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Chapter 1

INTRODUCTION

1.1 Motivation

Environment exposure induced deterioration of material and related structural failures have

been a difficult problem to address from both physical and computational perspectives. The prob-

lem is quite pervasive ranging from stress corrosion to hydrogen embrittlement and oxidation of

metals to sulfate and chloride attack in concrete and hydration induced leaching in polymers. In

surface degradation problems, an aggressive environmental agent attacks the surface of the struc-

ture inducing property changes such as embrittlement, cracking and reduction of monotonic and

cyclic strength and life as a consequence. The property changes could be due to phase transforma-

tion activated by the diffusing agent or lattice strains due to elevated concentrations and pile-ups

around the lattice imperfections. In the presence of high temperature, the degradation processes is

accelerated and the thermal deformation would cause more critical responses in the structures.

In certain problems, the structural property degradation is severe even for a very small thick-

ness of affected region. For instance, titanium alloys, which are candidate structural materials for

hypersonic aircraft, are subjected to formation of a brittle case of oxygen rich layer on its surface

under the severe thermo-mechanical environment. While the brittle case is of the order of a few

tens of microns thick, the presence of acoustic loads threaten micron cracks within the brittle case

to rapidly propagate and cause structural failure. From the computational perspective, this calls for

a very refined analysis with resolved material heterogeneities around exposed surfaces. In order to

retain computational tractability, the refinement cannot be extended to the entire structure.

Global-local numerical approaches are well-suited to address such problems. These methods

attempt to capture the fine scale behavior at small subdomains of the problem, whereas a coarse

discretization and modeling is used to approximate the behavior in the remainder of the problem

domain. The reason for the particular interests in the small subdomains is determined by the na-
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ture of the problem, such as strain localization [1] or environmental degradation [2]. Starting from

the early works of Mote [3], a number of global-local methods have been proposed including the

global-local finite element method [4, 5, 6, 7], the S-version finite element method [8], the domain

decomposition method [9], the generalized/extended finite element method [10, 11, 12, 13], multi-

scale coupling based on Lagrange multiplier method [14], among others. These approaches permit

the incorporation of additional geometric features such as crack tips [8, 10, 15], as well as material

heterogeneities [9] at local subdomains with accurately captured load fields and response mecha-

nisms. However, for many problems, the computational complexity associated with resolving the

local features even for small subdomains could be prohibitive, notwithstanding a few examples

based on very high performance computing [16].

A number of recent multiscale computational methods are also well suited to address problems

that exhibit global-local character. Particularly the multiscale methods which permit the evalua-

tion of scale inseparable problems such as multiscale finite element method [17, 18], multiscale

aggregating discontinuities [19, 20], numerical subgrid upscaling [21, 22], variational multiscale

enrichment [2, 23, 24] among others have been shown to successfully address global-local prob-

lems. The common idea behind these approaches is the additive split of the principal response

fields into macro (or coarse) and micro (or fine) components with equal order of magnitude (in

contrast to scale separable models, where the fine component is considered a perturbation to the

coarse component [25, 26, 27, 28]). The coarse component of the response is evaluated using a

coarse grid whereas the fine scale response is evaluated using a fine grid resolving the features

of the small scales. Similar to earlier global-local methods, the computational cost of these ap-

proaches are large enough to prohibit evaluation of realistic problems.

The high computational expense issue is typically overcome using massively parallel simula-

tions (e.g., [29]), reduced order approximations to the microstructure problems, or a combination of

both. In the context of homogenization methods, a number of order reduction approaches, such as

generalized method of cells [30], transformation field analysis [31, 32, 33], fast Fourier transforms

(FFT) [34], proper orthogonal decomposition [35, 36] and eigendeformation-based model order
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reduction [37, 38, 39], among others were successful in reducing the complexity of microstructure

computation for linear and nonlinear problems. In the context of global-local methods, FFT was

employed to model the thermo-elastic behavior of alumina/Al composites [40, 41].

Variational multiscale method (VMM) originally proposed by Hughes et al. [42] evaluates the

fine scale response of the global-local problem analytically or semi-analytically through variational

projection [1, 43]. The projection based approach eliminates the need to resolve the fine scale be-

havior, hence providing a tremendous computational efficiency. Garikipati and Hughes [44, 45]

employed the analytical fine scale Green’s operator for strain localization problems. Garikipati [46]

further incorporated fine scale strain gradient theories into the variational multiscale continuum

formulation. Hughes and Sangalli [47] optimized the projection operator for advection-diffusion

problems. Masud and Xia [48] developed a stabilized VMM based on variational projection for

small strain inelasticity. Masud and Truster [49] extended the stabilized VMM for nearly incom-

pressible elasticity. Yeon and Youn [50] performed variational multiscale analysis on the elasto-

plastic deformation problem using a meshfree method. Hund and Ramm [43] employed a con-

tinuum damage mechanics model in the context of the numerical subgrid upscaling scheme to

address the strain localization problem. Arbogast [21, 22] and Juanes and Dub [51] performed the

projection through numerical Green’s functions to solve porous media flow problems. However,

the projection approach has not been employed to address complex response mechanisms induced

by material heterogeneities at the fine scale. A reduced order multiscale method is desirable to

address global-local problems with resolved material heterogeneities.

In addition to pure mechanical problems, performance of structures operating in extreme thermo-

mechanical environments is also marked by the formation of hot-spots. Hot-spots refer to local-

ized regions within the domain of the structure that are exposed to higher rates of heating, higher

stresses or a combination of both. Hot-spots are considered important as they serve as failure

initiation sites (such as, shock-boundary layer interaction-induced localized heating in hypersonic

aircraft components [52, 53, 54]), and could ultimately define structural survivability. From the

modeling perspective, deformation and failure mechanisms within hot-spots may be accurately
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captured using thermo-mechanical multiscale computational approaches, where the microstruc-

tural heterogeneities are resolved at least within a critical subdomain of the structure. The majority

of the previous efforts on thermo-mechanical multiscale modeling employed computational ho-

mogenization principles (e.g., Golanski et al. [55], Ghosh et al. [56, 57], Yu and Fish [58], Zhang

et al. [59], Ozdemir et al. [60], Muliana et al. [61, 62]), which are valid at the scale separation

limit. An efficient multiscale method is missing for the analysis of thermo-mechanical problems

with material heterogeneities that exhibit scale inseparable features.

Considering structures subjected to surface degradation induced by coupled transport-thermo-

mechanical loading conditions, the detailed material heterogeneity resolution within the surface

region is required due to the significant material property changes. Over the localized surface

regions of the problem domains, significant structural response variations are observed along the

critical directions, such as the direction of aggressive agent diffusion. The material heterogeneity

in these directions has essential contributions to the accuracy of the modeling results and has to

be resolved in the context of scale inseparable problems. In contrast, the material heterogeneity

in the other directions is not of great importance, due to the directionally smooth variation of the

structural behaviors. With the scale separation assumption, the material heterogeneity in these

directions can be homogenized to improved the computational efficiency of the simulations with-

out significant accuracy loss. A hybrid integration scheme is required to enable the directionally

different material heterogeneity treatment within the localized surface region.

1.2 Dissertation Goal and Objectives

The primary goal of the current dissertation is to devise a computationally efficient multiscale

framework to accurately model the response of structures subjected to high temperatures, mechan-

ical loads and environmental exposure. The framework would have the capability of resolving

material heterogeneities at the subdomains of particular interests, while modeling the structural

behaviors with coarse material representations in the remainder of the problem domain. High

computational efficiency of the computational framework is expected for the analysis of struc-
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tural scale problems. The response coupling effects of the transport-thermo-mechanical problems

need to be considered properly, in order to accurately model structures subjected to extreme envi-

ronments. To achieve the dissertation goal, the following objectives and the associated tasks are

accomplished.

Objective 1 Build the foundation of the proposed framework with an approach that can address

scale inseparable inelastic problems with resolved material heterogeneity at subdomains.

Task 1.1: Develop the variational multiscale enrichment (VME) method for elasto-viscoplastic

problems (2-D Perzyna and Johnson-Cook model).

Task 1.2: Investigate the microscale boundary effect with the presence of plasticity, using

mixed boundary conditions.

Objective 2 Improve the computational efficiency of the VME method without significant accu-

racy loss.

Task 2.1: Develop the reduced order variational multiscale enrichment (ROVME) method for

elasto-viscoplastic problems, by extending the eigenstrain-based reduced order modeling to scale

inseparable problems.

Task 2.2: Verify the accuracy and computational efficiency of the proposed ROVME method.

Objective 3 Predict multiscale structural response for structures subjected to coupled thermo-

mechanical loading conditions

Task 3.1: Generalize the ROVME method to incorporate the temperature effects, including

thermal expansion and temperature dependent material properties.

Task 3.2: Investigate the performance of the proposed computational framework for thermo-

mechanical problems

Objective 4 Modeling structures subjected to extreme environments

Task 4.1: Develop a hybrid integration for reduced order variational multiscale enrichment

(HROVME) method.
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Task 4.2: Verify the applicability of the proposed approach in evaluating structural scale

surface degradation problems.

1.3 Dissertation Organization

The first research objective is achieved in Chapter 2 which provides the formulation and im-

plementation of the variational multiscale enrichment (VME) method for elasto-viscoplastic prob-

lems. Chapter 3 details the reduced order variational multiscale enrichment method (ROVME)

which significantly improves the computational efficiency of the VME method. Chapter 4 de-

scribes the ROVME method for coupled thermo-mechanical problems that exhibit global-local

character. Chapter 5 presents the hybrid integration for reduced order variational multiscale enrich-

ment (HROVME) method to address problems subjected to extreme environments. Conclusions of

the current dissertation and future works are provided in Chapter 6.
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Chapter 2

VARIATIONAL MULTISCALE ENRICHMENT METHOD WITH MIXED BOUNDARY

CONDITIONS FOR ELASTO-VISCOPLASTIC PROBLEMS

2.1 Introduction

This chapter presents the formulation and implementation of the variational multiscale enrich-

ment (VME) method to address inelastic material behavior in the context of deformation prob-

lems. The novel contributions of the chapter are: (1) The VME approach is formulated for elasto-

viscoplastic material behavior: the previous work on VME included only elastic material behav-

ior [2, 23]; and (2) the performance of the inelastic VME formulation was assessed as a function of

the choice of boundary conditions proposed in Ref. [23] in the viscoplastic regime. In the proposed

approach, the fine scale representation not only approximates the coarse grid residual, but also ac-

counts for the material heterogeneity. The scale inseparable feature is represented by the relatively

insignificant scale size difference and strong coupling effect between the scales. A one-parameter

family of mixed boundary conditions that range from Dirichlet to Neumann is employed to study

the effect of the choice of the boundary conditions at the fine scale on accuracy. The inelastic

material behavior is modeled using Perzyna type viscoplasticity coupled with flow stress evolu-

tion idealized by the Johnson-Cook model. Numerical verifications are performed to assess the

performance of the proposed approach against the direct finite element simulations. The results of

verification studies demonstrate that VME with proper boundary conditions accurately model the

inelastic response accounting for material heterogeneity.

The remainder of this chapter is organized as the follows: Section 2.2 provides the problem

statement and governing equations of the boundary value problems. Section 2.3 details the varia-

tional multiscale enrichment methodology for solving inelastic mechanical problems with elasto-

viscoplastic material model. Section 2.4 describes the computational implementation of the pro-

posed methodology, including finite element discretization of the problems and solution strategy.
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Figure 2.1: The schematic representation of the overall problem domain, enrichment region
and an enrichment domain.

Numerical experiments are provided in Section 2.5, including the effect of boundary conditions on

accuracy of the proposed computational framework.

2.2 Governing Equations

We start by defining the governing equations that idealize the inelastic deformation within the

problem domain. Let Ω ⊂ Rnsd be the domain of the structure as illustrated in Fig. 2.1, where nsd

is the number of spatial dimensions. The equilibrium equation is expressed as:

∇ ·σ(x, t) = 0; x ∈Ω, t ∈ [0, to] (2.1)

in the absence of the body forces. x and t respectively denote the position and time coordinates;

σ is the stress tensor; ∇ the gradient operator; (·) the inner product; and to is the end of the

observation period. The boundary conditions are given as:

Dirichlet B.C.: u(x, t) = ũ(x, t); x ∈ Γu (2.2)

Neumann B.C.: σ(x, t) ·n = t̃(x, t); x ∈ Γt (2.3)

8



where, ũ is the prescribed displacement along the boundary subdomain, Γu; t̃ the prescribed trac-

tion along the boundary subdomain, Γt . The decomposition of the external boundary is such that

Γ = Γu∪Γt and Γu∩Γt ≡ /0.

The description of the constitutive relationship over the parts of the domain that remain unre-

solved, as well as the parts that resolve the micro-heterogeneity is taken to be elasto-viscoplastic.

The constitutive equation is expressed in the rate form as:

σ̇(x, t) = L(x, t) : [ε̇(x, t)− ε̇vp(x, t)] (2.4)

in which, L is the tensor of elastic moduli; ε and εvp denote total strain and viscoplastic strain

tensors, respectively. The superposed dot indicates material time derivative and (:) the double inner

product. The evolution of the viscoplastic strain is idealized based on the Perzyna’s viscoplastic

model [53]:

ε̇vp = γ

〈
f

σy

〉q
∂ f
∂σ

(2.5)

where, σy denotes the flow stress; γ the fluidity parameter; q the viscoplastic hardening exponent;

〈·〉 the Macaulay brackets (i.e., 〈·〉 = ((·)+ | · |)/2); and f the loading function defined based on

the classical J2 plasticity:

f (σ,εvp) =
√

3σ̄ −σy(ε̄
vp) (2.6)

in which, σ̄ denotes the second invariant of the deviatoric stress tensor, s = σ− tr(σ)δ/3; tr(·) the

trace operator; δ the Kronecker delta; and ε̄vp is the effective viscoplastic strain defined as:

ε̄
vp =

√
2
3
εvp : εvp (2.7)

The flow stress is a function of the effective viscoplastic strain using a reduced version of the

Johnson-Cook model:

σy = A+B(ε̄vp)n (2.8)
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where, A,B and n are material parameters. We note that the standard Johnson-Cook model includes

the effect of strain rate and temperature into the flow equation. The strain rate effect is modeled

directly using the Perzyna formulation and the temperature dependence is suppressed for simplic-

ity. All materials in the problem domain are assumed to follow the same general constitutive form,

with separate material properties sets defining the behavior of each constituent.

Equations (2.1)-(2.8) constitute the strong form equations of the elasto-viscoplastic problem.

The proposed enrichment approach operates within a variational setting. The equilibrium equation

along with the boundary conditions is expressed in the weak form as follows:

Find u ∈ V × [0, to] such that:

∫
Ω

∇w : σ(x, t) dΩ−
∫

Γt
w · t̃(x, t) dΓ = 0; ∀w ∈ [H1

0 (Ω)]nsd (2.9)

along with the constitutive equations (i.e., Eqs. (2.4)-(2.8)) that relate the displacement field to the

stress field. The trial space for the displacement field is:

V ≡
{

û ∈ [H1(Ω)]nsd|û = ũ on x ∈ Γ
u} (2.10)

in which, w is the test function; H1(Ω) is the Sobolev space of functions with square integrable

values and derivatives defined in the domain, Ω; H1
0 (Ω) is the subspace of functions in H1(Ω) and

that are homogeneous along the domain boundary, Γ.

2.3 Variational Multiscale Enrichment (VME)

The governing equations (Eqs. (2.1)-(2.8)) are evaluated using the variational multiscale en-

richment method. In this approach, the problem domain, Ω, is decomposed into two non-overlapping

subdomains, as demonstrated in Fig. 2.1:

Ω≡Ω
s∪Ω

b; Ω
s∩Ω

b ≡ /0 (2.11)
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where, Ωb denotes the enrichment region, in which the response is accurately characterized by

modeling and resolving at the scale of microstructural heterogeneities. In the substrate region Ωs,

coarse scale modeling is taken to be sufficient to accurately capture the mechanical response. It

is implicitly assumed that the domain is large enough to computationally prohibit full resolution

of the microscale heterogeneities throughout the structure. The enrichment region is further parti-

tioned into enrichment (microstructural) domains. The partitioning is done such that the resulting

enrichment domains are simple such that they can be represented by a single finite element at the

coarse scale:

Ω
b =

nen⋃
α=1

Ωα ; Ωα ∩Ωβ ≡ /0 when α 6= β (2.12)

where, nen denotes the total number of enrichment domains. Within each enrichment domain, the

microscale heterogeneity is resolved and numerically evaluated.

The boundary of an enrichment domain, α , can be decomposed into the following components:

Γα ≡ ∂Ωα = Γ
int
α ∪Γ

s
α ∪Γ

u
α ∪Γ

t
α (2.13)

in which, Γs
α is the part of the boundary that intersects with the substrate region boundary (Γs

α ≡

Γα ∩∂Ωs); Γu
α is the part of the boundary that intersects with the Dirichlet boundary of the problem

domain (Γu
α ≡ Γα ∩Γu); Γt

α is the part of the boundary that intersects with the Neumann boundary

of the problem domain (Γt
α ≡ Γα ∩Γt); and, Γint

α is the inter-enrichment domain boundaries:

Γ
int
α ≡

⋃
β∈Iα

Γ
β

α (2.14)

where the neighbor index set of enrichment domain Ωα , can be expressed as: Iα ≡{β ≤ nen| Γαβ 6=

/0}; Γαβ is the inter-enrichment domain boundary between α and β domain (Γαβ ≡ Γα ∩Γβ ); Γ
β

α

and Γα

β
denotes the α and β side of the inter-enrichment domain boundary, respectively.

The displacement response field is decomposed into macroscale and microscale contributions
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through additive two-scale decomposition:

u(x, t) = uM(x, t)+
nen

∑
α=1

H (Ωα)um
α(x, t) (2.15)

where, superscripts M and m denote the macroscale and microscale response fields, respectively,

and

H (Ωα) =


1, if x ∈Ωα

0, elsewhere
(2.16)

Equation (2.16) ensures that the microscale displacement field, um
α , is nonzero only on the closure

of enrichment domain, Ωα . The decomposition of the displacement field is performed such that the

corresponding function spaces recover the trial function space through direct sum (uM ∈ V M(Ω)

and um
α ∈ Vα(Ωα)):

V (Ω) = V M(Ω)⊕
nen⊕

α=1

Vα(Ωα) (2.17)

in which, V M(Ω)⊂ [H1(Ω)]nsd is the trial space for the macroscale displacement field and Vα(Ωα)

⊂ [H1(Ωα)]
nsd is the trial space for the microscale displacement field within enrichment domain,

Ωα . This decomposition implies linear independence of the macroscale and the microscale sub-

spaces necessary for uniqueness and stability of the numerical solution [1, 44]. Similar to Eq.

(2.17), the test function is additively decomposed into macroscale and microscale components

w = wM +
nen

∑
α=1

H (Ωα)wm
α (2.18)

where, wM ∈W M(Ω)⊂ [H1
0 (Ω)]nsd is the macroscale test function; and wm

α ∈Wα(Ωα)⊂ [H1(Ωα)]
nsd

is the microscale test function of the enrichment domain, Ωα .

Substituting Eqs.(2.18) and (2.15) into Eq. (2.9), the weak form of the problem yields:

∫
Ωs

∇wM : σ(uM,0) dΩ+
nen

∑
α=1

∫
Ωα

(∇wM +∇wm
α) :σ(uM,um

α) dΩ

−
∫

Γt
(wM +wm

α) · t̃ dΓ = 0

(2.19)
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On the substrate domain, the stress field is determined solely from the macroscale displacement

field, whereas within the enrichment region, both the macroscale and microscale displacement

fields define stress. Since wM and wm
α are arbitrary and independent, a macroscale and a series of

microscale problems over each enrichment domain (α = 1,2, ...nen) are obtained by collecting the

terms with wM and wm
α . Considering the decomposition of the boundaries in Eq. (2.13) and setting

the microscale test functions to zero yields the weak form of the macroscale problem:

∫
Ω

∇wM : σ(uM,um
α)dΩ−

∫
Γt

wM · t̃ dΓ−
∫

Γsb

wM · tr dΓ = 0 (2.20)

where, tr denotes the residual tractions along the substrate-enrichment region boundary, Γsb. The

weak form of the microscale problem at an arbitrary enrichment domain, α , is obtained similarly

by considering vanishing macroscale test functions:

∫
Ωα

∇wm
α : σ(uM,um

α)dΩ−
∫

Γt
α

wm
α · t̃ dΓ−

∫
Γα\Γ

wm
α · t dΓ = 0 (2.21)

in which, t denotes the internal tractions along the boundaries of the enrichment domain that does

not overlap with the external boundaries. Substituting the displacement decomposition (Eq. (2.15))

into Eq. (2.4), the stress-strain relationship is expressed as a function of the macro- and micro-

variables in the rate form as:

σ̇ = L :

[
ε̇M(uM)+

nen

∑
α=1

H (Ωα) ε̇
m
α(u

m
α)− ε̇vp(σ,uM,um)

]
(2.22)

The macroscale and microscale response fields, along with their test functions, are discretized us-

ing the standard Buhnov-Galerkin approach. The finite element spaces are shown in the following:

V M(Ω)≡

{
uM(x, t)

∣∣∣ uM(x, t) =
ND

∑
A=1

NA(x) ûM
A (t); ûM

A (t) = ûM(xA, t) if xA ∈ Γ
u

}
(2.23)

V m
α (Ωα)≡

{
um

α(x, t)
∣∣∣ um

α(x, t) =
ndα

∑
a=1

nα,a(x) ûm
α,a(t); ûm

α,a(t) = ûα(xα , t) if xα ∈ Γ
u
α

}
(2.24)
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in which, ND and ndα
denote the number of nodes in the macroscale discretization Ω, and the mi-

croscale discretization of Ωα , respectively; NA and nα,a are the shape functions for the macroscale

and microscale fields, respectively; xA and xα are the corresponding nodal coordinates. Overhat

denotes the nodal coordinates of the corresponding response field. The present formulation con-

siders the macroscale and microscale grids to be nested, which means each enriched macroscale

finite element coincides with a corresponding enrichment domain in the enrichment region. It is

also possible to consider enrichment domains to be independent of the macroscale mesh, i.e., each

enrichment domain may occupy multiple macroscale elements. While the general formulation is

unaffected by this generalization, the implementation could be quite different and not considered

in this study.

2.3.1 Mixed boundary conditions at microscale

The accuracy of the response approximation using the VME method is significantly affected

by the conditions imposed along the enrichment domain boundaries. In variational multiscale

literature, the typical choice has been the homogeneous Dirichlet boundary condition [63, 64, 65,

66, 67]:

um
α(x, t) = 0; x ∈ Γα (2.25)

The resulting microscale displacement is homogeneous along enrichment domain boundaries and

nonzero in the interior, leading to the bubble shape and sometimes referred as residual free bubbles.

This boundary condition typically leads to overly stiff response. In order to relax the overconstraint

imposed by the homogeneous Dirichlet boundary condition, mixed boundary conditions that has

been proposed for elasticity problems in Ref. [23] are generalized for inelastic problems and

implemented herein. When the mixed boundary conditions are employed, the resulting microscale

displacement is zero at enrichment domain corners and nonzero elsewhere, leading to a canopy

shape and referred as the canopy functions. In this approach the boundary tractions along the
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enrichment domain boundaries are expressed as:

tr(x, t) = t̂α(x, t)−κ [um
α(x, t)− ûα(x, t)] on x ∈ Γα ≡ ∂Ωα ; α = 1,2, ...nen. (2.26)

where t̂α(x, t) and ûα(x, t) are prescribed traction and displacement along the microscale boundary.

Equation (2.26) constitutes a one-parameter family of boundary conditions that range from a pure

Neumann condition when κ = 0 to a pure Dirichlet condition when κ → ∞ (denoted as κ = κ∞).

The boundary parameter, κ (such that 0≤ κ < ∞) therefore controls the boundary constraint stiff-

ness and is adjusted to improve solution accuracy. On the inter-enrichment domain boundaries,

Γαβ , the boundary data vanishes (i.e., t̂α(x, t) = 0 and ûα(x, t) = 0 ) and Eq. (2.26) leads to mixed

boundary conditions that range from traction-free to homogeneous Dirichlet conditions. The resid-

ual free bubbles are achieved by setting κ = ∞ on Γα .

