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CHAPTER I 

 

INTRODUCTION 

 

Breast cancer 

One in three American women is predicted to develop breast cancer in the course of her 

lifetime 1, 2.  Patients suffering from breast cancer do not usually die from the growth of 

the tumor at the primary site but rather from the spreading of the cancer cells to distant 

organs 3, 4.  A study on more than 500 patients presenting with advanced breast cancer 

showed that 69 % of these women had evidence of bone metastases 5.  Bone metastasis 

causes severe complications such as pain, pathological fractures, nerve compression 

syndromes and hypercalcemia which greatly affect the quality of life of the patients 6.  

Furthermore, once breast to bone metastases are actively growing, only palliative 

treatments can be offered to the patient as no cure is currently available.   

 

Physiology of the bone 

The fact that breast cancer displays significant osteotropism was first observed by 

Stephen Paget in 1889 when he noted that “in cancer of the breast the bones suffer in a 

special way, which cannot be explained by any theory of embolism alone” 7.  Why do 

breast cancer tumor cells have such a significant affinity to the skeleton? What makes the 

bone such a preferential environment for breast tumor cells?  Despite the increasing 

numbers of studies conducted, our knowledge on the molecular mechanisms underlying 

breast to bone metastasis remains limited.  Since metastatic tumor cells hijack the normal 
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bone remodeling process to their own benefit, we will first explore the normal 

physiological bone turn-over process. 

 

Normal bone constituents 

The skeleton has two main functions; 1) to support and to protect all vital organs and 

bone marrow and to be an anchoring point for muscles allowing for locomotion and 2) to 

serve as a reservoir for calcium, phosphates, hematopoietic progenitor cells and growth 

factors such as transforming growth factor-β (TGF-β) or insulin growth factors (IGFs) 8.  

Two types of bone are found in the normal skeleton: cortical and trabecular bone (Figure 

1).  Although macroscopically and microscopically different, these two types of bone 

present the same chemical composition.  Cortical bone is dense, compact, mainly 

calcified and represents 80% of the skeleton; its main function is to support the body 

weight and to provide protection of all the internal organs 8.  Although representing only 

20% of the body mass, trabecular bone is 80% of the bone surface inside the long bones, 

the vertebrae, the pelvis and the large flat bones 8.  Trabecular bone is less dense, presents 

a higher turn-over rate than the cortical bone and exhibits mainly a metabolic function. 

The bone matrix is primarily composed of type I collagen and non-collagenous proteins 

such as osteocalcin, bone sialoprotein and osteopontin (OPN).  Crystals of calcium 

compounds (hydroxyapatite crystals) are also found on and within the collagen fibers as 

well as in the matrix and these crystal structures give strength to the bone matrix 9.  

Osteoblasts are the cells responsible for the production of the bone constituents 

and are derived from the mesenchymal stem cells which can also give rise to fibroblasts, 
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chondrocytes, myoblasts and adipocytes 10 (Figure 1).  Osteoblasts are typically found in 

clusters lining the bone matrix being formed.  Bone formation occurs in multiple steps 1) 

the synthesis of the extracellular matrix (ECM) or osteoid, 2) the maturation of the 

osteoid and 3) the mineralization of the osteoid.  Osteoblasts are also responsible for the 

production and deposition of growth factors in the osteoid matrix such as TGF-β, IGFs, 

platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF) and bone 

morphogenetic proteins (BMPs) 11.  Therefore, bone serves as a reservoir of growth 

factors, readily accessible via osteolysis when needed.  Furthermore, these growth factors 

can regulate the activity of osteoblasts upon their release from the bone matrix, providing 

a feedback loop that ensures the proper coupling between bone formation and resorption.  

During osteoid synthesis a small subset of osteoblasts are entrapped in the newly forming 

bone and undergo terminal differentiation into osteocytes 12.  

Osteocytes form a highly complex canicular network in the bone (Figure 1). The 

canicules contain osteocytic processes enabling the osteocytes to sense any alteration in 

the integrity of the bone as well as making contact with the osteoblasts and osteoclasts 

lining the bone surface13, 14.  It has been proposed that microfractures and microcracks in 

the bone are detected by osteocytes which in turn induce the activation of the bone 

remodeling process 15.  Furthermore, osteocytes can suppress bone formation by secreting 

factors such as sclerostin 16.   

Osteoclasts are the third major cell constituents of the bone and are responsible 

for osteolysis (Figure 1).  They are derived from myeloid stem cells which give rise to 

monocytes, macrophages and dendritic cells 17.  Mature osteoclasts are giant 
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Figure 1.  Histology of mouse tibia. 

Representative hematoxylin and eosin photomicrograph of a wild type mouse tibia (50X, 
scale bar is 50µm).  Higher magnification images show the three main bone cell types :
osteoblasts, osteocytes and osteoclasts. Scale bar is 50µm. 
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multinucleated cells resulting from the fusion of activated monocytes 18.  Lining the 

surface of the bone, mature osteoclasts adhere to the bone matrix via integrins such as 

αVβ3 which induce the reorganization of their cytoskeleton to form a sealing zone 

isolating the extracellular compartment from the bone resorption process 17.  Underneath 

the sealing zone, osteoclasts induce acidification of the resorption lacunae via an 

electrogenic proton pump (H+-ATPase) and a Cl- channel 19.  The acidification of the 

milieu allows the mobilization of the mineralized components of the bone matrix, 

exposing the type I collagen which is degraded by acidophilic collagenases secreted by 

osteoclasts, the main protease being cathepsin K 17.  Osteoclast functions are regulated by 

a number of cytokines such as receptor activator of NF-ĸB ligand (RANKL), interleukin-

1 (IL-1), tumor necrosis factor-α (TNF-α), macrophage colony-stimulating factor (M-

CSF), growth factors (IGF-I, PDGF) and hormones (parathyroid hormone (PTH), insulin) 

10. 

 

Normal bone remodeling process 

Bone remodeling is a complex process by which old bone is replaced by new tissue.  

Osteoblast communication with osteoclasts is crucial for this process (Figure 2).  There 

are several mechanisms that facilitate osteoblast-osteoclast communication. 1) Direct 

contact through membrane-bound ligand-receptor interactions, allows the activation of 

intracellular pathways in both osteoblasts and osteoclasts.  2) Osteoblasts and osteoclasts 

can form gap junctions enabling the diffusion of small water-molecules.  3) Paracrine 
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Figure 2. Normal bone remodeling process. 

Osteoblasts are responsible for the deposition of the new bone matrix and the secretion of
growth factors such as TGF-β and IGFs stored in the newly forming bone. Osteocytes are
terminally differentiated osteoblasts, entrapped in the newly formed bone and act as its 
sentinel. (1) Osteoblasts express at their cell surface RANKL, a key factor in the bone
remodeling process, which binds to its receptor present at the membrane of osteoclasts
precursor cells. (2) RANKL interaction with its receptor induces the 
activation/maturation of osteoclast precursors into multinucleated mature osteoclasts
which are the cells responsible for bone resorption. (3) Osteoclast-mediated osteolysis 
induces the release of growth factors like TGF-β and IGFs stored in the bone which are 
able to signal back to the osteoblasts and osteoclasts and therefore act as a feedback loop 
to control the extent of the normal bone resorption taking place. 
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factors such as growth factors, cytokines and chemokines can be secreted by one cell type 

and act on the other through diffusion. For example, Allan and colleagues demonstrated 

that PTH and PTH-related peptide (PTHrP) can regulate the level of expression of 

ephrinB2 in osteoblasts, and that the blockage of the interaction of ephrinB2 with its 

receptor EphB4 expressed by osteoclasts inhibits osteoblast function 20, 21.  Furthermore, 

ephrinB2/EphB4 binding inhibits osteoclast differentiation 22.  Local factors such as IL-

11, prostaglandin E2, onconstatin M, PTHrP and microdamage sensed by osteocytes 

induce the expression of RANKL by osteoblasts.  RANKL is a member of the TNF 

family and a key factor in bone remodeling. It has been well established that the 

interaction of RANKL with its receptor RANK expressed by myeloid osteoclast 

precursors is essential for osteoclastogenesis 23.  Osteoblasts also expressed 

osteoprotegerin (OPG), which acts as a decoy receptor for RANKL, thus regulating bone 

resorption by competing for RANK-binding at the surface of osteoclasts 24.  In addition to 

RANKL, oteoblasts secrete macrophage colony-stimulating factor (M-CSF) which is 

required for monocytic/macrophage precursor cell survival 25.  RANKL/RANK 

interaction induces the fusion of osteoclast precursor cells leading to the formation of 

multinucleated mature osteoclasts 26.  It has been well established that the cysteine 

proteinase cathepsin K is the principal enzyme responsible for the degradation of the 

demineralized bone matrix 27.  Mice deficient for cathepsin K showed an accumulation of 

demineralized collagen fibers in the subosteoclastic resorption lacunae demonstrating the 

predominant role of this enzyme in bone degradation 28.  Cathepsin K cleaves type I 

collagen releasing the triple helix which becomes more susceptible to proteolytic 

degradation by other collagenases 29.  In addition to cathepsin K, studies conducted by 
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Everts and colleagues demonstrated that treatment of calvarias with matrix 

metalloproteinase (MMP) inhibitors (MMPIs) leads to a significant amount of 

demineralized bone matrix accumulating in the resorption lacunae, demonstrating the 

importance of MMPs in regulating bone resorption 30-32.  However, whether these effects 

are due to direct or indirect activity of MMPs remains unknown. 

 

Matrix Metalloproteinases 

 

Classification and structure 

The metzincin superfamily of proteolytic enzymes is characterized by a conserved zinc 

binding motif HEXXHXXGXXHZ where the histidine (H), glutamic acid  (E) and 

glycine (G) are invariant and the 3 histidines are responsible for the binding of the 

catalytic Zn2+ ion 33.  Of this superfamily of proteases, MMPs form a subfamily of 23 

human endopeptidases where the Z residue is a serine in the zinc motif in all but few 

MMP family members.  In addition to the zinc motif, MMPs share some sequence 

homologies, conferring to this family a conserved overall structure.  Thus, they are often 

classified according to their domain structure into several groups including the 

collagenases, the gelatinases, the stromelysins and the membrane-type MMPs (MT-

MMPs) (Figure 3) 34.   

The minimal modular domain structure common for all the MMPs consists of a 

pre domain (for secretion), a pro domain (for latency maintenance) and a catalytic  
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Figure 3. Domain structures of the MMP family. 

Pre: pre doman; Pro: pro domain; CAT: catalytic domain; hemopexin: hemopexin 
domain; FN: fibronectin domain; ~ : hinge region; O: O-glycosylated domain; F: furin 
cleavage site; TM: transmebrane domaine Type I; GPI: GPI anchor; C Array: cysteine 
array’; Ig like: Ig-like domain.  
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domain (for proteolytic activity) 35.  All the MMPs are produced as pro-enzymes or 

zymogens where their latency is ensured by the bond of the cysteine in the pro domain 

with the Zinc2+ ion of the catalytic region.  Activation of pro/latent MMPs has been 

described as a ‘cysteine switch’.   Cleavage of the pro domain alters this cysteine/Zinc2+ 

interaction and the zinc ion becomes susceptible to hydrophilic attack, allowing for the 

subsequent interaction of a substrate with the catalytic domain 36.  Most of the MMPs, 

except MMP-7, MMP-23 and MMP-26, have a hemopexin/vitronectin domain linked to 

the catalytic domain by a hinge region.  This hemopexin domain influences the binding 

of tissue inhibitors of metalloproteinases (TIMPs), substrate binding, membrane 

localization and proteolytic activity 37.  MMP-2 and MMP-9 also contain a fibronectin 

type II repeat within the catalytic domain required for the binding and cleavage of 

collagen and elastin 38, 39.  Finally, MT-MMPs can be divided in 2 categories: the type I 

transmembrane MMPs (MMP-14, -15, -16 and -24) presenting a short cytoplasmic C-

terminal tail, and the glycophosphatidyl inositol (GPI) MT-MMPs (MMP-17 and -25) 

possessing a C-terminal hydrophobic tail 34.  These different domains play a crucial role 

for the localization and the regulation of the activity of the different MMP family 

members.  

 

Regulation of MMPs 

The specific biological function of individual MMPs is mainly dictated by their temporal, 

spatial and inducible pattern of expression.  MMP expression and activation are highly 

regulated at the transcriptional and post-translational levels 40.  MMP gene expression is 
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controlled by various growth factors and cytokines (TGF-β, epithelial growth factor/EGF, 

TNF-α), integrin-derived signals, ECM proteins, phorbol esters, cell stress and changes in 

cell shape 41.  The majority of these stimuli induce the expression or activation of proto-

oncogenes such as c-fos and c-jun, as well as β-catenin and ets transcription factors that 

mediate the transcription of specific MMPs 37.   

 MMPs are secreted as pro-enzymes or zymogens and their activation is tightly 

regulated.  MMP-11, MMP-23 and MT-MMPs contain a furin-like enzyme recognition 

domain between the pro and catalytic domains and can be activated by subtilisin-type 

serine proteinases such as furin in the intracellular compartment 42.  All other MMPs are 

activated outside of the cell by either already activated MMPs or by other proteinases 43.  

MMP-2 presents an additional unique serine-independent mode of activation involving 

MT1-MMP and TIMP-2 40.  TIMP-2 is anchored at the cell surface through the binding 

of its N-terminal domain to MT1-MMP and acts as a receptor for MMP-2 via the binding 

of its C-terminal domain to MMP-2 hemopexin domain.  Subsequently, a neighboring 

active MT1-MMP can cleave and activate the anchored proMMP-2 when low levels of 

TIMP-2 are present 44.   

 Once activated, MMP activity can be closely regulated by endogenous inhibitors 

such as α2-macroglobulin and TIMPs 45.  α2-macroglobulin is an abundant plasma 

protein and acts mainly as a major protease and MMP inhibitor in plasma 46.  TIMPs 

represent a family of 4 secreted proteins expressed mainly in various tissues and fluids.  

They reversibly inhibit MMP activity in a 1:1 stoichiometric ratio through the 

interactions of their N-terminal domain with the MMP catalytic site 47.  However, besides 

their ability to inhibit MMP activity, studies have demonstrated MMP-independent 
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functions of TIMPs.  For example, TIMP-1, -2 and -3 have been shown to promote cell 

growth 48. Furthermore, TIMP-1 and TIMP-2 have been demonstrated to inhibit tumor 

angiogenesis in an MMP-independent fashion 49, 50.MMP substrates in the bone 

The classical substrates for MMPs are the various proteins, proteoglycans and 

glycoproteins constituting the ECM (Table 1).  In addition, through the processing of 

signaling molecules such as growth factors, cell surface proteins and cytokines, MMPs 

contribute to numerous cell functions (Table 1).  Thus, MMPs because of their wide array 

of substrates are involved in a number of biological processes such as mammary gland 

involution, angiogenesis and modulation of immune reactions 33. 

Since bone is composed of over 90% type I collagen, enzymes with collagenase 

activity are predicted to be important proteases in bone remodeling.  Delaisse and 

colleagues demonstrated that levels of collagenases positively correlate with elevated 

rates of bone resorption in calvarias 51.  Several lines of evidence have suggested that 

osteoblast-derived collagenases may play a role in bone resorption initiation as bone 

resorbing agents induce collagenase expression by osteoblasts52, 53.  Furthermore, in vivo 

osteoblasts adjacent to activated osteoclasts present high levels of collagenase 54, 55.  It 

has been proposed that collagenases degrade the non-mineralized organic matrix allowing 

osteoclast precursors to adhere to the mineralized bone and become activated 56.  

