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ABSTRACT 

 

 

Normal tissue repair involves a series of highly coordinated events that include 

inflammation, granulation tissue formation, revascularization, and tissue remodeling. 

The transcriptional co-factor, ankyrin repeat domain protein 1 (Ankrd1), is rapidly and 

highly up regulated by wounding and tissue injury in mouse skin. Ankrd1 is also strongly 

elevated in human wounds. Overexpression of Ankrd1 in wounds by adenoviral gene 

transfer enhances wound healing. Ankrd1 has dual roles: a transcriptional co-regulator 

of several genes and a structural component of the sarcomere, where it forms a multi-

component complex with the giant elastic protein, titin. Deletion of Ankrd1 results in a 

wound healing phenotype characterized by impaired wound closure and reduced 

granulation tissue thickness. In vitro studies confirmed the importance of Ankrd1 for 

proper cell-matrix interaction. We identified two Ankrd1-target genes, Collagenase-3 

(MMP-13) and Stromelysin-2 (MMP-10). Both, MMP-13 and MMP-10 are important 

players in matrix turnover during physiological and pathological events. In summary, 

Ankrd1 regulates genes involve in remodeling of the extracellular matrix and is essential 

for proper interaction with the extracellular matrix in vitro.  
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PREFACE 

 

 

The healing process is initiated at the moment of injury, and it produces a 

dynamic interactive response that involves the complex, overlapping interaction of 

various cell types, extracellular matrix molecules and soluble mediators. Normal tissue 

repair consists of four phases: hemostasis, inflammation, repair, and remodeling. 

Chronic wounds failed to proceed through the repair phases in an orderly and timely 

reparative way, resulting in delay or lack of repair. These chronic wounds are 

characterized by aberrant inflammation, and abnormal deposition of extracellular matrix 

molecules and cellular infiltrates, leading to impaired repair and regeneration. Correctly 

identifying the etiology of a chronic wound is central to successful wound treatment. 

Novel treatment strategies that will promote faster wound healing are necessary for 

chronic wounds, especially in diabetic patients, where wound repair is severely 

compromised. 

The nuclear transcription co-factor, Ankrd1, is highly induced after wounding, and 

its over-expression promotes tissue repair. This thesis focuses on understanding the 

role of Ankrd1 during tissue repair. Global deletion of Ankrd1 did not affect mouse 

viability or development. Nevertheless, Ankrd1-null mice showed delayed excisional 

wound closure characterized by decreased contraction and reduced granulation tissue 

thickness. Cells isolated from Ankrd1-deficient mice did not spread or migrate on 

collagen- or fibronectin-coated surfaces as efficiently as fibroblasts isolated from control 

mice. More importantly, Ankrd1-null fibroblasts failed to contract 3D floating collagen 
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gels. Reconstitution of Ankrd1 by viral infection stimulated collagen contraction. These 

data suggest that Ankrd1 is critical for proper interaction with the matrix.  

In the second part of this thesis we focus on investigating the mechanisms 

underlying gene regulation by Ankrd1. Using analysis of cells from Ankrd1 knockout 

mice, transient overexpression, and RNAi knockdown studies, we provide evidence that 

Ankrd1 is a negative regulator of matrix metalloproteinase (MMP) gene expression. We 

demonstrated that Ankrd1 associates with nucleolin, and this interaction increases the 

repression of MMP genes. Together, these studies highlight the importance of 

understanding how Ankrd1 works. Understanding the mechanisms that Ankrd1 utilizes 

during skin repair can lead to the development of a therapy that improves wound 

healing in chronic wounds.  
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Chapter I 

 

 

INTRODUCTION 

 

 

Skin Anatomy 

The skin is the first line of defense against external insults. It is the largest organ 

of the body and its function includes protection, maintenance of body temperature, and 

defense (Hussain, Limthongkul, & Humphreys, 2013). The thickness and structure of 

the skin varies over the surface of the body. In particular, the skin is both grossly and 

histologically different at two locations, the palms of the hands and the soles of the feet. 

These areas are subject to the most abrasion, are hairless, and have a much thicker 

epidermal layer than skin in any other location.  

The skin consists of three layers: epidermis, dermis, and subcutaneous tissue 

(Figure 1). The epidermis is composed of layers of the epithelium that exhibits 

progressive differentiation in a basal to superficial direction. It is comprised of multiple 

cell types that are derived from different embryonic origins: keratinocytes, melanocytes, 

Langerhans cells, and Merkel cells, while the keratinocytes are the mayor epidermal cell 

type (Kanitakis, 2002).  The dermo-epidermal junction zone (DEJZ) connects the 

epidermis with the dermis. DEJZ is composed of a network of structural proteins, which 

provides a firm connection between the basal keratinocytes and the dermis  
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Figure 1. Cross-section of the skin.  
Diagram showing a cross section of skin on the left and on the right a cross section 
showing the cell types. Image taken from: http://www.sciencelearn.org.nz/Cross-
section-of-skin 
  

http://www.sciencelearn.org.nz/Cross-section-of-skin
http://www.sciencelearn.org.nz/Cross-section-of-skin
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(Wysocki, 1999). The structural network is made up: hemidesmosomes, lamina densa, 

lamina lucida, and anchoring fibrils. Type IV collagen, laminin, and perlecan are major 

components of the basement membrane in the DEJZ. The DEJZ provides enormous 

mechanical stability to the epidermis. Mutations or disruptions of the structures in the 

DEJZ present clinically with skin fragility and blistering disorders (Burgeson & 

Christiano, 1997).  The dermis is the connective tissue component of the skin, and it is 

divided into two layers: the papillary dermis and the reticular dermis. The papillary 

dermis is a relatively thin layer of loose connective tissue that lies immediately beneath 

the epidermis; collagen fibers are thinner and loosely packed. It not only binds the 

epidermis to deeper tissues, but also supports the microcirculation and nerve supply of 

the epidermis. The deeper reticular dermis is a relatively thick layer of dense irregular 

connective tissue; collagen fibers are thicker and more densely and irregularly 

arranged. The reticular dermis also supports the larger blood vessels and nerves that 

supply the microcirculation and nerve supply penetrating the upper papillary layer.  

The dermis protects the body from mechanical injury, control of water output, and 

temperature regulation. The connective tissue of the skin is composed of extracellular 

matrix molecules such as collagen and elastic fibers, which play an important role in the 

elasticity of the skin. Collagen is the main source of structural support of the skin, while 

elastin is responsible for the ability to recoil after stress is applied to the skin (Hussain et 

al., 2013). Collagen types I and III are the most prominent in human skin. Another 

component of the connective tissue is the proteoglycans, which are made of 

glycosaminoglycans, hyaluronic acid, chondroitin, keratin, dermatan, and heparins.   
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The dermis does not undergo differentiation, although the matrix components undergo 

turnover and remodeling in normal skin and during pathological process such as wound 

healing (Nizet & Pierard, 2009). The subcutaneous tissue, also called hypodermis, 

serves as a region for the storage of fat and it supports vessels and nerves that supply 

the dermis. The function of the major components of the extracellular matrix is 

discussed in the next topic.  

 

 

Extracellular Matrix of the Skin 

The extracellular matrix (ECM) consists of a complex array of distinct 

components including glycoproteins, collagens, glycosaminoglycans and proteoglycans 

that are secreted locally and assembled into a complex network. The composition and 

architecture of the ECM determine the biophysical properties of tissues such as 

stiffness, compliance and resilience (Bruckner, 2010). Deposition and assembly of 

extracellular matrix proteins into insoluble and complex polymers in skin are regulated 

processes adapted to development, tissue remodeling, repair, ageing and wound 

healing (Rock & Fischer, 2011). Conversely, stiffness and compliance of tissues are 

important factors regulating the functions of the cells embedded into the matrices. This 

regulation proceeds either directly because proteins within the networks interact with 

cell surface receptors to initiate specific signaling pathways or indirectly because activity 

and availability of compounds such as cytokines and growth factors are controlled 

through transient sequestration within the networks (Buxboim, Ivanovska, & Discher, 

2010; Eckes & Krieg, 2004).  
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Table 1: Structural components of the extracellular matrix relevant to skin.  

These are the major, relatively well-characterized components in the skin. Table taken 

from: (Krieg & Aumailley, 2011) 
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Some of the specific, well-characterized molecules of the ECM are: collagens, 

elastin, fibronectin, laminins, fibrillins, and proteoglycans (Table 1). Collagen is the 

predominant matrix component of the dermis; it is designed to provide structure and 

resiliency. To date, 28 distinct genetic collagen types have been identified. The 

characteristic molecular form of collagen is a triple helix made up of three polypeptides, 

called α chains, which coil into a right-handed triple helix (Ricard-Blum & Ruggiero, 

2005). Elastin is the main protein component of the elastic fiber. Elastic fibers are of 

particular importance to the structural integrity and function of skin in which reversible 

extensibility or deformability is crucial (Halper & Kjaer, 2014). Fibronectin (FN) is a 

widely distributed multidomain glycoprotein present in most extracellular matrices. FN is 

expressed especially in regions of active morphogenesis, cell migration and 

inflammation (Singh, Carraher, & Schwarzbauer, 2010). FN levels are high in tissues 

undergoing repair (i.e., wound healing) and/or fibrosis (Schwarzbauer & Sechler, 1999; 

Singh et al., 2010). Two classes of fibronectin are formed by a single gene but from 

different sources: (1) the soluble form is called plasma FN, is produced by hepatocytes 

in the liver and circulates in the bloodstream, and (2) the cellular form is produced by a 

variety of cells, and gets incorporated into the matrix (Hynes, 1990). Many fibronectin 

variants may be formed by alternative splicing. Laminins are a family of large 

multidomain, heterotrimeric glycoproteins that interact with both cells and ECM. They 

constitute a family of basement membrane glycoproteins that affect cell proliferation, 

migration, and differentiation (Halper & Kjaer, 2014; Hamill, Kligys, Hopkinson, & Jones, 

2009). Fibrillins are a group of large extracellular glycoproteins. They provide structural 

integrity of specific organ systems, and serve as a scaffold for elastogenesis in elastic 
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tissues such as skin, lung, and vessels (Wagenseil & Mecham, 2009). Thus, fibrillin is 

important for the assembly of elastin into elastic fibers. Proteoglycans are a diverse 

family of proteins with varying numbers, types and sizes of attached 

glycosaminoglycans chains linked by O-glycosidic bonds to serine or threonines. They 

participate in matrix organization, structural integrity and cell attachment. Other 

important components of the ECM of the skin are the matricellular proteins: tenascins, 

fibulins and thrombospondins.  

A number of serious human diseases are associated with abnormal extracellular 

matrix in the skin (Table 2). Mutations in the collagen genes, or deficits in collagen-

modifying enzymes or proteins involved in the architecture and biomechanical function 

of collagen fibrils are associated with Ehlers–Danlos syndromes (EDS) (Callewaert, 

Malfait, Loeys, & De Paepe, 2008). EDS are disorders of collagen fibrils, with skin 

hyper-extensibility, with velvety texture and easy bruising. Mutations that affect the 

structure or lead to a reduced synthesis of fibrillins are the cause of Marfan’s syndrome 

(Callewaert et al., 2008). The disease is characterized by thin skin and abnormalities 

affecting the ocular, skeletal and cardiovascular systems. Several other acquired and 

inherited skin blistering disorders originate from autoantibodies targeting proteins 

involved in the anchorage of basal keratinocytes or from mutations in the genes 

encoding the components of the anchoring complexes. A whole range of severe 

inherited skin blistering disorders characterized by trauma-induced epidermal 

detachment from the dermis are caused by mutations in the genes coding for laminin 

332, its α6β4 integrin receptor, collagen VII or collagen XVII (Carulli, Contin, De Rosa, 

Pellegrini, & De Luca, 2013; Cooper & Bauer, 1984; Coulombe, Kerns, & Fuchs, 2009). 
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Moreover, fibrosis and inflammatory pathologies are associated with dysfunction in 

extracellular matrix protein expression, function and metabolism (T. R. Cox & Erler, 

2011; Korpos, Wu, & Sorokin, 2009; Krieg & LeRoy, 1998; Sorokin, 2010). 

In addition to providing mechanical and structural support throughout the body; 

the ECM is implicated in cell migration, proliferation, embryonic development, stem cell 

niches, and signaling events. The expression, interaction and arrangement of the 

different matrix components are necessary to maintain normal physiological properties 

of the skin. Synthesis of ECM is a key feature of wound healing, especially when there 

has been a significant loss of tissue. The optimal care and treatment of wounds requires 

an understanding of how extracellular matrix affects the healing processes. The wound 

healing process is discussed in more detailed in the next subject.  

 

 

Wound Healing 

Wound healing consists of an orderly progression of events that attempts at 

repairing damaged tissue (Figure 2). A number of processes are involved including 

coagulation, inflammation, proliferation, and tissue remodeling. Immediately after injury, 

hemostasis is triggered, diminishing blood loss, followed by an inflammatory phase. 

Inflammation begins early, hours after injury. Damaged cells release chemical signals 

that stimulates the migration of cells into the wound bed (Gillitzer & Goebeler, 2001). 

Days after the initial injury, the fibroblasts and endothelial cells begin proliferating and  
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Table 2: Extracellular matrix dysfunction and cutaneous diseases.  
Many inherited diseases with skin involvement that are caused by mutations in the 
genes coding for extracellular matrix proteins, or proteins and small molecules 
participating in the supramolecular assembly of extracellular matrix proteins into 
networks. Table taken from: (Krieg & Aumailley, 2011) 
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forming a specialized type of tissue, called granulation tissue (Singer & Clark, 1999). As 

repair progresses, the number of proliferating endothelial cells and fibroblasts 

decreases and fibroblasts deposit increased amounts of ECM, mostly collagen. Net 

collagen accumulation depends on synthesis and degradation. Synthesis versus 

degradation of the ECM results in remodeling. Ultimately the granulation tissue 

scaffolding is converted into a scar. The replacement of the granulation tissue with a 

scar requires changes in the composition of the ECM (Gurtner, Werner, Barrandon, & 

Longaker, 2008). Degradation of collagen and other ECM proteins is modulated by a 

family of matrix metalloproteinases (MMPs) and also members of the “a disintegrin and 

metalloprotease” (ADAMs) family.   

Complications in wound healing can arise from abnormalities in any of the repair 

phases. In some cases, there are wounds that heal too much and this can lead to the 

formation of keloids, hypertrophic scars, pyoderma gangrenosum (proud flesh), and 

fibroses (McNaughton & Brazil, 1995; Ogawa, Akaishi, & Izumi, 2009). On the other 

hand, poor healing of the wound may result in ulcer formation, tendon rupture, 

hyperplasia, neoplasia, and tumor development (Medina, Scott, Ghahary, & Tredget, 

2005). Persistent inflammation is observed in chronic wounds and can lead to tissue 

destruction (K. Moore, 1999). Uncontrolled contraction of the wound can result in 

deformities of the wound and surrounding tissues (Bullard et al., 1999). Therefore, a 

controlled, dynamic, and changing process is required for proper tissue repair.  
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Figure 2: Classic stages of wound repair.  
The normal response to injury consists of overlapping but distint stages: hemostatis, 
inflammation, new tissue formation, and remodeling. Image taken from: 
http://www.pilonidal.org/wound_healing_indepth.php 
  

http://www.pilonidal.org/wound_healing_indepth.php


12 
 

The co-transcription factor, Ankyrin Repeat Domain 1, was shown to be sharply 

expressed and to affect the wound healing process (Shi et al., 2005a). It is necessary 

for proper wound closure and cell-matrix interaction (Chapter II; Samaras, Almodovar-

Garcia, et al. Submitted for publication), and it regulates matrix-related proteins 

(Chapter III) (Almodovar-Garcia, Kwon, Samaras, & Davidson, 2014). Understanding 

the mechanisms of action of this protein could lead to the development of a therapy that 

improves tissue repair.   

 

 

Ankyrin Repeat Domain 1 (Ankrd1, Ankrd1; Cardiac Ankyrin Repeat 

Protein, CARP) 

A cDNA subtraction hybridization study between intact and day 1 wounded skin 

identified the Ankrd1 gene to be strongly induced after wounding (Almodovar-Garcia et 

al., 2014; Samaras, Shi, & Davidson, 2006b). Total RNA and protein expression 

showed a dramatic increase in Ankrd1 hours after initial wounding with levels remaining 

up for two weeks (Shi et al., 2005a). Increased Ankrd1 expression is also observed 

during heart failure (Zolk et al., 2002), muscular dystrophy (Nakada et al., 2003; van 

Lunteren, Moyer, & Leahy, 2006), atrial fibrillation (Aihara, Kurabayashi, Saito, et al., 

2000; Aihara, Kurabayashi, Tanaka, et al., 2000), re-innervation of skeletal muscle 

(Zhou, Cornelius, Eichner, & Bornemann, 2006), hypoxia tolerance (Avivi, Brodsky, 

Nevo, & Band, 2006), lupus nephritis (Matsuura, Uesugi, Hijiya, Uchida, & Moriyama, 

2007), mammary and intestinal tumorigenesis (Labbe et al., 2007), and arteriogenesis 

(Boengler et al., 2003).  
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Ankrd1 was originally identified as a cytokine-inducible nuclear protein in human 

endothelial cells (Chu, Burns, Swerlick, & Presky, 1995a).  The gene is located on 

chromosome 10 in humans and 19 in mouse, and is highly conserved among 

vertebrates. All necessary regulatory sequences appear to be within 10 K bp 5’ of the 

Ankrd1 transcription start site. The 5’ sequence includes many canonical response 

elements including: GATA sites, E-box elements, CCAC box, CAGA box, MCAT, AP-1, 

and SP-1 binding sites (Figure 3) (Chu et al., 1995a; Jeyaseelan et al., 1997a). The 

Ankrd1 proximal promoter contains a canonical TATA box. No alternative splicing of the 

RNA has been described.  

The Ankrd1 transcript encodes a 319 amino acid protein with a molecular weight 

of 36 kDa. Ankrd1 protein sequence and domain organization is highly conserved 

among mammalian species. Analysis of the peptide sequence revealed a number of 

putative motifs, including a bipartite nuclear localization signal that mediates active 

nuclear transport of proteins from cytoplasm and nucleus, a PEST-sequence that is a 

short sequence typical of short-lived, rapidly degraded proteins, four and a half ankyrin 

repeat domains that are involved in protein-protein interaction, and multiple potential 

phosphorylation, glycosylation, myristylation, and amidation sites (Figure 3). Ankyrin 

repeats are amongst the most frequent motifs found in proteins with different functions 

including: CDK inhibitors such as p16, p18, and p19, developmental regulators such as 

Notch, IκBα, and transcription factors Swi6, GABPα,β (Sedgwick & Smerdon, 1999). 