The proposed mixed boundary condition also improves the approximation of the prescribed

conditions along the external boundaries of the problem domain, Ω. Consider the prescribed trac-

tion t̃ along the external boundary Γt
α is variable at the scale of the microstructure. The residual

external traction not resolved by the coarse grid is expressed as:

t̂α(x, t) = t̃α(x, t)≡ t̃(x, t)− t̃M(x, t) on x ∈ Γ
t
α (2.27)

The residual traction is enforced by setting, κ = 0 at Γt
α . Similarly, the residual applied displace-

ment along the boundary Γu
α is:

ûα(x, t) = ũα(x, t)≡ ũ(x, t)− ũM(x, t) on x ∈ Γ
u
α (2.28)

in which, ũM(x, t) is the coarse grid approximation of the prescribed displacement. The residual

prescribed displacement field is imposed by setting κ = κ∞ on Γu
α .

In order to satisfy the continuity of the displacement fields across the inter-enrichment domain

boundaries, a master-slave coupling approach is employed [23]. Let the neighbor index set for the
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enrichment domain α be split into master and slave index sets:

Im
α ≡

{
β | α < β ≤ nen| Γαβ 6= /0

}
;

Is
α ≡

{
β | β < α ≤ nen| Γαβ 6= /0

}
.

(2.29)

For an arbitrary enrichment domain, α , the displacement continuity is enforced by considering:

tr(x, t) =−κ∞

[
um

α(x, t)−um
β
(x, t)

]
; β ∈ Is

α and x ∈ Γ
β

α (2.30)

Employing the mixed boundary conditions as well as the displacement continuity conditions

along the inter-enrichment boundaries, the microscale problems defined in Eq. (2.21) is expressed

as:

Ψm
α ≡

∫
Ωα

∇wm
α : σ(uM,um

α) dΩ−
∫

Γt
α

wm
α · t̃α dΓ−

∫
Γα

wm
α · tM dΓ+κ∞

∫
Γs

α

wm
α ·um

α dΓ

+κ ∑
β∈Im

α

∫
Γ

β
α

wm
α ·um

α dΓ+κ∞ ∑
β∈Is

α

∫
Γ

β
α

wm
α ·
(

um
α −um

β

)
dΓ−κ∞

∫
Γu

α

wm
α · ũ dΓ = 0 (2.31)

The displacement continuity is satisfied by setting κ = κ∞ along the interface between the en-

richment domain and the substrate domain. Considering the mixed boundary conditions, the

macroscale problem in Eq. (2.20) becomes:

ΨM ≡
∫

Ω

∇wM : σ(uM,um
α) dΩ−

∫
Γt

wM · t̃M dΓ+κ∞

nen

∑
α=1

∫
Γs

α

wM ·um
α dΓ = 0 (2.32)

In the numerical verification studies below, a sufficiently large but finite value is employed for κ∞

for stability and accuracy.

Equations (2.31) and (2.32), along with the constitutive equations, constitute the coupled multi-

scale system. The microscale problem defined over the enrichment domain (Eq. (2.31)) is coupled

to the macroscale response field through the constitutive relationship (i.e., through the first term

on the left hand side of Eq. (2.31)) as well as the macroscale tractions. The macroscale problem
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is similarly coupled to the microscale response field through the constitutive relationship and the

boundary interactions.

The variational multiscale enrichment system (Eqs. (2.31) and (2.32)) are linearized and solved

using a staggered scheme in the context of finite element discretization, along with the constitutive

equation (Eq. (2.22)) and the viscoplastic strain evolution (Eq. (2.5)). The detailed formulation and

implementation for the numerical evaluation of the VME system (including consistent lineariza-

tion, finite element discretization and implementation strategy) are detailed in Ref. [24]. They are

skipped herein for the simplicity of presentation.

2.4 Computational Implementation

The weak form macroscale equation defined over the problem domain, Ω and the microscale

equations defined over each enrichment domain, Ωα are nonlinear through the constitutive rela-

tionship and coupled. The computational implementation of the evolution of this nonlinear coupled

system is performed by consistent linearization and finite element discretization, which leads to a

coupled algorithmic system. The evaluation of the coupled algorithmic system is performed by

employing a sequential coupling algorithm described in Section 2.4.3.

2.4.1 Consistent linearization

The macro- and microscale equations along with the constitutive equations are discretized in

time to obtain a linearized system of equations evaluated incrementally. The linearization consists

of time discretization of the weak forms, stress-strain, kinematic equations and condensation of

the constitutive equations to arrive at a system, in which the unknowns are the macro- and mi-

croscale displacement fields only. Substituting Eq. (2.15) into Eq.(2.4), the stress-strain equation

is expressed as a function of the macro- and microscale displacement fields as:

σ̇ = L :

[
ε̇M(uM)+

nen

∑
α=1

H (Ωα) ε̇
m
α(u

m
α)− ε̇vp(σ,uM,um)

]
(2.33)
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in which, θ ∈ [0,1] is an algorithmic parameter. um := {um
α}

nen
α=1 is the set of all microscale dis-

placement fields. We proceed with the time discretization of the governing equations. Consider a

discrete set of instances with the observation period: {0,1t,2t, ...,nt,n+1t, ..., to}. The viscoplastic

slip evolution is discretized based on a one-parameter family (referred to as θ -rule):

ε̇vp(x, t) = (1−θ)ε̇vp(x,nt)+θ ε̇vp(x,n+1t); t ∈ [nt, n+1t] (2.34)

which leads to the following expression for viscoplastic update:

P≡ n+1ε
vp− nε

vp−∆t (1−θ) nε̇
vp−∆t θ n+1ε̇

vp = 0 (2.35)

in which left subscript n and n+1 indicate the value of a field variable at nt and n+1t, respectively

(e.g. nε
vp = εvp(nt)). The time discretization of Eq. (2.33) yields:

R(σ,uM,um)≡ n+1σ− nσ−L : ∆εM−
nen

∑
α=1

H (Ωα)L : ∆εm
α+

(1−θ)∆t L : nε̇
vp +θ∆t L : n+1ε̇

vp = 0

(2.36)

where ∆εM = n+1(∇uM)− n(∇uM) and ∆εm
α = n+1(∇um

α)− n(∇um
α). The system of equations

defined by P, R along with ΨM and Ψm
α are evaluated using the Newton-Raphson iterative scheme.

In what follows, we seek to evaluate the nonlinear multiscale system between [nt, n+1t] from

the “ known” equilibrium configuration nt to the current configuration at n+1t. In what follows,

the subscript n+ 1 from the fields at current configuration is omitted for clarity of presentation.

Considering a first order Taylor series approximation of Eq. (2.36) and forming a Newton iteration

yield the following residual for the stress-strain equation:

Rk+1 ≈ Rk +(I+θ ∆t L : Ck) : δσ−L : ∇(δuM)

−
nen

∑
α=1

H (Ωα)L : ∇(δum
α)+θ ∆t L : Gk : δεvp = 0

(2.37)
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in which, superscript k denotes Newton iteration counter; δ (·) indicates the increment of response

field (·) during the current iteration (e.g., δuM = uM,k+1−uM,k); I the fourth order identity tensor;

and:

Ck =

(
∂ ε̇vp

∂σ

)k

; Gk =

(
∂ ε̇vp

∂εvp

)k

(2.38)

The expression for derivatives Ck and Gk are provided in Ref. [24]. The linearization of the kine-

matic equation residual expression (Eq. (2.35)) yields the following expression:

Pk+1 ≈ Pk +(I−θ ∆t Gk) : δεvp−θ ∆t Ck : δσ = 0 (2.39)

Rearranging Eq. (2.39), the viscoplastic strain increment at the current Newton iteration is ex-

pressed in terms of the stress increment as:

δεvp = (I−θ ∆t Gk)−1 : (θ ∆t Ck) : δσ− (I−θ ∆t Gk)−1 : Pk (2.40)

Substituting Eq. (2.40) into Eq. (2.37) condenses out the viscoplastic strain and yields:

Rk−Zk +(I+θ ∆t L : Ck+Hk) : δσ−L : ∇(δuM)−
nen

∑
α=1

H (Ωα)L : ∇(δum
α) = 0 (2.41)

where,

Hk = (θ∆t)2 L : Gk : (I−θ ∆t Gk)−1 : Ck (2.42a)

Zk = θ ∆t L : Gk : (I−θ ∆t Gk)−1 : Pk (2.42b)

Equation (2.41) can be solved with respect to the stress increment, resulting in

δσ(δuM,δum
α) = L̂k : ∇(δuM)+

nen

∑
α=1

H (Ωα) L̂k : ∇(δum
α)−Qk : (Rk−Zk) (2.43)
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where

L̂k = (L−1 +θ ∆t Ck +L−1 : Hk)−1 (2.44)

Qk = (I+θ ∆t L : Ck +Hk)−1 (2.45)

The linearized weak form equilibrium equation for the macroscale is expressed in terms of the

stress and the microscale displacement increments as:

ΨM,k+1 ≈ΨM,k +
∫

Ω

∇wM : δσ dΩ+
nen

∑
α=1

κ∞

∫
Γs

α

wM ·δum
α dΓ = 0 (2.46)

Similarly, the linearization of the microscale problem over Ωα (α = 1,2, ...nen):

Ψm,k+1
α ≈ Ψm,k

α +
∫

Ωα

∇wm
α : δσ dΩ−

∫
Γα

wm
α ·δ tM dΓ+κ∞

∫
Γs

α

wm
α ·δum

α dΓ

+ ∑
β∈Im

α

κ

∫
Γ

β
α

wm
α ·δum

α dΓ+ ∑
β∈Is

α

κ∞

∫
Γ

β
α

wm
α ·
(

δum
α −δum

β

)
dΓ = 0

(2.47)

where δ tM =σk+1(uM,k+1,0)−σk(uM,k,0) is the macroscale traction over the microscale domain

boundaries computed from Eq. (2.43). Substituting Eq. (2.43) into Eqs. (2.46) and (2.47), the

linearized governing equations for the macroscale problems is expressed as:

∫
Ω

∇wM : L̂k : ∇(δuM) dΩ =−
nen

∑
α=1

∫
Ωα

∇wM : L̂k : ∇(δum
α) dΩ

+
∫

Ω

∇wM : Qk : (Rk−Zk) dΩ−
nen

∑
α=1

κ∞

∫
Γs

α

wM ·δum
α dΓ−ΨM,k

(2.48)

and for the microscale domains over Ωα (α = 1,2, ...nen):

∫
Ωα

∇wm
α : L̂k :∇(δum

α) dΩ =−
∫

Ωα

∇wm
α : L̂k : ∇(δuM) dΩ+

∫
Ωα

∇wm
α : Qk : (Rk−Zk) dΩ

+
∫

Γα

wm
α ·
[
L̂k : ∇(δuM)−Qk : (Rk−Zk)

]
dΓ−κ∞

∫
Γs

α

wm
α ·δum

α dΓ

− ∑
β∈Im

α

κ

∫
Γ

β
α

wm
α ·δum

α dΓ− ∑
β∈Is

α

κ∞

∫
Γ

β
α

wm
α ·
(

δum
α −δum

β

)
dΓ−Ψm,k

α

(2.49)
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It can be observed from Eqs. (2.48) and (2.49) the value of the boundary parameter κ for

all inter-enrichment domain boundaries is set as a fixed value for all inter-enrichment domains

and throughout the loading process. The value of the boundary parameter for the parts of the

enrichment domain boundaries that overlap with prescribed Dirichlet boundaries and enrichment

domain-substrate domain interface is set to a very large value (κ∞). The κ parameter is set to zero

when the enrichment domain boundary lies along prescribed Neumann boundaries, as described in

Section 3.1.

2.4.2 Finite element discretization

Equations (2.48) and (2.49) are evaluated using the finite element method. Consider the fol-

lowing finite element spaces for the macro- and microscale response fields:

V M(Ω)≡

{
uM(x, t)

∣∣∣ uM(x, t) =
ND

∑
A=1

NA(x) ûM
A (t); ûM

A (t) = ûM(xA, t) if xA ∈ Γ
u

}
(2.50)

V m
α (Ωα)≡

{
um

α(x, t)
∣∣∣ um

α(x, t) =
ndα

∑
a=1

nα,a(x) ûm
α,a(t); ûm

α,a(t) = ûα(xα , t) if xα ∈ Γ
u
α

}
(2.51)

in which, ND and ndα
denote the number of nodes in the macroscale discretization Ω, and the mi-

croscale discretization of Ωα , respectively; NA and nα,a are the shape functions for the macroscale

and microscale fields, respectively; xA and xα are the corresponding nodal coordinates. Overhat

denotes the nodal coordianates of the corresponding response field. The present formulation con-

siders the macroscale and microscale grids to be nested, which means each enriched macroscale

finite element coincides with a corresponding enrichment domain in the enrichment region. It is

also possible to consider enrichment domains to be independent of the macroscale mesh, i.e., each

enrichment domain may occupy multiple macroscale elements. While the general formulation is

unaffected by this generalization, the implementation could be quite different and not considered

in this study. Employing the standard Bubnov-Galerkin approach, the test functions are taken to

be discretized using the same macro- and microscale shape functions.
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Substitute Eqs. (2.50) and (2.51) into the macroscale weak form (Eq. (2.48)) yields the discrete

macroscale system. At the (k+ 1)th iteration of the current time step, n+1t, the macroscale weak

form takes the form expressed as:

K δ ûM = δ f (2.52)

where,

δ ûM =

{(
δ ûM,k+1

1

)T
,
(

δ ûM,k+1
2

)T
, ...,

(
δ ûM,k+1

ND

)T
}T

(2.53)

in which, δ ûM,k+1
A = ûM,k+1

A −ûM,k
A (A = 1,2, ...,ND) and δ ûM denotes the increment of the macroscale

nodal displacement coefficients at the (k+1)th iteration. The tangent stiffness matrix is expressed

as:

K = A
A,B

∫
Ω

∇NA · L̂k ·∇NB dΩ (2.54)

in which A denotes the standard finite element assembly operator. Within the macroscale ele-

ments associated with an enrichment domain, the tensor of tangent moduli, L̂ oscillates due to the

heterogeneity of the microstructure. The integral is resolved and evaluated based on the underlying

coarse grid on enriched elements. The force increment in the current iteration, δ f is expressed as:

δ f = A
A

{
−

nen

∑
α=1

ndα

∑
a=1

[∫
Ωα

∇NA · L̂k · ∇nα,a dΩ δ ûm
α,a +κ∞

∫
Γs

α

NA nα,a dΓ δ ûm
α

]

+
∫

Ω

∇NA ·Qk : (Rk−Zk) dΩ

}
−ΨM,k

(2.55)

The discrete microscale system for the enriched domain, α , is obtained by substituting Eqs.

(2.50) and (2.51) into the microscale weak form (Eq. (2.49)):

Kα δ ûm
α = δ fα (2.56)

where,

δ ûm
α =

{(
δ ûm,k+1

α,1

)T
,
(

δ ûm,k+1
α,2

)T
, ...,

(
δ ûm,k+1

α,ndα

)T
}T

(2.57)
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in which, δ ûm,k+1
α,a = ûm,k+1

α,a − ûm,k
α,a (a = 1,2, ...,ndα

) and δ ûm
α denotes the increment of the mi-

croscale nodal displacement coefficients at the (k+1)th iteration . The microscale tangent stiffness

matrix is assembled as:

Kα =A
a,b

{∫
Ωα

∇nα,a · L̂k ·∇nα,b dΩα +κ∞

∫
Γs

α

nα,a nα,b dΓ

+κ

∫
Γ

βm
α

nα,a nα,b dΓ+κ∞

∫
Γ

β s
α

nα,a nα,b dΓ

} (2.58)

and the corresponding force increment is expressed as:

δ fα =A
a

{
−
∫

Ωα

∇nα,a · L̂k ·∇NB dΩ δ ûM
B (t)+

∫
Ωα

∇nα,a ·Qk : (Rk−Zk) dΩ

+
∫

Γα

nα,a

[
L̂k : ∇(δuM)−Qk : (Rk−Zk)

]
dΓ+κ∞

∫
Γ

β s
α

nα,a δum
β

dΓ

}
−Ψm,k

α

(2.59)

where, Γ
βm
α ≡ {Γβ

α |β ∈ Im
α }, Γ

β s
α ≡ {Γ

β

α |β ∈ Is
α} and subscript B indicates the corresponding

coarse scale element. Equations (2.52) and (2.56) constitute the linearized system of equations

that are evaluated for the macro- and microscale problems. Each microscale problem defined over

an enrichment domain is coupled to the macroscale problem as well as the enrichment domain

problems that share a common boundary and has a master surface (i.e., all enrichment domain

problems in Is
α ). The coupling is through the force vector (i.e., δ fα(ûM,{δum

β
|β ∈ Is

α} )). The

macroscale problem is coupled to the enrichment domain problems (i.e., δ f({ûm
α}

nen
α=1)). This

coupled system of equations is evaluated using a staggered solution algorithm defined below.

2.4.3 Computational algorithm

The VME formulation for the elasto-viscoplastic problem is implemented using the C++ com-

puter language with the commercial software package, Diffpack [68]. Diffpack is an object-

oriented development framework for the numerical solution of partial differential equations. It

provides a library of C++ classes to facilitate development of solution algorithms for complex
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Figure 2.2: Solution algorithm

PDEs [68]. The overall solution strategy is to evaluate the coupled system of multiscale equations

summarized in Fig. 2.2. At an arbitrary time nt, the system is in equilibrium with the constitutive

relations satisfied at macro- and microscale. The algorithm seeks to find the equilibrium state at

n+1t as follows:

Given: nûM,nûm
α ,nε

vp,nε̇
vp,nσ at time nt.

Find: ûM, ûm
α ,ε

vp, ε̇vp,σ at time n+1t.

1. Initialize Newton iterations by setting: k=0, ûM,0 = nûM , ûm,0
α = nûm

α , εvp,0 = nε
vp, ε̇vp,0 =

nε̇
vp, σ0 = nσ, and δum

α = 0, where 1≤ α ≤ nen.

2. While not converged:

a) Compute Ck, Gk, Hk, Zk, L̂k, Qk, Rk, Pk, ΨM,k and Ψm,k
α for the multiscale system

from Eqs. (2.38), (2.42a), (2.42b), (2.44), (2.45), (2.36), (2.35), (2.32) and (2.31),

respectively.

b) Solve the macroscale problem (Eq. (2.52)) for δ ûM over the structural domain, Ω,

using the microscale increments δum
α from the previous iteration.

c) Update the macroscopic displacement coefficients, ûM,k+1 = ûM,k +δ ûM .
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d) Solve the microscale problem (i.e., Eq. (2.56)) for δ ûm
α over each enriched domain, Ωα

(1≤ α ≤ nen).

e) Update the microscopic displacement coefficients, ûm,k+1
α = ûm,k

α +δ ûm
α .

f) At every integration point in macro, and micro problems:

i) Employing δ ûM and δ ûm
α , compute current stress increment δσ using Eq. (2.43).

Update stress σk+1 = σk +δσ .

ii) Compute δεvp using Eq. (2.40). Update viscoplastic strain εvp,k+1 = εvp,k+δεvp.

g) Compute viscoplastic strain rate ε̇vp,k+1 using Eq. (2.5).

h) Check for convergence at macroscale and microscale problems:

 eM = ‖ûM,k+1− ûM,k‖2 ≤ Convergence tolerance

em
α = ‖ûm,k+1

α − ûm,k
α ‖2 ≤ Convergence tolerance

(2.60)

i) If convergence criterion are not satisfied, set iteration counter k← k+ 1 and proceed

with the next iteration.

3. Repeat step 2 with n← n+1 until the end of the observation period.

The staggered form of the solution algorithm is achieved by solving the macroscale system

using the microscale displacement coefficients from the previous iteration (Step 3b)). The stagger-

ing order, which is evaluating the macroscale problem prior to the microscale problems, is natural

since the loading on the domain is expected to be primarily at the macroscale (i.e., typically but

not necessarily ûα = 0 on Γu
α and t̂α = 0 on Γt

α ). The effect of stagger ordering does not have a

notable effect on the solution. The convergence of the multiscale system is assessed when both the

macroscale system and the enrichment domain problems simultaneously converge. A detailed con-

vergence study on the staggered solution algorithm in the context of elasticity has been provided

in Ref. [2] and not included in this chapter.
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Table 2.1: Materials parameters for the verification studies of VME.

Material type E [GPa] ν A [MPa] B [MPa] n q γ [MPa-hr]−1

Phase I 130.8 0.32 600 1200 0.90 1.0 1.0
Phase II 110.8 0.32 400 200 0.96 1.0 1.0
Substrate 120.8 0.32 500 700 0.93 1.0 1.0

2.5 Numerical Verification

The implementation of the VME method for elasto-viscoplastic problems is verified using nu-

merical simulations. The VME model predictions are compared to the direct numerical simulations

using the finite element method. In the direct numerical simulations, the heterogeneities within the

problem domain is fully resolved. In all simulations below, the domain is taken to consist of

three separate materials. The heterogeneous material microstructure consists of two phases. A

third material that approximates the properties of the composite domain is employed to idealize

the behavior at the substrate domain. The material properties of the two phases and the substrate

are provided in Table 2.1 and the constitutive relationship of these materials under unidirectional

tension is plotted in Fig. 2.3.

The boundary condition parameter κ is relatively sensitive to the microstructural topology as

well as the constituent material parameters. A sensitivity analysis and a parameter selection strat-

egy are outlined in Ref. [23]. In this chapter, the selection of the boundary parameter is performed

by subjecting a representative cell to pure uniaxial and shear loading, and choosing the bound-

ary parameter which minimizes the discrepancy between the direct finite element analysis of the

microstructure and the corresponding VME model (described in Section 2.5.1). The boundary

parameter employed in the analysis of the specimen with a center notch (Section 2.5.2) uses the

boundary parameter selected as such.
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Figure 2.3: Stress-strain behavior of the constituent materials under uniaxial tension: (a) phase
I; (b) phase II; and (c) substrate material.
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Figure 2.4: Numerical models of the square specimen: (a) direct finite element discretization
and sketch for uniform tensile load; (b) macroscale discretization and sketch for pure shear load;

and (c) microscale discretization of an enrichment domain.
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2.5.1 Effect of the boundary parameter

In this section, the effect of the mixed boundary parameter, κ , on the accuracy characteristics

of the VME method in the context of elasto-viscoplastic behavior is investigated. The effect of the

mixed boundary parameter on composite media with elastic modulus contrast has been previously

investigated in Ref. [23]. A 2-D plane strain, composite domain with a two-phase microstructure is

considered as shown in Fig 2.4a. The geometry and the discretization used in the VME simulations

are shown in Figs. 2.4b,c. The heterogeneity in the original problem domain is exactly obtained by

the repetition of the microstructure (Fig. 2.4c) in a 3-by-3 tile. Phase I and phase II materials are

identified as dark and light elements, respectively. The behavior of the square composite domain

was investigated under displacement controlled uniform tension and shear conditions. The loading

was applied at the uniform strain rate of approximately 3×10−4/s. All 9 macroscale elements are

taken to be enriched in the VME simulations, which means that the enrichment region is the entire

problem domain. The ratio between the size of the enrichment domain and the specimen domain

is 1/3 which exhibits the scale inseparable feature. The macroscale grid ensures that the central

enriched domain has all four boundaries of inter-enrichment type. Each of the enrichment domains

are discretized fine enough to ensure that further discretization does not noticeably affect the simu-

lation accuracy. The direct finite element discretization and the microscale discretization are taken

to have the same element size. The time step size is determined such that further refinement does

not change the results significantly. The convergence tolerance employed in the simulations is set

to 1×10−6.

