
INTEGRATION OF IMITATION LEARNING WITH COGNITIVE CONTROL FOR A

HUMANOID ROBOT

By

Huan Tan

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

August, 2013

Nashville, Tennessee

Approved:

Kazuhiko Kawamura

Douglas Fisher

Richard Alan Peters II

Nilanjan Sarkar

D. Mitch Wilkes

ii

DEDICATION

Dedicated to

my beloved wife

and

my parents and my son

iii

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor, Professor Kazuhiko Kawamura, who

is not only a great professor in academic and research but also a great mentor in many

areas, due to his deep insight, guidance, endless patience and encouragement provided to

me throughout my PhD research at Vanderbilt University.

I would also like to thank my committee members, Professor Douglas Fisher,

Professor Richard Alan Peters II, Professor Nilanjan Sarkar, and Professor D. Mitch

Wilkes for their inspirations, guidance, comments, and suggestions over this dissertation.

I would like to express my sincere thanks to my beloved wife who always

provides me support and encouragement to help me throughout my PhD study. I also

thank to my parents for the love and support they have provided for my entire life.

I would like to thank all of the students (both past and present) at the Center for

Intelligent Systems (CIS) for their help and invaluable friendship. In particular, Stephen

Gordon, Juan Rojas, Erdem Erdemir, Xi Luo, Sean Thornton, Tuo Shi, Jing Fan, Yiyuan

Zhao, Xue Yang, and Christ Costello. I also would like to thank all my friends at

Vanderbilt University for our enjoyable friendship.

iv

TABLE OF CONTENTS

Page

DEDICATION .. ii

ACKNOWLEDGEMENTS ... iii

LIST OF TABLES .. vii

LIST OF FIGURES ... ix

Chapter

I. INTRODUCTION ... 1

Motivation of Work .. 1
Contribution of Work .. 4
Organization of Dissertation ... 5

II. OVERVIEW OF COGNITIVE ROBOTICS, COGNITIVE CONTROL AND

IMITATION LEARNING .. 6

Overview of Cognitive Robotics ... 6
Overview of Cognitive Control ... 11
Overview of Imitation Learning ... 13

Demonstration Acquisition .. 17
Behavior Segmentation .. 21
Dimension Reduction .. 23
Behavior Representation .. 26
Behavior Generation .. 34

III. METHODOLOGY .. 48

Motivation ... 48
System Architecture .. 50

Imitation Learning Framework .. 50
Cognitive Architecture ... 54
Integration .. 58

Central Executive Agent ... 65
Input/Output ... 65
Implementation .. 65

Decision Making Mechanism ... 66
Input/Output ... 67
Implementation .. 67

Compensator ... 69
Input/Output ... 69
Implementation .. 69

Acquisition .. 70
Input/Output ... 70
Implementation .. 71

Behavior Generalization ... 74
Input/Output ... 78
Implementation .. 78

Representation and Storage ... 81

v

Input/Output ... 81
Implementation .. 82

Command Parsing ... 82
Input/Output ... 83
Implementation .. 84

Behavior Library ... 85
Input/Output ... 85
Implementation .. 85

Behavior Sequence Generation ... 88
Input/Output ... 88
Implementation .. 88

Motion Trajectories Generation .. 90
Input/Output ... 90
Implementation .. 91

Internal Rehearsal System ... 94
Input/Output ... 95
Implementation .. 96

Summary ... 98

IV. SYSTEM IMPLEMENTATION, EXPERIMENTAL DESIGN AND RESULTS 99

System Implementation ... 99
Experimental Design ... 99

Hardware .. 99
Software ... 101
Communication .. 104

Experiment 1: Reaching and Pushing ... 108
Experiment 1A: Unsupervised Reaching and Pushing 108
Experiment 1B: Supervised Pushing by Physical Coaching 122
Experiment 1C: Compensator for ISAC Arm Control....................................... 128

Experiment 2: Yo-Yo Playing ... 131
Objective .. 131
Simulation Experiment Description ... 131
Learning ... 133
Generation .. 136
Simulation Experimental Results ... 138
Discussion .. 139

Experiment 3: Cognitive Control .. 140
Objective .. 140
Simulation Experiment Description ... 140
Experiment 3A: Integrated System without Obstacle .. 141
Experiment 3B: Integrated System with Obstacle ... 149

Summary ... 172

V. EVALUATION OF SYSTEM PERFORMANCE ... 173

Behavior Generation ... 173
Experiment 1A and 1B .. 173
Experiment 1C ... 176
Experiment 2 .. 177

Cognitive Control .. 182
Experiment 3A ... 182
Experiment 3B ... 186

vi

Overall Analysis of Cognitive Control .. 188
System Performance ... 190

System Performance between the Input and the Output of the Behavior

Generalization Module .. 192
System Performance between the Input and the Overall Output of the System 198

Summary ... 198

VI. CONCLUSION AND FUTURE WORK .. 200

Conclusion .. 200
Future Work .. 201

APPENDIX ... 205

A. Hand-Tracking and Object-Tracking Using Kinect ... 205
B. A Potential Field Method-Based Extension of the Dynamic Movement Primitive

Algorithm for Imitation Learning with Obstacle Avoidance 207
C. Simulation Results and Generated Motion Trajectories of Experiment 3 211
D. Major Software Program Files and Functions .. 317
E. User Manual ... 322

REFERENCES ... 328

vii

LIST OF TABLES

Table Page

1. Pre-Conditions, Internal Constraints, and Post Results ... 79

2. Criterions for Pre Conditions and Post Results .. 79

3. Criterions for Internal Constraints ... 80

4. Stored Basic Behaviors .. 82

5. Behavior Motion Trajectory Generation Methods ... 91

6. Simulation Results of Experiment 3A ... 148

7. Simulation Results of Experiment 3B-1 .. 164

8. Simulation Results of Experiment 3B-2 .. 165

9. Simulation Results of Experiment 3B-3 .. 166

10. Simulation Results of Experiment 3B-4 .. 167

11. Simulation Results of Experiment 3B-5 .. 168

12. Simulation Results of Experiment 3B-6 .. 169

13. Simulation Results of Experiment 3B-7 .. 170

14. Simulation Results of Experiment 3B-8 .. 171

15. Evaluation Results of Behavior Errors of Experiment 1A and 1B 175

16. Experimental Results of Experiment 1C .. 176

17. Evaluation of Similarity in Experiment 2 .. 178

18. Similarity between the Cyclic “Yo-Yo Motion” Behaviors and the Generalized

“Yo-Yo” Motion Behavior ... 180

19. Simulation Results of Experiment 3A ... 182

20. Running Time of Key Components in Experiment 3A .. 184

viii

21. Evaluation Results of Experiment 3B .. 187

22. Success Rates of Experiment 3B with Different Obstacles 187

23. Success Rates of Experiment 3A and 3B ... 188

24. Running Time of Key Components in Experiment 3A and 3B 189

25. Comparison of Generalization Results of the “Reaching” Behavior 194

26. Comparison of Generalization Results of the “Pushing” Behavior 197

27. Comparison of Stored Features of the “Reaching” and “Pushing” Behaviors..... 198

ix

LIST OF FIGURES

Figure Page

1. Swing-Up Experiment [Atkeson and Schaal, 1997] .. 14

2. Reproduction in Different Situations [Billard et al., 2007] 16

3. Robot Senses the World [Kawamura et al., 2008] ... 18

4. A Learning from Observation Framework [Kuniyoshi et al., 1994] 19

5. Sensing using Sensors on the Human Body [Ijspeert et al., 2002] 20

6. Segmentation Results using a GMM Based HMM Model [Billard et al., 2006] ... 22

7. ISAC Simulator and Internal Rehearsal [Erdemir et al., 2008] 28

8. Environmental Modeling using GMM [Erdemir et al., 2008] 28

9. A HMM Model for Representing Human Gestures [Inamura et al., 2003] 29

10. A Multi-Layer Neural Network Model [Jain et al., 1996] 31

11. Imitation Learning of Reactive Primitives [Bentivegna and Atkeson, 2001] 36

12. Path Searching[Arikan and Forsyth, 2002] .. 37

13. Control Architecture in Atkeson’s Method [Atkeson and McIntyre, 1986] 37

14. Demiris’s Imitation Learning Architecture [Demiris and Hayes, 1996] 38

15. Relationship between Different Spaces [Bitzer and Vijayakumar, 2009] 39

16. Generation Results in Calinon’s Method [Calinon et al., 2007] 42

17. Generation Results in Calinon’s Method in Similar Situations[Calinon et al., 2007]

 .. 42

18. Schaal’s Imitation Learning Architecture [Schaal et al., 2003] 43

19. Generation Results using Discrete DMP [Ijspeert et al., 2003] 45

20. Generation Results using Rhythmic DMP [Ijspeert et al., 2003] 45

x

21. Imitation Learning Framework .. 50

22. Detailed System Framework for Imitation Learning ... 50

23. Behavior Acquisition ... 51

24. Behavior Segmentation .. 51

25. Behavior Generalization... 52

26. Behavior Representation .. 53

27. Behavior Generation .. 54

28. ISAC Cognitive Architecture [Kawamura et al., 2008] ... 55

29. A Simplified Hybrid Cognitive Architecture ... 56

30. Integration of Imitation Learning with Cognitive Control 59

31. Cognitive Control Block Diagram ... 59

32. Modified Cognitive Control System Diagram ... 60

33. Integration of Behavior Acquisition .. 60

34. Integration of Behavior Segmentation and Generalization 61

35. Integration of Behavior Representation ... 61

36. Integration of Behavior Generation ... 62

37. Integrated System ... 63

38. Decision Making Mechanism .. 67

39. Kinect ... 72

40. Obtained Skeleton Data from Kinect Software .. 72

41. Kinematics Model of ISAC .. 73

42. Different “Reaching” Behaviors .. 75

43. Pseudo Code of Constructing a Behavior Graph ... 86

xi

44. A Constructed Behavior Graph .. 87

45. Internal Rehearsal... 95

46. ISAC Robot .. 100

47. Simulator .. 103

48. Computers .. 105

49. Environmental Setup of Experiment 1 ... 109

50. ISAC Arm Control Interface .. 110

51. GUI of the IRS and the Speech Command Communication................................ 112

52. Experimental Setup for the Learning Stage of Experiment 1 113

53. Generalization Results of the “Reaching” Behavior Using the Left Arm 114

54. Generalization Results of the “Reaching” Behavior Using the Right Arm 115

55. Generalization Results of the “Pushing Left” Behavior 116

56. Generalization Results of the “Pushing Right” Behavior 117

57. Generated Motion Trajectories for Experiment 1A (Pushing to the Left) 118

58. Experimental Results of Experiment I (Pushing to the Left) 119

59. Generated Motion Trajectories for Experiment I (Pushing to the Right) 120

60. Experimental Results of Experiment I (Pushing to the Right) 121

61. Experimental Setup of the Generation Stage in Experiment 1B 123

62. Experimental Setup of the Learning Stage in Experiment 1B 124

63. Pushing Points of Experiment 1B .. 125

64. The Gaussian Model of the pushing points in Experiment 1B 126

65. Experimental Results of Experiment 1B .. 127

66. Experimental Setup of Experiment 1C .. 129

xii

67. Experimental Results of Experiment 1C .. 130

68. Experimental Setup of the Learning Stage of Experiment 2................................ 134

69. Recorded Motion Trajectory of the “Yo-Yo Playing” Behavior Sequence 135

70. Recorded Motion Trajectories of “Yo-Yo Motion” Behavior 135

71. Generalization Results of the “Yo-Yo Motion” Behavior 136

72. Behavior Sequence Generation for Yo-Yo Playing ... 137

73. Generated Motion Trajectories for Experiment 2 .. 138

74. Simulation Setup for Experiment 3A ... 143

75. Simulation Results of Experiment 3A-1 .. 144

76. Generated Motion Trajectories for the Right Arm (Experiment 3A-1) 145

77. Simulation Results of Experiment 3A-2 .. 145

78. Generated Motion Trajectories for the Right Arm (Experiment 3A-2) 146

79. Generated Motion Trajectories for the Left Arm (Experiment 3A-2) 147

80. Simulation Results of Experiment 3A-10 .. 147

81. Key Software Components in Experiment 3B ... 149

82. Example of the IRS Environment .. 151

83. Simulation Setup of Experiment 3B .. 154

84. Locations of the Obstacles in Experiment 3B-3 .. 155

85. Different Sizes of Obstacles in Experiment 3B-3c .. 156

86. Simulation Results of Experiment 3B-6a-1 ... 158

87. Simulation Results of Experiment 3B-6a-2 ... 158

88. Generated Motion Trajectories for the Right Arm (Experiment 3B-6a-1/2) 159

89. Simulation Results of Experiment 3B-6a-3 ... 160

xiii

90. Generated Motion Trajectories for the Right Arm (Experiment 3B-6a-3) 160

91. Generated Motion Trajectories for the Left Arm (Experiment 3B-6a-3) 161

92. Simulation Results of Experiment 3B-6a-4 ... 162

93. Generated Motion Trajectories for the Right Arm (Experiment 3B-6a-4) 162

94. Generated Motion Trajectories for the Left Arm (Experiment 3B-6a-4) 163

95. Recorded Motion Trajectories of Cyclic “Yo-Yo Motion” 179

96. Normalized “Yo-Yo Motion” Behaviors ... 180

97. Generalization Results of Cyclic “Yo-Yo Motion” Behaviors 181

98. Successful Pushing Area in Experiment 3A .. 183

99. Imitation Learning Framework .. 190

100. Learning from Observation VS Learning from Physical Coaching for “Reaching”

 .. 192

101. Generalization Results of the “Reaching” Behavior from Physical Coaching 193

102. Learning from Observation VS Learning from Physical Reaching for “Pushing”

 .. 194

103. Generalization Results of the “Pushing Left” Behavior from Physical Coaching195

104. Generalization Results of the “Reaching Right” Behavior from Physical Coaching

 .. 196

105. Guidance from Human ... 201

106. Pivoting [Aiyama et al., 1993] ... 202

1

CHAPTER I

INTRODUCTION

Motivation of Work

In the future, it is expected that humanoid robots will be increasingly used in

working spaces, homes, public spaces, and other human environments to assist humans or

to complete tasks independently. In a complex and dynamic environment, it is necessary

for robots to collect useful information from the environment and try to use available

resources to complete tasks. This requires robots to make some decisions and find

solutions to their encountered problems quickly by utilizing their own knowledge and

current environmental information. Thus, a behavior learning and generation system is

necessary for robots to learn and generate behaviors in task-relevant situations. In order

to realize such a system, we have to consider some issues.

First, we cannot expect that robots can generate behaviors or skills starting from

scratch to solve problems totally by themselves. One solution is that humans demonstrate

robots behaviors or skills to robots in advance or on site, and let robots generalize

behaviors or skills from demonstrations, so that robots will generate necessary behaviors

to complete tasks.

Second, working in dynamic task-relevant situations requires robots to collect

environmental information and use decision-making mechanisms to find solutions.

Acceptable solutions should enable robots to complete tasks without putting themselves

or human collaborators in danger and damaging the environment.

2

Finally, learning is crucial for robots to behave more robust in dynamic working-

environment. It is impossible to teach robots everything they need, but it is possible to

give robots learning methods, using which they can generalize useful information from

demonstrations of humans and use the generalized behaviors or skills to solve similar but

slightly different tasks.

Due to the complexities of the mechanisms of humanoid robots, it is difficult to

program complex behaviors for robots to use, and it also requires a large amount of time

for design and programming. Thus, in order to enable humanoid robots to work

independently or work with humans in task-specific situations, it is necessary to find

methods for robots to learn required behaviors or skills rapidly either from humans or

own exploratory trials [Tan and Kawamura, 2011].

Robotic imitation learning provides a type of tool for robots to learn behaviors or

skills from humans[Atkeson and Schaal, 1997] [Billard et al., 2007]. In imitation learning,

robots learn behaviors and skills from demonstrations of humans and apply these learned

behaviors and skills to similar but slightly different task-specific situations. Some

researchers have proposed that imitation learning could be a possible way of teaching

humanoid robots simple behaviors or skills rapidly [Schaal, 1999].

With the development of imitation learning, imitation learning research has been

gradually formulated into four stages: what-to-imitate, how-to-imitate, when-to-imitate,

and who-to-imitate [Calinon et al., 2007] [Nehaniv and Dautenhahn, 2002]. What-to-

imitate deals with the problem of acquisition and representation of demonstrations, how-

to-imitate tries to find a method to incorporate the demonstration into a policy-making

process(partly decision-making), when-to-imitate focuses on the regression model and

3

prediction of the data, and who-to-imitate determines the behavior transfer between

bodies with dissimilarity [Nehaniv and Dautenhahn, 2007].

After learning and generalizing behaviors from demonstrations, robots need to

apply these behaviors to tasks. Current research on imitation learning only tries to

generate similar motion trajectories [Ijspeert et al., 2003] or generate similar behavior

sequences [Dillmann et al., 2000] in similar task-relevant situations. These research could

help robots complete simple tasks. However, when a robot is placed in a largely different

task-relevant situation, a new approach is needed.

This dissertation investigate how to generalize common task-relevant features or

constraints of demonstrated behaviors, how to store learned behaviors in memories, and

how to generate additional behaviors or behavior sequences to complete tasks. The focus

of this dissertation is not on the development of a novel algorithm of generating similar

motion trajectories. The innovative work of imitation learning in this dissertation is to

find a method for robots to generalize observed behaviors in demonstrations and to use

learned behaviors in different task-relevant situations.

The goal of cognitive robotics is to generate human-like intelligence for robots

which combines perception, action, learning, decision-making, and communication

[Kawamura and Browne, 2009]. “Cognitive control” is a construct from contemporary

cognitive neuroscience that refers to processes that allow information processing and

behavior to vary adaptively from moment to moment depending on current goals, rather

than remaining rigid and inflexible [Ragland et al., 2007]. Cognitive control processes

include a broad class of mental operations including goal or context representation and

maintenance, and strategic processes such as attention allocation and stimulus-response

4

mapping [Ragland et al., 2007]. Cognitive control provides a method for robots to

interact with humans and robots, and executes suitable behaviors in respond to the

emergencies and uncertainties in the environment.

This dissertation additionally investigates how to integrate cognitive control with

our robotic imitation learning framework, how to implement the integrated cognitive

architecture, and how to make decisions of switching tasks, learning new behaviors and

executing suitable behaviors or behavior sequences through cognitive control processes.

In all, using imitation learning, robots learn behaviors and skills from humans and

generate similar behaviors or behavior sequences in task-relevant situations; using

cognitive control methods, robots decide how to use imitation learning framework to

complete tasks using learned behaviors or switch tasks according their judgments in

dynamic environment.

Contribution of Work

 The main contribution of this work will be: (1) a framework to generalize

demonstrated behaviors and generate behavior sequences using behavior graph; and (2)

an integrated system which combines imitation learning and cognitive control for a

humanoid robot to switch strategies to complete tasks. In this dissertation, the

generalization of demonstrated behaviors, the storage of generalized behaviors and the

description of the relationship among these learned behaviors, and the generation of

behaviors or new behavior sequences in new task-relevant situations will be entailed.

These methods will be integrated in cognitive control processes for robots to deal with

5

dynamic situations. Finally, the developed system will be implemented on a cognitive

architecture [Kawamura et al., 2008].

Organization of Dissertation

The rest of this dissertation is organized into four chapters: Chapter II provides an

overview of fundamental concepts of robotic imitation learning and cognitive control.

Robotic imitation learning is divided into behavior acquisition, behavior segmentation,

dimension reduction methods, behavior representation methods and behavior generation.

Current related research on these topics will be discussed. Cognitive control is to

switching strategies to achieve an internal goal, and is related to attention, perception,

sensory-motor coordination, memory, decision-making, learning, internal rehearsal, etc.

Chapter III explains the integration of robotic imitation learning and cognitive control, as

well as how system components are designed. Chapter III also describes how to

implement the integrated system using a cognitive architecture. Chapter IV describes

three experiments used to test and validate the developed system. Both simulation and

experimental results using the ISAC humanoid robot are given in this chapter, as well as

the discussion of results. Chapter V quantitatively evaluates the results of the three

experiments. Chapter VI concludes this dissertation and proposes future directions of

research.

6

CHAPTER II

OVERVIEW OF COGNITIVE ROBOTICS, COGNITIVE CONTROL AND

IMITATION LEARNING

Overview of Cognitive Robotics

The goal of cognitive robotics is to realize human-like intelligence for robots by

combining perception, action, learning, decision-making, and communication

[Kawamura and Browne, 2009]. Design of a cognitive robot is a systematical integration

work [Cassimatis et al., 2004] which includes four important principles: developmental

organization, social interaction, embodiment and physical coupling, and multimodal

integration [Brooks et al., 1998]. Asada and his colleague proposed that cognitive robots

should interactively collect and analyze information to achieve some level of human

cognition[Asada et al., 2001].

In the nineties, people realized that it was difficult to create truly artificial

intelligence systems because according to Turing’s test, machines such as robots should

behave intelligently like a real human, but this is impossible due to the fact that the

mechanism of human cognition is still not well understood. For example, researchers still

do not know how the knowledge is stored in the brain, how evolution processes are

happening in the brain, and how billions of neurons work together to plan and complete a

complex task. Therefore some researchers think that if the ultimate goal is to make a

robot agent interact in intelligent way with people, then such an agent should have as the

basis of its experience [Brooks, 1986].

7

More and more researchers accepted that robotic cognition should be related to

the situated environment [Brooks, 1991]. Of course, robotic cognition does not need to

duplicate human cognition, but researchers often could obtain inspiration from the

research of human cognition.

Since it is impossible to emulate exactly how the brain works on humanoid robots

some researchers tried to define the requirement of intelligence for robots. For example,

McCathy proposed requirements for human-like robots [McCarthy, 1996]. Sloman

analyzed McCathy’s statement, combined it with current robotics research and listed

several long-term goals for cognitive robots, including: required mechanisms, deeply

embodied agents, informationally disembodied agents, species differences, viewer

independent affordances, a ‘disembodied’ grasping concept, perceiving processes,

understanding causation [Sloman et al., 2006] [Sloman, 2009].

If we accept these design goals for robotic cognition, cognitive robots should have

the following practical skills: attention, perception, sensory-motor coordination, memory,

decision-making, learning, internal rehearsal, and interaction. All of the skills will

involve certain types of behaviors.

Attention

Attention mechanism in the cognitive process of selectively concentrating on one

thing while ignoring others [Deutsch and Deutsch, 1963] [Purdy and Olmstead, 1984]

[Driscoll et al., 1998] [Begum and Karray, 2011] .

Perception

Perception includes not only obtaining the images, audio, and other sensory data

from the environment, but also extracting useful information from them. Image

8

processing is a tool for this; however, the goal is to map the sensory data into the task-

related data [Crick et al., 2011]. For cognitive robots, the perceptual information is used

for the processing in a cognitive way. For example, Chella designed a cognitive

architecture for robots, which describes the connection between perceptual system and

the cognitive process in robots [Chella et al., 1997].

Due to the imprecision of sensors, disturbances and noises in the environment and

systems, it is necessary to estimate the state of the environment and systems using some

probabilistic methods. State estimation is done through two types of filter: Bayesian

Filter and Kalman Filter.

Bayesian Filter is a commonly used method to find the estimation with the fixed

probability [Russell and Norvig, 2003]. It is not an optimum one, but it can give overall

understanding of the process. Kalman Filter is an optimum filter to estimate the current

state of the process and the future state which can be used in a variety of systems

[Kalman, 1960]. It originates from the Bayesian Filter.

Sensory-Motor Coordination

 When information in the environment and on the robotic body is collected,

cognitive robots should set tight connections between the sensory information and the

possible actions [Mataric, 2002]. Sometimes, this type of connections could be

established through interactions [Mirza et al., 2007]. Such connections enable robots to

response rapidly, especially for the emergency.

Memory

Memory can be divided into two types: Long-Term Memory, and Short-Term

Memory.

9

Long-Term Memory stores procedural, semantic, and episodic memories; Short-

Term Memory stores information (mainly environmental information from sensors) for a

short-term.

Decision-Making

Decision-Making enables robots to choose a reasonable and suitable action based

on the collected information [Estlin et al., 2001].

Learning

A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E [Mitchell, 1997] .

Interaction

Humans and robots should interact through some communication mechanisms

[Rahimi and Karwowski, 1992] [Trafton et al., 2005] [Goodrich and Schultz, 2007]. The

interaction can be implemented through GUI, animations, sounds, touching and other

methods [Tan, 2011]. Humans can give orders to robots, and robots can send the

feedback to humans. This is the simplest way of communicating. However, for cognitive

robots, it is necessary to make the communication more interactive. Especially for robots

which can be used among humans [Nakauchi and Simmons, 2002], the interaction

between robots and humans are more important. For service robots, robots should also

get the feedback from humans [Bien and Lee, 2007].

Development of cognitive robotics largely depends on cognitive architectures.

Brooks proposed “Subsumption Architecture” for robotic control systems [Brooks,

1986]. It is a strong connected architecture including several sensory-motor sub-modules

10

called behavior units. In it, behaviors with higher-level priority can suppress the ones

with lower-level priority. All of the information is processed in parallel to provide fast

response for robots.

There are several ways to classify the architectures; one is by the approach, the

other is by the robotic related information. Cognitive architectures can be divided into

three types: Symbolic, Connectionist and Hybrid.

For symbolic type, some well-known architectures are: ACT-R [Anderson and

Lebiere, 1998], SOAR [Lehman et al., 1998], EPIC [Keiras and Meyer, 1997], Chrest

[Gobet et al., 2001], and Clarion [Sun, 2003]. These architectures use classical AI

methods for symbolic computation and manipulation in information processing. Logical

methods are used for robots to generate actions through reasoning.

Connectionist type includes: Darwinism [Edelman, 1987] and CAP2 [Schneider,

1999]. These architectures construct a large inter-connected network to process the

sensed data and generate actions.

Many modern researchers have begun to recognize the need of both deliberative

interaction and reactive interaction for cognitive robots, which motivates the research on

hybrid architectures [Kawamura et al., 2004]. Hybrid type includes: Subsumption

[Brooks, 1986], RCS [Albus and Barbera, 2005], CHIP [Shrobe and Wilson, 2006],

JACK [Winikoff, 2005], and ISAC [Kawamura and Browne, 2009].

With the skills and mechanism described above, a cognitive robot is able to

interact with human beings and other robots in a dynamic environment. Brooks [Brooks

et al., 1998] strongly stresses the importance of embodiment. Beer proposed a field based

method to solve the interaction between robots and the environment [Beer, 2000]

11

[Erlhagen and Bicho, 2006]. Khatib also used the potential field-based method to solve

the interaction problem [Khatib et al., 2001]. Interaction requires cognitive robots not

only to utilize the information in the environment but also to have abilities to

communicate with humans and other robots [Fong et al., 2003]. Embodiment not only

lies in the software but also in the hardware [Pfeifer et al., 2007].

Overview of Cognitive Control

“Cognitive control” is a construct from contemporary cognitive neuroscience that

refers to processes that allow information processing and behavior to vary adaptively

from moment to moment depending on current goals, rather than remaining rigid and

inflexible [Ragland et al., 2007]. Cognitive control processes include a broad class of

mental operations including goal or context representation and maintenance, and strategic

processes such as attention allocation and stimulus-response mapping [Ragland et al.,

2007]. Cognitive control provides a method for robots to interact with humans and robots,

and executes suitable behaviors in respond to the emergencies and uncertainties in the

environment.

Recent research on cognitive control for robots focuses on regulating robotic

behaviors by analyzing sensory information [Burattini et al., 2011], mapping between

action observation between appropriate complementary actions [Bicho, 2012], behavior

control based on Self-Awareness [Gorbenko et al., 2012], control task planning

[Insaurralde et al., 2012], sensorimotor coordination [Maye and Engel, 2011],

optimization for multiple control task [Karaoguz et al., 2011], etc.

12

In order to implement cognitive control, robots need to learn the knowledge about

control strategies first. Reinforcement Learning [Khamassi et al., 2011], ANN [Sánchez

Boza et al., 2011] [Hamker, 2012], etc. for robots to learn strategies.

Cognitive control architectures still receive broad attention from cognitive

robotics community [Malfaz et al., 2011] [Munoz et al., 2011] [KangGeon et al., 2011]

[Huntsberger, 2011] [Conforth and Yan, 2011] [Glas et al., 2011] [Haazebroek et al.,

2011].

A cognitive control framework was developed in our lab [Kawamura and Gordon,

2006] and implemented as a part of a cognitive robotic architecture in 2008 [Kawamura

et al., 2008]. Cognitive control functionalities implemented were attention control,

working memory and internal rehearsal.

SES, inspired by the egosphere concept defined by Albus [Albus, 1991], serves as

a spatio-temporal Short Term Memory for a robot [Peters II et al., 2001]. STM handles

sensor-based percepts that are assigned the focus of attention or gating by the Attention

Network [Hambuchen, 2004]. Perceived sensory inputs that have a high emotional

salience, i.e. task-related chunks, will cause the Attention Network to post them to

Working Memory System (WMS). WMS stores task-related information [Kawamura et

al., 2004] [Dodd, 2005]. Internal Rehearsal is a tool for the decision-making. Robots do

not need to apply the actions in the real environment. They can estimate the results using

the established action model and the environment model. The decisions are making

before actions using internal rehearsals[Lee and Thompson, 1982] [Erdemir et al., 2008].

This is different from simulation because simulation is only a display or duplicate of the

real experimental process. Additionally, robots can estimate the results of its actions so as

13

to improve performance. In some circumstances, the robot could even use internal

rehearsal to learn how to perform new tasks. Such functions cannot be completed by

simulations.

Overview of Imitation Learning

In the past, robots could do little without programming by the operators. In order

for robots to generate behavior, researchers pre-designed behaviors for robots

[Mahadevan and Connell, 1992] [Brooks et al., 1999]. Generated behaviors are then

modified through machine learning process. Beginning from the 1970s, researchers

started to explore possible methods to teach a robot to learn knowledge, skills, and

behaviors.

One robot learning area is in which robots learn mappings from states to actions,

called a policy, enabling a robot to act based upon the current state. A particular

promising approach to policy learning is called Imitation Learning (IL), also referred to

as Learning from Demonstration (LfD) or Programming by Demonstration (PbD)

[Argall, 2009]. In imitation learning, after observing demonstrations, robots generate

reasonable solutions to solve similar problems by either searching a good solution or

eliminating a bad solution in the knowledge base [Billard et al., 2007]. This method was

found efficient for transferring simple skills from human to robot.

The first exploration in imitation learning was by Uchiyama who trained robots to

learn motion patterns through trials [Uchiyama, 1978]. The subsequent research focused

on teaching robots to learn skills or transferring skills between robots.

14

Atkeson and his college in 1986 proposed a prototype of imitation learning

system and trained robots to learn motions through practice [Atkeson and McIntyre,

1986]. He started the research in 1980s to teach the robot to move its arm following the

demonstration as close as possible. This is considered to be a significant prototype of the

modern imitation learning.

Earlier in the 1990s, imitation learning still focused on the learning of the

dynamics of robotic control system [Horowitz, 1993]. Atkeson’s famous inverted

pedulumn experiment started in the 1990s [Atkeson and Schaal, 1997], in which robots

were shown a demonstration of swing-up a pendulum. Robots then tried to modify the

control parameters and control policies to balance it in a upright position with similar

trajectory to the demonstration as shown in Figure 1.

Figure 1 Swing-Up Experiment [Atkeson and Schaal, 1997]

Imitation learning can be implemented in two stages: Learning from

Demonstration, and Generation of Behaviors. Typically, an imitation learning process

consists of the following steps: 1. A human teacher or a robot demonstrates how to

complete a task to another robot (often as a form of a behavior sequence) and another

robot records the behavior sequence and segment it into a set of behavior primitives; 2.

Given a similar but different task, the robot generates the same behavior sequence or the

same behaviors to complete this task.

15

Current research on imitation learning can be divided into two categories [Calinon

et al., 2007]: one is trying to train robots to extract and learn the motion dynamics

[Ijspeert et al., 2003], and the other is trying to train robots to learn higher-level behaviors

and action primitives through imitation [Dillmann et al., 1995] [Mataric et al., 1998].

Since the 1990s, researchers began to develop humanoid robots (such as MIT Cog

[Brooks et al., 1999], NASA Robonaut [Ambrose et al., 2000], Aldebaran’s NAO

[Gouaillier et al., 2009], Vanderbilt ISAC [Kawamura et al., 2008] and others. Because

there are many similar physical characteristics between humanoid robots and humans, it

is also expected that humanoid robots allow to investigate complex truly human-like

intelligence [Atkeson et al., 2000]. Two problems have been emerged: one is how to

program the motions of a humanoid robot which has many degrees-of-freedom [Kuffner

Jr and LaValle, 2000] [Yang et al., 2006], and the other is how to implement human-like

intelligence on this robotic platform. The first problem lies in the control area and the

latter lies in the AI area.

Schaal proposed that imitation learning is a possible solution for the first problem

[Schaal, 1999]. Billard analyed the cognitive process of behavior generation in the

human brain and presented a biologically inspired model for motor skill imitation

[Billard, 2001].

Billard stated that robots should learn the skills from multiple demonstrations,

extract the common feature from the demonstratoins, and reproduce the skills in different

situations [Billard et al., 2007].

16

Figure 2 Reproduction in Different Situations [Billard et al., 2007]

Gradually, imitation learning research has been formulated into four stages: what-

to-imitate, how-to-imitate, when-to-imitate, and who-to-imitate [Calinon et al., 2007]

[Nehaniv and Dautenhahn, 2002].

What-to-imitate deals with the problem of acquisition and representation of

demonstrations, how-to-imitate tries to find a method to incorporate the demonstration

into a policy-making process(partly decision-making), when-to-imitate focuses on the

regression model and prediction of the data, and who-to-imitate determines the skills

transfer between bodies with dissimilarity [Nehaniv and Dautenhahn, 2007].

In the what-to-imitate stage, demonstrations are represented by mathematical

models: Fuzzy method[Dillmann et al., 1995], Hidden Markov Model (HMM) [Yang et

al., 1997], Locally Weighted Regression [Atkeson et al., 1997], Gaussian Process [Wang

et al., 2008], and Gaussian Mixture Model (GMM) [Calinon et al., 2007]. Because of the

high DOFs, dimension reduction is applied before the establishment of these

mathematical models through Principal Component Analysis (PCA) [Wood et al., 1987;

Calinon et al., 2007], Factor Analysis[Bartholomew, 1984], Principal Curves[Tibshirani,

1992], ISOmap [Jenkins and Matari 2004] [Jenkins and Matari 2004], or Locally Linear

Embedding (LLE) [Roweis and Saul, 2000].

17

In the how-to-imitate stage, Dynamic Movement Primitives (DMP) [Ijspeert et al.,

2003] is widely used, and Calinon proposed a lagrange-equation method to compute

solutions [Calinon et al., 2007].

In the when-to-imitate stage, the data prediction is based on the models used in

what-to-imitate. Additionally, if dimension reduction is applied in what-to-imitate, data

reconstruction should be taken into consideration. Bishop proposed the Generative

Topographic Map (GTM) to train the recontruction matrix [Bishop et al., 1998].

Lawrence proposed Gaussian Process Latent Variable Model (GPLVM) by using the

Expectation-Maximization (EM) method in PCA to interatively compute the

reconstruction matrix [Lawrence, 2005].

who-to-imitate is still under investigation.

From a perspective of system implementation, we can also divided the imitation

learning framework in to following parts: demonstration acquisition, behavior

segmentation, dimension reduction, behavior representation, and behavior generation.

Demonstration Acquisition

This is the first stage of skill learning by imitation. In this stage, robots record the

demonstrated motions to complete certain tasks. Demonstrations are given by humans or

other robots. As shown in Figure 3, robots could use a variety of devices to sense and

record the demonstrated motions.

18

Figure 3 Robot Senses the World [Kawamura et al., 2008]

--Recording from Observing

 The method in which robots use cameras to observe the demonstrations from

humans is the most common motion recording method [Bentivegna and Atkeson, 2001]

[Ogawara et al., 2003] [Ude et al., 2004].

Kuniyoshi proposed a general framework for robots to learn reusable knowledge

through observation [Kuniyoshi et al., 1994].

The observed information was gathered by cameras and sent to the vision server

for visual and action recognition. The recorded information of the demonstration was the

movement of the hand of humans and the movement of the objects.

19

Figure 4 A Learning from Observation Framework [Kuniyoshi et al., 1994]

In [Yeasin and Chaudhuri, 2000], robots not only tracked the objects in the

environment, but also tracked the hand, and in [Mataric, 2002] the vision information was

straightly coupled with motor information.

In our lab, Begley used two cameras to obtain the demonstrations [Begley, 2008].

Thronton also used this method [Thornton, 2009]. Using two cameras, robot could obtain

the positions in a X-Y plane and the depth information. In Begley’s method, the

movement of a object in a human’s hand was tracked and in Thronton’s method, the

movement of a hand of a human was tracked.

--Recording through Manipulating

In traditional programming of robotic motions, operators use teach-pendants or

other devices to send control information to robots. The manipulation information is

20

recorded by a device for future use. In [Inamura et al., 1999], a human teacher used a

joystick to demonstrate how to complete a task.

--Encoder Recording

There are many sensors on robots, e.g., encoders on the joints. Calinon and

Billard trained a robot to learn how to complete a Chess-Moving task called Bucket task

by manually moving the arm of the robot [Calinon et al., 2007]. The angular information

is recorded and used to compute the position and orientation of end-effectors.

--Recording through Sensing the Forces

Force information has been used for robots to record the demonstration

information from human teachers. In [Skubic and Volz, 2000], human teachers manually

moved the end-effector on the arm of a robot and robot computed the trajectory of

movement using the recorded force information.

--Recording using Sensors on Humans

 In order to reduce noises and obtain better recognition or tracking results,

researchers put sensing devices on human teachers, the movement of which is designed to

be easily captured by cameras or other electronic sensor devices. In [Voyles and Khosla,

2001], sensors were mounted on the hand of a human, and the movement information is

recorded by the sensors on the hand of a human. In [Ijspeert et al., 2002], sensors were

mounted on the arm and the body of a human teacher, and the robot has been shown a

demonstration of hitting a ball using a racket.

Figure 5 Sensing using Sensors on the Human Body [Ijspeert et al., 2002]

21

Behavior Segmentation

Simple tasks can be completed by several behaviors in a behavior sequence.

Therefore, it is reasonable to segment the behavior sequence into several primitive

behaviors [Tan, 2012].

--Hidden Markov Model (HMM)[Rabiner, 1989]

The sensed information from the demonstrations is both temporal and spatial.

Therefore, it is necessary to find a mathematical model to describe it temporally and

spatially. In robotics research, HMM is widely used for behavior segmentation either

shown by human teachers or executed by robots [Pook and Ballard, 1993] [Hovland et

al., 1996] [Rybski and Voyles, 1999] [Wilson and Bobick, 1999] [Inamura et al., 2003]

[Herzog et al., 2008].

Yang et al. used a HMM model to segment the demonstrated gestures [Yang et

al., 1997]. Rybski used this method to segment the behavior of a mobile robot [Rybski

and Voyles, 1999]. In [Pook and Ballard, 1993], behaviors were also segmented using

HMM models. The difference between Pook’s method and Yang’s method is that Pook

segments the measured behaviors in the joint space. In Yang’s method, the 6-dimensional

information has been combined into 1-dimension.

The advantages of the HMM method are: robust, flexible, extensible, and easy to

implement. The disadvantage of HMM method is that the number of states in a behavior

sequence should be predefined. If a new behavior sequence is generated, it is difficult for

designers to determine how many states there are in the behavior sequence.

22

--Extension of HMM Method

In order to avoid the disadvantages of the HMM method, many researchers

proposed some extensions of the original HMM method. The basic idea is to modify and

improve the segment criterion or the representation of states.

--Gaussian Mixture Model (GMM)

Billard used GMM [Chernova and Veloso, 2007] to describe the states to

construct the HMM model [Billard et al., 2006]. The basic idea is that different

segmented parts in the demonstration have different shapes of distributions if GMM is

used to describe the distributions of the sampled data points.

As shown in Figure 6, there are eight Gaussian models in the sampled data points,

each model having different means and variants. Therefore, the states can be described

upon the means and variants.

Figure 6 Segmentation Results using a GMM Based HMM Model [Billard et al., 2006]

--Cluster Based Method (CBM)

Kulic and Nakamura proposed a segmentation method based on the optical flow

in the environment, which is a cluster based method [Kulic et al., 2008]. This method

tries to find the similarity between two HMM models. If the Kullback-Leibler distance

23

calculated from is larger than a predefined value, it is considered as a new behavior

sequence and inserted into the tree as a node. Otherwise, the demonstration is segmented

based on the model which has the smaller Kullback-Leibler distance to it.

--Fuzzy Method

Dillman applied the Fuzzy method in segmenting the behaviors in [Dillmann et

al., 1995]. The advantage of Fuzzy method is that it is not necessary to predefine the

number of states in a behavior sequence of a demonstration. However, the disadvantage

is that it is easy to be affected by the noise. Although some noise reduction methods can

be used to avoid this bad influence, it is still not easy to use this method in a practical

environment.

Dimension Reduction

The recorded demonstrations are sampled points on the trajectory in data arrays.

There are many DOFs on humanoid robots. Therefore, the collected data points have high

dimensions [Bitzer et al., 2009].

Dimension reduction methods, which project the data from a higher-dimensional

space to a lower-dimensional space [Sammon, 1969] [Kambhatla and Leen, 1993]

[Carreira-Perpinán, 1997] [Rahman and Xu, 2004] [Benner et al., 2005] are widely used

in climate analysis and control, oil data analysis, population analysis, and geographic

analysis [Carreira-Perpinán, 1997] [Bishop et al., 1998], and can provide a visual

representation of the data in the 2-D or 3-D space.

The data come from a single inner space, which is normally called the latent space.

Dimension reduction methods can extract the internal relationships or features of the

sampled data points. This is especially useful for robotic research [Bitzer et al., 2008]

24

[Bitzer and Vijayakumar, 2009]. In robotic imitation learning, it is necessary to find the

internal features of the demonstrated behaviors, because the goal of the imitation learning

is to learn the key features of the demonstrations [Calinon et al., 2007].

Suppose that we have a collected data set . is represented as a matrix:

 ()
 . in this data set is a -dimensional vector and can be represented

as a row vector: () .The objective of dimension reduction is to

obtain a data set in the low-dimensional space, named the latent space where obtained

data set is { | }. Each element is a -dimensional vector and can be

presented as () , where . Normally, is represented as a

matrix ()
 .