Proteins with ankyrin repeats have special importance in systems characterized by 

intensive communication between proteins (Mosavi, Cammett, Desrosiers, & Peng, 

2004).  
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Ankrd1 belongs to a three-member family of muscle ankyrin repeat proteins or 

MARPs, which also include AARP/Ankrd2 and DARP/Ankrd23. AARP/Ankrd2 is 

expressed in heart, kidney and predominantly in the skeletal muscle, and 

DARP/Ankrd23 is present in similar amounts in the heart and skeletal muscle (Miller et 

al., 2003). MARP proteins have similar structures, sharing several common domains: 

tandem ankyrin repeats, PEST motifs and nuclear localization signals. AARP/Ankrd2, 

which is predominantly expressed in skeletal muscle, is induced in response to various 

forms of stress and is highly responsive to muscle mechanical status both in vitro and in 

vivo (Miller et al., 2003). DARP/Ankrd23 expression is altered by the change of energy 

supply induced by excess fatty acid treatment of skeletal myotubes in vitro (Ikeda, 

Emoto, Matsuo, & Yokoyama, 2003). MARPs have dual intracellular localization, found 

both in sarcomeric I-band and in the nuclei. In the sarcomere they bind titin and, in 

response to mechanical stimuli, they appear to relocalize to the nuclei where they 

participate in reprograming gene expression occurring during cell response to the 

structural or functional changes of contractile machinery (Snezana Kojic, Dragica 

Radojkovic, & Georgine Faulkner, 2011). Their localization in the cell is subjected to 

change due to physiological and pathological conditions. Recently, it was published that 

deletion of the MARP family (MARP triple knockout; Ankrd1, Ankrd2, and Ankrd23) 

results in viable mice that had normal cardiac function both at basal levels and in 

response to mechanical pressure overload (M.-L. Bang et al., 2014). However, Bang et 

al. did not provide evidence of a generation of a real triple knockout mouse. In addition, 

our lab recently identified Ankrd1-dependent abnormalities in mice after myocardial 

infarction and -adrenergic stimulation (Zhong, Chiusa et al., submitted for publication). 
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Ankrd1 is downstream of Nkx2.5 and GATA-4 signaling pathways (Zou et al., 

1997). Ankrd1 is induced during cardiomyogenesis and vascular injury (Kuo et al., 1999; 

Zou et al., 1997). Ankrd1 promoter-lacZ transgenic mice displayed cardiac specific 

expression in early embryonic development. Ankrd1 is highly enriched in adult heart and 

is detectable in skeletal muscle and lung after birth. Ankrd1 is a nuclear and cytoplasmic 

protein. Nuclear Ankrd1 is primarily recognized as a co-transcriptional factor and a 

negative regulator of cardiac genes, expressed during cardiogenesis and 

cardiomyopathy. In developing myocardium, Ankrd1 is a negative regulator of myosin 

light chain-ventricular (MLC2v) acting through the HF-1 site in collaboration with 

transcription factor YB-1 (Zou et al., 1997) . Several cardiac-specific genes including 

atrial natriuretic factor (ANF) and cardiac troponin C (cTNC) are also repressed 

following Ankrd1 overexpression (Jeyaseelan et al., 1997a). In cardiomyocytes, 

cytoplasmic Ankrd1 associates with sarcomeric proteins titin, desmin, myopalladin, 

CASQ, and p94/calpain to form a complex important for muscular stress (Bang et al., 

2001b; Miller et al., 2003). It has been hypothesized that Ankrd1 may be a mediator of 

mechanical stress, where it could link myofibrillar stretch signals to the transcriptional 

regulation of muscle gene expression (B. Chen et al., 2012; Samaras et al., 2006b), 

possibly by shuttling between cytoplasm and nucleus (Snezana Kojic et al., 2011). 

Ankrd1 is up-regulated in animal models of cardiac hypertrophy induced by 

pressure overload and adrenergic stimulation, and in patients with dilated 

cardiomyopathy (Aihara, Kurabayashi, Saito, et al., 2000; Nagueh et al., 2004; Zolk, 

Marx, Jackel, El-Armouche, & Eschenhagen, 2003). In cardiomyocytes, Ankrd1 and 

GATA4 signaling pathways regulate sarcomere gene expression and maintain 
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sarcomere organization (B. Chen et al., 2012).  Recently, Ankrd1 has been shown to 

mediate agonist-induced myocardial hypertrophy. Under conditions of α-adrenergic 

stimulation, Ankrd1 serves as a sarcomere scaffolding protein to induce ERK-GATA4 

phosphorylation. Ankrd1 recruits and localizes ERK1/2 and GATA4 in a sarcomeric 

complex to enhance GATA4 phosphorylation, followed by translocation of the 

Ankrd1/GATA4 complex to the nucleus to induce gene activation and cardiac 

hypertrophy (Zhong, Chiusa et al., submitted for publication). The exact functional role 

of Ankrd1 in the heart remains to be elucidated.  

Very little is known about the expression, localization, and importance of Ankrd1 

in skin and tissue repair. In situ hybridization studies during wound healing showed 

Ankrd1 expression in skeletal muscle, epidermis, vasculature, keratinocytes, vessel 

wall, and inflammatory cells.  Overexpression of Ankrd1 improved angiogenesis and 

blood perfusion in several animal models (Shi et al., 2005a). Additionally, 

overexpression of Ankrd1 results in increased vascularization in wounds and 

experimental granulation tissue, but it does not affect proliferation (Shi et al., 2005a). 

Global deletion of Ankrd1 did not affect mouse viability or development, although 

Ankrd1-/- mice had at least two significant wound healing phenotypes: extensive 

necrosis of ischemic skin flaps that was reversed by adenoviral expression of Ankrd1 

(data not shown); and delayed excisional wound closure characterized by decreased 

contraction and reduced granulation tissue thickness (Chapter II). A serious gap in our 

knowledge of Ankrd1 is its downstream effects during tissue repair. This work shows 

that Ankrd1 negatively regulates matrix metalloproteinases-13 and -10 during wound 
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healing  (Chapter III) (Almodovar-Garcia et al., 2014). Further studies presented in this 

thesis characterize the mechanism of action of Ankrd1.   

 

 

Matrix Metalloproteinases 

 Precise removal of connective tissue is critical to several physiological 

(development) and pathological (wound healing) processes that require cell movement 

and tissue remodeling (Vu & Werb, 2000). In order for these processes to occur, the 

ECM must be degraded to allow free movement of cells, and processing and deposition 

of new matrix. A family of proteases involved in the degradation of components of the 

ECM is the matrix metalloproteinases (MMPs). These extracellular matrix-degrading 

enzymes that share common functional domains and activation mechanisms (Takino, 

Sato, & Seiki, 1995).  They are synthesized as secreted or transmembrane pro-

enzymes and processed to an active form by the removal of an amino-terminal pro-

peptide (Mott & Werb, 2004). There are several distinct subgroups based on preferential 

substrates: collagenases (MMP-1, -8, and -13), gelatinases (MMP-2 and -9), 

stromelysins (MMP-3, and -10), stromelysin-like MMPs (MMP-11 and -12), matrilysins 

(MMP-7, and -26), membrane-type MMPs (MMP-14, -15, -16, and -24), and other less 

characterized (MMP-17, -18, -19, -20, -23, 25, and -28). Collagenases are the principal 

enzymes capable of degrading native fibrillar collagens such as type I, type II and type 

III. In skin, the interstitial collagens (type I, II, and III) are the principal targets of 

destruction and the secreted collagenases, MMP-1, MMP-8 and MMP13, have a major 

role in this process (Armstrong & Jude, 2002b).  
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Figure 3: Ankrd1 gene and protein structure.  
Graphic representation of Ankrd1 gene structure shows the 600-bp proximal promoter 
with known transcription factor binding sites and the structural gene. All 9 exons of the 
structural gene encode for some portion of the protein. Protein encoding regions in all 9 
exons are shown in red, with the domain organization shown below. Adapted from: 
(Samaras et al., 2006b).  
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MMP expression and activity is highly regulated, since inappropriate degradation 

of the ECM could damage the integrity of the skin and other tissues. Excessive collagen 

degradation during tissue repair might result in formation of non-healing chronic wounds 

(Martins, Caley, & O'Toole, 2013). MMP levels are controlled at multiple levels: the 

expression/synthesis, activation, and inhibition of the active enzyme. In general, most 

MMPs are secreted as inactive zymogens and are subsequently activated by proteolytic 

cleavage at the N-terminus in the extracellular space. The activation of proMMP 

requires disruption of the cysteine switch. Several proteinases, e.g. plasmin, trypsin, 

kallikrein, mast cell tryptase and other MMPs (MMP-14 and MMP-2) can cleave the 

propeptide and result in disruption of the cysteine switch. Once activated, the activity of 

MMPs is regulated by general protease inhibitors: α2 macroglobulin, α1-antiprotease, 

and by specific inhibitors, i.e. tissue inhibitors of metalloproteinases (TIMPs). The TIMP 

family consist of four members (TIM-1,-2,-2, and-4), which competitively and reversibly 

inhibit the activity of all MMPs (Baker, Edwards, & Murphy, 2002).  

While potent inhibitors of MMP enzymatic activity have been developed, their use 

has been limited due to safety issues and lack of selectivity (Brown, 2000). Inhibition of 

MMP expression at the transcriptional level may be a viable alternative option. The 

promoter of most of the MMPs contains a TATA box, the core transcriptional unit, at 

approximately -30 bp, an AP-1 site at approximately -70 bp, multiple PEA3 sites 

(Benbow & Brinckerhoff, 1997) (Figure 4). The proximal AP-1 site (5'-TGAG/CTCA-3'), 

which binds heterodimers of the Fos and Jun families, is considered a major player in 

transcriptional activation of MMPs (Auble & Brinckerhoff, 1991; Auble, Sirum-Connolly, 

& Brinckerhoff, 1992). Transcriptional activation by the potent protein kinase C agonist, 
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phorbol myristate acetate (PMA), strongly activates the AP-1 site. Numerous growth 

factors and cytokines, including EGF, PDGF, TNF-α, and IL-1, induce expression of 

most MMPs and are also dependent on the AP-1 site (Benbow & Brinckerhoff, 1997; 

Birkedal-Hansen et al., 1993).  

Proteolysis is an important feature of wound repair. The cells participating in 

tissue repair specifically produce several MMPs and regulate their activity. MMP-1 and 

MMP-9 play a role in re-epithelization in tissue repair in skin and lung (Olsen et al., 

2008; Pilcher et al., 1997). MMP-7 also plays an important role in tissue repair in airway 

epithelium (Dunsmore et al., 1998). MMP-3 and -13 are also involved in cutaneous 

wound repair. MMP-13 in wound healing coordinates cellular activities important in the 

growth and maturation of granulation tissue, including myofibroblast function, 

inflammation, angiogenesis, and proteolysis (M. Toriseva et al., 2012). MMP-13 is also 

expressed by fibroblasts in chronic dermal ulcers characterized by persistent 

inflammation (Vaalamo et al., 1997a). MMP-13 plays a predominant role in the 

pathogenesis of joint inflammation (Konttinen et al., 1999; B. A. Moore, Aznavoorian, 

Engler, & Windsor, 2000). Proper regulation of MMPs can be employed in development 

of novel therapeutic modalities for promoting wound repair and inhibiting excessive scar 

formation.  
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Figure 4: Cis-elements in human MMP promoters.  
The MMP promoters harbor several cis-elements allowing for the regulation of MMP 
gene expression by a diverse set of trans-activators including AP-1, PEA3, Sp-1, β-
catenin/Tcf-4, and NF-κB. Several of the MMP promoters are strikingly similar and, in 
fact, share several cis-elements. Adapted from: (Yan & Boyd, 2007).  
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Cell-Matrix Interaction 

The extracellular matrix helps to hold cells and tissues together. It provides an 

organized lattice where cells can migrate and interact with one another. Cells can also 

interact with the surrounding extracellular matrix by connecting their actin filaments to 

the matrix. The principal receptor on cells responsible for binding to the extracellular 

matrix proteins are the integrins. Integrins are heterodimers comprised of an α and a β 

subunit that mediate cellular attachment to the extracellular matrix. They also function 

as signal transducers, activating various intracellular signaling pathways through their 

cytoplasmic tails following activation by matrix binding; this is known as “outside-in” 

signaling. Signals arising from the cytoskeleton modulate integrin conformation (“inside-

out” signaling) (Pozzi & Zent, 2003).  

Cellular activities controlled by cell-ECM matrix interaction are required for 

normal development, but they are also crucially involved in several physiological and 

pathological processes, in particular wound healing, scarring and fibrosis. Integrins 

mediate cell adhesion, migration, survival, and also specific differentiation programs 

relevant to development, tissue maintenance, and repair (Paller, 1997). Usually, 

integrins are expressed at the cell surface in an inactive form. Activation results in 

increased affinity for ECM molecules and clustering into focal adhesions (Eble, 2001).  

An important role for integrins is to provide a link between the ECM and the actin 

cytoskeleton, and the best described actin-binding proteins that associate with integrin 

cytoplasmic tails in focal adhesions include talin, filamin, vinculin, tensin and α-actinin 

(MacPherson & Fagerholm, 2010). Talin binds directly to integrins and is a major 

component of the formation of focal adhesions (Bouaouina, Harburger, & Calderwood, 
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2012).  These assemblies of structural proteins are believed to play important roles in 

stabilizing cell adhesion and regulating cell shape, morphology, and mobility (Figure 5). 

They may also serve as a framework for the association of signaling proteins that 

regulate signal transduction pathways leading to integrin-induced changes in cell 

behavior.  

Many signaling pathways downstream of integrins have been identified. Integrins 

regulate many protein tyrosine kinases and phosphatases, such as FAK and Src, to 

coordinate many of the cell processes, including spreading, migration, proliferation and 

apoptosis.  The regulation of MAP kinases by integrins is important for cell growth or 

other functions. Phosphatidylinositol lipids and their modifying enzymes, particularly 

PI3-kinase, are strongly implicated as mediators of integrin-regulated cytoskeletal 

changes and cell migration. Similarly, actin cytoskeleton regulation by the Rho family of 

GTPases is coordinated with integrin signaling to regulate cell spreading and migration. 

Rho can alter myosin light chain phosphorylation, inhibit actin depolymerization and 

activate phosphoinositide-dependent F actin formation all of which alter the ability of the 

cell body to contract and migrate (E. A. Cox, Sastry, & Huttenlocher, 2001).  

Interaction of cells with the surrounding ECM is an important modulator of all 

cellular activities. Cells respond to external stimuli by converting mechanical force into 

biochemical signals. Stress applied to the ECM would be transmitted via integrin 

receptors to the cytoskeleton throughout the cells and even into the nucleus, where 

changes in gene expression occur (Chiquet, Gelman, Lutz, & Maier, 2009). This 

complex interplay controls specific gene expression program at any given time. Events 

that disrupt cellular mechanosensing, intracellular mechanotransduction signaling or 

http://europepmc.org/abstract/MED/10425567/?whatizit_url_gene_protein=http://www.uniprot.org/uniprot/?query=phosphatases&sort=score
http://europepmc.org/abstract/MED/10425567/?whatizit_url_gene_protein=http://www.uniprot.org/uniprot/?query=FAK&sort=score
http://europepmc.org/abstract/MED/10425567/?whatizit_url_gene_protein=http://www.uniprot.org/uniprot/?query=Src&sort=score
http://europepmc.org/abstract/MED/10425567/?whatizit_url_go_term=http://www.ebi.ac.uk/ego/GTerm?id=GO:0006915
http://europepmc.org/abstract/MED/10425567/?whatizit_url_Chemicals=http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI%3A18059
http://europepmc.org/abstract/MED/10425567/?whatizit_url_go_term=http://www.ebi.ac.uk/ego/GTerm?id=GO:0016477
http://europepmc.org/abstract/MED/10425567/?whatizit_url_gene_protein=http://www.uniprot.org/uniprot/?query=actin&sort=score
http://europepmc.org/abstract/MED/10425567/?whatizit_url_go_term=http://www.ebi.ac.uk/ego/GTerm?id=GO:0005856
http://europepmc.org/abstract/MED/10425567/?whatizit_url_gene_protein=http://www.uniprot.org/uniprot/?query=Rho&sort=score
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intracellular or extracellular force distribution, can result in clinical phenotypes (Jaalouk 

& Lammerding, 2009). The role of the different ECM proteins, the function of the 

integrins, their modulation forces, and their interplay remains to be fully described.   
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Figure 5: General model of cell matrix interaction and their downstream 
regulation.  
Cell-extracellular matrix adhesions containing clusters of integrins recruit cytoplasmic 
proteins, which in cooperation with other cell surface receptors control diverse cellular 
processes and functions. Adapted from: (Berrier & Yamada, 2007).  
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Summary and Dissertation Goals 

A collaborative study early in 2005 identified Ankrd1 to be highly regulated by 

wound healing. Eight years later, our understanding of Ankrd1 in tissue repair is in its 

early stages. The goal of this thesis was to enhance our knowledge of the role of 

Ankrd1. These studies focused on identifying Ankrd1 binding partners and characterize 

target genes that are responsive to Ankrd1-associated transcription complexes during 

skin repair. The following chapters discuss: (a) a phenotype resulting from Ankrd1 

global deletion that causes dysfunctional cell-matrix interaction in fibroblasts; (b) the 

mechanisms underlying gene regulation by Ankrd1; and (c) expression of Ankd1 in 

human burn tissue.  

 

Deletion of the Ankrd1 gene results in dermal fibroblast dysfunction 

Targeted deletion of Ankrd1 resulted in an excisional wound healing phenotype marked 

by slow wound closure and reduced granulation tissue. These studies were based on 

our previously developed knockout Ankrd1 mouse model. We demonstrated that Ankrd1 

is necessary for proper interaction of fibroblasts with a collagenous matrix in vivo and in 

vitro. Ankrd1-null fibroblasts showed reduced cell migration, adhesion, and impaired cell 

contraction and spreading in the absence of Ankrd1. This study serves as a foundation 

for future studies on the role of Ankrd1 in wound healing. 

 

Ankrd1 acts as a transcriptional repressor of MMP-13 via the AP-1 site  

This study aimed to determine Ankrd1 binding partners and its target genes. We found 

that Ankrd1 repressed transactivation of MMP13 through interaction with the negative 

regulator, nucleolin, and that genetic deletion or suppression of Ankrd1 resulted in 
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overexpression of MMP13 while Ankrd1 reconstitution decreased MMP13 levels in null 

fibroblasts.  Ankrd1 deletion additionally relieved MMP10 transcriptional repression.  

 

Increased Ankrd1 expression after burn injury in humans 

A total of 29 burn patients and 5 normal skin samples were analyzed by 

immunohistochemistry to determine Ankrd1 expression. Results from this study 

emphasize the prevalence of Ankrd1 during human skin wound healing.  
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Chapter II 

 

 

DELETION OF THE ANKRD1 GENE RESULTS IN IMPAIRED CELL-MATRIX 

INTERACTION 

 

 

Introduction 

As part of a gene expression profiling program to identify genes altered following 

dermal wounding in mice, we reported that ankyrin repeat domain protein 1 (Ankrd1; 

also called cardiac ankyrin repeat protein, CARP) mRNA and protein levels were highly 

induced and remained elevated during the healing process (Shi et al., 2005a). Cells of 

the epidermis and dermis that showed induced expression included vascular endothelial 

cells, cells of the hair follicle bulb and the panniculus carnosus, keratinocytes, 

monocytes, and fibroblasts, indicating increased Ankrd1 may be a generalized stress 

response in many cells types of the skin. Overexpression of Ankrd1, a member of the 

muscle ankyrin repeat protein (MARP) family, which includes Ankrd2 and Ankrd23 

(Miller et al., 2003) also improved many aspects of wound healing in several animal 

models (Shi et al., 2005a). 

The dynamics of MARP gene expression during normal muscle development and 

function as well as those seen under pathological stress conditions in many tissues, 

including muscle, (S. Kojic, D. Radojkovic, & G. Faulkner, 2011; Mikhailov & Torrado, 

2008; Samaras et al., 2006b) suggested that disruptions in normal MARP function could 
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have dire consequences to the organism. In a unique report, Barash et al. observed that 

deletion of the MARP family, both individually and in combination, produced a much 

milder phenotype (Barash et al., 2007). Based on skeletal muscle response to eccentric 

contraction, the authors suggested that the MARPs are not essential for development or 

basal function of skeletal muscle, but that they play a role in mechanical behavior and 

stability of muscle following exercise. It was also concluded that the three MARP 

proteins are structurally and functionally redundant because it required deletion of all 

three genes to see a significant effect. A recent study with the same strains further 

concluded that the MARPs were not involved in the response to pressure overload (M. 

L. Bang et al., 2014). 

Our lab developed a conditional Ankrd1fl/fl from which we created a global 

deletion for the purpose of studying Ankrd1 function in wound healing.  We now report 

that deletion of Ankrd1 results in delayed excisional wound closure characterized by 

decreased contraction and reduced granulation tissue thickness. Results of cell culture 

studies suggest that part of this phenotype results from dysfunctional cell-matrix 

interaction in fibroblasts. 
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Materials and Methods 

Surgical wounding. Studies were carried out in the AAALAC approved facilities of 

Vanderbilt University, Nashville, Tennessee, under approval of the Institutional Animal 

Care and Use Committee at Vanderbilt University School of Medicine. 15-20 week old 

Ankrd1fl/fl (FLOX; control) and Ankrd1-/- (KO) male mice (n=8) in the mixed background, 

received two 6mm, full-thickness excisional wounds on the dorsum. Wounds were 

photographed (Canon PC1234) at the times indicated in the figures and legends. The 

wound areas were determined using ImageJ (National Institutes of Health, Bethesda, 

MD) and expressed as percentage of initial wound size. At completion of the 

experiment, mice were euthanized, and the complete wounds, including 2 mm of the 

wound margin, were harvested and prepared for histology.  

