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CHAPTER 1

INTRODUCTION

1 Motivation

Composites and other heterogeneous materials exhibit complex response patterns

when subjected to dynamic loading conditions due to the intrinsic wave interac-

tions at the interfaces between material constituents. The complexity of dynamic

responses in heterogeneous materials also provides tremendous opportunities for de-

vising tailored microstructures with optimal functional characteristics such as impact

and blast resistance, health monitoring and others. The development of such tai-

lored microstructures for optimal performance requires a deeper understanding of the

pertinent microstructure-property relationships. Specifically, heterogeneous materials

exhibit wave dispersion when the characteristic length of traveling waves approaches

the size of material microstructure [58, 64], altering the shape and velocity of prop-

agating waves. The realization of this phenomena dates back to the classical works

of Cosserat and Cosserat [22], Mindlin [45], and Eringen [29]. The effects of micro-

inertia and dispersion have been recently modeled using a number of approaches such

as gradient enhancement [14], time-harmonic Bloch expansions [66], scale bridging

through Hamilton’s principle [77], and models based on Mindlin’s theory [28, 35].

These approaches typically incorporate high order strain and inertia gradient terms

to the macroscopic equations of motion, which has been demonstrated to be effective

in the context of elastic composites.

The dispersion relation between wave frequency and wavenumber in the fre-

quency domain displays a banded structure with alternating passbands and stop-

bands. Stopbands refer to frequency bands within which the wave propagation is

completely blocked. Band structures were found in electromagnetic range (i.e., pho-
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tonic bandgaps) [79, 80] as well as in the acoustic range (i.e., phononic bandgaps) [41,

67, 75]. In order to evaluate the reveal evanescent wave fields and bandgap structure,

both the real and imaginary components of wavenumber must be included [69, 70].

Suzuki and Yu [70] and Andrianov et al. [6] employed the Floquet-Bloch theorem to

reveal the appearance of bandgaps in photonics and phononic ranges, respectively.

One of the main foci of this dissertation is the predictive modeling of viscoelas-

tic composite materials subjected to dynamic loadings. Viscoelastic composites are

well-known for attenuating wave propagation due to material dissipation. A good

example is polyurea based composite structures. Polyurea have been shown to im-

prove the survivability of structures subjected to blast and impact loadings. The

mitigative effects of polyurea on a number of different structural materials, including

steel [3, 4, 27, 37, 78] and composites [9, 36] have been subject to a number of recent

investigations. A predictive model for wave propagation in viscoelastic composites

may serve to the optimal design of microstructures for satisfactory dynamic responses

(i.e., blast mitigation).

The previously discussed scale disparity between a composite structure and the

small scale interplay of composite constituents provides an example of a problem

with multiple spatial scales. The mathematical homogenization theory with multiple

spatial scales provides a rigorous methodology for modeling wave propagation in het-

erogeneous materials. Rooted in the works of Bakhvalov and Panasenko [11], Benssou-

san et al. [15], Sánchez-Palencia [65] and others, the multiscale homogenization theory

has been used to evaluate the mechanical response of heterogeneous materials under

static and quasi-static loading, as well as dynamic problems involving long wave-

lengths compared to the characteristic size of the heterogeneity (e.g., [24, 38]). The

multiscale homogenization theory has also been employed to devise dispersion mod-

els for dynamic response of linear elastic heterogeneous materials in the context of

one-dimensional and multi-dimensional problems [6, 12, 19, 30]. This dissertation
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provides a promising research path by proposing a multiscale approach accounting

for wave dispersion in viscoelastic composites. Specifically, This multiscale approach

for modeling the dynamic response of viscoelastic composites links the global struc-

tural response to the wave dispersion and dissipation in micro-heterogeneities. When

wave dispersion is considered in viscoelastic composites, the reproduction of nonlinear

responses with high resolution is required to accurately reveal wave propagation in

micro-heterogeneities.

The primary goal of this dissertation is to develop a new multiscale homogenization

model for wave propagation in elastic and viscoelastic composite structures within

dynamic applications.

1. Computational models have been developed and numerical investigations have

been performed for blast response of polyurea coated composite structures;

2. A novel computational homogenization-based multiscale approach has been

devised, which accounts for micro-heterogeneity induced wave dispersion and vis-

coelastic material dissipation;

3. The effects of micro-heterogeneity induced wave dispersion on the dynamic

response of composite structures have been investigated.

2 Dissertation Organization

The first research objective is addressed by computationally investigating a polyurea

layered E-glass reinforced vinyl-ester (EVE) composite panel subjected to blast in

Chapter 2. The blast mitigation of polyurea on the EVE composite is quantita-

tively measured through the deflection of the composite panel and is enhanced by

parametric optimizations of the thickness and confinement of polyurea layer. The

second and third objectives are responded in Chapter 3 through 5. In Chapter 3, a

semi-analytical homogenization solution incorporating high order asymptotic terms

is derived for one-dimensional wave propagation in viscoelastic composite structures.

3



The solution is used to predict the wave dispersion and dissipated energy in the nu-

merical examples. Chapter 4 presents a multi-dimensional, high order homogenization

model for elastic composite materials subjected to dynamic loading conditions. The

high order asymptotic terms are considered to include micro-inertia effects caused

by the impedance contrast at the microscale. The finite element solution for the

microscale influence functions and the homogenized macroscale problem is developed

and verified against the direct finite element solution in predicting wave propagation

with strong dispersions. In Chapter 5, a complex high order homogenization defined

in the Laplace domain is presented for multi-dimensional wave propagation in vis-

coelastic composite structures. The model is based on the homogenization procedure

discussed in Chapter 4 and is developed in the Laplace domain allowing the represen-

tation of linear viscoelastic constitutive relationship using a proportionality law. The

effects of wave dispersion on wave propagation, attenuation and energy dissipation

are discussed. The work in this dissertation is summarized in Chapter 6.

4



CHAPTER 2

COMPUTATIONAL MODELING OF POLYUREA LAYERED COMPOSITES

SUBJECTED TO BLAST

1 Introduction

This chapter provides a computational modeling of polyurea layered composite struc-

tures subjected to blast. The application of polyurea coatings on structures [9] have

been recently shown to dramatically improve the blast resistance. By conducting the

research, the understanding of how the presence of polyurea layers can mitigate blast

will be gained.

Polyurea exhibits nearly incompressible, viscoelastic response with sensitivity to

pressure, strain-rate, and temperature [5]. At high strain-rate, polyurea transitions

from rubbery to glassy state, causing an increase in energy absorption capacity [82].

A number of recent experimental and theoretical investigations shed light into the

mechanical response characteristics of polyurea such as rate effects, hysteresis and

cyclic softening [82], influence of stoichiometry, inertial effects [33, 62], wave propa-

gation characteristics [60], among others. Constitutive laws have also been proposed

to model the high-strain rate behavior of polyurea. Amirkhizi et al. [5] developed

a viscoelastic constitutive model based on split Hopkinson bar experiments. This

model incorporates the effect of temperature based on time-temperature transfor-

mation idea, and pressure sensitivity. Li and Lua [42] extended Amirkhizi’s model

to include nonlinear viscous effects. Elsayed [26] developed a multi-network model,

which has the capability to capture hysteresis, rate-effects, plastic deformation, micro-

inertia effects and temperature dependence.

In this chapter, we computationally investigate the blast response of a E-glass

fiber reinforced vinyl-ester (EVE) composite panel layered with polyurea, based on
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the experimental data provided by Tekalur et al. [72]. Polyurea is modeled using

the constitutive model proposed by Amirkhizi et al. [5]. A multiscale computational

model for the EVE composite with rate-dependent damage evolution and adiabatic

heating effects is devised. Blast response of EVE composite is simulated using the

proposed model and the numerical results are compared to the experimental data. We

investigate the blast response of three polyurea layered EVE composite panels with

different layup configurations. In the numerical simulation, polyurea is shown to have

favorable mitigation effect on blast especially when the polyurea layer is sandwiched

between the EVE composite panels. A parametric investigation is conducted to search

for the approach to enhance the blast mitigation effect of polyurea. The numerical

analysis reveals that better survivability is obtained by increasing the thickness or

through confinement of the polyurea layer.

2 Modeling Approach

We consider a composite structure occupying domain Ω, subjected to high-rate load-

ing. The dynamic response of the composite is governed by the momentum balance

equation:

∇ · σ̄ (x, t) + b̄ (x, t) = ρ̄ (x, t) ¨̄u (x, t) ; x ∈ Ω; t ∈ [0, to] (1)

in which, σ̄ and ū denote the stress and displacement fields, respectively; b̄ the

body force; ρ̄ the density; and, x and t denote spatial and temporal coordinates,

respectively; Superscribed dot denotes the time derivative. Overbar indicates that

the corresponding field is associated with an equivalent homogeneous representation

of the heterogeneous medium. The structure is subjected to initial and boundary
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conditions:

ū (x, t) = û (x) ; x ∈ Ω; t = 0 (2)

˙̄u (x, t) = v̂ (x) ; x ∈ Ω; t = 0 (3)

ū (x, t) = ũ (x, t) ; x ∈ Γu; t ∈ [0, to] (4)

σ̄ (x, t) · n = t̃ (x, t) ; x ∈ Γt; t ∈ [0, to] (5)

where, û and v̂ are prescribed initial displacement and velocity fields, respectively;

ũ and t̃ the prescribed displacements and tractions on the boundaries Γu and Γt,

respectively, (Γ = Γu ∪ Γt and Γu ∩ Γt = ∅); and; n the unit normal to Γt.

In this chapter, the failure response of the composite structure is evaluated by

employing explicit finite element method to evaluate Eqs. 1-5, and the constitutive

models for constituent materials with prescribed blast profiles (i.e., Eq. 5).

3 Constitutive Failure Model for Composite Constituents under High Rate Loading

The failure response of the composite material is modeled based on the eigendeformation-

based reduced order computational homogenization (EHM) method recently proposed

by Oskay and co-workers [24, 54, 81]. In the EHM method, microstructural infor-

mation (e.g., localization operators, concentration tensors, influence functions) in the

representative volume element (RVE) of EVE is precomputed prior to the analy-

sis of EVE composite at the macroscale. The inelastic response fields within the

RVE are taken to be piecewise constant (in space) within subdomains of the RVE

corresponding to each phase. The proposed reduced order multiscale approach pro-

vides significant computational efficiency without compromising on solution accuracy

when compared to standard computational homogenization approach, which requires

repeated evaluation of the full scale RVE problem at each integration point of macro-

scopic domain for each time step. The details of the EHM method are not the focus
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of this dissertation and can be found in the work by Crouch and Oskay [24], and

are therefore not presented in this dissertation. In this section, we propose a strain-

rate dependent and temperature-dependent constitutive formulation to describe the

failure response of the composite constituents. Strain-rate dependence is introduced

through a Perzyna-type visco-damage formulation to account for embrittlement and

hardening observed at high rates, as well as to avoid mesh sensitivity observed in

standard continuum damage formulations. Temperature-dependence is introduced to

investigate the effect of localized adiabatic heating on the blast response, which has

been previously argued to have a significant effect on localization of damage under

high rate loading Tekalur et al. [71].

The composite material is considered to be formed by the repetition of a locally

periodic microstructure, which consists of nph phases (e.g., matrix and fiber ). The

behavior of each composite constituent is idealized based on a rate- and temperature-

dependent continuous damage mechanics model. The phase-average stress within

phase, η, is expressed as:

σ(η) = L(η) : e(η) = L(η) :
(
ε(η) − µ(η)

)
(6)

where, ε(η), µ(η) and e(η) are phase average total, inelastic and elastic strain tensors,

respectively; L(η) the tensor of elastic moduli; and, colon denotes double inner product

operator.

Under high-rate loading conditions, the phase-average inelastic strain is expressed

in terms of the scalar damage variable, ω(η) ∈ [0, 1), indicating the state of damage,

and localized adiabatic heating induced thermal strains:

∑
γ

[
δηγI−P(ηγ)ω(η)

]
: µ(γ) = ω(η)A(η) : ε̄ (x, t)− α(η)

[
1− ω(η)

] [
T (η) − Tref

]
δ (7)

in which, ε̄ is the RVE average (macroscale) strain; α(η) the coefficient of thermal

expansion; T (η) and Tref the current and reference temperatures, respectively; δ and
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I denote the second and fourth order identity tensors, respectively; and, δηγ = 1 if

η = γ and vanish otherwise. the fourth order coefficient tensors, P(ηγ) and A(η) are

expressed as:

P(ηγ) =
1

|Θ(η)|

∫
Θ(η)

∫
Θ(γ)

g (y, ŷ) dŷdy; A(η) =
1

|Θ(η)|

∫
Θ(η)

I + G (y) dy (8)

where, Θ(η) denotes the domain of the constituent, η; and, g and G are the inelastic

deformation-induced and elastic polarization functions of the RVE problem, which

are numerically evaluated based on the EHM method. Equation 7 is derived from

the microscopic equilibrium as well as the constitutive equations, and provides the

inelastic strains that a-priori satisfy the equilibrium at the microscopic (i.e. RVE)

scale [54].

The RVE average (macroscale) stress of the overall composite material is expressed

in terms of the macroscale strain and the phase average inelastic strains as:

σ̄ = L̄ : ε̄+
∑
γ

M̄(γ) : µ(γ) (9)

in terms of the coefficient tensors, M̄(γ) and L̄,

M̄(γ) =
∑
η

L(η) :
[
c(η)P(ηγ) − δηγI

]
; L̄ =

∑
η

c(η)L(η) : A(η) (10)

where, c(η) denotes the volume fraction of phase η within the RVE.

Localized adiabatic heating during high-rate loading is taken to be due to re-

versible elastic deformations, as well as the irreversible damage process [1, 76]:

ρ(η)C(η)
p Ṫ (η) = Υ(η)σ(η) : µ̇(η) − 3K(η)α(η)

(
1− ω(η)

)
tr(ė(η))T (η) +

1

3
tr(σ(η))tr(ė(η))

(11)

where, C
(η)
p and ρ(η) represent the specific heat at constant pressure and density of

phase η, respectively; Υ(η) the ratio of inelastic work converted to heat; and, K(η)

denotes bulk modulus; and, tr(·) is the trace operator.

We consider a damage evolution model with viscous regularization of the Perzyna

9



type [57] to idealize the rate-dependent response of the phases. Similar rate-dependent

damage models with viscoplastic regularization have been proposed for failure mod-

eling of other quasi-brittle materials [25, 68]. Rate-independent continuum damage

mechanics models are well-known to exhibit spurious mesh sensitivity when loading

extends to the softening regime. This phenomenon is marked by the localization of

strains within the size of a finite element. Viscous regularization of the damage model

employed in this study has been shown to alleviate damage localization and spurious

mesh sensitivity [50, 55].

The effect of localized heating on the rate-dependent damage evolution is intro-

duced. Let f be the temperature-dependent damage potential function in the form:

f
(
ν(η), r(η), T (η)

)
= φ

(
ν(η)
)
− φ

(
r(η)
) [

1−

(
T (η) − T (η)

ref

T
(η)
m − T (η)

ref

)]
≤ 0 (12)

in which, ν(η) is the phase damage equivalent strain; r(η) the damage hardening vari-

able; and, T
(η)
m the melting temperature of constituent phase η. φ is the damage

evolution function. The evolution equations for the damage and hardening variables

are given as:

ω̇(η) = λ
∂φ

∂ν(η)
; ṙ(η) = λ (13)

in which, the consistency parameter, λ, is described by the power law expression:

λ =
1

q(η)
〈f〉p(η) (14)

where, 〈·〉 ≡ ((·) + | · |) /2 denotes MacCauley brackets; and p(η) and q(η) are material

parameters describing the rate-dependent response.

The phase damage equivalent strain is defined as

ν(η) =

√
1

2
(F(η)ε̂(η)) : L(η) : (F(η)ε̂(η)) (15)

in which, ε̂(η) is the principal strain tensor; F(η) = diag(h
(η)
1 , h

(η)
2 , h

(η)
3 ) is a diago-

nal weighting matrix introduced to differentiate damage growth rate in tensile and

compressive loading:

10



h
(η)
ξ =

1

2
+

1

π
arctan

(
c1

(η)ε̂
(η)
ξ

)
; ξ = 1, 2, 3 (16)

where, ε̂
(η)
ξ are components of ε̂(η); and, c

(η)
1 is a material parameter.

A power law is considered to characterize the damage evolution function, φ,

which increases monotonically as a function of the damage equivalent strain to satisfy

Clausius-Duhem inequality for thermodynamic consistency:

φ
(
X(η)

)
= a(η)

〈
X(η)

〉b(η)
; φ

(
X(η)

)
≤ 1 (17)

in which, X denotes either ν or r; and, a(η) and b(η) are material parameters. For each

constituent, parameters a(γ) and b(γ) define the evolution of damage as a function of

loading history; c
(γ)
1 models the strength anisotropy along the compression and tensile

directions; and, p(γ) and q(γ) model the rate-dependent behavior.

4 Polyurea Model

The mechanical response of polyurea subjected to blast is modeled using the temperature-

and pressure-dependent viscoelastic constitutive law proposed by Amirkhizi et al. [5].

Cauchy stress tensor is expressed in terms of the hereditary integral as a function of

the shear relaxation modulus and the bulk modulus as:

σ̄ =

∫ t

0

2G(p) (t, τ) D′ (τ) dτ +K(p) ln J

J
δ (18)

where, D′ (t) is the deviatoric component of the deformation-rate tensor, D =
(
LT + L

)
/2;(

L = ḞF−1
)

is the velocity gradient and F the deformation gradient); and, J =

det(F) the jacobian of the deformation gradient. The bulk modulus of polyurea, K(p)

is taken to be a linear function of the temperature:

K(p) (T ) = K(p) (Tref) +m(p) (T − Tref) (19)
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in which, K(p) (Tref) is the bulk modulus of polyurea at reference temperature; and,

m(p) is the temperature sensitivity parameter.

The shear relaxation modulus, G(p), is expressed based on an exponential (Prony)

series representation:

G(p) (t, τ) =
T (τ)

Tref

G(p)
∞

(
1 +

n∑
i=1

p
(p)
i exp

[
− (ξ (t)− ξ (τ))

q
(p)
i

])
; τ ∈ [0, t] (20)

where, G∞ is the steady state shear modulus of polyurea; p
(p)
i and q

(p)
i are material

constants; and:

ξ (t) =

∫ t

0

1

a (T (τ) , P (τ))
dτ (21)

in which, P = −tr(σ)/3 is pressure; a (T, P ) is the Williams-Landel-Ferry (WLF)

empirical time-temperature-pressure shift function of the form:

log (a (T, P )) =
A(p)

(
T − C(p)

tp P − Tref

)
B(p) + T − C(p)

tp P − Tref

(22)

where, A(p) and B(p) are time-temperature coefficients; and, C
(p)
tp the time-pressure

coefficient.

Viscous dissipation causes localized adiabatic heating in polyurea during blast:

Ṫ =
1

C
(p)
v

Ẇd =
2G

(p)
∞

C
(p)
v

T (t)

Tref

n∑
i=1

p
(p)
i

q
(p)
i

εid (t) : εid (t) (23)

in which, Wd is the dissipated work per unit reference volume; and, C
(p)
v is the heat

capacity per original volume; and,

εid (t) =

∫ t

0

exp

[
− (ξ (t)− ξ (τ))

q
(p)
i

]
D′ (τ) dτ (24)

The material parameters of polyurea are calibrated based on Kolsky (Split Hopkin-

son) pressure bar experiments. The polyurea material parameters employed in our

simulations are provided by Ref. [5] and summarized in Table 4.
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Table 1: Calibrated parameters of the polyurea constitutive model.

ρ(p) [kg/m3] A(p) B(p) [K] m(p) [GPa/K] K
(p)
ref [GPa]

1070 −10 107.54 −0.015 4.948

C
(p)
tp [K/GPa] T

(p)
ref [K] C

(p)
V [J/mm3 K] G

(p)
∞ [GPa]

7.2 273 1.977× 10−3 0.0224

p
(p)
1 p

(p)
2 p

(p)
3 p

(p)
4

0.8458 1.686 3.594 4.342

q
(p)
1 [ms] q

(p)
2 [ms] q

(p)
3 [ms] q

(p)
4 [ms]

463.4 0.06407 1.163× 10−4 7.321× 10−7

5 Blast Simulation of EVE/Polyurea Composites

In this section, we numerically investigate the response of EVE and polyurea-layered

EVE composite specimens subjected to blast. We employ the specimen geometry and

the loading condition in the experiment provided by Tekalur and co-workers [72]. The

geometry and discretization of composite panels are illustrated in Fig. 1. The EVE

panels are 230 mm × 102 mm × 6 mm in length, width and thickness, respectively.

The fill and warp fibers are oriented along x1 and x2 directions respectively. The

panel is simply supported over a span of 152 mm along the vertical direction. The

blast profile is applied at the center of the panel within a circular area with radius

of 38 mm. Only a quadrant of the panel is modeled and simulated by exploiting

the symmetry of the panel geometry, loading and boundary conditions. We consider

four panel configurations: (1) EVE panel only (E-configuration; Fig. 1b); (2) 6mm

polyurea layer at the back face (EP-configuration; Fig. 1d); (3) 6mm polyurea layer

at the front face (PE-configuration; Fig. 1e); (4) 6mm polyurea layer sandwiched by

two 3 mm-thick EVE panels (EPE-configuration; Fig. 1f). Fig. 2 illustrates the blast

profiles employed in this study. The shock wave profile is characterized by a peak

blast (reflected wave) amplitude, Pref, incident wave amplitude, Pinc, and the time

duration, λ = 1.5 ms, within which reflected wave amplitude decays to incident wave

amplitude. Linear and nonlinear profiles are considered. The nonlinear wave profile
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Figure 1: Setup of EVE and Polyurea layered EVE panels: (a) front view
of EVE composite panel, (b) side view of EVE composite panel, (c) rep-
resentative finite element model of polyurea layered EVE composite panel,
(d) EP-conuration model, (e) PE-configuration model, (f) EPE-configuration
model.

is generated by the expression:

P =
λPincPref

Pincλ+ (Pref − Pinc)t
(25)

5.1 Calibration of EVE Constituent Properties

The proposed multiscale computational model is applied to idealize the response

of EVE composite employed in the experimental study provided in Ref. [72]. The

elastic and failure properties are calibrated using available experimental data on quasi-
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Figure 2: Blast profiles.

static and dynamic response of EVE composite specimens provided in references [52,

71]. The representative volume element (RVE) is idealized as a composition of three

constituents: the vinyl ester matrix, fiber tows along the fill- and warp directions.

