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CuInS2 is a ternary semiconductor material with potential alternative energy applications 

in photovoltaic devices and in systems designed for photocatalytic water reduction. To date, the 

majority of research into CuInS2 nanoparticles has focused on those that possess the 

thermodynamically favored chalcopyrite crystal structure. Wurtzite, the kinetically favored 

crystal structure, is exclusively seen in nano-structures, and has been significantly less studied. 

The synthesis of “large” wurtzite CuInS2 nano-disks has already been established, but the 

particles show energetic imperfections. This study details the development of a synthesis that 

produces sub-4 nm, quantum-confined, wurtzite CuInS2 nanoparticles that show emission near 

the band gap, a unique observation for wurtzite CuInS2. The particles are produced using a hot-

injection method using metal salts as precursors. The structure and properties of these particles 

were detailed via absorbance and fluorescence spectroscopy, transmission electron microscopy, 

powder X-Ray diffraction, and inductively coupled plasma optical emission spectroscopy. 

Attempts were then made to develop a modified synthesis by which the band gap and size of the 

particles could be controllably manipulated. These efforts culminated in the addition of oleic acid 

to the reaction mixture, which showed promising initial results. Continued investigation into 

these quantum-confined wurtzite CuInS2 particles revealed some of the inherent inconsistencies 



 

of the synthesis developed in this study. The future work of this project will focus on 

understanding and explaining the apparent variability in the properties of the particles produced 

by this synthesis. 
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CHAPTER I 

 

INTRODUCTION 

 

In recent decades, nanotechnology has grown to encompass a wide breadth of interests 

and expertise. Nanoparticle research, in particular, has facilitated dramatic achievements in 

material1,2,3, biomedical4,5,6,7, and photovoltaic applications8,9,10. Nanoparticles are increasingly 

employed in developing emerging photovoltaic applications for solar-based renewable energy 

sources as an answer to the present energy dilemma facing our planet. Continuing global 

industrialization has led to rapidly increasing energy demands, which far outpace traditional 

energy sources and produce unsustainable environmental pressures with dire consequences if left 

unchecked.11 It is imperative that alternative energy sources be developed that boast both 

impressive efficiencies and relatively mild environmental impacts, and it is in that vein that this 

research is motivated.12 

Nanotechnology has opened the door for numerous advances in alternative energy 

research. Semiconductor nanoparticles, called quantum dots, are attractive light absorbing 

materials for solar energy capture. They have been applied in photovoltaic devices and to the 

photocatalytic production of clean-burning, renewable hydrogen gas.8 There are two main 

designs using quantum dots for the solar-production of hydrogen gas. In the first case, the 

splitting of water happens directly on the quantum dot surface or on an attached catalytic 

domain. In the second, quantum dots are used as the photo-absorber layer in a photovoltaic 

device which is connected to external electrodes for water electrolysis. 
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The exploitation of the unique optical and chemical properties of nanoparticles is not 

new. Since antiquity, numerous societies have unknowingly employed nanoparticles in various 

aspects of their lives. In ancient Egypt, a recipe was followed for hair-dyeing wherein the 

subsequent darkening of the hair was a result of the formation of PbS nanocrystals.13 Craftsmen 

too made use of the unique properties of nanostructures without being fully aware. Stained glass 

pieces were valued for their vibrant reds and violets, which resulted from the surface plasmon of 

gold nanoparticles that had been embedded in the glass.14 Arabic craftsmen as early as the ninth 

century developed glazes for ceramic pottery with a distinctive luster coming from what were 

later found to be metallic nanoparticles that nucleated from metal salts that were heated in the 

reducing environment of a kiln.15 More recently, silver nanoparticles have been used in bandages 

and clothing for their antimicrobial effects.16 Throughout history nanoparticles have found uses 

in society, and only recently have nanostructures been expressly designed for specific 

applications. 

The increasing interest in nanochemistry stems primarily from the unique physical and 

chemical properties that are characteristic to materials on the nano-scale compared to their bulk 

counterparts, which allows for heightened functionality. The increased surface area to volume 

ratio of the particles allows for increased reaction rates of surface mediated reactions, lower 

melting points, and even stabilization of metastable crystalline phases not readily seen in the 

bulk. Bulk gold, for instance, is valued in part because of its chemical inertness, but when 

formed into nanoparticles, gold shows noted catalytic activity for the oxidation of several 

molecules, including carbon monoxide.17 

This study focuses on the unique opto-electronic properties and possible uses of quantum 

dots. Quantum dots can be produced using solution-based chemistry that can boast mild synthetic 
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conditions.18 They also possess size-tunable band gaps. By decreasing the size of a quantum dot, 

the band gap energy will increase.19 This trait is useful for photocatalytic applications because 

the band gap energy can be tailored to match the solar spectrum and to the potential of an 

attached material or to the electrochemical potential of a solution reaction to facilitate photo-

induced charge transfer. 

The research described herein details the efforts to produce particles of CuInS2 with 

desirable characteristics for possible employment in photocatalytic or photovoltaic systems, with 

a particular emphasis on the reaction conditions that control the opto-electronic properties of the 

quantum dots.  

 

Quantum Dot Photocatalytic Systems 

 

Quantum dots are a powerful tool for the photocatalytic reduction of water to produce 

hydrogen gas, a clean-burning and renewable fuel source.20 Hybrid systems coupling a 

semiconductor nanoparticle of appropriate energetic properties with a catalytic metal domain 

have demonstrated the ability to photocatalytically reduce water to give hydrogen gas in the 

Figure 1. Diagram of Generic Quantum Dot System for 
Photocatalytic Reduction of Water 
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presence of a sacrificial reductant, as can be seen in Figure 1.21 Photocatalytic water reduction 

has been shown using a variety of semiconductor materials including ZnS22, CdSe23,24, AgInS2
25, 

and CuInS2.26,27 

The energetic and optical properties of both the semiconductor nanoparticle and the metal 

domain are key to the function of these hybrid nanoparticles as a photocatalyst for 

water-reduction. The semiconductor domain, when exposed to a photon of sufficient energy, can 

produce an electron-hole pair, where the electron is excited into the conduction band, while the 

hole remains in the valence band of the material. The energy necessary to form this exciton pair 

is dictated by the band energies intrinsic to a given material.28 If the gap between the valence and 

conduction bands straddles the electrochemical potentials necessary to reduce water to hydrogen 

gas, then the particular semiconductor material is a viable candidate for use in a quantum dot 

photocatalytic system for hydrogen gas production. 

These two-component systems also utilize a noble metal domain, such as gold or 

platinum, which acts as an electron syphon. The Fermi level of the metal sits below the 

conduction band of the semiconductor. This means that once an electron has been excited into 

the conduction band of the semiconductor, it can transfer to the metal domain in a facile manner. 

Platinum is particularly effective at this electron sequestration. Electrons are able to diffuse from 

the semiconductor to the metal in less than 1.0 ps, and there is negligible build up of electrons in 

the quantum dot.29 Following charge separation, the electrons can reduce water to hydrogen gas 

on the catalytically active surface of the metallic domain. 

Another application of quantum dots in photovoltaic devices is in Quantum Dot 

Sensitized Solar Cells (QDSSCs). A typical solar cell requires a semiconductor material that can 

absorb light. The nanoparticles sit at the interface between two materials of differing electronic 
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or electrochemical properties that facilitate charge separation and extraction. These systems take 

advantage of the high absorption coefficients of quantum dots as the light-gathering portion of 

the solar cell, and require only thin photo-absorber layers.30,31 Additionally, these quantum dot 

sensitized systems can be tuned to perform a wide variety of photocatalytic reactions.32,33 

With the growing emphasis on environmentalism and sustainability, interest is 

increasingly being focused on developing and understanding semiconductor materials that are 

non-toxic, stable, and widely-applicable for many uses. The research detailed in this project is 

aimed toward that pursuit and the further characterization and understanding of the intricacies of 

wurtzite CuInS2. 

 

CuInS2 – Candidate Semiconductor Material 

 

Since the first development of hybrid quantum dot photocatalytic systems, the materials 

most heavily investigated as the semiconductor domain have been the cadmium chalcogenides 

(namely CdS and CdSe), TiO2
34, ZnO29, and PbS.8 These materials have a number of positive 

characteristics, including favorable band gap energies, high molar absorptivities due to their 

direct band gaps, and their optoelectronic properties and surface chemistries are well 

studied.35,36,37 They are each, however, burdened by some negative properties. For instance, TiO2 

and ZnO both have very large band gaps, which require high energy light in order to form an 

exciton pair, missing out on much of the solar spectrum. The cadmium chalcogenides and PbS 

present a health concern because of the high toxicity of cadmium and lead38, and they suffer 

from the relatively low abundance of cadmium and the heavier chalcogenides. 
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CuInS2 has been presented as a viable replacement semiconductor material.39 CuInS2 

enjoys many of the same advantageous characteristics as the cadmium chalcogenides but it also 

improves upon the notable disadvantages that limit those materials. CuInS2 has a direct band gap, 

which results in a high molar absorptivity, 5.0 × 105 cm-1 for the chalcopyrite stucture40, making 

the material an efficient photo-absorber.41,40 This means that a large portion of incident photons 

can be absorbed and used to form an exciton pair. Furthermore, the band gap energy of bulk 

chalcopyrite CuInS2 is ~1.53 eV,42 which allows the material to absorb the broadband visible 

light emission of sunlight. 

Additionally, the conduction and valence bands of CuInS2 are situated favorably relative 

to the reduction potential necessary to produce hydrogen gas from water. The energy of the 

conduction and valence bands are approximately -0.34 eV and 1.16 eV relative to the Standard 

Figure 2. Band Potentials of Bulk and 5.0 nm Quantum-Confined CuInS2 
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Hydrogen Electrode (SHE), respectively,43 which straddle the electrochemical potential required 

for water reduction. If CuInS2 nanoparticles can be quantum-confined, it is reasonable to expect 

the valence band to decrease in energy below the threshold needed to perform water oxidation. 

