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CHAPTER I

INTRODUCTION

In this dissertation, we investigate two subjects in asymptotic analysis: Padé-orthogonal
approximants and Riesz polarization constants. The first focuses on a class of rational
functions called Padé-orthogonal approzimants. The second concerns the max-min and min-
max quantities called Riesz polarization constants and associated optimal Riesz polarization

configurations. We give a detailed description of these subjects in what follows.

I.1 Padé-orthogonal approximants

The history of Padé approximation is one of the longest among those of approximation the-
ory. Padé approximants were named after H. Padé who developed them in a table and gave
a connection of these rational functions to continued fractions in his thesis [44] in 1892.
However, the subject had been introduced several times before Padé by J.L. Lagrange [36]
in 1776, C.G.J. Jacobi [35] in 1845, and F.G. Frobenius [22] in 1881. In the last several
decades, these Padé approximants were generalized in various forms such as multipoint Padé
approximants, Padé-Faber approximants, Padé-Laurent approximants, etc. Padé approxi-
mants and their generalizations have been used in diverse areas such as numerical analysis,
number theory, integral equations, the spectral theory of operators, random matrix theory,
quantum mechanics, and quantum field theory. They also can be used as a tool to detect
zeros or singularities of functions and study analytic continuation of power series or Fourier
series.

The first part of this dissertation is devoted to a generalization of the classical construction
of Padé approximants, namely Padé-orthogonal approximants. These rational functions are
based on orthogonal polynomial expansions on some compact set in the complex plane C.
In order to define Padé-orthogonal approximants rigorously, we need to introduce some

notation. Let F be a compact subset of the complex plane C. Let i be a finite positive Borel



measure with infinite support contained in £ and define the associated inner product

(g, By = / 9 (OO du(0).

We denote by

pn(z) = k2" + -+, K, >0, n=0,1,...,

the unique sequence of polynomials of respective degrees n with positive leading coefficients
that are orthonormal with respect to dy; that is, (pn, pm)u = On.m. Padé-orthogonal approx-

imants corresponding to u are defined as follows:

Definition I.1.1. Let F' be a holomorphic function in a neighborhood of E. A rational
function [n/m]p = P}, /Qk. . is a (linear) Padé-orthogonal approzimant of type (n,m)

corresponding to p for the function F'if PY, and @, are polynomials satisfying

deg(PrlLL,m) S n, deg( Z,m) < m, Z,m ?é 07

Qh W F =P, pj)y=0, forj=0,1,....,n+m.

It is not difficult to see that if E = {z € C : |z] < 1} and du = df, then these Padé-
orthogonal approximants are exactly the classical Padé approximants (see the Frobenius
definition [22]). The concept of linear Padé-orthogonal approximants was first introduced
by H.J. Maehly [39] in 1960. In fact, he considered linear Padé-orthogonal approximants
only for the case when du = dz/v/1— 22 on [~1,1]. These rational functions are called
Padé-Chebyshev approximants (see [6]) or sometimes cross-multiplied approximants (see
[21]). Later, E.W. Cheney defined linear Padé-orthogonal approximants for a general setting
(E is not just a finite interval) in his book [15]. The study of Padé-orthogonal approxi-
mants has mainly concentrated on the case when g is supported in a finite interval (see
e.g. [bb, 56, 54, 29, 38, 28, 59, 12, 13]). S.P. Suetin [55, 54, 56] was the first to prove the
convergence of row sequences of both linear and nonlinear Padé-orthogonal approximants

on [—1,1] (see the definition of nonlinear Padé-orthogonal approximants! in his paper [55]).

1S.P. Suetin called this rational functions “nonlinear Padé approximants of orthogonal expansions”.



Some problems on the convergence of diagonal sequences of these Padé-orthogonal approx-
imants were considered in [29, 38, 28, 59]. For the case that p is supported on the unit
circle, there are a few articles [47, 46, 14, 1] studying (or using) these rational functions.
However, the study of linear (or nonlinear) Padé-orthogonal approximants corresponding to
1 supported on a general compact set has not yet been thoroughly explored. A rational
function [n/ml% always exists, but may not be unique as we show in Example I1.1.4. We
also would like to emphasize that unlike the classical case, the definitions of linear and non-
linear Padé-orthogonal approximants may lead to distinct rational functions (see [60]). Since
we consider only linear Padé-orthogonal approximants in this dissertation, we will omit the
word “linear” when we refer to linear Padé-orthogonal approximants.

In this work, we focus on the study of a sequence {[n/m|%}nen when m € N is fixed,
which is called a row sequence of Padé-orthogonal approximants. Our goal is to investigate
the relation of the convergence of poles of row sequences of Padé-orthogonal approximants
corresponding to a measure supported on a general compact set and the singularities of the
approximated function F. Under suitable restrictions on the set F, our main contributions
are as follows.

e We prove convergence of row sequences of these rational functions (see Theorem 11.2.1),
namely an analogue of the theorem of Montessus de Ballore, under a ratio asymptotic con-
dition on {pk}ren. This result generalizes work of S.P. Suetin [56] who studied the case for
measures supported on [—1,1].

e Under Szeg6 asymptotic conditions on {py }ren, we prove a direct analogue of the Fabry
ratio theorem (see Theorem I1.2.3) concerning the detection of the “nearest” singularity of a
function F by using the limit of the ratio F,,/F,,;1, where F), := (F, p,),. As a consequence of
this, we provide a limit formula for the “nearest” singularity of the reciprocal of the interior
Szegd function 1/S, in terms of the Verblunsky coefficients (see Corollary 11.2.4).

e We prove in Theorem I1.2.8 that the row sequences of Padé-orthogonal approximants
satisfy a Fabry ratio theorem when the measure supported on E satisfies Szeg6 asymptotic

conditions. This result generalizes part of the result of V.I. Buslaev [13].



[.2 Riesz polarization constants and configurations

The second subject focuses on the study of Riesz polarization constants and optimal Riesz
polarization configurations of infinite compact subsets of the m-dimensional Euclidean space

R™ which are defined as follows.

Definition 1.2.1. Let A be an infinite compact subset of the m-dimensional Euclidean space
R™ wy = {x1,...,2x} denote a configuration of N (not necessarily distinct) points in A,
and #wy denote the cardinality of the multiset wy. For s € R, the maximal N-point Riesz

s-polarization constant of A is given by

1
M3 (A) := max minZ]y—’ and My (A) := N, (L.1)

my(A) ;= min maxz ;, and mQ{(A):= N. (1.2)

We say that an N-point configuration wy is optimal for M3 (A) (optimal for m3,(A)) if it
attains the maximum in (I.1) (the minimum in (1.2)).

Such max-min quantities (I.1) were first introduced by M. Ohtsuka [43] who showed that

the following limit exists as an extended real number:

M?*(A) == lim — N

N—oo

and that the limit M?®(A) is not less than the Wiener constant W*(A) corresponding to the

same value of s. This constant is defined as

W2 (A) = inf//ﬁdu(a:)du(y), (1.3)

the infimum being taken over all Borel probability measures p supported on A. The con-

stants M3 (A)/N, m3(A)/N, M*(A), and limy o, m%(A)/N which were later called the N



Chebyshev constant of A, the N dual Chebyshev constant of A, the Chebyshev constant of
A, and the dual Chebyshev constant of A were studied in [18, 20, 45, 19]. In [18], it was proved
that the Chebyshev constant M?*(A) is the same as the Wiener constant W?*(A) whenever
the maximum principle is satisfied on A for the Riesz s-potential. The (abstract) Chebyshev
constants in [20, 19] were used to study the so-called rendezvous or average numbers.
Another occurrence of such max-min and min-max constants is in the study of the N*®
linear polarization constant and polarization inequalities in the theory of an infinite dimen-
sional Banach space (see [45, Proposition 19-20], [4, Proposition 5 and Theorem 6], and [2,
Theorem 1.12]). A very special case (see [2, Theorem 1.12]) of those polarization inequalities

is equivalent to the following equality

M} (Sh) = N;, (1.4)
where S! is the unit circle in R2. Of course, if we know an optimal N-point configuration for
M?%(S") which is intuitively a configuration of N distinct equally spaced points on S!, we can
compute MZ (S'). However, proving that a configuration of N distinct equally spaced points
on S' is optimal for M%(S') (and M3 (S'), for s € R\ {0} and m3,(S'), for s € (—o0,0))
is a nontrivial problem. The optimality for M3 (S') of N distinct equally spaced points on
S' was proved by G. Ambrus in [2] and by G. Ambrus, K. Ball, and T. Erdélyi in [3]. T.
Erdélyi and E.B. Saff [17] established this for M%(S'). The cases M5 (S') for s > 0 and
m3(St) for —1 < s < 0 were proved by D.P. Hardin, A.P. Kendall, and E.B. Saff in [32].
For some negative even integers s, we will see in Corollary II1.2.8 that N distinct equally
spaced points on S! are not the only optimal configurations for M3 (S') and m$,(S!).

The study of the dominant term of My (A) for s > 0 as N — oo is suggested by T.
Erdélyi and E.B. Saff. In [17], they provide upper estimates and lower estimates for M5 (A)
on infinite compact sets A in R™ and focus on finding the dominant terms of Mg (S™)
and M35 (B™), where S™ is the unit sphere in R™*! and B™ is the closed unit ball in R™.
In particular, they show that for an infinite compact set A in R™ of positive d-dimensional

Hausdorff measure, one has Mg (A) = O(NInN), N — oo, and M (A) = O(N*/4), N — oo,



for every s > d. Concerning the lower estimate of M3 (A), it is not difficult to show that
(see [17, 18, 20])
MR (A) =

A; N N >2
N—lgs( ) )7 i

where E(A; N) is the minimal N-point Riesz s-energy of A as defined in the next paragraph.
Combining this lower estimate and the so-called Poppy-seed Bagel Theorems (see [34, 10,
17]), T. Erdélyi and E.B. Saff showed that the order estimate for s = d is sharp when A is
contained in a d-dimensional C''-manifold and the order estimate for s > d is sharp when A
is d-rectifiable.

The minimal N-point Riesz s-energy of an infinite compact set A C R™ is defined as

ES(A,N) := wr]Ivlian Z m, where N >2, s>0, (L5)
#wn=N 1<j#k<N

and an N-point configuration wy is called a minimal N-point Riesz s-energy configuration
of A if it attains the minimum in (I.5). The basic asymptotic properties for N fixed and
s varying of the minimal N-point Riesz s-energy are considered in [9, Chapter 2; Section
2.1-2.2]. Tt is known that as s gets large, the minimal Riesz s-energy problem tends to the
best-packing problem and as s goes to 0, the minimal Riesz s-energy problem tends to the
minimal log-energy problem (see [9, Proposition 2.9 and 2.14]). Similar basic properties
for maximal and minimal Riesz polarization constants and configurations are considered in
this dissertation in Section II1.2.1. We will see in Theorems II1.2.1-I11.2.2 that as s goes to
00, the maximal Riesz s-polarization problem tends to the best-covering problem and as s
approaches 0 from the right, the maximal Riesz s-polarization problem tends to the maximal
log-polarization problem.

The asymptotic behaviors for s fixed and N — oo of the dominant term of (A, N)
and the limiting distribution of minimal N-point Riesz s-energy configurations have been
investigated in [37, 41, 10, 34]. It appears that these asymptotic behaviors depend on the
value of s. For an arbitrary compact set A C R™ with Hausdorff dimension d and 0 < s < d,

classical potential theory provides the relation of the continuous and discrete Riesz energies



(see [9, Theorem 3.7]). The asymptotic behaviors for s > d were proved by S.V. Borodachov,
D.P. Hardin, and E.B. Saff in [10, 34] for a large class of sets. These results are known as

Poppy-seed Bagel Theorems which we state in the following theorem.

Theorem A. Let d € N, A C R™ be a compact d-rectifiable set, and s > d. If s = d, we

further suppose that A is a subset of a d-dimensional C'-manifold. Then

lim gd(A7 N) _ Hd(Bd>
N=oo N2log N Hy(A)

(1.6)

and
li gs<A7 N) o Cs,d
Nl_rgo Nl+s/d Hd(A)s/d’

where Cs 4 1s a finite positive constant independent of A and H, denotes d-dimensional Haus-
dorff measure in R™ normalized so that the copy of the d-dimensional unit cube embedded
in R™ has measure 1. Furthermore, under an additional assumption that Hq(A) > 0, if
{xz,N}]]{:V:D N €N, is a sequence of minimal N-point Riesz s-energy configurations of A, we

have in the weak® topology of measures

1 * Hd(')|A
— E Ops  — N 1.
: Ti N Hd(A) ) — 00, ( 7)

where d, denotes the unit point mass at the point x.

Results analogous to (1.6) and (1.7) for the maximal Riesz d-polarization constant and
configurations on an infinite compact subset of a d-dimensional C'-manifold embedded in R™
(or a finite union of such sets provided that their pairwise intersections have d-dimensional
Hausdorff measure zero) are proved in Section II1.2.2. As a consequence of this, we show
that maximal N-point Riesz d-polarization configurations are “good points” for discretizing
such subsets of R™ in the uniformly distributed sense.

The main results obtained in this dissertation on the properties of the Riesz polarization

constants and configurations can be summarized as follows:

e We study basic properties of My (A) and m3(A) as functions of s in Section I11.2.1.



We prove that for an infinite compact set A and for a fixed positive integer N, the function
f(s) := M3} (A) is continuous on R\ {0} and is not continuous at 0, and the function g(s) :=
m3(A) is continuous on (—oo,0]. More precisely, we prove that f(s) is right-continuous at

0 but not left-continuous at 0. Moreover, we show that

lim M3 (A = ——
g MY AT = 22

where py(A) is the N-point mesh norm (or N-point best-covering distance) of A. Addition-

ally, we show that
i P =,
where My¢(A) is the maximal N-point log-polarization constant of A.

e We determine the optimal configurations for M3 (S™) and m3 (S™) for those values of
s for which there exists an N-point configuration whose Riesz s-potential function is constant
on S™ in Section II1.2.3.

e We prove Conjecture 2 of T. Erdélyi and E.B. Saff in [17] concerning the dominant
term of M&(A) as N — oo when A is an infinite compact subset of a d-dimensional C-
manifold embedded in R™. Moreover, if we assume further that the d-dimensional Hausdorff
measure of A is positive, we show that any sequence of optimal N-point configurations for
Mg (A) is asymptotically uniformly distributed with respect to the d-dimensional Hausdorff

measure on the set A. These results also hold for finite unions of such sets A provided that

their pairwise intersections have d-dimensional Hausdorff measure zero (see Section I11.2.2).



CHAPTER II

PADE-ORTHOGONAL APPROXIMANTS

I1.1 Introduction, background results, and notation

We begin this section by recalling the definition of classical Padé approximants.

Definition I1.1.1. Let a pair of nonnegative integers (n, m) be given. The rational function
[n/m|p = Ppym/CQnm is called a classical Padé approximant of type (n,m) to a power series

F(z) =02, fxz" if P, and @y, are polynomials satisfying

deg(Pom) < n,  deg(@nm) <m,  Qnm #0,

(QuimF — Pop)(2) = 0" as 2 — 0. (IL.1)

It is clear from (II.1) that once @, ,, is determined, then P, ,, is simply the nth truncation
of the power series for @, ,,F. Finding @), is equivalent to solving a system of m homo-
geneous linear equations on m + 1 unknowns. However, the ratio of any pair (P, ., Qnm)
defines the same rational function [n/m]r, although the polynomials @, ,, are not unique.
We will review shortly in this section only some properties of row sequences of classical Padé
approximants which we will consider for Padé-orthogonal approximants. We refer the reader
to the book of G.A. Baker and P. Graves-Morris [6] and survey papers [60, 61, 5] for more
details and recent progresses in the subject of classical Padé approximants.