Figure 2.5 illustrates the time averaged errors in displacement and stress under tensile and shear

loading conditions. The errors of the proposed multiscale method are compared to the direct finite

element analysis as a function of the boundary parameter, κ . The error over the entire boundary
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Figure 2.5: Time averaged error as a function of the boundary parameter: (a) displacement
error under tensile loading; (b) equivalent stress error under tensile loading; (c) displacement

error under shear loading; and (d) equivalent stress error under shear loading.

domain at an arbitrary time, t, is computed as:

eφ (t) =

nen
∑

α=1

∥∥φ
FEM(x, t)−φ

VME(x, t)
∥∥

2,Ωα

nen
∑

α=1

∥∥φ
FEM(x, t)

∥∥
2,Ωα

(2.61)

where, φ FEM and φ VME denotes a response field (i.e., displacement or equivalent stress) computed

using the direct finite element method and the VME, respectively, ‖ · ‖2,Ωα
is the L2 norm of the

response field computed over Ωα . When the numerical specimen is subjected to uniform ten-

sion, the displacement error is minimized when homogeneous Dirichlet boundary conditions are
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Figure 2.6: Equivalent stress contours at 3.0×10−4 mm applied displacement. (a) Reference
model under uniform tension; (b) VME model under uniform tension; (c) reference model under

shear; and (d) VME model under shear.

employed. In contrast, the time averaged error in the equivalent stress is minimized at a slightly re-

laxed boundary parameter with κ ∈ [3.7×107,1.25×108]. Under the shear load, the displacement

and equivalent stress errors are minimized at the boundary parameter values of κ = 2.96× 108

and κ = 1.25×108, respectively. The results indicate limited improvement of accuracy in the dis-

placement and stress fields when the boundary condition is slightly relaxed from the homogeneous

Dirichlet conditions. In the case of uniaxial tension loading, the errors in the stress computations

improve by approximately 32% when the optimal boundary parameter is employed. The trends

in errors follow a similar trend to those computed in the context of elasticity problems provided

in Ref. [23]. Figures 2.6a,b compare the contours of equivalent stress fields computed by the pro-

posed model and the direct finite element method at time t = 36 seconds and under an applied
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Figure 2.7: Multiscale variational enrichment model of the specimen with a notch: (a) sketch
and discretization of the macroscale discretization; and (b) microscale discretization of an

enrichment domain in the enrichment region.

uniform tensile displacement of 3.0×10−4 mm. Equivalent contours at t = 36 seconds and under

an applied shear displacement of 3.0× 10−4 mm are shown in Figs. 2.6c,d for the VME and di-

rect FEM methods, respectively. The contours from the VME simulations are reconstructed from

the micro- and macroscale solutions at the post-processing stage. In both cases, there is a close

agreement in the stress fields computed by the reference and the multiscale simulations.

2.5.2 Specimen with a center notch

The proposed multiscale method is further verified using the numerical analysis of a specimen

with a center notch subjected to uniform tensile loading in the vertical direction. The dimensions

of the rectangular specimen and the center notch are 0.8 mm× 0.4 mm with a 0.4 mm× 0.04 mm,

respectively. The ratio between the size of the enrichment domain and the stress localization

region around the corner is approximately 1/10 which exhibits the scale inseparable nature. Due

to symmetry, only a quarter of the specimen is modeled. The two-phase microstructure of the

domain and the material properties of the phases are taken to be identical to the example provided

in Section 2.5.1. The specimen was subjected to uniform displacement controlled tensile loading
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Figure 2.8: Discretization of the direct finite element model of the notched specimen.

in the vertical direction. The maximum amplitude of the loading was 0.01 mm applied at a rate of

5.6×10−5 mm/sec.

The geometry, boundary conditions of the problem domain, as well as the macro- and mi-

croscale discretization employed in the VME approach is shown in Fig. 2.7. A 0.1 mm × 0.1 mm

square domain at the center of the specimen is chosen as the enrichment region. The macroscale

mesh consists of 314 quadrilateral macroscale elements, 92 of which are enriched. Each enriched

element is associated with an identical microscale geometry shown in Fig. 2.7b. The microscale

mesh consists of 100 quadrilateral elements. Outside the enrichment region (i.e., the substrate re-

gion), substrate material properties shown in Table 2.1 are employed. The VME simulations were

conducted using homogeneous Dirichlet boundary conditions, as well as using the mixed bound-

ary conditions with κ = 2.96× 108. The optimal mixed boundary parameter identified under the

shear loading in the previous section is employed since the plastic deformation occurs under shear.

The performance of the VME approach was assessed by comparing the model results to the direct

numerical simulations, in which the enrichment region is fully resolved. The reference mesh is

shown in Fig. 2.8 and consists of 11276 quadrilateral elements. The size of the elements within the

enrichment domain is taken to be the same as the size of the elements in the microscale mesh used

in the VME approach. The substrate region is meshed with coarser elements. A transition region
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Figure 2.11: Comparison of equivalent stress contours at the end of the simulation:
(a) reference model; and (b) the VME method with κ = 2.96×108.

is included to ensure mesh conformity.

Figure 2.9 illustrates the evolution of the errors in the displacement and equivalent stress within

the enrichment region as a function of simulation time. The errors are computed using Eq. (2.61).

The figure includes the VME simulations performed using the homogeneous Dirichlet and opti-

mal shear boundary conditions. The errors in the displacement computed using the homogeneous

Dirichlet and the optimal shear boundary conditions remained within 3% and 1.5%, respectively.

The errors in the stress computed using the two boundary conditions are within 8.5% and 6%, re-

spectively. In the case of the homogeneous Dirichlet boundary conditions, the displacement errors

accumulate as a function of increasing plastic strain, whereas the optimal shear boundary con-

dition has less sensitivity to the plastic strain magnitude. The proposed multiscale approach has
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reasonable accuracy characteristics compared to the reference model for both types of boundary

conditions.

Figure 2.10 shows the comparison of the overall force displacement curves computed using

the reference finite element method and the proposed VME method. The VME simulations per-

formed using the two types of boundary conditions resulted in near identical force-displacement

curves. Figure 2.10 clearly shows that the proposed approach is able to accurately capture the

overall elasto-viscoplastic response. In addition to the overall behavior, the local deformation and

stresses are very accurately captured using the proposed VME approach. The equivalent stress

contours obtained based on the reference and the VME method are compared in Fig. 2.11. The

equivalent stress contours correspond to the applied peak load at the end of the simulations. The

stress contours for the VME approach is reconstructed using the enrichment domain solutions at

the post-processing stage. The local stress distributions show an oscillatory behavior around the

notch tip, due to the heterogeneous microstructure. The oscillatory behavior is well captured using

the proposed VME approach, pointing to its ability to reproduce the local stress fields within the

critical regions of the problem domain.
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Chapter 3

REDUCED ORDER VARIATIONAL MULTISCALE ENRICHMENT METHOD FOR

ELASTO-VISCOPLASTIC PROBLEMS

3.1 Introduction

The numerical assessment of the VME microscale problems could be computationally ex-

pensive, especially when the geometry of the microstructure is complicated and the number of

enrichment domains is large. In the current chapter, we provide a reduced order modeling ap-

proach for the VME method to address global-local problems in a more efficient manner. The

proposed model order reduction approach is based on the concepts of transformation field analy-

sis pioneered by Dvorak and coworkers [31]. The main idea is to express the response field as a

function of influence functions and coefficient tensors that are computed at the preprocessing stage

prior to a structural analysis. The influence functions ensure that the microstructural equilibrium

is a-priori satisfied for arbitrary states of deformation. While this approach has been previously

applied in the context of computational homogenization [34, 37, 69], it has not been previously

formulated for scale inseparable multiscale methods. This chapter presents the reduced order

variational multiscale enrichment (ROVME) formulation for heterogeneous materials that exhibit

elasto-viscoplastic behavior. The implementation procedure and numerical approaches employed

are described. The proposed ROVME approach is thoroughly verified against the direct variational

multiscale enrichment method [24]. The proposed approach is able to capture the local and global

response mechanisms with reasonable accuracy at the fraction of the cost.

This chapter provides the following novel contributions: (1) The eigenstrain-based reduced

order modeling approach is extended to scale inseparable problems; (2) The local problem within

the VME framework is evaluated based on a much reduced approximation basis without significant

loss in accuracy; and (3) The ROVME approach provides the ability to control efficiency/accuracy

characteristics since the model order is controlled within the reduced order modeling framework.
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The remainder of this chapter is organized as follows: Section 3.2 presents the reduced or-

der VME formulation for inelastic mechanical problems with elasto-viscoplastic material behav-

ior. Section 3.3 illustrates the implementation strategy of the ROVME methodology. Section 3.4

presents the numerical verification studies including global-local response and assessment of com-

putation efficiency.

3.2 Reduced Order Variational Multiscale Enrichment (ROVME)

In the current section, an eigenstrain-based model reduction technique [37] is employed for

efficient evaluation of the microscale problems. The governing equations are identical to those

provided in Chapter 2. The only difference in the current chapter is the homogeneous Dirichlet

boundary conditions for the enrichment domains are employed (Eq. (2.25)), instead of the mixed

boundary conditions. The resulting macroscale weak form is obtained as:

∫
Ω

∇wM : σ dΩ−
∫

Γt
wM · t̃ dΓ = 0 (3.1)

The weak form of the microscale problem at an arbitrary enrichment domain, α , yields:

∫
Ωα

∇wm
α : σ dΩ = 0; α = 1,2, ...nen. (3.2)

3.2.1 Numerical evaluation of the microscale problem

We start by decomposing the microscale displacement field as follows:

um
α(x, t) =

ND

∑
A=1

Hα
A (x) · ûMα

A (t)+
∫

Ωα

hα(x, x̂) : εvp(x̂, t) dx̂ (3.3)

where, ûMα
A denotes the macroscale nodal coefficient corresponding to the Ath node of the en-

richment domain, Ωα . Hα
A , a second order tensor, is the linear elastic influence function in Ωα .

hα(x, x̂) (x, x̂ ∈Ωα), a third order tensor, is the influence function associated with the inelastic de-
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formation within the enrichment domain. In the absence of inelastic processes, the second term on

the right hand side of Eq. (3.3) vanishes. The microscale displacement field is then expressed using

influence functions (Hα
A ) acting on the finite element basis (described by the nodal coefficients of

the macroscale element over the enrichment domain) leveraging the linearity of the problem as pro-

posed by Refs. [21, 22]. In the presence of inelastic deformation, the second component is obtained

by considering the inelastic strain field as spatially variable force acting on the microstructure, and

using the Green’s function idea to compute the microscale displacement contribution as a function

of the spatially variable inelastic strain (eigenstrain) field [70]. Equation (3.3) is valid under the

conditions of small deformation theory and additive split of the strain tensor. In the presence of

geometric nonlinearity and plasticity models that employ multiplicative split, this decomposition is

not directly valid as the inelastic influence functions become time (or load amplitude) dependent.

The influence functions Hα
A and hα are determined from the microscale weak form shown in

Eq. (3.2). Employing the constitutive equation (i.e., Eq. (2.22)) and the microscale displacement

field discretization defined in Eq. (3.3), the weak form of the microscale problem becomes (α =

1,2, ...nen):

ND

∑
A=1

[(∫
Ωα

∇wm
α : L : ∇Hα

A dΩ +
∫

Ωα

∇wm
α : L ·∇NA dΩ

)
· ûMα

A (t)
]

+
∫

Ωα

∇wm
α : L :

[∫
Ωα

∇hα(x, x̂) : εvp(x̂, t) dx̂−εvp(x, t)
]

dΩ = 0

(3.4)

Considering the elastic state (i.e., when the enrichment domain undergoes deformation in the ab-

sence of the inelastic process), Eq. (3.4) is reduced to:

ND

∑
A=1

[(∫
Ωα

∇wm
α : L : ∇Hα

A dΩ +
∫

Ωα

∇wm
α : L ·∇NA dΩ

)
· ûMα

A (t)
]
= 0 (3.5)

We note that the displacement coefficients, ûM
A vary with time only, while ∇wm

α and ∇NA are

functions of the space coordinates with no variation in time. The governing equation for the linear-
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elastic influence function, Hα
A , then becomes:

∫
Ωα

∇wm
α : L : ∇Hα

A dΩ = −
∫

Ωα

∇wm
α : L ·∇NA dΩ; ∀ A = 1,2, ...,ND (3.6)

In the presence of inelastic deformation and in view of Eq. (3.5), Eq. (3.4) yields:

∫
Ωα

∇wm
α : L :

[∫
Ωα

∇hα(x, x̂) : εvp(x̂, t) dx̂−εvp(x, t)
]

dΩ = 0 (3.7)

The viscoplastic strain field within the enrichment domain Ωα is expressed as:

εvp(x, t) =
∫

Ωα

δ
d(x− x̂)εvp(x̂, t) dx̂; ∀x ∈Ωα (3.8)

where δ d denotes the Dirac delta distribution. Substituting Eq. (3.8) into Eq. (3.7) yields the weak

form equation for the inelastic influence function hα(x, x̂):

∫
Ωα

∇wm
α : L : ∇hα(x, x̂) dΩ =

∫
Ωα

∇wm
α : L δ

d(x− x̂) dΩ; ∀x̂ ∈Ωα (3.9)

The influence functions, Hα
A and hα , are evaluated numerically. The detailed finite element solution

of Eq. (3.6) is provided in [21, 22]. The numerical evaluation of the inelastic influence function,

involving the approximation of the Dirac distribution and the details of a numerical treatment, is

provided in Ref. [37]. Representing the microscale displacement field with the influence functions

Hα
A (A = 1,2, ...,ND) and hα , the microscale weak form, Eq. (3.4), is automatically satisfied for

arbitrary inelastic strain of macroscale displacement states.

3.2.2 Reduced order microscale problem

The total number of degrees of freedom in the enrichment domain problem is reduced by

replacing the fully resolved microscale discretization with a reduced order microscale partitioning.

The reduced order partitioning is performed such that each enrichment domain is decomposed into
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NPα subdomains (parts):

Ωα =
NPα⋃
γ=1

Ω
α
γ ; Ω

α
γ ∩Ω

α
η ≡ /0 when γ 6= η (3.10)

where γ and η are the indices of parts in an arbitrary enrichment domain Ωα . The stress and

inelastic strain fields are discretized using the separation of variables as [37]:

σ(x, t) =
NPα

∑
γ=1

Nα
γ (x) σ

α
γ (t); εvp(x, t) =

NPα

∑
γ=1

Nα
γ (x) µ

α
γ (t); x ∈Ωα (3.11)

where, σα
γ and µα

γ are the stress and inelastic strain coefficients, respectively. Nα
γ denotes shape

function associated with part Ωα
γ , such that:

Nα
γ (x) =


1, if x ∈Ωα

γ

0, elsewhere
(3.12)

The above discretization therefore leads to a piecewise constant approximation of the stress and

inelastic strain fields over the enrichment domain. The stress and inelastic strain fields are discon-

tinuous within the enrichment domain, which is consistent with the C0 continuous finite element

approximation of the displacement field. For instance, as the number of parts NPα reaches the

number of elements in the microscale discretization for constant strain elements, the approxima-

tions are of the same order. Substituting the reduced order microscale partitioning (Eq. (3.11)) into

Eq. (3.3), the microscale displacement field becomes:

um
α(x, t) =

ND

∑
A=1

Hα
A (x) · ûMα

A (t)+
NPα

∑
γ=1

[∫
Ωα

hα(x, x̂) Nα
γ (x) dx̂ : µα

γ (t)
]

=
ND

∑
A=1

Hα
A (x) · ûMα

A (t)+
NPα

∑
γ=1

[∫
Ωα

γ

hα(x, x̂) dx̂ : µα
γ (t)

] (3.13)
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Similarly, substituting Eq. (3.11) into Eq. (2.22), the constitutive equation for enrichment domain

Ωα yields:
NPα

∑
γ=1

Nα
γ (x) σ

α
γ (t) =

ND

∑
A=1

Sα
A (x) · ûMα

A (t)+
NPα

∑
γ=1

Pα
γ (x) : µα

γ (t) (3.14)

in which, the coefficient tensors are defined for an arbitrary enrichment domain Ωα (α = 1,2, ...,nen):

Sα
A (x) = L(x) ·∇NA(x)+L(x) : ∇Hα

A (x); ∀ A = 1,2, ...,ND (3.15)

and for each part Ωα
γ (γ = 1,2, ...,NPα ):

Pα
γ (x) = L(x) :

∫
Ωα

γ

∇hα(x, x̂) dx̂−L(x) Nα
γ (x) (3.16)

Integrating both sides of Eq. (3.14) over part Ωα
η of enrichment domain Ωα , the constitutive

equation on part η (x ∈Ωα
η ) is simplified to:

σα
η (t) =

ND

∑
A=1

Sα
ηA · ûMα

A (t)+
NPα

∑
γ=1

Pα
ηγ : µα

γ (t) (3.17)

Since the stress and inelastic strain coefficients are constant on each part, the homogenized coeffi-

cient tensors on each part Ωα
η within the enrichment domain Ωα is defined as:

Sα
ηA =

1
|Ωα

η |

∫
Ωα

η

Sα
A (x) dΩ; x ∈Ω

α
η (3.18)

Pα
ηγ =

1
|Ωα

η |

∫
Ωα

η

Pα
γ (x) dΩ; x ∈Ω

α
η (3.19)

The time-independent coefficient tensors, Sα
ηA and Pα

ηγ , are obtained using the influence functions,

Hα
A and hα . Since the influence functions satisfy the microscale equilibrium, as discussed in Sec-

tion 3.1, the stresses computed using the coefficient tensors, Sα
ηA and Pα

ηγ , automatically satisfy

microscale equilibrium for arbitrary macroscale displacement and inelastic strain coefficients. The
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corresponding rate-form constitutive equation is:

σ̇α
η (t) =

ND

∑
A=1

Sα
ηA · ˙̂uMα

A (t)+
NPα

∑
γ=1

Pα
ηγ : µ̇α

γ (t) (3.20)

3.3 Computational Implementation

This section provides the detailed decomposition of the numerical implementation of the re-

duced order variational multiscale enrichment method, including the implementation of the re-

duced order microscale problem, upscaled macroscale problem and a solution algorithm.

A Newton-Raphson iterative scheme is employed to numerically assess the elasto-viscoplastic

problem described in this chapter. Considering the discrete set of instances with the observation

period: {0,1t,2t, ...,nt,n+1t, ..., to} and employing the rate form of the inelastic strain coefficients

(i.e., Eq. (3.11)) for each part Ωα
γ in the enrichment domain Ωα , The viscoplastic slip evolution

equation (Eq. (2.34)) is equivalent to:

µ̇α
γ (t) = (1−θ) µ̇α

γ (x,nt)+θ µ̇α
γ (x,n+1t); t ∈ [nt, n+1t] (3.21)

The left subscript n and n+ 1 indicate the value of a field variable at nt and n+1t, respectively.

Correspondingly, the evolution equation for the inelastic coefficient, µ̇α
γ , is obtained from Eq.

(2.5) as:

µ̇α
γ (σ

α
γ ,µ

α
γ ) = γ

〈√
3σ̄(σα

γ )−σy(µ
α
γ )

σy(µ
α
γ )

〉q
∂ f (σα

γ ,µ
α
γ )

∂σα
γ

(3.22)

3.3.1 Numerical evaluation of the reduced order microscale problem

The nonlinear microscale problem defined by Eqs. (3.20), (3.21) and (3.22) is evaluated using

the Newton-Raphson iterative scheme. Substituting Eq. (3.21) into Eq. (3.20), the time discretiza-
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tion of the residual of the constitutive equation for an arbitrary part Ωα
η becomes:

Rα
η ≡ n+1σ

α
η − nσ

α
η −

ND

∑
A=1

Sα
ηA ·
(

n+1ûMα
A − nûMα

A
)

− (1−θ) ∆t
NPα

∑
γ=1

Pα
ηγ : nµ̇

α
γ −θ ∆t

NPα

∑
γ=1

Pα
ηγ : n+1µ̇

α
γ = 0

(3.23)

In what follows, the left subscript n+1 of the fields at current configuration is omitted for clarity

of presentation. Considering a first order Taylor series approximation of Eq. (3.23) and forming a

Newton iteration yield the following residual for the stress-strain equation:

Rα,k+1
η ≈ Rα,k

η +
NPα

∑
γ=1

[(
δ

K
ηγ I−θ ∆t Pα

ηγ : Cα,k
γ

)
: δσα

γ

]
−θ ∆t

NPα

∑
γ=1

[
Pα

ηγ : Gα,k
γ : δµα

γ

]
−

ND

∑
A=1

[
Sα

ηA ·δ ûMα
A

]
= 0

(3.24)

in which, superscript k denotes Newton iteration counter; δ (·) indicates the increment of response

field (·) during the current iteration (e.g., δ ûM
A = ûM,k+1

A − ûM,k
A ). δ K

ηγ is the Kronecker delta; I the

fourth order identity tensor; and

Cα,k
γ =

(
∂ µ̇α

γ

∂σα
γ

)k

; Gα,k
γ =

(
∂ µ̇α

γ

∂µα
γ

)k

(3.25)

The explicit expressions for Cα,k
γ and Gα,k

γ are provided in Ref. [39]. Note Cα,k
γ and Gα,k

γ are

constant over each part Ωα
γ .

The residual of the kinematic equation (i.e., Eq. (3.21)) is defined as:

λα
γ ≡ µα

γ − nµ
α
γ −∆t (1−θ) nµ̇

α
γ −∆t θ µ̇α

γ = 0 (3.26)

Expanding Eq. (3.26) using the first order Taylor series approximation, the inelastic coefficient
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increment at the current Newton iteration is expressed in terms of the stress coefficient as:

δµα
γ =

(
I−θ ∆t Gα,k

γ

)−1
:
(

θ ∆t Cα,k
γ

)
: δσα

γ −
(

I−θ ∆t Gα,k
γ

)−1
: λα,k

γ
(3.27)

Substituting Eq. (3.27) into Eq. (3.24), the inelastic coefficients are condensed out to yield:

NPα

∑
γ=1

(
Qα,k

ηγ : δσα
γ

)
=

ND

∑
A=1

(
Sα

ηA : δ ûMα
A

)
−Vα,k

η (3.28)

where,

Qα,k
ηγ = δ

K
ηγ I−θ ∆t Pα

ηγ : Cα,k
γ − (θ ∆t)2 Pα

ηγ : Gα,k
γ :

(
I−θ ∆t Gα,k

γ

)−1
: Cα,k

γ
(3.29)

Vα,k
η =Rα,k

η +θ ∆t
NPα

∑
γ=1

[
Pα

ηγ : Gα,k
γ :

(
I−θ ∆t Gα,k

γ

)−1
: λα,k

γ

]
(3.30)

Considering η = 1,2, ...,NPα in Eq. (3.28) separately, the stress increment vector at the enrichment

domain Ωα which contains stress increment within each part of the enrichment domain is obtained

as:

δσα =
(

Qα,k
)−1

Sα
δ ûMα −

(
Qα,k

)−1
Vα,k (3.31)

where Qα,k and Sα are coefficient tensors defined as:

Qα,k =
[
Qα,k

ηγ

]
η ,γ∈[1,NPα ]

; Sα =
[
Sα

ηA

]
η∈[1,NPα ],A∈[1,ND]

(3.32)

and

δσα =

{(
δσα,k+1

1

)T
,
(

δσα,k+1
2

)T
, ...,

(
δσα,k+1

NPα

)T
}T

(3.33a)

δ ûMα =

{(
δ ûMα,k+1

1

)T
,
(

δ ûMα,k+1
2

)T
, ...,

(
δ ûMα,k+1

ND

)T
}T

(3.33b)

Vα,k =

{(
Vα,k

1

)T
,
(

Vα,k
2

)T
, ...,

(
Vα,k

NPα

)T
}T

(3.33c)
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3.3.2 Numerical evaluation of the macroscale problem

For the substrate region Ωs, the finite element discretization of the macroscale equations is

standard [24] and only briefly described when necessary. This subsection particularly focuses on

the treatment of the macroscale problem in the enrichment region. The macroscale weak form

is linearized to construct a Newton-Raphson iterative scheme, employing the linearized reduced

order microscale problem stated in the previous section.

Considering the decomposition of the problem domain, the residual of the macroscale weak

form is defined as:

ΨM ≡
nen

∑
α=1

Ψ̃M
α + Ψ̃M

s −
nen

∑
α=1

Ψ̃MT
α − Ψ̃MT

s = 0 (3.34)

where,

Ψ̃M
α =

∫
Ωα

∇wM : σ(ûM, ûm
α) dΩ; Ψ̃M

s =
∫

Ωs

∇wM : σ(ûM) dΩ (3.35)

Ψ̃MT
α =

∫
Γt

α

wM · t̃ dΓ; Ψ̃MT
s =

∫
Γt

s

wM · t̃ dΓ (3.36)

Γt
α is the part of the enrichment domain boundary that intersects with the Neumann boundary of the

problem domain (Γt
α ≡ Γα ∩Γt); and, Γt

s is the part of the substrate region boundary that intersects

with the Neumann boundary of the problem domain (Γt
s ≡ Γs ∩Γt). Within the substrate region,

Ωs, the microstructural displacement remains unresolved. The stress field therefore is a function

of the macroscale displacement field only.