The energy of the valence and conduction bands of a semiconductor can be shifted according to 

the quantum-confinement effects calculated using the effective masses of the hole and the 

electron for the material, vide infra. The calculated expansion of the band gap for 5.0 nm 

diameter CuInS2 nanoparticles is shown in Figure 2, and it can be seen that quantum-

confinement can shift the valence band energy below the oxidation potential of water. Thus, it 

may be possible to employ CuInS2 as the semiconducting material in complete water-splitting 

systems.   

CuInS2 is also a material of interest for photocatalytic alternative energy production 

because it improves upon some of the shortcomings of traditionally used semiconductors. Silicon 

has been the most common photovoltaic absorber material, but it is an indirect band gap 

semiconductor.44 This means that the absorption of a photon must be coincident with a change in 

momentum, in the form of a coupling with a phonon. This low probability transition results in a 

small absorption coefficient and limits the ability of silicon to make use of large amounts of 

incident light without very thick layers. Because of this quality, very large and pristine silicon 

crystals are a requirement, and the process by which such crystals are produced is expensive and 

delicate. The direct band gap and consequent high molar absorptivity of CuInS2 will allow for a 

much thinner light-absorbing layer in a photovoltaic device. 

CuInS2 avoids the use of highly toxic cadmium, the component elements are relatively 

more abundant45, and it exhibits improved photostability over the cadmium chalcogenides. 

Furthermore, CuInS2 improves on a very notable shortcoming of two of the earliest developed 
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solar photocatalysts for water splitting – TiO2 and ZnO. Their band gaps are 3.0 eV46 and 3.37 

eV47, respectively, and thus only absorb light in the ultraviolet region, missing out on the most 

abundant portion of the sun’s radiation, which is visible light. The bulk band gap of CuInS2, 

however, is 1.53 eV, which corresponds to a minimum wavelength of light of ~810 nm. This 

means that CuInS2 will form an exciton pair under exposure to visible light, and will thus more 

efficiently make use of the solar spectrum. 

CuInS2 quantum dots are of interest for alternative energy applications, but because this 

material is relatively new, it lacks the comprehensive understanding that the more established 

quantum dot materials already enjoy. Bulk CuInS2 has been studied for some time for use in 

photovoltaic devices41,48, but only recently has attention shifted toward the use of nanoscale 

CuInS2.39,47 CuInS2 is the ternary derivative of the binary ZnS material, thus it exists in the same 

crystal stuctures as that material, with cubic and hexagonal polymorphs.49 These crystal 

structures are derived by substituting copper and indium into the cation positions that would be 

filled by zinc. The crystal structures observed in CuInS2 are zinc blende, chalcopyrite, and 

wurtzite. The zinc blende structure is tetragonal, and the chalcopyrite structure is nearly cubic in 

nature. They are largely identical structures, but they vary by the fact that the cations (Cu+ and 

In3+) are disordered in zinc blende but ordered in chalcopyrite.49 There is also a slight difference 

in the unit cell dimensions between the two. The chalcopyrite structure is what has been 

predominantly observed in the bulk material. There exists also the less common wurtzite crystal 

structure, which is hexagonal in nature. This structure is rarely seen in the bulk material, but 

nanoparticle syntheses have been developed that can preferentially produce this structure.50 

Nanoparticles of both chalcopyrite and wurtzite structure have been produced, and 

to-date chalcopyrite particles have received the highest amount of investigation. Reliable 
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syntheses have been developed to create quantum-confined chalcopyrite nanoparticles of various 

sizes, and those structures have found applications in photovoltaic devices.51 The fluorescence of 

the particles with this crystal structure has been determined to result from donor-acceptor pair 

recombination, not from band gap emission. The emission is Stokes shifted by ~50 meV to lower 

energy relative to the band gap absorbance.18 The fluorescence depends on the copper defects 

present in the crystals, and quantum yields have been reported up to 70%, when the density of 

copper vacancies is high.52,53 It is anticipated that wurtzite CuInS2 nanoparticles would have 

similar opto-electronic properties as the chalcopyrite particles; this supposition is one of the aims 

of this study.  

Wurtzite CuInS2 possesses all of the same attractive properties of the chalcopyrite 

material, and its bulk band gap has been calculated to be ~0.05 eV lower in energy than that of 

chalcopyrite CuInS2.54 Thus the band gap of wurtzite CuInS2 is also situated perfectly for 

efficient absorbance of the solar spectrum. But the wurtzite structure is unique from chalcopyrite 

because of its anisotropic nature. The anisotropic crystal structure (Figure 3) allows for the 

possibility to grow asymmetric nanostructures, such as rods or disks. Asymmetric morphologies 

Figure 3. Crystal Structure of Wurtzite CuInS2 
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allow for particles that can act as light-absorbing antennae, and they can permit orthogonal 

charge carrier conductivity. This means that the electrons and holes can travel perpendicularly to 

one another, which is advantageous for hybrid nanoparticle photocatalytic systems.55,56 

Additionally, it has been previously reported that the wurtzite crystal structure lacked any 

ordering among the cations (Cu+ and In3+), similar to the zinc blende structure.57 Recent work 

rom our lab shows that the copper and indium cations are, in fact, ordered in wurtzite CuInS2, 

and that there is a family of possible phases all with different orderings.54 

A synthesis for large nano-disks of wurtzite CuInS2 has been produced, and these 

particles show a significant Stokes shift in photoluminescence of ~0.25 eV, vide infra. It is 

hypothesized that the development of a synthesis of dramatically smaller particles would 

improve the optical efficiency of the material and reduce the magnitude of the Stokes shift. As 

the push toward sustainability and viable alternative fuel sources grows ever stronger, CuInS2 

presents itself as a next step in the progression of useful semiconductor materials. The main 

drawback of the material is that it is not yet as thoroughly understood as the more traditional 

materials. This study represents an effort to characterize and better understand CuInS2 

nanoparticles for their future use in photocatalytic and photovoltaic devices. 

 

Quantum-Confinement and Effective Masses of Hole and Electron 

 

Quantum-confinement is an effect that is observed in quantum dots that are smaller than 

the Bohr exciton radius of the given semiconductor, by which the band gap energy of the particle 

is a function of the particle diameter. The amount of expansion in the band gap is dependent on 

the effective masses of the hole and the electron for the material. The effective masses 
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(mh
* and me

*) for chalcopyrite CuInS2 are reported in the literature to be 1.30 m0 for the hole and 

0.16 m0 for the electron58, but they have not been reported for wurtzite CuInS2. In order to apply 

quantum-confinement calculations to these wurtzite particles, it was important to have the 

relevant effective masses. 

 Our collaborator, Dr. Xiao Shen of the Vanderbilt University Physics Department and the 

research group of Professor Sokrates Pantelides, performed calculations in order to determine the 

effective masses of the hole and the electron for wurtzite CuInS2.59 The electron and hole 

effective masses (me
* and mh

*) of four wurtzite-derived phases of CuInS2, along with that of the 

chalcopyrite phase, were calculated through hybrid density functional theory (DFT). 

The parameters of the semi-empirical calculation were modified to reproduce the experimental 

band gap of the chalcopyrite phase of CuInS2 (1.53 eV).60 The parameters from this calculation 

aided Dr. Shen in the calculations related to the wurtzite phase.    

For all the CuInS2 phases, a single electron band exists at the conduction band minimum 

(CBM), while three hole bands, very close in energy, appear near the valence band maximum for 

each phase. The valence band maxima are denoted in Table 1 by their energy difference 

compared to the highest valence band maxima, and they will furthermore be generally annotated 

VBM, VBM-1, and VBM-2. The calculated me
* and mh

* values are listed in Table 1. For all the 

phases, the three me values are nearly isotropic while the mh values show large anisotropy. As a 

validation of the theory, the calculated value of me
* for chalcopyrite CuInS2 is 0.15, which agrees 

well with the experiment value of 0.16;48 meanwhile the calculated mh
* values range from 0.23 

to 0.52, along with two values near 1.3 for the VBM-1 band in x and z-directions (for the 

definition of the directions, see the caption of Table I). These values agree with the experimental 

values of 1.3, 1.28, 1.20, and 0.40.48, 61 According to Table 1, for all four wurtzite-derived 
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phases, in the z-direction, the mh
* value ranges from 1.3 to 1.6 for VBM and VBM-1 bands, 

while it equals 0.15 for the VBM-2 band.     