Histology. Mice were euthanized by CO2 asphyxiation at the times indicated in the 

figure legends. The wounds plus surrounding skin were excised and fixed in neutral 

buffered formalin overnight at 4°C, embedded in paraffin, sectioned, stained with 

hematoxylin and eosin or Masson’s trichrome green stain, and photographed (Olympus 

BX50 microscope with Olympus DP71 camera, Software CellSens Standard 1.6, 

Olympus Corporation). Digital images of each excisional wound were used to determine 

the distance between the edges of the panniculus carnosus as a measure of original 

wound gap using ImageJ (National Institutes of Health, Bethesda, MD). Digital images 

of the wounds were also used to measure the granulation tissue thickness and cross-

sectional area under 4x magnification.  
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Cells. Mouse dermal fibroblasts were isolated from Ankrd1fl/fl (FLOX) and Ankrd1-/-  (KO) 

neonatal skin as previously described(Normand & Karasek, 1995). Early-passage 

populations of the isolated skin fibroblasts were immortalized with a SV40 large T-

antigen plasmid (Chang, Pan, Pater, & Di Mayorca, 1985). Briefly, 100 mm dishes of 

primary cells at 80-90% confluence were transfected with 8 µg of plasmid using 

Lipofectamine (Life Technologies, Grand Island, NY) overnight at 37oC in 5% CO2, after 

which the transfection reagent was removed and growth medium added(Chang et al., 

1985). Both primary and immortalized cells were grown in DMEM containing 10% FBS, 

100 Units/ml penicillin–streptomycin (P/S), 1% Antibiotic-Antimycotic (AA) and 2 mM L-

Glutamine. Mouse vascular smooth muscle cells were isolated from FLOX and KO  

neonates as described (Ray, Leach, Herbert, & Benson, 2001), and half of the cells 

were stably transformed with SV40 large T antigen plasmid (Chang et al., 1985). 

Vascular aortic smooth muscle cells were grown in Medium 231 (Invitrogen, Grand 

Island, NY) supplemented with smooth muscle growth supplement (Invitrogen, 

Carlsbad, CA) and 2 mM L-Glutamine. 

Migration assay. Four wells of a 12-well tissue culture plate were coated with 

extracellular matrix (ECM) molecules by incubation in a tissue culture hood for 2h at RT. 

In each plate, 2 wells were coated with collagen (rat tail type I, 100µg/ml BD 

Biosciences, Bedford, MA) and 2 wells with fibronectin (10µg/ml, Santa Cruz, Santa 

Cruz, CA), both in PBS.  ECM solutions were removed, the wells washed with sterile 

PBS and incubated with serum-free DMEM at 37oC in 5% CO2.  FLOX and KO 

fibroblasts at 80% confluence were trypsinized from flasks, counted and diluted to a 

concentration of 6x105 cells/ml, a concentration that permitted cells to reach confluence 
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24h after plating. ECM-coated cell culture plates were secured onto a magnetic array 

that aligned magnets in the center of each of four coated wells. The media were 

removed from the four coated wells, 500 µl of fresh growth medium added, and sterile, 

magnetically-adherent stencils (Ashby, Wikswo, & Zijlstra, 2012) (MAtS) were placed in 

the center of each well. 500 µl of each cell suspension was equally distributed around 

the MAtS, one cell type per each ECM, and the plates were incubated for 24h to allow 

cells to attach and reach confluence. Plates were removed from the magnetic 

arrangement and the medium was carefully aspirated to remove floating cells and 

replaced with fresh growth medium. The MAtS were carefully removed to leave a cell 

free, undisturbed, 4-arm ECM-coated area in the center of each well. The cell-free wells 

were filled with warm PBS to help prevent drying of open plates, and the plate was 

placed in a humidified stage incubator (Bioscience Tools, San Diego, CA) infused with 

5% CO2, attached to a Zeiss Axiovert 200M microscope with an automated stage driven 

by the Ludl Mac 2000 driver module. Images were acquired every 10 min for 5 h with a 

Tucsen 3.3MP cooled CCD digital microscope camera (OnFocus Laboratories, Lilburn, 

GA) using a 10X objective. ImagePro Plus 3D with StagePro software (Media 

Cybernetics Inc., Bethesda, MD) for time lapse image acquisition was used to acquire 

and process images. Data analysis to determine percent of total pixels that were not 

covered (percent open area) was done using TScratch software (Geback, Schulz, 

Koumoutsakos, & Detmar, 2009). 

Collagen gel contraction. Three-dimensional collagen lattices were prepared as 

previously described (Ngo, Ramalingam, Phillips, & Furuta, 2006). Briefly, type I rat tail 

collagen (BD Biosciences, San Jose, CA) was diluted with 20mM acetic acid to 3mg/ml. 
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Primary or immortalized skin fibroblasts isolated from FLOX and KO neonatal mice were 

cultured in DMEM medium (10% FBS, 1% AA, 1% P/S), trypsinized and counted. 200µL 

of collagen neutralized to pH 7.0 with 1N sodium hydroxide was loaded into each well of 

a 24-well plate. Cells (1.5 x 105) were suspended in 400µl of DMEM (10% FBS, 1% AA, 

1% P/S) and added to the wells containing 200µl of collagen solution to yield a final 

concentration of 1mg/ml. The gels were then incubated at 5% CO2 and 37°C for 30min 

to allow the collagen to polymerize. After collagen polymerization, 500µl of DMEM (10% 

FBS, 1% AA, 1% P/S) was added to each well. Using a sterile spatula, each gel was 

mechanically released from the wall and bottom of the wells. Collagen lattices were 

imaged (GelLogic200 Imaging System, Molecular Imaging System, Carestream Health; 

Woodbridge, CT) every 24h and lattice area was analyzed using the Molecular Imaging 

software (Carestream Health, Inc., Woodbridge, CT). Reduction in lattice area due to 

contraction was determined at daily intervals up to 7 days.  

Adenovirus infection/reconstitution. FLOX and KO immortalized skin fibroblasts were 

infected with an adenovirus expressing Ankrd1 (adAnkrd1-GFP) or luciferase (adLuc-

GFP) as a control with a multiplicity of infection of 100. Cells were harvested 48h after 

infection, and used for collagen gel contraction assays or protein isolation.  

Protein preparation. Whole cell protein extracts were made by lysing the cells in RIPA 

buffer (Sigma, St Louis, MO) containing a protease inhibitor cocktail (Complete Mini 

Protease Inhibitor Tablets; Roche, Mannheim, Germany) followed by sonication using a 

Bronson 250 Sonifier with a water bath cup horn attachment. Protein concentration in 

cleared lysates was determined by BCA protein assay kit (ThermoScientific, Rockford, 

IL) and lysates were stored at -80oC.  
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Western Blots. Thirty μg of cell extracts were separated by 10% acrylamide SDS-

PAGE and transferred to PVDF membrane (Immobilon, Millipore, Billerica, MA) using 

the NuPage (Life Technologies, Carlsbad, CA) blotting apparatus, following the 

manufacturer’s protocol. After blocking with a solution of 10mM Tris-HCl pH 8, 150mM 

NaCl, 0.05% Tween-20, and 5% milk powder, the membrane was incubated with anti-

Ankrd1 antibody (1:2000) and anti-Cyclophilin (1:20,000; BML-SA296, Enzo, 

Farmingdale, NY) at 4°C overnight, followed by incubation with anti-rabbit IgG (C2609; 

Santa Cruz) at room temperature (RT) for 30min. The membrane was washed, 

incubated with Western Lightning Plus Enhanced Chemiluminescent Reagent (Perkin 

Elmer, Waltham, MA), and protein bands were visualized and quantified using a Kodak 

Image Station 4000MM Pro with Kodak MI software (Carestream Health, Inc., 

Woodbridge, CT). For the virus reconstitution studies, protein was isolated from cells 48 

hours after infection. 

Phalloidin staining. Collagen lattices were fixed in 4% paraformaldehyde in phosphate 

buffer after 3 days of culture. Gels were stained following manufacturer’s instructions. 

Briefly, fixed collagen gels were treated with 0.1% TritonX100 in PBS for 5min and 

washed twice with PBS. To reduce non-specific staining, 1% BSA in PBS was added to 

the gels for 30min prior to staining with rhodamine phalloidin (Invitrogen) and sytox 

green nucleic acid staining (Invitrogen). 1µM sytox green nucleic acid staining and 

12.5µl of rhodamine phalloidin were diluted in 500 µl PBS per well and incubated with 

the gels for 30min at room temperature. Gels were washed twice with PBS followed by 

confocal analysis under 20X magnification using the Perkin Elmer Opera QEHS 

Automated Confocal Microscopy System (PerkinElmer, Waltham, Massachusetts) at the 
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Vanderbilt Institute for Integrative Biosystems Research and Education (VIIBRE) Core 

Facility.  Confocal images were analyzed using Columbus Software (PerkinElmer, 

Waltham, Massachusetts).  

Polyacrylamide (PA) gels. Preparation of PA hydrogels was adapted from a previously 

described protocol (Tse & Engler, 2010). Briefly, 18-mm cover slips were animo-

silanated by treating them first with 0.1 M NaOH and then with 3-aminopropyl-

triethoxysilane (APES) (Sigma, St Louis, MO). Coverslips were washed with dH2O and 

treated with 0.5 % glutaraldehyde (Sigma, St Louis, MO) in PBS. Dry coverslips were 

then used for gel preparation. Gels with gradients in stiffness (2, 4, 8, 10, and 20 kPa) 

were prepared using the exact following protocol: (Tse & Engler, 2010). Mixtures of 

acrylamide and bisacrylamide were polymerized by adding 1.0µl TEMED and 10µl of 

10% ammonium persulfate. 25µl of the gel solution was pipetted into the amino-

silanated coverslip. Another coverslip is also placed on top of the polyacrylamide 

solution. The polymerization was completed in about 30 min and the top coverslip was 

peeled off. The bottom cover slip with the attached polyacrylamide gel is immersed in a 

multi-well plate (6-well MATtek dish).    

For cell seeding, collagen I protein or fibronectin was conjugated to the surface of the 

hydrogel using the heterobifunctional linker Sulfo-SANPAH (Pierce, Rockford, IL). 1 

mg/ml solution of Sulfo-SANPAH is dissolved in dH2O, and 200ul of this solution is 

pipetted onto the gel surface. The polyacrylamide gel is then placed under an ultraviolet 

lamp and irradiated for 10 min. The gels were then washed twice with 50mM HEPES in 

PBS. The gels were then coated with 0.10mg/ml of rat type I collagen (BD Biosciences, 

Bedford, MA) or 10 ug/ml fibronectin (Santa Cruz, Santa Cruz, CA) overnight at 40C. 
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Coated gels were washed three times with PBS followed by addition of FLOX or KO 

fibroblasts.   

 

 

Results 

In vivo analysis of Ankrd1 deletion 

Loss of Ankrd1 produces a wound contraction phenotype. The biological role of 

Ankrd1 was only partially implicated by the effects of its over-expression (Shi et al., 

2005a). Based on preliminary observations in 18h wounds, we analyzed wound closure 

in FLOX and KO mice to the point of near-closure. Bilateral, full-thickness, excisional 

wounds (6mm) were made on the dorsum and photographed daily for 8d (Figure 6A). 

The wounds of the KO mice closed more slowly than those of the FLOX mice. 

Measurements of the wounds showed a particularly significant delay in closure between 

6d and 8d (Figure 6B). Histomorphometric analysis of wound sections revealed both a 

significant reduction in granulation tissue thickness (Figure 6D) and an increased 

wound gap between the edges of the intact panniculus carnosus of KO wounds (Figure 

6E). The change in the shape, rather than the implied volume of granulation tissue, 

suggested that the delay in closure of KO wounds resulted from decreased contraction. 

In vitro analysis of Ankrd1 deletion 

Dermal fibroblasts from KO mice have an altered phenotype. Since granulation 

tissue morphology was differentially affected by Ankrd1 deletion, dermal fibroblasts 

were isolated from FLOX and KO mice and immortalized with the SV40 large T antigen.   
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Figure 6: Delayed excisional wound closure in KO mice.  
A. Left panel: Gross images at days 0, 4, 6 and 8 after biopsy showed larger wound 
areas for KO mice compared to FLOX mice.  Right panel: The relative open wound area 
decreased more rapidly in FLOX mice than KO mice. C. H&E staining in 2 
representative wounds showed thinner granulation tissue in KO wounds (area marked 
by dotted lines). D. Granulation tissue thickness was measured in histological sections 
and it was significantly reduced in KO wounds compared to wounds in FLOX mice (n= 
12) E. A larger gap between the cut edges of the panniculus carnosus (muscle gap, p 
<0.05, n=12) was measured in KO compared to FLOX wounds. Student t-test was used 
to determine statistical significance (*<p0.05, **p<0.01, ***p< 0.001).   
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Figure 7: Ankrd1-null fibroblasts show impaired collagen contraction over time. 

Collagen gels (1mg/ml) containing 1.5x105 cells/well were formed in 24-well culture 

plates and detached at 24h. Upper panel: Collagen lattices, containing FLOX fibroblasts 

contracted over time, while KO fibroblast lattices had impaired ability to contract up to 

d7. Lower panel: Quantification of collagen gel area was measured over a 7-day 

interval. FLOX fibroblasts produced rapid, time-dependent contraction, while little 

contraction was observed in KO cells up to d7. Student t-test; (****p< 0.0001).   
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Experiments were carried out with cells between passage 2 and 10 as the cells 

exhibited morphological changes at higher passage (data not shown).  

KO fibroblasts fail to contract collagen lattices. Wound contraction plays a 

significant role in closure of dermal wounds in loose-skinned rodents. We used both 

primary and immortalized FLOX and KO mouse fibroblasts to compare their ability to 

contract fibroblast-populated collagen lattices (FPCL). One day following FPCL release 

from the wall of the tissue culture plate well, there was significant (p< 0.0001) 

contraction of FLOX fibroblasts (Figure 7). KO populated FPCL failed to contract FPCL 

even when incubated for up to a week (Figure 7) or with increasing serum 

concentration in the medium (Figure 8B).  FLOX fibroblasts showed significant collagen 

contraction even with the lowest number of cells, but little or no FPCL contraction by KO 

cells, irrespective of the cell number (Figure 8A). Similar results were found when using 

non-immortalized cells. Inhibition of contraction was also observed with vascular smooth 

muscle cells (Figure 9).  

Reconstitution of Ankrd1 by viral transduction was used to show that the absence 

of Ankrd1 was central to the contraction failure phenotype of the KO cells. Western blot 

analysis showed that transduction with adLuc-GFP had no effect on cellular Ankrd1 in 

FLOX and KO cells (Figure 10A, lanes 1 and 3 respectively). Transduction with 

adAnkrd1-GFP increased Ankrd1 in FLOX cells (Figure 10A, lane 2) and reconstituted 

expression in KO cells (Figure 10A, lane 4). Restoration of Ankrd1 in KO fibroblasts 

improved their ability to contract the FPCL and increased the rate of contraction by 

FLOX cells (Figure 10B). Phalloidin staining of F-actin in FPCL after infection with 
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Figure 8: KO fibroblasts fail to contract collagen gels.  
A. Cells (1 x105, 1.5x105, 2 x105, or 2.5x105 per well) were plated in 1mg/ml collagen 
gels in a 24 well tissue culture plate. After 24h detached gels containing FLOX 
fibroblasts demonstrate increased collagen contraction in a cell-number dependent 
fashion whereas no contraction occurred in collagen gels containing KO fibroblasts 
regardless of cell number. Cell density-dependent collagen gel contraction at day 1 was 
significantly different between FLOX and KO fibroblasts B. Increasing serum 
concentrations do not improve the ability of KO fibroblasts to contract collagen gels. At 
day 1 of culture with no serum (NS), 5%, 10% or 20% serum, there was no significant 
contraction of collagen by KO fibroblasts (open bars). FLOX fibroblasts (solid bars) 
contracted collagen at all serum concentrations. Student t-test (****, p<0.0001).  
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 Figure 9: Ankrd1 is required for contraction of a smooth muscle cell-populated 
collagen lattice.  
Aortic smooth muscle FLOX cells (1.5 x 105 per gel) produced time-dependent 
contraction of collagen gels while no contraction was observed, even at day 3, with KO 
fibroblasts. Student t-test (***p<0.001).  
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Figure 10: Reconstitution of Ankrd1 in KO fibroblasts restores their ability to 
contract collagen gels.  
A. Western blot analysis of FLOX fibroblasts infected with adLuc-GFP (lane 1) and 
adAnkrd1-GFP (lane 2) showed overexpression of Ankrd1 after infection with adAnkrd1-
GFP. Ankrd1 protein was absent in extracts from KO fibroblasts infected with adLuc-
GFP (lane 3) but was easily detectable after infection with adAnkrd1-GFP (lane 4). B. 
Overexpression of Ankrd1 in FLOX cells increased contraction on d1 and d3 (p<0.01) 
and reconstitution of Ankrd1 in KO cells restored their ability to contract (p<0.001) at all-
time points.  
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adLuc-GFP FLOX revealed abundant filamentous actin network, while there was very 

poor actin assembly in control-transduced KO fibroblasts (Figure 11). Reconstitution of 

Ankrd1 in KO fibroblasts increased the staining of an F-actin network.  These data were 

consistent with our in vivo wound closure studies, and they suggest that Ankrd1 is 

necessary for proper interaction of fibroblasts with a collagenous matrix in vivo and in 

vitro. 

Adhesion to, and migration on, extracellular matrix were analyzed using a 

magnetically attached stencil (MAtS) assay with both collagen I and fibronectin 

substrates (see Methods). We observed that KO cells took longer than FLOX cells to 

attach to the collagen matrix, but both fibroblast genotypes were stably attached before 

initiating stencil removal that initiates cell migration. Both FLOX and KO cells closed the 

open area more completely on fibronectin (open area: FLOX = 54 ± 1.75%, KO = 72 ± 

.24%) than on collagen coated substrate (open area: FLOX = 62 ± 3.36%, KO = 80 ± 

2.71%) (Figure 12A and 12B). Both cell types migrated to a significantly lesser extent 

on collagen than fibronectin (p< 0.001 at 5h; Figure 12 C and 12D), KO fibroblast 

migration was significantly slower than FLOX migration on either substrate. In summary, 

KO fibroblasts had an impaired ability to interact with and a migrate upon two common 

matrix substrates. 

KO fibroblasts fail to spread on polyacrylamide gels coated with collagen 

regardless of stiffness. To investigate whether cell spread was affected by the substrate 

or the stiffness of the substrate, we studied cell behavior on polyacrylamide hydrogels 

spanning a range of stifnesses.  The PA gels we prepared represent a range of elastic 

moduli, from 2 kPa to 20 kPa. The PA surface was covalently functionalized with 
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collagen I or fibronectin using Sulfo-SANPAH. We studied how FLOX and KO cells 

responded to these substrates. FLOX fibroblasts adopted spindle-shape morphology on 

PA hydrogels, from 4 kPa to 20 kPa, coated with collagen, while KO fibroblasts were 

rounded up on all PA hydrogels that were coated with collagen I, regardless of stiffness 

(Figure 13A). Interestingly, both FLOX and KO fibroblasts were able to spread starting 

at an elastic modulus of about 8 kPa (Figure 13B) on hydrogels that were coated with 

fibronectin. Thus, FLOX and KO fibroblasts did not respond similar when cultured on 

collagen-coated substrates as on fibronectin-coated PA hydrogels. Together these data 

suggest that Ankrd1 is critical for the proper interaction of cells with a compliant 

collagenous matrix in vitro.  