Substituting Eq. (3.11) into Eq. (3.34), the residual of the macroscale weak form within the

enrichment domain, Ωα , is expressed as:

Ψ̃M
α =

NPα

∑
γ=1

∫
Ωα

γ

∇wM dΩ : σα
γ (t) (3.37)

Employing the expression of Ψ̃M
α in Eq. (3.37) and considering the first order Taylor series ap-
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proximation, the residual of the macroscale weak form (i.e., Eq. (3.34)) becomes:

ΨM,k+1 ≈
nen

∑
α=1

(
Ψ̃M,k+1

α

)
+ Ψ̃M,k+1

s = 0 (3.38)

where,

Ψ̃M,k+1
α ≡ Ψ̃M,k

α − Ψ̃MT
α +δΨ̃M

α ; Ψ̃M,k+1
s ≡ Ψ̃M,k

s − Ψ̃MT
s +δΨ̃M

s (3.39)

and

δΨ̃M
α =

NPα

∑
γ=1

(∫
Ωα

γ

∇wM dΩ

)
: δσα

γ ; δΨ̃M
s =

∫
Ωs

∇wM : δσ(δ ûM) dΩ (3.40)

Ψ̃MT
α and Ψ̃MT

s denote the prescribed boundary traction terms which do not vary with iterations at

a given time step.

Using the standard finite element discretization detailed in Eq. (2.50) for the macroscale test

function wM, δΨ̃M
α (Eq. (3.40)) yields:

δΨ̃M
α =

NPα

∑
γ=1

[
ND

∑
A=1

(∫
Ωα

γ

∇NA dΩ ŵM
A

)
: δσα

γ

]
(3.41)

Considering the stress increment (i.e., δσα ) defined in Eq. (3.33a), the matrix form of Eq. (3.41)

is presented as:

δΨ̃M
α = (Bα)T

δσα (3.42)

where,

Bα =
[
Bα

γA

]
γ∈[1,NPα ],A∈[1,ND]

; Bα
γA =

∫
Ωα

γ

∇NA dΩ ŵM
A (3.43)

Substituting the stress coefficient increment (i.e. Eq. (3.31)) and Eq. (3.42) into Eq. (3.39), the

weak form residual of the enrichment domain at the current iteration is presented in the vector-

matrix form as:

Ψ̃M,k+1
α = Kα

δ ûMα −δ fα (3.44)
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where,

Kα = (Bα)T
(

Qα,k
)−1

Sα (3.45)

δ fα = (Bα)T
(

Qα,k
)−1

Vα,k− Ψ̃M,k
α + Ψ̃MT

α
(3.46)

The detailed formulation and the standard finite element discretization of Ψ̃M,k+1
s is presented in

[24] and not repeated in the current chapter for brevity.

Assembling the macroscale element stiffness matrices and force increment vectors, the discrete

macroscale weak form (i.e., Eq. (3.38)) at the (k+ 1)th iteration of the current time step, n+1t, is

expressed as:

K δ ûM = δ f (3.47)

where,

K = A
e

Ke (3.48)

δ ûM =

{(
δ ûM,k+1

1

)T
,
(

δ ûM,k+1
2

)T
, ...,

(
δ ûM,k+1

ND

)T
}T

(3.49)

δ f = A
e

δ fe (3.50)

A denotes the standard finite element assembly operator and e is the dummy index for all the

macroscale finite elements in the problem domain. The linearized system of equations is evaluated

incrementally using the implementation algorithm described in the next subsection.

3.3.3 Implementation algorithm

The reduced order variational multiscale enrichment (ROVME) method is implemented using

the commercial software package, Diffpack [68]. Diffpack provides a library of C++ classes to

facilitate the development of solution algorithms for complex PDEs. The overall solution strategy

is summarized in Fig. 3.1, in which the enrichment domain superscript (α) and part subscript (γ)

are omitted for clarity. In the preprocessing phase prior to the macroscale simulation, Sα
ηA, Pα

ηγ , Sα

and Bα for each enrichment domain Ωα are computed using Eqs. (3.18), (3.19), (3.32) (3.43) and
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Figure 3.1: Reduced order model implementation strategy.

stored (A = 1,2, ...,ND;γ = 1,2, ...,NPα and η = 1,2, ...,NPα ). They remain constant throughout

the macroscale simulation. At an arbitrary time nt, the system is in equilibrium with the constitutive

relations satisfied for the problem domain. The algorithm seeks to find the equilibrium state at n+1t

as follows:

Given: nûM,nσ,nε
vp and nε̇

vp (nµ
α
γ and nµ̇

α
γ for enrichment domains) at time nt.

Find: ûM,σ,εvp and ε̇vp (µα
γ and µ̇α

γ for enrichment domains) at time n+1t.

1. Initialize Newton iterations by setting: k=0, ûM,0 = nûM, σ0 = nσ, εvp,0 = nε
vp, and ε̇vp,0 =

nε̇
vp (µα,0

γ = nµ
α
γ , and µ̇α,0

γ = nµ̇
α
γ for enrichment domains).

2. While not converged, loop over all the macroscale elements within the problem domain Ω

for the current iteration (k+1):

(1) If the macroscale element is enriched:

a) Compute Cα,k
γ , Gα,k

γ , Qα,k
ηγ , Rα,k

η , λα,k
η , Vα,k

η , Ψ̃M,k
α from Eqs. (3.25), (3.29), (3.23),

(3.26), (3.30) and (3.37).
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b) Construct Qα,k and Vα,k from Eqs. (3.32) and (3.33c); and Kα and δ fα from Eqs.

(3.45) and (3.46).

(2) If the macroscale element is not enriched :

a) Compute Ke and δ fe using the standard finite element procedure [24].

(3) Employing Eqs. (3.48) and (3.50), construct the stiffness matrix K and incremental

force vector δ f for the macroscale problem.

(4) Solve the macroscale problem (Eq. (3.47)) for δ ûM and update the macroscale dis-

placement field with ûM,k+1 = ûM,k +δ ûM.

(5) If the macroscale element is enriched:

a) Compute the stress increment δσα using Eq. (3.31) and update the stress field

σα,k+1 = σα,k +δσα .

b) Compute the inelastic strain coefficient increment δµα
γ using Eq. (3.27). Update

the inelastic strain coefficient µα,k+1
γ = µα,k

γ +δµα
γ .

c) Evaluate the inelastic strain rate coefficient µ̇α
γ through Eq. (3.22).

(6) If the macroscale element is not enriched:

a) Determine the stress increment δσ . Update the stress field σk+1 = σk +δσ [24].

b) Determine the inelastic strain increment δεvp,k+1. Update the inelastic strain field

εvp,k+1 = εvp,k +δεvp,k+1 [24].

c) Evaluate the inelastic strain rate ε̇vp,k+1 from Eq. (2.5).

(7) Check for convergence:

eM =
‖ûM,k+1− ûM,k‖2

‖ûM,k+1− nûM‖2
≤ Convergence tolerance (3.51)

(8) If convergence is not satisfied, set iteration counter k← k+1 and proceed with the next

iteration.

3. Repeat step 2 with n← n+1 until the end of the observation period.

49



Table 3.1: Materials parameters for the numerical verification studies of ROVME.

Material type E [GPa] ν A [MPa] B [MPa] ε f n q γ [MPa/hr]
Phase I 107 0.32 480 700 0.15 0.90 1.0 1.0
Phase II 87 0.32 360 100 0.17 0.96 1.0 1.0
Substrate 97 0.32 420 400 0.16 0.93 1.0 1.0

3.4 Numerical Verification

The reduced order VME (ROVME) method for elasto-viscoplastic problems is thoroughly ver-

ified using numerical simulations. The performance and accuracy characteristics of the ROVME

approach are assessed by comparing the results with those of the direct VME simulations. The

accuracy characteristics of the direct VME method compared with full resolution finite element

analyses was previously demonstrated in Refs. [2, 23, 24].

In all simulations considered in this section, the domains are taken to consist of three separate

materials. The heterogeneous material microstructure consists of two phases. A third material

that approximates the properties of the composite domain is employed to idealize the behavior at

the substrate. The material properties of the two elasto-viscoplastic phases and the correspond-

ing substrate are summarized in Table 3.1 and the stress-strain curves of these materials under

uniaxial tension are plotted in Fig. 3.2. The phase I material of the microstructure behaves sim-

ilarly to high yield stress commercially pure titanium [71]. The phase II material is based on

low yield stress commercially pure titanium [71]. The properties of the substrate material are

obtained using the mixed theory. While the numerical examples provided below investigate two-

phase microstructures, the proposed formulation is applicable to arbitrary number of phases and

microstructural configurations. A number of multiscale approaches, such as computational homog-

enization [72, 73, 38, 74] and sequential multiscale modeling [75], also remain valid to compute

the homogenized macroscale behavior in the presence of multiple phases within the microstructure.

These approaches could be used to compute the substrate domain response.
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Figure 3.2: Stress-strain behavior of the constituent materials under uniaxial tension: (a)
phase I; (b) phase II; and (c) substrate material.
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Figure 3.3: Numerical models of the square specimen: (a) macroscale discretization and
sketch for uniform tensile load; and (b) macroscale discretization and sketch for pure shear

load.

3.4.1 Square specimen with circular inclusions

A 2-D plane strain, 0.03 mm× 0.03 mm, square composite specimens are considered to assess

the performance of the proposed reduced order VME method. The macroscale discretization and

the loading conditions of the specimens are presented in Fig. 3.3. The macroscale discretization

contains 16 nodes and 9 quadrilateral, bilinear finite elements. Each of the 9 macroscale elements

is considered as an enrichment domain and associated with a microstructure containing a circular

inclusion at the center, as shown in Fig. 3.4. The ratio between the size of the enrichment domain
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Figure 3.4: Microscale discretization of an enrichment domain with a circular inclusion:
(a) reduced order VME method with 2 parts; and (b) direct VME method.

and the specimen domain is therefore 1/3. Phase I and phase II materials are identified as dark

and light elements, respectively. The reduced order VME microscale partitioning consists of 2

parts and 6 degrees of freedom (DOFs). The direct VME microscale grid contains 837 nodes,

786 quadrilateral finite elements and 1674 DOFs. The behavior of the square composite domain

is investigated under displacement controlled uniform tension and shear loading conditions. The

loading is applied at the strain rate of approximately 3× 10−4/sec, until the specimen is about to

fail (assessed based on ductility stated in Fig. 3.2). The time step size is determined such that

further refinement does not change the results significantly. The time step size employed in the

simulations is set to 0.36 second and the convergence tolerance is set to 1×10−3.

Figure 3.5 compares the reaction force of the structure vs. the applied displacement as com-

puted by the direct and reduced order VME models. The displacement in the tensile loading case

refers to that prescribed at the boundary, whereas in the shear loading case is the displacement of

the top right corner (in both vertical and horizontal directions each of which has the same mag-

nitude and rate as stated above). At the end of the observation period of 432 seconds, the tensile

specimen is under an applied deformation of 3.6×10−3 mm. The pure shear case has 3.3×10−3

mm applied displacement in both directions and the total simulation time is 396 seconds. The

reaction force-displacement plots demonstrate that both models provide near identical behavior,
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Figure 3.5: Overall reaction force-displacement comparison for the square specimen with
circular inclusions between the direct VME simulation and the reduced order VME

method: (a) under tension; and (b) under shear.

Table 3.2: Computational time comparison for square specimen with circular inclusions.

Loading
case

Computational time
Computational

time ratio
Microscopic
DOFs ratio

VME [hr] ROVME [min] VME/ROVME VME/ROVME
Tension 12.50 11.11 67.53 279
Shear 10.70 11.44 56.08 279

in both elastic and plastic regimes. Figure 3.6 presents the contour plots of the equivalent stress

of the central enrichment domain (the macroscale element at the center of the structure) for both

methods, just before failure. The reduced order VME has only two parts in the microscale struc-

ture and the stress field is constant on each of the parts. On the other hand, the stress distribution

smoothly transitions from stiffer inclusion to the matrix as computed by the direct VME method.

The computational cost of the simulations are compared in Table 3.2 in terms of the total com-

putational time. The computational time for the direct VME simulation is shown in hours [hr],

whereas the time for ROVME simulation is presented in minutes [min]. The computational time

comparison demonstrates that the reduced order VME approach is much more efficient compared

with the direct VME method. We note that the improvement in terms of the computational time is

less than the reduction of DOFs.

To further investigate the computational efficiency of the reduced order VME method, sim-
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Figure 3.6: Equivalent stress of the central enrichment domain in the square specimen
with circular inclusions: (a) reduced order VME under tension at 432 seconds; (b) direct
VME under tension at 432 seconds; (c) reduced order VME under shear at 396 seconds;

and (d) direct VME under shear at 396 seconds.

ulations with more parts in the ROVME microscale discretization are performed based on the

macroscale model and loading condition shown in Fig. 3.3(a). In addition to the two-part model

as shown in Fig. 3.4(a), a four-part and a seven-part model as presented in Fig. 3.7 are considered.

The error over the entire enrichment region at an arbitrary time, t, is computed as:

eφ (t) =

nen
∑

α=1

∥∥∥φ
VME(x, t)−φ

ROVME(x, t)
∥∥∥

2,Ωα

nen
∑

α=1

∥∥φ
VME(x, t)

∥∥
2,Ωα

(3.52)

where, φ VME and φ ROVME denote a response field (e.g., equivalent stress) computed using the

direct VME method and the reduced order VME method, respectively. ‖ · ‖2,Ωα
is the L2 norm of

the response field computed over Ωα . Since all 9 macroscale elements are taken to be enriched
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Figure 3.7: Microscale discretization of an enrichment domain with a circular inclusion:
(a) reduced order VME method with 4 parts; and (b) reduced order VME method with 7

parts.

in the simulations, the enrichment region is the entire problem domain. For the ROVME method

with different parts, the evolution of error in the equivalent stress over the enrichment region as a

function of simulation time is compared in Fig. 3.8(a). The computational time per time step for

each simulation is compared in Fig. 3.8(b). It is observed that the accuracy of the reduced order

VME method improves using the model with more parts. But the rate of the accuracy improvement

decreases when the number of parts is getting larger, indicating that low order models capture

primary response features reasonably well. The computational time increases superlinearly (0.045

second per part from 2 parts to 4 parts and 0.08 second per part from 4 parts to 7 parts). We note

that due to small problem size, a substantial time is spent for problem set-up (approximately 82%

for the 2-part case).

To assess the accuracy of the reduced order VME method for phases with higher modulus

contrasts in the enrichment domain, more numerical verifications are performed. The study is con-

ducted under tensile loading (Fig. 3.3(a)) using the 2-part reduced order VME model (Fig. 3.4(a)).

The elastic behavior of all constituents is assumed in the enrichment domain. Young’s modulus

contrasts for 9 cases considered are summarized in Table 3.3. The Poisson’s ratio is 0.32 for all

the materials. For each case, the error in equivalent stress over the entire enrichment region is

computed using Eq. (3.52). These errors are plotted in Fig. 3.9(a) as a function of modulus con-
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Figure 3.8: Results of reduced order VME method with different parts: (a) error in
equivalent stress over the enrichment region as a function of simulation time; and (b)

computational time per time step.

Table 3.3: Multiple Young’s modulus contrasts of the two phases in the enrichment domain.

Case number
Young’s modulus [GPa] Young’s modulus ratio

(Einclusion/Ematrix)Inclusion Matrix
1 100 1 100
2 100 2 50
3 100 10 10
4 100 20 5
5 100 100 1
6 20 100 0.2
7 10 100 0.1
8 2 100 0.02
9 1 100 0.01

trast. The composite stiffness, Ē, is obtained through the reaction force - displacement plot of each

test (Ē = (reaction force / area) / (displacement/ structural length)). The errors in the composite

stiffness are plotted in Fig. 3.9(b), with respect to the modulus contrast. When the modulus ratio is

one, the reduced order VME method produces identical results as the direct VME method (error in

both plots is zero), due to the fact that there is no material heterogeneity in the enrichment domain

(material properties are the same everywhere). As the modulus contrast gets larger, the error in

stress rises in a decreasing rate. The same pattern is observed for the error in the composite stiff-

ness. For modulus ratio lower than unity, an increase in composite stiffness error followed by a
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Figure 3.10: Microscale discretization of an enrichment domain with random grains: (a)
reduced order VME method with 25 parts; and (b) direct VME method.

reduction as a function of modulus contrast is observed. When the inclusion modulus is small, the

stiffness is dominated by the matrix properties only, which is well-captured by the reduced order

VME approach.

3.4.2 Square specimen with random grains

A second set of numerical simulations is performed to study the accuracy of the proposed ap-

proach in capturing the local microstructural response characteristics. The microstructure contains

25 randomly placed square grains with two material phases, phase I (dark) and phase II (light), as
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Figure 3.11: Error in equivalent stress over the enrichment region as a function of
simulation time for the square specimen with random grains: (a) under tension; and (b)

under shear.

illustrated in Fig. 3.10. In reduced order model partitioning, each grain is taken as a part. The di-

rect VME method further discretizes each grain with 25 finite elements. The ROVME microscale

partitioning has 25 parts and 75 DOFs whereas the direct VME microscale grid contains 625

quadrilateral finite elements with 676 nodes and 1352 DOFs. Identical macroscale discretization

and loading conditions of the specimen as shown in Fig. 3.3 are used in the current example. The

loading rate, time step size and observation periods for both loading cases are the same as those in

Section 3.4.1.

Identical to the previous numerical examples, the enrichment region is the entire problem do-

main which includes all of the 9 macroscale elements. The evolution of error in the equivalent

stress over the enrichment region as a function of simulation time is shown in Fig. 3.11 for both ten-

sile and shear loading conditions. At an arbitrary time step, the error is evaluated using Eq. (3.52).

It can be observed that the error in stress slightly accumulates along with the increase in plastic

strain. The maximum error is at the end of the simulation where failure is set to initiate. The

increase in error in time is consistent with the example in Section 3.4.1, due to the slightly larger

hardening modulus predicted by the reduced order model. For the shear loading case, the error

in stress slightly decreases shortly after entering the plastic regime due to the stress redistribution

within the enrichment region which softens the rigid kinematics of the reduced order model. The
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Figure 3.12: Equivalent stress contour of the central enrichment domain in the specimen
with random grains: (a) reduced order VME under tension at 432 seconds; (b) direct VME
under tension at 432 seconds; (c) reduced order VME under shear at 396 seconds; and (d)

direct VME under shear at 396 seconds.

error starts to accumulate once the stress redistribution is completed. At the onset of failure ini-

tiation within the structure, the highest error in equivalent stress is 2.5% for the tensile loading

and 1.7% for the shear loading, as shown in Fig. 3.11. The local equivalent stress contours for the

central enrichment domain, corresponding to the prescribed peak load at the end of the simula-

tions, are shown in Fig. 3.12. The stress contours demonstrate that the reduced order VME method

captures the local stress variation within the microstructure reasonably well (0.8% - 2.5% error).

The overall reaction force vs. prescribed displacement comparison is presented in Fig. 3.13. The

figure shows that the global behavior of the reduced order VME method closely agrees with the

direct VME method, in both elastic and plastic states. The comparisons of the global and local re-
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Figure 3.13: Overall reaction force-displacement comparison for the square specimen
with particles between the direct VME simulation and the reduced order VME method: (a)

under tension; and (b) under shear.

sponses verified the high accuracy of the reduced order VME method, even using relatively coarse

microscale partitioning. The computational time of both simulations are listed and compared in

Table 3.4. The reduced order VME reduces the computational effort of the direct VME method

by at least the same reduction in DOFs, which points to very favorable computational cost of the

proposed approach.

Table 3.4: Computational time comparison for square specimen with particles.

Loading
case

Computational time
Computational

time ratio
Microscopic
DOFs ratio

VME [hr] ROVME [min] VME/ROVME VME/ROVME
Tensile 13.69 15.81 51.94 18.03
Shear 4.75 15.94 17.89 18.03

3.4.3 L-shaped specimen with random grains

The proposed ROVME method is further verified using the numerical analysis of an L-shaped

specimen which contains both enrichment and substrate regions while subjected to more complex

stress states. The geometry, loading condition and the macroscale discretization are illustrated

in Fig. 3.14. The enrichment region (identified with dark shading) is placed within the area of
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Figure 3.14: Macroscale discretization and sketch for L-shaped specimen.

stress concentration, around the inner corner of the specimen. The characteristic size scale ratio

defined as the ratio between the size of the enrichment domain and the length scale associated

with high stress gradients around the corner is approximately 1/6. The macroscale mesh consists

of 192 quadrilateral elements, 27 of which are enriched. Within the enrichment domains of the

enrichment region, the microstructural geometry for reduced order model partitioning and for the

direct discretization are identical to those shown in Fig. 3.10. The material properties of the phases,

as well as within the substrate region, are summarized in Table 3.1. The specimen is subjected

to uniform displacement controlled loading in the vertical direction along the right edge of the

specimen as shown in Fig. 3.14. The maximum amplitude of the loading is 0.0256 mm applied in

576 seconds, at a rate of 4.4× 10−5 mm/sec, which corresponds to the onset of failure initiation

within the specimen. Further loading would lead to failure within the structure. The simulation

time step size is set to be 0.72 second and the convergence tolerance is taken to be 1×10−3 which

is the same as employed in Sections 3.4.1 and 3.4.2 .

Figure 3.15 illustrates the evolution of error in equivalent stress within the enrichment region,

which is plotted as a function of simulation time. The errors at each time step is computed using

Eq. (3.52). The maximum error in the stress is less than 2.7% which further substantiates the

accuracy characteristics of the proposed reduced order VME methodology. The error in stress
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Figure 3.16: L-shaped specimen overall reaction force-displacement comparison between the
direct VME simulation and the reduced order VME method.

slightly decreases after the onset of the plastic deformation, due to the stress redistribution over

the enrichment region which softens the rigid kinematics of the reduced order model. The error

increases thereafter and reaches the maximum value at the end of the simulation, similar to the

previous example. Figure 3.16 presents the comparison of the overall force - displacement curves

from the direct VME method and the reduced order VME simulation. The close agreement of the

two model predictions demonstrates that the proposed reduced order approach accurately captures

the global elasto-viscoplastic response of the structure. The equivalent stress contours at the end

of the simulations are presented for both of the approaches in Fig. 3.17. For both approaches, the

stress contours are obtained by combining the fine and coarse scale responses and reconstructing
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Figure 3.17: Equivalent stress contours of the L-shaped specimen with random grains at 576
seconds: (a) reduced order VME model; (b) direct VME model.

the total stress in the post-processing phase. Since the resolution of the reduced order VME method

is much lower than the direct VME method, the stress contour of the reduced order VME method

is slightly smoother than the direct VME method. The stress variation of the ROVME simulation

within the domain closely approximates that predicted by the reference model. The computational

cost of the simulations are presented in Table 3.5, which clearly shows the computational benefits

of the reduced order VME methodology.

Table 3.5: Computational time comparison for L-shaped specimen.

Computational time
Computational

time ratio
Microscopic
DOFs ratio

VME [hr] ROVME [min] VME/ROVME VME/ROVME
66.66 31.14 128.44 18.03
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Chapter 4

REDUCED ORDER VARIATIONAL MULTISCALE ENRICHMENT METHOD FOR

THERMO-MECHANICAL PROBLEMS

4.1 Introduction

High temperature environments induce thermal expansion and changes in material proper-

ties, which may be critical in the response prediction of structures subjected to extreme environ-

ments. The current chapter extends the ROVME method to address thermo-mechanical problems.

The thermo-mechanical coupling effects due to the presence of thermal expansions, temperature-

dependent mechanical inelastic properties, as well as the elastic properties are taken into account

[71, 76, 77]. A key novel contribution of the present chapter is the efficient approximation of

the temperature dependence of the reduced order model coefficients, which allows the thermo-

mechanical ROVME to retain the computational efficiency. Numerical studies are performed to

verify the proposed method against direct numerical simulations, and demonstrate its capability in

capturing the thermo-mechanical behavior of heterogeneous structures.

The remainder of the chapter is organized as follows: Section 4.2 provides the problem state-

ment and governing equations of the elasto-viscoplastic problem. Sections 4.3 and 4.4 describe

the formulation of the VME and ROVME methods for thermo-mechanical problems, respectively.

Sections 4.5 details the implementation strategy. Sections 4.6 and 4.7 present numerical simula-

tions which demonstrate the accuracy and capability of the proposed methodology.