The RVE of the woven composite material employed in the simulations is shown in

Fig. 3. The microstructure of the composite contains 60.5% fiber by volume, with an

unbalanced construction having 59% and 41% of fibers oriented along the warp and fill

directions, respectively. The size of the RVE is 10mm× 12.5mm× 0.625mm along the

fill, warp and thickness directions, respectively. Density, specific heat, and coefficient

of thermal expansion for matrix and fiber phases employed in our investigations are

obtained from Committee [21]. The experimentally determined quasi-static elastic

properties of matrix and fiber are [63, 71]: E
(m)
0 = 3.4 GPa, E(f) = 70 GPa, and

ν(m) = ν(f) = 0.15. At high strain rates the elastic modulus of overall composite

is higher than those at quasi-static conditions [51, 52]. Within the blast rates and

temperature considered in this study, E-glass fibers do not display significant strain

rate effects. The elastic modulus of vinyl-ester matrix is taken to be a function of
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Figure 3: (a) The representative volume for the woven composite material,
(b) reduced order model for the RVE with three constituents: fill (horizontal)
and warp (vertical) fibers and the matrix (transparent).

strain-rate based on a power law [52]:

E(m) = E
(m)
0

1 +

(
ε̇(m)

ε̇
(m)
0

)N
 (26)

where, ε̇
(m)
0 = 2060/s is the reference strain rate; and, N = 0.73. The quasi-static

Table 2: Properties and calibrated parameters of EVE composite.

E [GPa] K [GPa] ρ [kg/ m3] α [1/◦C] Cp [J/gK] Tref [K]

fiber 70 33.3 2620 5.4× 10−6 0.810 298
matrix 3.4 1.62 1230 45× 10−6 1.05 298

a b c1 q p

warp 0.17 6 -22 10−8 2
fill 0.32 6 0 10−8 2

matrix 1.4 2 0 2× 10−6 2

uniaxial compression and tension experiments conducted by Tekalur et al. [71], as well

as the dynamic testing by Oguni and Ravichandran [52] are employed to calibrate

the failure properties of the constituent phases. The fiber phase response is taken to

be rate-independent [52] within the loading rates and temperature range considered

in this study. The calibrated material parameters for each phase are summarized in
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Figure 4: Simulated stress-strain curves of EVE composite for quasi-static
and high strain loading in compression and tension directions.

Table 2 and the stress-strain curves at high and low strain rate are plotted in Fig. 4.

The experimentally observed strength of the overall composite and the calibrated

model predictions are compared in Table 3, which are in reasonable agreement.

5.2 Blast Response of EVE Panels

Table 3: EVE composite properties under quasi-static loading.

Modulus [GPa] Strength [MPa]
Poisson’s ratio

T1 C2 T C

warp
Experiment [71] 29.2 31.9 512.5 363.4 0.16

Simulation 29.0 29.0 516.7 (0.82%)3 369.7 (1.7%) 0.15

fill
Experiment [71] 23.9 26.9 350.9 336.4 0.14

Simulation 24.5 24.5 363.6 (3.6%) 337.9 (0.45%) 0.15

1Tension; 2Compression; 3difference between simulated and experimental results

The E-configuration panel is subjected to three loading profiles to assess the capa-

bility of the proposed model and investigate the effect of loading rate and damage in-

duced adiabatic heating on structural response against blast. The loading profiles are

parameterized as: Pinc = 0.62 MPa and Pref = 1.57 MPa for the linear and nonlinear

blast models; and Pinc = 0.45 MPa and Pref = 1.28 MPa for the nonlinear blast model

only. Figure 5a compares the numerical predictions of the linear and nonlinear blast
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profiles with the incident wave amplitude of 0.62 MPa, and the experimental mea-

surement. The predicted displacement histories along the thickness direction at the

center of the plate (center-point displacement, uc) are in reasonable agreement with

the experimental observation. The discrepancy between the predictions of the linear

and nonlinear blast models illustrates the sensitivity of blast profiles on the struc-

tural response. The more realistic non-linear blast model provides a better fit with

the experimental results especially at the later stages of deformation. In the remain-

der of the simulations, only the nonlinear blast profile is employed. The center-point

displacement comparison between numerical simulation and experiment for incident

wave amplitude of 0.45 MPa is plotted in Fig. 5b. In contrast to high incident wave

amplitude simulation, the specimen does not completely fail and the displacement

rebounds back after 1.1 ms. In all numerical investigations, the maximum observed

strain rate throughout the specimen and loading history does not exceed 20/s. The

rate effects, which are pronounced in the matrix material at high strain rate ( i.e.

> 1000/s [52]), therefore, do not significantly affect the blast response. In adiabatic

heating process, maximum damage-induced temperature rise is achieved by setting Υ

equal to 1 signifying that all of the damage work is converted into heat. The thermal

profile of the composite specimen computed based on Eq. 11 throughout the loading

history indicates that maximum temperature rise due to damage induced adiabatic

heating is confined to less than 10 K. The burn observed along the surface of the

specimens revealed in experimental studies is therefore unlikely to be due to damage

induced heating.

5.3 Blast Response of Polyurea-Layered EVE Composites

We conducted a series of simulations to numerically investigate the mitigative effect

of polyurea layer on the blast survivability of EVE composite panels. Three polyurea-

EVE composite configurations illustrated in Figs. 1d-f are subjected to blast profiles.
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(a)

(b)

Figure 5: Comparison of experimental [72] and numerically predicted center-
point displacements of E-configuration panels subjected to input pressure of
(a) 0.62 MPa, and, (b) 0.45 MPa.

The incident pressure and reflected pressure are 0.75 MPa and 2.2 MPa, respec-

tively, for EP- and PE-configurations; and, 0.75 MPa and 2.01 MPa, respectively, for

EPE configuration. Figure 6 illustrates the simulated and experimentally observed

center-point displacement (normalized by the combined thickness of the polyurea

layer and EVE composite panel, dt) histories for PE, EP and EPE configurations,

respectively. For all three configurations, the numerical predictions display reason-

able agreement with the experimental observations [72], pointing to the adequacy

of the proposed models in capturing the failure response of composite specimens.
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The PE and EPE configurations resist the blast with only partial damage under the

applied incident wave amplitude of 0.75 MPa, that is illustrated in Figs. 6a and 6c

as the curve-down of center-point displacements. In contrast, the EP configuration

fails under the applied blast magnitude. The highest mitigation effect is observed in

the EPE configuration, in which the center-point displacement completely rebounds.

The superior performance of PE configuration (compared to the EP configuration) is

attributed to its higher resistance against compressive and shear failure of the sub-

strate, which are predominant failure mechanisms [72], as well as dissipation of blast

pressure within polyurea layer prior to reaching the composite substrate. All three

simulations indicate that the presence of polyuea layer significantly mitigates blast

response as evidenced by the reduction of the center-point displacement magnitude

compared to the E-configuration despite higher applied blast pressure magnitudes for

the polyurea-layered configurations. Figure 7 illustrates the snapshots of simulated

matrix damage and deformation profiles during the blast of E and EP configurations

in comparison with the experimental observation [72]. In all the simulations, the

maximum rise in temperature within polyurea layers is 2 K. The highest strain-rates

within the polyurea layers throughout the loading history are 150/s, 800/s and 50/s

for the PE, EP and EPE configurations, respectively. The center-point displacement

at the front face of the specimens are reported in all figures. The displacements at

the center-point on the back face of the panel are nearly identical to the front face

and no significant change of plate thickness was observed in the simulations.

The effects of debonding along the fiber-matrix interface within the EVE layers

are also considered in this investigation. Numerical simulations by considering full-

debonding along the fiber-matrix interfaces revealed that the state of damage along

the these interfaces make little contribution to the deformation of the plate against

blast. In addition, the experimental investigations [72] reveal no significant debonding

between polyurea and EVE layers for the loading cases considered in this study. We
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(a)

(b)

(c)

Figure 6: Comparison of experimental and numerically predicted normalized
center-point displacements of (a) PE-configuration, (b) EP-configuration,
and, (c) EPE-configuration panels subjected to input pressure of 0.75MPa.
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Figure 7: Displacement profiles of (a) experimentally observed [72] E-
panel when Pinc=0.62MPa; (b) experimentally observed EP-panel when
Pinc=0.75MPa; [72] (c) simulated E-panel when Pinc=0.62MPa; (d) simulated
EP-panel when Pinc=0.75MPa.

therefore assume that the interfaces remain intact throughout the simulations.

The polyurea is a nearly incompressible material. We investigated the effect of

confinement of the polyurea layers on the blast response and mitigation characteris-

tics. The confinement effect is presented only for the EPE configuration, since the

confinement effect is independent of the composite layup. The confinement effect

is achieved by constraining the boundary displacement of the polyurea layer along

its perimeter. Figure 8 compares the center-point displacements of the confined and

unconfined EPE configurations. The center-point displacements at the initial stages

of the loading are similar. In contrast, the peak displacement for the confined con-

figuration is approximately 30% smaller compared to the unconfined configuration.

The deformation for the unconfined configuration is significantly smaller throughout

the rest of the loading history.

The thickness effect of polyurea layer are investigated as well. The PE, EP and
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Figure 8: Effect of confinement on the evolution of center-point displacement
in EPE-configuration.

EPE configurations are revisited by imposing 3mm, 6mm and 12mm thick polyurea

layers with the same blast profile as before. Figure 9 shows the center-point dis-

placement histories for the PE, EP and EPE configurations, respectively. For all the

configurations, the increasing thickness of polyurea monotonically reduces the blast

induced damage and the deformation of the composite panels. In the case of PE

configuration, a 3mm thick polyurea layer fails to mitigate the blast response, and

complete failure of the EVE composite layer is observed. In the case of EP configura-

tion, the 12mm thick polyurea layer mitigates complete failure of the EVE composite

layer, in contrast with the 3mm and 6mm thick polyurea layer configurations. All

EPE panels with 3mm, 6mm and 12mm thick polyurea layers survive the blast, with

no significant damage accumulation within the EVE composite layer in the case of

12mm thick polyurea configuration.

6 Conclusions

In the numerical modeling: a new failure model for EVE composites that accounts

for strain-rate effects as well as the damage induced localized adiabatic heating was

proposed to accurately model the response of EVE composites subjected to blast.
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(a)

(b)

(c)

Figure 9: Effect of polyurea thickness on the evolution of center-point dis-
placement in (a) PE-configuration, (b) EP-configuration, and, (c) EPE-
configuration.
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Polyurea was modeled using a temperature and pressure dependent viscoelastic con-

stitutive model.

In the simulation findings: Strain rate hardening and temperature had limited

influence on the structural deformation and the damage accumulation of the EVE

composite panels subjected to blast at the amplitudes investigated in this study.

Among the tree configurations, the numerical results confirmed that the sandwich

configuration (EPE) exhibited better blast mitigation effect compared to the other

two configurations (i.e., EP and PE). The blast mitigation effect of polyurea was

enhanced by increasing the thickness and through confinement of the polyurea layer.

In this study, we focused our attention to relatively low blast amplitudes, in which

through thickness Hugoniot effects and the wave reflection due to microstructural

heterogeneities played a negligible role in the overall dynamic and failure responses.

When the rate and the amplitude of applied loads are high enough, the effect wave

dispersion becomes significant, and the structural dynamics and failure therefore may

not be accurately captured by the explicit finite element model with Eq. 1. This sheds

light on the research in the next chapters focusing on the wave propagation with strong

wave dispersions in composite structures.
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CHAPTER 3

MULTISCALE MODELING OF ONE DIMENSIONAL WAVE PROPAGATION

IN VISCOELASTIC COMPOSITE STRUCTURES

1 Introduction

In the previous chapter, we have concluded that viscoelastic material (e.g. polyurea)

exhibits a good mitigation effect on blast. The wave interaction and dispersion

within viscoelastic composites is of great interest especially under high frequency

waves. When wave is propagating in viscoelastic composite structures, the micro-

heterogeneity induced wave dispersion and the viscoelasticity induced material dissi-

pation coexist in the same domain, and both of the two effects are able to attenuate

wave propagation. Furthermore, by taking advantage of the two attenuating mecha-

nisms, it is possible to design a viscoelastic material based composite material with

favorable mitigation effects against blast and other acoustic loadings. In this chapter,

we start our investigation with the one-dimensional wave propagation in a viscoelastic-

elastic composite bar structure. This analysis would elucidate our thoughts, and more

complicated problems are going to be addressed in the next few chapters.

There is some, but still scarce, literature on modeling the dynamic behavior of

dispersive viscoelastic composites. Chin-Teh [20] investigated the propagation of tran-

sient cylindrical shear waves in functionally graded viscoelastic bodies, in which the

creep function varies along the radial direction. Wave propagation was modeled us-

ing the theory of propagating surfaces of discontinuities. Nayfeh [49] used a discrete

lattice model to simulate the transient response of periodic, semi-infinite, elasto-

viscoelastic composites. The dispersive solution was obtained by resolving the char-

acteristic equations for the lattice model in the Laplace domain and subsequently

transforming the solution to the time domain. Ting [73] carried out an investiga-
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tion of a semi-infinite periodic layered composite where two viscoelastic materials are

alternately positioned. The Laplace transform and asymptotic expansion of the re-

laxation modulus are used to achieve the dispersive solution. Mukherjee and Lee [47]

conducted an analysis of the dispersion and mode shapes for free vibrations in infi-

nite laminated media. The complex modulus formulation was employed to linearize

the governing differential equations. A finite difference discretization and quasi peri-

odic boundary conditions were used to solve the complex eigenvalue problem. More

recently, plane harmonic waves in unbounded periodic viscoelastic composite mate-

rials were investigated by Naciri et al. [48]. The complex modulus function based

governing equations were solved using the finite element method to investigate the

relationship between damping and dispersion. Abu-Alshaikh et al. [2] considered two

dimensional transient waves propagating in an N -layer viscoelastic medium idealized

by a two-term Prony series. The governing hyperbolic equations in the Fourier do-

main were transformed to canonical equations by the method of characteristics and

the solutions were obtained using step-by-step integration. Tsai and Prakash [74]

investigated the decay in the elastic precursor and late time dispersion of weak shock

waves in layered composites based on the Laplace transform associated with Floquet’s

theorem. Jiangong [40] idealized the response of shear waves with the Kelvin-Voigt

model in functionally graded viscoelastic plates. The dispersive solution was obtained

by approximating the response fields using a Legendre orthogonal polynomial series.

Despite the seminal contributions on modeling and characterization of the dy-

namic response of viscoelastic heterogeneous materials, modeling the effect of mi-

crostructure induced dispersion on the dissipative characteristics of viscous compos-

ites, a key fundamental knowledge for devising tailored microstructures for impact

and blast mitigation, remains to be identified. In this chapter, we propose a one-

dimensional nonlocal homogenization model for the wave dispersion in a bi-material

structure. The semi-analytical solution is sought in the Laplace domain where com-
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Figure 10: Problems at macroscale and microscale.

plex wave fields are solved.

2 Problem Setting

Consider a one-dimensional bimaterial heterogeneous body as illustrated in Fig. 10.

The domain of the body, Ω = [0, L] is formed by the repetition of a locally periodic

microstructure, Θ. The size of the material microstructure is taken to be small

compared to the overall size of the macroscopic domain. Denoting x and y as the

position coordinates at the scales of the macro- and microstructures, respectively, the

two scales are related by a small scaling parameter: y = x/ζ; where, 0 < ζ � 1 is

the ratio between the characteristic size of the microstructure and the length of the

traveling waves along the heterogeneous body.

Let f ζ(x, t) be an arbitrary response field, which oscillates in space due to fluc-

tuations induced by the material heterogeneity. We consider the following two scale

decomposition of the original single position coordinate:

f ζ(x, t) = f(x, y(x), t) (27)

where, superscript ζ indicates the dependence of the response field on the microstruc-
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tural heterogeneity; and, t denotes time. The spatial derivative of f ζ is computed by

the chain rule as:

f ζ ,x (x, t) = f,x (x, y, t) +
1

ζ
f,y (x, y, t) (28)

where, a subscript followed by a comma denotes differentiation, repeated subscripts

denotes higher order differentiation. The response fields are taken to be spatially

periodic throughout the deformation process:

f(x, y, t) = f(x, y + l̂, t); ∀x ∈ Ω (29)

in which, l̂ denotes the period of the microstructure in the stretched coordinate sys-

tem, y (Fig. 10).

2.1 Governing Equations in the Time Domain

In the time domain, the deformation response of the heterogeneous body subjected

to dynamic loading conditions is governed by the momentum balance equation in the

form:

σζ,x(x, t) = ρζ(x)uζ,tt(x, t) (30)

in which, σζ and uζ are the stress and displacement fields, respectively; and, ρζ

denotes density. A generalized viscoelastic model described by the Duhamel’s integral

is employed to provide the constitutive response of the material constituents:

σζ(x, t) =

∫ t

0

gζ(x, t− τ)εζ,τ (x, τ)dτ (31)

where, gζ is the modulus function; and, εζ denotes the strain field, assuming small

strain kinematics:

εζ(x, t) = uζ,x(x, t) (32)
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The dynamic loads are imparted on the heterogeneous body based on prescribed

displacements along the boundaries of the domain. We consider the following initial

and boundary conditions:

uζ(x, 0) = u0(x); vζ(x, 0) = v0(x) (33)

uζ(0, t) = 0; uζ(L, t) = ũ(t) (34)

in which, L is the length of the heterogeneous body; vζ = uζ,t the velocity field; and,

u0 , v0 and ũ are prescribed initial and boundary data.

2.2 Governing Equations in the Laplace Domain

The particular forms of the generalized viscoelastic constitutive model and the mo-

mentum balance equation permit a simpler description of the governing boundary

value problem in the Laplace domain. In this section, we introduce the key character-

istics of the Laplace transform employed in the formulation and recast the governing

equations in the Laplace domain.

The Laplace transform of an arbitrary, real valued, time varying function, f ∈ R,

is defined as:

f̄(s) ≡ L (f(t)) =

∫ ∞
0

e−stf(t)dt (35)

where, the Laplace argument, s and the Laplace transform, f̄ , are complex valued

(i.e., s ∈ C and f̄ := C→ C). Overbar on a response function indicates the Laplace

transform, and the representation of a function or an equation in the Laplace domain

is referred to as associated function or equation throughout the remainder of this

chapter. The derivative rule for the Laplace transform is given as:

L (f, tt . . . t︸ ︷︷ ︸
n times

(t)) = snf̄(s)− sn−1f(0)− . . .− f, tt . . . t︸ ︷︷ ︸
n−1 times

(0) (36)
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and the convolution integral rule is given as:

L

(∫ t

0

f1(t− ξ)f2(ξ)dξ

)
= L

(∫ t

0

f1(ξ)f2(t− ξ)dξ
)

= L (f1)L (f2) (37)

Considering a statically undeformed initial condition (i.e., u0(x) = v0(x) = 0),

taking the Laplace transform of the momentum balance equation (Eq. 111) and em-

ploying the derivative rule for the Laplace transform (Eq. 198) yield the associated

momentum balance equation:

σ̄ζ,x(x, s) = ρζ(x)s2ūζ(x, s) (38)

Applying the convolution integral rule (Eq. 37) to the constitutive equation of the

viscoelastic constituents (Eq. 31) and using Eq. 198 yield the associated constitutive

law:

σ̄ζ(x, s) = Eζ(x, s)ε̄ζ(x, s) (39)

in which, the associated modulus function in the Laplace domain, Eζ , is related to

the modulus function, gζ as:

Eζ(x, s) = sL
(
gζ(x, t)

)
(40)

Taking the Laplace transform of the boundary conditions yields the associated

boundary conditions:

ūζ(0, s) = 0; ūζ(L, s) = û(s) (41)

in which, û is the Laplace transform of the known boundary data, ũ. The governing

equations of the dynamic response of the heterogeneous body defined in the Laplace

domain is summarized in Box 1.
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Given ρζ , Eζ , and û; find ūζ ∈ C such that in x ∈ Ω and s ∈ C

Momentum balance: σ̄ζ,x(x, s) = ρζ(x)s2ūζ(x, s)

Kinematics equation: ε̄ζ(x, s) = ūζ,x(x, s)

Constitutive equation: σ̄ζ(x, s) = Eζ(x, s)ūζ,x(x, s); Eζ(x, s) = sL
(
gζ(x, t)

)
Boundary conditions ūζ(0, s) = 0; ūζ(L, s) = û(s)

Box 1: Governing boundary value problem in the Laplace domain.

The density and modulus are taken to vary as a function of the microscale coor-

dinates only. For a bimaterial microstructure:

Eζ = E(y, s) =

 E1(s) if y ∈ Θ(1)

E2(s) if y ∈ Θ(2)
(42)

ρζ = ρ(y) =

 ρ1 if y ∈ Θ(1)

ρ2 if y ∈ Θ(2)
(43)

where, Θ(1) and Θ(2) are the domains of phases 1 and 2, respectively, such that

Θ = Θ(1) ∪Θ(2); and, {E1, ρ1} and {E2, ρ2} are the material parameters defining the

corresponding phases.

3 Nonlocal Homogenization

In this section, a nonlocal homogenization model is devised for the dynamic response

of viscoelastic bimaterial composites by applying the mathematical homogenization

theory with multiple spatial scales on the governing equations defined in the Laplace

domain. The derivation follows the procedure originally proposed by Fish et al. [31],

who devised a nonlocal homogenization model for linear elastic bimaterial composites

by employing the mathematical homogenization theory in the time domain.

We start by approximating displacement based on the asymptotic expansion of
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the form:

uζ(x, t) ≡ u(x, y, t) = u0(x, t) + ζu1(x, y, t) + ζ2u2(x, y, t) + ζ3u3(x, y, t) +O(ζ4) (44)

where, u0 denotes the macroscopic displacement field and is independent of the mi-

crostructure; and, ui are spatially oscillatory high-order displacement fields. By lin-

earity of the Laplace transform, the associated displacement field is also expressed in

terms of the asymptotic series:

ū(x, y, s) = ū0(x, s) + ζū1(x, y, s) + ζ2ū2(x, y, s) + ζ3ū3(x, y, s) +O(ζ4) (45)

Substituting Eq. 45 into the associated constitutive law (Eq. 39), the stress-strain

relationships at any order are obtained as:

O(ζ i) : σ̄i (x, y, s) = E(y, s)(ūi,x + ūi+1,y); i = 0, 1, . . . (46)

Substituting Eq. (45) and the constitutive equations at various orders (Eq. 46)

into the associated momentum balance equation (Eq. 38), the momentum balance

equations of orders O(ζ−1) to O(ζ2) are expressed as:

O(ζ−1) : [E(y, s)(ū0,x +ū1,y )] ,y = 0 (47)

O(1) : ρ(y)ū0s
2 − [E(y, s)(ū0,x +ū1,y )] ,x− [E(y, s)(ū1,x +ū2,y )] ,y = 0 (48)

O(ζ) : ρ(y)ū1s
2 − [E(y, s)(ū1,x +ū2,y )] ,x− [E(y, s)(ū2,x +ū3,y )] ,y = 0 (49)

O(ζ2) : ρ(y)ū2s
2 − [E(y, s)(ū2,x +ū3,y )] ,x− [E(y, s)(ū3,x +ū4,y )] ,y = 0 (50)

Considering the balance equations at the lower two orders (Eqs. 47 and 48) leads

to the classical homogenization model [e.g. 54]. The classical homogenization model

is local in character and valid only when displacement wavelengths are large enough
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that the wave reflections along the bimaterial interfaces are negligible. The O(ζ)

and O(ζ2) balance equations introduce high order terms in the resulting homoge-

nized equations, leading to a nonlocal homogenization model that can account for

the dispersion induced by wave reflections at material microstructure boundaries.