In this dissertation, we will restrict our consideration to the sets £ as described below.
Let E be a compact subset of the complex plane C such that C\ £ is simply connected. Then,
there exists a unique exterior conformal bijection ® sending C\ E onto C\ {w € C : |w| < 1}
satisfying ®(oc0) = 0o and ®’(c0) > 0. We assume that E is such that the inverse function
¥ of ® can be extended continuously to C \ {w € C : |w| < 1}. Note that the closure of a
Jordan region and a finite interval fall in our consideration.

Let p be a finite positive Borel measure with infinite support supp(u) contained in E.



We write 1 € M(F) and denote the associated inner product

(9, By = / G(OMOAp(C), 9, h € La(n).

We denote by

pn(z) = k2" + -+, K, >0, n=0,1,...,

the unique sequence of polynomials of respective degrees n with positive leading coefficients
that are orthonormal with respect to dy; that is, (pn, pm)y = Onm. Denote by H(E) the
space of all functions holomorphic in some neighborhood of . Padé-orthogonal approximants

corresponding to p are defined as follows:

Definition I1.1.2. Let F' € H(E), p € M(FE), and a pair of nonnegative integers (n,m)
be given. A rational function [n/m|p = P, /Qh . is a Padé-orthogonal approzimant

corresponding to p of type (n,m) to F'if P! ~and Qf  are polynomials satisfying
deg(Fy,,) <n, deg(Qr,,) <m, @, #0, (11.2)

Qb F =P, pj)y=0, forj=0,1,...,n+m. (IL.3)

Since @4, ,,, # 0, we will normalize it by requiring that its leading coefficient equals 1.

Note that if £ = {z € C : |z| < 1} and du = df, then these Padé-orthogonal approxi-
mants are exactly the classical Padé approximants.

Hereafter, we consider only F' € H(F). For any p > 1, we set
I, ={2eC:|®(2)| =p}. and 7, :={w e C:|w|=p}.

Denote by D, the interior of I', and by B(z, p) the open disk centered at z of radius p. We
will call I', and D, a level curve of index p and a canonical domain of index p (with respect to
E), respectively. For convenience, we let B := B(0,1) be the open unit ball and T := 0B be
the unit circle. We denote by po(F') the maximal index p > 1 of the largest canonical domain

D, to which F' can be extended as a holomorphic function and by p,,(F") the maximal index

10



p > 1 of the largest canonical domain D, to which F' can be extended as a meromorphic
function whose number of poles does not exceed m (counting their multiplicities). Define

the Fourier coefficient of F' corresponding to p, :

Fy = (F, p) = / F(2)pn(2)du(2). (1L4)

In all that follows, the phrase “uniform convergence inside a domain” means “uniform con-
vergence on each compact subset of the domain”.
One can easily determine the domain of holomorphy D, ) of F' by the following analogue

of Cauchy’s theorem for power series (see e.g. [53, Theorem 6.6.1] for the proof):

Lemma I1.1.3. Let F € H(FE). Assume that

lim [p, (2)]"" = |@(2)], (IL.5)

n—oQ

uniformly inside C \ E. Then,

n—oo

—1
po(F) = <limsup|Fn|1/”) :

Moreover, the series Y " o Fpn(2) converges to F(z) uniformly inside D, ry and the series
Yoo Fupn(2) diverges pointwise for all z € C\ D).
Therefore, if p satisfies the condition (I1.5), the polynomials P}, and Q4 , verify
lrt,m(z)F(Z) - P#,m(z) = Z <eri,mF7 pk>upk(z)

k=n+m+1

for all 2 € D,y(r) and PV, = ZZZO(QZMF, Pk)uPk is uniquely determined by Q1 .
In contrast with classical Padé approximants, the rational function [n/m]% may not be

unique as the following example shows.

11



Example I1.1.4. Consider F = [-1,1], du = dz/+/1 — 22 and

37«
F(z) = w_3 " chpk(x),
k=0

where the p, are normalized Chebyshev polynomials, and
co =37, ¢ :=06(=2T1y/7 +192V27), ¢y := —V2+ 315/7 — 222V/2m,

3 = 3513/ — 2484V 21, ¢y = V2 + 10674/7 — 7548V 2.

Using the program Mathematica it is easy to check that both QF,(z) = 2 and Qf,(z) =
(z — 3)? satisfy
(@Q'oF, p)y =0, k=23

These denominators QY , give us

47564/ — 336321 — 36V 2mx + 144z

1/214() T ,

and

1404 — 28536+/7 + 1982727 — 864x + 90364/mx — 63681V 27

[1/2]p ()

1/m(z —3) |
respectively, which are clearly distinct.
However, if
(Fopni)u GE pnsi)u - (7 F pus)u
A (F, 1) = : : : : 0 (1L.6)
(Fopnm)p GE poemdp - (2" F Do)

or for every solution of (I1.2)-(I1.3), the polynomial Q% is of degree m, then Q% is unique
and [n/m]% is also unique. One can easily show that A, ,,,(F, 1) # 0 and the condition that

for every solution of (I.2)-(IL.3), the polynomial Q% is of degree m are equivalent.

12



For the case when F = B and the support of x is T, D. Barrios Rolanfa, G. Lépez
Lagomasino, and E.B. Saff (see [47]) use the determinants A,, ,,,(F, ) to determine the radii

of meromorphy of F', namely they show that

b
m+1

(by convention 0/0 = c0), where

Ly = limsup | A, (F, )|V, g =1

n—oo

under the two assumptions that u satisfies Szegé’s condition and the reciprocal of the interior
Szeg6 function 1/Si,:(z) has an analytic continuation to B(0,r) for some r > 1.

In this dissertation, we focus on row sequences of the Padé table. We use {[n/m]r}nm=o1..
({[n/m]%}nm=01...) to denote the classical Padé (Padé-orthogonal) table for the function F
and {[n/m|r}tn=o1.. ({[n/m)5}n=01..) to represent the mth row of the classical Padé (Padé-
orthogonal) table for the function F. Before proceeding with this study we recall some basic
results for power series and classical Padé approximants.

For a meromorphic function F with exactly m poles within an open disk centered at the
origin, Montessus de Ballore’s theorem (cf. e.g. [6]) asserts the convergence of the mth row

sequence {[n/m|p}n—o.1,. inside the region obtained removing the poles of F' from the open

disk.

Theorem (Montessus de Ballore). Let F' be a function that is meromorphic in the disk

B(0, R), with poles in the distinct points zy, ..., z,, where
0<|z] <z <--- <zl < R.
Let my, be the multiplicity of z, and Y y_, my, =2 m. Then

F(z) = lim [n/m|p(2)

n—o0

13



uniformly inside B(0, R) \ {#1,...,2,}, and

hm Qnm Z—Zk

3
¢
i ::%

Various generalizations of this theorem were given by e.g. E.B. Saff [49, 31, 30], A.A.
Gonchar [26], and S.P. Suetin [55, 56]. In particular, in [55] a Montessus de Ballore type
result is given for Padé-orthogonal approximants corresponding to a measure supported on
the interval [—1,1].

In the converse direction, a natural question is: What conclusions can be drawn concern-
ing the singularities of F' if we know the asymptotic behavior of the poles of its approximants?
Such problems are called of inverse type in Padé approximation theory. In this direction, an

interest classical result is due to E. Fabry (see [16, p. 377]):

Theorem (Fabry). Suppose that the coefficients of a power series Y [,2" are such that

lim I

— A £0 (IL7)
exists. Then the series Y - f,2"converges uniformly inside the disk B(0,|\|) and X is a
singularity of the function F(z) =Y 7 fn2"

The boundary of B(0, |A|) may contain more than one singularity. For example, if

1 1 >

F(z) = + = ((n+1)+(=1)")="

—1)2
z+1 (z-1)P2 =

then lim,, o fn/fni1 = 1. However, the function F' has poles at +1.

The first conclusion of Fabry’s theorem concerning the convergence of the series is a
consequence of the Cauchy-Hadamard formula. The second conclusion, concerning the sin-
gularity, is far from trivial. L. Bieberbach mentioned in [7] that “it requires much effort to
penetrate Fabry’s works so as to get pleasure from them and fully understand the elegance
and simplicity of the arguments of this master”.

It is easy to check that if f, # 0 and f,11 # 0, then f,/f,+1 in (I1.7) is the pole of the

14



classical Padé approximant [n/1]r. In [27], A.A. Gonchar conjectured that Fabry’s theorem
can be generalized to the mth row of the Padé table. In its general form, the conjecture was

proved by S.P. Suetin in [58] (see also [57]).

Theorem (Suetin). Suppose that the coefficients of a power series F(z) = Y " [n2"
are such that, for any fired m € N and any sufficiently large n € N, the classical Padé

approximants [n/m|r have precisely m finite poles A 1, ..., Anm that are convergent:
hm)\m:)\l%o, ’i:l,...7m,
n—oo

cmd set Rmin = minlgigm |)\z|; Rmax = maxlgigm |)\z| Then,
(i) the series Y . fuz" converges uniformly inside the disk B(0, Ryin);
(1) the function F' admits a meromorphic continuation to the disk B(0, Ryax);

(13i) Ai,...,Am are singularities of F'; those lying in B(0, Ryax) are poles, and F has no
other poles in B(0, Ryax)-

Similar inverse type results for row sequences of multipoint Padé approximants, Padé-
Faber approximants, and Padé-orthogonal approximants corresponding to a measure sup-
ported on [—1, 1] were proved by V.I. Buslaev in [13]. In this work, we will use the methods
employed in [12] and [13] to prove analogues of the Fabry and Suetin theorems for Padé-
orthogonal approximants corresponding to a measure supported on a general compact set

FE C C as described above.

11.2 Main results

We will make the following assumptions on the asymptotic behavior of the sequence of
orthonormal polynomials with respect to a given measure p € M(E). We write u € R(E)

when the corresponding sequence of orthonormal polynomials has ratio asymptotics; that is,

. pn('Z) _
e a0 (IL8)
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We say that Szegd or strong asymptotics takes place, and write p € S(FE), if

im 223 gy and lim S =1, (IL9)

n—oo ¢, P"(2) n—00 Cpiq

The first limit in (IL.9) and the one in (IL.8) are assumed to hold uniformly inside C \ E,
the ¢,’s are positive constants, and S(z) is some holomorphic and non-vanishing function on
C \ E. Obviously, (I1.9) = (I1.8) = (IL.5).

An analogue of Montessus de Ballore’s theorem for Padé-orthogonal approximants is the

following;:

Theorem II.2.1. Suppose F' € H(E) has poles of total multiplicity exactly m in D, (p
at the (not necessarily distinct) points A1, ..., Ay and let p € R(E). Then, [n/mle is
uniquely determined for all sufficiently large n and the sequence [n/ml% converges uniformly

to F inside D, (p) \ {M,..., A} as n — oo. Moreover, for any compact subset K of

D, .y \ {1, ., A},

. d(2)|:ze K
lim sup || F — [n/m]"| < max{|®(z)] : = },

(11.10)

where || - || denotes the sup-norm on K and if K C E, then max{|®(z)|: z € K} is replaced
by 1. Additionally,

max{|®(\;)|:j=1,...,m}

where || - || denotes (for example) the coefficient norm in the space of polynomials of degree

m and Qp(2) = [, (z — Ag).

Remark I1.2.2. When K = E, the rate of convergence in (I1.10) cannot be improved; that
is,
n_ 1 1
lim sup || F — [n/m]}[|/" = limsup o/t = —— (I1.12)

n,m

n—00 n—00 pm(F )’
where

On,m = Hrlf ||F - THE’
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and the infimum is taken over the class of all rational functions of type (n,m)

) Un2™ + ap_12" 1+ -+
rz) = .
bmzm + bm—lzm_1 + -+ bO

We refer the reader to [24, 48] for more information on the second equality in (I1.12).

In [54, Theorem 1], S.P. Suetin proves this result for measures supported on a bounded
interval of the real line and states without proof that a similar theorem may be obtained for
measures supported on a continuum of the complex plane whose sequence of orthonormal
polynomials and their associated second type functions have strong asymptotic behavior.
The assumptions of our Theorem I1.2.1 are substantially weaker.

The natural analogue of Fabry’s theorem is the following:

Theorem I1.2.3. Let F' € H(E) and p € S(E). If

F,
lim

n—oo n+1

:’T’

then U(7) is a singularity of F' and po(F) = |7|.

If £ =B and the measure u supported on T satisfies the Szegé condition,
21
/ log w(8)df > —o0, (IL13)
0

(where du(0) = w(6)d0/2m + dus(0) is the Radon-Nikodym decomposition of p), it is well
known that the orthonormal polynomials ¢, satisfy the Szegé asymptotics (I1.9) (with ¢, =

1), the leading coefficients of the orthonormal polynomials ,, satisfy

1 2m
lim &k, = Kk := exp {—4—/ logw(ﬁ)de} ,
T Jo

and

1 1
Sint(2) T Z ©r(0)pr(2), uniformly inside B,
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where
e 4+ 2

e — 2

1 27
Sing(2) == exp (E/ log w(6) dQ) , z€DB,
0

denotes the interior Szegd function (see [23, p. 19-20] for the proof). Therefore, Theorem
I1.2.3 can be applied to locate the nearest singularity of the reciprocal of the interior Szegd

function in terms of the Verblunsky (or Schur) coefficients a,, (o, := —@,(0)/Kn).

Corollary I1.2.4. Let p satisfy the Szegé condition (11.13) and assume that 1/Sy, € H(B).

Suppose that the Verblunsky coefficients o, corresponding to p verify

Op

=\

lim
n—oo an+1

Then X is a singularity of 1/Swe and 1/Si s holomorphic on B(0, |A]).

This result complements [46, Theorem 2] where, under stronger assumptions, it is shown

that A is a simple pole and 1/Siy has no other singularity in a neighborhood of B(0, |A|).

Using the definition of Q7 |, it is easy to verify that whenever F, 1 # 0, we have

n,1»

by = 5 FE P
n,l(z) < Fn+1 :

The next result enables one to locate the singularity of F' nearest F using the zeros of foLJ.

Theorem I1.2.5. Let F' € H(E) and p € S(E). If

hm <ZF, pn)ll

n—00 F, =
then X is a singularity of F' and po(F') = |P(N)].

The proofs of Theorems I1.2.3 and I1.2.5 are reduced to Fabry’s theorem by using the

following result.

Theorem I1.2.6. Let F € H(E) and p € S(E). Define f(w) := F(V(w)) and denote the

Laurent series of f about 0 by > oo frw®. Then, the following limits are equivalent:

(Cl) hmn—>00 Fn/Fn—H =T,
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(b) im0 (2F, pp)u/Frn = A,
(C) hmn—)oo fn/fn—i—l =T,
where T and \ are finite and related by the formula ®(\) = 7.

An analogue of Suetin’s theorem (on the inverse problem) for Padé-orthogonal approxi-

mants is the following:

Theorem I1.2.7. Let F' € H(E) and p € S(E). If for all n sufficiently large, [n/m]% has

precisely m finite poles A\ 1, ..., Apm, and

lim )\n,j:)\jy j:1,2,...,m,

n—o0

(A1, ..., Am are not necessarily distinct), then

(i) F is holomorphic in D, . where pyin := Minj<j<pm, [P(A;)];

Pmin
(1) pm—1(F) = maxi<j<m [P(A))[;

1) A1, ..., A\ are singularities of F'; those lying in D, (g are poles, and F has no other
Pm 1( )

poles in D, _ (F).

