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CHAPTER I 

 

INTRODUCTION 

 

Motivation of Work 

In the future, it is expected that humanoid robots will be increasingly used in 

working spaces, homes, public spaces, and other human environments to assist humans or 

to complete tasks independently. In a complex and dynamic environment, it is necessary 

for robots to collect useful information from the environment and try to use available 

resources to complete tasks. This requires robots to make some decisions and find 

solutions to their encountered problems quickly by utilizing their own knowledge and 

current environmental information. Thus, a behavior learning and generation system is 

necessary for robots to learn and generate behaviors in task-relevant situations. In order 

to realize such a system, we have to consider some issues. 

First, we cannot expect that robots can generate behaviors or skills starting from 

scratch to solve problems totally by themselves. One solution is that humans demonstrate 

robots behaviors or skills to robots in advance or on site, and let robots generalize 

behaviors or skills from demonstrations, so that robots will generate necessary behaviors 

to complete tasks. 

Second, working in dynamic task-relevant situations requires robots to collect 

environmental information and use decision-making mechanisms to find solutions. 

Acceptable solutions should enable robots to complete tasks without putting themselves 

or human collaborators in danger and damaging the environment. 
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Finally, learning is crucial for robots to behave more robust in dynamic working-

environment. It is impossible to teach robots everything they need, but it is possible to 

give robots learning methods, using which they can generalize useful information from 

demonstrations of humans and use the generalized behaviors or skills to solve similar but 

slightly different tasks. 

Due to the complexities of the mechanisms of humanoid robots, it is difficult to 

program complex behaviors for robots to use, and it also requires a large amount of time 

for design and programming. Thus, in order to enable humanoid robots to work 

independently or work with humans in task-specific situations, it is necessary to find 

methods for robots to learn required behaviors or skills rapidly either from humans or 

own exploratory trials [Tan and Kawamura, 2011]. 

Robotic imitation learning provides a type of tool for robots to learn behaviors or 

skills from humans[Atkeson and Schaal, 1997] [Billard et al., 2007]. In imitation learning, 

robots learn behaviors and skills from demonstrations of humans and apply these learned 

behaviors and skills to similar but slightly different task-specific situations. Some 

researchers have proposed that imitation learning could be a possible way of teaching 

humanoid robots simple behaviors or skills rapidly [Schaal, 1999]. 

With the development of imitation learning, imitation learning research has been 

gradually formulated into four stages: what-to-imitate, how-to-imitate, when-to-imitate, 

and who-to-imitate [Calinon et al., 2007] [Nehaniv and Dautenhahn, 2002]. What-to-

imitate deals with the problem of acquisition and representation of demonstrations, how-

to-imitate tries to find a method to incorporate the demonstration into a policy-making 

process(partly decision-making), when-to-imitate focuses on the regression model and 
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prediction of the data, and who-to-imitate determines the behavior transfer between 

bodies with dissimilarity [Nehaniv and Dautenhahn, 2007].  

After learning and generalizing behaviors from demonstrations, robots need to 

apply these behaviors to tasks. Current research on imitation learning only tries to 

generate similar motion trajectories [Ijspeert et al., 2003] or generate similar behavior 

sequences [Dillmann et al., 2000] in similar task-relevant situations. These research could 

help robots complete simple tasks. However, when a robot is placed in a largely different 

task-relevant situation, a new approach is needed. 

This dissertation investigate how to generalize common task-relevant features or 

constraints of demonstrated behaviors, how to store learned behaviors in memories, and 

how to generate additional behaviors or behavior sequences to complete tasks. The focus 

of this dissertation is not on the development of a novel algorithm of generating similar 

motion trajectories. The innovative work of imitation learning in this dissertation is to 

find a method for robots to generalize observed behaviors in demonstrations and to use 

learned behaviors in different task-relevant situations. 

The goal of cognitive robotics is to generate human-like intelligence for robots 

which combines perception, action, learning, decision-making, and communication 

[Kawamura and Browne, 2009]. “Cognitive control” is a construct from contemporary 

cognitive neuroscience that refers to processes that allow information processing and 

behavior to vary adaptively from moment to moment depending on current goals, rather 

than remaining rigid and inflexible [Ragland et al., 2007]. Cognitive control processes 

include a broad class of mental operations including goal or context representation and 

maintenance, and strategic processes such as attention allocation and stimulus-response 
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mapping [Ragland et al., 2007]. Cognitive control provides a method for robots to 

interact with humans and robots, and executes suitable behaviors in respond to the 

emergencies and uncertainties in the environment. 

This dissertation additionally investigates how to integrate cognitive control with 

our robotic imitation learning framework, how to implement the integrated cognitive 

architecture, and how to make decisions of switching tasks, learning new behaviors and 

executing suitable behaviors or behavior sequences through cognitive control processes.   

In all, using imitation learning, robots learn behaviors and skills from humans and 

generate similar behaviors or behavior sequences in task-relevant situations; using 

cognitive control methods, robots decide how to use imitation learning framework to 

complete tasks using learned behaviors or switch tasks according their judgments in 

dynamic environment. 

 

Contribution of Work 

 The main contribution of this work will be: (1) a framework to generalize 

demonstrated behaviors and generate behavior sequences using behavior graph; and (2) 

an integrated system which combines imitation learning and cognitive control for a 

humanoid robot to switch strategies to complete tasks. In this dissertation, the 

generalization of demonstrated behaviors, the storage of generalized behaviors and the 

description of the relationship among these learned behaviors, and the generation of 

behaviors or new behavior sequences in new task-relevant situations will be entailed. 

These methods will be integrated in cognitive control processes for robots to deal with 
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dynamic situations. Finally, the developed system will be implemented on a cognitive 

architecture [Kawamura et al., 2008].  

 

Organization of Dissertation 

The rest of this dissertation is organized into four chapters: Chapter II provides an 

overview of fundamental concepts of robotic imitation learning and cognitive control. 

Robotic imitation learning is divided into behavior acquisition, behavior segmentation, 

dimension reduction methods, behavior representation methods and behavior generation. 

Current related research on these topics will be discussed. Cognitive control is to 

switching strategies to achieve an internal goal, and is related to attention, perception, 

sensory-motor coordination, memory, decision-making, learning, internal rehearsal, etc. 

Chapter III explains the integration of robotic imitation learning and cognitive control, as 

well as how system components are designed. Chapter III also describes how to 

implement the integrated system using a cognitive architecture. Chapter IV describes 

three experiments used to test and validate the developed system. Both simulation and 

experimental results using the ISAC humanoid robot are given in this chapter, as well as 

the discussion of results. Chapter V quantitatively evaluates the results of the three 

experiments. Chapter VI concludes this dissertation and proposes future directions of 

research. 
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CHAPTER II 

 

OVERVIEW OF COGNITIVE ROBOTICS, COGNITIVE CONTROL AND 

IMITATION LEARNING 

 

Overview of Cognitive Robotics 

The goal of cognitive robotics is to realize human-like intelligence for robots by 

combining perception, action, learning, decision-making, and communication 

[Kawamura and Browne, 2009]. Design of a cognitive robot is a systematical integration 

work [Cassimatis et al., 2004] which includes four important principles: developmental 

organization, social interaction, embodiment and physical coupling, and multimodal 

integration [Brooks et al., 1998]. Asada and his colleague proposed that cognitive robots 

should interactively collect and analyze information to achieve some level of human 

cognition[Asada et al., 2001]. 

In the nineties, people realized that it was difficult to create truly artificial 

intelligence systems because according to Turing’s test, machines such as robots should 

behave intelligently like a real human, but this is impossible due to the fact that the 

mechanism of human cognition is still not well understood. For example, researchers still 

do not know how the knowledge is stored in the brain, how evolution processes are 

happening in the brain, and how billions of neurons work together to plan and complete a 

complex task. Therefore some researchers think that if the ultimate goal is to make a 

robot agent interact in intelligent way with people, then such an agent should have as the 

basis of its experience [Brooks, 1986].  



7 

 

More and more researchers accepted that robotic cognition should be related to 

the situated environment [Brooks, 1991]. Of course, robotic cognition does not need to 

duplicate human cognition, but researchers often could obtain inspiration from the 

research of human cognition.  

Since it is impossible to emulate exactly how the brain works on humanoid robots 

some researchers tried to define the requirement of intelligence for robots. For example, 

McCathy proposed requirements for human-like robots [McCarthy, 1996]. Sloman 

analyzed McCathy’s statement, combined it with current robotics research and listed 

several long-term goals for cognitive robots, including: required mechanisms, deeply 

embodied agents, informationally disembodied agents, species differences, viewer 

independent affordances, a ‘disembodied’ grasping concept, perceiving processes, 

understanding causation [Sloman et al., 2006] [Sloman, 2009].  

If we accept these design goals for robotic cognition, cognitive robots should have 

the following practical skills: attention, perception, sensory-motor coordination, memory, 

decision-making, learning, internal rehearsal, and interaction. All of the skills will 

involve certain types of behaviors. 

Attention 

Attention mechanism in the cognitive process of selectively concentrating on one 

thing while ignoring others [Deutsch and Deutsch, 1963] [Purdy and Olmstead, 1984] 

[Driscoll et al., 1998] [Begum and Karray, 2011] .  

Perception 

Perception includes not only obtaining the images, audio, and other sensory data 

from the environment, but also extracting useful information from them. Image 
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processing is a tool for this; however, the goal is to map the sensory data into the task-

related data [Crick et al., 2011]. For cognitive robots, the perceptual information is used 

for the processing in a cognitive way. For example, Chella  designed a cognitive 

architecture for robots, which describes the connection between perceptual system and 

the cognitive process in robots [Chella et al., 1997].  

Due to the imprecision of sensors, disturbances and noises in the environment and 

systems, it is necessary to estimate the state of the environment and systems using some 

probabilistic methods. State estimation is done through two types of filter: Bayesian 

Filter and Kalman Filter. 

Bayesian Filter is a commonly used method to find the estimation with the fixed 

probability [Russell and Norvig, 2003]. It is not an optimum one, but it can give overall 

understanding of the process. Kalman Filter is an optimum filter to estimate the current 

state of the process and the future state which can be used in a variety of systems 

[Kalman, 1960]. It originates from the Bayesian Filter. 

Sensory-Motor Coordination 

 When information in the environment and on the robotic body is collected, 

cognitive robots should set tight connections between the sensory information and the 

possible actions [Mataric, 2002]. Sometimes, this type of connections could be 

established through interactions [Mirza et al., 2007]. Such connections enable robots to 

response rapidly, especially for the emergency. 

Memory 

Memory can be divided into two types: Long-Term Memory, and Short-Term 

Memory. 
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Long-Term Memory stores procedural, semantic, and episodic memories; Short-

Term Memory stores information (mainly environmental information from sensors) for a 

short-term.  

Decision-Making 

Decision-Making enables robots to choose a reasonable and suitable action based 

on the collected information [Estlin et al., 2001].  

Learning 

A computer program is said to learn from experience E with respect to some class 

of tasks T and performance measure P, if its performance at tasks in T, as measured by P, 

improves with experience E [Mitchell, 1997] .  

Interaction 

Humans and robots should interact through some communication mechanisms 

[Rahimi and Karwowski, 1992] [Trafton et al., 2005] [Goodrich and Schultz, 2007]. The 

interaction can be implemented through GUI, animations, sounds, touching and other 

methods [Tan, 2011]. Humans can give orders to robots, and robots can send the 

feedback to humans. This is the simplest way of communicating. However, for cognitive 

robots, it is necessary to make the communication more interactive. Especially for robots 

which can be used among humans [Nakauchi and Simmons, 2002], the interaction 

between robots and humans are more important. For service robots, robots should also 

get the feedback from humans [Bien and Lee, 2007]. 

Development of cognitive robotics largely depends on cognitive architectures. 

Brooks  proposed “Subsumption Architecture” for robotic control systems [Brooks, 

1986]. It is a strong connected architecture including several sensory-motor sub-modules 
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called behavior units. In it, behaviors with higher-level priority can suppress the ones 

with lower-level priority. All of the information is processed in parallel to provide fast 

response for robots. 

There are several ways to classify the architectures; one is by the approach, the 

other is by the robotic related information. Cognitive architectures can be divided into 

three types: Symbolic, Connectionist and Hybrid. 

For symbolic type, some well-known architectures are: ACT-R [Anderson and 

Lebiere, 1998], SOAR [Lehman et al., 1998], EPIC [Keiras and Meyer, 1997], Chrest 

[Gobet et al., 2001], and Clarion [Sun, 2003]. These architectures use classical AI 

methods for symbolic computation and manipulation in information processing. Logical 

methods are used for robots to generate actions through reasoning. 

Connectionist type includes: Darwinism [Edelman, 1987] and CAP2 [Schneider, 

1999]. These architectures construct a large inter-connected network to process the 

sensed data and generate actions.  