--Principal Component Analysis (PCA)

The basic idea of PCA is to reduce the dimensionality of a data set inside to find

out variables are related to each other, while keeping as much as possible the variations

lie in the original analyzed data set [Jolliffe, 2002] [Kambhatla and Leen, 1997]

[Schölkopf et al., 1998] [Belkin and Niyogi, 2003].

PCA is widely used for representing the distribution of data on a 2-dimensional

plane or finding the internal features of the sampled data points [Li and Wang, 2002]

[Verbeek et al., 2002]. Calinon used this method to represent the sampled position values,

joints values, hands-object relationship values using a humanoid robot [Calinon et al.,

2007].

Tipping and Bishop extended the classical PCA method to a probabilistic

method[Tipping and Bishop, 1999]. If the sampled data points are represented by using

25

kernel functions in the original data space, the classical PCA is extended to the kernel

PCA [Williams, 2002].

--Factor Analysis (FA)

The PCA method tries to find the principal components to keep the information,

such as the variance, as much as possible. However, in the FA, a model is established

first and the target is to estimate the variance of the factors in the model [Bartholomew,

1984].

--Topology Methods

Topology methods analyze the sampled data points (in the original high-

dimensional space) by their internal connections and place the data in suitable positions

in the latent space. The distributions of the data points in the latent space reflect the

internal topology of the data points in the original space.

Roweis proposed Locally Linear Embedding (LLE) [Roweis and Saul, 2000] to

utilize the neighborhood information to reduce the dimension of the sampled data points.

The target of this method is to construct a topological manifold and the distribution of the

data points on this manifold in the latent space that is strongly related to the distribution

of the neighbors.

--Multi-Dimensional Scaling (MDS)

MDS [Mardia et al., 1980] [Šarić et al., 2011] is a method to analyze the

dissimilarities between data points. MDS can be divided into the Metric (Classical) MDS

and the Non-Metric MDS. The Metric MDS analyzes the distance between the data

points and constructs a distance matrix. The distribution of the data points in the latent

space reflects the chief spatial topology of the original data set.

26

--ISOMAP

ISOMAP is an extension of the Metric MDS. It constructs the distance matrix by

connecting the neighbors [Tenenbaum et al., 2000] [Tan et al., 2012]. That means, a

neighbor distance matrix is constructed first, and then the overall distance matrix is

computed by connecting the neighbors and adding the distances between the neighbors.

--Self-Organizing Map (SOM)

SOM is a recursive method, which analyzes the similarity of the data points and

automatically places them into a 2-dimensional latent space along with their mutual

similarity [Kohonen, 1982] [Kohonen, 1990] [Kohonen et al., 2002].

--Generative Topology Mapping (GTM)

An important problem in dimension reduction is how to project the data points

from the latent space back to the original high-dimensional data space. Only PCA can

provide the function of the projecting the data points from the original data space to the

latent space, and from the latent space back to the original data space. Bishop proposed

the Generative Topology Mapping (GTM) [Bishop et al., 1998], which constructs a

probabilistic mapping from the latent space to the original data space.

Behavior Representation

The behavior representation methods are strongly related to the targets of the

imitation learning. If the target of the learning is to imitate demonstrated behaviors, the

behaviors are often described as components, policies or rules in a decision making

architecture or mechanism; if the target of the learning is to generate behavior sequences

which are similar to the demonstrations, the behavior sequences are often represented as

semantic knowledge, etc., and the behaviors are often represented as semantic

27

descriptions, components, etc.; if the target of the learning is to generate motion

trajectories and the dynamics of the motion trajectories are similar to the demonstrations,

the motions are often represented as mathematical regression models or probabilistic

models in a path planning module or mechanism.

Behaviors are often represented as the raw data to generate motions [Kawamura et

al., 2008]. These motions can be considered as sequence of sampled points along

trajectories in Cartesian, Joint space, etc.. Some mathematical models are needed to

represent the motion trajectories using some mathematic models. We divide the current

representation methods into several categories: probabilistic methods, semantic methods,

learning methods and others.

--Probabilistic Methods

Gaussian Process (GP)

GP describes the probabilistic distribution over functions. Forte and Ude used GP

regression models to teach a humanoid robot to learn reaching [Forte et al., 2010].

Gaussian Mixture Model (GMM)

Calinon and Billard used the GMM method to represent motion trajectories in

robotic imitation learning [Calinon and Billard, 2007]. This method is applied in the

research of Billard’s group for grasping experiments [Sauser et al., 2011] [Shukla and

Billard, 2012] .

In our lab, Erdemir used GMM models to describe the objects in the environment

[Erdemir et al., 2008]. As shown in Figure 7, the robot is required to reach the objects on

the table.

28

Figure 7 ISAC Simulator and Internal Rehearsal [Erdemir et al., 2008]

First, ISAC tried to reach points in the environment. As shown in the left picture

of Figure 8, when the end-effector collides with an object, robot records the position of

the collision in the environment. These collision points can be described using a GMM

model as shown in the right picture of Figure 8. The target is a ‘hole’ in the GMM model

and the objects are represented as impedances.

Figure 8 Environmental Modeling using GMM [Erdemir et al., 2008]

--Hidden Markov Model (HMM) Based Method

Billard and Calinon proposed that the motions of the behaviors can also be

described as a HMM model [Billard et al., 2006]. The HMM method was also used by

Inamura in [Inamura et al., 2003]. In this paper, Inamura tried to train a robot to learn the

29

demonstrated body gestures as shown in Figure 9. Vakanski also applied HMM in robotic

imitation learning [Vakanski et al., 2012].

Figure 9 A HMM Model for Representing Human Gestures [Inamura et al., 2003]

--Semantic Methods

Robots often need to execute a sequence of behaviors (or actions) to achieve the

task. In such situations, it may be easier to represent behaviors as symbols or semantic

words/phases in sequences. Such behaviors are often called behavior primitives and

robots should learn how to assemble behavior primitives into behavior sequences to

complete a task.

--Behavior Sequences

Many researchers try to represent behavior primitives as semantic names with

parameters [Tan, 2012]. In Rybski’s research, primitives are predefined with

corresponding descriptions about the specific actions with parameters [Rybski and

Voyles, 1999]. The demonstrated behaviors are described as a sequence of behavior

primitives and sequences. Bentivegna and Atkeson also used similar methods to represent

the behavior primitives and to teach a robot to learn to play table hockeys [Bentivegna

30

and Atkeson, 2001]. Mataric used a sequence learner for robots to learn behavior

sequences from human demonstrations using HMM methods [Amit and Matari, 2002].

--Behavior Graph

Arikan used simple nodes to represent the behavior primitives in a behavior graph

[Arikan and Forsyth, 2002]. The behavior sequence is represented by connecting the

nodes. The connected nodes are assembled in a temporal order and robots understand that

the behaviors are in a behavior sequence. The lengths of the node in the lower assembled

behavior sequence reflect the required time of the execution for the behavior primitive.

Mataric used a distributed graph to describe the traveled path a robot has learned

[Mataric, 1992]. Nicolescu also used simple symbols to represent the behavior primitives

[Nicolescu and Mataric, 2003]. In his method, several demonstrations are given to

complete the same task. If two demonstrations are given, a generalized behavior sequence

is to combine them together while keeping the existing time constraints. The robot only

keeps the list that embeds the longest of the possible subsequences. In Ogawara’s method,

several demonstrations are given and robots need to find the common essential segments

from all the demonstrations [Ogawara et al., 2003]. Each segment is represented as a

mean and a variance of the positions of the sampled points on the trajectory. Steil

describes the representation of the demonstrated behavior as a behavior sequence [Steil et

al., 2004]. Additionally, the segments in the behavior sequence described are not only the

movement of the arm but also the actions of other actuators. Salem used a chunked verbal

method to represent the behaviors in a behavior sequence[Salem et al., 2011]. Muench

tried to teach a robot to pick and place an object in the working space [Muench et al.,

1994]. The observed behaviors are represented as a tree. Similar applications are found in

31

[Pardowitz et al., 2007] and [Kulic et al., 2008]. Tenorth used a hierarchy graph to

describe the learned behaviors [Tenorth and Beetz, 2009]. Each behavior in his method is

described a combination of several logic operations.

--Learning Methods

Artificial Neural Network (ANN)

An artificial neuron receives the weighted input and generates an output

according to the following equation:

 (∑

) (1)

where is the input of the neuron, is the related weight, and is an activation

function. The neurons are connected and placed in multiple layers as shown in Figure 10.

A hidden layer is designed inside this ANN model. The neurons in each layer receive

weighted inputs and generate corresponding outputs. The training process is to use the

current data set to modify the weights.

Figure 10 A Multi-Layer Neural Network Model [Jain et al., 1996]

Normally, the Back-Propagation algorithm is applied to learn the weights in an

ANN model [Marsland, 2009].

32

Tani applied ANN to teach a robot to learn gestures from humans [Tani, 2003]

[Tani et al., 2004]. He described the behavior sequence as a reactive policy making

mechanism.

Nonmonotonic Neural Network (NNN)

In 1990s, Morita proposed an extension of ANN, called NNN to represent

sequential patterns [Morita, 1993] [Morita, 1994] [Morita, 1996]. Kuniyoshi used NNN

for robotic imitation learning [Kuniyoshi et al., 2003] [Nabeshima et al., 2006]. In

Kuniyoshi’s method, the states are represented as the combination of the sensory neurons,

where environmental states are stored, and the motor neurons, where the motor data are

stored. After learning, when the system observes a similar visual motion, it is encoded as

a temporal sequence of visual feature vectors. It drives the network state close to the

previously learned trajectory attractor. The state is trapped into the attractor and moves

along it. Then a NNN model is constructed to record the sequential information about the

demonstration, which includes the environmental information and the motor information.

--Topology Coordinate Space Method

Topology coordinates is the basic representation used for the control of tangling

motions [Ho et al., 2010]. There are three attributes within this method: writhe, center

and density.

--States-Actions Coupling

In Kaiser and Dillman’s method, the trajectory is considered as a pair description

between a function of current state (): (()) and the corresponding actions state

 () [Kaiser and Dillmann, 1996]. Given a state () { () (

33

) ()}, the target is to use the sensed data in the demonstrations to train the

Radial-Basis Functions (RBF).

--Regression Methods

The general idea of the Locally Weighted Regression (LWR) [Atkeson et al., 1997]

is to find the distance function between the query point and input vector of the data points.

This method has been extended to Receptive Field Weighted Regression (RFWR)

[Atkeson et al., 1997] and Locally Weighted Projection Regression (LWPR)

[Vijayakumar and Schaal, 2000] for modeling the non-linear functions and noisy models,

in which the distance function () is modified to calculate the distance between the

enquiry point and the center of the radial functions scattered in the space. Ijspeert

[Ijspeert et al., 2003] [Gams et al., 2009], Schaal, and Theodorou [Theodorou et al., 2010]

[Theodorou et al., 2010] applied this method to represent the learned behaviors.

--Genetic Programming Method

In An’s research, dynamic of motion in the demonstration are represented using

Genetic Process (GP) [An et al., 2007] models.

--Crucial Points Methods

Because the noises or errors always exist in the demonstrations, some researchers

try to use minimum data points to describe the demonstrated motion trajectory.

Miyamoto [Miyamoto and Kawato, 1998] used “Via-Points” method to teach a

robot to learn hitting a tennis ball. The number of “Via-Points” is predefined, and the

algorithm is to find certain number of points. By connecting the “Via-Points”, the error

between the demonstrated trajectory and the required generalized trajectory should be

minimized. Chen [Chen and Zelinsky, 2003] used the same method to represent the

34

demonstrated behavior by recording the crucial points in a configuration space. In his

experiment, a robot is taught to put the spindle into the support. The demonstration

trajectory is also segmented by finding the crucial points.

In robotic control, trajectories are represented as sampled points on the trajectory.

The required trajectory is generated by connecting these sampled points.

--Tunnel Methods

Because of the measurement error caused by the sensor or the manipulation error

caused by humans, trajectories of demonstrations of a task are not always exactly the

same. Therefore, some researchers tried to describe the required trajectory as a ‘tunnel’

and the demonstrated trajectories lie in this tunnel [Delson and West, 2002].

Delson proposed that the description of the demonstrated trajectories is a region

which includes the observed trajectories [Delson and West, 2002]. Naksuk [Naksuk et al.,

2005] used a similar method by defining boundary to restrict the demonstrated trajectory

in a small region. Brock used the same method by expanding the tunnel with a certain

parameter [Brock and Kavraki, 2001].

Behavior Generation

There are two types of behavior generation methods: one is to generate behaviors

exactly the same as the demonstrations and the other is to generate similar behaviors in a

similar but slightly different environment. Both methods can be applied in three

situations: first is to imitate same behaviors (replicating methods), second is to generate

behavior sequences, and the third is to generate similar movement trajectories of

behaviors (adapting methods).

35

--Task Description

At the generation stage, a task is given by humans and robots need to understand

given commands to generate required behaviors and their related parameters. A typical

method is to use natural language processing methods to extract essential units from

voice commands based on predefined grammars.

Simmons and Apfelbaum used the Task Description Language to describe given

tasks [Simmons and Apfelbaum, 1998]. In their method, tasks are defined by using

constraints and tags. In a given command, robots extract these constraints by matching

the predesigned grammars.

--Replicating Methods

The main goal of the generated motion trajectories in imitation learning is that the

distances between the generated trajectories and the demonstrated trajectories are

minimized or that the dynamic characteristics of generated trajectories are similar to the

demonstrated trajectories based on some metrics. Humans show robots trajectories, and

robots record them. Robots generate same movement as the demonstrations by driving

the joints or end-effector strictly following the demonstrated trajectory. This method has

been applied in many imitation learning cases where robots only imitate the demonstrated

movements in the same situation.

Figure 11 displays a diagram of imitation learning proposed by Bentivegna and

Atkeson[Bentivegna and Atkeson, 2001]. The “learning from observation” module

segments the observed behavior into predefined primitives, and the segment criterion is

flexible. This segmented data is then used to provide the encoding for the primitive

selection, sub-goal generation, and action generation modules. When a new situation is

36

given, robots extract the current context from the observation (normally the current

environmental information of the task-relevant situation,) and compare the obtained

context to the stored contexts. A nearest neighbor lookup process is used to find the

context similar to the current context and its corresponding behavior primitive is selected

to complete the task.

Figure 11 Imitation Learning of Reactive Primitives [Bentivegna and Atkeson, 2001]

Using this framework, Chernova trained a mobile robot to learn behaviors

[Chernova and Veloso, 2007]. The policies are represented as a Gaussian Mixture Model

(GMM). When robot is placed in the environment, it needs to select a policy which is

related to its current situation context. In our lab, Begley and Thronton applied this

method for gesture imitation [Begley, 2008] [Thornton, 2009]. Tracked movements of an

object or a hand have been transformed to the coordinates of the ISAC robot. ISAC then

generate the same movements by following the transformed movements in its own

coordinates.

Arikan used a simplified Genetic Algorithm (GA) to generation motions for a

robot [Arikan and Forsyth, 2002].

37

Figure 12 Path Searching[Arikan and Forsyth, 2002]

The path is generated by connecting the nodes in the graph.

An used GA to generate the motions of a robotic arm, which are similar to the

demonstrations [An et al., 2007].

Lee proposed to use Continuous Hidden Markov Model to generate the required

actions which is constrained by the observation of the demonstrations [Lee and

Nakamura, 2006].

Atkeson proposed that robots should learn the demonstrations through practice

[Atkeson and McIntyre, 1986]. Figure 13 displays the control architecture of Atkeson’s

method. is the required position or joint angle which the joint of a robot should move

to, is the actual measured position of joint angle, is the torque on the joint, and is

the feedforward torque.

Figure 13 Control Architecture in Atkeson’s Method [Atkeson and McIntyre, 1986]

38

Demiris proposed to use a predictive architecture to generate required behaviors

[Demiris and Hayes, 1996]. Figure 14 displays his architecture. The behavior module

receives current state information and the target goal(s), and a motor command is

generated to achieve the goal state. The forward model provides an estimate of the next

state to adapt the PID controller.

Figure 14 Demiris’s Imitation Learning Architecture [Demiris and Hayes, 1996]

Khatib used the potential field used to generate motions for robots to avoid

obstacles [Khatib, 1985]. Brock represents the demonstrations using “tunnels”. The

generation of a path in a tunnel is accomplished by imposing a local-minima free

potential function in the tunnel. Miyamoto used Via-Points in the representation of the

demonstrations[Miyamoto and Kawato, 1998]. At the generation stage, given a task, a

trajectory is generated to pass all Via-Points [Miyamoto and Kawato, 1998]:

Bitzer proposed that the learned demonstrations are stored in the Latent space,

and at the generation stage, robots simply map the points in the Latent space to the

original data space as shown in Figure 15 [Bitzer and Vijayakumar, 2009].

39

Figure 15 Relationship between Different Spaces [Bitzer and Vijayakumar, 2009]

As shown in Figure 15, a robot needs to complete a task in the task space, which

is normally described in the Cartesian space. In the task space, the position and the

orientation of the end-effector of the robot and the task-relevant objects are described.

Using inverse kinematics (assuming that they are available), the corresponding joint

angles are then computed to generate the required positions and orientations of the end-

effector. The data points in the joint space are often projected to a low-dimensional space,

i.e., latent space. At the generation stage, robots only need to project the data points from

the latent space to the joint space to generate required movement trajectories. Shon

applied the latent space approach for robotic imitation learning [Shon et al., 2005].

Adapting Methods

--“Lagrangian Method”

 Calinon and Billard proposed a method to minimize the distance between the

generated trajectory and the demonstrated trajectory with some constraints [Calinon et al.,

2007].

Let { } where is joint angles of the two arms and the torso, is

the Cartesian positions of the two hands, and is the hands-object relationships. Let

be the positions of the objects.

 (2)

The dimension of the sampled data is reduced using PCA:

40

 ̅ (3)

The elements in { ̂

 ̂

 ̂

} are, respectively, the generalized joint angle

trajectories, the generalized hand path and the generalized hands-object distance vectors

extracted from the demonstrations in the latent space. The generated trajectory is

represented as{

 }.

The metric of imitation performance is and is given by:

 (
 ̂

)

 (
 ̂

) (

 ̂

)

 (
 ̂

)

 (
 ̂

)

 (
 ̂

)

(4)

Where , , are symmetric weighted matrices, and the target is to find a

minimum .

 ̂

 (5)

 ̂

 (6)

 ̂

 (7)

So equation (4) is rewritten as

 (̇

)

 (̇

) (̇

)

 (̇

)

 (̇

)

 (̇

)

(8)

The Lagrangian is defined as:

 (̇

 ̇

)

 (̇

 ̇

 () ̇) (9)

where J is the Jacobian matrix of the dynamics model of a robot.

41

In order to minimize the Lagrangian, is differentiated to obtain the gradient

and set the gradient equal to zero,

 (̇

) (10)

 (̇

) () (11)

 (̇

) (12)

Then,

 (̇

) () (̇

) (13)

 ̇

 (())

 (() (() ̇))

(14)

Iteratively, the joint angle in the latent space can be calculated as:

 ̇

 (15)

The joint angles in the original data space are:

 ̅ (16)

An example of generating behavior of grasping-moving an object using this

method is shown in Figure 16.

42

Figure 16 Generation Results in Calinon’s Method [Calinon et al., 2007]

The solid line is the generalized demonstration of the position of the end-effector,

the dot line is the reconstructed positions of the end-effector from the sampled angles,

and the dashed line is the generated trajectory using the above algorithm.

Figure 17 displays the generation results when the objects are placed at different

locations.

Figure 17 Generation Results in Calinon’s Method in Similar Situations[Calinon et al.,

2007]

43

--Dynamic Movement Primitive Method

Schaal proposed an imitation learning architecture using Movement Primitives as

shown in Figure 18.

Figure 18 Schaal’s Imitation Learning Architecture [Schaal et al., 2003]

The demonstrated behavior is mapped onto a movement primitive that is defined

in internal coordinates of the robot: joint angular coordinates are a good candidate as

they can be extracted from visual information, a problem addressed as pose estimation in

computer vision. Such internal coordinates can directly serve as the desired input to a

motor-command execution stage here and assumed to be composed of a feedback and a

feed-forward control block.

Ijspeert proposed to use Dynamic Movement Primitives (DMP) [Ijspeert et al.,

2002] [Ijspeert et al., 2003]. The DMP algorithm describes the generated trajectory as a

combination of a second-order attractor and a nonlinear function which describes a

generalized demonstration (“generalized” means that this function could be constructed

from several demonstrations for one task.) and modulates the trajectory in the generation

process.

44

The formulation of the DMP algorithm is shown as differential equations:

 ̇ (()) (17)

 ̇ (18)

where is the goal state, is the internal state, is calculated to record the dynamic of

the demonstration and to guarantee convergence of the new generated trajectories, is

the position generated by the DMP differential equations, and ̇ is the generated velocity

correspondingly. , , and are the constants in this equation. is a Receptive Field

Weighted Regression (RFWR) model [Atkeson et al., 1997].

This method has been extended to rhythmic DMP in 2003. Similar to the discrete

DMP, rhythmic DMP is also represented as differential equations.

 ̇ (()) (19)

 ̇ (20)

where,

∑

∑

 (21)

 ((())
) (22)

where is an anchor point for the oscillatory trajectory.

Figure 19 displays the generation results using discrete DMP in a Reaching

experiment.

45

Figure 19 Generation Results using Discrete DMP [Ijspeert et al., 2003]

In Figure 19, the dotted lines are the demonstrated trajectories, and the solid lines

are the generated trajectories using the DMP method. From the graph, it is obvious that

the generated trajectories fit the demonstrations well.

Figure 20 displays the generation results using rhythmic DMP in a Drum-Hitting

experiment.

Figure 20 Generation Results using Rhythmic DMP [Ijspeert et al., 2003]

In Figure 20, picture A is the demonstrated rhythmic trajectories; picture B, C and

D are the generated rhythmic trajectories. When increasing the constant , the generated

46

result of picture B and C from time 3s to 7s displays that the robot successfully learned

the tempos of the demonstrated trajectory and can increases the tempo by changing the

time constant . Picture D displays that the robot can learn to generate the trajectories at

different locations and keep the tempos.

--Reinforcement Learning Based Methods

Reinforcement Learning is based on the Markov Property Assumption [Sutton

and Barto, 1998] that the probability of the current transition only depends on the

previous state. Based on the basic assumption of the Markov property:

 (|) (23)

Equation (23) means that the state at the next time step is determined by the

current state and the current action.

Some important definitions in Reinforcement Learning are explained as follows

[Sutton and Barto, 1998].

Given the current state with action , the probability of transition from to

is:

 (|) (24)

And the expected reward from this transition is:

 (|) (25)

Given the current state at time step and a policy , the expected reward is:

 () { | } {∑

| } (26)

where is a discount factor. Given the current state at time step , current action at

time step , and a policy , the expected reward is:

47

 () { | } {∑

| }

 ()∑
 [

 ()]

(27)

Rewrite equation (26),

 () { | } {∑

| }

 ∑ ()∑
 [

 ()]

(28)

Theodorou proposed applying reinforcement learning methods in optimal control

to teach robots to learn and generate motion trajectories [Theodorou et al., 2010].

48

CHAPTER III

METHODOLOGY

Motivation

Imitation learning provides a possible solution for task-specific behavior

generation. However, researchers gradually found that although that it is possible to

design methods for robots to learn how to complete a specific task in a specific situation,

it is very difficult to design a general imitation learning method to generate situation-

specific behaviors in a large number of different situations. A possible solution is to teach

robots basic behaviors and let robots to complete new and complex behaviors through

some cognitive processes. Then, intelligent robots should be able to apply these learned

skills in different situations. For example, given a task, robots should know whether they

can complete the task using the learned behaviors or by adapting these behaviors to

similar but slightly different situations. Behavior selection and generation should be

based on the current situation, sensed environmental information, the capabilities of the

robot, etc. This process could be carried through internal rehearsal or by trials in the real

environment.

Researchers look for inspirations from the cognitive science, because cognitive

science investigates learning processes in human or animal brains and possibly it can

provide solutions to current imitation-based robotics research, especially for the research

on humanoid robots. In a dynamic environment, a robot should analyze the environment

49

and use its owned skills to make a decision whether it is possible to complete the required

task by flexibly and adaptively switching processes, strategies etc.

One way for a robot to perform tasks using learned behaviors in a complex,

dynamic, and unstructured environments may be to integrate cognitive control with

robotic imitation learning. The motivation of this dissertation is to investigate how

imitation learning can be used in robotic cognitive control. Imitation learning provides a

method of learning behaviors from demonstrations and generating behaviors in similar

task-relevant situations without being preprogrammed. Cognitive control provides a

framework of switching strategies, processes, etc., and adaptively completing tasks

[Banich et al., 2009] using the learned behaviors. In this dissertation, imitation learning

methods are generalized to behavior generation, the storage of generalized behaviors and

the description of the relationship among these learned behaviors, and learned behaviors

will be used to generate similar behaviors or behavior sequences in different task-relevant

situations. By integrating a cognitive control framework, the robot is able to switch

strategies based on current environment situations.

In this dissertation, we limit our proposed skill learning to the tasks of “object

handling”. Examples of “object handling” include: Reaching, Pushing, Grasping, Playing,

Yo-Yo Playing, Assembling, Tower of Hanoi, etc.

50

System Architecture

Imitation Learning Framework

In this dissertation a robotic imitation learning framework is divided into the

following main parts: behavior acquisition, behavior segmentation, behavior

generalization, behavior representation, and behavior generation.

Behavior
Acquisition

Behavior
Segmentation

Behavior
Generalization

Behavior
Represenation

Behavior
Generation

Task Requirements

Motion
Trajectories of

Basic Behaviors in a
Behavior Sequence

Behavior
Demonstrations

Figure 21 Imitation Learning Framework

Figure 22 displays the designed overall system framework for imitation learning.

Behavior Library

Behavior Sequence
Generation

Goal-Oriented
Behavior

Generalization

Demonstration
Acquisition

Human
Commands

Motion Trajectories of
Basic Behaviors in a
Behavior Sequence

Goal Oriented
Features for

Basic Behaviors

Feature Related
Behavior

Generation
Methods

Behaviors

Query System
Command

Parsing

Segmentation

Figure 22 Detailed System Framework for Imitation Learning

The “Demonstration Acquisition” block records the motion trajectories of a hand

of human teachers.

51

Behavior Library

Behavior Sequence
Generation

Goal-Oriented
Behavior

Generalization

Demonstration
Acquisition

Human
Commands

Motion Trajectories of
Basic Behaviors in a
Behavior Sequence

Goal Oriented
Features for

Basic Behaviors

Feature Related
Behavior

Generation
Methods

Behaviors

Query System
Command

Parsing

Segmentation

Behavior
Acquisition

Behavior
Segmentation

Behavior
Generalization

Behavior
Represenation

Behavior
Generation

Task Requirements

Motion
Trajectories of

Basic Behaviors in a
Behavior Sequence

Behavior
Demonstrations

Figure 23 Behavior Acquisition

The “Segmentation” block segments the observed behavior sequences into several

basic behaviors.

Behavior Library

Behavior Sequence
Generation

Goal-Oriented
Behavior

Generalization

Demonstration
Acquisition

Human
Commands

Motion Trajectories of
Basic Behaviors in a
Behavior Sequence

Goal Oriented
Features for

Basic Behaviors

Feature Related
Behavior

Generation
Methods

Behaviors

Query System
Command

Parsing

Segmentation

Behavior
Acquisition

Behavior
Segmentation

Behavior
Generalization

Behavior
Represenation

Behavior
Generation

Task Requirements

Motion
Trajectories of

Basic Behaviors in a
Behavior Sequence

Behavior
Demonstrations

Figure 24 Behavior Segmentation

52

The “Goal-Oriented Behavior Generalization” block generalizes the common

features of demonstrated motions.

Behavior Library

Behavior Sequence
Generation

Goal-Oriented
Behavior

Generalization

Demonstration
Acquisition

Human
Commands

Motion Trajectories of
Basic Behaviors in a
Behavior Sequence

Goal Oriented
Features for

Basic Behaviors

Feature Related
Behavior

Generation
Methods

Behaviors

Query System
Command

Parsing

Segmentation

Behavior
Acquisition

Behavior
Segmentation

Behavior
Generalization

Behavior
Represenation

Behavior
Generation

Task Requirements

Motion
Trajectories of

Basic Behaviors in a
Behavior Sequence

Behavior
Demonstrations

Figure 25 Behavior Generalization

Generalized features (represented as a group of attributes) are standardized as

described in the section of “Behavior Generalization” and stored in the “Behavior Library”

in the memory system. The “Behavior Library” includes both semantic (behaviors) and

numeric (trajectories and corresponding dynamic parameters).

The “Feature Related Behavior Generation Toolbox” contains predefined

behavior generation methods and also stored in the memory system.

53

Behavior Library

Behavior Sequence
Generation

Goal-Oriented
Behavior

Generalization

Demonstration
Acquisition

Human
Commands

Motion Trajectories of
Basic Behaviors in a
Behavior Sequence

Goal Oriented
Features for

Basic Behaviors

Feature Related
Behavior

Generation
Methods

Behaviors

Query System
Command

Parsing

Segmentation

Behavior
Acquisition

Behavior
Segmentation

Behavior
Generalization

Behavior
Represenation

Behavior
Generation

Task Requirements

Motion
Trajectories of

Basic Behaviors in a
Behavior Sequence

Behavior
Demonstrations

Figure 26 Behavior Representation

In the generation stage, given a new human command, robot searches the

“Behavior Library” using a “Query System”. If robot finds a matching behavior in the

“Behavior Library”, robot retrieves it and change parameters to fit into the new command.

Using Dijkstra’s algorithm [Dijkstra, 1959], a behavior sequence will be constructed by

finding a shortest path from the “starting” behavior to the required behavior. We add

“starting” and “ending” behavior in our behavior database. This could enable robots to

generate a behavior sequence by starting from “starting” behavior to the “ending”

behavior and simplifies the behavior sequence generation. If there is no match, it means

that the behavior sequence cannot be generated using the shortest path searching

algorithm, and the robot has to ask a human teacher to demonstrate the unlearned and

required behavior, generalizes the demonstrated new behavior, and adds it to the

Behavior Library by itself. After learning the new behavior and adding it into the

54

behavior library, a behavior sequence can be generated using Dijkstra's algorithm. When

the behavior sequence is generated, the robot uses pre-defined behavior motion

trajectories generation methods in the memory system, such as second-order attractor,

DMP, Potential Field, RRT, etc., as described in Table 5 on page 91, to generate motion

trajectories for all the behaviors in the generated behavior sequence. The motion

trajectories are then assembled for robot to complete the required task.

Behavior Library

Behavior Sequence
Generation

Goal-Oriented
Behavior

Generalization

Demonstration
Acquisition

Human
Commands

Motion Trajectories of
Basic Behaviors in a
Behavior Sequence

Goal Oriented
Features for

Basic Behaviors

Feature Related
Behavior

Generation
Methods

Behaviors

Query System
Command

Parsing

Segmentation

Behavior
Acquisition

Behavior
Segmentation

Behavior
Generalization

Behavior
Represenation

Behavior
Generation

Task Requirements

Motion
Trajectories of

Basic Behaviors in a
Behavior Sequence

Behavior
Demonstrations

Figure 27 Behavior Generation

Cognitive Architecture

Recently, cognitive architectures are receiving broad attention from the robotics

community, because they provide a process for high-level cognitive activities, such as

cognitive control [Badre, 2008]. Figure 28 is the system diagram of the ISAC Cognitive

Architecture developed in our lab, which is a multi-agents hybrid architecture. This

cognitive architecture provides three control loops for cognitive control: Reactive,

55

Routine and Deliberative. Behaviors can be generated through this cognitive architecture.

Imitation learning basically should be involved in the Deliberative control loop. Three

memory components implemented in this architecture are: Working Memory System

(WMS), Short Term Sensory Memory (STM), and Long Term Memory (LTM)

[Kawamura et al., 2008].

Figure 28 ISAC Cognitive Architecture [Kawamura et al., 2008]

 In our lab, Joe Hall used this cognitive architecture to implement cognitive

control experiments [Hall III, 2007]. In his method, ISAC used the IRS to evaluate

whether it can reach an object in the environment. The reaching behavior is defined by

interpolating the points between the starting point of the arm and the position of the

object. Using the IRS, ISAC finds a collision between the obstacle in the environment

56

and its arm, and determines whether the object is reached. If ISAC determines that it can

reach the object, it executes a behavior sequence; if not, it returns failure information.

One interesting aspect of Hall’s work is to evaluate a set of successful sequence and pick

one of them.

Based on our ISAC cognitive architecture, I proposed a simplified hybrid

cognitive architecture [Tan and Liang, 2011] as shown in Figure 29. In order to integrate

imitation learning framework, the agents which are related to behavior generation are

kept and some agents are deleted. For example, Relational Mapping is not used in our

system, so it has been removed.

Figure 29 A Simplified Hybrid Cognitive Architecture

--Reactive Layer

In this layer, the robot senses the environment and the status of the robot body and

moves the end-effector along the generated motion trajectories.

57

Executor

Executor receives the motion trajectories from the CEA, which is described by

points on the trajectories and moves the end-effector of the robot by passing these points.

Attention-Perception (AP)

The AP gathers information from the environment and the robotic body.

--Deliberation Layer

In this layer, the robot can complete high-level cognitive processes to learn

demonstrated behaviors by generalizing common features of the demonstrations as

described in the section of “Behavior Generalization”, store the learned behaviors in the

LTM, generate behavior sequences by finding a path in a constructed behavior graph as

described in the section of “Behavior Graph Construction”, and generate motion

trajectories for all behaviors in behavior sequences as described in the section of “Motion

Trajectory Generation” to complete tasks.

Short Time Memory (STM)

The STM stores the environmental information including the position and the

sizes of the target object and the obstacle in the environment, the joint angles of the robot

arms (designed as shown in the Demonstration Acquisition section).

Long Term Memory (LTM)

The LTM stores the learned behaviors and the semantic description of the objects

or obstacles in object handling tasks.

Internal Rehearsal System (IRS)

58

The IRS [Hall III, 2007] [Erdemir et al., 2008] evaluates the current behavior

sequence and sends the evaluation results to the CEA for decision making. The

Kinematics model and dynamics model are stored in the IRS for the robot to use.

Central Executive Agent (CEA)

The CEA is responsible for cognitive control and decision making process.

In the learning stage, the CEA receives the information of sensed states from the

STM. Basic behaviors are generalized to find its goal-oriented common features (as the

output of the behavior generalization) and stored into the LTM.

In the generation stage, the CEA receives the task command from the STM and

generates behavior sequences and motion trajectories for all the behaviors in the behavior

sequence. The decision-making mechanism, which is rule-based, switches strategies to

complete the given task. The explanation of the key components in the CEA will be

discussed on page 66 in this Chapter.

Integration

We propose to integrate our imitation learning framework with cognitive

architecture. The basic idea is shown in Figure 30. Behaviors can be learned, generated

and generated through our cognitive architecture.

59

Cognitive Architecture

Cognitive Control

Imitation Learning

Figure 30 Integration of Imitation Learning with Cognitive Control

Figure 31 displays a cognitive control system block diagram developed in our lab

[Kawamura and Gordon, 2006].

Figure 31 Cognitive Control Block Diagram

Based on this model and the cognitive architecture shown in Figure 9, a modified

cognitive control system block diagram is shown in Figure 32.

60

Long Term Memory (LTM)

Central Executive Agent

(CEA)

Internal Rehearsal System

(IRS)

Actuator/

Speech

SynthesizerSensor

Motion i

Evaluation Results

Task

Results

Cognitive

Control

Environment

Motion j

Speech

Response

Figure 32 Modified Cognitive Control System Diagram

The integration of the imitation learning framework and the cognitive control

block diagram is shown in in the following figures.

The Behavior Acquisition of the imitation learning framework is integrated with

the Sensor.

Long Term Memory (LTM)

Central Executive Agent

(CEA)

Internal Rehearsal System

(IRS)

Actuator/

Speech

SynthesizerSensor

Motion i

Evaluation Results

Task

Results

Cognitive

Control

Environment

Motion j

Speech

Response

Behavior
Acquisition

Behavior
Segmentation

Behavior
Generalization

Behavior
Represenation

Behavior
Generation

Task Requirements

Motion
Trajectories of

Basic Behaviors in a
Behavior Sequence

Behavior
Demonstrations

Figure 33 Integration of Behavior Acquisition

61

The Behavior Segmentation and the Behavior Generalization is integrated with

the CEA.

Long Term Memory (LTM)

Central Executive Agent

(CEA)

Internal Rehearsal System

(IRS)

Actuator/

Speech

SynthesizerSensor

Motion i

Evaluation Results

Task

Results

Cognitive

Control

Environment

Motion j

Speech

Response

Behavior
Acquisition

Behavior
Segmentation

Behavior
Generalization

Behavior
Represenation

Behavior
Generation

Task Requirements

Motion
Trajectories of

Basic Behaviors in a
Behavior Sequence

Behavior
Demonstrations

Figure 34 Integration of Behavior Segmentation and Generalization

 The Behavior Representation is integrated with the LTM.

Long Term Memory (LTM)

Central Executive Agent

(CEA)

Internal Rehearsal System

(IRS)

Actuator/

Speech

SynthesizerSensor

Motion i

Evaluation Results

Task

Results

Cognitive

Control

Environment

Motion j

Speech

Response

Behavior
Acquisition

Behavior
Segmentation

Behavior
Generalization

Behavior
Represenation

Behavior
Generation

Task Requirements

Motion
Trajectories of

Basic Behaviors in a
Behavior Sequence

Behavior
Demonstrations

Figure 35 Integration of Behavior Representation

62

The Behavior Generation is integrated with the Perception/Attention, the STM,

the CEA, the IRS and the Executor.

Long Term Memory (LTM)

Central Executive Agent

(CEA)

Internal Rehearsal System

(IRS)

Actuator/

Speech

SynthesizerSensor

Motion i

Evaluation Results

Task

Results

Cognitive

Control

Environment

Motion j

Speech

Response

Behavior
Acquisition

Behavior
Segmentation

Behavior
Generalization

Behavior
Represenation

Behavior
Generation

Task Requirements

Motion
Trajectories of

Basic Behaviors in a
Behavior Sequence

Behavior
Demonstrations

Figure 36 Integration of Behavior Generation

An integrated system diagram is shown in Figure 37. The italicized individual

components are described in detail subsequently. Refer to Figure 37 in the following

description.

63

Long Term Memory

Behavior Sequence
Generation

Central Executive Agent (CEA)

Short
Term

Memory
(STM)

Segmentation

Command
Parsing

Behavior
Generalization

Decision
Making
Mechani

sm
(DMM)

Goal Oriented
Features for

Basic Behaviors

Behaviors

Behavior
Generation

Methods

Query System

Internal Rehearsal
System (IRS)

Executor/
speech

synthesizerPerception
/ Attention

Command

Motion
Trajectories

Evaluation Results

Speech
Command

Task
Execution

Results

Generation

Learning

Learning and Generation

Environment

Figure 37 Integrated System

The Perception/Attention block collects sensory information from the

environment and stores it in the Short Term Memory (STM). Speech commands are

obtained by the Perception/Attention module and parsed by the Command Parsing

module, which is described in the section of Command Parsing on Page 33-35. Based on

the parsing results, the Decision Making Mechanism (DMM) decides to switch the

control process to either learning or generation.

In the learning stage, a human teacher demonstrates a behavior or a behavior

sequence and the robot uses the Perception/Attention block to record the motion

trajectories. After segmentation the motion trajectories are sent to the Behavior

Generalization block to extract common features which are stored in the Goal-Oriented

Features for Basic Behaviors block in the Long Term Memory (LTM).

In the generation stage a new command causes the robot to search the Behavior

Library using a query system. No match implies that the behavior sequence cannot be

generated by searching from the “Starting” to the required behavior. The robot must ask a

64

teacher to demonstrate the required behavior (not the overall behavior sequence). The

human teacher checks the behavior library of the robot and decides which behavior needs

to be demonstrated. The learning stage is invoked by the DMM and the Behavior Library

is updated. If the robot finds a matching behavior in the Behavior Library, it is retrieved

and the parameters changed to fit the new command. The Behavior Sequence Generator

uses the Query component to search the Behavior Library then constructs, via Dijkstra's

algorithm, a sequence that follows shortest path from the current behavior to the required

behavior. After a behavior sequence is identified, the system selects the appropriate

motion trajectory generator from the memory system. (These include second-order

attractors, DMPs, Potential Fields, RRTs, etc.) Thus the robot motion trajectories for the

behaviors that comprise the task are generated. They are sent to the Internal Rehearsal

System (IRS) for evaluation. The DMM uses the evaluation result to determine if the task

can be completed. If so, the motion trajectories are assembled and sent to the Executor

whereby the robot performs the task. If the DMM finds that the robot cannot complete the

task with the selected arm, it transfers the behavior sequence to the other arm and causes

the motion trajectories to be recomputed. Experiment 3.1 and 3.2 are used to validate this

part. If the DMM finds that the robot cannot complete the task with either of its arms, it

tries to generate behavior sequence for both arms. The DMM uses the IRS to evaluate the

result of the generated behavior sequence. If it is successful, the newly generated

behavior sequence and motion trajectories will be sent to the Executor. If this second

evaluation finds the task still cannot be completed, the robot demurs the task.

65

The data flow of the learning stage is depicted with white arrows and arrows filled

with slashes with in Figure 37. That of the generation stage is displayed with solid filled

arrows and arrows filled with slashes.

Central Executive Agent

The CEA is responsible for cognitive control and decision making process.

Input/Output

In the Learning stage, the input of the CEA is the stored information in the STM

and the output is the generalized basic behaviors to be stored in the LTM. In the

generation stage, the input of the CEA is the speech command and the environmental

information in the STM and the output is the generated motion trajectories sent to the

executor or a speech response sent to the speech synthesizer.

Implementation

There are several key components inside the CEA: Decision Making Mechanism,

Segmentation, Behavior Generalization, Query System, and Behavior Sequence

Generation.

In the learning stage, the CEA receives the information of sensed states from the

STM. Behavior Sequences are segmented into basic behaviors in the Segmentation block.

Basic behaviors are generalized in Behavior Generalization to find its goal-oriented

common features (as the output of the behavior generalization) and stored into the LTM.

