Rosetta Fingerprint and Scalar descriptors | 5.08 0.66 0.69
ANN: Rosetta Scalar descriptors 5.77 0.68 0.74

Table IV.7: ROC-AUC and average enrichment for the DEKOIS benchmarking study.. The
Rosetta Interface Scores classifier uses only the sorted Rosettal.igand interface scores for
classification. All “ANN” classifiers are neural networks using the specified descriptors.
ROC-AUC is the area under the ROC curve generated from each descriptor (Figure IV.8)
Average enrichment is the average enrichment within the first 1% of the each dataset.
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Figure IV.8: A plot showing the ROC curves of the various classification models trained
across all protein targets in the DEKOIS 2.0 benchmark.
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IV.3 Discussion
IV.3.1 We can construct neural network models that improve activity classification
over a range of protein and ligand chemical space

The chemically balanced training dataset was successfully used to train ANNs to classify
ligands based on their binding affinity. It is possible that, under certain circumstances, lig-
and descriptor information may be beneficial to this type of classification model and that
some emergent property might exist between (for example) the flexibility of the ligand and
the behavior of that ligand in the Rosettaligand docking simulation. However, at least in
the training dataset used here, there is no evidence of such an emergent property, and if
one does exist it, would almost certainly require a dataset comprising a very large range of
ligand chemical space to become apparent. The loss of accuracy seen upon the addition of
the Rosetta fingerprint descriptors suggests that, rather than conveying meaningful infor-
mation about the protein-ligand interface, these descriptors are introducing noise into the
system. While there is ample historical precedent (Mueller et al., 2010; Butkiewicz et al.,
2013; Hristozov et al., 2007) for the value of RDF-based fingerprint descriptors as ANN
input, it appears that in this case, the descriptors are not providing meaningful information.
Regardless, the RosettalLigand-based scalar descriptors do provide sufficient information

to create a well trained model that outperforms the Rosettal.igand energy function alone.

IV.3.2 Development of a global classifier of protein-ligand binding affinity remains
challenging

The cross-validation studies described in 1V.2.4.5 suggest that the ANN models trained in

this study are not overtrained and have some ability to distinguish between active and inac-

tive compounds. However, application of these models to a fully independent benchmark-

ing set suggests that, while the models are well trained, they are unable to act effectively

as generally usable predictors. When comparing the ROC-AUC performance of the neural

network models and the Rosetta-based model across the 74 proteins in the DEKOIS train-
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ing set (Figure IV.7A), we see there are only minimal differences in ROC-AUC distribution
across the range of protein system. To simplify the discussion of the data, we will therefore
use the “ANN: Rosetta Fingerprint and Scalar descriptors” model as an example. Compar-
ing this model to the control (“ANN: BCL Scalar descriptors™), we see a rightward shift
in the performance distribution, with the mean ROC-AUC shifting from 0.45 to 0.61. Un-
fortunately, even with this rightward shift, the two curves (control and trained model) still
mostly overlap, meaning that the ability of the trained model to make successful predictions
is highly limited.

As mentioned in Section IV.2.4.7, it would be useful to be able to identify a subset of
chemical space for which the ANN models are generally better able to perform. In order
to attempt to identify such a subset, a range of chemical properties were computed for
all the ligands in the filtered DEKOIS 2.0 benchmarking set. Binned distributions were
then computed in order to compare the distribution of chemical properties for ligands in
systems that could be successfully (ROC-AUC > 0.7) and unsuccessfully (ROC-AUC <
0.7) predicted. Figure IV.9 plots these binned distributions as a set of box plots. We see
no meaningful difference in distribution across the range of evaluated ligand properties.
This conclusion is consistent with previous studies (Mysinger et al., 2012) in which the
inconsistent performance between various subsets of ligand chemical space could not be

effectively eliminated.
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Figure IV.9: A plot showing the differences in distribution of various chemical properties
between protein systems with ROC-AUC values for the classifier “ANN: Rosetta Finger-
print and Scalar descriptors” above 0.7 labelled “successful”, and systems below that mark,
labelled “failed”. In these box-and-whisker plots, the midline corresponds to the mean, the
hinges of the box correspond to the 25th and 75th percentile, the whiskers correspond to 1.5
times the Inter-Quartile Range, and points outside of this range are indicated as individually
plotted dots.
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CHAPTER V

Conclusions and Future Directions

V.1 Summary of Findings
V.1.1 Development of a novel energy function and benchmarking method for protein
design

The development of tools for accurate structural biology predictions is an important area of
current research. Tools that can accurately model the effect of mutations on protein stability
will make it possible to both explore the basic physical principles that drive protein stabil-
ity, and engineer new proteins and enzymes for pharmaceutical and chemical purposes.
While supercharging (Lawrence et al., 2007; Kurnik et al., 2012; Simeonov et al., 2011)
of protein surfaces has been an effective means of improving the solubility of designed
proteins, this technique has an impact on the rate of folding, artificially recapitulating the
balance between solubility and ability to fold seen in natural proteins. In the service of the
goal of improving the quality of protein design, Chapter Ildescribes an innovative method
for designing native-like protein surfaces, as well as a novel quality metric for assessing
protein designs.

The new energy function implements a KBP previously developed by Durham et al.,
(Durham et al., 2009), which was computed based on the propensity of amino acids exist-
ing at various degrees of burial in X-ray crystal structures of soluble proteins. This energy
function is effectively an environment potential, which provides an energy bonus to amino
acids frequently found in nature at a given degree of burial within the protein. In addition
to the implementation of this knowledge based potential, the weights of the RosettaDesign
energy function were re-optimized to maximize the PSSM score of the protein, based on a
PSSM generated using BLAST (Altschul et al., 1997). To assess the quality of the proteins

designed with the new energy function, two metrics were used. The first was sequence re-
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covery (Kuhlman and Baker, 2000) the percentage of amino acids which were designed to
be identical to the native amino acid. The second, PSSM recovery, was originally presented
in Chapter II. PSSM recovery is the percentage of amino acids with a favorable PSSM score
according to a PSSM created using BLAST. PSSM recovery is advantageous over sequence
recovery as a metric of good protein design because it measures evolutionarily favorable
mutations, rather than simply counting exact amino acid recovery. The combination of this
optimization function and the environment based knowledge based potential resulted in
protein designs more native-like relative to the previously published RosettaDesign func-
tion. Specifically, PSSM recovery improved from 72% with the standard energy function

to 77.2% with the optimized energy function.

V.1.2 Improvement of the speed and sampling efficiency of RosettalLigand

While RosettalLigand has been previously successful at ligand docking (Lemmon et al.,
2012; Combs et al., 2011; Allison et al., 2014), it is too slow for use in high throughput
ligand docking applications. To address this, chapters III and C describe the develop-
ment of a grid based Monte Carlo sampling algorithm for initially placing ligands in the
protein binding site prior to refinement, as well as a modular scoring system for defining
Cartesian grid-based scoring functions. The best performing results with the new method
were obtained using the new Monte Carlo initial placement algorithm combined with the
originally published grid based energy function. This method resulted in a 10-fold reduc-
tion in the number of protein models required to obtain a successful binding pose, as well
as a 6-fold reduction in the time necessary to generate a single model. Additionally, the
new RosettalLigand initial placement algorithm results in a significantly increased ability of
Rosettaligand to successfully dock ligands into protein systems and an improved tolerance
of backbone and side-chain misplacement. It is notable that these improvements resulted
entirely from improved initial sampling. These results highlight the importance of high

quality and efficient sampling in protein-ligand docking and demonstrate that substantial
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gains can be made in docking performance through more efficient utilization of existing
scoring information. The results presented in Chapter III make it possible for the first time
to efficiently use Rosettaligand for the structure based virtual screening of large compound

libraries on a small academic computing cluster.

V.1.3 Development of RosettaHTS: A structure based virtual screening protocol
The methods developed in Chapter I1I lead naturally to Chapter IV, which describes the de-
velopment of a protocol for docking large numbers of small molecules using Rosettal.igand
and a novel ANN-based classification model for predicting the activity of these compounds.
To train the ANN model, a training dataset was constructed using cross-docking so as to
be highly diverse in chemical and protein space, as well as balanced in chemical space be-
tween active and inactive compounds. In addition to previously developed Rosetta energy
terms, interface quality metrics, and ligand descriptor information, a new set of protein-
ligand interface descriptors were developed based on RDFs. Several networks were trained
using various combinations of these descriptor sets. Analysis of the cross-validation per-
formance of the trained networks indicated that the majority of the useful information to
the networks was provided by the Rosetta energy term and interface quality metric data.
While the ANN models developed in this study were not capable of generalizing enough
to make accurate predictions of ligand activity in the DEKOIS 2.0 benchmarking set, the
ANN scoring approach warrants further investigation. The lack of generalizability seen
here reflects the recent history in the field. The study described in Chapter IV represents
only preliminary investigation into the feasibility of using Rosettal.igand as a source of
descriptor features for ANN-based scoring functions. It appears, based on the analysis
presented above, and on the existing literature reviewed, that this may be a method worth
pursuing. To continue this project, there are a wide range of additional method develop-
ment, benchmarking, and analysis steps that could be undertaken. Section V.2.2 outlines

some of these next steps.
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V.2 Future Directions

V.2.1 Rosettaligand method development

V.2.1.1 Scoring function development

While the Rosettalligand algorithm improvements described in Chapter III are highly en-
couraging, there are further improvements that can be made in both the speed and scientific
performance of the software. One obvious area of further development is in the grid-based
energy function used by the initial placement algorithm. The current energy function serves
primarily to identify regions of the protein binding site in which atoms placed would re-
sult in major clashes with the protein backbone. Additional information would potentially
improve the efficiency with which the initial placement algorithm can identify high quality
binding poses, further reducing the number of binding poses required for a high qual-
ity prediction. The shape complementarity and hydrogen bonding potentials described in
Chapter C represent one attempt to address this problem, but these energy functions did
not improve the performance of Rosettaligand. The likely culprit is the over-reliance on
side-chain atom positions. Because the shape complementarity and hydrogen bonding po-
tentials are constructed using all protein atoms, incorrect side-chain positions will result in
poor binding position predictions. Because starting side-chain positions can be assumed
to be incorrect if a ligand is being cross-docked, or docked into a comparative model or
relaxed structure, any method which relies on side-chain information is likely to be unsuc-
cessful. To address this problem, research into the development of KBPs using backbone,
Coa and CB atoms is ongoing. These potentials are generated using well packed crystal
structures with non-covalently bound ligands as input and encode the propensity of said
ligand atoms relative to the protein backbone atoms. Several methods of accomplishing
generating these potentials are being explored, including the use of purely distance-based
potentials, 3-D potentials utilizing a distance and two angles, and 2-D potentials utilizing a

distance and one angle.
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V.2.1.2 Sampling method development

The Monte Carlo initial placement algorithm described in Chapter III has proven useful, but
has room for significant improvement. The Metropolis Monte Carlo search is performed at
a constant Boltzmann temperature. While a constant temperature search has proven suffi-
cient, a Monte Carlo simulated annealing algorithm, in which the temperature is initially
raised and then slowly lowered, could result in faster and more reliable convergence. Addi-
tionally, the temperature can be dynamically modulated to reach a target acceptance rate. In
this method, the target acceptance rate is gradually lowered over the course of the simula-
tion to cause convergence. To reach the target acceptance rate, the Boltzmann temperature
is modulated continuously.

Pre-computed grid-based scoring functions lend themselves well to a variety of sam-
pling methods, some of which may be far more efficient than a Monte Carlo search. In
particular, if more informative scoring grids can be developed, geometric hashing methods,
such as those previously used for CryoEM fitting (Woetzel et al., 2011), could be of great
value. A geometric hashing algorithm would be capable of identifying potential initial lig-
and positions far more rapidly than a Monte Carlo search. Additionally, such an algorithm
would make it possible to greatly expand the size of the scoring grid, potentially allowing
Rosettaligand to be used to perform binding site detection, rather than requiring that the

user provide the initial binding site.

V.2.2 RosettaHTS method development

V.2.2.1 Exploring additional methods for computing protein-ligand interaction de-
scriptors

In addition to the RDFs described in Section IV.2.2.4, there are a wide array of descrip-

tors that may be applicable to RosettaHTS. Some of these have been previously success-

ful in various forms of VHTS, while others are new. It has been historically difficult to

predict what type of descriptors will be most useful for a given application, so further re-
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search should include the implementation and evaluation of the descriptor methodologies
described below.

3D Autocorrelation (3DA) functions are a class of vector based descriptors similar to
RDFs. Autocorrelation is a general class of methods for comparing a structure with itself.
While autocorrelation methods are most frequently used in signal analysis, they can be
adapted to encode the composition and structure of a small molecule. ADRIANA (Molec-

ular Networks GmbH Computerchemie, 2011) describes a 3DA function as

A(dy) = %Zpipj (V.1)

n i

i#]
where L, is the number of inter-atomic distances within a given interval, and p; and p;
are properties of two atoms. As with the previously described RDFs, 3DAs can be used to
generate fingerprint vectors. 3DA functions have been previously successful (Butkiewicz
et al., 2013) in ligand based virtual screening studies, and their lower resolution relative to

RDF descriptors may result in lower noise, more effective descriptors.

Atom pair counts can also be used as ANN descriptors. In the case of NNScore 1.0
and 2.0 (Durrant and Mccammon, 2010, 2011), the total number of protein-ligand atom
pairs within 2.0 and 4.0 -A shells was computed. This metric effectively provides a low
resolution fingerprint of the protein-ligand environment in a way that is independent of
both receptor structure and orientation. Because the shells are broad, these atom pair count
descriptors will be less sensitive to small perturbations in predicted ligand binding predic-
tions and therefore less noisy when used as the input to a classification model. As imple-
mentation of atom pair count descriptors is straightforward, their utility as descriptors for
RosettaHTS should be evaluated in combination with, and as an alternative to, the 3DA and
RDF descriptors.

When high quality protein structural information is available, binary interaction fin-

gerprints can be a useful class of descriptor. binary interaction fingerprints describe the
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protein-ligand interface in terms of a binary bitstring. In this scheme, of which Structural
Interaction Fingerprint (SiFT) (Deng et al., 2004) is one example, each bit in the string
represents an interaction between the ligand and each amino acid in the protein receptor.
Additional information can be encoded in the fingerprint by adding bitstrings represent-
ing specific types of bonding interaction, as opposed to than simple physical proximity.
As demonstrated in the initial SiFT paper, there is a statistically significant correlation be-
tween bitstring similarity and ligand binding activity to a given protein target. There are
a number of advantages to advantage of bitstring based fingerprints, including that they
are conceptually simple and straightforward to implement and analyze. Additionally, as
each field in the bitstring can contain only a 1 or 0, rather than a range of floating point
numbers, there is less potential for noise to be introduced in the descriptor signal relative
to 3DA or RDF models. The ease of calculation, diversity of information content, and low
noise would seem to make SiFT style interface bitstrings an ideal choice of descriptor for
RosettaHTS, barring one major limitation: their dependence on sequence alignment. As
each bit represents a single residue-ligand interaction, interface bitstrings can only be accu-
rately compared if the bits represent the same regions of protein structure. For this reason,
most implementations of interface bitstring fingerprints are used to classify ligand activity
against a single protein target or a group of highly conserved similar proteins (Chupakhin
et al., 2013). The concept of a binary fingerprint is still useful, particularly in the context
of ANN based models, and it may be possible to devise a binary interaction fingerprint that
is useful for making comparisons between a diverse range of target proteins.

In the field of image recognition, bitmaps have been successfully used as descriptors for
Deep Belief Network (DBN)s (Hinton et al., 2012; Dean et al., 2013). For training image
recognition models, image bitmaps representing color and intensity are used directly as
input to the network. The advantage of image descriptors is that they are fully independent
of both rotation and scale. The concept of 2-D bitmaps employed in image recognition can

potentially be adapted for use in 3-D pattern recognition. Protein ligand interactions could
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be represented as space-filling voxels, with voxel values representing chemical properties.
A 3-D image descriptor-based method could potentially take advantage of the resiliency to
noise, rotation, translation, and scale that has made DBNs successful in image recognition
tasks.

The downside of such an image-based descriptor method is the number of descriptor
bins required to represent the protein-ligand interface. An image with a 0.25 A voxel
width and an 8 A box size would require 323, or 32,768 values for each chemical property
explored. Such a large number of inputs is substantially larger than the ANNs and DBNs
previously reported in the literature and is computationally infeasible at the present time.
However, the generation and training of extremely large networks is an area of intensive
research in both the public and private sector, and it is likely that networks of this size will

become computationally tractable in the near future.

V.2.2.2 Further optimization of ANN Models

The ANN models described in this study represent preliminary work and thus have not been
subjected to the rigorous optimization that is required to obtain maximal network perfor-
mance. There are a range of neural network parameters that affect model performance. At a
minimum, learning rate, number of hidden nodes, descriptor set, and number of hidden lay-
ers should be optimized. These parameters can be optimized through a brute force search
of a reasonable range of the parameter space until an optimal set is located. However, there
are methods (Attik et al., 2005) for searching the network topology and parameter space
more efficiently.

In addition, simple feed-forward ANNs were the only machine learning method as-
sessed in this study. A number of other supervised learning techniques, such as support
vector machines and random forest models should also be evaluated. More exotic methods,
such as DBNs and recurrent neural networks, may also be of value, though a larger bench-

marking set and more sophisticated descriptor methods, such as those described in Section
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V.2.2.1 may be required in order to take advantage of them. Evaluation of additional ma-
chine learning methods may also enable the use of a consensus model for predicting activity

based on a jury of classifiers trained using different methods.

V.2.2.3 Development of a multi-stage model pipeline

In Section IV.2.4.6, we attempted to train a regression model to directly predict K;, rather
than simple binary classification. The models trained were unable to attain meaningful re-
gression correlation during cross-validation. However, it is possible that the failure of these
models was the result of the inclusion of inactive compounds. If a reliable, generalized clas-
sification model could be trained to classify active and inactive models, a regression model
trained on only active models could be useful as a second stage in a multi-stage classifica-
tion pipeline. In this pipeline, the classification model would be used first to identify likely
active compounds, and the second stage model would attempt to predict K;. This approach
would allow researchers to prioritize compounds for further study in a more effective way
than a simple classification model would provide. An additional advantage of this approach
is that it would make it possible to remove the inactive compounds from the training dataset
for the K; model, as the model would only be applied to presumed active compounds. As
inactive compounds rarely have measured binding affinities, it is necessary to fix their K;
values to 0.0, which likely adds noise to the regression model, as even inactive compounds
do not have exactly identical binding affinities. Removing these compounds will almost

certainly reduce noise in the training set and improve the quality of the regression model.

V.2.2.4 Improvement of benchmarking protocol

To eliminate the possibility of the ANN models learning a decoy selection algorithm rather
than the actual methods, the active compounds were cross-docked to generate a set of inac-
tive models during training. On the other hand, the set of predicted inactives provided by
DEKOIS 2.0 were used during benchmarking. Because each prediction made by the neural

network is made in isolation, a well generalized model should be capable of distinguishing
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between active and inactive compounds, regardless of the manner in which those active and
inactive compounds were selected. As an additional control experiment, it may be useful
to perform a benchmarking study in which the active compounds from the DEKOIS 2.0 set

are cross-docked in the same manner as the training set.

V.2.2.5 Exploration of quantum chemical and molecular dynamics descriptor infor-
mation

One major component missing from this study is the addition of any descriptor information
reflecting quantum chemical effects, or the molecular dynamics of the system as a whole.
The importance of this information cannot be understated, and it is likely that both cate-
gories of descriptor information are critical to fully describe the protein-ligand interaction.
Recent work by Steven Combs (Combs, 2013) introduces electron orbital placement into
the Rosetta atom typing scheme. The incorporation of this orbital information will enable
a wide range of fingerprint and scalar descriptors derived from the relationship between
protein and ligand orbital positions. The limitation of this system is that the orbitals are
represented as points, rather than as 3-D structures. The advantage of the point represen-
tation is that it maintains computational efficiency. However, if more accurate electron
orbitals could be computed in a computationally efficient manner, they could be used di-
rectly as a source of descriptor information.