4.2 Governing Equations for Thermo-Mechanical Problems

Considering the temperature effect, the domain of the structure is denoted by Ω ⊂ Rnsd (nsd

is the number of spatial dimensions) as shown in Fig. 4.1, the equilibrium equation within the
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Figure 4.1: The schematic representation of the overall problem domain (Ω),
enrichment region (Ωb) and two representative enrichment domains (Ω1 and Ω2).

problem domain is expressed as:

∇ ·σ(x,T, t) = 0; x ∈Ω, t ∈ [0, te] (4.1)

where, x and t are the position and time coordinates, respectively; T the temperature; σ the stress

tensor; ∇ · (·) the divergence operator and te the end of the observation period. The body force is

taken to be negligible compared with the external force. The constitutive behavior is expressed as:

σ(x,T, t) = L(x,T ) :
[
ε(x,T, t)−εvp(x,T, t)−εT (x,T )

]
(4.2)

in which, L is the temperature-dependent tensor of elastic moduli; εvp and εT denote the vis-

coplastic and thermal strains, respectively; and (:) is the double inner product. The thermal strain

is expressed as:

εT (x,T ) =αT (x) [T (x)−T0] (4.3)
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where, T0 is the reference temperature; and αT the tensor of thermal expansion coefficients. The

evolution of the inelastic strain is expressed in the functional form:

ε̇vp = Φ(σ,εvp,T,q;k) (4.4)

in which, q denotes the vector of internal state variables that represent the internal deformation

mechanisms characterizing the inelastic processes, and k is the set of material properties associated

with the inelastic flow. The specific forms of the evaluation laws of the internal state variables are

provided in Section 4.6 in the context of numerical examples. As further explained below, we are

interested in the detailed response within a characteristic subdomain (Ωb ⊂Ω), where the material

microstructure with multiple constituents is resolved. The overall constitutive model form (i.e.,

Eqs. (4.2)-(4.4)) is taken to be the same for all constituents, whereas the model parameters and

evolution equations (i.e., L,α,k,q and Φ) could be different for each constituent. The boundary

conditions of the mechanical problem are the same as stated in Chapter 2.

The thermal state of the structure is defined by the steady state conditions:

∇ · [K(x) ·∇T (x, t)] = 0; x ∈Ω (4.5)

subjected to

T (x, t) = T̃ (x, t); x ∈ Γ
T (4.6)

K ·∇T = q̃(x, t); x ∈ Γ
q (4.7)

where, K is thermal conductivity tensor; T̃ and q̃ denote boundary temperature and flux data along

the respective boundaries. The time variation of temperature is due to time-dependent boundary

conditions, which is taken to be independent of the mechanical response. The transients are taken

to occur at time scales significantly shorter than the time scales at which mechanical loads are

applied, and therefore neglected in this study.
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4.3 VME for Thermo-Mechanical Problems

The VME formulation of the mechanical response of inelastically deforming solids are pre-

sented in the previous chapter. In what follows, the VME equations for the thermal problem are

summarized.

Considering the additive decomposition of the displacement field and test function (Eqs. (2.15)

and (2.17)), the governing equation in the weak form is decomposed into macroscale and mi-

croscale problems. The macroscale and microscale equilibrium weak forms are identical to Eqs. (3.1)

and (3.2). Similar to the displacement decomposition of the mechanical problem (2.15), the tem-

perature field is decomposed into macro- and microscale components:

T (x, t) = T M(x, t)+
nen

∑
α=1

H (Ωα) T m
α (x, t) (4.8)

where, T M ∈ W M(Ω) and T m
α ∈ Wα(Ωα) are the macroscale and microscale temperature fields,

respectively. W M and Wα are the trial spaces for the macro- and microscale temperatures:

W M(Ω)≡

{
T M(x, t)

∣∣∣ T M =
ND

∑
A=1

NA(x) T̂ M
A (T, t); T̂ M

A = T̃ (xA, t) if xA ∈ Γ
T

}
(4.9)

Wα(Ωα)≡

{
T m

α (x, t)
∣∣∣ T m

α =
ndα

∑
a=1

nα,a(x) T̂ m
α,a(T, t); T̂ m

α,a = 0 if xα ∈ Γ
q
α

}
(4.10)

Correspondingly, the steady state thermal problem (Eqs. (4.5)-(4.7)) yields a macroscale problem,

∫
Ω

∇vM ·K ·∇T M dΩ =
∫

Γq
vM · q̃ dΓ−

nen

∑
α=1

∫
Ωα

∇vM ·K ·∇T m
α dΩ (4.11)

and a series of microscale problems,

∫
Ωα

∇vm
α ·K ·∇T m

α dΩ =−
∫

Ωα

∇vm
α ·K ·∇T M dΩ; α = 1,2, ...nen. (4.12)

where, vM and vm
α are the macro- and microscale temperature test functions, respectively.
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For both thermal and mechanical problems, the macroscale system and microscale problems

are solved iteratively until convergence is achieved at a given time step. In the enrichment region,

stress and strain fields are updated at each integration point of the microscale discretization. There-

fore, the computational complexity of VME is proportional to the number of enrichment domains

within the enrichment region as well as the complexity of the microstructural morphology within

the enrichment domains.

4.4 ROVME for Thermo-Mechanical Problems

ROVME was recently introduced to improve the computational efficiency of the VME ap-

proach [39]. In this chapter, ROVME is generalized to address thermo-mechanical problems.

Starting from the mechanical problem under temperature effect, we consider the following de-

composition of the microscale displacement field:

um
α(x,T, t) =

ND

∑
A=1

Hα
A (x,T ) · ûMα

A (T, t)+
∫

Ωα

hα(x, x̂,T ) : εvp(x̂,T, t) dx̂

+Gα(x,T )(T −T0)

(4.13)

where, ûMα
A denotes the macroscale nodal coefficient of the enrichment domain, Ωα ; Hα

A , a second

order tensor, is the influence function associated with the linear elastic component of the response

field in Ωα ; hα , a third order tensor, is the influence function for the inelastic deformation within

the microstructure; and Gα , a first order tensor, is the influence function associated with the thermal

expansion in the enrichment domain. The governing equations for the influence functions Hα
A , hα

and Gα are obtained from the microscale problem, Eq. (3.2). Substituting the constitutive equation,

Eq. (4.2), and the microscale displacement field discretization, Eq. (4.13), into Eq. (3.2) yields
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(α = 1,2, ...nen):

ND

∑
A=1

∫
Ωα

∇wm
α : L(T ) :

[
∇Hα

A (T )+∇NA
]

dΩ · ûMα
A (T, t)

+
∫

Ωα

∇wm
α : L(T ) :

[∫
Ωα

∇hα(x, x̂,T ) : εvp(x̂,T, t) dx̂−εvp(x,T, t)
]

dΩ

+
∫

Ωα

∇wm
α : L(T ) ·

[
Gα(T )(T −T0)−αT (T −T0)

]
dΩ = 0 (4.14)

We assume that each enrichment domain is sufficiently small compared to the macroscale structure

and that the thermal gradient across an enrichment domain is negligible. A first order approxima-

tion is that the thermal state within the enrichment domain is spatially uniform, with enrichment

domain temperature approximated as:

T α(t) =
1
|Ωα |

∫
Ωα

T (x, t) dΩ (4.15)

Considering the elastic state of the enrichment domain at uniform reference temperature, T α ,

and in the absence of inelastic processes, Eq. (4.14) reduces to:

∫
Ωα

∇wm
α : L(T α) : ∇Hα

A (T
α) dΩ = −

∫
Ωα

∇wm
α : L(T α) ·∇NA dΩ;

A = 1,2, ...,ND

(4.16)

Equation (4.16) is the elastic influence function problem, which is evaluated for Hα
A (T

α). Homo-

geneous Dirichlet boundary conditions are imposed to ensure that the microscale displacements

vanish along ∂Ωα . In the presence of inelastic deformation but at uniform reference temperature

within the enrichment domain, the inelastic influence function problem in weak form is obtained:

∫
Ωα

∇wm
α : L(T α) : ∇hα(x, x̂,T α) dΩ =

∫
Ωα

∇wm
α : L(T α) δ

d(x− x̂) dΩ; ∀x̂ ∈Ωα (4.17)

where, δ d denotes the Dirac delta distribution. In the presence of thermal deformation and in view
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of Eqs. (4.16) and (4.17), Eq. (4.14) yields the thermal influence function problem:

∫
Ωα

∇wm
α : L(T α) ·Gα(T α) dΩ =

∫
Ωα

∇wm
α : L(T α) ·αT dΩ (4.18)

The influence functions, Hα
A , hα and Gα , are temperature-dependent because the elastic properties

of the constituents vary as a function of temperature (i.e., L(T α)). For a fixed uniform temperature

field, T α , discrete approximations to the influence functions are evaluated numerically [21, 22,

37, 78].

4.4.1 Reduced basis for the microscale problem

Similar to Eq. (3.11), the reduced basis is achieved through the following approximation of the

temperature dependent stress and inelastic strain fields within an enrichment domain:

σ(x,T α , t) =
NPα

∑
γ=1

Nα
γ (x) σ

α
γ (T

α , t); εvp(x,T α , t) =
NPα

∑
γ=1

Nα
γ (x) µ

α
γ (T

α , t); x ∈Ωα (4.19)

where, σα
γ and µα

γ are the stress and inelastic strain coefficients, respectively. Nα
γ denotes reduced

basis shape functions; and NPα the order of the reduced basis. The reduced basis shape functions

are taken to be piecewise constant over parts of the enrichment domain as described in Eq. (3.12).

Substituting the reduced order microscale partitioning (Eqs. (4.19) and (4.13)) into Eq. (4.2),

the stress coefficient for an arbitrary part Ωα
η within the enrichment domain Ωα is expressed as:

σα
η (T

α , t) =
ND

∑
A=1

[
Sα

ηA(T
α) · ûMα

A (T α , t)
]
+

NPα

∑
γ=1

[
Pα

ηγ(T
α) : µα

γ (T
α , t)

]
+Zα

η (T
α)(T α −T0)

(4.20)

The homogenized coefficient tensors on each part Ωα
η are:

Sα
ηA(T

α) =
1
|Ωα

η |

∫
Ωα

η

[L(x,T α) ·∇Nα
A (x)+L(x,T α) : ∇Hα

A (x,T
α)] dΩ (4.21)
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Pα
ηγ(T

α) =
1
|Ωα

η |

∫
Ωα

η

[
L(x,T α) :

∫
Ωα

γ

∇hα(x, x̂,T α) dx̂−L(x,T α) Nα
γ (x)

]
dΩ (4.22)

Zα
η (T

α) =
1
|Ωα

η |

∫
Ωα

η

L(x,T α) :
[
∇Gα(x,T α)−αT (x)

]
dΩ (4.23)

Since the homogenized coefficient tensors (Sα
ηA(T

α), Pα
ηγ(T

α) and Zα
η (T

α)) are obtained from the

influence functions which always satisfy the microscale weak form equation, the stress coefficients

computed using the coefficient tensors ensures that the reduced order microscale equilibrium state

is satisfied for arbitrary macroscale displacement, inelastic strain coefficient, and temperature field

over the enrichment domain.

In view of the linearity of the thermal problem, the microscale temperature field is expressed

as:

T m
α (x, t) =

ND

∑
A=1

H̆α
A (x) · T̂ Mα

A (t) (4.24)

in which, H̆α
A is the temperature influence function evaluated by satisfying the microscale weak

form, Eq. (4.12). The resulting temperature field is:

T (x, t) =
ND

∑
A=1

[
NA(x)+ H̆α

A (x)
]
· T̂ Mα

A (t) (4.25)

The uniform temperature field within the enrichment domains (Eq. (4.15)) is evaluated using:

T α(t) =
ND

∑
A=1

H̄α
A T̂ Mα

A (t) (4.26)

where,

H̄α
A =

1
|Ωα |

∫
Ωα

∇Nα
A (x)+∇H̆α

A (x) dΩ (4.27)

4.4.2 Approximation of coefficient tensors over temperature

It is important to note that the influence functions and consequently the coefficient tensors

(Sα
ηA , Pα

ηγ and Zα
η ) are functions of temperature. Within a structural analysis subjected to thermo-

mechanical loads where temperature field is spatially and temporally varying, the temperature-
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dependent coefficient tensors need to be stored separately for each enrichment domain and updated

at every increment. The update procedure requires the evaluation of the influence function prob-

lems (Eqs. (4.16)-(4.18)) and the numerical integrations (Eqs. (4.21)-(4.23)), both of which are

computationally expensive. Instead, we consider the following approximation of the temperature

dependence of the coefficient tensors:

Sα
ηA(T

α)≈ S̄α
ηA(T

α ;TNα ) =
Nα

∑
i=1

ψi(T α) Ŝα
ηAi (4.28)

Pα
ηγ(T

α)≈ P̄α
ηγ(T

α ;TNα ) =
Nα

∑
i=1

ψi(T α) P̂α
ηγi (4.29)

Zα
η (T

α)≈ Z̄α
η (T

α ;TNα ) =
Nα

∑
i=1

ψi(T α) Ẑα
η i (4.30)

where, {ψi| i = 1,2, ...,Nα} is a set of interpolation functions for the coefficient tensors. One

dimensional piecewise linear Lagrangian shape functions are employed in the current study. Nα

denotes the number of nodes in the temperature discretization (TNα ) over a temperature range:

TNα = {T1,T2, ...,TNα
}T ; T1 = Tmin and TNα

= Tmax (4.31)

where, Tmin and Tmax denote the minimum and maximum temperature that the structure is subjected

to, respectively. Ŝα
ηA, P̂α

ηγ and Ẑα
η are the approximation bases for the corresponding coefficient

tensors such that:

Ŝα
ηA :=

{
Ŝα

ηAi = Sα
ηA(Ti) | Ti ∈ TNα

}T
; P̂α

ηγ :=
{

P̂α
ηγi = Pα

ηγ(Ti) | Ti ∈ TNα

}T
;

Ẑα
η :=

{
Ẑα

η i = Zα
η (Ti) | Ti ∈ TNα

}T
(4.32)

For an arbitrary microstructure, the coefficient tensors for each temperature in TNα are evaluated

a-priori and stored for the approximation.
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4.4.3 Identification of the temperature approximation basis

The accuracy of the approximation stated in Eqs. (4.28) - (4.30) directly depends on proper

identification of TNα , which in turn depends on the variation of the elastic properties of each mi-

crostructural constituent as a function of temperature. The optimum TNα should contain the small-

est number of basis nodes that confine the error between the directly computed (Eqs. (4.21)-(4.23))

and the approximated (Eqs. (4.28)-(4.30)) coefficient tensors. Consequently, the identification of

the approximation basis is posed as an optimization problem. We seek to find the optimal basis

node set (TN∗α
opt) for fixed N∗α , such that

Er(Nα
∗) = min

TN∗α

{
max

[∥∥∥SηA(T α)− S̄ηA(T α ;TN∗α )
∥∥∥

∞

,

∥∥∥Pηγ(T α)− P̄ηγ(T α ;TN∗α )
∥∥∥

∞

,
∥∥∥Zη(T α)− Z̄η(T α ;TN∗α )

∥∥∥
∞

]}
;

∀ η ,γ = 1,2, ...,NPα and A = 1,2, ...,ND; T α ∈ [Tmin,Tmax]

(4.33)

It is trivial to observe that the error (Er) is non-increasing with N∗α , e.g., Er(Nα
∗) ≥ Er(Nα

∗+1).

The optimal basis order is then the smallest N∗α , such that

Er(Nα)≤ TOL (4.34)

and the corresponding basis set is TNα . TOL denotes the tolerance. It is possible to evaluate

Eq. (4.33) using traditional optimization methods. In order to reduce the computational cost asso-

ciated with solving influence function problems at each iteration of the optimization operation, an

alternative of Eq. (4.33) is used:

Er(Nα
∗) = min

TN∗α

{∥∥Lη(T α)− L̄η

∥∥
∞

}
; ∀ η = 1,2, ...,NPα (4.35)

where, Lη is the temperature-dependent tensor of elastic moduli and L̄η is its discrete approx-

imation. Equations (4.35) and (4.34) are numerically evaluated for the optimum TNα using the
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dependence of Young’s modulus for the Ti-6242s matrix.
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adaptive approximation method [79, 80].

To further illustrate the procedure stated above, we consider an example for a SiC/Ti-6242s

composite material [81, 82, 83, 84]. The microstructure of the SiC/Ti-6242s composite is shown in

Fig. 4.2(a). The silicon carbide fiber (SiC) is assumed to be temperature-independent and isotropic,

with Young’s modulus and Poison’s ratio of 395 GPa and 0.25, respectively. The Young’s modulus

of the matrix material (Ti-6242s) is taken to be temperature-dependent, as shown in Fig. 4.2(b)

[85]. The Poison’s ratio of the matrix is taken as temperature-independent, ν=0.32. Through

adaptive approximation with 10oC as the minimum partition interval, the optimum temperature
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approximation basis is determined as TNα ={23, 140, 230, 310, 370, 420, 470, 510, 550}. It con-

tains 9 temperature nodes and the approximated Young’s modulus function is plotted in Fig. 4.3(a).

The tolerance employed is 0.003 in the current example. Using the determined TNα , the maxi-

mum errors between the approximated and directly computed coefficient tensors are presented in

Fig 4.3(b).

With the properly approximated coefficient tensors, the thermal and mechanical problems are

evaluated incrementally in a staggered fashion, since the two problems include one-way coupling

only (i.e., effect of temperature on mechanical response). The coupled temperature and mechani-

cal response fields are solved separately, through separation of variables. The mechanical ROVME

system under temperature effect is linearized and numerically assessed through a Newton-Raphson

iterative scheme. The formulation and implementation for the numerical evaluation of the temper-

ature dependent ROVME system for elasto-viscoplastic materials are detailed in Ref. [86]. They

are skipped herein for the simplicity of presentation.

4.5 Computational Implementation

This section provides the numerical implementation of the reduced order variational multi-

scale enrichment method for thermo-mechanical problems, along with an implementation strategy.

The implementation of the direct VME method for mechanical problems under temperature ef-

fect (employed in the verification of the ROVME method) is listed in Ref. [86]. The thermal and

mechanical problems are evaluated incrementally in a staggered fashion, since the two problems

include one-way coupling only (i.e., effect of temperature on mechanical response). The coupled

temperature and mechanical response fields are solved separately, through separation of variables.

With the assumption that the enrichment domains are sufficiently small, the uniform temperature

field (T α ) of each enrichment domain (Ωα ) is obtained by homogenizing the temperature field of

the enriched macroscale element.

Considering the discrete set of instances with the observation period ({0,1t,2t, ...,nt,n+1t, ..., te})

and taking the temperature field as a known variable at each time step, the elasto-viscoplastic me-

75



chanical problem under temperature effect is numerically assessed through a Newton-Raphson

iterative scheme summarized below. For simplicity of the presentation, the superscript, α , has

been omitted from the response variable in the implementation described below.

4.5.1 ROVME formulation in an arbitrary enrichment domain

The rate-form constitutive equation for an arbitrary part, Ωα
η , is obtained by taking the time

derivative of Eq. (4.20):

σ̇η(t) =
ND

∑
A=1

[
SηA(T ) · ˙̂uM

A (T, t)
]
+

NP

∑
γ=1

[
Pηγ(T ) : µ̇γ(T, t)

]
+Zη(T ) Ṫ

+
ND

∑
A=1

[
∂SηA(T )

∂T
Ṫ · ûM

A (T, t)
]
+

NP

∑
γ=1

[
∂Pηγ(T )

∂T
Ṫ : µγ(T, t)

]
+

∂Zη(T )
∂T

Ṫ (T −T0)

(4.36)

Considering the viscoplastic slip evolution of the ROVME method for each part Ωα
γ in the en-

richment domain (Eq. (3.21)) and performing time discretization of Eq. (4.36), the residual of the

constitutive equation for an arbitrary part Ωα
η yields:

Rη ≡ n+1ση − nση −
ND

∑
A=1

n+1SηA ·
(

n+1ûM
A − nûM

A
)
− (1−θ) ∆t

NP

∑
γ=1

n+1Pηγ : nµ̇γ

−θ ∆t
NP

∑
γ=1

n+1Pηγ : n+1µ̇γ − nZη (n+1T −n T )

−
ND

∑
A=1

n+1

(
∂SηA

∂T

)
· n+1ûM

A (n+1T −n T )−
NP

∑
γ=1

n+1

(
∂Pηγ

∂T

)
: n+1µγ (n+1T −n T )

− n+1

(
∂Zη

∂T

)
(n+1T −n T )(n+1T −T0) = 0

(4.37)

in which, the left subscript n and n+ 1 denote the value of a field variable at nt and n+1t, respec-

tively. The equilibrium states and response fields of the nonlinear system at nt is the “known” con-

figuration. The temperature field (n+1T ) and the coefficient tensors (n+1SηA, n+1Pηγ , n+1Zη ) are

known at n+1t. The temperature derivatives of the coefficient tensors n+1(∂SηA/∂T ), n+1(∂Pηγ/∂T )

and n+1(∂Zη/∂T ) are assessed numerically. In the remainder of this section, the left subscript

76



n+ 1 of the fields at the current time step is omitted for simplicity of the presentation. Forming

a Newton iteration through a first order Taylor series approximation of Eq. (4.37), the residual of

the stress-strain equation yields:

Rk+1
η ≈Rk

η +
NP

∑
γ=1

[(
δ

K
ηγ I−θ ∆t Pηγ : Ck

γ

)
: δσγ

]
−

NP

∑
γ=1

(
θ ∆t Pηγ : Gk

γ +Dηγ

)
: δµγ

−
ND

∑
A=1

(
S̃ηA ·δ ûM

A
)
= 0

(4.38)

where,

Dηγ =

(
∂Pηγ

∂T

)
(T − nT ) ; S̃ηA = SηA +

(
∂SηA

∂T

)
(T − nT ) (4.39)

Taylor series approximation does not include the derivative with respect to the temperature field,

since it is taken as a known variable for the mechanical problem. Considering the first order Taylor

series approximation of the residual of the kinematic equation (Eq. (3.27)), the inelastic coefficients

are condensed out to yield:

NP

∑
γ=1

(
Qk

ηγ : δσγ

)
=

ND

∑
A=1

(
S̃ηA : δ ûM

A
)
−Vk

η (4.40)

where, Qk
ηγ and Vk

η are defined as:

Qk
ηγ = δ

K
ηγ I−θ ∆t Pηγ : Ck

γ

−θ ∆t
(

θ ∆t Pηγ : Gk
γ +Dηγ

)
:
(

I−θ ∆t Gk
γ

)−1
: Ck

γ

(4.41)

Vk
η =Rk

η +
NP

∑
γ=1

(
θ ∆t Pηγ : Gk

γ +Dηγ

)
:
(

I−θ ∆t Gk
γ

)−1
: λk

γ (4.42)

The stress increment vector for the enrichment domain is obtained in the form identical to Eq. (3.31),

where

S =
[
S̃ηA
]

η∈[1,NP],A∈[1,ND]
(4.43)
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Figure 4.4: Reduced order variational multiscale enrichment implementation strategy (the
subscripts , γ and η , indicating parts in enrichment domains are omitted for clarity ).

In the presence of the stress increment vector for enrichment domains, the number evaluation of

the macroscale problem can be achieved following the algorithm provided in Section 3.3.2.

4.5.2 ROVME implementation algorithm

The implementation of the formulation is performed using the commercial software package,

Diffpack [68], in C++ computer language. The overall implementation strategy is summarized in

Fig. 4.4, where the microscale superscript (α) and part subscript (γ) are omitted for clarity. In the

preprocessing phase prior to the simulation, the coefficient tensors (S
ηA(T ), Pηγ(T ) and Zη(T )) at

each temperature in TN are computed using Eqs. (4.21), (4.22), (4.23) and stored (A= 1,2, ...,ND;γ

and η = 1,2, ...,NP) for each enrichment domain. The temperature influence function (H̆α
A ) and

the homogenization tensor (H̄α
A ) are also evaluated and stored for each enrichment domain (A =

1,2, ...,ND). At an arbitrary time nt, the system is in equilibrium with the constitutive relations

satisfied for the problem domain. The algorithm seeks to find the equilibrium state at n+1t as
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follows:

Given: nûM,nσ,nε
vp and nε̇

vp (nµγ and nµ̇γ for enrichment domains) at time nt.

Find: ûM,σ,εvp and ε̇vp (µγ and µ̇γ for enrichment domains) at time n+1t.

1. Initialize by setting: k=0, ûM,0 = nûM, σ0 = nσ, εvp,0 = nε
vp, and ε̇vp,0 = nε̇

vp (µ0
γ = nµγ ,

and µ̇0
γ = nµ̇γ for enrichment domains).

2. Solve the steady state thermal problem for the current time, and for each enrichment domain

(Ωα , α = 1,2, ...,nen):

(1) Homogenize the temperature field over the enrichment domain (Eq. (4.26)).

