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Chapter 1

INTRODUCTION

1.1 Motivation

Environment exposure induced deterioration of material and related structural failures have
been a difficult problem to address from both physical and computational perspectives. The prob-
lem is quite pervasive ranging from stress corrosion to hydrogen embrittlement and oxidation of
metals to sulfate and chloride attack in concrete and hydration induced leaching in polymers. In
surface degradation problems, an aggressive environmental agent attacks the surface of the struc-
ture inducing property changes such as embrittlement, cracking and reduction of monotonic and
cyclic strength and life as a consequence. The property changes could be due to phase transforma-
tion activated by the diffusing agent or lattice strains due to elevated concentrations and pile-ups
around the lattice imperfections. In the presence of high temperature, the degradation processes is
accelerated and the thermal deformation would cause more critical responses in the structures.

In certain problems, the structural property degradation is severe even for a very small thick-
ness of affected region. For instance, titanium alloys, which are candidate structural materials for
hypersonic aircraft, are subjected to formation of a brittle case of oxygen rich layer on its surface
under the severe thermo-mechanical environment. While the brittle case is of the order of a few
tens of microns thick, the presence of acoustic loads threaten micron cracks within the brittle case
to rapidly propagate and cause structural failure. From the computational perspective, this calls for
a very refined analysis with resolved material heterogeneities around exposed surfaces. In order to
retain computational tractability, the refinement cannot be extended to the entire structure.

Global-local numerical approaches are well-suited to address such problems. These methods
attempt to capture the fine scale behavior at small subdomains of the problem, whereas a coarse
discretization and modeling is used to approximate the behavior in the remainder of the problem

domain. The reason for the particular interests in the small subdomains is determined by the na-



ture of the problem, such as strain localization [1] or environmental degradation [2]. Starting from
the early works of Mote [3], a number of global-local methods have been proposed including the
global-local finite element method [4, 5, 6, 7], the S-version finite element method [8], the domain
decomposition method [9], the generalized/extended finite element method [10, 11, 12, 13], multi-
scale coupling based on Lagrange multiplier method [14], among others. These approaches permit
the incorporation of additional geometric features such as crack tips [8, 10, 15], as well as material
heterogeneities [9] at local subdomains with accurately captured load fields and response mecha-
nisms. However, for many problems, the computational complexity associated with resolving the
local features even for small subdomains could be prohibitive, notwithstanding a few examples
based on very high performance computing [16].

A number of recent multiscale computational methods are also well suited to address problems
that exhibit global-local character. Particularly the multiscale methods which permit the evalua-
tion of scale inseparable problems such as multiscale finite element method [17, 18], multiscale
aggregating discontinuities [19, 20], numerical subgrid upscaling [21, 22], variational multiscale
enrichment [2, 23, 24] among others have been shown to successfully address global-local prob-
lems. The common idea behind these approaches is the additive split of the principal response
fields into macro (or coarse) and micro (or fine) components with equal order of magnitude (in
contrast to scale separable models, where the fine component is considered a perturbation to the
coarse component [25, 26, 27, 28]). The coarse component of the response is evaluated using a
coarse grid whereas the fine scale response is evaluated using a fine grid resolving the features
of the small scales. Similar to earlier global-local methods, the computational cost of these ap-
proaches are large enough to prohibit evaluation of realistic problems.

The high computational expense issue is typically overcome using massively parallel simula-
tions (e.g., [29]), reduced order approximations to the microstructure problems, or a combination of
both. In the context of homogenization methods, a number of order reduction approaches, such as
generalized method of cells [30], transformation field analysis [31, 32, 33], fast Fourier transforms

(FFT) [34], proper orthogonal decomposition [35, 36] and eigendeformation-based model order



reduction [37, 38, 39], among others were successful in reducing the complexity of microstructure
computation for linear and nonlinear problems. In the context of global-local methods, FFT was
employed to model the thermo-elastic behavior of alumina/Al composites [40, 41].

Variational multiscale method (VMM) originally proposed by Hughes et al. [42] evaluates the
fine scale response of the global-local problem analytically or semi-analytically through variational
projection [1, 43]. The projection based approach eliminates the need to resolve the fine scale be-
havior, hence providing a tremendous computational efficiency. Garikipati and Hughes [44, 45]
employed the analytical fine scale Green’s operator for strain localization problems. Garikipati [46]
further incorporated fine scale strain gradient theories into the variational multiscale continuum
formulation. Hughes and Sangalli [47] optimized the projection operator for advection-diffusion
problems. Masud and Xia [48] developed a stabilized VMM based on variational projection for
small strain inelasticity. Masud and Truster [49] extended the stabilized VMM for nearly incom-
pressible elasticity. Yeon and Youn [50] performed variational multiscale analysis on the elasto-
plastic deformation problem using a meshfree method. Hund and Ramm [43] employed a con-
tinuum damage mechanics model in the context of the numerical subgrid upscaling scheme to
address the strain localization problem. Arbogast [21, 22] and Juanes and Dub [51] performed the
projection through numerical Green’s functions to solve porous media flow problems. However,
the projection approach has not been employed to address complex response mechanisms induced
by material heterogeneities at the fine scale. A reduced order multiscale method is desirable to
address global-local problems with resolved material heterogeneities.

In addition to pure mechanical problems, performance of structures operating in extreme thermo-
mechanical environments is also marked by the formation of hot-spots. Hot-spots refer to local-
ized regions within the domain of the structure that are exposed to higher rates of heating, higher
stresses or a combination of both. Hot-spots are considered important as they serve as failure
initiation sites (such as, shock-boundary layer interaction-induced localized heating in hypersonic
aircraft components [52, 53, 54]), and could ultimately define structural survivability. From the

modeling perspective, deformation and failure mechanisms within hot-spots may be accurately



captured using thermo-mechanical multiscale computational approaches, where the microstruc-
tural heterogeneities are resolved at least within a critical subdomain of the structure. The majority
of the previous efforts on thermo-mechanical multiscale modeling employed computational ho-
mogenization principles (e.g., Golanski et al. [55], Ghosh et al. [56, 57], Yu and Fish [58], Zhang
et al. [59], Ozdemir et al. [60], Muliana et al. [61, 62]), which are valid at the scale separation
limit. An efficient multiscale method is missing for the analysis of thermo-mechanical problems
with material heterogeneities that exhibit scale inseparable features.

Considering structures subjected to surface degradation induced by coupled transport-thermo-
mechanical loading conditions, the detailed material heterogeneity resolution within the surface
region is required due to the significant material property changes. Over the localized surface
regions of the problem domains, significant structural response variations are observed along the
critical directions, such as the direction of aggressive agent diffusion. The material heterogeneity
in these directions has essential contributions to the accuracy of the modeling results and has to
be resolved in the context of scale inseparable problems. In contrast, the material heterogeneity
in the other directions is not of great importance, due to the directionally smooth variation of the
structural behaviors. With the scale separation assumption, the material heterogeneity in these
directions can be homogenized to improved the computational efficiency of the simulations with-
out significant accuracy loss. A hybrid integration scheme is required to enable the directionally

different material heterogeneity treatment within the localized surface region.

1.2 Dissertation Goal and Objectives

The primary goal of the current dissertation is to devise a computationally efficient multiscale
framework to accurately model the response of structures subjected to high temperatures, mechan-
ical loads and environmental exposure. The framework would have the capability of resolving
material heterogeneities at the subdomains of particular interests, while modeling the structural
behaviors with coarse material representations in the remainder of the problem domain. High

computational efficiency of the computational framework is expected for the analysis of struc-



tural scale problems. The response coupling effects of the transport-thermo-mechanical problems
need to be considered properly, in order to accurately model structures subjected to extreme envi-
ronments. To achieve the dissertation goal, the following objectives and the associated tasks are

accomplished.

Objective 1 Build the foundation of the proposed framework with an approach that can address
scale inseparable inelastic problems with resolved material heterogeneity at subdomains.

Task 1.1: Develop the variational multiscale enrichment (VME) method for elasto-viscoplastic
problems (2-D Perzyna and Johnson-Cook model).

Task 1.2: Investigate the microscale boundary effect with the presence of plasticity, using

mixed boundary conditions.

Objective 2 Improve the computational efficiency of the VME method without significant accu-
racy loss.

Task 2.1: Develop the reduced order variational multiscale enrichment (ROVME) method for
elasto-viscoplastic problems, by extending the eigenstrain-based reduced order modeling to scale
inseparable problems.

Task 2.2: Verify the accuracy and computational efficiency of the proposed ROVME method.

Objective 3 Predict multiscale structural response for structures subjected to coupled thermo-
mechanical loading conditions

Task 3.1: Generalize the ROVME method to incorporate the temperature effects, including
thermal expansion and temperature dependent material properties.

Task 3.2: Investigate the performance of the proposed computational framework for thermo-

mechanical problems

Objective 4 Modeling structures subjected to extreme environments
Task 4.1: Develop a hybrid integration for reduced order variational multiscale enrichment

(HROVME) method.



Task 4.2:  Verify the applicability of the proposed approach in evaluating structural scale

surface degradation problems.

1.3 Dissertation Organization

The first research objective is achieved in Chapter 2 which provides the formulation and im-
plementation of the variational multiscale enrichment (VME) method for elasto-viscoplastic prob-
lems. Chapter 3 details the reduced order variational multiscale enrichment method (ROVME)
which significantly improves the computational efficiency of the VME method. Chapter 4 de-
scribes the ROVME method for coupled thermo-mechanical problems that exhibit global-local
character. Chapter 5 presents the hybrid integration for reduced order variational multiscale enrich-
ment (HROVME) method to address problems subjected to extreme environments. Conclusions of

the current dissertation and future works are provided in Chapter 6.



Chapter 2

VARIATIONAL MULTISCALE ENRICHMENT METHOD WITH MIXED BOUNDARY
CONDITIONS FOR ELASTO-VISCOPLASTIC PROBLEMS

2.1 Introduction

This chapter presents the formulation and implementation of the variational multiscale enrich-
ment (VME) method to address inelastic material behavior in the context of deformation prob-
lems. The novel contributions of the chapter are: (1) The VME approach is formulated for elasto-
viscoplastic material behavior: the previous work on VME included only elastic material behav-
ior [2, 23]; and (2) the performance of the inelastic VME formulation was assessed as a function of
the choice of boundary conditions proposed in Ref. [23] in the viscoplastic regime. In the proposed
approach, the fine scale representation not only approximates the coarse grid residual, but also ac-
counts for the material heterogeneity. The scale inseparable feature is represented by the relatively
insignificant scale size difference and strong coupling effect between the scales. A one-parameter
family of mixed boundary conditions that range from Dirichlet to Neumann is employed to study
the effect of the choice of the boundary conditions at the fine scale on accuracy. The inelastic
material behavior is modeled using Perzyna type viscoplasticity coupled with flow stress evolu-
tion idealized by the Johnson-Cook model. Numerical verifications are performed to assess the
performance of the proposed approach against the direct finite element simulations. The results of
verification studies demonstrate that VME with proper boundary conditions accurately model the
inelastic response accounting for material heterogeneity.