Theorem I1.2.7 is an immediate consequence of the following result and Suetin’s theorem

(on the inverse problem).

Theorem I1.2.8. Let F € H(E) and p € S(E). Define f(w) := F(V(w)) and denote the
Laurent series of f about 0 by > r- __ frw® and the reqular part of f by f(w) =0 frw”.

For each fized m > 1, the following conditions are equivalent:

(a) The poles of [n/m]; have finite limits 71,. .., T, as n — oo.
(b) The poles of [n/ml have finite limits i, ..., Am, as n — 0.
Under appropriate enumeration of the sub-indices, the values \; and 7;, j = 1,...,m, are

related by the formula ®(\;) =7; for all j =1,...,m.
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I1.3 Proofs

11.3.1 Auxiliary lemmas

We collect all lemmas used to prove the main results in this section.

For convenience of the reader, we begin stating two lemmas due to V.I. Buslaev (see [13,
Theorem 5-6]). These results constitute basic tools for proving our inverse type results. We
make use of the following notation. Let f(w) = >~ _ frw" be a Laurent series. We denote
the regular part of f(w) by f(w) := Y250, frw®. If f(w) is holomorphic at 0, we denote by
R, (f) the radius of the largest disk centered at the origin to which f(w) can be extended
as a meromorphic function with at most m poles (counting their multiplicities). Define the

annulus

Tsm(f) ={weC: e Ro(f) < Jw| < Ry ()},

where m € N and § > 0. We will use [-],, to denote the coefficient of w™ in the Laurent series

expansion around 0 of the function in the square brackets. Set
U:=C\B.

Lemma I1.3.1 (Buslaev [13]). Let m € N, 6 > 0, and let f(w) => 2 ___ faw™ be a Laurent

n=—oo

series such that
0< RBo(f) < Ra(f) <00, T |foa]'/" < Ro(f). (11.14)
Assume further that
T}Lrgo[fannn,j]nR”m_l(f)eén =0, j=0,...,m—1, (I1.15)

where the functions o, M, j € H(T5m(f)) have the limits

a(w) == lim a,(w) £ 0, n;(w):= lim n,;(w) =9 (w), j=0,...,m—1,

n—oo n—oo
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uniformly on Tsm(f), n(w) is a univalent function on Tjs,.(f), and a(w) has at most m

zeros in the annulus Ty, (f). Then the function a(w) has precisely m zeros Ti,...,Tm
in Tom(f) and lim, o 7, ; = 7j, where the 7,;(j = 1,...,m) are poles of the classical
Padé approximants [n/m]f(w). Moreover, for any functions Ky 1, ..., Kpm, Lnis ..., Lym €

H(T,n(f)), v >0, that converge to Ky, ..., K,,, L1,..., Ly uniformly on T, ,(f),

lim oA Rnizngin)ij=tegm  CORAATs)Jsr=l,, , 11.16
n—oo  det(fr_i—j)ij=0,. .m—1 W2(T, ..., ) ( )
where W (11, ..., Tm) = det(777 1) s =1, m is the Vandermonde determinant of the numbers

Tiy -y Tm (for multiple zeros the right-hand side of (11.16) is defined by continuity). In

particular, for any ki, ..., km,q1, ., qm € Z, the limits

----------

n—oo det(fo_ij)ij=0...m1 W2(1,...,Tm)

exist.

The assumptions R,,_1(f) < oo and (I1.15) in Lemma IL3.1 can be replaced by the
following: the functions o, (w) and w77, ;(w) are holomorphic in the set C\B(0, e~ Ro(f)),
and

[fannniln =0, 7=0,...,m—1 n>n.

Hence, we also have.

Lemma I1.3.2 (Buslaev [13]). Letm € N, 0 > 1, let f(w) = >0 fow™ be a holomorphic

function in the annulus {1 < |w| < o}. Assume further that
[fantnln=0, 7=0,....,m—1 n>ny, (I1.17)
hold, where o, (w) and w™n, ;(w) are holomorphic functions in U, the limits

a(w) = lim a,(w) 0, n;(w) = lim 9,;(w) =7 (w), j=0,...,m—1,
n—o0

n—oo

exist uniformly inside U \ {00}, the function a(w) has at most m zeros in U \ {0}, and
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n(w) is a univalent function in U such that n(cc) = oo. Then, only one of the following

assertions takes place:

(1) f(w) is a rational function with at most m — 1 poles;

(i1) a(w) has precisely m zeros Ti,...,Tm in U \ {o0}, these zeros are singularities of
f(w), with an appropriate ordering |11| = Ro(f),...,|Tm| = Rm-1(f), and the lim-
its limy, oo 7, = T; exist, where the 7,;,7 = 1,...,m, are the poles of the classical

Padé approzimants [n/m] ;(w).

The second type functions s, (z) (corresponding to the orthonormal polynomials p,(z))

defined by

snle) = [ 20000, = € T\ supp()

where supp(p) is the support of i, have been extensively used in applications of orthogonal

polynomials to rational approximation (see e.g. [12], [13], and [54]). Since we use these

functions in our proofs, we list some of their properties in the next lemma.

Lemma I1.3.3. If u € R(E), then

Tim p,(2)sn(2) = 3(2)

uniformly inside C \ E. Consequently, for any compact set K C C\ E, there exists ng (ng
depends on K ) such that s,(z) # 0 for all z € K and n > ny.

Proof of Lemma I1.5.3. From orthogonality, we get

p@sn() = [ 2000, = & supn(

Since pj, is of norm 1 in Ly(u), it readily follows that { [ |[p,(¢)|*/(z — ¢)du({) tnen forms a
normal family in C\ E. Consequently, the limit stated follows from pointwise convergence

in a neighborhood of infinity. Now, for all z sufficiently large, since p € R(F) from [51,
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Theorem 1.8] it follows that?

: P (O e " ) 11 L dw
fim [ R @) = m 3 [ QP = 3 g | )T
1 1 1 o’ o’
2mi Jp w(z = ¥(w)) 2mi Jyry P(C)(2 = () ®(2)
Since the function on the right-hand side never vanishes in C\ E, the rest of the statements
follow at once. L
Define

hn(w) := cow™ s, (¥(w))¥ (w), weU:=C\B.

This sequence of functions is needed to define the o, (w) and 7, ;(w) in Buslaev’s lemmas.

So, we will list some of their properties.

Lemma I1.3.4. Let F € H(E). Define f(w) := F(¥(w)). The functions h,(w) are holo-
morphic in U, F,, = [fhn]n/cn and (zF, pp), = [Y fhyln/cn. If p € S(E), then the sequence

hyp(w) converges to some non-vanishing function h(w) uniformly inside U.

Proof of Lemma 11.3.4. Clearly, h,(w) is holomorphic in U. Let € > 0 be a small number
so that I'y4. is in the domain of holomorphy of F'(z). By Fubini’s theorem and Cauchy’s
integral formula, we have

Fo= [P = [ (o [ 22 mant

271 F1+5C_Z

1 n(2) 1
=g . O [ EE = o [ FOsc
_ 1 / _ 11 fwha(w), 1
= 2—7” . f(w)5n<\:[j(UJ))\Ij (w)dw - cn 27‘('7/ - wn+1 dw — cn [fhn]n

1'We note that in [51, Theorem 1.8] it is assumed that E is a compact set bounded by a Jordan curve. However,
as pointed out to us by the author, the result remains valid if E verifies the conditions imposed in this paper.
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and

o= [FEmGwe = [ (55 [ ) mbiau

21 Jr,,. (—z

_ ! G / Pl gy = - [ cPQsa(Q)dc

211 Toe

= W) fw) s (U () W (w)dw = i/ V) fw)hn(w) y g e

- . - . n+1
27i ), . cp, 271 w Ch,

If w € S(F), then p € R(E) and using Lemma I1.3.3, we have

lim h,(w) = lim c,w" s, (¥ (w))V (w)

! im " im w))s w -1 w

uniformly inside U. [

Finally, we state a lemma due to A.A. Gonchar which is quite useful in the theory of

rational approximation. We recall the definition of the logarithmic capacity of A :
cap(A) := e VA

where

() =it [ [ 1og ’Ziﬂdu(?«“)du(t) Cp>0, swpp(p) C A, [uf =132 (IL18)

Definition II1.3.5. Let W(z) and W,(z), n € N, be functions defined on an open region
2. We say that the sequence W, (z) converges to W (z) in capacity inside €2, if for any € > 0

and for any compact subset K of 2,

lim cap({z € K : |[W,(z) — W(z)| > €}) = 0.

n—00 -

Lemma I1.3.6 (Gonchar [25]). Suppose that the sequence W,(z) converges to W(z) in

2y(A) is known as the Ronin constant of A.
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capacity inside an open region . If the W, (z) are meromorphic and have no more than
m < oo poles in 2, and W (z) is meromorphic and has exactly m poles z1, ..., zy, in S, then
the sequence W,,(z) converges to W (z) uniformly inside Q\ {z1, ..., zm}, for all sufficiently
large n, W, (2) has exactly m poles in Q0 and the poles of the W, (z) converge to the poles of

W (z) according to their order.

11.3.2 Proofs of main results

Proof of Theorem II.2.1. From (I1.8), it follows that

1
lim P2 _ 1=01,..., (I1.19)

n—oo ppyi(2) - D(2)V

uniformly inside C \ E. By (IL.19) and Lemma II.3.3, for any [ = 0, 1, ..., we have

Pa(2) Pon()spn(z) _ 1 ¥(2)/(x) _ 1 (I1.20)

lim Sn+—l(z) = lim = =
n=oo 8,(2)  nooo puyi(2)  pa(2)sn(2) D(2) 0(2)/P(2)  P(2)"

uniformly inside C \ E. Furthermore,

lim |pn(z)|1/” = |P(2)|, (I1.21)
n—o0

and
lim [, (2)|V" = —— (11.22)
n—00 |®(2)]

uniformly inside C\ E, are trivial consequences of (I1.19) and (I1.20), respectively.

By the definition of Padé-orthogonal approximants and the condition (I1.21), we have

o

frﬁ,m(z)F(z) _ Prlzl,m(z) - Z akz,npk‘(z)7 S DPO(F)? (1123)
k=n+m+1

where

Qkn = < gymFa pk);u k:O717"'a
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akn, =0, k=n+1,...,n+m.

Using Cauchy’s integral formula and Fubini’s theorem, we obtain, for £ =0,1,...,

o= @ = [ 5 [ O i
=55 / Qo / f’“_(z)du(z)dt:% : Qb (O F(t)sk(t)dt, (11.24)

where 1 < p1 < po(F). Let {oy,...,a,} be the set of the distinct poles of F'in D, (r) and

my be the multiplicity of oy so that

Z— =

m v
]:1 k=

Y
Z - Oék , E mp =:m.
k=1

1

Multiplying the equation (I1.23) by @ and expanding > .2 . . ar.Qpr(= QQ4, F —
QPY,, € H(D,,,r)) in terms of the Fourier series corresponding to the orthonormal system

{pv}20, we obtain that for z € D, (r,

[e.9]

Q(2)Qh . (2)F(2) — Q(2) P, (2) = Z axnQ(z Z bynpy (2 (I1.25)
k=n+m-+1
where
bu,n = Z ak,n(ka7 pu>,u,7 V= OJ 17 e
k=n+m+1

First of all, we will estimate |ay,| in terms of |74, | where

1

Thn = 5 QL (OF(t)sp(t)dt, pm-1(F) <p2<pm(F), k=0,1.... (I1.26)
™ Ty, ’

Note that the only difference between the integral in (I1.26) and the last integral in (11.24) is
the domains of the integrals. The greater number p of I', will allow to have a better bound
on |sy|. For each k > 0, the function Q" F's; is meromorphic on D,, \ D,, ={z € C: p; <

|®(2)| < p2} and has poles at ay, . .., @, with multiplicities at most my, ..., m.,, respectively.
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Applying Cauchy’s residue theorem to the functions Q4 F'sy, we have

L Q%m(t)F(t)sk(t)dt—i Qb (O F(t)sk(t)dt = res(Ql,, Fsp, o), (11.27)

2me 2me
e JT,, T JT,, j=1

for £ > 0. Recall that the limit formula for residue is

lim ((z — o)™ Q" (2)F(2)s(2)) ™. (I1.28)

w P
res( n,mFSk? aj) - (mj . 1)' 20y n,m

By the Leibniz formula and the fact that for n sufficiently large, s,(z) # 0 for z € C\ E (see

Lemma I1.3.3), we can transform the expression under the limit sign as follows

(z = )™ %AAFVﬁA@ﬂW”J=<@—aﬁW b EF()sa(2)

- mjzl <mj - 1) ((z — )™ Q. (2)F(2)s,(z)) ) <Sk(z

p=0 p

V)

3

—

N

S— | ~—

N—
—
)

To avoid long expressions, let us introduce the following notation:

1 mj—l

(m; 1! lim (2 = )™ Q1 () F (2)5a(2) ™71,

n,m
z—rag ’

ﬁn(]ap) =
p

for j=1,...,7yand p=0,...,m; — 1 (notice that the /3,(j,p) do not depend on k), so we

can rewrite the equality (I1.27) as

v /mi! @)
A = Thm — Z (Z Bn(d,p) (z—k) (og)) , n>ng and k=0,1,.... (11.29)
p=0 "

J=1

Since ay, =0, for k=n+1,n+2,...,n+m, it follows from (I1.29) that

(p)
Bn(J, ) (—) () =Tpm, k=n+1....n+m. (11.30)
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We will view this as a system of m equations with m unknowns 3, (j, p). If we can show that

(=) @) (=) @) - (=2)™ )
A snis )’ - (m;—1)
A, = (T) (a) (7) (o) (?) | (a) L0, (11.31)

(222) @) (222) (@) - (22)" ()

(this expression represents the determinant of order m in which the indicated groups of

columns are successively written out for j = 1,...,), then we can express [3,,(7,p) in terms

of (si/sn)P () and 7y, for k =n +1,...n + m. However, since

R(a) R'(oy) e R(mj—l)(aj)
lim,, oo Ay = A = RQ('O‘J') (RQ)./(CW (32)(”1];_1)(04]-)
R™aj) (R™)(oy) -+ (R™)™D(ay) s
= i _ v 3 (g ) mi—1)/2 v N 2 1 - 1 mim;
) CORIE G [To( Kgq(@(%) i)

where R(z) = 1/®(2) and n!! = 0!1!---n! (using for example [52, Theorem 1] for proving
this), for sufficiently large n, A,, # 0. In fact, for sufficiently large n, |A,| > ¢; > 0 where the
number ¢; does not depend on n (from now on, we will denote some constants that do not
depend on n by ¢, 3, ... and we will consider only n large enough so that |A,| > ¢; > 0).