(2) Update the coefficient tensors (S
ηA(T ), Pηγ(T ) and Zη(T )) using Eqs. (4.28)-(4.30).

(3) Evaluate Dηγ and S̃
ηA from Eq. (4.39) and assemble S using Eq. (4.43).

3. Loop over all enrichment domains:

(1) Compute Ck
γ , Gk

γ , Qk
ηγ , Rk

η , λk
η , Vk

η , Qk and Vk from Eqs. (3.25), (4.41), (4.37), (3.26),

(4.42), (4.43) and (3.33c) .

(2) Construct K and δ f for the current enrichment domain using Eqs. (3.45) and (3.46).

4. Following the standard finite element procedure, construct the macroscale elementary stiff-

nesses for the substrate elements and assemble the macroscale system.

5. Solve the macroscale problem for δ ûM and update the macroscale displacement field (ûM,k+1 =

ûM,k +δ ûM).

6. Loop over all enrichment domains:

(1) Determine the stress coefficient increment δσ (Eq. (3.31)) and update the stress coef-

ficient σk+1 = σk +δσ .

(2) Evaluate the inelastic strain coefficient increment δµγ (Eq. (3.27)) and update the in-

elastic strain coefficient µk+1
γ = µk

γ +δµγ .
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Table 4.1: Materials parameters for phase II material in the microstructure.

Property E0 [GPa] 1 ν A [MPa] B [MPa] m n
Value 120.8 0.32 895 125 0.85 0.2

Property Troom [oC] Tmelt [oC] γ [MPa/second] q αT [1/oC] k [W/mK]
Value 23 1700 25 1.0 7.7×10−6 20

(3) Compute the inelastic strain rate coefficient µ̇γ using the evolution equation of the

material.

7. Loop over all substrate elements to update stress (σk+1), strain (εvp,k+1) and strain rate

(ε̇vp,k+1) using classical response update procedures [24].

8. Check for convergence:

eM =
‖ûM,k+1− ûM,k‖2

‖ûM,k+1− nûM‖2
≤ Convergence tolerance (4.44)

9. If convergence is not satisfied, set iteration counter k← k + 1 and proceed with the next

iteration.

4.6 Numerical Verification

The verifications of the ROVME method particularly focus on the coupling effects in the

thermo-mechanical behavior. The accuracy characteristics of the ROVME method is assessed by

comparing the results with the direct VME approach, as well as with the single scale finite element

method (FEM), in which the heterogeneous microstructure is resolved within the enrichment re-

gion. A two-phase particulate composite with circular inclusions is employed (Fig. 4.2(a)). Phase

I is the silicon carbide constituent, taken to be elastic with Young’s modulus (E) of 395 GPa, Pois-

son’s ratio (ν) of 0.25, the thermal expansion coefficient (α) of 4.2×10−6/oC and the thermal con-

ductivity (k) of 120 W/mK [87, 84]. Phase II is Ti-6242s, taken to be elasto-viscoplastic [88, 89].

1E0 denotes the Young’s modulus at the room temperature.
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The flow stress is expressed using the modified Johnson-Cook model [77, 53]:

σy = [A+B(ε̄vp)n] [1− (T ∗)m] (4.45)

where, A,B, n and m are material parameters; ε̄vp the effective viscoplastic strain and T ∗ is the

non-dimensional temperature:

T ∗ =
T −Troom

Tmelt−Troom
(4.46)

where, Troom and Tmelt are the room and melting temperatures, respectively. Instead of incorpo-

rating the strain rate term directly as in the standard Johnson-Cook model, the strain rate effect

is modeled through the Perzyna formulation [24, 39] as described in Eq. (2.5). The values of the

parameters for Ti-6242s are shown in Table 4.1, in which γ is the fluidity parameter and q is the

viscoelastic hardening parameter. The Young’s modulus of Ti-6242s is taken to vary as a function

of temperature as shown in Fig. 4.2(b). Phase III denotes the homogenized composite used in the

substrate region, the properties of which are computed using the rule of mixtures and taken to re-

main elastic [81, 83]. The Young’s modulus of Phase III at the room temperature is 170 GPa and

linearly drops to 140 GPa at 550oC. The Poisson’s ratio is 0.3. The thermal expansion coefficient

is 5.0×10−6/oC and the thermal conductivity is 48 W/mK.

A 2-D plane strain, 3 mm × 0.3mm, composite beam is considered. Due to symmetry, only

half of the beam is discretized. The ratio between the size of the enrichment domain and the size

of the critical subregion is 1/5. The macro- and microscale discretization for the ROVME and

VME models are shown in Fig. 4.5, along with the reference finite element discretization. The

macroscale discretization, Fig. 4.5(b), contains 64 nodes and 45 quadrilateral finite elements. The

enrichment region contains 15 macroscale elements, and is positioned close to the center of the

beam since the center of the beam has the largest deformation and stress state under the applied

loads. Each of the enrichment domains contains a phase I inclusion at the center, and a phase II

matrix. The particle volume fraction is 28.3% [81, 83, 84]. The ROVME model of the enrichment

domain (Fig. 4.5(d)) consists of 2 parts that corresponds to the domains of the constituents, and
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Figure 4.5: Model sketch and discretization of: (a) finite element method; (b) macroscale
problem of the VME and ROVME methods; (c) microscale problem of the VME method; and

(d) microscale problem of the ROVME method with 2 parts.
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Figure 4.6: Errors in equivalent stress for specimen with uniform temperature field.

6 degrees of freedom (DOFs). Each VME microstructure (Fig. 4.5(c)) is discretized using 148

quadrilateral elements and 338 DOFs. The corresponding direct finite element mesh (Fig. 4.5(a))

contains 2,340 quadrilateral elements and 4,844 DOFs. The temperatures in TNα as determined in

Section 4.4.3 is employed for the approximation of the ROVME coefficient tensors.

4.6.1 Specimen subjected to uniform temperature field

The first specimen is confined at both ends (i.e., ũx = 0 and P̃ = 0 in Fig. 4.5(a) and (b)) sub-

jected to uniform temperature field that monotonically increases from 23oC to 550oC in 6 minutes.

The mechanical deformation of the specimen is therefore induced by the thermal expansions only.

The time step size is set to 0.72 second. Further reduction in the time step size does not sig-

nificantly improve the results. To investigate the performance of the ROVME and VME models

compared with the reference model, the stress error over the enrichment region at an arbitrary time,

t, is computed:

eσ̄ (t) =

nen
∑

α=1

NPα

∑
γ=1

∥∥σ̄
FEM
γ (t)− σ̄γ(t)

∥∥
2,Ωα

γ

nen
∑

α=1

NPα

∑
γ=1

∥∥σ̄
FEM
γ (t)

∥∥
2,Ωα

γ

(4.47)
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Figure 4.7: Equivalent stress contours of the specimen with uniform temperature field: (a)
finite element model; (b) direct VME model; and (c) ROVME model.

where, σ̄FEM
γ and σ̄γ denote the homogenized equivalent stress over part, Ωα

γ , obtained from the di-

rect finite element method and the model being assessed (VME or ROVME), respectively. ‖ ·‖2,Ωα
γ

is the L2 norm of the response field computed over Ωα
γ . The equivalent stress errors for the ROVME

and direct VME methods are shown in Fig. 4.6 as a function of time. Until temperature reaches

477oC (t = 310 seconds), the structure deforms elastically. Further heating causes plastic defor-

mation as marked by the elastic-plastic transition line in Fig. 4.6. The maximum errors occur at

the end of the simulation, and are less than 8.4% and 5.2% for the ROVME and VME models,

respectively. The primary cause of the errors in the VME model is the microscale boundary con-

dition, which leads to more rigid reactions than the reference model. The ROVME model displays

slightly higher errors primarily due to the kinematic constraints imposed by Eq. (4.19). The slight

increase in error as a function of time within the elastic loading stage is attributed to the increase

in the stiffness contrast between the inclusion and the matrix as a function of temperature. Larger

stiffness contrast leads to slightly higher errors as demonstrated in Ref. [39].

Figure 4.7 presents the equivalent stress contours of the structure at the end of the simula-
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Figure 4.8: Equivalent stresses over a line (x=1.0-1.5 mm, y=0.15 mm) on the specimen with
uniform temperature field.

tion predicted by the reference, VME and ROVME models. The stress contours of the VME

and ROVME models are obtained by embedding the response of each enrichment domain into

the coarse response field at post-processing. The stress contours computed by the VME and the

ROVME approaches show slightly stiffer response compared with the reference solution due to

constrained kinematics, but are able to capture the local and global stress distributions with reason-

able accuracy. The equivalent stress over the line at the center of the enrichment region (x=1.0-1.5

mm, y=0.15 mm in Fig. 4.5 (a) and (b)) is plotted for all of the models, as shown in Fig. 4.8. Al-

though the peak values of the ROVME model are closer to the results of the reference solution, the

direct VME model generally follows the stress variation of the reference model more closely. Since

the stress is taken to be constant over each part, the ROVME method does not resolve the stress

variation around the inter-enrichment domain interfaces. The computational cost for the ROVME

simulation is 5.58 minutes while for the finite element simulation is 63.8 minutes. The ROVME

is 11.43 times faster than the reference model for the current example, which demonstrates the

efficiency of the proposed method.
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Figure 4.9: Errors in equivalent stress for the specimen with temperature gradient.

4.6.2 Specimen subjected to temperature gradient

To further verify the proposed approach, the accuracy is assessed in the context of a specimen

subjected to temperature gradient. The mechanical boundary conditions of the specimen are iden-

tical to that discussed in Section 4.6.1. The temperature field T 1 (in Fig. 4.5(a) and (b)) along the

bottom edge of the specimen linearly increases from 23oC (at t = 0) to 550oC (at t = 360 seconds),

while the temperature field T 2 along the top edge remains constant at 23oC. The time step size is

set to 0.72 second. At the end of the simulation, the temperature variation across an enrichment

domain is significant (approximately 175oC per enrichment domain) which clearly violates the

assumption that the temperature field is uniform over each enrichment domain. This example is

performed to test the capability of the proposed method at or beyond the limits of the above stated

assumptions.

The errors in equivalent stress for the VME and ROVME models are shown in Fig. 4.9, along

with the temperature gradient. The structure remains in the elastic state during the simulation.

Both VME and ROVME methods produce higher errors than the previous example (Fig. 4.6),

partially because the uniform temperature field assumption is violated. The stress error of the

VME method is stable, while the error of the ROVME method slightly reduces as the temperature

gradient increases. The largest error in equivalent stress for the ROVME model is 8.8% and for
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Figure 4.10: Equivalent stress contours of the specimen with temperature gradient: (a) finite
element model; (b) direct VME model; and (c) ROVME model.

the direct VME method is 6.5%. The equivalent stress contours of the models at the end of the

simulation are shown in Fig. 4.10, for all of the models. The contours of the direct VME and

ROVME models are less smooth than the finite element method, while still closely follow the

stress distribution of the reference model. The computational cost for the ROVME simulation is

5.8 minutes while for the finite element simulation is 63.3 minutes. The ROVME method is 10.91

times faster than FEM for this example.

4.6.3 Specimen subjected to combined thermo-mechanical loading

To further study the performance of the proposed methodology, a specimen subjected to com-

bined thermal and mechanical loading is investigated. The time history of the applied boundary

conditions T 1, T 2 and P̃ are shown in Fig. 4.11. The bottom and top edges of the specimen are

heated at the same rate up to 200oC and 150oC, respectively. Then the temperatures are kept con-

stant. Between t = 270 - 360 seconds, the specimen is exposed to a monotonically increasing
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Figure 4.11: Loading conditions of the specimen with pressure.
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Figure 4.12: Errors in equivalent stress for the specimen with pressure.

temperature gradient. The specimen is also subjected to a constant boundary pressure of 800 MPa.

The time step size of the current example is set to 0.36 second.

The time history of error in equivalent stress is presented in Fig. 4.12. Until t = 76 seconds,

the specimen deforms elastically. The inelastic deformation initiates at t = 76 seconds, induced by

the increasing thermal stress. After t = 360, the errors become steady for both VME and ROVME

methods, since the loading conditions remain the same and the specimen deforms incrementally

elastic at each time step. The maximum error in equivalent stress is 6.6 % for the ROVME method

and 4.5% for the VME method.

The stress contours of the reference, VME and ROVME models are shown in Fig. 4.13. The
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Figure 4.13: Equivalent stress contours of the specimen with pressure: (a) finite element
model; (b) direct VME model; and (c) ROVME model.

0 0.05 0.1 0.15 0.2 0.25 0.3
500

600

700

800

900

1000

1100

y [mm]
 

 

FEM
VME
ROVME

σ
[M

Pa
]

Figure 4.14: Equivalent stresses over a line (x=1.35 mm, y=0-0.3 mm) on the specimen with
pressure.
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stress contours of the VME and ROVME approaches are in close agreement with the stress distribu-

tion predicted by the reference model. The stress contours are relatively uniform since the pressure

load dominates the deformation. The equivalent stress over a line in the enrichment region (x =

1.35 mm, y= 0 - 0.3 mm in Fig. 4.5(a) and (b)) is plotted for all of the models in Fig. 4.14.

The stress variation observed between two neighboring inclusions in the FEM approaches are

not well captured with the ROVME model, as shown in Fig. 4.14. This is attributed to the fact

that the ROVME model only includes weak interactions between neighboring enrichment domains

through the macroscopic equilibrium. The homogeneous Dirichlet boundary conditions employed

along the enrichment domain boundaries limit the strong interactions between the neighboring en-

richment domains. The accuracy loss could be higher in the presence of stronger inter-enrichment

domain interactions, such as in the case of composites with high inclusion volume fractions. In-

corporation of more accurate boundary conditions (e.g., mixed boundary conditions proposed in

Refs. [23, 24]) could improve the accuracy between two inclusions.

The accuracy of the proposed model is consistent with the previous example in Section 4.6.1,

and demonstrates that both VME and ROVME methods have the capability of accurately capturing

the response of structures subjected to combined thermo-mechanical loads. The computational cost

for the ROVME simulation is 8.1 minutes while for the finite element simulation is 164.3 minutes.

The ROVME model is 20.3 times faster than FEM for this specimen.

The accuracy and efficiency characteristic of the ROVME model is directly related to the model

order, NPα . For instance, Ref. [39] demonstrated that the accuracy could be improved with some

loss of efficiency by increasing the model order. We also note that the computational efficiency of

the ROVME model is expected to scale with the problem size (i.e., as the number of the enrich-

ment domains within the problem domain increases), as the ratio of the degrees of freedom in the

ROVME and direct FEM approaches (as well as the VME approach) increases with the problem

size.
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Table 4.2: Materials parameters for zirconia and aluminum of the composite beam

Zirconia
E [GPa] ν k [W/mK] αT [1×10−6/oC]

151 0.3 2.09 10.0

Aluminum

E [GPa] ν k [W/mK] αT [1×10−6/oC]
70 0.3 204 23

A [MPa] B [MPa] m n
517 405 0.41 1.1
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Figure 4.15: Model sketch and the ROVME macroscale discretization of a functionally graded
composite beam under thermo-mechanical loads.
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Figure 4.16: Microscale problems of the ROVME method for layer (a) to layer (h); and (i)
microscale discretization for the coefficient tensors computation of layer (a).
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4.7 Functionally Graded Beam

The capabilities of the ROVME approach is further demonstrated by the analysis of a function-

ally graded composite beam subjected to combined thermo-mechanical loading. The present study

builds on the thermo-elastic analysis of functionally graded composites performed by Refs. [90, 91]

and extends the analysis to investigate the behavior of the composite within the plastic regime.

A 2-D, simply supported plane-strain functionally graded beam with length, a = 200 mm, and

thickness, t = 10 mm is considered. The zirconia-aluminum composite is idealized as metal matrix

reinforced with randomly positioned ceramic inclusions of circular cross section. The geometry

and the boundary conditions are shown in Fig. 4.15. Due to symmetry, only half of the beam is

modeled. The temperatures at the bottom and top edges of the beam, T 1 and T 2, are set to 23oC

and 300oC, respectively. A uniform pressure q0 is applied on the top of the beam.

The beam is discretized into 500 macroscale quadrilateral finite elements and 561 nodes. The

enrichment region is set as the entire domain. The enrichment domains employed are shown in

Fig. 4.16. The top layer of the beam consists of pure zirconia ceramic material and the bottom

layer is pure aluminum metal material. From the top to the bottom of the enrichment region

(denoted as layer (a) to layer (h) in Fig. 4.15), the volume fraction of the ceramic in the composite

decreases from 55% in layer (a) to 20% in layer (h). The radius of each inclusion is 178.4 µm. The

ceramic inclusions remain elastic throughout loading, whereas the metal matrix exhibit inelastic

deformations. The Young’s moduli of both materials are taken as temperature independent. The

material properties for zirconia and aluminum are summarized in Table 4.2. The room temperature,

Troom, for both of the materials is set to 23oC and the melting temperature, Tmelt, for aluminum is

set to 502oC.

For each of the enrichment domains, a two-part reduced order model is considered. The do-

mains of the parts correspond to the matrix and the inclusion phases. Figure 4.16(i) shows the

microscale mesh employed in pre-processing to compute the coefficient tensors for enrichment

domain in layer (a). Similar meshes were used for the other layers. For the purpose of com-

parison, the reference predictions of two specimens, made of pure aluminum and pure zirconia,
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Figure 4.18: Non-dimensional center deflections along with load parameter for beam under: (a)
mechanical loading; and (b) thermo-mechanical loading.
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Figure 4.19: Non-dimensional center deflections along with load parameter for beams using
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are performed using the finite element method, respectively. Figure 4.17 shows the steady state

distribution of temperature under the prescribed boundary conditions for the monolithic materials

and the functionally graded composite. The spatially varying conductivity of the composite beam

results in non-linear variation of the temperature field through the thickness. The steady state

temperatures within the composite are lower than those in monolithic materials.

Figure 4.18 presents the normalized deflection, w/h, where w is the deflection of the center of

the beam as a function of the normalized load parameter, P = (q0 a4)/(Em h4). Em is the Young’s

modulus of the metal material and q0 is taken as 0.01 MPa. Figure 4.18(a) corresponds to the pure

mechanical loading at the room temperature, whereas Fig. 4.18(b) includes the effect of thermal

gradients. In both figures, the dotted lines indicate the responses under the assumption of elastic

behavior for both constituents. In the pure mechanical loading, the normalized deflection of the

composite beam lies between those of the pure ceramic and pure metal specimens, under both

elastic and inelastic material behavior assumptions. The results in Fig. 4.18(b) include the effect

of thermal expansions induced by the temperature gradient over the specimen. In the presence

of thermo-mechanical loading, the deflection of the composite beam is lower than both ceramic

and metal beams when subjected to moderate mechanical load, under both elastic and inelastic

material assumptions. This observation is consistent with those in Refs. [90, 91]. As the load

increases, the deflection in the pure metal beam significantly increases due to rapid accumulation

of plastic deformation. In contrast, the presence of the ceramic inclusion reduces the amount of

plastic flow in the composite specimen, and the rate of deflection remains contained compared with

the pure metal specimen.

In order to ensure that the results shown are independent of the microstructural morphology,

the thermo-mechanical simulation discussed above is repeated by three separate sets of randomly

generated microstructures for each layer of the composite. Figure 4.19 shows that the overall

deflection of the composite is not significantly affected by the microstructural morphology, as long

as the volume fraction distribution is maintained.
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Chapter 5

HYBRID INTEGRATION FOR REDUCED ORDER VARIATIONAL MULTISCALE

ENRICHMENT METHOD

5.1 Introduction

Using the reduced order variational multiscale enrichment (ROVME) method provided in the

previous chapters to address surface degradation problems would require tremendous amounts of

enrichment domains, since the sizes of the microstructures are at the level of microns while of

the surface region are in inches. It could be computational prohibitive for the ROVME method to

model such problems. The current chapter presents the formulation and implementation of a hybrid

multiscale integration scheme for problems that exhibit different scale separation characteristics in

various directions. The proposed approach employs the key ideas of the variational multiscale

enrichment at directions that exhibit poor scale separation, and the computational homogenization

at directions with good scale separability. The formulation is based on the variational multiscale

principles and develops a novel integration scheme that takes advantage of homogenization-like

integration along directions that exhibit scale separation. The proposed integration scheme is

also integrated with the reduced order variational multiscale enrichment in order to achieve a

computationally efficient multiscale solution strategy for surface degradation problems. A suite

of numerical verifications is performed to verify the implementation of the proposed multiscale

scheme. The results of the verification studies indicate that the approach further improves the

efficiency of the ROVME simulations, without significant compromise on accuracy. A coupled

transport-thermo-mechanical analysis is presented to demonstrate the capability of the proposed

computational framework.

The remainder of the chapter is organized as follows: Section 5.2 provides the variational

multiscale enrichment setting for directionally scale separable problems. The hybrid multiscale

integration scheme is described in Section 5.3. Section 5.4 details the formulation and implemen-
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Figure 5.1: Domain decomposition for directionally scale separable problems

tation of the hybrid integration for ROVME method. Section 5.5 presents the application of the

hybrid multiscale integration to the ROVME method. Numerical verifications are presented in Sec-

tion 5.6. A coupled transport-thermo-mechanical problem with surface degradation is presented in

Section 5.7 to demonstrate the capability of the proposed computational framework.

5.2 Variational multiscale enrichment setting for directionally scale separable problems

The proposed multiscale approach generalizes and builds on the variational multiscale enrich-

ment idea introduced in Refs. [24, 39, 86]. Consider an open, bounded domain Ω ⊂ R2 that

constitutes the domain of the macroscopic structure and the domain decompositions defined in

Eqs. (2.11) and (2.12). Rather than defining the coordinate system of the enrichment domains

identical to the global coordinate system as the previous chapters, these two systems are defined

separately in the current chapter. The global coordinate system is denoted by x′ = (x′,z′), as shown

in Fig. 5.1. Under the applied loading and environmental conditions, the structure undergoes sig-

nificant localized deformation within a characteristic subdomain, Ωb ∈ Ω, whereas within the re-

96



mainder of the domain, Ωs ≡ Ω\Ωb, the response does not localize. We are therefore concerned

with accurately and efficiently capturing response fields within Ωb (i.e., the enrichment region). In

surface degradation problems, the enrichment region spans the boundaries of the structure exposed

to aggressive environmental agents but extends to a very limited depth compared to the overall

structural thickness as illustrated in Fig. 5.1. The enrichment region is further discretized into a se-

ries of non-overlapping enrichment domains as shown in Eq. (2.12). The enrichment domain, Ωα

is formed by the repetition of a heterogeneous microstructure, Θα along the local direction, x(x′)

and the size of the microstructure is taken to be small compared to the dimension of the macro-

scopic domain along the homogenizable direction, x. In contrast, the dimension of the enrichment

domain in the transverse direction z(x′) is identical to that of the microstructure. The ratio between

the size of the microstructure domain and the enrichment domain is denoted by a small positive

scaling constant, ζ defined as:

ζ =
Xθ

α

Xα

→ 0 (5.1)

in which, Xθ
α and Xα are the sizes of Θα and Ωα in the x-direction. The response within the

enrichment domain along x rapidly oscillates in space due to the fluctuations in the material prop-

erties within the microstructure. The response fields are therefore considered to be functions of the

macroscale coordinate system, x, as well as a microscale coordinate system, x̆ = x/ζ , which is a

stretched position vector.

The problem setting described above indicates directional homogenization of the response

fields; i.e., the response fields are scale separable at prescribed directions, whereas they are taken to

be scale inseparable at other directions. We therefore seek to employ the computational homoge-

nization principles along the scale separable directions, whereas employ the variational multiscale

setting along the scale inseparable direction. Within this problem setting, an arbitrary response

field in an enrichment domain is expressed as:

f ζ (x) = f (x, x̆(x),z) (5.2)
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Where, f ζ denotes the response field expressed in the original coordinate system, and superscript

ζ indicates that the field is oscillatory in the scale separable direction.