Using the me
* and mh

* values calculated by Dr. Shen for wurtzite phase 2 in the 

z-direction59 (boxed in Table 1) along with the Brus equation for quantum-confinement, the 

effect of a change in particle size on the band gap energy can be predicted. The z-direction 

values for effective masses were selected because they showed the least amount of variability 

between each phase. The varying effective masses across the three cardinal directions is a 

product of the anisotropic nature of the wurtzite structure, a unique characteristic in comparison 

Table 1. Effective masses of the electrons and holes as a fraction of m0.   (The x, y, z directions 
of chalcopyrite phase refer to the directions in the hexagonal representation, which 
correspond to the (112!), (11!0), and (111) planes of the underlying cubic lattice structure.) 

x y z
Chalcopyrite me

* CBM 0.15 0.15 0.15
mh

* VBM 0.50 0.37 0.39
VBM-0.022eV 1.3 0.52 1.3
VBM-0.027eV 0.23 0.50 0.36

Wurtzite me
* CBM 0.17 0.17 0.14

Phase 1 mh
* VBM 0.21 1.1 1.3

VBM-0.026eV 0.81 0.20 1.4
VBM-0.090eV 1.4 1.3 0.15

Wurtzite me
* CBM 0.16 0.17 0.15

Phase 2 mh
* VBM 0.19 1.2 1.5

VBM-0.046eV 1.0 0.19 1.6
VBM-0.122eV 1.4 1.6 0.15

Wurtzite me
* CBM 0.18 0.19 0.14

Phase 3 mh
* VBM 0.33 0.41 1.4

VBM-0.019eV 0.35 0.28 1.5
VBM-0.096eV 1.4 1.4 0.15

Wurtzite me
* CBM 0.17 0.17 0.14

Phase 4 mh
* VBM 0.42 0.36 1.3

VBM-0.024eV 0.27 0.32 1.3
VBM-0.082eV 1.3 1.2 0.15
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to the nearly cubic chalcopyrite structure. The Brus equation is represented in Equation 1, and it 

has been limited to the particle-in-a-box and Coulombic interaction terms, leaving out the 

polarization terms, which have relatively small effects on the band gap energy.62 In this equation, 

r is the radius of the particles, m0 is the mass of an electron, e is the charge of an electron, ε is the 

effective dielectric constant for CuInS2, ε0 is the permittivity of a vacuum, and Egap
bulk is the bulk 

band gap of CuInS2. For this study, it is assumed that the effective dielectric constant, a unitless 

value used to scale the permittivity of a vacuum, for wurtzite CuInS2 is not significantly different 

from that of chalcopyrite CuInS2, for which the value is 11.58  

Equation 1 can be used to predict the band gap energy for a sample of particles with a 

known radius. When the equation is rearranged, it can also be used to predict the radius of a 

sample of nanoparticles based on an apparent band gap energy. The usefulness of this form of 

data analysis is discussed in more depth in Chapter IV.   

The calculation of the effective masses of the hole and electron of wurtzite CuInS2 by 

Dr. Shen also allowed for the determination of the Bohr exciton radius of wurtzite CuInS2. The 

Bohr exciton radius of chalcopyrite CuInS2 has been calculated in literature to be ~4.05 nm58. It 

was assumed that the calculated value for wurtzite CuInS2 would be relatively similar. The Bohr 

exciton radius, rB, can be calculated according to Equation 2.63,64 In that equation, me
* is the 

!!"#∗ = !!"#!"#$ + ℎ!
8!!

1
!!∗!!

+ 1
!!
∗!!

− 1.8!!
4!""!! (1) 

(2) r! =
ε!
! a!!!; !!! =

1
m!∗ !! + m!

∗ !!  
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effective mass of the electron of wurtzite CuInS2, which is 0.15, and mh
* is the effective mass of 

the hole, which is 1.5. In the equation, ε0 is the dielectric constant of the material, which was 

again assumed to be similar to that of chalcopyrite CuInS2, so a value of 11 was used. The 

hydrogen Bohr radius is represented by a0, and it is 5.29 × 10-11 m. According to the values listed 

above, using Equation 2 calculates a value of 4.27 nm as the Bohr exciton radius for wurtzite 

CuInS2. This radius is slightly larger than that of chalcopyrite CuInS2, which means that 

quantum-confinement effects on the band gap of wurtzite particles should begin to be observed 

at slightly larger particle sizes than those for chalcopyrite particles.  

 

Motivation For Study 

 

Is the wurtzite crystal structure better suited for use in photocatalytic devices? Can one 

structure reliably produce advantageous particle morphologies? What unique opto-electronic 

characteristics might the wurtzite crystal structure exhibit? In order to answer these questions 

and others, a highly reproducible synthesis was used to form CuInS2 nano-disks, which were 

known to be of the wurtzite crystal structure. Following these investigations, a synthesis 

procedure was developed that produces significantly smaller CuInS2 nanoparticles. Studies were 

performed to elucidate the shape, size, crystal structure, and optical and electronic characteristics 

of these particles. Finally, efforts were made to adapt this synthesis to allow for modest 

tunability of the resultant particles – a challenge that proved to be unexpectedly complex. 
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CHAPTER II 

 

SYNTHESIS AND CHARACTERIZATION OF CuInS2 NANO-DISKS 

 

Introduction 

 

 In the literature, there is a variety of research into CuInS2 that has already been presented, 

ranging from studies of the bulk material to newer studies into the material on 

the nanoscale.41,65,50 Within the past decade, focus has been placed on the synthesis of 

“nano-inks”, or suspensions of CuInS2 quantum dots, for use in photovoltaic and photocatalytic 

devices.66 The research efforts focused on this material have led to the development of a number 

of applications for CuInS2 nanoparticles in bioimaging67,68 , photocatalysis69,20 , and solar energy 

conversion39,70 , but the majority of these advancements have the better-understood chalcopyrite 

crystal structure. A major goal of the work presented here was to increase the knowledge of the 

wurtzite crystal structure of CuInS2. 

The starting point for this work was to begin with an already developed synthesis that 

produced 14-20 nm CuInS2 nano-disks with the desired wurtzite crystal structure71. The physical 

and opto-electronic properties of the particles synthesized by the procedure in this chapter were 

characterized using several techniques, and the results of that analysis helped to motivate much 

of the following work. 
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Experimental 

 

 For the synthesis of CuInS2 nano-disks, a modified literature procedure was used in 

which CuCl and InCl3 serve as the copper and indium sources and thiourea serves as the sulfur 

source.71 This synthesis was performed under inert atmosphere (N2) using standard Schlenk 

techniques. In a typical reaction, CuCl (50.0 mg, 0.50 mmol), InCl3 (111.0 mg, 0.50 mmol), 

thiourea (77.6 mg, 1.00 mmol), and 10.0 mL of oleylamine were added to a 25.0-mL reflux 

apparatus with a temperature probe. The temperature was set to 60 ºC, and the flask was placed 

under vacuum with stirring for at least 30 min. The reaction mixture began as a clear blue color 

and changed to a cloudy brown by the end of 30 min. The flask was then put under N2 gas flow, 

and the temperature was increased to 245 ºC for 1 h. The reaction mixture was an opaque, inky 

black color. The reaction was stopped by removing the heating source and allowing the mixture 

to cool to below 40 ºC. A portion of unwashed product was diluted in hexanes in a quartz cuvette 

to collect optical spectra. The remainder of the product was thoroughly washed via precipitation 

by addition of ethanol followed by centrifugation for 5 min at 4400 rpm. The clear supernatant 

was decanted and the precipitate was resuspended in a solution of oleylamine in hexanes 

(1:100 by volume). This washing procedure was repeated at least three times until particles were 

InCl3 Oleylamine
S

NH2H2N
+ +

N2, 245ºC
1 h+CuCl CuInS2

Figure 4. Reaction Scheme for CuInS2 Nano-Disks 
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sufficiently isolated from excess solvent and ligands. A TEM grid was prepared of the product 

by diluting the sample in hexanes and drop casting the solution onto a carbon-coated nickel 

support grid. A general reaction scheme for this procedure can be seen in Figure 4.  

 

Characterization 

 

 The product of this reaction was characterized by several means: absorbance 

spectroscopy, fluorescence spectroscopy, powder X-Ray Diffraction (XRD), and Transmission 

Electron Microscopy (TEM), and Selective Area Electron Diffraction (SAED). A JASCO V-670 

Spectrophotometer was used to measure the absorbance spectra. A Jobin Yvon/Horiba 

Fluorolog-3 FL3-111 Spectrophotofluorometer was used to collect the fluorescence spectra with 

an excitation wavelength of 400 nm. XRD patterns were collected for these CuInS2 nano-disks 

using a Scintag XGEN-4000 powder X-ray diffractometer with a Cu Kα X-Ray source 

(λ = 1.541 Å). Nanoparticle samples produced using this synthesis were analyzed via TEM using 

both a Philips CM-20 and a Tecnai Osiris Transmission Electron Microscope operating at 

working voltages of 200 keV. SAED images were collected using the Philips CM-20 instrument. 

The results of all of these characterization techniques can be seen in Figure 5. The absorbance 

spectrum seen in Figure 5 shows an absorption onset occuring very near to the band gap energy 

of bulk chalcopyrite CuInS2, which is ~1.5 eV or a wavelength of ~825 nm. It is also similar to 

the calculated band gap of wurtzite CuInS2, which has been estimated to be up to 80 meV lower 

in energy than that of chalcopyrite.54 More recent calculations show the wurtzite band gap to be 

only 8.0 meV lower in energy. This result suggests that these nano-disks are large enough such 

that the particles do not exhibit any quantum-confinement effects. This claim is further 
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confirmed by the TEM image shown in Figure 5. In order for nanoparticles to be quantum-

confined, the diamter of the particles must be smaller than the Bohr exciton radius of the 

material, which is calculated to be 4.27 nm for wurtzite CuInS2. It is evident from the TEM 

image that the particles produced in this synthesis are significantly larger than the Bohr exciton 

radius, with diameters of 17.03 ± 1.31 nm; n =175 (average diameter ± standard deviation; 

n = number of particles measured). The average diameter from sample to sample can vary by as 

much as approximately 7 nm, but the standard deviations remain fairly consistent. 
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Figure 5. Characterization of CuInS2 Nano-Disks. (a) Absorbance and Fluorescence, (b) Powder XRD 
indexed to wurtzite, (c) TEM image, and (d) SAED image indexed to wurtzite 
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 It was previously mentioned that there are two common crystal structures for CuInS2. 

Chalcopyrite is the cubic structure and it is the thermodynamically favored structure; it has been 

heavily studied for the bulk material. Wurtzite, the hexagonal structure, is the kinetic product and 

has only been seen in nanostructures and it is much less studied. The wurtzite crystal structure 

can be seen in Figure 3. The nanoparticles produced in this synthesis are hexagonally shaped, 

which can be seen in the TEM image in Figure 5, and this would suggest that their crystal 

structure is likely wurtzite. The XRD pattern for these particles confirms this identification, 

showing clearly defined reflection peaks that are indicative of the wurtzite crystal structure of 

CuInS2.72 The SAED image shows diffraction rings that further confirm the wurtzite structure, 

specifically the set of three rings very close to one another near the center of the diffraction 

pattern. This trio of rings is absent in the pattern of chalcopyrite CuInS2.  