Many modern researchers have begun to recognize the need of both deliberative 

interaction and reactive interaction for cognitive robots, which motivates the research on 

hybrid architectures [Kawamura et al., 2004]. Hybrid type includes: Subsumption 

[Brooks, 1986], RCS [Albus and Barbera, 2005], CHIP [Shrobe and Wilson, 2006], 

JACK [Winikoff, 2005], and ISAC [Kawamura and Browne, 2009].  

With the skills and mechanism described above, a cognitive robot is able to 

interact with human beings and other robots in a dynamic environment. Brooks [Brooks 

et al., 1998] strongly stresses the importance of embodiment. Beer proposed a field based 

method to solve the interaction between robots and the environment [Beer, 2000] 
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[Erlhagen and Bicho, 2006]. Khatib also used the potential field-based method to solve 

the interaction problem [Khatib et al., 2001]. Interaction requires cognitive robots not 

only to utilize the information in the environment but also to have abilities to 

communicate with humans and other robots [Fong et al., 2003]. Embodiment not only 

lies in the software but also in the hardware [Pfeifer et al., 2007]. 

 

Overview of Cognitive Control 

“Cognitive control” is a construct from contemporary cognitive neuroscience that 

refers to processes that allow information processing and behavior to vary adaptively 

from moment to moment depending on current goals, rather than remaining rigid and 

inflexible [Ragland et al., 2007]. Cognitive control processes include a broad class of 

mental operations including goal or context representation and maintenance, and strategic 

processes such as attention allocation and stimulus-response mapping [Ragland et al., 

2007]. Cognitive control provides a method for robots to interact with humans and robots, 

and executes suitable behaviors in respond to the emergencies and uncertainties in the 

environment.  

Recent research on cognitive control for robots focuses on regulating robotic 

behaviors by analyzing sensory information [Burattini et al., 2011], mapping between 

action observation between appropriate complementary actions [Bicho, 2012], behavior 

control based on Self-Awareness [Gorbenko et al., 2012], control task planning 

[Insaurralde et al., 2012], sensorimotor coordination [Maye and Engel, 2011], 

optimization for multiple control task [Karaoguz et al., 2011], etc. 
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In order to implement cognitive control, robots need to learn the knowledge about 

control strategies first. Reinforcement Learning [Khamassi et al., 2011], ANN  [Sánchez 

Boza et al., 2011] [Hamker, 2012], etc. for robots to learn strategies.  

Cognitive control architectures still receive broad attention from cognitive 

robotics community [Malfaz et al., 2011] [Munoz et al., 2011] [KangGeon et al., 2011] 

[Huntsberger, 2011] [Conforth and Yan, 2011] [Glas et al., 2011] [Haazebroek et al., 

2011].  

A cognitive control framework was developed in our lab [Kawamura and Gordon, 

2006] and implemented as a part of a cognitive robotic architecture in 2008 [Kawamura 

et al., 2008]. Cognitive control functionalities implemented were attention control, 

working memory and internal rehearsal. 

SES, inspired by the egosphere concept defined by Albus [Albus, 1991], serves as 

a spatio-temporal Short Term Memory for a robot [Peters II et al., 2001]. STM handles 

sensor-based percepts that are assigned the focus of attention or gating by the Attention 

Network [Hambuchen, 2004]. Perceived sensory inputs that have a high emotional 

salience, i.e. task-related chunks, will cause the Attention Network to post them to 

Working Memory System (WMS). WMS stores task-related information [Kawamura et 

al., 2004] [Dodd, 2005]. Internal Rehearsal is a tool for the decision-making. Robots do 

not need to apply the actions in the real environment. They can estimate the results using 

the established action model and the environment model. The decisions are making 

before actions using internal rehearsals[Lee and Thompson, 1982] [Erdemir et al., 2008]. 

This is different from simulation because simulation is only a display or duplicate of the 

real experimental process. Additionally, robots can estimate the results of its actions so as 



13 

 

to improve performance. In some circumstances, the robot could even use internal 

rehearsal to learn how to perform new tasks. Such functions cannot be completed by 

simulations. 

 

Overview of Imitation Learning 

In the past, robots could do little without programming by the operators. In order 

for robots to generate behavior, researchers pre-designed behaviors for robots 

[Mahadevan and Connell, 1992] [Brooks et al., 1999]. Generated behaviors are then 

modified through machine learning process. Beginning from the 1970s, researchers 

started to explore possible methods to teach a robot to learn knowledge, skills, and 

behaviors. 

One robot learning area is in which robots learn mappings from states to actions, 

called a policy, enabling a robot to act based upon the current state. A particular 

promising approach to policy learning is called Imitation Learning (IL), also referred to 

as Learning from Demonstration (LfD) or Programming by Demonstration (PbD) 

[Argall, 2009]. In imitation learning, after observing demonstrations, robots generate 

reasonable solutions to solve similar problems by either searching a good solution or 

eliminating a bad solution in the knowledge base [Billard et al., 2007]. This method was 

found efficient for transferring simple skills from human to robot. 

The first exploration in imitation learning was by Uchiyama who trained robots to 

learn motion patterns through trials [Uchiyama, 1978]. The subsequent research focused 

on teaching robots to learn skills or transferring skills between robots. 
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Atkeson and his college in 1986 proposed a prototype of imitation learning 

system and trained robots to learn motions through practice [Atkeson and McIntyre, 

1986]. He started the research in 1980s to teach the robot to move its arm following the 

demonstration as close as possible. This is considered to be a significant prototype of the 

modern imitation learning. 

Earlier in the 1990s, imitation learning still focused on the learning of the 

dynamics of robotic control system [Horowitz, 1993]. Atkeson’s famous inverted 

pedulumn experiment started in the 1990s [Atkeson and Schaal, 1997], in which robots 

were shown a demonstration of swing-up a pendulum. Robots then tried to modify the 

control parameters and control policies to balance it in a upright position with similar 

trajectory to the demonstration as shown in Figure 1.  

 

Figure 1 Swing-Up Experiment [Atkeson and Schaal, 1997] 

Imitation learning can be implemented in two stages: Learning from 

Demonstration, and Generation of Behaviors. Typically, an imitation learning process 

consists of the following steps: 1. A human teacher or a robot demonstrates how to 

complete a task to another robot (often as a form of a  behavior sequence) and another 

robot records the behavior sequence and segment it into a set of behavior primitives; 2. 

Given a similar but different task, the robot generates the same behavior sequence or the 

same behaviors to complete this task.  
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Current research on imitation learning can be divided into two categories [Calinon 

et al., 2007]: one is trying to train robots to extract and learn the motion dynamics 

[Ijspeert et al., 2003], and the other is trying to train robots to learn higher-level behaviors 

and action primitives through imitation [Dillmann et al., 1995] [Mataric et al., 1998]. 

Since the 1990s, researchers began to develop humanoid robots (such as MIT Cog 

[Brooks et al., 1999], NASA Robonaut [Ambrose et al., 2000], Aldebaran’s NAO 

[Gouaillier et al., 2009], Vanderbilt ISAC [Kawamura et al., 2008] and others. Because 

there are many similar physical characteristics between humanoid robots and humans, it 

is also expected that humanoid robots allow to investigate complex truly human-like 

intelligence [Atkeson et al., 2000]. Two problems have been emerged: one is how to 

program the motions of a humanoid robot which has many degrees-of-freedom [Kuffner 

Jr and LaValle, 2000] [Yang et al., 2006], and the other is how to implement human-like 

intelligence on this robotic platform. The first problem lies in the control area and the 

latter lies in the AI area. 

Schaal proposed that imitation learning is a possible solution for the first problem 

[Schaal, 1999]. Billard  analyed the cognitive process of behavior generation in the 

human brain and presented a biologically inspired model for motor skill imitation 

[Billard, 2001]. 

Billard  stated that robots should learn the skills from multiple demonstrations, 

extract the common feature from the demonstratoins, and reproduce the skills in different 

situations [Billard et al., 2007]. 



16 

 

 

Figure 2 Reproduction in Different Situations [Billard et al., 2007] 

Gradually, imitation learning research has been formulated into four stages: what-

to-imitate, how-to-imitate, when-to-imitate, and who-to-imitate [Calinon et al., 2007] 

[Nehaniv and Dautenhahn, 2002]. 

What-to-imitate deals with the problem of acquisition and representation of 

demonstrations, how-to-imitate tries to find a method to incorporate the demonstration 

into a policy-making process(partly decision-making), when-to-imitate focuses on the 

regression model and prediction of the data, and who-to-imitate determines the skills 

transfer between bodies with dissimilarity [Nehaniv and Dautenhahn, 2007].  

In the what-to-imitate stage, demonstrations are represented by mathematical 

models: Fuzzy method[Dillmann et al., 1995], Hidden Markov Model (HMM) [Yang et 

al., 1997], Locally Weighted Regression [Atkeson et al., 1997], Gaussian Process [Wang 

et al., 2008], and Gaussian Mixture Model (GMM) [Calinon et al., 2007]. Because of the 

high DOFs, dimension reduction is applied before the establishment of these 

mathematical models through Principal Component Analysis (PCA) [Wood et al., 1987; 

Calinon et al., 2007], Factor Analysis[Bartholomew, 1984], Principal Curves[Tibshirani, 

1992], ISOmap [Jenkins and Matari 2004] [Jenkins and Matari 2004], or Locally Linear 

Embedding (LLE) [Roweis and Saul, 2000]. 
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In the how-to-imitate stage, Dynamic Movement Primitives (DMP) [Ijspeert et al., 

2003] is widely used, and Calinon proposed a lagrange-equation method to compute 

solutions [Calinon et al., 2007].  

In the when-to-imitate stage, the data prediction is based on the models used in 

what-to-imitate. Additionally, if dimension reduction is applied in what-to-imitate, data 

reconstruction should be taken into consideration. Bishop proposed the Generative 

Topographic Map (GTM) to train the recontruction matrix [Bishop et al., 1998]. 

Lawrence  proposed Gaussian Process Latent Variable Model (GPLVM) by using the 

Expectation-Maximization (EM) method in PCA to interatively compute the 

reconstruction matrix [Lawrence, 2005].  

who-to-imitate is still under investigation. 

From a perspective of system implementation, we can also divided the imitation 

learning framework in to following parts: demonstration acquisition, behavior 

segmentation, dimension reduction, behavior representation, and behavior generation. 

Demonstration Acquisition 

This is the first stage of skill learning by imitation. In this stage, robots record the 

demonstrated motions to complete certain tasks. Demonstrations are given by humans or 

other robots. As shown in Figure 3, robots could use a variety of devices to sense and 

record the demonstrated motions.  
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Figure 3 Robot Senses the World [Kawamura et al., 2008] 

--Recording from Observing 

 The method in which robots use cameras to observe the demonstrations from 

humans is the most common motion recording method [Bentivegna and Atkeson, 2001] 

[Ogawara et al., 2003] [Ude et al., 2004].  

Kuniyoshi proposed a general framework for robots to learn reusable knowledge 

through observation [Kuniyoshi et al., 1994]. 

The observed information was gathered by cameras and sent to the vision server 

for visual and action recognition. The recorded information of the demonstration was the 

movement of the hand of humans and the movement of the objects.  
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Figure 4 A Learning from Observation Framework [Kuniyoshi et al., 1994] 

In [Yeasin and Chaudhuri, 2000], robots not only tracked the objects in the 

environment, but also tracked the hand, and in [Mataric, 2002] the vision information was 

straightly coupled with motor information. 

In our lab, Begley used two cameras to obtain the demonstrations [Begley, 2008]. 

Thronton also used this method [Thornton, 2009]. Using two cameras, robot could obtain 

the positions in a X-Y plane and the depth information. In Begley’s method, the 

movement of a object in a human’s hand was tracked and in Thronton’s method, the 

movement of a hand of a human was tracked. 

--Recording through Manipulating 

In traditional programming of robotic motions, operators use teach-pendants or 

other devices to send control information to robots. The manipulation information is 
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recorded by a device for future use. In [Inamura et al., 1999], a human teacher used a 

joystick to demonstrate how to complete a task. 

--Encoder Recording 

There are many sensors on robots, e.g., encoders on the joints. Calinon and 

Billard trained a robot to learn how to complete a Chess-Moving task called Bucket task 

by manually moving the arm of the robot [Calinon et al., 2007]. The angular information 

is recorded and used to compute the position and orientation of end-effectors. 

--Recording through Sensing the Forces 

Force information has been used for robots to record the demonstration 

information from human teachers. In [Skubic and Volz, 2000], human teachers manually 

moved the end-effector on the arm of a robot and robot computed the trajectory of 

movement using the recorded force information. 

--Recording using Sensors on Humans 

 In order to reduce noises and obtain better recognition or tracking results, 

researchers put sensing devices on human teachers, the movement of which is designed to 

be easily captured by cameras or other electronic sensor devices. In [Voyles and Khosla, 

2001], sensors were mounted on the hand of a human, and the movement information is 

recorded by the sensors on the hand of a human. In [Ijspeert et al., 2002], sensors were 

mounted on the arm and the body of a human teacher, and the robot has been shown a 

demonstration of hitting a ball using a racket. 