 

 

Discussion 

Elevated Ankrd1 expression marks numerous developmental and pathological 

events, including cardiomyogenesis  (Kuo et al., 1999; Zou et al., 1997) and 

neovascularization during tissue repair, and overexpression of Ankrd1 can enhance 

healing in several animal wound models (Shi et al., 2005a). Despite the resultant 

implication that Ankrd1 could be critical to development, we found that global deletion of 

murine Ankrd1 yielded no abnormalities in a mixed genetic background. In contrast to 

developmental effects, the physiological stress of a standardized model of wounding 

clearly discriminated one of the Ankrd1 phenotypes. Ankrd1 deletion retarded excisional 

wound closure and the granulation tissue response; furthermore, the matrix-dependent 

migration, contractility, and spreading of KO skin fibroblasts were markedly impaired  
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Figure 11: Actin networks formed after reconstitution of Ankrd1 in Ankrd1-
deficient fibroblasts.  
Collagen gels were loaded with equal numbers of the indicated cell types and infected 
with either adenoviral luciferase or Ankrd1 expression vectors. Actin fibers were present 
in collagen gels populated with FLOX fibroblasts infected with adLuc-GFP and were 
more abundant after Ankrd1 overexpression.  Actin fibers were nearly absent in similarly 
treated KO cells and markedly increased with Ankrd1 overexpression.  
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Figure 12: Deletion of Ankrd1 slows fibroblast migration on collagen and 
fibronectin substrates.  
Migration of FLOX and KO fibroblasts was studied on fibronectin or collagen using the 
MAtS approach.  A. KO fibroblasts migrated significantly slower on collagen than FLOX 
cells, with differences seen as early as 1.5 h (p<0.001) B. KO fibroblast migration on 
fibronectin was significantly slower than FLOX f broblasts at 1.0h (p< 0.05) and from 2h 
to 5h (p<0.001) C. KO fibroblasts migrated more rapidly on fibronectin than on collagen 
(1.5-2.5h, p<0.05; 3.0h, p< 0.01; 4.0h, p< 0.01; 4.5-5.0h, p<0.001). D. FLOX fibroblasts 
migrated at similar rates on fibronectin and collagen, although significant differences 
were seen at later time points (3.0h, p<0.05; 4.0-5.0h, p<0.001).  
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Figure 13: Ankrd1-null cells fail to spread on collagen-coated low rigidities 
polyacrylamide gels  
FLOX and KO fibroblasts were plated on polyacrylamide (PA) gels ranging from 2 to 20 
kPa coated with A. collagen or B. fibronectin.  Cell spreading was dependent on rigidity 
and the substrate. A. FLOX cells spread more on collagen-coated soft gels while KO 
failed to spread at all rigidities when gels were coated with collagen. B. FLOX and KO 
fibroblasts failed to spread on soft fibronectin-coated PA gels. However, both FLOX and 
KO cells spread in more rigid PA gels, ranging from 8 – 20 kPa, coated with fibronectin.  
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compared to normal cells. These findings are highly consistent with the concept that 

Ankrd1 abundance becomes a rate-limiting factor when cells and tissues are challenged 

by injury and stress. 

Cellular actions of Ankrd1. The interpretation of the Ankrd1-null phenotype is 

complicated by the multiple roles of Ankrd1. In the sarcomere, Ankrd1 is a titin-

associated structural component that together with myopalladin, calpain protease p94, 

and calsequestrin forms a complex that appears to be critical for sarcomere stability of 

differentiating cardiomyocytes in vitro (B. Chen et al., 2012; Kojic et al., 2010; S. Kojic et 

al., 2011; Mikhailov & Torrado, 2008). Reduction of Ankrd1 mRNA and protein in rat 

cardiomyocytes by siRNA or doxyrubicin leads to sarcomere disintegration and 

myofibrillar disarray(B. Chen et al., 2012), presumably due to (a combination of) loss of 

Ankrd1 from the I-band complex and reduced expression of a range of Ankrd1 

transcriptional targets. It has also been suggested that members of the MARP family 

serve a role in the muscle cell as part of a mechanosensory apparatus, in which MARPs 

acts as a shuttle to transport factors such as p53 to the nucleus (Kojic et al., 2010; S. 

Kojic et al., 2011; Moulik et al., 2009). The MARP proteins may also shuttle between 

cytoplasm and nucleus as part of a stress-related regulatory pathway. We have recently 

determined that Ankrd1 is involved in the transport of GATA-4 from the sarcomere to 

the nucleus of the cardiomyocyte (Zhong, Chiusa, et al, submitted for publication).  

Based on a large number of foregoing studies, depletion of Ankrd1 could affect 

both cytoplasmic and nuclear processes. Several studies have suggested that a key 

role of sarcomeric MARPs is mechanotransduction that is initiated by transportation of 

the protein from the cytoplasm to the myocyte nucleus (S. Kojic et al., 2011). Desmin is 
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another cytoplasmic partner whose depletion leads to up regulation of Ankrd1 

(Mohamed & Boriek, 2012). The MARPs are associated with several aspects of 

transcriptional control in striated muscle, including associations with YB-1,(Zou et al., 

1997) p53,(Belgrano et al., 2011; Kojic et al., 2010) and nucleolin (Almodovar-Garcia et 

al., 2014). Early developmental studies showed that the high-level expression of Ankrd1 

was associated with down-regulation of (myocyte proteins) by association with YB-1. In 

Chapter III, we suggest on the basis of knockout, knockdown, and overexpression 

studies in skin fibroblasts, that the association of Ankrd1 with nucleolin leads to the 

down-regulation of AP-1 stimulated Mmp13 and Mmp10 expression (Almodovar-Garcia 

et al., 2014).   

Impaired wound and collagen contraction in the absence of Ankrd1. Using a 

standard excisional wound model with no splinting to prevent contraction, an initial 

observation of a slight reduction in the rate of closure was accentuated by 3 days and 

striking through 8 days, after which the closure defect was gradually overridden by 

undetermined compensatory mechanisms. Granulation tissue thickness was also 

significantly reduced, a finding that was in harmony with the positive effects of Ankrd1 

overexpression on this aspect of tissue repair (Shi et al., 2005a). The defect in 

contraction of the wound margins was certainly consistent with the inefficiency of KO 

skin fibroblast migration on matrix-coated substrates and the inability of these null cells 

to contract a fibroblast-populated collagen lattice (FPCL), a model that is often 

considered an in vitro analog of (compliant) granulation tissue.  

In a functional cell spreading assay using polyacrylamide gel substrates, we 

observed that both FLOX and KO cells indeed sense different levels of substrate 
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rigidity. None of the cells could spread in 2 kPa soft gels. FLOX fibroblasts could spread 

on both collagen and fibronectin-coated hydrogels, ranging from 4 to 20 kPa. KO 

fibroblasts failed to spread on all stiffnesses when hydrogels were coated with collagen, 

while they successfully spread when PA gels were coated with fibronectin, ranging from 

8 to 20 kPa. To spread, fibroblasts require cell–ECM binding, integrin activation, Rho 

GTPase signaling, and subsequent actin polymerization (Price, Leng, Schwartz, & 

Bokoch, 1998). Spreading cells exert contractile force on the ECM substrate to allow for 

focal adhesion formation (Ezzell, Goldmann, Wang, Parashurama, & Ingber, 1997) and 

locomotion, and sufficient ECM resiliency is required to balance cellular tension force 

and to support the spreading process (Chicurel, Chen, & Ingber, 1998; Ezzell et al., 

1997). Thus, we speculate that Ankrd1 is required for proper binding to collagen 

matrices. Additional experiments are required to determine whether Ankrd1 plays an 

important role in integrin activation, Rho GTPase signaling, actin polymerization, and 

formation of focal adhesion. 

The significant effect of Ankrd1 deletion on wound contraction, together with the 

dramatic inability of Ankrd1-null fibroblasts to contract an ECM on collagen equivalent 

suggests that Ankrd1 may function in a pathway that normally transduces cell-matrix 

interaction into contractile activity, at least in the low-tension environment of the FPCL. 

In addition to Ankrd1 association with other components in the classic, sarcomere 

contractile apparatus, it also binds to desmin, (S. H. Witt, Labeit, Granzier, Labeit, & 

Witt, 2005) and desmin knockdown has suggested that this filamentous protein may 

regulate Ankrd1 expression through an Akt/NF-kappaB pathway (Mohamed & Boriek, 

2012). Equally intriguing are the reports that both Ankrd1 and CCN2, which are strongly 
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induced during injury and repair, are downstream targets of a mechanical strain 

response that is mediated by the YAP/TAZ pathway (Aragona et al., 2013; Dupont et 

al., 2011; Halder, Dupont, & Piccolo, 2012; Piccolo, Cordenonsi, & Dupont, 2013). If cell 

contraction in the FPCL depends on Ankrd1 expression, then it may be a critical 

mediator of mechanotransduction during wound repair, in which there is disruption of 

the normal mechanical environment. 
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Chapter III 

 

 

ANKRD1 ACTS AS A TRANSCRIPTIONAL REPRESSOR OF MMP-13  

VIA THE AP-1 SITE 

 

 

Introduction 

Dynamics of matrix metabolism, composition and organization play important 

roles during tissue repair, and defects in these categories have a strong relationship to 

the impaired healing seen in patients that suffer from arterial and venous insufficiency, 

lymphedema or diabetes (Midwood, Williams, & Schwarzbauer, 2004; Schultz & 

Wysocki, 2009). Chronic inflammation in non-healing wounds can lead to excessive 

fibrosis and scar formation (Saaristo et al., 2006). However, our understanding of the 

transcriptional regulation of extracellular matrix is incomplete. Our lab identified the 

transcriptional co-factor, Ankyrin repeat domain 1 (Ankrd1; cardiac ankyrin repeat 

protein, CARP), to be significantly elevated by wounding (Shi et al., 2005b). Ankrd1 is 

also induced in other forms of tissue injury, particularly those of skeletal and vascular 

smooth muscle. In murine wounds, Ankrd1 mRNA and protein expression dramatically 

increased within hours, reaching peak levels by 15 hours and remaining elevated for 2 

weeks (Samaras, Shi, & Davidson, 2006a). Immunohistochemistry and in situ 

hybridization for Ankrd1 mRNA and protein in day 1 wounds revealed increased 
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expression in monocytes, cells of the epidermis and the vasculature, and striated 

panniculus carnosus muscle (Samaras et al., 2006a; Shi et al., 2005b).  

Ankrd1 was initially discovered and characterized as a novel, cytokine-inducible 

nuclear protein in endothelial cells (Chu, Burns, Swerlick, & Presky, 1995b; Jeyaseelan 

et al., 1997b). Its protein sequence contains a nuclear localization signal, four repeats of 

an ankyrin motif, which appears to be involved in protein-protein interactions, a PEST-

like sequence that targets ubiquitinated proteins for degradation, and multiple 

phosphorylation consensus sites (Chu et al., 1995b). Ankrd1 is present in both the 

cytoplasm and the nucleus, suggesting shuttling between cellular compartments, and 

Ankrd1 is a significant constituent of the cardiac sarcomere, where it is part of a 

multicomponent, titin-binding complex (Bang et al., 2001a).  

Ankrd1 belongs to a conserved family of muscle ankyrin repeat proteins 

(MARPs) along with Ankrd2 and Ankrd23 (Mikhailov & Torrado, 2006). Ankrd1 is 

downstream of the Nkx2.5 pathway during cardiomyogenesis (Zou et al., 1997), and 

Ankrd1 expression is regulated by cardiac overload, hypertension, and heart failure in 

the adult heart (Jeyaseelan et al., 1997b; Zou et al., 1997). We previously reported that 

Ankrd1 overexpression induced a remarkable angiogenic response in an experimental 

granulation tissue model reminiscent of the action of a number of angiogenic agents 

(Shi et al., 2005b). In the Ankrd1-/- mouse, global deletion of Ankrd1 resulted in 

increased necrosis after an ischemic insult as well as significantly reduced contraction 

of excisional wounds (Chapter II) (S. Samaras, K. Almodóvar, N. Wu and J. M. 

Davidson, submitted for publication). The latter observation in particular suggested an 

alteration of the wound remodeling process. 
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The matrix metalloproteinase (MMP) family regulates extracellular matrix 

remodeling in many normal processes including wound healing, and different MMPs 

have been shown to play major roles throughout the wound repair process (Gill & Parks, 

2008; Martin, 1997; Ravanti & Kahari, 2000). Abnormal expression of MMPs may be 

involved in the pathogenesis of chronic ulcers (Armstrong & Jude, 2002a; Pilcher et al., 

1999). Members of the MMP family can be classified into different subfamilies of 

collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other 

MMPs (Hartenstein et al., 2006). Collagenases degrade native fibrillar collagens in the 

extracellular space (Hartenstein et al., 2006). MMP-13 is one of three mammalian 

collagenases capable of initiating the degradation of interstitial collagens during wound 

healing (Mariani, Sandefur, Roby, & Pierce, 1998; Wu et al., 2002). It has been reported 

that angiogenesis and granulation tissue development was delayed in MMP-13 

knockout mice (Hattori et al., 2009b; M. Toriseva et al., 2012). MMP-13 plays a key role 

in keratinocyte migration, angiogenesis, and contraction in wound healing (17).  

Furthermore, MMP-13 has been shown to regulate multiple cellular functions including 

myofibroblast activity, cell motility, angiogenesis, inflammation, and proteolysis during 

growth and maturation of granulation tissue (M. Toriseva et al., 2012).  

We hypothesized that Ankrd1 regulates the transcription of genes associated 

with the wound repair process. This study aimed to determine how Ankrd1 affected 

MMP13 expression in the context of tissue repair. We found that Ankrd1 repressed 

transactivation of MMP13 through interaction with the negative regulator, nucleolin, and 

that genetic deletion or suppression of Ankrd1 resulted in overexpression of MMP13 as 

well as MMP10. The findings reveal a novel function for Ankrd1 and an additional link 
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between transcriptional regulation of MMPs and wound healing.  Understanding the 

molecular mechanisms that regulate wound matrix turnover may provide new 

approaches for treating chronic wounds.  

 

 

Materials and Methods 

Reagents. Phorbol 12-myristate 13-acetate (PMA, Sigma, St. Louis, MO) was diluted in 

dimethyl sulfoxide (DMSO, Fisher Scientific, Waltham, WA). Treatments with PMA (100 

ng/ml) were done in serum-free Dulbecco’s modified Eagle medium (DMEM) overnight. 

The concentration used for lipopolysacharide (LPS, Sigma, St. Louis, MO) was 100 

ng/ml. Normal rabbit IgG (sc-2027), anti-c-Jun (sc-1694X), and donkey anti-rabbit IgG-

HRP (sc-2313) antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, 

CA). Cyclophilin antibody (BML-SA296) was from Enzo Life Sciences (Farmingdale, 

NY), anti-nucleolin antibody (ab70493) was from Abcam (Cambridge, MA), and anti-

MMP-13 antibody (AB8120) was from Millipore (Billerica, MA). Affinity-purified rabbit 

anti-Ankrd1 antibody was prepared by Caprologics (Hardwick, MA) against the N-

terminal 104 amino acids of murine Ankrd1 as described (Shi et al., 2005b). Ankrd1 

SMARTpool™ siRNA and scrambled control siRNA were purchased from Thermo 

Scientific/Dharmacon (L-059054-01, Lafayette, CO). Lipofectamine 2000 (Invitrogen, 

Grand Island, NY) was used for transfection of plasmids or siRNA into cells. pcDNA 3.1 

was obtained from Invitrogen (Grand Island, NY). Mouse monoclonal Anti-Flag M2 

antibody (F3165) was purchased from Sigma (St. Louis, MO).  
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Cells and constructs. As reported elsewhere (S. Samaras, K. Almodóvar-García, N. 

Wu and J. Davidson, in revision) the Ankrd1-/- mouse was generated by mating a Sox2-

Cre mouse strain with an Ankrd1fl/fl strain in which loxP sites had been inserted 600bp 

upstream of the transcriptional start site and in intron 2 of Ankrd1, contained in a 129B6 

mouse-derived bacterial artificial chromosome (BAC) clone. Mouse dermal fibroblasts 

were isolated from Ankrd1fl/fl (FLOX) and Ankrd1-/- (KO) neonatal skin as previously 

described (Normand & Karasek, 1995). A portion of the isolated skin fibroblasts were 

immortalized with a SV40 large T-antigen plasmid (Chang et al., 1985). Both primary 

and immortalized cells were grown in DMEM containing 10% FBS, 100 Units/ml 

penicillin–streptomycin, and 2 mM L-Glutamine. Mouse vascular smooth muscle cells 

were isolated from FLOX and KO neonates as described (Ray et al., 2001), and half of 

the cells were stably transformed with SV40 large T antigen plasmid (Chang et al., 

1985). Vascular aortic smooth muscle cells were grown in Medium 231 (Invitrogen, 

Grand Island, NY) supplemented with smooth muscle growth supplement (Invitrogen, 

Carlsbad, CA) and 2 mM L-Glutamine. NIH3T3 fibroblasts, and HeLa cells were grown 

in DMEM containing 10% FBS. Cells were maintained at 37°C in 5% CO2. Human 

microvascular endothelial cells (HMVECs) (Xu et al., 1994) were cultured in Medium 

131 supplemented with microvascular cell growth supplement (Invitrogen, Carlsbad, 

CA) and 10 mM L-Glutamine. SV40 transformed HMVECs were maintained at 33°C in 

5% CO2. For experiments, transformed HMVECs were grown at 37°C in 5% CO2., 

100 Units/ml penicillin–streptomycin, and 2 mM L-Glutamine.  

The construction of pGL3 p660 MMP-13 reporter construct was described previously 

(20). Mutant plasmids in the AP-1 site of MMP-13 promoter (-bp -46 through -41) were 
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prepared by using a Quick Change Site Mutagenesis Kit from Stratagene (La Jolla, CA) 

according to the manufacturer’s instructions (for the primer sequences, see Table 3). 

The AP-1 binding site sequence TGACTCA was changed to GGACTCA (5’ mutant), 

TGACTCT (3’ mutant), GTCCTCA (Mutant 1), and GATGAC (Mutant 2 creating a new 

AP-1 site). A Flag-Ankrd1 construct was made by cloning full length mouse Ankrd1 

cDNA (NM_013468) into pCMVTag2B (Agilent Technologies, La Jolla, CA) using 

BamHI and SalI restriction sites.  Viral infections with adenovirus constructs expressing 

Ankrd1 (Ad-Ankrd1) or luciferase (Ad-Luc) used as a control were previously described 

(Shi et al., 2005b).  

Yeast two hybrid. Yeast two-hybrid analyses were performed according to the 

manufacturer's instructions (Clontech, Mountain View, CA). Briefly, full-length mouse 

Ankrd1 cDNA was amplified (See Table 3 for primer sequences) and the product was 

cloned into NdeI/BamHI sites of pGBKT7 vector (Clontech). The resulting construct, 

pGBKT7-Ankrd1-GAL4 DNA binding vector was used as the bait plasmid in yeast two-

hybrid experiments. A cDNA library was made by synthesizing first-strand cDNA from 

780 ng of neonatal mouse aorta total RNA using the cDNA Library Construction kit 

(Clontech). The first-strand cDNA mixture was used as template to synthesize double-

stranded DNA by long distance PCR, and the resulting double-stranded DNA was size 

fractionated using a Chroma Spin Column (Clontech, Mountain View, CA). The yeast 

strain AH109 was co-transformed with a mouse aorta cDNA library (Clontech, Mountain 

View, CA), the pGBKT7-Ankrd1 clone, and the pGADT7-Rec vector. Cultures were 

grown on selective, quadruple dropout media plates: SD/-Ade/-His/-Leu/-Trp. Colonies 

that grew in these plates after 6 days were re-plated on  
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Primer sequence   Primer   

Primers used to make AP-1 mutant plasmids  
           5’ CCCAAAGTGGGGACTCATCACTATCAT 3’  5' mut Forward  

          5’ ATGATAGTGATGAGTCCCCACTTTGGG 3’  5' mut Reverse  

          5’ CCCAAAGTGGTGACTCTTCACTATCAT 3’  3' mut Forward  

          5’ ATGATAGTGAAGAGTCACCACTTTGGG 3’  3' mut Reverse  

          5’ CACACCCCAAAGTGGGTCCTCATCACTATCATGCTATA 3’  Mut 1 Forward  

          5’ TATAGCATGATAGTGATGAGGACCCACTTTGGGGTGTG 3’  Mut 1 Reverse  

          5’ CACACCCCAAAGTGGTGATGACTCACTATCATGCTATA 3’  Mut 2 Forward  

          5’ TATAGCATGATAGTGAGTCATCACCACTTTGGGGTGTG 3’  Mut 2 Reverse  

Primers for qRT-PCR   

           5’ GTGACTTCTACCCATTTG  3’  MMP-13 Forward  

           5’  GCAGCAACAATAAACAAG  3’  MMP-13 Rev 

           5’  CTTGTGGTCTTCTGGCACACG  3’  MMP-13 Probe  

           5’  AGACTCCTTCAGCCAACATGATG  3’  Ankrd1 Forward 

           5’  CTCTCCATCTCTGAAATCCTCAGG  3’  Ankrd1 Reverse 

           5’  CCCCTGCCTCCCCATTGCCATTCT  3’  Ankrd1 Probe 

           5’  CGTAGACAAAATGGTGAAG  3’  GAPDH Forward 

           5’  CCATGTAGTTGAGGTCAA  3’  GAPDH Reverse 

           5’  TTGATGGCAACAATCTCCACTT  3’  GAPDH Probe 

           5’  CACTCTTCCTTCAGACTTA  3’  MMP-10 Forward  

           5’  GCTGCATCAATCTTCTTC  3’  MMP-10 Rev 

 

Table 3: Primer sequences (see methods)  
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fresh SD/-Ade/-His/-Leu/-Trp/X--Gal plates. The more intense blue colonies (104), 

indicating lacZ expression due to the activation of a third reporter gene, MEL1 were 

isolated and analyzed for cDNA content by PCR. Those colonies exhibiting >1 PCR 

product were re-plated 2-3 times to yield colonies representing individual cDNA 

sequences.  PCR amplification and transformation of E. coli rescued the cDNAs in order 

to identify those sequences responsible for a positive, two-hybrid interaction. Plasmid 

DNA was isolated, sequenced, identified by searches with BLAST and compared to the 

GenBank database.  