 The absorbance and fluorescence spectra also reveal some details about the atomic 

structure of these nanocrystals. As described earlier, the absorption onset occurs at a wavelength 

Figure 6. Aberration-Corrected STEM Annular Dark Field 
Image of CuInS2 Nano-disk 
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around 825 nm, but the fluorescence spectrum shows peak emission at much longer wavelengths 

near 1000 nm. This is important because it shows that this material lacks band gap emission. We 

hypothesize that the absence of band gap emission is a result of the nano-disks having a 

multitude of defects and domain boundaries within the particles. Previous work shows that when 

these particles are viewed using aberration-corrected scanning transmission electron microscope 

(STEM) annular dark field (ADF) imaging, also known as Z-contrast imaging, there is evidence 

of twinning and domain boundaries, and the “seams” where different orientations of the wurtzite 

structure meet together may contain electronic defects and mid gap states. These crystal defects 

can be seen in Figure 6, a Z-contrast TEM image of a wurtzite CuInS2 nano-disk synthesized 

according to this procedure.54 In the wurtzite structure for CuInS2, copper and indium can occupy 

the same sites, so it is possible to have points within the particle where there is an indium atom 

when there should be copper, or vice versa. These site defects could certainly provide a source of 

the observed lower energy fluorescence. The dramatic Stokes shift seen in the optical spectra of 

these nano-disks is indicative of a genre of defects possibly unique to wurtzite CuInS2. The D-A 

pair fluorescence that is seen in chalcopyrite CuInS2 typically shows a smaller red-shift in 

emission. Research into the emmission pathway favored by these wurtzite structures is an area of 

ongoing research in this group.  

 

Conclusion 

 

 The modified literature procedure that was used to create CuInS2 nano-disks produced 

particles that show the less common wurtzite crystal structure. The resultant particles absorb at a 

band gap energy that is similar to that of the bulk material, showing that the particles are too 
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large to be quantum-confined. Interestingly, they emit at wavelengths significantly longer than 

where they absorb. This dramatic Stokes shift likely results from low-energy trap state emission. 

We hypothesize that this emissive pathway is caused by defects at crystal phase boundaries. 

It would be advantageous for several reasons to develop an adapted synthesis that would 

produce particles that maintain the wurtzite crystal structure and that are single-domain. Firstly, 

single-domain particles with diameters of approximately 5 nm would eliminate the phase 

boundaries observed in the larger nano-disks. It would, thus, be reasonable to anticipate that the 

particles would not contain the same number of crystal defects and trap states. By eliminating the 

defects within the crystal, it is expected that the magnitude of the emission through these 

pathways would be reduced, and other, higher energy pathways, such as band gap emission 

could become dominant. Finally, these single-domain particles would be small enough to 

experience effects of quantum-confinement. This is desirable because it would allow for a degree 

of tunability over the band gap energy of the particles, meaning that the energy of the exciton 

pair could be tailored for a variety of electrochemical reactions. This synthesis would be the first 

reported synthesis of quantum-confined, wurtzite CuInS2 nanocrystals with band gap emission, 

and they could have potential uses in photocatalytic systems for water reduction.  
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CHAPTER III 

 

SYNTHESIS AND CHARACTERIZATION OF QUANTUM-CONFINED, SINGLE-
DOMAIN, WURTZITE CuInS2 NANOCRYSTALS 

 
 

Introduction 

 

 There are a number of distinct advantages that come from producing particles that are 

small enough to be quantum-confined. The band gap energy of quantum-confined semiconductor 

nanoparticles can be increased by decreasing the diameter of the particles. This can prove useful 

for the design of solar energy applications because the band gap can be tuned to most effectively 

and efficiently capture the solar spectrum. Quantum-confined, wurtzite CuInS2 nanoparticles are 

also of particular interest, because the wurtzite crystal structure is anisotropic, whereas the 

chalcopyrite structure is isotropic. This anisotropy will allow the growth of asymmetric 

nanoparticle morphologies, such as rods or disks. The shape control gives an additional degree of 

functional tunability. For instance, rods of wurtzite CdS act as light absorbing antennae in 

photocatalytic systems.55,56 The anisotropy of the crystal structure is reflected in the directionally 

dependent effective mass of the hole. Carefully designed structures and systems could take 

advantage of this to achieve orthogonal charge separation. CuInS2 shares many similarities 

because it is the ternary derivative of the binary cadmium chalcogenides. It is certainly 

reasonable to expect similar improvements when shape selectivity is applied to this material. 

Furthermore, small CuInS2 nanocrystals are desired because they may demonstrate band 

gap emission, which was not observed in the larger nano-disks. The larger particles fluoresced at 

much lower energies than they absorbed, and the cause is thought to be radiative trap states at the 
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inter-domain grain boundaries present within the larger nanocrystals. If the particles could be 

prepared with a diameter smaller than the size of those crystal domains, it is expected that the 

particles would be single-domain and that they would exhibit emission at a wavelength near the 

band gap. The domain size observed in the large nano-disks is also near to the Bohr exciton 

radius of wurtzite CuInS2, which is 4.27 nm, according to Dr. Xiao Shen’s calculations and 

Equation 2. A synthesis was thus developed that would produce particles with a diameter smaller 

than the Bohr exciton radius, which would be quantum-confined. 

 

Experimental 

 

In a typical synthesis of small CuInS2 nanoparticles, InCl3 (111.5 mg, 0.50 mmol), 

thiourea (77.5 mg, 1.00 mmol), and 5.0 mL of oleylamine were added to a 25.0-mL 3-neck round 

bottom flask. The reaction mixture was placed under vacuum with stirring at 80 ºC for a 

minimum of 30 min, at which point the reaction mixture was a clear, colorless mixture with 

some undissolved solid reactants visible. The flask was then put under N2 atmosphere, and the 

temperature was increased to 115 ºC. During the heating process, the solution became pale, clear 

yellow, with some undissolved reactant still present. A solution of CuOAc (65.0 mg, 0.50 mmol) 

in diphenyl ether (1.00 mL) and dodecanethiol (DDT, 240 µL, 1.00 mmol) was prepared in a 

1-dram vial and was vortexed until cloudy yellow-green. The copper acetate solution was swiftly 

injected into the hot reaction flask under vigorous stirring. The reaction mixture turned to 

dark-red and then black within 5 s, and the temperature decreased by ~4 ºC, before recovering to 

115 ºC after 2-3 min. The reaction was allowed to proceed for a total of 30 min following the 

injection. The reaction was stopped by removing the heating mantle and allowing the mixture to 
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cool to below 40 ºC. A portion of unwashed product was diluted in hexanes in a quartz cuvette to 

collect optical spectra. The remainder of the product was thoroughly washed via precipitation by 

addition of methanol/ethanol followed by centrifugation for 5 min at 4400 rpm. The clear 

supernatant was decanted and the precipitate was re-suspended in a solution of DDT in hexanes 

(1:100 by volume). This washing procedure was repeated at least 3 times. A TEM grid was 

prepared for the product by diluting the sample in hexanes and drop casting the solution onto a 

carbon-coated nickel support grid. A general reaction scheme for this procedure can be seen in 

Figure 7.  

 

Characterization 

 

Transmission Electron Microscopy 

Nanoparticle samples produced using this synthesis were analyzed via TEM using both a 

Philips CM-20 and a Tecnai Osiris Transmission Electron Microscope operating at working 

voltages of 200 keV. The particles had an average diameter of roughly 2.37 ± 0.31 nm; n = 200 

(average diameter ± standard deviation; n = number of particles measured), as can be seen in 

Figure 8.  

The vastly reduced size of these particles compared to the nano-disks is also important 

because the larger particles possess multiple crystal domains. The average size of those domains, 

Figure 7. Reaction Scheme for Single-Domain CuInS2 Nanoparticles 
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however, is ~11 nm. This suggests that these smaller particles are likely single-domain in nature. 

This characteristic of the particles produced in this synthesis is noteworthy because the lack of 

band gap emission in the larger nano-disks is hypothesized to be caused by the presence of 

domain boundaries within the crystal. 

 

Absorbance and Fluorescence Spectra 

 The absorbance and fluorescence spectra of the product of this synthesis were collected 

from a dilute solution of particles in hexanes in a quartz cuvette (Figure 9). A JASCO V-670 

Spectrophotometer was used to measure the absorbance spectra, and a JASCO FP-8300 

Spectrofluorometer was used to record the fluorescence spectra with an excitation wavelength of 

348 nm. The absorbance spectrum shows an absorption onset at approximately 600 nm, which is 

a much shorter wavelength than the ~810 nm onset seen for the larger nano-disks. This indicates 

that the band gap of these smaller particles is wider than the band gap of the nano-disks, and is 

Figure 8. TEM Image of Single-Domain CuInS2 Nanoparticles 
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an effect of the quantum-confinement of the semiconductor nanoparticles. The relatively small 

Stokes shift of the fluorescence spectrum of the small particles compared to the nano-disks 

reveals what appears, at first glance, to be band gap emission, and certainly a different radiative 

pathway than that which was observed for the nano-disks.   