Furthermore, collagenases may release molecules or collagen fragments that can 

stimulate osteoclast activation 57, 58.  In transgenic mice expressing a type I collagen 

resistant to MMP-dependent collagenase degradation, calvaria lack a bone marrow cavity 

and are significantly thicker than in the wild type control mice 59.  These studies suggest 

the importance of collagenases in bone resorption, and that cathepsin K and MMPs may  
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MMP ECM substrates Non-matrix substrates

MMP-1 
Collagen I, II, III, VII, X, XI; gelatin, 

entactin; aggrecan; fibronectin; 
laminin; tenascin; vitronectin

Perlecan; IGFBP-2, IGFBP-3; pro-TNF-α; 
α1-AC; α2-MG; α1-PI 

MMP-2 

Collagen I, III, IV, V, VII, X, XI; 
gelatin; elastin; fibronectin; laminin; 

aggrecan; tenascin; decorin; 
vitronectin 

LAP-TGF-β, LTBP-1, TGF-β2; IL-1β; 
MCP-3; SDF-1; IGFBP-3; IGFBP-5; 

TNF-α; FGFR-1; α1-PI 

MMP-3 

Collagen III, IV, V, VII,IX,  X, XI; 
gelatin; elastin; fibronectin; laminin; 

aggrecan; tenascin; decorin; 
vitronectin; entactin

Perlecan; IGFBP-3; TNF-α; α1-AC; α2-
Mg; α1-PI; HB-EGF; IL-1β; plasminogen; 

E-cadherin;  

MMP-7 
Collagen I, IV; gelatin; elastin; 
fibronectin; laminin; aggrecan; 

tenascin; decorin; vitronectin; entactin

TNF-α; FasL; α1-PI; HB-EGF; 
plasminogen; E-cadherin; β4 integrin 

MMP-8 Collagen I, II, III; aggrecan Α2-MG; α1-PI 

MMP-9 Collagen IV,  X, XIV; gelatin; elastin; 
laminin; aggrecan; decorin; vitronectin 

LAP-TGF-β, TGF-β2; IL-1β;; SDF-1; 
TNF-α; FGFR-1; α1-PI; IL-2Ra; α2-MG 

MMP-10 Collagen III, IV, V; gelatin; elastin; 
aggrecan; fibronectin Not known 

MMp-11 Not known IGFBP-1; α1-PI; α2-MG

MMP-12 Collagen I, IV; gelatin; elastin; 
laminin; entactin Plasminogen; α1-PI; α2-MG 

MMP-13 Collagen I, II, III, IV, IX, X, XIV; 
gelatin; fibronectin; aggrecan α2-MG 

MMP-14 
Collagen I, II, III; gelatin; laminin; 
aggrecan; fibronectin; vitronectin; 

entactin
CD44; transglutaminase; α1-PI; α2-MG 

MMP-16 Collagen III; fibronectin; gelatin transglutaminase 

MMP-17 Gelatin TNF-α; α2-MG 
MMP-18 (Xenopus) Collagen I Not known 

MMP-19 
Collagen I, IV; gelatin; laminin; 
aggrecan; fibronectin; tenascin; 

entactin; COMP 
 

MMP-20 Collagen XVIII; aggrecan; 
amelogenin; COMP Not known 

MMP-21 (Xenopus) Not known Not known 
MMP-22 (chicken) Gelatin Not known 

MMP-23 Not known Not known 
MMP-24 Collagen I; geltin; laminin; fibronectin Not known 
MMP-25 Collagen IV; gelatin; fibonectin Not known 
MMP-26 Collagen IV; gelatin; fibronectin α1-PI 
MMP-27 Not known Not known 
MMP-28 Not known Not known 

 

 

Table 1. Matrix and non-matrix substrates of MMPs.  (Lynch and Matrisian, 2002) 
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have different roles in intramembranous and endochondral bone.   Cathepsin K cleavage 

of the native triple helix of collagen releases C-terminal (CTX) and N-terminal (NTX) 

cross-linked telopeptides which have been shown to be good serum markers for 

osteoporosis 60.  MMPs such as MMP-1, -2, -8, -9, -13 and MT1-MMP have collagenase 

activity in vitro 61.  But in contrast to cathepsin K, MMPs generate a larger cross-linked 

C-terminal telopeptide of type I collagen (ICTP).  The ICTP fragment has been shown to 

significantly correlate with extent of bone lesions in patients presenting bone metastasis 

and to act as chemotactic molecules for osteoclast precursor cells 62-64.  Cleavage of type I 

collagen also leads to the exposure of cell adhesion sites such as binding sites for 

integrins, especially αVβ3 integrin, influencing the attachment/detachment of osteoclasts 

and ultimately regulating their migration during bone resorption 65.  MMP-3 and -7 have 

also been shown to process non-collagenous components of the bone matrix such as 

OPN, resulting in the exposure of integrin binding sites which could regulate cell 

adhesion to the bone matrix 66. 

In addition to processing bone matrix components, MMPs have also been shown 

to process numerous non-matrix substrates, several of which are pertinent to the bone 

(Table 2).  Therefore, MMPs can regulate cell behavior by altering the activity status of 

numerous growth factors and cytokines. For that reason, roles for MMPs, independent of 

their ability to degrade the ECM, are a distinct possibility in the bone microenvironment.  
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Roles of MMPs in normal bone physiology 

To date, roles for only a small number of MMPs have been described in bone based on 

MMP deficient animals.   

Itoh and colleagues first described MMP-2 deficient mice and reported that these 

mice have a significantly slower growth rate compared to wild type mice 67.  More 

detailed studies have shown that MMP-2 deficient mice also have abnormal cranio-facial 

defects mirroring those of the nodulis, arthropathy and osteolysis (NAO) syndrome in 

humans having a mutation in mmp2 gene 68, 69.  MMP-2 deficient mice also demonstrate 

severe osteoporosis and a significant thickening of the calvaria by 55 weeks of age 

compared to wild type control mice 68.  Inoue and colleagues also reported the expression 

of MMP-2 by osteoblasts and osteocytes.  Calvaria of MMP-2 deficient mice showed a 

defect in osteocytic canicular network suggesting a contribution of MMP-2 in the 

maintenance of the canicular network which is important for the development of the 

skeleton 68.  In addition, studies have shown that MMP-2 mediates osteoblast 

proliferation and differentiation 69. 

MMP-7 deficient mice have no obvious skeletal defects 70.  However, the 

phenotype of MMP-7 deficient animals becomes apparent during physiological stresses 

such as disease or injury for example, MMP-7 has been reported to be important for joint 

destruction in the development of septic arthritis 71.  Haro and coworkers also 

demonstrated that macrophage-derived MMP-7 was required for the release of TNF-α by 

macrophages in a model of herniated disc resorption 72.   
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 In the bone environment, MMP-9 has been reported to be largely expressed by 

multinucleated osteoclasts 73.  However, MMP-9 deficient mice do not present any 

obvious skeletal defect.  Despite no overt phenotype, Vu and colleagues reported a 

transient phenotype in the hypertrophic zones of long bones 74.  This is primarily due to a 

delay in vascularization and apoptosis of chondrocytes inducing a lengthening of the 

growth plate caused by a defect of osteoclast and endothelial cell invasion into the 

mineralized cartilage 74, 75.  In absence of MMP-9, vascular endothelial growth factor 

(VEGF) was found to be sequestered in the ECM, which could explain the delay in 

angiogenesis and apoptosis of chondrocytes 76. 

 MMP-13 is the murine ortholog of human MMP-1 and is expressed by 

osteoblasts, osteocytes and mononuclear pre-osteoclast cells 77, 78.  Embryos deficient for 

MMP-13 present an elongated growth plate that is still evident at 3 months of age 79.  

Adult MMP-13 deficient mice show a thickening of the trabecular bone, potentially 

caused by an abnormal osteoblast proliferation and function rather than a defect in 

osteoclast activity 61. 

 Lastly, MT1-MMP is expressed in a number of bone cells but is particularly 

abundant in osteoclasts 80.  MT1-MMP deficient mice present a severe skeletal phenotype 

with delayed ossification of the calvaria and incomplete suture closure.  By 2 to 3 months 

after birth, most of the mice die 81-83.  Furthermore, homozygous mutant animals develop 

a generalized arthropathy with osteoclast-like giant cells in the articular tissues and a loss 

of osteocyte processes due to a defect in type I collagen degradation 81, 82.  Because of the 

role of MT1-MMP in MMP-2 activation, some of the skeletal defects observed in MT1-

MMP deficient mice could be caused by an absence of active MMP-2.  However, 
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Holmbeck and colleagues reported that impaired osteocyte processes observed in the long 

bones are associated with the loss of MT1-MMP 82.  MT1-MMP is importance for the 

maintenance of the osteocytic canicular network in tibias and femurs, but its contribution 

in osteocyte integrity in the calvaria remains to be determined 82.  Finally, degradation of 

the embryonic cartilage during skeletal development seems to be due to MT1-MMP 

collagenolytic activity 84. 

 

The ‘vicious cycle’ of bone metastasis 

Metastasis is a complex process where the tumor cells need to complete a cascade of 

events before reaching the bone.  Breast cancer cells have to break away from for primary 

tumor (1), invade the blood stream (2), survive in the blood circulation (3), adhere to 

vascular endothelium of a distant organ (4), extravasate from the blood vessel into the 

metastatic site (5) and finally proliferate in the secondary site (6) 85.  MMPs have been 

shown to play multiple roles in the progression of cancer 86.  Given the role of host 

MMPs in the bone development and physiology, it is clear that they may be relevant to 

tumor metastases to the bone and tumor-bone microenvironment 

After extravasation from the vasculature in the bone marrow cavity, metastatic 

tumor cells encounter a microenvironment that is metabolically active and rich in growth 

factors, cytokines and chemokines known to promote tumor growth.  Since bone is a hard 

tissue, breast tumor cells must hijack the normal bone resorption process in order to 

establish and grow (Figure 4).   Studies have demonstrated that metastatic breast tumor 

cells secrete various factors such as IL -1, -6, -8 and -11 and PTHrP that stimulate  
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Figure 4. The ‘vicious’ cycle of bone metastasis. (1) Metastatic tumor cells present in 
the bone, secrete various factors such as PTHrP and different interleukins which
stimulate (2) the osteoblasts to promote (3) the maturation and activation of osteoclast
precursors.  This high number of active osteoclasts leads (4) to an extensive bone
resorption, releasing increasing levels of growth factors such as TGF-β and IGFs.  (5) 
Besides promoting tumor growth in the bone, these growth factors have been shown (5) 
to modulate osteoblast and osteoclast functions that promote the continuation of the 
vicious cycle. 



osteoblast expression of osteoclastogenic factors M-CSF and RANKL 87.  It has been 

established for years that circulating PTH acts as a stimulus for bone remodeling, 

however PTHrP is a paracrine factor expressed mainly by osteoblast precursor cells and 

cells present in the bone marrow 88.  Both PTH and PTHrP have been shown to induce 

osteoblast differentiation and to inhibit osteoblast apoptosis 89.  Furthermore, mice 

heterozygous for PTHrP present a low level of bone formation and specific deletion of 

PTHrP expression in osteoblasts induced defective bone matrix synthesis 90, 91.  In 

addition to its effect on osteoblast differentiation and bone formation, PTHrP indirectly 

influences osteolysis by inducing osteoblast expression of RANKL, an important 

regulator of osteoclastogenesis 92.  PTHrP is expressed as a pre form which requires 

proteolytic cleavage to release the mature active peptide 93.  Furin and prostate serum 

antigen (PSA), two serine proteases, have been shown to cleave PTHrP inducing 

osteoblast differentiation 92, 94.  Immunohistochemical studies have demonstrated an 

increase of PTHrP expression in samples of breast cancer metastases to bone compared to 

soft tissues or primary breast tumor samples 95, 96.  Intracardiac injection of the human 

breast tumor cell line MDA-MB-231 overexpressing PTHrP increased the number of 

metastases in the bone 97.  Neutralizing antibodies to PTHrP injected in tumor bearing 

mice resulted in a decreased of both osteolytic lesions and tumor growth 97.  Taken 

together these data demonstrated that PTHrP expression is an important feature utilized 

by breast tumor cells to induce the vicious cycle of bone metastasis.   

 Bone is one of the richest reservoirs of growth factors such as TGF-β, IGFs and 

BMPs in the human body.  During bone synthesis, osteoblasts secrete these factors which 

become embedded in the new bone.  During the resorption of the bone, osteoclasts 
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release these growth factors that in turn provide signals to the osteoblasts to locally 

control the bone remodeling process.  IGFs are abundant growth factors sequestered in 

the bone matrix 98.  Supernatants of cultures of resorbing neonatal calvarias increased 

breast tumor proliferation 99.  A neutralizing antibody against IGF-I receptor significantly 

attenuated the growth effect of these calvarial culture supernatants suggesting that IGF 

released from the bone promotes tumor cell growth.   

In the bone, TGF-β possesses a unique role as it influences both bone resorption 

and bone formation.  TGF-β can influence chemotaxis, proliferation and maturation of 

osteoblast progenitor cells, and its effects appear to be both stimulatory and inhibitory 

depending on the differentiation state of the osteoblasts 100-104.  Osteoclast maturation and 

function are also influenced by TGF-β which has a dual stimulatory/inhibitory role 

depending on its levels 105-108.  These dual effects of TGF-β are essential for the fine 

regulation of bone remodeling, TGF-β levels act as a ‘sensor’ of the extent of bone 

resorption and formation either stimulating or inhibiting osteoclasts and osteoblasts to 

ensure locally controlled bone remodeling.  TGF-β has been shown to increase the 

expression and stabilize the mRNA of PTHrP in MDA-MB-231, contributing to the 

establishment and progression of breast tumor in the bone 97.  TGF-β is expressed by both 

differentiated osteoblasts and osteoclasts and released upon bone resorption; many 

studies have demonstrated its effect on normal and tumor cell proliferation, expression of 

matrix proteins and enzymes that control matrix turn-over such as MMPs 109-111.  Upon 

intracardiac injection, MDA-MB-231 cells expressing a dominant negative TGF-β 

receptor induced less osteoclast recruitment and thus induced less osteolysis.  Tumor 
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growth was also reduced which demonstrated the importance of TGF-β in promoting 

breast tumor progression in the bone 112.   

 

Potential contributions of MMPs to the ‘vicious cycle’ 

As reported in table 1, several non-matrix substrates including factors controlling the 

vicious cycle, are MMP substrates.  Through the release of active growth factors, MMPs 

could contribute in different steps of the vicious cycle 1) the growth of the tumor 2) 

osteolysis either by directly acting on osteoclast maturation and function or 3) indirectly 

by promoting osteoblast differentiation and expression of RANKL or 4) by inducing 

PTHrP expression by the tumor which can lead to osteoblast differentiation.  

PTHrP expression by metastatic tumor cells stimulate RANKL expression by 

osteoblasts and its subsequent interaction with RANK at the surface of osteoclast 

precursor cells result in osteoclast maturation and activation 33.  Although, no MMP has 

yet been shown to process PTHrP, a membrane bound metalloproteinase neprilysin 

(NEP) is able to modulate the activity of PTHrP 113-115.   

Lynch and colleagues reported that RANKL was processed by MMP-3 and 

MMP-7 116.  In an animal model of prostate tumor growth in the bone, they demonstrated 

that MMP-7 expression correlated with the level of tumor-induced osteolysis.  

Furthermore, they reported that MMP-7 was primarily expressed by mature osteoclasts 

present at the tumor-bone interface.  RANKL-processing mediated by MMP-7 resulted in 

a soluble form of RANKL which is as efficient and active as full length RANKL with 

respect to inducing osteoclast activation.  This finding was significant as it demonstrated 
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a novel way of activating osteoclast without the necessity of direct osteoblast-osteoclast 

contact 116.  This study demonstrated for the first time a direct contribution of a specific 

host MMP to the progression of the vicious cycle.  Besides MMP-3 and MMP-7, MMP-1 

and MMP-14 but also members of a disintegrin and metalloproteinase (ADAM) family 

such as ADAM-17 and ADAM-19 have been shown to generate soluble RANKL 117-119.   