Consider the O(ζ−1) associated boundary value problem (Eq. 47). By linearity,

the first order microscale associated displacement field, ū1, is expressed using the

following decomposition:

ū1(x, y, s) = Ū1(x, s) +H(y, s)ū0,x (x, s) (51)

where, H denotes the first order microscopic influence function providing the os-

cillatory component of ū1, whereas Ū1 denotes the macroscopic contribution of ū1.

Applying Eq. 51 to Eq. 47, a linear equilibrium equation for the first order microscopic

influence function is obtained:

{E(y, s)(1 +H,y)},y = 0 (52)

Equation 52 is evaluated by imposing the periodicity, continuity and normality

conditions. The periodicity of the influence function follows from the periodicity of

the displacement field:

H(y = 0, s) = H(y = l̂, s); σ̄0(x, y = 0, s) = σ̄0(x, y = l̂, s) (53)

in which, l̂ = l/ζ; and, l is the physical length of the microstructure. The continuity of

the microscale response fields across the bimaterial interfaces are ensured by imposing
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the following constraints:

lim
ν→0

H(y = αl̂ + ν+, s)−H(y = αl̂ − ν−, s) = 0 (54)

lim
ν→0

σ̄0(x, y = αl̂ + ν+, s)− σ̄0(x, y = αl̂ − ν−, s) = 0 (55)

where, 0 ≤ α ≤ 1 is the volume fraction of phase 1 in the bimaterial microstructure

as shown in Fig. 10. The uniqueness of the influence function is ensured by imposing

the normality condition on the microscale associated displacement field, ū1:

〈ū1(x, y, s)〉 = Ū1(x, s)→ 〈H(y, s)〉 = 0 (56)

where, MacCauley brackets, 〈·〉, denote the spatial averaging over the microstructure:

〈f〉 =
1

|Θ|

∫
Θ

f(x, y, s)dy (57)

where, |·| is the size of the microstructural domain (i.e., |Θ| = l̂). Considering the

constraints in Eqs. 53-56, the influence function is evaluated in a closed form as

follows,

H(y, s) =


(1− α)(E2(s)− E1(s))

(1− α)E1(s) + αE2(s)

(
y − αl̂

2

)
; y ∈ Θ(1)

α(E1(s)− E2(s))

(1− α)E1(s) + αE2(s)

(
y − (1 + α)l̂

2

)
; y ∈ Θ(2)

(58)

The O(1) homogenized equilibrium equation is obtained by applying the averaging

operator (Eq. 57) to the associated balance equation (Eq. 48) . Considering the

periodicity of the first order associated microscopic stress, σ̄1 yields:

ρ0ū0s
2 − E0(s)ū0,xx = 0 (59)
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where, ρ0 and E0(s) denote the homogenized density and homogenized associated

modulus function, respectively:

ρ0 ≡ 〈ρ〉 = αρ1 + (1− α)ρ2 (60)

E0(s) = 〈E(y, s)(1 +H,y)〉 =
E1(s)E2(s)

(1− α)E1(s) + αE2(s)
(61)

Next, we consider the O(1) associated momentum balance equation (Eq. 48).

Substituting Eqs. 51 and 59 into Eq. 48 yields:

{
E(y, s)(ū2,y + Ū1,x +Hū0,xx)

}
,y

= {(θ(y)− 1)E0} ū0,xx (62)

where, θ(y) = ρ(y)/ρ0. By linearity, the second order microscale associated displace-

ment field, ū2 is expressed as:

ū2(x, y, s) = Ū2(x, s) +H(y, s)Ū1,x(x, s) + P (y, s)ū0,xx(x, s) (63)

in which, P (y, s) is the second order microscale influence function. Considering the

periodicity, continuity and normality constraints, P is uniquely evaluated by Eq. 62

in closed form. Employing the closed form expression for the second order microscale

influence function and considering the periodicity of the second order stress field,

σ̄2, the O(ζ) homogenized momentum balance equation is obtained by applying the

averaging operator to Eq. 49:

ρ0Ū1s
2 − E0Ū1,xx = 0 (64)

The third order associated microscale displacement field, ū3 is determined using

the O(ζ) momentum balance equation (Eq. 49). Decompositions of the lower or-

der microscale displacement fields (Eqs. 51 and 63) and the homogenized balance
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equations (Eqs. 59 and 64) at O(1) and O(ζ) are substituted into Eq. 49 to yield:

{
E(y, s)(ū3,y + Ū2,x +H(y, s)Ū1,xx + P (y, s)ū0,xxx)

}
,y

= {θ(y)E0(s)H(y, s)− E(y, s)(H + P,y)} ū0,xxx + {(θ(y)− 1)E0(s)} Ū1,xx (65)

We consider the following form for the third order associated microscale displacement

field:

ū3(x, y, s) = Ū3(x, s) +H(y, s)Ū2,x +P (y, s)Ū1,xx +Q(y, s)ū0,xxx (66)

where, Q(y, s) is the third order microscale influence function. Analogous to the

evaluation of the lower order influence functions, Q is uniquely determined from

the O(ζ) momentum balance equation provided that the periodicity, continuity and

normality conditions are imposed.

The O(ζ2) homogenized momentum balance equation is obtained by applying the

averaging operator to Eq. 50 and utilizing the expressions of P (y, s) and Q(y, s):

ρ0Ū2s
2 − E0Ū2,xx =

1

ζ2
Edū0,xxxx (67)

where,

Ed(s) =
[α(1− α)]2(E1ρ1 − E2ρ2)2E0l

2

12ρ2
0[(1− α)E1 + αE2]2

(68)

Consider the average associated displacement field up to O(ζ3):

Ū(x, s) = 〈ū(x, y, s)〉 = ū0(x, s) + ζŪ1(x, s) + ζ2Ū2(x, s) +O(ζ3) (69)

Summing the homogenized momentum balance equations at orders O(1), O(ζ), and

O(ζ2) (Eqs. 59, 64 and 67), a governing homogenized balance equation for Ū is ob-
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tained in the following form:

ρ0s
2Ū − E0Ū ,xx−EdŪ ,xxxx = 0 (70)

It is important to note that the dispersive behavior is captured due to the presence

of the last term in Eq. 70. The coefficient Ed introduces a characteristic length

term (proportional to l2). Introducing the dispersive term in the governing equation

leads to a fourth order ordinary differential equation for the evaluation of associated

homogenized displacement field, Ū(x, s) in the Laplace domain. This is in contrast

to the time domain analysis by Fish et al. [31], which leads to a partial differential

equation for the evaluation of the homogenized displacement field in the time domain.

Since the governing equation is of the fourth order, the boundary conditions of the

original initial boundary value problem provided in Eq. 41 is not sufficient to uniquely

determine Ū . We therefore consider two additional artificial boundary conditions:

Ū,xx(0, s) = 0, Ū,xxx(L, s) = 0 (71)

The resulting boundary value problem for the homogenized nonlocal response of the

heterogeneous body subjected to the dynamic loads is summarized in Box 2.

Given ρζ , Eζ , and û; find Ū ∈ C such that in x ∈ Ω and s ∈ C

Macro-homogenized equilibrium equation: ρ0s
2Ū − E0Ū ,xx−EdŪ ,xxxx = 0

Essential boundary conditions: Ū(0, s) = 0 Ū(L, s) = û(s)

Additional boundary conditions: Ū,xx(0, s) = 0 Ū,xxx(L, s) = 0

Box 2: Governing boundary value problem for the nonlocal homogenization model.
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4 Solution Procedures

This section provides the analytical solutions of the nonlocal homogenization model,

the classical homogenization model and the direct single scale boundary value prob-

lem. The computation of the dissipated energy density at a material point in the

Laplace domain and the discrete Laplace transform method employed to describe the

computed response fields in the time domain are presented.

4.1 Homogenization Models

The fourth order ordinary differential equation for the nonlocal homogenization model

provided in Box 2 is analytically evaluated by considering the following form for the

homogenized displacement field:

Ū(x, s) = A(s) sinh(ξx) +B(s) sinh(ηx) (72)

in which, the coefficients, A, B, ξ and η are obtained using the boundary conditions

as:

A(s) =
û(s) η3

(η3 − ξ3) sinh(ξL)
; B(s) =

û(s) ξ3

(ξ3 − η3) sinh(ηL)
(73a)

ξ =

√
−E0 +

√
E2

0 + 4ρ0Eds2

2Ed
; η =

√
−E0 −

√
E2

0 + 4ρ0Eds2

2Ed
(73b)

When the homogenization is conducted up to order O(ζ), the formulation de-

scribed in Section 3 leads to the classical homogenization model governed by the

following second order ordinary differential equation:

ρ0s
2ū0 − E0ū0,xx = 0 (74)
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Equation 74 is evaluated analytically using the following form:

ū0(x, s) = C(s) sinh(ϕx) (75)

The coefficients C and ϕ are obtained using the boundary conditions as follows:

C(s) =
û(s)

sinh (ϕL)
; ϕ =

sign(Re(s))

V0

s; V0 =

√
E0

ρ0

(76)

where, V0 is the frequency dependent homogenized velocity.

4.2 Original Governing Equations

Given ρi, Ei and û; find ūni ∈ C such that in x ∈ Ω and s ∈ C

Equilibrium equation: Eiū
n
i ,xixi (xi, s) = ρis

2ūni (xi, s)

Constitutive equation: σ̄ni (xi, s) = Eiū
n
i ,xi (xi, s)

Interface continuities: ūn1 (αl, s) = ūn2 (0, s) ūn2 ((1− α)l, s) = ūn+1
1 (0, s)

σ̄n1 (αl, s) = σ̄n2 (0, s) σ̄n2 ((1− α)l, s) = σ̄n+1
1 (0, s)

Boundary conditions: ū1
1(0, s) = 0 ūN2 ((1− α)l, s) = û(s)

Box 3: Summary of the boundary value problem for the nth microstructure

In this section, we derive the analytical solution of the original governing boundary

value problem summarized in Box 3. The analytical solution derived in this section

is employed as the reference solution in the numerical simulations that are discussed

in the subsequent sections. The analytical solution is obtained by exploiting the

governing equation in each microstructural phase along the heterogeneous body and

enforcing continuity across each bimaterial interface.

We start by numbering microstructures along the bar. At the nth microstructure

(n = 1, . . . , N , where N denotes total number of microstructures ). We define two
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position coordinates x1 and x2 to parameterize the phase domains Ωn
1 = [0, αl] and

Ωn
2 = [0, (1 − α)l], respectively. The boundary value problem for each phase of the

nth microstructure including the continuity conditions for the displacements, ūni and

stresses, σ̄ni at the interfaces are summarized in Box 3.

The general solution for the equilibrium equation in the boundary value problem

is:

ūni (x, s) = Ani exp(γix) +Bn
i exp(−γix) (77)

with,

γi =
sign(Re(s))

Vi
; Vi =

√
Ei
ρi

(78)

where, Vi is the complex wave velocity of phase i. The displacement and stress fields

at the boundaries of each phase of the nth microstructure read:

ūn1 (0, s) = An1 +Bn
1 , σ̄n1 (0, s) = An1η1 −Bn

1 η1 (79)

ūn1 (αl, s) = An1ξ1 +Bn
1 /ξ1, σ̄n1 (αl, s) = An1η1ξ1 −Bn

1 η1/ξ1 (80)

ūn2 (0, s) = An2 +Bn
2 , σ̄n2 (0, s) = An2η2 −Bn

2 η2 (81)

ūn2 ((1− α)l, s) = An2ξ2 +Bn
2 /ξ2, σ̄n2 ((1− α)l, s) = An2η2ξ2 −Bn

2 η2/ξ2 (82)

where

ξ1 = exp (γ1αl) , ξ2 = exp (γ2(1− α)l) (83)

η1 = E1γ1, η2 = E2γ2 (84)

The boundary and continuity conditions of displacement and stress fields are used to

determine the unknowns Ani and Bn
i :

Boundary conditions:
A1

1 +B1
1 = 0 (85)

AN2 ξ2 +BN
2 /ξ2 = û(s) (86)
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Displacement continuities: An1ξ1 +Bn
1 /ξ1 = An2 +Bn

2 (87)

An2ξ2 +Bn
2 /ξ2 = An+1

1 +Bn+1
1 (88)

Stress continuities: An1η1ξ1 −Bn
1 η1/ξ1 = An2η2 −Bn

2 η2 (89)

An2η2ξ2 −Bn
2 η2/ξ2 = An+1

1 η1 −Bn+1
1 η1 (90)

Equations 85 - 90 are expressed in the following matrix form:

MX = F (91)

where,

M(4N×4N) =



1 1

ξ1 1/ξ1 −1 −1 0

η1ξ1 −η1/ξ1 −η2 η2

ξ2 1/ξ2 −1 −1

η2ξ2 −η2/ξ2 −η1 η1

. . .

ξ1 1/ξ1 −1 −1

0 η1ξ1 −η1/ξ1 −η2 η2

ξ2 1/ξ2


(92)

and,

F(4N×1) = [0, 0, . . . , 0, û(s)]T (93)

X(4N×1) =
[
A1

1, B
1
1 , A

1
2, B

1
2 . . . , A

N
1 , B

N
1 , A

N
2 , B

N
2

]T
(94)
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Evaluating Eq. 91 provides the analytical (reference) solution. To compare the ho-

mogenized response computed by the homogenization models described in Section

4.1, we average the computed displacement field over each microstructure:

Ūn(s) =
1

l

(∫ αl

0

ūn1 (x, s)dx+

∫ (1−α)l

0

ūn2 (x, s)dx

)
(95)

Substituting equation 77 into 95:

Ūn(s) =
1

l

{[
An1 (ξ1 − 1)−Bn

1

(
1

ξ1

− 1

)]
1

γ1

+

[
An2 (ξ2 − 1)−Bn

2

(
1

ξ2

− 1

)]
1

γ2

}
(96)

The dimension of the matrix M is 4N × 4N , which indicates that the computational

cost of the reference solution increases as a function of the number of microstructures

along the heterogeneous body. Computational time could therefore prohibit the eval-

uation of problems with a large number of microstructures. The analytical solution

is only employed for the verification of the nonlocal homogenization model.

4.3 Inverse Laplace Transform

Since all the associated fields are derived in the Laplace domain, it is necessary to

transform the response fields into the time domain. The numerical inverse Laplace

Transform Method [17] based on Fast Fourier Transform and the ε-error algorithm [43]

is used for transforming the response fields to the time domain. The inverse Laplace

Transform is defined as,

f(t) =
1

2πi

∫ c+i∞

c−i∞
F (s)estds (97)

with the assumptions that, |f(t)| ≤ Keβt, where, K is real and positive; t > 0;

and Re(s) > β. The numerical inverse Laplace transform is computed by Nv-term

truncation, F(Nv) of the transformed function values of F (s), with the subscript Nv
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denoting the dimension of the vector:

f(Mv) = C(Mv) ◦
{

2Re
[
E (FFT(F(Nv)))

]
− F0(Mv)

}
(98)

where, ◦ denotes the Hadamard product of matrices, e.g. the element-by-element

product; E (·) represents the ε-error algorithm, and F0(Mv) is a Mv-element constant

vector of c which can be computed as,

c = β − Ω

2π
lnEr (99)

Ω = π(1− 1/Mv)/tm (100)

where tm = (Mv−1)Ts and Mv = Nv/2. Ts is the sampling period in the time domain,

Er the desired relative error, and:

C(Mv)(k) =
Ω

2π
exp(ckTs) (101)

F(Nv)(n) = F (c− inΩ) n = 0, 1, . . . , Nv − 1 (102)

A more detailed description of the inverse Laplace transform method is presented

by Brancik [17].

4.4 Dissipated Energy

The rate of dissipated energy density for the viscoelastic material model using the

Duhamel’s integral takes the following form [34]:

Ẇd(x, y, t) =

∫ t

0

∫ t

0

−ġ(x, y, 2t− τ1 − τ2)ε,τ1(x, y, τ1)ε,τ2(x, y, τ2)dτ1dτ2 (103)

Equation 103 requires the computation of strain field in the time domain. In the

Laplace domain, the associated macroscopic strain, ε̄ is related to the associated
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displacement field as follows,

ε̄(x, y, s) = ū,x (104)

Substituting Eq. 45 and the linearizions of ū1, ū2, and, ū3 (i.e. Eqs. 51, 63) and 66,

into Eq. 104, we can simplify the expression for associated strain:

ε̄(x, y, s) = (1 +H,y)Ū,x + ζ(H + P,y)Ū,xx + ζ2(P +Q,y)Ū,xxx +O(ζ3) (105)

in which, the localization functions, (1 + H,y), (H + P,y) and (P + Q,y) are readily

available through differentiation of the influence functions and provided in Appendix

A. The reference solution provides the associated strain of phase i in microstructure

Ωn
i as:

ε̄ni (xi, y, s) = Ani γi exp(γixi)−Bn
i γi exp(−γixi) i = 1, 2 and n = 1, 2, ..., N (106)

The rate of dissipated energy density is evaluated by inverting the associated strain

and substituting it into the real time domain using the numerical inverse Laplace

transform.

5 Numerical Examples

A series of simulations have been conducted to assess the validity of the proposed

nonlocal homogenization model and investigate the energy dissipation characteristics

of a one-dimensional bi-material viscoelastic-elastic structure. The capabilities of the

model is verified against the analytical solution of the original single scale boundary

value problem and the classical local homogenization model.

The material moduli function that represents the material properties at the scale
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Table 4: Viscoelastic material parameters for polyurea [5].

k1 [MPa] k2 [MPa] k3 [MPa] k4 [MPa] ke [MPa]
37.8918 75.5328 161.0112 194.5216 44.8

q1 [ms] q2 [ms] q3 [ms] q4 [ms] ρ [kg/m3]
463.4 0.06407 1.163× 10−4 7.321× 10−7 1070

of microstructure is modeled as:

g(y, t) =


E1 if y ∈ Θ(1)

ke +
n∑
i=1

kie
−t/qi if y ∈ Θ(2)

(107)

where n is number of Prony series. In all cases below, the first phase is taken to be

elastic, whereas the second phase is viscoelastic, modeled by a Prony series approxi-

mation. The viscoelastic material idealizes the response of the polyurea material. The

material properties of polyurea is provided by Amirkhizi et al. [5] and summarized in

Table 4. Applying the Laplace transform to the modulus function yields:

E(y, s) =


E1 if y ∈ Θ(1)

E2(s) = ke +
n∑
i=1

kis

s+ 1
qi

if y ∈ Θ(2)
(108)

The dissipated energy computations are conducted by taking advantage of the

Prony series approximation. The rate of dissipated energy at the viscoelastic phase

is expressed as:

Ẇd(x, t) =
n∑
i=1

ki
qi
εid(x, t)ε

i
d(x, t) (109)

where,

εid(x, t) =

∫ t

0

exp (−(t− τ)/qi) ε̇ dτ (110)
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t[s]

(a) (b)

Figure 11: Applied boundary conditions.

5.1 Model Verification: Dispersion and Dissipation

In this section, we verify the capability of the nonlocal homogenization model (NHM)

in capturing wave dispersion and dissipation in the underlying structure. The re-

sponse of NHM is compared to the classical homogenization model (CHM) and the

analytical solution of the reference model (AS). The ratio of the macroscopic and mi-

croscopic domain sizes (i.e., N) is set as 40. The modulus of the elastic phase (phase

1) is taken as 1 GPa, and the two phases have equal volume fractions (i.e., α = 0.5).

First, we consider the response when the end of the bar is subjected to step load-

ing with magnitude M0 as illustrated Fig. 114a. We evaluate the response of the bars

with four different density contrast in the microstructure (i.e., φ = ρ1/ρ2 = 1, 2, 5, 10).

The normalized displacement histories as a function of the normalized time (i.e., t/T

where, T denotes the observation duration) are shown in Fig. 12 for the four density

ratios as computed using NHM, CHM and the reference solutions. The displacement

histories are recorded at 0.82L distance from the fixed end of the bar. The “cycles”

observed in Fig. 12 are due to the repeated reflections of the wave at the fixed and

loaded boundaries of the domain. In Figs. 12a-d, the distance between the displace-

ment peak and trough at each cycle reduces, indicating progressive attenuation of

the wave. At the asymptote of complete attenuation, the normalized displacement

at the control point approaches 0.82. This corresponds to the uniform strain state
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induced by a quasi-statically applied unit displacement at the loaded end. At all

density ratios, the results indicate good agreement between the nonlocal homoge-

nization approach and the reference solution. Figures 12a-d illustrate that the wave

dispersion increases with the density ratio in the microstructure. While the nonlocal

model accurately accounts for the wave dispersion at high density ratios, the classical

homogenization model fails to capture the wave dispersions. Yet, the dissipation pat-

terns are accurately captured by CHM, which indicates that the attenuation induced

by wave dispersion is relatively small. In other words, the dispersion induced atten-

uation can only be captured by taking account of the higher order derivative term in

NHM, however the viscoelastic dissipation resulting from the viscoelastic modulus is

included in both the NHM and CHM.

In the simulations displayed in Fig. 12, the density ratios of (i.e., φ = 1, 2, 5, 10)

are set by increasing the density of the elastic constituent, ρ1, while keeping the

density of the viscoelastic constituent, ρ2, constant. The density of the homogenized

constituent, ρ0, in Eq. 60 therefore increases as φ is increased, leading to lower wave

velocity of the homogenized domain and slower propagation. The effect of dispersion

induced internal scattering on the propagation rate at high density ratios is relatively

minor. This is because the CHM model is able to capture the slower propagation of

the wave at high density ratios accurately, despite missing the dispersion effects.