  

Quantum Yield Measurement 

The goal of a quantum yield analysis is to determine the amount of photons that are 

emitted by a sample relative to the amount of photons absorbed. In order to obtain the quantum 

yield of the particles, a solution of the particles suspended in hexanes was diluted to an optical 

density of 0.1 at wavelength of 348 nm. A fluorescence spectrum of the same dilute sample of 

was then collected, with an excitation wavelength of 348 nm. The area under the fluorescence 

peak was determined, and then this value, along with the absorbance intensity, was compared to 

those of a fluorophore. The fluorophore used in this study was a solution of Rhodamine B dye in 

Figure 9. Representative Absorbance and Fluorescence Spectra of Single-Domain CuInS2 Nanoparticles 
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methanol, which has a known quantum yield of 70% at 348 nm excitation. Equation 3 shows the 

calculation performed in order to measure the quantum yield of a sample.73 In the equation, 

Fi and Fs represent the emission peak areas for the standard and sample, respectively; fi and fs are 

the absorbance of the standard and the sample, respectively; ni and ns represent the refractive 

indices of the standard and the sample solutions, respectively; Φi
f and Φs

f are the quantum yields 

of the standard and sample, respectively.74 

 A high quantum yield percentage would suggest that the material is highly efficient in 

converting the energy from photons absorbed into photons emitted. The CuInS2 nanoparticles 

produced by this synthesis typically showed quantum yields in the range of 0.4% to 0.8%. This 

low quantum yield suggests that much of energy absorbed by the crystals is being released via 

non-radiative pathways, such as phonon vibrations. It is not unusual for CuInS2 nanoparticles to 

possess low quantum yields.52 Reports in the literature for chalcopyrite CuInS2 nanoparticles 

show quantum yields closer to 4%75, and typically that value can be improved by ZnS shelling 

procedures76,77,78,79,80 to values as high as 70%.53 The efficiencies for these wurtzite particles are 

low, but it is reasonable to assume that a shelling procedure may provide improvements. 

 

 

(3) Φ!
! = !!!!!!!

!!!!!!!
Φ!
!  
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ZnS Shelling 

The quantum yield of the particles was improved by a ZnS shelling procedure which was 

adapted from a literature procedure for capping chalcopyrite CuInS2 nanocrystals.53 The 

modified reaction scheme is shown in Figure 10. In this one-pot procedure, wurtzite CuInS2 

nanoparticles were synthesized as previously detailed, but the product was left in the reaction 

flask at 120 ºC under inert atmosphere before cleaning. A suspension of zinc stearate (253 mg, 

0.4 mmol) in 1-octadecene (5.0 mL, 15.6 mmol) and trioctylphosphine (0.5 mL, 1.12 mmol) was 

prepared and placed under nitrogen. The mixture was vortexed, and a cloudy, milky white 

solution resulted. The zinc solution was then added drop-wise to the 120 ºC reaction mixture 

over 6 minutes. The temperature was then increased to 210 ºC, and the reaction mixture was 

stirred for 75 min at 210 ºC. The solution was a dark-red/black color as in the original particle 

synthesis. The product of the shelling procedure was precipitated by addition of a 3:1 mixture of 

methanol and ethanol followed by centrifugation, and the particles were redispersed initially in a 

mixture of oleylamine:hexanes (1:100 by volume). After the final cycle of washing, the particles 

were suspended in toluene. 

  

Figure 10. ZnS Shelling Procedure 
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Figure 11. Un-normalized Fluorescence Spectra Before and After ZnS Shelling 
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Absorbance and fluorescence spectra were collected on the ZnS-shelled particles, and the 

quantum yield was calculated. In Figure 11, the raw fluorescence spectra of the unshelled and 

shelled particles are shown. The quantum yield before shelling was measured to be 0.52%, and 

after shelling the quantum yield was increased to 7.5%. This represents a nearly 14-fold increase 

in the quantum yield. This is a great improvement, but it still falls short of the quantum yields 

that have been achieved with chalcopyrite CuInS2.   

A red-shift was observed in the electronic properties of the nanoparticles, which can be 

seen well in the normalized spectra shown in Figure 12. Following ZnS shelling, a red-shift of 

similar magnitude (~62 nm) was observed in both the absorbance and fluorescence spectra of the 

particles. This is an interesting result, because a blue-shift has been typically observed in the 

literature for shelling of chalcopyrite CuInS2, and it results from the alloying on the surface 

between the core material and the ZnS.78 In this process, the alloy formed has a new band gap 

energy representative of the ratio of the component materials. ZnS has a wider band gap than 

CuInS2, so an alloy material between the two will have a wider band gap than just CuInS2, 

therefore a blue-shift in optical spectra would be anticipated.53  

It must thus be noted that the red-shift observed in the optical spectra after shelling could 

possibly result from further growth of the particles. The shelling procedure is performed on 

unwashed particles still in the original reaction medium with any unreacted precursors still 

present. Additionally, the shelling procedure requires significantly increased temperatures for a 

long period of time. This could encourage continued particle growth through the addition of 

unreacted monomers or through ripening processes. TEM images following shelling would be 

very useful for comparing initial and final particle diameters, but no such images were collected 

for these early shelling attempts. However, previously, when the particle synthesis was 
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performed at higher temperatures or for longer times, dramatic changes were not observed in 

either the positions of the optical spectra or the quantum yields. Further analysis and 

characterization surrounding the ZnS shelling procedure will be a future direction for this study, 

namely TEM imaging and Energy Dispersive X-Ray Spectroscopy (EDS).  

 

Powder X-Ray Diffraction 

 X-Ray Diffraction (XRD) patterns were collected for these small, single-domain CuInS2 

nanoparticles using a Scintag XGEN-4000 powder X-ray diffractometer using a Cu Kα X-Ray 

source (λ = 1.541 Å). It was hypothesized that these smaller particles would similarly be wurtzite 

in nature, as it is well known that chalcopyrite is the thermodynamically favored crystal structure 

and wurtzite is the kinetic product. This synthesis is performed at significantly lower 

Figure 13. Powder XRD Pattern of Single-Domain CuInS2 Nanoparticles with 
Characteristic Reflections of Chalcopyrite and Wurtzite Structures 
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temperatures than required in a typical solution-based synthesis of chalcopyrite CuInS2 

nanoparticles, which can be as high as 240-350ºC.18,81 This lead to the hypothesis that at lower 

temperatures, the kinetically favored state (wurtzite) could be the predominating product.  

Collecting a well-defined and well-resolved reflection pattern for these particles proved 

to be challenging because of their extremely small size. Scherrer line broadening causes small 

crystallites to have broader and less intense reflections. This results from there being fewer 

atomic planes present in smaller crystallites to provide enforcement of the Bragg condition, 

nλ = 2dsinθ. This broadening effect rendered Selective Area Electron Diffraction (SAED), which 

can be performed concomitantly with TEM imaging, largely useless for these small particles as 

the rings broadened to the point of being indistinguishable from one another. Powder XRD 

analysis suffered from similar problems. The best resolved XRD pattern for a sample of the 

small CuInS2 nanoparticles is shown in Figure 13.     

 In the XRD pattern shown, reflection assignments can be made in agreement with the 

pattern expected for wurtzite CuInS2, which are consistent with those seen in the XRD pattern of 

the larger nano-disks. In particular, there are reflections located at 39.0º and 50.5º, which are 

unique and indicative of the wurtzite crystal structure. These reflections result from the (102) and 

(103) planes of the wurtzite structure, respectively. There are, notably, no overlapping reflections 

at these angles that could be attributed to the chalcopyrite structure. There is evident broadening 

of the peaks, as is expected for nanocrystals of decreased diameter. Using the Scherrer Equation 

(Equation 4), the average crystallite size, D, can be estimated for the sample based on the full 

width at half maximum (FWHM) in radians, β, of the reflections in the XRD pattern. Along with 

!! = 0.89!!
! cos! (4) 
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the wavelength of the X-ray, λ, and the Bragg angle, θ, for the reflection, the average crystallite 

size for the sample can be determined.82,83 

 Before this analysis can be performed, the FWHMs of the reflections for the sample of 

interest need to be corrected based on the instrumental line broadening. An XRD pattern was 

collected on a LaB6 standard crystalline powder. Because of the highly crystalline nature of the 

sample, the narrow reflections only show broadening from the instrument itself. The FWHM of a 

reflection at 2θ = 30.4º was measured to be 0.156º. This value was subtracted from the measured 

FWHM values for the CuInS2 samples. 

 This analysis was performed on the XRD patterns of both the nano-disks (Figure 5.b) and 

the smaller nanoparticles (Figure 13). The crystallite size calculated from Equation 4 did show 

the crystallites to be larger in the nano-disks sample. Scherrer line broadening analysis for the 

nano-disks was performed using the corrected FWHMs for the reflections at 2θ = 46.5º and 

2θ = 55.0º. These reflections were selected for the analysis because they are clearly defined in 

the XRD patterns of both samples; they represent the (110) and (112) planes of the wurtzite 

structure. Using these FWHMs and the Cu Kα X-Ray wavelength (λ = 0.1541 nm), the average 

crystallite size was calculated to be 14.3 nm and 13.6 nm, respectively. These values are smaller 

than the diameter of the nano-disks as seen in TEM image shown in Figure 5. This was initially 

thought to be indicative of the fact that these particles are poly-domained, but recent work has 

suggested otherwise. The underlying sulfur lattice in these particles is uninterrupted even 

through the domain boundaries, so these larger disks appear single-domain in XRD.54 The lower 

calculated crystallite sizes are lower than the diameters seen the TEM image, because the 

diameters can vary from sample to sample, and the TEM image and XRD pattern in Figure 5 are 

from two different samples.  



 35 

Scherrer line broadening analysis was also performed on the smaller single-domain 

particles using the reflections at those same angles. The crystallite size was calculated to be 4.53 

nm and 4.17 nm, respectively. These values are significantly smaller than the crystallite sizes 

measured for the nano-disks. The average crystallite domain size is quite similar to the typical 

particle diameters seen in TEM. The slight discrepancy is likely just a result of the particles 

being very small and difficult to image clearly. Nonetheless, the particles seen in the TEM image 

(Figure 8) are undeniably smaller than the average crystallite domain size calculated for the 

nano-disks, and this supports the hypothesis that the smaller particles may be single-domain in 

nature. This hypothesis is further supported by the fact that the average crystallite size calculated 

from Scherrer line broadening for the small particles is similar to the measured diameter from 

TEM. If there were twinning present in the smaller particles, then their average crystallite size 

would be calculated to be smaller than the particle diameters. This is not the case here, so it is 

reasonable to determine that the small particles are each a single crystalline domain. 