Applying Cramer’s rule to (11.30), we have

‘ An .7 1 m
ﬁn(]7p) = /(Xj p) = A_ Z Tn+57nCn(3, q), (IIBQ)
n n s=1

where A, (j,p) is the determinant obtained from A, replacing the column with index ¢ =

( g;l m;) + p + 1 (where we define my := 0) with the column [T,41, ... Tpima)! and

Cn(s,q) is the determinant of the (s, )™ cofactor matrix of A, (j,p). Substituting 3,(j,p) in
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the formula (I1.29) with the expression in (I1.32), we obtain

mi— 1 m (p)
1
U = T = 3 Z TntsnCn(5, Q) (z—k) (aj), k>n+m+1 (I1.33)

j=1 p=0 s=1

Let § > 0 be sufficiently small so that po(F) — 26 > 1 and € > 0 be sufficiently small so that
{zeC:|lz—a;| =€} C{z € C:|P(2)] > po(F) — 6}

and

(p) ]
Sk b: sk(z)
) =5 dz, k=0,1..., p=0,...,mj—1 (IL34
(Sn) (2s) 2 /Z—Olj—e sn(2)(z — )Pt = 0, , p=0,....m; (11.34)

Applying (I1.20) and (I1.34), we can easily check that

‘ (Z—:) ; (a)

for n > ny, and

<cy p=0,....m;—1 j=1,....7v, k=n+1...,n+m, (IL35)

(p)
Sk C3 .
— I < =0,... —1 =1,... k> 1
(Sn) (@) < (po(F) — 26)k— Prlen e I e =nrmat
(I1.36)
for n > ny. The equation (I1.35) implies that
|Cn<87Q)| < (m_ ]')!an_l =c1, S,q=1,...,m, (II?)?)

for n > ns. Combining the estimates (I1.35), (I1.36), (I1.37), and |A,| > ¢ > 0, we see from
(IL.33) that

mcycCs

1 m
Tn s.n
o () =20 2 vl

|ak,n| S |Tk,n| +

Cs m
< |7 Sl k> 1, 11.38
_|77<37 |+(pO(F)_25)k_n;|T+, | n+m+ ( )
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for n > ny.
Secondly, we will give an estimate of |b,,| in terms of |7,|. By the Cauchy-Schwarz

inequality and the orthonormality of p,, we have

|<ka7 pl/>u|2 S <ka7 ka>,u<py; pu),u S I?EaEX |Q<Z)|2 = Ce, ka V= 07 ]-7 ER (II39)

By (IL.38), (I1.39), and the fact that .2 . . (po(F) —26)"* < oo, we obtain, for n

sufficiently large and for all v > 0,

|bl/,n| < Z ‘akﬁH(ka? pu>‘ < \/% Z ‘ak,n‘
k=n+m+1 k=n+m+1
[o@) 0 1 m
< n n—+s,n
e S S L)

<cr Y |Thal: (IL.40)

k=n+1

Thirdly, we show that P¥, /Qk  converges in capacity to F' inside D, (r), as n — oo.
Let K be a compact subset of D, (ry and o be the smallest positive number such that o > 1

and K € D, C D, (r)- Choose § > 0 so small that

)
P2 = pu(F) =6 > pmr(F), po(F)—25>1, and p“* <1 (TL.41)
) —
We write (I1.25) in the form
n+m 00
Q()Qh n(F(2) = Q)P < D buallpu() + Y [buallpu(2)]. (1142)
v=0 v=n+m+1

Define
n+m ee]
AL — ZV:O |bl,,n]|p,,(z)| d A2 — Zy:n+m+1 |bv,anu(Z)|
S 10T e ] R R 5 e oo ]

and let Q4 (2) := [[72 (2 — A ;). Therefore, the relation (II.42) implies

Py - 2

nm(2)

< An(2) + AL(2),
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for all z € Dy == Dy \ (U 0{ 1y s Anamn F U {0y A }).
Let us bound A}, (z) from above. We will first estimate |7, /Q% ()] for z € D, and for

k > n + 1. By definition of 7,

1 e on(t)
() 2w F | >n+1 11.4
ho(z) 2w /F sk(t) F (1) oy kzntl (11.43)

P2

so we shall approximate the factors multiplying F'(¢) in the integral signs separately. For n

sufficiently large,

C8
i) < — k>l
Define
ruz,m,pg (t> = H (t - )\n,j)-
A, €Dp,
It is easy to see that
t —
C S Cy,
z=G
forallt € T')p,, 2 € D,, and ¢ € C\ D,, (notice that the last condition in (IL.41) implies
p2 > o). Then,
lrtm@) ﬁmpg <t> C10 -
| o om | < . zebh, tel,. 11.44
) Fones ()|~ (@) S

By (I1.43), we obtain

Tk, Ci1 ~
’ < , z€D,, k>n+1, n>ns,
nm(2) | T |Qnm.ps (2)](p2 — 0)F
which implies
bun C12 -
: < , 2€ Dy, n>mng. (I1.45)
‘Qﬁ,m(Z) |Qn.m.p> (2)|(p2 — 6)”

Applying (I1.21) and the maximum modulus principle, we have

Ip,(2)] < ei3(c+0)", z€ D, v>0. (I1.46)
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Using (I1.45) and (I1.46), we obtain the estimate:

n+m

|bvn||pv < (n+m+ 1)ciaci3(o + )"
Z ) —  |1Q(2)Qhmps(2)(p2 — )™

zeD,.

We choose 6 > 0 such that (o +0)/(p2 — ) < 6 < 1. Therefore, for n sufficiently large,

o )q:@:p O e D,. (I1.47)

An(2) <

Next, let us approximate A2(z). Since deg(QP¥, ) < n+ m, by a computation similar
o (I1.24), we obtain

= (QQ" . F, p,)y = 2% /F QUQ (FM)s,(t)dt, v>n+m+1.  (I148)

As before, from (I1.22) and (I1.48), we have

|bun| C15 ~
b > .
Q))<= [0 P (g — sy = € P vzmdmal o (IL49)

for n > ny. Then, using (11.46) and (I1.49), for n sufficiently large, we obtain

c16(0 +6)" c170™

A? < . z€D,. 11.50
") S QN2 =0 1D Q) (11:50)
Combining (I1.47) and (I1.50), we have, for n sufficiently large,
P#m(z) Cl8gn ~
F(z) — = , 2€D,. I1.51
76~ G| < et 15

Let T,,(2) :== Q(2)Q" ,, ,.(2). Then, T,,(2) is a monic polynomial of degree at most 2m. Let

n,m,p2

e > 0. Clearly,

. PH A "
€n 1= {z €D, : ‘F(z) — Zm((i)) > 8} C {z €D, : |Q(Z) Z,m,p2(2)| < 61889 } =: F,.
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The capacity function is monotonic and has the well-known property,
cap{z € C: [2" +a, 12" " +...+a <p"}=p, p>0.
Hence, we find that for n sufficiently large

1 1/deg Ty 1 1/2m
cape, < cap E, < <_6180n> < <_6189n> < cypf™?™.
5 €

This means that cap{z € D, : )F(z) — P’Z‘W(z) > ¢} =cape, — 0, as n — oo. This proves

n,m (%)

that [n/m]% converges in capacity to F' inside D, (), as n — oo. Applying Gonchar’s
lemma, we have [n/m|} converges to F uniformly inside D, g \ {\1,...,An}, as n — oo.
In addition we get that each pole of F'in D, (r) attracts as many zeros of )}, ,, as its order.
Therefore, deg Q% = m for all sufficiently large n which in turn implies that [n/m]% is
uniquely determined for such n. We have obtained (I1.10) and (II.11) except for the rate of
convergence exhibited in those relations.

To show (I1.10), we let K be a compact subset of D, (g \ {A1,... A}, 0 be the smallest
positive number such that ¢ > 1 and K C D, C D,,.(r), and choose an arbitrarily small

number § > 0 such that p, satisfies (I1.41). Note that what we just proved implies

IS < .
ze%lpa;n)iF) ’Qn,m(z)‘ = Coo

From (I1.22) and (I11.48), for n > ns,

1 C21
b,,n:—,/ HeLy (H)F(t)s,(t)dt| < ————, v>n+m+1,
bonl = |5 |, QUOQUMOF @ Oat] < oo
|Tkn| = L QL () F(t)sk(t)dt| < 2 k>n-+1 (I1.52)
k,n 27TZ Fp2 n,m k — <p2—5)k’ - . .
Then, by (I1.40), for n > ng,
- Ca23
bon| <c 5 Ten| < ——=, 0<v<n+m.

k=n+1
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Using (I1.46), we can prove that for z € D, and for n > nj,

Q(2)Q% ()P (=) - |<Z|bm||py e ((255)+0) . sy

Dividing the previous inequality by |QQ% .|, we have, for n > ny,

=ToG )025 (2)] <(;+_f;) +5)n, z€K.

Since for n sufficiently large, the zeros of QF  (2) are distant from K, it follows that

Qnm(2)| ~

lim sup ||F — [n/m]4]| 1" < <Z+5>+5.
2

n—o00 - 5

Taking § — 01 and py — p,(F), we obtain (I1.10). Moreover, if K is any compact set

contained in D, (), we can use similar arguments to show that (II.53) implies

) ollpe
] FO* — i/ | . 11.54
msup [|QFC ., = QPLull™ = -5 (I1.54)

Finally, we prove (I1.11). We first need to show that for k =1,...,7,

- - [P(ew)]
limsup [(Q*, )9 (ap)|V" < —=2, j=0,...,mp — 1. (I1.55
n—00 | ' ‘ pm<F) )

Let € > 0 be arbitrarily small so that B(oy,e) C D, (p) for all k = 1,...,~ and the disks

B(ak, ), k=1,...,7, are pairwise disjoint. As a consequence of (I1.54), we have
lim sup || (= — ap) ™ Qi — (= = an) ™ Pl |3 dloors (I1.56)
n—oo e ak E N pm(F) ’
so by Cauchy’s integral formula for the derivative, we obtain
limsup || [(z — o)™ FQ , — (z — ay)™ PF }(] ||1/" HCM]BM (IL.57)
e300 n,m n,m ]B(Clk ) — pm(F) ) .
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for all j > 0. Since € > 0 can be taken arbitrarily small, the inequality (I1.56) implies that

, |D ()|
lim sup | Ly Q" (ap)|V/™ < =2,
n—00 | g ’ ( k>| pm(F)

where Ly := lim, ,,, (z—ay)"™ F(z) # 0 (because I has a pole of order my, at ay). Therefore,

_ 12w

limsup |Q* , (ax)|V/" <

Proceeding the proof by induction, we let » < my — 1 and assume that

. o
lim sup [(QF Y9 ()| < (BB gy (11.58)

n—00 e pm(F) ’

We want to show that the above inequality also holds for j = r. Using (I1.57), since r < my,

we obtain

_ 10w

limsup |[(z — ag)™ FQ" , 1T (ay)|V/™ < .
msup Wl < S

(11.59)

By the Leibniz formula, we have

(= ™ FQ,) VM) = 3 (7)1 = )™ FI () (@2) e

l

Therefore, by (I1.58), (I1.59), and the fact that L, # 0, we have

o
limsup [(Q% ) (a7 < 1200

n—o0 o pm(F)

which completes the induction and the proof of (II1.55).

77777

k,s and
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It is not difficult to check that g s exist (using for example [52, Theorem 1]). Then,

-1

b () =D D (@) (@) ars(2) + Quil2).

2
3

This formula combined with (I1.55) imply

limsup [|Q% ,, — Q" <

]

Proof of Theorem II.2.6. First of all, we will prove that (a) implies (¢) and (b) implies

(c) at the same time by using Lemma I1.3.2 for m = 1. Assume that (a) or (b) is satisfied,

that is,
F, F,p,
lim S (A LY (IL.60)
n—oo [, 14 n—00 F,
Let
T, = Fn : )\n <ZFapn>u
Fn+1 Fn
Define
05711<w _ Cn T +1( )—hn(w), ai(w) _ +1( )( +1 (w))’ wel
Cn+1 w w
and

NMno(w) =1, weU.

The functions o} (w) and o2 (w) are holomorphic on U. By Lemma I1.3.4, for ¢ > 0 sufficiently

small so that f(w) is holomorphic in a neighborhood of ~;,.,

: / J@ha(w) [ [ (w)

[fOénUn 0ln an i o owntz 2mi Sy, w™t! v
& F,
oo Fot [fhnstlngr — [f ]
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and

o2y = 2t [ LA () 1 / () f )by () |

210 ). wnt2 271 wnt2

F,pn
_ Gt (zF,p +1>“[fhn+ﬂn+1 — W fhnsalns = 0.

Cn+1 Fn+1

If (a) holds, then

ol (w) = lim o) (w) = h(w) (1 — 1) , uniformly inside U,
n—00 w
and if (b) holds, then
- Vv
o?(w) == lim o?(w) = Aw) (X (w))’ uniformly inside U.
n—00 w

Since h(w) is never zero on U, each function of(w), j = 1,2, has at most one zero in U
(which is 7). It is also easy to check that 7, 0(w) satisfies the rest of the required conditions
in Lemma I1.3.2. Moreover, if f,, = 0 for n > ng, then F,, = [fh,], = 0 (recall that h,(w) is
analytic at oo). Therefore, by (ii) in Lemma I11.3.2, 7 € U \ {00} and lim,, f,,/fot1 = 7.

Now, we prove that (¢) implies (a) and (b) by Lemma IL1.3.1 for m = 1. Assume that
lim,, oo fn/fur1 = 7. By Fabry’s theorem, we have (I1.14). Set

Jn Tn
Ty = , ap(w):=——=1, and n,o(w)=1, weUl.
A )= o)
Therefore,
[fannn,o]n = Tnfor1 — Jn =0,
a(w) = lim a,(w) = T 1, uniformly inside U,
n—00 w
no(w) := lim 1, 0(w) =1 =w", uniformly on C,
n—oo

and o(w) has at most one zero in U. Applying (I1.16) in Lemma I1.3.1, if we select K, ; (w) =
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hyn(w) and L, ;(w) = 1, we have

lim —[fhn]n = h(7),

n—oo  f,

and if we select K, 1(w) = ¥(w)h,(w) and L, 1(w) = 1, we have

tim S Pnln g n).

n—o0 fn

Since h(w) vanishes nowhere on the domain U,

= lim n [Fhn]n = lim cn [fhnln fn frt1

n—0o0 FnJrl n—00 Cp41 [fthrl]nJrl n—00 Cp41 fn fn+1 [fthrl]nJrl

and
lim ——E = lim — =1 =Vv(r) =\
T E A T g, Tk, T =A
Then, the proof is complete. O

Proof of Theorem II.2.8. First of all, we prove (b) implies (a) by using Lemma I1.3.2.
We assume that the zeros of Q4 (2) have limits Ay,..., Ay, as n — oo. For w € U, we
define

ap(w) = w " h(w)@ , (¥ (w)),

n,m

Cn+m*jwn+m+1 Sn+m—j (¥ (w))¥'(w)

N (W) == h(w) , j=0,...,m—1
The functions a,(w) and w™In, j(w) = hpym—;(w)/h(w), j = 1,...,m — 1, are holomorphic
on U, and
alw) == nlgr;() an(w) = w "h(w) 1_[1(\I/(w) — i),
=

nj(w) := lim n, ;(w) =w, j=0,1,...,m—1,

n—o0

uniformly inside U \ {oo}. Since h(w) is never zero on U, a(w) has at most m zeros in

U \ {oc}. By Cauchy’s integral formula, Fubini’s theorem, and the definition of Q% , we

38



have, for € > 0 sufficiently small so that F(z) is analytic on Dy, and for j =0,...,m — 1,

Fantinin = o [ FO0@0)Qh ()i (¥(w)) ¥ (w)do
_ % . FOQ! . (8)snsm s (t)dt = % F1+EF(t) Z,m(t)/pn—;mf_jz@)dﬂ(z)dt

/ i /Fl+ )dtpn+m i(2)du(z) = en / F(2)QY . (2)Pnsm—s(2)du(z) = 0.

Therefore, we prove the required conditions for Lemma I1.3.2. If the regular part of f(w) is
a rational function with at most m — 1 poles, then F'(z) is a rational function with at most

m — 1 poles which implies that A, ,,,(F, ) = 0 for n sufficiently large. This is impossible,

because deg(Q% ,,) = m, for n sufficiently large. Therefore, by Lemma I1.3.2, a(w) has
precisely m zeros 71,...,7, in U \ {oo} and the limits of the poles of the classical Padé
approximants [n/m];(w) are 1i,..., Ty, as n — 00.