The remainder of this chapter is organized as the follows: Section 2.2 provides the problem
statement and governing equations of the boundary value problems. Section 2.3 details the varia-
tional multiscale enrichment methodology for solving inelastic mechanical problems with elasto-
viscoplastic material model. Section 2.4 describes the computational implementation of the pro-

posed methodology, including finite element discretization of the problems and solution strategy.
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Figure 2.1: The schematic representation of the overall problem domain, enrichment region
and an enrichment domain.

Numerical experiments are provided in Section 2.5, including the effect of boundary conditions on

accuracy of the proposed computational framework.

2.2 Governing Equations

We start by defining the governing equations that idealize the inelastic deformation within the
problem domain. Let Q C R"d be the domain of the structure as illustrated in Fig. 2.1, where ng

is the number of spatial dimensions. The equilibrium equation is expressed as:

V.oox,t)=0;, xeQ, t€]0,1t, (2.1)

in the absence of the body forces. x and ¢ respectively denote the position and time coordinates;
o is the stress tensor; V the gradient operator; (-) the inner product; and ¢, is the end of the

observation period. The boundary conditions are given as:

Dirichlet B.C.:  u(x,t) = u(x,?); xel™ (2.2)

Neumann B.C.: o (x,t)-n=1{(x,t); xel” (2.3)



where, 1 is the prescribed displacement along the boundary subdomain, I'*; { the prescribed trac-
tion along the boundary subdomain, I'". The decomposition of the external boundary is such that
r=r"ulandT*“NI" = 0.

The description of the constitutive relationship over the parts of the domain that remain unre-
solved, as well as the parts that resolve the micro-heterogeneity is taken to be elasto-viscoplastic.

The constitutive equation is expressed in the rate form as:
d(th):L(th) : [s'(x)t)—é‘}p(x’t)] (2.4)

in which, L is the tensor of elastic moduli; € and €"? denote total strain and viscoplastic strain
tensors, respectively. The superposed dot indicates material time derivative and (:) the double inner
product. The evolution of the viscoplastic strain is idealized based on the Perzyna’s viscoplastic

model [53]:
) f qaf
v (LN 2L
15 —}/< y> 3 (2.5)

where, oy denotes the flow stress; y the fluidity parameter; g the viscoplastic hardening exponent;
(-) the Macaulay brackets (i.e., (-) = ((-)+]-|)/2); and f the loading function defined based on
the classical J, plasticity:

f(o,e") =36 —0,(8"P) (2.6)

in which, & denotes the second invariant of the deviatoric stress tensor, s = o —tr(o)d/3; tr(-) the

trace operator;  the Kronecker delta; and £"7 is the effective viscoplastic strain defined as:

2
gV =/ 3 gvP : gvp 2.7

The flow stress is a function of the effective viscoplastic strain using a reduced version of the
Johnson-Cook model:

0, = A+ B(E"P)" (2.8)



where, A, B and n are material parameters. We note that the standard Johnson-Cook model includes
the effect of strain rate and temperature into the flow equation. The strain rate effect is modeled
directly using the Perzyna formulation and the temperature dependence is suppressed for simplic-
ity. All materials in the problem domain are assumed to follow the same general constitutive form,
with separate material properties sets defining the behavior of each constituent.

Equations (2.1)-(2.8) constitute the strong form equations of the elasto-viscoplastic problem.
The proposed enrichment approach operates within a variational setting. The equilibrium equation

along with the boundary conditions is expressed in the weak form as follows:

Findu € ¥ x [0, t,] such that:

/QVW co(x,1) dQ — 1“,wf(x,z‘) dU =0; VYw € [Hy(Q)]" (2.9)

along with the constitutive equations (i.e., Egs. (2.4)-(2.8)) that relate the displacement field to the

stress field. The trial space for the displacement field is:
¥ ={ae[H (Q)]™a=10 on xeT"} (2.10)

in which, w is the test function; H'(Q) is the Sobolev space of functions with square integrable
values and derivatives defined in the domain, Q; H(} (Q) is the subspace of functions in H'(Q) and

that are homogeneous along the domain boundary, I'.

2.3 Variational Multiscale Enrichment (VME)

The governing equations (Egs. (2.1)-(2.8)) are evaluated using the variational multiscale en-
richment method. In this approach, the problem domain, €2, is decomposed into two non-overlapping

subdomains, as demonstrated in Fig. 2.1:

Q=0°UQ" O°'NQl=0 (2.11)
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where, Q" denotes the enrichment region, in which the response is accurately characterized by
modeling and resolving at the scale of microstructural heterogeneities. In the substrate region Q°,
coarse scale modeling is taken to be sufficient to accurately capture the mechanical response. It
is implicitly assumed that the domain is large enough to computationally prohibit full resolution
of the microscale heterogeneities throughout the structure. The enrichment region is further parti-
tioned into enrichment (microstructural) domains. The partitioning is done such that the resulting
enrichment domains are simple such that they can be represented by a single finite element at the
coarse scale:
Nen
Q"= Qu: QuNQp=0 when o #f (2.12)
o=1
where, ne, denotes the total number of enrichment domains. Within each enrichment domain, the

microscale heterogeneity is resolved and numerically evaluated.

The boundary of an enrichment domain, ¢, can be decomposed into the following components:
[y =0Qy =Turs, urs ur, (2.13)

in which, I'}, is the part of the boundary that intersects with the substrate region boundary (I}, =
[ NAQ®); T is the part of the boundary that intersects with the Dirichlet boundary of the problem
domain (I'Y, =T, NT%); T, is the part of the boundary that intersects with the Neumann boundary

of the problem domain (I}, = [', NI™); and, ' is the inter-enrichment domain boundaries:

rn=|Jrh (2.14)
BEln
where the neighbor index set of enrichment domain Q, can be expressed as: Iy, = { < nen| Lop #
0}; [gp is the inter-enrichment domain boundary between & and f§ domain (I'pg = ¢ Np); rﬁ
and Fg denotes the a and f side of the inter-enrichment domain boundary, respectively.

The displacement response field is decomposed into macroscale and microscale contributions

11



through additive two-scale decomposition:

u(x,r) =uM(x,1) + nf’ T (Qo)ugy (x,1) (2.15)

a=1

where, superscripts M and m denote the macroscale and microscale response fields, respectively,

and

1, ifxeQq
H(Qq) = (2.16)

0, elsewhere
Equation (2.16) ensures that the microscale displacement field, u};, is nonzero only on the closure
of enrichment domain, Q. The decomposition of the displacement field is performed such that the
corresponding function spaces recover the trial function space through direct sum (u” € 7M(Q)

and uy € 74(Qq)):
Y(Q)=7"Q)e @ Yo (Qe) (2.17)
a=1
in which, ¥M(Q)  [H'(Q)]™ is the trial space for the macroscale displacement field and 74 (Qq)
C [H'(Qg)]™ is the trial space for the microscale displacement field within enrichment domain,
Q. This decomposition implies linear independence of the macroscale and the microscale sub-

spaces necessary for uniqueness and stability of the numerical solution [1, 44]. Similar to Eq.

(2.17), the test function is additively decomposed into macroscale and microscale components

Nen

w=w"1+Y A (Qq)W, (2.18)
o=1

where, wM € #M(Q) C [H] (Q)]™ is the macroscale test function; and W/ € % (Qq) C [H! (Qq)]™
is the microscale test function of the enrichment domain, Q.

Substituting Eqs.(2.18) and (2.15) into Eq. (2.9), the weak form of the problem yields:

/ vw" : o (u,0) d9+§/ (VWM VW) o (uM, u?) dO
& a=17% (2.19)

—/Ft(wMer'g)-Edr:o
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On the substrate domain, the stress field is determined solely from the macroscale displacement
field, whereas within the enrichment region, both the macroscale and microscale displacement
fields define stress. Since w" and w?! are arbitrary and independent, a macroscale and a series of
microscale problems over each enrichment domain (& = 1,2, ...ne,) are obtained by collecting the
terms with w¥ and w”?. Considering the decomposition of the boundaries in Eq. (2.13) and setting

the microscale test functions to zero yields the weak form of the macroscale problem:

/Vw o unde— [ w -Edr—/ wM ¢ dl' =0 (2.20)
r sb

where, t” denotes the residual tractions along the substrate-enrichment region boundary, I'y;. The
weak form of the microscale problem at an arbitrary enrichment domain, ¢, is obtained similarly

by considering vanishing macroscale test functions:

, Vwy o (uM uly)dQ — - Wo -tdl — - \FWZzl‘tdFZO (2.:21)

in which, t denotes the internal tractions along the boundaries of the enrichment domain that does
not overlap with the external boundaries. Substituting the displacement decomposition (Eq. (2.15))
into Eq. (2.4), the stress-strain relationship is expressed as a function of the macro- and micro-

variables in the rate form as:

c=L:

a=1

eM(uM) + nz H(Qqy) €M) — (o, u” ,u’")] (2.22)

The macroscale and microscale response fields, along with their test functions, are discretized us-

ing the standard Buhnov-Galerkin approach. The finite element spaces are shown in the following:
yM(Q) = {uM(X 1) ‘ Z Ny(x ) M (1) =M (x4,1) if x4 € r”} (2.23)

nd(x

Vo' (Qo) = {ua(x t) ‘ uy, (x,7) Z Noa(X) U 4(1); Oy (1) = 0o (Xg,1) if Xg € F”&} (2.24)

13



in which, Np and ny4, denote the number of nodes in the macroscale discretization €2, and the mi-
croscale discretization of Q, respectively; Ny and ng , are the shape functions for the macroscale
and microscale fields, respectively; x4 and x,, are the corresponding nodal coordinates. Overhat
denotes the nodal coordinates of the corresponding response field. The present formulation con-
siders the macroscale and microscale grids to be nested, which means each enriched macroscale
finite element coincides with a corresponding enrichment domain in the enrichment region. It is
also possible to consider enrichment domains to be independent of the macroscale mesh, i.e., each
enrichment domain may occupy multiple macroscale elements. While the general formulation is
unaffected by this generalization, the implementation could be quite different and not considered

in this study.