Subtle changes in the mode of vibration can have a dramatic effect on protein-ligand
binding affinity (Baugh et al., 2010). Molecular dynamics trajectories could be used to
compute the normal modes of vibration for a complex, and these modes of vibration could
then be used directly as a descriptor in an ANN model. The inclusion of this informa-
tion could allow the network to identify changes in the normal modes of vibration between
strong and weakly binding compounds. The major downside of including this information
is an expected decrease in computational efficiency. In even a small vHTS screen, thou-

sands of trajectories would need to be computed and analyzed prior to ANN classification.
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While continuing developments in computational power may make this approach effective
eventually, it is unlikely to be feasible given current available computing hardware and

modeling tools.
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Appendix A

Rosetta HT'S ligand pre-processing

A.1 Background
VHTS in Rosetta poses a number of unique challenges. Large numbers of ligands must
be prepared and managed. If multiple protein systems are being screened, the appropri-
ate ligands must be matched with the appropriate proteins. Additionally, because Rosetta
currently stores ligand information after it is required, the memory requirements of the pro-
tocol increase as more ligands are screened. The most straight forward way to address this
is to limit the number of ligands screened in each process.

This protocol describes a series of scripts that can be used to rapidly prepare a set of
proteins and ligand for virtual high throughput screening.

All scripts referenced can be found in tools/hts_tools

A.2 Prerequisites

This protocol requires the following:

Python

BioPython

The most recent weekly release of Rosetta.

A directory containing conformations of all the proteins in your screening study.

An Structure Data File (SDF) containing all the conformers of all the ligands you

want to dock. All conformers of the same ligand must have the same name.

— All conformers of all ligands must have 3D coordinates and hydrogens. You
will receive no errors or warnings if you provide ligands with 2D coordinates

or without hydrogens, but you will get very poor ligand docking results.
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A.3 Protocol
This protocol concerns the processing and parameterization of SDF files for use in Roset-
taLigand docking calculations. While the Rosettal.igand is capable of handling a wide
range of chemistry and protein systems, some additional preparation is often required to
make the best use of the system. High quality, minimized protein structural models are
required, and the location of the ligand binding site must be known to roughly 5.0 A.

The Nature Protocols paper published by Combs et al (Combs et al., 2013) describes in
detail the step by step process for preparing individual protein and ligand files for input, as

well as best practices for the use of Rosetta in general as a tool for protein-ligand docking.

A.3.1 Split ligands

The first step of the protocol is to split the ligand file. sdf_split_organize.py
will accomplish this task. It takes as input a single SDF file, and will split that file into
multiple files, each file containing all the conformers for one ligand. Different ligands
must have different names in the SDF records, and all conformers for one ligand must
have the same name. Output filenames are based on the shal hash of the input filename,
and are placed in a directory hashed structure. Thus, a ligand with the name “Written by
BCL::WriteToMDL,CHEMBL29197” will be placed in the path
/41/412d1d751££3d83acf0734a2c870faaa77c28cbc.mol.

The script will also output a list file in the following format:

ligand_id, filename
string, string
ligand_1,path/to/ligandl

ligand_2,path/to/ligand2

The list file is a mapping of protein names to SDF file paths.
Many filesystems perform poorly if large numbers of files are stored in the same di-

rectory. The hashed directory structure is a method for splitting the generated ligand files
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across 256 roughly evenly sized subdirectories, improving filesystem performance.

The script is run as follows:

sdf_split_organize.py input.sdf output_dir/ file_list.csv

Note that out put_dir/ mustalready exist prior to running sdf_split_organize.py

A.3.2 Create “project database”

The ligand preparation pipeline uses an sqlite3 database for organization during the pipeline.
The database keeps track of ligand metadata and the locations of ligand files. The project
database will be used in Sections A.3.3 andA.3.4, and does not need to be preserved after

those steps are completed. The project database is created using the following command:

setup_screening_project.py file_list.csv output.db3

A.3.3 Append binding information to project database
The next step is to create a binding data file. The binding data file should be in the following

format:

ligand_id, tag,value
string, string, float
ligand_1,foc0,1.5

ligand_2,bar,-3.7

The columns are defined as follows:

1. ligand_id — ligand_id is the name of the ligand, which must match the ligand_id in

the file_list.csv file created by sdf_split_organize.py.

2. tag — The name of the protein the ligand should be docked into. If a ligand should

be docked into multiple proteins, it should have multiple entries in the binding data
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file. Note that this protocol makes a distinction between protein name, and file name.
If you have 4 files: foo_0001.pdb, foo_0002.pdb, bar_0001.pdb, and
bar_0002.pdb, then you have two proteins with the names foo and bar. The

scripts expect that the protein PDB files begin with the protein name.

3. value — The activity of the ligand. If you are doing a benchmarking study and
know the activity of your ligand, you should enter it here. If you are not doing a
benchmarking study, or if ligand activity is not relevant to your study, value can be
set to 1.0 (or anything else). This field is currently only used in a few specific Rosetta
protocols that are in the experimental stages, and is typically ignored, so it is safe to
set arbitrarily in almost every case. Regardless, the scripts require that you provide

some value.

Once you have created this file, you can insert it into the project database with the

following command:

add_activity_tags_to_database.py output.db3 tag_file.csv

A.3.4 Generate params files

The next step is to generate params files. make_params.py is a script which wraps
around

molfile_to_params.py and generates params files in an automated fashion. params
files will be given random names that do not conflict with existing Rosetta residue names
(no ligands will be named ALA, for example). This script routinely results in warnings
frommolfile_to_params.py, these warnings are not cause for concern. Occasion-
ally, molfile_to_params.py is unable to properly process an SDF file, if this hap-
pens, the ligand will be skipped. In order to run make_params.py you need to specify
the path to a copy of molfile_to_params.py, as well as the path to the Rosetta

database.
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molfile_to_params.py is part of the standard rosetta distribution and is located
iInmain/source/src/python/apps/public/

make_params . py should be run like this:

make_params.py —-3j 4 \

-—database path/to/Rosetta/main/database \
—-—path_to_params path/to/molfile_to_params.py \
output .db3 params/

In the command line above, the -7 option indicates the number of CPU cores which
should be used when generating params files. If you are using a multiple core machine,
setting —j equal to the number of available cpu cores.

The script will create a directory params/ containing all params files, PDB files and

conformer files.

A.3.5 Create job files
Because of the memory usage limitations of Rosetta, it is necessary to split the screen up

into multiple jobs. The optimal size of each job will depend on the following factors:

The amount of memory available per CPU

The number of CPUs being used

The number of atoms in each ligand

The number of conformers of each ligand

The number of protein residues involved in the binding site.

Because of the number of factors that affect RosettalLigand memory usage, it is usually
necessary to determine the optimal job size manually. Jobs should be small enough to fit

into available memory.
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To make this process easier, the make_evenly_grouped_jobs.py script will at-
tempt to group your protein-ligand docking problem into a set of jobs that are sized as

evenly possible. The script is run like this:

make_evenly_grouped_Jjobs.py —-n_chunks=10 \
——max_per_Jjob=1000 param_dir/ structure_dir/ output_prefix

If the script was run as written above, it would use param files from the directory
param_dir/, and structure files from the directory structure_dir/. It would at-
tempt to split the available protein-ligand docking jobs into 10 evenly grouped job files
(-n_chunks). The script will attempt to keep all the docking jobs involving one protein
system in one job file. However, if the number of jobs in a group exceeds 1000, the jobs
involving that protein system will be split across multiple files (-max_per_job). The
script will output the 10 job files with the given prefix, so in the command above, you
would get files with names like “output_prefix_01.js”. The script will output to the screen
the total number of jobs in each file. All the numbers should be relatively similar. If a job
file at the beginning of the list is much larger than the others, it is a sign that you should
reduce the value passed to ~-max_per_job. If the sizes of all jobs are larger than you

want, increase —n_ chunks.

A.3.5.1 Job file specification
Rosettaligand Job files are JavaScript Object Notation (JSON) files which contain the paths
to protein and ligand PDB files, the names of the protein systems, and the params files

necessary to load the ligand PDB files. An example file is below:

"Jobs": |
{
"proteins": [
"set2_28_0001.pdb"
]I
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"ligands": [
"A9.pdb"

]I

"group_name": "set2_28"

}I

{

"proteins": [
"setl_42_0001.pdb"

I
"ligands": [
"AJ.pdb"

I

"group_name": "setl_42"
}

] 4

"params": [

"A9.params",

"AJ.params"

]

A.3.6 Submit jobs
Once the jobs have been created they can be input into rosetta using the option
—in:file:screening_Jjob_file job_file.js. If this option is being used,
-s,-1,-1list and —in:file:extra_res_fa should not be used. Other than this,
any Rosetta application or XML protocol may be used without restriction. For example,
the screening job inputter would be used in conjunction with RosettaScripts using the fol-
lowing command line:

rosetta_scripts.default.linuxgccrelease @flags.txt —-in:file:screenin
job_file.js -parser:protocol script.xml

Where f1lags . txt is afile containing any set of Rosettaligand flags, and script .xml

is a RosettaScripts XML file.

A.3.7 Result processing
The results of the a ligand docking job can be handled in the same way as any other Roset-

talligand docking calculation. For examples of the range of detailed analysis that mayb
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be performed to analyze RosettalLigand results, see Chapters E, IV and C. As the protocol
above applies only to the processing of files for input, it has no impact on the on the output
of docking results. For smaller RosettalLigand studies, results should be output as PDB files
using the —out : pdb flag. However, if very large numbers of models will be generated,

the Rosetta SQL output framework described in Chapter B may be of use.
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Appendix B

Managing Rosetta datasets with SQL

B.1 Introduction

Screening small molecule libraries with RosettaHTS requires the generation of very large
number of models. For example, a screen of 250,000 compounds will result in 50,000,000
generated Rosetta models. Because RosettaHTS only needs the top 1 model generated for
each ligand, 99.995% of this data will not be needed. To avoid unnecessarily storing data,
RosettaHTS stores generated models in a relational database. Here the technical details of
the database storage framework used by RosettaHTS are described. This framework was
developed collaboratively by myself, Chris Miles at the University of Washington, Matt
O’Meara at the University of North Carolina, and Tim Jacobs at the University of North

Carolina, all of whom contributed equally to the project.

B.2 Features reporter architecture
The data storage framework used by RosettaHTS is a subset of a statistical analysis frame-
work within Rosetta called the Features Reporter. The Features Reporter framework con-
sists of an Object-Relational Mapping (ORM) that allows SQL schema definitions, queries
and insertion statements to be composed in C++, and a reporting system used for com-
puting statistical data and storing it in the database. The ORM was developed using
CppDB (http://cppcms.com/sql/cppdb/) SQL library, which allows the features reporter to
work with SQLite, MySQL and Postgres database backends. As all 3 of these back ends
have different caveats, behaviors and syntax idioms, the ORM is responsible for construct-
ing the appropriate MySQL command and sending it to the server.

In addition to allowing for the transparent support of multiple Database Backends, the
ORM system makes it possible for a C++ programmer to easily define new SQL objects

without being familiar with SQL syntax. For example, the C++ code reproduced below
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defines an SQL table containing structure ID, residue number, 3 letter residue name, and
residue type fields, then generate the appropriate SQL syntax to create this table, and exe-

cute the SQL command on the database server.

Column struct_id("struct_id", new DbBigInt (), false);
Column resNum("resNum", new DbInteger (), false);
Column name3 ("name3", new DbText (), false);

Column res_type ("res_type", new DbText (), false);

utility::vectorl<Column> residues_pkey_cols;
residues_pkey_cols.push_back (struct_id);
residues_pkey_cols.push_back (resNum) ;

Schema residues ("residues", PrimaryKey (residues_pkey_cols));
residues.add_column (struct_id);
residues.add_column (resNum) ;
residues.add_column (name3) ;
residues.add_column (res_type);
residues.add_foreign_key (
ForeignKey (struct_id, "structures", "struct_id", true));

residues.write (db_session);

This model of database interaction allows multiple database systems to be supported
with a single code base, which is critical given the diversity of hardware and software op-
erated by Rosetta users. Additionally, it allows support to be added for additional database
systems without any change to the code defining feature tables.

The Features Reporter has been previously described in the literature (Leaver-Fay et al.,
2013) as a method for collecting and analyzing statistics from large numbers of Rosetta
models. In the sections below we will describe the specific application and usage of this
framework for the storage and retrieval of protein models in a high throughput screening

environment.
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B.3 Pose storage schema

RosettaHTS uses a subset of the Features Reporter system to store and retrieve protein
structure information from the database. In the most simple case, it would be possible
to store only the atom and residue names, chain information, and cartesian coordinates for
each atom, and effectively replicate the information present in a PDB file. However, storing
this limited subset of information requires that Rosetta rebuild the internal data-structures
representing the protein structure every time the pose is loaded, as is done when taking
input from a PDB file. While this is normally acceptable, in rare cases, there are multiple
correct configurations that these data structures can take on, and thus, recomputing them
can result in a slightly different input model, and numeric inconsistencies in scoring across
multiple loads of the structure. While these numeric inconsistencies do not typically lead
to scientific inconsistencies, their presence can complicate data analysis.

In order to rectify this problem, the RosettaHTS pose storage schema stores not only
the information reflected in the protein PDB file, but also all of the derived data created by
Rosetta. The storage of this information makes it possible to precisely store and recover
the protein structure as it is internally represented by Rosetta. The Pose storage schema is
illustrated in Figure B.1. Each block in the figure represents an SQL table storing a subset
of of the information needed to reconstruct the pose. Connections between the blocks indi-
cate “Relationships” between the tables. Connecting the tables with relationships makes it
possible to link data elements that related to each other, while simultaneously allowing for
Pose data to be queried efficiently.

A critical component of the design of a relational database schema is a means of
uniquely identifying models. In this case, uniqueness from the point of view of the database
has a different meaning than biochemical uniqueness. If Rosetta is run twice with the same
protocol and produces two absolutely identical output models, those models should be
stored separately in the database and given unique identifiers, even though they contain

the same information. Additionally, given a specific stored Pose, it should be possible to
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Figure B.1: A schematic representation of the information stored by the RosettaHTS pose

schema
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identify which execution of the Rosetta application resulted in that Pose, and at what point
in the overall protocol the Pose (or other statistical data) was generated. To accomplish
this, the identification of structures is handled with a three tiered structure. The top tier
is the “protocol” level. A new protocol is generated every time a Rosetta process outputs
to a database. Each protocol has a unique number identifying it which is assigned by the
database server. The protocol stores the version of Rosetta that was used, as well as the
command line options and XML script specified by the user. Each protocol can generate
one or more “batch” which is the second level of the identification system. A batch is
generated every time a protocol outputs structural data. If RosettaHTS is only outputting
completed protein models, only one batch exists per protocol. It is possible to output pro-
tein models at intermediate steps within a long RosettaScripts protocol. If intermediate
models are output, an additional batch will be created for each intermediate step. If the
Features Reporter is also being used in the middle of the protocol to generate extra statis-
tics, additional batches will be generated. Each batch has a unique number identifying it,
and references the protocol that was responsible for creating it. The last tier in the identifi-
cation system is the “structure”. A new structure is generated every time Rosetta produces
a model. Each structure has a unique number identifying it, and references the batch that
resulted in the creation of that structure. Additionally, each structure record has a human
readable “tag” describing its output, and references the input structure that was used as
a basis for the model. In this way, the batch, protocol and structure tables can be joined
by their related IDs such that, given a structure stored in the database, one can determine
precisely what Rosetta command was used to generate that structure, and at what point in
the Rosetta protocol the structure was generated.

The structure ID described above is used as the central unique identifier, and all the
information associated with an individual model is related using this ID.

The MySQL database schema stores the following information:

¢ Protocol information
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— Text and numeric comment data that some Rosetta components insert in a pose

for scoring and tagging purposes during the protocol.
* Rosetta-specific structural metadata
— The “Jumps” in the structure. Jumps are data structures which represent the

spatial relationship between protein chains as a Rotation and Translation matrix.

— The “Fold Tree” defining the structure. The Fold tree is a data structure used
by Rosetta to describe how different parts of the protein are related in space.
Fold Trees can be configured to make it possible to rapidly perturb large parts
of the protein as a rigid body. DiMaio et al. (DiMaio et al., 2011) provides an

example of a fold tree manipulation in practice.

¢ Structural information

— The range of B-factors for atoms in each residue.

— The sequence associated with the structure, annotated with the identity of any

non-canonical, modified or ligand residues.
— The ending position of each chain.

— The Chain ID, insertion code, and residue number present in the original PDB

file.

— The values of each energy term in the score function when the structure was

last scored.
— The cartesian coordinates of each atom.
— The chi angles of each canonical amino acid.

— The rotation angles of each non-canonical amino acid or non-protein molecule.

In addition to providing infrastructure for outputting Rosetta models, the RosettaHTS

pose IO schema provides infrastructure for using this data as input into Rosetta. Both
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output to and input from the database is handled by the Rosetta job distribution system. This
means that any Rosetta application can use a database as a data storage mechanism, without
any additional programming on the part of the developer of the application. Furthermore,
because the same database can be used for both output and input simultaneously, a Rosetta
modeling protocol that relies on different applications being used in different stages can

use the database for data management at each stage.

B.4 Database Filters

Historically, Rosetta applications have considered each model independently of any other
model. This is primarily an engineering decision. If each model is considered indepen-
dently, it means that only the current structure needs to be stored in memory, reducing
system resource requirements. Additionally, if each model is considered independently,
the design of Rosetta is simpler, as it each module of the code does not need to consider
the accumulation of state between jobs. However, while this decision was critical to mak-
ing Rosetta a maintainable piece of software, it has severely limited the ability to perform
filtering and output of models. Specifically, filters could historically be created only based
on single protein metrics. A filter could, for example, output models with a score lower
than a certain fixed cutoff, or that had a degree of packing better than a cutoff. However, in
the case of protein-ligand docking, we are unable to set fixed score cutoffs, as the range of
scores seen will vary from ligand to ligand. The preferred means of filtering ligand models
is to accept the lowest scoring model generated for each protein-ligand pair. This type of
filter cannot be created with the traditional Rosetta filter system, requiring that all models
be output, and filtered after the fact. The RosettaHTS docking protocol requires that 200
models be generated per protein-ligand pair. Given that each compressed model requires
approximately 90 kilobytes of storage space, the total requirement per protein-ligand pair
is roughly 18 megabytes. Thus, a 250,000 compound screen would require about 4.5 ter-

abytes of compressed storage space. The infrastructure required to store and analyze a
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dataset of this size outstrips the abilities of most research groups, and the storage of the
complete dataset is particularly senseless as nearly all of it will be deleted after the initial
round of filtering.

The Database Filter system leverages the properties of the SQL database system to
make it possible for the first time to create Rosetta filters which take into account the context
of previously generated models. SQL is designed to conduct rapid queries of stored data,
and as these queries are conducted by the database engine itself, rather than Rosetta, the
operation of the filter does not require that state be kept between Rosetta jobs and does not
result in additional memory requirements.

A Rosetta Database Filter can have three possible outcomes: The current model is not
output, the current model is added, or the current model replaces an existing model. To ac-
complish this the Database Filter conducts a query of the existing structures in the database
to identify if the current model is suitable to be output, and to identify the model that it will
replace if necessary. Currently, filters exist to filter models by the top percent or top count
by score. The creation of additional filters can be accomplished by the implementation of
a new DatabaseFilter class with a single method. While the current usage for filtering by
score percentile is relatively simple, the Database Filter framework could hypothetically be
used to implement histogram matching filters or other filters requiring deep analysis of the
existing dataset. This would be effectively impossible in the context of the classical Rosetta
filtering system, but relatively trivial with a Database Filter.