 

Figure 5 Sensing using Sensors on the Human Body [Ijspeert et al., 2002] 
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Behavior Segmentation 

Simple tasks can be completed by several behaviors in a behavior sequence.  

Therefore, it is reasonable to segment the behavior sequence into several primitive 

behaviors [Tan, 2012].  

--Hidden Markov Model (HMM)[Rabiner, 1989] 

The sensed information from the demonstrations is both temporal and spatial. 

Therefore, it is necessary to find a mathematical model to describe it temporally and 

spatially. In robotics research, HMM is widely used for behavior segmentation either 

shown by human teachers or executed by robots [Pook and Ballard, 1993] [Hovland et 

al., 1996] [Rybski and Voyles, 1999] [Wilson and Bobick, 1999] [Inamura et al., 2003] 

[Herzog et al., 2008]. 

Yang et al. used a HMM model to segment the demonstrated gestures [Yang et 

al., 1997]. Rybski used this method to segment the behavior of a mobile robot [Rybski 

and Voyles, 1999]. In [Pook and Ballard, 1993], behaviors were also segmented using 

HMM models. The difference between Pook’s method and Yang’s method is that Pook 

segments the measured behaviors in the joint space. In Yang’s method, the 6-dimensional 

information has been combined into 1-dimension.  

The advantages of the HMM method are: robust, flexible, extensible, and easy to 

implement. The disadvantage of HMM method is that the number of states in a behavior 

sequence should be predefined. If a new behavior sequence is generated, it is difficult for 

designers to determine how many states there are in the behavior sequence. 
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--Extension of HMM Method 

In order to avoid the disadvantages of the HMM method, many researchers 

proposed some extensions of the original HMM method. The basic idea is to modify and 

improve the segment criterion or the representation of states.  

--Gaussian Mixture Model (GMM) 

Billard used GMM [Chernova and Veloso, 2007] to describe the states to 

construct the HMM model [Billard et al., 2006]. The basic idea is that different 

segmented parts in the demonstration have different shapes of distributions if GMM is 

used to describe the distributions of the sampled data points.  

As shown in Figure 6, there are eight Gaussian models in the sampled data points, 

each model having different means and variants. Therefore, the states can be described 

upon the means and variants. 

 

Figure 6 Segmentation Results using a GMM Based HMM Model [Billard et al., 2006] 

--Cluster Based Method (CBM) 

Kulic and Nakamura proposed a segmentation method based on the optical flow 

in the environment, which is a cluster based method [Kulic et al., 2008]. This method 

tries to find the similarity between two HMM models. If the Kullback-Leibler distance 
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calculated from is larger than a predefined value, it is considered as a new behavior 

sequence and inserted into the tree as a node. Otherwise, the demonstration is segmented 

based on the model which has the smaller Kullback-Leibler distance to it. 

--Fuzzy Method 

Dillman applied the Fuzzy method in segmenting the behaviors in [Dillmann et 

al., 1995]. The advantage of Fuzzy method is that it is not necessary to predefine the 

number of states in a behavior sequence of a demonstration. However, the disadvantage 

is that it is easy to be affected by the noise. Although some noise reduction methods can 

be used to avoid this bad influence, it is still not easy to use this method in a practical 

environment. 

Dimension Reduction 

The recorded demonstrations are sampled points on the trajectory in data arrays. 

There are many DOFs on humanoid robots. Therefore, the collected data points have high 

dimensions [Bitzer et al., 2009].  

Dimension reduction methods, which project the data from a higher-dimensional 

space to a lower-dimensional space [Sammon, 1969] [Kambhatla and Leen, 1993]  

[Carreira-Perpinán, 1997] [Rahman and Xu, 2004] [Benner et al., 2005] are widely used 

in climate analysis and control, oil data analysis, population analysis, and geographic 

analysis [Carreira-Perpinán, 1997] [Bishop et al., 1998], and can provide a visual 

representation of the data in the 2-D or 3-D space. 

The data come from a single inner space, which is normally called the latent space. 

Dimension reduction methods can extract the internal relationships or features of the 

sampled data points. This is especially useful for robotic research [Bitzer et al., 2008] 
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[Bitzer and Vijayakumar, 2009]. In robotic imitation learning, it is necessary to find the 

internal features of the demonstrated behaviors, because the goal of the imitation learning 

is to learn the key features of the demonstrations [Calinon et al., 2007]. 

Suppose that we have a collected data set  .   is represented as a  matrix: 

  (          )
 .    in this data set is a  -dimensional vector and can be represented 

as a row vector:    (              )  .The objective of dimension reduction is to 

obtain a data set in the low-dimensional space, named the latent space where obtained 

data set is   {  |         }. Each element    is a   -dimensional vector and can be 

presented as    (              ) , where    . Normally,   is represented as a 

matrix   (          )
 . 

--Principal Component Analysis (PCA) 

The basic idea of PCA is to reduce the dimensionality of a data set inside to find 

out variables are related to each other, while keeping as much as possible the variations 

lie in the original analyzed data set [Jolliffe, 2002] [Kambhatla and Leen, 1997] 

[Schölkopf et al., 1998] [Belkin and Niyogi, 2003].  

PCA is widely used for representing the distribution of data on a 2-dimensional 

plane or finding the internal features of the sampled data points [Li and Wang, 2002] 

[Verbeek et al., 2002]. Calinon used this method to represent the sampled position values, 

joints values, hands-object relationship values using a humanoid robot [Calinon et al., 

2007]. 

Tipping and Bishop extended the classical PCA method to a probabilistic 

method[Tipping and Bishop, 1999].  If the sampled data points are represented by using 
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kernel functions in the original data space, the classical PCA is extended to the kernel 

PCA [Williams, 2002]. 

--Factor Analysis (FA) 

The PCA method tries to find the principal components to keep the information, 

such as the variance, as much as possible. However, in the FA, a model is established 

first and the target is to estimate the variance of the factors in the model [Bartholomew, 

1984]. 

--Topology Methods 

Topology methods analyze the sampled data points (in the original high-

dimensional space) by their internal connections and place the data in suitable positions 

in the latent space. The distributions of the data points in the latent space reflect the 

internal topology of the data points in the original space. 

Roweis  proposed Locally Linear Embedding (LLE) [Roweis and Saul, 2000] to 

utilize the neighborhood information to reduce the dimension of the sampled data points. 

The target of this method is to construct a topological manifold and the distribution of the 

data points on this manifold in the latent space that is strongly related to the distribution 

of the neighbors.  

--Multi-Dimensional Scaling (MDS) 

MDS [Mardia et al., 1980] [Šarić et al., 2011] is a method to analyze the 

dissimilarities between data points. MDS can be divided into the Metric (Classical) MDS 

and the Non-Metric MDS. The Metric MDS analyzes the distance between the data 

points and constructs a distance matrix. The distribution of the data points in the latent 

space reflects the chief spatial topology of the original data set. 
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--ISOMAP 

ISOMAP is an extension of the Metric MDS. It constructs the distance matrix by 

connecting the neighbors [Tenenbaum et al., 2000] [Tan et al., 2012]. That means, a 

neighbor distance matrix is constructed first, and then the overall distance matrix is 

computed by connecting the neighbors and adding the distances between the neighbors. 

--Self-Organizing Map (SOM) 

SOM is a recursive method, which analyzes the similarity of the data points and 

automatically places them into a 2-dimensional latent space along with their mutual 

similarity [Kohonen, 1982] [Kohonen, 1990] [Kohonen et al., 2002]. 

--Generative Topology Mapping (GTM) 

An important problem in dimension reduction is how to project the data points 

from the latent space back to the original high-dimensional data space. Only PCA can 

provide the function of the projecting the data points from the original data space to the 

latent space, and from the latent space back to the original data space. Bishop proposed 

the Generative Topology Mapping (GTM) [Bishop et al., 1998], which constructs a 

probabilistic mapping from the latent space to the original data space. 

Behavior Representation 

The behavior representation methods are strongly related to the targets of the 

imitation learning. If the target of the learning is to imitate demonstrated behaviors, the 

behaviors are often described as components, policies or rules in a decision making 

architecture or mechanism; if the target of the learning is to generate behavior sequences 

which are similar to the demonstrations, the behavior sequences are often represented as 

semantic knowledge, etc., and the behaviors are often represented as semantic 
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descriptions, components, etc.; if the target of the learning is to generate motion 

trajectories and the dynamics of the motion trajectories are similar to the demonstrations, 

the motions are often represented as mathematical regression models or probabilistic 

models in a path planning module or mechanism.  

Behaviors are often represented as the raw data to generate motions [Kawamura et 

al., 2008]. These motions can be considered as sequence of sampled points along 

trajectories in Cartesian, Joint space, etc.. Some mathematical models are needed to 

represent the motion trajectories using some mathematic models. We divide the current 

representation methods into several categories: probabilistic methods, semantic methods, 

learning methods and others. 

--Probabilistic Methods 

Gaussian Process (GP) 

GP describes the probabilistic distribution over functions. Forte and Ude used GP 

regression models to teach a humanoid robot to learn reaching [Forte et al., 2010].  

Gaussian Mixture Model (GMM) 

Calinon and Billard  used the GMM method to represent motion trajectories in 

robotic imitation learning [Calinon and Billard, 2007]. This method is applied in the 

research of Billard’s group for grasping experiments [Sauser et al., 2011] [Shukla and 

Billard, 2012] .  

In our lab, Erdemir used GMM models to describe the objects in the environment 

[Erdemir et al., 2008]. As shown in Figure 7, the robot is required to reach the objects on 

the table. 
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Figure 7 ISAC Simulator and Internal Rehearsal [Erdemir et al., 2008] 

First, ISAC tried to reach points in the environment. As shown in the left picture 

of Figure 8, when the end-effector collides with an object, robot records the position of 

the collision in the environment. These collision points can be described using a GMM 

model as shown in the right picture of Figure 8. The target is a ‘hole’ in the GMM model 

and the objects are represented as impedances. 

 

Figure 8 Environmental Modeling using GMM [Erdemir et al., 2008] 

--Hidden Markov Model (HMM) Based Method 

Billard and Calinon proposed that the motions of the behaviors can also be 

described as a HMM model [Billard et al., 2006]. The HMM method was also used by 

Inamura in [Inamura et al., 2003]. In this paper, Inamura tried to train a robot to learn the 
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demonstrated body gestures as shown in Figure 9. Vakanski also applied HMM in robotic 

imitation learning [Vakanski et al., 2012]. 

 

 

Figure 9 A HMM Model for Representing Human Gestures [Inamura et al., 2003] 

--Semantic Methods 

Robots often need to execute a sequence of behaviors (or actions) to achieve the 

task. In such situations, it may be easier to represent behaviors as symbols or semantic 

words/phases in sequences. Such behaviors are often called behavior primitives and 

robots should learn how to assemble behavior primitives into behavior sequences to 

complete a task.  

--Behavior Sequences 

Many researchers try to represent behavior primitives as semantic names with 

parameters [Tan, 2012]. In Rybski’s research, primitives are predefined with 

corresponding descriptions about the specific actions with parameters [Rybski and 

Voyles, 1999]. The demonstrated behaviors are described as a sequence of behavior 

primitives and sequences. Bentivegna and Atkeson also used similar methods to represent 

the behavior primitives and to teach a robot to learn to play table hockeys [Bentivegna 



30 

 

and Atkeson, 2001]. Mataric used a sequence learner for robots to learn behavior 

sequences from human demonstrations using HMM methods [Amit and Matari, 2002]. 

--Behavior Graph 

Arikan used simple nodes to represent the behavior primitives in a behavior graph 

[Arikan and Forsyth, 2002]. The behavior sequence is represented by connecting the 

nodes. The connected nodes are assembled in a temporal order and robots understand that 

the behaviors are in a behavior sequence. The lengths of the node in the lower assembled 

behavior sequence reflect the required time of the execution for the behavior primitive. 

Mataric used a distributed graph to describe the traveled path a robot has learned 

[Mataric, 1992]. Nicolescu  also used simple symbols to represent the behavior primitives 

[Nicolescu and Mataric, 2003]. In his method, several demonstrations are given to 

complete the same task. If two demonstrations are given, a generalized behavior sequence 

is to combine them together while keeping the existing time constraints. The robot only 

keeps the list that embeds the longest of the possible subsequences. In Ogawara’s method, 

several demonstrations are given and robots need to find the common essential segments 

from all the demonstrations [Ogawara et al., 2003]. Each segment is represented as a 

mean and a variance of the positions of the sampled points on the trajectory. Steil 

describes the representation of the demonstrated behavior as a behavior sequence [Steil et 

al., 2004]. Additionally, the segments in the behavior sequence described are not only the 

movement of the arm but also the actions of other actuators. Salem used a chunked verbal 

method to represent the behaviors in a behavior sequence[Salem et al., 2011]. Muench 

tried to teach a robot to pick and place an object in the working space [Muench et al., 

1994]. The observed behaviors are represented as a tree. Similar applications are found in 
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[Pardowitz et al., 2007] and [Kulic et al., 2008]. Tenorth used a hierarchy graph to 

describe the learned behaviors [Tenorth and Beetz, 2009]. Each behavior in his method is 

described a combination of several logic operations. 