Now, we prove (a) implies (b) by using Lemma I1.3.1. Assume that the poles of [n/m] ;(w)
have limits 71,...,7,, as n — co. We assume further that @), ,,(w) is monic. By Suetin’s
theorem, we have (I1.14).

Define, for w € U,

Then,
a(w) nh_)rgo an(z) =w™ H —75),
j=1
m(w)=w", v=0,....,m—1,

uniformly inside U \ {co}. By the definition of @, (%), it follows that, for € > 0 sufficiently

small so that f(w) is holomorphic on 7. and for n sufficiently large,

flw J(@)Qnm(w) |

[f&nﬁn,l/]n [fannnl/n— 271_2 wn— o m—vtntl :O, V:O,...,m— 1.
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We can easily check the rest of all required conditions in Lemma I1.3.1 for &, (w) and 7, (w),
so we can apply the equality (II.16) in Lemma I1.3.1.

Next, we set

ot {FsPns1)y Gt (ZF prg1)y 0 Ca 1t (B F D)
Quan(2) 1= ' ' - ' . (IL61)
Cn+m<F7 pn+m>u Cn+m<2F7 pn+m>u T Cn+m<ZmF> pn+m>,u
1 z ce zm

Note that the polynomials Qnym(z) satisfy
(Qn,mF,py)uzo, v=n+1,....,n+m, (I1.62)

and if we can show that A, ,,,(F, ) # 0 (the coeflicient of Qnm(z)/ H;n:l Cntj) which we will

show at the end of this proof, then Q% (2) is unique and

Qnm(2)
A (Fy ) TTL en

nm(2) =

Using Cauchy’s integral formula and Fubini’s theorem, for £ > 0 sufficiently small so that

F(z) is holomorphic on Dy, for j=1,....m+1,and v =1,...,m,

1 ¢TIF(Q)

2_7T'i i C_ e den-i-V(Z)d:u(Z)

j—1
Cn—l—u<zJ F, pn+y>,u = Cn—l—u/

271 -z 271

_ Cntv /F GLR(C) / p—2+”(z)du<z)dg= Cniv /F ¢TF(C)sn1(C)dC

:C;;; / W7 (w) f(w)sn4 (U (w)) ¥ (w)dw = [f(w)w ™" Ay yp (w) W (w)],,. (11.63)

Computing the determinant in (I1.61) along the last row and applying (I1.63), we obtain

m

Qn,m(z) - Z(_l)m+kzk det([fKn,th,r]n)tzl ..... m,r=1,...k,k+2,....m+1, (1164)

k=0

40



where

Lopy(w) =9 w), r=1,...,m+1.

Moreover, all functions K, ;(w) and L, ,(w), are holomorphic on U \ {oo}, and

Ki(w) = lim K, ;(w) =w"h(w), t=1,...,m,

n—oo
Lo(w) =V w), r=1,...,m+1,
uniformly inside U \ {oo}. By Lemma II.3.1 and (I1.64), we have 7,..., 7, € U and

lim @nm(2)

n—00 det(fn_i_j)i,jzo,l ,,,,, m—1

— lim i(_l)m+kzk det([fKn,th,r]n)tzl ,,,,, m, r=1,....k,k+2,....m+1
[ det(fr—i—j)ij=01,..m1

_ i(_l)erkzk det<Kr(Tt))t,r:1 ..... m det(-[/r(Tt))t:l ..... m, r=1,....k,k+2,.... m+1

— W2<T17T27"'7Tm>
1 W(m) ()
_ det(Ko ()i, m | (IL.65)
W2(7'1,7—27~--;7—m) 1 \I/(Tm) \I]m(,rm)
1 ~ A zm

_(—1)mm-vyz Lz 270) 11 (M) RO (IL66)

m . — .
H’i:l Ti 1<i<j<m 7—.7 T

where W (71,72, ..., T) = det(7 )i =1, .m is the Vandermonde determinant of the num-
bers 71,..., 7. Since the degree of the polynomial in the last expression is m, the de-
gree of Qnm(z) is m for all n sufficiently large. This implies that A, . (F,u) # 0 and

hm(2) = Qum (2)/ (A (F, 1) [T~ cntj). Moreover, the zeros of the polynomial in (II.65)

are \i, ..., Am, 0 the zeros of Q. (z) (and Qh .(2)) converge to Ay, ..., Ay, asn — oo. [
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CHAPTER III

RIESZ POLARIZATION CONSTANTS AND CONFIGURATIONS

III.1 Introduction, background results, and notation

Throughout this chapter, A will denote an infinite compact subset of the m-dimensional
Euclidean space R™. Let wy = {z1,...,2xy} denote a configuration of N (not necessarily
distinct) points in R™ (such configurations are known as multisets, however, we will still use
the word configurations). The class of Riesz s-potential functions and log-potential function

corresponding to a fixed configuration wy = {z1,...,zxy} C R™ is defined by

Sy ly — a7t ifs € R\ {0},
U(wn;y) == N, ifs=0,

SN logly — a7t if s = log,

where y € R™ and | - | is the Euclidean norm in R™.

For a configuration wy = {z1,...,zny} C A, we define the following quantities
M*(wn; A) = Iyneijgl Us(wn;y), s€ER, (TT1.1)
m’(wy; A) == max Us(wns;y), s<0, (I11.2)

M8 (wy; A) = ryneizll U8 (wn;y). (II1.3)

For a fixed configuration wy C A, since the potential functions f(y) := U(wn;y),s > 0
and g(y) := U'8(wy;y) are lower semi-continuous in y on A and A is an infinite compact set,
the functions f(y) and g(y) attain their minimums on A. Moreover, for a fixed configuration
wy C A, the potential function h(y) := U*(wn;y),s < 0 is continuous in y on A, so by the
compactness of A, the function hA(y) attains its maximum and minimum on A. Therefore,
the maximum and the minimums in (III.1), (III.2), and (IIL.3) are well-defined.

Let #W denote the cardinality of the multiset W. The definitions of the maximal and
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minimal N-point Riesz s-polarization constants and configurations of A and the maximal

N-point log-polarization constant and configurations of A are the following.

Definition ITI.1.1. Let A be an infinite compact subset of the m-dimensional Euclidean

space R™. For s € R, the mazimal N-point Riesz s-polarization constant of A is given by

M3 (A) = max M*(wy; A), and MYy(A):= N, (I11.4)
Hn=N

for s <0, the minimal N-point Riesz s-polarization constant of A is given by

mi(A) == WIJ{]HCI}A m*(wy; A), and m%(A) := N, (I1L.5)
Hwn=N

and the mazimal N-point log-polarization constant of A is given by

MRE(A) = max M8 (wy; A). (I11.6)
Hwn=N

We say that a configuration wy is a maximal N-point Riesz s-polarization configuration of
A, a minimal N-point Riesz s-polarization configuration of A, or a maximal N-point log-
polarization configuration of A, if it attains the maximum in (II1.4), the minimum in (I11.5),
or the maximum in (II1.6), respectively. For short, sometimes, those configurations are

simply called optimal for M3 (A), m3(A), or ME(A), respectively.

The existences of optimal configurations in (III.4), (IIL.5), and (IIL.6) follow from the
continuities of the functions f(xy) = M*(xn;A),s < 0 and g(xy) := m*(xy; A),s <0 in
xy on AN and the upper semi-continuities of the functions h(xy) := M*(xy; A),s > 0, and
k(xn) := M"8(xp; A) in xy on AV (see Lemma II1.3.1).

For a configuration wy = {x1,...,2x}, its covering distance relative to A is defined by

ploy; A) = max min |y — z;].
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The N-point best-covering distance (or N-point mesh norm) of A is defined by

pn(A) = miI}4 plwy; A). (IIL.7)
#WO-IJVNC=N

We call an N-point configuration wy an N-point best-covering configuration of A if it attains
the minimum in (IIL.7).

In order to state our results in Section II1.2.1 about asymptotic properties for N fixed and
s varying of optimal Riesz polarization configurations, we need to introduce the following

definition of cluster point.

Definition I11.1.2. We say that a configuration wy C A with #wxy = N is a cluster point
as s — t of maximal (minimal) N-point Riesz s-polarization configurations of A if there is
a sequence {wy 122, of maximal (minimal) N-point Riesz si-polarization configurations on

A such that limg_,o sx = ¢, and limy_, w3 = wy in the product topology on AN,

Our main result in Section I11.2.2 about the dominant term of M$(A) and the limiting
distribution of maximal N-point Riesz d-polarization configurations will be stated on subsets

of the following d-dimensional C'-manifolds in R™.

Definition II1.1.3. A set W C R™ is called a d-dimensional C'-manifold embedded in
R™, d < m, if every point y € W has an open neighborhood V relative to W such that
V is homeomorphic to an open set U C R? with the homeomorphism f : U — V being a

C'-continuous mapping and the Jacobian matrix

Vfi(x)
J =

x

V fm(z)

of the function f having rank d at any point = € U (here fi,..., f,, denote the coordinate

mappings of f).

Hausdorff measures defined as follows will play a significant role in the study of these
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asymptotic behaviors. For a given set A C R™ and 0 < o < m, define the quantity
H(A) = inf{> (diam(E;))* : A C UX,E;, diam(E;) <4}, 6 >0,
i=1

where E; are arbitrary non-empty subsets of R™. Define a set function H,, : {A: ACR™} —
[0, 00] by

Ho(A) == lim HS(A) = sup HS(A).

6—0+ 5>0

We call H,, the a-dimensional Hausdorff measure in R™. For d € N, we denote by Hy the
d-dimensional Hausdorff measure in R™ normalized so that the copy of the d-dimensional
unit cube embedded in R™ has measure 1. Moreover, we will denote by 34 = Hq(B?) the
volume of the d-dimensional unit ball.

For a subset K C A, we will denote by 04K the boundary of K relative to A.

We say that a sequence {u,}5°; of Borel probability measures in R™ converges to a Borel
probability measure y in the weak* topology of measures (and write g, — i, n — o) if

for every continuous function f : R™ — R,

fdu, — | fdu, n— oc. (I11.8)
frie |

Remark III.1.4. It is well known that to prove (II1.8) when u and all the measures p,, are

supported on a compact set A C R™, it is sufficient to show that
pn(K) = u(K), n— oo,

for every closed subset K of A with u(94K) = 0.

We call a sequence {wy}J_; of N-point configurations on A asymptotically maximal for

the N-point d-polarization problem on A if

d(,. -
lim M (wy: 4)

=1.
N T ME(A)

The polarization problem is related to the minimal Riesz energy problem described below.
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For a collection wy = {x1,...,zx} of N > 2 pairwise distinct points in R™ and s > 0 we let

Ey(wy) == Z ﬁ

‘s x;
1<i#j<N

The minimal N-point Riesz s-energy of an infinite compact set A C R™ is defined as

E(A,N):= min FE(wy).
wnNyCA
#Hwn=N

D.P. Hardin and E.B. Saff proved in [34] (see also [33]) that if A is an infinite compact

subset of a d-dimensional C''-manifold embedded in R™, then

. gd<A7 N) _ ﬁd
N NI N Ha(A) (IIL9)

Furthermore, if A is as in above condition and H4(A) > 0, then for any sequence wy =

{zpx N}, N € N, of asymptotically d-energy minimizing N-point configurations in A in the

sense that
E
b g =
we have N
%; S de(('lg‘, N = o, (111.10)

in the weak* topology of measures. Here 9, denotes the unit point mass at the point x.
Relations (II1.9) and (II1.10) have recently been extended by D.P. Hardin, E.B. Saff,
and J.T. Whitehouse to the case of A being a finite union of compact subsets of R™ where
each compact set is contained in some d-dimensional C''-manifold in R™ and the pairwise
intersections of such compact sets have Hg-measure zero. These authors observed that
the methods of [40] could be applied (see [9]). For convenience of the reader, part of this

statement and its proof are reproduced in this dissertation in Proposition I11.3.13.
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I11.2 Main results

I11.2.1 Basic properties of maximal and minimal Riesz polarization constants

and configurations

Theorem II1.2.1. Let N € N be fixed and A be an infinite compact subset of R™. We have

lim M§(A)Ys = ——

where py(A) is the N-point best-covering distance of A. Furthermore, every cluster point
as s — 0o of maximal N-point Riesz s-polarization configurations of A is an N-point best-

covering configuration of A.

Theorem I11.2.2. Let N € N be fixed and A be an infinite compact subset of R™. We have

ME(A) = fim A =N

s—0t S

(IT1.11)

Furthermore, every cluster point as s — 07 of mazximal N-point Riesz s-polarization config-

urations of A is a maximal N-point log-polarization configuration of A.

Remark I11.2.3. The equality (III.11) shows that f(s) := Mg (A) is right differentiable at
0 and its right derivative is My2(A).

Theorem II1.2.4. Let N € N be fized and A be an infinite compact subset of R™. The
function f(s) := MR(A) is continuous for all s € (—00,0) U (0,00). More precisely, the
function f(s) is right-continuous but not left-continuous at 0. The function g(s) := m3(A)
is continuous for all s € (—o00,0]. Furthermore, for t € (—o00,00), every cluster point as
s — t of maximal N-point Riesz s-polarization configurations of A is a maximal N-point
Riesz t-polarization configuration of A, and for t € (—o0,0], every cluster point as s — t
of minimal N-point Riesz s-polarization configurations of A is a minimal N-point Riesz

t-polarization configuration of A.
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I11.2.2 Asymptotics of maximal Riesz d-polarization on subsets of d-dimensional

manifolds

Our main result about the dominant term of M (A) and the limiting distribution of maximal

N-point Riesz d-polarization configurations as N — oo is the following.

Theorem I11.2.5. Let A = UL_|A; be an infinite subset of R™, where each set A; is a
compact subset contained in some d-dimensional C'-manifold in R™, d < m, and Hq(A; N

A)=0,1<i<j<l. Then

Nooo NInN  Ha(A) (ITL.12)

Furthermore, under an additional assumption that Ha(A) > 0, if oy = {z;n}Y,, N €N, is
a sequence of asymptotically mazimal configurations for the N-point d-polarization problem

on A, then in the weak* topology of measures we have

1« o Ha()la
NZ%,N = FaA) N — 0. (I11.13)
=1

Remark II1.2.6. Note that the conditions imposed on the set A imply Hy(A) < co. More-

over, if H4(A) = 0, then the limit in (III.12) is understood to be oco.

I11.2.3 Maximal and minimal N-point Riesz s-polarization configurations of the
m~dimensional sphere

Two 1-dimensional circles in different planes

Let wy = {z1,...,xx} denote N (not necessarily distinct) points in R%. Let R > 0. Denote
by
Sk = {r € R*: |z| = R}

the circle centered at 0 of radius R in R?. When R = 1, we simply use the notation S'.

We consider the generalization of Riesz polarization constants and configurations of two
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concentric circles in the following way. For s € R and h > 0,

N

My"(S';Sg) := max min (\/!y—:cj|2+h> , and MY"(S;Sk) =N, (IIL14)
wyCSt yeSh “—
#wn=N j=1

and
N s

my'(S;Sp) == min max (,/|y—xj|2+h) , and my"(S';Sk) = N. (IIL.15)
;Ncsl yESl =
WwN=N

We will call wy a mazimal (minimal) N-point Riesz (s, h)-polarization configuration of
(S';SL) if wy attains the maximum in (IT1.14) (minimum in (I11.15)). Clearly, if R = 1
and h = 0, then M3"(S';SL) = M5 (S') and m3"(S';SL) = m3(S'). The term h of the

potential function z;vzl (x/\y —zi]2+ h) " in (III.14) and (III.15) can be interpreted as

follows. Let us consider two circles in 3D: one is S' x {0} and the other is Sk x {V/h}.