A description of the currently implemented database filters and their use is described in

section B.6.2

B.5 Performance Considerations and Selection of a Database backends
Currently, the Rosetta database system supports three different database back ends. The
selection of the appropriate back end is an important consideration, and will depend largely

on the way in which the database will be used.
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B.5.1 SQLite3

SQLite3 (https://www.sqlite.org/) is the default option for Rosetta database support. SQLite3
stores the entire database as a single binary file, and the database engine itself is built into
Rosetta. The primary advantage of using SQLite3 is that it requires no additional hardware
or software infrastructure, which makes it idea for prototyping a protocol or handling small
“one-off” analysis of data. SQLite3 was designed to be used explicitly with single threaded
applications, this means that only a single Rosetta process at a time can write to an SQLite
database. Additionally, SQLite3 produces a very large number of random access opera-
tions to the filesystem. The nature of these operations is such that heavy usage of SQLite3
can severely degenerate the performance of a network file system. For this reason, we rec-
ommend that SQLite3 only be used only with local disks, and preferably with Solid State
Drives rather than traditional “Spinning” disks. Despite these limitations, Rosetta proto-
cols requiring large amounts of memory and complex statistical analysis can be performed
very efficiently using SQLite3. The majority of the data collection and analysis described

in Leaver-Fay et al. (Leaver-Fay et al., 2013) was conducted using an SQLite3 database.

B.5.2 PostgreSQL and MySQL

PostgreSQL (http://www.postgresql.org/) and MySQL (http://www.mysql.com/) are freely
available server based SQL solutions. In both cases, an independent server is used, and
Rosetta communicates with this server over the network. The details of the installation
and configuration of these systems are beyond the scope of this document, however either
piece of software is acceptable for use with RosettaHTS. For large scale data operations,
PostgreSQL and MySQL have substantial advantages over SQLite3. In both cases, many
processes can simultaneously write to a single database, and the database server ensures
that data is written correctly even for large numbers of concurrent reads and writes. Ad-
ditionally, the use of a server based SQL solution offloads the computational and IO com-

plexity involved with reading from and writing to the database to a separate machine than
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the one running Rosetta. This separation of work can have a substantial performance bene-
fit. It is possible to create a Rosetta protocol which produces database requests that outstrip
the processing ability of even a reasonably powerful database server. The precise nature of
these limitations will depend on the Rosetta protocol, as well as the specific details not only
of the database server software configuration but also the server and network infrastructure
being used. For this reason, we advise empirically determining the performance limitations
and requirements of your specific protocol through benchmarking tests prior to large scale

screening.

B.6 Storing and retrieving poses from the Rosetta command line

Rosetta provides a set of command line options for storing and retrieving poses from a
database. These command line options can be used with most Rosetta applications, the
most notable exception being the “abinitio” application, and will function identically in

any protocol.

B.6.1 Connecting to a database
Connecting to a Rosetta database depends on the type of database back end being used.
Regardless of what back end is being used, back end mode and the database name must be

specified:

—inout :dbms:mode <mode>
—inout :dbms:database_name <db_name>

where <mode> should be replaced by the database mode (either mysql, sglite or
postgres), and <db_name> should be replaced by the name of the database file if using
sqlite, the schema name if using MySQL, and the database name if using PostgreSQL.

If you are using MySQL or PostgreSQL as a back end, you must specify several addi-

tional options connect to the server
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—inout :dbms:host <host>

—inout :dbms:user <username>
—inout:dbms:password <password>
—inout :dbms:port <port>

Where <host> is the address of the database server, <username> is the username of
a user with permission to read and write from the database, <password> is the password
of that user, and <port> is the TCP port that the server is running on.

Additionally, if you will be running RosettaHTS or any other protocol that results in
very large numbers of structures being output to a single database (more than 100,000), the
database schema can be altered to reduce the number of INSERT statements necessary to
write a complete model. This is accomplished by modifying the Rosetta database storage
schema to produce a single record per residue rather than a single record per atom. This
enormously reduces the storage and network bandwidth requirements at the cost of data an-
alyzability, and should be considered a required setting when using RosettaHTS. Compact

schema mode is enabled with the following option:

—inout:use_compact_residue_schema true

B.6.2 Writing to a database
Once the database connection options above are specified, Rosetta can be configured to

write all output models to the specified database with a single output option:

—-out :use_database

If the use of a Database Filter is desired, it should be specified with another option:

—-out:database_filter <filter_ name> <score_term> <value>
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Where <filter_ name> is the name of the database filter to use, <score_term>
is the name of the scoring term to filter by, and <value> is the cutoff value to use. At the

time of writing, the following filters exist:

* TopPercentOfEachInput — Output models in the top n% of models for each
input structures by specified score. The specified cutoff value should be a decimal

between O and 1.

* TopPercentOfAllInputs — Output models in the top n% of models over all
input structures by the specified score. The specified cutoff value should be a decimal

between O and 1.

* TopCountOfEachInput — Output the top n models for each input structures by

the specified score. The specified cutoff value should be an integer.

* TopCountOfAllInputs — Output the top n models over all input structures by

the specified score. The specified cutoff value should be an integer.

B.6.3 Reading from a database
Rosetta can be configured to read input models from the specified database with a single

input option:

—-in:use_database

Note that both —in:use_database and —out :use_database can be used si-
multaneously. This is valuable in an interactive protocol, as the results from the current
round of iteration can be written to the same database as the results from the previous
round.

It is frequently desirable to read only a subset of structures from a database. If the
structure IDs of the desired structures are known they can be specified with the following

command:
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—in:dbms:struct_ids <struct_id_ list>

Where <struct_id_1list> is a space separated list of structure IDs.
If the structure IDs are not known, it is possible to select a subset of the database using

an SQL select statement:

—in:select_structures_from database <statement>

where <statement> is an SQL statement that performs a SELECT operation that
returns either a struct_id or tag column from the database. As a simple example, the state-

ment:

SELECT struct_id FROM job_string_real_data
WHERE data_key = "total_score"
ORDER BY data_wvalue ASC LIMIT 500;

Would select the structure IDs of the 500 lowest scoring models by total score. This
command line option is potentially dangerous as minimal syntax validation is performed
by Rosetta and the specified statement is executed on the SQL server. Make sure only to
use this command line option with trusted user input, and do not expose any protocol that

uses it as a web server.
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Appendix C

Development and testing of knowledge based scoring functions for Rosettaligand

initial placement

C.1 Introduction

The improvements in the performance of the Rosettal.igand docking algorithm described in
Chapter III result entirely from changes to the sampling algorithm in the initial placement
phase of docking. The ligand scoring grids used in the initial placement algorithm and orig-
inally described by (Davis and Baker, 2009) are relatively primitive, containing only broad
information about the acceptable and unacceptable regions for ligand placement within the
protein binding pocket. Adding more detailed information to these scoring grids has the
potential to further improve the accuracy and speed of Rosettal.igand.

Here we describe the development of two new sets of scoring grids based on on KBPs.
The first is a set of two scoring grids encoding shape complementarity and hydrogen bond-
ing information. The second is a set of 20 scoring grids encoding the probability of a ligand
atom existing within a given distance and angle of a canonical amino acid. The aim of these
KBPs is to provide additional information about energy favorable ligand binding positions.
While the results of benchmarking these algorithms, described in Section C.3, indicate that
neither of the sets of scoring grids described in this chapter result in any significant im-
provement in RosettalLigand performance, KBP-based scoring grids may still be of use as

a broad category of scoring method.

C.2 Methods

C.2.1 Shape complementarity scoring grid

C.2.1.1 The need for and challenge of shape complementarity calculation

Shape complementarity is a useful means of determining whether a ligand is in a well

packed, non-clashing conformation relative to the protein binding pocket. However, rig-
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orous computation of shape complementarity using a metric such as S. (Lawrence and
Colman, 1993), is too time consuming for our purposes. Therefore, a rapid approximation

of shape complementarity was developed.

C.2.1.2 Description of shape complementarity calculations

The shape complementarity scoring grid is computed using the distance between each
square in the grid and the edge of the nearest protein atom. For this method, the stan-
dard atom radii included in Rosetta were used. The fully populated grid represents the
maximum possible radius of an atom at any given point without clashing with any other
atom. An energy term representing the complementarity of a given ligand atom is then
computed by subtracting the radius of that atom from the value in the nearest grid square,
resulting in length of the gap between the ligand atom and the nearest protein atom (Figure
C.1A). This gap length was converted to an energy by using a KBP.

The KBP was derived by computing the —log(propensity) of a pair of protein and
ligand atoms having a gap of a given distance. The KBP was derived using the Top8000'
set of high quality crystal structures curated by the Richardson Lab at UNC. The resulting
potential is shown in Figure C.1C. The left hand (clashing) side of the potential is modeled
as a linear slope (indicated in red) when it passes above zero on the X axis, while the left
hand side is modeled as zero when it reaches the zero axis. The rationale for scoring atoms
with large gaps as zero is to avoid unnecessarily penalizing correct poses when a large
portion of the ligand is exposed to solvent. As Rosettal.igand uses an implicit solvation
model, solvent molecules are not present, and thus not represented in the scoring grid. The
solvation score is applied during the refinement step when the full RosettalLigand score

function is used.

Thttp://kinemage.biochem.duke.edu/databases/top8000.php
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Figure C.1: A schematic of the shape complementarity grid. A) illustrates the computation
of the gap distance between two atoms. B) represents the gap distances placed in the scoring
grid. C) is a plot of the KBP. The region directly computed based on the KBP is in black.
Linear functions applied to values beyond the bounds of the potential are in red.
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C.2.2 Hydrogen bond scoring grid

C.2.2.1 Description of hydrogen bond scoring calculations

A pair of scoring grids are used to model hydrogen bonding. As the goal of the initial
placement algorithm is to provide a rapid first approximation of ligand position, only dis-
tances between hydrogen bond donors and acceptors are taken into account, and angular
information is ignored. A KBP was created based on the —log(propensity) of a hydrogen
bond donor atom being within some distance of a hydrogen bond acceptor atom, using
the same Top8000 protein set described previously (Figure C.2A). Separate scoring grids
are computed for hydrogen bond donors and acceptors. To compute the hydrogen bond
donor scoring grid, the distance from each grid square to the nearest hydrogen bond donor
is computed, and the score from the KBP is stored in the grid square (Figure C.2B). The
same process is followed to compute the hydrogen bond acceptor scoring grid. Hydrogen
bond donor atoms are scored based on the value of the nearest grid square in the appropriate

scoring grid.

C.2.3 3D angle based scoring grid

The shape complementarity scoring grid described in Section C.2.1 is relatively simplis-
tic. Many interactions between ligand atoms and protein side-chains can only be properly
expressed using both the angle and distance between the atoms. A purely distance-based
scoring grid will be unable to properly measure interactions such as hydrogen bonding,
7 — 7 stacking, etc. To attempt to remedy that situation, another novel scoring grid was
developed. A KBP was computed for each of the 20 canonical amino acids, based on a
distance and two angles between a ligand atom and a protein amino acid. The distance is
calculated between the ligand (query) atom and the Cf atom of the amino acid. The ®
angle is computed as the cosine of the angle Query-C-Co, and the @ angle is computed
as the dihedral angle between Ho-Co-Cy-Query.

The Top8000 set of protein structures was used to generate the KBP. The distance and
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Figure C.2: A schematic of the hydrogen bonding grid. A) A schematic illustrating the
placement of scoring information in the hydrogen bonding scoring grids. B) The KBP used
to populate the scoring grids. The region directly computed based on the KBP is in black.
Linear functions applied to values beyond the bounds of the potential are in red.
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two angles described above were computed for each ligand atom and each protein amino
acid in the set. The distance and angle data were then aggregated for each of the 20 amino
acids, resulting in 20 KBPs representing the energy associated with a ligand atom located
in the vicinity of a given canonical amino acid. The scores generated by these 20 KBPs
were then summed to produce a single scoring grid representing the total energy of ligand
atoms located in the protein binding site.

By computing the KBP using internal coordinates relative to the Cf3 atom, the resulting
energy term is independent of the orientation of the amino acid in the protein structure.
The internal coordinate frame of the energy term can be converted to cartesian coordinates
during scoring grid construction. When the scoring grid is constructed, the sum of the KBP
energies associated with each amino acid surrounding a given scoring grid space is used as
the total energy for that grid square.

As the KBP is based on the position of atoms in X-ray crystal structures, it does not
take into account the presence of unordered solvent. The result is that areas of the ligand
binding pocket normally occupied by water appear empty and will therefore have unfavor-
able scores. Additionally, clashes with the protein backbone should be avoided regardless
of the KBP score. To address both of these issues, the angular KBP-based grid described
above was combined with the previously implemented binary scoring grid, ensuring that
available space in the ligand binding pocket has a nominally favorable score, while severely
clashing positions are always avoided. The role of the KBP-based grid is to add nuance to

the initial placement scoring function.

C.2.4 Description of benchmarking sets

The CSAR derived benchmarking set described in Chapter III is capable of docking the
majority of ligands successfully using the TRANSFORM initial placement algorithm and
the previously implemented binary scoring grids. In order to make it easier to distinguish

the effects of the newly implemented scoring functions on docking success, a more difficult
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benchmark derived from the Q-Dock(Brylinski and Skolnick, 2008) homology modeling
benchmark was used to test the new scoring grids. The new benchmarking set consists of
154 protein-ligand pairs. Each protein model in the benchmark was a comparative model
made using an X-ray crystal structure template. The homology models in the Q-Dock
benchmarking set are of a wide range of quality, ranging from 1.4 A t024.0 A RMSD from
the template structure. For each protein-ligand pair, an ensemble of 10 models was cre-
ated by relaxing the homology model provided as part of the Q-Dock homology modeling

benchmarking set.

C.3 Results and Discussion
C.3.1 Neither of the evaluated KBPs significantly improves docking performance
Figure C.3 compares the effect of the KBPs described in Section C.2 on docking perfor-
mance and efficiency. In the left panel, the fraction of systems in the Q-Dock benchmark in
which the lowest scoring model was under 2.0 A RMSD to the crystal structure was plotted.
In the right panel, the fraction of systems in which the best scoring model was under 4.0 A
RMSD to the crystal structure was plotted. In these figures, the designation “3-D” refers to
the internal coordinate based 3-D KBP described in Section C.2.3, and “1-D” refers to the
1-D KBPs described in sections C.2.1 and C.2.2

In order to determine whether any apparent differences in model performance seen in
Figure C.3 are statistically significant, a Welch’s T-Test was used to compare the perfor-
mance of pairs of protocols. The Welch’s T-test is a method that tests the hypothesis that
two independent samples with potentially unequal variances have identical means. This
test was applied to pairs of methods for each set of samples plotted in Figure C.3, allow-
ing the statistical significance of method changes to be plotted as a function of sample
size. Figure C.4 shows that the only statistically meaningful improvement in RosettaLi-
gand performance is obtained by the implementation of the TRANSFORM initial placement

algorithm, while choice of scoring grid appears to have no impact.
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Figure C.3 appears to indicate a slight change in the performance of the TRANS-
FORM/1-D/MCM protocol relative to the TRANSFORM/1-D/MIN protocol at samples sizes
over 800. The T-test analysis in Figure C.4 suggests that the differences in performance
observed here may be statistically significant, with T-test values dipping slightly below the
0.05 threshold. However, when a 2.0-A cutoff is used as the metric for docking success, the
TRANSFORM/1-D/MCM protocol exhibits improved performance over TRANSFORM/1-
D/MIN, while the TRANSFORM/1-D/MIN protocol exhibits improved performance when a
4.0-A cutoff is used. This discrepancy in performance when the cutoff threshold is changed
warrants further investigation. Overall, we see that the TRANSFORMbased protocols result
in a roughly doubled success rate over the TRANSROTbased protocols at both the 2.0 and
4.0-A success cutoffs.

The requirement that the single lowest scoring model is below the RMSD cutoff is a
stringent one. It is also worthwhile to assess whether any of the docking protocols studied
here can improve the ability of Rosettal.igand to arrive at a nearly correct solution, even if it
is ultimately unsuccessful. In this case, a “nearly correctly docked” protein-ligand system
is defined as one in which any model within 2.0 Rosetta Energy Units (REU) of the lowest
scoring model were also within 2.0 or 4.0 A RMSD of the crystal structure. Figure C.5
plots this property in a way analogous to Figure C.3. As expected, we see an increase in
success rate with this less stringent criterion, with the new, less stringent criterion resulting
in a roughly 35% success rate at the 2.0 A cutoff, rather than the 20% success rate seen
with the previously discussed criteria. As with Figure C.3, we see that the TRANSFORM
initial placement algorithm generally performs better than the TRANSROT algorithm, but
that the 1-D and 3-D KBPs do not result in notable changes compared to the original binary
scoring grid.

Because final scoring is performed using the Rosetta energy function regardless of the
choice of initial placement grid, the new grids described in this paper should primarily im-

pact ligand sampling. In order to study the effect of sampling specifically, the percentage of
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Figure C.3: The fraction of protein systems in which the lowest scoring model has an
RMSD < 2.0 A (left), and < 4.0 A (right) to the native structure as a function of the total
number of structures when docked into structures in the Q-Dock benchmarking set. A large
pool of models were generated, and random subsamples were taken. Twenty random sam-
ples were taken for each point, and the means are plotted, with the error bars representing
the standard deviation. Docking protocols that make use of the TRANSFORM algorithm
reliably converge after approximately 150 models (dotted line).
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2A cutoff

Transform/1-D/MIN |Transform/3-D/MCM |Transform/3-D/MIN |Transform/MCM |Transform/MIN |TransRot/MCM |TransRot/MIN
Transform/1-D/MCM 2.38E-03 3.39E-03 4.28E-04 5.43E-06 1.45E-03 9.56E-16 1.28E-15
Transform/1-D/MIN 6.11E-01 1.13E-01 4.02E-03 2.95E-01 2.29E-16 1.76E-16
Transform/3-D/MCM 3.19E-01 4.37E-02 6.15E-01 1.26E-12 1.70E-12
Transform/3-D/MIN 3.57E-01 6.27E-01 1.27E-11 1.62E-11
Transform/MCM 1.49E-01 2.56E-14 2.56E-14
Transform/MIN 8.86E-12 1.15E-11
TransRot/MCM 6.55E-01

4A cutoff

Transform/1-D/MIN [Transform/3-D/MCM [Transform/3-D/MIN [Transform/MCM [Transform/MIN [TransRot/MCM |TransRot/MIN
Transform/1-D/MCM 4.72E-04 7.62E-02 1.07E-02 2.09E-03 1.59E-03 4.15E-13 3.82E-15
Transform/1-D/MIN 3.64E-02 3.05E-01 5.65E-01 6.83E-01 1.73E-13 1.61E-17
Transform/3-D/MCM 3.17E-01 1.19E-01 9.29E-02 1.22E-13 6.71E-16
Transform/3-D/MIN 6.19E-01 5.27E-01 5.35E-14 8.97E-16
Transform/MCM 8.77E-01 8.78E-14 4.83E-17
Transform/MIN 7.22E-14 5.28E-17
TransRot/MCM 5.76E-01

Figure C.4: A Welch’s T-Test was computed comparing the success rates between all pairs
of protocols with a model sample size of 1000. At top, the cutoff for docking success is
considered to be 2.0 A RMSD. At bottom, the cutoff is 4.0 A RMSD. Models below the
statistical significance cutoff of 0.05 are colored in a gradient from white to green. Models
above the statistical significance cutoff are colored in a gradient from white to red.

total models with an RMSD below 2.0 and 4.0 A was plotted for each of the RosettaLigand
protocols studied. As with previous figures, these percentages are plotted as a function of
sample size in Figure C.6. Of note in this figure is that, when a 4.0-A success cutoff is
used, the rate of sampling success is slightly lower for the protocols using the 1-D KBPs
(success rate of approximately 0.23) relative to the binary and 3-D KBPs (success rate of
0.25). Interestingly, when Figure C.6 is compared to C.3, we see that this slight decrease in
overall sampling success rate does not correspond to a decreased ability of Rosettal.igand
to successfully select a correct binding pose using the Rosetta energy score. As the require-
ment for a system to be successfully docked in Figure C.3 is that the single lowest scoring
model has an RMSD of < 4.0 A, a 2% decrease in overall sampling success is unlikely to
significantly impact the final docking success rate. Thich would explain the phenomenon
seen here.