In the generation stage, the CEA receives the speech command from the STM to

trigger the Decision Making Mechanism which is rule-based. The Decision Making

66

Mechanism uses Query System to check whether robot has learned a complex behavior or

a basic behavior to complete this task. If yes, it constructs a behavior graph and generates

a behavior sequence finding a path in the behavior graph from the “Starting” to the

required behavior; if no, it requires new demonstrations from human teachers. Motion

trajectories are generated in Behavior Sequence Generation for all the behaviors in the

behavior sequence. Then the environmental information and the generated behavior

sequence are sent to the IRS for evaluation. If the robot finds that it can complete this

task from the evaluation, it sends the generated motion trajectories to the Executor; if it

finds that it is impossible to complete this task, it uses the IRS to evaluate the execution

results by using the same behavior sequence for the other arm; if the robot finds that it

cannot complete this task by using either of its arms; it tries to generate a behavior

sequence by using both of its arms. If the robot finds that it cannot complete the task by

using either or both of its arms, it displays a message on the screen.

The components in the CEA will be discussed in detail in following sections of

this Chapter.

Decision Making Mechanism

The DMM controls the cognitive processes. According to current situations, the

DMM make decisions and choose suitable behaviors to respond to requests from humans

and to deal with uncertainties or emergencies in the environment.

67

Input/Output

In the learning stage, the input is parsed commands, and the output is a signal sent

to the AP to start recording the demonstrated behaviors. In the generation stage, the input

is parsed commands, generated behavior sequences, and evaluated results from the IRS.

The output is the generated behavior sequence to be evaluated in the IRS and the

generated motion trajectories which will be sent to the Actuators.

Implementation

The decision making process in the DMM is shown in Figure 38.

Generation

Generate a Behavior Sequence
for the Right Arm

Go To Leaning Stage

Already Learned
the Behaviors

Has Not Learned the
Required Behaviors

Generate a Behavior Sequence
for the left Arm

IRS Evaluation
Successes

IRS Evaluation
Fails

Refuse to Complete the Task

IRS Evaluation
Fails

Execute

IRS Evaluation
Successes

Command Parsing

Learn Demonstrations

Generalize and Store the
Behaviors in the LTM

Generate a Behavior Sequence
for Both Arm

IRS Evaluation
SuccessesIRS Evaluation

Fails

LearningGeneration

Check the LTM

End

Has Not Learned the
Required Behaviors

Has Learned
Required Behaviors

Compensate the Error

Error is not Larger Than
the Threshold Value

Error is Larger than
the Threshold Value

Figure 38 Decision Making Mechanism

68

Based on the output of the Command Parsing block, the DMM decides whether

the robot should enter the learning stage or the generation stage.

In Figure 38, the decision making process is routed into two branches: learning

and generation, by analyzing speeches and the current situation. In the learning stage, a

robot requires demonstrations from human teachers. By observing the demonstrations,

the robot analyzes and generalizes the common features of the demonstrated behaviors.

Generalized behaviors are stored in the Behavior Library. In the generation stage, give a

new command, the robot parses the command to behaviors and related parameters. The

robot constructs a behavior graph using the stored information in the Behavior Library,

and searches the shortest path from the “Starting” to the required behavior to generate a

behavior sequence. If it finds it has not learned any of the required behaviors, the

cognitive process turns to the learning stage. When the robot finds that it has all the

required behaviors, it requires the environmental information such as the positions and

sizes of the target object and the obstacle, and the joint angles of the robot, from the

STM. Then the DMM uses the environmental information and sends the generated

behavior sequence to the IRS for evaluation. IRS uses the behavior generation methods,

which are described in the earlier section, to generate motion trajectories. If it finds that it

is impossible to complete this task, it uses the IRS evaluate the execution results by apply

the same behavior sequence using the other arm; if the robot finds that it still cannot

complete this task by using its arms, it displays a message on the screen; if the robot finds

that it can complete this task from the evaluation, it sends the evaluation information to

the DMM. In the execution using one of its arms to complete the task, ISAC checks the

error generated by each behavior. If the error is smaller than the threshold value, the error

69

is acceptable; if the error is larger than the threshold value, ISAC uses a compensation

method to overcome the error and redo this behavior.

Compensator

The reasons of using compensator to overcome the error generated from the

hardware of ISAC are:

1. The errors are generated from the hardware of ISAC. ISAC cannot exactly drive

the end-effector to the required position.

2. The errors are generated from the vision module. The reaching point found by the

vision module has some errors.

3. Comparing the size of the object used in Experiment, which is 18cm 18cm

12 cm, the error values are small. Thus the distance less than 12 cm was judged as

that the gripper reached the object.

Input/Output

 The input of the compensator is the obtained error. When motion trajectories are

needed to be generated, ISAC checks the stored information in the compensator and

changed the goal of the motion trajectory according to this information.

Implementation

 The stored error is computed using the following equation:

 (29)

70

where { } is the desired position of the end-effector,

and { } is the actual position of the end-effector.

 According to the design in the DMM, if the error is larger than the threshold

value, the BSG will compensate it by changing the target position of the behaviors.

 (30)

For example, if the desired position of the end-effector is { }

and the actual position is { }, the error is { }. Given a

goal position of a motion trajectory { }, the new goal position

of the motion is { } { } { }.

Acquisition

The system takes observed behaviors as the bases for generating motions to

complete tasks. Demonstrations are given by one or more teachers several times.

Demonstrated motion trajectories and task-relevant information (e.g., the distances

between the end-effector and a target object in a manipulation task) are recorded for

modeling and analysis. Demonstration data is recorded with time-stamped vectors. The

robot uses the AP to record the demonstrations and store the recorded information in the

STM.

Input/Output

The data set from observed demonstrations can be represented as:

 { } (31)

where is the index of the observed demonstrations.

71

For each demonstration, types of information are chosen to record. They could

be the motion trajectories of human hands, the Cartesian poses of task-related objects, the

distance between the robot’s end-effector and the target objects, etc. Represent them as:

 {

 } (32)

Each element in this group is a time-stamped vector:

 (

 ()
 ()

 ())

 (33)

where is the ordinal index of the trajectory in the demonstration group , and numbers ,

 ,…, are time steps.

Recorded information is stored in the STM and will be sent to the Segmentation

and the Behavior Generalization module for processing.

Implementation

As stated in the literature review, there are several types of methods to

demonstrate behaviors to robots. In our system, we used a Kinect sensor to record the

position and orientation of the hand of a human teacher, and used a camera to record the

position and the size of an obstacle in the environment.

Kinect is a motion sensing input device by Microsoft for the Xbox 360 video

game console and personal computers (Figure 39). Based around a webcam-style add-on

peripheral for the Xbox 360 console, it enables users to control and interact with the

Xbox 360 and PCs, through a natural user interface using gestures and verbal commands.

72

Figure 39 Kinect

There are four major functions of Kinect: obtaining the original RGB images from

cameras, obtaining the depth information from the infrared sensors, obtaining the audio

information using the microphones, and generating skeleton data of human bodies in the

environment.

Figure 40 Obtained Skeleton Data from Kinect Software

Figure 40 displays the skeleton data designed in the Kinect Software. The position

values of 20 joints on a human body could be obtained from the Kinect Software. Each

73

position value of a joint is a three-dimensional vector including the X and Y position in

an image and the depth information of the joint.

Because of the difference of the configurations between human bodies and our

robot, the coordinates we designed for humans’ bodies and robotic bodies are totally

different. That means that we cannot directly apply obtained position values of joints to

robots. Therefore, it is necessary to find a transformation between the coordinates of

human bodies and robotic bodies.

Currently, demonstrations are observed using Kinect sensor in a task-space

(mostly in the Cartesian space). Because our robot has two arms, we need to observe the

positions and the orientations of the hands of a human teacher for our experiments. Here

we assume that the human teacher does not move his torso during the demonstration

process. This assumption can give us a good reference coordinates. The base coordinates

for the human teacher and our robot are both located on the shoulder.

Figure 41 displays the kinematics model used for ISAC.

Z0,1

X0,1

Y0,1

Z2

X2

Y2

Z3

Y3

200mm

330mm

X3

Z4

Y4

Z5

X5

Y5

Z6

Y6

X6

290mm

X4

Right Arm

Z0,1

X0,1

Y0,1

Z2

X2

Y2

Z3

Y3

200mm

330mm

X3

Z4

Y4

Z5

X5

Y5

Z6

Y6

X6

290mm

X4

Left Arm

Figure 41 Kinematics Model of ISAC

74

The data set from observed demonstrations can be represented as:

 { } (34)

where is a vector representing the d-th observed demonstration. Details on are

summarized in Appendix A.

Behavior Generalization

One key assumption in current research on robotic imitation learning is that

human teachers are well-trained and are capable of generating similar trajectories for

certain behavior demonstration. In some situations, however, this is not true. I.e., due to

different experiences or habits of human teachers, the demonstrations are not always

“similar”. For example, consider a case where three teachers demonstrate a “Reaching”

behavior to reach an object as shown in Figure 42. The circles are the starting points and

the stars are the ending points.

The motion trajectories look quite different, which start from different locations,

stop at different locations, and have different styles. So how is a robot able to choose a

correct trajectory? Since the goal (i.e. reaching a target) is achieved using such different

trajectories, it is reasonable to assume that there should be some common features lying

within these demonstrations. In our proposed method, we propose to analyze these

common features to generalize demonstrations. In Figure 42, the common feature of the

two demonstrated “Reaching” behaviors is to minimize the distance between the end-

effector of the robot (or the hand of the human teacher) and the target object. From

Figure 42, although three motion trajectories start from different locations labeled with

75

stars, they end with different styles at the same location which is the target object. So that

is the common feature for the “Reaching” behavior.

500

550

600

650

700

750

-350-300-250-200-150-100-50050100150 X Axis

Reaching Behaviors

Y
 A

x
is

Demonstration A

Demonstration B

Demonstration C

Figure 42 Different “Reaching” Behaviors

Current imitation learning research focuses on how to generate a motion

trajectory which is similar to one of the demonstrated trajectories. As explained earlier,

an assumption is that all human teachers are well trained and thus all demonstrations are

similar. However, all the demonstrations are expected to be different according to

different human teachers. We in fact do not need to assume that all the teachers are well

trained and all the demonstrations are similar. Instead, we only need to assume the

demonstrations are related to the same task. These demonstrations could be described

using many task-related features. From this assumption, it is reasonable to analyze the

common features of the demonstrations because they are all for the same task.

76

An important capability of robots is to apply the learned behaviors in new task-

relevant situations. If robots can only learn motion trajectories and generate similar

motion trajectories, it is very difficult for them to apply the low-level knowledge in

different task-relevant situations. In this dissertation, through behavior generalization,

robots find the common features of the demonstrated behaviors. Based on that, robots can

use higher-level methods to utilize the generalized behaviors and to apply these behaviors

to new task-relevant situations, e.g., constructing behavior graphs and generating

behavior sequences. This behavior generalization method enables robots to learn new

behaviors and apply generalized behaviors in new task-relevant situations flexibly and

adaptively.

As stated before, tasks are goal-oriented. If we can find goal-related features from

the demonstrations, a task could be described with several features.

Tasks demonstrated by human teachers comprise a set of low-level behaviors.

Different tasks require different behaviors. Due to the measurement errors, noise in the

environment and inconsistencies in demonstrations of the same task, the obtained motion

trajectories could be different. There may be, however, common features latent within the

demonstrations. An appropriate analysis and comparison of demonstrated tasks could

find the common features hidden in the sampled motion trajectories.

This method considers behaviors to be attribute-based. That is, common internal

features found for demonstrated behaviors are represented as a set of attributes. A labeled

or named behavior can be described in terms of three attributes: (1) the requisite

preconditions or task-specific environmental conditions for execution, (2) internal

77

constraints which confine the behavior during execution, and (3) post results that

characterize the outcome of a behavior:

 { }

At the behavior generalization stage, the target is to find the most common feature

for pre-condition, internal constraints and post results respectively. The design of the

required common features is flexible, and researchers can define their own features. An

example of how to design features and generalization methods will be discussed in detail

later in this paper.

Before the generalization, a group of features are predefined and stored in the

memory system for robots to use. We define three groups of features for pre-condition,

internal constraints and post results respectively:

 { } (35)

 {

 } (36)

 {

 } (37)

 {

 } (38)

 , , and are numbers of features for pre-condition, internal constraints and post

results respectively.

Using demonstrations (for one task) from humans, we can compute a

probability score for each feature:

 {

 } (39)

 {

 } (40)

 {

 } (41)

78

The most common feature for pre-condition, internal constraints and post results

could be found with the following equations:

 (
) (42)

 (
) (43)

 (
) (44)

Feature {

 } is used to describe a

behavior:

 {

 } (45)

 ̂

 (46)

 ̂

 (47)

Input/Output

The input of the Behavior Generalization is the recorded states in equation (32),

and the output is the generation results for Pre-Condition, Internal Constraints, and Post

Results of the demonstrated behaviors.

Implementation

In our system, pre-conditions, internal constraints and post results are pre-defined

as shown in Table 1.

The target of behavior generalization stage is to find suitable conditions,

constraints and results for each behavior from demonstrations. From the demonstrations,

we used the criterions in Table 2 and Table 3 to find the most common feature for pre-

conditions, post results and internal constraints.

79

Table 1 Pre-Conditions, Internal Constraints, and Post Results

Table 2 Criterions for Pre Conditions and Post Results

For Feature 1 and 2 in Table 2, the distance between the hand and the target

position is computed directly using Euclidean distance and then normalized.

These distances are then normalized to probability values.

()

 (48)

()

 (49)

80

where and are similarity scores for Feature 1 and 2, and are the

normalization parameters.

F3 and F4 are determined by the measurements of control signal from the

grippers. If the gripper is closed and object is in hand, ; otherwise, the

gripper is opened and object is not in hand, ; otherwise,

The most common feature for the Pre-Condition and Post-Results are determined

by the corresponding largest value of , , , and .

Table 3 Criterions for Internal Constraints

For Feature 1 in Table 3, Dynamic Time Warping (DTW) [Berndt and Clifford,

1994] distances between two demonstrations are computed first. Then we have a matrix

to describe the distances.

[

]

 (50)

where is the number of demonstrations.

The elements of first row are normalized using the following equation:

 ̅

(51)

81

Then the normalized variance of the first row of ̅ is computed as F1, i.e. the

probability score of this feature.

For Feature 2, the DTW distance is computed in a normalized range [] first,

and then the following steps are the same.

The most common feature for internal constraints is determined by the maximum

value of , and .

By analyzing the demonstrated behaviors, the robot tries to assign a most

common feature to the pre-conditions, internal constraints, and post-results respectively.

The generalized results can be represented as shown in equation (43). Each common

feature is described using a number which is related to the pre-designed features table in

Table 1.

Representation and Storage

Generalized behaviors are stored in the LTM for future use. When required, the

CEA can query the stored information in the LTM to construct a behavior graph and

searches required behavior in the behavior graph to generate behavior sequences.

Input/Output

The input of the “Goal-Based Features for Basic Behaviors” is the results

obtained in equation (43): (

) and the semantic name

assigned to the generalized behavior by a human teacher.

82

Implementation

 Microsoft Access 2010 is used as a database tool to store the generalized

behaviors and their related features. Table 4 displays stored basic behaviors and their

related Pre-Conditions, Internal-Constraints, and Post-Results.

Table 4 Stored Basic Behaviors

Semantic names for these names are assigned by a human teacher. From the

generalization results of the demonstrated behaviors, the numbers related to Pre-

Conditions, Internal-Constraints, and Post-Results which are predefined in Table 1 are

assigned to the behaviors and stored in the database. In the section of “Behavior Graph

Construction”, a behavior graph will be constructed using the information stored in Table

4 by finding the matching between the pre-conditions and post-results.

Command Parsing

An example of a generation command is described as:

Push (the box) to the right

83

The content in the brackets could be modified according to the requirements of

tasks. For example, the box could be replaced with the pen, the toy, etc.

The mail goal of this task is to push the box to the right in the environment. The

robot needs to complete a task which is constrained by this goal.

In this dissertation, the description of a given command is represented as:

 () { () () (()| ()) ()} (52)

 is the main goal, while () are subordinated goals. All goals

have their related parameters which are represented in the brackets as ().

The symbols of “ “and “|” represents the “and” and “or” relationships between the

subordinated goals.

An example of a learning command is described:

I will show you how to use the reaching the object behavior

In this dissertation, the description of a given learning command is represented as:

 () (53)

 is the name of the behavior to be learned, and are parameters related

to this behavior. In the above example, b is reaching and is the object.

Input/Output

The input of the Command Parsing is a speech command which obeys the form of

equation (50) and (51). After parsing the command described in equation (50), the output

of the Command Parsing is a required main goal behavior and several subordinated goal s

with task-related parameters; After parsing the command described in equation (51), the

output of the Command Parsing is the name of the behavior to be learned

84

Implementation

Microsoft Speech Recognition Library is used for speech recognition in our

system.

The grammars of the commands are pre-defined as follows:

 (54)

 (55)

 (56)

(57)

 (58)

 (59)

In these grammars, , , , , and

 are pre-designed lexicons which are defined as:

 { }
(60)

 { } (61)

 { } (62)

 { } (63)

 { } (64)

In the recognition process, a given speech command is categorized into different

grammars by using the Microsoft Speech Recognition Library and the key lexicons are

extracted in different grammars. is the main goal behavior and is extracted first.

85

 and are extracted as the related parameter for .

 is the subordinated goal and is extracted for this subordinated goal.

The extracted lexicons are sent to the CEA as the searching criterion to search the

behavior graph and the required parameters to generate behavior sequences.

Behavior Library

Behavior Library stores the learned behaviors and constructs a behavior graph

based on the generalized features to describe the relationships among these generalized

behaviors. All learned behaviors are represented as vertexes in a behavior graph, and the

edges are defined by matching the pre-condition of a behavior and the post-result of

another behavior. If the robot finds that the pre-condition of a behavior and the post-

result of another behavior match, an edge is added.

Input/Output

The input of the Behavior Library is the generalized behaviors stored in the LTM,

and the pre-defined behavior motion trajectory generation methods. The constructed

behavior graph is stored in the Behavior Library for the DMM and the Behavior Sequence

Generation to use.

Implementation

Figure 43 displays the pseudo code of the construction stage.

86

Figure 43 Pseudo Code of Constructing a Behavior Graph

Line 1-3 add all the learned behaviors into the behavior graph as vertexes. Line 4-

17 add edges between all vertexes. In Line 6-9, the results of matching the pre-condition

and the post-result between two behaviors determine whether an edge can ben added to

connect the two behaviors. Line 10-12 add edges to the “Starting” behavior from all other

behaviors. Line 13-15 add adges from the “Ending behavior” to all other behaviors.

Based on the matching of the pre-conditions and the post results from the stored

information in Table 4, a behavior graph is constructed.

87

Figure 44 A Constructed Behavior Graph

88

In Figure 44, learned basic behaviors are represented as vertexes in this behavior

graph. The vertexes reflect the transitions among these behaviors. Robots do not need to

learn all these edges/transitions from human teachers. They just need to learn the

common features of these behaviors and construct the transitions by matching the Pre-

Conditions and Post-Results of these behaviors. The advantage of this method is to

enable the robot to find a behavior sequence by itself based on this graph.

Behavior Sequence Generation

Given a task, a robot needs to complete the task using some behaviors. If the

robot has already learned the required behavior, it can generate a behavior sequence

starting from the “starting” behavior, ending at the required behavior. An “ending”

behavior is added into the behavior sequence as the last elements for robots to finish the

behavior sequence.

Input/Output

The input is a behavior verb which is extracted in the Command Parsing, and the

output is a behavior sequence:

 { } (65)

Implementation

In our method, we choose to use Dijkstra's algorithm [Dijkstra, 1959] to find a

shortest path in a constructed directed behavior graph. Dijkstra's algorithm, conceived by

Dutch computer scientist Edsger Dijkstra in 1956 and published in 1959, is a greedy

89

searching algorithm to find a shortest path in a directed graph by repeatedly updating the

distances between the starting node and other nodes until the shortest path is determined.

Let the node at which we are starting be called the initial node. Let the distance of

node Y be the distance from the initial node to Y. Dijkstra's algorithm will assign some

initial distance values and will try to improve them step by step.

1. Assign to every node a tentative distance value: set it to zero for our initial node

and to infinity for all other nodes.

2. Mark all nodes unvisited. Set the initial node as current. Create a set of the

unvisited nodes called the unvisited set consisting of all the nodes except the

initial node.

3. For the current node, consider all of its unvisited neighbors and calculate

their tentative distances. For example, if the current node A is marked with a

distance of 6, and the edge connecting it with a neighbor B has length 2, then the

distance to B (through A) will be 6+2=8. If this distance is less than the

previously recorded tentative distance of B, then overwrite that distance. Even

though a neighbor has been examined, it is not marked as "visited" at this time,

and it remains in the unvisited set.

4. When we are done considering all of the neighbors of the current node, mark the

current node as visited and remove it from the unvisited set. A visited node will

never be checked again.

90

5. If the destination node has been marked visited (when planning a route between

two specific nodes) or if the smallest tentative distance among the nodes in

the unvisited set is infinity (when planning a complete traversal), then stop. The

algorithm has finished.

6. Select the unvisited node that is marked with the smallest tentative distance, and

set it as the new "current node" then go back to step 3.

Using Dijkstra's algorithm, in a behavior graph, a shortest path can be generated

from the “Starting” node to the node related to the ,. A behavior sequence, which

is composed of the nodes on the found path, is generated for the DMM and the IRS to

evaluate.

Motion Trajectories Generation

We need to design feature-related generation methods for robot to generate

motion trajectories for all the behaviors in a behavior sequence. Since our description of a

task is composed of one main goal and several subordinated goals, the generation method

for a behavior should also be composed of several generation methods.

Input/Output

 The input is a behavior sequence with task-related parameters:

 { } , and the output is a motion vector

 , which specifies the via points on a motion trajectory in the Cartesian space.

91

Implementation

Table 5 Behavior Motion Trajectory Generation Methods

The combinations of the Internal-Constraints and Post-Results determine the

generation methods for behaviors. As shown in Table 5, 2nd-order attractor, Potential

Field [20], DMP[3], DMP + Potential Field[21], and generating the same trajectories are

used as our pre-defined generation methods as well as well as opening and closing end-

effector. Using these methods, parameters could be changed to adapt to different

situations for robots to generate similar motion trajectories to complete tasks.

--2
nd

-order Attractor

The end-effector of the robot will be moved to a point where the distance between

the end-effector and the manipulated object is the same as the distances in the

demonstrations. We applied a second-order spring-damping attractor for robots to reach

the target position.

 ̇ (()) (66)

 ̇ (67)

where is the position values on the generated trajectory, is the velocity, and is the

92

goal position. and are constants, which are selected to ensure the system over-

damped.

--Generating the Same Trajectories

We can model the motion trajectory in the Cartesian space or in the joint space. In

current research on imitation learning, Gaussian Process (GP), Hidden Markov Model

(HMM), Receptive Field Weighted Regression (RFWR), and Gaussian Mixture Model

(GMM) are used by researchers to generalize and model the demonstrations from

humans.

A Receptive Field Weighted Regression (RFWR) method is used for generalizing

and modeling the demonstrations. In our model, the temporal information is considered

as the enquiry point. Assume N points are sampled in a time period, and t reflects the

temporal information. Given the temporal information t, the corresponding predicted data

points could be computed using our model. The temporal information could also be

understood as timing steps.

Assume that th
 observed motion trajectory from th

 demonstration could be

modeled as a RFWR model as shown below:

∑

∑

 (68)

where is the number of the receptive basis functions, is the index of the

receptive basis functions, and is related to the index of the demonstrations.

 is a receptive basis function, which is distributed in the space.

93

 (

()

) (69)

where, is the center of the th
 basis function for th

 RWFR model, which is

distributed in the input space, and is the bandwidth. is learned by analyzing the

demonstrated motion trajectories using the following equation:

 (
)

 (70)

 is the observed position vector in the demonstrations.

--Dynamic Movement Primitives (DMP)

If the overall goal of the task is to reach to a target position while keeping the

dynamics of the generated motion trajectories similar to the demonstrated motion

trajectories, we applied DMP to generate motion trajectories.

 ̇ (()) (71)

 ̇ (72)

where f is a non-linear RFWR model which can be constructed in equation (66). is the

position values on the generated trajectory, is the velocity, and is the goal position.

and are constants, which are selected to ensure the system over-damped.

--DMP + Potential Field

If the overall goal of the task is to reach to a target position while keeping the

dynamics of the generated motion trajectories similar to the demonstrated motion

trajectories and avoiding the obstacles in the environment, we applied our potential field

based DMP algorithm [Tan et al., 2011] to generate motion trajectories. In this algorithm,

94

the goal state in equation (69) is modified according to distances between the position of

the end-effector and the position of the obstacle.

Because the original DMP method does not provide the function of obstacle

avoidance, the motivation was to propose an extension of DMP which can generate new

trajectories with similar dynamics to the demonstrations and avoid obstacles in the

working environment [Tan et al., 2011].

In DMP, the trajectory is planned step by step in an incremental way. The

elements in ⃗ are the generated points on the trajectory. When the current state ⃗() is

known, the next state ⃗() is calculated by equation (69) and (70).

The basic idea is to move the goal state ⃗ to a virtual goal position ⃗ by

adding an impedance factor ⃗ , when the current state is in the impedance area

around an obstacle,

 ⃗ ⃗ ⃗ (73)

 ⃗ is generated by the impedance field around the obstacle. In our

method, we decomposed the force generated by potential field into the tangent direction

and the centrifugal direction for simplicity.

Details on this potential field based DMP algorithm are summarized in Appendix

B.

Internal Rehearsal System

The IRS not only internally simulates behaviors, but also predicts outcomes based

on current situations to obtain evaluations to the DMM.

95

Input/Output

Object

Obstacle

Can I push the

object to the left?

Do I have to use

the left arm?

…...

Internal Rehearsal

Figure 45 Internal Rehearsal

The input of the IRS is a vector which represents all the via points on a generated

behavior sequence and a motion trajectory, task-related parameters, and the

environmental information. The output of the IRS is the evaluation results. Figure 45

displays a typical usage of IRS. The robot is asked to push the object and it needs to

evaluate whether the object is located in its working space and whether it can

successfully push the object to the left while avoiding obstacles. The input is the

generated motion trajectories, and the positions and sizes of the object and the obstacle

on the table, and the output is a judgment that whether the robot can complete this task.

96

Implementation

 VC# and OpenGL are used to design the IRS component in our system. There are

three crucial modules in the IRS: Kinematics Module, Physical Limitation Checking

Module, the Obstacle-Collision Detection Module, and Behavior Sequence of Dual Arms

Checking Module.

The Kinematics Module map the via points on the motion trajectory to the joint

angles of ISAC

 The Physical Limitation Checking Module checks whether the operation point is

within the working-space of the robot. For each point on the motion trajectory, the robot

uses the IRS to check whether it could be reached using the following two equations:

 (74)

 (75)

where , , and represents the 3-dimensional position value of the points to be

checked, and the and are the length of the shoulder and

the arm respectively.

If the position values satisfy both of these equations, the IRS considers that this

checked point satisfies the requirement for Physical Limitation Checking.

The Obstacle-Collision Detection Module checks whether the arm of the robot

collides with obstacles in the environment. For each point on the motion trajectory, the

robot uses inverse kinematics to compute the angular value of each joint and computes

the position of each joint in the Cartesian space.

 () (76)

97

 () () (77)

 The Obstacle-Collision Detection module checks whether Link 2, Link 3, and the

end-effector collide with the obstacles in the environment. The widths of Link 2, Link 3,

and the end-effector are taken into consideration and defined as: , , and .

The points on Link 2 are represented as , the points on Link 3 are represented

as , and the points on the end-effector are represented as .

The connected lines between joint 2 and joint 3, joint 3 and joint 4, and joint 6

and the manipulation point are computed respectively. , , and are computed by

expanding these lines with , , and respectively.

The robot IRS to check whether the collision happens using the following two

equations:

 ‖ () ‖ (78)

 ‖ () ‖ (79)

 ‖ () ‖ (80)

where is the index of the points to be checked, is the position value of the

center of the obstacle, and is the size of the obstacle.

If the position value of a checked point satisfy both of the two above equations,

the IRS considers that this checked point satisfy the requirement for Obstacle-Collision

Detection.

If the IRS found that all the via points on the generated motion trajectory satisfy

the two requirements, it returns a zero value to the DMM, otherwise it returns 1 for

violation of the Physical Limitation Checking and 2 for the violation of the Obstacle-

Collision Detection.

98

In some situations, the robot needs to use its both arms to complete a task. So,

given a behavior sequence, the robot needs to decide which arm it should use to execute

the behaviors.

Assume we have a sequence: { }. The robot will first try to use

one of its arms to execute . If the post-result of satisfy the pre-condition of by

using the same arm, the robot uses the same arm to execute . If the post-result of

cannot satisfy the pre-condition of by using the same arm, the robot uses the other arm

to execute . The robot then decides to use the left arm or right arm for and

until all the behaviors are assigned to one arm using the same method. In this dissertation,

we do not design experiments to use both arms. But we want to point out that our method

could be applied to use both arms using the method described above.

Summary

This chapter describes an integrated system which combines cognitive control

with imitation learning. Specific designs of the components in this system were explained

in detail. In the next chapter, this system is applied for a humanoid robot, ISAC, to carry

out three experiments to validate our design approach.

99

CHAPTER IV

SYSTEM IMPLEMENTATION, EXPERIMENTAL DESIGN AND RESULTS

System Implementation

The designed system was implemented to enable a humanoid robot, named ISAC,

to learn graspless behaviors from human demonstrations, generalize behavior features,

apply learned behaviors in task-relevant situations, and switch strategies by choosing

using its right arm or its left arm to achieve required task goals.

Experimental Design

Hardware

--Humanoid Robot

The hardware platform used for this experiment is the ISAC humanoid robot,

shown in Figure 46. ISAC has two arms, each of which has 6 Degree-of-Freedom (DOF),

driven by pneumatic air muscles [Kawamura et al., 2000].

Rubbertuators

Rubbertuators [Daerden and Lefeber, 2002], which are pneumatic driven, are used

to drive the joints of ISAC. The rubbertuators shorten by increasing its enclosed volume,

and they will contract against a constant load if the pneumatic pressure is increased.

100

Figure 46 ISAC Robot

Encoders

Optical encoders made by Sumtak [Sumtak] are attached to the joints of each arm

for ISAC to obtain the feedback of the current joint angles and to enable closed-loop

feedback control. The resolutions of the encoders are 0.087890625 degree.

Gripper

The Gripper used for ISAC is pneumatic driven. Because of the limitation of the

hardware and limitation of this system to the graspless “object handling” tasks, the

gripper is always closed using tapes.

101

--Kinect Sensor

In our designed experiments, a Kinect sensor is used to assist ISAC to track the

position of the hand of a human teacher. The Kinect sensor is used for ISAC to locate the

positions and sizes of the target object and obstacle in the environment. Kinect is a

motion sensing input device made by Microsoft [Microsoft] for the Xbox 360 video game

console and personal computers.

There are four major functions of Kinect: obtaining the original RGB images from

one camera, obtaining the depth information from the infrared sensors, obtaining the

audio information using the microphones, and generating skeleton data of human bodies

in the environment.

Software

Several software modules are implemented for ISAC to perform required tasks in

our designed experiments.

--Operating System

ISAC

The functions included in the CEA are implemented using Microsoft Visual C++

2010. LTM is developed using Microsoft Visual Access 2010, and is used for ISAC to

store information in a database. A software package, named QuickGraph, is used for

ISAC to construct a behavior graph by using the stored information in the LTM, and to

visualize the behavior graph on the designed diagram. This program continuously sends

out the position and size values of the segmented target object and obstacles to the STM,

the information of which is used by the CEA. Command parsing is implemented using

102

Microsoft Speech Recognition Library, which defines grammars and lexicons, and

extracts useful information from recognized commands.

Kinect

The Kinect module is developed using Microsoft Visual C# 2010 in Microsoft

Windows 7. It is used for robots to track the position of the hand of the human teacher is

based on Natural User Interface (NUI) provided by Microsoft Corporation. As shown in

Chapter III, using NUI, ISAC can track the position values of the 20 joints on a human

body. In the learning stage, the position of the right hand is used to describe the motion

trajectories of demonstrated behaviors.

--Visual Sensor Processing

The vision module is used for robots to locate the positions and shapes of the

target object and obstacles in the environment. The vision module is developed using

Microsoft Visual C# 2010 in Microsoft Windows 7. This module is based on an open

source software package, named OpenCV. When a target object and two obstacles are

placed on the table in front of ISAC, this module segment the object and obstacle areas

using color information in the HSV space. The sizes of the object and obstacles are

determined by finding the radius of the segmented area. This program continuously sends

out the position and size values of the segmented target object and obstacles to the STM,

the information of which is used by the CEA.

--Arm Control

The arm control module is developed using Microsoft Visual C++ 6.0 in

Microsoft Windows 2000. A closed-loop PID control method is implemented for ISAC to

read the encoder value, and to send the control signal to control the air pressure of the air-

103

muscles which drives the arms of ISAC. This module receives position values of the via

points on a motion trajectory as the input, and sends out voltage values for controlling the

air-muscles as the output.

--Simulator

A simulation environment is required for ISAC to internally evaluate the

generated behaviors given some tasks. This environment is developed using Microsoft

Visual C# 2010 in Microsoft Windows 7. An open source software package, OpenGL, is

used as the basis of implementing such simulation environment. Three modules are

implemented in the Simulator: Display Module, Kinematics Module, and Evaluation

Module. Evaluation Module receives the motion trajectory to be evaluated from the CEA.

The collision checking and working space checking are implemented for the evaluation

module as discussed in Chapter III. The via points on the motion trajectories are sent to

the Kinematics Module to compute the joint angles of ISAC and then sent to the Display

Module for visualization.

Simulator

Display

Module

Kinematics

Module

Evaluation

Module

CEA

Figure 47 Simulator

In the Evaluation Module, some rules are used to generate Boolean values for the

CEA to use. Assume the current being evaluated via points is . Two Boolean values are

104

defined for these rules. workingSpaceChecking is used to check whether is within the

working space of ISAC and collisionChecking is used to check whether the arm of ISAC

collides with the obstacle given the position of the end-effector is .

if is out of the working space of ISAC, then workingSpaceChecking is false;

if the arm of ISAC collides with the obstacle given the position of the end-effector

is , then collisionChecking is false;

if workingSpaceChecking and collisionChecking are true and exists, then

evaluation continues and start checking

if workingSpaceChecking and collisionChecking are true and does not exist,

then evaluation stops and return a Boolean value representing “evaluation successes”

if workingSpaceChecking or collisionChecking is false, then evaluation stops and

returns a Boolean value representing “evaluation fails”.

Communication

Figure 48 displays the computers we used for these modules:

Computer Octavia is used for the control Module, computer Sally is used for the

vision module, and a laptop is used for the CEA and Memory parts. The communication

among these computers is based on TCP/IP socket programming. The cameras are

connected to Sally using USB cables and the computer used a PCI card to send the

control signals to the regulars on ISAC.

105

TCP/IP

TCP/IP

Voice/Keyboard

USB

PCI

Figure 48 Computers

The communication between the laptop and computer Octavia is based on TCP/IP

sockets. The position values of the via points on a motion trajectory are sent to computer

Octavia. The X, Y, and Z position values of these points are represented as short

variables (2 bytes). Each data packet is composed of 1 operation code and 100 position

values are sent from the labtop to computer Octavia. There are 602 bytes in each packet:

Packet[0] = Operation Code

Packet[1], Packet[2], Packet[3] = X,Y,Z coordinates of Point 1;

Packet[4], Packet[5], Packet[6] = X,Y,Z coordinates of Point 2;

…

Packet[208], Packet[209], Packet[300] = X,Y,Zcoordinates of Point 100;

106

The communication between the labtop and computer Sally is based on TCP/IP

sockets. In the learning stage, the position of the hand of the human teacher and the

position and sizes of objects are sent to labtop. The X, Y, and Z position values of these

points are represented as double variables (4 bytes). Each data packet is composed of 100

position values of the hand of the human teacher, the position value of the target object at

the beginning of the demonstration, and the position value of the target object at the end

of the demonstration. There are 1224 bytes in each data packet:

Packet[0], Packet[1], Packet[2] = X,Y,Z coordinates of Point 1 of the hand;

Packet[3], Packet[4], Packet[5] = X,Y,Z coordinates of Point 2 of the hand;

…

Packet[297], Packet[298], Packet[299] = X,Y,Z coordinates of Point 100 of the

hand;

…

Packet[300], Packet[301], Packet[302] = X,Y,Z coordinates of the object at the

beginning of the demonstration;

Packet[303], Packet[304], Packet[305] = X,Y,Z coordinates of the object at the

beginning of the demonstration;

Experiments designed were to demonstrate that the following requirements

satisfied:

1. Parse speech commands for ISAC to determine the requirements of a given

task.

2. Observe the demonstration from a human teacher, record the recorded motion

trajectory of the hand of the human teacher.

107

3. Generalize demonstrated behaviors and store them in the LTM

4. Construct behavior graphs for ISAC to use

5. Generate behavior sequences by finding a path from the “Starting” behavior to

the required behavior in the behavior graph

6. Generate similar motion trajectories for behaviors when the common feature

of the generated behavior is to keep similar dynamics

7. Switch strategies or processes to achieve required goals

Three types of experiments are designed and implemented to evaluate our

designed system. Experiment 1 is used for ISAC to learn and apply “Reaching”, “Pushing

Left”, and “Pushing Right” behaviors. ISAC needs to generalize the demonstrated

“Reaching”, “Pushing Left”, and “Pushing Right” behaviors and store them in LTM. In

Experiment 2, ISAC learns how to play a Yo-Yo. ISAC has learned the “Reaching”

behavior in experiment 1, so it does not need to learn it again. It just needs to learn

“Grasping” and “Yo-Yo Motion” behaviors and combine them with the already learned

“Reaching” behavior to assemble a behavior sequence to play the Yo-Yo. Experiment 2

validates the long-term memory part of the system and also generates motion trajectories

which are similar to the demonstrations. Experiment 3 evaluates the performance of high-

level cognitive control processes on the basis of Experiment 1. A target object is placed

on a table in front of ISAC. ISAC needs to determine whether the object can be pushed

using either arms while avoiding obstacles in the environment. ISAC switches strategies

to complete the task goals if necessary.

108

Experiment 1: Reaching and Pushing

Experiment 1A: Unsupervised Reaching and Pushing

--Objective

 The objective of this experiment is to investigate how the system learns the

observed behaviors.

--Experimental Setup

In this experiment, ISAC is asked to push an object which is placed on a table in

front of it. In order to complete the task, ISAC needs to generate a behavior sequence,

which is composed of the “Reaching” and “Pushing” behaviors. The generated “Reaching”

and “Pushing” behavior should have the same feature of the demonstration which

minimizes the distance between the end-effector and the target object.

This experiment is to validate the following specifications

1. Parse speech commands for ISAC to determine the requirements of given

tasks.

2. Observe the demonstration from a human teacher, record the recorded motion

trajectory of the hand of the human teachers.

3. Generalize demonstrated behaviors and store them in the LTM

4. Construct behavior graphs for ISAC to use

5. Generate behavior sequences to complete task

The target object used in the experiments carried out on ISAC is a yellow box

with the size: 18 cm (length), 18 cm (width), and 12 cm (height).

109

Figure 49 Environmental Setup of Experiment 1

The box is placed on a table in front of ISAC. ISAC is asked to push the box to its

left or right. The box is placed at 4 different locations for ISAC to push without grasping.

Figure 49 displays the environmental setup. This experiment is to validate that our system

110

can enable ISAC to learn behaviors from human demonstrations and to generate behavior

sequences to complete tasks, so all the objects are placed within the working space of

ISAC.

ISAC first checks the stored information in the LTM to find whether it has

learned the required behaviors to learn. In order to demonstrate that ISAC could learn and

generalize behaviors, initially, the behavior library is blank. Thus, ISAC requires

demonstration from human teachers to learn “Reaching” and “Pushing”.

--GUI Interface

Figure 50 display the control interface implemented on computer Octavia, which

is used to control the voltage of the regulators.

Current

Position and Orientation

Desired

Position and Orientation

Figure 50 ISAC Arm Control Interface

111

This program can receive the via points on a desired motion trajectory from

another computer. The communication protocol is described in Chapter IV. After

receiving the via points on the motion trajectory, this program convert it to a sequence of

joint angles using inverse kinematics method. Then the joints of ISAC are driven by the

air muscles by changing the voltage of the regulars on ISAC. The closed control loop

incorporates a PID control method.

The other method of controlling ISAC is to put the desired position and

orientation values in the area of desired position and orientation of the dialog shown in

Figure 50. By pressing the “Start” button, this program computes the required joint

angles using inverse kinematics and sends the control command to the regulators.

The first method is used in Experiment 1.

Figure 51 displays the GUI interface of the IRS and the speech command

communication. The stored basic behaviors are displayed on the top of the dialog. In the

“System Status” area, it displays the current system status, e.g., parsing speech command,

recording motion trajectory, generalization, generating behavior sequences, generated

motion trajectories, etc. The learning status is displayed on the left side of the dialog.

Constructed behavior graph and the generated behavior sequence are shown at the bottom

of the dialog. Given speech commands described in Chapter IV, ISAC records the motion

trajectories of the hand of the human teacher using Kinect, generalizes the learned

behaviors, and generates motion trajectories which are sent to the computer Octavia to

control the arms of ISAC.

112

The IRS simulation environment is displayed on the right side of the dialog. The

kinematics module converts position values of the via points on the motion trajectory to

the joint angles. These angles are sent to the displaying module to update the current joint

angle of the simulation model of ISAC. Meanwhile, the position of the box and the

obstacle are updated using the information received from the perception module.

IRS Simulation

Environment

Stored Basic Behaviors
System Status

Generated Behavior

Sequence
Behavior Graph

Learning Status

Figure 51 GUI of the IRS and the Speech Command Communication

--Learning

Figure 52 displays the experimental setup for the learning stage.

113

Figure 52 Experimental Setup for the Learning Stage of Experiment 1

In order to teach ISAC to learn the “Reaching” behavior, we put an object at two

different locations on the table. A human teacher demonstrates how to reach the object:

using the left arm or the right arm, starting from different locations, reaching with two

different styles. Thus, there are 16 demonstrations in the learning stage. (8

demonstrations are by using each arm respectively.)

The left upper picture of Figure 53 displays the recorded motion trajectories of

“Reaching” behavior demonstrated using the left arm. The starting positions are labeled

with stars, and the target positions are labeled with circles. The common features for pre-

condition, internal constraints and post-results are predefined in Table 1, Table 2 and

114

Table 3 in Chapter III. The generalization scores of pre-condition, internal constraints and

post-results of the “Reaching” behavior are displayed in the right upper picture, left lower

picture, and right lower picture of Figure 53 respectively.