2.3.1 Mixed boundary conditions at microscale

The accuracy of the response approximation using the VME method is significantly affected
by the conditions imposed along the enrichment domain boundaries. In variational multiscale
literature, the typical choice has been the homogeneous Dirichlet boundary condition [63, 64, 65,
66, 67]:

uy(x,7) =0; xely (2.25)

The resulting microscale displacement is homogeneous along enrichment domain boundaries and
nonzero in the interior, leading to the bubble shape and sometimes referred as residual free bubbles.
This boundary condition typically leads to overly stiff response. In order to relax the overconstraint
imposed by the homogeneous Dirichlet boundary condition, mixed boundary conditions that has
been proposed for elasticity problems in Ref. [23] are generalized for inelastic problems and
implemented herein. When the mixed boundary conditions are employed, the resulting microscale
displacement is zero at enrichment domain corners and nonzero elsewhere, leading to a canopy

shape and referred as the canopy functions. In this approach the boundary tractions along the
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enrichment domain boundaries are expressed as:
t'(x,t) = to(x,) — k[l (x,1) —lg(x,2)] on X €Ty =0Qq; a=1,2,...7. (2.26)

where to (X, 1) and Gy (X, ) are prescribed traction and displacement along the microscale boundary.
Equation (2.26) constitutes a one-parameter family of boundary conditions that range from a pure
Neumann condition when k = 0 to a pure Dirichlet condition when K — o (denoted as Kk = K.).
The boundary parameter, k (such that 0 < k < o) therefore controls the boundary constraint stift-
ness and is adjusted to improve solution accuracy. On the inter-enrichment domain boundaries,
[yp. the boundary data vanishes (i.e., to(x,1) = 0and lig(x,¢) = 0) and Eq. (2.26) leads to mixed
boundary conditions that range from traction-free to homogeneous Dirichlet conditions. The resid-
ual free bubbles are achieved by setting Kk = oo on I'y.

The proposed mixed boundary condition also improves the approximation of the prescribed
conditions along the external boundaries of the problem domain, Q. Consider the prescribed trac-
tion t along the external boundary I}, is variable at the scale of the microstructure. The residual

external traction not resolved by the coarse grid is expressed as:

A

to(x,1) =to(x,1) = t(x,1) = (x,1) onx €T, (2.27)

The residual traction is enforced by setting, k¥ = 0 at I'},. Similarly, the residual applied displace-

ment along the boundary I'y, is:
g (x,1) = lg(x,7) = 1(x,7) —a¥ (x,7) onx €Y, (2.28)

in which, @™ (x,1) is the coarse grid approximation of the prescribed displacement. The residual
prescribed displacement field is imposed by setting kK = k., on I'},.
In order to satisfy the continuity of the displacement fields across the inter-enrichment domain

boundaries, a master-slave coupling approach is employed [23]. Let the neighbor index set for the
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enrichment domain o be split into master and slave index sets:

Igz{ﬁ|a<ﬁgnen|raﬁ7£®};

I,={B|B <0t <ne|Top#0}.

(2.29)

For an arbitrary enrichment domain, &, the displacement continuity is enforced by considering:
t(x,1) = — Ko [ug}(x,t) - u'g(x,t)] . Bellandxel® (2.30)

Employing the mixed boundary conditions as well as the displacement continuity conditions
along the inter-enrichment boundaries, the microscale problems defined in Eq. (2.21) is expressed

as:

wi= | Vw’g:a(uM,uZ})dQ—/rt Wit dl = | wg:-thmxm/rs W ull T
a o o a

+K Z /rﬁwg-u'&’dF—FKN Z Aﬁwg.<u3—ug> dl' — K Fuw’g.ﬁdrzo (2.31)
Bery e per, /Ta 4

The displacement continuity is satisfied by setting ¥ = K. along the interface between the en-
richment domain and the substrate domain. Considering the mixed boundary conditions, the

macroscale problem in Eq. (2.20) becomes:

Ten
whtMdr+x. Y, | wMuldl =0 (2.32)

lIIME/ vw o (uM u) dQ —
Q r a=1"Ta

In the numerical verification studies below, a sufficiently large but finite value is employed for K.
for stability and accuracy.

Equations (2.31) and (2.32), along with the constitutive equations, constitute the coupled multi-
scale system. The microscale problem defined over the enrichment domain (Eq. (2.31)) is coupled
to the macroscale response field through the constitutive relationship (i.e., through the first term

on the left hand side of Eq. (2.31)) as well as the macroscale tractions. The macroscale problem
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is similarly coupled to the microscale response field through the constitutive relationship and the
boundary interactions.

The variational multiscale enrichment system (Eqs. (2.31) and (2.32)) are linearized and solved
using a staggered scheme in the context of finite element discretization, along with the constitutive
equation (Eq. (2.22)) and the viscoplastic strain evolution (Eq. (2.5)). The detailed formulation and
implementation for the numerical evaluation of the VME system (including consistent lineariza-
tion, finite element discretization and implementation strategy) are detailed in Ref. [24]. They are

skipped herein for the simplicity of presentation.

2.4 Computational Implementation

The weak form macroscale equation defined over the problem domain, € and the microscale
equations defined over each enrichment domain, , are nonlinear through the constitutive rela-
tionship and coupled. The computational implementation of the evolution of this nonlinear coupled
system is performed by consistent linearization and finite element discretization, which leads to a
coupled algorithmic system. The evaluation of the coupled algorithmic system is performed by

employing a sequential coupling algorithm described in Section 2.4.3.

2.4.1 Consistent linearization

The macro- and microscale equations along with the constitutive equations are discretized in
time to obtain a linearized system of equations evaluated incrementally. The linearization consists
of time discretization of the weak forms, stress-strain, kinematic equations and condensation of
the constitutive equations to arrive at a system, in which the unknowns are the macro- and mi-
croscale displacement fields only. Substituting Eq. (2.15) into Eq.(2.4), the stress-strain equation

is expressed as a function of the macro- and microscale displacement fields as:

G=L: M)+ Y H(Qy) null) — (o, uM, u™) (2.33)

a=1
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in which, 6 € [0,1] is an algorithmic parameter. u” := {u}y}’", is the set of all microscale dis-
placement fields. We proceed with the time discretization of the governing equations. Consider a
discrete set of instances with the observation period: {0, 7,2t ..., 4, n+11,...,t, }. The viscoplastic

slip evolution is discretized based on a one-parameter family (referred to as 0-rule):
e (x,1) = (1= 0)e"(x,ut) + 0P (X, n111); 1 € [nt; ns11] (2.34)
which leads to the following expression for viscoplastic update:
P=,.1e"—,e7—At (1-0) ,6"P—At 0 ,,1"»=0 (2.35)

in which left subscript n and n + 1 indicate the value of a field variable at ,,¢ and ,4 ¢, respectively

(e.g. ne'P = €"P(,t)). The time discretization of Eq. (2.33) yields:

Nen
R(o, v u") =, 10— ,0—L:Ae" — Y A (Qa)L: Aeh+
a=1 (2.36)

(1—0)AtL: e’ +0AtL:, 16"’ =0

where AeM = 1 (VuM) — ,(VuM) and A = ., 1(Vu?) — ,(Vu). The system of equations
defined by P, R along with ¥™ and " are evaluated using the Newton-Raphson iterative scheme.
In what follows, we seek to evaluate the nonlinear multiscale system between [,f, ,11f] from
the “ known” equilibrium configuration ,¢ to the current configuration at ,.1¢. In what follows,
the subscript n+ 1 from the fields at current configuration is omitted for clarity of presentation.
Considering a first order Taylor series approximation of Eq. (2.36) and forming a Newton iteration

yield the following residual for the stress-strain equation:

R~ R 4 (I+60 A L:CH: 80 —L:V(6uM)
(2.37)
— Y H(Qa)L:V(Sug)+6 At L:G': 5 =0

a=1

18



in which, superscript k denotes Newton iteration counter; 0(-) indicates the increment of response

— Mkt _

field (-) during the current iteration (e.g., Su™ uM*): T the fourth order identity tensor;

wp k ap k
Ck:(as ) : G":<as ) (2.38)

and:

Jo devp

The expression for derivatives C* and G are provided in Ref. [24]. The linearization of the kine-

matic equation residual expression (Eq. (2.35)) yields the following expression:
PPl (I-0A1GF): 87 -0 A Cr:80=0 (2.39)

Rearranging Eq. (2.39), the viscoplastic strain increment at the current Newton iteration is ex-

pressed in terms of the stress increment as:
8P =(I1-0AGH ' (6ACr):80 —(1—6 A GF)~!:PF (2.40)

Substituting Eq. (2.40) into Eq. (2.37) condenses out the viscoplastic strain and yields:

RF—ZF+ I+ 6 At L: C*+HY) : o —L: V(5uM) — Z H(Qo)L:V(Su") =0  (2.41)

a=1

where,

H" = (0Ar)? L:GF: (I—-60 A GH)~1 . CF (2.42a)

ZF=0AL:GF:(1—-6A G~ !:Pf (2.42b)

Equation (2.41) can be solved with respect to the stress increment, resulting in

So(suM,su™) = Lk : V(5uM) + Z H(Qq) LF: V(Sul) — QF : (RF— 7K (2.43)

o=1
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where

L= L '+oacCh+L7 ! HY! (2.44)
Q= I+6AL:C-+H)! (2.45)

The linearized weak form equilibrium equation for the macroscale is expressed in terms of the

stress and the microscale displacement increments as:

Ten
WM \I!M’k+/QVWM 80 dQ+ Y Ke s w' - duj dT' =0 (2.46)
a=1 a

Similarly, the linearization of the microscale problem over Qg (0t = 1,2, ...7¢p):

WA \Il’"k+/ Vw80 dQ— | w5t dl + K. [ wP-Sult dT
Ty g

+) /W 5uadl“+21<w/ Wi - 5ua 5uB)dF 0
Bery Bel,

(2.47)

where §tM = g* 1 (uMk+1 0) — g*(uM*, 0) is the macroscale traction over the microscale domain
boundaries computed from Eq. (2.43). Substituting Eq. (2.43) into Egs. (2.46) and (2.47), the

linearized governing equations for the macroscale problems is expressed as:

Nen

/ vwh T4 v(suM) Z [ VWLV (5ug) a0
(2.48)
+/ v Qb RV -ZF) da— ) k. | wM-Suj dT — BME
Q a=1 I
and for the microscale domains over Qg (&t = 1,2, ...7¢):
, vw? LV (5u?) dQ = — A vw?: LF: v (5uM) dgz+/g vw?: QF: (RF—ZF) dQ
+/ u) —QF: (R Zk)} dU — K | WI.Sull dT
l"S
-y / wi. sultdr — Y xoo/ wy - (g~ sup) ar - wit
Bel} Ber,
(2.49)
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It can be observed from Egs. (2.48) and (2.49) the value of the boundary parameter x for
all inter-enrichment domain boundaries is set as a fixed value for all inter-enrichment domains
and throughout the loading process. The value of the boundary parameter for the parts of the
enrichment domain boundaries that overlap with prescribed Dirichlet boundaries and enrichment
domain-substrate domain interface is set to a very large value (k). The K parameter is set to zero
when the enrichment domain boundary lies along prescribed Neumann boundaries, as described in

Section 3.1.