Figure C.7 compares the performance of RosettalLigand protocols at docking individ-
ual protein-ligand systems in the Q-Dock benchmarking set. Here, RMSD vs RMSD plots

compare the average score of the lowest scoring models from 20 random samples of 1,000

151



1.0

0.6

Fraction of models with an RMSD below 2A

TransRot/MCM
Transform/MCM
TransRot/MIN
Transform/MIN
Transform/1-D/MCM
Transform/1-D/MIN

AR AL

WWAVIAA

Fraction of models with an RMSD below 4A

" ol 2 DDA
0.0 . . . -
0 200 400 600 800 1000
Number of models made
1.0 - -
TransRot/MCM
Transform/MCM

0.8

Fraction of models with an RMSD below 2A

0.0

TransRot/MIN
Transform/MIN
Transform/3-D/MCM
Transform/3-D/MIN

A RO

0 200

200

600 800
Number of models made

Fraction of models with an RMSD below 4A

1000

1.0

0.8}

o
N

TransRot/MCM
Transform/MCM
TransRot/MIN
Transform/MIN

Transform/1-D/MCM

Transform/1-D/MIN

0.0 200

1.0

400

600 800

Number of models made

1000

I
>

o
)

0.0

TransRot/MCM
Transform/MCM
TransRot/MIN
Transform/MIN

Transform/3-D/MCM

Transform/3-D/MIN

0 200

400

600 800

Number of models made

1000

Figure C.5: The fraction of protein systems in which any model within 2.0 REU of the
lowest scoring mode has an RMSD < 2.0 A (left), and < 4.0 A (right) to the native structure
as function of the total number of structures when docked into structures in the Q-Dock
benchmarking set. A large pool of models were generated, and random subsamples were
taken. Twenty random samples were taken for each point, and the means are plotted, with
the error bars representing the standard deviation. Docking protocols that make use of
the TRANSFORM algorithm are reliably converged after approximately 150 models (dotted

line).

152



0.30 - - 0.30
TransRot/MCM
Transform/MCM
=< 0.25¢ TransRot/MIN 1 < 0.25
3 Transform/MIN H
g Transform/1-D/MCM g
g 0.20¢ Transform/1-D/MIN | g 0.20} —  TransRot/MCM
p < — Transform/MCM
2 ° — TransRot/MIN
g 015 1 5015 —— Transform/MIN
§ é —  Transform/1-D/MCM
g g Transform/1-D/MIN
« 0.10F 1 Eo.10f
© e e — ©
c c
.0 o
k] k]
© © f,cz‘vvmw
iC 0.05¢ 1 & 0.05)
0'000 200 400 600 800 1000 0'000 200 400 600 800 1000
Number of models made Number of models made
0.30 - - 0.30
TransRot/MCM
Transform/MCM
ot 0.25¢ TransRot/MIN 1 o 0.25ps5m0ns - -
o~ < ¥
3 Transform/MIN H
g Transform/3-D/MCM H
a L - 4 [a) L
‘§ 0.20 Transform/3-D/MIN £ 0.20 — TransRot/MCM
b < — Transform/MCM
g 015 g 015 — TransRot/MIN
2015 1T =9 — Transform/MIN
é é — Transform/3-D/MCM
2 g Transform/3-D/MIN
« 0.10 1 £ o0.10f
S) - — A TRT———————— S)
C c
2 o
3] k5]
T 0.05} {4 & o0.05f 1
0-005 200 400 600 800 000 %% 200 200 600 800 1000
Number of models made Number of models made

Figure C.6: The fraction of models with an RMSD below 2.0 A (left) and 4.0 A (right)
regardless of score. A large pool of models was generated, and random subsamples were
taken. Twenty random samples were taken for each point, and the means are plotted, with
the error bars representing the standard deviation.

153



models each. The top left panel of Figure C.7 compares the performance of the TRAN-
SROT/MCM and TRANSFORM/MCM protocols. The TRANSFORM initial placement algo-
rithm resulted in the successful binding prediction of 16 protein-ligand systems that could
not be docked successfully with the TRANSROT method, and one method could be success-
fuly docked with TRANSROT but not TRANSFORM. The TRANSFORM/3-D/MCM proto-
col (top right) resulted in three systems in which binding was successful over TRANS-
FORM/MCM, and four systems in which binding was successful in TRANSFORM/MCM
over TRANSFORM/3-D/MCM. The TRANSFORM/1-D/MCM protocol (bottom left), re-
sulted in four successfully docked system over TRANSFORM/MCM, while the TRANS-
FORM/MCM protocol resulted in three successfully docked systems over TRANSFORM/1-
D/MCM. The TRANSFORM/1-D/MCM protocol (bottom right) resulted in eight models
that were successfully docked over the TRANSFORM/3-D/MCM protocol, while three sys-
tems were successfully docked over TRANSFORM/1-D/MCM. From Figure C.7, we see
that the TRANSFORM/1-D/MCM protocol affords only minimal improvement over the
TRANSFORM/MCM protocol and that the TRANSFORM/3-D/MCM protocol results in a
decrease in performance over TRANSFORM/1-D/MCM.

To further investigate the success and failure cases plotted in Figure C.7, we have ren-
dered 3D representations for each system that was docked successfully in one system, but
unsuccessfully in another. As a negative comparison, the five best scoring models from
systems that could not be correctly docked by any of the studied docking protocols are
rendered as well. Galleries of these models are shown in figures C.8, C.10, C.12, C.14, and
C.16. Through a qualitative side-by-side comparison of these galleries, there are several
broad conclusions we can draw regarding the properties of the RosettalLigand protocols
studied in this chapter.

In Figure C.8, the models docked successfully by TRANSFORM/MCM or TRANSROT/MCM
are plotted. The only difference between these two protocols is the method of sampling dur-

ing initial placement, and the set of ligands which could be successfully docked by TRANS-
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Figure C.7: RMSD vs RMSD plots comparing the performance of several pairs of protocols
examined in this study. The average RMSD of the lowest scoring model for 20 samples of
1,000 models is plotted for each of the ligands in the Q-Dock benchmarking set.
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FORM/MCM but not TRANSROT/MCM provide excellent examples of the value of im-
proved sampling. This set of ligands is dominated by flat, relatively symmetric molecules,
such as heme. The roughly symmetric nature of these ligands results in several similar (but
not identical) poses that the ligand can assume, all with similar scores. Panels C.8D and
C.80 are examples of this issue, in which the low scoring, high RMSD model obtained by
the TRANSROT/MCM is rotated about the flat axis of the ligand.

On the other hand, Panels C.8A and C.8B are examples of highly flexible ligands in
relatively large binding pockets. In the case of a highly flexible ligand, the ligand can as-
sume a wide range of positions, many of which likely have similar scores but high RMSDs
relative to the native structure. In both cases (large almost symmetric ligands and long
highly flexible ligands), the large number of reasonably scoring local minima makes sam-
pling difficult, and the additional sampling of the TRANSFORM initial placement algorithm
is necessary to successfully dock these models.

Panel C.8Q plots the only system for which the TRANSROT/MCM protocol, rather than
TRANSFORM/MCM, is successful. Here, the ligand is nearly symmetric, and while both
protocols placed the ligand in the generally correct pose, the TRANSFORM/MCM model is
inverted. This failure demonstrates that even the additional sampling of the TRANSFORM
initial placement cannot guarantee successful sampling.

The overall impact on sampling of these systems is seen in Figure C.9, in which the
Score vs. RMSD is plotted for all models produced by each RosettalLigand protocol for
each system. In most of the 16 cases, TRANSROT/MCM is unable to sample any models
with an RMSD below the 2.0 A cutoff. Additionally, we see that in most cases, the symmet-
ric ligand have multiple relatively low energy minima. The additional sampling afforded
by the TRANSFORM initial placement algorithm increases the probability of sampling in
the lowest energy, low RMSD binding position.

In figures C.10, C.12, and C.14, the sampling and refinement methods were kept con-

stant, and the impact of the initial placement scoring grids were compared. There are a few
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interesting conclusions to be drawn from these figures. The TRANSFORM/1-D/MCM and
TRANSFORM/MCM protocols are both more successful in docking large, flat, heme-like
ligands relative to TRANSFORM/3-D/MCM, with TRANSFORM/3-D/MCM being unable
to dock a heme-like ligand over either of the other scoring methods. While the TRANS-
FORM/1-D/MCM and TRANSFORM/MCM protocols seem better able to dock large ligands
relative to TRANSFORM/3-D/MCM, the three smallest ligands which showed improvement
(panels C.14A, C.14B, and C.10F), were successfully docked by TRANSFORM/3-D/MCM
over the two other evaluated protocols. While three success cases out of a 148-system
benchmark is insufficient to draw statistically meaningful conclusions, further investiga-
tion of the ability of the 3-D KBP to aid in the docking of small ligands may be warranted.

In Figure C.9 we see a drastic difference in Score vs. RMSD distribution as a result of
the change in initial placement sampling method. In Figures C.11, C.13, and C.15, how-
ever, the initial placement sampling method is held constant, and only the initial placement
scoring method is changed. In general, we see that the score vs. RMSD plots are nearly
identical, indicate that the new scoring grids have minimal impact on the overall ability of
Rosettaligand to sample low energy poses. In many of these cases, such as Figure C.13C,
Rosettaligand docks the ligand in two distinct energy minima with nearly identical scores,
and the differences between success and failure are the result of only tiny differences in the
score of the lowest scoring model.

The examination of cases in which none of the RosettalLigand protocols were capable of
successful docking is also informative. While the vast majority of systems in the Q-Dock
benchmarking set could not be successfully docked, we selected “the best of the worst”
models for rendering. Specifically, only systems in which the protein comparative model
RMSD was < 2.0 A to the template were considered for selection. Of these systems, the
five lowest scoring models from systems which could not be successfully docked by any of
the RosettalLigand protocols were selected and rendered in Figure C.16.

These failure cases provide good examples of a few broad categories in which Roset-
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talligand will, in general, have difficulty succeeding. While all the models are below 2.0
A RMSD to the template structure, Panels C.16A and B are cases in which the ligand is
surrounded by loops, and in which the loops initially occlude the ligand binding site. The
occlusion of the binding site is a result of incorrect loop modeling during homology model
generation. In both cases, RosettalLigand has moved the loops during the refinement stage
to avoid clashing, but it is unable to correctly dock the ligands. In general, if loop model-
ing is required in the generation of a protein model, great care must be taken to accurately
model loops which are in direct contact with the ligand prior to attempting docking, so as
to avoid the behaviors seen in these two panels.

In Panel C.16C, we attempt to dock a highly flexible ligand with several binding site
loops into a shallow pocket. This case is difficult for a number of reasons. In addition
to the previously discussed difficulty of docking into binding sites involving loops, the
large number of rotatable bonds increases the difficulty of sampling. Finally, the shallow
binding pocket reduces the number of direct atom-atom interactions, which in turn reduces
the amount of information available to the Rosettal.igand energy function.

Panel C.16D involves a long, flexible ligand docked into a wide barrel structure. While
this is not a surface binding site, as in Panel C.16C, the wide binding pocket similarly re-
duces the number of interactions. Panel C.16E involves a flexible, surface binding ligand,
which will require substantial sampling to correctly dock. While RosettalLigand is poten-
tially capable of successfully handling protein-ligand systems with these properties, the
cases represented here are inherently challenging, and the current system will be unlikely
to succeed relative to other cases.

Figure C.17 plots the Score vs. RMSD plots associated with Figure C.16. Of the five
systems plotted, only the system plotted in Panel C.17A was able to successfully sample
substantial numbers of models below 2.0 A. In the case of Panel C.17A, we see that while
some models were sampled below the 2.0 A cutoff, the system has several local minima,

some of which have a lower score than the correct binding position. Based on the Score

158



vs. RMSD plots presented here, and on qualitative inspection of individual success and
failure cases, it appears that while the new TRANSFORM initial placement algorithm greatly
improves the effectiveness of sampling, further improvements in both sampling and in the

Rosetta energy function are required.

C.3.2 There is minimal correlation between ligand docking success and comparative
model accuracy

While the qualitative analysis above provides a number of valuable insights into the perfor-
mance characteristics of RosettalLigand, a more quantitative analysis is also valuable. The
range of accuracy of the comparative models in the Q-Dock benchmarking set gives us the
opportunity to investigate the relationship between model accuracy and docking success.
If such a relationship did exist, it would be useful for making decisions about the feasi-
bility of computational docking experiments. However, we see from Figure C.18 that no
such relationship exists. In this figure, we plot the relationship between the RMSD of the
lowest scoring ligand to the crystal structure, and the RMSD of the protein comparative
model to the protein crystal structure. At left in Figure C.18 is the relationship between
the ligand RMSD and the all-atom RMSD of the comparative model. At right in Figure
C.18 is the relationship between the ligand RMSD and the binding pocket RMSD of the
comparative model. Here, the binding pocket is defined as the set of residues within 10.0
A of the center of the ligand. We see no correlation between the ligand RMSD and the all
atom comparative model RMSD (R? = 0.002), or the binding pocket comparative model
RMSD (R? = 0.007).

While there is no meaningful correlation, there are some rough guidelines that may
be obtained from this analysis. We see that the successful ligand docking predictions in-
volve protein models with an all-atom RMSD of < 10 A to the template, and nearly all
have RMSDs of < 5 A. All successful predictions have a binding pocket RMSD of < 5 A,

indicating that, as expected, the accuracy of the ligand binding pocket is somewhat more
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Figure C.8: The lowest scoring model for protein-ligand systems that were docked correctly
by TRANSFORM/MCM and incorrectly by TRANSROT/MCM (and vice versa). Correctly
docked ligands are shown in blue, and incorrectly docked ligands are shown in orange. This
Figure corresponds to the top left panel in Figure C.7. The following proteins are plotted
(PDB IDs): A) 1a8p, B) 1au2, C) layv, D) 1bvd, E) 1byg, F) 1cxc, G) 1d06, H) 1drm, I)
1fen, J) 1flp, K) Imyt, L) 1gsr, M) 1tcs, N) lyet, O) 2hbg, P) 4Ibd, Q) 1bso.
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Figure C.9: Score vs. RMSD plots for protein-ligand systems that were docked correctly
by TRANSFORM/MCM and incorrectly by TRANSROT/MCM (and vice versa). The Score
vs. RMSD plot for the protocol that correctly docked the ligand is shown in blue, and
and the plot for the protocol that incorrectly docked the ligand is shown in orange. The
x-axis plots the RMSD in A. The y-axis plots the score in Rosetta energy units. This Figure
corresponds to the top left panel in Figure C.7. The following systems are plotted (PDB
IDs): A) 1a8p, B) 1au2, C) layv, D) 1bvd, E) 1byg, F) 1cxc, G) 1d06, H) 1drm, 1) 1fen, J)
Iflp, K) Imyt, L) 1gsr, M) 1tcs, N) lyet, O) 2hbg, P) 41bd, Q) 1bso.
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Figure C.10: The lowest scoring model for protein-ligand systems that were docked cor-
rectly by TRANSFORM/MCM and incorrectly by TRANSFORM/3-D/MCM (and vice versa).
Correctly docked ligands are shown in blue, and incorrectly docked ligands are shown in
orange. This Figure corresponds to the top right panel in Figure C.7. The following pro-
teins are plotted (PDB IDs): A) 1bso, B) Icxc, C) Itcs, D) 2hbg, E) 1fdr, F) 2dri, G) 4lbd.
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Figure C.11: Score vs. RMSD plots for protein-ligand systems that were docked correctly
by TRANSFORM/MCM and incorrectly by TRANSFORM/3-D/MCM (and vice versa). The
Score vs. RMSD plot for the protocol that correctly docked the ligand is shown in blue,
and and the plot for the protocol that incorrectly docked the ligand is shown in orange. The
x-axis plots the RMSD in A.The y-axis plots the score in Rosetta energy units. This Figure
corresponds to the top right panel in Figure C.7. The following systems are plotted (PDB
IDs): A) 1bso, B) 1cxc, C) 1tcs, D) 2hbg, E) 1fdr, F) 2dri, G) 41bd.
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Figure C.12: The lowest scoring model for protein-ligand systems that were docked cor-
rectly by TRANSFORM/MCM and incorrectly by TRANSFORM/1-D/MCM (and vice versa).
Correctly docked ligands are shown in blue, and incorrectly docked ligands are shown in
orange. This Figure corresponds to the bottom left panel in Figure C.7. The following
proteins are plotted (PDB IDs): A) 1bso, B) Icxc, C) 1fen, D) 1au2, E) 1cyo, F) 1fdr, G)
3c2c
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Figure C.13: Score vs. RMSD plots for protein-ligand systems that were docked correctly
by TRANSFORM/MCM and incorrectly by TRANSFORM/1-D/MCM (and vice versa). The
Score vs. RMSD plot for the protocol that correctly docked the ligand is shown in blue,
and and the plot for the protocol that incorrectly docked the ligand is shown in orange. The
x-axis plots the RMSD in A. The y-axis plots the score in Rosetta energy units. This Figure
corresponds to the bottom left panel in Figure C.7. The following systems are plotted (PDB
IDs): A) 1bso, B) 1cxc, C) 1fen, D) lau2, E) Icyo, F) 1fdr, G) 3c2c
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Figure C.14: The lowest scoring model for protein-ligand systems that were docked cor-
rectly by TRANSFORM/3-D/MCM and incorrectly by TRANSFORM/1-D/MCM (and vice
versa). Correctly docked ligands are shown in blue, and incorrectly docked ligands are
shown in orange. This Figure corresponds to the bottom right panel in Figure C.7. The
following proteins are plotted (PDB IDs): A) 2dhn, B) 2dri, C) 4lbd, D) 1au2, E) layw, F)
1bso, G) lcxc, H) 1cyo, I) Itcs, J) 2hbg, K) 3c2c
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Figure C.15: Score vs. RMSD plots for protein-ligand systems that were docked correctly
by TRANSFORM/3-D/MCM and incorrectly by TRANSFORM/1-D/MCM (and vice versa).
The Score vs. RMSD plot for the protocol that correctly docked the ligand is shown in blue,
and and the plot for the protocol that incorrectly docked the ligand is shown in orange. The
x-axis plots the RMSD in A. The y-axis plots the score in Rosetta energy units. This Figure
corresponds to the bottom right panel in Figure C.7. The following systems are plotted
(PDB IDs): A) 2dhn, B) 2dri, C) 41bd, D) lau2, E) layw, F) 1bso, G) 1cxc, H) lcyo, 1)
Itcs, J) 2hbg, K) 3c2c
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Figure C.16: The lowest scoring model for the five lowest scoring protein-ligand systems
that were incorrectly docked by all evaluated RosettalLigand protocols. The following pro-
teins are plotted (PDB IDs): a) 1cxy, b) 451c, ¢) 1bgo, d) 2cbs, e) 3cbs
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0 5 10 15 20 0 5 10 15 20

Figure C.17: Score vs. RMSD plots from the TRANSFORM/MCM protocol for protein-
ligand systems that were incorrectly docked by all evaluated RosettalLigand protocols. The
following systems are plotted (PDB IDs): a) 1cxy, b) 451c, c¢) 1bgo, d) 2cbs, e) 3cbs
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Figure C.18: At left, the correlation between the RMSD of the lowest scoring ligand dock-
ing prediction made by Rosettaligand and the all atom RMSD of the protein homology
models to the template. At right, the correlation between the RMSD of the lowest scor-
ing ligand docking prediction, and the binding pocket RMSD of the protein homology
models to the template. Here, the binding pocket is defined any residue with at least
one atom within 10.0 A of the geometric center of the ligand. Models generated using
the TRANSFORM/MCM algorithm are indicated in black, and models generated using the
TRANSROT/MCM algorithm are in red. Error bars represent standard deviation.

important than the overall accuracy of the protein model.