Co-immunoprecipitation. For co-immunoprecipitation, skin fibroblasts were grown in 

10 cm dishes and transfected for 24 h with 20 µg of Flag-Ankrd1 plasmid DNA or 

pcDNA 3.1 as a control using Lipofectamine2000 (Invitrogen, Grand Island, NY). After 

transfection, cells were washed with PBS and solubilized in RIPA buffer. 5% of the 

extract was used as input. After centrifugation for 5 min at 13,000 × g, the supernatant 

was incubated with protein A/G-Sepharose beads (sc-2003, Santa Cruz, CA) for 1h 

followed by another centrifugation for 30sec at 13,000 × g to remove nonspecifically 

bound protein. The supernatant was then incubated overnight at 4°C with antibodies 

directed against nucleolin or Ankrd1 or with nonimmune IgG. Protein A/G-Sepharose 

beads were added to the cell lysates, followed by incubation for 1 h at 4°C, and the 

beads were washed five times with ice-cold RIPA buffer. The beads were centrifuged 

for 1 min at 11,000 _ g, and the supernatant was collected and used for Western blot 

analysis with the indicated antibodies. 

Immunofluorescence. Cells were grown on glass coverslips, rinsed with PBS, and 

fixed for 15min with 4% paraformaldehyde. Cells were then washed three times with 
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PBS and permeabilized in 0.2% Triton X-100 for 5 min and blocked for 1h in blocking 

buffer (10% normal goat serum in PBS). Primary antibodies were diluted in blocking 

buffer, and incubation was performed overnight at 4°C. The following primary antibodies 

were used: (1) anti- Ankrd1 (1:1000), and (2) anti-nucleolin (1:100). Secondary 

antibodies were diluted in blocking buffer, and incubation was performed at RT for 2 

hours. The following secondary antibodies were used: Alexa 488-labeled goat anti-

rabbit IgG (1:400) and Alexa-546 goat anti-mouse IgG (1:200). Images were acquired at 

the Vanderbilt Cell Imaging Shared Resource using a confocal microscope (LSM 510; 

Carl Zeiss).  

Luciferase reporter assay. HeLa cells were co-transfected for 24 hours with the 

combination of three plasmids: (1) 0.5 µg of pGL3 p660 MMP-13-luciferase reporter 

construct or a 5’ mut p660 MMP-13-luciferase plasmid, (2) 0.4 µg of Flag-Ankrd1 

plasmid or pcDNA 3.1 (Invitrogen, Grand Island, NY) as a control, and (3) 0.05 µg of 

pTK-RL, a Renilla luciferase vector, purchased from Promega (Madison, WI). 24h after 

the triple transfection, cells were treated overnight with PMA (100 ng/ml in DMSO) or 

DMSO (vehicle), followed by measurement of luciferase activity using the Dual-

Luciferase Reporter Assay system kit (Promega, Madison, WI), according to 

manufacturer’s instructions. Renilla luciferase expression was used as an internal 

control to normalize DNA transfection efficiency. 

Mouse excisional wounds. Studies were carried out in the AAALAC approved facilities 

of Vanderbilt University, Nashville, Tennessee, under approval of the Institutional 

Animal Care and Use Committee at Vanderbilt University School of Medicine. 15-20 

week old FLOX and KO male mice (n=8) in a ~80% C57bl/6J background, received two 
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6mm, full thickness excisional wounds on the back of each animal. To reduce wound 

contraction and maximize granulation tissue formation, wounds were stented (Davidson 

JM, 2013; Yu F, 2010). At 2 and 4 days, mice were euthanized, and the complete 

wounds, including 2 mm of the wound margin, were harvested. Tissue was processed 

for RNA and protein isolation.  

RNA Isolation and Real Time PCR. For preparation of cellular RNA, cells were 

scraped in PBS and collected by centrifugation. RNA was isolated using the Illustra 

RNAspin Mini Isolation Kit (GE Healthcare, Piscataway, NJ) according to 

manufacturer’s instructions. For isolation of RNA from mouse skin, the freshly isolated 

skin was incubated with RNAlater solution (Invitrogen, Grand Island, NY) according to 

manufacturer’s instructions and then frozen at -80°C until ready to continue with the 

RNA isolation. Mouse skin was homogenized in RA1 (Illustra kit, GE Healthcare, 

Piscataway, NJ) with β-mercaptoethanol using a Tissuelyser II (Qiagen, Newton, PA) 

and total RNA was isolated following manufacturer’s directions (Illustra kit, GE 

Healthcare, Piscataway, NJ). RNA concentration was determined 

spectrophotometrically (Nanodrop, Thermo Scientific, Wilmington, DE), and samples 

were stored at −80°C. Taqman quantitative real time PCR (qRT-PCR) for Ankrd1, 

MMP13, MMP10, Gapdh, and cyclophilin B (Applied Biosystems, Foster City, CA) was 

performed on 80 ng of reverse transcribed RNA. Sequences for primer and probes are 

provided in Table 3.  

Western blot analysis. Whole cells or skin tissue biopsies were lysed with RIPA buffer 

(Sigma, St Louis, MO). Forty μg of cell extract was separated by 10% acrylamide SDS-

PAGE and transferred to PVDF membrane (Immobilon, Millipore, Billerica, MA) using 
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the NuPage (Life Technologies, Carlsbad, CA) blotting apparatus, following the 

manufacturer’s protocol. After blocking with a solution of 10 mM Tris–HCl pH 8, 150 mM 

NaCl, 0.05% Tween-20 containing 5% milk powder, the membrane was incubated with 

anti-MMP-13 antibody (1:2000) at 4°C overnight, followed by incubation with anti-goat 

IgG (sc2056, Santa Cruz Biotechnology, Santa Cruz, CA) at room temperature (RT) for 

30 min. The membranes were rinsed, incubated with Western Lightning Plus Enhanced 

Chemiluminescent Reagent (Perkin Elmer, Waltham, MA), and protein bands were 

visualized and quantified using a Kodak Image Station 4000MM Pro with Kodak MI 

software (Carestream Healthcare, Woodbridge, CT). After measurement of the 

chemiluminescent reaction, the PVDF membrane was stripped with stripping buffer 

(Restore Western Blot Stripping Buffer, Thermo Scientific, Rockford, IL). Subsequently, 

the membrane was incubated with anti-cyclophilin antibody (1:80,000) for 1h at RT 

followed by anti-rabbit IgG (1:10,000) for 1h and imaged as described above.  

Adenovirus infection. FLOX and KO immortalized skin fibroblasts were infected with 

an adenovirus expressing Ankrd1 (Ad-Ankrd1) or luciferase (Ad-Luc) as a control with a 

multiplicity of infection of 250. Cells were harvested 24h after infection, and total RNA 

was isolated as described above. qRT-PCR was performed using MMP13,  Ankrd1, and 

GAPDH probe/primers.  

siRNA Knockdown of Ankrd1. Immortalized FLOX skin fibroblasts were transfected 

using Lipofectamine 2000 with 25 nM, 50 nM, or 100 nM of smartPOOL siRNA against 

Ankrd1 (Dharmacon, Lafayette, CO). Scrambled siRNA (100 nM) was transfected into 

cells as a control. Cells were harvested 48h after siRNA treatment, followed by isolation 
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of total RNA as described above. qRT-PCR was performed using probe/primers for 

Ankrd1 and MMP13, as well as GAPDH for normalization. 

Gel shift assay. A 60bp biotinylated probe containing a WT or mutated AP-1 binding 

site (5’mut, 3’ mut, Mut 1) was made by PCR with the following biotinylated or non- 

biotinylated primers:  forward: 5’-ACTAGGAAGTTAACACACACCCCAA and reverse : 

5’-AGCATCTTCTATTTTATAGCATGAT. The annealing temperature used was 52°C. 

The PCR templates were the pGL3 P660 MMP-13 WT, 5’ mut, 3’ mut, and Mut 1 

plasmids. PCR amplified biotinylated and non-biotinylated probes were run in a 12% 

polyacrylamide gel. The 60 bp DNA band was extracted, and DNA purified using the 

Qiaquick gel extraction kit (Qiagen, Germantown, MD) following manufacturer’s 

instructions.  

Nuclear extracts were prepared from FLOX and KO immortalized skin fibroblasts treated 

with PMA in DMSO (100ng/ml), DMSO, or LPS (100 ng/ml) in serum free medium for 

24h using a NE-PER nuclear and cytoplasmic extraction kit (Pierce Biotechnology, 

Rockford, IL). Protein concentration was calculated by BCA protein assay (Pierce, 

Thermo Scientific Rockford, IL). Gel shift analyses were performed using the LightShift 

Chemiluminiscent EMSA Kit (Pierce) following manufacturer’s instructions. Briefly, a 

10% polyacrylamide gel was run in 0.5X TBE for 60min (100V). Binding reactions were 

prepared while the gel was running. Binding reactions contained the following reagents: 

1X Binding Buffer, 2.5% glycerol, 5 mM MgCl2, 50 ng/ml poly(dI-dC), 0.05 % NP-40, 5 

µg of protein extract, and 20 fmol of biotinylated probe. The reaction was made up to 20 

µl with water. For competitive EMSA reactions, 4 pmol of non-biotinylated probe was 

added to the binding reaction before adding the protein extract and biotinylated probes. 
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The nuclear protein extracts were added to the binding reaction prior to addition of 

biotinylated probes. Binding reactions were incubated for 20 minutes at RT. After 

incubation, 5 µl of 5X loading buffer was added to each sample and samples were 

loaded onto the pre-run polyacrylamide gel, and run for 3h at 100 V. Electrophoretic 

transfer of binding reactions to nylon membrane (Biodyne B Precut Nylon membrane, 

Thermo Scientific, Rockford, IL) was performed for 1h at 380 mA using Powerpac Basic 

Power Supply (Biorad, Hercules, CA). The cross-linking of transferred DNA to 

membrane was accomplished by incubating the membrane face down on a UV 

transilluminator (312nm) for 15 min. Detection of biotin-labeled DNA by 

chemiluminescence was performed exactly as per manufacturer’s specifications. For 

supershift analysis, binding reactions were incubated with 5 µg of antibody without 

addition of biotinylated probes for 25 min at RT, followed by addition of biotinylated 

probe and further incubation for 25 min at RT.  

Chromatin Immunoprecipitation. FLOX and KO immortalized skin fibroblasts were 

treated with PMA (100 ng/ml in DMSO) or DMSO vehicle in serum-free DMEM for 24 h. 

Cells were then washed with PBS, and fixed with 1% formaldehyde for 5 min. The 

crosslinking reaction was stopped by adding 2.5M glycine.  Cells were washed with cold 

PBS and transferred to 1.5ml Eppendorf tubes on ice and centrifuged for 5 min at 5000 

g. The supernatant was aspirated, and the cell pellet was resuspended in SDS lysis 

buffer (1% SDS, 10 mM EDTA, and 50 mM Tris, pH 8.0) and incubated on ice for 10 

min.  Resuspended cells were transferred to Eppendorf tubes containing 250 mg of 

glass beads (<106µM G-4649; Sigma, St Louis, MO). The samples were carefully 

sonicated 10 times for 30 sec at 4°C using a Branson Sonifier S-250A analog ultrasonic  
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Name     

Xin actin-binding repeat containing 2  Xirp2  

Desmin  Des  

Glyceraldehyde-3-phosphate dehydrogenase  Gapdh  

Keratin 4  Krt4  

Eukaryotic translation initiation factor 3  Eif3d  

Ribosomal protein S20  Rps20  

Tenascin XB  Tnxb  

Ferritin heavy chain 1  Fth1  

SLAIN motif family, member 2  Slain2  

Troponin T3  Tnnt3  

Nucleolin  Ncl  

Mannose phosphate isomerase  Mpi  

Titin, transcript variant N2A  Ttn  

Breast cancer metastasis suppressor  Brms1  

Thrombomodulin  Thbd  

Actinin alpha 1  Actn1  

SET domain containing 6  Setd6  

Late cornified envelope 3F  Lce3f  

Angiotensin II type I receptor-associated 
protein  

Agtr1  

Ewing sarcoma breakpoint region 1  Ewsr1  

Ribosomal protein L13a  Rp13a  

Caveolin 3  Cav3  

Eukaryotic translation initiation factor 5  Eif5  

Myoglobin  Mb  

Carboxypeptidase D  Cpd  

Myogenic factor 6  Mrf4  

 
 
Table 4: Summary of yeast two-hybrid results.  
Potential Ankrd1 interacting factors are shown in table 4. Underlined factors have been 
previously characterized as Ankrd1 binding partners.  
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Figure 14: Ankrd1 interacts with the transcription factor, nucleolin.  
A. Representation of yeast two hybrid analysis. Ankrd1 served as “bait” that only 
activates the transcription of the target gene when engaged by an unknown “prey” 
protein of sufficiently high affinity. B. Coimmunoprecipitation of Ankrd1-nucleolin 
complexes from primary FLOX (normal) mouse skin fibroblasts. Aliquots of the 
immunoprecipitation input were analyzed by Western blotting using the indicated 
antibodies. For the top panel, immunoprecipitation (IP) used antibody against Ankrd1, 
followed by Western analysis with antinucleolin. For the bottom panel, 
immunoprecipitation with antinucleolin (Ncl), followed by Western analysis with anti-
Ankrd1. IgG, isotype-matched nonimmune rabbit IgG. C. Nuclear colocalization of 
Ankrd1 and nucleolin. HMVECs were immunostained for endogenous Ankrd1 (green) 
and nucleolin (red) and localized by confocal microscopy. The merged panel shows 
partial colocalization (yellow) of Ankrd1 and nucleolin, predominantly in the two adjacent 
nuclei.  
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Figure 15: Co-immunoprecipitation of Ankrd1-nucleolin complexes. 
A. Co-immunoprecipitation of Ankrd1-nucleolin complexes from immortalized FLOX 
(normal) skin fibroblasts expressing FLAG-tagged Ankrd1. Aliquots of the 
immunoprecipitation input and eluate (Post IP) were analyzed by Western blot using the 
indicated antibodies. Upper panel: immunoprecipitation (IP) reacted antibody against 
nucleolin (Ncl) or isotype-matched IgG to input material, followed by Western blot 
analysis with anti-Ankrd1. Lower panel: immunoprecipitation with anti-FLAG or IgG was 
similarly followed by Western blot analysis with anti-nucleolin. Post IP represents FLAG-
Ankrd1 that was not removed by immunoprecipitation. B. Confirmation of protein 
interaction using ectopically expressed Ankrd1 in Hela cells. Top panel: 
Immunoprecipitation (IP) with anti-FLAG followed by Western blot analysis with anti-
nucleolin. Nucleolin co-precipitated with transfected FLAG-Ankrd1. Nucleolin was 
abundant in the total cell extract (Input) as well as the supernatant after 
immunoprecipitation (Post-IP sup). Normal rabbit IgG immunoprecipitate (IgG) was 
used as a negative control. Bottom panel: Immunoprecipitation with anti-nucleolin was 
followed by Western blot analysis with anti-Ankrd1. Ankrd1 co-precipitated with 
nucleolin  (Ncl).  
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cell disruptor (Fischer Scientific, Waltham, MA). Between each sonication, the samples 

were frozen on dry ice for 30 sec, and then returned to wet ice. After sonication, the 

samples were centrifuged for 10 min at 4°C at 5,000 x g.  Cold dilution buffer (0.01 % 

SDS, 1.1 % Triton X100, 1.2 mM EDTA, 16.7 mM Tris, pH 8.0, and 167 mM NaCl) 

containing 0.01% complete Mini Protease Inhibitor Cocktail (Roche, Mannheim, 

Germany), and protein A/G agarose (Santa Cruz Biotech, Santa Cruz, CA), was added 

to sonicated samples. Samples were incubated at 4°C for one hour, centrifuged at 

10,000 x g for 30 seconds at 4°C, and the supernatant was transferred to new tubes. 

The following antibodies were added to the samples:  normal rabbit IgG (control; Santa 

Cruz Biotech, Santa Cruz, CA), rabbit polyclonal c-Jun (Santa Cruz Biotech, CA), and 

rabbit anti-Ankrd1. Samples were incubated with or without antibody overnight at 4°C, 

protein A/G agarose (Santa Cruz Biotech, Santa Cruz, CA) was added, and the 

samples were incubated for 3h. After incubation, the samples were centrifuged for 1 min 

and the supernatant was carefully removed. The beads were washed for 5 min at 4°C: 

twice with low salt buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl, 

pH 8.1, and 150 mM NaCl), twice with high salt buffer (0.1% SDS, 1% Triton X-100, 2 

mM EDTA, 20 mM Tris-HCl, pH 8.1, and 500 mM NaCl), then twice with TE buffer. 

Elution buffer (0.2 % SDS, and 0.1M NaHCO3) and 20ul NaCl (5M) were added to the 

washed beads. NaCl was added also to the no antibody supernatants, and all samples 

were then incubated overnight at 65°C. DNA identification was confirmed with qRT-PCR 

using primers specific for the AP-1 site. An 80bp fragment containing the AP-1 site 

within the MMP-13 region was amplified using the following primers: Forward – 5’ 

GCCTCACTAGGAAGTTAA and Reverse: 5’GCAAGCATCTTCTATTTTATAG. PCR 
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reactions contained: SYBR green Supermix (Biorad, Hercules, CA), 50 nM of each 

primer, 2 µl template DNA, in a total volume of 20 µl. The iCycler real time- thermocycler 

(Biorad, Hercules, CA) was used.   

Mouse stress response array. A mouse stress response qRT-PCR array (96 

StellArray, Lonza, Walkersville, MD) was utilized according to manufacturer’s 

procedures. Total RNA (1.0 µg) from FLOX and KO immortalized skin fibroblasts was 

reverse transcribed using iScript cDNA synthesis kit (Biorad, Hercules, CA) following 

the manufacturer’s protocol. qRT-PCR was performed using iQ SYBR Green Supermix 

purchased from Biorad (Hercules, CA). Potential Ankrd1 target genes were validated by 

qRT-PCR in separate RNA extracts using probe-primers specific for the identified gene 

of interest.   