TGF-β is maintained in a latent state through its the interaction with a latency 

associated peptide (LAP) and latent TGF-β binding proteins (LTBP-1-4) 120.  By 

processing the latent binding proteins that keep TGF-β in an inactive state, MMPs can 

enhance osteoclast function leading to a more extensive bone resorption 121-124.  This 

increased osteolysis can promote the release of higher levels of growth factors such as 

TGF-β itself and also IGFs which in turn could signal back to the osteoclast/osteoblast to 

induce more bone resorption and tumor growth.   

IGFs are expressed as a latent molecule through complexing with IGF binding 

proteins (IGFBP-1 to -4) 125.  The release of IGFs from IGFBPs has been shown to be 

mitogenic for various tumor cells such as breast, prostate and colon 126-128.  Furthermore, 

Wang and colleagues demonstrated that IGF-I is important for normal 

osteoclast/osteoblast interactions and can regulate osteoclastogenesis by promoting their 

differentiation 129.  Several MMPs have been shown to induce the release of IGFs via the 

processing of IGFBPs 130-133.  Therefore by contributing to the activation of IGFs, MMPs 

can affect osteoclast/osteoblast interactions and influence bone resorption. 

A number of other factors that can also be processed by MMPs exist in the tumor-

bone microenvironment (Table 2) and therefore, roles for the soluble factors generated by 
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other MMPs in vicious cycle are possible.  Given the potential contributions of MMPs to 

tumor progression in the tumor-bone microenvironment, through different matrix and 

non-matrix substrates, MMPs should be an attractive therapeutic target for the treatment 

of bone metastases. 

 

MMP inhibitors, still a viable treatment for tumor-induced bone lesions? 

By the virtue of their numerous substrates, MMPs have been implicated in every step of 

tumor progression from initiation to metastasis and as a consequence were thought to be   

ideal targets for drug therapies in the treatment of cancer 134.  However, human clinical 

trials using MMPIs largely failed to show efficacy due to the dose limiting side effects, 

mainly arthralgia, the broad spectrum of inhibition of the drugs used and the failure to 

identify appropriate end-point measures of the efficacy of the treatment 135.  Prolonged 

treatment with MMPIs, induced the development of musculoskeletal pain and 

inflammation and the question as of the identity of the MMPs responsible for these side 

effects arose 135.  Studies have demonstrated that broad spectrum inhibitors reducing 

‘sheddase’ activity of proteases do not seem to induce musculoskeletal side effects 136.  

Despite these side effects, MMPIs have been shown to be clinically efficient in the 

tumor-bone microenvironment.  Pre-clinical studies using broad spectrum MMPIs such 

as BB94 demonstrated that treatment of animal bearing breast or prostate tumor with 

MMPIs can reduce and prevent tumor growth and the development of bone lesions 137-139.   
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Table 2. Non-matrix substrates of MMP in the bone. 

 

Substrate Substrate Function MMP/References Product Function Role in bone 
microenvironment 

R
ec

ep
to

r 

FGFR
1 Receptor for FGF MMP-2134, 135 

Soluble FGFR1 that 
inhibits FGF signaling by 

binding soluble FGF 

 Prevention of FGF effect on 
osteoblast differentiation 
and bone formation (BF) 

uPAR 
Regulates uPA activity 
at the cell surface and 

signaling. 

MMP-2, -3, -8, 9, 12, 
13, 14 136, 137 

Inactivation and deacrease 
in cell motility 

Inhibition of prostate cancer 
metastases to the bone by up 

to 80% 

LRP Endocytosis/Wnt 
signaling 

MMP-14, -15, -16, -
17138 

Inactivation of LRP 
attenuates endocytosis and 

Wnt signaling 

Inhibition of osteoblast 
differentiation and BF 

IL-
2Rα Interluekin receptor MMP-2, -9139 

Inactivation and 
prevention of T-cell 

proliferation 

Generation of immune 
privileged site at the tumor 

bone interface 

FAS Fas ligand receptor MMP-7140 Inacivation of the receptor 
Prevention of FasL-
mediated osteoblast 
differentiation BF 

PAR-1 
G-protein coupled 

receptor activated by 
proteases 

MMP-1141 
Activation of the receptor 

and enhanced cell 
migration and invasion 

Activation of PAR-1 on 
tumor cells in the bone 

promotes migration. 

C
ty

ok
in

e/
G

ro
w

th
 F

ac
to

r 

HB-
EGF 

Pleiotropic effects on 
growth differentiation 

and apoptosis via ErbB-
4 and ErbB-1 

MMP-3, -7142-144 Active HB-EGF Myeloma progression 

IGF-
BPs 

Sequester IGF in a 
latent form 

MMP-1, -2, -3, -6,-
11130-133, 145 Active IGF Proliferation via activation 

of the IGF receptors 

FasL Induces apoptosis by 
activating Fas MMP-3, -7146-149 Active soluble form of 

FasL 

Selection of apoptosis 
resistant tumor cells. 

Apoptosis of invading 
immune cells

TNF-α 
Pleiotropic effects on 

immune cells and 
tumor cells 

MMP-1, -2, -3, -7, -9, 
12, -14, -15, -17150-152 

Soluble active form of 
TNF-α 

Proximal and distal effects 
on cells. Activation of 

osteoclasts 

IL-1β 

Immunce cell activity 
and infiltration to sites 
of infection and tumor 

growth 

MMP-1, -2, -3, -9153-156 
Activation of the pro-form 
Inactivation of the mature 

cytokine 

Control of osteoclast 
maturation. Prevention of 
immune cell infiltration 

Kit 
Ligand 

Maintaining the stem 
cell niche in the bone MMP-9157 Active soluble Kit ligand 

that can mobilize HPC’s 

Angiogenesis of the primary 
tumor and potential homing 
to the bone stem cell niche

C
el

l a
dh

es
io

n 
m

ol
ec

ul
es

 Cadhe
rins 

Cell :cell contact in 
epithelial, vascular and 

neuronal cells 
MMP-3, -7, -14158-161 

Degradation, leading to 
disassembly of the 
adherens junctions 

Greater tumor cell 
migration. Enhanced 

angiogenesis 

Integri
ns 

Cell contact with the 
basement membrane MMP-14162, 163 

Maturation of the integrin 
and increased cell 

adhesion migration 
Migration of osteoclasts 

CD-44 Cell anchorage to the 
basement membrane 

MMP-14, 15, -16, 18, -
24164, 165 

Degradation of CD-44 
results in enhanced cell 

motility 

Increased tumor cells 
migration 

ICAM-
1 

Leukocyte infiltration 
and adhesion MMP-9166 

Inactivation of ICAM-1 
leading to improper 

immune cell function 

Generation of immune 
privileged site at the tumor 

bone interface 

C
el

l s
ur

fa
ce

 g
ly

co
 

pr
ot

ei
ns

. 

EMM
PRIN 

Regulation of MMP 
activity and promtes 

cell migration? 
MMP-1, -2, 14, 15167-169 Soluble EMMPRIN can 

enhance MMP expression 
Potential induction of MMP 

expressio 

Mucin-
1 

Protection of epithelial 
cell surfaces MMP-14170, 171 

Solubilization of Mucin-1 
influences tumor 

progression and invasion 

Expression of MUC-1 by 
tumor cells in the bone and 
processing by MMPs may 
allow for immunoevasion 

Sydeca
ns 

Cell adhesion to 
multiple ECM 
components 

MMP-7, -14, -16172-174 
Soluble syndecans can 

enhances tumor cell 
migration 

Expressed on tumor cells in 
the bone milieu and 

processing  by MMPs may 
promote migration  
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As a result, bone metastasis appears to be a relevant target for the use of MMPIs, 

however we need to identify the specific role of individual MMPs in the osteolytic tumor-

bone microenvironment 140.  The rationale for using more selective MMPIs in the tumor-

bone microenvironment has been shown by Bonfil and colleagues.  The authors 

demonstrated in a model of prostate cancer-induced osteolysis that using an inhibitor with 

high selectivity for MMP-2 and -9 reduced tumor growth, angiogenesis and the 

development of bone lesions 141.  Although, the use of prinomastat (an MMP-2 and 

MMP-9 selective inhibitor) has been shown to still induce joint pain, the execution of 

more studies focusing on identifying the contribution of individual MMPs in tumor-

induced osteolysis should lead to the development of therapies for patients presenting 

with incurable bone metastases. 

 

Aims of this dissertation 

The aims of this dissertation are to increase our understanding on how individual host 

MMPs contribute to mammary tumor growth and osteolysis.   

In a rat model of prostate tumor growth in the bone, Lynch and coworkers 

assessed the expression of 1200 genes at the tumor-bone interface and tumor area alone.  

Several genes showed a significant increased in their expression at the tumor-bone 

interface and interestingly, several MMPs such as MMP-2, -3, -7, -9 and -13 were 

particularly upregulated in comparison to the tumor area alone 116.  Furthermore, the 

authors demonstrated that MMP-7 significantly impacted prostate tumor growth-induced 

osteolysis via the solublization of RANKL which in turn could activate osteoclast 
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precursor cells 116.  Through the Orthopaedics and Rehabilitation Department at 

Vanderbilt, we obtained 11 human samples of breast-to-bone metastasis and expression 

of various MMPs were assessed by immunofluorescent staining (Table 3).  MMP-7 and 

MMP-9 presented a distinct localization pattern, mainly in mature osteoclasts at the 

tumor-bone interface.  Although, other stromal cells appeared to express MMP-7 and -9, 

breast tumor cells were largely negative for these two MMPs.  Human samples of breast-

to-bone metastases were also stained for MMP-2, -3 and -13 however, their pattern of 

expression appeared more diffuse throughout the tumor/stroma compartment.   

Since osteoclasts are the main cells responsible for bone resorption, we decided to 

investigate further the potential contributions of host-derived MMP-7 and MMP-9 in 

mammary tumor-induced osteolysis.  In addition, based on recent studies reporting the 

importance of host MMP-2 in osteoblast behavior and given the role of osteoblasts in 

osteoclast activation and function, we also examined the effect of host MMP-2 in 

mammary tumor growth and mammary tumor-induced osteolysis.  Based on these data, 

this dissertation focused on identifying the contributions of host MMP-2, -7 and -9 in 

mammary tumor-induced bone lesions.  The approach utilized was intratibial injection of 

mammary tumor cells in syngeneic and immunocompromized MMP deficient mice to 

investigate the contribution of individual host MMPs in mammary tumor growth and 

mammary tumor induced osteolysis in the bone. 
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Table 3. MMP expression in human breast-to-bone metastatases samples. 

MMP expression was assessed by immunofluorescent staining for specified MMP.  + 
indicates positive staining in the specific compartment (tumor or stroma) and – indicates 
an absence of staining throughout the sample. 

Sample 
MMP-2 MMP-7 MMP-9 MMP-13 

Tumor Stroma Tumor Stroma Tumor Stroma Tumor Stroma 

2-3-06 + + - + - + + + 

2-08-07 + + - + - + + + 

1-11-07 + + - + - + + + 

3-21-07 - - - - - - - + 

6-10-06 + + - + - + + + 

2-4-06 + + - + - + + + 
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Cell culture 

Two independent syngeneic FVB mammary tumor cell lines derived from the polyoma 

virus middle T (PyMT) model of mammary tumorigenesis tagged with a luciferase 

reporter gene and designated, PyMT-Luc or PyMT-Dsred2 and 17L3C-Luc, were used in 

all studies 142.  A luciferase tagged 4T1 mammary tumor cell line was kindly provided by 

Dr. Swati Biswas of the Vanderbilt Center for Bone Biology (Aslakson et al, 1992). 

COS-7 cells were used for the LTBP-3 overexpression experiment (ATCC #CRL-

1651™).  All cell lines were cultured in DMEM (Gibco BRL, Long Island, NY) 

supplemented with 10%FBS (Atlanta Biologicals, Atlanta, GA) and 5 µg/ml puromycin 

(only for PyMT-Luc and 17L3C-Luc cells, Sigma-Aldrich, St Louis, MO) at 37oC, 5% 

CO2.  

 

Generation of PyMT-DsRed mammary tumor cell line 

PyMT cells were labeled with DSred Express through transduction with a lentiviral titer 

made by co-transfection of HEK293-T17 cells with a pPACK Packaging Plasmid Mix 

(System Biosciences) and a pLenti6-based (Invitrogen) lentivector construct modified to 

express DSred Express (construct obtained from Dr. Meenhard Herlyn, Wistar Institute). 
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After 24 hours in 10 % serum, tumor cells were then treated with 20 µg/ml blasticidin 

(Invitrogen) to select the infected cells. Once selected, PyMT-DsRed cells were 

maintained in 10 µg/ml blastocidin.  

 

Isolation of primary osteoblasts 

Calvaria from wild type or MMP-2 deficient 3 to 4 day-old pups were harvested in cold 

sterile 1X Phosphate buffered saline buffer (PBS, 137 mM NaCl, 2.7 mM KCl, 4.3 mM 

Na2HPO4, 1.47 KH2PO4, pH 7.6) and stripped off the periosteum and sutures using a 

razor blade, only the parietal bone is used for the remaining of the isolation protocol .  

Calvaria were then subjected to three digestions (respectively 15 min, 30 min and 1 hour) 

in digestion buffer (α-MEM and 0.025% trypsin, Gibco BRL, Long Island, NY, 10mg/ml 

collagenase P, Roche), at 37oC with vigorous shaking every 15 min.  Isolated primary 

cells from the supernatants of the digestion were then maintained in α-MEM and 10% 

fetal bovine serum (Atlas Biologicals), 100 µg/ml penicillin/streptomycin (Invitrogen) 

and 250 unit/ml fungizone (Gibco, BRL, Long Island, NY).  Primary osteoblasts were 

plated at a density of 2x105 cells/well in 6 well-plates and 24 h after seeding; cells were 

cultured in serum starved α-MEM media.  After 24 h, conditioned media was collected, 

centrifuged at 1100 rpm to remove cellular debris and subsequently used for the MTT 

and soft agar colony formation assays described below. 
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Isolation of primary osteoclast precursor cells 

Bone marrow cells from tibias and femurs were isolated from 6 week-old wild type and 

MMP-2 deficient mice by flushing the cells with 1 ml of cold 1X PBS using a 25G5/8 

gauge needle. Isolated cells were centrifuged at 1,000 rpm and rinsed with 1 ml of 1X 

PBS.  CD11b positive cells were then isolated using Macs® Separation columns 

(Miltenyi Biotech) following the manufacturer’s protocol and plated in α-MEM and 10% 

fetal bovine serum (Atlas Biologicals), 100 µg/ml penicillin/streptomycin (Invitrogen) 

and 250 unit/ml fungizone (Gibco, BRL, Long Island, NY) for the migration and 

differentiation assays described below. 