It is notable that even among models with an RMSD to the template below < 5 A, only
21 (17.3%) of protein-ligand pairs could be correctly docked by the TRANSFORM/MCM
algorithm, which is the best performing of those tested in this study. This suggests that,
while an accurate protein model is critical to successful docking, the success or failure of

Rosettaligand is driven by properties other than protein model accuracy.

C.3.3 Ligand chemical properties do not appear to be well correlated with docking
success

For pairs of Rosettaligand docking protocols tested in this experiment, the results were

analyzed to look for correlations between docking success and ligand chemical properties.

Specifically, the distribution of chemical properties among ligands that were successfully
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docked by both protocols in a pair, unsuccessfully docked by both protocols, or success-
fully docked by one protocol and unsuccessfully docked by another were studied. The aim
of this analysis was to identify ligand properties that may lead to increased or decreased
docking success among the tested protocols. The BCL was used to compute the girth, count
of hydrogen-bond acceptors and donors, predicted log(p), atom count, aromatic ring count,
conjugated ring count, ring count, rotatable bond count, stereo center count, Total Polar-
izable Surface Area (TPSA), total charge, VDW surface area, VDW volume, molecular
weight and radius of gyration for each of the 154 ligands in the benchmarking set.

Figure C.19 plots the distribution of ligand properties for successful and unsuccessful
protein-ligand systems in the Q-Dock benchmarking set docked with the TRANSFORM/MCM
and TRANSROT/MCM protocols. We see that ligands that are successfully docked by the
TRANSFORM-based protocol but not the TRANSROT-based protocol are generally slightly
larger and more flexible than ligands that can be docked successfully by both protocols.
However, the distributions of the chemical properties generally overlap, so we are unable
to extract hard predictors of docking success based on ligand property.

Figures C.20 and C.21 compare the performance of two pairs of protocols as a func-
tion of the chemical properties of the ligands in the Q-Dock benchmarking set. As these
two pairs of protocols do not have statistically significant performance differences (Figure
C.4), it is not expected that we will see significant differences in the chemical property
distributions of successfully and unsuccessfully docked systems. In general, the measured
chemical properties do not seem to have a significant impact on success rate between the
1-D KBP, 3-D KBP, and binary scoring grids. However, there are a few aspects of the
analysis that many warrant further investigation. In Figure C.20, we see that the number of
rings in systems that could be successfully docked when using the 1-D KBP scoring grid,
rather than the binary scoring grid, is increased. Specifically, systems that were docked
correctly with the 1-D grid and incorrectly with the binary grid had between 6-8 rings,

while systems that were docked successfully with the binary grid and unsuccessfully with
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Figure C.19: Comparison of ligand property distributions for ligands docked with the
TRANSFORM/MCM and TRANSROT/MCM protocols. “Transform Fix” is the group of
ligands that could not be docked with the TRANSROT/MCM protocol but were success-
fully docked by the TRANSFORM/MCM protocol.
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Figure C.20: Comparison of ligand property distributions for ligands docked with the
TRANSFORM/MCM and TRANSFORM/1-D/MCM protocols.

the transform grid had no rings. While this distribution overlaps the distribution of ligands
that could be successfully docked with both protocols (2-8 rings), the impact of the 1-D
KBP scoring grid on the ability of RosettalLigand to dock large or complex ring systems is

a potential area of further investigation.

C.3.4 Protein structural and chemical properties do not appear to be well correlated
with docking success

The relationship between protein properties and ligand docking success can be analyzed in

a similar manner to the analysis of ligand properties described in Section C.3.3. For each

protein-ligand pair in the Q-Dock benchmarking set, the ligand was placed at the experi-

mentally determined crystallographic position within the comparative model. Rosetta was

then used to compute a set of 21 metrics describing the protein-ligand binding site. The

following metrics were computed: Number of unsaturated hydrogen-bonds, total Rosetta
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Figure C.21: Comparison of ligand property distributions for ligands docked with the
TRANSFORM/1-D/MCM and TRANSFORM/3-D/MCM protocols.
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energy of the bound complex, total Rosetta energy for the bound complex normalized
by SASA, unbound Rosetta energy, unbound Rosetta energy normalized by SASA, hy-
drophobic SASA, total SASA, polar SASA, percentage of total energy accounted for by
H-bonding, Rosetta attractive energy, Rosetta electrostatic energy, Rosetta pair energy,
Rosetta repulsive energy, Rosetta solvation energy, Rosetta backbone-side-chain H-bond
energy, Rosetta side-chain-side-chain H-bond energy, total protein residue count,interface
residue count, Rosetta packing statistic, total pre-residue Rosetta energy, and S..

Figure C.22 compares the protein properties of proteins that succeeded and failed with
the TRANSFORM/MCM and TRANSROT/MCM protocols. As the TRANSFORM/MCM and
TRANSROT/MCM protocols had a large, statistically significant difference in terms of over-
all performance, this is the most likely case to see the impact of protein chemical property
on success. While the distributions do overlap substantially, it appears that the proteins
in which both protocols are able to dock successfully have slightly lower attractive energy
scores and slightly lower backbone-sidechain hydrogen-bond energy scores.

Figure C.23 plots the differences in protein property distributions for success and fail-
ure cases of the TRANSFORM/MCM and TRANSFORM/1-D/MCM. Inspection of the dis-
tributions here indicate that in general, the binary scoring grid is more capable than the 1-D
KBP grid of docking ligands into proteins with higher protein-ligand interface energies and
lower attractive energies. However, as with the previous analysis, the distributions of the
protein properties are generally overlapping, limiting the conclusions which we can draw.

Figure C.24 plots the differences in protein property distributions between the TRANS-
FORM/1-D/MCM and TRANSFORM/3-D/MCM methods. Here, more than in the previous
two figures, we see overlap between nearly all the plotted distributions. However, we
see that the proteins for which TRANSFORM/3-D/MCM had improved performance above
TRANSFORM/1-D/MCM generally have a lower backbone-side-chain hydrogen-bond En-

ergy and an increased number of unsaturated H-bonds relative to the overall distributions.
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Figure C.22: Comparison of protein property distributions for protein-ligand pairs docked
with the TRANSFORM/MCM and TRANSROT/MCM protocols. “Transform Fix” is the
group of ligands that could not be docked with the TRANSROT/MCM protocol but were
successfully docked by the TRANSFORM/MCM protocol.
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Figure C.24: Comparison of protein property distributions for protein-ligand pairs docked
with the TRANSFORM/1-D/MCM and TRANSFORM/3-D/MCM protocols. “Transform/3-
D Fix” is the group of ligands that could not be docked with the TRANSFORM/I-
D/MCM protocol but were successfully docked by the TRANSFORM/3-D/MCM protocol.
“Transform/1-D Fix” is the group of ligands that could not be docked with the TRANS-
FORM/3-D/MCM protocol but were successfully docked by the TRANSFORM/1-D/MCM
protocol. 175



C.3.5 Future Directions

As described above, the newly implemented KBP-based scoring grids do not afford any
significant performance improvement relative to the previously discussed binary scoring
function. There are several possible explanations for this issue and a number of paths of
further research and development which may lead to remedies.

The lack of correlation between protein structure accuracy and ligand docking success
(Figure C.18) suggests that high accuracy protein models are necessary but not sufficient
to correctly model protein-ligand interactions. Based on prior research, it is likely that
protein-ligand dynamics (Baugh et al., 2010) and quantum chemical description of interac-
tions (Weber et al., 2014) are critical to accurate and reliable modeling.

It is also likely that continued research efforts should be focused on the high resolution
sampling and scoring components of Rosettal.igand, rather than low resolution docking.
Figure C.18 indicates that most of the protein-ligand pairs in the Q-Dock binding with
comparative model RMSDs of < 5 A could not be docked successfully by the TRANS-
FORM/MCM protocol. For this analysis, protein systems with comparative model RMSDs
above 5.0 A were excluded, to focus on Rosettaligand’s performance in docking ligands
into reasonably high quality models. Analysis of the entire pool of models generated by
Rosettaligand indicates that a small percentage (3.3%) of the models had ligand RMSDs
of < 2.0 A relative to the crystal structure. Figure C.25 plots the distribution of the RMSDs
of models produced for incorrectly docked protein-ligand systems by several of the stud-
ied docking protocols. As in previous analyses, a system is defined as incorrectly docked
if the RMSD of the ligand is > 2.0 A relative to the crystal structure. While each of the
docking protocols was able to sample correct poses over the entire Q-Dock benchmarking
set, none of the protocols were capable of successfully sampling each of the 148 proteins
in the benchmark set. Specifically: the TRANSROT/MCM protocol sampled at least one
pose at < 2.0 A for 5/148 proteins, the TRANSFORM/MCM and TRANSFORM/1-D/MCM

protocols successfully sampled at least one model for 20/148 proteins, and the TRANS-
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Figure C.25: The distribution of ligand RMSDs across all models generated by a selection
of protocols for incorrectly docked protein-ligand pairs with a protein template RMSD of
<5A.

FORM/3-D/MCM protocol correctly sampled at least one model for 18/140 proteins. This
analysis supports the conclusion that the RosettaLigand performance is currently limited
by both sampling and scoring.

The lack of trends in protein and ligand property distributions discussed in sections
C.3.3 and C.3.4 suggest that there is likely no single root cause for the inability to properly
distinguish between ligand poses. Rather, it is likely that an overall improvement in high
resolution energy function accuracy and information content is necessary. The work on
development of an electron orbital-based KBP by Combs et al. (Combs, 2013), as well
as improvements in the conventional RosettalLigand energy function by Leaver-Fay et al.
(unpublished) may improve the performance of Rosettal.igand and should be investigated.
Additionally, re-scoring of RosettalLigand predictions with QM/MM based force fields may

also yield beneficial results.
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There is likely still room for improvement within the scope of KBP based modeling
methods. The lack of improvement over the originally developed binary scoring function
seen with the two new methods described here indicates that these methods are not pro-
viding significant new information to the initial placement algorithm. To build upon the
current methods, a reasonable next step might be to collapse the 3-D KBP described in
Section C.2.3 into 2 dimensions. KBPs are prone to artifacts in the data tables resulting
from low counts in any particular bin. As the number of bins increases, the likelihood
of some bins having unusably low counts, and therefore skewed energy values, increases.
Typically, when developing a 1-D or 2-D KBP, we manually inspect the KBP table to look
for unwanted artifacts. These artifacts typically manifest themselves as sharp discontinu-
ities in the KBP, and can be corrected via smoothing. The difficulty with the 3-D KBP
described here is two-fold. First, a 3-D KBP is extremely difficult to effectively visualize,
second, it is not immediately apparent what the KBP should look like. These two factors
make the manual inspection component of the KBP development process extraordinarily
difficult. Additionally, the number of bins present in the KBP increases with the power
of the number of dimensions. Thus, reducing the KBP from 3-D to 2-D will drastically
reduce the total number of bins, increasing the number of samples per bin and hopefully
reducing the number of artifacts. When developing the 2-D KBP, a decision must be made
as to how to compute the angular component of the potential. Potentials computed using
both the Query-CB-Ca angle and the Ha-Ca-Cy-Query dihedral could be computed and
benchmarked, and the best performing potential would be selected. The Query-Cf distance
is still likely the best choice for the distance potential.

The methods described and analyzed in this chapter provides a promising starting point
for a wide range of further study. Qualitative and quantitative study of the RosettalLigand
protocols evaluated suggest that the failure cases of Rosettaligand are a combination of
limitations in both sampling and scoring. To address the sampling limitations, more so-

phisticated methods of sampling can be employed in both initial placement and refinement.
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While the Monte Carlo methods used in the initial placement and refinement stages of
Rosettaligand are relatively effective, the analysis performed in this chapter indicates that
the currently implemented sampling methods are not able to adequately sample the binding
site in all cases. The RosettalLigand initial placement system described in this dissertation
has been designed to fully separate the implementation of the sampling algorithm and scor-
ing function. As a result, it should be feasible to implement and evaluate a wide range
of sampling functions, including genetic algorithms, Fast Fourier Transform, and Particle
Swarm Optimization.

In addition to the evaluation of more sophisticated sampling methods, the bounds of the
currently implemented sampling algorithms should be more thoroughly investigated. As
the goal in this study was to assess the ability of RosettalLigand to rapidly dock ligands for
screening applications, sampling was limited to a relatively small number of models (less
than 1,000). In order to fully assess the capabilities of the existing sampling algorithm,
the experiments should be repeated with tens or hundreds of thousands of models. While
time consuming, these experiments may provide additional insight into the full abilities and
limitations of the existing system, which can be used to guide future experiments.

In the analysis of individual success and failure techniques described in this chapter,
there were numerous cases in which substantially different binding poses had relatively
similar RosettalLigand scores after refinement. This suggests a complex energy landscape
with numerous minima. Because the RosettalLigand energy function is largely knowledge
based, it is difficult to directly assign the cause of any single scoring decision. However,
with sufficient sampling, it should be possible to “map” the energy surface. Given a set
of high resolution protein-ligand structures, a large amount of small perturbation sampling
and scoring could be performed, and the impact of these small conformational changes
statistically analyzed as a function of the protein and ligand conformations at the binding
pocket. By performing this analysis, it may be possible to identify systematic failures

in various components of the scoring function. If so, this analysis could be valuable in
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identifying specific areas of improvement in the Rosettal.igand refinement energy function.
A similar study was performed in the context of Rosetta protein design in 2013 (Leaver-
Fay et al., 2013) and was valuable in providing an analytical basis for improvement of the

energy function.
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Appendix D

Protocol capture for Chapter 11

D.1 Introduction

This chapter describes the weight optimization, benchmarking and analysis performed in
the work detailed in Chapter II. Note that the protocol described here was originally per-
formed using Rosetta SVN revision 39040. In the time since the work described in Chapter
IT was performed, the OptE application used here has been drastically rewritten. As a re-
sult, this procedure should not be expected to function correctly (or at all!) when using

Rosetta revisions after 39040.

D.2 Protocol

D.2.1 Weight Optimization

D.2.1.1 Overview

This protocol performs a five way cross validation optimization of the neighbor vector score
function using the rosetta optE_parallel application. In this setup, 20 rounds of optimiza-
tion are performed, and the reference energies, fa_sol and neigh_vect scoring function are
allowed to freely optimize. The weights are optimized both to maximize PSSM score and

to maintain the overall native sequence composition.

D.2.1.2 Preparing input structures

Prior to running OptE, all input crystal structures should be cleaned and relaxed. To clean
the input structures, remove all PDB lines other than ATOM records. Relaxation is per-
formed using the Rosetta relax application, and the sequence relax protocol. This protocol

can be executed as follows:
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relax.default.linuxgccrelease \
—database minirosetta_database/ \
-1 input.list -relax:sequence -exl —-ex2 —-exlaro

Where input.list contains a list of paths to the input PDB files. Relaxed files using this

method have been provided in Optimization/input_files/input_pdbs/

D.2.1.3 Generating PSSM files

PSSM files must additionally be generated for each PDB file prepared in Section D.2.1.2.
To generate PSSM files, first use the provided script, getFastaFromCoords.pl to
create a fasta file based on the relaxed crystal structure. getFastaFromCoords.py is

run as follows:

getFastaFromCoords.pl -pdbfile input.pdb > input.pdb.fasta

The resulting fasta file will then be used as input to BLAST to create a PSSM file. As
the BLAST webserver does not provide PSSM files as output in the proper format, the

BLAST application will be used, and is executed as follows:

runblast input.pdb.fasta

The resulting file will produce, among other things, a PSSM file with the file extension
.ascii. This .ascii file will be converted to the format required by Rosetta using the provided
script convertpssm.py. The Rosetta expects that the PSSM information be provided
as a text file, in which each line of the text file contains the one letter code of a native
amino acid, followed by the percentage of observed mutations seen by blast, ordered in
alphabetical order by one letter code, and separated by spaces. This file can be produced

using the PSSM generated by blast by running the convertpssm. py script:

convertpssm.py —1 input.pdb.ascii -o input.fasta.probs
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Note that OptE requires that the file produced by convertpssm.py begin with with the
name of the original pdb file, and end with the suffix .ascii.probs. Additionally, this file
must be present in the same directory as the input PDB file. Thus, a PDB file called
“input.pdb” should have a PSSM file of the same name titled input.fasta.probs. These

files are provided in the Optimization/input_files/input_pdbs directory.

D.2.1.4 Running OptE

Three sets of optimization were performed using OptE: the optimization of the NV en-
vironment KBP, optimization of the reference energies only, and optimization of the ref-
erence energies of the final averaged NV environment KBP energy function. The com-
mand files for each optimization are designated by their suffix, and are located in the
Optimization/input_files directory. “kbp” for files relating to the NV environ-
ment KBP optimization, “ref” for files relating to reference energy optimization, and “avg”
for files relating to optimization of the averaged energy function.

In this case, a template Portable Batch System (PBS) file was used, and variables were
passed in to this PBS file to start each section of the five way cross validation. The tem-
plate file is located in input_files/optimization_x.pbs, and the submission
commands are located in input_files/submit_commands_x.txt.

See input_files/flags_x.txt for the options and comments describing what

these options do for each of the 3 optimization experiments performed.

D.2.2 Weight validation and analysis

D.2.2.1 Benchmarking of optimized weights

The weight sets optimized in Section D.2.1 were benchmarked using the Rosetta fixbb ap-
plication. Fixbb conducts fixed backbone design over the entire protein, using the specified
weight set. An example command line and flags files can be found in the
Benchmark/input_files directory. Fixed backbone design was performed on all

proteins in both the 100 and 42 protein benchmark sets described in Chapter D.2.1.2.
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D.2.2.2 Analysis of benchmarking data

After the benchmarking designs were performed, the computation of sequence recovery
and PSSM recovery was carried out using the script
design_benchmark_protocol.py, which is provided in the
Benchmark/input_files directory. This script takes as input a list of paths to native
protein structures, and a list of paths to designed protein structures, and outputs a set of
Comma Separated Value (CSV) files containing the statistics reported in Chapter II. The

script should be run as:

design_benchmark_protocol.py —-prefix prefix_file \
native_list.txt designed_list.txt
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Appendix E

Protocol capture for Chapter I11

E.1 Introduction

This chapter describes the details of the protocol which was described in Chapter III.

E.2 Protocol

E.2.1 Conformer Generation

Conformers can be generated with a number of tools, including MOE and OMEGA. In
this case, the Conformer Generation tool included as part of the BCL suite was used. The

following command was used to generate conformers:

bcl.exe molecule:ConformerGeneration —-conformers \
pdb_refinedsupplemented_lib.sdf.bz2 —-ensemble \
rosetta_inputs/ligands/all_ligands.sdf \
-conformation_comparer DihedralBins \

-temperature 1.0 —-max_iterations 1000 \
—top_models 100 -bin_size 30.0

-scheduler PThread 8 \

—add_h -conformers_single_file conformers

You can use any conformer generation tool you have available to you for this step. Your
generated conformers should be output to a single SDF file. Every conformer must have
3D coordinates and hydrogens added. Conformers of the same ligand should have the
same name in the SDF file. For convenience, an example conformer file is provided at

rosetta_inputs/ligands/all_ligands.sdf.

E.2.2 Params file generation
Params files contain the parameterization information for a ligand. Every ligand or Residue

in a protein structure input into Rosetta must have a corresponding params file. Rosetta is
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distributed with a script called molfile_to_params.py which generates these files.
However, this script is generally cumbersome for the generation of more than a small hand-
ful of ligands. The protocol below is designed for the preparation of large numbers of
ligands.

All the scripts needed for this process are in the tools directory in the Rosetta distribu-
tion. Each of the scripts below would normally be preceded by Rosetta/tools/hts_tools, but

this directory prefix has been omitted for brevity.