 

 

Results 

Ankrd1 interacts with transcription factor, nucleolin 

Identification of Ankrd1 interacting factors and their targets may help to 

understand how Ankrd1 affects tissue repair. Yeast two-hybrid analysis (Fig. 14A) with 

mouse aorta cDNA identified Ankrd1association with titin and desmin, which are both 

previously characterized Ankrd1 binding partners (Table 4) (Bang et al., 2001b; Miller et 

al., 2003), among a collection of candidate cytoplasmic proteins. Our analysis also 

provided evidence of Ankrd1 association with the transcription factors, nucleolin and 

breast cancer metastasis-suppressor 1 (Brms1). The association of Ankrd1 and 

nucleolin was confirmed by co-immunoprecipitating endogenous proteins from primary 
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Figure 16: Mutations in the AP-1 site abrogate MMP13 promoter activity.  
A. Schematic of the proximal MMP13 promoter/reporter constructs (660 bp) containing 
either a native (WT) or a mutated (bold, underlined) AP-1 binding site (23). B. 
Luciferase plasmids with WT MMP13 promoter sequence (660 bp) or four different 
mutations within the MMP13 AP-1 site were transfected into NIH 3T3 cells. The 
luciferase activity was measured in cells grown in DMSO alone or containing the AP-1 
activator, PMA. Three mutants (5′, 3′, and Mut1) did not show luciferase activity. The 
Mut2 sequence created an additional AP-1 site that fully restored promoter activity. The 
data represent results of four transfection experiments. Renilla luciferase-expressing 
vector pTK-RL (Promega) was used as an internal control to normalize DNA 
transfection efficiency. Error bars indicate the standard errors of the mean (SEM; n = 4). 
5′, 3′, and Mut1 mutant plasmids were statistically significant (*, P < 0.001), as 
determined by two-way analysis of variance (ANOVA) with Tukey's multiple-comparison 
test) compared to WT MMP13 plasmid with the respective controls.  
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Figure 17: Ankrd1 overexpression decreases basal and PMA-induced MMP13 
promoter activity.  
A. Ankrd1 decreases PMA-induced MMP13 promoter activity in a dose-dependent 
manner. NIH 3T3 cells were cotransfected with the WT-p660 MMP13 promoter/reporter 
construct and Flag-Ankrd1 plasmid or pcDNA3.1 (control) and treated with PMA or 
DMSO vehicle for 24 h, followed by measurement of the luciferase activity. Significance 
was tested by one-way ANOVA with Dunnett's multiple-comparison test (****, P < 
0.0001). B. MMP13 promoter (luciferase) activity in HeLa cells. Ankrd1 (Flag-Ankrd1) 
overexpression decreased MMP13 promoter activity even in the presence of PMA. A 
T→G mutation at the 5′ end of the MMP13 AP-1 site abolished luciferase expression 
under all experimental conditions. The data represent results of three transfection 
experiments performed in triplicate. Error bars indicate the SEM (n = 9), as determined 
by one-way ANOVA (***, P < 0.001; ****, P < 0.0001). Renilla luciferase-expressing 
plasmid pTK-RL was used as an internal control to normalize DNA transfection 
efficiency in both panels.  
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skin fibroblasts with both anti- Ankrd1 and anti-nucleolin antibodies and detecting the 

binding by Western blot (Figure 14B). Immunoblotting analyses were also performed in 

HeLa cells and immortalized skin fibroblasts overexpressing Flag-Ankrd1 with anti-Flag 

and anti-nucleolin antibodies (Figure 15). In addition, double immunofluorescence 

showed a predominantly nuclear co-localization of Ankrd1 and nucleolin in human 

microvascular endothelial cells (Figure 14C). Nucleolin binds to an AP-1 DNA 

sequence in the MMP-13 promoter and represses AP-1-dependent transactivation 

(Samuel, Twizere, Beifuss, & Bernstein, 2008). Our findings suggested that Ankrd1 

could play a role in the ability of nucleolin to affect transcription of MMP-13 from an AP-

1 site. 

Ankrd1 decreases PMA-induced MMP-13 promoter activity via AP-1 

Based on our identification of nucleolin as an Ankrd1 interacting factor and 

evidence that it acts as a transcriptional regulator of MMP13 (Samuel et al., 2008), we 

examined the effect of Ankrd1 on regulation of MMP13 promoter activity. We previously 

reported that murine MMP13 core promoter activity resides within the proximal 660 bp, 

a region that includes two PEA3 (−75, −122) and one AP1 (−46) consensus sequences 

(Wu et al., 2002) (Figure 16A). Therefore, we used a reporter construct containing the 

MMP13 core promoter cloned upstream of the luciferase gene (p660-MMP13 Luc) as 

previously described (Wu et al., 2002) to study the role of Ankrd1 in MMP13 regulation. 

To confirm the importance of an intact AP-1 site in the MMP13 promoter, we developed 

four different mutant constructs that had mutations of the AP-1 site within the MMP-13 

proximal promoter region of the p660-MMP13 Luc construct (Figure 16A). NIH3T3  

  



 

76 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

77 
 

Figure 18: Deletion of Ankrd1 relieves MMP13 transcriptional repression in vitro.  
A. MMP13 transcript levels were increased in primary KO skin fibroblasts. qRT-PCR 
analysis of MMP13 mRNA in FLOX and KO primary skin fibroblasts was performed as 
described in Materials and Methods. Error bars indicate the SEM (n = 6; ****, P < 
0.0001 [Student t test]). The fold change is the level of expression of MMP13 in KO cells 
relative to FLOX cells. B. Basal and PMA-stimulated MMP13 transcript levels are 
increased in immortalized KO cells. qRT-PCR analysis of MMP13 mRNA in 
immortalized FLOX and KO skin fibroblasts without stimulation (left panel) and after 
exposure to DMSO or PMA in DMSO (right panel) for 24 h. The fold change represents 
the level of cellular MMP13 expression in KO relative to FLOX (left) or FLOX-DMSO 
(right, control treatment). Error bars indicate the SEM (n = 12; *, P < 0.05; **, P < 0.01 
[Student t test], left panel), and two-way ANOVA with the Bonferroni multiple-
comparison test (right panel) were used to determine statistical significance. C. 
Evidence for elevated MMP-13 secretion in KO cells. MMP-13 protein in conditioned 
medium in FLOX and KO cells was detected with anti-MMP-13 antibody by Western 
blotting, following concentration of media by trichloroacetic acid precipitation. In the 
absence of a well-accepted protein loading control for secreted proteins, we used the 
cell number and the total protein for normalizing the total amount of conditioned medium 
for each sample.  
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fibroblasts were transiently transfected with the native and mutant constructs. All 

mutations within AP-1 binding site abolished MMP13 promoter activity except for Mut2, 

which showed luciferase activity similar to the native sequence (Figure 16B); however, 

the three-base pair mutation in the Mut2 variant created a new AP-1 binding site. PMA 

was used to stimulate MMP13 promoter activity, since it is a known effector of MMP 

expression acting through AP-1 (Jormsjo et al., 2000; Mittelstadt & Patel, 2012; Wu et 

al., 2002). NIH3T3 cells were transiently co-transfected with the p660-MMP13 Luc 

reporter construct and a construct expressing Flag-Ankrd1 and grown in the absence or 

presence of PMA. Overexpression of Ankrd1 decreased PMA-induced MMP13 

promoter activity in NIH3T3 cells in a dose-dependent manner (Figure 17A). Similarly, 

HeLa cells that were transiently co-transfected with the p660-MMP13 Luc reporter 

construct and Flag-Ankrd1 showed reduced MMP13 luciferase activity (Figure 17B) 

Together, these results indicate that overexpression of Ankrd1 inhibits AP-1 dependent 

transactivation of the MMP13 promoter.  

Deletion of Ankrd1 relieves MMP13 transcriptional repression 

To evaluate Ankrd1 involvement in the regulation of MMP13 transcription, we 

analyzed MMP13 mRNA levels in mouse dermal fibroblasts derived from FLOX and KO 

mice. Under basal conditions, both primary and immortalized KO skin fibroblasts 

showed significantly increased MMP13 transcript levels compared to FLOX cells 

(Figure 18A and 18B). In the presence of PMA (100 ng/ml), MMP13 mRNA expression 

was further enhanced ~3-fold by deletion of the Ankrd1 gene (Figure 18B). Analysis of 

conditioned media derived from FLOX and KO skin fibroblast cultures showed  
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Figure 19: Deletion of Ankrd1 elevates MMP-13 transcripts and protein in intact 
and wounded mouse skin.  
A. MMP-13 protein levels in unwounded skin are elevated in KO mice. A total of 30 μg 
of skin protein extract from FLOX and KO mice was analyzed by Western blotting with 
anti MMP-13 and anti-cyclophilin A. B. Day 4 wounds in KO mice express elevated 
MMP13 mRNA levels. mRNA levels in 4 day excisional wounds of FLOX and KO mice 
were compared to those in intact skin by qRT-PCR as described in Materials and 
Methods. Error bars indicate the SEM (n = 6). C. MMP-13 protein is elevated in Ankrd1-
null mouse wounds. Immunoblot analysis of MMP-13 abundance in normal skin (ns) 
and day 4 excisional wounds from FLOX and KO mice showed increased MMP-13 
protein. Cyclophilin A levels are shown in the lower panel. D. Digital quantification of 
chemiluminescence. Cyclophilin band intensities were used to normalize data. Error 
bars indicate the SEM (n = 5). One-way ANOVA with the Bonferroni correction and a 
Student t test were used to determine the statistical significance (**, P < 0.01; ***, P < 
0.001).  
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Figure 20: Mutations in the MMP13 AP-1 site abolish the enhanced binding of 
transcription factors to the MMP13 promoter caused by Ankrd1 deletion. 

A. Left panel: EMSA was performed with a biotinylated oligonucleotide containing either 
a WT or a mutated (5′mut or 3′mut) AP-1 site, using nuclear extracts from FLOX and KO 
skin fibroblasts that had been treated with either DMSO (lanes D), PMA in DMSO (lanes 
P), or LPS (lanes L). EMSA of nuclear extracts from FLOX and KO skin fibroblasts 
showed increased AP-1-binding activity after PMA treatment, and binding was elevated 
by Ankrd1 deletion (compare the lanes marked by triangles). PMA stimulated the 
binding of additional transcription complexes to the WT MMP-13 AP-1 probe (WT AP1) 
in KO cells. The MMP13 AP-1 probes that contained 5′ or 3′ point mutations showed no 
binding in PMA-stimulated cells. The results of a representative experiment of three are 
shown. Right panel: shows the digital quantification of the regions marked by the 
triangles and bracket in the left panel. Error bars indicate the SEM (n = 3). A Student t 
test was used to determine statistical significance (*, P < 0.05). B. Left panel: Levels of 
c-Jun protein were studied in nuclear extracts from FLOX and KO skin fibroblasts that 
were treated with DMSO, PMA, or LPS by Western Blot. Right panel: Quantification of 
the chemiluminescent signals.  
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Figure 21: Deletion of Ankrd1 increases binding of c-Jun to the MMP13 AP-1 site.  

The effect of Ankrd1 deletion and PMA stimulation on the binding of c-Jun and Ankrd1 
to the AP-1 site of the MMP13 promoter was assessed by ChIP analysis. Using the 
antisera indicated n  on the x axis, immunoprecipitated chromatin from FLOX and KO 
cells was analyzed by qRT-PCR. Primers were designed to amplify the AP-1 site within 
the MMP13 promoter region. Values from immunoprecipitated chromatin were divided 
by signals obtained from chromatin input (1%) and are expressed as the percent input. 
Deletion of Ankrd1 stimulated c-Jun binding to the MMP13 AP-1 site (upper panel), and 
PMA-stimulated binding was significantly increased in the KO cells (lower panel). In the 
presence of Ankrd1 (FLOX), PMA did not significantly affect the binding of Ankrd1 to the 
AP-1 site. There was no detectable binding of Ankrd1 to the AP-1 site in KO cells 
(compare upper and lower panels). Error bars indicate the SEM (n = 6). One-way 
ANOVA was used to determine statistical significance based on at least three 
independent experiments (**, P < 0.01; ****, P < 0.0001).  
  



 

82 
 

increased secreted MMP-13 protein in the KO cells (Figure 18C). These data indicated 

that the absence of Ankrd1 leads to de-repression of MMP13 transcription in skin 

fibroblasts. 

In light of our earlier report that Ankrd1 is highly induced by wounding (Shi et al., 

2005a), we analyzed MMP13 expression in normal and wounded skin from FLOX and 

KO mice. In uninjured KO skin, MMP-13 protein abundance was doubled compared to 

FLOX (Figure 19A). After wounding, both MMP-13 protein and mRNA levels were 

sharply higher in KO mice than FLOX mice (Figure 19B and 19C). Together, these 

data showed that Ankrd1 deletion has a significant influence on MMP13 expression and 

content in vivo. 

Removal of Ankrd1 increases binding near the AP-1 site of MMP-13 

Based on our in vitro findings concerning MMP13 promoter activity and the MMP-

13 phenotype of the KO mouse, we hypothesized that Ankrd1 blocks AP-1-site binding 

of positive factors by interacting with nucleolin. To test this proposition, we analyzed the 

binding of factors to the AP-1 site in the absence and presence of Ankrd1 by EMSA. 

Probes (~60 bp) containing either the wild type or mutated MMP13 AP-1 binding site 

were incubated with nuclear extracts from FLOX or KO cells that had been treated for 

24h with PMA in DMSO, DMSO alone, or LPS. EMSA showed a marked difference in 

the gel shift pattern between FLOX and KO nuclear extracts treated with PMA, 

supporting the concept that the absence of Ankrd1 leads to increased binding of 

(positive) transcription factors to the AP-1 site of the MMP-13 promoter (Figure 20A). 

EMSA also showed that two mutations in the AP-1 site (5’mut, 3’mut) with markedly  
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Figure 22: Adenovirus-mediated reconstitution of Ankrd1 in null cells alters MMP13 
transcription.  

(Upper panel) Ankrd1 expression after infection with adenovirus mediating the 
expression of luciferase as a control (Ad-Luc) or Ankrd1 (Ad-Ankrd1) was assessed in 
FLOX and KO skin fibroblasts. qRT-PCR confirmed the increased expression of Ankrd1 
in both cell strains after viral infection. The fold change indicates the level of expression 
of Ankrd1 in cells relative to FLOX infected with Ad-Luc. Two-way ANOVA with Sidak's 
multiple-comparison test was used to obtain statistical significance (*, P < 0.05). (Lower 
panel) Overexpression of Ankrd1 in FLOX or KO cells suppresses MMP13 expression. 
Adenovirus-mediated overexpression of Ankrd1 (Ad-Ankrd1) but not luciferase (Ad-Luc) 
decreased MMP13 mRNA levels. qRT-PCR analysis of MMP13 was carried out as 
described in Materials and Methods. The data represent the results of three 
independent infection experiments performed in triplicate. Error bars indicate the SEM 
(n = 9). A Student t test was used to determine statistical significance (**, P < 0.01). The 
fold change indicates the level of MMP13 mRNA expression relative to FLOX cells 
infected with Ad-Luc.  
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Figure 23: Reconstitution of Ankrd1 by plasmid transfection in KO cells suppresses 
MMP13 expression.  

For both analyses, Flag-Ankrd1 or pcDNA 3.1 control plasmid was transfected into 
FLOX or KO skin fibroblasts, followed by PMA or DMSO treatments. Cells were 
harvested 24 h after treatment, and total RNA was isolated. (Upper panel) The fold 
change indicates the level of expression of Ankrd1 in cells relative to FLOX+DMSO 
conditions. Two-way ANOVA, followed by Dunnett's multiple-comparison test, was used 
to determine statistical significance (**, P < 0.01). (Lower panel) MMP13 mRNA levels 
were elevated by Ankrd1 deletion (FLOX versus KO) and suppressed by cells that were 
transfected with Flag-Ankrd1 plasmid (+) but not control pcDNA3.1 plasmid (−). 
Overexpression of Flag-Ankrd1 also masked the response to PMA. The data represent 
the results of four independent experiments. The fold change indicates the level of 
expression of MMP13 in cells relative to FLOX+DMSO. Error bars indicate the SEM (n = 
4). One-way ANOVA, followed by the Bonferroni multiple-comparison test, was used to 
determine statistical significance (*, P < 0.05; **, P < 0.01; ***, P < 0.001).  
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Figure 24: In vitro manipulation of Ankrd1 expression modulates MMP13 
expression.  
Knockdown of Ankrd1 by siRNA dose dependently derepresses MMP13 levels. FLOX 
skin fibroblasts were transfected with Ankrd1 or scrambled siRNA and harvested 48 h 
after transfection. Expression was normalized to the vehicle control for each transcript. 
The fold change indicates the level of MMP13 or Ankrd1 mRNA expression relative to 
FLOX cells treated with vehicle. The data represent relative mRNA levels from three 
independent siRNA experiments, each performed in triplicate. Error bars indicate the 
SEM (n = 9). One-way ANOVA was used to determine statistical significance. The data 
for stimulation of MMP13 or suppression of Ankrd1 did not reach statistical significance.  
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Figure 25: MMP10 is a target of a Ankrd1 repression. 
A. qPCR analysis of matrix metalloproteinases associated with stress responses. MMP 
transcript levels in FLOX and KO skin fibroblasts were quantified by StellArray and 
expressed on a logarithmic scale as KO relative to FLOX signal. MMP10 and MMP13 
mRNA levels were significantly increased in the absence of Ankrd1. Error bars indicate 
the SEM (n = 3). A Student t test was used to determine the statistical significance of 
individual MMP responses (***, P < 0.001; **, P < 0.01). B. Dramatically increased 
MMP10 mRNA levels in KO skin fibroblasts mask PMA stimulation. The fold change 
indicates, on a logarithmic scale, the level of MMP10 mRNA in cells relative to FLOX 
cells treated with DMSO. Error bars indicate the SEM (n = 8). A Student t test was used 
to determine statistical significance (**, P < 0.01). 
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reduced promoter activity (Figure 20A) also significantly reduced the binding of 

transcription factors to the MMP13 promoter in the presence of PMA. Levels of c-Jun, 

which is a component of the AP-1 complex, were significantly elevated in KO extracts 

(Figure 20B).  

We also assessed the interaction of Ankrd1 with the AP-1 region of the MMP-13 

promoter and the effects of Ankrd1 deletion and PMA stimulation on binding of c-Jun, a 

positive regulator of MMP-13 transcription (Mengshol, Vincenti, Coon, Barchowsky, & 

Brinckerhoff, 2000), to the AP-1 site using chromatin immunoprecipitation (ChIP). As a 

component of AP-1, c-Jun is a potent inducer of transcription of several MMP genes, 

including MMP13 (Mak, Turcotte, Popovic, Singh, & Ghert, 2011; Mengshol et al., 2000; 

Vincenti & Brinckerhoff, 2002). Thus, we analyzed the binding of c-Jun to the MMP13 

AP-1 site in the absence and presence of Ankrd1.  This analysis showed that deletion of 

Ankrd1 stimulated c-Jun binding to the proximal MMP13 AP-1 site (Figure 21) and that 

loss of Ankrd1amplified c-Jun binding in cells exposed to PMA. ChIP also showed that 

endogenous Ankrd1 increased occupancy of the MMP13 AP-1 site, while this increased 

occupancy was not affected by AP-1 activation (PMA) (Figure 21). These results 

confirmed that in the absence of Ankrd1, c-Jun expression is increased and it interacts 

more strongly with the MMP13 promoter AP-1 site. Collectively, these results suggest 

that Ankrd1 removal relieves MMP13 transcriptional repression and stimulates the 

binding of positive transcription complexes to the MMP13 AP-1 site.  

In vitro manipulation of Ankrd1 regulates MMP13 expression 

Reconstitution of Ankrd1 in Ankrd1-deficient skin fibroblasts by infecting cells 

with an adenovirus expressing Ankrd1 (Ad-Ankrd1) caused significant reduction in 
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MMP13 mRNA from elevated levels (Figure 22). FLOX cells infected with Ankrd1 had a 

more moderate reduction (60%). KO cells infected with a control adenovirus expressing 

luciferase (Ad-Luc) maintained increased MMP-13 transcript levels compared to FLOX 

cells infected with Ad-Luc. In addition, transient transfection with a Flag-Ankrd1 plasmid 

construct counteracted the derepression of MMP-13 in KO cells, and this effect was 

further enhanced by the addition of PMA (Figure 23). To address the possibility that 

increased MMP13 mRNA in the absence of Ankrd1 was an indirect effect of sustained 

Ankrd1 depletion, we knocked down Ankrd1 mRNA levels in FLOX cells with siRNA and 

observed that Ankrd1 knockdown increased MMP13 mRNA levels in a dose-dependent 

manner (Figure 24).  