Figure 53 Generalization Results of the “Reaching” Behavior Using the Left Arm

Figure 54 displays the recorded motion trajectories of the “Reaching” behavior

demonstrated using the right arm. The starting positions are labeled with stars, and the

target positions are labeled with circles.

1000

1200

1400

1600

-1000
-500

0
500

-500

0

500

y-axis(mm)

Trajectory in Cartesian Space

x-axis(mm)

z
-a

x
is

(m
m

)

Feature 1Feature 2Feature 3Feature 4
0

0.2

0.4

0.6

0.8

1

Feature Index
F

e
a
tu

re
 S

c
o
re

Pre-Condition

Feature 1 Feature 2
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Internal-Constraints

Feature 1Feature 2Feature 3Feature 4
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Post-Results

115

Although motion trajectories shown in Figure 53 and Figure 54 are different, the

generalization results of the “Reaching” behavior using the right arm are the same as the

one using the left arm.

Figure 54 Generalization Results of the “Reaching” Behavior Using the Right Arm

The generalized results reflect that the common feature of the “Reaching”

behavior is: minimizing the distance between the hand and the destination position at the

end of the motion trajectory. There is no requirement of pre-condition and internal

constraint for the “Reaching” behavior.

1000

1200

1400

1600

-200
0

200
400

600

-500

0

500

y-axis(mm)

Trajectory in Cartesian Space

x-axis(mm)

z
-a

x
is

(m
m

)

Feature 1Feature 2Feature 3Feature 4
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Pre-Condition

Feature 1 Feature 2
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Internal-Constraints

Feature 1Feature 2Feature 3Feature 4
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Post-Results

116

Figure 55 displays the recorded motion trajectories of the “Pushing left” behavior.

The starting positions are labeled with stars, and the target positions are labeled with

circles. The generalization scores of pre-condition, internal constraints and post-results of

the “Pushing to the left” behavior are displayed in the right upper picture, left lower

picture, and right lower picture of Figure 55 respectively.

Figure 55 Generalization Results of the “Pushing Left” Behavior

Figure 56 displays the recorded motion trajectories of the “Pushing right”

behavior. The starting positions are labeled with stars, and the target positions are labeled

with circles. The generalization scores of pre-condition, internal constraints and post-

800

900

1000

1100

1200

1300
-600 -400 -200 0 200 400

Trajectory in Cartesian Space

y-axis(mm)

x
-a

x
is

(m
m

)

Feature 1Feature 2Feature 3Feature 4
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Pre-Condition

Feature 1 Feature 2
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Internal-Constraints

Feature 1Feature 2Feature 3Feature 4
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Post-Results

117

results of the “Pushing to the right” behavior are displayed in the right upper picture, left

lower picture, and right lower picture of Figure 56 respectively.

Figure 56 Generalization Results of the “Pushing Right” Behavior

The generalized results reflect that the common feature of the “Pushing Left/Right”

behavior is: 1. minimizing the distance between the hand and the target object at the

beginning of the motion trajectory; 2. minimizing the distance between the hand and the

destination position at the end of the motion trajectory. There is no requirement for

internal constraint for the “Pushing to the left/right” behavior.

900

1000

1100

1200

1300

1400
-600 -400 -200 0 200 400

Trajectory in Cartesian Space

y-axis(mm)

x
-a

x
is

(m
m

)

Feature 1Feature 2Feature 3Feature 4
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Pre-Condition

Feature 1 Feature 2
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Internal-Constraints

Feature 1Feature 2Feature 3Feature 4
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re
Post-Results

118

--Generation

Given a command: “Push the box to the left”, ISAC finds the required behavior is

“Pushing left” and the parameters are “the box” and the “to the left”. ISAC then generates

a behavior sequence by searching the behavior graph to find a shortest path from

“Starting” to “Pushing left”. This behavior is composed of “Starting”, “Reaching”, and

“Pushing left”.

--Experimental Results of Experiment 1

Figure 57 displays the generated motion trajectories in the Cartesian space for

pushing the box to the left at 4 different locations labeled by circles. 2nd-Order attractor

is used to generate motion trajectories for “Reaching”, and “Pushing left/right”.

Figure 57 Generated Motion Trajectories for Experiment 1A (Pushing to the Left)

In Figure 58, ISAC pushes the object placed at different locations to the left.

0

500

1000 -200 0 200 400 600

-600

-400

-200

0

200

Location1

y
x

z

0

500

1000 -200 0 200 400 600

-600
-400
-200

0
200

Location2

y

x

z

0

500

1000 -200 0 200 400 600

-600
-400
-200

0

200

Location3

y
x

z

0

500

1000 -200 0 200 400 600

-600

-400

-200

0

200

Location4

y
x

z

119

Figure 58 Experimental Results of Experiment I (Pushing to the Left)

120

When the box is placed at location 1, 2, and 3, ISAC can push it to the left.

However, when the box is placed at location 4, ISAC can only push it to the left in a

small distance. The reason is that location 4 is close to the edge of the working space of

ISAC.

Figure 59 displays the generated motion trajectories in the Cartesian space for

pushing the box to the right at 4 different locations labeled by circles.

Figure 59 Generated Motion Trajectories for Experiment I (Pushing to the Right)

In Figure 60, ISAC pushes the object placed at different locations to the left.

0

500

1000 -600 -400 -200 0 200

-600

-400

-200

0

200

y

Location1

x

z

0

500

1000 -600 -400 -200 0 200

-600
-400
-200

0
200

Location2

y

x

z

0

500

1000 -600 -400 -200 0 200

-600

-400

-200

0

200

y

Location3

x

z

0

500

1000 -600 -400 -200 0 200

-600

-400

-200

0

200

Location4

y
x

z

121

Figure 60 Experimental Results of Experiment I (Pushing to the Right)

122

From the experimental results, ISAC pushes the box to the right when it is placed

at four different locations.

--Discussion

According the experiment results, ISAC pushes the object to left, which is placed

at 4 different locations and pushes the object to the right when it is placed at 4 different

locatioins. The experiment results demonstrate that ISAC can use this system to parse the

speech command, check the LTM, observe demonstrations, generalize behaviors,

generate behavior sequences, and generate motion trajectories to complete tasks.

Experiment 1B: Supervised Pushing by Physical Coaching

--Objective

The objective of this experiment is to investigate how the system learns behaviors

from physical coaching.

--Experimental Setup

In this experiment, ISAC’s right arm is physically moved to the pushing point on

an object placed on a table. A human teacher demonstrates then how to push the object

on the table by manually moving the right arm of ISAC. This is called physical coaching

or physical human-robot interaction [Lee et al., 2011], which is different from the

demonstration method in Experiment 1A. During coaching, each successful and failed

pushing is recorded. This is similar to reinforcement learning [Sutton and Barto, 1998].

Then ISAC generalizes the demonstrations and uses the most successful point to push the

object.

This experiment is to validate the following specifications:

123

1. Record success or failure of the locations of the pushing point which is

demonstrated by physical coaching by a human teacher.

2. Record the most successful point of pushing and store the corresponding

behavior in the LTM

3. Generate the desired motion trajectories for ISAC

Figure 61 displays the experimental setup similar to Experiment 1A. However, in

this experiment, ISAC learns the best pushing point on the object.

Figure 61 Experimental Setup of the Generation Stage in Experiment 1B

Figure 62 displays the experimental setup of the learning stage. A human teacher

physically moves the arm to push the object at different points on the side of the object

124

and tells ISAC whether each push was successful or not. In this experiment, the height of

the box is larger than the length and the width.

Figure 62 Experimental Setup of the Learning Stage in Experiment 1B

Learning

In Experiment 1B, the center of the object is placed at { }. Figure

63 displays the pushing points on the side of the object during the demonstrations. The

points labeled with circles are those ISAC can use to push the object, and the points

labeled with stars are those ISAC cannot use to push the object.

125

450 500 550 600 650 700
-600

-550

-500

-450

-400

-350

-300

X-Axis

Y
-A

x
is

Pushing Points

 *

O Success

Failure

Figure 63 Pushing Points of Experiment 1B

In Figure 63, the points (o), which ISAC should use to push the object, are in the

middle and at the bottom, and the points (*), which ISAC should not use to push the

object, are at the top and on the sides. We used a Gaussian model to describe the group of

the points that ISAC can use to push the object as shown in Figure 64.

126

450 500 550 600 650 700
-600

-550

-500

-450

-400

-350

-300

X-Axis

Y
-A

x
is

Pushing Points

 *

O Success

Failure

Figure 64 The Gaussian Model of the pushing points in Experiment 1B

The parameters of the Gaussian model shown in Figure 64 are:

 { }

 [

]

where is the mean and is the covariance matrix of this Gaussian Model. The meaning

of this Gaussian model is that ISAC needs to choose points around

{ } as the pushing point to increase the probability of pushing the

object to the required location. If the center of the box is { }, the chosen pushing

point is { }

127

Experimental Results

L1 L1

L2 L2

L3 L3

L4 L4

R1

R2

R3

R4

R1

R2

R3

R4

Figure 65 Experimental Results of Experiment 1B

In Figure 65, ISAC reaches the pushing points which are described using

Gaussian model learned from the physical coaching of the human teacher.

128

--Discussion

In Experiment 1B, a human teacher teaches how to find the pushing points on the

object using physical coaching method. A Gaussian model is used to describe the learned

result and ISAC chose the mean of this model as the pushing point. The quantitative

analysis of the generation results of Experiment 1B will be explained in Chapter V.

Experiment 1C: Compensator for ISAC Arm Control

--Objective

The objective of the experiment is to how the system compensates the error

generated by the hardware.

--Experimental Setup

In this experiment, ISAC is asked to reach the pushing point on an object which is

placed on a table in front of it. ISAC first tries to use the pushing point without using the

compensator. The error is measure by computing the distance between the end-effector

and the pushing point on the object, which is used as the input of the compensator. Then

ISAC uses the stored information of the compensator to change the target position to

overcome the error generated by the hardware.

This experiment is to validate the following specifications

1. Store the error in the compensator

2. Use the compensator to overcome the error generated by the hardware.

The target object used in the experiments carried out on ISAC is a yellow box

with the size: 18 cm (length), 18 cm (width), and 12 cm (height).

129

The box is placed on a table in front of ISAC. ISAC is asked to reach the pushing

point on the box. The box is placed at 4 different locations. Figure 66 displays the

environmental setup. This experiment is to validate that our system can enable ISAC to

overcome the error generated by the hardware.

Figure 66 Experimental Setup of Experiment 1C

--Experimental Results

Figure 67 displays the experimental results in Experiment 1C.

130

L1 L2

L3 L4

L1

L3

L1

L3

L2

L4

L2

L4

R3 R4R3 R3 R4 R4

R1 R2R1 R1 R2 R2

Figure 67 Experimental Results of Experiment 1C

L means that ISAC needs to reach the pushing point on the box to push to its left

and R means ISAC needs to reach the pushing point on the box to push to its Right. The

box is placed at 4 different locations for pushing left and right. Thus there are 8

experiments in Experiment 1C.

In the figures for each experiment, the left picture displays the location of the box,

the middle picture displays the location of the end-effector without using the compensator,

131

and the right picture displays the location of the end-effector using the compensator. The

required pushing point is labeled using “ ” on the box.

In Figure 67, the compensator improves the performance of the arm control, and

the error becomes smaller. The quantitative analysis of the experimental results of

Experiment 1C is explained in Chapter V.

The next experiment is to investigate how ISAC can generate motion trajectories

which are similar to demonstrated behaviors. This is popular in current imitation learning

research. We want to investigate how this type of traditional imitation learning methods

could be integrated within the system in this dissertation.

Experiment 2: Yo-Yo Playing

Objective

 The objective of this experiment is to investigate how the system learns newly

observed behaviors and generates similar motions.

Simulation Experiment Description

This experiment is to ask ISAC to play Yo-Yo, which is a very common game for

children. The Yo-Yo is placed within the working space of the right arm of ISAC and

ISAC needs to generate a Yo-Yo Playing behavior sequence, which is composed of the

“Reaching”, “Grasping”, and “Yo-Yo Motion”, to complete the task. In order to generate

this behavior sequence, ISAC needs to observe and generalize the “Yo-Yo Motion”

behavior and add it to the behavior graph. In this experiment, the generated “Yo-Yo

Motion” behavior should be similar to the demonstrated “Yo-Yo Motion” behavior. This

132

is different from generating the “Reaching” and the “pushing” behaviors in Experiment 1,

which does not require the similarity between the demonstrated behavior and the

generated behavior.

The Yo-Yo playing requires ISAC to generate a behavior sequence which is

composed of several behaviors in order to play Yo-Yo. In the learning stage, ISAC

checks the LTM and founds it has not learned the “Yo-Yo Motion” behavior. So it asks a

human teacher to demonstrate how to play Yo-Yo. The human teacher demonstrates a

behavior sequence which is composed of “Reaching”, “Grasping”, and “Yo-Yo Motion”.

ISAC checks the LTM and founds that it has already learned the “Reaching” behavior, so

it does not need to generalize the “Reaching” behavior again. Because of the limitation of

the hardware, ISAC cannot learn the “Grasping” through physical coaching and observe

the grasping using Kinect, the “Grasping” behavior is added into the database by the

human teacher. Then ISAC needs to learn and generalize “Yo-Yo Motion” behavior in

this experiment, and to add them in the LTM.

In the generation stage, based on our designed method, “Yo-Yo Motion” behavior

has a pre-condition which requires that a Yo-Yo already be in hand. So ISAC needs to

find a behavior which satisfies the pre-condition requirements of the “Yo-Yo Motion”

behavior. I.e., ISAC need to find a behavior in the behavior graph, which has a transition

edge going to the “Yo-Yo Motion” behavior. By searching the constructed behavior

graph, ISAC should find a path from the “Starting” to the “Yo-Yo Motion” behavior to

generate a behavior sequence to play Yo-Yo. This behavior sequence is composed of

“Reaching”, “Grasping”, and “Yo-Yo Motion”. The requirement of the “Reaching”

behavior is to minimize the distance between the end-effector and the target object and

133

the requirement of the “Yo-Yo Motion” behavior is to generate motion trajectories which

are similar to the demonstrations.

This experiment is to evaluate the following major requirements:

1. Learn new behavior: “Yo-Yo Motion” from a demonstrated behavior

sequence.

2. Generalize demonstrated “Yo-Yo Motion” behavior, the internal constraint of

which is to keep motion dynamics similar to a demonstrated motion;

3. Use behaviors learned in the first experiment (Reaching) and learn necessary

additional behavior in this experiment (Yo-Yo Motion);

4. Construct a complex behavior graph from stored information in the LTM;

5. Find a path from the “Starting” behavior to the required “Yo-Yo Motion”

behavior and generate behavior sequence;

6. Generate motion trajectories which are similar to the demonstrations of the

“Yo-Yo Motion” behavior;

7. Run the simulator.

Learning

The learning stage was implemented in the real environment with ISAC using a

Kinect sensor to observe the demonstrations; the generation stage was implemented in a

simulation environment.

A Yo-Yo is placed at 5 different locations in front of ISAC, and a human teacher

demonstrates how to play the Yo-Yo using the right hand as shown in Figure 68. The

demonstration is composed of the “Reaching”, the “Grasping”, and the “Yo-Yo Motion”

behaviors.

134

Figure 68 Experimental Setup of the Learning Stage of Experiment 2

Figure 69 displays the recorded motion trajectories of the demonstrations in the

Cartesian space. The starting positions are labeled with stars, and the target positions are

labeled with circles. These demonstrations are composed the “Reaching”, “Grasping”,

and “Yo-Yo Motion” behaviors.

ISAC checks the LTM and finds that it has already learned the “Reaching”

behavior. The “Grasping” behavior is manually added into the LTM for ISAC. Then

ISAC needs to generalize the “Yo-Yo” motion behavior in this experiment.

135

Figure 69 Recorded Motion Trajectory of the “Yo-Yo Playing” Behavior Sequence

Figure 70 displays the motion trajectories on X, Y, and Z axis.

Figure 70 Recorded Motion Trajectories of “Yo-Yo Motion” Behavior

Figure 71 displays the generalization results of “Yo-Yo Motion” behavior.

1200

1400

1600

1800

2000

-400
-200

0
200

400

-200

0

200

400

600

x-axis(mm)

Trajectory in Cartesian Space

y-axis(mm)

z
-a

x
is

(m
m

)

0 20 40 60 80 100
-300

-200

-100

0

100

200

300

400
Trajectory on X Axis

time(s)

X
-a

x
is

(m
m

)

0 20 40 60 80 100
-300

-200

-100

0

100

200

300

400
Trajectory on Y Axis

time(s)

Y
-a

x
is

(m
m

)

0 20 40 60 80 100
-300

-200

-100

0

100

200

300

400
Trajectory on Z Axis

time(s)

Z
-a

x
is

(m
m

)

136

Figure 71 Generalization Results of the “Yo-Yo Motion” Behavior

Based on these results, the pre-condition of the “Yo-Yo Motion” behavior is to

minimize the distance between the hand and the Yo-Yo and close the hand, the internal

constraint is to keep similar dynamics, and the Post-Result is to close the hand.

Generation

Given a command: “Play Yo-Yo”, ISAC finds that the required behavior is the

“Yo-Yo Motion” behavior and the parameter is “Yo-Yo”. ISAC first constructed a

behavior graph as shown in Figure 72 and generated a behavior sequence by searching

the behavior graph to find a shortest path from “Starting” to “Yo-Yo Motion”.

Feature 1Feature 2Feature 3Feature 4
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Pre-Condition

Feature 1 Feature 2
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Internal-Constraints

Feature 1Feature 2Feature 3Feature 4
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Post-Results

137

Start

Figure 72 Behavior Sequence Generation for Yo-Yo Playing

138

This behavior is composed of “Starting”, “Reaching”, “Grasping”, and “Yo-Yo

Motion”. 2nd-Order attractor is used to generate motion trajectories for “Reaching”,

“Closing End-Effector” is used for “Grasping”, and DMP is used for “Yo-Yo Motion”.

The selection of these methods is based on Table 5 in Chapter III.

Simulation Experimental Results

In Figure 73, the Yo-Yo is placed at 3 different locations labeled by circles.

Fig.10 displays the generated motion trajectories for ISAC to play Yo-Yo.

Reaching

Reaching Reaching

Grasping

Grasping Grasping

Yo-Yo

Motion

Yo-Yo

Motion

Yo-Yo

Motion

Figure 73 Generated Motion Trajectories for Experiment 2

139

The first behavior is “Reaching”, which is used by ISAC to minimize the distance

between the end-effector and the target-object. It starts from timing step 0 to timing step

100. The second behavior is “Grasping” which is used by ISAC to grasp the Yo-Yo. It

starts from timing step 101 to timing step 200. The third behavior in the behavior

sequence for playing Yo-Yo is the “Yo-Yo Motion” behavior and the generalization

results of the “Yo-Yo Motion” behavior is to keep similar dynamics. It starts from timing

step 201 to timing step 300. The generated motion trajectories of the “Yo-Yo Motion”

behaviorsare similar to the demonstrated motion trajectories on X, Y, Z-Axis when

comparing the right upper picture, the left lower picture, and right lower picture of Figure

70 and Figure 73 (The third behavior starts from timing step 201).

The quantitative evaluation of the similarity of the generated “Yo-Yo Motion”

behavior will be explained in Chapter V.

Discussion

In Experiment 2, the demonstrated Yo-Yo Motion has been learned. The results

show that the generated motion trajectories are similar to the demonstrations, which

satisfies the requirements of traditional imitation learning research.

From Experiment 1, ISAC already learned the “Reaching” behavior and stored it

in the LTM. After ISAC checks the LTM, it puts it the learned “Reaching” behavior in

the generated behavior sequence to satisfy the requirement of the pre-condition of the

“Yo-Yo Motion” behavior.

Using this method, the human teacher does not need to demonstrate all behavior

sequences for ISAC. He/she only needs to demonstrate new basic behaviors and ISAC

140

will add it into the behavior graph and add the transitions among the new basic behaviors

and other behaviors by matching the pre-conditions and the post-results. Given a required

behavior, ISAC can find a path from the “Starting” to the required behavior to complete

the task.

Experiment 3: Cognitive Control

Objective

This objective of this experiment is to investigate how the system switches

strategies to complete a task.

Simulation Experiment Description

In Experiments 1 and 2, ISAC generalized demonstrated behaviors, stored newly

learned behaviors in the LTM, constructed behavior graph, generated behavior sequences,

and generated motion trajectories to complete tasks. An important contribution of this

dissertation is to integrate imitation learning with cognitive control for robot dynamically

to perform tasks. Using the integrated system, ISAC should adaptively switch strategies

to achieve a given task goal. In Experiment 3, the target object is placed in the

environment at different locations, and ISAC is asked to push it using either of its arms.

Using the decision making mechanism described in Chapter III, ISAC can adaptively

switch strategies to push the target object to the right using one of its arms. If it considers

it is impossible to complete this task, it will ask the human teacher to demonstrate it

differently or tell why it cannot be done. In Experiment 3A, there is no obstacle in the

environment; in Experiment 3B, an obstacle is placed on the table.

141

Experiment 3A: Integrated System without Obstacle

--Objective

This experiment is to evaluate the integrated system of behavior-based cognitive

control when there is no obstacle. Since imitation learning has been described in detail

earlier, we assume that ISAC already learned all needed behaviors.

--Simulation Setup

Figure 74 displays the simulation experimental setup of Experiment 3A. The

target object, a yellow box, is placed in the environment at 10 locations, and ISAC is

asked to push it to its right. The size of the box is: 18 cm (length), 18cm (width), and 12

cm (height). The coordinates of the 10 locations on the table are: Location 1:

{ } , Location 2: { } , Location 3: { } , Location 4:

{ } , Location 5: { } , Location 6: { } , Location 7:

{ } , Location 8: { } , Location 9: { } , Location 10:

{ }. (-46 is the Z coordinates of the surface of the table) The units of all the

coordinates are centimeters.

The speech command is: “Push the box to the right”. ISAC parses the speech

command and find the required behavior is “Pushing right”, the parameters are “the box”

and “to the right”. It searches the behavior graph and generates a behavior sequence:

{ }.

Location 1, 6, 7, and 8 are within the working space of the right arm of ISAC.

Then ISAC determines to push the box to its left using its right arm. Location 2, 3, 4 and

9 are within the working space of the left arm of ISAC. ISAC firstly tries to push the box

to its left using its left arm. Using the evaluation results from the IRS, it determines that it

142

cannot push the box to its right using its right arm. Thus, it chooses to transfer the

generated behavior sequences to its left arm and tries to push the cube to its right. The

evaluation results from the IRS shows that it can push the cube to the left using the left

arm. Location 5 and 10 are out of the working space of ISAC. After trying to use the left

arm and the right arm, ISAC displays that the box is placed out of its working space and

it cannot complete that.

143

Location 1

Location 2

Location 3

Location 4

Location 5

Location 6

Location 7

Location 8

Location 9

Location 10

Figure 74 Simulation Setup for Experiment 3A

144

In Figure 75, the box is placed at Location 1. ISAC pushes the box to the right

using its right arm.

Location 1
Location 1

Figure 75 Simulation Results of Experiment 3A-1

Figure 76 displays the generated motion trajectory of pushing the box at location

1 to the right using the right arm.

145

Figure 76 Generated Motion Trajectories for the Right Arm (Experiment 3A-1)

In Figure 77, the object is placed at Location 2. ISAC first tries to push the object

using its right arm and detected the collision with the object which is labeled using a

black circle. Then ISAC switches the generated sequence to the left arm and pushes the

box to the right.

Location 2
Location 2 Location 2

Figure 77 Simulation Results of Experiment 3A-2

400

600

800 -500

0

500

1000

-600

-400

-200

Y Axis(mm)

Motion of Right Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Right Arm

0 50 100 150 200
-500

0

500

1000

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Right Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Right Arm

146

Figure 78 displays the generated motion trajectory of pushing the box at location

2 to the right using the right arm of ISAC.

Figure 78 Generated Motion Trajectories for the Right Arm (Experiment 3A-2)

Figure 79 displays the generated motion trajectories for the left arm.

300

400

500

600

700

800 -500
0

500
1000

-600
-400
-200

Y Axis(mm)

Motion of Right Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Right Arm

0 50 100 150 200
-500

0

500

1000

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Right Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Right Arm

147

Figure 79 Generated Motion Trajectories for the Left Arm (Experiment 3A-2)

Location 10 Location 10 Location 10

Figure 80 Simulation Results of Experiment 3A-10

In Figure 80, the object is placed at Location 10. ISAC first tries to push the

object using its right arm and finds that the object is out of the working space of the right

400

600

800 -1000

-500

0

500

-600

-400

-200

Y Axis(mm)

Motion of Left Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Left Arm

0 50 100 150 200
-1000

-500

0

500

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Left Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Left Arm

148

arm. Then ISAC switches the generated sequence to the left arm and finds that it is out of

the working space of the left arm. Then ISAC returns to the home position and displays

that the object is out of its working space and it cannot complete the task.

--Simulation Results of Experiment 3A

The simulation results are summarized in Table 6.

Table 6 Simulation Results of Experiment 3A

 Feasible/

Infeasible

Left/Right Arm Failure Reason

Location 1 Feasible Right Arm N/A

Location 2 Feasible Left Arm N/A

Location 3 Feasible Left Arm N/A

Location 4 Feasible Left Arm N/A

Location 5 Infeasible N/A Right Arm: Collision with the object

Left Arm: Out of working Space

Location 6 Feasible Right Arm N/A

Location 7 Feasible Right Arm N/A

Location 8 Feasible Left Arm Right Arm: Collision with the object

Location 9 Feasible Left Arm N/A

Location 10 Infeasible N/A Right Arm: Out of working space

Left Arm: Out of working space

The figures of simulation results and generated motion trajectories for both arms

are included in Appendix C.

149

Experiment 3B: Integrated System with Obstacle

--Objective

This experiment is to evaluate the integrated system of behavior-based cognitive

control when obstacle exists. Since imitation learning has been described in detail earlier,

we assume that ISAC already learned all needed behaviors.

Figure 81 illustrates key system components used in this experiment.

Long Term Memory (LTM)

Central Executive Agent

(CEA)

Internal Rehearsal System

(IRS)

Actuator
Sensor

Motion i

Evaluation Results

Motion

Trajectory

Cognitive

Control

Environment

Motion j

Behavior
Generation

Motion
Trajectories of

Basic Behaviors in a
Behavior Sequence

Task
Requirements

Figure 81 Key Software Components in Experiment 3B

As mentioned earlier, simulation was implemented using Microsoft Visual C#

with OpenGL. Major software components are: Central Executive Agent (CEA), Internal

Rehearsal System, Long-Term Memory, and Behavior Generation. How they were

implemented for this integrated experiment is describe here.

150

--Central Executive Agent (CEA)

 The CEA is a rule based module which makes decisions to switch cognitive

control processes.

Given a task, the CEA parses the command and finds the required behavior and

related parameters. Then the CEA searches the LTM to find whether the behavior has

been learned. The input of the searching is the name of the required behavior, and the

output is a returned Boolean value. Based on the Boolean value, the CEA uses the

following rules:

if searching result is true, then switches to behavior generation;

if searching result is false, then switches to learning stage.

The CEA finds a path from the “Starting” behavior to the required behavior in the

constructed graph and generates a behavior sequence. The input of the behavior sequence

generation is the name of the required behavior and the output is a behavior sequence.

if behavior sequence generation is completed, then switches to behavior sequence

generation

For each behavior in this behavior sequence, a motion trajectory is generated. The

generation method is selected from Table 5 in Chapter III. The input of motion trajectory

generation is behavior sequence with related parameters and the output is a motion

trajectory.

if motion trajectory generation is completed, then switches to motion trajectory

generation

151

The generated motion trajectory is sent to IRS for evaluation. The input of the

IRS is the generated motion trajectory and the output is a returned Boolean value. Based

on the returned Boolean value, the CEA switches the strategies using the following rules:

if the evaluation of using the right arm is true, then switches to execution

if the evaluation of using the right arm is false, then switches to evaluating the

behavior sequence using the left arm

if the evaluation of using the left arm is true, then switches to execution

if the evaluation of using the left arm is false, then switches to displaying a

message on the screen and waiting for commands

--Internal Rehearsal System (IRS)

Figure 82 Example of the IRS Environment

Figure 82 displays an example of the environment in IRS, which is developed

using Microsoft Visual C# with OpenGL. Two key modules are implemented: display

module and evaluation module. In display module, the joint angles of ISAC, the position

and sizes of the target object and the obstacle are updated continuously in order to display

152

the current situation of the evaluation process. In evaluation module, IRS detects the

collision of the arms of ISAC with the target object and the obstacle, and tests whether

the required via points on the motion trajectory are out of the working space of ISAC.

The detailed description of the evaluation module is included in Chapter III.

The input of the IRS is a motion trajectory and the environmental information

including the positions and the sizes of the target object and the obstacle. The output of

the IRS is a Boolean value describing whether the arms of ISAC collides with the target

object and the obstacle and whether the via points on the motion trajectory is within the

working space of ISAC, which is sent to the CEA.

--Long Term Memory (LTM)

The LTM stores the learned basic behaviors and pre-defined behavior generation

methods. Microsoft Visual C# and Microsoft Access 2010 is used for the implementation

of the database. The structure of the learned basic behavior is:

Behavior Name

{

Behavior ID

Pre-Condition

Post-Results

Internal Condition

Original Regression Model

Latent Regression Model

Projection Matrix

}

A sample of stored basic behaviors is:

Reaching

{

Behavior ID: 1

Pre-Condition: 0

Post-Results: 1

Internal Condition: 1

Original Regression Model: null

Latent Regression Model: null

153

Projection Matrix: null

}

--Behavior Generation

In Behavior Generation, a behavior sequence and motion trajectories for all the

behaviors in the behavior sequence are generated. The behavior sequence is generated by

finding a shortest path in the constructed behavior graph using Dijkastra’s algorithm. The

motion trajectories are generated using the behavior generation methods described in

Table 5 of Chapter III. The generated motion trajectories are sent to the IRS for

evaluation. The CEA decides whether the motion trajectories for the left arm or the right

arm are sent to the IRS.

--Simulation Setup

The target object, a yellow box, is placed in the environment at 8 locations, and

ISAC is asked to push it to its right. The size of the box is: 18 cm (length), 18cm (width),

and 12 cm (height).

The coordinates of the 8 locations on the table are: Location 1: { },

Location 2: { }, Location 3: { }, Location 4: { }, Location

5: { } , Location 6: { } , Location 7: { } , Location 8:

{ } (-46 is the Z coordinates of the surface of the table) The units of all the

coordinates are centimeters.

Figure 83 displays the locations of the object.

154

Location 1 Location 2

Location 3
Location 4

Location 5
Location 6

Location 7
Location 8

Figure 83 Simulation Setup of Experiment 3B

155

In each experiment, an obstacle is placed on the table as the obstacle. When the

object is placed at each location, the obstacle is placed at four different locations around

the object. The positions of the obstacle are:

(a) { },

(b) { },

(c) { },

(d) { }

All the units of the coordinates are centimeters. Figure 84 displays the simulation

setup when the target object is placed at location 3.

Location 3d

Location 3a Location 3b

Location 3c

Figure 84 Locations of the Obstacles in Experiment 3B-3

156

The obstacles used in the simulation are blue boxes with the sizes: (1) 1 cm

(length), 1cm (width), and 20 cm (height); (2) 5 cm (length), 5cm (width), and 20 cm

(height); (3) 10 cm (length), 10 cm (width), and 20 cm (height); (4) 20 cm (length), 20

cm (width), and 20 cm (height). Figure 85 displays that when the target object is placed at

location 3, and the obstacle is also placed at location 3c, the obstacles with different sizes

are placed on the table.

Location 3c-1 Location 3c-2

Location 3c-3
Location 3c-4

Figure 85 Different Sizes of Obstacles in Experiment 3B-3c

Thus, there are 128 simulation experiments. When the object is placed at each

location, there are 16 simulation experiments.

157

The indices of the experiments Experiment 3B are designed as: 3B-XY-Z. X is

related to the index number of location of the target object, Y is related to the position of

obstacle, Z is related to the size of the obstacle used.

ISAC is asked to push the box to the right while avoiding the obstacle and

avoiding hitting the box before the “Pushing Right” behavior.

The given command is: “Push the box to the right”. ISAC parses the speech

command and find the required behavior is “Pushing Right”, the parameters are “the box”

and “to the right”. It searches the behavior graph and generates a behavior sequence:

{ } . Because the obstacle is detected in the

environment, ISAC will generate motion trajectories to avoid this obstacle and switch

strategies by using the right arm or the left arm to complete the required task. If ISAC

finds that the target is out of its working space or it cannot push the object while avoiding

the obstacle, it displays a message on the screen.

Example: Experiment 3B-6

The target object is placed at location 7: { } , the obstacle is placed

around the yellow box at four locations: { }, { }, and { },

{ }. ISAC is asked to push the object to the right using one of its arms.

In Figure 86, the obstacle is placed at { } and the size of the obstacle is

1 cm (length), 1cm (width), and 20 cm (height). ISAC pushes the object to the right using

its right arm. In Figure 87, the size of the obstacle is increased to 5 cm (length), 5cm

(width), and 20 cm (height), and ISAC pushes the object to the right using its right arm.

Figure 88 displays the generated motion trajectory of the right arm.

158

Given a command, ISAC first checks the LTM to generate a behavior sequence

which is composed of { }. Then it generates motion trajectories for all

the behaviors in this behavior sequence. 2
nd

-Order attractor is used according to the

selection methods in Table 5 of Chapter III. The generated motion trajectories are sent to

the IRS for evaluation. When size of the obstacles are 1 cm (length), 1cm (width), and 20

cm (height) and 5 cm (length), 5cm (width), and 5 cm (height), the returned evaluation

results demonstrate that ISAC can push the box using its right arm. Then the CEA

switches the process to execution.

Location 6a-1 Location 6a-1

Figure 86 Simulation Results of Experiment 3B-6a-1

Location 6a-2 Location 6a-2

Figure 87 Simulation Results of Experiment 3B-6a-2

159

Figure 88 Generated Motion Trajectories for the Right Arm (Experiment 3B-6a-1/2)

The size of the obstacle is increased to 10 cm (length), 10 cm (width), and 20 cm

(height) in Figure 89. Given a command, ISAC first checks the LTM to generate a

behavior sequence which is composed of { } . Then it generates

motion trajectories for all the behaviors in this behavior sequence. 2
nd

-Order attractor is

used based according to the selection method in Table 5 of Chapter III. The generated

motion trajectory for the right arm is sent to the IRS for evaluation. The returned

evaluation results demonstrate that ISAC cannot push the box using its right arm because

it has to avoid the obstacle. Then the CEA switches the strategy and transfer the

400

600

800 -200
0

200
400

600
800

-600
-400
-200

0
200
400

Y Axis(mm)

Motion of Right Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Right Arm

0 50 100 150 200

-200

0

200

400

600

800

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Right Arm

0 50 100 150 200
-600

-400

-200

0

200

400

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Right Arm

160

generated motion trajectories to the left arm. The evaluation result demonstrates that

ISAC can push the box using its left arm. Then the CEA switches the process to

execution.

Location 6a-3 Location 6a-3 Location 6a-3

Figure 89 Simulation Results of Experiment 3B-6a-3

Figure 90 and Figure 91 displays the generated motion trajectories for the left arm

and the right arm in Experiment 3B-6a-3 respectively.

Figure 90 Generated Motion Trajectories for the Right Arm (Experiment 3B-6a-3)

400

600

800 -200
0

200
400

600
800

-600
-400
-200

0
200
400

Y Axis(mm)

Motion of Right Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Right Arm

0 50 100 150 200

-200

0

200

400

600

800

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Right Arm

0 50 100 150 200
-600

-400

-200

0

200

400

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Right Arm

161

Figure 91 Generated Motion Trajectories for the Left Arm (Experiment 3B-6a-3)

The size of the obstacle is increased to 20 cm (length), 20 cm (width), and 10 cm

(height) in Figure 92. Given a command, ISAC first checks the LTM to generate a

behavior sequence which is composed of { } . Then it generates

motion trajectories for all the behaviors in this behavior sequence. 2
nd

-Order attractor is

used based according to the selection method in Table 5 of Chapter III. The generated

motion trajectory for the right arm is sent to the IRS for evaluation. The returned

evaluation results demonstrate that ISAC cannot push the box using its right arm because

it has to avoid the obstacle. Then the CEA switches the strategy and transfer the

generated motion trajectories to the left arm. The evaluation result demonstrates that

400

600

800 -800
-600

-400
-200

0
200

-600

-400

-200

Y Axis(mm)

Motion of Left Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Left Arm

0 50 100 150 200
-800

-600

-400

-200

0

200

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Left Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Left Arm

162

ISAC cannot push the box using its left arm because it has to avoid the obstacle. Then the

CEA decide to return to the home position and display a message on the screen.

Location 6a-4 Location 6a-4 Location 6a-4

Figure 92 Simulation Results of Experiment 3B-6a-4

Figure 93 and Figure 94 display the generated motion trajectories for the right and

left arm in Experiment 3B-6a-4 respectively.

Figure 93 Generated Motion Trajectories for the Right Arm (Experiment 3B-6a-4)

400

600

800 -200
0

200
400

600
800

-600
-400
-200

0
200
400

Y Axis(mm)

Motion of Right Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Right Arm

0 50 100 150 200

-200

0

200

400

600

800

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Right Arm

0 50 100 150 200
-600

-400

-200

0

200

400

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Right Arm

163

Figure 94 Generated Motion Trajectories for the Left Arm (Experiment 3B-6a-4)

In this example, ISAC switches strategies to complete the task when the obstacle

with different sizes is placed at the same location. When the size increases, ISAC finds

that it cannot push the box using its right arm and transfer the generated behavior

sequence to the left arm. Based on the evaluation results from the IRS, ISAC makes

decisions to choose switching strategies or displaying a message on the screen to tell

human why it cannot complete the task.

The pictures of simulation results and generated motion trajectories for

Experiment 3B are included in Appendix D.