We start by considering the following additive decomposition of the deformation field [1, 2, 24]

within an arbitrary enrichment domain, Ωα :

u(x, x̆,z, t) = uM(x,z, t)+um
α(x, x̆,z, t) (5.3)

where, uM ∈ V M(Ω) and um
α ∈ Vα(Ωα) are respectively the macroscale and microscale displace-

ment fields; and V M and Vα denote the trial (discretized) spaces for the macro- and microscale

fields, respectively:

V M(Ω)≡

{
uM [x(x′),z(x′), t]∣∣∣ uM =

Nα
D

∑
A=1

NA(x′,z′) ûM
A (t);

ûM
A = ũ(x′A,z

′
A, t) if (x′A,z

′
A) ∈ Γ

u

}
(5.4)

Vα(Ωα)≡

{
um

α(x, x̆,z, t)
∣∣∣ um

α =
ndα

∑
a=1

nα,a(x, x̆,z) ûm
α,a(t); ûm

α,a = 0 if (xα ,zα) ∈ Γ
u
α

}
(5.5)

In the verification studies described later, a viscoplastic constitutive relationship has been em-

ployed for the material constituents. The enrichment domains are taken to be geometrically simple

such that it is represented by a single finite element in the macroscopic grid. Homogeneous Dirich-

let boundary conditions are employed along the enrichment domain boundaries to ensure displace-

ment continuity across the enrichment domains [64]. The function fields are directly provided

as discrete approximations and the formalism regarding the specialization from the continuum to

discretized fields are skipped for brevity. It is important to note that the additive decomposition pro-

vided in Eq. (5.3) is admissible due to the direct sum decomposition property of the corresponding

fine and coarse scale approximation spaces [1].

Following a similar decomposition to Eq. (5.3), the test function field is additively decomposed

into macroscale (wM) and microscale (wm
α ) counterparts. Substituting the test and trial function de-
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compositions into the governing equilibrium equations, and splitting the governing equations based

on the micro- and macroscopic counterparts result in a coupled system of macro- and microscale

problems in the variational setting. The macroscale problem in the weak form yields:

Macroscale Problem:
∫

Ωs

∇wM(x′,z′) : σ(x′,z′, t) dΩ

+
nen

∑
α=1

∫
Ωα

∇wM(x,z) : σ(x, x̆,z, t) dΩ−
∫

Γt
wM(x′,z′) · t̃(x′,z′) dΓ = 0 (5.6)

where, t̃ is the prescribed traction along the Neumann boundary (Γt). The prescribed tractions are

assumed to vary with the macroscopic coordinates only. The stress field is taken to be a local,

history-dependent, nonlinear function of the strain and other internal state variables. Within each

enrichment domain, the integration in Eq. (5.6) is expressed in the corresponding local coordinate

system. Within the substrate region, the response is assumed to be unaffected by the material

heterogeneity and accurately approximated by the macroscale response fields alone. The weak

form of the microscale problem at an arbitrary enrichment domain, Ωα , is:

Microscale Problem:
∫

Ωα

∇wm
α(x, x̆,z) : σ(x, x̆,z, t) dΩ = 0; α = 1,2, ...nen (5.7)

The microscale problems defined over each enrichment domain within the structure is tightly cou-

pled to the macroscale problem. The coupling is through the stress terms in the respective equations

which are functions of the total strain field that depends on the fine and coarse scale components of

the displacement field. In the context of VME, the micro- and macroscale problems are evaluated

in a coupled and iterative manner.

The evaluation of the coupled multiscale problem defined above is computationally expensive

due to the complexity of the integral terms of the coarse and fine scale problems defined over the

enrichment domains. The complexity is two-fold: (1) the microstructure is highly heterogeneous

and exhibit highly nonlinear response that requires the evaluation of a large number of nonlinear

enrichment domain problems in an iterative setting; and (2) within each enrichment domain, a large
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Figure 5.2: A macroscale enrichment domain for hybrid multiscale integration.

number of microstructures exist, over which the integrations must be performed. The latter diffi-

culty was addressed through the development of the reduced order VME approach in Ref. [39]. In

the current chapter, we focus on developing a hybrid integration scheme in order to take advantage

of the scale separability in select directions, and combining the hybrid integration scheme with the

reduced order microstructure representation.

5.3 Hybrid Multiscale Integrator

Let the enrichment domain, Ωα coincide with an element of the macroscale discretization

within the enrichment region. The shape of the enrichment domain is constrained due to the direc-

tional scale separation condition: (1) considering a microstructure with an aspect ratio of O(1), the

aspect ratio of the enrichment domain is taken to be high; and (2) the element length in the scale in-

separable direction is taken to be constant and equal to the edge length of the microstructure along

the same direction. Define vectors vi j = x′j− x′i = (x′j,z
′
j)− (x′i,z

′
i); i, j = 1,2,3,4; i 6= j within

the enrichment domain. Denoting the size of the microstructure in the scale inseparable direction

as Xθ
α and in the scale separable direction as Zθ

α , the above-mentioned constraints are imposed as

follows:
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Figure 5.3: Canonical systems of the hybrid integration for: (a) the enrichment domain
and (b) the microstructure of the enrichment domain.

(i) v12//v34 ( i.e., |(v12 ·v34)/(||v12|| ||v34||)|= 1), and;

ζ =
2Xθ

α

‖ v12 ‖+ ‖ v34 ‖
→ 0; Zθ

α = Zα ≡ ‖ v23 ·vn ‖ (5.8)

where vn ⊥ v12 and vn is a unit vector, or;

(ii) v23//v41 (i.e., |(v23 ·v41)/(||v23|| ||v41||)|= 1), and;

ζ =
2Xθ

α

‖ v23 ‖+ ‖ v41 ‖
→ 0; Zθ

α = Zα ≡ ‖ v12 ·vn ‖; vn ⊥ v23 (5.9)

When (i) or (ii) is satisfied, such as in the example shown in Fig. 5.2, the enrichment domain is

scale separable, and the hybrid multiscale integration scheme described below is applicable.

5.3.1 Canonical coordinate systems

In context of standard finite element coordinate system transformation, the macroscale problem

for an enrichment domain is first transfered from the global coordinate system (x′) to a standard
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canonical system (ξ). Then, the response discretization in Eq. (5.4) is performed using the standard

shape functions in the canonical system. In the current setting, a new set of canonical systems, as

illustrated in Fig. 5.3, and the associated shape functions are employed. The canonical system

of the enrichment domain, Ωα , is denoted as �ξ with the associated limits as ξ ∈ [−1/ζ ,1/ζ ]

and η ∈ [−1,1]. Embedded in the enrichment domain, � denotes the canonical system for the

microstructure, Θα , which resolves the microstructural material heterogeneity, as shown in Fig. 5.3

for the example presented in Fig. 5.2. Its limits are ξ̆ ∈ [−1,1] and η ∈ [−1,1]. The two systems

have separate coordinates in the scale separable ξ -direction, but share the same coordinate in the

η-direction. Other than containing the resolved microstructural topology, � is identical to the

standard canonical system and the standard shape functions are employed. New shape functions

are defined for �ξ as:

N1(ξ ,η ;ζ ) =
(1−ζ ξ )(1−η)

4
; N2(ξ ,η ;ζ ) =

(1+ζ ξ )(1−η)

4

N3(ξ ,η ;ζ ) =
(1+ζ ξ )(1+η)

4
; N4(ξ ,η ;ζ ) =

(1−ζ ξ )(1+η)

4

(5.10)

The hybrid integrations for the micro- and macroscale problems over the enrichment domains are

performed by considering the canonical systems in Fig. 5.3 and their shape functions

5.3.2 Integration of Macroscale and microscale problems

We first demonstrate the proposed hybrid multiscale integration over a scalar function, ψ .

The integration scheme is then applied to the enrichment domain integrals that appear in the mi-

croscale and macroscale problems. Let ψ be sufficiently smooth and integrable function over the

enrichment domain. The function is assumed to be periodic along the homogenizable direction,

x. Considering coordinate transformation and the homogenization concept in the ξ -direction as
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ζ → 0 [26], the integration of ψ over Ωα is expressed as follows:

lim
ζ→0

∫
Ωα

ψ(x, x̆ =
x
ζ
,z) dΩ = lim

ζ→0

∫ 1

−1

∫ 1
ζ

− 1
ζ

ψ(ξ , ξ̆ ,η) detJ(ξ ,η) dξ dη

=
∫ 1

−1

∫ 1
ζ

− 1
ζ

ψ̄(ξ ,η) detJ(ξ ,η) dξ dη

(5.11)

where, J(ξ ,η) is the Jacobian matrix for the coordinate transformation, det(·) denote the determi-

nant, and ψ̄ is the microstructure-average (i.e., homogenized) function along the homogenizable

direction which is defined as:

ψ̄(ξ ,η) =
1
2

∫ 1

−1
ψ(ξ , ξ̆ ,η) dξ̆ (5.12)

The integration shown in Eq. (5.11) at the homogenization limit exists and convergent (assuming

the standard continuity and periodicity requirements for ψ), since it is identical to the weak con-

vergence argument of the mathematical homogenization theory [92, 93] - but only applied to a

single direction. Employing the one-dimensional Gaussian quadrature rule and approximating the

integration of the homogenized response (ψ̄) in the ξ -direction with ng integration points:

∫ 1
ζ

− 1
ζ

ψ̄(ξ ,η) detJ(ξ ,η) dξ ≈
ng

∑
g=1

ψ̄(ξg,η) detJ(ξg,η) Wg; and g = 1,2, ...,ng (5.13)

where, ξg = ξ̄g/ζ indicates the position of the Gaussian quadrature point in the ξ -direction and

Wg = W̄g/ζ is the corresponding weight. ξ̄g and W̄g are the positions and weights of the standard

Gaussian quadrature points for ξ ∈ [−1,1], respectively. Substituting Eq. (5.13) into Eq. (5.11),

the integration over the enrichment domain is approximated as:

lim
ζ→0

∫
Ωα

ψ(x, x̆ =
x
ζ
,z) dΩ≈

ng

∑
g=1

∫ 1

−1
ψ̄(ξg,η) detJ(ξg,η) dη Wg (5.14)
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Considering Eq. (5.12) and defining
∫
� f (ξg, ξ̆ ,η) dΩ̆≡

∫ 1
−1
∫ 1
−1 f (ξg, ξ̆ ,η) dξ̆ dη , the hybrid in-

tegration over an enrichment domain yields:

lim
ζ→0

∫
Ωα

ψ(x, x̆ =
x
ζ
,z) dΩ≈

ng

∑
g=1

Wg

2

∫
�

ψ(ξg, ξ̆ ,η) detJ(ξg,η) dΩ̆ (5.15)

Equation (5.15) is the general hybrid integration rule which can be applied to any integrable func-

tion over an enrichment domain in directionally scale separable problems.

Applying the hybrid multiscale integration approach to the integration over an arbitrary enrich-

ment domain of the macroscale problem yields the following expression:

lim
ζ→0

∫
Ωα

∇wM(x,z) : σ(x, x̆,z, t) dΩ

≈
ng

∑
g=1

Wαg

2

∫
�

∇wM(ξαg,η) : σ(ξαg, ξ̆ ,η , t) detJ(ξαg,η) dΩ̆

(5.16)

where, ξαg and Wαg are the positions and associated weights for the enrichment domain, Ωα .

Similarly, the microscale weak form for the enrichment domain Ωα (Eq. (5.7)) is obtained as:

lim
ζ→0

∫
Ωα

∇wm
α(x, x̆,z) : σ(x, x̆,z, t) dΩ

≈
ng

∑
g=1

Wαg

2

∫
�

∇wm
α(ξαg, ξ̆ ,η) : σ(ξαg, ξ̆ ,η , t) detJ(ξαg,η) dΩ̆ = 0

(5.17)

Since Wαg does not depend on ξ̆ or η , a solution that ensures the equilibrium of the microscale

state (Eq. (5.17)) is:

∫
�

∇wm
α(ξαg, ξ̆ ,η) : σ(ξαg, ξ̆ ,η , t) detJ(ξαg,η) dΩ̆ = 0; ∀g = 1,2, ...,ng (5.18)

Equation (5.18) implies that under the condition of directional scale-separability, enforcement of

equilibrium at the scale of the microstructure associated with each quadrature point implies the

microscale equilibrium within the enrichment domain. The application of the hybrid multiscale

integration to the micro- and macroscale problems requires that the fine scale components of the
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Figure 5.4: Boundary conditions for the microstructures.

response fields over the microstructure are periodic along the η-direction. In order to ensure con-

tinuity across neighboring enrichment domains or along the boundaries between the enrichment

domains and the substrate [2, 24], homogeneous Dirichlet boundary conditions are prescribed for

microstructure boundaries along the ξ̆ -direction, as illustrated in Fig. 5.4.

5.4 Hybrid Integration for Reduced Order Variational Multiscale Enrichment (HROVME)

In this section, we describe the application of the proposed hybrid multiscale integration ap-

proach to the reduced order variational multiscale enrichment (ROVME) method for inelastic prob-

lems. The ROVME method, recently proposed by the authors [39, 86], approximates the nonlinear

heterogeneous response within the enrichment domain using a reduced approximation basis to en-

hance the computational efficiency. ROVME is applicable when the microstructure domain and

the enrichment domain coincides (i.e., when ζ =1). By applying the proposed hybrid multiscale

integrator to ROVME (referred to as HROVME in what follows), we aim to address directionally

scale separable problems (i.e., when ζ = 0) in an efficient manner.

5.4.1 The microscale problem

The microscale problem as stated in Eq. (5.18) is numerically evaluated through ROVME. Con-

sidering Eq. (5.3) and the canonical systems of the hybrid multiscale integration, the constitutive
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equation at a fixed ξαg is expressed as:

σ(ξαg, ξ̆ ,η , t) = Lα(ξ̆ ,η) :
[
∇uM(ξαg,η , t)+∇um

α(ξαg, ξ̆ ,η , t)−εvp(ξαg, ξ̆ ,η , t)
]

(5.19)

where, Lα is the tensor of elastic moduli which varies spatially within the microstructure; εvp

denote the viscoplastic strain. By this expression, the additive split of the total strain tensor to

elastic and inelastic counterparts is assumed for the constitutive laws of the material constituents.

Employing the ROVME idea [39, 86], the microscale displacement field is expressed as:

um
α(ξαg, ξ̆ ,η , t) =

Nα
D

∑
A=1

Hαg
A (ξ̆ ,η ,ζ ) · ûMα

A (t)+
∫
�

hα(ξ̆ ,η , ξ̂ , η̂) : εvp(ξαg, ξ̂ , η̂ , t) dΩ̂ (5.20)

where, Ω̂ = (ξ̂ , η̂) ∈ �; Nα
D is the number of nodes of the macroscale element associated with

the enrichment domain; Hαg
A is the elastic influence function associated with the gth integration

point of the enrichment domain; and hα is the inelastic influence function induced by the inelastic

behavior within the microstructure. The influence functions are approximations to Green’s func-

tion problems defined over the microstructure, and evaluated numerically. With a slight deviation

from the ROVME approach, the influence functions are evaluated by considering the semi-periodic

boundary conditions described above. Considering element level discretization of the macroscale

displacement field through the ζ -dependent shape functions in Eq. (5.10):

uM(ξαg,η , t) =
Nα

D

∑
A=1

NA(ξαg,η ,ζ , t) ûMα
A (t) (5.21)
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and, substituting the constitutive equation (Eq. (5.19)), macro- and microscale displacement dis-

cretizations (Eqs. (5.20) and (5.21)) into Eq. (5.18), the microscale problem in weak form yields:

Nα
D

∑
A=1

[∫
�

∇wm
αg(ξ̆ ,η) : Lα(ξ̆ ,η) ·∇NA(ξαg,η ,ζ ) detJ(ξαg,η) dΩ̆

+
∫
�

∇wm
αg(ξ̆ ,η) : Lα(ξ̆ ,η) : ∇Hαg

A (ξ̆ ,η ,ζ ) detJ(ξαg,η) dΩ̆

]
· ûMα

A (t)

+
∫
�

∇wm
αg(ξ̆ ,η) : Lα(ξ̆ ,η) :

[∫
�

∇hα(ξ̆ ,η , ξ̂ , η̂) : εvp(ξαg, ξ̂ , η̂ , t) dΩ̂

−εvp(ξαg, ξ̆ ,η , t)
]

detJ(ξαg,η) dΩ̆ = 0 (5.22)

where, ∇wm
αg(ξ̆ ,η) ≡ ∇wm

α(ξαg, ξ̆ ,η). Considering the case when the microstructure deforms

elastically (εvp = 0), Eq. (5.22) yields the elastic influence function problem that can be solved for

Hαg
A :

∫
�

∇wm
αg(ξ̆ ,η) : Lα(ξ̆ ,η) : ∇Hαg

A (ξ̆ ,η ,ζ ) detJ(ξαg,η) dΩ̆ =

−
∫
�

∇wm
αg(ξ̆ ,η) : Lα(ξ̆ ,η) ·∇NA(ξαg,η ,ζ ) detJ(ξαg,η) dΩ̆;

∀A = 1,2, ...,Nα
D and g = 1,2, ...,ng (5.23)

Substituting Eq. (5.23) into the microscale weak form (Eq. (5.22)), results in the inelastic influence

function problem for hα :

∫
�

∇wm
αg(ξ̆ ,η) :Lα(ξ̆ ,η) : ∇hα(ξ̆ ,η , ξ̂ , η̂) detJ(ξαg,η) dΩ̆ =∫

�
∇wm

αg(ξ̆ ,η) : Lα(ξ̆ ,η) δ
d(ξ̆ − ξ̂ ,η− η̂) detJ(ξαg,η) dΩ̆; ∀(ξ̂ , η̂) ∈�

(5.24)

in which, δ d denotes the Dirac delta distribution. The elastic and inelastic microscale influence

function problems are linear elastic problems defined over the microstructure. Therefore, the in-

fluence functions are computed off-line, prior to a macroscale analysis.

Next, a microstructure partitioning is considered to obtain a reduced order approximation to the
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microscale problems [37, 39, 86]. The microstructure defined in the canonical form is decomposed

into NP non-overlapping subdomains (i.e., parts):

�=
NP⋃
γ=1

�γ ; �γ ∩�λ ≡ /0 when γ 6= λ (5.25)

where �γ denotes a part of the microstructure. Stress and inelastic strain fields within the mi-

crostructure are then expressed as:

σ(ξαg, ξ̆ ,η , t) =
NP

∑
γ=1

N̂γ(ξ̆ ,η) σαg
γ (t); εvp(ξαg, ξ̆ ,η , t) =

NP

∑
γ=1

N̂γ(ξ̆ ,η) µαg
γ (t) (5.26)

where, N̂γ(ξ̆ ,η) denotes a reduced model shape function:

N̂γ(ξ̆ ,η) =


1, if (ξ̆ ,η) ∈�γ

0, elsewhere
(5.27)

The stress and inelastic strain fields are therefore approximated as spatially piecewise constant

fields with unknown coefficients ,σαg
γ andµαg

γ , respectively. Substituting Eq. (5.26) into Eq. (5.19)

and using Eq. (5.27), the constitutive equation is expressed in terms of the unknown stress and in-

elastic coefficients as:

σαg
λ
(t) =

Nα
D

∑
A=1

Sαg
λA(ζ ) · û

Mα
A (t)+

NP

∑
γ=1

Pα

λγ
: µαg

γ (t) (5.28)

where,

Sαg
λA(ζ ) =

1
|Θα

λ
|

∫
Θ

αg
λ

[
Lα(ξ̆ ,η) ·∇NA(ξαg,η ,ζ )+Lα(ξ̆ ,η) : ∇Hαg

A (ξ̆ ,η ,ζ )
]

dΩ (5.29)

Pα

λγ
=

1
|Θα

λ
|

∫
Θ

αg
λ

[
Lα(ξ̆ ,η) :

∫
Θ

αg
γ

∇hα(ξ̆ ,η , ξ̂ , η̂) dΩ̂−Lα(ξ̆ ,η) N̂γ(ξ̆ ,η)

]
dΩ (5.30)

Equation (5.28) along with the evolution equations for viscoplastic slip defined for inelastic strain
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coefficients (µαg
γ ) constitute a nonlinear, history dependent system of equations that are evaluated

for the inelastic strain and stress coefficients for a prescribed macroscopic deformation state (uMα )

within the enrichment domain.

The reduced basis approximation of the microscale problem has the following characteristics:

(1) The order of the reduced basis is of NP. The number of parts is taken to be much smaller

compared to the number of degrees of freedom in a typical finite element discretization of the

microstructure domain. (2) The coefficient tensors (S and P) are functions of the elastic properties

of the microstructure constituents, the influence functions (H and h), and the scaling parameter, ζ ,

as shown in Eqs. (5.29) and (5.30). For a fixed scaling constant, the coefficient tensors are therefore

computable a-priori, similar to the influence functions. In contrast, macroscopic discretization

could include enrichment domains with varying element lengths (i.e., varying scaling constants).

An relationship for computing the coefficient tensors for an arbitrary scaling constant from those

pre-computed for a reference scaling constant can be obtained analytically following the coefficient

tensors computing procedure. Using this relationship, a single set of coefficient tensors are stored

for all enrichment domains regardless of shape.

5.4.2 The macroscale problem

Consider the component of the macroscale problem defined in Eq. (5.6) for the enrichment

domain, Ωα :

Φ̃
M
α ≡

∫
Ωα

∇wM(x,z) : σ(x, x̆,z, t) dΩ (5.31)

Using the standard Bubnov-Galerkin approach, the macroscale test function is discretized in the

local coordinate system of the enrichment domain:

wM(x,z) =
Nα

D

∑
A=1

NA(x,z) ŵMα
A (5.32)
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Employing the Voigt notation (vector-matrix form), Eq. (5.31) is rewritten as:

Φ̃
M
α =

(
ŵMα

)T
Ψ̃M

α
(5.33)

where,

ŵMα =
[
ŵMα

A
]

A∈[1,Nα
D ]

(5.34)

and

Ψ̃M
α =

∫
Ωα

BT (x,z) σ (x, x̆,z, t) dΩ (5.35)

in which, B is in the form of the standard gradient of shape functions tensor. Considering the hybrid

integration (Eq. (5.15)) and the reduced order approximation of the stress tensor (Eq. (5.26)), the

matrix form of the macroscale weak form yields:

Ψ̃M
α ≈

ng

∑
g=1

Wαg

2

∫
�

BT (ξαg,η ,ζ ) σ(ξαg, ξ̆ ,η , t) detJ(ξαg,η) dΩ̆ =
ng

∑
g=1

[Bαg(ζ )]T σαg (5.36)

where,

Bαg(ζ ) =
[
Bαg

γ (ζ )
]

γ∈[1,NP] ; Bαg
γ (ζ ) =

Wαg

2

∫
�γ

B(ξαg,η ,ζ ) detJ(ξαg,η) dΩ̆ (5.37)

and

σαg =
[
σαg

γ (t)
]

γ∈[1,NP] (5.38)

Similar to the coefficient tensors S and P, B is a function of the scaling constant, ζ . A relationship

can be obtained following the evaluation of B, such that B for an arbitrary scaling constant is

evaluated directly from a B matrix pre-computed for a reference scaling constant.

Considering the discretization of the macroscale weak form over the entire macroscopic do-

main (Eq. (5.6)), the macrocale system of equations in the global coordinate system is defined

as:

Ψ′
M ≡A

e
Ψ′

M
e = 0; ∀ Ωe ∈Ω (5.39)
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where, A is the standard finite element assembly operator. For each enrichment domain, Ωe ∈

{Ωα |α = 1,2, ...,nen}, the residual in the global coordinate system is obtained from that defined

in the local coordinate system of the enrichment domain:

Ψ′
M
e =Ψ′

M
α = R ΨM

α ; Ωe ∈Ωα(α = 1,2, ...,nen) (5.40)

in which, R is the coordinate rotation tensor between the enrichment domain (x) and the global

coordinate system (x′). The residual of the macroscale weak form in the local coordinate system

is expressed as:

ΨM
α ≡ Ψ̃M

α − Ψ̃MT
α

(5.41)

where, Ψ̃M
α is described in Eq. (5.36) and:

Ψ̃MT
α =

∫
Γt

α

NM(x,z) · t̃ dΓ (5.42)

where, NM denotes the standard shape function matrix in Voigt notation. Γt
α is the part of the

enrichment domain boundary that intersects with the Neumann boundary of the problem domain

(Γt
α ≡ Γα ∩Γt), in the absence of the microscale displacement field contribution. For macroscale

elements that discretize the substrate region (Ωe ∈ Ωs), the residual of the macroscale weak form

is expressed as:

Ψ′
M
e =Ψ′

M
s ≡ Ψ̃′

M
s − Ψ̃′

MT
s ; Ωe ∈Ωs (5.43)

where,

Ψ̃′
M
s =

∫
Ωs

BT (x′,z′) σ
(
x′,z′, t

)
dΩ; Ψ̃′

MT
s =

∫
Γt

s

NM(x′,z′) · t̃ dΓ (5.44)

Γt
s is the part of the substrate region boundary that intersects with the Neumann boundary of the

problem domain (Γt
s ≡ Γs∩Γt). The microstructural displacement remains unresolved in the sub-

strate region, Ωs, and the stress response is a function of the macroscale displacement field only.