2.4.2 Finite element discretization

Equations (2.48) and (2.49) are evaluated using the finite element method. Consider the fol-

lowing finite element spaces for the macro- and microscale response fields:
Np
yM(Q) = uM (X,t)‘ u¥(x,1) = Y Na(x) 0 (1); &) (r) = 6" (x4,1) if x4 € T (2.50)
A=1

Ndg

Vo' (Qo) = u’&’(x,t)‘ uy(x,1) = Z Naa(X) O 4(2); O 4 (1) = 0 (Xa,t) if X €T (2.51)

a=1

in which, Np and n,, denote the number of nodes in the macroscale discretization €2, and the mi-
croscale discretization of Q, respectively; Ny and ng , are the shape functions for the macroscale
and microscale fields, respectively; x4 and X, are the corresponding nodal coordinates. Overhat
denotes the nodal coordianates of the corresponding response field. The present formulation con-
siders the macroscale and microscale grids to be nested, which means each enriched macroscale
finite element coincides with a corresponding enrichment domain in the enrichment region. It is
also possible to consider enrichment domains to be independent of the macroscale mesh, i.e., each
enrichment domain may occupy multiple macroscale elements. While the general formulation is
unaffected by this generalization, the implementation could be quite different and not considered
in this study. Employing the standard Bubnov-Galerkin approach, the test functions are taken to

be discretized using the same macro- and microscale shape functions.
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Substitute Egs. (2.50) and (2.51) into the macroscale weak form (Eq. (2.48)) yields the discrete
macroscale system. At the (k+ 1)th iteration of the current time step, ,,11¢, the macroscale weak

form takes the form expressed as:

K 56" = 5f (2.52)
where,
s = { (o) (ou o) () 25
in which, 5ﬁ2{’k+1 = ﬁi‘{’kﬂ —ﬁz/[’k (A=1,2,...,Np) and §&¥ denotes the increment of the macroscale

nodal displacement coefficients at the (k + 1)th iteration. The tangent stiffness matrix is expressed
as:

K=A [ VN, -TF. VN dQ (2.54)
AB JOQ

in which A denotes the standard finite element assembly operator. Within the macroscale ele-
ments associated with an enrichment domain, the tensor of tangent moduli, L. oscillates due to the
heterogeneity of the microstructure. The integral is resolved and evaluated based on the underlying

coarse grid on enriched elements. The force increment in the current iteration, of is expressed as:

Nen g
Sf = é { — Z Z [ A VNu-LX- Vg, dQ Oty , + Keo . Np ng q dI” Sty

a=la=1

(2.55)
+/ VN, -QF: (RF—Z5) dQ} — Mk
Q

The discrete microscale system for the enriched domain, ¢, is obtained by substituting Eqs.

(2.50) and (2.51) into the microscale weak form (Eq. (2.49)):
K, éuy = of,, (2.56)

where,
T T T
5ﬁ'g:{(5ﬁf3fﬂ) 7<6ﬁ'g:§+1> ,,_,,(aﬁ'gﬁ;;) } 2.57)
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in which, Sﬁ'gjﬁH = ﬁ’g:’;“ — ﬁ'g:ﬁ (a=1,2,...,n4,) and 842 denotes the increment of the mi-
croscale nodal displacement coefficients at the (k+ 1)th iteration . The microscale tangent stiffness

matrix is assembled as:

K, = {/ Vnaﬂ-l:k-Vnaban—FKoo/ Ng.a No.p Al
a,b Qa ’ F‘{Z ’ ’
(2.58)
+ K/ﬁ Naa Nap dl'+ Kw/ﬁ‘na’a Nab dF}
Ty Iy
and the corresponding force increment is expressed as:
5ty =A {— Vigq-LF-VNg dQ 50 (1) + / Vnga-QF: (RF—ZF) a0
a Qq Qq
(2.59)

+/ Noa [ﬁk :V(SuM) —QF: (R _Zk)] dl + ch,/ﬁ Naa OUR aT} gk
Iy Iy

where, rﬁ’" = {rﬁ B €1}, b = {rﬁ |B € I} and subscript B indicates the corresponding
coarse scale element. Equations (2.52) and (2.56) constitute the linearized system of equations
that are evaluated for the macro- and microscale problems. Each microscale problem defined over
an enrichment domain is coupled to the macroscale problem as well as the enrichment domain
problems that share a common boundary and has a master surface (i.e., all enrichment domain
problems in I5,). The coupling is through the force vector (i.e., fq (0", {511%1“3 €I} )). The
macroscale problem is coupled to the enrichment domain problems (i.e., Sf({tf;}>,)). This

coupled system of equations is evaluated using a staggered solution algorithm defined below.

2.4.3 Computational algorithm

The VME formulation for the elasto-viscoplastic problem is implemented using the C++ com-
puter language with the commercial software package, Diffpack [68]. Diffpack is an object-
oriented development framework for the numerical solution of partial differential equations. It

provides a library of C++ classes to facilitate development of solution algorithms for complex
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for 5@} Update fig"**. and update g"Pk+1,

Figure 2.2: Solution algorithm

PDEs [68]. The overall solution strategy is to evaluate the coupled system of multiscale equations
summarized in Fig. 2.2. At an arbitrary time ,¢, the system is in equilibrium with the constitutive
relations satisfied at macro- and microscale. The algorithm seeks to find the equilibrium state at
n+1t as follows:

M

Given: ,0", 07, ,&'P, P, o at time jt.

Find: M &7, &P "7, o at time 1.

e ) . ) . v Am.0 N .
1. Initialize Newton iterations by setting: k=0, a0 = @ )y = nlyy s e'Pl = P g0 —

b

0

n€'?, o’ =0, and du} =0, where 1 < o < nep.

2. While not converged:

a) Compute Ck, Gk, H*, ZF, 1K, Qk, RK, Pk, WMk and \Il'g’k for the multiscale system
from Eqgs. (2.38), (2.42a), (2.42b), (2.44), (2.45), (2.36), (2.35), (2.32) and (2.31),

respectively.

b) Solve the macroscale problem (Eq. (2.52)) for & over the structural domain, Q,

using the microscale increments 6u}; from the previous iteration.

¢) Update the macroscopic displacement coefficients, 4”41 = aM* 4 saM

24



d) Solve the microscale problem (i.e., Eq. (2.56)) for 8l; over each enriched domain, Q
(1 << nep).
e) Update the microscopic displacement coefficients, ﬁ'g’kH = ﬁ'g’k + oul).

f) At every integration point in macro, and micro problems:

i) Employing 66 and 84, compute current stress increment 8o using Eq. (2.43).

Update stress o*t! = 6% + §o.
ii) Compute §&"? using Eq. (2.40). Update viscoplastic strain e"P*+1 = g"Pk 4 §e'P,
g) Compute viscoplastic strain rate £"7**1 using Eq. (2.5).

h) Check for convergence at macroscale and microscale problems:

eM = |aM*+! —aMk||, < Convergence tolerance
1 (2.60)
ey = ||lAl’(1)¢1’kJr — ﬁ’&l’kHz < Convergence tolerance

1) If convergence criterion are not satisfied, set iteration counter k <— k+ 1 and proceed

with the next iteration.
3. Repeat step 2 with n <— n+ 1 until the end of the observation period.

The staggered form of the solution algorithm is achieved by solving the macroscale system
using the microscale displacement coefficients from the previous iteration (Step 3b)). The stagger-
ing order, which is evaluating the macroscale problem prior to the microscale problems, is natural
since the loading on the domain is expected to be primarily at the macroscale (i.e., typically but
not necessarily i, = 0 on I'%, and t,, = 0 on I')). The effect of stagger ordering does not have a
notable effect on the solution. The convergence of the multiscale system is assessed when both the
macroscale system and the enrichment domain problems simultaneously converge. A detailed con-
vergence study on the staggered solution algorithm in the context of elasticity has been provided

in Ref. [2] and not included in this chapter.
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Table 2.1: Materials parameters for the verification studies of VME.

Material type | E [GPa] v | A[MPa] | B [MPa] n q |v [MPa-hr] !
Phase 1 130.8 | 0.32 600 1200 090 | 1.0 1.0
Phase 11 110.8 | 0.32 400 200 096 | 1.0 1.0

Substrate 120.8 | 0.32 500 700 093 | 1.0 1.0

2.5 Numerical Verification

The implementation of the VME method for elasto-viscoplastic problems is verified using nu-
merical simulations. The VME model predictions are compared to the direct numerical simulations
using the finite element method. In the direct numerical simulations, the heterogeneities within the
problem domain is fully resolved. In all simulations below, the domain is taken to consist of
three separate materials. The heterogeneous material microstructure consists of two phases. A
third material that approximates the properties of the composite domain is employed to idealize
the behavior at the substrate domain. The material properties of the two phases and the substrate
are provided in Table 2.1 and the constitutive relationship of these materials under unidirectional
tension is plotted in Fig. 2.3.