400

600

800 -800 -600 -400 -200 0 200

-600

-400

-200

Y Axis(mm)

Motion of Left Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Left Arm

0 50 100 150 200
-800

-600

-400

-200

0

200

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Left Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Left Arm

164

Table 7 Simulation Results of Experiment 3B-1

 Feasible/

Infeasible

Left/Right Failure Reason

Experiment 3B-1a-1 Feasible Right Arm N/A

Experiment 3B-1a-2 Feasible Right Arm N/A

Experiment 3B-1a-3 Infeasible N/A Right Arm: Cannot Reach the Box

Left Arm: Cannot Reach the Box

Experiment 3B-1a-4 Infeasible N/A Right Arm: Cannot Reach the Box

Left Arm: Cannot Reach the Box

Experiment 3B-1b-1 Feasible Right Arm N/A

Experiment 3B-1b-2 Feasible Right Arm N/A

Experiment 3B-1b-3 Feasible Right Arm N/A

Experiment 3B-1b-4 Infeasible Left Arm Right Arm: Cannot Reach the Box

Left Arm: Cannot Reach the Box

Experiment 3B-1c-1 Feasible Right Arm N/A

Experiment 3B-1c-2 Feasible Right Arm N/A

Experiment 3B-1c-3 Feasible Right Arm N/A

Experiment 3B-1c-4 Feasible Right Arm N/A

Experiment 3B-1d-1 Feasible Right Arm N/A

Experiment 3B-1d-2 Feasible Right Arm N/A

Experiment 3B-1d-3 Feasible Right Arm N/A

Experiment 3B-1d-4 Infeasible N/A Right Arm: Collision with the obstacle

Left Arm: Cannot Reach the Box

165

Table 8 Simulation Results of Experiment 3B-2

 Feasible/

Infeasible

Left/Right Failure Reason

Experiment 3B-2a-1 Infeasible N/A Right Arm: Cannot Reach the Box

Left Arm: Collision with the obstacle

Experiment 3B-2a-2 Infeasible N/A Right Arm: Cannot Reach the Box

Left Arm: Collision with the obstacle

Experiment 3B-2a-3 Infeasible N/A Right Arm: Cannot Reach the Box

Left Arm: Collision with the obstacle

Experiment 3B-2a-4 Infeasible N/A Right Arm: Cannot Reach the Box

Left Arm: Collision with the obstacle

Experiment 3B-2b-1 Feasible Left Arm Right Arm: Cannot Reach the Box

Experiment 3B-2b-2 Feasible Left Arm Right Arm: Cannot Reach the Box

Experiment 3B-2b-3 Feasible Left Arm Right Arm: Cannot Reach the Box

Experiment 3B-2b-4 Feasible Left Arm Right Arm: Cannot Reach the Box

Experiment 3B-2c-1 Feasible Left Arm Right Arm: Cannot Reach the Box

Experiment 3B-2c-2 Feasible Left Arm Right Arm: Cannot Reach the Box

Experiment 3B-2c-3 Feasible Left Arm Right Arm: Cannot Reach the Box

Experiment 3B-2c-4 Feasible Left Arm Right Arm: Cannot Reach the Box

Experiment 3B-2d-1 Feasible Left Arm Right Arm: Cannot Reach the Box

Experiment 3B-2d-2 Feasible Left Arm Right Arm: Cannot Reach the Box

Experiment 3B-2d-3 Feasible Left Arm Right Arm: Cannot Reach the Box

Experiment 3B-2d-4 Feasible Left Arm Right Arm: Cannot Reach the Box

166

Table 9 Simulation Results of Experiment 3B-3

 Feasible/

Infeasible

Left/Right Failure Reason for the Left/Right Arm

Experiment 3B-3a-1 Infeasible N/A Right Arm: Collision with the obstacle

Left Arm: Collision with the obstacle

Experiment 3B-3a-2 Infeasible N/A Right Arm: Collision with the obstacle

Left Arm: Collision with the obstacle

Experiment 3B-3a-3 Infeasible N/A Right Arm: Collision with the obstacle

Left Arm: Collision with the obstacle

Experiment 3B-3a-4 Infeasible N/A Right Arm: Collision with the obstacle

Left Arm: Collision with the obstacle

Experiment 3B-3b-1 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-3b-2 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-3b-3 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-3b-4 Infeasible N/A Right Arm: Collision with the object

Left Arm: Cannot reach the box

Experiment 3B-3c-1 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-3c-2 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-3c-3 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-3c-4 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-3d-1 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-3d-2 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-3d-3 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-3d-4 Feasible Left Arm Right Arm: Collision with the object

167

Table 10 Simulation Results of Experiment 3B-4

 Feasible/

Infeasible

Left/Right Failure Reason for the Left/Right

Arm

Experiment 3B-4a-1 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-4a-2 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-4a-3 Infeasible N/A Right Arm: Collision with the object

Left Arm: Cannot reach the box

Experiment 3B-4a-4 Infeasible N/A Right Arm: Collision with the object

Left Arm: Collision with the obstacle

Experiment 3B-4b-1 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-4b-2 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-4b-3 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-4b-4 Infeasible N/A Right Arm: Collision with the object

Left Arm: Cannot reach the box

Experiment 3B-4c-1 Feasible Left Arm Right Arm: Collision with the obstacle

Experiment 3B-4c-2 Feasible Left Arm Right Arm: Collision with the obstacle

Experiment 3B-4c-3 Feasible Left Arm Right Arm: Collision with the obstacle

Experiment 3B-4c-4 Feasible Left Arm Right Arm: Collision with the obstacle

Experiment 3B-4d-1 Feasible Left Arm Right Arm: Collision with the obstacle

Experiment 3B-4d-2 Feasible Left Arm Right Arm: Collision with the obstacle

Experiment 3B-4d-3 Feasible Left Arm Right Arm: Collision with the obstacle

Experiment 3B-4d-4 Infeasible N/A Right Arm: Collision with the obstacle

Left Arm: Collision with the obstacle

168

Table 11 Simulation Results of Experiment 3B-5

 Feasible/

Infeasible

Left/Right Failure Reason for the Left/Right

Arm

Experiment 3B-5a-1 Feasible Right Arm N/A

Experiment 3B-5a-2 Feasible Right Arm N/A

Experiment 3B-5a-3 Infeasible N/A Right Arm: Cannot Reach the Box

Left Arm: Cannot Reach the Box

Experiment 3B-5a-4 Infeasible N/A Right Arm: Cannot Reach the Box

Left Arm: Cannot Reach the Box

Experiment 3B-5b-1 Feasible Right Arm N/A

Experiment 3B-5b-2 Feasible Right Arm N/A

Experiment 3B-5b-3 Feasible Right Arm N/A

Experiment 3B-5b-4 Infeasible Left Arm Right Arm: Cannot Reach the Box

Left Arm: Cannot Reach the Box

Experiment 3B-5c-1 Feasible Right Arm N/A

Experiment 3B-5c-2 Feasible Right Arm N/A

Experiment 3B-5c-3 Feasible Right Arm N/A

Experiment 3B-5c-4 Feasible Right Arm N/A

Experiment 3B-5d-1 Feasible Right Arm N/A

Experiment 3B-5d-2 Feasible Right Arm N/A

Experiment 3B-5d-3 Feasible Right Arm N/A

Experiment 3B-5d-4 Infeasible Right Arm Right Arm: Collision with the obstacle

Left Arm: Cannot Reach the Box

169

Table 12 Simulation Results of Experiment 3B-6

 Feasible/

Infeasible

Left/Right Failure Reason for the Left/Right

Arm

Experiment 3B-6a-1 Feasible Right Arm N/A

Experiment 3B-6a-2 Feasible Right Arm N/A

Experiment 3B-6a-3 Feasible Left Arm N/A

Experiment 3B-6a-4 Infeasible N/A Right Arm: Cannot Reach the Box

Left Arm: Cannot Reach the Box

Experiment 3B-6b-1 Feasible Right Arm N/A

Experiment 3B-6b-2 Feasible Right Arm N/A

Experiment 3B-6b-3 Feasible Right Arm N/A

Experiment 3B-6b-4 Feasible Left Arm Right Arm: Cannot Reach the Box

Experiment 3B-6c-1 Feasible Right Arm N/A

Experiment 3B-6c-2 Feasible Right Arm N/A

Experiment 3B-6c-3 Feasible Right Arm N/A

Experiment 3B-6c-4 Feasible Right Arm N/A

Experiment 3B-6d-1 Feasible Right Arm N/A

Experiment 3B-6d-2 Feasible Right Arm N/A

Experiment 3B-6d-3 Feasible Left Arm Right Arm: Cannot reach the Box

Experiment 3B-6d-4 Feasible Left Arm Right Arm: Cannot reach the Box

170

Table 13 Simulation Results of Experiment 3B-7

 Feasible/

Infeasible

Left/Right Failure Reason for the Left/Right

Arm

Experiment 3B-7a-1 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-7a-2 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-7a-3 Infeasible N/A Right Arm: Cannot Reach the Box

Left Arm: Cannot Reach the Box

Experiment 3B-7a-4 Infeasible N/A Right Arm: Cannot Reach the Box

Left Arm: Cannot Reach the Box

Experiment 3B-7b-1 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-7b-2 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-7b-3 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-7b-4 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-7d-1 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-7d-2 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-7d-3 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-7d-4 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-7d-1 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-7d-2 Feasible Left Arm Right Arm: Collision with the obstacle

Experiment 3B-7d-3 Feasible Left Arm Right Arm: Collision with the obstacle

Experiment 3B-7d-4 Infeasible N/A Right Arm: Collision with the obstacle

Left Arm: Collision with the object

171

Table 14 Simulation Results of Experiment 3B-8

 Feasible/

Infeasible

Left/Right Failure Reason for the Left/Right

Arm

Experiment 3B-8a-1 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-8a-2 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-8a-3 Infeasible N/A Right Arm: Collision with the object

Left Arm: Cannot reach the box

Experiment 3B-8a-4 Infeasible N/A Right Arm: Collision with the object

Left Arm: Cannot reach the box

Experiment 3B-8b-1 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-8b-2 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-8b-3 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-8b-4 Infeasible N/A Right Arm: Collision with the object

Left Arm: Cannot reach the box

Experiment 3B-8c-1 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-8c-2 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-8c-3 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-8c-4 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-8d-1 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-8d-2 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-8d-3 Feasible Left Arm Right Arm: Collision with the object

Experiment 3B-8d-4 Infeasible N/A Right Arm: Collision with the object

Left Arm: Collision with the obstacle

172

These tables display that ISAC is able to switch strategies according to the current

situation. When the object is placed close to the right arm, the probability of using the

right arm to complete the task is high; when the object is placed far away from the right

arm, the probability of using the left arm to complete the task becomes high. The

positions and the sizes of the obstacle also affect the selection of the arms. Quantitative

evaluation will be explained in Chapter V.

Summary

Three experiments are designed to validate the designed system. One experiment

is carried out on ISAC robot, and the other two are implemented in simulation. According

to the simulation and experimental results, ISAC can complete the requirements of our

designed system as described in the beginning of this chapter.

In the next chapter, the system performance will be evaluated by analyzing the

similarity of the generated motion trajectory and the demonstrations, the running time of

key modules in this system, and the success rate of the cognitive control mechanism.

173

CHAPTER V

EVALUATION OF SYSTEM PERFORMANCE

The aim of this dissertation was to integrate imitation learning with cognitive

control for a humanoid robot’s skill learning. In this chapter, we will evaluate the major

results produced by the three experiments.

Behavior Generation

Experiment 1A and 1B

In Experiment 1, ISAC was asked to push a box placed on a table in front of it

without grasping. In this experiment, ISAC needed to learn the “Reaching”, “Pushing

Left” and “Pushing Right” behavior, and generated new behavior sequences to complete

the task.

The most common feature of the “Reaching” behavior is to minimize the distance

of the end-effector and the target position at the end of its motion trajectory. There is no

requirement of internal constraint and pre-condition. The most common features of the

“Pushing Left” and “Pushing Right” behaviors are to minimize the distance of the end-

effector and the target object at the beginning of its motion trajectory and to minimize the

distance of the end-effector and the target position at the end of its motion trajectory.

174

There are no requirements for the internal constraint and the pre-condition for the

“Pushing Left” and “Pushing Right” behaviors.

For the “Reaching” behavior, the distances between the end-effector and the

target position were measured to evaluate how accurate the generated results are. For the

“Pushing” behavior, the DTW distances between the generated motion trajectories and

the demonstrated motion trajectory was measured. There is no failure because human

teacher shows the pushing points that ISAC can use to push the object. The Index of the

Experiment 1 is represented as Experiment 1-XY. X includes L and R, which are related

to the Pushing Left or Pushing Right experiment respectively. Y includes 1, 2, 3, and 4,

which are related to the number of the location of the object.

In Table 15, the average value of the distance between the end-effector and the

target position of the “Reaching” behavior is 3.33cm and the average value of the DTW

distance between the demonstrated motion trajectory and the generated motion

trajectories for the “Pushing” behavior is 4.41 cm. The overall error, the average of which

is 1.71cm, is measured by reading the encoder values and computing the distance

between the end-effector and the target position at the end of “Reaching” and “Pushing”

behaviors. The overall error, which is measured by reading the position value from the

Kinect sensor and computing the distance between the end-effector and the target

position at the end of “Reaching” and “Pushing” behaviors, is 3.09. The error from the

Kinect sensor is larger than the error from the encoder value. The reason is that the box is

not pushed straightly to its left or right. So the error comes from both the position of the

end-effector and the orientation of the box.

175

Table 15 Evaluation Results of Behavior Errors of Experiment 1A and 1B

 Reaching Pushing

Overall

(Encoder)

Overall

(Kinect Camera)

Experiment 1-L1 4.91 4.00 1.66 3.04

Experiment 1-L2 4.21 5.99 1.06 4.53

Experiment 1-L3 1.57 1.13 0.91 5.17

Experiment 1-L4 2.20 0.99 0.22 6.02

Experiment 1-R1 1.73 11.05 1.05 3.62

Experiment 1-R2 10.76 6.48 4.62 0.20

Experiment 1-R3 0.82 0.47 2.73 1.19

Experiment 1-R4 0.88 4.79 1.41 0.97

Average 3.38 4.36 1.71 3.09

STD 3.33 4.41 1.38 2.13

Unit: Centimeter (cm)

Comparing the size of the object used in Experiment, which is 18cm 18cm

12 cm, and the error values after the reaching behavior are smaller than the threshold

value: 12 cm, and within the manipulation area of the task. So according to the rules of

the DMM described in Chapter III, the DMM considers that the error is acceptable. (If

176

the errors become larger than the threshold value: 12cm, ISAC cannot push the box. Then

ISAC needs to use the compensator described in Chapter IV to overcome the error.)

Experiment 1C

Table 16 Experimental Results of Experiment 1C

Error

without Compensator

Error

with Compensator

Ratio

Experiment 1C-L1 3.33 0.09 2.70%

Experiment 1C-L2 3.94 0.60 15.23%

Experiment 1C-L3 4.91 0.53 10.79%

Experiment 1C-L4 4.64 0.48 10.34%

Experiment 1C-R1 3.00 1.72 57.33%

Experiment 1C-R2 2.33 0.69 29.61%

Experiment 1C-R3 3.97 0.81 20.40%

Experiment 1C-R4 1.57 0.60 38.22%

Average 3.46 0.69 19.93%

STD 1.14 0.47 40.97%

Unit: Centimeter (cm)

177

In this Experiment, ISAC uses the compensator to overcome the errors generated

by the hardware. In Experiment 1A and 1B, the errors are smaller than the threshold

value. According to the rules of the DMM, these errors are acceptable. In Experiment 1C,

ISAC is asked to use the compensator to overcome the errors even the errors are

acceptable. The target is to test how ISAC can overcome the errors using the

compensator.

Table 16 displays the experimental results of the Experiment 1C. The ratios are

computed by dividing the “Error with Compensator” with “Error without Compensator”.

In Table 16, the average error without using compensator is 3.46cm and the

average error using compensator is 0.47cm. After using the compensator, the average

error becomes 19.93% of the average error before using the compensator. From Table 16,

we can conclude that the compensator improves the performance of the ISAC arm control.

Experiment 2

In Experiment 2, ISAC needs to learn the new behavior in a demonstrated

behavior sequence. The behavior sequence is composed of the “Reaching”, “Grasping”,

and the “Yo-Yo Motion” behaviors. The stored “Reaching” behavior is described with

{ } in the LTM. The demonstrated behavior sequence is segmented into “Reaching”,

“Grasping”, and the “Yo-Yo Motion” behaviors. ISAC searches the LTM to find whether

it has learned these behaviors. It successfully finds that it has learned the “Reaching”

behavior. The success rate of the searching is 100%. The “Grasping” behavior is added

into the LTM by the human teacher.

In Experiment 2, motion trajectories which are similar to the demonstrations are

generated for the “Yo-Yo Motion” behavior. A typical evaluation method is to evaluate

178

the similarity between the generated motions and the demonstrations. Dynamic Time

Warping (DTW) [Berndt and Clifford, 1994] and the Cosine Similarity [Liu and

Schneider, 2012] methods are used to quantitatively evaluate the similarity between the

generated “Yo-Yo Motion” behavior and the generalized “Yo-Yo Motion” behavior.

Dynamic time warping (DTW) is an algorithm for measuring similarity between

two sequences (e.g., speech signals, motion trajectories, etc.) which may vary in time or

speed. It finds an optimal match between two sequences of feature vectors which allows

for stretched and compressed sections of the sequence.

Using DTW method, the normalized distances between the generated “Yo-Yo

Motion” behavior and the demonstrated “Yo-Yo Motion” behavior are computed and

divided by the overall length of the motion trajectory. The distances computed by DTW

are shown in the first column of Table 17. These distances are very small numbers

compared to the overall length of the motion trajectory, which means the generated

motion trajectories are similar to the demonstrations.

Table 17 Evaluation of Similarity in Experiment 2

 DTW Distance Ratio

Generated Trajectory 1 1.98 cm 0.2%

Generated Trajectory 2 1.70 cm 0.17%

Generated Trajectory 3 2.16 cm 0.22%

179

The normalized overall length of the generalized motion trajectory is 990cm. We

set the criterion of similarity is 2%. From the evaluation results using DTW in Table 17,

we can conclude that the generated motion trajectories are similar to the demonstrations,

which satisfies the requirement of imitation learning.

The analysis above demonstrates that ISAC can learn the behaviors when the

human teacher demonstrates the behaviors in several demonstrations. Another target is to

teach ISAC to learn cyclic motions. The human teacher demonstrates how to play the Yo-

Yo five times consecutively in one demonstration. Figure 95 displays the recorded

motion trajectories in one demonstration.

Figure 95 Recorded Motion Trajectories of Cyclic “Yo-Yo Motion”

The left picture and the right picture of Figure 95 are considered as oscillations.

The right picture of Figure 95 displays five “Yo-Yo Motions”. These five “Yo-Yo

Motions” are segmented manually by the human teacher and normalized. The normalized

results are displayed in Figure 96.

0 100 200 300 400
-600

-500

-400

-300

-200

-100

0

100

200

300

400
Trajectory on X Axis

time(s)

X
-a

x
is

(m
m

)

0 100 200 300 400
-300

-200

-100

0

100

200

300

400

500

600

700
Trajectory on Y Axis

time(s)

Y
-a

x
is

(m
m

)

0 100 200 300 400
-300

-200

-100

0

100

200

300

400

500

600

700
Trajectory on Z Axis

time(s)

Z
-a

x
is

(m
m

)

180

Figure 96 Normalized “Yo-Yo Motion” Behaviors

Table 18 Similarity between the Cyclic “Yo-Yo Motion” Behaviors and the Generalized

“Yo-Yo” Motion Behavior

 DTW Distance Ratio

“Yo-Yo Motion” Trajectory 1 1.74 cm 0.18%

“Yo-Yo Motion” Trajectory 2 0.26 cm 0.03%

“Yo-Yo Motion” Trajectory 3 0.21 cm 0.02%

“Yo-Yo Motion” Trajectory 4 1.34 cm 0.14%

“Yo-Yo Motion” Trajectory 5 1.60 cm 0.16%

0 10 20 30 40 50 60 70 80 90 100
-300

-200

-100

0

100

200

300

400

181

The DTW distances between these demonstrated “Yo-Yo Motion” behaviors and

the generalized “Yo-Yo Motion” trajectory are displayed in Table 18.

From Table 18, all the rations are smaller than 2%. Then we can conclude that

these cyclic “Yo-Yo Motion” behaviors are similar to the generalized “Yo-Yo Motion”

behavior, which means that these behaviors belong to the same type of behaviors and can

be generalized.

Figure 97 displays the generalized results from these cyclic “Yo-Yo Motion”

behaviors.

Figure 97 Generalization Results of Cyclic “Yo-Yo Motion” Behaviors

From Figure 97, the generalized results of the cyclic “Yo-Yo Motion” Behaviors

are to generated similar dynamics of the motion trajectories while keeping the Yo-Yo in

hand. So we can conclude that ISAC can learn cyclic behaviors using the methods

described in this dissertation.

Feature 1Feature 2Feature 3Feature 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Pre-Condition

Feature 1 Feature 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Internal-Constraints

Feature 1Feature 2Feature 3Feature 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Post-Results

182

Cognitive Control

Experiment 3A

In Experiment 3A, ISAC was asked to push the box to its right. The locations of

the box lie within or out of the working space of the arms. ISAC first tried to use the right

arm to push the box. And at some locations, before the end-effector on the right arm of

ISAC reaches the pushing point, the arm or the end-effector may collide with the box. So

ISAC uses the cognitive control mechanism to switch strategy to use the left arm to push

the box. If ISAC found that it cannot complete the task using the left arm, it refuses to

complete the task and display a message on the screen.

Table 19 Simulation Results of Experiment 3A

Location

Number

Selected Strategy Feasible/Infeasible IRS Correctness

1 Right Arm Feasible Correct

2 Left Arm Feasible Correct

3 Left Arm Feasible Correct

4 Left Arm Feasible Correct

5 Refusal Infeasible Correct

6 Right Arm Feasible Correct

7 Right Arm Feasible Correct

8 Left Arm Feasible Correct

9 Left Arm Feasible Correct

10 Refusal Infeasible Correct

183

In Experiment 3A, the object was placed at 10 different locations. ISAC first tried

to push the object using its right arm. If the evaluation failed, ISAC switched to the left

arm. If the evaluation still failed, ISAC refused to complete the task.

Table 19 summarizes the evaluation results of Experiment 3A.

At location 5 and 10, the object is out of the working space of ISAC. ISAC found

that it cannot push the box using either of its arms. So it displayed a message on the

screen and refused to do. The rate of feasibility in Experiment 3A is 80%.

Figure 98 Successful Pushing Area in Experiment 3A

When the box is placed in the black area, the size of which is approximately 20%

of the table, ISAC cannot push it to the right

At all locations, ISAC made a correct decision, and chose a suitable arm to push

the cylinder. The success rate of the evaluation is 100%. When the obstacle is used in

Experiment 3B, the success rate of the evaluation decreases.

The actual time to run the key modules in our system was measured and displayed

in Table 20. The abbreviations in the table are designed as: Behavior Sequence

184

Generation (BSG), Behavior Generation for the Right Arm (BGRA), Behavior

Generation for the Right Arm (BGLA), IRS for the Right Arm (IRSRA), and IRS for the

Left Arm (IRSLA), Standard Deviation (STD).

Table 20 Running Time of Key Components in Experiment 3A

 BSG BGRA BGLA IRSRA IRSLA

Experiment 3A-1 0.0045 11.1654 11.2266 0.8325 0.0004

Experiment 3A-2 0.0049 11.7184 11.4417 0.0849 1.2241

Experiment 3A-3 0.0057 10.9466 11.5291 0.0903 1.2020

Experiment 3A-4 0.0053 11.0135 11.1674 0.1289 0.1149

Experiment 3A-5 0.0057 11.0057 10.9236 0.1691 0.1531

Experiment 3A-6 0.0135 10.9445 11.0336 0.7955 0.0004

Experiment 3A-7 0.0049 12.1034 10.8054 0.8189 0.0004

Experiment 3A-8 0.0049 10.9573 10.9293 0.4039 1.1572

Experiment 3A-9 0.0049 11.1231 10.7832 0.2339 1.0952

Experiment 3A-

10

0.0045 10.8374 11.0020 0.1777 0.3587

Average 0.0059 11.1815 11.0842 0.3736 0.7579

STD 0.0027 0.4057 0.2539 0.3182 0.5206

Percentage 0.03% 48.25% 47.83% 1.61% 2.29%

Unit: millisecond (ms)

As shown in Table 20, the average running time for generating the behavior

sequence is 0.0059ms. There is a large value in Experiment 3A-6 comparing to the values

in other experiments. This is because that Windows is a time-sharing operating system.

The operating system kernel may interrupt the current running threads to perform some

kernel tasks, which increases the time needed to complete the running operation. The

185

average running time for generating behaviors for the right arm and the left arm is

11.1815ms and 11.0842ms respectively.

The average running time of evaluating the generated behaviors for the right arm

and for the left arm is 0.3736ms and 0.7579ms respectively. In Experiment 3A-1, 3A-6,

and 3A-7, ISAC only needed to evaluate the behaviors for the right arm and did not

evaluate the behaviors for the left arm, so the running time for evaluating the left arm is

very small: 0.0004 ms. In Experiment 3A-2, 3A-3, 3A-4, 3A-5, 3A-8, 3A-9, and 3A-10,

ISAC found that it cannot complete the task using the right arm, so it switched the

strategy to use the left arm. In these experiments, the running time of evaluating the

behaviors for the left arm increases.

In some experiments, ISAC did not need to evaluate the overall motion trajectory.

It stops evaluation when it found that collision happens, the via point on the trajectory is

out of the working space, or the behavior is not completed. In Experiment 3A-1, 3A-6,

and 3A-7, ISAC used the right arm to complete the task that means ISAC evaluated the

overall motion trajectory of the right arm, and the average time is 0.8156ms. In

Experiment 3A-2, 3A-3, 3A-4, 3A-8, and 3A-9, ISAC used the left arm to complete the

task that means ISAC evaluated the overall motion trajectory of the left arm, and the

average time is 0.9587ms.

The running time of generating behavior sequence is 0.03% of the overall running

time of the key components. 48.25% and 47.83% of the overall running time is used to

generate motion trajectories for the right arm and the left arm respectively. The

evaluation time is 1.61% and 2.29% of the overall running time.

186

From the above quantitative evaluation results in Experiment 3A, the running

time of each key components in our system is very small and can satisfy the requirements

of generating behaviors and evaluating behaviors when there is no obstacle placed in the

environment.

Experiment 3B

In Experiment 3B, ISAC was asked to push the box to the right and avoid the

obstacle on the table. The locations of the box lie within or out of the working space of

the arms. And at some locations, before the end-effector on the right arm of ISAC

reaches the pushing point, the arm or the end-effector may collide with the box. So ISAC

used the cognitive control mechanism to switch strategies to use the left arm to push the

box. The evaluation results for all the experiments in Experiment 3B are included in

Appendix C. Table 21 summarizes the evaluation results.

The average rate of feasibility is 77%. The highest rate of the feasibility is 93.75%

for Experiment 3B-6. The reason is that the object is placed in front of the right arm of

ISAC, which is close to the home position of the right arm. Additionally, the

manipulation point is also within the working space of the left arm. So ISAC has more

choices to complete the task. The lowest rate of feasibility is 68.75% in Experiment 3B-3.

The reason is that the object is out of the working space of the right arm, and if the

obstacle is placed at Location 3B-3a, ISAC cannot push the box using its left arm.

The highest success rate of the IRS evaluation is 100% for Experiment 3B-6. In

Experiment 3B-6, as stated in the last paragraph, ISAC has more choices to complete the

task. Also, the obstacle avoidance module also did not generate wrong collision

information for IRS to evaluate. The lowest success rate of IRS Evaluation is 81.25% in

187

Experiment 3B-8. The reason is that the obstacle avoidance module generates wrong

information to prevent the end-effector moving to the manipulation point.

Table 21 Evaluation Results of Experiment 3B

 Feasibility Success Rate of the IRS

Experiment 3B-1 75% 87.5%

Experiment 3B-2 75% 87.5%

Experiment 3B-3 68.75% 87.5%

Experiment 3B-4 75% 87.5%

Experiment 3B-5 75% 93.75%

Experiment 3B-6 93.75% 100%

Experiment 3B-7 81.25% 93.75%

Experiment 3B-8 75% 81.25%

Average 77% 90%

Table 22 Success Rates of Experiment 3B with Different Obstacles

 Rate of Feasibility Success Rate of the IRS

Obstacle 1 (1cm 1cm 20cm) 93.75% 93.75%

Obstacle 2 (5cm 5cm 20cm) 93.75% 93.75%

Obstacle 3 (10cm 10cm 20cm) 78.125% 90.625%

Obstacle 4 (20cm 20cm 20cm) 43.75% 87.5%

Table 22 displays the rate of feasibility and the evaluation when different sizes of

obstacles are placed on the table.

188

In Table 22, the rate of feasibility decreases when the size of the obstacle

increases. When the obstacle size increases to 20cm 20cm 20cm, the success rate is

the lowest. This is reasonable because large obstacle can greatly prevent ISAC from

pushing the box. The success rate of the IRS evaluation decreases when the size of the

obstacle increases. The reason is that when the size of the obstacle becomes larger, the

obstacle avoidance requires the end-effector moves in a very small area. This makes the

evaluation more difficult.

Overall Analysis of Cognitive Control

Table 23 displays the rate of feasibility and the success rate of the IRS evaluation.

Table 23 Success Rates of Experiment 3A and 3B

 Rate of Feasibility Success Rate of the IRS

Experiment 3A 80% 100%

Experiment 3B 77% 90%

Average 77.64% 90.97%

The average rate of feasibility is 77.64%. The average success rate of the IRS

evaluation is 90.97%.

Table 24 displays the average running time for Experiment 3A and 3B

189

Table 24 Running Time of Key Components in Experiment 3A and 3B

 BSG BGRA BGLA IRSRA IRSLA

Experiment 3A 0.0059 11.1815 11.0842 0.3736 0.5306

Experiment 3B-1 0.0050 11.3215 10.9597 0.7758 0.4358

Experiment 3B-2 0.0050 10.7149 13.6738 0.1618 0.9363

Experiment 3B-3 0.0055 11.6473 11.0467 0.2115 0.8738

Experiment 3B-4 0.0052 10.8341 11.4375 0.2401 0.9526

Experiment 3B-5 0.0049 11.6536 10.7647 0.8069 0.2456

Experiment 3B-6 0.0054 15.9670 11.9227 0.8134 1.0514

Experiment 3B-7 0.0053 11.0320 11.9550 0.4772 1.1315

Experiment 3B-8 0.0052 10.8341 11.4375 0.2401 0.9526

Average 0.0053 11.6873 11.5869 0.4556 0.7900

Standard Deviation 0.0003 1.6409 0.8847 0.2738 0.3073

Percentage 0.02% 47.65% 47.24% 1.86% 3.22%

In Table 24, the overall average running time for all the experiments is:

Behavior Sequence Generation: 0.0053ms

Behavior Generation for the Right Arm: 11.6873ms

Behavior Generation for the Left Arm: 11.5869ms

IRS evaluation for the Right Arm: 0.4556ms

IRS evaluation for the Left Arm: 0.7900ms

From the above quantitative evaluation results, the running time of each key

components in our system is very small and can satisfy the requirements of generating

behaviors and evaluating behaviors in dynamic environment.

190

The running time of generating behavior sequence is 0.02% of the overall running

time of the key components. 47.65% and 47.24% of the overall running time is used to

generate motion trajectories for the right arm and the left arm respectively. The

evaluation time is 1.86% and 3.22% of the overall running time.

Several conclusions can be obtained from the above analysis

1. The success rate of the IRS evaluation is higher than 90%.

2. If we want to increase the success rate of the task, we should limit the size of the

obstacle. In order to keep the success rate of the task, the size of the obstacle

should be smaller than 10cm 10cm 20cm

3. If the size of the obstacle is fixed and larger than 10cm 10cm 20cm, we need

to change the motion trajectory generation methods in this system, e.g., improve

the potential field design of the obstacles.

System Performance

The input of the system is the behavior demonstrations. Given a task, the output is

the generated motion trajectories. .

Figure 99 Imitation Learning Framework

191

Performances of individual components can affect the overall system performance.

In this section, unsupervised teaching and physical coaching are used to as the

demonstration methods for ISAC to learn demonstrated behaviors. We will analyze how

different demonstration methods affect

(1) the output of the behavior generalization and

(2) the overall output of the system.

The output of the behavior generalization is:

 Score of Feature 1 of Pre-Condition

 Score of Feature 2 of Pre-Condition

 Score of Feature 3 of Pre-Condition

 Score of Feature 4 of Pre-Condition

 Score of Feature 1 of Internal Constraint

 Score of Feature 2 of Internal Constraint

 Score of Feature 1 of Post-Result

 Score of Feature 2 of Post-Result

 Score of Feature 3 of Post-Result

 Score of Feature 4 of Post-Result

The output of the Generated Motion Trajectories (determined stored common

features generalized behaviors). Because the generated motion trajectories are related to

the behavior generation methods which are determined by the stored common features

generalized behaviors in the LTM, we can analyze the stored common features of the

learned behavior instead of analyzing the motion trajectories.

192

Two behaviors are demonstrated for ISAC to learn: the “Reaching” and

“Pushing”.

System Performance between the Input and the Output of the Behavior Generalization

Module

--“Reaching”

Figure 100 displays the experimental setup of the learning stage. In the left figure,

a human teacher demonstrates how to reach an object on the table and ISAC uses Kinect

to observe the demonstration. In the right figure, the human teacher demonstrates how to

reach an object by manually moving the arm of ISAC.

Figure 100 Learning from Observation VS Learning from Physical Coaching for

“Reaching”

Figure 101 displays the generalization results of the “Reaching” behavior learned

from the physical coaching.

193

Figure 101 Generalization Results of the “Reaching” Behavior from Physical Coaching

In Figure 101, the most common feature is to minimize the distance between the

end-effector and the target object at the end of the motion trajectory. Table 25 displays

the comparison of the generalization results.

In Table 25, the scores of Feature 1 of the Post-Results are 0.9559, 0.9476, and

0.9989. The highest score comes from the generalization results of the learning from

Physical coaching. This reflects that physical coaching has better performance to find the

most common feature of the “Reaching” behavior.

400

500

600

700

-600
-400

-200
0

-600

-400

-200

y-axis(mm)

Trajectory in Cartesian Space

x-axis(mm)

z
-a

x
is

(m
m

)

Feature 1Feature 2Feature 3Feature 4
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Pre-Condition

Feature 1 Feature 2
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Internal-Constraints

Feature 1Feature 2Feature 3Feature 4
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Post-Results

194

Table 25 Comparison of Generalization Results of the “Reaching” Behavior

 Unsupervised Unsupervised Physical

Coaching Left Arm Right Arm

Feature 1 of Pre-Condition 0.0442 0.0475 0.2477

Feature 2 of Pre-Condition 0.0717 0.0807 0.0337

Feature 3 of Pre-Condition 0 0 0

Feature 4 of Pre-Condition 0 0 0

Feature 1 of Internal Constraints 0.1250 0.1250 0.2498

Feature 2 of Internal Constraints 0.0748 0.0520 0.0058

Feature 1 of Post-Results 0.9559 0.9476 0.9989

Feature 2 of Post-Results 0.0406 0.0360 0

Feature 3 of Post-Results 0 0 0

Feature 4 of Post-Results 0 0 0

--“Pushing Left” and “Pushing Right”

Figure 102 Learning from Observation VS Learning from Physical Reaching for

“Pushing”

195

Figure 103 displays the generalization results of the “Pushing Left” behavior

learned from the physical coaching.

Figure 103 Generalization Results of the “Pushing Left” Behavior from Physical

Coaching

Figure 104 displays the generalization results of the “Pushing Right” behavior

learned from the physical coaching.

450

500

550

600

650

700

-200-1000100200 x-axis(mm)

Trajectory in Cartesian Space

y
-a

x
is

(m
m

)

Feature 1Feature 2Feature 3Feature 4
0

0.2

0.4

0.6

0.8

1

Feature Index
F

e
a
tu

re
 S

c
o
re

Pre-Condition

Feature 1 Feature 2
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Internal-Constraints

Feature 1Feature 2Feature 3Feature 4
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Post-Results

196

Figure 104 Generalization Results of the “Reaching Right” Behavior from Physical

Coaching

In Figure 103 and Figure 104, the most common feature is to minimize the

distance between the end-effector and the target object at the beginning of the motion

trajectory and to minimize the distance between the end-effector and the target position

at the end of the motion trajectory. Table 25 displays the comparison of the

generalization results.

350

400

450

500

550

600

650

-600-500-400-300-200 x-axis(mm)

Trajectory in Cartesian Space

y
-a

x
is

(m
m

)

Feature 1Feature 2Feature 3Feature 4
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Pre-Condition

Feature 1 Feature 2
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Internal-Constraints

Feature 1Feature 2Feature 3Feature 4
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Post-Results

197

Table 26 Comparison of Generalization Results of the “Pushing” Behavior

 Unsupervised Teaching Physical Coaching

PushingLeft PushingRight PushingLeft PushingRight

Feature 1 of Pre-Conditions 0.8514 0.7450 0.9475 0.9444

Feature 2 of Pre-Conditions 0 0 0 0

Feature 3 of Pre-Conditions 0 0 0 0

Feature 4 of Pre-Conditions 0 0 0 0

Feature 1 of Internal Constraints 0.1111 0.1111 0.2496 0.2498

Feature 2 of Internal Constraints 0.0238 0.1897 0.1372 0.1158

Feature 1 of Post-Results 0.8965 0.9909 0.9984 0.9989

Feature 2 of Post-Results 0 0 0 0

Feature 3 of Post-Results 0 0 0 0

Feature 4 of Post-Results 0 0 0 0

Feature 1 of Pre-Conditions and Feature 1 of Post-Results are the common

features of the “Pushing Left” and “Pushing Right” behaviors. In Table 26, the scores for

these features from the physical coaching are higher than the scores from the

observations. This means the physical coaching can improve the performance of finding

the most common feature of the “Pushing Left” and “Pushing Right” Behaviors.

Based on the above analysis, different behavior acquisition methods can affect the

performance of the learning results of the system. In our testing, it is displayed that the

methods of Physical Coaching can improve the behavior generalization results of the

system.

198

System Performance between the Input and the Overall Output of the System

Because the generated motion trajectory is related to the behavior generation

methods which are determined by the stored common features generalized behaviors in

the LTM, we can analyze the stored common features of the learned behavior instead of

analyzing the motion trajectories.

Table 27 Comparison of Stored Features of the “Reaching” and “Pushing” Behaviors

Reaching Pushing

Learning from

Observation

Physical

Coaching

Learning from

Observation

Physical

Coaching

Stored Common Feature
{0,0,1} {0,0,1} {1,0,1} {1,0,1}

The generated motion trajectory is related to the generalized behaviors stored in

the LTM. In the above analysis, using different demonstration methods, the

generalization results are the same. So the demonstration methods do not affect the

overall output of the system.

Summary

The simulation and experimental results included in Chapter IV demonstrate that

ISAC can use this integrated system to parse the speech command, check the LTM,

switch tasks between learning and generation, observe demonstrations, generalize

behaviors, generate behavior sequences, generate similar motion trajectories, and switch

strategies to complete tasks.

199

In summary, we can conclude that the designed system satisfy the requirements of

imitation learning and the cognitive control. It enables ISAC to generate similar motion

trajectories and switch strategies to complete tasks.

200

CHAPTER VI

CONCLUSION AND FUTURE WORK

Conclusion

This dissertation investigated how imitation learning and cognitive control can be

integrated into a humanoid robot. Through simple behavior learning, the integrated

system was shown to learn new behaviors and perform a new task using behavior graph

and strategy switching. The imitation learning framework was divided into: (i) Behavior

Acquisition, (ii) Behavior Segmentation, (iii) Behavior Generalization, (iv) Behavior

Representation, and (v) Behavior Generation. The cognitive control framework was

designed based on the robotic cognitive architecture developed in our lab, which (i) uses

sensors to collect environmental information, demonstrated information, and speech

command, (ii) generalizes behaviors using the CEA, (iii) stores basic behaviors in the

LTM, (iv) generates behavior sequences to complete tasks, (v) evaluates generated

behavior sequences using IRS, and (vi) sends the generated motion trajectories to the

actuators. The execution results will be monitored by human in case robots need more

assistance or instructions. In our system, human can give instructions such as learning

new behaviors, re-evaluating behavior sequences, etc., after ISAC searches the behavior

library to find whether it has required behavior, executes the generated behavior sequence,

and evaluates the behavior sequence in the IRS. After observing the response of ISAC

and execution of evaluation results, human teachers can give ISAC a command to learn

the required behavior, confirm the evaluation results, etc. For example, in Experiment 1,

201

ISAC was asked to push the object without grasping and found that it has not learned the

required “Reaching” and “Pushing” behaviors. So the human teacher will tell ISAC that

he/she will demonstrate ISAC these required behaviors as shown in Figure 105.

Task

Execution

Results

I will show you how to use the

pushing behavior for this task.

You evaluation is good!

…

Figure 105 Guidance from Human

Three types of experiments were designed for ISAC to validate this system. One

experiment was carried out on ISAC, and two other experiments were carried out in a

simulation environment. The experimental results demonstrated that ISAC can use this

system to complete simple graspless manipulation tasks according to the speech

commands. Simulation-based cognitive control experiments demonstrate how the Central

Executive Agent (CEA) switches strategies to adaptively complete tasks. The quantitative

evaluation results in Chapter V demonstrated that the system satisfy the requirements for

both imitation learning and cognitive control.

Future Work

The current designed system enables the robot to parse the speech command,

check the LTM, switch tasks between learning and generation, observe demonstrations,

202

generalize behaviors, generate behavior sequences, generate similar motion trajectories,

and switch strategies to complete tasks using one arm.

There are several areas which will enhance the performance of this system. They

are:

1. Dual Arm Control and Behavior Generation

In the experiments of this dissertation, ISAC only needs to use one arm to

complete the required tasks. However, many tasks require ISAC to use both

arms. For example, for graspless manipulation, a pivoting task [Aiyama et al.,

1993], in which two robot grippers maneuver an object as if making the object

“walk” as shown in Figure 106. In an assembly task, a robot needs to hold one

piece using one hand and insert/put the other piece to the correction position.

If a robot can use two hands to complete tasks, that will make the robot more

useful in working environments, living environments, etc. In Chapter IV, we

have proposed a prototype method of evaluate the generated behavior

sequence using two arms. This method must be expanded to more real-life

situations.

Figure 106 Pivoting [Aiyama et al., 1993]

203

However, in order to use two arms, the kinodynamics features should be

considered in behavior generation of robots, e.g., force, torques, when

generating behaviors to complete tasks. For example, in Experiment 1, ISAC

is asked to push a box. The weight of the box, the required force on the end-

effector, and the required torques on the joints should be taken into

consideration in order to increase the probability of pushing the box

successfully to designated areas.

2. Hierarchy Behavior Generation

A major limitation of this behavior graph-based method is: the binary-

based preconditions, internal constraints, and post results-based behavior

graph is too simplistic to be applied to some real-world applications. As

robots keep learning, the number of the behaviors becomes larger and larger.

It becomes more and more difficult for robots to handle the behavior graph

when the behavior graph becomes more and more complex. In order to reduce

the complexity of the behavior graph, we need to improve the simple binary-

based behavior graph-based methods in this dissertation.

In our system, behaviors are treated equally in the behavior graph. All the

behaviors are considered has same weights and the transitions among them are

non-weighted. However, in some real-world applications, behaviors are often

organized in a hierarchy way. This type of hierarchy methods simplifies the

overall generation process and provides a robust method for solving the

requirements of generating complex behavior sequences in complex task-

204

relevant situations. A possible solution could be to divide behavior graphs into

several levels. In the generation stage, robots generated behavior sequences by

assembling behavior sequences from different levels of behavior graphs.

Additionally, using this method, errors, which are generated by the

hardware of ISAC, could be confined in the lower level behavior graphs.

Probabilistic methods can be applied to lower level behavior graphs to

overcome the errors. In higher level behavior graphs, error could not be taken

into consideration.

205

APPENDIX

A. Hand-Tracking and Object-Tracking Using Kinect

Hand-Tracking

We define the observed positions of a wrist, a related hand, and a related shoulder

of a human are:

 ()
 (1)

 ()
 (2)

 ()
 (3)

The coordinates of a camera image is designed as displayed in Figure 107.

Figure 107 Coordinates of the Image Pixels

The relative positions of the wrist and the hand in the coordinates of a camera

image are:

 (4)

 (5)

After this transformation, the origin of the coordinates has been moved to the

shoulder.

206

 Then we can convert the positions from the coordinates of a camera image to a

human body.

The transformation matrices are:

 |

| (6)

 Therefore, the positions of the wrist and the hand in the coordinates of a human

body are:

 (7)

 (8)

The observed motion information in a task-space can be represented as

 (9)

 (10)

 { }, which is an matrix, records the 3-dimensional position values,

 , of the hand of a human teacher and the temporal information on the sampling points.

Object-Tracking

The positions and sizes of a target object and obstacles are extracted from camera

images in the color space. Obtained raw data of camera images are RGB-based and need

to be converted to HSV-based to avoid the noises generated by light. In order to simplify

our work, we used a yellow cube as a target object and blue cubes as obstacles. This is

enough for our designed experiments. By extracting all yellow or blue pixels from the

HSV images, the center of the target object and each obstacle can be computed as:

 ()
∑

 (11)

207

where represents the position value of each pixel in the Cartesian space:

 ()

 (12)

The edges of target object and cubes are recorded by finding the maximum values

and minimum values on X, Y, and Z direction in the Cartesian space.

 () () (13)

 () () (14)

 () () (15)

 () () (16)

 () () (17)

 () () (18)

Then the recorded states for th
 demonstration are:

 { () () () () () () () () ()}

and each element is a vector with length of the sampling time.

B. A Potential Field Method-Based Extension of the Dynamic Movement Primitive

Algorithm for Imitation Learning with Obstacle Avoidance

In Figure 108, Figure 109, and Figure 110, the black circle is the obstacle placed

in the environment.

In Figure 108, when ⃗() is generated by the DMP method, it is in the impedance

area (orange area outside black obstacle) around the obstacle and the obstacle is

between ⃗() and the goal state ⃗. Then, the goal state is moved to a virtual goal

state ⃗ ().

208

)(ky




g

)1(


kgtemp

)1(


ky

Figure 108 Calculation of the point ⃗() in the impedance area around the obstacle using

the improved DMP algorithm

In Figure 109, ⃗() can be generated by using the DMP method with the

new virtual goal state ⃗ () ⃗() is still in the impedance area around the

obstacle and the obstacle still locates between ⃗()and the goal state ⃗, then the goal

state ⃗ is modified into ⃗ ().