 Further powder XRD studies on these single-domain particles have shown difficulties in 

providing irrefutable evidence of the presence of exclusively wurtzite crystal structure. 

Conversely, the hypothesis is shifting toward the possibility of the presence of both chalcopyrite 

and wurtzite CuInS2 because recent XRD patterns do not definitively show only one structure. 

Indeed, evidence of the presence of both crystal structures can even be seen in the powder XRD 

pattern shown in Figure 13. The characteristic reflections of both crystal structures are shown 

beneath the experimental pattern in Figure 13.18,72 While there are reflections that can be 

confidently attributed to the wurtzite structure, such as the (102) and (103) planes, the intensities 

of the reflections do not match the calculated pattern, and this is an indication of the presence of 

the chalcopyrite structure. In particular, the reflections at 46.5º and 55.0º are much stronger than 
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expected when compared to the (103) reflection at 50.5º. The intensities of the wurtzite (110) and 

(112) reflections are augmented by the chalcopyrite (220) and (112) reflections, which are 

located at nearly the same angles, 46.5º and 55.0º, respectively.  

There is certainly the presence of both crystal structures in the small CuInS2 

nanoparticles, and initially it was unclear if each individual nanocrystal in the sample is of a 

single crystal structure, either chalcopyrite or wurtzite, or if there is twinning between the two 

phases in an individual particle. However, the Scherrer line broadening analysis detailed above 

served to confirm that the small CuInS2 nanoparticles are indeed single-domain and that there is 

no evidence of twinning in the small particles. Therefore, in any particular sample of small 

particles produced according to this synthesis, a mixture of individual wurtzite and chalcopyrite 

particles exist. The chalcopyrite and wurtzite crystal structures can be seen in Figure 14.72 This is 

a point of interest for the future directions of this project because it could have a number of 

implications for the applications of these particles. Each crystal structure can result in unique 

particle morphologies, and the opto-electronic properties are slightly different. Additionally, it 

Figure 14. Chalcopyrite (left) and Wurtzite (right) Crystal Structures of CuInS2 
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raises a number of compelling questions about precisely which synthetic conditions in this 

procedure are responsible for favoring one crystal structure as opposed to the other.  

 

Conclusion 

 

 A synthesis was developed that produced small wurtzite CuInS2 nanoparticles. This aim 

was pursued because it was hypothesized to produce single-domain particles that would exhibit 

band gap emission, quantum-confinement, and band gap tunability. The synthesis detailed here 

also produced wurtzite CuInS2 nanoparticles that emit at wavelengths near to their band gap 

absorption energy. Band gap emission from wurtzite CuInS2 nanoparticles has not yet been 

reported, and they hold possible future applications for photocatalytic reduction of water. The 

wurtzite crystal structure of these small particles allows for the possibility that asymmetric 

morphologies, such as rods or disks, could be grown from these seeds. 

 The particles produced from this synthesis have diameters according to TEM images near 

3.0 nm, which is small enough to be quantum-confined, and they fluoresce at energies very near 

to their absorbance, which suggested band gap emission. Preliminary efforts to form a ZnS shell 

improved the quantum yield of the particles to 7.5%. A most interesting observation about this 

synthesis, though, was the apparent presence of both wurtzite and chalcopyrite structures. The 

synthetic causes for the formation of both structures are not yet understood, but the future work 

in this study will focus on preferentially forming only wurtzite particles. 
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CHAPTER IV 

 

UNIQUE AND UNPREDICTABLE CHARACTERISTICS OF SINGLE-DOMAIN 
WURTZITE CuInS2 NANOPARTICLES 

 
 

Introduction 

 

 The synthesis detailed throughout the previous chapter produced what were initially 

thought to be simply quantum-confined, wurtzite CuInS2 nanoparticles that exhibited band gap 

emission. Further study and analysis outlined in this chapter of these particles has proven that 

this synthesis and the resultant particles are both significantly more complex and less predictable 

than initially imagined. Understanding the intricacies surrounding the physical, structural, and 

energetic characteristics of these particles has been and will continue to be a major goal of this 

project. 

 Since band gap tunability was the primary goal, we strove to take advantage of the small 

size and subsequent quantum confinement effects that could be seen with these smaller 

particles.84 The motivation for wanting to manipulate the band gap of the particles arose 

primarily from their potential future use in Quantum Dot Sensitized Solar Cells (QDSSCs) and 

other photovoltaic devices.39 The band gap of a quantum dot determines what wavelengths of 

light it will be capable of absorbing. This is of great importance in the design of photovoltaic 

devices because certain energies are required for particular electrochemical reactions. The ability 

to fine-tune the band gap of these wurtzite CuInS2 nanoparticles would ideally allow for the 

particles to be used in myriad photovoltaic applications regardless of the energetic requirement. 

The scope of applicability of this material would be greatly expanded simply by developing a 
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robust and reliable method to manipulate the band gap of the particles. Strong control over the 

band gap of the particles created in this synthesis is also desirable because it would prove the 

reproducibility of reaction. For the material to be of use in photovoltaic devices, there must be a 

certain amount of confidence that by following an particular procedure, identical particles are 

produced each time that have highly consistent energetic properties. 

 Initial efforts to controllably alter the band gap of the single-domain, wurtzite CuInS2 

nanoparticles involved manipulating the experimental details of the synthesis described in 

Chapter III, in an effort to grow smaller or larger nanoparticles. The size of the nanoparticles 

produced from a typical solution-based synthesis can often be changed by altering simple 

experimental conditions, such as precursor concentrations85, precursor reactivity86, reaction 

length87, or reaction temperature88. 

In this synthesis, it was anticipated that the size of the resultant particles could be 

increased by increasing the reaction time, as the particle growth could continue following the 

initial nucleation events. Therefore, the reaction time was increased to as long as 3 h. It was also 

hypothesized that increasing the reactant concentrations would increase particle size because 

there would be more precursor material to grow from each nucleation event. Reactant 

concentrations were increased to as high as five times the original procedure. Additionally, it was 

hypothesized that higher reaction temperatures would produce larger particles as the growth rates 

would be increased. Thus, the reaction was performed at temperatures ranging from 115 ºC to 

200 ºC. Changing these reaction variables proved to have no effect on the band gap of the 

particles. Additionally, altering the reaction temperature could favor either the wurtzite or 

chalcopyrite structure due to relative thermodynamic stabilities. 
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More exotic methods for size control were then attempted, including a seeded growth 

mechanism. Seed particles were synthesized according to the typical synthesis, after which 

additional precursor reagents were injected into the reaction mixture. This second wave of 

injected reagents was expected to grow onto the previously formed nucleation points, and this 

would increase the overall particle size. This did not prove successful, as additional nucleation 

events occurred and overall the particles did not increase in size. Attempts were also made using 

a method called successive ionic layer adsorption and reaction89, wherein individual monomer 

layers of sulfur and copper/indium were to be deposited sequentially. This method also did not 

produce controllable changes in the band gap. Further attempts were then made where the 

reactivity of the sulfur precursor was altered. A series of different substituted thioureas, such as 

methylthiourea and acetylthiourea, were incorporated into the reaction, but there was no effect. 

This result was later found to be consistent with literature on the use of substituted thioureas. 

According to the reports, the reactivity between metal ions and various substituted thioureas was 

found to be insignificantly different from the unsubstituted molecule towards metal ions. There 

exist some differences in solubility in the organic solvent, but the reactivity was not found to 

differ in any appreciable way under these synthetic conditions.90  

 The next approach that was attempted was to add oleic acid to the initial reaction mixture 

in discrete molar quantity ratios compared to the metal precursors. The hypothesis that motivated 

this approach was that the reactivity of the hard In3+ ions would be moderated by the binding of 

the hard carboxylate head groups of the oleic acid. The interaction between the two should be 

strong according to Hard-Soft Acid Base theory91, and their association would moderate their 

participation in nucleation events once the copper precursor was injected. Fewer nucleation 

events would mean that there were fewer growing particles onto which the precursor materials 
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could deposit, so the particles that did form would grow to be larger than the particles formed 

with no oleic acid present.52 

 Initial attempts following this method showed promising results, where the absorbance 

curve of the particles shifted toward longer wavelengths of light, indicating that the band gap of 

the particles had been narrowed. Several syntheses were performed with different amounts of 

oleic acid, and it appeared that increased oleic acid concentrations resulted in a successively 

more narrow band gap (red-shift), as can be seen in Figure 15. This observation was in 

agreement with the initial hypothesis, and it encouraged further investigation into the synthesis 

as a whole and further characterization of the particles to determine if the trends were 

reproducible and understandable. 

 The red-shift observed in the spectra suggested that the diameter of the particles was 

increasing with increased concentrations of oleic acid. TEM images of these early samples 

seemed to support this hypothesis as well, with an increase in the average diameter by 

Figure 15. Absorbance and Fluorescence Spectra Showing Red-Shift with Increased Oleic Acid Concentrations 
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approximately 1.00 nm from performing the reaction with no oleic acid compared to having a 1:1 

ratio of oleic acid to metal precursors. 

 A second hypothesis that needed to be investigated was the possibility that the 

composition of the particles was being altered, namely the [Cu]:[In] ratio. If the presence of oleic 

acid was preventing some of the indium from reacting, then it would be expected that the 

resultant particles would be copper-rich. A change in stoichiometric ratio of a semiconductor 

material can have a very strong effect on its band gap. It has been observed in chalcopyrite 

CuInS2, that copper-rich nanoparticles show a narrowed band gap, whereas copper-poor particles 

show a widened band gap.52 If a similar behavior occurs for wurtzite CuInS2 nanoparticles, then 

an increase in oleic acid concentration should produce Cu-rich particles with narrower band 

gaps, which is the very trend observed in the initial results.. 