1. Split ligand files

The conformers for all ligands are initially stored in a single SDF file, but
molfile_to_params.py expects one SDF file per ligand.
sdf_split_organize.py accomplishes this task. It takes as input a single SDF
file, and will split that file into multiple files, each file containing all the conformers
for one ligand. Different ligands must have different names in the SDF records, and
all conformers for one ligand must have the same name. Output filenames are based
on the SHAT hash of the input filename, and are placed in a directory hashed struc-
ture. Thus, a ligand with the name “Written by BCL::WriteToMDL,CHEMBL29197”
will be placed in the path

/41/412d1d7511f3d83acf0734a2c870faaa77c28c6ec.mol.

The script will also output a list file in the following format:
ligand_id, filename

string, string

ligand_1,path/to/ligandl
ligand_2,path/to/ligand2

The list file is a mapping of protein names to SDF file paths.

Many filesystems perform poorly if large numbers of files are stored in the same di-

rectory. The hashed directory structure is a method for splitting the generated ligand
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files across 256 roughly evenly sized subdirectories, improving filesystem perfor-

mance.

The script is run as follows:

sdf_split_organize.py \
rosetta_inputs/ligands/conformers.sdf \

split_conformers/ ligand_names.csv

Be sure the split_conformers/ directory exists before running the script. Examples of
the output of this script are in example_outputs/ligand_prep/
2. Create Projet Database

The ligand preparation pipeline uses an SQLite3 database for organization during
the pipeline. The database keeps track of ligand metadata and the locations of ligand

files. The project database is created using the following command:

setup_screening_project.py ligand_names.csv ligand_db.db3

An example of the project database is in example_outputs/ligand_prep

3. Append binding information to project database

The next step is to create a binding data file. The binding data file should be in the

following format:

ligand_id, tag,value
string, string, float
ligand_1,foo0,1.5

ligand_2,bar,-3.7

The columns are defined as follows:
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* ligand_id — ligand_id is the name of the ligand, which must match the lig-
and_idinthe file_list.csvfilecreatedby sdf_split_organize.py.

* tag — The name of the protein the ligand should be docked into. If a ligand
should be docked into multiple proteins, it should have multiple entries in the
binding data file. Note that this protocol makes a distinction between protein
name, and file name. If you have 4 protein files: foo_0001.pdb, foo_0002.pdb,
bar_0001.pdb, and bar_0002.pdb, then you have two proteins with the names
foo and bar. The scripts expect that the protein PDB files begin with the protein
name.

 value — The activity of the ligand. If you are doing a benchmarking study and
know the activity of your ligand, you should enter it here. If you are not doing
a benchmarking study, or if ligand activity is not relevant to your study, value
can be set to 1.0 (or anything else). This field is currently only used in a few
specific Rosetta protocols that are in the experimental stages, and is typically

ignored, so it is safe to set arbitrarily in almost every case.

An example input file is provided. you can insert it into the project database with the

following command:

add_activity_tags_to_database.py ligand_db.db3 \

rosetta_inputs/ligand_activities.csv

. Generate Params Files

The next step is to generate params files. make_params . py is a script which wraps
around molfile_to_params.py and generates params files in an automated
fashion. Params files will be given random names that do not conflict with exist-
ing Rosetta residue names (no ligands will be named ALA, for example). This script

routinely results in warnings frommolfile_to_params.py, these warnings are
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not cause for concern. Occasionally, molfile_to_params.py is unable to prop-
erly process an SDF file, if this happens, the ligand will be skipped. In order to run
make_params.py you need to specify the path to a copy of molfile_to_params.py,

as well as the path to the Rosetta database.

make_params.py should be run like this:

make_params.py —J 2 —-database Rosetta/main/database \
—-—path_to_params \

Rosetta/main/source/src/python\
/apps/public/molfile_to_params.py \

ligand_db.db3 params/

In the command line above, the -7 option indicates the number of CPU cores which
should be used when generating params files. If you are using a multiple core ma-
chine, setting —7j equal to the number of available CPU cores. Be sure that the

params/ directory exists before running the script.

The script will create a directory params/ containing all params files, PDB files

and conformer files.

An example of the output params/ directory is found in
example_outputs/ligand_prep

. Create job files

Because of the memory usage limitations of Rosetta, it is necessary to split the screen
up into multiple jobs. The optimal size of each job will depend on the following

factors:

* The amount of memory available per CPU

* The number of CPUs being used
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* The number of atoms in each ligand
* The number of conformers of each ligand

* The number of protein residues involved in the binding site.

Because of the number of factors that affect RosettalLigand memory usage, it is usu-
ally necessary to determine the optimal job size manually. Jobs should be small

enough to fit into available memory.

To make this process easier, the make_evenly_grouped_jobs.py script will
attempt to group your protein-ligand docking problem into a set of jobs that are sized

as evenly possible. The script is run like this:

make_evenly_grouped_jobs.py —-—-create_native_commands \
rosetta_inputs/proteins —--n_chunks 1 \
——max_per_Jjob 1000 \

params rosetta_inputs/proteins job

If the script was run as written above, it would use param files from the directory
param_dir/, and structure files from the directory st ructure_dir/. It would
attempt to split the available protein-ligand docking jobs into 10 evenly grouped job
files (-n_chunks). The script will attempt to keep all the docking jobs involving
one protein system in one job file. However, if the number of jobs in a group ex-
ceeds 1000, the jobs involving that protein system will be split across multiple files
(-max_per_job). The script will output the 10 job files with the given prefix, so in
the command above, you would get files with names like “output_prefix_01.js”. The
script will output to the screen the total number of jobs in each file. All the numbers
should be relatively similar. If a job file at the beginning of the list is much larger than
the others, it is a sign that you should reduce the value passed to -max_per_ job.

If the sizes of all jobs are larger than you want, increase —n_chunks.
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Additionally, the script will take the default ligand positions from the ligand PDB
files, and the protein files from the rosetta_inputs/proteins directory, and
designate these as the “native” pose of the protein-ligand complex. This feature
will allow Rosetta to compute ligand RMSDs automatically, and was used in the

benchmarking studies described in the manuscript.

An example job file produced using this script is found in

example_outputs/ligand_prep

E.2.3 Docking

After following the procedure above to prepare your ligands, you are ready to dock the
ligands. The screening job file produced in the previous step contains the paths to the input
proteins and ligands and the paths to the necessary params files. In this example, the ligand
pdbs are already positioned in the ligand binding site.

Rosettaligand protocols are built in the RosettaScripts framework, a modular architec-
ture for creating Rosettaligand protocols. The rosetta_inputs/xml directory con-
tains all of the rosetta protocols were tested in the manuscript, and any of these XML files
can be used with the docking commands described below. See the comments in the XML
files for details on the usage and operation of the scripts.

The Rosetta ligand docking command should be run as follows:

rosetta_scripts.default.linuxgccrelease \
@rosetta_inputs/flags.txt \
—in:file:screening_job_file rosetta_inputs/Jjob_01.7Js \
—-parser:protocol rosetta_inputs/tr_repack.xml \

-out:file:silent results.out

rosetta_inputs/flags.txt contains flags that are always the same regardless

of the input file.
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This command will dock every protein-ligand binding pair and place the output in the
specified silent file. In the benchmarking case described in Chapter III, 2000 models were
made for each protein-ligand binding pair. However, in a practical application 200 models

would be appropriate.

E.3 Analysis
E.3.1 Practical analysis
If this protocol is being used for an application project in which the correct ligand binding
position is not known, the lowest scoring model for each protein-ligand binding pair should
be selected. From that point, we recommend filtering by protein-ligand interface score
(interface_delta_X), as well as the packstat score (Sheffler and Baker, 2009) which can be
computed through the Interface Analyzer mover. The cutoffs for these filtering steps should
depend on the range of scores present, and the number of compounds it is possible to test.
After filtering, the selected compounds should be visually inspected. If a crystal struc-
ture exists with a known binding pose, the predicted binding poses of the unknown com-
pounds should be compared. Additionally, the overall binding poses of the filtered com-
pounds should be inspected to assess whether or not they make chemical sense. While
this is a qualitative process, human intuition has proven a valuable aid in the drug design

process. (Voet et al., 2014)

E.3.2 Benchmarking analysis

Statistical analysis of the benchmarking study provided in this paper was performed using
Python. analysis.ipynb is an iPython Notebook (http://ipython.org/notebook.html) contain-
ing the code necessary to reproduce these figures, as well as comments and description of

that code. See the iPython documentation for installation and usage instructions.
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Appendix F

Protocol capture for Chapter IV

F.1 Introduction

This chapter describes the details of the protocol which was described in Chapter I'V.

F.2 Protocol

F.2.1 Training data preparation

The PDBBind refined dataset was obtained from http://www.pdbbind.org.cn/. for each
protein in the refined dataset, 3 protein crystal structure files are provided. The “complex”
file contains the protein in complex with the ligand, the “pocket” file contains only protein
atoms within 10 A of the binding pocket, and the “protein” file contains the entire protein,
but no ligand. For the purposes of docking in Rosetta, the “protein” files will be used for

our protein input.

F.2.1.1 protein structure preparation
For the purposes of this protocol, the only protein structure preparation required is the ad-
dition of hydrogen atoms, which can be performed using the Rosetta score_jd2 application.

A list of the protein structure PDBs is generated with the following command:

ls -1 v2013-refined/*/*protein.pdb > input_files.txt

Hydrogens can then be added with:

score_jd2.default.linuxgccrelease —-s input_files.txt -out:pdb
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F.2.1.2 ligand structure preparation
PDBBind provides SDF files for each input ligand. The provided SDF files are in the
crystallographic conformation, and already have 3D coordinates and hydrogens present.

Params files are produced by concatenating the SDF files using the command:

cat v2013-refined/*/+ligand.sdf > crystal_ligands.sdf

The resulting crystal_ligands.sdf file is then used to prepare conformers and param files.

Conformers are generated using the unpublished BCL::ConformerGeneration command:

bcl.exe molecule:ConformerGeneration -conformers \
pdb_refinedsupplemented_lib.sdf.bz2 —-ensemble \
crystal_ligands.sdf —-conformation_comparer \
DihedralBins -temperature 1.0 -max_iterations 1000 \
—top_models 100 -bin_size 30.0 —-scheduler PThread 8 \
—add_h -conformers_single_file conformers

After conformers are generated, params files and rosetta screening job files are produced
using the protocol described in Chapter A. This protocol will generate screening job files
for the active ligands. To generate files used for cross-docking, the

make_evenly_grouped_Jjobs.py script should be re-run with the addition of the
flag —inactive_cross_dock, which will result in the creation of a second set of

screening job files which will dock every ligand into every protein except the native protein.

F.2.2 Training data docking

F.2.2.1 Docking script

The Rosettal.igand docking protocol used in this protocol is reported in detail in Chapter
II. As Rosettaligand is implemented through the RosettaScripts system, the following

XML script implements the protocol:
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<ROSETTASCRIPTS>
<SCOREFXNS>

<ligand_soft_rep weights="ligand_soft_rep">
<Reweight scoretype="fa_elec" weight="0.42"/>
<Reweight scoretype="hbond_bb_sc" weight="1.3"/>
<Reweight scoretype="hbond_sc" weight="1.3"/>
<Reweight scoretype="rama" weight="0.2"/>

</ligand_soft_rep>

<hard_rep weights=ligand>
<Reweight scoretype="fa_intra_rep" weight="0.004"/>
<Reweight scoretype="fa_elec" weight="0.42"/>
<Reweight scoretype="hbond_bb_sc" weight="1.3"/>
<Rewelght scoretype="hbond_sc" weight="1.3"/>
<Reweight scoretype="rama" weight="0.2"/>
</hard_rep>
</SCOREFXNS>
<LIGAND_AREAS>
<docking_sidechain chain="X" cutoff="6.0"
add_nbr_radius="true" all_atom mode="true"
minimize_ligand="10"/>
<final_sidechain chain="X" cutoff="6.0"
add_nbr_ radius="true" all atom mode="true"/>
<final_ backbone chain="X" cutoff="7.0"
add_nbr_radius="false" all_atom_mode="true"
Calpha_restraints="0.3"/>
</LIGAND_AREAS>

<INTERFACE_BUILDERS>
<side_chain_for_docking
ligand_areas="docking_sidechain"/>
<side_chain_for_final
ligand_areas="final_sidechain"/>
<backbone ligand_areas="final_lackbone"
extension_window="3"/>
</INTERFACE_BUILDERS>

<MOVEMAP_BUILDERS>
<docking sc_interface="side_chain_for_docking"
minimize_water="true"/>
<final sc_interface="side_chain_for final"
bb_interface="backbone" minimize water="true"/>
</MOVEMAP_ BUILDERS>

<SCORINGGRIDS ligand_chain="X" width="15">
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<vdw grid_type="ClassicGrid" weight="1.0"/>
</SCORINGGRIDS>

<MOVERS>

<Transform name="transform" chain="X"
box_size="5.0" move_distance="0.1"
angle="5" cycles="500" repeats="1"
temperature="5" initial_perturb="5.0"/>

<HighResDocker name="high_res_docker"
cycles="1" repack_every Nth="1"
scorefxn="1ligand_soft_rep"
movemap_builder="docking"/>

<FinalMinimizer name="final"
scorefxn="hard_rep"
movemap_builder="final"/>

<InterfaceScoreCalculator name="add_scores"
chains="X" scorefxn="hard_rep"
compute_grid_scores="0"/>

<AddJobPairData name="system_name"
key="system_name"
value_type="string"
value_from_ligand_chain="X" />

<AddJobPairData name="log_ki"
key="log_ki" value_type="real"
value_from_ligand_chain="X" />

<ParsedProtocol name="low_res_dock">
<Add mover_name="transform"/>
</ParsedProtocol>

<ParsedProtocol name="high_res_dock">
<Add mover_name="high_res_docker"/>
<Add mover_name="final"/>
</ParsedProtocol>

<ParsedProtocol name="reporting">
<Add mover_name="add_scores"/>
<Add mover_name="system_name" />
<Add mover_name="log_ki"/>
</ParsedProtocol>
</MOVERS>

<PROTOCOLS>

<Add mover_name="low_res_dock"/>
<Add mover_name="high_res_dock"/>
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<Add mover_name="reporting"/>
</PROTOCOLS>

</ROSETTASCRIPTS>

The XML script above is used for docking the native ligands into the associated proteins.

The script for cross-docking is nearly identical, with this mover:

<AddJobPairData name="log_ki"
key="1log_ki" value_type="real"
value_from_ligand_chain="X" />

Replaced by this mover:

<AddJobPairData name="log_ki"
key="1log_ki" value_type="real"
value="0.0" />

This change will cause the stored log(K;) value for each ligand to be 0.0 rather than the

experimental value stored in the params files for the native ligands.

F.2.2.2 Docking command
The full cross-docked training dataset requires the generation of an extremely large number
of models. For each protein-ligand complex, 200 models will be generated. Since the
training dataset contains 507 proteins and 507 ligands, a total of 50,000,000 models must
be calculated, the storage of which would require an unreasonable amount of disk space.
Because only the lowest scoring model for each protein-ligand complex is required, the
structures will be stored in a MySQL database, and a database filter will be used to ensure
that only the lowest scoring models are stored.

In addition to the normal command line options used in ligand docking, an additional

set of MySQL related flags are required:
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—inout
—dbms
-mode mysgl
—host <host>
—-port <port>
—user <username>
-password <password>

Here, <host>, <port>, <username>, and <password> should be replaced with the
address of MySQL server, the port it runs on, and a valid mysql username and password.

The following flags control the ligand docking process itself:

—packing:ignore_ligand_chi true

-ex1

-ex2

—-gsar

-max_grid_cache_size 1
-restore_pre_talaris_2013_behavior true
-nstruct 200

—out

—use_database

—database_filter TopCountOfEachInput interface_delta X 1
—inout

—dbms

—use_compact_residue_schema
—database_name <db_name>

Here, <db_name> should be replaced with the name of an existing schema in the MySQL
server. The ~database_filter option instructs Rosetta to only output models that are
better than any existing model for that protein-ligand pair to the database server.

The RosettalLigand processes can be executed as follows:

rosetta_scripts.mpimysgl.linuxgccrelease (@flags.txt \
—in:file:screening_job_file <job_file> -parser:protocol <xml>

Where <job_file> isthe path to a screening job file, and <xm1 > is the XML script used

for docking.
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F.2.3 Training data descriptor generation
Once the ligand docking process is complete, descriptors and SDF files for each of the

generated ligand poses need to be produced.

F.2.3.1 Rosetta descriptors

The Rosetta descriptors are generated using RosettaScripts. Specifically, the RDF finger-
print functions are generated using the ComputeLigandRDF mover, the interface score de-
scriptors are generated with the InterfaceScoreCalculator mover, and the interface quality
descriptors are generated with the InterfaceAnalyzerMover mover. After the features are
computed, they are output along with an SDF file containing the ligand poses using the
WriteLigandMolFile mover. WriteLigandMolFile will produce once file per CPU core that

RosettaScripts is run on. The following XML file is used for descriptor computation:

<ROSETTASCRIPTS>
<SCOREFXNS>

<ligand_soft_rep weights="ligand_soft_rep">
<Reweight scoretype="fa_elec" weight="0.42"/>
<Reweight scoretype="hbond_bb_sc" weight="1.3"/>
<Reweight scoretype="hbond_sc" weight="1.3"/>
<Rewelght scoretype="rama" weight="0.2"/>

</ligand_soft_rep>

<hard_rep weights="ligand">
<Reweight scoretype="fa_intra_rep" weight="0.004"/>
<Reweight scoretype="fa_elec" weight="0.42"/>
<Reweight scoretype="hbond_bb_sc" weight="1.3"/>
<Reweight scoretype="hbond_sc" weight="1.3"/>
<Reweight scoretype="rama" weight="0.2"/>
</hard_rep>

</SCOREFXNS>
<LIGAND_AREAS>
<docking_sidechain chain="X" cutoff="6.0"
add_nbr_ radius="true" all_atom_mode="true"
minimize_ligand="10"/>
<final_sidechain chain="X" cutoff="6.0"
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add_nbr_ radius="true" all atom mode="true"/>
<final backbone chain="X" cutoff="7.0"
add_nbr_radius="false" all_atom _mode="true"
Calpha_restraints="0.3"/>
</LIGAND_ AREAS>

<INTERFACE_BUILDERS>
<side_chain_for_docking
ligand_areas="docking_sidechain"/>
<side_chain_for_final
ligand_areas="final_sidechain"/>
<backbone ligand_areas="final_backbone"
extension_window="3"/>
</INTERFACE_BUILDERS>

<MOVEMAP_BUILDERS>
<docking sc_interface="side_chain_for_ docking"
minimize water="true"/>
<final sc_interface="side_chain_for final"
bb_interface="backbone" minimize_water="true"/>
</MOVEMAP_ BUILDERS>

<MOVERS>
<ComputelLigandRDF name="rdf_compute_pocket"

ligand_chain="X" mode="pocket" range="6"

bin_count="24">

<RDF name="RDFEtableFunction"
scorefxn="hard_rep"/>

<RDF name="RDFElecFunction"
scorefxn="hard_rep"/>

<RDF name="RDFChargeFunction"
sign_mode="ligand_plus" />

<RDF name="RDFChargeFunction"
sign_mode="1ligand_minus" />

<RDF name="RDFChargeFunction"
sign_mode="same_sign" />

<RDF name="RDFHbondFunction"
sign_mode="1ligand_acceptor"/>

<RDF name="RDFHbondFunction"
sign_mode="ligand_donor"/>

<RDF name="RDFBinaryHbondFunction"
sign_mode="1ligand_acceptor"/>

<RDF name="RDFBinaryHbondFunction"
sign_mode="1ligand_donor"/>

<RDF name="RDFBinaryHbondFunction"
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sign_mode="matching_pair"/>

</ComputeLigandRDF>
<ComputelLigandRDF name="rdf_compute_interface"
ligand_chain="X" mode="interface" range="6"
bin_count="24">
<RDF name="RDFEtableFunction"
scorefxn="hard_rep"/>
<RDF name="RDFElecFunction"
scorefxn="hard_rep"/>
<RDF name="RDFChargeFunction"
sign_mode="ligand_plus" />
<RDF name="RDFChargeFunction"
sign_mode="ligand_minus" />
<RDF name="RDFChargeFunction"
sign_mode="same_sign" />
<RDF name="RDFHbondFunction"
sign_mode="1ligand_acceptor"/>
<RDF name="RDFHbondFunction"
sign_mode="1ligand_donor"/>
<RDF name="RDFBinaryHbondFunction"
sign_mode="1ligand_acceptor"/>
<RDF name="RDFBinaryHbondFunction"
sign_mode="ligand_donor"/>
<RDF name="RDFBinaryHbondFunction"
sign_mode="matching_pair"/>
</ComputeLigandRDF>

<InterfaceAnalyzerMover name="interface_analyzer"
scorefxn="hard_rep" packstat="true"
pack_separated="true" ligandchain="X"/>

<InterfaceScoreCalculator name="add_scores"
chains="X" scorefxn="hard_rep"/>

<AddJobPairData name="system_name" key="system_ name"
value_type="string" value_from_ ligand_chain="X" />

<AddJobPairData name="log_ki" key="log_ki"
value_type="real" value_from_ligand_chain="X" />

<WritelLigandMolFile name="write_ligand" chain="X"
directory="output_ligands" prefix="$$PREFIX%%"/>

<ParsedProtocol name="reporting">

<Add mover_name="rdf_compute_pocket"/>
<Add mover_name="rdf_ compute_interface"/>
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<Add mover_name="interface_analyzer"/>
<Add mover_name="add_scores"/>
<Add mover_name="system_name" />
<Add mover_name="log_ki"/>
</ParsedProtocol>
</MOVERS>

<PROTOCOLS>
<Add mover_name="reporting"/>
<Add mover_name="write_ligand"/>
</PROTOCOLS>

</ROSETTASCRIPTS>

This script will be applied to all of the structures produced by the docking step described

in Section F.2.2.2. The command line used to run the script is as follows:

rosetta_scripts.mpimysqgl.linuxgccrelease @flags.txt \
—out:path:pdb <pdb_dir> —-inout:dbms:database_name <db_name> \
—-in:use_database -parser:protocol <xml> \

-script_vars PREFIX=<prefix> \

-in:file:extra_res_batch_path <params> -out:pdb_gz \
-restore_pre_talaris_2013_behavior true \
-packing:ignore_ligand_chi true \

—inout :dbms:use_compact_residue_schema \
—inout:dbms:retry_failed reads true

Where flags.txt contains the database authentication flags described in Section F.2.2.2.