--Learning Methods 

Artificial Neural Network (ANN) 

An artificial neuron receives the weighted input and generates an output 

according to the following equation: 

    (∑    

 

   

) ( 1 ) 

where    is the input of the neuron,    is the related weight, and    is an activation 

function. The neurons are connected and placed in multiple layers as shown in Figure 10. 

A hidden layer is designed inside this ANN model. The neurons in each layer receive 

weighted inputs and generate corresponding outputs. The training process is to use the 

current data set to modify the weights.  

 

Figure 10 A Multi-Layer Neural Network Model [Jain et al., 1996] 

Normally, the Back-Propagation algorithm is applied to learn the weights in an 

ANN model [Marsland, 2009]. 
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Tani applied ANN to teach a robot to learn gestures from humans [Tani, 2003] 

[Tani et al., 2004]. He described the behavior sequence as a reactive policy making 

mechanism. 

Nonmonotonic Neural Network (NNN) 

In 1990s, Morita proposed an extension of ANN, called NNN to represent 

sequential patterns [Morita, 1993] [Morita, 1994] [Morita, 1996]. Kuniyoshi used NNN 

for robotic imitation learning [Kuniyoshi et al., 2003] [Nabeshima et al., 2006]. In 

Kuniyoshi’s method, the states are represented as the combination of the sensory neurons, 

where environmental states are stored, and the motor neurons, where the motor data are 

stored. After learning, when the system observes a similar visual motion, it is encoded as 

a temporal sequence of visual feature vectors. It drives the network state close to the 

previously learned trajectory attractor. The state is trapped into the attractor and moves 

along it. Then a NNN model is constructed to record the sequential information about the 

demonstration, which includes the environmental information and the motor information. 

--Topology Coordinate Space Method  

Topology coordinates is the basic representation used for the control of tangling 

motions [Ho et al., 2010]. There are three attributes within this method: writhe, center 

and density.  

--States-Actions Coupling 

In Kaiser and Dillman’s method, the trajectory is considered as a pair description 

between a function of current state  ( ):  ( ( )) and the corresponding actions state 

 ( )  [Kaiser and Dillmann, 1996]. Given a state  ( )  { (   )  (    



33 

 

 )    (     )}, the target is to use the sensed data in the demonstrations to train the 

Radial-Basis Functions (RBF). 

--Regression Methods 

The general idea of the Locally Weighted Regression (LWR) [Atkeson et al., 1997] 

is to find the distance function between the query point and input vector of the data points. 

This method has been extended to Receptive Field Weighted Regression (RFWR) 

[Atkeson et al., 1997] and Locally Weighted Projection Regression (LWPR) 

[Vijayakumar and Schaal, 2000] for modeling the non-linear functions and noisy models, 

in which the distance function  (     ) is modified to calculate the distance between the 

enquiry point and the center of the radial functions scattered in the space. Ijspeert 

[Ijspeert et al., 2003] [Gams et al., 2009], Schaal, and Theodorou [Theodorou et al., 2010] 

[Theodorou et al., 2010] applied this method to represent the learned behaviors. 

--Genetic Programming Method 

In An’s research, dynamic of motion in the demonstration are represented using 

Genetic Process (GP) [An et al., 2007] models. 

--Crucial Points Methods 

Because the noises or errors always exist in the demonstrations, some researchers 

try to use minimum data points to describe the demonstrated motion trajectory. 

Miyamoto [Miyamoto and Kawato, 1998] used “Via-Points” method to teach a 

robot to learn hitting a tennis ball. The number of “Via-Points” is predefined, and the 

algorithm is to find certain number of points. By connecting the “Via-Points”, the error 

between the demonstrated trajectory and the required generalized trajectory should be 

minimized. Chen [Chen and Zelinsky, 2003] used the same method to represent the 
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demonstrated behavior by recording the crucial points in a configuration space. In his 

experiment, a robot is taught to put the spindle into the support. The demonstration 

trajectory is also segmented by finding the crucial points. 

In robotic control, trajectories are represented as sampled points on the trajectory. 

The required trajectory is generated by connecting these sampled points.  

--Tunnel Methods 

Because of the measurement error caused by the sensor or the manipulation error 

caused by humans, trajectories of demonstrations of a task are not always exactly the 

same. Therefore, some researchers tried to describe the required trajectory as a ‘tunnel’ 

and the demonstrated trajectories lie in this tunnel [Delson and West, 2002].  

Delson proposed that the description of the demonstrated trajectories is a region 

which includes the observed trajectories [Delson and West, 2002]. Naksuk [Naksuk et al., 

2005] used a similar method by defining boundary to restrict the demonstrated trajectory 

in a small region. Brock used the same method by expanding the tunnel with a certain 

parameter   [Brock and Kavraki, 2001].  

Behavior Generation 

There are two types of behavior generation methods: one is to generate behaviors 

exactly the same as the demonstrations and the other is to generate similar behaviors in a 

similar but slightly different environment. Both methods can be applied in three 

situations: first is to imitate same behaviors (replicating methods), second is to generate 

behavior sequences, and the third is to generate similar movement trajectories of 

behaviors (adapting methods). 
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--Task Description 

At the generation stage, a task is given by humans and robots need to understand 

given commands to generate required behaviors and their related parameters. A typical 

method is to use natural language processing methods to extract essential units from 

voice commands based on predefined grammars.  

Simmons and Apfelbaum used the Task Description Language to describe given 

tasks [Simmons and Apfelbaum, 1998]. In their method, tasks are defined by using 

constraints and tags. In a given command, robots extract these constraints by matching 

the predesigned grammars. 

--Replicating Methods 

The main goal of the generated motion trajectories in imitation learning is that the 

distances between the generated trajectories and the demonstrated trajectories are 

minimized or that the dynamic characteristics of generated trajectories are similar to the 

demonstrated trajectories based on some metrics. Humans show robots trajectories, and 

robots record them. Robots generate same movement as the demonstrations by driving 

the joints or end-effector strictly following the demonstrated trajectory. This method has 

been applied in many imitation learning cases where robots only imitate the demonstrated 

movements in the same situation. 

Figure 11 displays a diagram of imitation learning proposed by Bentivegna and 

Atkeson[Bentivegna and Atkeson, 2001]. The “learning from observation” module 

segments the observed behavior into predefined primitives, and the segment criterion is 

flexible. This segmented data is then used to provide the encoding for the primitive 

selection, sub-goal generation, and action generation modules. When a new situation is 
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given, robots extract the current context from the observation (normally the current 

environmental information of the task-relevant situation,) and compare the obtained 

context to the stored contexts. A nearest neighbor lookup process is used to find the 

context similar to the current context and its corresponding behavior primitive is selected 

to complete the task.  

 

 

Figure 11 Imitation Learning of Reactive Primitives [Bentivegna and Atkeson, 2001] 

Using this framework, Chernova trained a mobile robot to learn behaviors 

[Chernova and Veloso, 2007]. The policies are represented as a Gaussian Mixture Model 

(GMM). When robot is placed in the environment, it needs to select a policy which is 

related to its current situation context. In our lab, Begley and Thronton applied this 

method for gesture imitation [Begley, 2008] [Thornton, 2009]. Tracked movements of an 

object or a hand have been transformed to the coordinates of the ISAC robot. ISAC then 

generate the same movements by following the transformed movements in its own 

coordinates. 

Arikan used a simplified Genetic Algorithm (GA) to generation motions for a 

robot [Arikan and Forsyth, 2002]. 
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Figure 12 Path Searching[Arikan and Forsyth, 2002] 

The path is generated by connecting the nodes in the graph.  

An used GA to generate the motions of a robotic arm, which are similar to the 

demonstrations [An et al., 2007].   

Lee proposed to use Continuous Hidden Markov Model to generate the required 

actions which is constrained by the observation of the demonstrations [Lee and 

Nakamura, 2006].  

Atkeson proposed that robots should learn the demonstrations through practice 

[Atkeson and McIntyre, 1986]. Figure 13 displays the control architecture of Atkeson’s 

method.    is the required position or joint angle which the joint of a robot should move 

to,   is the actual measured position of joint angle,   is the torque on the joint, and     is 

the feedforward torque. 

 

Figure 13 Control Architecture in Atkeson’s Method [Atkeson and McIntyre, 1986] 
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Demiris proposed to use a predictive architecture to generate required behaviors 

[Demiris and Hayes, 1996]. Figure 14 displays his architecture. The behavior module 

receives current state information and the target goal(s), and a motor command is 

generated to achieve the goal state. The forward model provides an estimate of the next 

state to adapt the PID controller. 

 

Figure 14 Demiris’s Imitation Learning Architecture [Demiris and Hayes, 1996] 

Khatib used the potential field used to generate motions for robots to avoid 

obstacles [Khatib, 1985]. Brock represents the demonstrations using “tunnels”. The 

generation of a path in a tunnel is accomplished by imposing a local-minima free 

potential function in the tunnel. Miyamoto used Via-Points in the representation of the 

demonstrations[Miyamoto and Kawato, 1998]. At the generation stage, given a task, a 

trajectory is generated to pass all Via-Points [Miyamoto and Kawato, 1998]: 

Bitzer proposed that the learned demonstrations are stored in the Latent space, 

and at the generation stage, robots simply map the points in the Latent space to the 

original data space as shown in Figure 15 [Bitzer and Vijayakumar, 2009]. 
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Figure 15 Relationship between Different Spaces [Bitzer and Vijayakumar, 2009] 

As shown in Figure 15, a robot needs to complete a task in the task space, which 

is normally described in the Cartesian space. In the task space, the position and the 

orientation of the end-effector of the robot and the task-relevant objects are described. 

Using inverse kinematics (assuming that they are available), the corresponding joint 

angles are then computed to generate the required positions and orientations of the end-

effector. The data points in the joint space are often projected to a low-dimensional space, 

i.e., latent space. At the generation stage, robots only need to project the data points from 

the latent space to the joint space to generate required movement trajectories. Shon 

applied the latent space approach for robotic imitation learning [Shon et al., 2005].  

Adapting Methods 

--“Lagrangian Method” 

 Calinon and Billard proposed a method to minimize the distance between the 

generated trajectory and the demonstrated trajectory with some constraints [Calinon et al., 

2007]. 

Let    {        } where    is joint angles of the two arms and the torso,    is 

the Cartesian positions of the two hands, and    is the hands-object relationships. Let    

be the positions of the objects.  

          ( 2 ) 

The dimension of the sampled data is reduced using PCA: 
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The elements in    { ̂ 
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} are, respectively, the generalized joint angle 

trajectories, the generalized hand path and the generalized hands-object distance vectors 

extracted from the demonstrations in the latent space. The generated trajectory is 

represented as{  
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The metric of imitation performance is   and is given by: 
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Where   ,   ,    are symmetric weighted matrices, and the target is to find a 

minimum  . 
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So equation (4) is rewritten as  
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The Lagrangian is defined as: 
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where J is the Jacobian matrix of the dynamics model of a robot. 
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In order to minimize the Lagrangian,   is differentiated to obtain the gradient    

and set the gradient equal to zero, 

     ( ̇ 
 
   )         ( 10 ) 
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   )     (  )      ( 11 ) 
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   )       ( 12 ) 

Then,  
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( 14 ) 

Iteratively, the joint angle in the latent space can be calculated as: 

       
          

   ̇     
 
 ( 15 ) 

The joint angles in the original data space are: 

        
    ̅ ( 16 ) 

An example of generating behavior of grasping-moving an object using this 

method is shown in Figure 16. 



42 

 

 

Figure 16 Generation Results in Calinon’s Method [Calinon et al., 2007] 

The solid line is the generalized demonstration of the position of the end-effector, 

the dot line is the reconstructed positions of the end-effector from the sampled angles, 

and the dashed line is the generated trajectory using the above algorithm. 

Figure 17 displays the generation results when the objects are placed at different 

locations. 

 

Figure 17 Generation Results in Calinon’s Method in Similar Situations[Calinon et al., 

2007] 
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--Dynamic Movement Primitive Method 

Schaal proposed an imitation learning architecture using Movement Primitives as 

shown in Figure 18. 

 

Figure 18 Schaal’s Imitation Learning Architecture [Schaal et al., 2003] 

The demonstrated behavior is mapped onto a movement primitive that is defined 

in internal coordinates of the robot: joint angular coordinates   are a good candidate as 

they can be extracted from visual information, a problem addressed as pose estimation in 

computer vision. Such internal coordinates can directly serve as the desired input to a 

motor-command execution stage here and assumed to be composed of a feedback and a 

feed-forward control block. 