Next, we investigate the response of the bar when subjected to sinusoidal loading

as illustrated in Fig. 114b. The applied loadings is parameterized by the magnitude,

M0 and the frequency, θ. The density ratio, φ of the heterogeneous bar is set to

10. Figure 13 shows the normalized displacement history for identical heterogeneous

bars vibrating at four different frequencies ( θ = 10, 30, 50, and 70 Hz) recorded

at 0.82L distance from the fixed end of the specimen. At relatively low frequency

loading (e.g., θ = 10 Hz), the classical and the nonlocal homogenization models

capture the response reasonably accurately, with the exception of the phase shift and
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Figure 12: Displacement histories under different density ratios when sub-
jected to step loading.
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Figure 13: Displacement histories under different loading frequencies when
subjected to sinusoidal loading.
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Figure 14: Dissipated energy density histories under different loading fre-
quencies.

accompanying reduction in the peak amplitude originating from the wave reflections

at the fixed end. At the higher frequency loadings (θ = 30 and 50Hz), the attenuation

due to heterogeneity induced wave dispersions becomes significantly more pronounced

since the shorter wavelength events reflect at the bimaterial interfaces, dissipating

energy in the viscous phase. At the highest frequency (i.e., θ = 70 Hz), the wave

dissipates within a short distance from the applied loading. CHM cannot predict

such a attenuation phenomena as apparent in Fig. 13.

The dissipated energy analysis enhances the findings from the displacement re-

sults. The dissipated energy density is observed at the same place (0.82L distance

from the fixed end). The NHM and reference solutions are in good agreement, how-

ever the CHM solution shows discrepancy with the other two solutions, especially

at higher loading frequencies. Specifically, the excessive over-prediction of the dis-

sipated energy density when θ = 70 indicates wave propagation at the observation

point. In contrast, the other two solutions provide the opposite conclusions, i.e., wave

propagation is forbidden since little dissipated energy or displacement is found at the

observation point.
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(a) α = 0.1 (b) α = 0.25

(c) α = 0.4 (d) α = 0.6

(e) α = 0.75 (f) α = 0.9

Figure 15: Macrostructural analysis of the displacements for different mi-
crostructures.

5.2 Microstructural Effects on Phononic Bands

In the frequency domain, the wave propagation exhibits band structures including

passbands and stopbands. Band structures are due to the wave dispersion in het-

erogeneous microstructures. Wave propagation is active in passbands and prohibited

in stopbands. Band structures were found in the electronic structures which exhibit

photonic bandgaps (i.e., stopbands)[79, 80] and in the acoustic structures which ex-

hibit phononic bandgaps. Phononic bands have been found in different materials
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[41, 67, 75].

The previous results have shown the appearance of phononic bandgap in the cur-

rent dispersive system. Next, we investigate the microstructural effects on band

structures. A steel-polyurea composite bar is considered. The material properties of

the viscoelastic polyurea phase are summarized in Table 4. The density and modulus

of the elastic steel phase are set to ρ1 = 7847 kg/m3 and E1 = 200 GPa, respectively.

The bar is subjected to a sinusoidal loading with the loading frequency of θ = 80 Hz.

The ratio of the macroscopic and microscopic domain sizes is set as N = 20. The dy-

namic response of the composite is investigated for six microstructural configurations

(α=0.1, 0.25, 0.4, 0.6, 0.75 and 0.9). The proposed nonlocal homogenization model

is employed to predict structural responses.

Figure 15 displays the normalized displacement profiles as a function of time and

position for the duration of the dynamic loading. When the microstructure consists

largely of the polyurea or the steel phase (i.e., α = 0.1 and α = 0.9, respectively),

wave propagation extends throughout the length of the bar. For intermediate config-

urations with comparable polyurea and steel volume fractions (i.e., α = 0.25, 0.4, 0.6

and 0.7), the propagation attenuates within approximately a tenth of the bar, point-

ing to the occurrence of bandgap. Based on this observation, we can confirm that,

band structures are able to be altered by changing microstructural properties.

6 Computational Efficiency

In addition to the favorable accuracy of the nonlocal homogenization model demon-

strated above, it is computationally significantly more efficient compared to the refer-

ence simulation. While NHM employs a single equilibrium equation in the evaluation

of the dynamics response, the reference model requires the solution of a 4N × 4N

system of equations leading to significant computational cost. For instance, when

500 microstructures are included in the problem (i.e., N = 500), the computational
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time required to solve the reference problem is three orders of magnitude larger than

the nonlocal model. Such an analysis required approximately two minutes computa-

tion time for the nonlocal homogenization model using a single workstation, whereas

several days were required to complete the same analysis based on the reference so-

lution. This drawback makes using the analytical solution for simulating responses

in structures having a large number of microstructures intractable, and the nonlo-

cal homogenization is favorable compared to the CHM and the reference solution

by providing accurate predictions at both scales while maintaining satisfactory time

efficiency.

7 Conclusions

A nonlocal homogenization model is derived to account for the one-dimensional wave

dispersion in bi-material viscoelastic-elastic structures. The homogenization model is

based on the mathematical homogenization theory with multiple spatial scales applied

in the Laplace domain. The high order equilibrium terms in the asymptotic expansion

is incorporated to reveal the micro-heterogeneity induced wave dispersion.

An important finding in this chapter is that the viscoelastic-elastic bar exhibits the

passband and stopband under different loading frequencies. This finding demonstrates

the capability of microstructures on wave attenuation. In addition, this capability can

be enhanced by optimizing microstructural properties. Since the numerical examples

in this chapter are limited to one-dimensional wave propagation, and the nonlocal

homogenization solution is of a semi-analytical form, the generality of microstructural

influence on wave attenuation cannot be achieved. In the next chapters, attention

will be focused on developing a numerical solution for wave propagation in multi-

dimensional composite structures. In addition, microstructural influence on wave

attenuation will be demonstrated with general problem definitions.
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CHAPTER 4

MULTISCALE MODELING OF MULTI-DIMENSIONAL WAVE PROPAGATION

IN ELASTIC COMPOSITE STRUCTURES

1 Introduction

Wave propagation exhibits much more complex dispersion patterns in multi-dimensional

composite structures where analytical solutions usually cannot be derived due to the

complexity of problem definitions. A computational model is therefore necessary for

multi-dimensional wave propagation in composite structures.

The effects of micro-inertia and dispersion have been recently modeled using gra-

dient enhancement [14], time-harmonic Bloch expansions [66], scale bridging through

Hamilton’s principle [77], and models based on Mindlin’s theory [28, 35]. These ap-

proaches require the incorporation of high order strain and inertia gradient terms

to the macroscopic equations of motion. The work in Chapter 3 provides us with

the multiscale homogenization theory [10, 15, 38] applied in wave dispersion prob-

lems. In order to capture the dispersion effects, it is necessary to include higher order

terms in the asymptotic expansions. Chen and Fish [19] recognized the presence of

numerical instability for large time windows and proposed a space-time homogeniza-

tion model that regularizes the long-time behavior in the presence of dispersion. A

stable homogenization model that does not require multiple time scales was devised

by Fish et al. [30], where higher order equilibrium terms were included in the for-

mulation. This rigorous homogenization model is only valid for the dispersion due

to modulus disparities in microstructures, and only in the presence of displacement

boundary conditions. Bakhvalov and Eglit [12] applied the mathematical homoge-

nization theory to study wave propagation in thin heterogeneous plates. Andrianov

et al. [6] provided analytical solutions by incorporating the high order homogenization
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modeling to investigate the wave dispersion in composite rods and square lattice of

cylindrical inclusions. The two latter investigations focused on specific microstruc-

tural topologies. Recently, Fish et al. [32] proposed a new dispersion formulation,

where the micro-inertia effects are introduced based on an eigenstrain formulation.

This formulation was generalized to account for nonlinear behavior. Andrianov et al.

[7, 8] also addressed micro-inertia effects in nonlinear heterogeneous media using the

homogenization method.

All the aforementioned models are able to capture the microstructural heterogene-

ity induced wave dispersion within the corresponding problem definitions. However,

the revelation of band structures is also one of the requirements for the underlying

computational model. This is because phononic band structures have been found

in both simulations and experiments [41, 67, 75], and stopband is able to attenuate

wave propagation effectively as discussed in Chapter 3. On the other hand, com-

plex wavenumber needs to be incorporated in the acoustic wave equations to reveal

bandgaps (i.e., stopbands) in phononic bands. A few computational models have

been proposed to capture phononic bands. Suzuki and Yu [70] and Andrianov et al.

[6] incorporated complex wavenumber in the Bloch-Floquet’s wave theorem, and the

calculated dispersion relation for certain periodic elastic structures indicated the ap-

pearance of stopband. However, the wave propagations are limited to certain strict

problem definitions, e.g., one-dimensional wave, and with analytical solutions.

Based on the above discussion, there is not a computational model capable of ac-

counting wave dispersion, phononic bands and multi-dimensional wave propagation

altogether. Therefore, in this chapter, we focus on deriving a new computational

model considering all these factors. We extend the high order homogenization model

proposed by Fish et al. [30] to include complete microstructural disparities and trac-

tion boundary conditions. In addition, we solve the macroscopic problem using the

hybrid Laplace transform-finite element method [18, 61] in order to involve complex
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wavenumber which is necessary for capturing phononic bands.

2 Problem Setting

Let Ω ∈ Rnsd denote the domain of a heterogeneous body subjected to dynamic loads

as illustrated in Fig. 16 and nsd is the number of space dimensions. The equation of

motion for the body occupying Ω is:

σζij,j(x, t) = ρζ(x)üζi (x, t) (111)

where σζ denotes the stress tensor, ρζ the density, and uζ the displacement. ζ rep-

resents the dependency of response fields on microstructural heterogeneities, i.e. re-

sponse fields oscillate at wavelengths of the order of characteristic volume size. x

denotes the position coordinate, and t ∈ [0, t0] the time variable, and t0 is the end

of observation period. Comma in the subscript denotes spatial derivative and over-

head dot represents temporal derivative. The problem is formulated in Cartesian

coordinate system using index notation following the Einstein convention (repeated

indices indicate summation). Bold fonts are reserved for tensor and matrix/vector

representations. The constitutive response of the heterogeneous body with elastic

constituents is expressed as:

σζij(x, t) = Cζ
ijkl(x)εζkl(x, t) (112)

where Cζ is the elastic modulus tensor, which is strongly elliptic and possesses major

and minor symmetries, and εζ the strain tensor. Under the assumption of small

deformation:

εζij(x, t) =
1

2

(
uζi,j(x, t) + uζj,i(x, t)

)
(113)
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Figure 16: Schematic representation of the problem setting.

The oscillation of response fields due to microstructural heterogeneities is induced by

the contrast of elastic moduli and densities of micro-constituents. Equations 111-113

are considered together with the following boundary conditions:

uζi (x, t) = ūi(x, t); x ∈ Γu (114a)

σζij(x, t)nj = t̄i(x, t); x ∈ Γt (114b)

in which n is the outward unit normal vector along the traction boundaries. ū and

t̄ denote the prescribed displacement and traction data on Γu and Γt, respectively.

The boundary conditions are defined such that Γ ≡ ∂Ω = Γu ∪ Γt; Γu ∩ Γt = ∅. The

initial conditions are:

uζi (x, 0) = ûi(x); x ∈ Ω (115a)

u̇i
ζ(x, 0) = v̂i(x); x ∈ Ω (115b)

where û and v̂ denote the initial displacement and velocity data, respectively.

In this work, the initial boundary value problem (IBVP) defined using Eqs. 111-

115 is evaluated using the computational homogenization method with multiple spa-
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tial scales. The macroscale coordinate vector, x, parameterizes the macroscopic do-

main, Ω, and the microscale (stretched) coordinate vector, y, parameterizes the char-

acteristic volume (e.g. representative volume or unit cell) denoted as Θ. y is related

to the macroscale coordinate system, x as y = x/ζ, where ζ is the scaling factor

( 0 < ζ < 1) defined as the ratio between the size of the characteristic volume, Θ

and the relevant shortest wavelength describing the homogenized response. An arbi-

trary response function, f ζ , is expressed using the micro- and macroscopic coordinate

vectors:

f ζ(x) = f(x,y(x)) (116)

The derivative of the response field is computed using the chain rule:

f ζ,xi(x) = f,xi(x,y) +
1

ζ
f,yi(x,y) (117)

All response fields are assumed to be locally periodic over the characteristic volume

throughout the deformation process:

f(x,y) = f(x,y + kŷ) (118)

where ŷ denotes the period of the microstructure; and k is a nsd×nsd diagonal matrix

with integer components.

3 Mathematical Homogenization

In this section, the multiscale representations of the response functions are used along

with the asymptotic analysis of the original IBVP defined by Eqs. 111–115 to for-

mulate a high order computational homogenization model. The displacement field is
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approximated using an asymptotic expansion with respect to the scaling factor, ζ:

uζi (x, t) = ui(x,y, t) = u0
i (x, t) + ζu1

i (x,y, t) + ζ2u2
i (x,y, t) + ζ3u3

i (x,y, t) +O(ζ4)

(119)

where the leading order displacement u0 is a function of macroscopic coordinate only,

while the high order displacements, uα (α = 1, 2, 3 . . .), are functions of both the

macro- and microscopic coordinates. Substituting Eq. 119 to Eq. 113, the strain

tensor is expressed as:

εij(x,y, t) = ε0ij(x,y, t) + ζε1ij(x,y, t) + ζ2ε2ij(x,y, t) +O(ζ3) (120)

where,

εαij(x,y, t) = exij(u
α) + eyij(u

α+1); α = 0, 1, 2 . . . (121)

eξij(u
α) = uα(i,ξj) = 1/2

(
uαi,ξj + uαj,ξi

)
; ξ = x, y (122)

Substituting Eq. 120 into Eq. 112, the stresses are expressed as:

σij(x,y, t) = σ0
ij(x,y, t) + ζσ1

ij(x,y, t) + ζ2σ2
ij(x,y, t) +O(ζ3) (123)

where the stress components at each order of ζ are given as:

σαij(x,y, t) = Cijkl(y)εαkl(x,y, t); α = 0, 1, 2, . . . (124)

Since microstructure is assumed to be periodic across the problem domain, the tensor

of elastic moduli and the density depend on y only (i.e. Cζ(x) = C(y) and ρζ(x) =

ρ(y)). Substituting Eq. 123 into Eq. 111, the equations of motion at each order of ζ
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are obtained:

O(ζ−1) : σ0
ij,yj

(x,y, t) = 0 (125a)

O(1) : σ0
ij,xj

(x,y, t) + σ1
ij,yj

(x,y, t) = ρ(y)ü0
i (x, t) (125b)

O(ζ) : σ1
ij,xj

(x,y, t) + σ2
ij,yj

(x,y, t) = ρ(y)ü1
i (x,y, t) (125c)

O(ζ2) : σ2
ij,xj

(x,y, t) + σ3
ij,yj

(x,y, t) = ρ(y)ü2
i (x,y, t) (125d)

The classical computational homogenization is based on the evaluation of the

lower order equations of motion (i.e. Eqs. 125a and 125b). This practice leads to a

non-dispersive model, in which microstructural inertia effects on the system response

are ignored. It is necessary to include the equations of motion at O(ζ) and O(ζ2) to

devise a computational model that captures the micro-inertia effects. We note that the

inclusion of even higher order equations of motion may lead to capturing higher order

dynamics induced by heterogeneous microstructures. The inclusion of additional

orders also leads to increased computational cost since higher order microstructure

problems need to be evaluated.

3.1 O(1) Homogenization

Substituting Eqs. 121 and 124 into Eq. 125a, the balance equation at O(ζ−1) becomes:

{
Cijkl(y)

[
exkl(u

0) + eykl(u
1)
]}

,yj
= 0 (126)

which is defined over the characteristic volume. Taking advantage of the linearity of

Eq. 126 and using the separation of variables, the displacement, u1, is expressed as:

u1
i (x,y, t) = U1

i (x, t) +Hikl(y)exkl(u
0(x, t)) (127)
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where H(y) is the first order microstructure influence function. H is a 3rd rank tensor

with symmetry on the second and third indices (i.e. Hikl = Hilk). Substituting

Eq. 127 into Eq. 126, the equation of motion at O(ζ−1) is written in terms of the

influence function:

{Cijkl(y)(hklmn(y) + Iklmn)},yj = 0; y ∈ Θ (128)

in which hijmn(y) = H(i,yj)mn(y) is the polarization function. When furnished with

appropriate boundary conditions, Eq. 128 can be solved for the first order influence

function, H. The local periodicity of the first order displacement field, u1, leads to the

periodicity of the first order influence function. H is normalized to ensure uniqueness:

〈Hikl(y)〉 =
1

|Θ|

∫
Θ

Hikl(y)dy = 0 (129)

Given : The tensor of elastic moduli, C(y).

Find : The first order influence function, H : Θ→ Rnsd×nsd×nsd , such that:

• Equilibrium:

{Cijkl(y) [hklmn(y) + Iklmn]},yj = 0; y ∈ Θ

hijmn(y) = 1/2
(
Himn,yj (y) +Hjmn,yi(y)

)
; y ∈ Θ

• Periodicity condition at the microscale:

Hikl(y) = Hikl(y + kŷ); y ∈ ΓΘ = ∂Θ

• Normalization condition:

〈Hikl(y)〉 = 0; y ∈ Θ

Box 4: Summary of the boundary value problem for H(y).

in which 〈·〉 =
1

|Θ|

∫
Θ

· dy denotes the averaging operator, and |Θ| is the volume

of Θ. Eq. 129 is necessary to ensure that the influence function problem has a unique

solution. By ensuring that the average of the influence function vanishes, the rigid
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body modes are eliminated from the solution. The boundary value problem for H is

summarized in Box 4.

Applying the averaging operator to Eq. 125b and exploiting the local periodicity

of σ1, the homogenized equation of motion at O(1) is written as:

ρ0ü
0
i (x, t) = D0

ijmnexmn(u0),xj ; x ∈ Ω (130)

where ρ0 = 〈ρ〉 is the volume-averaged density; and

D0
ijmn = 〈C0

ijmn(y)〉 (131)

C0
ijmn(y) = Cijkl(y)(hklmn(y) + Iklmn) (132)

Given: The homogenized elastic modulus tensor, D0, the volume-averaged density

ρ0, and the initial and boundary data, ū(x, t), t̄(x, t), û(x), v̂(x).

Find: The macroscopic deformation, u0 : Θ× [0, t0]→ Rnsd such that:

• Equation of motion:

ρ0ü
0
i (x, t) = D0

ijmnexmn(u0),xj ; x ∈ Ω

• Boundary conditions:

u0
i (x, t) = ūi(x, t); x ∈ Γu;

D0
ijmn(exmn(u0))nj = t̄i(x, t); x ∈ Γt

• Initial conditions:

u0
i (x, 0) = ûi(x); x ∈ Ω

u̇0
i (x, 0) = v̂i(x); x ∈ Ω

Box 5: Summary of the initial boundary value problem for u0.

in which, D0 is the zeroth homogenized elastic modulus tensor and I is the fourth

rank identity tensor. The homogenized equation of motion at O(1), along with the

initial and boundary conditions, can be evaluated for u0. The IBVP for evaluating
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u0 is summarized in Box 5. This model cannot account for micro-inertia effects as

illustrated by the numerical examples below.

3.2 O(ζ) Homogenization

Substituting Eq. 130 to Eq. 125b and considering Eqs. 121 and 124, the equation of

motion at O(1) is expressed as:

{
Cijkl(y)

[
eykl(u

2) + exkl(U
1) +Hkmn(y)exmn(u0),xl

]}
,yj

=
{[
θ(y)D0

ijmn − C0
ijmn(y)

]
exmn(u0)

}
,xj

(133)

where θ(y) = ρ(y)/ρ0. The second order displacement, u2, is approximated by intro-

ducing the second order influence function, P(y). Exploiting the linearity of Eq. 133:

u2
i (x,y, t) = U2

i (x, t) +Hikl(y)exkl(U
1) + Pijkl(y)exkl(u

0),xj (134)

in which P is a fourth rank tensor and symmetric with respect to the last two indices,

but not necessarily with respect to the first two indices (i.e., Pijkl 6= Pjikl and Pijkl 6=

Pklij) for arbitrary microstructural configurations. Substituting Eq. 134 into Eq. 133,

the equation of motion at O(ζ0) is derived as:

C1
ijpmn,yj

= θ(y)D0
ipmn − C0

ipmn(y); y ∈ Θ (135)

and

C1
ijpmn(y) = Cijkl {pklpmn(y) +Hkmn(y)δlp} (136)

in which pklpmn(y) = P(k,yl)pmn/2 and δ is the Kronecker delta. The periodicity and

the normalization conditions are employed similarly to the BVP for the first order

influence function, H. The summary of the boundary value problem for the second
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order influence function is summarized in Box 6.

Given: The material properties, C and D0, and the first order influence function, H(y).

Find: The second order influence function, P(y) : Θ→ Rnsd×nsd×nsd×nsd such that:

• Equilibrium:

Cijkl(y) {pklpmn(y) +Hkmn(y)δlp}yj = θ(y)D0
ipmn − C0

ipmn(y); y ∈ Θ

pklpmn =
1

2
(Pkpmn,yl + Plpmn,yk); y ∈ Θ

• Periodicity condition at the microscale:

Pijkl(y) = Pijkl(y + kŷ); y ∈ ΓΘ

• Normalization condition:

〈Pijkl(y)〉 = 0; y ∈ Θ

Box 6: Summary of the boundary value problem for P(y).

Substituting Eqs. 127 and 134 into Eq. 124, the first order stress tensor is expressed

as:

σ1
ij (x,y, t) = C0

ijmn(y)exmn(U1) + C1
ijpmn(y)exmn(u0),xp (137)

Applying the averaging operator to Eq. 125c, using Eq. 137 and the local periodicity

of σ2, the homogenized equation of motion at O(ζ) takes the form:

ρ0Ü
1
i + 〈ρ(y)Hikl(y)〉exkl(ü0) = D0

ijmnexmn(U1),xj +D1
ijkmnexmn(u0),xkxj ; x ∈ Ω

(138)

where the first order homogenized stiffness tensor, D1, is defined as:

D1
ijpmn = 〈C1

ijpmn(y)〉 (139)
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3.3 O(ζ2) Homogenization

The homogenization at O(ζ2) follows a similar procedure to O(ζ) homogenization.