The boundary condition parameter k is relatively sensitive to the microstructural topology as
well as the constituent material parameters. A sensitivity analysis and a parameter selection strat-
egy are outlined in Ref. [23]. In this chapter, the selection of the boundary parameter is performed
by subjecting a representative cell to pure uniaxial and shear loading, and choosing the bound-
ary parameter which minimizes the discrepancy between the direct finite element analysis of the
microstructure and the corresponding VME model (described in Section 2.5.1). The boundary
parameter employed in the analysis of the specimen with a center notch (Section 2.5.2) uses the

boundary parameter selected as such.
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Figure 2.3: Stress-strain behavior of the constituent materials under uniaxial tension: (a) phase
I; (b) phase II; and (c) substrate material.
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Figure 2.4: Numerical models of the square specimen: (a) direct finite element discretization
and sketch for uniform tensile load; (b) macroscale discretization and sketch for pure shear load;
and (c) microscale discretization of an enrichment domain.
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2.5.1 Effect of the boundary parameter

In this section, the effect of the mixed boundary parameter, x, on the accuracy characteristics
of the VME method in the context of elasto-viscoplastic behavior is investigated. The effect of the
mixed boundary parameter on composite media with elastic modulus contrast has been previously
investigated in Ref. [23]. A 2-D plane strain, composite domain with a two-phase microstructure is
considered as shown in Fig 2.4a. The geometry and the discretization used in the VME simulations
are shown in Figs. 2.4b,c. The heterogeneity in the original problem domain is exactly obtained by
the repetition of the microstructure (Fig. 2.4c) in a 3-by-3 tile. Phase I and phase II materials are
identified as dark and light elements, respectively. The behavior of the square composite domain
was investigated under displacement controlled uniform tension and shear conditions. The loading
was applied at the uniform strain rate of approximately 3 x 10™%/s. All 9 macroscale elements are
taken to be enriched in the VME simulations, which means that the enrichment region is the entire
problem domain. The ratio between the size of the enrichment domain and the specimen domain
is 1/3 which exhibits the scale inseparable feature. The macroscale grid ensures that the central
enriched domain has all four boundaries of inter-enrichment type. Each of the enrichment domains
are discretized fine enough to ensure that further discretization does not noticeably affect the simu-
lation accuracy. The direct finite element discretization and the microscale discretization are taken
to have the same element size. The time step size is determined such that further refinement does
not change the results significantly. The convergence tolerance employed in the simulations is set
to1x107°,

Figure 2.5 illustrates the time averaged errors in displacement and stress under tensile and shear
loading conditions. The errors of the proposed multiscale method are compared to the direct finite

element analysis as a function of the boundary parameter, k. The error over the entire boundary
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Figure 2.5: Time averaged error as a function of the boundary parameter: (a) displacement
error under tensile loading; (b) equivalent stress error under tensile loading; (c) displacement
error under shear loading; and (d) equivalent stress error under shear loading.

domain at an arbitrary time, ¢, is computed as:

Y [lo™Mx, ) — ™M (x|,
eo(t) = =
agl }‘PFEM(XJ)Hz,Qa

(2.61)

where, FFM and ¢ VME denotes a response field (i.e., displacement or equivalent stress) computed

using the direct finite element method and the VME, respectively, || - ||2.q, is the L, norm of the

response field computed over Q,. When the numerical specimen is subjected to uniform ten-

sion, the displacement error is minimized when homogeneous Dirichlet boundary conditions are
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Figure 2.6: Equivalent stress contours at 3.0 x 10~* mm applied displacement. (a) Reference
model under uniform tension; (b) VME model under uniform tension; (c) reference model under
shear; and (d) VME model under shear.

employed. In contrast, the time averaged error in the equivalent stress is minimized at a slightly re-
laxed boundary parameter with k € [3.7 x 107, 1.25 x 103]. Under the shear load, the displacement
and equivalent stress errors are minimized at the boundary parameter values of k = 2.96 x 103
and k = 1.25 x 108, respectively. The results indicate limited improvement of accuracy in the dis-
placement and stress fields when the boundary condition is slightly relaxed from the homogeneous
Dirichlet conditions. In the case of uniaxial tension loading, the errors in the stress computations
improve by approximately 32% when the optimal boundary parameter is employed. The trends
in errors follow a similar trend to those computed in the context of elasticity problems provided
in Ref. [23]. Figures 2.6a,b compare the contours of equivalent stress fields computed by the pro-

posed model and the direct finite element method at time # = 36 seconds and under an applied
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Figure 2.7: Multiscale variational enrichment model of the specimen with a notch: (a) sketch
and discretization of the macroscale discretization; and (b) microscale discretization of an
enrichment domain in the enrichment region.

uniform tensile displacement of 3.0 x 10~* mm. Equivalent contours at t = 36 seconds and under
an applied shear displacement of 3.0 x 10~* mm are shown in Figs. 2.6c,d for the VME and di-
rect FEM methods, respectively. The contours from the VME simulations are reconstructed from
the micro- and macroscale solutions at the post-processing stage. In both cases, there is a close

agreement in the stress fields computed by the reference and the multiscale simulations.

2.5.2  Specimen with a center notch

The proposed multiscale method is further verified using the numerical analysis of a specimen
with a center notch subjected to uniform tensile loading in the vertical direction. The dimensions
of the rectangular specimen and the center notch are 0.8 mm x 0.4 mm with a 0.4 mm x 0.04 mm,
respectively. The ratio between the size of the enrichment domain and the stress localization
region around the corner is approximately 1/10 which exhibits the scale inseparable nature. Due
to symmetry, only a quarter of the specimen is modeled. The two-phase microstructure of the
domain and the material properties of the phases are taken to be identical to the example provided

in Section 2.5.1. The specimen was subjected to uniform displacement controlled tensile loading
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Figure 2.8: Discretization of the direct finite element model of the notched specimen.

in the vertical direction. The maximum amplitude of the loading was 0.01 mm applied at a rate of
5.6 x 107> mm/sec.

The geometry, boundary conditions of the problem domain, as well as the macro- and mi-
croscale discretization employed in the VME approach is shown in Fig. 2.7. A 0.1 mm x 0.1 mm
square domain at the center of the specimen is chosen as the enrichment region. The macroscale
mesh consists of 314 quadrilateral macroscale elements, 92 of which are enriched. Each enriched
element is associated with an identical microscale geometry shown in Fig. 2.7b. The microscale
mesh consists of 100 quadrilateral elements. Outside the enrichment region (i.e., the substrate re-
gion), substrate material properties shown in Table 2.1 are employed. The VME simulations were
conducted using homogeneous Dirichlet boundary conditions, as well as using the mixed bound-
ary conditions with k = 2.96 x 108. The optimal mixed boundary parameter identified under the
shear loading in the previous section is employed since the plastic deformation occurs under shear.
The performance of the VME approach was assessed by comparing the model results to the direct
numerical simulations, in which the enrichment region is fully resolved. The reference mesh is
shown in Fig. 2.8 and consists of 11276 quadrilateral elements. The size of the elements within the
enrichment domain is taken to be the same as the size of the elements in the microscale mesh used

in the VME approach. The substrate region is meshed with coarser elements. A transition region
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Figure 2.11: Comparison of equivalent stress contours at the end of the simulation:
(a) reference model; and (b) the VME method with k = 2.96 x 108.

is included to ensure mesh conformity.

Figure 2.9 illustrates the evolution of the errors in the displacement and equivalent stress within
the enrichment region as a function of simulation time. The errors are computed using Eq. (2.61).
The figure includes the VME simulations performed using the homogeneous Dirichlet and opti-
mal shear boundary conditions. The errors in the displacement computed using the homogeneous
Dirichlet and the optimal shear boundary conditions remained within 3% and 1.5%, respectively.
The errors in the stress computed using the two boundary conditions are within 8.5% and 6%, re-
spectively. In the case of the homogeneous Dirichlet boundary conditions, the displacement errors
accumulate as a function of increasing plastic strain, whereas the optimal shear boundary con-

dition has less sensitivity to the plastic strain magnitude. The proposed multiscale approach has
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reasonable accuracy characteristics compared to the reference model for both types of boundary
conditions.

Figure 2.10 shows the comparison of the overall force displacement curves computed using
the reference finite element method and the proposed VME method. The VME simulations per-
formed using the two types of boundary conditions resulted in near identical force-displacement
curves. Figure 2.10 clearly shows that the proposed approach is able to accurately capture the
overall elasto-viscoplastic response. In addition to the overall behavior, the local deformation and
stresses are very accurately captured using the proposed VME approach. The equivalent stress
contours obtained based on the reference and the VME method are compared in Fig. 2.11. The
equivalent stress contours correspond to the applied peak load at the end of the simulations. The
stress contours for the VME approach is reconstructed using the enrichment domain solutions at
the post-processing stage. The local stress distributions show an oscillatory behavior around the
notch tip, due to the heterogeneous microstructure. The oscillatory behavior is well captured using
the proposed VME approach, pointing to its ability to reproduce the local stress fields within the

critical regions of the problem domain.
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Chapter 3

REDUCED ORDER VARIATIONAL MULTISCALE ENRICHMENT METHOD FOR
ELASTO-VISCOPLASTIC PROBLEMS

3.1 Introduction

The numerical assessment of the VME microscale problems could be computationally ex-
pensive, especially when the geometry of the microstructure is complicated and the number of
enrichment domains is large. In the current chapter, we provide a reduced order modeling ap-
proach for the VME method to address global-local problems in a more efficient manner. The
proposed model order reduction approach is based on the concepts of transformation field analy-
sis pioneered by Dvorak and coworkers [31]. The main idea is to express the response field as a
function of influence functions and coefficient tensors that are computed at the preprocessing stage
prior to a structural analysis. The influence functions ensure that the microstructural equilibrium
is a-priori satisfied for arbitrary states of deformation. While this approach has been previously
applied in the context of computational homogenization [34, 37, 69], it has not been previously
formulated for scale inseparable multiscale methods. This chapter presents the reduced order
variational multiscale enrichment (ROVME) formulation for heterogeneous materials that exhibit
elasto-viscoplastic behavior. The implementation procedure and numerical approaches employed
are described. The proposed ROVME approach is thoroughly verified against the direct variational
multiscale enrichment method [24]. The proposed approach is able to capture the local and global
response mechanisms with reasonable accuracy at the fraction of the cost.

This chapter provides the following novel contributions: (1) The eigenstrain-based reduced
order modeling approach is extended to scale inseparable problems; (2) The local problem within
the VME framework is evaluated based on a much reduced approximation basis without significant
loss in accuracy; and (3) The ROVME approach provides the ability to control efficiency/accuracy

characteristics since the model order is controlled within the reduced order modeling framework.
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The remainder of this chapter is organized as follows: Section 3.2 presents the reduced or-
der VME formulation for inelastic mechanical problems with elasto-viscoplastic material behav-
ior. Section 3.3 illustrates the implementation strategy of the ROVME methodology. Section 3.4
presents the numerical verification studies including global-local response and assessment of com-

putation efficiency.