Ankrd1 regulates other MMPs 

To investigate the impact of Ankrd1 deletion on additional MMPs, we analyzed a 

mouse stress response qPCR array (Stellarray, Lonza) with RNA from FLOX and KO 

skin fibroblasts. The qPCR array confirmed increased MMP13, mild overexpression of 

MMP2, MMP9, and MMP14 and a remarkably strong stimulation of MMP10 (Figure 

25A) in KO cells. In another experiment, qRT-PCR analysis using RNA from FLOX and 

KO skin fibroblasts exposed to PMA or DMSO showed a PMA-dependent increase of 

MMP10 transcripts in FLOX cells; however, MMP10 mRNA levels were so dramatically 

increased in KO cells that regulation by PMA was masked (Figure 25B). Because 

MMP10 has four AP-1 binding sites in its promoter (Rodriguez et al., 2008), these data 

suggest that Ankrd1 regulates MMP-10 in a similar, AP-1 dependent fashion to MMP-

13. 
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Discussion 

Extracellular matrix remodeling is a key aspect of development, tumorigenesis, 

and wound healing. Degradation of extracellular matrices is required to remove 

damaged tissue and to allow cell migration, capillary morphogenesis, and 

reorganization of the cellular environment (Vaalamo et al., 1997b). Matrix turnover and 

signaling cascades derived from this process dictate whether tissue repair progresses 

or becomes chronically impaired. The MMP family contributes to the process of 

extracellular matrix remodeling by controlled proteolysis in the pericellular environment 

that is tightly regulated by activation and inhibition. Collagenases are MMPs that 

selectively degrade native collagenous matrices in the extracellular space (Ravanti, 

Heino, Lopez-Otin, & Kahari, 1999b; Ravanti et al., 2001) and MMP-13 is the 

predominant collagenase in the mouse (Balbin et al., 2001). MMP-13 expression has 

been implicated in both physiological and pathological conditions. It has been shown to 

be essential for normal generation of granulation tissue in mice (M. Toriseva et al., 

2012), and it is expressed in various cancers (Chiang, Wong, Lin, Chang, & Liu, 2006; 

Decock et al., 2008; Yamagata et al., 2012; Zyada & Shamaa, 2008). MMP-13 plays 

predominant roles in rheumatoid arthritis and osteoarthritis, and increased expression of 

MMP-13 induces osteoarthritis in mice (Neuhold et al., 2001). AP-1 is a key regulator of 

MMP-13 transcription (Burrage, Mix, & Brinckerhoff, 2006). We have provided evidence 

here that Ankrd1 associates with nucleolin to regulate MMP-13 expression through its   
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Figure 26: Ankrd1 as a negative coregulator of MMP13 transcription at the AP-1 
site.  
(Upper panel) In this model, Ankrd1 association with nucleolin reduces the binding of 
the activator protein 1 heterodimer to the MMP-13 AP-1 site, resulting in inhibition of 
MMP-13 expression. (Lower panel) Conversely, reduced levels or the absence of 
Ankrd1 permits engagement of AP-1 with the transcriptional machinery.  
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AP-1 binding site. This negative regulation of MMP-13 by Ankrd1 may contribute to 

limiting potentially pathological levels of MMP-13 and other AP-1 target genes in the 

context of inflammation and other circumstances with elevated AP-1 levels such as 

tissue repair and rheumatoid arthritis (Granet, Maslinski, & Miossec, 2004).  

In a quiescent state, both Ankrd1 and MMP13 mRNA and protein expression are 

low in non-muscle cells. However, under stress conditions like wounding Ankrd1 

increases in skeletal muscle in the subdermis, vessel walls in the dermis, inflammatory 

cells, and epidermis (Shi et al., 2005a). We hypothesize that this up regulation of 

Ankrd1 occurs, in part, to limit the expression of MMP13 and other AP-1 regulated 

target genes. When Ankrd1 is absent in the context of tissue damage, we speculate that 

pathological, unrestrained up regulation of MMP genes affects the tissue repair process. 

We have observed that Ankrd1 deletion in mice results in increased necrosis in an 

ischemic skin flap model that is reversed by Ankrd1 gene reconstitution, and excisional 

wounds in KO mice showed reduced signs of skin contraction (S. Samaras, K. 

Almodóvar-García, N. Wu and J.M. Davidson, submitted for publication) (Chapter II). 

Dysregulation of MMPs could promote extensive degradation of extracellular matrix 

during the tissue repair process and result in impaired cell-matrix interaction.  We 

hypothesize that Ankrd1 regulation of MMP-13 and other targets is important to 

successful tissue repair. While MMP10 appears to be strongly affected by Ankrd1 

repression, array data make it clear that strong Ankrd1 transcriptional repression does 

not extend to several other AP-1 regulated MMPs (MMP2, MMP7, MMP9, and MMP14).  

Ankrd1 is present in both the cytoplasm and the nucleus, playing two distinct 

roles, depending on its location. In the cytoplasm of cardiomyocytes, Ankrd1 is involved 
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in the assembly of sarcomeric protein complex that binds to titin, where this complex 

may play a role in sarcomere stability and mechanotransduction. Ankrd1 also acts as a 

mediator of a GATA4 signaling axis that converges to control sarcomere gene 

expression and maintain sarcomere organization (B. Chen et al., 2012). Ankrd1 can 

also shuttle from the cytoplasm to the nucleus where it regulates target genes. Here we 

presented evidence of nuclear Ankrd1 mediating transcriptional modulation of MMP13 

in skin fibroblasts via an AP-1 site. Indeed, over-expression of Ankrd1 in several cell 

types leads to regulation of hundreds of gene targets identified by microarray analysis 

(K. Almodóvar-García and J. Davidson, unpublished data). Thus, many functional roles 

of cytoplasmic and nuclear Ankrd1 remain to be fully described.  

In the context of cardiomyogenesis, Ankrd1 has also been shown to interact with 

YB-1, muscle specific RING finger proteins (MuRFs), myopalladin, and cardiac 

calsequestrin (Bang et al., 2001b; Miller et al., 2003; Torrado et al., 2005; C. C. Witt et 

al., 2008; Zou et al., 1997). Ankrd1 interaction with the nuclear factor YB-1 at an HIF-1 

site in the myosin light chain 2v (MLC 2v) promoter negatively regulates myosin 

expression (Zou et al., 1997). YB-1 has also been shown to interact with the AP-1 site 

within the MMP-13 promoter and its over-expression potently represses AP-1 

dependent transactivation (Samuel, Beifuss, & Bernstein, 2007). Interestingly, nucleolin 

and YB-1 interact with each other and both proteins bind to RNA to form a complex (C. 

Y. Chen et al., 2000a). While we have no evidence of a transcription complex forming 

between Ankrd1, YB-1 and nucleolin, we have found that over-expression of YB-1 and 

Ankrd1 together results in decreased MMP-13 promoter activity (K. Almodóvar-García 

and J. Davidson, unpublished data). Thus, it is conceivable that Ankrd1, YB-1, and 
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nucleolin could form a ternary complex to regulate transcription of MMP-13 and other 

genes with AP-1 binding sites.  

Results from ChIP analysis indicate that Ankrd1 and c-Jun bind to the MMP13 

AP-1 site. ChIP studies demonstrated that the absence of Ankrd1 stimulates the binding 

of c-Jun to the MMP13 AP-1. We speculate that Ankrd1 associates with nucleolin in the 

MMP13 AP-1 site and this interaction prevents the binding of the activator protein 1 

heterodimer composed of c-Jun and c-Fos to the AP-1 site, thereby repressing MMP13 

expression. When Ankrd1 is absent, the activator protein 1 could bind to the MMP13 

AP-1 site, perhaps in the presence of nucleolin, and induce MMP13 expression (Figure 

26). Interaction between nucleolin and c-Jun has been previously characterized (C. Y. 

Chen et al., 2000b), and nucleolin/c-Jun complexes play an important role in regulation 

of genes with Sp1 binding sites (Tsou et al., 2008).  

In this study, MMP-13 regulation was analyzed in cells (dermal fibroblasts) 

derived from Ankrd1-deleted mice. Our previous data indicated that the major regulation 

of the mouse MMP-13 promoter occurs through the AP-1 binding site (Wu et al., 2002). 

Consistent with this observation, cells transfected with a mutated AP-1 MMP-13 

promoter construct had no detectable luciferase reporter activity. Further, we showed by 

EMSA that point mutations within the AP-1 site affected the binding of nuclear factors to 

this sequence and that the presence of   Ankrd1 reduced binding of transcription factors 

to the AP-1 site of the MMP-13 promoter. Significantly elevated MMP13 mRNA and 

protein levels were observed in the absence of Ankrd1. Reconstitution of Ankrd1 

resulted in decreased, and knockdown of Ankrd1 increased, MMP13 mRNA levels. 

MMP-13 plays an important role during the wound healing process, by coordinating 
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growth of granulation tissue, inflammation, and angiogenesis, but it also is involved in 

pathological disorders ranging from chronic wounds to cancer. Since Ankrd1 is also an 

effector of angiogenic activity (Shi et al., 2005a), a potential inhibitor involved in 

regulating ECM metabolism, and an important suppressor of MMP13 and MMP10 

transcription, it may be a novel target for wound healing or cancer therapies.  
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Chapter IV 

 

 

INCREASED ANKRD1 EXPRESSION AFTER BURN INJURY IN HUMANS 

 

 

Introduction 

The co-transcription factor, Ankrd1, is strongly induced by acute wounding of 

mouse skin. Increased Ankrd1 mRNA and protein have been demonstrated in mouse 

excisional wounds (Shi et al., 2005a). Skeletal muscle, vessel wall, hair follicle, 

inflammatory cells, and epidermis in the wound area expressed Ankrd1 in response to 

mouse tissue injury (Shi et al., 2005a). Over-expression of Ankrd1 results in increased 

microvasculature, robust formation of granulation tissue, and increased perfusion 

(Samaras et al., 2006b; Shi et al., 2005a). It is still unknown whether a parallel 

phenomenon occurs in human skin.  Thus, we investigated the expression of Ankrd1 in 

human burns.  

Severe burns represent an extreme example of wound repair and are a major 

public health issue. Burn injuries are among the most devastating forms of trauma. Data 

from the American Burn Association show that approximately 450,000 cases of burn 

injuries receive medical treatment in U.S.A. per year (Association, 2013; Ellison, 2013). 

Moderate to severe burn injuries requiring hospitalization account for approximately 

40,000 of these cases, and about 5,000 patients die each year from burn-related 

complications (Association, 2013; Church, Elsayed, Reid, Winston, & Lindsay, 2006). 
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Advances in modern medical care have improved outcomes for severely burned 

patients.   

In this study, we analyzed the expression of Ankrd1 by immunohistochemical 

analysis of healing burn wounds in human skin. We hypothesized that Ankrd1 is highly 

expressed in burns. Ankrd1 expression was assessed in human burn wounds ranging 

from Post Burn Day (PBD) 3 to 20, and burn scars. Our findings demonstrate that 

expression of Ankrd1 is greatly increased in the burn wound.  

 

 

Materials and Methods 

Tissue.  Twenty-nine unidentified specimens of varying-age human burn wounds, three 

human burn scars, and five normal human skin samples were obtained from Lillian B. 

Nanney, Ph.D.  The tissue had been fixed in 4% paraformaldehyde for 24h, paraffin-

embedded, and cut into 5-µm sections.  

Immunostaining. Sections from normal skin, burn wounds, and burn scar tissue were 

blocked with 5% porcine serum (Santa Cruz Biotechnology, Santa Cruz, CA) for 60 

minutes at RT and incubated with anti-Ankrd1 antibody (1:1200) at 4°C overnight. After 

washing with PBS, slides were incubated with peroxidase-conjugated anti-rabbit IgG 

(1:250) for 30 minutes at room temperature. Finally, the tissue sections were developed 

with a DAB kit (Vector Laboratories) and counterstained with hematoxylin. Histological 

samples were photographed on an Olympus BX50 microscope with Olympus DP71 

camera. Digital images were saved using software CellSens Standard 1.6. (Olympus 

Corporation). 
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Results 

In normal human skin, very faint staining for Ankrd1 was found scattered 

irregularly throughout the epidermis and dermis (Figure 27). Some human normal skin 

specimens showed little or no Ankrd1 staining (Figure 27).  In burned skin, intense 

immunostaining was present in the epidermis and dermis, at different time points, 

ranging from PBD3 to PBD20 (Figure 28-30).    

At early time points, PBD3-PBD5, stronger Ankrd1 immunoreactivity was 

observed, where many different cells stained positively (Figure 28). By day 7 and 8, 

Ankrd1 immunostaining was still very strong in the thickened, hyperproliferative 

epidermis and underlying mix of dermal fibroblasts and macrophages (Figure 29 and 

30). On day 11, the basal keratinocytes of the new epidermis stained intensely for 

Ankrd1, whereas the highly stratified keratinocytes layers of newly formed epidermis 

stained weakly for Ankrd1 (Figure 30). At a later period of wound healing (PBD13-20), 

staining for Ankrd1 gradually decreased, Ankrd1 positive keratinocytes were most 

prominent in the basal layers of the epidermis (Figure 30). Interestingly, human burn 

scars showed very faint Ankrd1 immunostaining (Figure 31). Intense Ankrd1 staining 

was observed in blood vessels in injured tissue at all-time points (Figure 28-30), while 

blood vessels in the normal skin were mostly negative for Ankrd1.  
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Figure 27: Ankrd1 expression in human normal skin.   
Ankrd1 immunostaining in normal skin. A faint Ankrd1 staining is detected in normal 
skin. Cells of the epidermis and dermis showed very weak or no Ankrd1 expression. 
Representative images are shown. n=6 20X and 40X images; Scales: 100 µM and 50 
µM.  
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Figure 28: Ankrd1 immunostaining in human post burn day 3 and day 5 wounds.  
Early burned tissue strongly stained positively for Ankrd1. Cells of the epidermis and the 
dermis showed Ankrd1 positive staining. Some samples have a hyperproliferative 
epidermis that stained very intense for Ankrd1. Representative images are shown. 
PBD3; n=7, PBD5; n=6. 40X images; Scale: 50 µM.  
  



 

102 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Ankrd1 expression in human post burn day 7 wounds.  
Ankrd1 immunostaining in PBD7 wounds. Ankrd1 is highly induced in day 7 burned 
tissues. Both cells of the epidermis and the dermis showed Ankrd1 positive staining.  
Blood vessels stained positive for Ankrd1 (arrows). A through D: Three pictures of four 
burn wound samples are shown. n=4, 40X images; Scale: 50 µM.  
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Figure 30: Ankrd1 expression in human post burn day 8, 11, 13, 17 and 20 
wounds.  
Ankrd1 immunostaining in PBD7, PBD11, PBD13, PBD17, PBD20 wounds. Ankrd1 is 
sharply induced up to day 11 after injury. Ankrd1 is detected at a lower level in burns 
from day 13- 20. One sample of each time point was analyzed. Three pictures of each 
sample are shown here. 40X images; Scale: 50 µM.  
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Figure 31: Ankrd1 expression in burn scars.  
Ankrd1 positive staining is barely detected in burn scars. Two pictures of two burn scars 
are shown here. n=3, 40X images; Scale: 50 µM.  
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In summary, the basal tip of migrating keratinocytes appeared to be stained 

strongly, while the suprabasal cells at the tip were stained weakly for Ankrd1 at different 

time In the granulation tissue of the dermis of burned tissue, blood vessels were 

intensely stained for Ankrd1, while Ankrd1 staining was barely detected in the blood 

vessels of normal human skin. 

 

 

Discussion 

The present study was carried out to characterize the patterns of expression of 

Ankrd1 in human skin wounds. Using a specific antiserum to Ankrd1, our study shows 

that immunoreactive structures are detected faintly in human normal skin but injured 

tissue stained very intensely after a burn. The low level of Ankrd1 in intact skin agrees 

with our mouse findings (Shi et al., 2005a). We observed Ankrd1-positive cells in 

epidermal and dermal cells. Nuclear and cytoplasmic Ankrd1 was observed in positive 

cells. Keratinocytes in the epidermis were also positive for Ankrd1 in burned tissue that 

re-epithelialized. Cells in the dermis like fibroblasts and inflammatory cells stained 

positive for Ankrd1. Interestingly, Ankrd1 expression was observed very frequently in 

blood vessels in human burn wounds. Similarly, In situ hybridization and 

immunohistochemistry studies in mice showed increased expression of Ankrd1 protein 

in the vasculature (Samaras et al., 2006b; Shi et al., 2005a). Shi et al. showed that 

Ankrd1 significantly increased neovascularization, blood perfusion, and the abundance 

and organization of migrating vascular endothelial cells (Shi et al., 2005a).  
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Our data suggest that Ankrd1 is up-regulated within 72 hours following injury and 

during the prolonged reparative phase. Human burn samples were very variable but in 

general, Ankrd1 was strongly induced in burn wounds. We observed increased 

expression of Ankrd1 in cells of the epidermis and dermis. We can speculate that 

Ankrd1 protein is involved in different stages of the wound healing repair process. Thus, 

our data show that Ankrd1 is increased in the early burn wound and remains elevated 

even after epithelialization. Failure to produce Ankrd1 may delay healing and potentially 

result in chronic non healing wounds. Ankrd1 expression in human wounds has not 

been previously reported in the literature. Further investigation of the role of Ankrd1 in 

tissue repair is still needed.  

  



 

108 
 

CHAPTER V 

 

 

SUMMARY 

 

 

The studies in this dissertation have examined the role of Ankrd1 on selected 

target genes. Absence of Ankrd1 results in a wound healing phenotype and impaired 

cell matrix (collagen) interaction. Fibroblasts and vascular smooth cells isolated from 

Ankrd1-/- mice showed little to no collagen contraction in vitro. Reconstitution of Ankrd1 

in null fibroblasts resulted in contraction indicating that Ankrd1 is important for proper 

cell-collagen interaction.  Moreover, KO fibroblasts failed to spread in low-stiffness PA 

gels coated with collagen. The mechanisms that lead to contraction and cell spread in 

the presence of Ankrd1 needs to be further evaluated. In addition to impaired cell matrix 

interaction, we found that Ankrd1 regulates matrix remodeling genes. Ankrd1 

association with nucleolin results in negative regulation of MMP-13. MMP-13 is a 

member of the matrix metalloproteinase family capable of degrading fibrillar collagen. 

MMP-13 plays an important role during tissue repair because it degrades collagen, 

which is the main matrix protein synthesized and deposited during the repair process. 

Future work on Ankrd1 will investigate more profoundly the significance of the regulation 

of extracellular matrix remodeling molecules by Ankrd1 during wound healing. Finally, 

Ankrd1 was found to be expressed in human wounds indicating that Ankrd1 is not only 
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up-regulated after injury in rodents, but also in humans. Future studies will need to 

investigate the precise roles of Ankrd1 after wounding.  

 

 

Concluding Discussion 

The regeneration of tissue after injury occurs via a progressive cascade of events 

that requires specialized cell types and cell activities. In an attempt to identify novel 

wound healing genes, this laboratory generated 5 mm excisional wounds and 

performed cDNA subtractive hybridization comparing intact skin and day 1 wounds (Shi 

et al., 2005a). The co-transcription factor, Ankrd1, was up-regulated after wounding and 

overexpression improve wound repair. The overall goal of this thesis project was to 

determine the intrinsic role of Ankrd1 in tissue repair. In order to understand more about 

the function of Ankrd1, we focused on identifying Ankrd1 interacting factors, Ankrd1- 

target genes, and the effects of targeted deletion of Ankrd1.  

A yeast two hybrid assay identified many potential Ankrd1-interacting factors 

(Table 4). The list of prospective interacting proteins contained several cytoplasmic 

proteins and a few nuclear factors. Among these, we found that Ankrd1 associated with 

nucleolin. Nucleolin is a multifunctional protein that is involved in many pathways 

including chromatin condensation and remodeling, processing and stabilization of RNA, 

and activation and repression of transcription (Mongelard & Bouvet, 2007; Tuteja & 

Tuteja, 1998). One of its important roles is that it binds in vitro and in vivo to the AP-1 
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site in the promoter sequence of MMP-13 and represses transactivation of the AP-1 

sequence (Samuel et al., 2008).  