Ijspeert proposed to use Dynamic Movement Primitives (DMP) [Ijspeert et al., 

2002] [Ijspeert et al., 2003]. The DMP algorithm describes the generated trajectory as a 

combination of a second-order attractor and a nonlinear function which describes a 

generalized demonstration (“generalized” means that this function could be constructed 

from several demonstrations for one task.) and modulates the trajectory in the generation 

process.  
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The formulation of the DMP algorithm is shown as differential equations: 

   ̇    (  (   )   ) ( 17 ) 

   ̇      ( 18 ) 

where   is the goal state,   is the internal state,   is calculated to record the dynamic of 

the demonstration and to guarantee convergence of the new generated trajectories,   is 

the position generated by the DMP differential equations, and  ̇ is the generated velocity 

correspondingly.   ,   , and   are the constants in this equation.   is a Receptive Field 

Weighted Regression (RFWR) model [Atkeson et al., 1997]. 

This method has been extended to rhythmic DMP in 2003. Similar to the discrete 

DMP, rhythmic DMP is also represented as differential equations. 

   ̇    (  (    )   ) ( 19 ) 

   ̇      ( 20 ) 

where, 

   
∑      

 
   

∑   
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       (   (   (    )    )
 ) ( 22 ) 

where    is an anchor point for the oscillatory trajectory. 

Figure 19 displays the generation results using discrete DMP in a Reaching 

experiment.  
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Figure 19 Generation Results using Discrete DMP [Ijspeert et al., 2003] 

In Figure 19, the dotted lines are the demonstrated trajectories, and the solid lines 

are the generated trajectories using the DMP method. From the graph, it is obvious that 

the generated trajectories fit the demonstrations well. 

Figure 20 displays the generation results using rhythmic DMP in a Drum-Hitting 

experiment. 

 

Figure 20 Generation Results using Rhythmic DMP [Ijspeert et al., 2003] 

In Figure 20, picture A is the demonstrated rhythmic trajectories; picture B, C and 

D are the generated rhythmic trajectories. When increasing the constant  , the generated 
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result of picture B and C from time 3s to 7s displays that the robot successfully learned 

the tempos of the demonstrated trajectory and can increases the tempo by changing the 

time constant  . Picture D displays that the robot can learn to generate the trajectories at 

different locations and keep the tempos.  

--Reinforcement Learning Based Methods 

Reinforcement Learning is based on the Markov Property Assumption [Sutton 

and Barto, 1998] that the probability of the current transition only depends on the 

previous state. Based on the basic assumption of the Markov property: 

  (              |     ) ( 23 ) 

Equation (23) means that the state at the next time step is determined by the 

current state and the current action. 

Some important definitions in Reinforcement Learning are explained as follows 

[Sutton and Barto, 1998]. 

Given the current state   with action  , the probability of transition from   to    

is: 

     
   (       |         ) ( 24 ) 

And the expected reward from this transition is: 

     
   (    |                 ) ( 25 ) 

Given the current state   at time step   and a policy  , the expected reward is: 

   ( )    {  |    }    {∑        

 

   

|    } ( 26 ) 

where   is a discount factor. Given the current state   at time step  , current action   at 

time step  , and a policy  , the expected reward is: 
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Rewrite equation (26), 
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Theodorou proposed applying reinforcement learning methods in optimal control 

to teach robots to learn and generate motion trajectories [Theodorou et al., 2010]. 
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CHAPTER III  

 

METHODOLOGY 

 

Motivation 

Imitation learning provides a possible solution for task-specific behavior 

generation. However, researchers gradually found that although that it is possible to 

design methods for robots to learn how to complete a specific task in a specific situation, 

it is very difficult to design a general imitation learning method to generate situation-

specific behaviors in a large number of different situations. A possible solution is to teach 

robots basic behaviors and let robots to complete new and complex behaviors through 

some cognitive processes. Then, intelligent robots should be able to apply these learned 

skills in different situations. For example, given a task, robots should know whether they 

can complete the task using the learned behaviors or by adapting these behaviors to 

similar but slightly different situations. Behavior selection and generation should be 

based on the current situation, sensed environmental information, the capabilities of the 

robot, etc. This process could be carried through internal rehearsal or by trials in the real 

environment.  

Researchers look for inspirations from the cognitive science, because cognitive 

science investigates learning processes in human or animal brains and possibly it can 

provide solutions to current imitation-based robotics research, especially for the research 

on humanoid robots. In a dynamic environment, a robot should analyze the environment 
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and use its owned skills to make a decision whether it is possible to complete the required 

task by flexibly and adaptively switching processes, strategies etc.  

One way for a robot to perform tasks using learned behaviors in a complex, 

dynamic, and unstructured environments may be to integrate cognitive control with 

robotic imitation learning. The motivation of this dissertation is to investigate how 

imitation learning can be used in robotic cognitive control. Imitation learning provides a 

method of learning behaviors from demonstrations and generating behaviors in similar 

task-relevant situations without being preprogrammed. Cognitive control provides a 

framework of switching strategies, processes, etc., and adaptively completing tasks 

[Banich et al., 2009] using the learned behaviors. In this dissertation, imitation learning 

methods are generalized to behavior generation, the storage of generalized behaviors and 

the description of the relationship among these learned behaviors, and learned behaviors 

will be used to generate similar behaviors or behavior sequences in different task-relevant 

situations. By integrating a cognitive control framework, the robot is able to switch 

strategies based on current environment situations. 

In this dissertation, we limit our proposed skill learning to the tasks of “object 

handling”. Examples of “object handling” include: Reaching, Pushing, Grasping, Playing, 

Yo-Yo Playing, Assembling, Tower of Hanoi, etc. 
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System Architecture 

Imitation Learning Framework 

In this dissertation a robotic imitation learning framework is divided into the 

following main parts: behavior acquisition, behavior segmentation, behavior 

generalization, behavior representation, and behavior generation.  
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Figure 21 Imitation Learning Framework 

Figure 22 displays the designed overall system framework for imitation learning. 
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Figure 22 Detailed System Framework for Imitation Learning 

The “Demonstration Acquisition” block records the motion trajectories of a hand 

of human teachers. 
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Figure 23 Behavior Acquisition 

The “Segmentation” block segments the observed behavior sequences into several 

basic behaviors. 
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Figure 24 Behavior Segmentation 
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The “Goal-Oriented Behavior Generalization” block generalizes the common 

features of demonstrated motions.  
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Figure 25 Behavior Generalization 

Generalized features (represented as a group of attributes) are standardized as 

described in the section of “Behavior Generalization” and stored in the “Behavior Library” 

in the memory system. The “Behavior Library” includes both semantic (behaviors) and 

numeric (trajectories and corresponding dynamic parameters).  

The “Feature Related Behavior Generation Toolbox” contains predefined 

behavior generation methods and also stored in the memory system.  
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Figure 26 Behavior Representation 

In the generation stage, given a new human command, robot searches the 

“Behavior Library” using a “Query System”. If robot finds a matching behavior in the 

“Behavior Library”, robot retrieves it and change parameters to fit into the new command. 

Using Dijkstra’s algorithm [Dijkstra, 1959], a behavior sequence will be constructed by 

finding a shortest path from the “starting” behavior to the required behavior. We add 

“starting” and “ending” behavior in our behavior database. This could enable robots to 

generate a behavior sequence by starting from “starting” behavior to the “ending” 

behavior and simplifies the behavior sequence generation. If there is no match, it means 

that the behavior sequence cannot be generated using the shortest path searching 

algorithm, and the robot has to ask a human teacher to demonstrate the unlearned and 

required behavior, generalizes the demonstrated new behavior, and adds it to the 

Behavior Library by itself. After learning the new behavior and adding it into the 



54 

 

behavior library, a behavior sequence can be generated using Dijkstra's algorithm. When 

the behavior sequence is generated, the robot uses pre-defined behavior motion 

trajectories generation methods in the memory system, such as second-order attractor, 

DMP, Potential Field, RRT, etc., as described in Table 5 on page 91, to generate motion 

trajectories for all the behaviors in the generated behavior sequence. The motion 

trajectories are then assembled for robot to complete the required task. 
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Figure 27 Behavior Generation 

Cognitive Architecture 

Recently, cognitive architectures are receiving broad attention from the robotics 

community, because they provide a process for high-level cognitive activities, such as 

cognitive control [Badre, 2008]. Figure 28 is the system diagram of the ISAC Cognitive 

Architecture developed in our lab, which is a multi-agents hybrid architecture. This 

cognitive architecture provides three control loops for cognitive control: Reactive, 
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Routine and Deliberative. Behaviors can be generated through this cognitive architecture. 

Imitation learning basically should be involved in the Deliberative control loop. Three 

memory components implemented in this architecture are: Working Memory System 

(WMS), Short Term Sensory Memory (STM), and Long Term Memory (LTM) 

[Kawamura et al., 2008].  

 

Figure 28 ISAC Cognitive Architecture [Kawamura et al., 2008] 

 In our lab, Joe Hall used this cognitive architecture to implement cognitive 

control experiments [Hall III, 2007]. In his method, ISAC used the IRS to evaluate 

whether it can reach an object in the environment. The reaching behavior is defined by 

interpolating the points between the starting point of the arm and the position of the 

object. Using the IRS, ISAC finds a collision between the obstacle in the environment 
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and its arm, and determines whether the object is reached. If ISAC determines that it can 

reach the object, it executes a behavior sequence; if not, it returns failure information. 

One interesting aspect of Hall’s work is to evaluate a set of successful sequence and pick 

one of them. 

Based on our ISAC cognitive architecture, I proposed a simplified hybrid 

cognitive architecture [Tan and Liang, 2011] as shown in Figure 29. In order to integrate 

imitation learning framework, the agents which are related to behavior generation are 

kept and some agents are deleted. For example, Relational Mapping is not used in our 

system, so it has been removed. 

 

Figure 29  A Simplified Hybrid Cognitive Architecture  

--Reactive Layer 

In this layer, the robot senses the environment and the status of the robot body and 

moves the end-effector along the generated motion trajectories. 
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Executor 

Executor receives the motion trajectories from the CEA, which is described by 

points on the trajectories and moves the end-effector of the robot by passing these points. 

Attention-Perception (AP) 

The AP gathers information from the environment and the robotic body.  

--Deliberation Layer 

In this layer, the robot can complete high-level cognitive processes to learn 

demonstrated behaviors by generalizing common features of the demonstrations as 

described in the section of “Behavior Generalization”, store the learned behaviors in the 

LTM, generate behavior sequences by finding a path in a constructed behavior graph as 

described in the section of “Behavior Graph Construction”, and generate motion 

trajectories for all behaviors in behavior sequences as described in the section of “Motion 

Trajectory Generation” to complete tasks. 

Short Time Memory (STM) 

The STM stores the environmental information including the position and the 

sizes of the target object and the obstacle in the environment, the joint angles of the robot 

arms (designed as shown in the Demonstration Acquisition section). 

Long Term Memory (LTM) 

The LTM stores the learned behaviors and the semantic description of the objects 

or obstacles in object handling tasks.  

Internal Rehearsal System (IRS) 
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The IRS [Hall III, 2007] [Erdemir et al., 2008] evaluates the current behavior 

sequence and sends the evaluation results to the CEA for decision making.  The 

Kinematics model and dynamics model are stored in the IRS for the robot to use. 

Central Executive Agent (CEA) 

The CEA is responsible for cognitive control and decision making process.  

In the learning stage, the CEA receives the information of sensed states from the 

STM. Basic behaviors are generalized to find its goal-oriented common features (as the 

output of the behavior generalization) and stored into the LTM.  

In the generation stage, the CEA receives the task command from the STM and 

generates behavior sequences and motion trajectories for all the behaviors in the behavior 

sequence. The decision-making mechanism, which is rule-based, switches strategies to 

complete the given task. The explanation of the key components in the CEA will be 

discussed on page 66 in this Chapter.  

Integration 

We propose to integrate our imitation learning framework with cognitive 

architecture. The basic idea is shown in Figure 30. Behaviors can be learned, generated 

and generated through our cognitive architecture. 
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Cognitive Architecture

Cognitive Control
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Figure 30 Integration of Imitation Learning with Cognitive Control 

Figure 31 displays a cognitive control system block diagram developed in our lab 

[Kawamura and Gordon, 2006]. 

 

Figure 31 Cognitive Control Block Diagram 

Based on this model and the cognitive architecture shown in Figure 9, a modified 

cognitive control system block diagram is shown in Figure 32.  
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Figure 32 Modified Cognitive Control System Diagram 

The integration of the imitation learning framework and the cognitive control 

block diagram is shown in in the following figures.  

The Behavior Acquisition of the imitation learning framework is integrated with 

the Sensor.  
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Figure 33 Integration of Behavior Acquisition 
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The Behavior Segmentation and the Behavior Generalization is integrated with 

the CEA. 