 However, which of these possible changes in the particles produced in the presence of 

oleic acid was most responsible for the apparent changes in the band gap of the particles? Could 

each factor be contributing simultaneously? These questions needed to be fully explained, and it 

also needed to be determined whether the initial results represented a reproducible trend. 

 

Experimental Description 

 

Synthetic Description 

A schematic of this reaction is represented in Figure 16. The synthesis very closely 

mirrors that which was detailed in Chapter III. The only difference was that during a given 

reaction, a distinct amount of oleic acid (0.25 mmol, 0.5 mmol, or 1.0 mmol) was included in the 

reaction flask along with indium (III) chloride, thiourea, and oleylamine. These molar quantities 
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of oleic acid corresponded to a 1:2, 1:1, and 2:1 molar ratio of oleic acid to metal precursors 

(copper and indium).  Optical spectra were collected on a dilute solution of the particles 

suspended in neat hexanes. All TEM images were collected by diluting the particles in neat 

hexanes and drop casting the solution onto a carbon-coated nickel support grid. Further 

characterization and analysis was performed on the particles, including quantum yield 

measurements, Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), and 

powder XRD. Additionally, quantum-confinement calculations were performed for these 

particles to elucidate some of the energetic properties of these samples. 

 

TEM Images and Particle Sizing 

 Nanoparticle samples produced using this synthesis were analyzed via TEM using both a 

Philips CM-20 and a Tecnai Osiris Transmission Electron Microscope operating at working 

voltages of 200 keV. Particles were sized from analysis of TEM images. Average particle sizes 

were determined by measuring a minimum of 100 particles, with a target of 200. Average 

particle diameters are reported with corresponding standard deviations. 

 

Apparent Band Gap from Absorbance Onset 

 The absorbance onset by a quantum dot is indicative of the energy needed to form an 

exciton pair. Therefore, the onset of peak absorbance can be used to estimate the band gap 

Figure 16. Reaction Scheme of Synthesis with Oleic Acid 
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energy for a particular sample of quantum dots. The band gap of a quantum dot sample can be 

determined from a Tauc plot, where [α × hν]2 is plotted against hν, where α is the absorption 

coefficient and hν is the energy of the incident photon in eV. This analysis is valid for 

determining the band gap energy of a direct band gap semiconductor.92 

The absorption coefficient of wurtzite CuInS2 is not definitively known, so it was 

necessary to use an approximation of the Tauc relationship. The approximation can be seen in 

Equation 5, and allows for the apparent band gap energy to be related to the absorbance of the 

sample at each wavelength of light.93 This approximation was then plotted against hν on the x-

axis, and a line was fitted to the linear portion of the plot. The x-intercept of the line-of-best-fit 

represents an approximation of the absorbance onset in eV. It is the extrapolated intercept of the 

(5) !!×!ℎ! ! = (1− !"#)!
2(!"#) !×!ℎ!

!
 

Figure 17. Example of a Plot for Band Gap Determination 
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linear portion of the resulting curve that approximates the band gap energy. An example of such 

a plot with its corresponding line-of-best-fit can be seen in Figure 17. In this example, the band 

gap was found to be 2.15 eV, which is a reasonable value for quantum-confined wurtzite CuInS2. 

The bulk band gap energy for wurtzite CuInS2 is calculated to be at most 0.08 eV lower than the 

bulk band gap of chalcopyrite CuInS2, which would give a value of 1.45 eV. These calculated 

band gap energies will be refered to as apparent band gap energies throughout the rest of this 

document. All of the apparent band gap energies for various samples will be detailed in the 

results section of this chapter.    

 

Fluorescence Peak 

 Fluorescence spectra on the samples produced were collected as outlined in Chapter III, 

and the measured values were compared to apparent band gap energies, particle compositions, 

and particle diameters. 

 

ICP-OES and [Cu]:[In] Ratio 

 The stoichiometry of the samples, namely the [Cu]:[In] molar ratio, was determined by 

using ICP-OES. The particles were digested in 2% HNO3, and the analysis was performed using 

a Perkin Elmer Optima 7000 DV spectrometer. The solution of the digested particles was ignited, 

and the concentrations of the component elements were determined based on the wavelengths 

and intensities of emissions from the sample compared to external standards. The concentrations 

of Cu and In were converted into a molar ratio. 
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Predicted Band Gap and Diameter from Quantum-Confinement 

 The particles produced in this synthesis are smaller than the Bohr exciton radius 

calculated for wurtzite CuInS2. It was reasonable to expect quantum-confinement effects to be 

seen for these particles. The result of quantum confinement is that the band gap energy of a 

quantum dot will increase with decreasing particle diameter according to the Brus equation, 

which was shown previously and is shown again here as Equation 6. Using the effective mass of 

the hole and electron for wurtzite CuInS2, which are 1.49 m0 and 0.15 m0, respectively, the 

expected band gap energy for a particle of a known radius can be calculated. This predicted band 

gap energy could then be compared to the apparent band gap energy that was already calculated 

from the absorbance spectrum. 

 Additionally, Equation 6 could be rearranged to solve for a radius, r, that would 

correspond to an apparent band gap energy determind from an absorbance spectrum. Each of 

these analyses required a couple of assumptions: the band gap energy of bulk chalcopyrite 

CuInS2 was used, as was the dielectric constant of chalcopyrite CuInS2, ε =11.58 Calculations 

performed by Dr. Shen have determined the band gap energy of ordered wurtzite phases in 

CuInS2 to be very close to that of chalcopyrite, and, in disordered wurtzite phases, the band gap 

is typically 0.3 to 0.5 eV lower than that of chalcopyrite.59 In the interest of consistency among 

all quantum-confinement calculations, it was decided to use the band gap energy of bulk 

chalcopyrite, which is 1.53 eV. The predicted band gap energy and the predicted diameter for a 

nanoparticle sample was compared to the apparent band gap energy and the measured particle 

!!"#∗ = !!"#!"#$ + ℎ!
8!!

1
!!∗!!

+ 1
!!
∗!!

− 1.8!!
4!""!! (6) 
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diameter in order to determine if the change in properties for these particles was dominated by 

quantum-confinement effects.  

 

Results and Discussion 

 

 The synthesis detailed in this chapter was repeated sixteen times with no oleic acid 

present in the reaction mixture, in order to probe the reproducibility of the properties of the 

resultant particles. Would the synthesis produce the same apparent band gap consistently? 

No declaration of trends in data could be made until this was known. The apparent band gaps of 

these sixteen samples are listed in Table 2, and visualized Figure 18. The range in the apparent 

band gaps for all data points is 0.32 eV. This disparity between the properties of different 

B
a

n
d

 G
a

p
 E

n
e

r
g

y
 (

e
V

)

Samples with no Oleic Acid

No Oleic Acid Average Data. Error bars are +/- one std. dev.

2.20

2.15

2.10

2.05

2.00

1.95

1.90

1.85

1.80

1.98

Figure 18. Plot of all Apparent Band Gaps for                          
Samples Synthesized with no Oleic Acid 

Table 2. Apparent Band Gaps 
of all Samples Synthesized with 

no Oleic Acid 
Sample Number 
(No Oleic Acid)

Apparent Band 
Gap (eV)

i 2.04
ii 2.08
iii 2.07
iv 2.08
v 2.04
vi 1.91
vii 1.88
viii 1.98
ix 1.95
x 1.83
xi 1.96
xii 1.93
xiii 1.98
xiv 1.93
xv 1.90
xvi 2.15

Average Band Gap 1.98
Standard Dev. 0.09
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samples of particles likely results from the inconsistencies associated with this synthesis. Any 

slight difference in the heating rate and temperature of the reaction mixture could have an effect 

on the solubility and reactivity of the precursors. Different stirring rates or stirring efficiencies 

could cause inconsistent dispersion of the precursors throughout the reaction medium resulting in 

concentration gradients. Inefficient stirring could also result in irreproducible temperatures 

throughout the reaction mixture. Additionally, the copper source for this reaction is injected in 

the form of a solution, so the injection rate could affect whether a single nucleation event occurs. 

Furthermore, the copper source was more of a cloudy dispersion than a clear solution, so it is 

certainly possible that the reagent is not fully solubilized upon injection, or that the copper may 

be dissolved to varying degrees. An additional source of variability could be from the rate of 

cooling to stop the reaction, as the particles may have grown for slightly different amounts of 

time. This large degree of variability in this synthesis will make it very difficult to definitively 

prove any trends in the data for particles synthesized with various amounts of oleic acid in the 

reaction mixture.  

 ICP-OES was used to measure the [Cu]:[In] ratio for particles synthesized with varying 

amounts of oleic acid. These [Cu]:[In] molar stoichiometric ratios are of interest because it has 

been shown that the relative amounts of copper or indium in a sample of chalcopyrite CuInS2 can 

affect the optical and energetic properties of the particles.75,94 It is reasonable to assume this 

could occur with wurtzite CuInS2 as well. The ratios are visualized in Figure 19, where no 

correlation between copper and indium was apparent relative to the amount of oleic acid present. 

This indicates that there must be some other kinetic and thermodynamic factors affecting the 

stoichiometric composition of the particles. Oleic acid does not appear to have a singular 

dramatic effect on the [Cu]:[In] ratio of the final product.    
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  The variability among the identically prepared datasets is not fully understood. The 

project would benefit from collecting additional data sets. Whether there is or is not a trend 

between the amount of oleic acid in the reaction and the [Cu]:[In] ratio, richer data may provide 

a more convincing conclusion.  