 

Mice and genotyping 

All experiments involving animals were conducted after review and approval by the 

office of animal welfare at Vanderbilt University.  Immunocompromised recombinase 

activating gene-2 (RAG-2) null MMP-7 deficient mice were generated as previously 

described (Lynch et al, 2005). Wild type and MMP-2 and MMP-9 deficient mice in the 

FVB/N-Tg background were kindly provided by Dr. Lisa Coussens, Dept. of Pathology, 

University of California San Francisco.  All mice were weaned at 3 weeks of age and 

genotyped by PCR analysis.  Primers designed to identify RAG-2 null and wild type 

allele were described previously 143.  The PCR conditions for the amplification of mouse 

RAG-2 or mutant allele were 94oC 4 min for 1 cycle; 94, 58, 72oC 1 min each for 30 

cycles; 72oC 1 min for 1 cycle.  Primers designed to identify MMP-7 mutant or wild type 

allele were designed previously in the Matrisian laboratory, wild type allele: forward 
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primer 5’ AAT GAG CTG GCT GTG GAT CTG GT 3’, reverse primer 5’ GAG GGT 

TTG ATT TCT ATT TTC AG 3’. Primers for the mutant allele are forward primer 5’ 

CAT CGC CTT CTA TCG CCT TCT TG 3’, reverse primer 5’ TGC GTC CTC ACC 

ATC AGT CCA GTA 3’. The PCR cycle conditions for the amplification of mouse  wild 

type MMP-7 or the mutant allele were 95oC 15 min for 1 cycle; 94, 57, 72oC 1 min each 

for 4 cycle; 91, 57, 72o C 30 sec each for 28 cycles.  Double deficient RAG-2 null MMP-

7 null mice were used for the animal experiments described in this dissertation.  Primers 

designed to identify mutant MMP-9 allele are forward primer 5’ CTA AAG CGC ATG 

CTC CAG AC 3’ and reverse primer 5’ GAA GAG GTG ACT GCG ACT CC 3’.  

Primers used to identify wild type MMP-9 allele were generated previously in the 

Matrisian laboratory, forward primer 5’ GCA TAC TTG CGC TAT GG 3’ and reverse 

primer 5’ TAA CCG GTG CAA ACT 3’.  The PCR conditions for amplification of 

mouse wild type or mutant MMP-9 allele were 94oC 4 min for 1 cycle; 94, 58, 72oC 1 

min each for 30 cycles; 72oC 1 min for 1 cycle.  MMP-2 null mice were genotyped using 

gelatin zymography.  Serum was isolated from wild type and MMP-2 deficient animals.  

Serum samples mixed with sample buffer (10% SDS, 0.5M Tris-HCl pH 6.8, 30% 

glycerol, and 0.02% bromophenol blue) were separated on a 8% SDS-PAGE gel 

containing 3 mg/ml gelatin (Sigma-Aldrich, St Louis, MO).  The gel was then rinsed for 

15 min in 2.5% Triton X-100 buffer (Sigma-Aldrich, ST Louis MO), then incubated 

overnight in activation buffer (50 mM Tris-HCl, 10 mM CaCl2) and then stained for 1 

hour in staining buffer (0.5 % coomassie in 50 % methanol and 10 % acid acetic).  The 

gel was destained in distilled water until clear bands were visible. 
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Intratibial injection and in vivo quantitation of tumor growth 

PyMT-Luc, 4T1-Luc and 17L3-Luc tumor cells (2x105) in a 10µl volume of sterile PBS 

were injected into the tibia of anesthetized immunocompetent or immunocompromised 6 

week old mice that were wild type or deficient in MMP-2, MMP-7 or MMP-9. The 

contralateral limb was injected with 10µl of PBS alone and acted as a sham injected 

control for the bone remodeling due to the direct injection in the bone.  The IVISTM 

system (Caliper Life Sciences) was used to detect luminescence from the mammary 

tumor cells after intratibial injection.  Firefly luciferin (120mg/kg in sterile PBS, Gold 

Biotechnology, Inc.) was delivered retro-orbitally 1 to 2 minutes prior to imaging. Mice 

were imaged at 24 hours and every 3 days after surgery. Living ImageTM software 

(Calipers Life Sciences) was used to quantify the luminescence intensity in the tumor 

bearing limb over time.  Mice were sacrificed at specified time points post-surgery and 

both the tumor injected and contralateral control tibiae were harvested.  All animal 

studies were independently repeated at least three times. 

 

Histology 

De-identified human samples of frank osteolytic breast to bone metastasis (n=11) were 

collected by curettage with IRB approval from Vanderbilt University from 2005 to 2008.  

Fresh human breast-to-bone metastases, tumor and sham injected mouse tibiae were fixed 

overnight in 10% buffered formalin and decalcified for 3 weeks in 14% EDTA at pH 7.4 

with changes every 48-72 hours.  Tissues were embedded in paraffin and 5µm thick 

sections were cut. For MMP-7, MMP-9 and tartrate resistant acid phosphatase (TRAcP) 
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localization, the following technique was employed. Sections were rehydrated through a 

series of ethanols and then rinsed in tris buffered saline (TBS; 10mM Tris at pH 7.4, 

150mM NaCl) with Tween-20 (0.05%) (TBST).  For antigen retrieval, slides were 

immersed in a 20µg/ml solution of proteinase K according to the manufacturer’s 

instructions for 10 minutes at room temperature.  Following washing in TBS, tissue 

sections were blocked using standard blocking criteria (10 % serum of the appropriate 

specie in 1X TBS) for 1 hour at room temperature. MMP-7 144 or MMP-9 (Oncogene, 

Cambridge, MA) antibodies at a dilution of 1:100 were added in blocking solution 

overnight at 4oC.  Slides were washed extensively in 1X TBST prior to the addition of a 

species specific fluorescently labeled secondary antibody (Alexafluor 568nm, Invitrogen) 

diluted 1:1,000 in blocking solution for 1 hour at room temperature.  Slides were washed 

in TBS and then equilibrated in an acetate buffer as described 145. The ELF97 TRAP stain 

(Invitrogen) was diluted 1:1,000 in acetate buffer and slides were incubated for 15 

minutes at room temperature.  Following washing, slides were aqueously mounted in 

media (Biomeda Corp) containing 2μM DAPI (4´,6 diamidino-2-phenylindole) for 

nuclear localization.  For MMP-2 staining, no antigen retrieval was used, following 

washing in TBS, tissue sections were blocked using standard blocking criteria for 1 hour 

at room temperature. MMP-2 (Abcam) antibody at a dilution of 1/150 was added in 

blocking solution overnight at 4oC. Slides were washed extensively in TBST prior to the 

addition of a species specific anti-goat biotinylated IgG antibody (Vector Laboratories) 

diluted 1:1,000 in blocking solution for 1 hour at room temperature. Labeled cells were 

visualized using an avidin-biotin peroxidase complex (Vectastain ABC kit, Vector 

Laboratories) and 3,3′ –Diaminobenzidine tetrahydrochloride substrate (Sigma, St. Louis, 
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MO). Sections were counterstained with hematoxylin, dehydrated and permanently 

mounted. 

TRAcP was also detected using a colorimetric kit according to the manufacturer’s 

instructions (Sigma-Aldrich, St Louis, MO).  Gross anatomy of the mouse tibiae was 

assessed by hematoxylin and eosin (H&E) staining using a standard protocol.  

Proliferation (anti-phospho Histone H3, Upstate, Lake Placid, NY, 1:50 dilution, or 

Mcm2, Abcam, Cambridge, MA, 1:200 dilution) and apoptosis (anti-Caspase-3, Cell 

Signaling Technology, Danvers, MA, 1:400 dilution) were assessed by 

immunohistochemistry as described above. 

 

Micro computed tomography (µCT) and histomorphometric analyses 

For gross analysis of trabecular bone volume, formalin fixed tibiae were scanned at an 

isotropic voxel size of 12µm using a microCT40 (SCANCO Medical).  The tissue volume 

(TV) was derived from generating a contour around the metaphyseal trabecular bone that 

excluded the cortices.  The area of measurement began at least 0.2mm below the growth 

plate and was extended by 0.12mm.  The bone volume (BV) included all bone tissue that 

had a material density greater than 438.7 mgHA/cm3.  These analyses allowed for the 

calculation of the BV/TV ratio. The same threshold setting for bone tissue was used for 

all samples thus allowing for direct comparison between groups. 

For histomorphometry of the BV/TV ratio, three non-serial sections of tumor 

bearing and saline injected hind limbs were H&E stained to assess the ratio of BV/TV or 
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with TRAcP to assess osteoclast number per mm bone at the tumor bone interface using 

Metamorph® software (Molecular Devices). 

 

Immunoprecipitation, Immunoblotting and ELISA 

Tumor and sham injected tibias from wild type or MMP null animals were harvested at 

specified time points post-injection and flash frozen in liquid nitrogen.  Tissue 

homogenates were generated by mortar and pestle and total protein was subsequently 

extracted using a standard protein lysis buffer (0.1 % sodium dodecyl sulfate, 0.5 % 

sodium deoxycholate, 1 % Triton X100, 20 mM Tris pH 7.5, 150 mM NaCl) containing a 

complete protease inhibitor cocktail (Roche).  Lysates were then centrifuged at 14,000 

rpm for 10 min and supernatant was then isolated.  Protein concentration in isolated 

samples was quantitated using a bicinchoninic acid (BCA) assay as per manufacturer’s 

instructions (Pierce).  For immunoprecipitation and quantitation of soluble RANKL in the 

tumor-bone microenvironments, equal concentrations of total protein (1mg) in 1ml of 

PBS were pre-cleared with 10µl of protein-G-sepharose beads (Amersham Biosciences) 

for one hour at 4oC.  Pre-cleared lysates were then incubated with 2µg of antibody 

directed to the N-terminus of RANKL (Santa Cruz Biotechnology) for 1 hour at 4oC with 

rocking prior to the addition of 10µl of protein-G-sepharose beads. Subsequently, 10µl of 

protein G-sepharose beads were added to the samples and the bead-antibody-protein 

complexes were allowed to form overnight at 4oC.  A nutator was used during all steps 

for agitation.   The complexes were washed extensively (100mM NaCl, 50mM Tris-HCl, 

pH7.5, 0.5% NP-40) and then boiled in sample buffer (10% SDS, 0.5M Tris-HCl pH 6.8, 
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30% glycerol, 1% β-mercaptoethanol and 0.02% bromophenol blue) for 10 minutes prior 

to loading on to a 15% SDS-PAGE gel.  Recombinant RANKL (RnD Systems, 

Minneapolis, MN) or MMP-7 solubilized RANKL (10µg recombinant RANKL 

incubated with 100ng active MMP-7 (Calbiochem, LaJolla, CA) for 1 hour at 37oC) as 

previously described (Lynch et al, 2005) were added as positive controls for the 

molecular weight of MMP solubilized RANKL.  Proteins were transferred to 

nitrocellulose membranes and blocked for 1 hour at room temperature (5% milk powder 

in 1xTBS; 5mM Tris-HCL pH 7.4). The blots were then panned with an antibody 

directed to the N-terminus of RANKL (1: 1,000 dilution; Axxora LLC in 5% milk in 

1xTBST (TBS with 0.05% Tween 20)) overnight with rocking at 4oC.  The following 

day, blots were washed extensively with 1X TBST prior to the addition of a secondary 

infra-red labeled anti-mouse antibody (1: 5,000 dilution in 1xTBST, Rockland Inc.) for 1 

hour at room temperature.  After washing in 1xTBST, blots were developed and bands of 

interest were quantitated using the Odyssey system (LI-COR Biosciences, Lincoln, NE).  

For LAP and LTBP-3 immunoblotting, equal amounts of protein were loaded on either 4-

12% gradient SDS-PAGE (Invitrogen) or 6 % SDS-PAGE non-denaturing gels 

respectively.  Immunoblotting protocol followed was identical as described above; 

primary antibodies used were goat anti-human LAP (R&D System, dilution 1:1,000) and 

rabbit specific anti-mouse LTBP-3 (anti-L3C, dilution 1:1,000, kindly provided by Dr D. 

Rifkin, Dept of Cell Biology and Medicine, New York University School of Medicine).  

Secondary infra-red labeled anti-goat or anti-rabbit antibodies (1:5,000, Rockland Inc) 

were used for detection of the antibody/antigen complex in the dark for 1 hour at room 

temperature.   
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ELISA was also used for the quantitation of soluble RANKL and TGF-β in 

samples according to the manufacturer’s instructions (Quantikine, R&D Systems). 

 

MTT Assay 

Quantitation of viable PyMT-Luc cells treated with conditioned media from primary 

osteoblast wild-type or MMP-2 deficient mice was assessed using tetrazolium-based 

colorimetric assay (MTS, Promega Corporation).  Tumor cells were plated in 96-well 

plates at a density of 1000 cells/well and 24 h after seeding, cells were treated with 100 

µl of either serum starved media, conditioned media from primary osteoblasts isolated 

from either wild type or MMP-2 deficient mice.  After 24 and 48h of treatment, 20 µl of 

MTS was added to each well of cells, and the plate was incubated for 3 h at 37°C.  

Spectrophotometric absorbance of each sample was measured at 490 nm using a MRX 

revelation microplate reader (Dynex Technologies). Experiments were performed in 

quadruplicate.   

 

Soft agar colony formation assay 

PyMT-Luc cells were plated at a density of 1.5x103 cells/well in 24 well-plates in soft 

agar containing α-MEM, 5% fetal bovine serum, 0.7% agarose (Fischer, cat. No. BP164).  

Tumor cells were treated with 400 µl of 5% serum α-MEM, 5% serum and conditioned 

media from wild type or MMP-2 null primary osteoblasts or 1ng/ml TGF-β and the 

media was changed 3 times a week.  After 10 days of culture, cells were stained 
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overnight at 37oC by addition of 0.1mg/ml p-iodonitrotatrazolium (Sigma-Aldrich, St 

Louis, MO) to the media.  Numbers of colonies for each condition were counted on 100X 

photomicrographs.  Experiments were performed in quadruplicate.  

 

Migration assay of osteoclast precursor cells  

CD11b positive cells were plated at a density of 105 cells/well in the upper well of a 

transwell (Corning Inc., 5µm pore size) in 500 µl of serum free α-MEM media. Cells 

were allowed to migrate towards the lower well of the transwell (1 ml of chemotactic 

gradient (10 % serum-α-MEM) or serum-free media as control) for 5 hours at 37oC.  

CD11b positive cells that migrated through the membrane were harvested in the lower 

well and counted.  Experiments were performed in triplicate. 

 

Differentiation of osteoclast precursor cell assay 

CD11b positive cells isolated from 6 week-old wild type and MMP-2 deficient bone 

marrow cells were plated in 48 well plate in 10 % serum-α-MEM media at a density of 

5x105 cells/well. The following day, cells were treated with 75 ng/ml RANKL (R&D 

system) and 30 ng/ml M-CSF (R&D system) in 500 µl of 10 % serum-α-MEM media. 

Media was changed every 3 days for a 15 day period. At the end of the assay, cells were 

fixed in ice-cold methanol and stained using a colorimetric TRAcP kit (Sigma-Aldrich, St 

Louis, MO) and counter stained in hematoxylin.  Multinucleated (more than 3 nuclei) 
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TRAcP cells were counted in 8 random field acquired using a 10X microscopic objective 

for each conditions. Experiments were performed in quadruplicate. 

 

COS-7 cells transfection and LTBP-3 digestion 

COS-7 cells were transiently transfected with a full length LTBP-3 cDNA construct and 

human TGF-β1 cDNA (kindly provided by Dr Rifkin, Dept of Cell Biology and 

Medicine, New York University School of Medicine) using Superfect (QIAGEN).  COS-

7 cells were plated at a density of 105 cells/well in a 6 well plate the day prior the 

transfection.  Cells were then incubated in transfection mix (30 µl of superfect reagent, 

0.5 µg of each constructs and 500 µl of DMEM and 10% FBS) overnight.  The next day, 

transfected COS-7 cells were incubated for 48 hours in serum starved DMEM media.  40 

µl conditioned media was then incubated for 3 hours at 37oC in presence of 300 ng of 

recombinant human MMP-2 (Calbiochem) or for 1 hour in presence of 150 ng of plasmin 

(Sigman-Aldrich, St Louis, MO).  Samples were then analyzed by immunoblotting for 

LTBP-3 as described above. 