Substituting Eq. 138 to Eq. 125c, and exploiting Eqs. 124, 127, 130, and 134 yield:

{
Cijkl(y)

[
eykl(u

3) + exkl(U
2) +Hkmn(y)exmn(U1),xl + Pkrmn(y)exmn(u0),xrxl

]}
=
{[
θ(y)D1

ijlmn − C1
ijlmn(y)

]
+ θ(y)

[
Hikl(y)− ρ−1

0 〈ρ(y)Hikl(y)〉
]
D0
kjmn

}
exmn(u0),xjxl

+
{
θ(y)D0

ijmn − C0
ijmn(y)

}
exmn(U1),xj (140)

Due to the linearity of Eq. 140, the third order displacement, u3, is approximated

by introducing the third order influence function, Q(y):

u3
i (x,y, t) = U3

i (x, t) +Hikl(y)exkl(U
2) +Pijkl(y)exkl(U

1),xj +Qijkmn(y)exmn(u0),xkxj

(141)

Substituting Eq. 141 to Eq. 140, the governing equation for the third order influence

function, after some algebra, becomes:

C2
ijprmn,yj

= θ(y)D1
irpmn − C1

irpmn(y) + θ(y)
{
Hikp(y)− ρ−1

0 〈ρHikp〉
}
D0
krmn; y ∈ Θ

(142)

where

C2
ijprmn(y) = Cijkl(y) {qklprmn(y) + Pkrmn(y)δlp} (143)

in which qklprmn = Q(k,yl)prmn. The third order influence function, Q, is a fifth rank

tensor with minor symmetry only on the last two indices (i.e. Qijkmn = Qijknm). Since

the explicit computation of Q is not necessary in the high order homogenization model

described below, the BVP for Q is not discussed further. Substituting Eqs. 134 and
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141 to Eq. 124 yields:

σ2
ij(x,y, t) = C0

ijmn(y)exmn(U2) + C1
ijrmn(y)exmn(U1),xr + C2

ijprmn(y)exmn(u0),xrxp

(144)

Applying the averaging operator to Eq. 125d, exploiting Eq. 144 and considering

that σ3 is locally periodic, the homogenized equation of motion at O(ζ2) is then

derived as:

ρ0Ü
2
i (x, t) + 〈ρ(y)Hikl(y)〉exkl(Ü1) + 〈ρ(y)Pijkl(y)〉exkl(ü0),yj

= D0
ijmnexmn(U2),xj +D1

ijrmnexmn(U1),xrxj +D2
ijprmnexmn(u)0

,xrxpxj
; x ∈ Ω (145)

where the second order homogenized stiffness tensor, D2, is expressed as:

D2
ijprmn = 〈C2

ijprmn(y)〉 (146)

It is possible to express the second order homogenized stiffness tensor, D2, as a

function of the first and second influence functions, eliminating the dependence on

Q [30]:

D2
ijprmn = ρ−1

0 〈ρ(y)Pqrmn(y)〉D0
pqij + ρ−1

0 〈ρ(y)Hsij(y)〉D1
srpmn

+ 〈pklrmn(y)C1
klpij(y)〉 − 〈Hsij(y)C1

srpmn(y)〉+ ρ−1
0 〈ρ(y)Hsij(y)Hspq(y)〉D0

qrmn

− ρ2
0〈ρ(y)Hsij(y)〉〈ρ(y)Hspq(y)〉D0

qrmn (147)

Considering a homogenized displacement field by including the first two orders of

the displacement decomposition and averaging over the characteristic volume:

Ui(x, t) = 〈ui(x,y, t)〉 = u0
i + ζU1

i + ζ2U2
i +O(ζ3) (148)
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The summation of Eqs. 130, 138 and 145 leads to a high order homogenized equation

of motion in terms of the mean displacement, U. Neglecting O(ζ3) and the higher

order terms:

ρ0Üi(x, t) + ζ〈ρ(y)Hikl(y)〉exkl(Ü) + ζ2〈ρ(y)Pijmn(y)〉exmn(Ü),xj =

D0
ijmnexmn(U),xj + ζD1

ijkmnexmn(U),xkxj + ζ2D2
ijprmnexmn(U),xrxpxj ; x ∈ Ω (149)

The terms inducing micro-inertia effects in the macroscopic equation of motion

defined in Eq. 149 are scaled by orders of ζ, which leads to zero at the asymptotic

limit. This appears to indicate that the contribution of the high order terms are

trivial. This apparent contradiction is resolved by observing that the coefficients in

these terms themselves are size dependent. It can be shown that D1 and 〈ρH〉 are

proportional to l̂, and D2 and 〈ρP〉 are proportional to l̂2 [16]:

D1 = O(Cl̂); 〈ρH〉 = O(ρl̂) (150a)

D2 = O(Cl̂2); 〈ρP〉 = O(ρl̂2) (150b)

where l̂ = l/ζ is the characteristic length of the microstructure in the stretched coor-

dinate system y, and l the characteristic length of microstructure in the macroscopic

coordinate system x. D1, D2, 〈ρH〉 and 〈ρP〉 are homogeneous functions of degree

1. Consequently,

ζD1 = O(Cl); ζ〈ρH〉 = O(ρl) (151a)

ζ2D2 = O(Cl2); ζ2〈ρP〉 = O(ρl2) (151b)

In this study, ζD1, ζ2D2, ζ〈ρH〉 and ζ2〈ρP〉 which are directly calculated using the

physical geometric size as opposed to stretched configurations. The coefficients are

therefore expressed at order O(1).
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4 A Simplified High Order Homogenization Model

Numerical evaluation of the equation of motion for the homogenized response as

defined in Eq. 149 is complicated and non-standard. The presence of the fourth order

spatial derivative of the homogeneous displacement precludes the use of the finite

element method with C0-continuous shape functions. Alternative numerical schemes

such as isogeometric analysis which possesses basis functions with higher continuity

[23], finite element analysis with C1-continuous shape functions [56], or mixed-finite

element method [13] are possible paths for directly evaluating this system.

We propose a high order homogenization model derived based on certain obser-

vations and simplifications on the material microstructures. The following conditions

are assumed: (1) the homogenized material must exhibit orthotropy or higher symme-

try; and (2) within a microstructural constituent domain, the elastic modulus tensor

and constituent density are assumed to be constant, but the properties are allowed

to vary from constituent to constituent and generate micro-inertia under dynamic

conditions. Using the first simplification, the first order stiffness tensor vanishes:

D1 = 0 [30]. Substituting Eqs. 127, 134 and 141 into Eq. 119, taking the tempo-

ral derivative twice, premultiplying by density and averaging over the characteristic

volume yield the following expression:

〈ρüi〉 = ρ0Üi(x, t) + ζ〈ρHikl〉exkl(Ü) + ζ2〈ρPijkl〉exkl(Ü),xj +O(ζ3) (152)

Comparing the differential orders in Eq. 152 to classical dispersion theories, (e.g.

Mindlin’s theory [45]), the second term on the right hand side is non-standard. When

the assumption of piecewise constant material parameters mentioned above is consid-

ered, it has been demonstrated in [39] that the coefficient of this term is identically

zero for 1-D cases. In Appendix B, it is shown that this term vanishes for high
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dimensional cases as well:

〈ρHikl〉 = 0 (153)

Next, we turn our attention to the term in Eq. 149 that involves the fourth order

derivative of the homogenized displacement field. We consider the following approx-

imation for the homogenized stiffness tensor, D2:

D2
ijprmn ≈ AijpqD

0
qrmn (154)

in which, D2 is taken to be proportional to D0. Note that the approximation cannot

be exactly satisfied for any A. Further, since the multiplication only permutes over

the fourth index, inversion of D0 for identifying A is not possible. Alternatively, we

employ the Moore-Penrose pseudo-inverse for identifying A. Define:

A∗ijpq = D2
ijprmnD

0 -mp
qrmn (155)

where ’-mp’ denotes the Moore-Penrose pseudo-inverse. The pseudo-inverse provides

the solution, A∗, that minimizes the discrepancy between D2 and its approxima-

tion, D2∗, computed as D2∗
ijprmn = A∗ijpqD

0
qrmn with respect to the Frobenius norm.

The pseudo-inverse is well defined and unique for all matrices including non-square

matrices whose entries are real or complex. Additional details on the properties of

Moore-Penrose pseudo-inverse are provided in Appendix C

A∗ possesses minor symmetry with respect to the first two indices (i.e. A∗ijpq =

A∗jipq). The fourth order term in Eq. 149 is expressed as:

ζ2D2
ijprmnexmn(U),xrxpxj = ζ2A∗ijpqD

0
qrmnexmn(U),xrxpxj (156)
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Using Eq. 130 and neglecting O(ζ3) and higher order terms:

ζ2A∗ijpqD
0
qrmn(exmn(U)),xrxpxj = ζ2ρ0A

∗
ijmnexmn(Ü),xj (157)

Substituting Eq. 157 to Eq. 149, the macroscale high order equation of motion be-

comes:

ρ0Üi(x, t) + ζ2〈ρPijmn〉(exmn(Ü)),xj = D0
ijmn(exmn(U)),xj + ζ2ρ0A

∗
ijmnexmn(Ü),xj

(158)

By employing the relationship in Eq. 157, the fourth order derivative term in

the equation of motion over the homogenized domain is eliminated without loss of

generality. The second order influence function, P, exhibits minor symmetry with

respect to the first two indices only for geometrically symmetric microstructures,

but is non-symmetric for arbitrary microstructures. In order to conserve angular

momentum, we consider only the symmetric part of P. Let:

Jijmn =
1

2
(〈ρPijmn〉+ 〈ρPjimn〉) (159)

A∗ is decomposed into its symmetric and antisymmetric components as:

Aijkl =
1

2

(
A∗ijkl + A∗ijlk

)
(160a)

Bijkl =
1

2

(
A∗ijkl − A∗ijlk

)
(160b)

Using the symmetry of the strain tensor along with Eq. 160, the equation of motion

for the high order homogenization model reduces to:

ρ0Üi = D0
ijmn(exmn(U)),xj − Lijmn(exmn(Ü)),xj ; x ∈ Ω (161)
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where the micro-inertia induced acceleration modulus tensor, L, is defined as:

Lijmn = ζ2(Jijmn − ρ0Aijmn) (162)

The acceleration modulus tensor, L, satisfies the minor symmetry for both the

first two and the last two indices (i.e. Lijmn = Ljimn; Lijmn = Lijnm). By Eqs. 159

and 160, the antisymmetric components of the micro-inertia terms in the governing

equation of motion is discarded. This simplification amounts to the decomposition

of the micro-inertia into transitional and rotational components, and eliminating the

rotational micro-inertia effects from the formulation.

From Eq. 161, the constitutive equation for the high order model at the macroscale

is defined as:

Σij(x, t) = D0
ijmnexmn(U)− Lijmnexmn(Ü); x ∈ Ω (163)

where Σ is defined as the homogenized stress tensor which is related to the second

order spatial derivative of not only the homogenized displacement, U, but also the

acceleration, Ü. The second term on the right hand side of Eq. 163 represents the

influence of micro-inertia. The IBVP for the high order homogenization model is

summarized in Box 7.

Equation 163 is obtained by substituting the fourth order spatial derivative of

the displacement field with a second spatial derivative - second temporal derivative

term. A one-dimensional numerical example is provided to demonstrate the impact of

this substitution. The solution strategy for one-dimensional problems is provided in

[39]. Consider a bi-phase one-dimensional structure with elastic moduli and density

of E(1) = 2 GPa, ρ(1) = 7900 kg/m3 for phase 1 and E(2) = 22.4 MPa, ρ(2) =

1070 kg/m3 for phase 2. The volume fraction of phase 1 is 0.4. This structure

consists of 20 microstructures and subjected to a step displacement load. Figure 19
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illustrates the displacement histories computed using the model, which includes the

fourth order spatial derivative and the model, which includes the second spatial -

second temporal derivative term. The observation point is 0.1L distance (L is the

length of the structure) from the boundary of excitation. The displacement histories

indicate that the models capture the dispersion in reasonable agreement with some

discrepancy in the waves following the main dispersive wave.

Given: The homogenized material properties at the macroscale, D0; the tensor of

the acceleration moduli, L, initial conditions û(x), v̂(x); and the boundary conditions

ū(x, t), t̄(x, t).

Find: The macroscale deformation, U(x, t) : Ω× [0, t0]→ Rnsd such that:

• Equation of motion:

ρ0Üi = Σij,xj ; x ∈ Ω

• Constitutive relation:

Σij(x, t) = D0
ijmn(exmn(U))− Lijmn(exmn(Ü)); x ∈ Ω

• Boundary conditions:

Ui(x, t) = ūi(x, t); x ∈ Γu

Σijnj = t̄i(x, t); x ∈ Γt

• Initial conditions:

Ui(x, 0) = ûi(x); x ∈ Ω

U̇i(x, 0) = v̂i(x); x ∈ Ω

Box 7: Summary of the initial boundary value problem for evaluation of the macroscale
displacement, U.

5 Finite Element Formulation

In this section, the numerical evaluations of the first and second order influence func-

tion problems defined in Boxes 4 and 6, respectively, as well as the macroscopic

homogenization model defined in Box 7 are presented. The basis of the computations

for all the three problems is the standard Bubnov-Galerkin finite element method with
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Figure 17: Displacement histories computed using a model with the fourth order
spatial derivative term and a model with the second order spatial - second order
temporal derivative term.

C0-continuous shape functions. In the evaluation of the macroscopic problem, a Hy-

brid Laplace Transform-Finite Element Method is proposed to solve the macroscopic

IBVP.

The computation of the first order influence function, H, has been standard prac-

tice in the computational homogenization literature [38] and only a brief summary

is therefore presented here for completeness. The computation of the second order

influence function, P, has not been a part of the traditional computational homog-

enization method. This section includes the detailed formulation for evaluating the

second order influence function, P.

5.1 First Order Influence Function Problem

Equation 128 is expressed in the weak form using the local periodicity boundary

condition on y ∈ Θ as:

∫
Θ

wi,yj(y)Cijkl(y)hklmn(y)dy = −
∫

Θ

wi,yj(y)Cijmn(y)dy (164)

where w ∈ Wper ⊂
[
H1

per(Θ)
]nsd ; and H1

per(Θ) is the subspace of functions in H1(Θ)

that are periodic along ΓΘ, and H1(Θ) is the Sobolev space of functions with square
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integrable derivatives. We seek the solution of the first order influence function in the

finite dimensional space, H ∈ Hper(Θ) ⊂
[
H1

per(Θ)
]nsd×nsd×nsd such that:

Hper(Θ) :=

{
H(y) | Hikl(y) =

M∑
A=1

N [A](y)H
[A]
ikl ; H

[A]
ikl is Θ -periodic; 〈Hikl〉 = 0; H

[A]
ikl = H

[A]
ilk

}
(165)

with the appropriate continuity and smoothness conditions. N [A] denotes the shape

function of node A within the discretization of the characteristic volume; M denotes

the total number of nodes, and H
[A]
ikl the nodal coefficients. Following the standard

Bubnov-Galerkin setting, Wper is defined similarly to Eq. 165.

Substituting the discretizations of the influence function and the weight function

into the weak form and expressing the terms in matrix-vector form using the Voigt

notation yields the following discrete system:

KHdH = FH (166)

which is formed by assembling the element matrices:

KH = A
e

Ke
H ; dH = A

e
deH ; FH = A

e
Fe
H (167)

A denotes the assembly operation. The element matrix of unknown coefficients of

an arbitrary element e is expressed as:

deH =

[
H̃e[1] H̃e[2] . . . H̃e[Me]

]T
(168)

in which T denotes the matrix transpose, Me denotes the number of nodes in the

element, and for 2-D elements, the matrix of unknown coefficients at node A of
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element e is:

H̃e[A] =

 H
e[A]
111 H

e[A]
122 H

e[A]
112

H
e[A]
211 H

e[A]
222 H

e[A]
212


T

(169)

The element stiffness and force matrices are expressed as:

Ke
H =

∫
Θe

BeT (y) ĈBe (y) dy (170)

Fe
H =

∫
Θe

BeT (y) Ĉdy (171)

where Θe denotes the domain of element e, and

Be =

[
Be[1] Be[2] . . . Be[Me]

]
(172a)

Be[A] =

 N
e[A]
,y1 (y) 0 N

e[A]
,y2 (y)

0 N
e[A]
,y2 (y) N

e[A]
,y1 (y)


T

(172b)

and Ĉ is the tensor of elastic moduli expressed in contracted Voigt notation.

5.2 Second Order Influence Function Problem

The weak form of Eq. 135, using the local periodicity condition, is expressed as:

∫
Θ

wi,yj(y) (Cijkl(pklpmn(y) +Hkmn(y)δlp)) dy =

−
∫

Θ

wi(y)
(
θ(y)D0

ipmn − C0
ipmn(y)

)
dy (173)

for any weight function, w ∈ Wper(Θ). The solution approximation for the sec-

ond order influence function belongs to the following finite dimensional space, P ∈
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Pper(Θ) ⊂
[
H1

per(Θ)
]nsd×nsd×nsd×nsd :

Pper(Θ) :=

{
P(y) | Pijmn(y) =

M∑
A=1

N [A](y)P
[A]
ijmn; P

[A]
ijmn is Θ -periodic; 〈Pijmn〉 = 0; P

[A]
ijmn = P

[A]
ijnm

}
(174)

where P
[A]
ijmn denotes the nodal coefficient of P at node, A. Employing the discretiza-

tion of the second order influence function in Eq. 174 and the weight function, the

weak form of the influence function leads to the following discrete system:

KPdP = FP (175)

formed by the assembly of element matrices defined analogous to Eq. 167. dP is

assembled from element matrices of unknown coefficients:

deP =
[
P̃e[1], P̃e[2], . . . , P̃e[Me]

]T
(176)

For 2-D elements, the matrix of unknown coefficients at node A of element e is:

P̃e[A] =

 P
e[A]
1111 P

e[A]
1122 P

e[A]
1112 P

e[A]
1211 P

e[A]
1222 P

e[A]
1212

P
e[A]
2111 P

e[A]
2122 P

e[A]
2112 P

e[A]
2211 P

e[A]
2222 P

e[A]
2212


T

(177)

The matrix of unknown nodal coefficients, dP , has 6 columns for a 2-D problem

and 18 columns for a full 3-D characteristic volume. Noting that the stiffness matrix,

KP , defined below does not vary as a function of the components of P, the factoriza-

tion of KP is conducted only once. It is also straightforward to see that the stiffness

matrix for the second order influence function is identical to the stiffness matrix for

the first order influence function (i.e. KP = KH). This further simplifies the compu-

tation of the influence functions since the factorization of only one matrix is necessary
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for both the first and second order influence function problems. The evaluations for

the first and second order influence functions, however, are successive since the force

matrix of the second order influence function depends on H, (i.e. FP = FP (H) ).

The force matrix for element e is written as a sum of three components:

Fe
P = Fe

P1
+ Fe

P2
+ Fe

P3
(178)

The first component of the force matrix is:

Fe
P1

= −
∫

Θe
Be(y)T Ĉ G(y)dy (179)

where,

G =


H111(y) H122(y) H112(y) 0 0 0

0 0 0 H211(y) H222(y) H212(y)

H211(y) H222(y) H212(y) H111(y) H122(y) H112(y)

 (180)

The components of G is computed using the solution of the first order influence

function problem within Θe:

Hikl(y) =
Me∑
B=1

N e[B](y)H
e[B]
ikl (181)

The second component of the force matrix is written as:

Fe
P2

= −
∫

Θe
θNeT (y) dy D̃0 (182)
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where,

D̃0 =

 D0
1111 D0

1122 D0
1112 D0

1211 D0
1222 D0

1212

D0
1211 D0

1222 D0
1212 D0

2211 D0
2222 D0

2212

 (183)

Ne =

 N e[1] 0 N e[2] 0 · · · N e[Me] 0

0 N e[1] 0 N e[2] · · · 0 N e[Me]

 (184)

The components of D̃0 then are computed after the evaluation of the first order

influence function problem. Note that the matrix representation of the tensors differs

from the standard Voigt notation. The alternative notation employed here facilitates

single index multiplication in the force components.

In order to evaluate the third component of the force term, we define

ψijkl(y) = Cijmn(y)
Me∑
B=1

N e[B]
,yn (y)H

e[B]
mkl ; y ∈ Θe (185)

and denote ψ̂ using the Voigt representation, which is expressed as:

ψ̂(y) = Ĉ(y)Be(y)deH (186)

Employing the alternative notation analogous to those defined in Eqs. 183 and 184,

the third component of the force term is written as:

Fe
P3

=

∫
Θe

NeT (y)
(
ψ̃(y) + C̃(y)

)
dy (187)
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in which ψ̃ and C̃ are the alternative matrix representation of ψ and C, respectively:

ψ̃ =

 ψ1111 ψ1122 ψ1112 ψ1211 ψ1222 ψ1212

ψ1211 ψ1222 ψ1212 ψ2211 ψ2222 ψ2212

 (188)

C̃ =

 C1111 C1122 C1112 C1211 C1222 C1212

C1211 C1222 C1212 C2211 C2222 C2212

 (189)

5.3 Macroscopic Problem

The weak form of Eq. 161 is:

∫
Ω

ρ0wiÜidx−
∫

Ω

wi,xjLijmnexmn(Ü)dx +

∫
Ω

wi,xjD
0
ijmnexmn(U)dx =

∫
Γt
wiΣijnjdx

(190)

for any weight function w. The solution approximation for the homogenized displace-

ment field belongs to the following finite dimensional space: U ∈ U(Ω)

U(Ω) :=

U(x, t)|Ui(x, t) =
K∑

[C]=1

N [C](x)U
[C]
i (t); U

[C]
i (t) = ū

[C]
i (t) when x ∈ Γu


(191)

where N [C] denotes the shape function of node C within the discretization of Ω; U
[C]
i

the nodal displacement and K the total number of nodes. Employing the discretiza-

tion of the displacement field in Eq. 191 and the weight function, the weak form of

the displacement leads to the following discrete system:

(M + KL) d̈U(t) + KdU(t) = F(t) (192)
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which is formed by the assembly of pertinent element matrices:

M = A
e

Me; KL = A
e

Ke
L; K = A

e
Ke; F(t) = A

e
Fe(t) (193)

dU(t) is assembled from the element matrix of unknown coefficients:

deU =

[
Ũe[1](t) Ũe[2](t) · · · Ũe[Ke](t)

]T
(194)

where Ke denotes the number of the element nodes. For 2-D elements:

Ũe[C] =

[
U
e[C]
1 (t) U

e[C]
2 (t)

]
(195)

at node C in Ωe. The element mass, acceleration, stiffness and force matrices are

expressed respectively as:

Me =

∫
Ωe
ρ0N

eT (x)Ne(x)dx (196a)

Ke
L = −

∫
Ωe

BeT (x)L̂Be(x)dx (196b)

Ke =

∫
Ωe

BeT (x)D̂0Be(x)dx (196c)

Fe =

∫
Γet

NeT (x)t̄e(x, t)dx (196d)

where D̂0 and L̂ are the tensors of the zeroth homogenized elastic moduli and accel-

eration moduli in contracted Voigt notation respectively.

The integration of Eq. 192 in the time domain is not straightforward. This is

because the mass matrix (= M + KL) includes the constitutive response, and mass

lumping for explicit time integration would alter the constitutive response. The ap-

plication of traction boundary conditions is also difficult since the stress is a function

of the acceleration gradient, in addition to the strain. In this work, the homoge-

nized balance equations are evaluated in the Laplace domain without resorting to
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the time integration and applying traction boundary conditions in the time domain.