 As previously mentioned, the hypothesis that motivated this portion of the study was that 

the addition of discrete molar quantities of oleic acid would have an effect on the band gap of the 

particles and perhaps the diameter as well. Namely, it was hypothesized that increased amounts 

of oleic acid would lead to larger particles that would be copper-rich with narrower band gaps. In 

order to analyze whether these or any other trends exist, multiple samples of particles 

synthesized with four different amounts of oleic acid were fully analyzed, and the data can be 

seen compiled in Table 3. The table includes the apparent band gap energy, the fluorescence 

peak wavelength, the measured particle diameter, the predicted band gap energy, the predicted 

particle diameter, and the particle composition based on ICP-OES. A series of scatterplots is 

shown in Figure 20, which relate various metrics from Table 3, to identify trends in the data.  

Figure 19. Molar Equivalents of Oleic Acid Versus Particle Stoichiometry 
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Figure 20. Visualization of data from Table 3 
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A visual inspection of the eight scatterplots presented in Figure 20 shows that there are 

no strongly correlating trends among the data. There is perhaps a weak correlation between the 

amount of oleic acid added to the reaction and the size of the particles produced. It appears that 

more oleic acid may result in slightly larger particles, but that correlation is not terribly strong. If 

a correlation is indeed present, then collecting a larger number of data points may allow it to be 

seen with statistical significance. A statistical Analysis of Variance (ANOVA) test was used to 

test for any correlation between the data sets for the band gap, emission peak, and particle 

diameter versus the amount of oleic acid present in the reaction. The results for all three 

ANOVA tests were negative, indicating that according to the data in Table 3, there is no 

statistically significant change in calculated band gap energy, peak emission wavelength, or 

particle diameter based on the amount of oleic acid added to the reaction mixture. 

It is also important to note that there is in fact a large amount of variability in the band 

gap energy of samples of particles prepared with no additional oleic acid. As discussed 

previously, the apparent band gap energies were calculated for seventeen samples prepared with 

no oleic acid, and the range in values was found to be 0.32 eV. The variability of the band gaps 

that resulted from varying the amounts of oleic acid are not much greater than the range of 

values seen in the multiple iterations of the synthesis performed with no oleic acid present. It is 

thus very possible that all observed changes in band gap are simply the variable nature of the 

typical synthesis. 

There is also no clear trend between the stoichiometry of the particles and their band gap 

or fluorescence peaks either, which is interesting because it has been shown in chalcopyrite 

CuInS2 nanoparticles that copper-rich particles have narrower band gaps, whereas indium-rich 
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particles have wider band gaps.52 The data presented here for these wurtzite particles shows no 

clear correlation. 

What is perhaps the most interesting result from this data analysis is the apparent lack of 

trend between the band gaps and fluorescence peaks of the samples. It was assumed that these 

single-domain, wurtzite nanoparticles were showing band gap emission because the emission 

onset and peak were focused so near to the absorption onset. However, if the emission were 

indeed band gap emission being caused by the recombination of the exciton pair from the 

conduction band down to the valence band, it would be expected that any change in the band gap 

would cause a comparable change in the emission peak. The data here shows quite the opposite; 

there is no correlation between the two metrics. The variation in the band gap energy for the 

particles sampled in Table 3 is 0.25 eV, but the variation in the emission peaks much more 

narrow at only 0.13 eV. A Pearson correlation coefficient analysis was performed on the band 

gap energy relative to the fluorescence peaks, and the coefficient was ~0.25, indicating a very 

poor level of correlation between the two data sets. 

The band gap of the particles is evidently able to vary quite widely, but the fluorescence 

peak will remain significantly more centered around 1.93 eV. The most likely explanation for 

this observation is that the fluorescence of the particles synthesized according to this procedure is 

not band gap emission. Emissive trap state recombination pathways have been observed in 

chalcopyrite CuInS2 nanoparticles, thus it is not entirely unrealistic that there is a similar 

mechanism at play here. 

Since the emission is situated so close to the band gap energy, if the recombination does 

involve a trap state, it must be a fairly shallow trap state, so that the emission is not at a 

drastically reduced energy. Fluorescence of chalcopyrite CuInS2 particles has been attributed to a 
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donor-acceptor (D-A) transition75. It has been established that in the fluorescence of chalcopyrite 

CuInS2, copper vacancies act as the acceptor state, and sulfur vacancies or copper/indium 

substitutions act as the donor.95 It is reasonable to expect the fluorescence of wurtzite CuInS2 to 

act in a similar manner. Because the D-A pairs are so closely tied to the composition of the 

particles, it is not at all surprising to see such variability in the opto-electronic properties of the 

particles produced by this synthesis, given the inconsistency in their stoichiometric 

compositions. Slight variations in the relative amounts of copper and sulfur could lead to 

different imperfections in the crystal structure of the particles, causing differences in the energy 

levels attributed to the D-A transition. 

An interesting result of this study was the observed fluorescence coming from CuInS2 

nanoparticles that were determined to be copper-rich from ICP-OES analysis. It has been 

reported in literature that chalcopyrite nanoparticles of CuInS2 with a 1:1:2 composition exhibit 

no photoluminescence, and noticeable emission is not seen without increasing copper 

deficiency.94,53 The synthesis detailed in this study has been shown to produce CuInS2 

nanoparticles that are copper-rich to varying degrees, and all of the particles were seen to be 

weakly, yet noticeably, fluorescent. This result is contrary to previous reports, and merits further 

investigation. 

The single-domain, wurtzite CuInS2 nanoparticles are, as was already established, small 

enough in diameter to be within the realm of quantum-confinement, as their radius is smaller 

than the Bohr exciton radius of the material of 4.27 nm. As such, it was expected that slight 

changes in the particle size would cause a corresponding change in the band gap energy 

according to the effective masses of the hole and the electron of the particle. It was already 
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detailed how the Brus equation could be used to predict the band gap based on a measured 

particle radius or to predict the particle radius based on the apparent band gap energy.  

By performing this analysis, these predicted values were calculated for the applicable 

samples, and the data can be seen in Table 3. The quantum-confinement calculations do not 

adequately account for the changes seen in the apparent band gap of these particles relative to the 

bulk chalcopyrite band gap, which is assumed to be similar to that of wurtzite CuInS2. The 

predicted band gap energy based on the measured particle diameter was consistently larger than 

the apparent band gap energy determined from the absorbance spectra. Furthermore, the 

predicted particle radii based on the apparent band gap energies were consistently larger than the 

particles appeared to be in TEM images. This is evidence of the fact that quantum-confinement 

effects are not solely responsible for the changes in band gap energy of the particles produced in 

this synthesis. The optical properties of chalcopyrite CuInS2 is highly dependent of crystal 

defects, and it appears that these particles may be equally susceptible to intricacies caused by 

defects.96,97,98,99  

 It was mentioned in Chapter III that XRD analysis has lead to the hypothesis that this 

synthesis may produce a sample composed of some particles that exhibit the wurtzite structure 

and some that exhibit the chalcopyrite structure. The inherent variability of the synthesis means 

that each time a sample is produced, it may have a different ratio of the two crystal structures. 

This could have important consequences in the opto-electronic properties of the particles. As 

mentioned previously, our collaborator Dr. Xiao Shen has calculated the band gap of wurtzite 

CuInS2 to range from being quite similar to that of chalcopyrite to being 0.01-0.08 eV lower in 

energy, depending on the amount of cation order in the wurtzite phase. It is unknown, but 

possible, that one of the crystal structure dominates the absorbance of the samples, while the 
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other crystal structure dominates the emission. Incidentally, the emission observed here is highly 

reminiscent of that observed for chalcopyrite CuInS2 nanoparticles52. This would mean that the 

relative amounts of wurtzite to chalcopyrite particles in a given sample could vastly change the 

observed opto-electronic properties because the absorbance and emission energies could each be 

skewed toward higher or lower energies independent of one another. Furthermore, if the level of 

cation order in the wurtzite structure has an effect on the band gap energy, then that is an 

additional factor that could manipulate the apparent band gap of a sample of particles. All of this 

to say that this is a highly variable synthesis that appears to have many compounding factors that 

yield the opto-electronic properties and these factors are not yet well understood. 

 

Conclusion 

 

The effort to develop a modified synthesis for single-domain, wurtzite CuInS2 

nanoparticles that would allow for limited control over the size and optical properties of the 

particles has proven to be less straightforward and simple than originally expected. All of the 

usual techniques to achieve such tunability failed to show any appreciable results, and the 

method that had initially shown promising results and trends unfortunately turned out to be 

indistinguishable from the high variability present in the typical procedure from Chapter III. We 

were unable to pinpoint any solid trends in the data after manipulating the synthesis in various 

ways. What has instead been gained from this study is a real appreciation for how complicated 

and unique nanoparticle syntheses can sometimes be. 

With each effort toward fine-tuning the synthesis and characterizing the resultant 

particles, more questions have been raised. The unique and highly unpredictable optical 
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properties are not yet fully understood, and elucidating the absorption and emission pathways has 

become a major goal of this research project. It is no longer believed that these wurtzite particles 

are showing simple band gap absorbance and emission, and this is not an entirely shocking result 

considering the unique energetic properties observed in chalcopyrite CuInS2. This is only one of 

the questions that future work on this project will seek to answer. An additional question that has 

arisen about this project focuses on the crystal structure of the small particles. Initial powder 

XRD patterns showed clear evidence of the wurtzite crystal structure. More recently collected 

patterns appear to indicate a mixture of wurtzite and chalcopyrite crystal structures, perhaps 

representing that from one nanoparticle to the next neither the thermodynamic nor the kinetic 

structure is entirely favored. This question of which crystal structure is predominantly produced 

by this reaction is of paramount interest for this project because the development of a reliable 

synthesis for producing wurtzite, quantum-confined CuInS2 nanocrystals is a major focus. 

There remain a large number of unknowns surrounding this new synthesis, and answering 

those questions will improve the understanding of the material for all researchers interested in it. 

Once the intricacies of this synthesis have been successfully detailed and understood, the future 

use of wurtzite CuInS2 nanoparticles toward the photocatalytic reduction of water, in quantum 

dot sensitized solar cells, or in other photovoltaic devices may be possible. 
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