The potential function f(y) := Z;VZI (W) T s actually the Riesz s-potential
function on Sk x {v/h} when wy := {21,...,zy} is fixed on S' x {0}.

Because the Euclidean space R? and the complex space C have the same dimension and
the same norm, we will embed S' and S}, into C and adopt the notation 27, where j € N
and 1/x from complex numbers.

A complete characterization of all maximal and minimal N-point Riesz (s, h)-polarization

configurations of (S';S}%) when s = —2,..., —2N + 2 is the following.

Theorem II1.2.7. Let N e N, pe {1,2,...,N —1}, R> 0, and h > 0. We have

P ' Y
M(EYS)) = mi (8 ) = 5 () P (0t V= B)

21’
7=0

where a :== R?>+h+1 and b := 2R. Furthermore, an N -point configuration wy = {x1,..., TN}
is a mazimal or minimal N -point Riesz (—2p, h)-polarization configuration of (S';S}) if and

only of Zz]\il T = val xz = = Zz]il ry = 0.

Letting R = 1 and h = 0, we have the following corollary.
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Corollary II1.2.8. Let N € N and p € {1,2,...,N — 1}. We have
My (S') = my™(S') = NZ( ) R,

Furthermore, an N-point configuration wy = {x1,...,xNx} s a mazimal or minimal N -

point Riesz —2p-polarization configuration of St if and only if Zfil r; = Zfil 2= =

Zf\il z; = 0.
The m-dimensional spheres

We will examine optimal configurations for M3 (S™) and m% (S™), where
S™ = {x € R™ : |z| = 1},
for some negative even integers.

The simplest case is when s = —2.

Theorem I11.2.9. Let N € N. Then
M](,Z(Sm) = m;,z(Sm) =2N.

Moreover, an N-point configuration wy = {x1,..., 2N} is optimal for My?(S™) or m?(S™)
if and only if Zjvzl z; = 0.

The next result shows that if wy is an N-point configuration on S™ such that its associated

Riesz s-potential function is constant on S™, then wy is optimal for My (S™) and m% (S™).

Theorem II1.2.10. Let s < 0. Assume that there ezists an N-point configuration wy =
{21,...,xn} on S™ such that its Riesz potential function f(y) == Us(wn;y) = Yo, |ai—y|~

is constant on S™. Then, such wy is optimal for M5 (S™) and m3,(S™).

As a consequence of this theorem and the results in [42, Theorem 3-5|, we show that
many natural configurations on S™ are optimal for My (S™) and m3(S™) for some certain

negative even integers s and certain positive integer m.
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Corollary I111.2.11. Let N € N. We have the following:

(i) Any N + 2-point reqular simplex configuration on SV is optimal for My ,(S™) and

m]_\IiQ(SN)'

(i) Any 2N+2-point cross-polytope configuration on SY is optimal for MZ_A‘}H(SN), MQ_]\?+2(SN),
m2_1i1/+2(SN)7 and m2_1§7+2(SN>'

(i11) Any 2N*1-point hypercube configuration on SV is optimal for My, (SY), My, (SV),
mon1 (SY), and m;{,, (SV).

Remark III.2.12. For those values s and those configurations, their associated Riesz s-

potential functions are constant on S*.

II1.3 Proofs

I11.3.1 Proofs of I11.2.1

Lemma II1.3.1. For a fived vector zy € AN, the functions f(y) = Us(zn;y), s > 0
and g(y) == U8(zy;y) are lower semi-continuous on A. Moreover, the functions h(zy) :=

M3 (xn; A), s > 0 and k(zy) := M'8(xy; A) are upper semi-continuous on AN.

Proof of Lemma IV.1.1. For a fixed vector xy € AV, the lower semi-continuities of U*(xy;y),
s > 0 and U"°8(x; y) as functions of y on A are well-known. We prove only the second state-
ment. Let s > 0 and x}y = (2,...,2%) € AN and let {x% }ren be a sequence in AV such
that xk — x/y, as k — oco. Because f(y) := U*(xy;y) is lower semi-continuous on A, there
exists y° € A such that

U*(xyiy") = M*(xly; A).

Notice that |y° — %] > 0 for all 7 since the cardinality of A is infinity. Therefore, the function

h(xy) := U*(xy;y°) is continuous in a small neighborhood of x)y. Hence,

lim sup M*(x%; A) < limsup U®(x%;9°) = klirn Us (x5 4%) = M*(xy; A).
— 00

k—o0 k—o0

The same argument can be applied to the case s = log. O
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Lemma I11.3.2. For a fized vector (z1,...,xy) € AN, the function f(y) := mini<;j<y |[y—;]

is continuous on A. Moreover, the function g(xy) = p(xy; A) is continuous in xy on AN,
Proof. The proof of this lemma is trivial. ]

Proof of Theorem III1.2.1. Let s > 0. Clearly, for y ¢ {x1,...,zn},

miny<j<n [y — ; mini<j<y [y — ;]

N 1/s
1 1 N1/s
< — < . (I11.16)
| (; ly — %‘|5>

By Lemma II1.3.1 and Lemma II1.3.2, since the function h(t) := t'/* is increasing and

continuous on [0, 00), we have

N 1/s
1 1 N*/s
< M3 (A)Y* = max min T —— < : Ir.17
i) < MR = e w2 ) S D
#LUN:N ]—1
This implies that
1
lim My (A)' = .
g M) pn(A)
Let {wi¥ bren := {{z7", ..., % } }ren be a sequence of maximal N-point Riesz sg-polarization
configurations of A such that s, — oo and Wy — wy = {z},..., 24}, as k — oo. Let

wy = {z1,...,zx} be any N—point configuration on A. Using (III.16) and the fact that

h(t) := t'/* is continuous and increasing on [0, 00), we obtain

N 1/sk N 1/sg
1 1 1 N1/sk
— < ([mn) —— <|mn) —— < —
plwn; A) (yeA; !y—lesk) (yEA ; \y—x-k13k> plwy; A)
Now, let k — oo, it follows from the continuity of the function p(wy, A) that

1 1
<

< , forall wy C A.
plwn; A) ~ pwy; A) N

Therefore, py(A) = p(wi; A4). O
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Before we prove Theorem II1.2.2, we need to state some lemmas. For s > 0, we define

1
Us log wN;
Z !y By =zl

where wy := {x1,...,zn}.

Lemma I11.3.3. Let wy = {z1,...,xn} be an N—point configuration on A and y be a

point in A such that miny<;<y |y — ;| > 0. Then, for s >t >0,

US(WN; y) - Ut(WN§ y)

s—1

Ut (wy;y) < < U*'8(wp;y).

Proof of Lemma II1.3.3. The lemma follows from the inequalities

s t

atlogaga _a <a’loga, s>t>0, a>0. (IT1.18)

]

Lemma I11.3.4. Let wy = {x1,...,xn} be an N—point configuration on A and y be a

point in A such that miny<;<n |y — x;| > 0. Then,

Us(wn;y) — N
U8 (wy;y) = lim (wn:y) :
s—0t S
Proof of Lemma I11.3.4. This immediately follows from Lemma III.3.3. [

Proof of Theorem III.2.2. let wk}g be a maximal N-point log-polarization configuration

of A and y*® be a point in A such that
U (w: y°) = M*(wiB; A).

Using Lemma I11.3.3 for s > ¢ = 0, we have

U(wy'y") = N MP(wyA) =N _ Mi(A) - N

Mlog log A Ulog log, <
(RF; A) < Uit y") < =0 . :
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which implies

MR (A)— N
lim inf M3 A) = N > MyE(A). (I11.19)
s—0t S
Let wly = {},...,2y} be a cluster point as s — 07 of maximal N-point Riesz s-
polarization configurations w$, := {x3,..., 2%} of A and y° be a point in A such that

Us (W %) = MO8 (wly; A).
Then there is a sequence {w¥}22; such that sy — 01 and w3 — wjy, as k — co. So, we have

Sk /.,0 _N
MlOg(w;V;A) _ Ulog(wgv;yO) — lim U (wva )

k—oo Sk
~ lim <U5k(wzsv’“;yo) — N U ewy?) - US’“(W?Vk;yO))
k—o0 Sk Sk
WEL Sk.A - N Usk /.,0 —Usk Sk.,,0
k—s0c0 Sk Sk

which the second equality follows from Lemma II1.3.4. If we can show that

U (wyiy”) — U (wiiy’)

lim =0, (I1I.21)
k—oo Sk
then it follows from (II1.20) that
M (A)— N
M"8(why; A) > limsup L (I11.22)
k—o0 Sk

Combining (II1.19) and (II1.22), we have
M8 (why; A) > MYXE(A).

This implies
M (A)— N
lim L
k—oo Sk

= M5 (wiy; A) = My#(A)

and W)y is optimal for MJ%(A).
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Now, we prove (II1.21). We consider

U (wy:y”) — U (wiy; y°
Sk

‘Eny e I D T L

Sk

N 0 _ .Sk|—sk _ | =Sk _ — 2SE|\Sk _
=S ly" — x|~ !y il <Z (ly° — il /ly° — )™ —1 ‘
Py |y° _95/‘3’“ Sk
(I11.23)
By (II1.18), for i = 1,..., N,
0 _ /10 — 5%V — 1 2 | 0 _ 0_
(19" = z3l/|y° — 23*)) < max {1, y’ log | L= || < g |log | =20 || 0
Sk yo ;" Yy -t Yo —
as k — 0o. By this and (II1.23), we obtain
g U y?) = U wiiy®) _
k—oo Sk

Next, we will show (II1.11). Let {sg}ren be a sequence of positive numbers such that
s — 0, as k — 00. Denote by wi} a corresponding maximal N-point Riesz sj-polarization
configuration of A. By compactness of A, there exists a convergent subsequence {sz\l;l hen C
{wi¥ bren, say w}s\’;l — wh, as | — oo. Using above argument, we obtain

o Mo (wy's A) — N

=00 Sk

— M5 (i A) = MEE(A).

l

This means for every sequence {(My(A) — N)/sp},cy such that s — 07, as k — oo, there

Myt (A) — N C{vak(A)—N}
Sk JeN Sk keN

exists a subsequence

such that

Hence, we prove (I11.11).
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To show Theorem I11.2.4, we need the following three lemmas.

Lemma II1.3.5. Let t > 0. Assume that

SE — t, as k — oo,
ko (. k k — k

wry = {xf, ..., 2k} = wy =A{xy, ... 2N} as k — o0,
v =y, as k — oo,

U'(wniy) < o0,
and U198 (wk k)| and |U8(wh; yF)| are uniformly bounded for k sufficiently large. Then,
lim U (wys ) = Ul(wniy).
Proof of Lemma I11.3.5. Assume that
max{| U518 (Wh s )|, | U8 (wh 4")|} < M < 0o,  for all k > ny.
By Lemma II1.3.3,
U (wis ) = Ullwns )] < (U (Wi y") = U (Wi )] + U (ks 5*) — U wns )
< [ — | max{|U°% (wis )|, U (Wi ")} + U (Wi ") — Ut (wni )]
< sp = t|M + U (wy; 4*) = Ul wn; y)-

Then,
lim U (wi; 4") = Utwn; ).

k—o0
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Lemma II1.3.6. Let t > 0. Every cluster point as s — t of mazimal N-point Riesz s-

polarization configurations is a maximal N -point Riesz t-polarization configuration.

Proof of Lemma 111.3.6. Let wy = {z},..., 2%} be a cluster point as s — ¢ of maximal
N-point Riesz s-polarization configurations of A. This implies that there exists a sequence
{wi¥ }ken of maximal N-point Riesz sp-polarization configurations of A such that s, — ¢
and wiy — wy, as k — 00. Let wy := {x1,..., x5} be any configuration on A. Denote by
y® € A a point such that

U (i ™) = M (A)

and by y'** € A a point such that
Uk (wn; y'*F) = M** (wy; A).

By compactness of A, we can find convergent subsequences of {y* }reny and {y/** }ren. To

avoid complicated indexes, we will assume that

/St

y* — gy and y —>§, as k — oo.

We claim that

lim M (wy A) = U (wy 7) = M'(wy; A) (I11.24)
—00
and
klim Mo (Wi A) = Ul(wi; §) = MY (wiy; A). (I11.25)
— 00

If we prove (I11.24) for all N-point configurations wy C A and (II1.25), then we will have

for all N-point configurations wy C A,
MY (wi; A) = klim M (wik; A) > klim M (wy; A) = M (wy; A),
—00 —00

which implies M*(wi; A) = M%(A) and the proof will be complete.

Now, we show the claims. Note that we will show only (II1.25). The same proof can be
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applied to (I11.24). To show the first equality in (II1.25), by Lemma II1.3.5, we need to show
that |U%18(w3k: y**)| and |UH8(w3k; y**)| are uniformly bounded for k sufficiently large.
Let € > 0 be a small number that t—e > 0. For0 < t—e < s <t+landfori:=1,..., N,

we have

. 1 1 1 . .
win e | € e MR
= =N < I11.26
> pN(A)sk — max{pN(A)t_E,pN(A)H_l} oQ, ( )

where the third inequality follows from (II1.17). Since A is infinite, py(A) > 0. So, there

exists M > 0 such that
diam(A) > |y —a*| > M >0, keN, i=1,...,N.

Therefore, |U198(w3k; y*F)| and |UH1°8(wy¥; y**)| are uniformly bounded for all k. Hence, we

prove

lim M (w3k; A) = Ul (wh; §)- (I11.27)

k—o0

Now, we prove the second equality in (II1.25), i.e.
Ul(wy;§) < U'wi;y), forally € A,

Let y € A be such that U'(wy; y) < oo (otherwise the inequality is clear). Since wif — wi

as k — oo, we will consider only large k such that |z;* — x| < |y —x}|/2 for all i. Therefore,

*

*
diamn(4) 2 [y = 2] 2 |y — o] — o — af] 2 L0 > in P

=M, >0,

and |U**1°8(w3k; y)| and |UH°8(wy¥; y)| are uniformly bounded for k sufficiently large. Using

Lemma I11.3.3 and the equality (II1.27), we have

U'(wiig) = lim U (wiy™) < lim U (wif;y) = U'(wiiy).
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This proves the second equality in (II1.25). Then the proof is complete. O

Lemma II1.3.7. Let t < 0. Every cluster point as s — t of mazimal (minimal) N-point
Riesz s-polarization configurations is a mazximal (minimal) N -point Riesz t-polarization con-

figuration.

Proof of Lemma II1.3.7. In this case, the Riesz t-potential function f(y) := U'(wn;vy) is
nicely continuous on A. It is easy to show Lemma II1.3.5 for ¢ < 0 without the uniform
boundedness conditions on |Us198(wk ; y*)| and |U18(wk;; y*)| for k sufficiently large. More-
over, the proof of this case can be processed by the same argument as the proof of Lemma

I11.3.6. So, we leave the details for the reader. O

Proof of Theorem III.2.}. We will omit the proofs of the continuity of M4 (A) and
mh(A) for t € (—00,0), because their proofs are exactly the same as the proof of the
continuity of M¥ (A) for t € (0,00).