The Hybrid Laplace Transform-Finite Element Method [18, 61] is used to solve the

macroscopic IBVP. The governing equations are converted from the time domain to

the complex form in the Laplace domain.

The Laplace transform of an arbitrary, real valued, time varying function, f ∈ R,

is defined as:

F (s) ≡ L (f(t)) =

∫ ∞
0

e−stf(t)dt (197)

where, the Laplace argument, s and the Laplace transform, F , are complex valued

(i.e., s ∈ C and F := C → C). The representation of a field in the Laplace domain

is referred to as the associated field. The derivative rule for the Laplace transform is

given as:

L (f, tt . . . t︸ ︷︷ ︸
n times

(t)) = snF (s)− sn−1f(0)− . . .− f, tt . . . t︸ ︷︷ ︸
n−1 times

(0) (198)

Considering statically undeformed initial conditions (i.e., ûi(x) = v̂i(x) = 0),

Eq. 192 is transformed to the complex form in the Laplace domain as:

(
Ms2 + KLs

2 + K
)
dL
U (s) = FL (s) (199)

where FL is the force vector in the Laplace domain, assembled from the element force

vectors:

FeL =

∫
Γet

NeT t̄eL (x, s)dx (200)

Eq. 199 can be evaluated by the standard solution of linear complex equations. The

constitutive relation in the Laplace domain is obtained by applying the Laplace trans-

form to Eq. 163:

ΣL
ij (x, s) =

(
D0
ijmn − Lijmns2

)
exmn(UL ); x ∈ Ω (201)
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in which, ΣL is the associated homogenized stress. The complex fields are con-

verted to the time domain using the numerical inverse Laplace transform (NILT)

method. The NILT method employed in this work is based on Fast Fourier Trans-

form and the ε-error algorithm to transform the associate fields from the complex

functions to the real valued functions. Details on the numerical inverse has been

discussed in Chapter 3.

6 Numerical Verification

A series of simulations were conducted to assess the validity of the proposed high order

model and investigate the wave dispersion phenomena induced by micro-heterogeneities.

The capability of the high order model is verified against the direct finite element anal-

ysis (direct FEA) solution, in which all heterogeneities are fully resolved throughout

the macro-domain. The direct FEA simulations use the explicit time integration with

time step sizes significantly smaller than the stability limit to ensure high accuracy.

The high order method is also compared to the standard ’local’ homogenization so-

lution to determine the effects of micro-inertia on the overall responses. The local

homogenization includes a two-term asymptotic expansion of the response fields re-

sulting in the IBVP defined in Box 5. The local homogenization solution requires the

computation of only the first order influence function, H, which is used to compute

the homogenized moduli tensor, D0.

The examples described below focus on the investigation of microstructural wave

dispersions induced only by the contrast of constituent densities since one of the

unique contributions of the proposed high order homogenization model is capturing

this effect. Using this model, it is also possible to capture wave dispersion phe-

nomena induced by stiffness contrast, or, in more general terms, micro-constituent

impedances.
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Figure 18: Configuration of the bimaterial bar under ramped step loading.

6.1 Wave Propagation along a Slender Bar

We consider a 2-D bi-material bar subjected to a clamped constraint at its left end

and loading at its right end as shown in Fig. 18. The applied loading (displacement

or traction) is tensile and along the direction of the bar. The properties of the

two constituent phases are chosen as E(1) = 2GPa, ρ(1) = 7090kg/m3, ν = 0.3 and

E(2) = 2GPa, ρ(2) = 1070kg/m3, respectively. The Poisson’s ratio of both constituents

are set to ν = 0.3.

In the first set of simulations, a displacement controlled ramp loading with the

maximum amplitude of 1mm is applied. The time to the maximum displacement

is tR = 10−6s. Figure 19 shows the lateral displacement (U1) versus time from four

locations along the center line of the bar at the distance of 2, 5, 10, and 15 mm mea-

sured from the fixed end of the bar. The displacement histories for these four points

computed using the direct FEA solution and the proposed high order homogeniza-

tion model are compared. Since the direct FEA solution resolves the microstructure

throughout the length of the bar, the reported displacement is the average displace-

ment computed over the microstructure within which the point is located. The large

peaks correspond to the traveling macroscopic wave, whereas the oscillations are due

to dispersion. The dispersion in the current example (and in many other multi-

dimensional problems with a finite domain) is not only due to the microstructural
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boundaries, but also due to the exterior boundaries. Simulations in the next section

attempts to reduce the free boundary effects to isolate the dispersion induced only by

density contrast. The displacement recorded closer to the fixed end (e.g. Fig. 19a)

remains around the peak applied displacement (i.e. 0.01mm) for a shorter duration

than those recorded closer to the free end. This is because the duration for the wave

front to travel forth and back (reversing the sign at the fixed end) is shorter when the

observation point is closer to the fixed end. All four plots in Fig. 19 demonstrate that
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Figure 19: Displacement histories at different positions of the beam.

the proposed high order homogenization model is in very reasonable agreement with

the direct FEA solution in capturing the wave dispersions. While the amplitudes

of the dispersive waves match very well, a small phase shift is observed particularly

in Figs. 19a and 19b. This shift is attributed to a slight error in the propagation

velocity change induced by dispersion. Figure 20 illustrates the structural view of

the wave propagation through snapshots of the deformed bar at the four different

time steps. The propagating wave front indicated by the sharp change in color, the

wave dispersion is clearly observed by the changes in an alternating bright and loom

pattern immediately following the wavefront.
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(a) 20µs

(b) 40µs

(c) 60µs

(d) 80µs

Figure 20: Structural view of U1[mm].

In the second set of simulations, a traction controlled ramp loading with the

maximum amplitude of 1MPa is applied. The time to the maximum amplitude loading

is tR = 10−6s. The four observation points are the same as the previous set of

simulations. Figure 21 shows the lateral displacement (U1) versus time from the four

locations computed by the high order homogenization model and the direct FEA

solution. The predictions given by the high order model are very similar to the direct

FEA solution, demonstrating that the high order homogenization works well with the

traction boundary condition as well.

6.2 Wave Propagation in a Square Composite Medium

The second example considers the dynamic response of a two-dimensional square

heterogeneous medium with a layered configuration. In this example, the effect of
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Figure 21: Displacement histories at different positions of the beam.

loading frequency on the wave propagation characteristics is investigated. Two cases

of wave propagation are considered as illustrated in Fig. 22. In the first set of sim-

ulations, the domain is clamped at the left edge and subjected to the displacement

controlled sinusoidal stimulation at the middle of the right edge. The maximum am-

plitude of the loading is uR = 0.01mm. The shape of the domain is chosen so that the

effect of boundary dispersion is relatively small compared to the dispersion induced

by the microstructure. The material properties of the layers are identical to those

presented in Section 6.1. The time duration of the simulations is t0 = 500 µs. The

total number of load cycles within the duration of the simulation is denoted as N

(= t0/tR). For comparison purposes, the wavelength is approximated using the p-

wave speed (=
√

(λ0 + 2µ0)/ρ0, where λ0 and µ0 are the homogenized Lamé constants

respectively and ρ0 the homogenized density of the microstructure). The approximate

wavelengths for N=2, 12, and 38 are 12, 3.5 and 1.1 times the microstructural size

(=10 mm) respectively.

The high order homogenization, direct FEA, and the local homogenization so-

lutions are compared in Fig. 23 for N = 2. The displacement contours within the
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Figure 22: Configuration of the composite square under sinusoidal loading condi-
tions: (a) wave imparted along the direction perpendicular to the layers; (b) wave
imparted along the direction parallel to the layers.

problem domain are plotted at four time instances (i.e., t = 100, 200, 300 and 400 µs).

The high order homogenization, local homogenization and the direct FEA solutions

provide near identical displacement profiles throughout the loading history. The sim-

ilarity between the high order and local homogenization results indicates that the mi-

crostructural inhomogeneities have little influence on the structural response. When

N = 2, the length of the propagating wave is large enough that the dispersion due to

micro-heterogeneities (i.e. the density contrast) is negligible.

Figure 24 shows the comparison of the solutions computed by the proposed high

order homogenization approach, the local homogenization and the direct FEA when

N = 12. In these simulations, the wavelength is approximately 3.5 times the size of

the microstructure. The displacement profiles of the high order and local homogeniza-

tion models start to deviate from each other, pointing to the presence of dispersive

waves. The displacement profiles computed using the direct FEA show some devia-

tion from the results of the high order homogenization model. While the high order

homogenization model point to the localization of the wave propagation towards the

center line, the direct FEA model predicts localization of the wave along two angled

paths, in addition to the center line. We speculate that the angled paths are due
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Figure 23: High order homogenization (top row), direct FEA (middle row) and
the local homogenization (bottom row) solutions when N = 2: (a) t = 100µs;
(b) t = 200µs; (c) t = 300µs; and (d) t = 400µs.

to the interaction effects between the external boundary and the layered microstruc-

ture. The discrepancy between the displacement profiles are therefore attributed to

difficulty in capturing this interaction effect using the homogenization models.

The high order homogenization, the local homogenization and the direct FEA

solutions for N = 38 are summarized in Fig. 25. In this case, the wavelength is

1.1 times the microstructure size. The high order homogenization model shows that

the wave quickly attenuates, suggesting phononic stop band behavior. In contrast,

the direct FEA and the local homogenization solutions display wave propagation in

the media. The wave attenuation leading to the stop band behavior is due to the

imaginary component of wavenumber [6]. The direct FEA method considers only
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Figure 24: High order homogenization (top row), direct FEA (middle row) and
the local homogenization (bottom row) solutions when N = 12: (a) t = 100µs;
(b) t = 200µs; (c) t = 300µs; and (d) t = 400µs.

the real components of the wavenumber, and therefore cannot capture the stop band

behavior. The hybrid Laplace Transform-Finite Element method employed in the

evaluation of the high order homogenization model retains the imaginary component

of the response, and able to simulate the stop band behavior. The wave attenuation

due to the complex wave properties is included in the solution in the Laplace domain.

The theoretical model proposed by Andrianov et al. [6] was used to estimate the onset

of the stop band, computed as the wave frequency that leads to zero group velocity.

The theoretical estimate of N = 38 verifies that the proposed model is reasonably

accurate in predicting the onset of the stop band behavior.

In the second set of simulations, the domain is clamped at the bottom edge

and subjected to the displacement controlled sinusoidal stimulation at the middle
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Figure 25: High order homogenization (top row), direct FEA (middle row) and
the local homogenization (bottom row) solutions when N = 38: (a) t = 100µs;
(b) t = 200µs; (c) t = 300µs; and (d) t = 400µs.

of the top edge as illustrated in Fig. 22b. The maximum amplitude of the loading

is uR = 0.01mm. In this example, the wave is imparted along the vertical direction,

whereas the microstructure-induced dispersion impart waves along the horizontal di-

rection. The time duration of the simulations is t0 = 500µs. For comparison purposes,

the wavelength is approximated using the shear wave speed (=
√
µ0/ρ0). The cal-

culated wavelengths are 10, 1.4 and 0.8 times the microstructure size for N = 2, 15,

and 25 cases, respectively.

Figure 26 compares the displacement contours computed by the high order, the

direct FEA and local homogenization models for N = 2. Similar to the previous set

of simulations (i.e., Fig. 23), the high order homogenization, local homogenization
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and the direct FEA solutions provide near identical displacement profiles throughout

the loading history for long wavelengths.

Figure 26: High order homogenization (top row), direct FEA (middle row) and
the local homogenization (bottom row) solutions when N = 2: (a) t = 100µs;
(b) t = 200µs; (c) t = 300µs; and (d) t = 400µs.

Figure 27 shows the comparison of the solutions computed by the proposed ap-

proach, the direct FEA and the local homogenization method when N = 15. The

displacement profiles suggest that the group velocity computed by the high order

homogenization and the direct FEA models is markedly lower than the local homog-

enization solution, indicating the effect of dispersion induced by micro-inertia. The

amount of slowdown computed by the high order homogenization and the direct FEA

models are similar notwithstanding some dissimilarities between the wave patterns.
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Figure 27: High order homogenization (top row), direct FEA (middle row) and
the local homogenization (bottom row) solutions when N = 15: (a) t = 100µs;
(b) t = 200µs; (c) t = 300µs; and (d) t = 400µs.

When the applied displacement frequency is further increased (N = 25), the high

order homogenization model predicts the onset of the phononic stop band and the

wave ceases to propagate significantly along the lateral direction. The comparison

of the displacement profiles computed by the three models is shown in Fig. 28. The

local homogenization model display no effect of dispersion in this case and the wave

propagation characteristics are similar to the N = 15 case. The direct FEA and

the high order homogenization models predict that the displacement wave continues

to propagate along the vertical direction within a narrow band of uniform material

immediately under the prescribed boundary. The displacement profiles computed

using the high order homogenization model and the direct FEA simulations are in
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Figure 28: High order homogenization (top row), direct FEA (middle row) and
the local homogenization (bottom row) solutions when N = 25: (a) t = 100µs;
(b) t = 200µs; (c) t = 300µs; and (d) t = 400µs.

reasonable agreement with each other. The lateral wave propagation (i.e., along

the x1-direction) is almost completely suppressed in the high order homogenization

model. In contrast, the direct FEA simulations reveal lateral propagation since this

model cannot capture the behavior within the stop bands as described above.

6.3 Computational Efficiency

The computational efficiency is significantly improved using the high order homoge-

nization model compared to the direct finite element simulation. The homogenization

contributes to the computational performance. In the second numerical example, 2916

elements are used in the discretization of the macroscopic problem by the high order
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homogenization model, while 18225 elements are used to discretize the domain using

the direct finite element simulation. The direct simulation needs many more elements

to mesh the composite microstructures particularly when there is a large discrepancy

between the sizes of micro- and macrostructure. Meshing the macroscopic model us-

ing the high order homogenization homogenization is independent of microstructures

since the macrostructure is solved using a homogenization model. The computation

of the microstructural properties is required but only for once and off-line, so that it

doesn’t contribute to the computational complexity of the structural analysis.

In addition, solving the problem in the Laplace domain took 500 steps of com-

putation by the high order homogenization model while at least 10000 time steps

are required to guarantee the computational precision by the direct FEA solution.

The Laplace transform converts the problem from the time domain to a complex

frequency domain where as long as sufficient frequencies are captured, the solution is

solved accurately. The direct FEA solution which uses the finite difference method

has to make each time step small enough to remain stable and retain high accuracy. In

many problems, the number of frequencies required is much smaller than the number

of time steps required for stable computations.

7 Conclusions

A finite element based high order homogenization model was proposed for multi-

dimensional wave propagation in elastic composite structures. The proposed model

was derived based on the mathematical homogenization with multiple spatial scales.

The higher order equilibrium terms in the asymptotic expansion were introduced to

capture the micro-inertia effects caused by micro-heterogeneities. The finite element

formulation for the evaluation of the microscale influence functions and the homoge-

nized model were provided. In addition, the model is capable of predicting the wave

propagation in stopbands due to the complex calculation of the homogenized problem
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in the Laplace domain where complex wavenumber is calculated.

The generality of problem definitions extends the application of the proposed

model. The high order homogenization model is capable of accounting complete mi-

croscopic impedances (i.e. due to density and modulus) and arbitrary microstructures

and capturing the wave propagation in stopbands. Next, we intend to solve multi-

dimensional wave propagation in viscoelastic composites. Recall the one-dimensional

wave solution in Chapter 3, the homogenization actually has already been demon-

strated in viscoelastic composite structures. The simulation of multi-dimensional

wave propagation in viscoelastic composites would be as the similar practice for one-

dimensional wave propagation in Chapter 3 where the homogenization is implemented

in the Laplace domain.
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CHAPTER 5

MULTISCALE MODELING OF MULTI-DIMENSIONAL WAVE PROPAGATION

IN VISCOELASTIC COMPOSITE STRUCTURES

1 Introduction

Wave propagation in viscoelastic composite materials is of particular interest since

wave can be attenuated by both viscous dissipation and bandgap. The work regard-

ing wave dispersion in viscoelastic composites is scarce compared to elastic problems,

and most of them focuses on layered or lattice structures [2, 48, 49, 73, 74] where ana-

lytical solutions can be derived. The literature on bandgap in viscoelastic composites

is even more limited. Zhao and Wei [83] studied the bandgap of one-dimensional

phononic crystal with viscoelastic host material using the Bloch-Floquet wave solu-

tion. Moiseyenko and Laude [46] investigated the influence of material loss on the

complex band structure of two-dimensional phononic crystals by incorporating vis-

coelastic constitutive model in the extended plane-wave expansion. Psarobas [59]

discussed the effect of viscoelastic losses in a high-density contrast sonic bandgap

material of closed packed rubber sphere in air. Merheb et al. [44] provided a theoret-

ical and experimental study of rubber/air acoustic bandgap structures. Oh et al. [53]

investigated wave attenuation and dissipation mechanisms in viscoelastic phononic

crystals having different inclusion types in a long-wavelength regime. Hui and Oskay

[39] showed the bangap in an one-dimensional viscoelastic composite using a semi-

analytical solution based on the multiscale homogenization theory. This work helps

to elucidate the possibility of the high order homogenization model applied in vis-

coelastic materials. However, a computational solution needs to be sought to describe

multi-dimensional wave propagation in viscoelastic composites due to the complexity

of problem definitions.
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In this chapter, a complex high order homogenization model defined in the Laplace

domain is proposed. This model is based on the high order computational homog-

enization approach for elastic composites introduced in Chapter 4, and the homog-

enization procedure is developed in the Laplace domain. In particular, the major

contribution of this work is that the proposed approach leads to a numerical model

that can capture wave dispersion and bandgap for multi-dimensional wave propaga-

tion in viscoelastic composites. The numerical examples are presented and compared

to the finite element solution and the analytical solution for verification. The ma-

terial dissipation and wave dispersion induced wave attenuations are compared by

investigating the dissipated energy in the problem domain.

2 Problem Setting

x1

x2 Ω
Гu 

Гt 

……
…

…p

t
Θ

Θ Θ

Θ

y1

y2

phase-1
phase-2

Figure 29: Schematic representation of multiscale problems.

The illustrative description of multiscale problems is provided in Fig. 29. In the

time domain, the equation of motion for dynamic problems is defined as:

σζij,j(x, t) = ρζ(x)üζi (x, t) (202)

where σζ denotes the stress tensor, ρζ the density, and uζ the displacement vector.
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The superscript ζ represents the dependency of the response fields on microscopic

properties; x denotes the spatial coordinate vector. The linear viscoelastic model is

generalized as a hereditary integral:

σζij(x, t) =

∫ t

0

gζijkl(x, t− τ)ε̇ζkl(x, τ)dτ (203)

where, the superscript ζ denotes the dependency of response fields on microstructural

heterogeneities; dot represents the derivative with respect to the time variable. For

linear viscoelastic materials, gζ is termed the relaxation moduli and dependent of the

time variable. For linear elastic materials, gζ is reduced to be independent of the

time variable. εζ is the strain tensor. Under the assumption of small deformation:

εζij(x, t) =
1

2

(
uζi,j(x, t) + uζj,i(x, t)

)
(204)

where comma denotes the derivative with respect to x. The boundary conditions are

described as:

uζi (x, t) = ūi(x, t); x ∈ Γu (205a)

σζij(x, t)nj = t̄i(x, t); x ∈ Γt (205b)

where n is the outward unit normal vector along the traction boundaries. ū(x, t)

and t̄(x, t) denote the prescribed displacement and traction vectors on Γu and Γt,

respectively. The boundary conditions are defined such that Γ ≡ ∂Ω = Γu ∪ Γt;

Γu ∩ Γt = ∅. Stationary initial conditions are used in this work:

uζi (x, 0) ≡ ûi(x) = 0; x ∈ Ω (206a)

u̇i
ζ(x, 0) ≡ v̂i(x) = 0; x ∈ Ω (206b)
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û and v̂ denote the initial displacement and velocity data, respectively and Ω is the

open boundary domain.

The viscoelastic constitutive relation in the time domain is in an integral form,

and is transformed to a linear form in the Laplace domain. The Laplace transform

of an arbitrary, real valued, time varying function f is defined as:

F (s) ≡ L (f(t)) =

∫ ∞
0

e−stf(t)dt (207)

where, the Laplace argument s and the transformed function F are complex valued.

The derivative rule for the Laplace transform is given as:

L (f, tt . . . t︸ ︷︷ ︸
n times

(t)) = snF (s)− sn−1f(0)− . . .− f, tt . . . t︸ ︷︷ ︸
n−1 times

(0) (208)

and the convolution integral rule is given as:

L

(∫ t

0

f1(t− ξ)f2(ξ)dξ

)
= L

(∫ t

0

f1(ξ)f2(t− ξ)dξ
)

= L (f1)L (f2) (209)

Applying Eq. 209 to Eq. 203, the constitutive equation in the time domain is trans-

formed to the linear form in the Laplace domain:

σζij(x, s) = Cζ
ijkl(x, s)ε

ζ
kl(x, s) (210)

where Cζ is the material constant tensor in the Laplace domain depending on the

spatial coordinates, x and the complex argument, s. The equation of motion in

the Laplace domain is obtained by applying Eq. 207 to Eq. 202 using Eq. 208 and

considering the stationary initial conditions:

σζij,j(x, s) = ρζ(x)s2ui
ζ(x, s) (211)
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and the equation of deformation becomes:

εζij(x, s) =
1

2

(
uζi,j(x, s) + uζj,i(x, s)

)
(212)

The boundary conditions are:

uζi (x, s) = ūi(x, s); x ∈ Γu (213a)

σζij(x, s)nj = t̄i(x, s); x ∈ Γt (213b)

where ū(x, s) and t̄(x, s) are the prescribed displacement and traction boundary

conditions in the Laplace domain.

3 Mathematical Homogenization

In this section, the mathematical homogenization of the multiscale problem is pro-

posed in the Laplace domain. The two spatial scales, x and y, are considered in solving

the boundary value problem in the Laplace domain as depicted by Eqs. 210-213. x

and y represent the coordinate vectors at the macro- and microscale, respectively.

The two vectors correlate with each other by y = x/ζ, where ζ is the scaling factor

(0 < ζ < 1). The physical meaning of the scaling factor is the ratio of the size of

microstructures to the wavelength of propagating waves.

Define an arbitrary function in the time domain as f ζ(x, t), its representation in

the Laplace domain is denoted as f ζ(x, s). Here, the homogenization theory is applied

in the Laplace domain where the complex function f ζ(x, s) is dependent on the two

spatial scales:

f(x,y(x), s) = f ζ(x, s) (214)
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The spatial derivative of f ζ is computed using the chain rule:

f ζ,xi(x, s) = f,xi(x,y, s) +
1

ζ
f,yi(x,y, s) (215)

where comma denotes the derivative with respect to each coordinate variable.