Long Term Memory (LTM)

Central Executive Agent 

(CEA)

Internal Rehearsal System 

(IRS)

Actuator/

Speech 

SynthesizerSensor

Motion i

Evaluation Results

Task 

Results

Cognitive 

Control

Environment

Motion j

Speech 

Response

Behavior 
Acquisition

Behavior 
Segmentation

Behavior 
Generalization

Behavior 
Represenation

Behavior 
Generation

Task Requirements

Motion 
Trajectories of 

Basic Behaviors in a 
Behavior Sequence

Behavior 
Demonstrations

 

Figure 34 Integration of Behavior Segmentation and Generalization 

 The Behavior Representation is integrated with the LTM.  
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Figure 35 Integration of Behavior Representation 
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The Behavior Generation is integrated with the Perception/Attention, the STM, 

the CEA, the IRS and the Executor. 
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Figure 36 Integration of Behavior Generation 

An integrated system diagram is shown in Figure 37. The italicized individual 

components are described in detail subsequently. Refer to Figure 37 in the following 

description.  
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Figure 37 Integrated System 

The Perception/Attention block collects sensory information from the 

environment and stores it in the Short Term Memory (STM). Speech commands are 

obtained by the Perception/Attention module and parsed by the Command Parsing 

module, which is described in the section of Command Parsing on Page 33-35. Based on 

the parsing results, the Decision Making Mechanism (DMM) decides to switch the 

control process to either learning or generation.  

In the learning stage, a human teacher demonstrates a behavior or a behavior 

sequence and the robot uses the Perception/Attention block to record the motion 

trajectories. After segmentation the motion trajectories are sent to the Behavior 

Generalization block to extract common features which are stored in the Goal-Oriented 

Features for Basic Behaviors block in the Long Term Memory (LTM).  

In the generation stage a new command causes the robot to search the Behavior 

Library using a query system. No match implies that the behavior sequence cannot be 

generated by searching from the “Starting” to the required behavior. The robot must ask a 
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teacher to demonstrate the required behavior (not the overall behavior sequence). The 

human teacher checks the behavior library of the robot and decides which behavior needs 

to be demonstrated. The learning stage is invoked by the DMM and the Behavior Library 

is updated. If the robot finds a matching behavior in the Behavior Library, it is retrieved 

and the parameters changed to fit the new command. The Behavior Sequence Generator 

uses the Query component to search the Behavior Library then constructs, via Dijkstra's 

algorithm, a sequence that follows shortest path from the current behavior to the required 

behavior.  After a behavior sequence is identified, the system selects the appropriate 

motion trajectory generator from the memory system. (These include second-order 

attractors, DMPs, Potential Fields, RRTs, etc.) Thus the robot motion trajectories for the 

behaviors that comprise the task are generated. They are sent to the Internal Rehearsal 

System (IRS) for evaluation. The DMM uses the evaluation result to determine if the task 

can be completed. If so, the motion trajectories are assembled and sent to the Executor 

whereby the robot performs the task. If the DMM finds that the robot cannot complete the 

task with the selected arm, it transfers the behavior sequence to the other arm and causes 

the motion trajectories to be recomputed. Experiment 3.1 and 3.2 are used to validate this 

part. If the DMM finds that the robot cannot complete the task with either of its arms, it 

tries to generate behavior sequence for both arms. The DMM uses the IRS to evaluate the 

result of the generated behavior sequence. If it is successful, the newly generated 

behavior sequence and motion trajectories will be sent to the Executor.  If this second 

evaluation finds the task still cannot be completed, the robot demurs the task. 
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The data flow of the learning stage is depicted with white arrows and arrows filled 

with slashes with in Figure 37. That of the generation stage is displayed with solid filled 

arrows and arrows filled with slashes. 

 

Central Executive Agent 

The CEA is responsible for cognitive control and decision making process.  

Input/Output 

In the Learning stage, the input of the CEA is the stored information in the STM 

and the output is the generalized basic behaviors to be stored in the LTM. In the 

generation stage, the input of the CEA is the speech command and the environmental 

information in the STM and the output is the generated motion trajectories sent to the 

executor or a speech response sent to the speech synthesizer.  

Implementation 

There are several key components inside the CEA: Decision Making Mechanism, 

Segmentation, Behavior Generalization, Query System, and Behavior Sequence 

Generation.  

In the learning stage, the CEA receives the information of sensed states from the 

STM. Behavior Sequences are segmented into basic behaviors in the Segmentation block. 

Basic behaviors are generalized in Behavior Generalization to find its goal-oriented 

common features (as the output of the behavior generalization) and stored into the LTM.  

In the generation stage, the CEA receives the speech command from the STM to 

trigger the Decision Making Mechanism which is rule-based. The Decision Making 
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Mechanism uses Query System to check whether robot has learned a complex behavior or 

a basic behavior to complete this task. If yes, it constructs a behavior graph and generates 

a behavior sequence finding a path in the behavior graph from the “Starting” to the 

required behavior; if no, it requires new demonstrations from human teachers. Motion 

trajectories are generated in Behavior Sequence Generation for all the behaviors in the 

behavior sequence. Then the environmental information and the generated behavior 

sequence are sent to the IRS for evaluation. If the robot finds that it can complete this 

task from the evaluation, it sends the generated motion trajectories to the Executor; if it 

finds that it is impossible to complete this task, it uses the IRS to evaluate the execution 

results by using the same behavior sequence for the other arm; if the robot finds that it 

cannot complete this task by using either of its arms; it tries to generate a behavior 

sequence by using both of its arms. If the robot finds that it cannot complete the task by 

using either or both of its arms, it displays a message on the screen. 

The components in the CEA will be discussed in detail in following sections of 

this Chapter. 

 

Decision Making Mechanism 

The DMM controls the cognitive processes. According to current situations, the 

DMM make decisions and choose suitable behaviors to respond to requests from humans 

and to deal with uncertainties or emergencies in the environment. 
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Input/Output 

In the learning stage, the input is parsed commands, and the output is a signal sent 

to the AP to start recording the demonstrated behaviors. In the generation stage, the input 

is parsed commands, generated behavior sequences, and evaluated results from the IRS. 

The output is the generated behavior sequence to be evaluated in the IRS and the 

generated motion trajectories which will be sent to the Actuators. 

Implementation 

The decision making process in the DMM is shown in Figure 38.  
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Figure 38 Decision Making Mechanism 
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Based on the output of the Command Parsing block, the DMM decides whether 

the robot should enter the learning stage or the generation stage.  

In Figure 38, the decision making process is routed into two branches: learning 

and generation, by analyzing speeches and the current situation. In the learning stage, a 

robot requires demonstrations from human teachers. By observing the demonstrations, 

the robot analyzes and generalizes the common features of the demonstrated behaviors. 

Generalized behaviors are stored in the Behavior Library. In the generation stage, give a 

new command, the robot parses the command to behaviors and related parameters. The 

robot constructs a behavior graph using the stored information in the Behavior Library, 

and searches the shortest path from the “Starting” to the required behavior to generate a 

behavior sequence. If it finds it has not learned any of the required behaviors, the 

cognitive process turns to the learning stage. When the robot finds that it has all the 

required behaviors, it requires the environmental information such as the positions and 

sizes of the target object and the obstacle, and the joint angles of the robot, from the 

STM. Then the DMM uses the environmental information and sends the generated 

behavior sequence to the IRS for evaluation. IRS uses the behavior generation methods, 

which are described in the earlier section, to generate motion trajectories. If it finds that it 

is impossible to complete this task, it uses the IRS evaluate the execution results by apply 

the same behavior sequence using the other arm; if the robot finds that it still cannot 

complete this task by using its arms, it displays a message on the screen; if the robot finds 

that it can complete this task from the evaluation, it sends the evaluation information to 

the DMM. In the execution using one of its arms to complete the task, ISAC checks the 

error generated by each behavior. If the error is smaller than the threshold value, the error 
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is acceptable; if the error is larger than the threshold value, ISAC uses a compensation 

method to overcome the error and redo this behavior.  

 

Compensator 

The reasons of using compensator to overcome the error generated from the 

hardware of ISAC are: 

1. The errors are generated from the hardware of ISAC. ISAC cannot exactly drive 

the end-effector to the required position. 

2. The errors are generated from the vision module. The reaching point found by the 

vision module has some errors. 

3. Comparing the size of the object used in Experiment, which is 18cm   18cm   

12 cm, the error values are small. Thus the distance less than 12 cm was judged as 

that the gripper reached the object. 

Input/Output 

 The input of the compensator is the obtained error. When motion trajectories are 

needed to be generated, ISAC checks the stored information in the compensator and 

changed the goal of the motion trajectory according to this information. 

Implementation 

 The stored error is computed using the following equation: 

                        ( 29 ) 
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where          {                          } is the desired position of the end-effector, 

and         {                       } is the actual position of the end-effector. 

 According to the design in the DMM, if the error is larger than the threshold 

value, the BSG will compensate it by changing the target position of the behaviors. 

                            ( 30 ) 

For example, if the desired position of the end-effector is          {        } 

and the actual position is         {        }, the error is {           }. Given a 

goal position of a motion trajectory              {           }, the new goal position 

of the motion is         {           }  {           }  {           }. 

 

Acquisition 

The system takes observed behaviors as the bases for generating motions to 

complete tasks. Demonstrations are given by one or more teachers several times. 

Demonstrated motion trajectories and task-relevant information (e.g., the distances 

between the end-effector and a target object in a manipulation task) are recorded for 

modeling and analysis. Demonstration data is recorded with time-stamped vectors. The 

robot uses the AP to record the demonstrations and store the recorded information in the 

STM. 

Input/Output 

The data set from   observed demonstrations can be represented as: 

   {               } ( 31 ) 

where   is the index of the observed demonstrations. 
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For each demonstration,   types of information are chosen to record. They could 

be the motion trajectories of human hands, the Cartesian poses of task-related objects, the 

distance between the robot’s end-effector and the target objects, etc. Represent them as: 

    {  
    

      
 } ( 32 ) 

Each element in this group is a time-stamped vector: 

   
  (  

 ( )   
 ( )     

 ( ))
 

 ( 33 ) 

where   is the ordinal index of the trajectory in the demonstration group  , and numbers  , 

 ,…,   are time steps.  

Recorded information is stored in the STM and will be sent to the Segmentation 

and the Behavior Generalization module for processing.  

Implementation 

As stated in the literature review, there are several types of methods to 

demonstrate behaviors to robots. In our system, we used a Kinect sensor to record the 

position and orientation of the hand of a human teacher, and used a camera to record the 

position and the size of an obstacle in the environment. 

Kinect is a motion sensing input device by Microsoft for the Xbox 360 video 

game console and personal computers (Figure 39). Based around a webcam-style add-on 

peripheral for the Xbox 360 console, it enables users to control and interact with the 

Xbox 360 and PCs, through a natural user interface using gestures and verbal commands. 
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Figure 39 Kinect 

There are four major functions of Kinect: obtaining the original RGB images from 

cameras, obtaining the depth information from the infrared sensors, obtaining the audio 

information using the microphones, and generating skeleton data of human bodies in the 

environment. 

 

Figure 40 Obtained Skeleton Data from Kinect Software 

Figure 40 displays the skeleton data designed in the Kinect Software. The position 

values of 20 joints on a human body could be obtained from the Kinect Software. Each 
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position value of a joint is a three-dimensional vector including the X and Y position in 

an image and the depth information of the joint. 

Because of the difference of the configurations between human bodies and our 

robot, the coordinates we designed for humans’ bodies and robotic bodies are totally 

different. That means that we cannot directly apply obtained position values of joints to 

robots. Therefore, it is necessary to find a transformation between the coordinates of 

human bodies and robotic bodies.  

Currently, demonstrations are observed using Kinect sensor in a task-space 

(mostly in the Cartesian space). Because our robot has two arms, we need to observe the 

positions and the orientations of the hands of a human teacher for our experiments. Here 

we assume that the human teacher does not move his torso during the demonstration 

process. This assumption can give us a good reference coordinates. The base coordinates 

for the human teacher and our robot are both located on the shoulder.  

Figure 41 displays the kinematics model used for ISAC. 
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Figure 41 Kinematics Model of ISAC 
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The data set from   observed demonstrations can be represented as: 

   {               } ( 34 ) 

where    is a vector representing the d-th observed demonstration. Details on   are 

summarized in Appendix A. 

 

Behavior Generalization 

One key assumption in current research on robotic imitation learning is that 

human teachers are well-trained and are capable of generating similar trajectories for 

certain behavior demonstration.  In some situations, however, this is not true. I.e., due to 

different experiences or habits of human teachers, the demonstrations are not always 

“similar”. For example, consider a case where three teachers demonstrate a “Reaching” 

behavior to reach an object as shown in Figure 42. The circles are the starting points and 

the stars are the ending points. 