 

Flow cytometry analysis 

PyMT-DsRed2 cells were intratibially injected into FVB wild type or MMP-2 deficient 

mice. After 3 days, tumor injected tibias were flushed with 500 µl of sterile PBS 1X 

using a 25G5/8 gauge needle.  Harvested cells were then centrifuged at 2000 g for 5 min 

and then resuspended in 1 ml of red blood cell lysis buffer (8 mM NH4Cl, 5 mM KHCO3) 
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for 5 min at room temperature. Cells were centrifuged at 2000 g for 5 min and 

resuspended in 1 ml of sterile PBS 1X. 106 cells were fixed and permeablized for flow 

cytometry analysis using BrdU Flow kit protocol (BD PharmingenTM, San Jose, CA).  

Fixed and permeabilized cells were then incubated in presence of anti-mouse 

CD16/CD52 (mouse BD Fc BlockTM, BD pharmingenTM, San Jose, CA, 1:20 dilution) for 

10 min on ice.  Primary antibodies, rabbit anti-mouse cleaved caspase-3 antibody (Cell 

Signaling Technology, Danvers, MA, 1:100 dilution)  and alexa Fluor® 647 Rat anti-

Histone H3 antibody (BD PharmingenTM, San Jose, CA, 1:4 dilution) were added to the 

samples and incubated for 30 min on ice. Cells were then centrifuged at 2000 g for 5 min 

and resuspended in 500 µl of staining buffer provided by the BrdU flow kit and incubated 

in presence of secondary antibody Pacific BlueTM goat anti-rabbit IgG (Invitrogen, 

Carlsbad, CA, dilution 1:400 dilution) for 30 min.  Cells were centrifuged at 2000 g for 5 

min and resuspended in 500 ul of 1 % bovin albumin serum in PBS 1X and strain them 

trough a 35 µm nylon mesh and analyzed using 5-laser BD LSRII flow cytometer. 

 

Statistical analyses 

For in vivo data, statistical analysis was performed using Anova and Bonferroni multiple 

comparison tests using GraphPad Prism Inc. Software. In vitro, statistical significance 

was analyzed using a student’s t test. A value of p < 0.05 was considered significant. 

Data are presented as mean ± standard deviation (SD). 
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CHAPTER III 

 

CONTRIBUTIONS OF OSTEOCLAST-DERIVED MMPS TO MAMMARY TUMOR 
GROWTH IN THE BONE MICROENVIRONMENT 

 

Introduction 

Osteoclasts are critical for the completion of the vicious cycle since they are the principal 

cells involved in the direct resorption of the mineralized bone matrix.  Therefore, 

understanding how osteoclast precursors are recruited to areas requiring bone remodeling 

and understanding the mechanisms involved in controlling their maturation and activation 

is key for the development of new therapies that can effectively stop the vicious cycle.  

Osteoclasts express a variety of proteases including the cysteine protease, cathepsin-K 

and MMPs 77.  While cathepsin-K activity is critical for bone resorption 28, the role of 

osteoclast-derived MMPs is less clear.  MMPs are often overexpressed by the stromal 

cells rather than the tumor 86.  In the context of the tumor-bone microenvironment, pre-

clinical animal studies have demonstrated the efficacy of broad spectrum MMPIs in 

preventing tumor growth and tumor induced osteolysis 137-139.  However, the failure of 

MMPIs in human clinical trials prevents their application for the treatment of lytic bone 

metastases 135.  A main conclusion derived from these trials was the necessity for 

defining the precise roles of individual MMPs in disease processes that would allow for 

the generation of highly selective MMP inhibitors.  To this end, we have assessed the 

expression of MMPs in human clinical samples of osteolytic breast to bone metastasis.  

While the expression of many MMPs was noted throughout the tumor/stroma, MMP-7 
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and MMP-9 were highly localized to bone resorbing osteoclasts.  Given the importance 

of osteoclasts in driving the vicious cycle, the current study focused on determining if 

and how these osteoclast derived MMPs impact tumor-induced osteolysis. 

 

Results 

 

MMP-7 and MMP-9 are expressed by osteoclasts in human breast to bone metastases 

Previous observations using an animal model of tumor-bone interaction identified several 

MMPs as being highly expressed at the tumor-bone interface compared to the tumor area 

alone, namely MMP-2, -3, -7, -9 and -13116 (unpublished data).  The expression of these 

MMPs was examined in human cases of frank breast to bone metastasis (n=11).  

Interestingly, MMP-7 and MMP-9 were largely localized to the majority of mature 

TRAcP positive multinucleated osteoclasts at the tumor-bone interface in human samples 

containing areas of osteolysis (10 of 11 samples) (Figure 5A-C).  Other cells in the 

stromal compartment stained positively for MMP-7 and MMP-9 but remarkably, the 

tumor cells were negative for these metalloproteinases.  MMP-2, -3 and -13 were also 

detected but their expression was diffuse throughout the tumor/stroma compartment 

(Figure 16 and data not shown).  Since osteoclasts are the principal cells involved in bone 

resorption, we examined whether the ablation of host derived MMP-7 or MMP-9 would 

impact the vicious cycle in terms of mammary tumor growth and/or mammary tumor 

induced osteolysis.  
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Host derived MMP-9 does not contribute to tumor growth or tumor induced osteolysis 

MMP-9 has previously been reported to be localized to osteoclasts and MMP-9 null 

animals have been identified as having a delay in osteoclast recruitment during the 

development of long bones 75.  Therefore, we initially tested the role of host derived 

MMP-9 in tumor growth or tumor induced osteolysis.  Consistent with our observations 

in human samples, bone resorbing osteoclasts in wild type mice were positive for MMP-9 

expression by immunofluorescent staining while as expected, MMP-9 was not detected in 

MMP-9 null osteoclasts (Figure 6A).  Since MMP-9 null animals have a transient 

developmental bone phenotype, we determined the baseline trabecular bone volume as a 

function of tissue volume (BV/TV) in wild type and MMP-9 null animals at 6 weeks of 

age which was the proposed time-point for introduction of the PyMT-Luc tumor cells.  

No difference in the BV/TV between the wild-type and MMP-9 null animals was 

observed (Figure 6B). 

To assess the contribution of host MMP-9 in mammary tumor growth in the bone 

microenvironment, the PyMT-Luc tumor cells, in which MMP-9 expression is 

undetectable in vivo 146, were injected into the tibia of syngeneic FVB wild-type or 

MMP-9 null mice.  Surprisingly, quantitation of the bioluminescent signal from the tumor 

cells showed no difference in the tumor growth rate between the MMP-9 null and wild 

type control mice (Figure 7A).  With respect to tumor induced osteolysis, analysis of the 

BV/TV ratio by high resolution µCT demonstrated that the tumor injected tibias of wild-

type and MMP-9 null were significantly lower (p<0.05) than their respective sham 

injected control counterparts (Figure 7B and C).  However, a direct comparison of the
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BV/TV ratios between the wild-type and MMP-9 null tumor injected limbs revealed no 

difference in BV/TV ratios (Figure 7B and C).  Furthermore, no difference in tumor 

growth as assessed by phospho histone H3 for proliferation and cleaved caspase-3 

immunohistochemistry for apoptosis (Figure 7DC and E) or trabecular bone volume by 

histomorphometry was observed between the wild type and MMP-9 null groups (Figure 

7B).  These experiments, with similar sized groups, were repeated on several occasions 

with similar results.  These results using the intratibial model suggest that host MMP-9 

does not contribute to mammary tumor growth in the bone or tumor- induced osteolysis 

and are consistent with studies examining the role of host MMP-9 in the prostate cancer-

bone microenvironment 147. 

 

Host MMP-7 contributes to mammary tumor growth in the bone microenvironment 

This is the first report to document the expression of MMP-7 in human breast to bone 

metastases and in human osteoclasts (Figure 5), although MMP-7 has previously been 

identified in rodent osteoclasts 116. Recapitulating observations in human clinical 

samples, MMP-7 expression was identified in wild type murine osteoclasts and not in 

MMP-7 null osteoclasts (Figure 8A).  Given that MMP-7 expression by osteoclasts is a 

relatively recent observation, studies into defining roles for MMP-7 in skeletal 

development have not been explored thus far. Therefore, prior to testing the impact of 

host derived MMP-7 on the vicious cycle, the trabecular bone volume in non-injected 6 

week old immunocompromised wild type and MMP-7 null animals was examined using 

high resolution µCT.  Our results revealed no significant difference in the BV/TV ratio 
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between wild type and MMP-7 null animals suggesting that at this time point, MMP-7 

null animals do not display an obvious bone phenotype in comparison to the wild type 

controls (Figure 8B). 

To determine the contribution of host MMP-7 to mammary tumor growth in the 

bone microenvironment, PyMT-Luc cells were injected into 6 week old wild-type or 

MMP-7 null mice. Quantitation of the bioluminescent signal from the PyMT-Luc cells 

demonstrated a significant decrease in the tumor growth rate in MMP-7 null mice 

compared to the wild type controls (Figure 9A).  These experiments with similar sized 

groups in terms of animal numbers were independently repeated on four occasions and 

similar observations were noted. To further investigate the potential role of MMP-7 in 

tumor growth, tumor proliferation and apoptosis were assessed by immunohistochemistry 

for phospho-histone H3 and cleaved caspase-3, respectively, in multiple sections from at 

least five animals per group (Figure 9B and C). Surprisingly, no difference in tumor 

proliferation was observed between the wild type and MMP-7 null groups, however, 

tumor apoptosis was significantly higher in MMP-7 null mice compared to the wild type 

controls (p<0.05).  Similar findings with respect to the impact of host MMP-7 on tumor 

growth using the 4T1-Luc cell line were also observed (Figure 10A-C).  These results 

suggest that host-derived MMP-7 significantly contributes to mammary tumor growth in 

the bone by enhancing tumor cell survival.  

 

Host derived MMP-7 contributes to mammary tumor induced osteolysis 

The vicious cycle of tumor-bone interaction suggests that tumor growth/survival is
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dependent on osteoclast mediated bone resorption.  Since MMP-7 is primarily localized 

to bone resorbing osteoclasts in the tumor-bone microenvironment, we assessed whether 

a lack of MMP-7 in osteoclasts impacted tumor induced osteolysis.  Analysis of the 

BV/TV ratios from wild type and MMP-7 null tumor injected tibias using µCT (Figure 

11A) and histomorphometry (Figure 11B) revealed that the MMP-7 null group had a 

significantly higher amount of trabecular bone which is in keeping with our tumor growth 

data, i.e. less tumor growth in the MMP-7 null animal would lead to less osteolysis.  X-

ray analysis also revealed a significantly lower tumor volume in the MMP-7 null animals 

compared to wild type controls (Figure 11C).  Studies using the 4T1-Luc cell line also 

demonstrated that host derived MMP-7 significantly impacted tumor induced osteolysis 

(Figure 12A and B).  These results demonstrate for the first time that host derived MMP-

7 significantly impacts mammary tumor induced osteolysis. 

 

MMP-7 mediates RANKL solubilization in the tumor-bone microenvironment 

Next, we explored the potential molecular mechanisms through which osteoclast derived 

MMP-7 was impacting tumor induced osteolysis.  Given the acidity of the resorption 

lacunae (pH<4) and the neutral activity profile of MMP-7, we suggest that MMP-7 does 

not function in direct bone matrix degradation but in the processing of factors that impact 

cell-cell communication within the tumor-bone microenvironment. MMP-7 has 

previously been shown to process a number of growth factors and cytokines to soluble 

active forms including members of the tumor necrosis factor family (TNF), TNF-α, Fas 

ligand (FasL) and RANKL 72, 116, 148.  RANKL is essential for osteoclastogenesis and is a  
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potent chemotactic molecule for monocytes and osteoclast precursor cells 149, 150. 

Therefore, we investigated if MMP-7 solubilization of RANKL was relevant in our 

model. 

ELISA analysis revealed lower levels of total RANKL (membrane bound and 

soluble) in the tumor injected tibias of MMP-7 null mice compared to wild type control 

mice (Figure 13A) while no difference was observed in the sham injected control 

counterparts of each group (data not shown).  Similar levels of OPG, a soluble decoy 

receptor of RANKL, were found in the wild-type and MMP-7 null animals and were not 

present at a high enough concentration to interfere with the detection of RANKL by 

ELISA (data not shown).  Immunoprecipitation and immunoblotting for soluble RANKL 

also revealed significantly lower levels of soluble RANKL in PyMT-Luc and 4T1-Luc 

tumor injected MMP-7 null animals compared to wild type controls as assessed by 

densitometry (Figure 13B and 14A). 

Interestingly, soluble RANKL could still be detected in the tumor bearing limbs 

of MMP-7 null animals. This suggests that RANKL solubilization is still occurring in the 

absence of MMP-7.  We and others have previously identified that other 

metalloproteinases such as MMP-1, -3, -14, ADAM-17 and the serine protease cathepsin 

G are capable of processing RANKL to a soluble active form and therefore, these 

proteases may also be playing a role in the solubilization of RANKL in our model 116-118, 

151.  However, since the levels of RANKL are significantly lower in the MMP-7 null 

mice, we suggest that MMP-7 is the dominant protease involved in RANKL 
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solubilization.   

Next, since a decrease in the amount of soluble RANKL was detected in the 

tumor bearing limbs of the MMP-7 null animals, we asked if there was concomitant 

decrease in the number of osteoclasts in the MMP-7 null tumor-bone microenvironment. 

We observed significantly lower numbers of TRAcP positive multinucleated osteoclasts 

per unit length of tumor-bone interface in the MMP-7 null animals compared to the wild 

type controls (Figure. 13C). Significantly lower numbers of osteoclasts were also 

recorded in MMP-7 deficient animals injected with 4T1-Luc cells compared to wild type 

controls (Figure 14B). Given the importance of RANKL in mediating osteoclastogenesis, 

these data suggest that MMP-7 mediates mammary tumor induced osteolysis by 

impacting the availability of a key factor for osteoclastogenesis, RANKL. 

 

Conclusions 

Understanding the molecular mechanisms that control the vicious cycle is key for the 

development of new therapeutics that will be effective not only in treating bone 

metastases but also in curing them. In the current study, we found that in human cases of 

breast to bone metastasis, osteoclasts were a rich source of MMP-7 and MMP-9. 

Interestingly, our studies using two unrelated osteolytic inducing tumor cell lines (PyMT-

Luc and 4T1-Luc) revealed that only MMP-7 appeared to contribute to mammary tumor 

growth and tumor induced osteolysis in the bone microenvironment. Furthermore, our 

data suggests that MMP-7 solubilization of the osteoclastogenic factor RANKL is the 

principal molecular mechanism underlying these observations. Previously, we have 
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identified that MMP-7 processing of RANKL results in the generation of an active 

soluble form that can promote osteoclast maturation and activation 116. Therefore, in the 

context of the breast to bone metastases we hypothesize that in the absence of MMP-7 

solubilized RANKL, there is a resultant decrease in osteoclast maturation and bone 

resorption at the tumor-bone interface that in turn results in a decrease in bone derived 

growth factors that impact tumor growth (Figure. 15).  These data suggest that MMP-7 

inhibition using a selective approach may be efficient for the treatment of breast to bone 

metastases. 
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CHAPTER IV 

 

CONTRIBUTIONS OF OSTEOBLAST-DERIVED MMP-2 TO MAMMARY TUMOR 
GROWTH-INDUCED BONE LESIONS 

 

Introduction 

Osteoblasts are the cells responsible for the synthesis of the bone and the deposition of 

growth factors such as TGF-β and IGFs in the bone matrix 11.  These factors are 

complexed in latency proteins and therefore, the proteases that govern their release and 

activation are of great importance.  TGF-β and IGFs are crucial players in the vicious 

cycle as they have been shown to promote the differentiation of osteoclast precursor cells 

into multinucleated mature osteoclasts 23.  By activating osteoclasts, osteoblasts promote 

osteolysis and the release of growth factors in the tumor-bone microenvironment 87.  