All the response fields are assumed to be spatially periodic over the characteristic

volume throughout the deformation process:

f(x,y, s) = f(x,y + kŷ, s) (216)

where ŷ denotes the period of microstructure; and k is a nsd × nsd diagonal matrix

with integer components.

The traditional homogenization procedure which applies in the time domain searches

displacements as an asymptotic expansion with respect to the scaling factor, ζ. Ap-

ply the Laplace transform on the displacement expansion in the time domain, the

displacement expansion in the Laplace domain is directly obtained as:

uζi (x, s) = ui(x,y, s) = u0
i (x, s) + ζu1

i (x,y, s) + ζ2u2
i (x,y, s) + ζ3u3

i (x,y, s) +O(ζ4)

(217)

The physical meaning of the scaling factor, ζ, is retained since the Laplace trans-

form only performs on the time variable. The leading order displacement term, u0,

is a function of the macroscopic coordinate vector x only, and the higher order dis-

placement terms depend on both x and y. The linearity of the deformation equation

suggests the strain expansion as:

εij(x,y, s) = ε0ij(x,y, s) + ζε1ij(x,y, s) + ζ2ε2ij(x,y, s) +O(ζ3) (218)
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where the strains at each order of ζ are expressed as:

εαij(x,y, s) = exij(u
α(x,y, s)) + eyij(u

α+1(x,y, s)); α = 0, 1, 2 . . . (219)

eξij(u
α) = uα(i,ξj)(x,y, s) =

1

2

(
uαi,ξj(x,y, s) + uαj,ξi(x,y, s)

)
; ξ = x, y (220)

Substituting Eq. 218 into Eq. 210, the stress expansion is obtained:

σij(x,y, s) = σ0
ij(x,y, s) + ζσ1

ij(x,y, s) + ζ2σ2
ij(x,y, s) +O(ζ3) (221)

where the stress component at each order of ζ is expressed as:

σαij(x,y, s) = Cijkl(y, s)ε
α
kl(x,y, s); α = 0, 1, 2, . . . (222)

Due to the periodic assumption of microstructures in the problem domain, elastic

moduli and density depend on the microscopic coordinate vector, y, only (i.e. ρζ(x) =

ρ(y) and Cζ(x) = C(y)). Substituting Eqs. 217 and 221 to Eq. 211, the coefficients

in the asymptotic expansion construct the equilibrium equations with respect to the

ascending order of ζ:

O(ζ−1) : σ0
ij,yj

(x,y, s) = 0 (223a)

O(1) : σ0
ij,xj

(x,y, s) + σ1
ij,yj

(x,y, s) = ρ(y)u0
i (x, s)s

2 (223b)

O(ζ) : σ1
ij,xj

(x,y, s) + σ2
ij,yj

(x,y, s) = ρ(y)u1
i (x,y, s)s

2 (223c)

O(ζ2) : σ2
ij,xj

(x,y, s) + σ3
ij,yj

(x,y, s) = ρ(y)u2
i (x,y, s)s

2 (223d)

To involve wave dispersions at the microscale in the homogenized solution, the high

order equilibrium equations (i.e., O(ζ) and O(ζ2)) need to be incorporated. Since the

homogenization only applies on the spatial scales, x and y, the Laplace transform

does not change the homogenization procedure compared to the homogenization in
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the time domain which has been extensively discussed in Chapter 4. In this section,

the principal equations are provided for completeness.

3.1 Homogenization Procedure

The first order displacement term, u1, as a function of both x and y, is expressed in

the following form by taking the linear separation of variables:

u1
i (x,y, s) = U1

i (x, s) +Hikl(y, s)exkl(u
0(x, s)) (224)

where H is the first order influence function at the microscale and it is a 3rd rank

tensor with the symmetry on the second and third indices (i.e. Hikl = Hilk). The

microscopic equation of motion is derived by substituting Eq. 224 to Eq. 223a as:

{Cijkl(y, s)(hklmn(y, s) + Iklmn)},yj = 0; y ∈ Θ (225)

in which hijmn(y, s) = H(i,yj)mn(y, s) is the polarization function. The local periodic-

ity of the first order displacement term, u1, leads to the periodic first order influence

function. In addition, the normalization is used to enforce the unique solution of H:

〈Hikl(y, s)〉 =
1

|Θ|

∫
Θ

Hikl(y, s)dy = 0 (226)

in which 〈·〉 =
1

|Θ|

∫
Θ

· dy denotes the averaging operator, and |Θ| is the volume of

Θ. By ensuring that the average of the influence function vanishes, the rigid body

modes are eliminated from the solution. Eqs. 225 and 226 together with the periodic

boundary conditions will uniquely determine the value of H

The homogenized equation of motion atO(1) is obtained by applying the averaging
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operator on Eq. 223b and exploiting the local periodicity of σ1:

ρ0u
0
i (x, s)s

2 = D0
ijmn(s)exmn(u0),xj ; x ∈ Ω (227)

where ρ0 = 〈ρ〉 is the volume-averaged density; and

D0
ijmn(s) = 〈C0

ijmn(y, s)〉 (228)

C0
ijmn(y, s) = Cijkl(y, s)(hklmn(y, s) + Iklmn) (229)

in which, D0 is the zeroth order homogenized modulus tensor in the Laplace domain

and I the fourth rank identity tensor.

For the homogenization at O(ζ), u2, is approximated by introducing the second

order influence function, P(y, s) as:

u2
i (x,y, s) = U2

i (x, s) +Hikl(y, s)exkl(U
1) + Pijkl(y, s)exkl(u

0),xj (230)

in which P is a fourth rank tensor and symmetric with respect to the last two indices,

but not necessarily with respect to the first two indices (i.e., Pijkl 6= Pjikl and Pijkl 6=

Pklij) for arbitrary microstructural configurations. Substituting Eq. 230 into Eq. 223b

and considering Eq. 230, the microscopic equation of motion at O(ζ0) solving for P

is derived as:

C1
ijpmn,yj

= θ(y)D0
ipmn(s)− C0

ipmn(y, s); y ∈ Θ (231)

and

C1
ijpmn(y, s) = Cijkl {pklpmn(y, s) +Hkmn(y, s)δlp} (232)

where θ(y) = ρ(y)/ρ0, pklpmn = P(k,yl)pmn and δ is the Kronecker delta. The local

periodicity and the normalization conditions are employed in the same manner as for

H. The homogenized equation of motion at O(ζ) is derived by substituting Eqs. 224
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and 230 to Eq. 223c and applying the average operator in addition to considering σ2

being locally periodic:

ρ0U
1
i s

2 + 〈ρ(y)Hikl(y, s)〉exkl(u0)s2 =

D0
ijmn(s)exmn(U1),xj +D1

ijkmn(s)exmn(u0),xkxj ; x ∈ Ω (233)

where the first order homogenized stiffness tensor, D1, is defined as:

D1
ijpmn(s) = 〈C1

ijpmn(y, s)〉 (234)

For the homogenization at O(ζ2), the third order displacement term, u3, is ap-

proximated by introducing the third order influence function, Q(y, s) as:

u3
i (x,y, s) = U3

i (x, s)+Hikl(y, s)exkl(U
2)+Pijkl(y, s)exkl(U

1),xj+Qijkmn(y, s)exmn(u0),xkxj

(235)

Substituting Eq. 235 to Eq. 223c, the governing equation for the third order influence

function, Q, after some algebra, becomes:

C2
ijprmn,yj

(y, s) = θ(y)D1
irpmn(s)− C1

irpmn(y, s)

+ θ(y)
{
Hikp(y, s)− ρ−1

0 〈ρ(y)Hikp(y, s)〉
}
D0
krmn(s); y ∈ Θ (236)

where

C2
ijprmn(y, s) = Cijkl(y, s) {qklprmn(y, s) + Pkrmn(y, s)δlp} (237)

in which qklprmn(y, s) = Q(k,yl)prmn(y, s). The third order influence function, Q,

is a fifth rank tensor with the minor symmetry only on the last two indices (i.e.

Qijkmn = Qijknm). Since the explicit computation of Q is not necessary in the high

order homogenization model described below, the boundary value problem for Q is
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not discussed further. Substituting Eqs. 224, 230 and 235 and applying the averag-

ing operator to Eq. 223d in addition to σ3 being locally periodic, the macroscopic

homogenized equation of motion at O(ζ2) is then derived as:

ρ0U
2
i (x, s)s2 + 〈ρ(y)Hikl(y, s)〉exkl(U1)s2 + 〈ρ(y)Pijkl(y, s)〉exkl(u0),yjs

2

= D0
ijmn(s)exmn(U2),xj+D

1
ijrmn(s)exmn(U1),xrxj+D

2
ijprmn(s)exmn(u)0

,xrxpxj
; x ∈ Ω

(238)

where the second order homogenized stiffness tensor, D2, is expressed as:

D2
ijprmn(s) = 〈C2

ijprmn(y, s)〉 (239)

Considering a mean displacement by averaging the displacement over the character-

istic volume:

Ui(x, s) = 〈ui(x,y, s)〉 = u0
i (x, s) + ζU1

i (x, s) + ζ2U2
i (x, s) +O(ζ3) (240)

The summation of Eqs. 227, 233 and 238 leads to a high order homogenized equation

of motion in terms of the mean displacement, U, neglecting O(ζ3) and the higher

order terms:

ρ0Ui(x, s)s
2 + ζ〈ρ(y)Hikl(y, s)〉exkl(U)s2 + ζ2〈ρ(y)Pijmn(y, s)〉exmn(U),xjs

2 =

D0
ijmn(s)exmn(U),xj + ζD1

ijkmn(s)exmn(U),xkxj + ζ2D2
ijprmn(s)exmn(U),xrxpxj ; x ∈ Ω

(241)

The terms inducing micro-inertia effects in the macroscopic equation of motion defined

in Eq. 241 are scaled by the orders of ζ, which leads to zero at the asymptotic limit.

This appears to indicate that the contribution of the high order terms are trivial. This

apparent contradiction is resolved by observing that the coefficients in these terms
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themselves are size dependent. It can be shown that D1 and 〈ρH〉 are proportional

to l̂, and D2 and 〈ρP〉 are proportional to l̂2 [16]:

D1 = O(Cl̂); 〈ρH〉 = O(ρl̂) (242a)

D2 = O(Cl̂2); 〈ρP〉 = O(ρl̂2) (242b)

where l̂ = l/ζ is the characteristic length of the microstructure in the stretched coor-

dinate system y, and l the characteristic length of microstructure in the macroscopic

coordinate system x. D1, D2, 〈ρH〉 and 〈ρP〉 are homogeneous functions of degree

1. Consequently:

ζD1 = O(Cl); ζ〈ρH〉 = O(ρl) (243a)

ζ2D2 = O(Cl2); ζ2〈ρP〉 = O(ρl2) (243b)

In this study, ζD1, ζ2D2, ζ〈ρH〉 and ζ2〈ρP〉 which are directly calculated using the

physical geometric size as opposed to stretched configurations. The coefficients are

therefore expressed at order O(1).

3.2 A Simplified High Order Homogenization Model

Under the assumption that: (1) the homogenized material exhibits orthotropy or

higher symmetry; (2) within a microstructural constituent domain, the elastic mod-

ulus tensor and constituent density are assumed to be constant, but the properties

are allowed to vary from constituent to another and generate micro-inertia under

dynamic conditions. Two conclusions are drawn:

D1
ijkl(s) = 0 (244)

〈ρ(y)Hikl(y, s)〉 = 0 (245)
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The demonstration of the above equations are provided in Chapter 4 in the time

domain, and the demonstration procedure in the Laplace domain is identical to what

is in the time domain since all the manipulation is regarding the spatial variables.

The fourth order derivative in Eq. 241 prevents the standard finite element solution.

In order to apply the standard finite element solution on the problem, the high order

term needs to be broken down to lower order terms as follows:

D2
ijprmn(s) ≈ Aijpq(s)D

0
qrmn(s) (246)

Since the multiplication only permutes over the fourth subscript, no inversion of D0

may be found. Instead, we search for the Moore-Penrose pseudo-inversion of D0

which is defined as:

A∗ijpq(s) = D2
ijprmn(s)D0 -mp

qrmn (s) (247)

where ’-mp’ denotes the Moore-Penrose pseudo-inverse as provided in Appendix C.

The fourth order term in Eq. 241 is expressed as:

ζ2D2
ijprmn(s)exmn(U),xrxpxj = ζ2A∗ijpq(s)D

0
qrmn(s)exmn(U),xrxpxj (248)

Using Eq. 227 and neglecting O(ζ3) and the higher order terms:

ζ2A∗ijpq(s)D
0
qrmn(s)(exmn(U)),xrxpxj = ζ2ρ0A

∗
ijmn(s)exmn(U),xjs

2 (249)

Substituting Eq. 248 to Eq. 241, the macroscopic equation of motion in terms of the

mean displacement, U, becomes:

ρ0Ui(x, s)s
2 + ζ2〈ρ(y)Pijmn(y, s)〉(exmn(U)),xjs

2 =

D0
ijmn(s)(exmn(U)),xj + ζ2ρ0A

∗
ijmn(s)exmn(U),xjs

2 (250)
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The second order influence function P exhibits minor symmetry with respect to the

last two indices only, and we employ its symmetric part as:

Jijmn(s) =
1

2
(〈ρ(y)Pijmn(y, s)〉+ 〈ρ(y)Pjimn(y, s)〉) (251)

In addition, A∗ possesses the minor symmetry with respect to the first two indices

only (i.e. A∗ijpq = A∗jipq). A∗ is then decomposed into its symmetric and antisymmetric

components as:

Aijkl(s) =
1

2

(
A∗ijkl(s) + A∗ijlk(s)

)
(252a)

Bijkl(s) =
1

2

(
A∗ijkl(s)− A∗ijlk(s)

)
(252b)

Using the symmetry of strain tensor along with Eq. 252, the equation of motion for

the high order homogenization model reduces to:

ρ0Ui(x, s)s
2 = D0

ijmn(s)(exmn(U)),xj − Lijmn(s)(exmn(U)),xjs
2; x ∈ Ω (253)

where the micro-inertia induced acceleration modulus tensor, L, is defined as:

Lijmn(s) = ζ2(Jijmn(s)− ρ0Aijmn(s)) (254)

where the antisymmetric components of the micro-inertia terms, B, in the govern-

ing equation of motion vanish by multiplying with ex(U). The tensor, L, satisfies

the minor symmetry for both the first two and last two indices (i.e. Lijmn = Ljimn;

Lijmn = Lijnm) that facilitates the finite element solution. From Eq. 253, the consti-

tutive equation for the high order homogenization model at the macroscale is defined
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in the Laplace domain as:

Σij(x, s) =
(
D0
ijmn(s)− s2Lijmn(s)

)
exmn(U); x ∈ Ω (255)

4 Calculation of Dissipated Energy

The dissipated energy is calculated for the high order homogenization model to as-

sess wave dissipation. In the present work, the Prony series is used for the linear

viscoelastic material model and the modulus tensor is expressed as:

gijkl(y, t) = 3K∞(y)

(
1 +

n∑
i=1

pi(y)e−t/qi(y)

)
E1
ijkl + 2G∞(y)

(
1 +

n∑
i=1

pi(y)e−t/qi(y)

)
E2
ijkl

(256)

where

E1
ijkl =

δijδkl
3

(257)

E2
ijkl =

δikδjl + δilδjk
2

− E1
ijkl (258)

The displacement, u(x,y, s), is be expressed in terms of the mean displacement,

U(x, s), by revisiting the asymptotic expansion of u(x,y, s):

ui(x,y, s) = u0
i (x, s) + ζU1

i (x, s) + ζ2U2
i (x, s) + · · ·

+ ζHikl(y, s)
(
exkl(u

0) + ζexkl(U
1) + ζ2exkl(U

2)
)

+ · · ·

+ ζ2Pijkl(y, s)
(
exkl(u

0),xj + ζexkl(U
1),xj + ζ2exkl(U

2),xj
)

+ · · · (259)
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It is straightforward that u(x,y, s) is expanded by the ascending order of ζ in terms

of the mean displacement as:

ui(x,y, s) = Ui(x, s) + ζHikl(y, s)exkl(U) + ζ2Pijkl(y, s)exkl(U),xj + · · · (260)

The strain in the Laplace domain is then calculated as:

εij(x,y, s) = (Iijkl + hijkl(y, s)) exkl(U) +O(ζ) (261)

The influence function indicates the heterogeneity of the strain tensor in mi-

crostructures. The strain tensor needs to be transformed from the Laplace domain

to the time domain in order to calculate the dissipated energy in the time domain:

ε(x,y, s) → ε(x,y, t). Besides, the dissipated energy is decomposed into two com-

ponents: deviatoric and hydrostatic components. The dissipated energy density rate

due to deviatoric components is calculated as:

skij(x,y, t) =

∫ t

0

e−(t−τ)/qk(y)ε̇′ij(x,y, τ)dτ (262)

ẇks (x, t) =
1

Θ

∫
Θ

2G∞(y)
pk(y)

qk(y)
skijs

k
ijdy (263)

where ε′ is the deviatoric component of strain, sk is the deviatoric component of

dissipating strain. wks is the deviatoric component induced dissipated energy density

associated with the kth internal viscous variable. The integration over the microstruc-

ture, Θ, calculates the dissipated energy density rate at each integration point at the

macroscale. Similarly, the dissipated energy density rate due to hydrostatic compo-
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nents is calculated as:

bkij(x,y, t) =

∫ t

0

e−(t−τ)/qk(y)ε̇ll(x,y, τ)δijdτ (264)

ẇkb (x, t) =
1

Θ

∫
Θ

K∞(y)
pk(y)

qk(y)
bkijb

k
ijdy (265)

where bk is the hydrostatic component of dissipated strain and wkb the hydrostatic

components induced dissipated energy density associated with the kth internal dissi-

pated variable. The total dissipated energy density rate is calculated as:

ẇ(x, t) =
n∑
k

ẇks (x, t) +
n∑
k

ẇkb (x, t) (266)

The total dissipated energy, Wd, is calculated by integration over the macrostructure,

Ω, and the time history:

Wd(t) =

∫ t

0

∫
Ω

ẇ(x, t)dxdt (267)

5 Numerical Implementation

The numerical implementation of the multiscale homogenization model includes the

computation of corresponding fields in the time domain and the Laplace domain. A

numerical inverse Laplace transform [17] based on the Fast Fourier Transform and

the ε-algorithm [43] is used to convert solutions from the Laplace domain into the

time domain. Several steps are followed in the numerical implementation:

1. A group of discrete time steps (i.e., tβ where β = 1, 2, · · ·Nt and Nt is the

number of time steps) are generated within the given time duration. A group

of complex arguments (i.e., sα where α = 1, 2, · · ·Ns and Ns is the number of

complex arguments) are generated along a vertical line (i.e., of the same real

part) in the complex plane and within the convergence region of the inverse
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Laplace transform integration. Note that the density and coverage of generated

complex arguments along the vertical line should be large enough for accurate

inverse Laplace transform.

2. The first order influence function at sα, H(y, sα), is obtained using the finite ele-

ment solution of the boundary value problem defined by Eq. 225 in the O(1) ho-

mogenization and the local periodicity and normalization conditions of H(y, sα).

The weak form of Eq. 225 is:

∫
Θ

wi,yj(y, s)Cijkl(y, s)hklmn(y, s)dy = −
∫

Θ

wi,yj(y, s)Cijmn(y, s)dy (268)

3. Provided with H(y, sα), the second order influence function at sα, P(y, sα),

is obtained using the finite element solution of the boundary value problem

defined by Eq. 231 in the O(ζ) homogenization and the local periodicity and

normalization conditions of P(y, sα). The weak form of Eq. 231 is:

∫
Θ

wi,yj(y, sα) (Cijkl(y, sα)(pklpmn(y, sα) +Hkmn(y, sα)δlp)) dy =

−
∫

Θ

wi(y, sα)
(
θ(y)D0

ipmn(sα)− C0
ipmn(y, sα)

)
dy (269)

4. The homogenized modulus tensors D0(sα) and D2(sα) defined in Eqs. 228 and

239 are evaluated numerically based on the solutions of H(y, sα) and P(y, sα).

5. The mean displacement at sα, U(x, sα), is obtained using the finite element

solution of the boundary value problem defined by Eq. 253 at the macroscale

together with the corresponding boundary conditions. The weak form of Eq. 253
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Given a simulation time period 

Macroscale: Complex finite element solution of the boundary 

value problem solving for 𝑼(𝒙, 𝑠𝛼) 

Microscale: Complex finite element solution of 

the boundary value problem solving for H 𝒚, 𝑠𝛼 . 

Compute the homogenized complex moduli at the macroscale:   

- 𝐷0(𝑠𝛼), and 𝐷2(𝑠𝛼) 

Provide inputs: complex arguments 

 (i.e. 𝑠𝛼 where 𝛼 = 1,2,⋯𝑁𝑠) and for each 𝑠𝛼: 

Microscale: Complex finite element solution of 

the boundary value problem solving for 𝐏 𝒚, 𝑠𝛼 . 

Given the convergence region of the inverse Laplace transform integration 

Calculate dissipated energy of the whole 

problem domain, 𝑊𝑑(𝑡𝛽), at 𝑡𝛽. 

Provide inputs: H 𝒚, 𝑠𝜶  

Provide inputs: H 𝒚, 𝑠𝛼  and 𝐏 𝒚, 𝑠𝛼 . 

Provide inputs: 𝑫𝟎(𝑠𝛼), and 𝑫𝟐(𝑠𝛼) 

Numerical inverse Laplace transform function 

Provide inputs: 𝑼(𝒙, 𝑡𝛽) 

Provide inputs: a group of discrete 

time steps (i.e. 𝑡𝛽 where 𝛽 = 1,2,⋯𝑁𝑡) 
Laplace domain 

time domain 

Parallelization 

Provide inputs: 𝑼(𝒙, 𝑠𝛼) for all 

complex arguments 

Figure 30: Computational flowchart.

is:

∫
Ω

ρ0wi(x, sα)Ui(x, sα)s2
αdx−

∫
Ω

wi,xj(x, sα)Lijmn(sα)exmn(U)s2
αdx

+

∫
Ω

wi,xj(x, sα)D0
ijmn(sα)exmn(U)dx =

∫
Γt
wi(x, sα)Σij(x, sα)njdx (270)

6. Repeat Steps 2-5 to calculate the mean displacements in the Laplace domain for

all the complex arguments. Provide the complex valued mean displacements to

the numerical inverse Laplace transform and calculate the mean displacements

for all the time steps in the real time domain.

7. Calculate the dissipated energy of the whole problem domain at each time step

using the mean displacements in the time domain obtained in Step 6.
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Table 5: Material constants for elastic and viscoelastic phases.