We confirmed the association of Ankrd1 with nucleolin, and then sought to 

investigate the involvement of Ankrd1 in regulation of MMP-13. Deletion of Ankrd1 

relieves MMP13 transcriptional repression. Ankrd1 reconstitution in KO fibroblasts 

decreased MMP13 mRNA while Ankrd1 knockdown increased these levels. MMP13 

mRNA and protein were elevated in intact skin and wounds of KO versus FLOX mice. 

We propose that Ankrd1, in association with factors such as nucleolin, represses MMP-

13 transcription.  

Regulation of MMPs plays an important role in tissue remodeling during 

development and wound healing. In humans, MMP-13 has a key role in bone 

metabolism, homeostasis, osteoarthritis, and rheumatoid arthritis, tumor invasion and 

metastasis, and tissue repair (Ala-aho & Kahari, 2005; Hattori et al., 2009a; Takaishi, 

Kimura, Dalal, Okada, & D'Armiento, 2008; M. Toriseva et al., 2012). Intervention 

affecting MMP-13 in pathologic tissues has substantial clinical potential. Due to 

unacceptable side effects, direct MMP inhibitors have failed in many clinical trials 

(Hayashi, Jin, & Cook, 2007; Kalva, Saranyah, Suganya, Nisha, & Saleena, 2013; Kim 

et al., 2005; Lauer-Fields et al., 2009). Hence, other targeted treatment alternatives are 

needed, such as aiming at a higher level, by regulation of MMP-13 at the transcriptional 

level. From the results of our studies, we found that Ankrd1 modulates AP-1 and 

regulates MMP-13 in vitro and in vivo in the skin. EMSA gel shift patterns suggested 

that additional transcription factors bind to the MMP13 AP-1 site in the absence of 
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Ankrd1, and this concept was reinforced by ChIP analysis, revealed as greater binding 

of c-Jun to the AP-1 site in extracts from FLOX vs. KO fibroblasts. 

MMP-13 is the predominant collagenase in mouse. It has been shown that MMP-

13 participates in wound repair during mouse acute wounding, and MMP-13 probably 

plays an important role in the remodeling of fibrillar collagen (Wu et al., 2002). Ankrd1 

levels increased within 24 hours after injury, and after 14 days the levels decreased 

back to normal (Shi et al., 2005a). During cutaneous wound healing, MMP-13 

expression is low from days 1-15 and maximal at day 18 post-wounding (Wu et al., 

2002). It is tempting to suggest that Ankrd1 expression confers a balanced regulation of 

MMP-13 gene expression to prevent extracellular matrix remodeling from becoming 

excessive during the first phases of the wound healing cascade. Thus, we speculate 

that Ankrd1 is upregulated immediately after wounding, and it modulates degradation of 

fibrillar collagen by down regulating MMP-13. Increased collagenase activity and 

excessive degradation of fibrillar collagens of type I and III may cause formation of 

chronic non-healing ulcers (Ravanti, Heino, Lopez-Otin, & Kahari, 1999a; Vaalamo et 

al., 1997a; Weckroth, Vaheri, Lauharanta, Sorsa, & Konttinen, 1996; Wysocki, Staiano-

Coico, & Grinnell, 1993).  Whether MMP-13 activity changes in the presence or 

absence of Ankrd1 needs to be evaluated.  

MMP-13 is expressed by chondrocytes and synovial cells in human osteoarthritis 

and rheumatoid arthritis and is thought to play a critical role in cartilage destruction 

(Mitchell et al., 1996; Reboul, Pelletier, Tardif, Cloutier, & Martel-Pelletier, 1996; Stahle-

Backdahl et al., 1997; Wernicke, Seyfert, Gromnica-Ihle, & Stiehl, 2006). Therefore, we 
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need to further evaluate whether Ankrd1-null mice suffer from any joint-related 

condition.  

Ankrd1 has also been shown to negatively regulate MMP-10. Mmp10 contains 

two AP-1 sites in its proximal promoter (Benbow & Brinckerhoff, 1997). At the present 

time, we have not established that Ankrd1 regulates MMP-10 through its AP-1 sites. 

PMA is a potent activator of transcription of MMPs acting through AP-1 site (Benbow & 

Brinckerhoff, 1997). However, in the absence of Ankrd1, the MMP-10 mRNA levels 

were very high; therefore we could not detect any changes after PMA stimulation. In 

addition, more studies are required to understand the biological significance of Ankrd1 

negative regulation of MMP-10. Studies have shown that MMP-10 functions in skeletal 

development, wound healing, and vascular remodeling; its overexpression is also 

implicated in lung tumorigenesis and tumor progression (Batra et al., 2012).  

We speculate that Ankrd1 may contribute to limiting potentially pathological 

levels of other AP-1 target genes in conditions with high AP-1 levels such as wound 

healing. Different lines of evidence have suggested a critical role of the transcription 

factor AP-1 in skin homeostasis (Angel, Szabowski, & Schorpp-Kistner, 2001; G. Li et 

al., 2003; Zenz et al., 2003).  After skin injury, the release of IL-1 from keratinocytes 

induces the activity of the AP-1 subunits c-Jun and JunB in fibroblasts leading to a 

global change in gene expression (Florin et al., 2004). Gene expression profiling 

identified many AP-1 target genes involved in cutaneous wound healing (Florin et al., 

2004). More studies will be necessary to determine whether Ankrd1 is involved in 

regulation of other AP-1 target genes.  
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Ankrd1-null mice suffered from two significant wound healing phenotypes: 

extensive necrosis of ischemic skin flaps that was reversed by adenoviral expression of 

Ankrd1 (Samaras et al. Submitted for publication); and delayed excisional wound 

closure associated with decreased contraction and granulation tissue thickness. 

Evaluation of MMP-13 and/or MMP-10 involvement in these phenotypes is necessary.  

We found that KO fibroblasts failed to contract 3D collagen gels, while 

reconstitution of Ankrd1 by viral infection stimulated both collagen contraction and actin 

fiber organization. Interestingly, MMP-13 has been implicated many times in collagen 

contraction (Barczyk, Lu, Popova, Bolstad, & Gullberg, 2013; Cukierman, Pankov, & 

Yamada, 2002; Hattori et al., 2009a; M. J. Toriseva et al., 2007), and remodeling of 

three-dimensional collagen matrices (M. J. Toriseva et al., 2007). Collagen degradation 

can influence FPCL contraction (Langholz et al., 1995). We have recently reported that 

KO fibroblasts strongly up regulate both Mmp10 and Mmp13 expression in vitro and 

Mmp13 in vivo (Chapter III) (Almodovar-Garcia et al., 2014). MMP-13 overexpression 

was even more strongly induced in both anchored and released FPCL (unpublished 

observations), a response that has been reported to involve an integrin-dependent 

pathway (Ravanti et al., 1999a). In contrast to stimulation of FPCL contraction by virally 

induced overexpression of human MMP-13 (M. J. Toriseva et al., 2007) or by age-

related fibroblast overexpression of rat MMP-2 and MMP-9, (Ballas & Davidson, 2001) 

elevated Mmp10 and Mmp13 gene expression in the KO fibroblast appears to have no 

effect on FPCL reorganization. It is possible that Mmp-10 and Mmp-13 levels are 

sufficiently high at the cell surface of KO cells to prevent interactions with their 

pericellular environment or that binding and response to ECM is affected by deletion of 
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Ankrd1. Alternatively, there may be a defect in the synthesis, secretion, activation or 

activity of these metalloproteinases. Further studies will be needed to define the relative 

activities of matrix proteinases and receptors in vivo and in vitro. 

Mechanical loading has also been shown to play an important role in the 

mechanisms of contraction (Grinnell, 2000). In the released model (floating gels), cells-

embedded in the collagen matrix are released from the culture dish immediately after 

polymerization. In the attached model (stressed gels), the cells in the collagen lattice 

are cultured while anchored to the dish overnight to develop tension. These forces lead 

to changes in cell morphology and generation of contractile force (Grinnell, 2000).  In 

both conditions, stressed and released gels, we observed that Ankrd1-deficient 

fibroblasts embedded in collagen gels failed to contract.  

Future studies will delineate the mechanism or the signaling pathways in Ankrd1-

deficient cells that is preventing these cells to contract in a traditional collagen assay. 

The results obtained from the in vitro studies might explain the in vivo phenotype 

observed where KO mice contract skin poorly after wounding.  

Integrins mediate a molecular dialogue between cells and their environment. 

Many articles have provided evidence demonstrating that interaction of integrin subunits 

with matrix molecules such as collagen type I results in reorganization and contraction 

of a collagen matrix (Barczyk et al., 2013; de Rooij, Kerstens, Danuser, Schwartz, & 

Waterman-Storer, 2005; Grundstrom, Mosher, Sakai, & Rubin, 2003; Langholz et al., 

1995; Magnanti et al., 2001; Miyake et al., 2000; Parekh, Sandulache, Lieb, Dohar, & 

Hebda, 2007; Schiro et al., 1991; Tian, Lessan, Kahm, Kleidon, & Henke, 2002; Xia, 

Nho, Kahm, Kleidon, & Henke, 2004). Since we observed impaired collagen type I 
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contraction in the absence of Ankrd1, we could hypothesize that integrin expression or 

integrin signaling pathways are affected when Ankrd1 is deleted. The collagen binding 

integrins are: α1β1, α2β1, α10β1, α11β1. We studied cell surface expression, mRNA 

expression and protein expression of the subunits composing these integrins, but our 

results were inconclusive. Integrin signaling pathways have not been studied yet. Future 

studies will reveal whether any of these integrins play an important role in cell 

contraction in Ankrd1-null cells.  

Another alternative to explain the Ankrd1-null contractile phenotype may be 

through the YAP-TAZ pathway. Recently, Dupont et al. (Dupont et al., 2011) reported 

that yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding 

motif (TAZ) act as nuclear relays of mechanical signals exerted by extracellular matrix 

rigidity and cell shape. The authors of the paper identified YAP/TAZ as sensors and 

mediators of mechanical cues instructed by the cellular microenvironment. Interestingly, 

the same article showed that Ankrd1 is a YAP/TAZ regulated gene. We hypothesize 

that the nuclear co-transcription factor, Ankrd1, is important for cells to adapt and sense 

external forces. Therefore, when Ankrd1 is absent, cells cannot respond to the 

YAP/TAZ signals that controls multiple aspects of cell behavior. causing the cells to 

enter a “quiescent” or silent state where they cannot react to their environmental cues 

thus, cells cannot contract soft gels.  

Differentiation of fibroblasts into a highly contractile myofibroblast phenotype 

during wound healing has been shown to generate contractile forces which bring 

together the edges of an open wound and therefore facilitate wound closure (B. Li & 

Wang, 2011; Moulin, Auger, Garrel, & Germain, 2000; Moulin et al., 1999). However, 
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excessive myofibroblast activities, including excessive contraction and over-production 

of ECM, are also the major cause of tissue fibrosis and scar formation (Hinz et al., 2007; 

Moulin et al., 2004). It would be tempting to speculate that in the absence of Ankrd1 

myofibroblast differentiation is impaired resulting in reduced contraction in vitro and in 

vivo.  

Increased expression of Ankrd1 in many cell types is observed following 

wounding in human and mouse tissue, but its effects are not certain. Strong expression 

of Ankrd1 is observed in human burn wounds. In addition to burn wounds, foot ulcers 

and pressure ulcers showed significant expression of Ankrd1 (data not shown). As in 

the mouse, human normal skin showed little to no expression of Ankrd1. In the mouse, 

overexpression of Ankrd1 in different wound models increases angiogenesis and 

vasculogenesis (Samaras et al., 2006b; Shi et al., 2005a). Interestingly, Ankrd1 

expression was observed very frequently in blood vessels in human wounds, but not in 

normal human skin. More studies are required to study the role of Ankrd1 in human 

tissue repair. Moreover, signaling pathways leading to Ankrd1 expression needs to be 

further studied in different cell types.     

The studies in this thesis showed that Ankrd1 regulates matrix-related genes and 

is required for proper cell-matrix (collagen) interaction in vitro. Our lab also observed 

that overexpression of Ankrd1 in wounds by adenoviral gene transfer produces a 

remarkable increase in neovascularization (Shi et al., 2005a). Identification of targets of 

Ankrd1 that mediate Ankrd1-enhanced neovascularization is needed. Thus, expression 

profiling studies were performed to identify key targets of Ankrd1 in human 

microvascular endothelial cells (HMVECs). HMVECs were infected with adenovirus 
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expressing Ankrd1 (adAnkrd1-GFP) or luciferase (adLuc-GFP) virus as a control for 12 

hours followed by microarray analysis. 12 hours infection with adAnkrd1-GFP virus 

affected the expression of a variety of molecules (Table 6). Approximately 18,231 

genes were classified into inferred functional categories (pathways) based on the 

Panther (gene expression software program) classification system (Clark et al., 2003; 

Thomas et al., 2003). Pathways with high number of genes mapped to them are shown 

in Table 5. These pathways were related to cell adhesion, angiogenesis, survival, tissue 

maintenance and wound repair. Profiling of Ankrd1-dependent gene regulation revealed 

a compendium of potential angiogenic markers and putative therapeutic targets (Tables 

6 and 7). Ankrd1 target genes may represent excellent candidates to regulate vascular 

remodeling during wound repair. Further studies are required to look at these potential 

Ankrd1 target genes in more detail.  

Based on our studies, Ankrd1 is strongly induced in response to injury. Deletion 

of Ankrd1 impairs contraction, cell spread, and migration in vitro. More studies must be 

conducted in order to understand why Ankrd1-null cells failed to contract and spread.. 

Ankrd1-null mice showed reduced wound contraction and thinner granulation tissue 

formation. At the nuclear level, Ankrd1 is implicated as a transcriptional negative 

regulator of MMP-13 and possibly, MMP-10.  We speculate that Ankrd1 is involved in 

extracellular matrix remodeling during wound repair. Increased expression of MMPs in 

KO mice might be implicated in the contraction phenotype (Figure 32). We hypothesize 

that Ankrd1 is involved in a pathway that translates mechanical forces into contractile 

activities (Figure 32). Understanding the role that Ankrd1 plays during tissue repair 

might lead to the development of a therapy that improves matrix turnover.  
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Table 5: Ankrd1 over-expression affects the number of genes mapped to 

pathways categories involved in adhesion, angiogenesis, and survival. 

HMVECs were infected with adAnkrd1-GFP or adLuc-GFP. Twelve hours post-infection 

RNA was isolated and examined by microarray analysis. Approximately 18,231 genes 

were classified into inferred functional categories (pathways) based on the Panther 

(gene expression software program) classification system. First column contains the 

name of the PANTHER classification category. The second column contains the 

number of genes that map to this particular PANTHER classification category.  The third 

column has either a + or -. A plus sign indicates that for this category, the distribution of 

values for uploaded list is shifted towards greater values than the overall distribution of 

all genes that were uploaded. A negative sign indicates that the uploaded list is shifted 

towards smaller values than the overall list. The fourth column contains the p-value as 

calculated from the Mann-Whitney U Test (Wilcoxon Rank-Sum test).  
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Table 6: Molecules with significant gene expression changes.  

Expression profiling studies in HMVECs leads to differentially regulation of many gene 

targets. Potential Ankrd1 target molecules are listed here (top 10 upregulated and 

downregulated molecules). Overall 12 transcripts were “upregulated” (Cutoff >1.5) and 

30 transcripts were “downregulated” (Cutoff <- 1.5).  
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Table 7: Summary of gene expression profiling studies.  

Overexpression of Ankrd1 for 12 hours in HMVECs leads to differentially regulation of 

APOLD1, TNSF18, and JUNB. The expression of this three potential Ankrd1 target 

genes were further studied by qRT-PCR analysis. Data obtained from qRT-PCR 

analysis were consistent with the microarray results.  

  

Potential Ankrd1 

target gene 

Microarray (Fold-

Change (Ankrd1 

vs. Luc)) 

qRT-PCR (Fold-

Change 

(Ankrd1vs. Luc)) 

Fold-

Change(Ankrd1 

vs. Luc) 

(Description) 

APOLD1 -3.15705 -4.39433 down 

TNFSF18 2.46589  2.81287 up 

JUNB -1.78143 -2.41875 down 
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Figure 32: Schematic model depicting wounds in control and KO mice.   

We observed that wound repair in control animals was normal, while KO mice healed 

more slowly, have reduced granulation tissue thickness, and less contraction. We 

speculate that overexpression of MMPs in KO wounds results in poor formation of 

granulation tissue. Reduced expression of integrins in KO cells results in impaired 

matrix interaction and therefore, poor cytoskeleton assembly and reorganization. Thus, 

KO cells are round and cannot sense their “soft” environment, because they need 

certain level of stiffness in order to react to external forces.  

   



 

122 
 

Future Directions 

To address the role of Ankrd1 in tissue repair, our lab created a global knockout 

mouse. Ankrd1-/- mice had at least two significant wound healing phenotypes: extensive 

necrosis of ischemic skin flaps, and delayed excisional wound closure associated with 

decreased contraction and granulation tissue thickness. In vitro and in vivo experiments 

indicated that Ankrd1 negatively regulates members of the matrix metalloproteinase 

family including MMP-13 and MMP-10. As part of future work, we will explore the 

physiological relevance of negative regulation of MMP genes by co-transcription factor 

Ankrd1. More studies are required in order to determine whether increased levels of 

members of the MMP family in the absence of Ankrd1 are involved in any of the wound 

healing phenotypes. Investigating whether the activity of MMP-13 is increased in the 

absence of Ankrd1 is also required. Additionally, further studies will be needed to 

determine the mechanisms of regulation of MMP-10 by Ankrd1.  

Ankrd1-deficient mice need to be more carefully analyzed to investigate whether 

they suffer from an arthritic disease. MMP-13 is a major player in rheumatoid arthritis 

and osteoarthritis. We observed that Ankrd1-null mice are significantly smaller than 

control mice; hence we suspect that high levels of MMP-13 in these animals might lead 

to a cartilage disorder.  

Cells isolated from the Ankrd1-/- mice failed to contract 3D collagen gels, while 

reconstitution of Ankrd1 by viral infection stimulated both collagen contraction and actin 

fiber organization suggesting that Ankrd1 is critical for proper interaction of cells with a 

compliant collagenous matrix in vitro. Understanding why the cells that lack Ankrd1 

expression cannot contract in vitro will delineate whether Ankrd1 plays an important role 
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in mechanotransduction. Analyses of integrin expression, signaling, trafficking, and focal 

adhesion formation in KO cells are necessary.  

Results from yeast two hybrid studies showed that Ankrd1 associates with 

numerous cytoplasmic proteins, including α-actinin and tropomyosin. Both, α-actinin and 

tropomyosin, are involved in structural organization of actin filaments in non-muscle 

cells (Lazarides, 1976). Further studies are required to confirm association of Ankrd1 

with these proteins. In addition, to determine whether formation of protein complexes 

with cytoplasmic Ankrd1 is important for cell contraction, spreading or migration we 

need to mutate the nuclear localization signal or nuclear export signal of Ankrd1. 

Results from these studies will examine the potential effect of cytoplasmic Ankrd1 on 

regulation of the contractile machinery.  

The exact function of Ankrd1 in vivo remains unknown. Immunostaining of 

human wounds showed significant expression of Ankrd1 in human burn wounds and 

foot ulcers (data not shown) while normal skin showed little to no staining. Ankrd1 

expression was associated with epithelial cells, fibroblasts, and inflammatory cells in 

human wounds.  Analysis of Ankrd1 expression is necessary in more types of human 

wounds, including normal acute wounds and chronic non-healing wounds.  The 

preliminary studies in human burn wounds emphasize the importance of Ankrd1 in skin 

repair.     
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Closing Remarks 

Overall, these studies highlight the contributions of Ankrd1 on modulating matrix 

related molecules and cell-matrix interaction. The work in this thesis provides a 

foundation for future studies to understand the specific role of Ankrd1 after injury.   
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