Now, we will show that M (A) is continuous as a function of ¢ for all ¢ € [0, 00). Recall
that Theorem II1.2.2 shows that M} (A) is right differentiable at 0, so M} (A) is right-
continuous at 0. Let ¢ > 0. We want to show that for every sequence { M3 (A)}ren such that
sk — t, as k — 00, there exists a subsequence of { M (A)}ren that converges to My (A). Let
{wi¥ }ren be a sequence of maximal N-point Riesz si-polarization configurations of A. By
the compactness of AV, there exists a subsequence {wi' }ir C {wi¥ }x such that wit — wi
as k' — oo for some wy C A. The proof of Lemma II1.3.6 actually shows that we can extract
a subsequence {wx¥" }rr C {wi¥ }r such that

lim M (A) = My (A).

k' —00

This proves the continuity of M} (A) for ¢ > 0.
Next, we prove that Mk (A) is not left-continuous at 0. Let w3, := {z5, ..., 2%} denote a

maximal N-point Riesz s-polarization configuration of A and let y* := 7. Then,

N-1
lim sup M3 (A) < hmsupz |z} —y*| 7% < hm Z diam(A) =N —-1<N. (II1.28)

s—0— s—0~
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Therefore, Mk (A) is not left-continuous at 0.

Finally, we prove that mf; (A) is left-continuous at 0. Since the function p(xy;A) is
continuous on AN, AN is compact, and p(xy;A) > 0 for all xy € AV, there exists a
constant C' > 0 such that

plwn; A) > C >0,

for all N-point configurations wy C A. Let wy := {z7,...,2%} be a minimal N-point Riesz

s-polarization configuration of A and y’* be a point in A such that

min [y — 2| = p(wi; A).

1<j<N J
Then,
N
. —s s s /s __ ,.8|—s SN s
N = slg(?— NC™? < llg(l){lf; ly* =i < hsrg(l){lme(A)

N
<limsupmjy(A) < lim Zdiam(A)_S = N.
i=1

s—0~ s—=07 2

Hence, the function mk;(A) is left-continuous at 0.

O]
111.3.2 Proofs of 111.2.2
Upper estimate
For a compact set A C R™, define the quantity
B NnA
ay(A;e) := sup sup Hal (91:,7;) ) (II1.29)
0<r<e zc€A Bar
Let also
s e MA(A) T OAY M (A)
hy(A) = IIJVHLIOEf NN and  hgy(A) = h}r\?jolip NoN

The main lemma of this section is given below.

60



Lemma II1.3.8. Let d,m € N, d < m, and A C R™ be a compact set with 0 < Hq(A) < oo,

containing a closed subset B of zero Hgq-measure such that every compact subset K C A\ B

satisfies
lim ay(K;e) < 1. (I11.30)
e—0t
Then
- Ba
hq(A) < : ITI1.31

If an equality holds in (I11.31), then any infinite sequence wy = {zr N}, N € N CN, of

configurations on A such that

Md(WN; A) _ Ba

lim = (I11.32)
Noxe  NInN Ha(A)
satisfies
N
1 «, Ha()]a
— o — N : I11.
N;(Sw H(d) N3N = (111.33)

We precede the proof of Lemma I11.3.8 with the following auxiliary statements.

Lemma IT1.3.9. Let 0 < R <r, D C R™ be a compact set with Hq(D) < 0o, d € N, d < m,
andy € D. Then

/ dHa(r) _ < r % (D >+Bdad<D;r)ln(%)d.

D\l I:C —yl* T

Proof of Lemma I11.53.9. We have

/ dHa(z) / Hq{z € D\ B(y,R) : |z —y|™ > t}dt

x_
DBl ! y!

/’Hd{a:ED\B(y, R) :t7V4 > |z —y|}dt

R™ d
< Ha(B(y, t*) N D)dt
0 o

< r N 4(D) + Ha(B(y,t /%) N D)dt

r—d
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R—d
< rH4(D) + 6d/ ag(D;r)ttdt

r—d

=r""H4(D) + Bgaia(D;r) In (%)d;

which completes the proof. O]

Lemma I11.3.10. Letd,m € N, d < m, and A C R™ be a compact set with 0 < Hq(A) < oo,
containing a closed subset B of zero Hg-measure such that every compact subset of the set
A\ B satisfies (111.30). Then for any infinite sequence {wy}yen, N C N, of N-point

configurations on the set A, the inequality

K M (wy: A K
HlB) i M A) gy g v O K) (I11.34)
B, N NN Nieo N
eN NeN

holds for any compact subset K C A with Hqa(K) > 0 and Hq(04K) = 0.

Proof of Lemma II1.3.10. Without loss of generality, we can assume that B # () since in the
case B = () we can also use as B any non-empty compact subset of A with H4(B) = 0.
Let x1 n,...,2N n be the points in the configuration wy, N € N, and let K C A be any

compact subset of positive Hg-measure such that Hy(94K) = 0. Denote
K, ={zr e K :dist(x, BUOIsK) > p}, p>0.

Choose an arbitrary number p > 0 such that Hq(K5,) > 0. Let > 0 be any number such
that 26,7 < Ha(Ks,). For each j =1,..., N, define the set

N
Djn = Ky, \ B(zjn,vN~%) andlet Dy :=(]Djn.
j=1
Notice that dist(Ks,, K \ K,) > p > 0. Furthermore, dist(/3,, A\ K) > 0. Indeed, if there
were sequences {z,} in K5, and {y,} in A\ K such that |z, —y,| — 0, n — oo, then by
compactness of K5, and A there would exist subsequences {z,, } and {y,, } having the same

limit z € Kj,. Since {y,, } C A\ K the point z must belong to 94K, which contradicts to
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the definition of the set K,,. Thus, we have
h = dist(Kop, A\ K,) = min{dist(K5,, K \ K,), dist(K,,, A\ K)} > 0.

Choose N € N to be such that rN~¢ < h and @d(Kp;rN_l/d) <

2 (such N exists since
K, is a compact subset of A\ B, and by assumption, satisfies limy_,o. @a(K,;rN~-7/4) < 1).
Then
N
Hi(Dn) = Ha (sz \ U B(xjn, TN_I/d>>

J=1

=Ha | K3p\ | Blajn,rN74

zj,NEK)p

> Ha(Ksp) — Z Hy (Kp N B(:L'j7N,'I"N_1/d))

zjNEK)p

d#(‘*}N N Kp) )

> Ha(Ks,) — Bar N

aq(K,; TN_l/d)
> Ha(Ks,) — @ﬂ"d@d(Kp; erl/d) > Ha(Ks,) — 2B4r¢ =: Yrp > 0.

Let 153‘,1\1 = K, \ B(z;n, N~1/4). Then

al 1
M%wy: A) = min _

Z / | de de

a:—xjN| %-p ]x—xJN|

| N

1 d?‘ld(l‘) d?'[d
= Vr.p 2 / | . it / |2

x; NeA\K - 2, N|

Taking into account Lemma II1.3.9 with R = rN~Y¢ and D = K, and the fact that
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dist(Dj v, A\ K,) > dist(K5,, A\ K,) = h > 0, we will have

1 K
Mo A) < - (#w i) (HAF 4 it )
rp
Ha(Djn)
)
wj’NGA\Kp
Consequently,
Md(wN'A) 1 #(wNﬂK ) Hd(K ) Hd(A)
—_— < L P g K ,; . I1I.
NInN ~ v, N rdln N B Kypir) +hd1nN (TIL.35)
Passing to the lower limit in (II1.35) we will have
T - :
7 := lim inf M(wy; A) < Batia(K i 7) y 1jmjnfM_
Noxoo NInN Ha(Kop) — 201 Voo N

Letting r — 0 and taking into account (III.30) and the fact that K, C K, we will have

< Lliminf #(wy N K,) < Ba lim inf #(wNﬂK).
M) 2w N Ha(Kop) oo N

Since lirgl+ Ha(Kap) = Ha(K \ (BUOAK)) = Hq(K), we finally have
p—

i .. HlvNK)
7 < ——liminf —————,
— Ha(K) 2w N
which implies (I11.34). O

Proof of Lemma III.3.8. Let Ny C N be an infinite subset such that

Let {n} ven, be a sequence of N-point configurations on A such that Mg (A) = M%(wy; A),
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N € Ny. Then applying Lemma I11.3.10 with K = A, we will have

_ . M%@n; A) Ba . .  H#H@yNA) Ba
= < =
ha(4) ]%%10 NIiN  ~ Ha(A) hgg;gf N Ha(A)

and inequality (II1.31) follows.

Assume now that hg(A) = ByHq(A)™" and let {wy}yen; N C N, be any infinite sequence
of N-point configurations on A satisfying (I11.32). For any closed subset D C A with
Ha(D) > 0 and Hq(04D) = 0, by Lemma I11.3.10 we have

#(WN N D) > Hd(D) Md(wN;A) N Hd(D)

lim inf > lim = : (I11.36)
N N Ba Noe NN Ha(A)
Let now P C A be any closed subset of zero Hg-measure. Show that
P
im 208 (I11.37)
N— oo N
NeN

If P =0, then (II1.37) holds trivially. Let P # (). Since Hq4(A) < oo, for every € > 0, there
are at most finitely many numbers § > 0 such that the set P[d] := {x € A : dist(z, P) = ¢}
has Hs-measure at least e. This implies that there are at most countably many numbers
d > 0 such that H4(P[6]) > 0. Denote also Ps = {x € A : dist(z,P) > d§}, 6 > 0.
Then there exists a positive sequence {0, } monotonically decreasing to 0 such that every set
0aPs, C P[0,] has Hs-measure zero. Since Ps, is closed and H4(Ps,) > 0 for every n greater

than some ny, in view of (II1.36), we have

lim inf #wn N (A\P)) > Tim inf #(wn N Fy,) > Hd(Pan)7 S
Yo N Now N Ha(A)

Since Ha(Ps,) = Ha(A\ P) = Ha(A), n — oo, we have

i HnNUNP)

which implies (II1.37).
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Since the set A\ D is also a closed subset of A and H4(04(A\ D)) = Hq(04aD) = 0, by
(I11.36) and (II1.37) (with P = 04D) we have

N — o0 N N—oco N
NeN NeN
.. HwyNA\D) H A\ D) Ha(D)
=1 —liminf <1— _ '
Nex N - Ha(A) Ha(A)
Thus,
. #lwnnND) HyD)
! = 11138
fyvlé% N Ha(A) ( )

for any closed subset D C A with Hq(D) > 0 and Hq(04D) = 0. In view of (II1.37) relation
(II1.38) also holds when D C A is closed and Hq(D) = 0. Then in view of Remark III.1.4
we have (II1.33). O

Auxiliary statements

We will show in this section that for every set A satisfying the assumptions of Theorem

I11.2.5, the assumptions of Lemma II1.3.8 necessarily hold.
Proposition I11.3.11. Let A be a compact subset of a d-dimensional C*-manifold embedded

in R™, d < m. Then for such a set A,

lim @g(A;e) < 1. (I11.39)

e—0t
The proof of this statement is given in the Chapter IV.

Lemma II1.3.12. Let A = U'_, A;, where each set A; is a compact set contained in some
d-dimensional C*-manifold in R™, d < m, and Hqs(A; N A;) =0, 1 <i<j<I. Then there
is a compact subset B C A with Hq(B) = 0 such that every compact subset K C A\ B

satisfies lim @g(K;e) < 1.
e—07t

Proof of Lemma I11.3.12. Denote B := |J A;NA;. Let K C A\ B be a compact subset.

1<i<j<l
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Then
(50 ‘= min dlSt(14Z NK, Aj N K) > 0.

1<i<j<l

Choose any € € (0,0g). Choose also arbitrary r € (0, ¢] and = € K. We have z € A; for some

1 <i<landz ¢ Aj for every j # i. Since r < 0y, we have B(z,r) N K C B(z,r) N A; and

consequently,
Ha(B(z, 1) N K) _ Ha(B(z,r) N Ay)
Bare = By
Ha(B(y,t)NA)  _ -
< sup su = ay(A;;€) < max ag(A;:e).
_te(ol,)e]ye}x)i Bat a(Ai; €) 13;3 a(Ajse)
Consequently,

_ Ha(B(z,r) N K) .
Ke) = < Aje). I11.40
R AL S O (A

Since each A; is a compact subset of a d-dimensional C'*-manifold, by Proposition I111.3.11, we

have lim @4(A;;€) <1,i=1,...,l. Then in view of (I11.40) we have lim @,(K;e) < 1. O
e—0t e—0t

The following proposition is a part of the result by D.P. Hardin, E.B. Saff, and J.T.
Whitehouse mentioned at the end of Section III.1. For completeness, we will reproduce its

proof.

Proposition II1.3.13. Let A = U._| A;, where each A; is a compact set contained in some

d-dimensional Ct-manifold in R™ and Ha(AiNA;)=0,1<i<yj <l Then

. . gd(Aa N) 66[
= >
9,(A4) = liminf Sy 2 Ha(A)

Proof of Proposition II1.3.13. Since every set A; is a compact subset of a d-dimensional C*-
manifold, in view of Theorem 2.4 in [34], there holds gd(Ai) > ByHa(A)™ i=1,...,1. In

view of inequality (34) from Lemma 3.2 in [34], we then have

) ! 1 -1 1 -1 y
gd<A) =9, <Z:LJ1AZ> > (;gd(flz) ) > (ﬁTd ;Hd(Az)> = ’Hf(A)’
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which yields the desired inequality. O]

Proof of Theorem II1.2.5

Here is the proof of the main theorem in Section II1.2.2.

Proof of Theorem I11.2.5. The proof of the lower estimate in (I11.12) will repeat the proof
of inequality (2.9) in [17]. It is known that (see [17], [18], or [20]) for any infinite compact
set A C R™,

M}(A) =

> . .
T EAN), N22, s>0 (I11.41)

Then Proposition 111.3.13 and inequality (II1.41) give the lower estimate for Mg (A):

M (A) E4(A, N) Ba
Nooe NIDN = Nose (N —1)NInN = Hy(A)

Note that if H4(A) = 0, then limy_,oo MG (A)/(NInN) = oo.
Now, assume that Hg(A) > 0. In view of Lemma I11.3.12 and Remark I11.2.6, the set A

satisfies the assumptions of Lemma II1.3.8. Consequently

MR (A) Ba
li N < .
s NInN = Hy(A)

This implies (II1.12).

Every sequence {wy}3¥_; of N-point configurations, which is asymptotically maximal
for the N-point d-polarization problem on A must satisfy (I11.32) with N' = N. Since
ha(A) = BqiHa(A)™, by Lemma I11.3.8 we obtain (II1.13). O
111.3.3 Proofs of 111.2.3
Proof of Two one-dimensional circles in different planes

The N-roots of unity, i.e. the solution of 2V =1, z € C, have the following basic property.

Lemma I11.3.14. Let {z7,..., x5} be the set of the N-roots of unity. Then Zjvzl x;“k =0
forall ke {l,...,N —1}.
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Proof of Lemma II1.5.14. For k € N, we define the functions F}, : C — C and the functions
er : CN — C by

N
- k -
Fe(z1,...,xn) = E i, and  eg(xq,...,xN) = E Tj ... Tj,,
i=1 1<j1<g2...<jr <N

where (z1,...,2x) € CN. Let {z},..., 2%} be the set of the N—roots of unity. Since

N
H(SL’ - 'r;k) = 'IN - 61(‘7‘1;7 s Jx?\f)xN_l + 62(37){7 s 7x7\7)xN_2 — (_1>N6N(‘r>{7 s 7I7V)7
i=1

er(xy,...,xy) =exy,...,xy) = =en_1(z],...,xy) =0.

Using the Newton’s identities, we have for 1 <k < N — 1,

k-1
Fy(a7,...,2y) = (Z(—l)jﬂej(xf, o TN) Frmj (27, ,x}‘v)) + (=) key (a7, ..., 2) = 0.

j=1
This completes the proof. O

Next, we show that a configuration of N distinct equally spaced points on S is a maximal

and minimal N-point Riesz (s, h)-polarization configuration of (S*;S}).