)(ky




g

)1(


kgtemp

)1(


ky

)2(


ky

)2(


kgtemp

Figure 109 Calculation of the point ⃗() in the impedance area around the obstacle

using the improved DMP algorithm

209

)(ky




g

)1(


kgtemp

)1(


ky

)2(


ky

)2(


kgtemp

)(ny


Figure 110 Calculation of the points not in the impedance area around the obstacle using

the improved DMP algorithm

In Figure 110, ⃗() can be generated using the DMP method with the new

virtual state ⃗ () . Now, ⃗() is not in the impedance area around the

obstacle and the obstacle is not between ⃗() and the goal state ⃗, then the goal

state ⃗ will not be moved. Other points { ⃗() ⃗() ⃗() ⃗()} will be

generated using the original DMP method until ⃗() ⃗ to achieve the initial goal state.

The impedance factor ⃗ () is generated by the virtual impedance

force in the impedance field as shown in Figure 109. The center of the obstacle is ⃗, and

the radius of the obstacle is . is the distance between ⃗() and ⃗,

 ‖ ⃗() ⃗‖ (19)

When ⃗() is in the obstacle area and the obstacle is between ⃗() and ⃗,

| | (20)

 (⃗ (⃗ ⃗()))< (21)

The virtual impedance force is calculated by the following equations. and are

constants.

 ⃗ () ⃗ () ⃗ () (22)

210

 ⃗ ()

()
 (23)

 ⃗ ()

()
 (24)

The impedance factor ⃗ () is proportional to ⃗ ()

obtained from equation (25).

 ⃗ () ⃗ () (25)

)(ky




g

)1(


kgtemp 


kF impedance

 kF impedance



 'kF impedance



)1(


kg impedance



o

Figure 111 Calculation of ⃗

Intuitively, the smaller the distance between ⃗() and the surface of the obstacle

is, the larger the ⃗ () is. When ⃗() is around the obstacle, the virtual goal

state ⃗ () is moved proportionally to ⃗ () . This virtual goal state

changes the trajectory around the obstacle, but still keeps the dynamics of the generated

trajectory similar to the demonstration because the generated trajectory is calculated by

the DMP method with the original demonstration.

 ⃗()̇ ((⃗ () ⃗⃗()) ⃗()) (26)

 ⃗()̇ ⃗() () (27)

 ⃗() ⃗() ⃗()̇ (28)

 ⃗() ⃗() ⃗()̇ (29)

211

C. Simulation Results and Generated Motion Trajectories of Experiment 3

Experiment 3A

ISAC pushes the box to the right using its right arm in Experiment 3A-1.

Experiment 3A-1 Experiment 3A-1

Figure 112 Simulation Results of Experiment 3A-1

Figure 113 Generated Motion Trajectories of the Right Arm in Experiment 3A-1

400

600

800 -500

0

500

1000

-600

-400

-200

Y Axis(mm)

Motion of Right Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Right Arm

0 50 100 150 200
-500

0

500

1000

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Right Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Right Arm

212

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3A-2. Then it switches the generated behavior sequence to the left arm and

pushes the box to the right.

Experiment 3A-2 Experiment 3A-2 Experiment 3A-2

Figure 114 Simulation Results of Experiment 3A-2

Figure 115 Generated Motion Trajectories of the Right Arm in Experiment 3A-2

300

400

500

600

700

800 -500
0

500
1000

-600
-400
-200

Y Axis(mm)

Motion of Right Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Right Arm

0 50 100 150 200
-500

0

500

1000

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Right Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Right Arm

213

Figure 116 Generated Motion Trajectories of the Left Arm in Experiment 3A-2

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3A-3. Then it switches the generated behavior sequence to the left arm and

pushes the box to the right.

Experiment 3A-3 Experiment 3A-3 Experiment 3A-3

Figure 117 Simulation Results of Experiment 3A-3

400

600

800 -1000

-500

0

500

-600

-400

-200

Y Axis(mm)

Motion of Left Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Left Arm

0 50 100 150 200
-1000

-500

0

500

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Left Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Left Arm

214

Figure 118 Generated Motion Trajectories of the Right Arm in Experiment 3A-3

400

600

800 -500

0

500

1000

-600

-400

-200

y axis(mm)

motion of right arm

x axis(mm)

z
 a

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

time(s)

p
o
s
it
io

n
 x

(m
m

)

posx of right arm

0 50 100 150 200
-500

0

500

1000

time(s)

p
o
s
it
io

n
 y

(m
m

)

posy of right arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

time(s)

p
o
s
it
io

n
 z

(m
m

)

posz of right arm

215

Figure 119 Generated Motion Trajectories of the Left Arm in Experiment 3A-3

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3A-4. Then it switches the generated behavior sequence to the left arm and

pushes the box to the right.

Experiment 3A-4 Experiment 3A-4 Experiment 3A-4

Figure 120 Simulation Results of Experiment 3A-4

400

600

800 -1000

-500

0

500

-600

-400

-200

Y Axis(mm)

Motion of Left Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Left Arm

0 50 100 150 200
-1000

-500

0

500

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Left Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Left Arm

216

Figure 121 Generated Motion Trajectories of the Right Arm in Experiment 3A-4

400

600

800 -500

0

500

1000

-600

-400

-200

y axis(mm)

motion of right arm

x axis(mm)

z
 a

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

time(s)

p
o
s
it
io

n
 x

(m
m

)

posx of right arm

0 50 100 150 200
-500

0

500

1000

time(s)

p
o
s
it
io

n
 y

(m
m

)

posy of right arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

time(s)

p
o
s
it
io

n
 z

(m
m

)

posz of right arm

217

Figure 122 Generated Motion Trajectories of the Left Arm in Experiment 3A-4

ISAC finds that it cannot push the box to the right using either of the arms in

Experiment 3A-5.

Experiment 3A-5 Experiment 3A-5 Experiment 3A-5

Figure 123 Simulation Results of Experiment 3A-5

400

600

800 -1000

-500

0

500

-600

-400

-200

Y Axis(mm)

Motion of Left Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Left Arm

0 50 100 150 200
-1000

-500

0

500

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Left Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Left Arm

218

Figure 124 Generated Motion Trajectories of the Right Arm in Experiment 3A-5

400

600

800 -500

0

500

1000

-600

-400

-200

y axis(mm)

motion of right arm

x axis(mm)

z
 a

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

time(s)

p
o
s
it
io

n
 x

(m
m

)

posx of right arm

0 50 100 150 200
-500

0

500

1000

time(s)

p
o
s
it
io

n
 y

(m
m

)

posy of right arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

time(s)

p
o
s
it
io

n
 z

(m
m

)

posz of right arm

219

Figure 125 Generated Motion Trajectories of the Left Arm in Experiment 3A-5

ISAC pushes the box to the right using its right arm Experiment 3A-6.

Experiment 3A-6 Experiment 3A-6

Figure 126 Simulation Results of Experiment 3A-6

400

600

800 -1000

-500

0

500
-600

-400

-200

Y Axis(mm)

Motion of Left Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Left Arm

0 50 100 150 200
-1000

-500

0

500

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Left Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Left Arm

220

Figure 127 Generated Motion Trajectories of the Right Arm in Experiment 3A-6

ISAC pushes the box to the right using its right arm Experiment 3A-7.

Experiment 3A-7 Experiment 3A-7

Figure 128 Simulation Results of Experiment 3A-7

400

600

800 -500

0

500

1000

-600

-400

-200

y axis(mm)

motion of right arm

x axis(mm)

z
 a

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

time(s)

p
o
s
it
io

n
 x

(m
m

)

posx of right arm

0 50 100 150 200
-500

0

500

1000

time(s)

p
o
s
it
io

n
 y

(m
m

)

posy of right arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

time(s)

p
o
s
it
io

n
 z

(m
m

)

posz of right arm

221

.

Figure 129 Generated Motion Trajectories of the Right Arm in Experiment 3A-7

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3A-8. Then it switches the generated behavior sequence to the left arm and

pushes the box to the right.

Experiment 3A-8 Experiment 3A-8 Experiment 3A-8

Figure 130 Simulation Results of Experiment 3A-8

400

600

800 -500

0

500

1000

-600

-400

-200

y axis(mm)

motion of right arm

x axis(mm)

z
 a

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

time(s)

p
o
s
it
io

n
 x

(m
m

)

posx of right arm

0 50 100 150 200
-500

0

500

1000

time(s)

p
o
s
it
io

n
 y

(m
m

)

posy of right arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

time(s)

p
o
s
it
io

n
 z

(m
m

)

posz of right arm

222

Figure 131 Generated Motion Trajectories of the Right Arm in Experiment 3A-8

400

600

800 -500

0

500

1000

-600

-400

-200

y axis(mm)

motion of right arm

x axis(mm)

z
 a

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

time(s)

p
o
s
it
io

n
 x

(m
m

)

posx of right arm

0 50 100 150 200
-500

0

500

1000

time(s)

p
o
s
it
io

n
 y

(m
m

)

posy of right arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

time(s)

p
o
s
it
io

n
 z

(m
m

)

posz of right arm

223

Figure 132 Generated Motion Trajectories of the Left Arm in Experiment 3A-8

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3A-9. Then it switches the generated behavior sequence to the left arm and

pushes the box to the right.

Experiment 3A-9 Experiment 3A-9 Experiment 3A-9

Figure 133 Simulation Results of Experiment 3A-9

300
400

500

600
700

800 -1000

-500

0

500

-600

-400

-200

Y Axis(mm)

Motion of Left Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Left Arm

0 50 100 150 200
-1000

-500

0

500

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Left Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Left Arm

224

Figure 134 Generated Motion Trajectories of the Right Arm in Experiment 3A-9

300

400

500

600

700

800 -500

0

500

1000

-600

-400

-200

y axis(mm)

motion of right arm

x axis(mm)

z
 a

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

time(s)

p
o
s
it
io

n
 x

(m
m

)

posx of right arm

0 50 100 150 200
-500

0

500

1000

time(s)

p
o
s
it
io

n
 y

(m
m

)

posy of right arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

time(s)

p
o
s
it
io

n
 z

(m
m

)

posz of right arm

225

Figure 135 Generated Motion Trajectories the Left Arm in Experiment 3A-9

ISAC finds that it cannot push the box to the right using either of the arms in

Experiment 3A-10.

Experiment 3A-10 Experiment 3A-10 Experiment 3A-10

Figure 136 Simulation Results of Experiment 3A-10

300

400

500

600

700

800 -1000

-500

0

500

-600

-400

-200

Y Axis(mm)

Motion of Left Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Left Arm

0 50 100 150 200
-1000

-500

0

500

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Left Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Left Arm

226

Figure 137 Generated Motion Trajectories of the Right Arm in Experiment 3A-10

400

600

800 -500

0

500

1000-600

-400

-200

y axis(mm)

motion of right arm

x axis(mm)

z
 a

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

time(s)

p
o
s
it
io

n
 x

(m
m

)

posx of right arm

0 50 100 150 200
-500

0

500

1000

time(s)

p
o
s
it
io

n
 y

(m
m

)

posy of right arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

time(s)

p
o
s
it
io

n
 z

(m
m

)

posz of right arm

227

Figure 138 Generated Motion Trajectories of the Left Arm in Experiment 3A-10

Experiment 3B

ISAC pushes the box to the right using its right arm in Experiment 3B-1a-1.

400

600

800 -1000

-500

0

500

-600

-400

-200

Y Axis(mm)

Motion of Left Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Left Arm

0 50 100 150 200
-1000

-500

0

500

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Left Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Left Arm

228

Experiment 3B-1a-1 Experiment 3B-1a-1

Figure 139 Simulation Results of Experiment 3B-1a-1

Figure 140 Generated Motion Trajectories of the Right Arm in Experiment 3B-1a-1

400

600

800 -500

0

500

1000

-600
-400

-200
0

200

400

Y Axis(mm)

Motion of Right Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Right Arm

0 50 100 150 200
-500

0

500

1000

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Right Arm

0 50 100 150 200
-600

-400

-200

0

200

400

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Right Arm

229

Figure 141 Generated Motion Trajectories of the Left Arm in Experiment 3B-1a-1

ISAC pushes the box to the right using its right arm in Experiment 3B-1a-2.

Experiment 3B-1a-2 Experiment 3B-1a-2

Figure 142 Simulation Results of Experiment 3B-1a-2

400

600

800 -1000
-500

0
500

-600

-400

-200

Y Axis(mm)

Motion of Left Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Left Arm

0 50 100 150 200
-1000

-500

0

500

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Left Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Left Arm

230

ISAC finds that it cannot push the box to the right using either of the arms in

Experiment 3B-1a-3.

Experiment 3B-1a-3 Experiment 3B-1a-3 Experiment 3B-1a-3

Figure 143 Simulation Results of Experiment 3B-1a-3

ISAC finds that it cannot push the box to the right using either of the arms in

Experiment 3B-1a-4.

Experiment 3B-1a-4 Experiment 3B-1a-4

Figure 144 Simulation Results of Experiment 3B-1a-3

ISAC pushes the box to the right using its right arm in Experiment 3B-1b-1.

231

Experiment 3B-1b-1 Experiment 3B-1b-1

Figure 145 Simulation Results of Experiment 3B-1b-1

ISAC pushes the box to the right using its right arm in Experiment 3B-1b-2.

Experiment 3B-1b-2 Experiment 3B-1b-2

Figure 146 Simulation Results of Experiment 3B-1b-2

ISAC pushes the box to the right using its right arm in Experiment 3B-1b-3.

232

Experiment 3B-1b-3 Experiment 3B-1b-3

Figure 147 Simulation Results of Experiment 3B-1b-3

ISAC finds that it cannot push the box to the right using its either of the arms in

Experiment 3B-1b-4.

Experiment 3B-1b-4 Experiment 3B-1b-4 Experiment 3B-1b-4

Figure 148 Simulation Results of Experiment 3B-1b-4

ISAC pushes the box to the right using its right arm in Experiment 3B-1c-1.

233

Experiment 3B-1c-1
Experiment 3B-1c-1

Figure 149 Simulation Results of Experiment 3B-1c-1

ISAC pushes the box to the right using its right arm in Experiment 3B-1c-2.

Experiment 3B-1c-2 Experiment 3B-1c-2

Figure 150 Simulation Results of Experiment 3B-1c-2

ISAC pushes the box to the right using its right arm in Experiment 3B-1c-3.

234

Experiment 3B-1c-3
Experiment 3B-1c-3

Figure 151 Simulation Results of Experiment 3B-1c-3

ISAC pushes the box to the right using its right arm in Experiment 3B-1c-4.

Experiment 3B-1c-4 Experiment 3B-1c-4

Figure 152 Simulation Results of Experiment 3B-1c-4

ISAC pushes the box to the right using its right arm in Experiment 3B-1d-1.

235

Experiment 3B-1d-1 Experiment 3B-1d-1

Figure 153 Simulation Results of Experiment 3B-1d-1

ISAC pushes the box to the right using its right arm in Experiment 3B-1d-2.

Experiment 3B-1d-2 Experiment 3B-1d-2

Figure 154 Simulation Results of Experiment 3B-1d-2

ISAC pushes the box to the right using its right arm in Experiment 3B-1d-3.

236

Experiment 3B-1d-3 Experiment 3B-1d-3

Figure 155 Simulation Results of Experiment 3B-1d-3

ISAC finds that it cannot push the box to the right using both arms in Experiment

3B-1d-4.

Experiment 3B-1d-4 Experiment 3B-1d-4 Experiment 3B-1d-4

Figure 156 Simulation Results of Experiment 3B-1d-4

ISAC finds that it cannot push the box to the right using either of arms in

Experiment 3B-2a-1.

Experiment 3B-2a-1 Experiment 3B-2a-1 Experiment 3B-2a-1

Figure 157 Simulation Results of Experiment 3B-2a-1

237

Figure 158 Generated Motion Trajectories of the Right Arm in Experiment 3B-2a-1

300

400

500

600

700

800 -500

0

500

1000

-600
-400
-200

0
200
400

Y Axis(mm)

Motion of Right Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Right Arm

0 50 100 150 200
-500

0

500

1000

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Right Arm

0 50 100 150 200
-600

-400

-200

0

200

400

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Right Arm

238

Figure 159 Generated Motion Trajectories of the Left Arm in Experiment 3B-2a-1

ISAC finds that it cannot push the box to the right using either of the arms in

Experiment 3B-2a-2.

Experiment 3B-2a-2 Experiment 3B-2a-2 Experiment 3B-2a-2

Figure 160 Simulation Results of Experiment 3B-2a-2

400

600

800 -1000

-500

0

500

-600

-400

-200

Y Axis(mm)

Motion of Left Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Left Arm

0 50 100 150 200
-1000

-500

0

500

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Left Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Left Arm

239

ISAC finds that it cannot push the box to the right using either of the arms in

Experiment 3B-2a-3.

Experiment 3B-2a-3 Experiment 3B-2a-3 Experiment 3B-2a-3

Figure 161 Simulation Results of Experiment 3B-2a-3

ISAC finds that it cannot push the box to the right using either of the arms in

Experiment 3B-2a-4.

Experiment 3B-2a-4 Experiment 3B-2a-4 Experiment 3B-2a-4

Figure 162 Simulation Results of Experiment 3B-2a-4

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-2b-1. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

240

Experiment 3B-2b-1 Experiment 3B-2b-1 Experiment 3B-2b-1

Figure 163 Simulation Results of Experiment 3B-2b-1

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-2b-2. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-2b-2 Experiment 3B-2b-2 Experiment 3B-2b-2

Figure 164 Simulation Results of Experiment 3B-2b-2

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-2b-3. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-2b-3 Experiment 3B-2b-3 Experiment 3B-2b-3

Figure 165 Simulation Results of Experiment 3B-2b-3

241

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-2b-4. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-2b-4 Experiment 3B-2b-4 Experiment 3B-2b-4

Figure 166 Simulation Results of Experiment 3B-2b-4

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-2c-1. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-2c-1 Experiment 3B-2c-1 Experiment 3B-2c-1

Figure 167 Simulation Results of Experiment 3B-2c-1

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-2c-2. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

242

Experiment 3B-2c-2 Experiment 3B-2c-2 Experiment 3B-2c-2

Figure 168 Simulation Results of Experiment 3B-2c-2

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-2c-3. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-2c-3 Experiment 3B-2c-3 Experiment 3B-2c-3

Figure 169 Simulation Results of Experiment 3B-2c-3

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-2c-4. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-2c-4 Experiment 3B-2c-4 Experiment 3B-2c-4

Figure 170 Simulation Results of Experiment 3B-2c-4

243

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-2d-1. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-2d-1 Experiment 3B-2d-1 Experiment 3B-2d-1

Figure 171 Simulation Results of Experiment 3B-2d-1

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-2d-2. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-2d-2 Experiment 3B-2d-2 Experiment 3B-2d-2

Figure 172 Simulation Results of Experiment 3B-2d-2

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-2d-3. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

244

Experiment 3B-2d-3 Experiment 3B-2d-3 Experiment 3B-2d-3

Figure 173 Simulation Results of Experiment 3B-2d-3

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-2d-4. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-2d-4 Experiment 3B-2d-4 Experiment 3B-2d-4

Figure 174 Simulation Results of Experiment 3B-2d-4

ISAC finds that it cannot push the box using both arms.

Experiment 3B-3a-1 Experiment 3B-3a-1 Experiment 3B-3a-1

Figure 175 Simulation Results of Experiment 3B-3a-1

245

Figure 176 Generated Motion Trajectories of the Right Arm in Experiment 3B-3a-1

400

600

800 -500

0

500

1000

-600
-400
-200

0
200
400

Y Axis(mm)

Motion of Right Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Right Arm

0 50 100 150 200
-500

0

500

1000

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Right Arm

0 50 100 150 200
-600

-400

-200

0

200

400

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Right Arm

246

Figure 177 Generated Motion Trajectories of the Left Arm in Experiment 3B-3a-1

ISAC finds that it cannot push the box using both arms in Experiment 3B-3a-2.

Experiment 3B-3a-2 Experiment 3B-3a-2 Experiment 3B-3a-2

Figure 178 Simulation Results of Experiment 3B-3a-2

ISAC finds that it cannot push the box using both arms in Experiment 3B-3a-3.

400

600

800 -1000

-500

0

500-600

-400

-200

Y Axis(mm)

Motion of Left Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Left Arm

0 50 100 150 200
-1000

-500

0

500

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Left Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Left Arm

247

Experiment 3B-3a-3 Experiment 3B-3a-3 Experiment 3B-3a-3

Figure 179 Simulation Results of Experiment 3B-3a-3

ISAC finds that it cannot push the box using both arms in Experiment 3B-3a-4.

Experiment 3B-3a-4 Experiment 3B-3a-4 Experiment 3B-3a-4

Figure 180 Simulation Results of Experiment 3B-3a-4

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-3b-1. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-3b-1 Experiment 3B-3b-1 Experiment 3B-3b-1

Figure 181 Simulation Results of Experiment 3B-3b-1

248

Figure 182 Generated Motion Trajectories of the Right Arm in Experiment 3B-3b-1

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-3b-2. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-3b-2 Experiment 3B-3b-2 Experiment 3B-2b-2

Figure 183 Simulation Results of Experiment 3B-3b-2

400

600

800

-1000

-500

0

500
-600

-500

-400

-300

-200

-100

X Axis(mm)

Motion of Left Arm

Y Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Left Arm

0 50 100 150 200
-1000

-500

0

500

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Left Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Left Arm

249

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-3b-3. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-3b-3 Experiment 3B-3b-3 Experiment 3B-3b-3

Figure 184 Simulation Results of Experiment 3B-3b-3

ISAC finds that it cannot push the box using either of the arms.

Experiment 3B-3b-4 Experiment 3B-3b-4
Experiment 3B-3b-4

Figure 185 Simulation Results of Experiment 3B-3b-4

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-3c-1. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

250

Experiment 3B-3c-1 Experiment 3B-3c-1 Experiment 3B-3c-1

Figure 186 Simulation Results of Experiment 3B-3c-1

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-3c-2. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-3c-2 Experiment 3B-3c-2 Experiment 3B-3c-2

Figure 187 Simulation Results of Experiment 3B-3c-2

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-3c-3. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-3c-3 Experiment 3B-3c-3 Experiment 3B-3c-3

Figure 188 Simulation Results of Experiment 3B-3c-3

251

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-3c-4. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-3c-4 Experiment 3B-3c-4 Experiment 3B-3c-4

Figure 189 Simulation Results of Experiment 3B-3c-4

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-3d-1. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-3d-1 Experiment 3B-3d-1 Experiment 3B-3d-1

Figure 190 Simulation Results of Experiment 3B-3d-1

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-3d-2. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

252

Experiment 3B-3d-2 Experiment 3B-3d-2 Experiment 3B-3d-2

Figure 191 Simulation Results of Experiment 3B-3d-2

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-3d-3. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-3d-3 Experiment 3B-3d-4 Experiment 3B-3d-3

Figure 192 Simulation Results of Experiment 3B-3d-3

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-3d-4. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-3d-4 Experiment 3B-3d-4
Experiment 3B-3d-4

Figure 193 Simulation Results of Experiment 3B-3d-4

253

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-4a-1. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-4a-1 Experiment 3B-4a-1 Experiment 3B-4a-1

Figure 194 Simulation Results of Experiment 3B-4a-1

Figure 195 Generated Motion Trajectories of the Right Arm in Experiment 3B-4a-1

400

600

800

-500

0

500

1000
-600

-400

-200

0

200

400

X Axis(mm)

Motion of Right Arm

Y Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Right Arm

0 50 100 150 200
-500

0

500

1000

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Right Arm

0 50 100 150 200
-600

-400

-200

0

200

400

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Right Arm

254

Figure 196 Generated Motion Trajectories of the Left Arm in Experiment 3B-4a-1

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-4a-2. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-4a-2 Experiment 3B-4a-2 Experiment 3B-4a-2

Figure 197 Simulation Results of Experiment 3B-4a-2

400

600

800 -1000

-500

0

500

-600

-400

-200

Y Axis(mm)

Motion of Left Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Left Arm

0 50 100 150 200
-1000

-500

0

500

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Left Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Left Arm

255

ISAC finds that it cannot push the box to the right using either of the arms.

Experiment 3B-4a-3 Experiment 3B-4a-3 Experiment 3B-4a-3

Figure 198 Simulation Results of Experiment 3B-4a-3

ISAC finds that it cannot push the box to the right using either of the arms.

Experiment 3B-4a-4 Experiment 3B-4a-4 Experiment 3B-4a-4

Figure 199 Simulation Results of Experiment 3B-4a-4

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-4b-1. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-4b-1 Experiment 3B-4b-1 Experiment 3B-4b-1

Figure 200 Simulation Results of Experiment 3B-4b-1

256

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-4b-2. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-4b-2 Experiment 3B-4b-2 Experiment 3B-4b-2

Figure 201 Simulation Results of Experiment 3B-4b-2

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-4b-3. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-4b-3 Experiment 3B-4b-3 Experiment 3B-4b-3

Figure 202 Simulation Results of Experiment 3B-4b-3

ISAC finds that it cannot push the box to the right either of the arms.

257

Experiment 3B-4b-4 Experiment 3B-4b-4 Experiment 3B-4b-4

Figure 203 Simulation Results of Experiment 3B-4b-4

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-4c-1. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-4c-1 Experiment 3B-4c-1 Experiment 3B-4c-1

Figure 204 Simulation Results of Experiment 3B-4c-1

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-4c-2. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

258

Experiment 3B-4c-2 Experiment 3B-4c-2 Experiment 3B-4c-2

Figure 205 Simulation Results of Experiment 3B-4c-2

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-4c-3. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-4c-3 Experiment 3B-4c-3 Experiment 3B-4c-3

Figure 206 Simulation Results of Experiment 3B-4c-3

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-4c-4. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-4c-4 Experiment 3B-4c-4 Experiment 3B-4c-4

Figure 207 Simulation Results of Experiment 3B-4c-4

259

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-4d-1. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-4d-1 Experiment 3B-4d-1 Experiment 3B-4d-1

Figure 208 Simulation Results of Experiment 3B-4d-1

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-4d-2. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-4d-2 Experiment 3B-4d-2 Experiment 3B-4d-2

Figure 209 Simulation Results of Experiment 3B-4d-2

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-4d-3. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

260

Experiment 3B-4d-3 Experiment 3B-4d-3 Experiment 3B-4d-3

Figure 210 Simulation Results of Experiment 3B-4d-3

ISAC finds that it cannot push the box to the right using its right arm in

Experiment 3B-4d-4. Then it switches the generated behavior sequence to the left arm

and pushes the box to the right.

Experiment 3B-4d-4 Experiment 3B-4d-4 Experiment 3B-4d-4

Figure 211 Simulation Results of Experiment 3B-4d-4

ISAC pushes the box to the right using its right arm in Experiment 3B-5a-1.

Experiment 3B-5a-1 Experiment 3B-5a-1

Figure 212 Simulation Results of Experiment 3B-5a-1

261

Figure 213 Generated Motion Trajectories of the Right Arm in Experiment 3B-5a-1

400

600

800 -500

0

500

1000
-600
-400
-200

0
200
400

Y Axis(mm)

Motion of Right Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Right Arm

0 50 100 150 200
-500

0

500

1000

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Right Arm

0 50 100 150 200
-600

-400

-200

0

200

400

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Right Arm

262

Figure 214 Generated Motion Trajectories of the Left Arm in Experiment 3B-5a-1

ISAC pushes the box to the right using its right arm in Experiment 3B-5a-2.

Experiment 3B-5a-2 Experiment 3B-5a-2

Figure 215 Simulation Results of Experiment 3B-5a-2

400

600

800 -1000

-500

0

500

-600

-400

-200

Y Axis(mm)

Motion of Left Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Left Arm

0 50 100 150 200
-1000

-500

0

500

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Left Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Left Arm

263

ISAC finds that it cannot push the box to the right using either of the arms in

Experiment 3B-5a-3.

Experiment 3B-5a-3 Experiment 3B-5a-3 Experiment 3B-5a-3

Figure 216 Simulation Results of Experiment 3B-5a-3

ISAC finds that it cannot push the box to the right using either of the arms in

Experiment 3B-5a-3.

Experiment 3B-5a-4 Experiment 3B-5a-4 Experiment 3B-5a-4

Figure 217 Simulation Results of Experiment 3B-5a-4

ISAC pushes the box to the right using its right arm in Experiment 3B-5b-1.

264

Experiment 3B-5b-1 Experiment 3B-5b-1

Figure 218 Simulation Results of Experiment 3B-5b-1

ISAC pushes the box to the right using its right arm in Experiment 3B-5b-2.

Experiment 3B-5b-2 Experiment 3B-5b-2

Figure 219 Simulation Results of Experiment 3B-5b-2

ISAC pushes the box to the right using its right arm in Experiment 3B-5b-3.

265

Experiment 3B-5b-3 Experiment 3B-5b-3

Figure 220 Simulation Results of Experiment 3B-5b-3

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-5b-4. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

Experiment 3B-5b-4 Experiment 3B-5b-4 Experiment 3B-5b-4

Figure 221 Simulation Results of Experiment 3B-5b-4

ISAC pushes the box to the right using its right arm in Experiment 3B-5c-1.

266

Experiment 3B-5c-1 Experiment 3B-5c-1

Figure 222 Simulation Results of Experiment 3B-5c-1

ISAC pushes the box to the right using its right arm in Experiment 3B-5c-2.

Experiment 3B-5c-2 Experiment 3B-5c-2

Figure 223 Simulation Results of Experiment 3B-5c-2

ISAC pushes the box to the right using its right arm in Experiment 3B-5c-3.

267

Experiment 3B-5c-3 Experiment 3B-5c-3

Figure 224 Simulation Results of Experiment 3B-5c-3

ISAC pushes the box to the right using its right arm in Experiment 3B-5c-4.

Experiment 3B-5c-4 Experiment 3B-5c-4

Figure 225 Simulation Results of Experiment 3B-5c-4

ISAC pushes the box to the right using its right arm in Experiment 3B-5d-1.

268

Experiment 3B-5d-1 Experiment 3B-5d-1

Figure 226 Simulation Results of Experiment 3B-5d-1

ISAC pushes the box to the right using its right arm in Experiment 3B-5d-2.

Experiment 3B-5d-2 Experiment 3B-5d-2

Figure 227 Simulation Results of Experiment 3B-5d-2

ISAC pushes the box to the right using its right arm in Experiment 3B-5d-3.

269

Experiment 3B-5d-3 Experiment 3B-5d-3

Figure 228 Simulation Results of Experiment 3B-5d-3

ISAC finds that it cannot push the box to the right using either of the arms in

Experiment 3B-5d-4.

Experiment 3B-5d-4 Experiment 3B-5d-4 Experiment 3B-5d-4

Figure 229 Simulation Results of Experiment 3B-5d-4

ISAC pushes the box to the right using its right arm in Experiment 3B-6a-1.

270

Experiment 3B-6a-1 Experiment 3B-6a-1

Figure 230 Simulation Results of Experiment 3B-6a-1

Figure 231 Generated Motion Trajectories of the Right Arm in Experiment 3B-6a-1

400

600

800 -500

0

500

1000-600

-400

-200
0

200

400

Y Axis(mm)

Motion of Right Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)
PosX of Right Arm

0 50 100 150 200
-500

0

500

1000

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Right Arm

0 50 100 150 200
-600

-400

-200

0

200

400

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Right Arm

271

Figure 232 Generated Motion Trajectories of the Left Arm in Experiment 3B-6a-1.

ISAC pushes the box to the right using its right arm in Experiment 3B-6a-2.

Experiment 3B-6a-2 Experiment 3B-6a-2

Figure 233 Simulation Results of Experiment 3B-6a-2

400

600

800 -1000

-500

0

500

-600

-400

-200

Y Axis(mm)

Motion of Left Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Left Arm

0 50 100 150 200
-1000

-500

0

500

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Left Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Left Arm

272

ISAC finds that it cannot push the box to the right either of the arms in

Experiment 3B-6a-3.

Experiment 3B-6a-3 Experiment 3B-6a-3Experiment 3B-6a-3

Figure 234 Simulation Results of Experiment 3B-6a-3

ISAC finds that it cannot push the box to the right using either of the arms in

Experiment 3B-6a-4.

Experiment 3B-6a-4 Experiment 3B-6a-4Experiment 3B-6a-4

Figure 235 Simulation Results of Experiment 3B-6a-4

ISAC pushes the box to the right using its right arm in Experiment 3B-6b-1.

273

Experiment 3B-6b-1 Experiment 3B-6b-1

Figure 236 Simulation Results of Experiment 3B-6b-1

ISAC pushes the box to the right using its right arm in Experiment 3B-6b-2.

Experiment 3B-6b-2 Experiment 3B-6b-2

Figure 237 Simulation Results of Experiment 3B-6b-2

ISAC pushes the box to the right using its right arm in Experiment 3B-6b-3.

274

Experiment 3B-6b-3 Experiment 3B-6b-3

Figure 238 Simulation Results of Experiment 3B-6b-3

ISAC pushes the box to the right using its right arm in Experiment 3B-6b-4.

Experiment 3B-6b-4 Experiment 3B-6b-4Experiment 3B-6b-4

Figure 239 Simulation Results of Experiment 3B-6b-4

ISAC pushes the box to the right using its right arm in Experiment 3B-6c-1.

Experiment 3B-6c-1 Experiment 3B-6c-1

Figure 240 Simulation Results of Experiment 3B-6c-1

275

ISAC pushes the box to the right using its right arm in Experiment 3B-6c-2.

Experiment 3B-6c-2 Experiment 3B-6c-2

Figure 241 Simulation Results of Experiment 3B-6c-2

ISAC pushes the box to the right using its right arm in Experiment 3B-6c-3.

Experiment 3B-6c-3 Experiment 3B-6c-3

 Figure 242 Simulation Results of Experiment 3B-6c-3

ISAC pushes the box to the right using its right arm in Experiment 3B-6c-4.

276

Experiment 3B-6c-4 Experiment 3B-6c-4

Figure 243 Simulation Results of Experiment 3B-6c-4

ISAC pushes the box to the right using its right arm in Experiment 3B-6d-1.

Experiment 3B-6d-1 Experiment 3B-6d-1

Figure 244 Simulation Results of Experiment 3B-6d-1

ISAC pushes the box to the right using its right arm in Experiment 3B-6d-2.

277

Experiment 3B-6d-2 Experiment 3B-6d-2

Figure 245 Simulation Results of Experiment 3B-6d-2

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-6d-3. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

Experiment 3B-6d-3 Experiment 3B-6d-3Experiment 3B-6d-3

Figure 246 Simulation Results of Experiment 3B-6d-3

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-6d-4. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

278

Experiment 3B-6d-4 Experiment 3B-6d-4Experiment 3B-6d-4

Figure 247 Simulation Results of Experiment 3B-6d-4

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-7a-1. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

Experiment 3B-7a-1 Experiment 3B-7a-1 Experiment 3B-7a-1

Figure 248 Simulation Results of Experiment 3B-7a-1

279

Figure 249 Generated Motion Trajectories of the Right Arm in Experiment 3B-7a-1

400

600

800 -500

0

500

1000

-600

-400

-200

0

200

400

Y Axis(mm)

Motion of Right Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Right Arm

0 50 100 150 200
-500

0

500

1000

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Right Arm

0 50 100 150 200
-600

-400

-200

0

200

400

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Right Arm

280

Figure 250 Generated Motion Trajectories of the Left Arm in Experiment 3B-7a-1

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-7a-2. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

Experiment 3B-7a-2 Experiment 3B-7a-2 Experiment 3B-7a-2

Figure 251 Simulation Results of Experiment 3B-7a-2

400

600

800 -1000

-500

0

500

-600

-400

-200

Y Axis(mm)

Motion of Left Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Left Arm

0 50 100 150 200
-1000

-500

0

500

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Left Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Left Arm

281

ISAC finds that it cannot push the box to the right using either of the arms in

Experiment 3B-7a-3.

Experiment 3B-7a-3 Experiment 3B-7a-3 Experiment 3B-7a-3

Figure 252 Simulation Results of Experiment 3B-7a-3

ISAC finds that it cannot push the box to the right using either of the arms in

Experiment 3B-7a-4.

Experiment 3B-7a-4 Experiment 3B-7a-4 Experiment 3B-7a-4

Figure 253 Simulation Results of Experiment 3B-7a-4

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-7b-1. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

282

Experiment 3B-7b-1 Experiment 3B-7b-1 Experiment 3B-7b-1

Figure 254 Simulation Results of Experiment 3B-7b-1

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-7b-2. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

Experiment 3B-7b-2 Experiment 3B-7b-2 Experiment 3B-7b-2

Figure 255 Simulation Results of Experiment 3B-7b-2

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-7b-3. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

Experiment 3B-7b-3 Experiment 3B-7b-3 Experiment 3B-7b-3

Figure 256 Simulation Results of Experiment 3B-7b-3

283

ISAC finds that it cannot push the box to the right using either of arms in

Experiment 3B-7b-4.

Experiment 3B-7b-4 Experiment 3B-7b-4 Experiment 3B-7b-4

Figure 257 Simulation Results of Experiment 3B-7b-4

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-7c-1. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

Experiment 3B-7c-1 Experiment 3B-7c-1 Experiment 3B-7c-1

Figure 258 Simulation Results of Experiment 3B-7c-1

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-7c-2. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

284

Experiment 3B-7c-2 Experiment 3B-7c-2 Experiment 3B-7c-2

Figure 259 Simulation Results of Experiment 3B-7c-2

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-7c-3. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

Experiment 3B-7c-3 Experiment 3B-7c-3 Experiment 3B-7c-3

Figure 260 Simulation Results of Experiment 3B-7c-3

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-7c-4. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

Experiment 3B-7c-4 Experiment 3B-7c-4 Experiment 3B-7c-4

Figure 261 Simulation Results of Experiment 3B-7c-4

285

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-7d-1. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

Experiment 3B-7d-1 Experiment 3B-7d-1 Experiment 3B-7d-1

Figure 262 Simulation Results of Experiment 3B-7d-1

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-7d-2. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

Experiment 3B-7d-2 Experiment 3B-7d-2 Experiment 3B-7d-2

Figure 263 Simulation Results of Experiment 3B-7d-2

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-7d-3. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

286

Experiment 3B-7d-3 Experiment 3B-7d-3 Experiment 3B-7d-3

Figure 264 Simulation Results of Experiment 3B-7d-3

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-7d-4. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

Experiment 3B-7d-4 Experiment 3B-7d-4 Experiment 3B-7d-4

Figure 265 Simulation Results of Experiment 3B-7d-4

Experiment 3B-8a-1 Experiment 3B-8a-1 Experiment 3B-8a-1

Figure 266 Simulation Results of Experiment 3B-8a-1

287

Figure 267 Generated Motion Trajectories of the Right Arm in Experiment 3B-8a-1

400

600

800 -500

0

500

1000
-600

-400

-200

0

200

400

Y Axis(mm)

Motion of Right Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Right Arm

0 50 100 150 200
-500

0

500

1000

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Right Arm

0 50 100 150 200
-600

-400

-200

0

200

400

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Right Arm

288

Figure 268 Generated Motion Trajectories of the Left Arm in Experiment 3B-8a-1

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-8a-2. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

Experiment 3B-8a-2 Experiment 3B-8a-2 Experiment 3B-8a-2

Figure 269 Simulation Results of Experiment 3B-8a-2

400

600

800 -1000

-500

0

500
-600

-400

-200

Y Axis(mm)

Motion of Left Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Left Arm

0 50 100 150 200
-1000

-500

0

500

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Left Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Left Arm

289

ISAC finds that it cannot push the box to the right using either of the arms in

Experiment 3B-8a-3.

Experiment 3B-8a-3 Experiment 3B-8a-3 Experiment 3B-8a-3

Figure 270 Simulation Results of Experiment 3B-8a-3

ISAC finds that it cannot push the box to the right using either of the arms in

Experiment 3B-8a-4.

Experiment 3B-8a-4 Experiment 3B-8a-4 Experiment 3B-8a-4

Figure 271 Simulation Results of Experiment 3B-8a-4

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-8b-1. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

290

Experiment 3B-8b-1 Experiment 3B-8b-1 Experiment 3B-8b-1

Figure 272 Simulation Results of Experiment 3B-8b-1

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-8b-2. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

Experiment 3B-8b-2 Experiment 3B-8b-2 Experiment 3B-8b-2

Figure 273 Simulation Results of Experiment 3B-8b-2

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-8b-3. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

Experiment 3B-8b-3 Experiment 3B-8b-3 Experiment 3B-8b-3

Figure 274 Simulation Results of Experiment 3B-8b-3

291

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-8b-4. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

Experiment 3B-8b-4 Experiment 3B-8b-4 Experiment 3B-8b-4

Figure 275 Simulation Results of Experiment 3B-8b-4

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-8c-1. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

Experiment 3B-8c-1 Experiment 3B-8c-1 Experiment 3B-8c-1

Figure 276 Simulation Results of Experiment 3B-8c-1

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-8c-2. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

292

Experiment 3B-8c-2 Experiment 3B-8c-2 Experiment 3B-8c-2

Figure 277 Simulation Results of Experiment 3B-8c-2

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-8c-3. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

Experiment 3B-8c-3 Experiment 3B-8c-3 Experiment 3B-8c-3

Figure 278 Simulation Results of Experiment 3B-8c-3

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-8c-3. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

Experiment 3B-8c-4 Experiment 3B-8c-4 Experiment 3B-8c-4

Figure 279 Simulation Results of Experiment 3B-8c-4

293

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-8d-1. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

Experiment 3B-8d-1 Experiment 3B-8d-1 Experiment 3B-8d-1

Figure 280 Simulation Results of Experiment 3B-8d-1

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-8d-2. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

Experiment 3B-8d-2 Experiment 3B-8d-2 Experiment 3B-8d-2

Figure 281 Simulation Results of Experiment 3B-8d-2

ISAC finds that it cannot push the box to the right using its right arms in

Experiment 3B-8d-3. Then ISAC switches the generated behavior sequence to the left

arm and pushes the box to the right.

294

Experiment 3B-8d-3 Experiment 3B-8d-3 Experiment 3B-8d-3

Figure 282 Simulation Results of Experiment 3B-8d-3

ISAC finds that it cannot push the box to the right using either of the arms in

Experiment 3B-8d-4.

Experiment 3B-8d-4 Experiment 3B-8d-4 Experiment 3B-8d-4

Figure 283 Simulation Results of Experiment 3B-8d-4

--Experiment 3B-1

In experiment 3B-1, the object was placed at location 1 and the obstacle was

placed around it at 4 different locations. ISAC first tried to push the object using its right

arm. If the evaluation failed, ISAC switched to the left arm. If the evaluation still failed,

ISAC refused to complete the task and displayed a message on the screen.

The simulation results of 3B-1 are summarized in Table 28.