Many studies on breast tumor growth in bone have focused on the osteoclast and how to 

inhibit osteoclast function in a bid to halt bone resorption.  However, with the exception 

of tumor effect on the expression of osteoclastogenic factors by the osteoblasts such as 

RANKL, little attention has been given to osteoblast-mediated tumor growth in vivo.   

Osteoblasts have been reported to express several MMPs but the contribution of 

osteoblast-derived MMPs to the vicious cycle has not been explored to date 81, 152-157.  

MMPs have been implicated as important mediators of cell-cell communication, 

therefore investigating their contributions to osteoblast functions in a tumor setting is of 

interest.  
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In assessing MMP expression in human and murine breast-to-bone metastases, we 

found that one MMP in particular, MMP-2 was localized to osteoblasts, osteocytes and 

other cell types throughout the tumor/stroma compartment.  This localization of MMP-2 

in osteoblast and osteocyte is in keeping with studies examining MMP-2 roles in skeletal 

development.  Thus far, the contribution of MMP-2 in the pathological context of the 

metastatic tumor-bone microenvironment has not been examined.  Given the importance 

of the osteoblasts in driving the vicious cycle, the current study focused on determining if 

and how host-derived MMP-2 impacted tumor induced osteolysis. 

 

Results 

 

Expression of MMP-2 in human and mouse samples of breast to bone metastasis 

A recent study reported the high expression of several MMPs (MMP-2, -3, -7, -9 and -13) 

at the tumor-bone interface in a murine model of tumor growth in the bone 116.  In human 

samples of breast to bone metastasis and tumor bearing limbs of wild type animals, 

expression of these 5 MMPs was assessed. As shown in Figure 5, MMP-7 and MMP-9 

were primarily localized in TRAcP positive multinucleated osteoclasts present at the 

tumor-bone interface.  In contrast, MMP-2 expression appeared more diffuse throughout 

the tumor/stroma compartment (Figure 16A-B) but osteoblasts and osteocytes were 

consistently positive for MMP-2 (Figure 16A-B).  Interestingly, osteoclasts in the tumor-

bone microenvironment were rarely positive for MMP-2 (Figure 16A). These 
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observations are in agreement with recent studies reporting osteocyte and osteoblast 

expression of MMP-2 in normal murine bone 68, 69. Since osteoblasts have a central role 

in promoting osteoclast activation and subsequent bone resorption in the vicious cycle, 

we examined the potential impact of the ablation of host MMP-2 in a murine model of an 

osteolytic tumor-bone microenvironment. 

 

Host MMP-2 significantly impacts mammary tumor growth in the bone 

Trabecular bone is a highly metabolically active bone, rich in growth factors, that 

undergoes continuous remodeling 8.  During tumor-induced osteolysis, trabecular bone is 

typically the first bone to be resorbed 158.  As MMP-2 deficient mice have a transient 

bone phenotype, we determined the baseline of trabecular bone volume/tissue volume 

(BV/TV) ratios in tibias of 6 week old wild type and MMP-2 deficient animals and found 

not difference between the two groups using high resolution µCT (Figure 16C). 

 To determine the contribution of host derived MMP-2 in mammary tumor growth 

in the bone, the PyMT-Luc mammary tumor cell line which expresses MMP-2 in vitro 

(Figure 16D), was injected into the tibia of syngeneic immunocompetent FVB wild type 

and MMP-2 deficient animals.  Quantitation of the bioluminescent signal from the 

PyMT-Luc tumor cells showed an increased tumor growth rate between the wild type and 

MMP-2 null mice from day 3 post-injection onwards (Figure 17A and B). These  
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Figure 17. Host-derived MMP-2 impacts mammary tumor growth in the bone
microenvironment. A-B: PyMT-Luc cells were intratibially injected into FVB wild type (WT; 
n=10) or MMP-2 null (MMP-2-/-; n=10) mice. The contralateral limb received a sham injection o

 

f 
saline and luciferase activity was assessed as a measure of tumor growth in WT and MMP-2-/-

animals. C: 17L3C-Luc cells were intratibially injected into FVB wild type (WT; n=10) or MMP-
2 null (MMP-2-/-; n=10) and tumor growth was assessed by bioluminescent imaging modality. D:
PyMT-Luc cells were intratibially injected into FVB wild type (WT; n=10) or MMP-2 null 
(MMP-2-/-; n=10) mice and tumor growth was followed for 15 days for WT mice and 25 days for 
MMP-2 null mice. E: Tumor proliferation and apoptosis was assessed by immunohistochemical 
staining for Mcm2 and cleaved caspase-3 respectively, in tumor bearing tibias of WT and MMP-
2-/- deficient mice, at 3 days post-surgery. F: At 6 days after injection, tumor proliferation and 
apoptosis was determined by immunohistochemical staining for respectively, MCM2 and cleaved 
caspase-3 on tumor bearing limbs of WT and MMP-2-/- deficient mice. Data are mean ± SD; n.s. 
implies a non-significant p value (p>0.05). 
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experiments with similar numbers of animals per group were conducted independently on 

several occasions and similar results were observed. The observed result on tumor growth 

was confirmed using another independent mammary tumor cell line, 17L3C-Luc cells 146 

( Figure 17C).  To delineate whether reduced tumor growth was due to survival or slow 

growth rate in vivo, tumors in the MMP-2 deficient animals were imaged for at least 25 

days.  The bioluminescent signal remained significantly less than that obtained in the 

wild type mice throughout the entire time period (Figure 17D).  These data suggested that 

perhaps host MMP-2 was important for the initial survival and establishment of tumor 

cells.   

To further analyze the impact of host MMP-2 to mammary tumor growth in the 

bone, we first decided to use a flow cytometry approach to specifically determine tumor 

versus host proliferation and apoptosis.  PyMT cells expressing Dsred were intratibially 

injected into wild type and MMP-2 deficient mice therefore.  Three days after surgery, 

tumor injected tibias were harvested and proliferation and apoptosis were assessed by 

flow cytometry using phospho Histone H3 and cleaved caspase-3 specific antibodies 

coupled with fluorophores (and pacific blue, respectively).  Therefore, tumor proliferative 

cells will be Dsred/ Alexa fluor® 647 positive and tumor apoptotic cells will be 

Dsred/pacific blue positive.  However, we determined that FVB bone marrow cells 

contains a sub population of autofluorescent cells (less than 2 % of total cells) conferring 

a high background signal which did not allow for an accurate assessment of tumor 

proliferation and apoptosis.  As a result, immunohistochemical stainings for Mcm2 and 

cleaved caspase- 3 were performed to assess tumor proliferation and apoptosis, 

respectively.  No difference in tumor proliferation was observed between the two groups 
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of animals at numerous time points (Figure 17E and F).  However, MMP-2 deficient mice 

showed a significant higher level of apoptotic tumor cells as early as 3 days after 

intratibial injection compared to wild type mice (Figure 17E).  Furthermore, at 6 days 

post-injection, the apoptotic tumor levels remained significantly higher in the MMP-2 

deficient animals compared to controls and tumor proliferation did not differ between the 

two groups of animals (Figure 17F).  These data show for the first time that host-MMP-2 

impacts tumor growth in the bone.  In addition host MMP-2 mediates its effect on tumor 

growth by enhancing tumor survival as early as 3 days post-injection and this high rate of 

apoptosis observed in the MMP-2 deficient mice persisted until day 6.  

 

Host MMP-2 contributes to mammary tumor growth induced osteolysis 

In the tumor-bone microenvironment, pathological bone remodeling requires osteoblast-

mediated activation of osteoclasts.  Osteoblasts are crucial for the induction of osteoclast 

activation via the expression of osteoclastogenic factors such as RANKL and M-CSF 

resulting in an extensive bone resorption that is thought to enhance tumor growth 10. 

Since a decrease in tumor growth was observed, we next assessed whether there was a 

concomitant decrease in osteolysis in the MMP-2 null tumor-bone microenvironment.  

High resolution µ-CT and histomorphometry analyses of the BV/TV ratios of wild type 

and MMP-2 deficient mice were performed at the end of the study period.  Tumor 

bearing limbs of wild type mice showed a significant decrease of the trabecular bone 

content compared to tumor injected tibias of MMP-2 deficient animals (Figure 18 A-B).  

These results demonstrate a decrease in tumor-induced bone resorption in the MMP-2  
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Figure 18. Tumor mediated osteolysis is attenuated in the absence of host derived MMP-7. A: µCT 
scans of trabecular bone from tumor bearing and sham injected limbs of WT and MMP-2-/- mice allowed 
for the calculation of the BV/TV ratio. B:  Representative H&E stained photomicrographs of tumor bearing 
tibias from WT and MMP-2-/- mice. Scale bars are 1mm. The ratio of trabecular bone volume (BV) to 
tissue volume (TV) was determined several non-serial sections of tumor injected tibias obtained from WT 
(n=8) and MMP-2 null animals (n=8). C: Representative radiographic images from tumor injected WT and 
MMP-2-/- animals at day 9. Arrow indicates lytic tumor lesions in the wild type animals. The tumor volume 
(TuV) over tissue volume (TV) for tumor injected limbs of WT and MMP-2-/- animals was assessed. Data 
are mean ± SD. Asterisk denotes that p<0.05 while n.s. indicates a non-significant p value. 
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deficient mice compared to the wild type controls.  In addition, X-ray analysis revealed 

that MMP-2 deficient mice have a significantly lower tumor burden compared to the wild 

type control mice which is in agreement with our tumor growth and histomorphometry 

data (Figure 18C).   

As osteoclasts are the bone cells responsible for osteolysis, the number of mature 

osteoclasts was assessed in both groups of animals by counting the number of TRAcP 

positive multinucleated osteoclasts in several non-consecutive sections from multiple 

animals.  A significantly higher number of osteoclast per unit length of bone was 

observed in tumor injected tibia of wild type mice compared tumor bearing limbs of 

MMP-2 deficient animals (Figure 18D). This decrease in osteoclast number in the MMP-

2 deficient mice is in agreement with the higher content of trabecular bone and the 

decreased tumor growth rate, i.e. less tumor growth induces less bone resorption 

therefore, a lower number of mature osteoclasts.  

 Although we did not observe MMP-2 localization in osteoclasts, we tested 

whether absence of MMP-2 could affect osteoclast maturation and activation.  Osteoclast 

precursor cells (CD11b positive cells) were isolated from wild type and MMP-2 deficient 

mice and their ability to migrate towards a chemokine gradient (10 % serum) was 

assessed in a transwell assay (Figure 19A).  No difference between wild type and MMP-2 

deficient osteoclast precursor cells was observed in terms of number of migrating cells 

(Figure 19A).  The capacity of wild type and MMP-2 deficient CD11b positive cells to 

respond to osteoclast differentiating factors such as RANKL and M-CSF was tested 

(Figure 19B).  The same number of TRAcP positive cells was found in MMP-2 deficient  
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osteoclast precursor cells treated with RANKL and M-CSF compared to wild type cells 

(Figure 19B).  Therefore demonstrating that absence of MMP-2 does not impact the 

ability of osteoclast precursor cells to migrate towards a chemokine gradient and 

differentiate in presence of osteoclast activating factors.   

To address how host MMP-2 impacts tumor survival and tumor-induced 

osteolysis, we focused our attention on the osteoblasts since 1) they are a rich source of 

MMP-2 and 2) they are the common link in the vicious cycle between tumor growth and 

osteoclast recruitment, maturation and activation.  We initially decided to examine 

tumor/osteoblast interactions since the contribution of MMP-2 in this setting has thus far,  

not been explored.  

 

Osteoblast-derived MMP-2 mediates mammary tumor survival in the bone via the release 

of active TGF-β 

Given that MMP-2 has been shown to impact osteoblast function and that our human and 

mouse tissues samples showed an osteoblast localization of MMP-2, we determined if 

osteoblast-derived MMP-2 could mediate tumor growth and survival.  In order to assess 

this, we pursued a more straightforward in vitro approach.  The effect of conditioned 

media from wild type and MMP-2 deficient primary osteoblast to modulate PyMT-Luc 

cells growth and survival was assessed using MTT growth and clonogenic soft agar 

assays (Figure 20A and B).  Clonogenic assay was developed in the mid 1950s by Puck 

and Marcus to assess the ability of single mammalian cells to form colonies 159.  Since,  
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then, this assay, slightly modified had become the ‘gold standard assay’ in radiology to 

assay the efficacy of radiation treatment to induce apoptosis in tumor cells 160.  

Clonogenic soft agar assay includes all forms of cell death and the ability of single cells 

to proliferate i.e assesses the ability of cells to escape anoikis (detachment-induced cell 

death) and therefore survive to proliferate and form colonies 161.  To this end, we utilized 

clonogenic soft agar assay to assess the ability of PyMT-Luc cells to survive in an 

anchorage-independent condition as well as proliferate to form colonies under various 

conditions.  Conditioned media derived from wild type primary osteoblasts induced 

significantly higher metabolic activity of tumor cells and a statistical higher number of 

tumor colonies compared to tumor cells incubated with conditioned media from MMP-2 

deficient osteoblasts (Figure 20A).  However, no difference was observed in the average 

size of the colonies between the two conditions, suggesting that the absence of MMP-2 in 

osteoblasts affects tumor survival but not tumor growth which is in agreement with our in 

vivo data (Figure 20B).  To confirm that osteoblast-derived MMP-2 mediates this 

phenomenon, recombinant MMP-2 was added to conditioned media from MMP-2 

deficient primary osteoblasts prior to treatment of PyMT-Luc cells.  Addition of 

exogenous MMP-2 to conditioned media from MMP-2 deficient osteoblasts rescued 

metabolic tumor cell activity (Figure 20E and F).  These in vitro assays demonstrated for 

the first time that osteoblast-derived MMP-2 contributes to tumor survival. 

 Next we examined the molecular mechanism through which osteoblast-derived 

MMP-2 mediated the tumor survival effect.  MMP-2 can process numerous growth and 

survival factors in particular TGF-β whose role in modulating the vicious cycle, including 

osteoblast and osteoclast differentiation and function, has been well described 85, 98, 134. 
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TGF-β is maintained in a latent form via its complex with the latency associated peptide 

(LAP) and the latent TGF-β binding protein (LTBP-1-4).  Successive proteolytic 

cleavages induce the release of the active growth factor 162, 163. LTBP-3 deficient mice 

displayed a distinct cranial phenotype and develop osteopetrosis, therefore suggesting its 

key role in controlling the bioavailability of TGF-β in the bone 164, 165. Furthermore, 

LTBP-3 has been shown to be important for osteogenic differentiation of human 

mesenchymal stem cells 166. Therefore, we tested the hypothesis that LTBP-3 is a 

substrate of MMP-2, and osteoblast-derived MMP-2 induces the release of TGF-β which 

influences the mammary tumor survival. To assess the susceptibility of LTBP-3 for 

proteolytic processing, the conditioned medium of COS-7 cells overexpressing the large 

latent complex of LTBP-3 and LAP-TGF-β was subjected to digestion with recombinant 

active MMP-2. The molecular weight of the complex was reduced from ~240 kDa to 

~230-220 kDa in presence of recombinant active MMP-2, a processing event that has 

been previously reported to produced a ~ 230 kDa fragment consistent with that of 

plasmin (Figure 20C) 167. These data suggest that MMP-2 has the ability to process the 

latency binding protein that sequesters TGF-β in the bone matrix. 