Elastic phase

E[GPa] ν ρ[kg/m3]

2.0 0.3 7900

Viscoelastic phase

G∞[MPa] K∞[MPa] ρ[kg/m3]

22.4 431.4 1070

p1 p1 p1 p1

0.8458 1.686 3.594 4.342

q1 [ms] q2 [ms] q3 [ms] q4 [ms]
463.4 0.06407 1.163× 10−4 7.321× 10−7

Note that the finite element solutions in Steps 2, 3 and 5 are complex valued due to

the complex modulus tensors in the Laplace domain. The finite element discretization

of the weak forms (i.e., Eqs. 268, 269 and 270) is identical to what has been extensively

discussed by ? ] and skipped in this manuscript. In addition, the computations in

Steps 2-5 are independent with each other with respect to each complex argument,

sα, and are able to be parallelized. This will increase the computational efficiency

significantly in cluster environment. The flowchart summarizing the computational

implementation of the multiscale homogenization model is shown in Fig. 30.

6 Numerical Verification

A series of numerical simulations has been conducted to assess the performance of the

proposed high order homogenization model and verified against direct numerical sim-

ulations. A two-dimensional square composite domain was considered as illustrated

in Fig. 31. Two different microstructures are considered: layered and particulate.

The microstructures consist of an elastic and a viscoelastic phase as shown in Fig. 31.

The material parameters for the elastic and viscoelastic phases are summarized in

Table 5. The volume fraction of the elastic phase in the layered and the particulate

microstructures are 80% and 63.6%, respectively. The composite domain was excited
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using a displacement controlled sinusoidal disturbance applied at the 50 mm segment

along the vertical centerline (i.e., v-cl in Fig. 31). The maximum loading amplitude is

set to uR = 0.01mm. The domain is clamped at the bottom edge. The direct numer-

ical simulations employed to verify the multiscale model is the direct finite element

analysis (direct FEA), in which all heterogeneities are fully resolved throughout the

composite domain. The direct FEA simulations use the explicit time integration with

time step sizes significantly smaller than the stability limit to ensure high accuracy.

50mm

40mm

50mm

u1=uRsin(2�Nt/tR)

mesh at the macroscale

microstructure50mm

21
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ro
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phase-1: elastic
phase-2: viscoelastic

45mm 

Figure 31: Layered and fibered composite structures under sinusoidal displacement distur-
bance.

6.1 Dynamic Response of Layered Composite

Figures 32-35 show the vertical component of the macroscopic displacement field (i.e.,

U2) computed using the multiscale model and the direct FEA. The displacement

within the problem domain is plotted at five time instances (i.e., t = 0.4, 0.8, 1.2, 1.6

and 2 ms) for four loading frequencies: 500 Hz, 1000 Hz, 1500 Hz and 3000 Hz. The

domain and loading was chosen to ensure that within the simulation period (tR = 2

ms), boundary dispersion (i.e., the interference due to reflection of the deformation

waves off the domain boundaries) is relatively small and that the dispersion is largely

induced by micro-heterogeneity only.
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The response predictions of the multiscale model at all frequencies shown in

Figs. 32-35 are in good agreement with the direct FEA. At the relatively low loading

frequency of 500 Hz (Fig. 32), the wavelength remains well above the microstructure

size and the effect of micro-heterogeneity induced wave dispersion is insignificant.

The displacement contours show an ellipsoidal shape (e.g., Fig. 32b), since the propa-

gations along the horizontal and vertical directions are governed by the s and p wave

speeds, respectively. When the applied loading frequency is 1000 Hz, the interaction

of the wave with the material microstructure is apparent as shown in Fig. 33. The

interactions intensify at 1500 Hz loading frequency (Fig. 34). The wave along the

horizontal centerline (h-cl in Fig. 31) is largely attenuated, which indicates the pos-

sibility of the occurrence of bandgaps. A second possible source of wave attenuation

is the material dissipation due to the viscoelastic phase. The contribution of mate-

rial dissipation on wave attenuation is further discussed below in terms of dissipated

energies. When the loading frequency increases to 3000 Hz (Fig. 35), strong wave

dispersion is observed and wave propagation is largely attenuated in most directions.

The occurrence of the bandgap behavior is further investigated by conducting

a one-dimensional shear wave propagation analysis in a layered media with identi-

cal composition to the composite domain studied herein. The one-dimensional wave

propagation problem in periodic viscoelastic media has a semi analytical solution as

described in Chapter 3. The results of the one-dimensional analysis are employed

to partially verify the wave propagation in the 2-d multiscale simulations along the

horizontal centerline since the propagation along the horizontal centerline is relatively

undisturbed. Figure 36 shows the displacement histories of an observation point at

loading frequencies of 1000 Hz, 1250 Hz and 1500 Hz as computed using the one-

dimensional solution. The observation point is four microstructures (i.e., 200 mm)

away from the loading end. An increase in wave attenuation is observed with in-

creasing load frequency. When the load frequency is set at 1500 Hz frequency, the
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observation point remains undisturbed throughout the analysis period indicating ei-

ther the occurrence of the bandgap or very strong material dissipation. The results of

the one-dimensional simulation are in agreement with the two-dimensional simulation

along the horizontal centerline.

The direct FEA solution under the loading frequency of 3000 Hz shows a near-

complete wave attenuation along the horizontal direction, whereas along the vertical

direction localized within the central two layers, wave propagates without significant

attenuation. This result is consistent with the layered microstructure aligned along

the vertical direction, allowing the p-waves to propagate freely through the uniform

constituents at the mid-section. In comparison, the localized vertical wave propa-

gation is largely attenuated in the homogenized component of the multiscale model.

This discrepancy is attributed to the smearing effect due to the averaging performed

over the microstructure (i.e., unit cell) domain in the multiscale model, and that

the plotted macroscale displacement field, U, is the average component of the re-

sponse field and the fluctuations within the microstructure domain is not shown in

the multiscale solution.
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Figure 32: High order homogenization (top row) and direct FEA (bottom row) solutions
when loading frequency = 500 Hz: (a) t = 0.4 ms; (b) t = 0.8 ms; (c) t = 1.2 ms; (d) t =
1.6 ms; (e) t = 2 ms.

The dissipated energy is calculated when the loading frequencies equal to 500,
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Figure 33: High order homogenization (top row) and direct FEA (bottom row) solutions
when loading frequency = 1000 Hz: (a) t = 0.4 ms; (b) t = 0.8 ms; (c) t = 1.2 ms; (d) t =
1.6 ms; (e) t = 2 ms.
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Figure 34: High order homogenization (top row) and direct FEA (bottom row) solutions
when loading frequency = 1500 Hz: (a) t = 0.4 ms; (b) t = 0.8 ms; (c) t = 1.2 ms; (d) t =
1.6 ms; (e) t = 2 ms.

1000, 1500 and 3000 Hz respectively. The dissipated energy ratio defined as the ratio

of dissipated energy to total energy input is plotted in Fig. 37 where the high order

homogenization solutions are compared with the direct finite element solution. The

high order homogenization method predicts the dissipated energy in good agreement

with the finite element solutions. In particular, when the loading frequency is 3000

Hz, the high order homogenization prediction is also close to the direct finite element
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Figure 35: High order homogenization (top row) and direct FEA (bottom row) solutions
when loading frequency = 3000 Hz: (a) t = 0.4 ms; (b) t = 0.8 ms; (c) t = 1.2 ms; (d) t =
1.6 ms; (e) t = 2 ms.
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Figure 36: One-dimensional wave propagation in viscoelastic-elastic composite beam.

solution despite the discrepancy in the displacement contours as show in Fig. 35. This

is because in the calculation of dissipated energy, the microscopic information (i.e.,

influence functions) is retrieved at each integration point at the macroscale as shown in

Eq. 261. On the other hand, it is found that the dissipated energy ratio at the end of

the simulation period tends to stabilize when the loading frequency increases as shown

in Fig. 37. When the loading frequency is 500 Hz, the total dissipated energy ratio is

around 30%; when the loading frequency increases above 1000 Hz until 3000 Hz, the

total dissipated energy ratio stays around 50%. This finding actually elucidates the

contribution of bandgap on attenuating the wave propagation. Specifically, when the
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loading frequency reaches 3000 Hz, only 50% of the total energy input is dissipated by

material dissipation, and the rest of the input energy would make the wave propagate

in all directions if there were no dispersion in microstructures. However, in fact, as

shown in Fig. 35, the wave propagation in the horizontal direction is forbidden. This

means that the bandgap prohibits the wave propagation in the horizontal direction.
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Figure 37: Dissipated energies calculated by the high order homogenization and direct
FEA with loading frequency (a) 500 Hz; (b) 1000 Hz; (c) 1500 Hz; (d) 3000 Hz.

6.2 Dynamic Response of Particulate Composite

The capability and the performance of the proposed multiscale model are further

demonstrated by investigating the dynamic behavior of a particulate composite. The

domain of the composite structure and the loading conditions remain identical to the

layered configuration. The geometry of the particulate microstructure is shown in Fig.

31. The particle phase is taken to be elastic, whereas the matrix is viscoelastic with

material properties shown in Table 5. Figure 38 illustrates the vertical component of

the macroscopic displacement field (i.e., U2) computed using the multiscale model at

five time instances within the observation period (i.e., at 1.2, 2.4, 3.6, 4.8 and 6.0 ms)

for three different loading frequencies (i.e., 250 Hz, 500 Hz and 1000 Hz). The wave

propagation response is markedly different compared to the layered configuration due
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to the significantly different microstructural configurations. The loading frequency

of 250 Hz corresponds to the a wave propagation response with little material dis-

persion. When the loading frequency increases to 500 Hz, strong wave dispersion

occurs and the wave propagations particularly along the horizontal and vertical cen-

terlines demonstrate significant wave attenuation. The wave propagation falls into

the bandgap when the loading frequency reaches to 1000 Hz. In contrast to the lay-

ered microstructure, near complete wave attenuation occurs at a lower frequency in

the particulate composite. The sensitivity of the attenuation characteristics to the

microstructure points to the capability to control the dispersion and wave attenuation

characteristics through microstructure design.
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Figure 38: High order homogenization solutions when loading frequency = 250 Hz (top
row), 500 Hz (middle row) and 1000 Hz (bottom row) at (a) t = 1.2 ms; (b) t = 2.4 ms; (c)
t = 3.6 ms; (d) t = 4.8 ms; (e) t = 6.0 ms.

6.3 Computational Efficiency

The proposed multiscale model is significantly more computationally efficient com-

pared to the direct finite element analysis. For example of the layered composite
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structure, 6720 elements were used for the discretization of the macroscopic domain

and 800 elements were used for the microscopic domain with the multiscale model.

In comparison, 168,000 elements were used in the direct finite element solution in

order to calculate the wave dispersion at high frequency loadings. For the multiscale

model, both the microscopic and macroscopic problems need to be evaluated for each

complex argument, s, however the tremendous reduction in the number of elements

increases the computational efficiency significantly. On the other hand, 500 iterations

(i.e. a set of 500 complex arguments, s) are enough to render accurate dispersive

wave responses in the homogenization model while 200, 000 time steps are required to

obtain accurate dispersive wave responses in the direct finite element solution. The

parallelization in the homogenization model for the micro- and macroscopic problems

also improves the computational efficiency in cluster environment.

7 Conclusions

In this chapter, we presented a high order homogenization model for simulating wave

propagation in viscoelastic composite structures. The proposed model is defined in

the Laplace domain based on the mathematical homogenization with multiple spatial

scales. The high order asymptotic terms have been introduced to capture micro-

heterogeneity induced wave dispersions. The complex wave fields were solved using

the complex finite element solution formulated in the Laplace domain. The proposed

model was verified against the direct finite element solution and the one-dimensional

semi-analytical solution.

Based on the numerical results, the proposed model is able to accurately pre-

dict the wave propagation and dispersion in the layered and particulate viscoelastic

composites under different loading frequencies. In addition, the complex high order

homogenization model was shown to successfully predict the occurrence of and the

wave propagation within the bandgaps. The sensitivity of wave attenuation with re-
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spect to the microstructure leads to the capability to control the dispersion and wave

attenuation characteristics through microstructure design.

124



CHAPTER 6

SUMMARY AND FUTURE WORK

1 Conclusions

This dissertation proposed a computational framework of the dynamic response of

composite structures. The framework is developed based on the mathematical ho-

mogenization theory with multiple spatial scales. The multiscale homogenization

model serves to reproduce wave attenuation and micro-heterogeneity induced wave

dispersion. The principal achievements of this dissertation are summarized below:

Chapter 2 provided an investigation of the blast mitigation effect of polyurea, used

in protective layers, on woven E-glass fiber-reinforced vinyl-ester (EVE) composites.

The response of EVE layers was modeled based on a multiscale computational dam-

age model that included adiabatic heating and rate-dependence in the constituent

(i.e. matrix and fiber) behavior. The numerical simulations were validated against

experimental data demonstrating the capability of the multiscale model in capturing

the inelastic response of EVE composite materials. The significant blast mitigation

effect of polyurea layer was demonstrated numerically. The predictive simulations

suggested better blast mitigation characteristics with increasing polyurea thickness

and confining the perimeter of polyurea layers.

Chapter 3 presented a dispersive homogenization solution in the Laplace domain

for one-dimensional wave propagation in viscoelastic composites. The high order

asymptotic terms were considered in the homogenization formulations to include

micro-heterogeneity induced wave dispersion. A semi-analytical solution was derived

for wave propagation in bi-material viscoelastic composite structures. The numerical

verifications indicate that the proposed nonlocal model is able to accurately account

for the dispersion and dispersion induced attenuation under a wide range of loading
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and material parameters.

Chapter 4 presented a high order homogenization model for multi-dimensional

wave propagation in elastic composite materials. The high order asymptotic terms

have been introduced to capture the micro-inertia effects caused by the impedance

contrast between the microstructural constituents. The finite element formulation

for the evaluation of the microscale influence functions and the homogenized model

were provided. The proposed high order homogenization model was validated by

comparing against the direct finite element solutions and the local homogenization

model. From the modeling perspective, the high order homogenization model pos-

sesses several advantages. First, the high order homogenization model is able to

capture complete density and modulus disparities induced wave dispersion. Second,

the proposed model is able to capture wave propagation behaviors within phononic

bandgaps. The appearance of bandgap in the high frequency range is due to complex

wavenumber which leads to an exponential attenuation. In the proposed model, the

ability to model wave propagation within bandgap stems from the complex treatment

of the response fields.

Chapter 5 further discussed the high order homogenization model in the Laplace

domain for multi-dimensional wave propagation in viscoelastic composites. The ho-

mogenization model was defined in the Laplace domain allowing the representation of

linear viscoelastic constitutive relationship using a proportionality law. The complex

wave fields were solved using the complex finite element solution formulated in the

Laplace domain. The proposed model was verified against the direct finite element

solution and the one-dimensional semi-analytical solution. The proposed model accu-

rately predicted the wave propagation and dispersion in the layered and particulate

viscoelastic composites under different loading frequencies. In addition, the wave

propagations within the bandgaps were successfully predicted and the occurrence of

bandgaps was adjusted through revising microstructures.
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2 Future Work

While the multiscale models work well with the current wave propagation problems

in composite structures, several challenges remain in more realistic and complicated

applications. First, microstructure is proved to be able to influence the wave dis-

persion induced wave attenuation characteristics. Therefore, the optimal design of

microstructure will provide an additional mechanism of vibration control and im-

pact/blast survivability in heterogeneous materials. This work would require a thor-

ough parametric investigation of microstructures to integrate geometric and consti-

tutive optimizations of rendering satisfactory wave attenuation characteristics. The

second challenge is the extension of the proposed model to account for failure process

which acts as a necessity in simulating blast incidents where damage essentially con-

trols dynamic responses. However, this is a computationally demanding undertaking,

since the present complex homogenization procedure in the Laplace domain cannot

be employed in a straightforward manner for damage constitutive models. Accord-

ingly, a computational model operating with general constitutive definitions will be

of great value to realistic applications.
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Appendix A

THE SOLUTIONS OF LOCALIZATION FUNCTIONS

In chapter 3, the localization functions: 1+H,y(y, s), H(y, s)+P,y(y, s) and P (y, s)+

Q,y(y, s) in Eq. 105 are derived and shown as follows:

1 +H1,y(y, s) =
E0

E1

(271)

1 +H2,y(y, s) =
E0

E2

(272)

H1(y, s) + P1,y(y, s) =
E0(1− α)(ρ1 − ρ2)

2ρ0E1

(2y − αl̂) (273)

H2(y, s) + P2,y(y, s) =
E0α(ρ1 − ρ2)

2ρ0E2

((1 + α)l̂ − 2y) (274)

P1(y, s) +Q1,y(y, s) =
E2

0(1− α) [E1(−2ρ1 + ρ0) + E2(ρ1 + ρ2 − ρ0)]

2ρ0E1
2E2

(y2 − αl̂y)

−E
3
0(1− α)αl̂2

12ρ0E1
3E2

2 ·
[(

(1− α)2E1
2 + α2E2

2
)

(ρ0 − ρ1 − ρ2)

−E1E2

(
(2α3 − 4α2 + α)ρ1 − (2α3 − 2α2 − α + 1)ρ2

)]
(275)

P2(y, s) +Q2,y(y, s) =
E2

0α [E1(ρ0 − ρ1 − ρ2) + E2(2ρ2 − ρ0)]

2ρ0E1E2
2 ((l̂ + αl̂)y − y2)

+
E3

0αl̂
2

12ρ0E1
2E2

3 ·
[(
−1− 3α + 3α2 + α3

)
(ρ0 − ρ1 − ρ2)E1

2

+α2
((

1 + 4α + α2
)
ρ1 −

(
6 + 5α + α2

)
ρ2

)
E2

2

+E1E2

(
(α + 7α2 − 6α3 − 2α4)ρ1 + (−1− 4α + α2 + 8α3 + 2α4)ρ2

)]
(276)
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Appendix B

PROOF OF 〈ρH〉 = 0

In Chapter 4, premultiplying Eq. 135 with the first order influence function, H(y)

and integrating over the domain of the microstructure:

∫
Θ

HiklC
1
ijpmn,yj

dy =

∫
Θ

θHiklD
0
ipmndy −

∫
Θ

HiklC
0
ipmndy (277)

Integrating by parts leads to:

∫
Θ

HiklC
1
ijpmn,yj

dy =

∫
Γ

HiklC
1
ijpmnnjdy −

∫
Θ

Hikl,yjC
1
ijpmndy (278)

The boundary integral vanishes due to periodicity. Considering Eq. 132 and 136,

Eq. 277 becomes:

−
∫

Θ

Hikl,yjCijrs (prspmn +Hrmnδsp) dy =∫
Θ

θHikldyD
0
ipmn −

∫
Θ

HiklCiprshrsmndy −
∫

Θ

HiklCiprsδrmδsndy (279)

Applying the averaging operator to the first term on the right hand side of the equa-

tion above:

−
∫

Θ

Hikl,yjCijrsprspmn −Hikl,yjCijrpHrmndy =

|Θ|
ρ0

〈ρHikl〉D0
ipmn −

∫
Θ

HiklCiprshrsmndy −
∫

Θ

HiklCipmndy (280)

The major symmetry of C suggests:

HiklCiprshrsmn = hijmnCijrpHrkl (281)
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Define:

uklpmn =
1

|Θ|

∫
Θ

hijklCijrpHrmndy (282)

and ûklpmn = uklpmn − umnpkl, Eq. 280 becomes:

−
∫

Θ

hijklCijrsprspmndy − |Θ|ûklpmn =
|Θ|
ρ0

〈ρHikl〉D0
ipmn −

∫
Θ

HiklCipmndy (283)

Considering Eq. 128, premultiplying the equation with P(y) and integrating over

the microstructure:

∫
Θ

PipklC
0
ijmn,yj

dy = 0 (284)

Integrating by parts:

∫
Θ

PipklC
0
ijmn,yj

dy =

∫
Γ

PipklC
0
ijmnnjdy −

∫
Θ

Pipkl,yjC
0
ijmndy (285)

The boundary integral vanishes due to periodicity and Eq. 132 yields:

∫
Θ

pijpklC
0
ijmndy =

∫
Θ

pijpklCijsthstmndy +

∫
Θ

pijpklCijstδsmδtndy = 0 (286)

By virtue of the major symmetry of C(y),

∫
Θ

hijklCijrsprspmndy = −
∫

Θ

prspmnCrskldy (287)

Using the above conclusion, Eq. 283 becomes:

∫
Θ

prspmnCrskldy − |Θ|ûklpmn =
|Θ|
ρ0

〈ρHikl〉D0
ipmn −

∫
Θ

HiklCipmndy (288)
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Integrating Eq. 136 over the microstructure:

∫
Θ

C1
klpmndy −

∫
Θ

CklrpHrmndy =

∫
Θ

prspmnCrskldy (289)

Substituting Eq. 289 into Eq. 288:

|Θ|
ρ0

〈ρHikl〉D0
ipmn =

∫
Θ

C1
klpmndy −

∫
Θ

HrmnCrpkldy − |Θ|ûklpmn +

∫
Θ

HiklCipmndy

(290)

Let:

vklpmn =
1

|Θ|

∫
Θ

HimnCipkldy (291)

v̂klpmn = vklpmn − vmnpkl (292)

and defining D1 as:

D1
klpmn =

1

|Θ|

∫
Θ

C1
klpmndy (293)

Eq. 290 is written in terms of ŵ and D1:

〈ρHikl〉D0
ipmn = ρ0

(
D1
klpmn − ŵklpmn

)
(294)

where:

ŵklpmn = ûklpmn + v̂klpmn (295)

For macroscopically orthotropic materials, D1 = 0, then Eq. 290 becomes:

〈ρHikl〉D0
ipmn = −ρ0ŵklpmn (296)
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Noting that ρ0 is independent of H(y), and that ŵ and D0 are independent of ρ,

only the trivial solution is satisfied for an arbitrary chosen density variation within

the microstructure:

〈ρHikl〉 = 0 (297)
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Appendix C

MOORE-PENROSE PSEUDO-INVERSE

The Moore-Penrose pseudo-inverse A-mp of a matrix A is a generalization of the

inverse matrix. Let K denote one of the fields of real or complex numbers, M(m,n;K)

denote the vector space of m × n matrices over K. For A ∈ M(m,n;K), a Moore-

Penrose pseudo-inverse of A is defined as a matrix A-mp ∈ M(n,m;K) satisfying all

of the following four criteria:

AA-mpA = A (298)

A-mpAA-mp = A-mp (299)

(AA-mp)∗ = AA-mp (300)

(A-mpA)∗ = A-mpA (301)

where the superscript ∗ denotes the Hermitian transpose. Moore - Penrose pseudo-

inverse exists and is unique. Equations 298 and 299 define the generalized inverse

and Eqs. 300 and 301 determine the uniqueness of the pseudo-inverse of A.
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