Lemma II1.3.15. Let N € N, p € {1,2,...,.N — 1}, R > 0, and h > 0. Then, any
configuration of N distinct equally spaced points on S* is a mazimal and minimal N -point

Riesz (—2p, h)-polarization configuration of (S';S}).

Proof of Lemma 111.3.15. Let wy = {z1,...,2n5} be a configuration of N distinct equally
spaced points on S, p € {1,..., N —1} be fixed, and i > 0 be fixed. By [42, Theorem 1], we
know that f(z) := Zjvzl(p; — x;]* 4+ h)P is constant as a function of z on S}, say f(z) = C
for all z € Sg.

Let {y1,...,yn} be any N-point configuration on S'. Then,

yj—§2+h>p—ii<

i=1 j=1

J

j=1 i=1

2 p
+h) |

(I11.42)

R
yj_x_i
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Therefore, there exists i, iy € {1,..., N} such that

N R |2 p N R |2 p
Z(yj—f —l—h) >(C and Z(yj—x‘, +h) <C
j=1 ‘o j=1 ‘0
Then, we have
N N
2 P 2 P
max —z|*+h)" > C = max x;—x|*+h
5}, (|yJ | ) me%; (‘ j | )
and
N N
. 2 p . 2 p
min —x|"+h) <C =min x;—zx|*+h),
i 3 (1) <O = w3 (i 1)
which imply
N
max » (|z; — 2>+ h)" = my" (St Sh)
xES}a -
7j=1
and N
min » (Jz; — 2> +h)" = My (St Sh).
meS}% 1

We recall that the usual dot product in C is defined by
a-b:= a1b1 + (1262

where a := a1 + ast, b := by + byt € C.

Proof of Theorem III.2.7. A simple calculation shows that for y € S}, and z; € S,
(ly = 5l + By = (B2 +h+ 1= 2y ;)"
Let y := Rcost +iRsint and z; := cost; + isint;. Then

Fi(t) == (ly — 2, + h)? = (R? + h+ 1 = 2Rcos(t — 1,))".
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We know that

{é_ﬂ % W cos(pg%— w))}

forms orthonormal system with respect to the inner product

-/ 7 pgat

and

1 t—1,; t—1;
span { cos(t — 1) e M} = span{1, cos(t—t;), cos®(t—t;), ..., cos’ (t—t;)}.

Ver T VT
Therefore,
1 1 cos(k(t —t;)), cos(k(t —t;))
fi(t) = (fj(ﬁﬂ) Wl 2 <fg( ), N ) N
= (1) + % 0 con(hls W
Let

de‘ = <fj(t),COS<]€<t — t]))>, k - {O, 1, N ,p}, ] - {1, Ce ,N}

Notice that C} ; do not depend on j, so we will let Cp = C},j- Therefore,

> (ly =y’ + h)p = NCo Z <yk;x§> (IT1.43)

j=1
and
B 27
Cy = / (R* 4+ h +1 — 2Rcos(t))? cos(kt)dt
0
_ U § PO P Yo <a+ \/7)10 o (IT1.44)
-t =G \k+J '
where

a:=R*+h+1, and b:=2R,
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and the square root function in (II1.44) can be chosen to be both branches of the complex
square root function (see the computation in Lemma IV.2.1). Moreover, we note that (R? +
h+1)? > 4R? and if we choose the branch that the square root of positive number is positive
number, then clearly, Ch # 0 for all k.

By Lemma II1.3.15, we know that the set of the N-roots of unity is optimal for M&Qp’ h(Sl; S%)
and mj_\,Qp’h(Sl; S}). Then, by Lemma I11.3.14, we have

NCy, N 2 P=2j
M M(8"85) = my™ (8" 8h) = 5 = o (p) W (at VaZ=R)
7r ” J
7=0
Moreover, any configuration {x1, ..., xy} such that Zjvzl T = Zjvzl x? == Zjvzl x? =0

is optimal for My "(S';SL) and m*”"(S';SL).

Now, we show that any optimal configuration for My*"(S'; Sk) satisfies

The proof of the my”"(S';SL) case is similar. So, we will prove only the My "(S';Sk)
case. Let wy = {z1,...,2y} be an optimal configuration for My*"(S';SL). Then, by

(IT1.43), we have, for all z € S},

=2
=2

ye =D (=l )3 (el ) =50 0D e ()

R oj=1 j=1 k=1

which means

1 é 1
0<— R—( Zx) for all z € Sk.

k=1

Let z = Rcos(t) + iRsin(t) and Z] , ¥ = cos(t},) + isin(t},). Then, for all ¢ € [0, 2],

p

0< % Z Cy, (cos(kt) cos(t},) + sin(kt) sin(t},)) = Z (Dy cos(kt) + Dy sin(kt)),  (II1.45)

k=1 k=1
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where

D, = Cy, cos(t},) and Dl = C sin(t;)'
T T
Because
2 P
/ Z (Dy cos(kt) + Dy sin(kt)) dt = 0
and

p
> " Dycos(kt) + Dysin(kt) >0, t € [0,2q],

> r_1 (Dy cos(kt) + Dy sin(kt)) = 0 for all ¢ € [0, 2n]. Then, for all j € {1,...,p},

mD; = (Y (Dgcos(kt)+ Dy sin(kt)), cos(jt)) =0
k=

—_

and

=

D = ()Y (Dycos(kt) + Dy sin(kt)) ,sin(jt)) = 0.

Ed

Since Cj, # 0 for all k, cos(t}) = sin(t,) = 0 for all k. Hence, z] L T
{1,...,p}. ]

k— 0 for all k €

Proofs of the m-dimensional sphere case

Proof of Theorem III.2.9. We will prove only the My?(S™) case. The proof of the

my*(S™) case is basically the same. For y, x; € S™,

N N
dly—mfP=2N -2y > xy).
=1 =1

Therefore, our maximization problem is equivalent to finding all N-point configurations on

S™ minimizing the following quantity

N
min max y-E x; .
wnCS™ yesm —

]:

Hwn=N
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Clearly, if Z;V:1 x; = 0, then max,esm (y . Zjvzl xj> =0.If Z;VZI x; # 0, then

N A N N
=17
max yz%> > (jN—) -ij = |Zx]| > 0.
ves ( |Zj:lxj| j=1

j=1 j=1

Therefore, the function f(wy) := maxyesm (y . Zjvzl a:j> attains its minimum if and only if

Z;\; z; = 0. Then, wy := {x1,..., 7y} is optimal for My*(S™) if and only if Zjvzl xz; = 0.

Moreover, My?(S™) = m?(S™) = 2N.
[

Proof of Theorem III1.2.10. Let wy, := {z7,..., 2%} C S™ be a configuration such that

its Riesz potential function f(y) := S1 | |y — 2|~® is constant on S™, say

flyy=C, yesS™

Let wy = {z1,...,2y} be any N—point configuration in S”™. Then,
N N N N
T3 SIREIEES 3 PR
i=1 j=1 j=1 i=1
Therefore, there exists jo, j, € {1,..., N} such that

N N
Z|ZE2‘—I;O|_5 ZO and Z|x1_x;6|_s SC
=1

=1

Then, we have
N N
maxg T; — _S>C:maxg i —yl™*
yesm £ lwi =yl 2 yesm £ | J yl™,
=1 7j=1

and

N N
min E |z; —y|™* < C = min E 25 —y| 7,
yeSm 4 yeES™ £

=1 7=1
which imply

N
max y _[aj = y|~* = mi(S"),
j=1
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and
N

min Y |z — y| ™" = My (S™),
7j=1

yeS™ £

respectively. Hence, wy is optimal for M} (S™) and m% (S™).
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CHAPTER IV
AUXILIARY RESULTS

AV Proof of Proposition I11.3.11

We say that a set B in R™ is bi-Lipschitz homeomorphic to a set D C R™ with a constant
M > 1, if there is a mapping ¢ : B — D such that ¢(B) = D and

Mz —y| <|p(x) —py)| < M|z —y|, =z,y€B.

Lemma IV.1.1. Let U C R? be a non-empty open set and f : U — R™, m > d, be an
injective C'-continuous mapping such that its inverse f~' : f(U) — U is continuous and the

Jacobian matrix
V fi(x)
gl = o (IV.1)

V fm(2)
of f has rank d at any point x € U. Then for every ¢ > 0 and every point yo € f(U), there

is a closed ball B centered at yo such that the set BN f(U) is bi-Lipschitz homeomorphic to

some compact set in R® with a constant 1 + €.

Proof of Lemma IV.1.1. Let xy € U be the point such that f(z¢) = yo. Choose any e > 0
and let 6 = d(xg,€) > 0 be such that B[zg, ] C U and

\sz(x)—VfZ(xo)\ < €, QJGBLT(),(;], 1=1,...,m.

Let z,y € Blzo,d] be two arbitrary points. Define the function g¢;(t) := fi(x + t(y — x)),
t € [0,1]. Then there exists & € (0,1) such that

fily) = fi(z) = :(1) = 6:(0) = gi(&) = Vfi(z:) - (y — @)
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= Vfi(zo) - (y — x) + (Vfi(zi) = Vfi(wo)) - (y — @),
where z; =z + &(y — ), i =1,...,m. Since z; € B[xg, ], we have
fi(y) = fi(z) = V fi(zo) - (y — @)
= [(Vfi(z:) = Vfi(xo)) - (y = @) < ely —zf, i=1....m,
and hence (we treat z and y as vector-columns below),
|f(y) = fla) = T (y —2)| < ev/mly—z|, w,y€ Blw,d). (Iv.2)

Since the matrix JQ{O has rank d, for every standard basis vector e; from R?, there is a vector
v; € R™ such that (Jf)Tv; = e;, i = 1,...,d, where (J/ )T denotes the transpose of the
matrix J/ . Then the d x m matrix Z := [vy,... Lvg)" satisfies ZJI = I4, where I, is the

d x d identity matrix. Taking into account (IV.2) we have

|fy) = f(x) = T, (y — 2)| < ev'm|ZJT],(y — 2)]

< ev/m||Z| |J],(y —2)|, =y € Blzo, 4],

where || Z|| := max{|Zu| : u € R™, |u| = 1}. Consequently,
(1= evm| Z|l) |71, (y = 2)| < | f(y) = f(2)]

< (1+evml|Z|) [T, (y = 2)|, 2,y € Blzo,d].

Let uq,...,uq be an orthonormal basis in the subspace H of R™ spanned by the columns
of the matrix JQ{O and let D := [uq,...,uq] be the m x d matrix with columns wuy, ..., ug.
Since the columns of J/ also form a basis in H, there exists an invertible d x d matrix Q
such that D = J! Q.

Let V C R? be the open set such that ®(V) = B(xo, ), where ® : RY — R? is the linear

mapping given by ®(v) = Qu. Since the columns of the matrix D are orthonormal, for every
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u,v € V, we will have
|[f o ®(u) = fo®(v)| = |f(Qu) — f(Qu)]

< (14 evml|Z]) | 7,Q(u — v)] = (1+ evml|Z])) |D(u — v)|
= (L+ev/m||Z]]) u—1v].

Similarly,
|fo®(u) — fod(v) > (1 —e\/EHZH) lu—nv|, u,ve V,

which implies that for 0 < € < (y/m|/Z||)~', the restriction of the mapping ¢ := f o ®
to the set V is a bi-Lipschitz mapping onto the set f(®(V)) = f(B[zo,d]) with constant
M = max{1 + ey/m|| Z]|, (1 — ey/m|| Z])~"}.

Since f is a homeomorphism of U onto f(U), the set f(B(xg,0)) is open relative to f(U).
Then there is a closed ball B in R™ centered at yo = f (o) such that BN f(U) C f(B(xg,0)).
Then the set BN f(U) = BN f(B|xg,d]) is bi-Lipschitz homeomorphic (with constant M,)
to the set

Vi:= ¢ (BN f(U)) = ¢ (BN f(Blxo,0])),

which is compact in R?. Since M, — 1 as € — 07, the assertion of the lemma follows. n

Proof of Proposition III.8.11. Let W denote the d-dimensional C'*-manifold that con-
tains A and let € > 0 be arbitrary. In view of Definition III.1.3, for every point z € W,
there is an open neighborhood V. of x relative to W which is homeomorphic to an open set
U, C RY such that the homeomorphism f : U, — V, is a C'-continuous mapping and the
Jacobian matrix JJ (see the definition J; in (IV.1)) has rank d for every u € U,. There is
also a number €, > 0 such that B(x,e,) N W C V,. By Lemma IV.1.1, there is a number
0 < §(z) < €;/2 such that the set Blz,26(x)] N W = Blz,26(z)] N f(U,) is bi-Lipschitz
homeomorphic to a compact set D, from R? with constant 1 + €. Since A is compact, the
open cover {B(z,d(x))}zea has a finite subcover { B(z;, d(x;)) F_.

Denote 0, := rrlnnp(S(:Ej) Let « be any point in A and r € (0,d.]. There is an index

-----
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i such that x € B(z;,d(x;)). Since B(x,r) N A C Blx;,20(x;)] N W, the set B(x,r) N A is
bi-Lipschitz homeomorphic to a set D; C D,, with constant 1 +e€. If ¢ : B(z,7r)NA — D;

denotes the corresponding bi-Lipschitz mapping, we have D; C B(p(x), (1 + €)r). Then

Ha(B(x,r)NA) < (14 €)7Ly(D;) < Bar® (1 + €)*?.

Consequently,
B NnA
@q(A;0.) = sup sup Hal (:E,?;) ) < (1+€)%,
re(0,0¢] €A 5dT
which implies that lim @4(A4;0) < 1. ]
6—07+

V.2 Integrals

We collect our computations of all integrals in this section.

Lemma IV.2.1. Let m € N, k € {1,...,m}, z € C. Then,

/0 (22 41— 22 cos(t))" cos(kt)dt — (—1>’“27T"§ (m)< i )szkzj‘ V3

) \k+j

Proof of Lemma IV.2.1. Let m € N and k € {1,...,m}. First, we prove the equality (IV.3)
for z € R.
Let z € R. Then, for ( = €%,

2 o
/ (22 41 — 2z cos(t))™ cos(kt)dt = / (22 41— z(e" + e—it))meiktdt
0 0

2w
— / (Z o eit)m(z . e—it>m€z’ktdt
0

! / e O 1O

]

_or - res ((Z R G 1)m.0)

Cm7k+1 ’
m—k
— (—1)*or <m)< m ) o 2m—k—2j
vy ()

where the first equality follows from the fact that the last expression is real number. Notice
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that the left-hand side and the right-hand side of the equation (IV.3) are polynomials as
functions of z. Then, both functions are analytic on C and we have the equation (IV.3) for

all z € C. O]

Lemma IV.2.2. Let m € N and k € {1,...,m}. Fora,b € C,

/O%(a—bcos( 1™ cos(kt)dt — 2m kfji( )( m )b?ﬁk (axvaz )"

k+
(IV.4)

where the square oot function in (IV.4) can be selected to be both branches of the complex

square root function.

Proof of Lemma IV.2.2. Clearly, if b = 0, then the equation in (IV.4) is 0. Let b € C\ {0}

and a € C. To reduce the equation (IV.4) to the equation (IV.3), we need to consider
(Aa — Abcos(t))™,
where A is chosen to that
2z = b\ and 2241 =al,
for some z € C. From above equations,

a+ vVa? —b? 2a + 2v/a? — b?

c=t—— and A= o

Moreover, A # 0, because if A = 0, then b = 0. Therefore, by Lemma IV.2.1,

/2“(a — beos(t))™ cos(kt)d / (Aa — Abcos(t))™ cos(kt)dt
= )\—/ 2% + 1 — 2z cos(t))™ cos(kt)dt
(-1 1)

’”( ), ) (s vam)

2m1
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