 Since our results demonstrate that MMP-2 can process LTBP-3, we then tested 

the hypothesis that active TGF-β could mediate the survival of PyMT –Luc cells using a 

clonogenic soft agar assay.  Treatment of the tumor cells with TGF-β significantly 

increased the number of colonies but not the size of the colonies compared to control 

conditions (Figure 20D). Next, to assess the possibility that TGF-β could influence 

metabolic tumor cell activity in conditioned media from osteoblasts, neutralizing TGF-β 

antibody, 2G7, was used to treat cell culture media harvested from wild type and MMP-2 
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deficient primary osteoblasts.  Blocking of TGF-β in conditioned media of wild type 

osteoblasts significantly reduced tumor metabolic activity in an MTT assay (Figure 20E 

and F).  These data indicate that osteoblast-derived MMP-2 can control the levels of 

active TGF-β in the tumor-bone microenvironment and thus influence tumor growth. 

 

Osteoblast-derived MMP-2 contributes to the levels of active TGF-β in the bone 

microenvironment in vivo 

Next, we evaluated the levels of latent TGF-β in vivo by immunoblotting tissue lysates 

derived from the tumor bearing limbs of wild type and MMP-2 deficient mice 3 days 

post-injection for the LAP-TGF-β complex.  Samples of MMP-2 deficient tibias injected 

with tumor showed a significantly higher level of inactive LAP-TGF-β compared to the 

controls (Figure 21A). To investigate whether higher levels of TGF-β impacted the 

tumor-bone microenvironment, the status of TGF-β signaling was assessed by 

immunoblotting for phospho Smad2, the main intracellular effector of TGF-β receptor 

II/TGF-β signaling pathway 168. Lysates of tumor bearing tibias from MMP-2 deficient 

mice displayed a significant lower ratio of phospho smad2 over total smad2 compared to 

wild type controls (Figure 21B).  Taken together, these data show for the first time that an 

osteoblast-derived MMP, MMP-2, contributes to tumor survival in the tumor-bone 

microenvironment by controlling the activation of TGF-β. 
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Conclusions 

Despite the improvement in diagnosis and treatment, human breast-to-bone metastases 

remain incurable.  Therefore, a better understanding of the mechanisms underlying how 

tumor cells induce the vicious cycle remains a priority in order to develop new therapies 

that will treat/cure the disease. This study demonstrated for the first time that osteoblast-

derived MMP-2 contributes to the survival of two mammary tumor cell lines (PyMT-Luc 

and 17L3C-Luc) in the bone microenvironment and contributes to tumor-induced 

osteolysis in immunocompetent animals.  Furthermore, our results showed that 

osteoblast-derived MMP-2 promotes tumor survival but not tumor proliferation via a 

TGF-β dependent mechanism that potentially induces the processing of a novel MMP-2 

substrate, LTBP-3 (Figure 22).  Our studies suggest that therapies geared towards 

selectively inhibiting MMP-2 may be of clinical use for the treatment of breast-to-bone 

metastasis. 
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CHAPTER V 

 

DISCUSSION, FUTURE DIRECTIONS AND CONCLUSIONS 

 

Breast to bone metastasis is an incurable disease which affects more than 70 % of 

patients presenting with advanced breast cancer 5.  Lytic bone lesions cause severe 

complications that greatly affect the quality of life of the patients 6.  Currently, no cure 

can be offered to patients suffering with bone metastasis, only palliative treatments such 

as bisphosphonates, surgery, radiotherapy and chemotherapy are available.  Therefore, 

finding new molecular mechanisms underlying cell-cell communication in the tumor-

bone microenvironment is key for the development of better therapies.  Although human 

clinical trials using broad spectrum MMPIs were disappointing in the treatment of cancer, 

numerous pre-clinical studies demonstrated the potential efficacy of inhibiting MMPs in 

the context of bone metastasis 135, 137-139, 141.  As a result, bone metastasis appears to be a 

relevant target for the use of MMPIs; however, the specific role of individual MMPs in 

the lytic tumor-bone microenvironment must be elucidated so that highly selective 

MMPIs that lack the side effects noted with broad spectrum inhibitors can be generated 

140.  

The aims of this dissertation were to understand the contributions of host-derived 

MMPs to mammary tumor growth and mammary tumor-induced osteolysis in the bone 

microenvironment.  Immunostaining for different MMPs in human breast-to-bone 

metastasis samples showed MMP-7 and MMP-9 expression primarily within the mature 
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osteoclasts present at the tumor-bone interface.  However, MMP-2 staining was detected 

in the tumor and host cells such as osteoblasts and osteocytes.  Since these three host cell 

types (osteoclasts, osteoblasts and osteocytes) are the main effectors of the bone 

remodeling process, we tested the effect of host MMP-2, -7 and -9 ablation in a mouse 

model of mammary tumor growth and tumor-induced osteolysis using intratibial injection 

in MMP deficient animals.  Our studies established that osteoclast-derived MMP-7 and 

osteoblast-derived MMP-2 contribute to the vicious cycle through two distinct molecular 

mechanisms.  We demonstrated that osteoclast-derived MMP-7 enhances bone resorption 

via the solubilization of RANKL and that osteoblast-derived MMP-2 promotes tumor 

survival in the bone by processing TGF-β latency proteins such as LTBP-3, thereby 

controlling the levels of active TGF-β.  Interestingly, osteoclast-derived MMP-9 does not 

impact tumor growth and bone resorption in our mouse model.  These data demonstrated 

that although different host MMPs are expressed by mature osteoclasts, they do not all 

impact bone resorption in a tumor setting.  Additionally, our studies showed that MMPs 

expressed by distinct cell types can contribute differently to tumor growth and bone 

resorption by multiple molecular mechanisms. 
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Discussion 

 

Osteoclast-derived MMP-7 contributes to tumor growth-induced bone lesions via the 

solubilization of RANKL 

The results presented in this dissertation show an osteoclast derived protease, MMP-7, 

can promote osteoclast activation in the tumor-bone microenvironment by generating an 

active soluble form of the osteoclastogenic factor, RANKL and suggest that selective 

inhibition of MMP-7 may be of benefit for the treatment of lytic metastases.  Our study 

demonstrate that MMP-7 deficient mice bearing tumor have significantly lower levels of 

soluble RANKL and statistically reduced bone resorption, therefore suggesting that 

MMP-7 solubilization of RANKL mediates tumor-induced osteolysis (Figures 11, 12 and 

13).  However, in tumor bearing MMP-7 deficient mice bone resorption, although 

significantly attenuated, still occurs, thus MMP-7 may contribute to tumor growth-

induced bone lesions via other mechanisms.  For example, MMP-7 has been shown to 

process other members of the TNF family beside RANKL such as Fas ligand (FasL) and 

TNF-α 72, 169.  Fas/FasL are apoptotic factors and the solublization of FasL by MMP-7 

may directly impact tumor survival 148.  Furthermore, Kovacić and coworkers 

demonstrated the importance of Fas/Fas ligand in osteoblast differentiation by inhibiting 

progenitor differentiation and therefore, MMP-7 could indirectly affect 

osteoclastogenesis by impairing osteoblast functions through the processing of FasL 170.  

TNF-α has been demonstrated to be important for the final step of osteoclastogenesis i.e. 

the fusion of tartrate-resistance acid phosphatase-positive mononuclear osteoclasts 171.  
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Release of soluble active TNF-α by MMP-7 may directly promote activation of mature 

osteoclasts and lead to osteolysis.  Therefore, through the processing of different 

members of the TNF family such as TNF-α, FasL and RANKL, MMP-7 can impact 

osteoblast and osteoclast biology and ultimately bone resorption. 

The direct processing of the bone matrix by MMP-7 may be a possibility.  

Acidification and cathepsin-K secretion into osteoclast resorption lacunae allows for the 

demineralization and collagenolysis of the bone matrix respectively 77.  Therefore, the 

direct resorption of the bone matrix by MMP-7, functional at a more neutral pH, is highly 

unlikely.  However, by a process known as transcytosis, the osteoclast mediates the 

removal of bone products from the area of bone undergoing resorption 172. Given the 

punctuate localization of MMP-7 by immunofluorescent staining it is tempting to 

speculate that MMP-7 contributes to the further processing of bone matrix components 

such as osteopontin 66, or the release of growth factors from bone matrix components 

such as TGF-β and IGFs, within these transcytotic vesicles 57 173 

Since MMP-7 deficient mice used in this study lack the metalloproteinase in the 

entire stromal compartment, the expression of MMP-7 by other cellular sources may also 

be a possibility.  However, in the tumor-bone microenvironment, we observed that MMP-

7 expression was largely confined to osteoclasts (Figures 5 and 8).  Nevertheless MMP-7 

has also been shown to be expressed by macrophages and given the role of macrophages 

in tumor induced osteolysis, the contribution of macrophage derived MMP-7 in our 

model or in humans cannot be discounted 174, 175.   
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Given the role of MMP-7 in osteoclast function in the pathological setting of 

tumor induced osteolysis, it is surprising that MMP-7 null animals appear to have a 

normal skeletal phenotype.  Data presented here using µCT scan analysis demonstrate a 

similar BV/TV ratio between MMP-7 null and wild type control mice at 6 weeks of age 

(Figure 8).  While a role for MMP-7 in bone development has not been explored, a 

number of reports have revealed that the phenotype of the MMP-7 null animals is often 

only apparent in response to injury/challenges or disease.  For example, in non-

pathological conditions such as herniated disc resorption, macrophage derived MMP-7 is 

critical for the resorption of the herniated disc 72.  In mammary and prostate involution, 

MMP-7 processing of FasL is important for initiating apoptosis 72, 148, 176.  More often, 

phenotypes in the MMP-7 null animals have been observed in pathological conditions 

such as pancreatitis, colon tumorigenesis, mammary gland tumorigenesis and in innate 

defense wherein MMP-7 null animals show significant delays in disease progression or in 

response to infection 177-180.  Therefore, although MMP-7 null mice lack an apparent 

skeletal phenotype, in the context of tumor-bone microenvironment, it is clear based on 

the results of our study that host MMP-7 plays an important role in the mammary tumor-

bone microenvironment.  In addition, our observations defining a role for MMP-7 in bone 

diseases are consistent with previous reports that implicate roles for host MMP-7 in 

prostate cancer induced osteolysis, osteoarthritis and cartilage/periarticular bone 

destruction 71, 116, 181.    

Finally, our data demonstrate that osteoclast-derived MMP-7 affects mammary 

tumor growth in the bone by enhancing tumor survival (Figure 9).  Our results show that 

in the MMP-7 deficient animals, a failure to generate active soluble RANKL leads to a 
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decrease in the number of mature bone resorbing osteoclasts that in turn leads to a 

decrease in tumor growth by depriving the tumor cells of survival factors such as TGF-β, 

or IGF.  In this regard, the levels of active TGF-β in tissue lysates from wild type or 

MMP-7 deficient mice bearing tumor were assessed by ELISA and no significant 

difference were observed between the two groups of animals (Figure 23).  Therefore, host 

MMP-7 impacts tumor survival by an as yet unidentified factor(s) such as IGFs. 

 

Osteoclast-derived MMP-9 does not contribute to mammary tumor growth-induced bone 

resorption 

Although MMP-9 was localized to human and murine osteoclasts, the ablation of host 

MMP-9 did not appear to impact PyMT-Luc tumor growth and bone resorption compared 

to the wild-type controls.  Analogous results were obtained by Nabha et al., using the 

same intratibial model but in the context of prostate cancer progression in the bone 147.  

Given the importance of MMP-9 in osteoclast migration and recruitment in developing 

long bones, these results were surprising 75. It appears that in the tumor-bone 

microenvironment, MMP-9 is not critical for osteoclast function.  The possibility that 

tumor-derived MMP-9 could overcome the absence of host MMP-9 exists in our model, 

however, in vivo studies conducted in the Matrisian laboratory have demonstrated that 

MMP-9 expression by the PyMT-Luc tumor cells is not detectable 146.  Therefore, the 

ability of tumor derived MMP-9 to circumvent the loss of host derived MMP-9 and 

impact tumor progression in the bone is unlikely.  In comparison, the dramatic effect on 

tumor growth and bone resorption observed in MMP-2 deficient mice upon tumor  
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injection was surprising since MMP-2 and MMP-9 are closely related in structure.  Our 

studies in the mammary tumor-bone microenvironment suggest that despite their 

similarities in terms of structure and substrates, MMP-2 and MMP-9 are 1) expressed by 

different cell types and 2) have very distinct functions with respect to the progression of 

the osteolytic vicious cycle.  In addition, these data reinforce the importance of assessing 

the contributions of individual MMPs to tumor progression in the bone in a bid to design 

selective MMPIs that lack the deleterious side effects noticed with broad spectrum 

inhibitors during human clinical trials.  

While our data points towards MMP-9 as not being critical for mammary tumor 

growth or induced osteolysis, it is important to note that MMP-9 could contribute to other 

steps of metastasis that are not taken into account with the intratibial model.  These 

include extravasation from the sinusoidal vasculature in the bone and initial survival, the 

latter of which has been shown to be an important role for host derived MMP-9 in early 

lung metastasis 182.  Furthermore, MMP-9 has been implicated in tumor angiogenesis by 

mediating the release of matrix sequestered vascular endothelial growth factor (VEGF) 76. 

In the context of the prostate tumor-bone microenvironment, Nabha and colleagues 

demonstrated a decrease in angiogenesis in MMP-9 null animals compared to wild type 

controls 147.  Therefore, the selective inhibition of MMP-9 may still prove useful in 

preventing the establishment and angiogenesis of bone metastases.  Studies have 

demonstrated the importance of MMP-9 in the formation of ‘pre-metastatic niches’ in a 

lung and skin metastasis murine models 76, 183-185.  Hiratsuka and coworkers showed that 

MMP-9 expression by endothelial cells and macrophages was induced in the lungs by 

distant tumors prior to metastasis 185.  Given the richness in immune cells and the highly 
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vascularized state of bone, it would be interesting to investigate the potential contribution 

of host MMP-9 to the establishment of bone metastastic niches in breast cancer 

progression.   

 

Osteoblast-derived MMP-2 impacts mammary tumor growth-induced bone lesions 

Our results demonstrate that osteoblast-derived MMP-2 affects mammary tumor survival 

in the bone.  It is of interest to note that mammary tumor virus (MMTV) long terminal 

repeat-polyoma middle-T antigen (MMTV-PyMT) mice deficient for MMP-2 do not 

show any difference in terms of mammary tumor incidence, onset, growth rate and tumor 

volume compared to wild type control mice, demonstrating that the effect of host MMP-2 

are specific to the bone microenvironment (Fingleton and Matrisian, personal 

communication). 

   Our study suggests that osteoblast-derived MMP-2 can modulate the release of 

TGF-β via the processing of LTBP-3 (Figure 20).  TGF-β is sequestered in a latency 

complex comprised of LTBP-1-4 and LAP and that these complexes must be sequentially 

processed in order to generate active TGF-β 120-124.  The binding of LAP-TGF-β to LTBP 

is thought to be important for the binding of latent TGF-β to the ECM.  The processing of 

LTBP releases LAP-TGF-β from the ECM which can be activated by further proteolytic 

processing 186, 187.  Other members of the LTBP family such as LTBP-1 have been shown 

to be substrates for MMPs, in particular MMP-2 124, 188, 189.  In addition, a recent study 

using a multiplex proteomics approach, identified LTBP-4 as a potential novel substrate 

for MMP-2 190. However, of the four members of the LTBP family, only LTBP-3 

87 
 



deficient mice are reported as having skeletal defects including osteoarthritis and 

osteopetrosis 164, 165.  MMP-2 has also been shown to process LAP-TGF-β leading to the 

release of the active form of the growth factor 188.  Our study identifies for the first time 

that osteoblast-derived MMP-2 is responsible for the cleavage of LTBP-3 and we posit 

that based on other studies that MMP-2 subsequently cleaves LAP-TGF-β to release 

active TGF-β 122.  This conclusion is supported by our observations (Figures 20 and 21).  