<prefix> should be replaced with the desired prefix for the output SDF files.

F.2.3.2 BCL descriptors

Once the descriptors and SDF files have been generated using Rosetta, a BCL binary dataset
can be constructed. This dataset files contain all the descriptor information for each ligand
pose used in training. Rosetta derived descriptors are read out of the miscellaneous proper-
ties of the SDF files output by Rosetta, while the ligand descriptors are produced directly

by the BCL. The features which will be used for the input and output of the network are
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described using object files. The output object file is very simple, as it contains only the

log(K;) value stored in the SDF files output by Rosetta:

Combine (
MiscProperty (log_ki,values per molecule=1)

The input object contains all the features that may be used as input to the neural networks:

Combine (
MiscProperty (solv_interface_rdf,values per molecule=24),
MiscProperty (solv_pocket_rdf,values per molecule=24),
MiscProperty (rep_interface_rdf,values per molecule=24),
MiscProperty (rep_pocket_rdf,values per molecule=24),
MiscProperty (hbond_acceptor_interface_rdf,
values per molecule=24),
MiscProperty (hbond_acceptor_pocket_rdf,
values per molecule=24),
MiscProperty (hbond_binary_acceptor_interface_rdf,
values per molecule=24),
MiscProperty (hbond_binary_acceptor_pocket_rdf,
values per molecule=24),
MiscProperty (hbond_binary_donor_interface_rdf,
values per molecule=24),
MiscProperty (hbond_binary_donor_pocket_rdf,
values per molecule=24),
MiscProperty (hbond_donor_interface_rdf,
values per molecule=24),
MiscProperty (hbond_donor_pocket_rdf,
values per molecule=24),
MiscProperty (hbond_matching pair_interface_rdf,
values per molecule=24),
MiscProperty (hbond _matching_ pair_pocket_rdf,
values per molecule=24),
MiscProperty(elec_interface_rdf,
values per molecule=24),
MiscProperty (elec_pocket_rdf,
values per molecule=24),
MiscProperty (charge_minus_interface_rdf,
values per molecule=24),
MiscProperty (charge_minus_pocket_rdf,
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values per molecule=24),
MiscProperty (charge_plus_interface_rdf,

values per molecule=24),
MiscProperty (charge_plus_pocket_rdf,

values per molecule=24),
MiscProperty (charge_unsigned_interface_rdf,

values per molecule=24),
MiscProperty (charge_unsigned_pocket_rdf,

values per molecule=24),
MiscProperty (dSASA_hphobic,values per molecule=1),
MiscProperty (dSASA_int,values per molecule=1l),
MiscProperty (dSASA_polar,values per molecule=1),
MiscProperty (delta_unsatHbonds,values per molecule=1l),
MiscProperty (hbond_FE_fraction,values per molecule=1),
MiscProperty (hbond_1lr_bb,values per molecule=1),
MiscProperty (hbond_ sc,values per molecule=1l),
MiscProperty (hbond_sr_bb,values per molecule=1),
MiscProperty (if_X_fa_atr,values per molecule=1),
MiscProperty (if_X_ fa_elec,values per molecule=1),
MiscProperty (if_X_fa_intra_rep,values per molecule=1),
MiscProperty (if_X_ fa pair,values per molecule=1),
MiscProperty (1f_X_ fa_rep,values per molecule=1),
MiscProperty (1if_X_fa_sol,values per molecule=1),
MiscProperty (if_X_hbond_bb_sc,values per molecule=1l),
MiscProperty (if_X_hbond_lr_bb,values per molecule=1),
MiscProperty (if_X_ hbond_sc,values per molecule=1l),
MiscProperty (1if_X_hbond_sr_bb,values per molecule=1l),
MiscProperty (interface_delta_X,values per molecule=1),
MiscProperty (nres_int,values per molecule=1l),
MiscProperty (packstat,values per molecule=1),
Divide (

lhs=MiscProperty (total_score,values per molecule=1),

rhs=MiscProperty (nres_all,values per molecule=1)
) 4
Weight,
HbondDonor,
HbondAcceptor,
LogP,
TotalCharge,
NRotBond,
NAromaticRings,
NRings,
TopologicalPolarSurfaceArea,
Girth
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The input and output object files and the SDF files produced by Rosetta are provided
to the BCL descriptor::GenerateDataset application, which produces the binary dataset file

needed for neural network training:

bcl.exe descriptor:GenerateDataset —-source \
"Randomize (SdfFile (filename="output_ligands.sdf"))’ \
—feature_labels input.obj \

-result_labels output.obj \

—output dataset.bin

This command will produce the file dataset.bin containing all necessary descriptor data.

F.2.4 Neural network training
The BCL is also used for neural network training. The DVD attached to the thesis contains
the specific configuration file used for training (config.ini). The following network and

training architecture was used:

NeuralNetwork ( transfer function = Sigmoid,
weight update = Simple(eta=0.1,alpha=0.5),
objective function = EnrichmentAverage (

cutoff=0.5,

enrichment max=0.01,

step size=0.00001,

parity=1),
steps per update=1,
hidden architecture (100,100),
iteration weight update=MaxNorm (in=10,out=1),
shuffle=True,data selector=Tolerant (tolerance=0.1),
dropout (0.125,0.5))

Here, the average enrichment over the first 1% of the dataset is used as an objective func-
tion. 2 layers of hidden neurons are used, with each layer containing 100 neurons. The
network dropout method (Hinton et al., 2012) is used to regularize the network and prevent

over-fitting. A 90 fold cross-validation is used, so the config. ini file will result in the

creation of 90 networks.
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The submit . py script is run from the directory containing the config. ini file as

follows:

submit.py -t cross_validation

This script will set up the cross-validation, and dispatch each of the 90 network training

processes to a cluster.

F.2.5 Neural network analysis

The submit . py script also performs a basic analysis of the trained networks. The average
enrichment across the entire cross-validation is computed, as are the TPR, FPR and PPV
plots which are used to assess the performance of the network. The results of this analysis

are output in the results/ directory produced by the submit . py script.

F.2.6 Benchmark data preparation

The DEKOIS 2.0 (Bauer et al., 2013) dataset was used for benchmarking purposes. The
ligand SDF files used for the dataset are obtained from http://www.dekois.com/, and the
associated protein files were obtained directly from the PDB. Cleaned and prepared data
are in the attached DVD, and were prepared and docked identically to the process described

in Section F.2.1

F.2.7 Benchmark data analysis

F.2.7.1 descriptor computation

Rather than using the SDF files of the DEKOIS 2.0 docked ligand poses to train a network,
we will score our dataset using an existing network. This process is performed using the
BCL molecule:Properties command. The cross-validation process used for network train-
ing produces an ensemble of 90 trained models, so the predicted activity is computed as
the average of the output of all 90 models. molecule:Properties is run with the following

command:

206



bcl.exe molecule:Properties —input_filenames \
input_ligands.sdf \
—add "Mean (
PredictedActivity (
storage=File (directory=<model_dir>,prefix=model)))’ \
—rename ’Mean (
PredictedActivity (
storage=File (directory=<model_dir>,prefix=model)))’ \
predicted_activity \
—-tabulate ’Cached(Name)’ ’Cached(system_name)’ \
"Cached(log_ki)’ ’Cached(predicted_activity)’ \
—output_table output.csv
Where <model_dir> is the path to a directory of trained neural network models, and

output . csv is the path to an output file.

F.2.7.2 ROC curve generation

The CSV files produced in the previous step contain all predicted and experimental activi-
ties for all ligands in the DEKOIS 2.0 set. For the purposes of this study, ROC curves will
be created individually for each system. The BCL application model:ComputeStatistics is
used to compute ROC plot and ROC-AUC values for a set of network predictions. This

application requires an input file in the following format:

bcl::1linal::Matrix<float>
1207 2

0.000000 0.123812
1.000000 0.123218

The first line is a header indicating that the data is a BCL matrix, the second line indicates
that the matrix has 1207 rows and 2 columns, and the remaining rows are the data values.
In this case, the first column should be the experimental values, and the second column
should be the predicted values. The second column should be sorted such that the best
predicted scores are first. To accomplish this task, the

make_bcl_inputs_for_plotting.py scriptis used. The script is run as follows:
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make_bcl_inputs_for_plotting.py \
——exp_label ’Cached(log_ki)’ \
——pred_label ’'Cached(predicted_activity)’ \
input_data.csv output_dir/

This script will create BCL matrix files for each protein system found in the dataset and
output these files to the specified directory output_dir/. The ROC-AUC values are
then computed using these output table files and the script collect_enrichment.py

This script is run as:

collect_enrichment.py output_dir/ tag

Where tag is a user specified tag. The script will output the protein system name, ROC-AUC
and the tag for each protein system to standard output. Additionally, it will produce data
files for each protein system in the output_dir directory, which can be used to graph

ROC curves.
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Appendix G

Predicting ligand binding poses in KRAS and RPA70

G.1 Introduction

KRAS and RPA70 are two proteins with potential value as targets in cancer research. This
appendix describes a molecular modeling project to identify predicted binding modes in a
set of small drug-like molecules previously identified through a ligand-based VHTS proto-

col.

G.1.1 KRAS Overview

KRAS is well studied oncogene, known to be activated in 17-25% of human tumors (Kra-
nenburg, 2005). KRAS is a self-inactivating GTPase which is active in its GTP bound
from, and inactive in the GDP bound form. Activation of KRAS drives a wide range of
downstream cell signaling processes involved in cell proliferation and metabolism (Eser
et al., 2014).

Since the 1970s, the RAS family of genes to which KRAS belongs has been exten-
sively studied and validated as a target for cancer treatment (Pylayeva-Gupta et al., 2011).
Despite a clear role as an oncogene in many cancers, it has historically been a difficult
target for small molecule drugs (Sun et al., 2014). GDP and GTP binding molecules are
typically difficult to selectively target at their primary binding sites due to the large number
of signaling proteins which natively bind GDP/GTP. In an attempt to address this issue, an
Structure Activity Relationship (SAR) by Nuclear Magnetic Resonance (NMR) study was
performed, which resulted in an allosteric binding site which was selectively targetable by
small drug-like molecules(Sun et al., 2012).

The experimental chemical data obtained from the 2012 SAR by NMR study was used
to create a ligand based QSAR model. This model was then used to provide a small set of

potential vHTS leads which are investigated using structure based methods in this study.
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G.1.2 RPA70 Overview

RPA70 is the 70S subunit of RPA, and is an ssDNA binding protein involved in cell cycle
regulation. Under normal circumstances, RPA activity is regulated by phosphorylation,
typically as a result of cellular DNA damage (Wold, 1997). Activating mutation of RPA70
is implicated in a number of cancers (Hass et al., 2010), and the inhibition of the RPA
complex is known to suppress tumor growth (Glanzer et al., 2014).

Although RPA70 is a highly validated target for cancer therapeutics, it has been his-
torically difficult to identify tightly binding compounds. Recently, engineering of the pro-
tein surface made it possible to obtain high resolution X-Ray crystal structures with co-
crystallized inhibitors (Feldkamp et al., 2013). These crystal structures were used as the

source of native binding pose data for the study described in this chapter.

G.2 Methods

At the time when this study was conducted, the RosettaHTS protocol described in previous
chapters was still under development. As a result, the docking study was performed using
the Rosettaligand protocol originally described in (Meiler and Baker, 2006). Identical
methods were used for preparing the small molecules and protein structures used in the

KRAS and RPA70 studies.

G.2.1 Small molecule preparation

Small molecules were initially obtained as 2D structures. A library of 3D conformations
was created using the LowModeMD (Labute, 2010) method implemented by the Molecular
Operating Environment (MOE) software package. The following settings were used during

LowModeMD conformer generation
* Rejection Limit — 100
* RMS Gradient — 0.005

¢ ITteration Limit — 10000
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¢ MM Iteration Limit — 500

¢ Enforce chair conformations — Yes

* RMSD Limit — 0.25

* Energy Window — 7

¢ Conformation Limit — 100

* Separate strain energy by stereo class — Yes

* Exclude fixed atoms from shape descriptors No

The actual number of conformers generated depends on the flexibility of the individual
ligands. The resulting conformer libraries were exported as concatenated PDB files suitable

for use as Rosetta single residue rotamer libraries.

G.2.2 Protein structure preparation

A set of X-Ray crystal structures of both KRAS and RPA70 was used as the source of
protein models for the docking study. In each case, the protein was co-crystallized with
a ligand having known binding activity. To produce an ensemble of low energy models,
each protein crystal structure was minimized in the absence of the ligand using the Rosetta
relax protocol. Twenty independent minimization trajectories were computed to produce

an ensemble of twenty protein structures.

G.2.3 Cross-docking to validate RosettalLigand performance
It is known from previous research that RosettalLigand is not capable of effectively pre-
dicting the binding affinity or binding pose of all protein systems (Davis et al., 2009). For

this reason, prior to carrying out a docking study, it is critical to determine whether Rosetta
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is capable of docking ligands into each protein system being studied. Because the avail-
able set of X-Ray crystal data consists entirely of co-crystals with relatively diverse docked
ligands, we can perform a cross-docking study to validate Rosettal.igand’s performance.
Two cross-docking studies were performed independently with RPA70 and KRAS. In
both cases, each ligand was docked into each of the relaxed protein models described in
Section G.2.2. 1000 ligand docking trajectories were computed for each protein model.

The following parameters were used for ligand docking:

* Translation distribution — Uniform

« Maximum Translation distance — 5.0 A
e Maximum Translation cycles — 50

* Rotation distribution — Uniform

* Maximum Rotation angle — 360°

* Maximum Rotation cycles — 500

* High resolution docking cycles — 6

* High resolution Repack every — 3rd cycle

This resulted in a set of 196,000 ligand binding predictions for the KRAS study and
95,000 binding predictions for the RPA70 study. By plotting the Score versus the RMSD
of each ligand, we can verify that Rosettal.igand can reliably position each ligand in the

active conformation with a low score.

G.2.4 Predicting binding modes of VHTS identified leads
After validation of RosettalLigands ability to handle the KRAS and RPA70 protein systems,
the same protocols used for the cross-docking studies described above were repeated to

dock the vHTS leads into the ensemble of relaxed protein models.
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A ligand-based vHTS study (unpublished) was performed by Will Lowe in the Meiler
lab. This study used a machine learning approach based on the approach described by
Mueller et al. (Mueller et al., 2012). The result of this study was a small set of compounds
with high levels of predicted activity for both KRAS and RPA70.

For both studies, three letter Ligand IDs were arbitrarily assigned to each ligand. These

three letter IDs will be used to reference the ligands through this chapter.

G.3 Results and Discussion

G.3.1 KRAS

G.3.1.1 Results of self and Cross-Docking validation

When each ligand from the set of protein-ligand co-crystal structures was docked into its
own respective protein model and score vs RMSD plots are generated, we see that in the
majority of cases, there are low scoring, low RMSD predicted binding poses with scores in
a similar range to the minimized structure (Figure G.1).

When the ligands are cross-docked, we also see the overall presence of low scoring, low
RMSD models (Figure G.2). However, we also see, in all cases, the presence of a second
distribution of binding poses, with an RMSD of roughly of 6.0 A to the native binding
position. The narrow band of the 2nd distribution suggests that it represents a distinct
binding pose.

Detailed inspection of low scoring members of the two binding poses confirms that
there is a second binding pose predicted by Rosettaligand. As the second pose was ob-
served in all cross-docked ligands, we use a single ligand (ID: 000), as an example in this
analysis. In the left hand panel of Figure G.3, we see the score vs. RMSD plot for lig-
and 000. We see here that the lowest scoring models in the 6 A RMSD distribution are
of a slightly lower score. As a result, we can compare the two distributions of poses by
comparing the lowest scoring models to the lowest RMSD models (right hand panel).

This comparison is striking, we see that there are indeed two distinct populations of lig-
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Figure G.1: Score vs RMSD plots for KRAS ligands self-docked into the relaxed models
of the proteins they were crystalized with. The 2D structures of the ligands are pictured
above and below each plot.
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of the entire KRAS protein set. The 2D structures of the ligands are pictured above and
below each plot.
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Figure G.3: A comparison of the two binding modes seen in the KRAS cross-docking
study. At left, the score vs. RMSD plot for the 000 ligand. At right, the lowest RMSD
models (in green), Best scoring models (blue), and crystallographic position, (orange).

ands, and furthermore that these two populations are mutually exclusive due to a rotamer
shift. Inspection of the two distributions indicates that the Y71 side-chain (rendered as
sticks in Figure G.3 changes positions to accommodate the ligand binding position repre-
sented by the 6 A RMSD distribution. This position change is seen consistently across the
range of RosettalLigand models, and results in the Y71 side-chain intersecting the native

binding position.

G.3.1.2 Analysis of vHTS lead predictions

The KRAS virtual screening leads described in Section were docked using the same pro-
tocol that was used for the validation studies described previously. Because the Rosetta
energy function varies with atom count, the scores of the models were normalized by the
number of atoms in each ligand so as to allow for a fair comparison between ligands. As
with the cross-docking study, each of the VHTS leads was observed in low energy poses
at both the crystallographic binding position and the secondary binding position described

above. Figure G.4 compares the normalized score of the lowest scoring model of each
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Figure G.4: A plot of the size normalized scores of the lowest scoring KRAS vHTS lead
compounds, relative to the distribution of scores for low RMSD ligands in the cross-
ndocking validation study. For each vHTS lead compound, The score of lowest scoring
ligand near the native binding site (“low_rmsd”, in blue), and at the secondary predicted
binding position described in Section G.3.1.1 (“near_indole”, in red)

VvHTS lead at both binding positions. These models are compared to the overall distribu-
tion of model scores in the cross-docking study.