The motion trajectories look quite different, which start from different locations, 

stop at different locations, and have different styles. So how is a robot able to choose a 

correct trajectory? Since the goal (i.e. reaching a target) is achieved using such different 

trajectories, it is reasonable to assume that there should be some common features lying 

within these demonstrations. In our proposed method, we propose to analyze these 

common features to generalize demonstrations. In Figure 42, the common feature of the 

two demonstrated “Reaching” behaviors is to minimize the distance between the end-

effector of the robot (or the hand of the human teacher) and the target object. From 

Figure 42, although three motion trajectories start from different locations labeled with 



75 

 

stars, they end with different styles at the same location which is the target object. So that 

is the common feature for the “Reaching” behavior. 
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Figure 42 Different “Reaching” Behaviors 

Current imitation learning research focuses on how to generate a motion 

trajectory which is similar to one of the demonstrated trajectories. As explained earlier, 

an assumption is that all human teachers are well trained and thus all demonstrations are 

similar. However, all the demonstrations are expected to be different according to 

different human teachers. We in fact do not need to assume that all the teachers are well 

trained and all the demonstrations are similar. Instead, we only need to assume the 

demonstrations are related to the same task. These demonstrations could be described 

using many task-related features. From this assumption, it is reasonable to analyze the 

common features of the demonstrations because they are all for the same task.  
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An important capability of robots is to apply the learned behaviors in new task-

relevant situations. If robots can only learn motion trajectories and generate similar 

motion trajectories, it is very difficult for them to apply the low-level knowledge in 

different task-relevant situations. In this dissertation, through behavior generalization, 

robots find the common features of the demonstrated behaviors. Based on that, robots can 

use higher-level methods to utilize the generalized behaviors and to apply these behaviors 

to new task-relevant situations, e.g., constructing behavior graphs and generating 

behavior sequences. This behavior generalization method enables robots to learn new 

behaviors and apply generalized behaviors in new task-relevant situations flexibly and 

adaptively. 

As stated before, tasks are goal-oriented. If we can find goal-related features from 

the demonstrations, a task could be described with several features.  

Tasks demonstrated by human teachers comprise a set of low-level behaviors. 

Different tasks require different behaviors. Due to the measurement errors, noise in the 

environment and inconsistencies in demonstrations of the same task, the obtained motion 

trajectories could be different. There may be, however, common features latent within the 

demonstrations. An appropriate analysis and comparison of demonstrated tasks could 

find the common features hidden in the sampled motion trajectories. 

This method considers behaviors to be attribute-based.  That is, common internal 

features found for demonstrated behaviors are represented as a set of attributes. A labeled 

or named behavior can be described in terms of three attributes: (1) the requisite 

preconditions or task-specific environmental conditions for execution, (2) internal 
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constraints which confine the behavior during execution, and (3) post results that 

characterize the outcome of a behavior: 

          {                                                 } 

At the behavior generalization stage, the target is to find the most common feature 

for pre-condition, internal constraints and post results respectively. The design of the 

required common features is flexible, and researchers can define their own features. An 

example of how to design features and generalization methods will be discussed in detail 

later in this paper. 

Before the generalization, a group of features are predefined and stored in the 

memory system for robots to use. We define three groups of features for pre-condition, 

internal constraints and post results respectively:  

   {                   } ( 35 ) 

      {    
      

        
 } ( 36 ) 

           {         
           

             
 } ( 37 ) 

       {     
       

         
 } ( 38 ) 

 ,  , and   are numbers of features for pre-condition, internal constraints and post 

results respectively. 

Using   demonstrations (for one task) from humans, we can compute a 

probability score for each feature: 

      {    
      

        
 } ( 39 ) 

           {         
           

             
 } ( 40 ) 

       {     
       

         
 } ( 41 ) 
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The most common feature for pre-condition, internal constraints and post results 

could be found with the following equations: 

            (    
 ) ( 42 ) 

                 (         
 ) ( 43 ) 

             (     
 ) ( 44 ) 

Feature   {    
              

               
     }  is used to describe a 

behavior: 

          {         
              

               
     } ( 45 ) 

         ̂     
 
         

 
 ( 46 ) 

         ̂     
 
         

 
 ( 47 ) 

Input/Output 

The input of the Behavior Generalization is the recorded states   in equation (32), 

and the output is the generation results for Pre-Condition, Internal Constraints, and Post 

Results of the demonstrated behaviors. 

Implementation 

In our system, pre-conditions, internal constraints and post results are pre-defined 

as shown in Table 1.  

The target of behavior generalization stage is to find suitable conditions, 

constraints and results for each behavior from demonstrations. From the demonstrations, 

we used the criterions in Table 2 and Table 3 to find the most common feature for pre-

conditions, post results and internal constraints. 
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Table 1 Pre-Conditions, Internal Constraints, and Post Results 

 

Table 2 Criterions for Pre Conditions and Post Results 

 

For Feature 1 and 2 in Table 2, the distance   between the hand and the target 

position is computed directly using Euclidean distance and then normalized. 

These distances are then normalized to probability values. 

     
 
(    )

 

         ( 48 ) 

     
(    )

 

   ( 49 ) 
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where    and    are similarity scores for Feature 1 and 2,     and    are the 

normalization parameters. 

F3 and F4 are determined by the measurements of control signal from the 

grippers. If the gripper is closed and object is in hand,     ; otherwise,       the 

gripper is opened and object is not in hand,     ; otherwise,       

The most common feature for the Pre-Condition and Post-Results are determined 

by the corresponding largest value of   ,   ,   , and   . 

Table 3 Criterions for Internal Constraints 

 

For Feature 1 in Table 3, Dynamic Time Warping (DTW) [Berndt and Clifford, 

1994] distances between two demonstrations are computed first. Then we have a matrix 

to describe the distances. 

      

[
 
 
 
      

   

  
 

    
         

   

    
         

   

   
  
  

 
     

     

  ]
 
 
 
 

 ( 50 ) 

where   is the number of demonstrations. 

The elements of first row are normalized using the following equation: 

 
 ̅   

     
 
    

   
 

   
( 51 ) 
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Then the normalized variance of the first row of  ̅    is computed as F1, i.e. the 

probability score of this feature. 

For Feature 2, the DTW distance is computed in a normalized range [   ] first, 

and then the following steps are the same. 

The most common feature for internal constraints is determined by the maximum 

value of   , and   . 

By analyzing the demonstrated behaviors, the robot tries to assign a most 

common feature to the pre-conditions, internal constraints, and post-results respectively. 

The generalized results can be represented as shown in equation (43). Each common 

feature is described using a number which is related to the pre-designed features table in 

Table 1. 

 

Representation and Storage 

Generalized behaviors are stored in the LTM for future use. When required, the 

CEA can query the stored information in the LTM to construct a behavior graph and 

searches required behavior in the behavior graph to generate behavior sequences. 

Input/Output 

The input of the “Goal-Based Features for Basic Behaviors” is the results 

obtained in equation (43): (    
              

               
     ) and the semantic name 

assigned to the generalized behavior by a human teacher. 
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Implementation 

 Microsoft Access 2010 is used as a database tool to store the generalized 

behaviors and their related features. Table 4 displays stored basic behaviors and their 

related Pre-Conditions, Internal-Constraints, and Post-Results. 

Table 4 Stored Basic Behaviors 

 

Semantic names for these names are assigned by a human teacher. From the 

generalization results of the demonstrated behaviors, the numbers related to Pre-

Conditions, Internal-Constraints, and Post-Results which are predefined in Table 1 are 

assigned to the behaviors and stored in the database. In the section of “Behavior Graph 

Construction”, a behavior graph will be constructed using the information stored in Table 

4 by finding the matching between the pre-conditions and post-results. 

 

Command Parsing 

An example of a generation command is described as:  

Push (the box) to the right 
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The content in the brackets could be modified according to the requirements of 

tasks. For example, the box could be replaced with the pen, the toy, etc. 

The mail goal of this task is to push the box to the right in the environment. The 

robot needs to complete a task which is constrained by this goal. 

In this dissertation, the description of a given command is represented as: 

    (  )       {  (  )     (  )   (  (  )|  (  ))       (  )} ( 52 ) 

   is the main goal, while    (         ) are subordinated goals. All goals 

have their related parameters which are represented in the brackets as     (         ). 

The symbols of “  “and “|” represents the “and” and “or” relationships between the 

subordinated goals. 

An example of a learning command is described: 

I will show you how to use the reaching the object behavior 

In this dissertation, the description of a given learning command is represented as: 

  (         ) ( 53 ) 

   is the name of the behavior to be learned, and         are parameters related 

to this behavior. In the above example, b is reaching and    is the object. 

Input/Output 

The input of the Command Parsing is a speech command which obeys the form of 

equation (50) and (51). After parsing the command described in equation (50), the output 

of the Command Parsing is a required main goal behavior and several subordinated goal s 

with task-related parameters; After parsing the command described in equation (51), the 

output of the Command Parsing is the name of the behavior to be learned 
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Implementation 

Microsoft Speech Recognition Library is used for speech recognition in our 

system. 

The grammars of the commands are pre-defined as follows: 

                           ( 54 ) 

                                ( 55 ) 

                                             ( 56 ) 

 

                                           

             

( 57 ) 

                            ( 58 ) 

                                        ( 59 ) 

In these grammars,       ,       ,            ,            , and  

            are pre-designed lexicons which are defined as: 

 

      

 {                                                       } 
( 60 ) 

        {          } ( 61 ) 

             {            } ( 62 ) 

             {                                         } ( 63 ) 

             {                  } ( 64 ) 

In the recognition process, a given speech command is categorized into different 

grammars by using the Microsoft Speech Recognition Library and the key lexicons are 

extracted in different grammars.        is the main goal behavior and is extracted first. 
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            and             are extracted as the related parameter for        . 

       is the subordinated goal and             is extracted for this subordinated goal. 

The extracted lexicons are sent to the CEA as the searching criterion to search the 

behavior graph and the required parameters to generate behavior sequences. 

 

Behavior Library 

Behavior Library stores the learned behaviors and constructs a behavior graph 

based on the generalized features to describe the relationships among these generalized 

behaviors. All learned behaviors are represented as vertexes in a behavior graph, and the 

edges are defined by matching the pre-condition of a behavior and the post-result of 

another behavior. If the robot finds that the pre-condition of a behavior and the post-

result of another behavior match, an edge is added.  

Input/Output 

The input of the Behavior Library is the generalized behaviors stored in the LTM, 

and the pre-defined behavior motion trajectory generation methods. The constructed 

behavior graph is stored in the Behavior Library for the DMM and the Behavior Sequence 

Generation to use. 

Implementation 

Figure 43 displays the pseudo code of the construction stage. 
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Figure 43 Pseudo Code of Constructing a Behavior Graph 

Line 1-3 add all the learned behaviors into the behavior graph as vertexes. Line 4-

17 add edges between all vertexes. In Line 6-9, the results of matching the pre-condition 

and the post-result between two behaviors determine whether an edge can ben added to 

connect the two behaviors. Line 10-12 add edges to the “Starting” behavior from all other 

behaviors. Line 13-15 add adges from the “Ending behavior” to all other behaviors. 

Based on the matching of the pre-conditions and the post results from the stored 

information in Table 4, a behavior graph is constructed. 
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Figure 44 A Constructed Behavior Graph 
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In Figure 44, learned basic behaviors are represented as vertexes in this behavior 

graph. The vertexes reflect the transitions among these behaviors. Robots do not need to 

learn all these edges/transitions from human teachers. They just need to learn the 

common features of these behaviors and construct the transitions by matching the Pre-

Conditions and Post-Results of these behaviors. The advantage of this method is to 

enable the robot to find a behavior sequence by itself based on this graph.  

 

Behavior Sequence Generation 

Given a task, a robot needs to complete the task using some behaviors. If the 

robot has already learned the required behavior, it can generate a behavior sequence 

starting from the “starting” behavior, ending at the required behavior. An “ending” 

behavior is added into the behavior sequence as the last elements for robots to finish the 

behavior sequence.  

Input/Output 

The input is a behavior verb which is extracted in the Command Parsing, and the 

output is a behavior sequence: 

   {                                  } ( 65 ) 

Implementation 

In our method, we choose to use Dijkstra's algorithm [Dijkstra, 1959] to find a 

shortest path in a constructed directed behavior graph. Dijkstra's algorithm, conceived by 

Dutch computer scientist Edsger Dijkstra in 1956 and published in 1959, is a greedy 
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searching algorithm to find a shortest path in a directed graph by repeatedly updating the 

distances between the starting node and other nodes until the shortest path is determined. 

Let the node at which we are starting be called the initial node. Let the distance of 

node Y be the distance from the initial node to Y. Dijkstra's algorithm will assign some 

initial distance values and will try to improve them step by step. 

1. Assign to every node a tentative distance value: set it to zero for our initial node 

and to infinity for all other nodes. 

2. Mark all nodes unvisited. Set the initial node as current. Create a set of the 

unvisited nodes called the unvisited set consisting of all the nodes except the 

initial node. 

3. For the current node, consider all of its unvisited neighbors and calculate 

their tentative distances. For example, if the current node A is marked with a 

distance of 6, and the edge connecting it with a neighbor B has length 2, then the 

distance to B (through A) will be 6+2=8. If this distance is less than the 

previously recorded tentative distance of B, then overwrite that distance. Even 

though a neighbor has been examined, it is not marked as "visited" at this time, 

and it remains in the unvisited set. 

4. When we are done considering all of the neighbors of the current node, mark the 

current node as visited and remove it from the unvisited set. A visited node will 

never be checked again. 
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5. If the destination node has been marked visited (when planning a route between 

two specific nodes) or if the smallest tentative distance among the nodes in 

the unvisited set is infinity (when planning a complete traversal), then stop. The 

algorithm has finished. 