295

Table 28 Simulation Results of Experiment 3B-1

 Feasible/

Infeasible

Left/Right Failure Reason Evaluation

Experiment 3B-1a-1 Feasible Right Arm N/A Correct

Experiment 3B-1a-2 Feasible Right Arm N/A Correct

Experiment 3B-1a-3 Infeasible N/A Right Arm: Cannot Reach the Box

Left Arm: Cannot Reach the Box

Wrong

Experiment 3B-1a-4 Infeasible N/A Right Arm: Cannot Reach the Box

Left Arm: Cannot Reach the Box

Correct

Experiment 3B-1b-1 Feasible Right Arm N/A Correct

Experiment 3B-1b-2 Feasible Right Arm N/A Correct

Experiment 3B-1b-3 Feasible Right Arm N/A Correct

Experiment 3B-1b-4 Infeasible N/A Right Arm: Cannot Reach the Box

Left Arm: Cannot Reach the Box

Wrong

Experiment 3B-1c-1 Feasible Right Arm N/A Correct

Experiment 3B-1c-2 Feasible Right Arm N/A Correct

Experiment 3B-1c-3 Feasible Right Arm N/A Correct

Experiment 3B-1c-4 Feasible Right Arm N/A Correct

Experiment 3B-1d-1 Feasible Right Arm N/A Correct

Experiment 3B-1d-2 Feasible Right Arm N/A Correct

Experiment 3B-1d-3 Feasible Right Arm N/A Correct

Experiment 3B-1d-4 Infeasible N/A Right Arm: Collision with the obstacle

Left Arm: Cannot Reach the Box

Correct

In Experiment 3B-1a-3, 3B-1a-4, 3B-1b-4, and 3B-1d-4, ISAC found that it

cannot push the box using either of its arms if it wanted to avoid the obstacle. So it

displayed a message on the screen and refused to do. The rate of feasibility in Experiment

3B-1 is 75%.

296

In Experiment 3B-1a-3 and 3B-1b-4, ISAC made wrong decisions and refused to

complete the task because it found that it cannot avoid the obstacle in order to push the

box. The reason of causing the wrong decision comes from the obstacle avoidance

module. A potential field-based method is used for ISAC to avoid the obstacle. As the

size of the obstacle increases, the impedance potential field of the obstacle also increases.

So ISAC cannot reach the box to push it because the larger impedance potential field of

the obstacle. The success rate of the evaluation using the IRS in Experiment 3B-1 is

87.5%.

Table 29 displays the running time of the key components in Experiment 3B-1.

As shown in Table 29, the average running time for generating the behavior

sequence in Experiment 3B-1 is 0.0050ms. The average running time for generating

behaviors for the right arm and the left arm is 11.3215ms and 10.9597ms respectively.

The average running time of evaluating the generated behaviors for the right arm

and for the left arm is 0.7758ms and 0.5004ms respectively. In Experiment 3B-1a-1, 3B-

1a-2, 3B-1b-1, 3B-1b-2, 3B-1b-3, 3B-1c-1, 3B-1c-2, 3B-1c-3, 3B-1c-4, 3B-1d-1, 3B-1d-

2, and 3B-1d-3, ISAC only needed to evaluate the behaviors for the right arm and did not

evaluate the behaviors for the left arm, so the running time for evaluating the left arm is

very small: 0.0004ms. That means ISAC evaluated the overall motion trajectory of the

right arm The average running time for evaluating the behaviors for the right arm in these

experiments is: 0.8227ms.

The running time of generating behavior sequence is 0.02% of the overall running

time of the key components. 48.18% and 46.64% of the overall running time is used to

297

generate motion trajectories for the right arm and the left arm respectively. The

evaluation time is 3.30% and 1.85% of the overall running time.

Table 29 Running Time of Key Components in Experiment 3B-1

 BSG BGRA BGLA IRSRA IRSLA

Experiment 3B-1a-1 0.0053 10.2442 10.7762 0.7960 0.0004

Experiment 3B-1a-2 0.0049 10.6272 10.6334 0.7976 0.0000

Experiment 3B-1a-3 0.0049 10.8399 10.4080 0.8653 0.1206

Experiment 3B-1a-4 0.0053 10.6009 11.3017 0.0114 1.1170

Experiment 3B-1b-1 0.0049 10.9897 10.6978 0.8276 0.0004

Experiment 3B-1b-2 0.0049 10.7249 11.1289 0.8296 0.0000

Experiment 3B-1b-3 0.0041 10.5398 10.5373 0.8362 0.0004

Experiment 3B-1b-4 0.0049 10.8218 10.7861 0.8300 0.2635

Experiment 3B-1c-1 0.0049 10.9179 10.4059 0.8288 0.0004

Experiment 3B-1c-2 0.0053 10.7512 11.1691 0.8296 0.0000

Experiment 3B-1c-3 0.0057 18.3274 11.0968 0.8337 0.0000

Experiment 3B-1c-4 0.0049 10.9072 10.8969 0.8313 0.0004

Experiment 3B-1d-1 0.0049 11.3284 11.5369 0.8292 0.0004

Experiment 3B-1d-2 0.0049 10.8949 11.5558 0.8341 0.0004

Experiment 3B-1d-3 0.0049 11.2077 11.1453 0.7992 0.0004

Experiment 3B-1d-4 0.0049 11.4216 11.2787 0.8325 0.0004

Average 0.0050 11.3215 10.9597 0.7758 0.5004

STD 0.0003 1.8915 0.3711 0.2045 0.5388

Percentage 0.02% 48.18% 46.64% 3.30% 1.85%

Unit: millisecond (ms)

--Experiment 3B-2

The simulation results of 3B-2 are summarized in Table 30.

298

Table 30 Simulation Results of Experiment 3B-2

 Feasible/

Infeasible

Left/Right Failure Reason Evaluation

Experiment 3B-2a-1 Infeasible N/A Right Arm: Cannot Reach the Box

Left Arm: Collision with the obstacle

Wrong

Experiment 3B-2a-2 Infeasible N/A Right Arm: Cannot Reach the Box

Left Arm: Collision with the obstacle

Wrong

Experiment 3B-2a-3 Infeasible N/A Right Arm: Cannot Reach the Box

Left Arm: Collision with the obstacle

Correct

Experiment 3B-2a-4 Infeasible N/A Right Arm: Cannot Reach the Box

Left Arm: Cannot Reach the Box

Correct

Experiment 3B-2b-1 Feasible Left Arm Right Arm: Cannot Reach the Box Correct

Experiment 3B-2b-2 Feasible Left Arm Right Arm: Cannot Reach the Box Correct

Experiment 3B-2b-3 Feasible Left Arm Right Arm: Cannot Reach the Box Correct

Experiment 3B-2b-4 Feasible Left Arm Right Arm: Cannot Reach the Box Correct

Experiment 3B-2c-1 Feasible Left Arm Right Arm: Cannot Reach the Box Correct

Experiment 3B-2c-2 Feasible Left Arm Right Arm: Cannot Reach the Box Correct

Experiment 3B-2c-3 Feasible Left Arm Right Arm: Cannot Reach the Box Correct

Experiment 3B-2c-4 Feasible Left Arm Right Arm: Cannot Reach the Box Correct

Experiment 3B-2d-1 Feasible Left Arm Right Arm: Cannot Reach the Box Correct

Experiment 3B-2d-2 Feasible Left Arm Right Arm: Cannot Reach the Box Correct

Experiment 3B-2d-3 Feasible Left Arm Right Arm: Cannot Reach the Box Correct

Experiment 3B-2d-4 Feasible Left Arm Right Arm: Cannot Reach the Box Correct

In Experiment 3B-2a-1, 3B-2a-2, 3B-2b-3, and 3B-2d-4, ISAC found that it

cannot push the box using either of its arms if it wanted to avoid the obstacle. So it

299

displayed a message on the screen and refused to complete the task. The rate of feasibility

in Experiment 3B-2 is 75%.

In Experiment 3B-2a-1 and 3B-2a-2, ISAC made wrong decisions, and refused to

complete the task because it finds that it cannot avoid the obstacle in order to push the

box. The reason of causing the wrong decision still comes from the obstacle avoidance

module. A potential field-based method is used for ISAC to avoid the obstacle. However,

this method usually cannot find a global solution. ISAC can avoid the obstacle in these

methods by moving in the front or the back of the obstacle. However, in these

experiments, ISAC moved in the front of the obstacle, so the arm collided with the

obstacle. The success rate of the evaluation using the IRS in Experiment 3B-2 is 87.5%.

Table 31 displays the running time of key components in Experiment 3B-2.

As shown in Table 31, the average running time for generating the behavior

sequence in Experiment 3B-2 is 0.0050ms. The average running time for generating

behaviors for the right arm and the left arm is 10.7149ms and 13.6738ms respectively.

The average running time of evaluating the generated behaviors for the right arm

and for the left arm is 0.1618ms and 0.9363ms respectively. In the Experiments except

3B-2a-1, 3B-2a-2, 3B-2a-3, 3B-2a-4, ISAC needed to evaluate the overall motion

trajectory of the left arm. The average time for evaluating the behaviors for the left arm in

these experiments is: 1.1278ms.

The running time of generating behavior sequence is 0.02% of the overall running

time of the key components. 42.03% and 53.64% of the overall running time is used to

generate motion trajectories for the right arm and the left arm respectively. The

evaluation time is 0.63% and 3.67% of the overall running time.

300

Table 31 Running Time of Key Components in Experiment 3B-2

 BSG BGRA BGLA IRSRA IRSLA

Experiment 3B-2a-1 0.0049 10.5295 10.5554 0.0784 0.0977

Experiment 3B-2a-2 0.0049 10.6506 10.7955 0.0784 0.0862

Experiment 3B-2a-3 0.0049 10.6358 20.5574 0.0874 0.0825

Experiment 3B-2a-4 0.0049 10.2434 10.2967 0.8805 1.1802

Experiment 3B-2b-1 0.0053 10.4527 10.1432 0.0849 1.1523

Experiment 3B-2b-2 0.0049 10.3411 49.4891 0.3830 1.0969

Experiment 3B-2b-3 0.0049 11.2574 10.8534 0.4027 1.1002

Experiment 3B-2b-4 0.0049 10.8813 10.8760 0.0233 1.1987

Experiment 3B-2c-1 0.0053 10.5414 10.8230 0.0796 1.0997

Experiment 3B-2c-2 0.0049 10.6769 10.6756 0.0788 1.0997

Experiment 3B-2c-3 0.0049 10.3702 10.5981 0.0821 1.1034

Experiment 3B-2c-4 0.0049 11.0722 10.5406 0.0127 1.1650

Experiment 3B-2d-1 0.0049 11.3345 10.4355 0.0853 1.1248

Experiment 3B-2d-2 0.0049 10.4745 10.6157 0.0841 1.1260

Experiment 3B-2d-3 0.0053 10.7413 10.8390 0.0903 1.1125

Experiment 3B-2d-4 0.0053 11.2352 10.6863 0.0570 1.1548

Average 0.0050 10.7149 13.6738 0.1618 0.9363

STD 0.0002 0.3453 9.8691 0.2218 0.4216

Percentage 0.02% 42.03% 53.64% 0.63% 3.67%

--Experiment 3B-3

In Experiment 3B-3a-1, 3B-3a-2, 3B-3b-3, 3B-3d-4, and 3B-3b-4, ISAC found

that it cannot push the box using either of its arms if it wanted to avoid the obstacle. So it

301

displayed a message on the screen and refused to complete the task. The rate of feasibility

in Experiment 3B-2 is 68.75%.

Table 32 Simulation Results of Experiment 3B-3

 Feasible/

Infeasible

Left/Right Failure Reason Evaluation

Experiment 3B-3a-1 Infeasible N/A Right Arm: Collision with the obstacle

Left Arm: Collision with the obstacle

Wrong

Experiment 3B-3a-2 Infeasible N/A Right Arm: Collision with the obstacle

Left Arm: Collision with the obstacle

Wrong

Experiment 3B-3a-3 Infeasible N/A Right Arm: Collision with the obstacle

Left Arm: Collision with the obstacle

Correct

Experiment 3B-3a-4 Infeasible N/A Right Arm: Collision with the obstacle

Left Arm: Collision with the obstacle

Correct

Experiment 3B-3b-1 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-3b-2 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-3b-3 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-3b-4 Infeasible N/A Right Arm: Collision with the object

Left Arm: Cannot reach the box

Correct

Experiment 3B-3c-1 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-3c-2 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-3c-3 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-3c-4 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-3d-1 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-3d-2 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-3d-3 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-3d-4 Feasible Left Arm Right Arm: Collision with the object Correct

302

Table 33 Running Time of Key Components in Experiment 3B-3

 BSG BGRA BGLA IRSRA IRSLA

Experiment 3B-3a-1 0.0053 10.9540 11.3805 0.0849 1.1613

Experiment 3B-3a-2 0.0049 21.0812 10.7795 0.0841 0.0242

Experiment 3B-3a-3 0.0057 11.2931 10.9162 0.0853 0.0127

Experiment 3B-3a-4 0.0057 10.9109 10.5114 0.8855 0.0119

Experiment 3B-3b-1 0.0061 11.2274 10.9675 0.0845 1.1572

Experiment 3B-3b-2 0.0049 11.0221 11.0028 0.3801 1.1556

Experiment 3B-3b-3 0.0053 11.2077 10.9581 0.3891 1.1593

Experiment 3B-3b-4 0.0053 10.9523 11.4322 0.8830 1.1761

Experiment 3B-3c-1 0.0053 11.3666 11.0972 0.0837 1.1568

Experiment 3B-3c-2 0.0049 11.0049 11.2134 0.0311 1.1593

Experiment 3B-3c-3 0.0065 10.8702 10.8756 0.0311 1.1638

Experiment 3B-3c-4 0.0061 10.4043 11.0303 0.0254 1.1630

Experiment 3B-3d-1 0.0057 11.2073 11.1687 0.0833 1.1572

Experiment 3B-3d-2 0.0053 11.1781 11.1728 0.0837 1.1556

Experiment 3B-3d-3 0.0057 10.7097 11.1030 0.0845 1.1568

Experiment 3B-3d-4 0.0053 10.9675 11.1383 0.0853 0.0106

Average 0.0055 11.6473 11.0467 0.2115 0.8738

STD 0.0005 2.5270 0.2241 0.2841 0.5122

Percentage 0.02% 48.97% 46.44% 0.89% 3.67%

Unit: millisecond (ms)

In Experiment 3B-3a-1 and 3B-3a-2, ISAC made wrong decisions, and refused to

complete the task because it finds that it cannot avoid the obstacle in order to push the

box. The reason of causing the wrong decision is the same as in the Experiment 3B-2a-1

and 3B-2a-2. In these experiments, ISAC moved in the front of the obstacle, so the arm

303

collided with the obstacle. The success rate of the evaluation using the IRS in Experiment

3B-3 is 87.5%.

As shown in Table 33, the average running time for generating the behavior

sequence in Experiment 3B-3 is 0.0055ms. The average running time for generating

behaviors for the right and the left arm is 11.6473ms and 11.0467ms respectively.

The average running time of evaluating the generated behaviors for the right arm

and for the left arm is 0.2115ms and 0.8738ms respectively. In the Experiments except

3B-3a-1, 3B-3a-2, 3B-3a-3, 3B-3a-4, and Experiment 3B-3d-4, ISAC needed to evaluate

the overall motion trajectory of the left arm. The average time for evaluating the

behaviors for the left arm in these experiments is 1.1601ms.

The running time of generating behavior sequence is 0.02% of the overall running

time of the key components. 48.97% and 46.44% of the overall running time is used to

generate motion trajectories for the right arm and the left arm respectively. The

evaluation time is 0.89% and 3.67% of the overall running time.

--Experiment 3B-4

In Experiment 3B-4a-3, 3B-4a-4, 3B-4b-4, and 3B-4d-4, ISAC found that it

cannot push the box using either of its arms if it wanted to avoid the obstacle. So it

displayed a message on the screen and refused to complete the task. The rate of feasibility

in Experiment 3B-4 is 75%.

In Experiment 3B-4a-3 and 3B-4b-4, ISAC made wrong decisions, and refused to

complete the task because it found that it cannot avoid the obstacle in order to push the

box. The reason of causing the wrong decision is the same as in the Experiment 3B-1a-3

and 3B-1a-4. In these experiments, ISAC cannot reach the box because the impedance

304

potential field of the obstacle increases. The success rate of the evaluation using the IRS

in Experiment 3B-4 is 87.5%.

Table 34 Simulation Results of Experiment 3B-4

 Feasible/

Infeasible

Left/Rig

ht

Failure Reason Evaluation

Experiment 3B-4a-1 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-4a-2 Feasible Left Arm Right Arm: Collision with the object

Correct

Experiment 3B-4a-3 Infeasible N/A Right Arm: Collision with the object

Left Arm: Cannot reach the box

Wrong

Experiment 3B-4a-4 Infeasible N/A Right Arm: Collision with the object

Left Arm: Collision with the obstacle

Correct

Experiment 3B-4b-1 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-4b-2 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-4b-3 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-4b-4 Infeasible N/A Right Arm: Collision with the object

Left Arm: Cannot reach the box

Wrong

Experiment 3B-4c-1 Feasible Left Arm Right Arm: Collision with the obstacle Correct

Experiment 3B-4c-2 Feasible Left Arm Right Arm: Collision with the obstacle Correct

Experiment 3B-4c-3 Feasible Left Arm Right Arm: Collision with the obstacle Correct

Experiment 3B-4c-4 Feasible Left Arm Right Arm: Collision with the obstacle Correct

Experiment 3B-4d-1 Feasible Left Arm Right Arm: Collision with the obstacle Correct

Experiment 3B-4d-2 Feasible Left Arm Right Arm: Collision with the obstacle Correct

Experiment 3B-4d-3 Feasible Left Arm Right Arm: Collision with the obstacle Correct

Experiment 3B-4d-4 Infeasible N/A Right Arm: Collision with the obstacle

Left Arm: Collision with the obstacle

Correct

305

Table 35 Running Time of Key Components in Experiment 3B-4

 BSG BGRA BGLA IRSRA IRSLA

Experiment 3B-4a-1 0.0049 12.5287 10.8912 0.2159 1.0870

Experiment 3B-4a-2 0.0049 11.0816 23.5251 0.2294 1.1634

Experiment 3B-4a-3 0.0057 10.4700 10.8575 0.2290 1.1519

Experiment 3B-4a-4 0.0049 10.5710 11.4142 0.2725 1.1507

Experiment 3B-4b-1 0.0049 10.6403 10.5722 0.2298 1.2089

Experiment 3B-4b-2 0.0049 10.7380 10.6789 0.2159 1.0883

Experiment 3B-4b-3 0.0049 10.6543 10.6921 0.2315 1.1416

Experiment 3B-4b-4 0.0057 10.8940 10.6325 0.2352 1.0899

Experiment 3B-4c-1 0.0049 11.0320 10.5861 0.2303 1.1412

Experiment 3B-4c-2 0.0057 10.3792 10.5295 0.2298 1.1416

Experiment 3B-4c-3 0.0049 10.2836 10.3784 0.2298 1.1429

Experiment 3B-4c-4 0.0049 11.1022 10.3682 0.2631 1.1429

Experiment 3B-4d-1 0.0053 10.7491 10.4322 0.2315 1.1424

Experiment 3B-4d-2 0.0049 10.6875 10.6149 0.2307 0.3431

Experiment 3B-4d-3 0.0053 10.6543 10.4384 0.2906 0.0935

Experiment 3B-4d-4 0.0061 10.8797 10.3887 0.2771 0.0127

Average 0.0052 10.8341 11.4375 0.2401 0.9526

Standard Deviation 0.0004 0.5100 3.2339 0.0225 0.4044

Percentage 0.02% 46.16% 48.73% 1.02% 4.06%

As shown in Table 35, the average generation time for generating behavior

sequence in Experiment 3B-4 is 0.0052ms. The average running time for generating

behaviors for the right and the left arm is 10.8341ms and 11.4375ms respectively.

306

The average running time of evaluating the generated behaviors for the right arm

and for the left arm is 0.2401ms and 0.9526ms respectively. In the Experiments except

3B-4a-3, 3B-4a-4, 3B-4b-4, and 3B-4d-44, ISAC needed to evaluate the overall motion

trajectory of the left arm. The average time for evaluating the behaviors for the left arm in

these experiments is: 0.9864ms.

The running time of generating behavior sequence is 0.02% of the overall running

time of the key components. 46.16% and 48.73% of the overall running time is used to

generate motion trajectories for the right arm and the left arm respectively. The

evaluation time is 1.02% and 4.06% of the overall running time.

--Experiment 3B-5

In Experiment 3B-5a-3, 3B-5a-4, 3B-5b-4, and 3B-5d-4, ISAC found that it

cannot push the box using either of its arms if it wanted to avoid the obstacle. So it

displayed a message on the screen and refused to complete the task. The rate of feasibility

in Experiment 3B-5 is 75%.

In Experiment 3B-5b-4, ISAC made wrong decisions, and refused to complete the

task because it finds that it cannot avoid the obstacle to push the box. The reason of

causing the wrong decision in Experiment 5b-4 is the same as in the Experiment 3B-1a-3

and 3B-1a-4. The success rate of the evaluation using the IRS in Experiment 3B-5 is

93.75%.

307

Table 36 Simulation Results of Experiment 3B-5

 Feasible/

Infeasible

Left/Right Failure Reason Evaluation

Experiment 3B-5a-1 Feasible Right Arm N/A Correct

Experiment 3B-5a-2 Feasible Right Arm N/A Correct

Experiment 3B-5a-3 Infeasible N/A Right Arm: Cannot Reach the Box

Left Arm: Cannot Reach the Box

Correct

Experiment 3B-5a-4 Infeasible N/A Right Arm: Cannot Reach the Box

Left Arm: Cannot Reach the Box

Correct

Experiment 3B-5b-1 Feasible Right Arm N/A Correct

Experiment 3B-5b-2 Feasible Right Arm N/A Correct

Experiment 3B-5b-3 Feasible Right Arm N/A Correct

Experiment 3B-5b-4 Infeasible Left Arm Right Arm: Cannot Reach the Box

Left Arm: Cannot Reach the Box

Wrong

Experiment 3B-5c-1 Feasible Right Arm N/A Correct

Experiment 3B-5c-2 Feasible Right Arm N/A Correct

Experiment 3B-5c-3 Feasible Right Arm N/A Correct

Experiment 3B-5c-4 Feasible Right Arm N/A Correct

Experiment 3B-5d-1 Feasible Right Arm N/A Correct

Experiment 3B-5d-2 Feasible Right Arm N/A Correct

Experiment 3B-5d-3 Feasible Right Arm N/A Correct

Experiment 3B-5d-4 Infeasible Right Arm Right Arm: Collision with the obstacle

Left Arm: Cannot Reach the Box

Correct

As shown in Table 37, the average running time for generating behavior sequence

in Experiment 3B-5 is 0.0049ms. The average running time for generating behaviors for

the right and the left arm is 11.6536ms and 10.7647ms respectively.

308

Table 37 Running Time of Key Components in Experiment 3B-5

 BSG BGRA BGLA IRSRA IRSLA

Experiment 3B-5a-1 0.0061 13.3260 10.8148 0.7997 0.0000

Experiment 3B-5a-2 0.0045 10.7914 10.1132 0.7738 0.0004

Experiment 3B-5a-3 0.0049 10.1916 10.2397 0.7964 0.2348

Experiment 3B-5a-4 0.0049 10.4371 11.0381 0.7984 0.2672

Experiment 3B-5b-1 0.0045 11.0533 10.7787 0.8300 0.0004

Experiment 3B-5b-2 0.0045 10.8756 10.8197 0.8140 0.0000

Experiment 3B-5b-3 0.0049 11.1030 10.6465 0.8046 0.0004

Experiment 3B-5b-4 0.0049 10.8243 11.3046 0.7988 0.2348

Experiment 3B-5c-1 0.0053 10.9215 10.8403 0.7951 0.0004

Experiment 3B-5c-2 0.0045 22.1186 10.8321 0.7960 0.0004

Experiment 3B-5c-3 0.0049 10.8649 11.1687 0.8321 0.0000

Experiment 3B-5c-4 0.0049 10.9671 10.8132 0.7951 0.0000

Experiment 3B-5d-1 0.0045 10.5143 10.8468 0.7726 0.0000

Experiment 3B-5d-2 0.0049 11.1075 10.6440 0.8387 0.0000

Experiment 3B-5d-3 0.0053 10.5123 10.8813 0.8300 0.0000

Experiment 3B-5d-4 0.0049 10.8489 10.4540 0.8350 0.2422

Average 0.0049 11.6536 10.7647 0.8069 0.0613

STD 0.0004 2.8729 0.3048 0.0209 0.1096

Percentage 0.02% 49.64% 45.85% 3.44% 1.05%

Unit: millisecond (ms)

The average running time of evaluating the generated behaviors for the right arm

and for the left arm is 0.8069ms and 0.0613ms respectively. In Experiment 3B-1a-1, 3B-

1a-2, 3B-1b-1, 3B-1b-2, 3B-1b-3, 3B-1c-1, 3B-1c-2, 3B-1c-3, 3B-1c-4, 3B-1d-1, 3B-1d-

2, and 3B-1d-3, ISAC evaluated the overall motion trajectory of the right arm The

309

average time for evaluating the behaviors for the right arm in these experiments is:

0.8068ms.

The running time of generating behavior sequence is 0.02% of the overall running

time of the key components. 49.64% and 45.85% of the overall running time is used to

generate motion trajectories for the right arm and the left arm respectively. The

evaluation time is 3.44% and 1.05% of the overall running time.

--Experiment 3B-6

In Experiment 3B-6a-4, ISAC found that it cannot push the box using either of its

arms if it wanted to avoid the obstacle. So it displayed a message on the screen and

refused to complete the task. The rate of the feasibility in Experiment 3B-6 is 93.75%.

In all experiments of Experiment 3B-6, ISAC made correct decisions. The success

rate of the IRS evaluation is 100%.

As shown in Table 39, the average running time for generating the behavior

sequence in Experiment 3B-6 is 0.0054ms. The average running time for generating

behaviors for the right and left arm is 15.9670ms and 11.9227ms respectively. In

Experiment 3B-3c-3, the running time for generating behaviors for the right arm is

79.1158. This is due to the interrupt generated by the operating system kernel.

The average running time of evaluating the generated behaviors for the right arm

and for the left arm is 0.8134ms and 1.0514ms respectively. In Experiment 3B-6a-1, 3B-

6a-2, 3B-6b-1, 3B-6b-2, 3B-6b-3, 3B-6c-1, 3B-6c-2, 3B-6c-3, 3B-6c-4, 3B-6d-1, and 3B-

6d-2, ISAC evaluated the overall motion trajectory of the right arm The average time for

evaluating the behaviors for the right arm in these experiments is: 0.9124ms. In

Experiment 3B-6a-3, 3B-6b-4, 3B-6d-3, and 3B-6d-4, ISAC evaluated the overall motion

310

trajectory of the right arm. The average time for evaluating the behaviors for the right

arm in these experiments is: 1.1295ms.

Table 38 Simulation Results of Experiment 3B-6

 Feasible/

Infeasible

Left/Right Failure Reason Evaluation

Experiment 3B-6a-1 Feasible Right Arm N/A Correct

Experiment 3B-6a-2 Feasible Right Arm N/A Correct

Experiment 3B-6a-3 Feasible Left Arm N/A Correct

Experiment 3B-6a-4 Infeasible N/A Right Arm: Cannot Reach the

Box

Left Arm: Cannot Reach the Box

Correct

Experiment 3B-6b-1 Feasible Right Arm N/A Correct

Experiment 3B-6b-2 Feasible Right Arm N/A Correct

Experiment 3B-6b-3 Feasible Right Arm N/A Correct

Experiment 3B-6b-4 Feasible Left Arm Right Arm: Cannot Reach the

Box

Correct

Experiment 3B-6c-1 Feasible Right Arm N/A Correct

Experiment 3B-6c-2 Feasible Right Arm N/A Correct

Experiment 3B-6c-3 Feasible Right Arm N/A Correct

Experiment 3B-6c-4 Feasible Right Arm N/A Correct

Experiment 3B-6d-1 Feasible Right Arm N/A Correct

Experiment 3B-6d-2 Feasible Right Arm N/A Correct

Experiment 3B-6d-3 Feasible Left Arm Right Arm: Cannot reach the Box Correct

Experiment 3B-6d-4 Feasible Left Arm Right Arm: Cannot reach the Box Correct

Table 39 Running Time of Key Components in Experiment 3B-6

311

 BSG BGRA BGLA IRSRA IRSLA

Experiment 3B-6a-1 0.0049 11.1079 11.0504 0.8231 0.0004

Experiment 3B-6a-2 0.0053 11.3571 11.0981 0.8616 0.0004

Experiment 3B-6a-3 0.0057 11.2147 12.3863 0.9655 1.1970

Experiment 3B-6a-4 0.0049 12.2537 12.1227 0.8941 1.1461

Experiment 3B-6b-1 0.0053 13.4459 13.2205 0.9971 0.0004

Experiment 3B-6b-2 0.0049 13.5325 11.4606 0.8555 0.0004

Experiment 3B-6b-3 0.0053 11.1404 12.1285 1.3108 0.0004

Experiment 3B-6b-4 0.0065 13.9360 12.9672 0.8670 1.1400

Experiment 3B-6c-1 0.0057 11.0217 11.5845 0.8526 0.0000

Experiment 3B-6c-2 0.0053 11.1941 11.5804 0.8543 0.0004

Experiment 3B-6c-3 0.0049 79.1158 17.1488 1.0242 0.0004

Experiment 3B-6c-4 0.0057 12.9738 11.0492 0.8009 0.0004

Experiment 3B-6d-1 0.0053 10.8091 10.8616 0.8345 0.0000

Experiment 3B-6d-2 0.0061 11.4084 10.8128 0.8214 0.0000

Experiment 3B-6d-3 0.0049 10.4601 10.7758 0.1588 1.0969

Experiment 3B-6d-4 0.0053 10.5012 10.5159 0.0931 0.6769

Average 0.0054 15.9670 11.9227 0.8134 1.0514

STD 0.0005 16.8770 1.6059 0.2959 0.2123

Percentage 0.02% 53.65% 40.06% 2.73% 3.53%

The running time of generating behavior sequence is 0.02% of the overall running

time of the key components. 53.65% and 40.06% of the overall running time is used to

generate motion trajectories for the right arm and the left arm respectively. The

evaluation time is 2.73% and 3.53% of the overall running time.

--Experiment 3B-7

312

Table 40 Simulation Results of Experiment 3B-7

 Feasible/

Infeasible

Left/Right Failure Reason Evaluation

Experiment 3B-7a-1 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-7a-2 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-7a-3 Infeasible N/A Right Arm: Cannot Reach the Box

Left Arm: Cannot Reach the Box

Wrong

Experiment 3B-7a-4 Infeasible N/A Right Arm: Cannot Reach the Box

Left Arm: Cannot Reach the Box

Correct

Experiment 3B-7b-1 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-7b-2 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-7b-3 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-7b-4 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-7d-1 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-7d-2 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-7d-3 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-7d-4 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-7d-1 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-7d-2 Feasible Left Arm Right Arm: Collision with the obstacle Correct

Experiment 3B-7d-3 Feasible Left Arm Right Arm: Collision with the obstacle Correct

Experiment 3B-7d-4 Infeasible N/A Right Arm: Collision with the obstacle

Left Arm: Collision with the object

Correct

In Experiment 3B-7a-3, 3B-7a-4, and 3B-7d-4, ISAC found that it cannot push

the box using either of its arms if it wanted to avoid the obstacle. So it displayed a

313

message on the screen and refused to complete the task. The rate of the feasibility in

Experiment 3B-7 is 81.25%.

In Experiment 3B-7a-3, ISAC made wrong decisions, and refused to complete the

task because it finds that it cannot avoid the obstacle to push the box. The reason of

causing the wrong decision in Experiment 3B-7a-3 is the same as in the Experiment 3B-

1a-3 and 3B-1a-4. The success rate of the evaluation using the IRS in Experiment 3B-7 is

93.75%.

As shown in Table 41, the average running time for generating the behavior

sequence in Experiment 3B-7 is 0.0053ms. The average running time for generating

behaviors for the right and the left arm is 11.0320 and 11.9550ms respectively.

The average running time of evaluating the generated behaviors for the right arm

and for the left arm is 0.8134ms and 1.0514ms respectively. In the experiments except

Experiment 3B-7a-3, 3B-7a-4, and 3B-7d-4, ISAC evaluated the overall motion

trajectory of the left arm The average time for evaluating the behaviors for the right arm

in these experiments is: 1.1329ms.

The running time of generating behavior sequence is 0.02% of the overall running

time of the key components. 44.84% and 48.60% of the overall running time is used to

generate motion trajectories for the right arm and the left arm respectively. The

evaluation time is 1.94% and 4.60% of the overall running time.

314

Table 41 Running Time of Key Components in Experiment 3B-7

 BSG BGRA BGLA IRSRA IRSLA

Experiment 3B-7a-1 0.0049 10.8419 10.4819 0.4351 1.1383

Experiment 3B-7a-2 0.0041 10.5935 10.7196 0.4384 1.1392

Experiment 3B-7a-3 0.0053 11.1502 21.1058 0.8210 1.1047

Experiment 3B-7a-4 0.0053 10.4798 11.2036 0.8834 1.1231

Experiment 3B-7b-1 0.0057 10.8173 10.3977 0.4536 1.1757

Experiment 3B-7b-2 0.0053 10.4150 10.5258 0.4273 1.1026

Experiment 3B-7b-3 0.0053 10.6120 10.4843 0.4298 1.0850

Experiment 3B-7b-4 0.0057 10.6440 10.8567 0.8284 1.0887

Experiment 3B-7c-1 0.0053 10.7898 10.4889 0.4372 1.1227

Experiment 3B-7c-2 0.0053 11.0217 12.5411 0.4367 1.1457

Experiment 3B-7c-3 0.0053 13.2944 16.5819 0.4372 1.1396

Experiment 3B-7c-4 0.0061 11.5082 11.1313 0.4515 1.1461

Experiment 3B-7d-1 0.0049 11.2750 11.2496 0.4363 1.1445

Experiment 3B-7d-2 0.0049 10.9150 11.4577 0.0989 1.1572

Experiment 3B-7d-3 0.0053 10.9638 11.1843 0.1420 1.1420

Experiment 3B-7d-4 0.0061 11.1904 10.8694 0.4782 1.1494

Average 0.0053 11.0320 11.9550 0.4772 1.1315

Standard Deviation 0.0005 0.6737 2.8628 0.2126 0.0252

Percentage 0.02% 44.84% 48.60% 1.94% 4.60%

315

--Experiment 3B-8

Table 42 Simulation Results of Experiment 3B-8

 Feasible/

Infeasible

Left/Right Failure Reason Evaluation

Experiment 3B-8a-1 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-8a-2 Feasible Left Arm Right Arm: Collision with the object

Correct

Experiment 3B-8a-3 Infeasible N/A Right Arm: Collision with the object

Left Arm: Cannot reach the box

Wrong

Experiment 3B-8a-4 Infeasible N/A Right Arm: Collision with the object

Left Arm: Cannot reach the box

Wrong

Experiment 3B-8b-1 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-8b-2 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-8b-3 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-8b-4 Infeasible N/A Right Arm: Collision with the object

Left Arm: Cannot reach the box

Wrong

Experiment 3B-8c-1 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-8c-2 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-8c-3 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-8c-4 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-8d-1 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-8d-2 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-8d-3 Feasible Left Arm Right Arm: Collision with the object Correct

Experiment 3B-8d-4 Infeasible N/A Right Arm: Collision with the object

Left Arm: Collision with the obstacle

Correct

In Experiment 3B-8a-3, 3B-8a-4, 3B-8b-4, and 3B-8d-4, ISAC found that it

cannot push the box using either of its arms if it wanted to avoid the obstacle. So it

316

displayed a message on the screen and refused to do. The rate of feasibility in Experiment

3B-8 is 75%.

In Experiment 3B-8a-3, 3B-8a-4, and 3B-8b-4, ISAC made wrong decisions, and

refused to complete the task because it finds that it cannot avoid the obstacle to push the

box. The reason of causing the wrong decision in Experiment 3B-7a-3 is the same as in

the Experiment 3B-2 The success rate of the evaluation using the IRS in Experiment 3B-

7 is 81.25%.

As shown in Table 43, the average running time for generating the behavior

sequence in Experiment 3B-8 is 0.0053ms. The average running time for generating

behaviors for the right and the left arm is 10.8341ms and 11.4375ms respectively.

The average running time of evaluating the generated behaviors for the right arm

and for the left arm is 0.2401ms and 0.9526ms respectively. In the experiments except

Experiment 3B-8a-3, 3B-8a-4, 3B-8b-4, and 3B-8d-4, ISAC evaluated the overall motion

trajectory of the left arm. The average time for evaluating the behaviors for the right arm

in these experiments is: 0.9864ms.

The running time of generating behavior sequence is 0.02% of the overall running

time of the key components. 46.16% and 48.73% of the overall running time is used to

generate motion trajectories for the right arm and the left arm respectively. The

evaluation time is 1.02% and 4.06% of the overall running time.

317

Table 43 Running Time of Key Components in Experiment 3B-8

 BSG BGRA BGLA IRSRA IRSLA

Experiment 3B-8a-1 0.0049 12.5287 10.8912 0.2159 1.0870

Experiment 3B-8a-2 0.0049 11.0816 23.5251 0.2294 1.1634

Experiment 3B-8a-3 0.0057 10.4700 10.8575 0.2290 1.1519

Experiment 3B-8a-4 0.0049 10.5710 11.4142 0.2725 1.1507

Experiment 3B-8b-1 0.0049 10.6403 10.5722 0.2298 1.2089

Experiment 3B-8b-2 0.0049 10.7380 10.6789 0.2159 1.0883

Experiment 3B-8b-3 0.0049 10.6543 10.6921 0.2315 1.1416

Experiment 3B-8b-4 0.0057 10.8940 10.6325 0.2352 1.0899

Experiment 3B-8c-1 0.0049 11.0320 10.5861 0.2303 1.1412

Experiment 3B-8c-2 0.0057 10.3792 10.5295 0.2298 1.1416

Experiment 3B-8c-3 0.0049 10.2836 10.3784 0.2298 1.1429

Experiment 3B-8c-4 0.0049 11.1022 10.3682 0.2631 1.1429

Experiment 3B-8d-1 0.0053 10.7491 10.4322 0.2315 1.1424

Experiment 3B-8d-2 0.0049 10.6875 10.6149 0.2307 0.3431

Experiment 3B-8d-3 0.0053 10.6543 10.4384 0.2906 0.0935

Experiment 3B-8d-4 0.0061 10.8797 10.3887 0.2771 0.0127

Average 0.0052 10.8341 11.4375 0.2401 0.9526

Standard Deviation 0.0004 0.5100 3.2339 0.0225 0.4044

Percentage 0.02% 46.16% 48.73% 1.02% 4.06%

D. Major Software Program Files and Functions

Speech

File: DeliverationVoiceNov.cs

318

Function: void rec_SpeechRecognized(object sender, SpeechRecognizedEventArgs e)

This function is triggered by the event of recognized sentences which obey

the rules of the grammar predefined. According to different grammars, this

function chose different actions (e.g., learning, generalization, generation, etc.) for

ISAC.

Vision

File: Perception.cs

Function: void myKinectSensor_AllFramesReady(object sender,

AllFramesReadyEventArgs e)

This Function is triggered by the event of all frames from the Kinect Sensor is

ready for processing. Two types of information is generated and stored in two global

shared arrays respectively:

double [4] objectPosition

double [3] handRightPosition

objectPosition stores the position values of the detected target object:

objectPosition [0] is the value on the X-Axis

objectPosition [1] is the value on the Y-Axis

objectPosition [2] is the value on the Z-Axis

handRightPosition stores the position values of the detected right hand of the

human body:

handRightPosition [0] is the value on the X-Axis

319

handRightPosition [1] is the value on the Y-Axis

handRightPosition [2] is the value on the Z-Axis

Behavior Generalization

File: FeatureAnalysis.m

Function: function [FeaturePreIndex,FeatureInternalIndex,FeaturePostIndex] =

FeatureAnalysis(behaviorName,varargin)

This function generalizes the common features of a basic behavior.

The input of this function is a behavior name and related parameters. The output

is a 3-dimensional vector. The first element of the vector is the number related the most

common feature of the Pre-Condition, the second element of the vector is the number

related the most common feature of the Internal-Constraint, The third element of the

vector is the number related the most common feature of the Post-Result.

Behavior Sequence Generation

File: BehaviorGraph.cs

Function: public ArrayList FindPath(string destination)

This function finds a path in the behavior graph to generate a behavior sequence,

the destination of which is the required behavior.

The input parameter is the name of a required behavior. The output is a ArrayList

which is a behavior sequence. Each element in this ArrayList is a behavior.

Motion Trajectory Generation

320

File: BasicBehaviors.cs

Function: public void GenerateBehaviors(ArrayList behaviorList, ArrayList

parameterList)

This function generated via points of the motion trajectories of all the behaviors in

a behavior sequence.

The input is two ArrayList: the first is the behaviorList which stores the name of

the behaviors in the behavior sequence; the second is parameterList which stores the

task-related parameters. Three global shared ArrayList: generatedTrajectoryX,

generatedTrajectoryY, and generatedTrajectoryZ store X, Y, and Z value of the generated

via points for the behavior sequence.

Internal Rehearsal

File: InternalRehearsalSystem.cs

Function: public bool WorkspaceChecking(double px,double py,double pz)

This function checks whether the via point (the input) is within the working space

of ISAC.

The input is three double values which are the X, Y, and Z values of the via point

respectively. The output is a Boolean value. If it is true, the point is within the working

space of ISAC; If it is false, the point is out of the working space of ISAC.

Function: public bool CollisionChecking(double px, double py, double pz)

This Function whether the arm of ISAC collides with the obstacle given the via

point (the input).

321

The input is three double values which are the X, Y, and Z values of the via point

respectively. The output is a Boolean value. If it is true, collision does not happen; If it is

false, collision Happens.

Arm Control

File: ArmControl.cpp

Function: void InverseKinematicsRight()

This function computes the joint angles of the right arm given the position and

orientation of the right end-effector of ISAC.

Function: void InverseKinematicsLeft()

This function computes the joint angles of the left arm given the position and

orientation of the left end-effector of ISAC.

Function: void PIDRight()

This function computes the required voltage of the regulators to control the right

arm of ISAC.

Function: void PIDLeft()

This function computes the required voltage of the regulators to control the left

arm of ISAC.

Function: void PressureOutputRight()

This function changes the voltages of the regulators which are used control the air

muscles of the right arm of ISAC.