We see from Figure G.4 that in general, all ligands have relatively low scoring poses at
both ligand positions. Three ligands stand out as having particularly low scores relative to
both the models in the cross-docking study and the overall set of VHTS leads. Specifically,
ligands with IDs OON, 00Q, and 010. These three ligands have poses with normalized
interface scores of < 1.0, while all other models in both the vHTS screen and the cross-
docking study have scores of > 0.8.

Two-Dimensional structures of these three lowest scoring ligands are pictured in Figure
G.5. Inspection of the 3D structures of the low scoring models for OON, 00Q, and 010
indicates that the predicted binding poses are structurally similar to the observed binding
poses known active compounds (Figure G.6).

While superficially, the predicted binding poses of these ligands appear plausible, the
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Figure G.5: Two dimensional structures of the three KRAS vHTS leads with normalized
scores below -1.0

Figure G.6: Representations of 00N, 00Q, and 010, the lowest scoring RPA70 vHTS leads.
In each case, the low scoring “low RMSD” and “near Indole” binding positions are plotted.
The natural crystallographic ligand positions are plotted in bright green.
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chemical properties of the ligands cast doubt on their usefulness as drug discovery leads,
and on the accuracy of the unusually low Rosetta interface scores. Specifically, all three of
the ligands have two bromine atoms. Since bromine is a large and relatively hydrophobic
atom, and since Van der Waals packing is a highly weighted component of the Rosetta
energy function, it is possible that the low normalized scores for these ligands is due to the
ease with which a large, spherical hydrophobic mass can be packed into the binding pocket.

Even if the energy function is producing accurately low scores for these three com-
pounds, the presence of multiple bromines presents a serious challenge to their usefulness
as lead compounds for drug development. The high molecular weight and greasy proper-
ties of bromine atoms makes optimization of these compounds challenging, and they would

probably be excluded from continuing drug development.

G.3.1.3 Comparison of Y71 side-chain shift predictions with new experimental data
At the time that the ligand binding study described above was performed in 2012, there
was no experimental evidence of the shift in the Y71 residue seen in Figure G.3 existing
in nature. More recently, in 2014, the Fesik lab published a series of crystal structures
investigating a second binding site distal from the original binding site described in this
study (Sun et al., 2014). As part of this study, five crystal structures' were prepared, with
optical resolutions ranging from 1.20-1.88 A. In four of the five published structures, an
indole-derived ligand was covalently bound to the cystine mutated protein at S39C. The
purpose of this covalently bound ligand is to occupy the first binding site so that binding of
ligands into the second binding site could be effectively studied. Figure G.7 illustrates the
relative position of the two binding positions.

Low scoring models for ligand ID 000 were compared to the new crystal structures pro-
duced by the 2014 Fesik lab study. A rendering of the superimposition of these structures
is shown in Figure G.8. In one of the five new crystal structures (PDB ID 4q01), the Y71

rotamer is found in the shifted position observed in the 6.0 A RMSD distribution described

'PDB IDs: 4q01, 4q02, 4q03, 4pzy, and 4pzz
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Figure G.7: Superimposition of PDBs 4q01, 4q02, 4q03, 4pzy, and 4pzz with two low
scoring RosettalLigand models. The GDP ligand co-crystallized at the second binding site
is highlighted in blue sticks. Two low scoring RosettalLigand models (Ligand ID 000), one
in each of the two predicted binding binding modes are highlighted in green sticks.

previously and illustrated in Figure G.3.

The experimental observation of the Y71 rotamer shift predicted in nature suggests that
the second binding mode described in Section G.3.1.1 may be physically possible. That
being said, there are several critical differences between the Rosettaligand predictions
made in this study and the binding modes observed in the 2014 Fesik lab study.

First, we see in Figure G.3 that the position taken by the ligand in the primary binding
mode is directly blocked by the position of the Y71 rotamer in the second binding mode.
This occurs because the tail of the docked ligand in the primary binding mode occupies the
space of the Y71 rotamer in the second binding mode. In contrast, the covalently bound
ligands used in the 2014 Fesik lab study consist only of the head of the ligand, and thus
cannot occupy the space of the Y71 side-chain.

The second difference between the two studies is the presence of a ligand at the second
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Figure G.8: Superimposition of PDBs 4q01, 4q02, 4q03, 4pzy, and 4pzz with two low
scoring RosettalLigand models. In purple, crystal structures and predicted ligand binding
poses associated with the primary binding mode at the first binding site. In blue, crystal
structures and predicted ligand binding posts associated with the secondary binding mode
at the first binding site. In blue sticks, the covalently bound ligand and Y71 of crystal
structure 4q01 are highlighted.

binding site at in the 2014 Fesik lab study. In the RosettalLigand models described in this
study (and the crystal structures which formed the basis of that study), the second binding
site was empty. This difference is a critical one, as the presence of GDP at the second
binding site may result in significant changes to the energy landscape of the first binding
site.

These two differences between the study performed in this chapter and the 2014 Fesik
lab study limit the conclusions we can draw from the comparison between the two. We
can conclude that the Y71 side-chain is physically capable of performing the rotamer shift
observed in the RosettalLigand predictions in this study. However, further studies will be
required to determine if the predicted second binding mode associated with this side-chain
shift is realistic. It is entirely possible that the presence of a ligand at the second binding

site is required in order for the Y71 rotamer to change position.
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G.3.2 RPA70

G.3.2.1 Results of self and Cross-Docking validation

As with KRAS in Section G.3.1.1, a cross-docking study was performed to assess the
ability of Rosettal.igand to predict binding modes against RPA70. Figure G.9 plots score
vs RMSD for each of the ligands cross-docked into the RPA70 binding site. In most cases,
low scoring predicted binding poses are found within 2.0 A of the crystallographic binding
position. However, unlike the results of the KRAS cross-docking study in Figure G.2, the
low scoring models are distributed across a wide range of RMSD.

Upon inspection of the RPA70 binding site, a possible explanation emerges. Figure
G.10 illustrates that the overall structure of the RPA70 binding site is a long, deep trough
across the surface of the protein, bounded by two ligands, T55 and S60, which are critical
for ligand binding (Feldkamp et al., 2013). Figure G.11 shows the crystallographic posi-
tions of the ligands involved in the cross-docking study. From this we see that although all
the ligands in the binding site are in close proximity to TS5 and/or S60, the overall range of
binding position is substantial. This wide range of acceptable binding position is the likely
explanation for the wide range in RMSD of low scoring models.

The results of the cross-docking study illustrated in Figure G.9 suggest that Roset-
taligand is generally capable of identifying high quality binding poses within the RPA70
active site. However, it does not appear that it is generally capable of determining whether

a ligand will bind preferentially in the vicinity of TS5 or S60.

G.3.2.2 Analysis of vHTS lead predictions

As in the KRAS study described in Section G.3.1.2, each of the VHTS leads was docked
into RPA70, and the normalized scores of the best scoring models for each ligand were
plotted against the range of normalized scores seen in the cross-docking study. Figure G.12
plots the normalized scores of the lowest scoring models in the vicinity of both the TS5 and

T60 ligands relative to the overall distribution of models produced in the cross-docking
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Figure G.9: Score vs RMSD plots for RPA70 ligands cross-docked into the relaxed models
of the proteins they were crystalized with. The 2D structures of the ligands are pictured
above and below each plot.
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Figure G.10: Ribbon diagram of RPA70. Residues T55 and S60, highlighted in blue sticks,
are both critical for ligand binding and represent the edges of a long narrow ligand binding
pocket.

Figure G.11: Ribbon diagram of RPA70 with the crystallized position of the co-crystallized
ligands shown as sticks.
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Figure G.12: A plot of the size normalized scores of the lowest scoring RPA70 vHTS
lead compounds, relative to the distribution of scores for low RMSD ligands in the cross-
docking validation study. For each vHTS lead compound, The score of lowest scoring
ligand model near the T55 location ("T55’, in blue), and the T60 location("T60’, in red) is
plotted.

study.

Of the ligands considered in this study, all have low scores within the average range
of predictions produced in the cross-docking study. However, two ligands stand out with
scores substantially below the median, specifically ligand IDs 00Y and 011. The binding
sites of the low scoring 00Y and 011 models plotted in Figure G.12 are rendered in Figure
G.13. A comparison of these predicted binding sites to the crystallographic binding sites of
known active ligands (Figure G.11) indicates that the predicted binding positions of these
low scoring ligands are similar to those observed in nature, suggesting that the low scores

of these ligands may be plausible.

G.3.3 Future Directions
The study described in this chapter provides a starting point for a broader study into the

pharmacology of both KRAS and RPA70. There are a number of potential avenues for
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Figure G.13: Representations of 00Y and 011, the lowest scoring RPA70 vHTS leads. In
each case, the lowest scoring ligands in the vicinities of the T55 and S60 binding sites are
plotted.

continuation of this study, both computational and experimental.

In the case of the KRAS vHTS study, more stringent filtering of the vHTS leads is
required prior to further computational studies. Specifically, compounds with multiple
halogens should be excluded.

Further study is required to understand the secondary binding mode predicted by Roset-
taligand and partially observed by (Sun et al., 2014). While it is now known that the Y71
amino acid is capable of existing in both orientations predicted by Rosettaligand in this
study, further study is required to determine the conditions under which this secondary ori-
entation can occur. One potential means of investigating the behavior of the Y71 amino
acid is through Molecular Dynamics (MD) studies. In the 2014 Fesik Lab study in which
the secondary orientation of the Y71 amino acid was observed, both KRAS binding sites
were fully occupied. In this case, the goal of the MD study would be to determine whether
it is possible for the secondary Y71 orientation to exist without the second binding site
being occupied.

In addition to computational studies, further experimental work could be used to inves-

tigate the secondary binding mode predicted at the first KRAS site. In the 2014 Fesik lab
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study, the primary binding site was occupied by a covalently bound ligand. A similar study
could be performed to investigate ligand binding in the primary binding site by covalently

attaching a ligand to the secondary site.
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Appendix H

The Limitations of Rosetta Atom typing and Orbital assignment

H.1 The origins of the Rosetta Atom types

The system of atom parameterization used by Rosetta has evolved dramatically as the soft-
ware suite has expanded in functionality. In order to gain a full understanding of the ca-
pabilities and limitations of this system, some discussion of the history its development is
required. Rosetta was originally conceived as a method for ab initio protein folding. The
original fragment based protein folding algorithm used a coarse-grained model in which
each ligand was modeled as a backbone with a single centroid atom representing the side
chain. For the centroid based model, the atom-typing system consisted of one type for each
backbone atom, and one type for each canonical amino acid (Simons et al., 1997).

Rosetta was later extended to perform full-atom protein modeling with an atomic detail
energy function (Rohl et al., 2004) and a new set of atom types (Kortemme et al., 2003).
The parameters for these atom types were derived from a range of sources. Partial charges
were based on those used in the CHARMM Molecular Mechanics (MM) function (Brooks
et al., 1983) and solvation parameters were provided by the Lazaridis-Karplus solvation
method (Lazaridis and Karplus, 1999). 34 distinct atom types were created which map
unambiguously to the atoms in the 20 canonical amino acids. Additionally, atom types
representing Halogens (F, Cl, Br, 1), Metals (Zn, Fe, Mg, C, Na, K), Phosphorus and Silicon

were added, brining the total count to 49 distinct atom types.

H.2 Rosetta is limited in its ability to parametrize small molecules

While the atom types described in Section H.1 can effectively parameterize the canonical
amino acids, as well as common co-factors and metal ions, the parameterization of arbitrary
small molecules is more limited. When a molecule that is not a standard co-factor, amino

acid or metal is used in Rosetta, it is parameterized using the decision tree illustrated in
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Figure H.1.

Close inspection of the decision tree illustrates the problems with it as a parameteri-
zation algorithm. The decisions itself was designed to reliably parameterize the canonical
amino acids. The chemical space represented by canonical amino acids is extremely lim-
ited, and these limitations are directly reflected by the decision tree.

The atom typing decision tree has a default “fall through” case for every element type it
supports. For this reason, it will assign atom types to every atom with a supported element,
but it will frequently assign these atom types incorrectly.

As an example of this problem, take the case of the COO atom type. The COO atom
type is meant to parameterize the carbon in a COOH group, such as that found in Aspartic
acid. However, as shown in Figure H.1, the COO atom type is the default typing for unsat-
urated carbons. The effect of this choice of default is seen in uracil. Uracil is illustrated in
Figure H.2. Here, we draw the molecule with the assigned Rosetta atom-types labelled in
place of the element names. Note the atom-types of the atoms involved in the two C=0
groups. In both cases, the carbon is assigned as COO, and the oxygen is assigned as ONH?2.
The parameters of both these atom-types were derived from vey different chemical contexts
than they contexts in which they are used in uracil.

This is only one of many cases in which the Rosetta atom-typing decision tree will
incorrectly type atoms. The parameterization of nitrile (R — C==N) groups is a case which
the standard Rosetta atom typing method is consistently unable to handle. In this case, the
difficulty stems from the lack of an atom-type that reflects either the C or N in the nitrile.
Rosetta will use the decision tree to parameterize R— C==N as R— COO=Npro, where
COO (as described previously) represents the C in a COOH group, and Npro represents the
N in a proline ring. The properties of both atom types are sufficiently different than those
of a nitrile group that it is unlikely that a nitrile parameterized as R— COQ=Npro will
result in realistic Rosetta models.

Overall, the issues with the Rosetta atom-typing scheme can be viewed as a classic
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Figure H.1: Rosetta atom types are assigned to small molecule atoms using a decision tree,
which is illustrated here. Decision tree conditions are marked in black boxes, Rosetta atom
type assignments are marked in light blue boxes.
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Figure H.2: A uracil molecule labeled with the atom-types assigned by the standard Rosetta
decision tree algorithm.

case of model over-fitting. Both the atom-types themselves and the decision tree model for
assigning them were based primarily on a narrow range of chemical space, and the resulting
model therefore applies to that specific set of chemical space. Rosettalligand appears to
be successful as a ligand docking system in spite of the parameterization system, rather
than as a result of it. Regardless of ligand parameterization, Rosetta is effectively able
to parameterize proteins, meaning that a large component of the ligand docking model is

correct.

H.3 The limitations of Rosetta atom-typing impact the applicability of scoring func-
tions to small molecule studies

In addition to being a source of chemical parameters (Size, Charge, etc) Rosetta atom-types
are used for atom identification. This can cause problems when new energy terms relying
on the Rosetta atom-types are implemented. In an attempt to improve the quality of Rosetta
protein models, Steven Combs developed a set of KBP energy terms using electron orbital
positions placed using Valence Shell Electron Pair Repulsion (VSEPR) theory (Combs,
2013). These energy functions were largely successful at improving the ability of Rosetta
to recover the fine details of side-chain rotamer positioning.

Given this improvement, an obvious future direction was to extend the use of these or-

bital based potentials to the modeling of protein-small molecule interactions. The addition
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of molecular orbital information to small molecules has the potential to greatly improve the
accuracy of Rosetta protein ligand interaction models.

However, since the orbital based KBP was developed based on the standard Rosetta
energy types, there was concern that the errors in parameterization described in Section
H.2 would limit the effectiveness of the method when applied to small molecules.

To investigate this, a small, preliminary, qualitative study was performed comparing
the positions of orbitals as assigned by the Combs algorithm with molecular orbital densi-
ties computed using an DFT method. Combs method orbital assignments were computed
with Rosetta. DFT computations were computed using Gaussian 09. The X-Ray crystal
structures of the ligands were used as a starting point, and geometry optimization was per-
formed using B3LYP with the 6-31G basis set and the SCRF implicit solvent model. After
geometry optimization, HOMO molecular density models were computed using Gaussian
CubeGen. H.3 illustrates the results of the two orbital assignments. Through a qualitative
comparison of the two orbital assignment methods, we can see significant differences be-
tween the molecular orbitals assigned by the Combs method and the DFT computations.
In some cases, the Combs method has performed well. For example, in Figure H.3B and
H.3D, we see that the pi-orbitals associated with the benzene rings have been correctly as-
signed, with both peak density and orbital assignments running perpendicular to the ring
plane. In other cases, however the Combs method is less successful. In H.3C and H.3D,
There are several cases in which the Combs method has placed orbitals on oxygen atoms
with a 90 degree orientation relative to the DFT predicted density. In other cases, such as
the ring nitrogen in H.3B and H.3C, the Combs method has assigned orbitals where the
DFT predicts no orbital density.

While this was only a preliminary investigation, it strongly suggests that the incorrect
atom-typing provided by the default typing method is insufficient. In order to effectively
assign orbitals to ligands using the Combs method, it will be necessary to use an atom-

typing method that can unambiguously type any atom in an arbitrary small molecule.
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Figure H.3: Comparison of orbital positions assigned by the Combs algorithm with HOMO
molecular orbital surfaces computed using a DFT method. Four molecules are plotted,
with the Combs method assignments at top and the DFT surface at bottom. A) Alpha-D-
Mannose crystallized with lectin (PDB ID: 2ARE). B) Inhibitor of Tyrosine-protein phos-
phatase non-receptor type 1 (PDB ID: 2NTA). C) Inhibitor of GluR6 (PDB ID: 1S9T). D)
Inhibitor of tRNA-Guanine Transglycosylase (PDB ID: 1S39)
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H.4 Potential improvements to the atom typing system

The existing Rosetta atom-typing system, while well suited to canonical amino acids, is
not sufficient to correctly handle small molecules. However, the Rosetta software architec-
ture allows for the simultaneous use of multiple atom-typing systems in a simulation, with
different terms in the energy function making use of different atom-type assignments. As
a result, we have the ability to easily implement new atom-typing schemes without major
revision of the existing modeling algorithms and scoring functions. At the time of this writ-
ing, research in the Meiler lab is underway to develop a new atom-typing system with the
ability to unambiguously assign atom-types to all small molecules. The atom-typing sys-
tem being developed is derived from the research by Gasteiger et al on the effect of atomic
substituents on atomic properties (Hutchings and Gasteiger, 1983; Gasteiger and Hutch-
ings, 1983). The general concept of this new atom-type set is to type atoms based on the
element of the atom, and the number and geometry of its substituents. For example, a car-
bon with four single bonded substituents (as in CH4) would have the atom-type C_TeTeTe,
while a phosphorous with two double bonded to 2 substituents (as in PO,) would have the
atom-type P_DiDiPiPi.

This method for atom-typing has several potential advantages, particularly in the con-
text of the Rosetta energy function. Gasteiger atom-types can be rapidly and unambigu-
ously for any atom in any molecule. Because the atom-type assignment relies only on the
query atom and its immediate neighbors, loop and aromaticity detection are not required.
Because the atom-type assignments are unambiguous, the previously described problem of
mis-typing atoms can be avoided entirely. Additionally, because the Gasteiger atom-types
are explicitly based on the geometry of the substituent atoms, VSEPR orbital positions can
be computed using only the atom-type name.

By implementing Gasteiger atom-types, it will be possible to extend the orbital based
energy function developed by Combs et al. to correctly handle arbitrary small-molecules.

Since Rosetta easily supports the use of multiple simultaneous atom-typing schemes, this
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new Gasteiger based energy function could be used in conjunction with the existing Rosetta
energy terms. While augmenting the existing energy function with a new set of terms based
on Gasteiger atom-types would be beneficial to the modeling of protein-ligand interactions,
the noise introduced by the incorrect assignment of Rosetta types will still limit the perfor-
mance of the models. To address this problem in full, the KBPs which comprise the ma-
jority of the Rosetta energy functions could be recomputed using the Gasteiger atom-type
assignments. This re-computation of the KBPs would represent a massive undertaking, but

could potentially result in a substantial improvement in ligand docking performance.
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