Equation (5.39) constitutes the nonlinear system of equations for the evaluation of the macroscale
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Figure 5.5: Partition patterns of a heterogeneous microstructure.

problem. The consistent linearization and numerical evaluation algorithm for the resulting system

is performed using the Newton-Raphson scheme. The linearization and numerical evaluation for

HROVME is similar to the ROVME method provided in Chapter 3 and skipped herein for brevity.

5.5 Hourglassing Control

Numerical investigations indicate that the ROVME approach exhibit hourglassing behavior. In

this section, we demonstrate that the observed hourglassing is linked to the reduced order parti-

tioning strategy as well as the morphology of the heterogeneous microstructure. We also indicate

that this phenomenon is generally not possible for properly integrated HROVME approach.

Hourglassing is a well-known phenomenon in underintegrated finite elements, which makes

possible deformation modes associated with no energy [94, 95, 96, 97]. Hourglassing is possible

in the presence of rank deficiency in element stiffness matrices. In the context of 2D bilinear

quadrilaterals underintegrated by a single quadrature point, the rank of the element stiffness matrix

is 3, whereas a fully integrated element has a stiffness matrix of rank 5.

In the absence of inelastic effects, the element stiffness matrix for an enrichment domain using
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Table 5.1: Rank of the element stiffness matrix for the heterogeneous microstructure.

Partition (a) (b) (c) (d) (e) (f) (g) (h)
Rank of the element stiffness matrix 3 3 3 3 5 5 5 5

ROVME is expressed as [39]:

Kα =
NPα

∑
γ=1

(Bγ)
T Sγ (5.45)

where,

Bγ =

[∫
Ωα

γ

∇NA dΩ

]
A∈[1,ND]

(5.46)

Sγ =

[
1
|Ωα

γ |

∫
Ωα

γ

L ·∇NA +L : ∇Hαg
A dΩ

]
A∈[1,ND]

(5.47)

In order to demonstrate the occurrence of hourglassing in the ROVME approach, we consider a

square unit cell reinforced with a single circular inclusion. The macrostructure is discretized using

a single finite element that constitutes the enrichment domain. Employing eight partition patterns,

the element stiffness matrix for each of them is computed by Eq. (5.45) and the corresponding

rank is listed in Table 5.1. The rank deficiency occurs when the centroids of all the reduced model

parts coincide with the centroid of the macroscale element (e.g, partition pattern (a)-(d)). Sufficient

ranks are obtained when at least the centroid of one of the parts is not located at the center of the

element (e.g, partition pattern (e)-(h)).

The hybrid integration for reduced order variational multiscale enrichment method avoids the

hourglassing instabilities using Eq. (5.36) with ng > 1. Since the partition pattern of each of the

microstructure, Θαg (g = 1,2, ...,ng), is independent of the other microstructures (as shown in

Fig. 5.6 for ng ≥ 2), it is impossible for the centroid of all parts in the enrichment domain to

coincide with the center of the enrichment domain. None of the macroscale elements in Fig. 5.6

demonstrated the hourglassing instability issue when employed through the HROVME method.
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Figure 5.6: Partition patterns of an HROVME heterogeneous enrichment domain with
ng = 2.

Table 5.2: Materials parameters for phase II material in the microstructure.

E [GPa] ν A [MPa] B [MPa]
120.8 0.32 895 125

m n γ [MPa/second] q
0.85 0.2 20 1.0

5.6 Numerical Verification

The implementation of the proposed approach is verified through numerical simulations under

the 2-D plane strain condition. The performance and accuracy characteristics of the hybrid inte-

gration for the ROVME method are assessed by comparing the results with the direct ROVME

method [39, 86]. The verification simulations are conducted without thermal effects. The mi-

crostructure is taken to be a two-phase particulate composite with circular inclusions as shown in

Fig. 5.7(b). Phase I (particle) is taken to be elastic with Young’s modulus (E) of 395 GPa and Pois-

son’s ratio (ν) of 0.25, where phase II matrix behaves elasto-viscoplastically. The viscoplasticity

model employed to describe the matrix behavior is standard and described in detail in Chapter 2.

The model relies on the Perzyna formulation to describe the viscoplastic slip evolution, whereas a

Johnson-Cook type model is used to describe hardening evolution. Table 5.2 provides the summary

of the material parameter values used in this section. Phase III denotes the homogenized composite
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Figure 5.7: Model sketch and discretization of the uniaxially loaded specimens: (a) the
HROVME macroscale model; and (b) the microstructure model.

used in the substrate region, the properties of which are obtained through the rule of mixtures and

taken to remain elastic [81, 83]. The Young’s modulus and Poisson’s ratio of the homogenized

substrate are 170 GPa and 0.3, respectively.

5.6.1 Uniaxially loaded specimens

We start by the verification of the proposed approach in the context of uniaxial loading. The

macroscale problem domain and its discretization is shown in Fig. 5.7(a). The domain is dis-

cretized into 4 quadrilateral elements of high aspect ratio. Element distortion angle, θ , is used to

characterize the shape of the elements. The discretization of the reference ROVME model con-

siders a structured mesh, where each element coincides with a microstructure. The size of the

microstructures is 0.1 mm×0.1 mm. The reduced order models in both the proposed and the refer-

ence ROVME methods employ a 2-part partitioning of the microstructure according to the phases.

A uniform pressure load is applied on the right edge of the numerical specimens, which linearly

increases from 0 to 2500 MPa in 360 seconds, at the rate of 6.94 MPa/second. The time step

size employed in the simulations is 18 seconds. Further refinement of the time step size does not

change the results significantly. Considering two integration points in the scale separable direction

(ng=2), three HROVME specimens are tested with θ = 90o and size scale constants of ζ =0.1, 0.05

and 0.02.
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Figure 5.8: Errors in displacement field for the uniaxially loaded specimens with different
ζ values.

To investigate the accuracy of the HROVME approach compared with the ROVME method,

the error over the enrichment region at an arbitrary time, t, is evaluated by:

eφ (t) =

nen
∑

α=1

NP
∑

γ=1

∥∥∥φ
ROVME(t)−φ

HROVME(t)
∥∥∥

2,Ωα
γ

nen
∑

α=1

NP
∑

γ=1

∥∥∥φ
ROVME(t)

∥∥∥
2,Ωα

γ

(5.48)

where, φ ROVME and φ HROVME denote a response field obtained from the reference and the proposed

models, respectively. ‖ ·‖2,Ωα
γ

is the discrete L2 norm of the response field computed over Ωα
γ . The

error in displacement field is presented in Fig. 5.8 as a function of the applied pressure amplitude

and ζ . The accuracy of the proposed approach increases with decreasing ζ . This result agrees with

the fundamental property that the hybrid integration scheme is weakly convergent to the reference

approach at the limit ζ → 0. High accuracy is achieved for the simulations with less than 1%

maximum error. For each of the specimen, the error remains constant in the elastic state (before

pressure reaches 1250 MPa) and starts to accumulate at the onset of the inelastic deformation.

Compared with the reference simulations, the computational time improvement of the proposed

method is 6.43 times for ζ = 0.1, 9.54 times for ζ = 0.05 and 23.28 times for ζ = 0.02.

HROVME simulations with various distortion angles, θ , are also performed. When θ=90o,
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Figure 5.9: Errors in displacement field for the uniaxially loaded specimens with different
θ and: (a) ζ =0.1; and (b) ζ =0.02.

the specimen is discretized into four rectangular, undistorted, enrichment domains, while θ 6= 90o

implies distortion, with lower values indicating more significant distortion of the enrichment do-

mains. Figure 5.9 presents the displacement errors as functions of the applied pressure amplitude,

distortion and ζ . The plots indicate accuracy degradation as the angle, θ , decreases. The dis-

cretization with lower ζ is less sensitive to distortion induced accuracy degradation. The distortion

effect is relatively small when ζ/tanθ ≤ 0.03.

5.6.2 A ring specimen

To further verify the proposed approach, the accuracy is assessed through a ring specimen under

displacement controlled loading condition as shown in Fig. 5.10. The inner and outer diameters

of the ring are 24.46 mm and 26.46 mm, respectively. Only a quarter of the ring is modeled due

to symmetry. Along the radius direction, both of the models are discretized into 10 enrichment

domains. In the hoop direction, the HROVME and ROVME specimens are discretized into 20

and 200 enrichment domains, respectively. The ζ value of the HROVME enrichment domains

is therefore 0.1. Along the scale separable direction, 2 integration points are employed for the

hybrid integration (ng=2). All of the macroscale elements are taken as enrichment domains and

their distortion is not significant (ζ/tanθ < 0.03). The maximum amplitude of the displacement

controlled load is 1 mm, at the rate of 2.8×10−3 mm/second. The time step size is set to 9 seconds.
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Figure 5.10: Model sketch and discretization of the ring specimen: (a) the HROVME
macroscale model; and (b) the ROVME macroscale model.
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Figure 5.11: Error in equivalent stress for the ring specimen.
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Figure 5.12: Model sketch and discretization of the beam specimen: (a) the HROVME
macroscale model; and (b) the ROVME macroscale model.

The error in equivalent stress for the HROVME method compared to the reference model is

plotted in Fig. 5.11 as a function of the magnitude of the prescribed displacement load. The

specimen deforms elastically until the load reaches 0.4 mm. At the beginning of the inelastic state,

the error slightly increases and then drops back as the size of the inelastic region grows in the

structure. The maximum error over the simulation in terms of equivalent stress is less than 9%.

The HROVME simulation is 6.07 times faster than the ROVME model which demonstrates the

computational efficiency of the proposed approach.

5.6.3 A beam specimen

The proposed HROVME method is further verified using the numerical analysis of a beam. In

this case, a substrate region is also included. A set of HROVME simulations with different number

of integration points (ng = 2,3,4,5) in the scale separable direction (x-direction in the current

example) are performed to assess the accuracy characteristics of HROVME. The dimension of the

specimen is 40 mm×1 mm and only half of the beam is modeled due to symmetry. The sketch and

discretization of the HROVME and ROVME macroscale problems are presented in Fig. 5.12(a)

and (b), respectively. The HROVME macroscale model contains 80 elements of which the 20 dark

elements in the top layer are taken as enrichment domains with ζ = 0.1. The reference model is
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Figure 5.13: Errors in equivalent stress for the beam specimen with different number of
integration points in the scale separable direction.

discretized into 755 quadrilateral macroscale elements of which the top layer of elements (200 dark

shaded) are enriched. The remainder of the elements remains unenriched and modeled with the

substrate material properties. A uniform pressure load is applied on the top edges of the specimens

which linearly increases to 5 MPa at the rate of 1.39×10−2 MPa/second. The employed time step

size is identical to the previous example.

Figure 5.13 shows the equivalent stress error as a function of load amplitude and number of

integration points employed in the scale separable direction. Similar to the previous examples, the

errors are stable within the elastic state. Inelastic deformation occurs when the pressure is approx-

imately 1.6 MPa. The results demonstrate that the accuracy of the HROVME model is enhanced

by employing higher number of integration points in the scale separable direction, at the expense

of higher computational cost. The computational efficiency of the proposed approach compared to

the reference model are 6.95, 4.82, 3.91 and 3.5 times for ng=2, 3, 4 and 5, respectively.

5.7 A Coupled Transport-Thermo-Mechanical Problem

The capabilities of the proposed computational framework is demonstrated by performing a

coupled transport-thermo-mechanical analysis of a stiffened skin structure. Figure 5.14 illustrates

the geometry and loading conditions of the structure. where P̃ is the applied pressure amplitude, T̃1
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loading conditions.
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Table 5.3: Materials parameters for the transport-thermo-mechanical problem.

Material type E0 [GPa] 1 ν A [MPa] B [MPa] m
Phase I 130 0.32 600 1000 0.85
Phase II 107 0.32 350 250 0.85
Substrate 120.8 0.32 500 700 0.85

Material type n F [MPa] γ[MPa/second] q αT [1/oC]

Phase I 0.900 110 20 1.0 7.3×10−6

Phase II 0.975 110 20 1.0 8.3×10−6

Substrate 0.930 110 20 1.0 7.7×10−6
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Figure 5.15: Constitutive response of the constituent materials at various temperature and
aggressive agent concentration: (a) phase I; (b) phase II; and (c) substrate material.

and T̃2 are prescribed boundary temperatures, c̃0 denotes the initial aggressive agent concentration

and c̃∞ is the prescribed boundary concentration. In this example, we are interested in modeling

the effect of the ingress of an aggressive environmental agent, e.g. oxygen in the current example.

At high temperature, the aggressive agent ingress is modeled as Fick’s diffusion. The diffusion

coefficient is taken to be temperature dependent [53]:

D(T ) = D0 exp
(
− Q

RT

)
(5.49)

where, D0=62 mm2/second is the diffusivity at the room temperature, Q=126 kJ/mole the activation

energy, R the universal gas constant and T the temperature.

The temperature effect on the mechanical behavior of the constituent materials is through tem-

perature dependent elastic moduli, yielding and the thermal expansion which are considered fol-

1E0 denotes the Young’s modulus at the room temperature.
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Figure 5.16: Time history of loading conditions for the stiffened panel specimen.

lowing the algorithms in Ref. [86]. The viscoplastic hardening of the constituent materials are

taken to be a function of the aggressive agent concentration and temperature through the modified

Johnson-Cook model as [53]:

σy = [A+B(ε̄vp)n +Fc] [1− (T ∗)m] (5.50)

where, A, B, F , m and n are material parameters; c the aggressive agent concentrate and T ∗ the

non-dimensional temperature as defined in Eq. (4.46). A two-phase microstructure is considered

for the material. The material properties of the constituent materials are listed in Table 5.3. The

Young’s moduli of the materials linearly vary as a function of temperature with 0.0381 GPa/oC,

0.0314 GPa/oC and 0.0354 GPa/oC for phase I, II and substrate materials. Phase I and II behave

similarly to high and low yield stress titanium material, respectively. The properties of the sub-

strate material are obtained through mixture theory. At 0.056/second of strain loading rate, the

constitutive responses of the constituent materials under various temperature and concentration

conditions are plotted in Fig. 5.15.

The top and bottom surfaces of the structure are exposed to 400oC and 150oC, which results in

a non-uniform temperature distribution as shown in Fig. 5.17. Under this steady state temperature

condition, aggressive agents ingress into the structure resulting in a non-uniform distribution of

concentrations as shown in Fig. 5.18 after an exposure duration of 50 hours. Along the surfaces of
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Figure 5.18: Aggressive agent concentration contour of the stiffened panel specimen.
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Figure 5.20: Macroscale discretization of the HROVME model.
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Figure 5.21: Resolved microstructure of the HROVME model.
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Figure 5.22: Center deflections along with pressure load.

Figure 5.23: Position of the critical enrichment domain (dashed).
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Figure 5.24: Stress countours of the critical microstructure for specimen subjected to: (a)
transport-thermo-mechanical loads; (b) thermo-mechanical loads; and (c) only mechanical

load.

the panel and the hat stiffener, the aggressive agent diffuses into the structure due to the induced

concentration gradients. The region near the hot boundary has significant diffusion whereas, the

region near the cool surface does not exhibit significant diffusion. The detailed concentration

distribution as a function of the distance to the ambient surface is plotted in Fig. 5.19 for near hot

and cold surfaces. The structure is then subjected to a pressure load which linearly increases to 5

MPa.

In order to capture the effect of the aggressive agent on the structural behavior, two layers of

enrichment domains are embedded along the surfaces of the specimen as illustrated in Fig. 5.20.

The thickness of each layer is 0.5 mm. A two-phase microstructure, as shown in Fig. 5.21, is used

within the enrichment domains. The microstructure is discretized into 20 parts, 2 parts associated

with the phases in each of the 10 layers. The number of integration points in the scale separable

direction of the the hybrid integration is 2 (ng=2). In view of the size of the structure, direct

resolution of each microstructure along the surface region is computationally prohibitive and the

reference approach is not employed in this study. Three cases of loading conditions are investigated

to assess the effect of field coupling on the mechanical response including (a) a transport-thermo-

mechanical case, (b) a thermo-mechanical case without considering aggressive agent ingress and
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(c) a pure mechanical case at room temperature.

Figure 5.22 shows the deflection of the center of the stiffened panel for the three cases as a func-

tion of applied load. When contrasting cases (b) and (c), the presence of high temperature clearly

reduces the overall stiffness of the structure and induces inelastic deformations with notably larger

magnitudes. In the presence of aggressive agent ingress, case (a), the specimen exhibits a clearly

stiffer response than case (b). We note that although diffusion affects the structure along a narrow

surface region, the deflection change in the inelastic stage is significant. Maximum stress is con-

tained by the critical enrichment domain right next to the top center point of the panel, as shown in

Fig. 5.23. The local equivalent stress distribution within the microstructure of the critical enrich-

ment domain is presented in Fig. 5.24 for all three simulations. The transport-thermo-mechanical

specimen, case (a), demonstrates significantly higher equivalent stress due to the ingress effect and

high temperature induced expansion. More importantly, the HROVME method has the capability

of capturing the stress gradient induced by the aggressive agent concentration variation across the

thickness of the enrichment domain, as shown in Fig. 5.23(a). In the absence of aggressive agent,

the local responses of the thermo-mechanical and mechanical simulations (Figs. 5.23(b) and (c))

exhibit much uniform stress distributions within the microstructure.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

This dissertation provided a computational framework developed for the scale inseparable

multiscale modeling of structures subjected to extreme environments. It contains the formula-

tion and implementation of the variational multiscale enrichment (VME) method, including direct

VME method, reduced order variational multiscale enrichment (ROVME) method for mechani-

cal and thermo-mechanical problems, and hybrid integration for reduced order variational multi-

scale enrichment (HROVME) method for the analysis of surface degradation problems subjected to

transport-thermo-mechanical loading conditions. Numerical verifications were performed which

demonstrate the high accuracy and computational efficiency of the proposed framework. The prin-

ciple achievements of this dissertation are summarized below.

Chapter 2 presented the formulation and implementation of the variational multiscale enrich-

ment method for the analysis of elasto-viscoplastic problems. The scale inseparable feature was

represented by the relatively insignificant scale size difference and strongly coupling effect be-

tween the scales. A one-parameter family of mixed boundary conditions that range from Dirichlet

to Neumann was employed to study the effect of the fine scale boundary conditions on accuracy.

The inelastic material behavior was modeled using Perzyna type viscoplasticity coupled with flow

stress evolution idealized by the Johnson-Cook model. Numerical verifications were performed

to assess the performance of the proposed approach against the direct finite element simulations.

The results of verification studies demonstrated that VME with proper boundary conditions can

accurately model the inelastic response accounting for material heterogeneity.

Chapter 3 provided the formulation and implementation of a novel reduced order variational

multiscale enrichment method for elasto-viscoplastic problems. This method provided a hierarchi-

cal model order reduction technique based on the eigenstrain concept to approximate the fine scale
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response resolved at subdomains of interest. By eliminating the requirement of direct fine scale dis-

cretization, the computational effort associated with the variational multiscale enrichment method

was significantly reduced. The model order reduction was achieved in the scale inseparable inelas-

tic problem by automatically satisfying the microscale equilibrium state through the eigenstrain

concept and coarse discretization of inelastic strain fields within the microscale domain. Numeri-

cal verifications were performed to assess the capabilities of the proposed methodology, against the

direct VME method with detailed fine scale resolutions. The verification results revealed high ac-

curacy and computational efficiency of the reduced order VME framework for elasto-viscoplastic

problems with material heterogeneity.

Chapter 4 introduced the formulation and implementation of the ROVME method for thermo-

mechanical problems. The ROVME approach was extended to model the inelastic behavior of

heterogeneous structures, in which the constituent properties were temperature sensitive. The

temperature-dependent coefficient tensors of the reduced order method were approximated in an

efficient manner, retaining the computational efficiency of the reduced order model in the presence

of spatial/temporal temperature variations. Numerical verifications were performed to assess the

efficiency and accuracy of the proposed computational framework. The results of the verifica-

tions demonstrated that ROVME retains reasonable accuracy and achieves high efficiency in the

presence of thermo-mechanical loads.

Chapter 5 presented the formulation and implementation of a hybrid multiscale integration

scheme for multiscale problems that exhibit different scale separation characteristics in different

directions. The proposed approach employed the key ideas of the variational multiscale enrichment

at directions that exhibit poor scale separation, and computational homogenization at directions

with good scale separability. The proposed approach is particularly attractive for surface degra-

dation problems in structures operating in the presence of aggressive environmental agents. For-

mulated in the context of variational multiscale principles, the integration scheme took advantage

of homogenization-like integration along directions that exhibit scale separation. The proposed

integration scheme was applied to the reduced order variational multiscale enrichment (ROVME)
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method in order to arrive at a computationally efficient multiscale solution strategy for surface

degradation problems. Numerical verifications were performed to verify the implementation of the

hybrid multiscale integrator. The results of the verifications revealed high accuracy and compu-

tational efficiency, compared with the direct ROVME simulations. A coupled transport-thermo-

mechanical analysis was presented to demonstrate the capability of the proposed computational

framework.

The computational framework proposed by the current dissertation has the capabilities of ac-

curately and efficiently modeling structural components subjected to extreme environments. It is

especially beneficial for the analysis of structural components with high dimensional aspect ratio,

such as thin and long panels, in the presence of surface degradation phenomenon. Considering

the coupling effects of transport-thermo-mechanical problems, the proposed VME framework ac-

curately predicts the structural responses by resolving the material heterogeneity in the critical

directions of the surface degradation.

6.2 Future Work

To expand the applicability of the proposed computational framework, particularly to model

structures operating in severe environments, several issues remain to be resolved. First, damage

models, such as Johnson-Cook damage model [77], should be considered to predict the initiation

and propagation of surface cracks. In its current state, the proposed framework has the capability of

accurately tracking the response evolution in the structures. Appropriate failure initiation criteria

should be employed based on the associated material responses. Another challenge for the predic-

tion of surface crack propagation is the choice of microscale boundary conditions. The microscale

boundary conditions considered in the current dissertation, homogeneous Dirichlet boundary con-

ditions and mixed boundary conditions, do not permit communication of discontinuous displace-

ment field among the enrichment domains. Additional investigations should be performed to select

or develop appropriate boundary conditions for the microscale problems, in order to capture the

cross-domain crack propagation. When the crack initiation and propagation are successfully mod-
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eled, the effect of the mechanical response on the aggressive agents ingress problems would be

considered accurately. As aggressive agents transport freely along the crack paths, material failure

permits faster ingress procedure of the aggressive agents. Second, material models considering fa-

tigue loading conditions, such as acoustic loads, should be incorporated into the current framework

for the fatigue life prediction of the structures. Currently, the computational framework only al-

lows monotonic mechanical loads. Fatigue loading conditions and the associated material models

need to be implemented in the context of the VME framework. Third, high fidelity microstructure

models, such as crystal plasticity finite element method, should be employed for the miscroscale

problems. In the presence of high fidelity microscale problems, the environmental exposure in-

duced material property changes and microstructural topology evolutions would be characterized

in more accurate ways, especially for metal materials. The localized damage initiation at the scale

of the material microstructure near stress risers would be captured accurately, such as persistent slip

bands, high-angle grain boundaries, triple junctions, microtextured regions and others. To achieve

high computational efficiency, the high fidelity models should be implemented in the context of

hybrid integration and reduced order variational multiscale enrichment method. New formula-

tion and implementation strategies should be devised based on the available model order reduction

techniques in the high fidelity modeling area. Fourth, higher order enrichment domains is desirable

in view of modeling structures with high gradient responses. As C0 continuous elements is em-

ployed in the current framework, higher order macroscale elements (e.g., C1 continuous elements)

should be implemented to enhance the capability of the variational multiscale enrichment frame-

work. Last but not the least, an adaptive enrichment region selection scheme should be developed

from the perspective of further improving the computational efficiency of the proposed framework.

In the current state, the enrichment domains are pre-selected at the beginning of the simulations,

according to the characters of the problems or results of trial simulations. The adaptive enrichment

region selection scheme would allow the evolution of the enrichment region, therefore avoid un-

necessarily enriched subdomains or overlooked critical subdomains. The major challenge exists

in the development of the adaptive selection scheme is the accurate transformation between an
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unenriched element with phenomenologically represented materials and a enriched domain with

resolved material heterogeneities, maintaining the balance of energy and response continuity along

the microscale boundaries.
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