While we suggest that MMP-2 is critical for TGF-β activation, the role of other proteases 

that can process TGF-β latency complexes such as plasmin and MMP-9 may also 

contribute and explain why residual levels of active TGF-β could be identified in the 

conditioned media of MMP-2 deficient osteoblasts (Figures 20 and 21) 122, 191.     

Our results suggest that MMP-2-mediated activation of TGF-β is the primary 

mechanism responsible for tumor survival in the bone (Figure 20).  However, MMP-2 

could impact tumor survival through the processing of other bone factors 98.  IGFs are 

sequestered in a latent complex through their interactions with IGF binding proteins 

(IGFBP-1 to -4) 125 and several MMPs, including MMP-2 have been shown to process 

different members of the IGFBP family resulting in the activation of IGFs 131, 192, 193.  

However, we determined active IGF signaling levels in tissue lysates of tumor bearing 

limbs from wild type and MMP-2 deficient mice by immunoblotting for phospho IGF-

receptor 1 (IGF-1R). No difference between MMP-2 deficient and wild type control 

animals was observed in terms of the phosphorylation levels of IGF-1R (data not shown). 

These data further support our conclusion that MMP-2 activation of TGF-β is a major 

mechanism mediating tumor survival in the tumor-bone microenvironment.  However, 
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we acknowledge that other reported substrates of MMP-2 may also contribute to tumor 

survival (see table 2 in chapter I). 

 A potential molecular mechanism through which TGF-β can mediate its anti-

apoptotic effect is the activation of phosphatidylinositol-3 kinase (PI3K)/Akt pathway. 

By regulating Smad3 activation, Akt has been shown to protect liver cancer cells from 

apoptotsis 194, 195.  Furthermore, Muraoka-Cook and colleagues demonstrated that TGF-β 

can signal to PI3K/Akt signaling pathway to enhance mammary tumor survival 196.  In 

addition, TGF-β has been shown to induce NF-ĸB activity and promote cell survival.  

Treatment of activated hepatic stellate cells with TGF-β induced the activation of NF-ĸB 

and suppressed apoptosis 197.  Therefore activation of PI3K/Akt or NF-ĸB pathways in 

mammary tumor cells by osteoblast-derived TGF-β could potentially mediate tumor 

survival in our mouse model.  

 The majority of the studies examining the osteolytic vicious cycle conducted so 

far have focused almost exclusively on the ‘forward’ communication i.e. tumor cell 

control of osteoblast behavior that in turn impacts osteoclastic bone resorption (Figure 

24).  For the first time, our study demonstrates the in vivo ‘reverse’ communication i.e. 

osteoblast control of tumor cells behavior in the vicious cycle. For instance, in the 

‘forward setting’, tumor-derived factors such as parathyroid hormone-related peptide 

(PTHrP) have been extensively studied as its expression by metastatic breast tumor cells 

induces osteoclastic bone resorption via osteoblast-dependent activation of osteoclast 

precursors 95, 112, 198.  In addition, osteoclast-mediated bone resorption releases TGF-β that 

in turn affects PTHrP expression by tumor cells 87, 112, 199.  However, the ‘reverse setting’  
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i.e. the direct modulation of the tumor cell behavior by osteoblasts and the molecular 

mechanisms therein, have thus far not been assessed.  Our results are the first to 

demonstrate the importance of osteoblast-derived signals in controlling tumor survival 

(Figures 17 and 20).    

Besides its effects on tumor growth, TGF-β has been shown to modulate both 

osteoblast and osteoclast functions 200-204. Therefore, MMP-2-mediated release of active 

TGF-β may also directly affect osteoblast-osteoclast interactions. Our studies revealed a 

decrease in tumor-induced osteolysis (Figure 18).  While our observations ruled out a 

direct role for MMP-2 in osteoclast maturation and activation, we speculate that 

osteoblast-derived MMP-2 impacts osteoclastogenesis via the processing of LTBP-3 and 

activation of TGF-β (Figures 19 and 20).  TGF-β has been shown be sufficient to induce 

osteoclastogenesis but also to support and/or increase osteoclast activation 205 206, 207.  

Therefore, it is possible that the release of TGF-β by osteoblast-derived MMP-2 induces 

an increase in osteoclastogenesis in addition to its effects on tumor survival.  

Furthermore, a recent study demonstrated that treatment of mature mice with TGF-β type 

I receptor kinase inhibitor, SD-208, induces increase bone mineral density, bone mass 

and mineral concentrations indicating an effect on osteoblast functions 208.  Mice treated 

with SD-208 had significantly higher number of osteoblasts and significantly reduced 

number of osteoclasts 208.  Although, we observed a significant decreased in trabecular 

bone volume in tumor bearing limbs, we acknowledge that an autocrine effect of 

osteoblast-derived TGF-β could occur in our mouse model. 
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 Our study demonstrates that MMP-2 secreted by osteoblasts impacts mammary 

tumor growth and mammary tumor-induced osteolysis.  However, since MMP-2 is 

entirely eliminated in the MMP-2 deficient animals, we cannot rule out that MMP-2 

derived from other cell types is of importance in mediating tumor survival and bone 

resorption.  For example, immune cells have been shown to express MMPs, including 

MMP-2 and recent findings demonstrated that T cells (a rich source of MMP-2) modulate 

tumor-induced bone resorption 209, 210.  Thus, a contribution of MMP-2 secreted by 

immune cells such as T cells that are present in our syngeneic immunocompetent mice 

cannot be disregarded.  Inoue and coworkers reported the importance of MMP-2 in 

maintaining proper osteocytic canicular network caused by a defect in osteocyte 

functions and increased apoptosis 68.  Osteocytes are important in controlling bone mass 

through the modulation of osteoblast/osteoclast function via the secretion of factors such 

as sclerostin 15, 16.  As a consequence, we acknowledge that reduced osteolysis in a tumor 

setting could be caused by osteocyte function to regulate bone remodeling is a possibility 

in our model but that has not been explored thus far. 

Although, MMP-2 does not directly affect osteoclast maturation and activation, its 

contribution to direct bone resorption may exist.  MMP-2 has collagenase activity and 

hence osteoblast-derived MMP-2 could directly contribute to bone resorption after the 

exit of the osteoclasts 61.  This degradation of the bone can generate ICTP fragments of 

type I collagen that in turn can promote further osteoclast precursor cell recruitment 60, 62-

64.  While host MMP-2 can potentially work through these suggested mechanisms in our 

model, our data clearly identifies a role for osteoblast-derived MMP-2 given our results 
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with treatment of tumor cells with conditioned media derived from osteoblasts in vitro  

and our observation in vivo (Figures 20 and 21). 

 

Is there a place for selective MMP-2 and MMP-7 inhibitors in treatment of breast-to-

bone metastases? 

Breast-to-bone metastases are incurable and with the exception of surgery and radiation, 

bisphosphonates are the most common approach to treat patients.  Despite the success of 

bisphosphonates, their use is often palliative 211.  Bisphosphonates are classified as non-

nitrogen-containing bisphosphonates or nitrogen-containing bisphosphonates (NBPs), 

according to their chemical structure 212.  NBPs such as pamidronate, ibandronate, 

risedronate and zoledronic acid have a better anti-resorptive effect than the non-nitrogen-

containing bisphosphonates.  NBPs prevent bone resorption through the inhibition of 

osteoclast activity and the induction of osteoclast apoptosis 213, 214.  Despite their proven 

efficacy in treating breast cancer-associated bone lesions, bisphosphonates are not an 

ideal long-term therapy since they present minimal effect on survival and they have 

minimal oral bioavailability and a long half-life which increases the risk to develop 

osteonecrosis of the jaw 215, 216.  Therefore, there is still a growing interest in developing 

new therapeutic agents targeting key components of the ‘vicious cycle’. 

Pre-clinical studies in animal models of tumor bone metastasis have demonstrated 

that the use of MMPIs remains a relevant approach to treat lytic bone lesions 137-139.  

Treatment of tumor bearing animals with broad spectrum MMPIs such as BB-94 have 

been shown to prevent bone resorption induced by prostate and breast tumor cells 137, 138.  
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Weber and co-workers showed that the use of Neovastat, a reagent with reported 

metalloproteinase inhibition ability, can prevent the development of lytic lesions during 

tumor growth in the bone 217.  Furthermore, the combined effects of a bisphosphonate 

(ibandronate) and TIMP-2 in a mouse model of mammary tumor-induced osteolysis 

showed a decrease in bone resorption and an increased survival rate 218.  Taken together, 

these data demonstrate the potential efficacy of using MMP inhibitors in treating bone 

lesions during cancer progression.  However, a better understanding of the specific roles 

of individual MMPs to the bone metastasis process is required to avoid musculoskeletal 

side effects observed during the first clinical trials with broad spectrum inhibitors 135.  In 

this regard, a recent study reported that SB-3CT, an MMP-2 and MMP-9 selective 

inhibitor was effective in controlling prostate tumor growth and osteolysis 141.  However, 

prinomastat, a selective MMP-2 and MMP-9 inhibitor, has been shown to cause 

musculoskeletal side effects 219.  Based on our results, a generation of reagents with 

further specificity against MMP-2 but not MMP-9 may provide efficacy without side 

effects.  Our studies also suggest that the selective inhibition of MMP-7 would be 

effective in halting the vicious cycle.  Regardless of the efficacy of the MMP inhibitors, 

identifying the molecular mechanisms through which individual MMPs mediate their 

effect can also result in the generation of new therapies, for example LTBP-3 and 

RANKL that ultimately will be of benefit to patients with lytic bone metastases. 
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Future directions 

Our studies show mature osteoclasts as a rich source of MMP-7.  However, to rule out 

any effects of MMP-7 on mammary tumor growth and bone resorption from other 

cellular sources, the generation of a mouse specifically deficient for MMP-7 in 

osteoclasts would be important.  Therefore, a specific osteoclast MMP-7 deficient mouse 

using a Cre/LoxP flanked MMP-7 construct approach could be engineered.  These 

specific MMP-7 deficient mice will allow us to investigate the precise contribution of 

osteoclast-derived MMP-7 in tumor growth and tumor-induced osteolysis. 

We demonstrate in this dissertation that osteoclast-derived MMP-7 affects tumor-

induced osteolysis via the solublization of RANKL.  The use of a specific transgenic 

mouse expressing membrane-bound RANKL resistant to proteolytic processing would 

allow for the assessment of the importance of soluble RANKL versus full length RANKL 

to mammary tumor growth-induced osteolysis.  Since the sequence of the RANKL 

cleavage site by MMP-7 has previously been reported, using site directed mutagenesis, an 

MMP-7-resistant RANKL could be engineered 116.  First, an MMP-7-resistant RANKL 

osteoblast cell line could be established and in vitro the functionality of this osteoblastic 

cell line in terms of ability to induce osteoclast activation could be assessed.  Finally, 

using a systemic knock in MMP-7-reistant RANKL mouse would allow for the 

assessment of the effect of this protein on the development of the skeleton and in the 

context of mammary tumor growth in the bone.  

Our study showed that osteoclast-derived MMP-9 does not impact tumor growth 

in the bone.  Therefore, the use of intracardiac injection as a model of breast to bone 
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metastasis would allow us to assess the potential contributions of host-derived MMP-9 in 

early steps to metastasis.  Since MMP-9 has been shown to be important for the 

establishment of a ‘pre-metastatic niche’ in experimental lung and skin cancer metastasis 

models, it would be of interest to investigate the potential contribution of host MMP-9 in 

the formation of a ‘bone metastatic niche’ 76, 183-185.  Orthotopic injection of mammary 

tumor cells and examination of the bone for ‘pre-metastatic’ markers such as VEGFR1 or 

fibronectin would assess this interesting question. 

Our work in MMP-2 deficient mice demonstrates that MMP-2 secreted by 

osteoblasts impacts tumor survival in the bone.  However, we cannot rule out that MMP-

2 derived from other sources is of importance, therefore future studies could directly 

assess the importance of osteoblast-derived MMP-2 without disturbing other host cell 

type functions.  Using inducible MMP-2 deficient animals such as an MMP-2/Tet 

transgenic mice where the Tet transactivator is under the control of a collagen type I α1 

promoter to allow for specific osteoblast expression.  Furthermore, in this dissertation, we 

posit that MMP-2 controls the release of active TGF-β via LTBP-3 processing.  Future 

studies could identify the cleavage site for MMP-2 on LTBP-3 to generate an MMP-2 

resistance LTBP-3 by site directed mutagenesis and establish an MMP-2 resistance 

LTBP-3 osteoblast cell line.  First, the in vitro functionality of the MMP-2-resistant 

LTBP-3 osteoblast cell line in terms of proliferation, differentiation and induction of 

osteoclast activation and expression levels could be assessed.  The importance of LTBP-3 

cleavage by MMP-2 to mammary tumor survival in the bone in vivo could be analyzed 

using a knock in MMP-2 resistant mouse.  
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Finally, with respect to the importance of osteoblast-derived MMP-2 in tumor 

growth in the bone, it would be interesting to investigate the effect of host MMP-2 

ablation in a model of prostate to bone metastasis.  Once in the bone, prostate tumor cells 

induce mixed lesions containing excess of osteoblastic and osteolytic response 220.  To 

this end, a model of murine prostate cancer in the bone developed by Lynch and 

colleagues where prostate adenocarcinoma samples are transplanted into the cranial 

region of immunocompromised MMP-2 deficient mice (RAG-2 deficient mice) would 

permit the assessment of MMP-2 function in a tumor-induced osteoblastic setting 116. 

 

Conclusions 

The results of my thesis demonstrated: 

• Mature osteoclasts at the tumor-bone interface are a rich source of MMP-7 

and MMP-9. 

• Osteoclast-derived MMP-7 impacts mammary tumor growth and tumor 

induced osteolysis. (First time observation) 

o Molecular mechanism: solublization of membrane-bound RANKL 

by MMP-7 that mediates maturation/activation of osteoclast 

precursor cells. 

• Osteoclast-derived MMP-9 does not contribute to either mammary tumor 

growth or bone resorption. 

• Osteoblasts are a rich source of MMP-2. 
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• Osteoblast-derived MMP-2 impacts mammary tumor growth by enhancing 

tumor survival. (First report to show this) 

• Host-MMP-2 impacts mammary tumor-induced osteolysis. (First report) 

• MMP-2 can modulate the release of active TGF-β via the processing of its 

latency protein, LTBP-3. (First report) 

• Osteoblast-derived MMP-2 and osteoblast-derived TGF-β mediate 

mammary tumor survival. (First report) 

In conclusion, this dissertation demonstrates that osteoblast-derived MMP-2 controls the 

levels of active TGF-β via the processing of LTBP-3 and thereby mediates tumor survival 

in the tumor-bone microenvironment.  In addition, our results showed that osteoclast-

derived MMP-7 but not MMP-9 mediates mammary tumor-induced osteolysis through 

RANKL solublization (Figure 25).  Therefore, novel therapeutic agents focusing on 

major components of the ‘vicious cycle’ will improve the current treatment options 

offered to breast cancer patients with lytic bone metastases.  Development of specific 

MMP-2 and MMP-7 inhibitors or therapies that target their substrates would benefit 

patients whose response to bisphosphonates and other traditional treatment strategies are 

unsatisfactory.  Alternatively, these new therapeutic agents may also be useful as 

adjuvants in combination with bisphosphonates, denosumab (specific RANKL antibody), 

hormonal therapies or other treatments offered, to hopefully lead to the eradication of 

breast-to-bone metastasis. 
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