Function: void PressureOutputLeft()

This function changes the voltages of the regulators which are used control the air

muscles of the left arm of ISAC.

322

E. User Manual

ISAC Initialization

The following figure displays how to initialize ISAC.

Start

Turn On Air-

Compressor for

ISAC

Start the Control

Program

DAC Boards Work

Normally?

Waiting for

Commands

End

Close the Control

Program

Turn Off Air-

Compressor for

ISAC

End

N

Y

Figure 284 ISAC Starting Up

1. Turn on the Freezer

323

Figure 285 Freezer

2. Turn on the air valve on the air-tank by rotating counter-clockwise.

Figure 286 Air-Tank

324

3. Flip the switch on the left electrical control cabinet to turn on it

4. Flip the switch on the right electrical control cabinet

5. Press the Reset Button on the right electrical control cabinet to turn on it

6. Rotate the key on the right electrical control cabinet 90 degrees clockwise to turn

on it

Figure 287 Electrical Control Cabinet

7. Turn on the regulators

325

Figure 288 Regulators

8. Start Computer “Octavia”

9. Login on “Octavia” using your own VUNetID and corresponding Password

10. Open Visual C++ 6.0 by selecting “Microsoft Visual C++ 6.0” from the “Start”

menu of Windows

11. Press “File->Open Workspace…”

12. Select the file “C:\Documents and

Settings\User\Desktop\ArmControl\ArmControl.dsw” and open it by double

clicking it.

326

13. Press Ctrl+F5 to run the program, program will check the DAC boards

automatically. If it does not work normally, the program will terminate.

14. If the DAC boards works normally, after 20 seconds, the control program moves

the arms to the home position and waiting for the future commands from other

programs and from the manual input

Deliberation Program

1. Double click DeliberationVoiceNov.sln to open it

2. Press F5 to run the program

Perception Program

1. Connect the USB cable of the Kinect to the Computer Sally

2. Insert the power cable of the Kinect to a power cord outlet

3. Double click Perception.sln to open it

4. Press F5 to run the program

Usage

Learning

1. Give ISAC a speech command: “I will show you how to use the “ ” behavior.”

 is the behavior the human teacher wants to demonstrate, e.g., Reaching the

Object, Push the Object, etc.

2. Give ISAC a speech command: “That’s the demonstration.”

327

 is the index number of the demonstration, e.g., first, second, etc.

3. Give ISAC the speech command: “I am ready”.

ISAC starts to record the motion of the hand of the human teacher when hearing

this command. (Before giving this command, make sure the skeleton of the

human teacher is displayed on the dialog of the perception program.)

4. Give ISAC the speech command: “Stop Recording”.

ISAC stop recording the motion of the hand of the human teacher when hearing

this command.

5. Given ISAC the speech command: “That’s the end of the demonstrations”.

ISAC start generalizing the demonstrations.

The human teacher needs to repeat step 2-4 to give ISAC several

demonstrations for it to generalize.

Generation

1. Put a box on the table in front of ISAC.

Make sure the position values of the box are displayed on the dialog of the

perception program. If there are no position values on the dialog, the box is

outside of the working space of ISAC.

2. Given ISAC a speech command: “Could you push the box to the right” or “Could

you push the box to the left”.

ISAC starts to push the box.

328

REFERENCES

Aiyama, Y., M. Inaba, et al. (1993) Pivoting: A New Method of Graspless Manipulation

of Object by Robot Fingers. Proceedings of the 1993 IEEE/RSJ International

Conference on Intelligent Robots and Systems, Tokyo, Japan, 136-143.

Albus, J. and A. Barbera (2005) Rcs: A Cognitive Architecture for Intelligent Multi-

Agent Systems. Annual Reviews in Control, 29, 87-99.

Albus, J. S. (1991) Outline for a Theory of Intelligence. IEEE Transactions on Systems,

Man and Cybernetics, 21, 473-509.

Ambrose, R. O., H. Aldridge, et al. (2000) Robonaut: Nasa's Space Humanoid. IEEE

Trasaction on Intelligent Systems and their Applications, 15, 57-63.

Amit, R. and M. Matari (2002) Learning Movement Sequences from Demonstration.

Proceedings of the Second International Conference on Development and Learning,

Cambridge, Massachusetts, USA, 203-208.

An, M., T. Taura, et al. (2007) A Study on Acquiring Underlying Behavioral Criteria for

Manipulator Motion by Focusing on Learning Efficiency. IEEE Transactions on

Systems, Man and Cybernetics, Part A, 37, 445-455.

Anderson, J. and C. Lebiere (1998) The Atomic Components of Thought. Lawrence

Erlbaum.

Argall, B., Chernova, S, Veloso, M, and Browning, B (2009) A Survey of Robot

Learning from Demonstration. Robotics and Autonomous Systems, 57, 469-483.

Arikan, O. and D. Forsyth (2002) Interactive Motion Generation from Examples. ACM

Transactions on Graphics, 21, 483-490.

Asada, M., K. MacDorman, et al. (2001) Cognitive Developmental Robotics as a New

Paradigm for the Design of Humanoid Robots. Robotics and Autonomous Systems, 37,

185-193.

Atkeson, C., J. Hale, et al. (2000) Using Humanoid Robots to Study Human Behavior.

IEEE Intelligent Systems and their applications, 15, 46-56.

Atkeson, C. and J. McIntyre (1986) Robot Trajectory Learning through Practice.

Proceedings of the 1986 IEEE Conference on Robotics and Automation, San

Francisco, California, USA, 1737-1742.

Atkeson, C., A. Moore, et al. (1997) Locally Weighted Learning. Artificial intelligence

review, 11, 11-73.

Atkeson, C. and S. Schaal (1997) Learning Tasks from a Single Demonstration.

Proceedings of the 1997 IEEE International Conference on Robotics and Automation,

Albuquerque, New Mexico, USA, 1706-1712.

Atkeson, C. and S. Schaal (1997) Robot Learning from Demonstration. Proceedings of

the Fourteenth International Conference on Machine Learning, San Francisco,

California, USA, 11-73.

Badre, D. (2008) Cognitive Control, Hierarchy, and the Rostro-Caudal Organization of

the Frontal Lobes. Trends in cognitive sciences, 12, 193-200.

Banich, M. T., K. L. Mackiewicz, et al. (2009) Cognitive Control Mechanisms, Emotion

and Memory: A Neural Perspective with Implications for Psychopathology.

Neuroscience & Biobehavioral Reviews, 33, 613-630.

329

Bartholomew, D. (1984) The Foundations of Factor Analysis. Biometrika, 71, 221-232.

Beer, R. (2000) Dynamical Approaches to Cognitive Science. Trends in cognitive

sciences, 4, 91-99.

Begley, S. M. (2008) Gesture Recognition and Mimicking in a Humanoid Robot.

Vanderbilt University.

Begum, M. and F. Karray (2011) Visual Attention for Robotic Cognition: A Survey.

IEEE Transactions on Autonomous Mental Development, 3, 92-105.

Belkin, M. and P. Niyogi (2003) Laplacian Eigenmaps for Dimensionality Reduction and

Data Representation. Neural Computation, 15, 1373-1396.

Benner, P., V. Mehrmann, et al. (2005) Dimension Reduction of Large-Scale Systems.

Springer Berlin, Heidelberg.

Bentivegna, D. and C. Atkeson (2001) Learning from Observation Using Primitives.

Proceedings of the 2001 International Conference on Robotics and Automation,

Seoul, Korea, 1988-1993.

Berndt, D. and J. Clifford (1994) Using Dynamic Time Warping to Find Patterns in Time

Series. Proceedings of the 1994 AAAI Workshop on Knowledge Discovery in

Databases, Seattle, Washington, USA.

Bicho, E. (2012) Towards More Natural Human-Robot Interaction: From Cognitive

Sciences and Neurobiology to Socially Aware/Assistive Robotics. Course Notes, 29.

Bien, Z. and H. Lee (2007) Effective Learning System Techniques for Human-Robot

Interaction in Service Environment. Knowledge-Based Systems, 20, 439-456.

Billard, A. (2001) Learning Motor Skills by Imitation: A Biologically Inspired Robotic

Model. Cybernetics and Systems, 32, 155-193.

Billard, A., S. Calinon, et al. (2007) Robot Programming by Demonstration. Handbook of

robotics. B. Siciliano and O. Khatib. New York, NY, USA, Springer.

Billard, A., S. Calinon, et al. (2006) Discriminative and Adaptive Imitation in Uni-

Manual and Bi-Manual Tasks. Robotics and Autonomous Systems, 54, 370-384.

Bishop, C., M. Svensén, et al. (1998) Gtm: The Generative Topographic Mapping.

Neural Computation, 10, 215-234.

Bitzer, S., I. Havoutis, et al. (2008) Synthesising Novel Movements through Latent Space

Modulation of Scalable Control Policies. Proceedings of the Tenth International

Conference on Simulation of Adaptive Behaviour: From Animals to Animats, Osaka,

Japan, 199-209.

Bitzer, S., S. Klanke, et al. (2009) Does Dimensionality Reduction Improve the Quality

of Motion Interpolation? Proceedings of the Seventeenth European Symposium on

Artificual Neural Networks, Bruges, Belgium, 71–76.

Bitzer, S. and S. Vijayakumar (2009) Latent Spaces for Dynamic Movement Primitives.

Proceedings of the 2009 IEEE-RAS International Conference on Humanoid Robots,

Paris, France, 574-581.

Brock, O. and L. Kavraki (2001) Decomposition-Based Motion Planning: A Framework

for Real-Time Motion Planning in High-Dimensional Configuration Spaces.

Proceedings of the 2001 IEEE International Conference on Robotics and Automation,

Seoul, Korea, 1469-1474.

Brooks, R. (1986) Achieving Artificial Intelligence through Building Robots. Cambridge,

MA, USA, Massachusetts Institute of Technology Artificial Intelligence Laboratory.

330

Brooks, R. (1986) A Robust Layered Control System for a Mobile Robot. IEEE journal

of robotics and automation, 2, 14-23.

Brooks, R. (1991) How to Build Complete Creatures Rather Than Isolated Cognitive

Simulators. Architectures for Intelligence. K. VanLehn. Hillsdale, NJ, Erlbaum, 225–

239.

Brooks, R., C. Breazeal, et al. (1998) Alternative Essences of Intelligence. Proceedings

of the AAAI 1998, Madison, Wisconsin, USA, 961-968.

Brooks, R., C. Breazeal, et al. (1999) The Cog Project: Building a Humanoid Robot.

Computation for Metaphors, Analogy, and Agents. C. Nehaniv. Heidelberg, Berlin,

Germany, Springer-Verlag, 52-87.

Burattini, E., A. Finzi, et al. (2011) Cognitive Control in Cognitive Robotics: Attentional

Executive Control. Proceedings of the 201115th International Conference on

Advanced Robotics (ICAR), Tallinn, Estonia, 359-364.

Calinon, S. and A. Billard (2007) Incremental Learning of Gestures by Imitation in a

Humanoid Robot. Proceedings of the 2007 ACM/IEEE International Conference on

Human-robot interaction, New York, NY, USA, 255-262.

Calinon, S., F. Guenter, et al. (2007) On Learning, Representing, and Generalizing a Task

in a Humanoid Robot. IEEE Transactions on Systems, Man, and Cybernetics, Part B,

37, 286-298.

Carreira-Perpinán, M. (1997) A Review of Dimension Reduction Techniques. University

of Sheffield, Sheffield, UK, Tech. Rep. CS-96-09.

Cassimatis, N., J. Trafton, et al. (2004) Integrating Cognition, Perception and Action

through Mental Simulation in Robots. Robotics and Autonomous Systems, 49, 13-23.

Chella, A., M. Frixione, et al. (1997) A Cognitive Architecture for Artificial Vision* 1.

Artificial Intelligence, 89, 73-111.

Chen, J. and A. Zelinsky (2003) Programing by Demonstration: Coping with Suboptimal

Teaching Actions. The International Journal of Robotics Research, 22, 299.

Chernova, S. and M. Veloso (2007) Confidence-Based Policy Learning from

Demonstration Using Gaussian Mixture Models. Proceedings of the Sixth

international joint conference on Autonomous agents and multiagent systems, New

York, New York, USA, 1315-1322.

Conforth, M. and M. Yan (2011) Charisma: A Context Hierarchy-Based Cognitive

Architecture for Self-Motivated Social Agents. Proceedings of the 2011 International

Joint Conference on Neural Networks (IJCNN), San Jose, California, USA, 1894-

1901.

Crick, C., S. Osentoski, et al. (2011) Human and Robot Perception in Large-Scale

Learning from Demonstration. Proceedings of the Sixth ACM international

conference on Human-robot interaction, New York, New York, USA, 339-346.

Daerden, F. and D. Lefeber (2002) Pneumatic Artificial Muscles: Actuators for Robotics

and Automation. European journal of mechanical and environmental engineering, 47,

11-21.

Delson, N. and H. West (2002) Robot Programming by Human Demonstration:

Adaptation and Inconsistency in Constrained Motion. Proceedings of the 2002 IEEE

International Conference on Robotics and Automation, Washington, DC, USA, 30-36.

Demiris, J. and G. Hayes (1996) Imitative Learning Mechanisms in Robots and Humans.

DAI Research Paper.

331

Deutsch, J. and D. Deutsch (1963) Attention: Some Theoretical Considerations.

Psychological review, 70, 80-90.

Dijkstra, E. W. (1959) A Note on Two Problems in Connexion with Graphs. Numerische

mathematik, 1, 269-271.

Dillmann, R., M. Kaiser, et al. (1995) Acquisition of Elementary Robot Skills from

Human Demonstration. Proceedings of the 1995 International Symposium on

Intelligent Robotic System, Pisa, Italy, 185-192.

Dillmann, R., O. Rogalla, et al. (2000) Learning Robot Behaviour and Skills Based on

Human Demonstration and Advice: The Machine Learning Paradigm. Proceedings of

the Ninth International Symposium of Robotics Research,, Snowbird, UT, USA, 229-

238.

Dodd, W. (2005) The Design of Procedural, Semantic, and Episodic Memory Systems for

a Cognitive Robot. EECS Department. Nashville, Vanderbilt University. Master.

Driscoll, J. A., R. Peters, et al. (1998) A Visual Attention Network for a Humanoid Robot.

Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots

and Systems, Victoria, Canada, 1968-1974.

Edelman, G. (1987) Neural Darwinism: The Theory of Neuronal Group Selection. New

York, NY, USA, Basic Books.

Erdemir, E., C. Frankel, et al. (2008) A Robot Rehearses Internally and Learns an

Affordance Relation. Proceedings of the 2008 IEEE International Conference on

Development and Learning, Monterey, California, USA, 298-303.

Erlhagen, W. and E. Bicho (2006) The Dynamic Neural Field Approach to Cognitive

Robotics. Journal of neural engineering, 3, R36.

Estlin, T., R. Volpe, et al. (2001) Decision-Making in a Robotic Architecture for

Autonomy. Proceedings of the International Symposium on Artificial Intelligence,

Robotics, and Automation in Space, Montreal, Canada.

Fong, T., I. Nourbakhsh, et al. (2003) A Survey of Socially Interactive Robots. Robotics

and Autonomous Systems, 42, 143-166.

Forte, D., A. Ude, et al. (2010) Robot Learning by Gaussian Process Regression.

Proceedings of the 2010 IEEE 19th International Workshop on Robotics in Alpe-

Adria-Danube Region, Balatonfüred, Hungary, 303-308.

Gams, A., A. J. Ijspeert, et al. (2009) On-Line Learning and Modulation of Periodic

Movements with Nonlinear Dynamical Systems. Autonomous Robots, 27, 3-23.

Glas, D., S. Satake, et al. (2011) An Interaction Design Framework for Social Robots.

Robotics: Science and Systems, 7, 89-96.

Gobet, F., P. Lane, et al. (2001) Chunking Mechanisms in Human Learning. Trends in

Cognitive Sciences, 5, 236-243.

Goodrich, M. and A. Schultz (2007) Human-Robot Interaction: A Survey. Foundations

and Trends in Human-Computer Interaction, 1, 203-275.

Gorbenko, A., V. Popov, et al. (2012) Robot Self-Awareness: Exploration of Internal

States. Applied Mathematical Sciences, 6, 675-688.

Gouaillier, D., V. Hugel, et al. (2009) Mechatronic Design of Nao Humanoid.

Proceedings of the 2009 IEEE International Conference on Robotics and Automation,

Kobe, Japan, 769-774.

Haazebroek, P., S. van Dantzig, et al. (2011) A Computational Model of Perception and

Action for Cognitive Robotics. Cognitive Processing, 12, 355-365.

332

Hall III, J. F. (2007) Internal Rehearsal for a Cognitive Robot Using Collision Detection.

EECS Department. Nashville, Vanderbilt University. Master.

Hambuchen, K. A. (2004) Multi-Modal Attention and Event Binding in Humanoid

Robots Using a Sensory Ego-Sphere. Vanderbilt University. PhD.

Hamker, F. (2012) Neural Learning of Cognitive Control. KI - Künstliche Intelligenz, 26,

397-401.

Herzog, D., V. Krüger, et al. (2008) Parametric Hidden Markov Models for Recognition

and Synthesis of Movements. Proceedings of the 2008 British Machine Vision

Conference, Leeds, UK, 163–172.

Ho, E. S. L., T. Komura, et al. (2010) Controlling Humanoid Robots in Topology

Coordinates. Proceedings of the 2010 IEEE/RSJ International Conference on

Intelligent Robots and Systems, Taipei, China, 178-182.

Horowitz, R. (1993) Learning Control of Robot Manipulators. American Society of

Mechanical Engineers Journal of Dynamic Systems, Measure, and Control, 115, 1-32.

Hovland, G., P. Sikka, et al. (1996) Skill Acquisition from Human Demonstration Using

a Hidden Markov Model. Proceedings of the 1996 IEEE International Conference on

Robotics and Automation, Minneapolis, Minnesota, USA, 2706-2711.

Huntsberger, T. (2011) Cognitive Architecture for Mixed Human-Machine Team

Interactions for Space Exploration. Proceedings of the 2011 IEEE Aerospace

Conference, Big Sky, Montana, USA, 1-11.

Ijspeert, A., J. Nakanishi, et al. (2002) Learning Rhythmic Movements by Demonstration

Using Nonlinear Oscillators. Proceedings of the 2002 IEEE/RSJ International

Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 958–963.

Ijspeert, A., J. Nakanishi, et al. (2002) Movement Imitation with Nonlinear Dynamical

Systems in Humanoid Robots. Proceedings of the 2002 IEEE International

Conference on Robotics and Automation, Washington, DC, USA, 1398-1403.

Ijspeert, A., J. Nakanishi, et al. (2003) Learning Attractor Landscapes for Learning Motor

Primitives. Advances in Neural Information Processing Systems, 15, 1523-1530.

Inamura, T., M. Inaba, et al. (1999) Acquisition of Probabilistic Behavior Decision

Model Based on the Interactive Teaching Method. Proceedings of the Ninth

International Conference on Advanced Robotics, Tokyo, Japan, 523–528.

Inamura, T., H. Tanie, et al. (2003) Keyframe Compression and Decompression for Time

Series Data Based on the Continuous Hidden Markov Model. Proceedings of the

2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las

Vegas, Nevada, USA, 1487-1492.

Inamura, T., I. Toshima, et al. (2003) Acquiring Motion Elements for Bidirectional

Computation of Motion Recognition and Generation. Experimental Robotics viii. .

Springer Berlin Heidelberg, 372-381.

Insaurralde, C. C., J. J. Cartwright, et al. (2012) Cognitive Control Architecture for

Autonomous Marine Vehicles. Proceedings of the 2012 IEEE International Systems

Conference, Vancouver, British Columbia, Canada, 1-8.

Jain, A. K., J. Mao, et al. (1996) Artificial Neural Networks: A Tutorial. Computer, 29,

31-44.

Jenkins, O. C. and M. J. Matari (2004) A Spatio-Temporal Extension to Isomap

Nonlinear Dimension Reduction. Proceedings of the Twenty-First International

Conference on Machine Learning, Banff, Canada.

333

Jolliffe, I. (2002) Principal Component Analysis. New York, NY, Springer.

Kaiser, M. and R. Dillmann (1996) Building Elementary Robot Skills from Human

Demonstration. Proceedings of the 1996 IEEE International Conference on Robotics

and Automation, Minneapolis, Minnesota, USA, 2700-2705.

Kalman, R. E. (1960) A New Approach to Linear Filtering and Prediction Problems.

Journal of basic Engineering, 82, 35-45.

Kambhatla, N. and T. Leen (1993) Fast Nonlinear Dimension Reduction. Proceedings of

the 1993 IEEE International Conference on Neural Networks, San Francisco,

California, USA, 1213-1218.

Kambhatla, N. and T. Leen (1997) Dimension Reduction by Local Principal Component

Analysis. Neural Computation, 9, 1493-1516.

KangGeon, K., C. Dongkyu, et al. (2011) Controlling a Humanoid Robot in Home

Environment with a Cognitive Architecture. Proceedings of the 2011 IEEE

International Conference on Robotics and Biomimetics, Phuket Island, Thailand,

1754-1759.

Karaoguz, C., T. Rodemann, et al. (2011) Optimisation of Gaze Movement for

Multitasking Using Rewards. Proceedings of the 2011 IEEE/RSJ International

Conference on Intelligent Robots and Systems, San Francisco, California, USA, 1187-

1193.

Kawamura, K. and W. N. Browne (2009) Cognitive Robotics. Encyclopedia of

Complexity and System Science. R. A. Meyers. Heidelberg, Germany, Springer

Science, 1109-1126.

Kawamura, K. and S. Gordon (2006) From Intelligent Control to Cognitive Control.

Proceedings of the 11th International Symposim on Robotics and Applications

(ISORA), Budapest, Hungary, 24-27.

Kawamura, K., S. Gordon, et al. (2008) Implementation of Cognitive Control for a

Humanoid Robot. International Journal of Humanoid Robotics, 5, 547-586.

Kawamura, K., R. Peters II, et al. (2004) Multiagent-Based Cognitive Robot Architecture

and Its Realization. International Journal of Humanoid Robotics, 1, 65-93.

Kawamura, K., R. A. Peters, et al. (2000) Isac: Foundations in Human-Humanoid

Interaction. IEEE Intelligent Systems and their Applications, 15, 38-45.

Keiras, D. E. and D. E. Meyer (1997) An Overview of the Epic Architecture for

Cognition and Performance with Application to Human-Computer Interaction.

Human-Computer Interaction, 12, 391-438.

Khamassi, M., S. Lallée, et al. (2011) Robot Cognitive Control with a

Neurophysiologically Inspired Reinforcement Learning Model. Frontiers in

neurorobotics, 5, 1-14.

Khatib, O. (1985) Real-Time Obstacle Avoidance for Manipulators and Mobile Robots.

Proceedings of the 1985 IEEE International Conference on Robotics and Automation,

St. Louis, Missouri, 500-505.

Khatib, O., K. Yokoi, et al. (2001) Robots in Human Environments. ARCHIVES OF

CONTROL SCIENCE, 11, 123-138.

Kohonen, T. (1982) Self-Organized Formation of Topologically Correct Feature Maps.

Biological cybernetics, 43, 59-69.

Kohonen, T. (1990) The Self-Organizing Map. Proceedings of the IEEE, 78, 1464-1480.

334

Kohonen, T., S. Kaski, et al. (2002) Self Organization of a Massive Document Collection.

IEEE Transactions on Neural Networks, 11, 574-585.

Kuffner Jr, J. J. and S. M. LaValle (2000) Rrt-Connect: An Efficient Approach to Single-

Query Path Planning. Proceedings of the the 2000 IEEE Conference on Robotics and

Automation, San Francisco, CA, USA, 995-1001.

Kulic, D., D. Lee, et al. (2008) Incremental Learning of Full Body Motion Primitives for

Humanoid Robots. Proceedings of the Eighth IEEE-RAS International Conference on

Humanoid Robots, Daejeon, Korea, 326-332.

Kulic, D., W. Takano, et al. (2008) Combining Automated on-Line Segmentation and

Incremental Clustering for Whole Body Motions. Proceedings of the 2008 IEEE

International Conference on Robotics and Automation, Pasadena, CA, USA, 2591-

2598.

Kuniyoshi, Y., M. Inaba, et al. (1994) Learning by Watching: Extracting Reusable Task

Knowledge from Visual Observation of Human Performance. IEEE Transactions on

Robotics and Automation, 10, 799.

Kuniyoshi, Y., Y. Yorozu, et al. (2003) From Visuo-Motor Self Learning to Early

Imitation-a Neural Architecture for Humanoid Learning. Proceedings of the 2003

IEEE International Conference on Robotics and Automation, Taipei, China, 3132-

3139.

Lawrence, N. (2005) Probabilistic Non-Linear Principal Component Analysis with

Gaussian Process Latent Variable Models. The Journal of Machine Learning

Research, 6, 1816.

Lee, D. and Y. Nakamura (2006) Stochastic Model of Imitating a New Observed Motion

Based on the Acquired Motion Primitives. Proceedings of the 2006 IEEE/RSJ

International Conference on Intelligent Robots and Systems, Beijing, China, 4994-

5000.

Lee, D., C. Ott, et al. (2011) Physical Human Robot Interaction in Imitation Learning.

Proceedings of the 2011 IEEE International Conference on Robotics and Automation,

Shanghai, China, 3439-3440.

Lee, D. and J. Thompson (1982) Vision in Action: The Control of Locomotion. Analysis

of Visual Behavior. D. J. Ingle, M. A. Goodale and R. J. W. Mansfield. Cambridge,

MA, MIT Press, 411–433.

Lehman, J., J. Laird, et al. (1998) A Gentle Introduction to Soar, an Architecture for

Human Cognition. An Invitation to Cognitive Science: Methods, Models, and

Conceptual Issues, 4, 211-253.

Li, R. and X. Wang (2002) Dimension Reduction of Process Dynamic Trends Using

Independent Component Analysis. Computers & Chemical Engineering, 26, 467-473.

Liu, H. and M. Schneider (2012) Similarity Measurement of Moving Object Trajectories.

Proceedings of the Third ACM SIGSPATIAL International Workshop on

GeoStreaming, Redondo Beach, California, USA, 19-22.

Mahadevan, S. and J. Connell (1992) Automatic Programming of Behavior-Based Robots

Using Reinforcement Learning. Artificial Intelligence, 55, 311-365.

Malfaz, M., A. Castro-Gonzalez, et al. (2011) A Biologically Inspired Architecture for an

Autonomous and Social Robot. Autonomous Mental Development, IEEE

Transactions on, 3, 232-246.

335

Mardia, K. V., J. T. Kent, et al. (1980) Multivariate Analysis. New York, New York,

USA, Academic Press.

Marsland, S. (2009) Machine Learning: An Algorithmic Perspective. Chapman &

Hall/CRC.

Mataric, M. (2002) Sensory-Motor Primitives as a Basis for Imitation: Linking

Perception to Action and Biology to Robotics. Imitation in Animals and Artifacts,

391–422.

Mataric, M., M. Williamson, et al. (1998) Behavior-Based Primitives for Articulated

Control. Proceedings of the 1998 International Conference on Simulation of Adaptive

Behavior, Cambridge, Massachusetts, USA, 165–170.

Mataric, M. J. (1992) Integration of Representation into Goal-Driven Behavior-Based

Robots. IEEE Transactions on Robotics and Automation, 8, 304-312.

Maye, A. and A. K. Engel (2011) A Discrete Computational Model of Sensorimotor

Contingencies for Object Perception and Control of Behavior. Proceedings of the

2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai,

China, 3810-3815.

McCarthy, J. (1996) From Here to Human-Level Ai. Artificial Intelligence, 171, 1174-

1182.

Microsoft. from http://www.xbox.com/en-US/kinect.

Mirza, N. A., C. L. Nehaniv, et al. (2007) Grounded Sensorimotor Interaction Histories in

an Information Theoretic Metric Space for Robot Ontogeny. Adaptive Behavior, 15,

167-187.

Mitchell, T. M. (1997) Machine Learning. Burr Ridge, IL: McGraw Hill.

Miyamoto, H. and M. Kawato (1998) A Tennis Serve and Upswing Learning Robot

Based on Bi-Directional Theory. Neural Networks, 11, 1331-1344.

Morita, M. (1993) Associative Memory with Nonmonotone Dynamics. Neural Networks,

6, 115-126.

Morita, M. (1994) Smooth Recollection of a Pattern Sequence by Nonmonotone Analog

Neural Networks. Proceedings of the 1994 IEEE World Congress on Computational

Intelligence, 1032-1037.

Morita, M. (1996) Memory and Learning of Sequential Patterns by Nonmonotone Neural

Networks. Neural Networks, 9, 1477-1489.

Muench, S., J. Kreuziger, et al. (1994) Robot Programming by Demonstration (Rpd)-

Using Machine Learning and User Interaction Methods for the Development of Easy

and Comfortable Robot Programming Systems. Proceedings of the 24th International

Symposium on Industrial Robots, Tokyo, Japan, 685-692.

Munoz, P., M. D. R-Moreno, et al. (2011) A Cognitive Architecture and Simulation

Environment for the Ptinto Robot. Proceedings of the 2011 IEEE Fourth

International Conference on Space Mission Challenges for Information Technology,

Palo Alto, California, USA, 129-136.

Nabeshima, C., Y. Kuniyoshi, et al. (2006) Adaptive Body Schema for Robotic Tool-Use.

Advanced Robotics, 20, 1105-1126.

Nakauchi, Y. and R. Simmons (2002) A Social Robot That Stands in Line. Autonomous

Robots, 12, 313-324.

http://www.xbox.com/en-US/kinect

336

Naksuk, N., C. Lee, et al. (2005) Whole-Body Human-to-Humanoid Motion Transfer.

Proceedings of the 2005 IEEE International Conference on Humanoid Robots,

Tsukuba, Japan, 104-109.

Nehaniv, C. and K. Dautenhahn (2002) The Correspondence Problem. Imitation in

Animals and Artifacts. Chrystopher L. Nehaniv and K. Dautenhahn, 41-61.

Nehaniv, C. and K. Dautenhahn (2007) Imitation and Social Learning in Robots, Humans

and Animals: Behavioural, Social and Communicative Dimensions. Cambridge Univ

Press.

Nicolescu, M. and M. Mataric (2003) Natural Methods for Robot Task Learning:

Instructive Demonstrations, Generalization and Practice. Proceedings of the Second

International Joint Conference on Autonomous Agents and Multiagent Systems,

Melbourne, VIC, Australia 241-248.

Ogawara, K., J. Takamatsu, et al. (2003) Extraction of Essential Interactions through

Multiple Observations of Human Demonstrations. IEEE Transactions on Industrial

Electronics, 50, 667-675.

Pardowitz, M., S. Knoop, et al. (2007) Incremental Learning of Tasks from User

Demonstrations, Past Experiences, and Vocal Comments. IEEE Transactions on

Systems, Man, and Cybernetics, Part B: Cybernetics, 37, 322-332.

Peters II, R. A., K. Hambuchen, et al. (2001) The Sensory Ego-Sphere as a Short-Term

Memory for Humanoids. Proceedings of the 2nd IEEE-RAS International Conference

on Humanoid Robots, Tokyo, Japan, 22-24.

Pfeifer, R., J. Bongard, et al. (2007) How the Body Shapes the Way We Think : A New

View of Intelligence. Cambridge, Mass., MIT Press.

Pook, P. and D. Ballard (1993) Recognizing Teleoperated Manipulations. Proceedings of

the 1993 IEEE International Conference and Robotics and Automation, Atlanta, GA,

USA, 578-585.

Purdy, J. and K. Olmstead (1984) New Estimate for Storage Time in Sensory Memory.

Perceptual and motor skills, 59, 683-686.

Rabiner, L. R. (1989) A Tutorial on Hidden Markov Models and Selected Applications in

Speech Recognition. Proceedings of the IEEE, 77, 257-286.

Ragland, J., J. Yoon, et al. (2007) Neuroimaging of Cognitive Disability in Schizophrenia:

Search for a Pathophysiological Mechanism. International Review of Psychiatry, 19,

417-427.

Rahimi, M. and W. Karwowski (1992) Human-Robot Interaction. Taylor & Francis, Inc.

Bristol, PA, USA.

Rahman, S. and H. Xu (2004) A Univariate Dimension-Reduction Method for Multi-

Dimensional Integration in Stochastic Mechanics. Probabilistic Engineering

Mechanics, 19, 393-408.

Roweis, S. and L. Saul (2000) Nonlinear Dimensionality Reduction by Locally Linear

Embedding. Science, 290, 2323-2326.

Russell, S. J. and P. Norvig (2003) Artificial Intelligence : A Modern Approach. Upper

Saddle River, N.J., Prentice Hall/Pearson Education.

Rybski, P. and R. Voyles (1999) Interactive Task Training of a Mobile Robot through

Human Gesture Recognition. Proceedings of the 1999 IEEE International Conference

on Robotics and Automation, Detroit, Michigan, USA, 664-669.

337

Salem, M., K. Rohlfing, et al. (2011) A Friendly Gesture: Investigating the Effect of

Multimodal Robot Behavior in Human-Robot Interaction. Proceedings of the 20th

IEEE International Symposium on Robot and Human Interactive Communication,

Atlanta, Georgia, USA, 247-252.

Sammon, J., JW (1969) A Nonlinear Mapping for Data Structure Analysis. IEEE

Transactions on Computers, 100, 401-409.

Sánchez Boza, A., R. H. Guerra, et al. (2011) Artificial Cognitive Control System Based

on the Shared Circuits Model of Sociocognitive Capacities. A First Approach.

Engineering Applications of Artificial Intelligence, 24, 209-219.

Šarić, M., C. H. Ek, et al. (2011) Dimensionality Reduction Via Euclidean Distance

Embeddings.

Sauser, E. L., B. D. Argall, et al. (2011) Iterative Learning of Grasp Adaptation through

Human Corrections. Robotics and Autonomous Systems, 60, 55-71.

Schaal, S. (1999) Is Imitation Learning the Route to Humanoid Robots. Trends in

Cognitive Sciences, 3, 233-242.

Schaal, S., A. Ijspeert, et al. (2003) Computational Approaches to Motor Learning by

Imitation. Philosophical Transactions of the Royal Society of London. Series B:

Biological Sciences, 358, 537.

Schneider, W. (1999) Working Memory in a Multilevel Hybrid Connectionist Control

Architecture (Cap2). Models of Working Memory: Mechanisms of Active

Maintenance and Executive Control. A.Miyake and P. Shah. New York, NY, USA,

Cambridge University Press, 340–374.

Schölkopf, B., A. Smola, et al. (1998) Nonlinear Component Analysis as a Kernel

Eigenvalue Problem. Neural Computation, 10, 1299-1319.

Shon, A., K. Grochow, et al. (2005) Robotic Imitation from Human Motion Capture

Using Gaussian Processes. Proceedings of the Fifth IEEE-RAS International

Conference on Humanoid Robots, Tsukuba, Japan, 129-134.

Shrobe, H. and P. Wilson (2006) Chip: A Cognitive Architecture for Comprehensive

Human Intelligence and Performance. Electronic Resource:

http://www.darpa.mil/ipto/programs/bica/phase1.htm.

Shukla, A. and A. Billard (2012) Coupled Dynamical System Based Arm–Hand Grasping

Model for Learning Fast Adaptation Strategies. Robotics and Autonomous Systems,

60, 424-440.

Simmons, R. and D. Apfelbaum (1998) A Task Description Language for Robot Control.

Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots

and Systems, Victoria, Canada, 1931-1937.

Skubic, M. and R. Volz (2000) Acquiring Robust, Force-Based Assembly Skills from

Human Demonstration. IEEE transactions on robotics and automation, 16, 772-781.

Sloman, A. (2009) Some Requirements for Human-Like Robots: Why the Recent over-

Emphasis on Embodiment Has Held up Progress. Creating Brain-Like Intelligence. B.

Sendhoff, 248-277.

Sloman, A., J. Wyatt, et al. (2006) Long Term Requirements for Cognitive Robotics.

Proceedings of the AAAI 2006 Workshop on Cognitive Robotics, Boston,

Massachusetts, USA, 143–150.

Steil, J., F. Röthling, et al. (2004) Situated Robot Learning for Multi-Modal Instruction

and Imitation of Grasping. Robotics and Autonomous Systems, 47, 129-141.

http://www.darpa.mil/ipto/programs/bica/phase1.htm

338

Sumtak. from http://www.sumtak.com/en/products/rotary-encoder/.

Sun, R. (2003) A Tutorial on Clarion. Technical Report. Cognitive Science Department,

Rensselaer Polytechnic Institute. 15, 2003.

Sutton, R. and A. Barto (1998) Reinforcement Learning: An Introduction. The MIT press.

Tan, H. (2011) A Framework for Skill Learning for Cognitive Robots through Semantic

Teaching and Imitation Using a Cognitive Architecture. Journal of Robotics and

Autonomous Systems.

Tan, H. (2012) Imitation Learning and Behavior Generation in a Robot Team.

Proceedings of the 11th International Symposium on Distributed Autonomous

Robotics Systems, Baltimore, Maryland.

Tan, H. (2012) Implementation of a Framework for Imitation Learning on a Humanoid

Robot Using a Cognitive Architecture. The Future of Humanoid Robots: Research

and Applications. R. Zaier, InTech, 189-210.

Tan, H., Q. Du, et al. (2012) Robots Learn Writing. Journal of Robotics, 2012, 15.

Tan, H., E. Erdemir, et al. (2011) A Potential Field Method-Based Extension of the

Dynamic Movement Primitive Algorithm for Imitation Learning with Obstacle

Avoidance. Proceedings of the 2011 IEEE International Conference on Mechatronics

and Automation, Beijing, China, 525-530.

Tan, H. and K. Kawamura (2011) A Computational Framework for Integrating Robotic

Exploration and Human Demonstration in Imitation Learning. Proceedings of the the

2011 IEEE International Conference on System, Man and Cybernetics, Anchorage,

AK, USA, 2501-2506.

Tan, H. and C. Liang (2011) A Conceptual Cognitive Architecture for Robots to Learn

Behaviors from Demonstrations in Robotic Aid Area. Proceedings of the 33rd Annual

International Conference of the IEEE Engineering in Medicine and Biology Society

Boston, MA, USA, 1248-1262.

Tani, J. (2003) Learning to Generate Articulated Behavior through the Bottom-up and the

Top-Down Interaction Processes. Neural Networks, 16, 11-23.

Tani, J., M. Ito, et al. (2004) Self-Organization of Distributedly Represented Multiple

Behavior Schemata in a Mirror System: Reviews of Robot Experiments Using Rnnpb.

Neural Networks, 17, 1273-1289.

Tenenbaum, J., V. Silva, et al. (2000) A Global Geometric Framework for Nonlinear

Dimensionality Reduction. Science, 290, 2319-2323.

Tenorth, M. and M. Beetz (2009) Knowrob—Knowledge Processing for Autonomous

Personal Robots. Proceedings of the 2009 IEEE/RSJ International Conference on

Intelligent Robots and Systems, St.Louis Missouri, 4261-4266.

Theodorou, E., J. Buchli, et al. (2010) A Generalized Path Integral Control Approach to

Reinforcement Learning. The Journal of Machine Learning Research, 11, 3137-3181.

Theodorou, E., J. Buchli, et al. (2010) Reinforcement Learning of Motor Skills in High

Dimensions: A Path Integral Approach. Proceedings of the 2010 IEEE International

Conference on Robotics and Automation, Anchorage, Alaska, USA, 2397-2403.

Thornton, S. R. (2009) Real-Time Gesture Imitation in a Soft-Arm Control Robot. EECS

Department. Nashville, Vanderbilt University. Master.

Tibshirani, R. (1992) Principal Curves Revisited. Statistics and Computing, 2, 183-190.

Tipping, M. and C. Bishop (1999) Probabilistic Principal Component Analysis. Journal

of the Royal Statistical Society: Series B (Statistical Methodology), 61, 611-622.

http://www.sumtak.com/en/products/rotary-encoder/

339

Trafton, J., A. Schultz, et al. (2005) Perspective-Taking with Robots: Experiments and

Models. Proceedings of the 2005 IEEE International Workshop on Robot and Human

Interactive Communication, Nashville, Tennessee, USA, 580-584.

Uchiyama, M. (1978) Formation of High Speed Motion Pattern of Mechanical Arm by

Trial. Transactions, Society of Instrument and Control Engineers, 19, 706-712.

Ude, A., C. Atkeson, et al. (2004) Programming Full-Body Movements for Humanoid

Robots by Observation. Robotics and Autonomous Systems, 47, 93-108.

Vakanski, A., I. Mantegh, et al. (2012) Trajectory Learning for Robot Programming by

Demonstration Using Hidden Markov Model and Dynamic Time Warping. IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 42, 1039-1052.

Verbeek, J., N. Vlassis, et al. (2002) Coordinating Principal Component Analyzers.

Artificial Neural Networks—ICANN 2002, Springer Berlin Heidelberg, 914-919.

Vijayakumar, S. and S. Schaal (2000) Locally Weighted Projection Regression: An O (N)

Algorithm for Incremental Real Time Learning in High Dimensional Space.

Proceedings of the 17th International Conference on Machine Learning, Stanford,

CA, USA, 288–293.

Voyles, R. and P. Khosla (2001) A Multi-Agent System for Programming Robots by

Human Demonstration. Integrated Computer-Aided Engineering, 8, 59-67.

Wang, J., D. Fleet, et al. (2008) Gaussian Process Dynamical Models for Human Motion.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 283-298.

Williams, C. (2002) On a Connection between Kernel Pca and Metric Multidimensional

Scaling. Machine Learning, 46, 11-19.

Wilson, A. D. and A. F. Bobick (1999) Parametric Hidden Markov Models for Gesture

Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21,

884-900.

Winikoff, M. (2005) Jack™ Intelligent Agents: An Industrial Strength Platform. Multi-

Agent Programming. Bordini, Kluwer, 175-193.

Wood, F., K. Esbensen, et al. (1987) Principal Component Analysis. Chemometr. Intel.

Lab. Syst, 2, 37–52.

Yang, J., Y. Xu, et al. (1997) Human Action Learning Via Hidden Markov Model. IEEE

Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 27,

34-44.

Yang, T., J. Zhang, et al. (2006) Motion Planning and Error Analysis in Robot Assistant

Micro-Surgery System. Proceedings of the the 6th World Congress on Intelligent

Control and Automation, Dalian, Liaoning, China, 8819-8823.

Yeasin, M. and S. Chaudhuri (2000) Toward Automatic Robot Programming: Learning

Human Skill Fromvisual Data. IEEE Transactions on Systems, Man, and Cybernetics,

Part B, 30, 180-185.