3.2 Reduced Order Variational Multiscale Enrichment (ROVME)

In the current section, an eigenstrain-based model reduction technique [37] is employed for
efficient evaluation of the microscale problems. The governing equations are identical to those
provided in Chapter 2. The only difference in the current chapter is the homogeneous Dirichlet
boundary conditions for the enrichment domains are employed (Eq. (2.25)), instead of the mixed

boundary conditions. The resulting macroscale weak form is obtained as:

/VWM:adQ— wM T4l =0 3.1
Q I

The weak form of the microscale problem at an arbitrary enrichment domain, o, yields:
/Q Vwy odQ=0; a=1,2, . ne. (3.2)

3.2.1 Numerical evaluation of the microscale problem

We start by decomposing the microscale displacement field as follows:
m _ o ~Mo o S\ . VD[S ~
uy(x,1) = Z Hj (x) -0y (t)+/ h(x,X) : "P(%,t) dX (3.3)
Qg

where, ﬁi‘{[“ denotes the macroscale nodal coefficient corresponding to the A™ node of the en-
richment domain, €. Hg‘, a second order tensor, is the linear elastic influence function in Q.

h%(x,%X) (x,X € Qq), a third order tensor, is the influence function associated with the inelastic de-
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formation within the enrichment domain. In the absence of inelastic processes, the second term on
the right hand side of Eq. (3.3) vanishes. The microscale displacement field is then expressed using
influence functions (HY) acting on the finite element basis (described by the nodal coefficients of
the macroscale element over the enrichment domain) leveraging the linearity of the problem as pro-
posed by Refs. [21, 22]. In the presence of inelastic deformation, the second component is obtained
by considering the inelastic strain field as spatially variable force acting on the microstructure, and
using the Green’s function idea to compute the microscale displacement contribution as a function
of the spatially variable inelastic strain (eigenstrain) field [70]. Equation (3.3) is valid under the
conditions of small deformation theory and additive split of the strain tensor. In the presence of
geometric nonlinearity and plasticity models that employ multiplicative split, this decomposition is
not directly valid as the inelastic influence functions become time (or load amplitude) dependent.
The influence functions HY and h* are determined from the microscale weak form shown in
Eq. (3.2). Employing the constitutive equation (i.e., Eq. (2.22)) and the microscale displacement
field discretization defined in Eq. (3.3), the weak form of the microscale problem becomes (ot =

1,2,...7¢p):

Np

Y K VW L:VHS 40 + | vW'g:LVNAdQ)-ﬁ%“(t)}
Qg Qq

A=l (3.4)

+ [ Vwy:L: [ Vh*(x,X) : €"P(X,1) d&k — s”’(x,t)} dQ=0
Qq Qq

Considering the elastic state (i.e., when the enrichment domain undergoes deformation in the ab-

sence of the inelastic process), Eq. (3.4) is reduced to:

Np
Y K Vwh :L:VHY dQ + [ Vw]:L-VN, dQ) -ﬁf{’“(t}} =0 (3.5)
A=1 L \/Qa Qg

We note that the displacement coefficients, ﬁ% vary with time only, while Vw}, and VN4 are

functions of the space coordinates with no variation in time. The governing equation for the linear-
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elastic influence function, HX‘, then becomes:
/ Vw?:L: VHY dQ — —/ VW L-VNodQ: YA=1.2,..Np  (3.6)
Qg Qg
In the presence of inelastic deformation and in view of Eq. (3.5), Eq. (3.4) yields:

vw} :L: { Vh%(x,%) : €"P(%,1) d&k — P (x,1)| dQ=0 (3.7)

Qq Qy

The viscoplastic strain field within the enrichment domain €, is expressed as:

e”P(x,1)= | 8 x—%)e"P(’,1) dk; Vx€Qq (3.8)
Q4

where 8¢ denotes the Dirac delta distribution. Substituting Eq. (3.8) into Eq. (3.7) yields the weak

form equation for the inelastic influence function h*(x, X):

Vw!:L:Vh*(x,%)dQ= | VwW':L§(x—%)dQ; VReQq 3.9
Qg Qq

The influence functions, Hﬁ‘ and h%, are evaluated numerically. The detailed finite element solution
of Eq. (3.6) is provided in [21, 22]. The numerical evaluation of the inelastic influence function,
involving the approximation of the Dirac distribution and the details of a numerical treatment, is
provided in Ref. [37]. Representing the microscale displacement field with the influence functions
HY (A=1,2,...,Np) and h*, the microscale weak form, Eq. (3.4), is automatically satisfied for

arbitrary inelastic strain of macroscale displacement states.

3.2.2 Reduced order microscale problem

The total number of degrees of freedom in the enrichment domain problem is reduced by
replacing the fully resolved microscale discretization with a reduced order microscale partitioning.

The reduced order partitioning is performed such that each enrichment domain is decomposed into
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NPy subdomains (parts):

NPy
Qo= QF: QFNQY =0 when y#n (3.10)
r=1
where ¥ and 1 are the indices of parts in an arbitrary enrichment domain Q4. The stress and

inelastic strain fields are discretized using the separation of variables as [37]:

NP, NP,
o(x,1)=Y N}(x)oy(r); eP(x1)=Y N x)py(t); X€Qq (3.11)
r=1 =1

where, 0'79‘ and u%ﬂ‘ are the stress and inelastic strain coefficients, respectively. N{}‘ denotes shape

function associated with part Q%, such that:

1, ifxeQ¥
N%(x) = (3.12)

0, elsewhere

The above discretization therefore leads to a piecewise constant approximation of the stress and
inelastic strain fields over the enrichment domain. The stress and inelastic strain fields are discon-
tinuous within the enrichment domain, which is consistent with the C° continuous finite element
approximation of the displacement field. For instance, as the number of parts NPy, reaches the
number of elements in the microscale discretization for constant strain elements, the approxima-
tions are of the same order. Substituting the reduced order microscale partitioning (Eq. (3.11)) into

Eq. (3.3), the microscale displacement field becomes:

Np NPy
uly(x,1) :AZ’] HY (x) - 6X%() + Z’] [/Qa h®(x,%) Ny (x) dX: p,;’,‘(t)]
= Y=
R a ~Mo N a N N o (3.13)
:AXZ"IHA(x).uA <t)+7;1{/§2?h (x,X) dx:p,y(t)}
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Similarly, substituting Eq. (3.11) into Eq. (2.22), the constitutive equation for enrichment domain

Qg yields:
NP, NPy

Y NY(x) o ZSA )0y (e +ZP“ (3.14)
r=1

in which, the coefficient tensors are defined for an arbitrary enrichment domain Qg (X = 1,2, ..., .¢p):

SY(x) =L(x)-VNs(x) + L(x) : VHS (x); VA=1,2,...,Np (3.15)
and for each part QY (y=1,2,...,NPy):

Py (x) = L(x): - Vh®(x,%) d& —L(x) Ny (x) (3.16)
Y

Integrating both sides of Eq. (3.14) over part Q% of enrichment domain €, the constitutive

equation on part N (X € Q%‘) is simplified to:

NP,
Z Sqa -0 (1) + ZPW py(t (3.17)

Since the stress and inelastic strain coefficients are constant on each part, the homogenized coeffi-

cient tensors on each part Q%‘ within the enrichment domain Q is defined as:

1
% = — S¥(x)dQ; xe Q¥ 3.18
nA |.Q.%| /Q%‘ A( ) n ( )
1
PY = ——— P%(x) dQ; Q4 3.19
708 Jog y (%) X €& (3.19)

The time-independent coefficient tensors, S% 4 and PY% , are obtained using the influence functions,

ny

H¢ and h*. Since the influence functions satisfy the microscale equilibrium, as discussed in Sec-

tion 3.1, the stresses computed using the coefficient tensors, Sn . and P),, automatically satisfy

ny

microscale equilibrium for arbitrary macroscale displacement and inelastic strain coefficients. The
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corresponding rate-form constitutive equation is:

NPy
Z Sqa -0 (1) + ZP,”, 5 (1) (3.20)

3.3 Computational Implementation

This section provides the detailed decomposition of the numerical implementation of the re-
duced order variational multiscale enrichment method, including the implementation of the re-
duced order microscale problem, upscaled macroscale problem and a solution algorithm.

A Newton-Raphson iterative scheme is employed to numerically assess the elasto-viscoplastic
problem described in this chapter. Considering the discrete set of instances with the observation
period: {0,7,2t,...,4t,n11t,...,t,} and employing the rate form of the inelastic strain coefficients
(i.e., Eq. (3.11)) for each part Qgﬂ‘ in the enrichment domain g, The viscoplastic slip evolution

equation (Eq. (2.34)) is equivalent to:

lljoxc(t) = (1 - 9) l:l"}c/{(x7nt)+9 ﬂ?(xan—i-lt); re [nta n—i—lt] (3.21)

The left subscript n and n+ 1 indicate the value of a field variable at ,¢ and , 7, respectively.

Correspondingly, the evolution equation for the inelastic coefficient, ;1}0,‘ , 1s obtained from Eq.

0 ’ o
u?(a$7u5‘>=y<f6( 1) ) Sy )> f(ay uy) (3.22)

oy(py oy

(2.5) as:

3.3.1 Numerical evaluation of the reduced order microscale problem

The nonlinear microscale problem defined by Eqgs. (3.20), (3.21) and (3.22) is evaluated using

the Newton-Raphson iterative scheme. Substituting Eq. (3.21) into Eq. (3.20), the time discretiza-
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tion of the residual of the constitutive equation for an arbitrary part Q,O]‘ becomes:

o o o o ~ Mo ~Mo
Rn: ,H_]O'n—nO'n—ZSnA'(,H_]uA —nly )
A=1

NPy NPy

o . O
) At ZPW nfty — 6 At le,w.nﬂp,y =0
‘y:

(3.23)

In what follows, the left subscript n+ 1 of the fields at current configuration is omitted for clarity
of presentation. Considering a first order Taylor series approximation of Eq. (3.23) and forming a

Newton iteration yield the following residual for the stress-strain equation:

NPy

o k+1 ok K %k .
R ~ RY +Z[<6nyI—GAtP%y.CY ):60¢]

NP, (3.24)

oar Y [P0t aug] - Y [se,-sake] —o
y=1 A=1

in which, superscript k denotes Newton iteration counter; o(-) indicates the increment of response
field (-) during the current iteration (e.g., Sﬁ% = ﬁf‘/[ K+l _ M, k) S,Ify is the Kronecker delta; I the

fourth order identity tensor; and
AN I\~
ok Y . ok Y
Gy = (_80'7‘3‘) ;. Gy = (—a) (3.25)

The explicit expressions for C? * and G? * are provided in Ref. [39]. Note C? * and G? * are
constant over each part Q?.

The residual of the kinematic equation (i.e., Eq. (3.21)) is defined as:
A{‘,‘Eu}",‘—nu?—m(l—e) nu}O,‘—Ate;l?:O (3.26)

Expanding Eq. (3.26) using the first order Taylor series approximation, the inelastic coefficient
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increment at the current Newton iteration is expressed in terms of the stress coefficient as:
u% = (1-0a G2) - (0.4 C2) : 50% — (1- 0 ar G2F) ' Ak (327)

Substituting Eq. (3.27) into Eq. (3.24), the inelastic coefficients are condensed out to yield:

NPy p Np ¢

[0 A~ (04
Y (Q5f:80y) = Y (S, a*) vy (3.28)

y=1 A=1
where,
Qfy = 8%, 10 ArPE,: €5 — (6 A2 PR G* s (10 G“’k)_l Lo (329)
ny ny ny- v ny->-=v - Y Y
Va,k _Roc,k 0 A N o . ok, ok _1_ ok
nl=RyT+0 A Y IPYGYY (16 A GY t Ay (3.30)
=1

Consideringn =1,2,..., NPy in Eq. (3.28) separately, the stress increment vector at the enrichment
domain Q. which contains stress increment within each part of the enrichment domain is obtained

as:

So% — <Qa,k>1 S saMo _ (Qa,k>1 yok (3.31)

where Q** and S* are coefficient tensors defined as:

Q™= [Q%ﬂ TM/E[I,NPa]; §= [S%A]HG[I,NPaLAG[LND] 332
and

g0 = { (s0541) (80541) o (s0it") ) 33%)

SaMe — { (5ﬁ11wa,k+1>T7 (5ﬁ12v1a,k+1)T - <5ﬁ%)a,k+1) T}T (3.33b)

vk _ { (V‘f"k>T, (VS"")T - (Vgﬁa)T}T (3.33c)



3.3.2 Numerical evaluation of the macroscale problem

For the substrate region €, the finite element discretization of the macroscale equations is
standard [24] and only briefly described when necessary. This subsection particularly focuses on
the treatment of the macroscale problem in the enrichment region. The macroscale weak form
is linearized to construct a Newton-Raphson iterative scheme, employing the linearized reduced
order microscale problem stated in the previous section.

Considering the decomposition of the problem domain, the residual of the macroscale weak

form is defined as:

Nen Nen
oM =) M LMY T GMT = (3.34)
a=1 a=1
where,
M= [ W o@M e aQ; WM = / vwM ;o (aM) 40 (3.35)
Q o,
Oy = wM.tdl; YT = | wM.tdD (3.36)
I I

I', is the part of the enrichment domain boundary that intersects with the Neumann boundary of the
problem domain (I, =", NT"); and, T, is the part of the substrate region boundary that intersects
with the Neumann boundary of the problem domain (I, = T’y N I"). Within the substrate region,
), the microstructural displacement remains unresolved. The stress field therefore is a function
of the macroscale displacement field only.

Substituting Eq. (3.11) into Eq. (3.34), the residual of the macroscale weak form within the

enrichment domain, 4, is expressed as:

NP,
oM — Zl e vwM dQ: o (1) (3.37)
Y= 4

Employing the expression of ¥ in Eq. (3.37) and considering the first order Taylor series ap-
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proximation, the residual of the macroscale weak form (i.e., Eq. (3.34)) becomes:

Nen

M+ y (li,zg,kH) +PMAHL (3.38)
a=1 A
where,
FMk+l _ gMk & TM. &M, _GMk i
U =T BT sO M, gMA = Mk GNT | s §M (3.39)
and
~ NP, .
suy =Y ( vwY dQ) 8oy, SWY :/ vw : §o(56M) dQ (3.40)
= \Jay Q

\il% T and \iljs” T denote the prescribed boundary traction terms which do not vary with iterations at
a given time step.
Using the standard finite element discretization detailed in Eq. (2.50) for the macroscale test

function wM, §&Y (Eq. (3.40)) yields:

B NPy | Np
sey =Y |} (/Q VN, dQ wﬁ{) 80y (3.41)
Y

y=1 [A=1

Considering the stress increment (i.e., 0o %) defined in Eq. (3.33a), the matrix form of Eq. (3.41)

is presented as:

sUM — BMT 50 (3.42)

where,

B = [BY,

; BY, = / VN, dQ wY .
LG[I,NPaLAe[l,ND] VA Qs A Wa (3.43)

Substituting the stress coefficient increment (i.e. Eq. (3.31)) and Eq. (3.42) into Eq. (3.39), the
weak form residual of the enrichment domain at the current iteration is presented in the vector-

matrix form as:

M Ko ggMe_ gpe (3.44)
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where,
-1

K% — (Ba)T (ro,k> g (3.45)
—1 - -
58 = (BY)" (QF) vk ity BT (3.46)
The detailed formulation and the standard finite element discretization of & ?/I’Hl is presented in

[24] and not repeated in the current chapter for brevity.
Assembling the macroscale element stiffness matrices and force increment vectors, the discrete
macroscale weak form (i.e., Eq. (3.38)) at the (k+ l)th iteration of the current time step, ,,1 1, is

expressed as:

K saM = 6f (3.47)
where,
K=AKe (3.48)
T T T
s = { (saps+1)" (st (s )} (3.49)
5f= A 5f (3.50)

A denotes the standard finite element assembly operator and e is the dummy index for all the
macroscale finite elements in the problem domain. The linearized system of equations is evaluated

incrementally using the implementation algorithm described in the next subsection.

3.3.3 Implementation algorithm

The reduced order variational multiscale enrichment (ROVME) method is implemented using
the commercial software package, Diffpack [68]. Diffpack provides a library of C++ classes to
facilitate the development of solution algorithms for complex PDEs. The overall solution strategy
is summarized in Fig. 3.1, in which the enrichment domain superscript () and part subscript ()
are omitted for clarity. In the preprocessing phase prior to the macroscale simulation, S% 40 P%y, S«
and B for each enrichment domain Q are computed using Egs. (3.18), (3.19), (3.32) (3.43) and
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Macroscale simulation

Figure 3.1: Reduced order model implementation strategy.

stored (A =1,2,....Np;y=1,2,....,NPy, and n = 1,2,....NPy). They remain constant throughout
the macroscale simulation. At an arbitrary time ,¢, the system is in equilibrium with the constitutive
relations satisfied for the problem domain. The algorithm seeks to find the equilibrium state at ,,; ¢

as follows:
Given: ,oM | o, ,€'P and ,&"P (nu;i‘ and n;l?,‘ for enrichment domains) at time ,z.

Find: 6 o ,e"P and &P (5 and 1y for enrichment domains) at time ,,17.
1. Initialize Newton iterations by setting: k=0, M0 = §M oV = o, PV = ", and &PV =

. a0 o a0 .o . .
ZEYP (y™ = niby, and f1y" = nky for enrichment domains).

2. While not converged, loop over all the macroscale elements within the problem domain Q

for the current iteration (k+ 1):

(1) If the macroscale element is enriched:

a) Compute C*, G5, Qyy, Ry, AW, VX &g/ from Egs. (3.25), (3.29), (3.23),

(3.26), (3.30) and (3.37).
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b) Construct Q%* and V** from Eqs. (3.32) and (3.33c); and K% and §f* from Eqs.
(3.45) and (3.46).

(2) If the macroscale element is not enriched :
a) Compute K¢ and 6f° using the standard finite element procedure [24].

(3) Employing Egs. (3.48) and (3.50), construct the stiffness matrix K and incremental

force vector of for the macroscale problem.

(4) Solve the macroscale problem (Eq. (3.47)) for StM and update the macroscale dis-
placement field with 6M*+1 = aM*  §aM.

(5) If the macroscale element is enriched:

a) Compute the stress increment o using Eq. (3.31) and update the stress field
o.oz,k+1 — o.oc,k_|_ So%.
b) Compute the inelastic strain coefficient increment o /,l,% using Eq. (3.27). Update

the inelastic strain coefficient MO,‘ ke u?’k +0 ;L?,‘.

c) Evaluate the inelastic strain rate coefficient ;170,‘ through Eq. (3.22).
(6) If the macroscale element is not enriched:

a) Determine the stress increment 6o . Update the stress field oftl = ok + 5o [24].

vpk+1

b) Determine the inelastic strain increment & . Update the inelastic strain field

é':vp.,k-i-l — Evp,k+ 5€vp,k+l [24].
¢) Evaluate the inelastic strain rate &"7Kt1 from Eq. (2.5).

(7) Check for convergence:

M ”ﬁM7k+1 — Mk 5

- HﬁM,k—H _ nﬁMHZ

(¢

< Convergence tolerance (3.51)

(8) If convergence is not satisfied, set iteration counter k <— k4 1 and proceed with the next

iteration.

3. Repeat step 2 with n <— n+ 1 until the end of the observation period.
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Table 3.1: Materials parameters for the numerical verification studies of ROVME.

Material type | E [GPa] % A [MPa] | B [MPa] &f n q | y[MPa/hr]
Phase I 107 0.32 480 700 0.15 1 090 | 1.0 1.0
Phase II 87 0.32 360 100 0.17 | 0.96 | 1.0 1.0

Substrate 97 0.32 420 400 0.16 | 0.93 | 1.0 1.0

3.4 Numerical Verification

The reduced order VME (ROVME) method for elasto-viscoplastic problems is thoroughly ver-
ified using numerical simulations. The performance and accuracy characteristics of the ROVME
approach are assessed by comparing the results with those of the direct VME simulations. The
accuracy characteristics of the direct VME method compared with full resolution finite element
analyses was previously demonstrated in Refs. [2, 23, 24].

In all simulations considered in this section, the domains are taken to consist of three separate
materials. The heterogeneous material microstructure consists of two phases. A third material
that approximates the properties of the composite domain is employed to idealize the behavior at
the substrate. The material properties of the two elasto-viscoplastic phases and the correspond-
ing substrate are summarized in Table 3.1 and the stress-strain curves of these materials under
uniaxial tension are plotted in Fig. 3.2. The phase I material of the microstructure behaves sim-
ilarly to high yield stress commercially pure titanium [71]. The phase II material is based on
low yield stress commercially pure titanium [71]. The properties of the substrate material are
obtained using the mixed theory. While the numerical examples provided below investigate two-
phase microstructures, the proposed formulation is applicable to arbitrary number of phases and
microstructural configurations. A number of multiscale approaches, such as computational homog-
enization [72, 73, 38, 74] and sequential multiscale modeling [75], also remain valid to compute
the homogenized macroscale behavior in the presence of multiple phases within the microstructure.

These approaches could be used to compute the substrate domain response.
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Figure 3.2: Stress-strain behavior of the constituent materials under uniaxial tension: (a)
phase I; (b) phase II; and (c) substrate material.
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Figure 3.3: Numerical models of the square specimen: (a) macroscale discretization and
sketch for uniform tensile load; and (b) macroscale discretization and sketch for pure shear
load.

3.4.1 Square specimen with circular inclusions

A 2-D plane strain, 0.03 mm x 0.03 mm, square composite specimens are considered to assess
the performance of the proposed reduced order VME method. The macroscale discretization and
the loading conditions of the specimens are presented in Fig. 3.3. The macroscale discretization
contains 16 nodes and 9 quadrilateral, bilinear finite elements. Each of the 9 macroscale elements
is considered as an enrichment domain and associated with a microstructure containing a circular

inclusion at the center, as shown in Fig. 3.4. The ratio between the size of the enrichment domain
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Figure 3.4: Microscale discretization of an enrichment domain with a circular inclusion:
(a) reduced order VME method with 2 parts; and (b) direct VME method.

and the specimen domain is therefore 1/3. Phase I and phase II materials are identified as dark
and light elements, respectively. The reduced order VME microscale partitioning consists of 2
parts and 6 degrees of freedom (DOFs). The direct VME microscale grid contains 837 nodes,
786 quadrilateral finite elements and 1674 DOFs. The behavior of the square composite domain
is investigated under displacement controlled uniform tension and shear loading conditions. The
loading is applied at the strain rate of approximately 3 x 10™%/sec, until the specimen is about to
fail (assessed based on ductility stated in Fig. 3.2). The time step size is determined such that
further refinement does not change the results significantly. The time step size employed in the
simulations is set to 0.36 second and the convergence tolerance is set to 1 x 1073,

Figure 3.5 compares the reaction force of the structure vs. the applied displacement as com-
puted by the direct and reduced order VME models. The displacement in the tensile loading case
refers to that prescribed at the boundary, whereas in the shear loading case is the displacement of
the top right corner (in both vertical and horizontal directions each of which has the same mag-
nitude and rate as stated above). At the end of the observation period of 432 seconds, the tensile
specimen is under an applied deformation of 3.6 x 10~ mm. The pure shear case has 3.3 x 1073
mm applied displacement in both directions and the total simulation time is 396 seconds. The

reaction force-displacement plots demonstrate that both models provide near identical behavior,
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Figure 3.5: Overall reaction force-displacement comparison for the square specimen with
circular inclusions between the direct VME simulation and the reduced order VME
method: (a) under tension; and (b) under shear.

Table 3.2: Computational time comparison for square specimen with circular inclusions.

. . . Computational | Microscopic
L(g(ileng Computational time . time ratio DOFs ratio
VME [hr] | ROVME [min] | VME/ROVME | VME/ROVME
Tension 12.50 11.11 67.53 279
Shear 10.70 11.44 56.08 279

in both elastic and plastic regimes. Figure 3.6 presents the contour plots of the equivalent stress
of the central enrichment domain (the macroscale element at the center of the structure) for both
methods, just before failure. The reduced order VME has only two parts in the microscale struc-
ture and the stress field is constant on each of the parts. On the other hand, the stress distribution
smoothly transitions from stiffer inclusion to the matrix as computed by the direct VME method.
The computational cost of the simulations are compared in Table 3.2 in terms of the total com-
putational time. The computational time for the direct VME simulation is shown in hours [hr],
whereas the time for ROVME simulation is presented in minutes [min]. The computational time
comparison demonstrates that the reduced order VME approach is much more efficient compared
with the direct VME method. We note that the improvement in terms of the computational time is

less than the reduction of DOFs.

To further investigate the computational efficiency of the reduced order VME method, sim-
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Figure 3.6: Equivalent stress of the central enrichment domain in the square specimen
with circular inclusions: (a) reduced order VME under tension at 432 seconds; (b) direct
VME under tension at 432 seconds; (c) reduced order VME under shear at 396 seconds;

and (d) direct VME under shear at 396 seconds.

ulations with more parts in the ROVME microscale discretization are performed based on the
macroscale model and loading condition shown in Fig. 3.3(a). In addition to the two-part model
as shown in Fig. 3.4(a), a four-part and a seven-part model as presented in Fig. 3.7 are considered.

The error over the entire enrichment region at an arbitrary time, #, is computed as:

Z"E‘ ‘Q)VME(X’t) _ (PROVME(XJ)Hz .
eg(t) = i — i (3.52)
)y W (X7I)||2,Qa
a=1
where, ¢ VME and ¢ROVME denote a response field (e.g., equivalent stress) computed using the

direct VME method and the reduced order VME method, respectively. || - ||2.q, is the L, norm of

the response field computed over €. Since all 9 macroscale elements are taken to be enriched
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Figure 3.7: Microscale discretization of an enrichment domain with a circular inclusion:
(a) reduced order VME method with 4 parts; and (b) reduced order VME method with 7
parts.

in the simulations, the enrichment region is the entire problem domain. For the ROVME method
with different parts, the evolution of error in the equivalent stress over the enrichment region as a
function of simulation time is compared in Fig. 3.8(a). The computational time per time step for
each simulation is compared in Fig. 3.8(b). It is observed that the accuracy of the reduced order
VME method improves using the model with more parts. But the rate of the accuracy improvement
decreases when the number of parts is getting larger, indicating that low order models capture
primary response features reasonably well. The computational time increases superlinearly (0.045
second per part from 2 parts to 4 parts and 0.08 second per part from 4 parts to 7 parts). We note
that due to small problem size, a substantial time is spent for problem set-up (approximately 82%
for the 2-part case).

To assess the accuracy of the reduced order VME method for phases with higher modulus
contrasts in the enrichment domain, more numerical verifications are performed. The study is con-
ducted under tensile loading (Fig. 3.3(a)) using the 2-part reduced order VME model (Fig. 3.4(a)).
The elastic behavior of all constituents is assumed in the enrichment domain. Young’s modulus
contrasts for 9 cases considered are summarized in Table 3.3. The Poisson’s ratio is 0.32 for all
the materials. For each case, the error in equivalent stress over the entire enrichment region is

computed using Eq. (3.52). These errors are plotted in Fig. 3.9(a) as a function of modulus con-
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Figure 3.8: Results of reduced order VME method with different parts: (a) error in
equivalent stress over the enrichment region as a function of simulation time; and (b)
computational time per time step.

Table 3.3: Multiple Young’s modulus contrasts of the two phases in the enrichment domain.

trast. The composite stiffness, E, is obtained through the reaction force - displacement plot of each
test (E = (reaction force / area) / (displacement/ structural length)). The errors in the composite
stiffness are plotted in Fig. 3.9(b), with respect to the modulus contrast. When the modulus ratio is
one, the reduced order VME method produces identical results as the direct VME method (error in
both plots is zero), due to the fact that there is no material heterogeneity in the enrichment domain
(material properties are the same everywhere). As the modulus contrast gets larger, the error in
stress rises in a decreasing rate. The same pattern is observed for the error in the composite stiff-

ness. For modulus ratio lower than unity, an increase in composite stiffness error followed by a

Case number Young’s modulus [GPa] | Young’s modulus ratio
Inclusion Matrix (Einclusion/ Ematrix)

1 100 1 100

2 100 2 50

3 100 10 10

4 100 20 5

5 100 100 1

6 20 100 0.2

7 10 100 0.1

8 2 100 0.02

9 1 100 0.01
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A second set of numerical simulations is performed to study the accuracy of the proposed ap-
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Figure 3.9: Modulus contrast analysis: (a) error in equivalent stress over enrichment
region; and (b) error in the composite stiffness.
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Figure 3.10: Microscale discretization of an enrichment domain with random grains: (a)

reduced order VME method with 25 parts; and (b) direct VME method.

reduction as a function of modulus contrast is observed. When the inclusion modulus is small, the
stiffness is dominated by the matrix properties only, which is well-captured by the reduced order

VME approach.

3.4.2 Square specimen with random grains

proach in capturing the local microstructural response characteristics. The microstructure contains

25 randomly placed square grains with two material phases, phase I (dark) and phase II (light), as
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Figure 3.11: Error in equivalent stress over the enrichment region as a function of
simulation time for the square specimen with random grains: (a) under tension; and (b)
under shear.

illustrated in Fig. 3.10. In reduced order model partitioning, each grain is taken as a part. The di-
rect VME method further discretizes each grain with 25 finite elements. The ROVME microscale
partitioning has 25 parts and 75 DOFs whereas the direct VME microscale grid contains 625
quadrilateral finite elements with 676 nodes and 1352 DOFs. Identical macroscale discretization
and loading conditions of the specimen as shown in Fig. 3.3 are used in the current example. The
loading rate, time step size and observation periods for both loading cases are the same as those in
Section 3.4.1.

Identical to the previous numerical examples, the enrichment region is the entire problem do-
main which includes all of the 9 macroscale elements. The evolution of error in the equivalent
stress over the enrichment region as a function of simulation time is shown in Fig. 3.11 for both ten-
sile and shear loading conditions. At an arbitrary time step, the error is evaluated using Eq. (3.52).
It can be observed that the error in stress slightly accumulates along with the increase in plastic
strain. The maximum error is at the end of the simulation where failure is set to initiate. The
increase in error in time is consistent with the example in Section 3.4.1, due to the slightly larger
hardening modulus predicted by the reduced order model. For the shear loading case, the error
in stress slightly decreases shortly after entering the plastic regime due to the stress redistribution

within the enrichment region which softens the rigid kinematics of the reduced order model. The
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Figure 3.12: Equivalent stress contour of the central enrichment domain in the specimen

with random grains: (a) reduced order VME under tension at 432 seconds; (b) direct VME

under tension at 432 seconds; (c) reduced order VME under shear at 396 seconds; and (d)
direct VME under shear at 396 seconds.

error starts to accumulate once the stress redistribution is completed. At the onset of failure ini-
tiation within the structure, the highest error in equivalent stress is 2.5% for the tensile loading
and 1.7% for the shear loading, as shown in Fig. 3.11. The local equivalent stress contours for the
central enrichment domain, corresponding to the prescribed peak load at the end of the simula-
tions, are shown in Fig. 3.12. The stress contours demonstrate that the reduced order VME method
captures the local stress variation within the microstructure reasonably well (0.8% - 2.5% error).
The overall reaction force vs. prescribed displacement comparison is presented in Fig. 3.13. The
figure shows that the global behavior of the reduced order VME method closely agrees with the

direct VME method, in both elastic and plastic states. The comparisons of the global and local re-
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sponses verified the high accuracy of the reduced order VME method, even using relatively coarse
microscale partitioning. The computational time of both simulations are listed and compared in
Table 3.4. The reduced order VME reduces the computational effort of the direct VME method

by at least the same reduction in DOFs, which points to very favorable computational cost of the

proposed approach.
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Figure 3.13: Overall reaction force-displacement comparison for the square specimen
with particles between the direct VME simulation and the reduced order VME method: (a)
under tension; and (b) under shear.

Table 3.4: Computational time comparison for square specimen with particles.

. . ) Computational Microscopic
Loading Computational time i nﬁ) e ratio DOFs ra E R
€8¢ "YME [hr] | ROVME [min] | VME/ROVME | VME/ROVME
Tensile 13.69 15.81 51.94 18.03
Shear 4.75 15.94 17.89 18.03

3.4.3 L-shaped specimen with random grains

The proposed ROVME method is further verified using the numerical analysis of an L-shaped
specimen which contains both enrichment and substrate regions while subjected to more complex
stress states. The geometry, loading condition and the macroscale discretization are illustrated

in Fig. 3.14. The enrichment region (identified with dark shading) is placed within the area of
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0.16 mm

Figure 3.14: Macroscale discretization and sketch for L-shaped specimen.

stress concentration, around the inner corner of the speci