6. Select the unvisited node that is marked with the smallest tentative distance, and 

set it as the new "current node" then go back to step 3. 

Using Dijkstra's algorithm, in a behavior graph, a shortest path can be generated 

from the “Starting” node to the node related to the       ,. A behavior sequence, which 

is composed of the nodes on the found path, is generated for the DMM and the IRS to 

evaluate. 

 

Motion Trajectories Generation 

We need to design feature-related generation methods for robot to generate 

motion trajectories for all the behaviors in a behavior sequence. Since our description of a 

task is composed of one main goal and several subordinated goals, the generation method 

for a behavior should also be composed of several generation methods.  

Input/Output 

 The input is a behavior sequence with task-related parameters: 

  {                                  } , and the output is a motion vector 

    , which specifies the via points on a motion trajectory in the Cartesian space.   
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Implementation 

Table 5 Behavior Motion Trajectory Generation Methods 

 

The combinations of the Internal-Constraints and Post-Results determine the 

generation methods for behaviors. As shown in Table 5, 2nd-order attractor, Potential 

Field [20], DMP[3], DMP + Potential Field[21], and generating the same trajectories are 

used as our pre-defined generation methods as well as well as opening and closing end-

effector. Using these methods, parameters could be changed to adapt to different 

situations for robots to generate similar motion trajectories to complete tasks.  

--2
nd

-order Attractor 

The end-effector of the robot will be moved to a point where the distance between 

the end-effector and the manipulated object is the same as the distances in the 

demonstrations. We applied a second-order spring-damping attractor for robots to reach 

the target position. 

   ̇    (  (   )   ) ( 66 ) 

   ̇    ( 67 ) 

where   is the position values on the generated trajectory,   is the velocity, and   is the 
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goal position.    and    are constants, which are selected to ensure the system over-

damped. 

--Generating the Same Trajectories 

We can model the motion trajectory in the Cartesian space or in the joint space. In 

current research on imitation learning, Gaussian Process (GP), Hidden Markov Model 

(HMM), Receptive Field Weighted Regression (RFWR), and Gaussian Mixture Model 

(GMM) are used by researchers to generalize and model the demonstrations from 

humans. 

A Receptive Field Weighted Regression (RFWR) method is used for generalizing 

and modeling the demonstrations. In our model, the temporal information is considered 

as the enquiry point. Assume N points are sampled in a time period, and t reflects the 

temporal information. Given the temporal information t, the corresponding predicted data 

points could be computed using our model. The temporal information could also be 

understood as timing steps. 

Assume that  th
 observed motion trajectory from  th

 demonstration could be 

modeled as a RFWR model as shown below: 

    
∑       

 
   

∑    
 
   

 ( 68 ) 

where   is the number of the receptive basis functions,   is the index of the 

receptive basis functions, and   is related to the index of the demonstrations. 

    is a receptive basis function, which is distributed in the space. 
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        (
 

      
(     )

 
) ( 69 ) 

where,     is the center of the  th
 basis function for  th

 RWFR model, which is 

distributed in the input space, and     is the bandwidth.    is learned by analyzing the 

demonstrated motion trajectories using the following equation: 

    (  
   )

  
  

   ( 70 ) 

  is the observed position vector in the demonstrations.   

--Dynamic Movement Primitives (DMP) 

If the overall goal of the task is to reach to a target position while keeping the 

dynamics of the generated motion trajectories similar to the demonstrated motion 

trajectories, we applied DMP to generate motion trajectories.  

   ̇    (  (   )   )    ( 71 ) 

   ̇    ( 72 ) 

where f is a non-linear RFWR model which can be constructed in equation (66).    is the 

position values on the generated trajectory,   is the velocity, and   is the goal position.    

and    are constants, which are selected to ensure the system over-damped. 

--DMP + Potential Field 

If the overall goal of the task is to reach to a target position while keeping the 

dynamics of the generated motion trajectories similar to the demonstrated motion 

trajectories and avoiding the obstacles in the environment, we applied our potential field 

based DMP algorithm [Tan et al., 2011] to generate motion trajectories. In this algorithm, 
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the goal state in equation (69) is modified according to distances between the position of 

the end-effector and the position of the obstacle.  

Because the original DMP method does not provide the function of obstacle 

avoidance, the motivation was to propose an extension of DMP which can generate new 

trajectories with similar dynamics to the demonstrations and avoid obstacles in the 

working environment [Tan et al., 2011]. 

In DMP, the trajectory is planned step by step in an incremental way. The 

elements in  ⃗ are the generated points on the trajectory. When the current state  ⃗( ) is 

known, the next state  ⃗(   ) is calculated by equation (69) and (70). 

The basic idea is to move the goal state  ⃗  to a virtual goal position  ⃗     by 

adding an impedance factor  ⃗         , when the current state is in the impedance area 

around an obstacle, 

  ⃗      ⃗   ⃗          ( 73 ) 

  ⃗          is generated by the impedance field around the obstacle. In our 

method, we decomposed the force generated by potential field into the tangent direction 

and the centrifugal direction for simplicity.  

Details on this potential field based DMP algorithm are summarized in Appendix 

B. 

 

Internal Rehearsal System 

The IRS not only internally simulates behaviors, but also predicts outcomes based 

on current situations to obtain evaluations to the DMM. 
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Input/Output 

Object

Obstacle

Can I push the 

object to the left?

Do I have to use 

the left arm?

…...

Internal Rehearsal

 

Figure 45 Internal Rehearsal  

The input of the IRS is a vector which represents all the via points on a generated 

behavior sequence and a motion trajectory, task-related parameters, and the 

environmental information. The output of the IRS is the evaluation results. Figure 45 

displays a typical usage of IRS. The robot is asked to push the object and it needs to 

evaluate whether the object is located in its working space and whether it can 

successfully push the object to the left while avoiding obstacles. The input is the 

generated motion trajectories, and the positions and sizes of the object and the obstacle 

on the table, and the output is a judgment that whether the robot can complete this task. 
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Implementation 

 VC# and OpenGL are used to design the IRS component in our system. There are 

three crucial modules in the IRS: Kinematics Module, Physical Limitation Checking 

Module, the Obstacle-Collision Detection Module, and Behavior Sequence of Dual Arms 

Checking Module. 

The Kinematics Module map the via points on the motion trajectory to the joint 

angles of ISAC 

 The Physical Limitation Checking Module checks whether the operation point is 

within the working-space of the robot. For each point on the motion trajectory, the robot 

uses the IRS to check whether it could be reached using the following two equations: 

   
    

    
                               ( 74 ) 

   
    

                   ( 75 ) 

where   ,   , and    represents the 3-dimensional position value of the points to be 

checked, and the                and            are the length of the shoulder and 

the arm respectively. 

If the position values satisfy both of these equations, the IRS considers that this 

checked point satisfies the requirement for Physical Limitation Checking. 

The Obstacle-Collision Detection Module checks whether the arm of the robot 

collides with obstacles in the environment. For each point on the motion trajectory, the 

robot uses inverse kinematics to compute the angular value of each joint and computes 

the position of each joint in the Cartesian space.  

                     (        ) ( 76 ) 
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 (                 )                    ( ) ( 77 ) 

 The Obstacle-Collision Detection module checks whether Link 2, Link 3, and the 

end-effector collide with the obstacles in the environment. The widths of Link 2, Link 3, 

and the end-effector are taken into consideration and defined as:   ,   , and   . 

The points on Link 2 are represented as    , the points on Link 3 are represented 

as    , and the points on the end-effector are represented as   .  

The connected lines between joint 2 and joint 3, joint 3 and joint 4, and joint 6 

and the manipulation point are computed respectively.    ,    , and     are computed by 

expanding these lines with   ,   , and    respectively. 

The robot IRS to check whether the collision happens using the following two 

equations: 

 ‖   ( )   ‖                   ( 78 ) 

 ‖   ( )   ‖                   ( 79 ) 

 ‖  ( )   ‖                   ( 80 ) 

where   is the index of the points to be checked,   is the position value of the 

center of the obstacle, and                  is the size of the obstacle.  

If the position value of a checked point satisfy both of the two above equations, 

the IRS considers that this checked point satisfy the requirement for Obstacle-Collision 

Detection.  

If the IRS found that all the via points on the generated motion trajectory satisfy 

the two requirements, it returns a zero value to the DMM, otherwise it returns 1 for 

violation of the Physical Limitation Checking and 2 for the violation of the Obstacle-

Collision Detection. 
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In some situations, the robot needs to use its both arms to complete a task. So, 

given a behavior sequence, the robot needs to decide which arm it should use to execute 

the behaviors.  

Assume we have a sequence: {             }. The robot will first try to use 

one of its arms to execute   . If the post-result of    satisfy the pre-condition of    by 

using the same arm, the robot uses the same arm to execute   . If the post-result of    

cannot satisfy the pre-condition of    by using the same arm, the robot uses the other arm 

to execute   . The robot then decides to use the left arm or right arm for       and    

until all the behaviors are assigned to one arm using the same method. In this dissertation, 

we do not design experiments to use both arms. But we want to point out that our method 

could be applied to use both arms using the method described above. 

 

Summary 

This chapter describes an integrated system which combines cognitive control 

with imitation learning. Specific designs of the components in this system were explained 

in detail. In the next chapter, this system is applied for a humanoid robot, ISAC, to carry 

out three experiments to validate our design approach. 
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CHAPTER IV 

 

SYSTEM IMPLEMENTATION, EXPERIMENTAL DESIGN AND RESULTS 

 

System Implementation 

The designed system was implemented to enable a humanoid robot, named ISAC, 

to learn graspless behaviors from human demonstrations, generalize behavior features, 

apply learned behaviors in task-relevant situations, and switch strategies by choosing 

using its right arm or its left arm to achieve required task goals. 

 

Experimental Design 

Hardware 

--Humanoid Robot 

The hardware platform used for this experiment is the ISAC humanoid robot, 

shown in Figure 46. ISAC has two arms, each of which has 6 Degree-of-Freedom (DOF), 

driven by pneumatic air muscles [Kawamura et al., 2000].  

Rubbertuators 

Rubbertuators [Daerden and Lefeber, 2002], which are pneumatic driven, are used 

to drive the joints of ISAC. The rubbertuators shorten by increasing its enclosed volume, 

and they will contract against a constant load if the pneumatic pressure is increased. 
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Figure 46 ISAC Robot 

Encoders 

Optical encoders made by Sumtak [Sumtak] are attached to the joints of each arm 

for ISAC to obtain the feedback of the current joint angles and to enable closed-loop 

feedback control. The resolutions of the encoders are 0.087890625 degree. 

Gripper 

The Gripper used for ISAC is pneumatic driven. Because of the limitation of the 

hardware and limitation of this system to the graspless “object handling” tasks, the 

gripper is always closed using tapes.  
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--Kinect Sensor 

In our designed experiments, a Kinect sensor is used to assist ISAC to track the 

position of the hand of a human teacher. The Kinect sensor is used for ISAC to locate the 

positions and sizes of the target object and obstacle in the environment. Kinect is a 

motion sensing input device made by Microsoft [Microsoft] for the Xbox 360 video game 

console and personal computers.  

There are four major functions of Kinect: obtaining the original RGB images from 

one camera, obtaining the depth information from the infrared sensors, obtaining the 

audio information using the microphones, and generating skeleton data of human bodies 

in the environment. 

Software 

Several software modules are implemented for ISAC to perform required tasks in 

our designed experiments.  

--Operating System 

ISAC 

The functions included in the CEA are implemented using Microsoft Visual C++ 

2010. LTM is developed using Microsoft Visual Access 2010, and is used for ISAC to 

store information in a database. A software package, named QuickGraph, is used for 

ISAC to construct a behavior graph by using the stored information in the LTM, and to 

visualize the behavior graph on the designed diagram. This program continuously sends 

out the position and size values of the segmented target object and obstacles to the STM, 

the information of which is used by the CEA. Command parsing is implemented using 
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Microsoft Speech Recognition Library, which defines grammars and lexicons, and 

extracts useful information from recognized commands.  

Kinect 

The Kinect module is developed using Microsoft Visual C# 2010 in Microsoft 

Windows 7. It is used for robots to track the position of the hand of the human teacher is 

based on Natural User Interface (NUI) provided by Microsoft Corporation. As shown in 

Chapter III, using NUI, ISAC can track the position values of the 20 joints on a human 

body. In the learning stage, the position of the right hand is used to describe the motion 

trajectories of demonstrated behaviors. 

--Visual Sensor Processing 

The vision module is used for robots to locate the positions and shapes of the 

target object and obstacles in the environment. The vision module is developed using 

Microsoft Visual C# 2010 in Microsoft Windows 7. This module is based on an open 

source software package, named OpenCV. When a target object and two obstacles are 

placed on the table in front of ISAC, this module segment the object and obstacle areas 

using color information in the HSV space. The sizes of the object and obstacles are 

determined by finding the radius of the segmented area. This program continuously sends 

out the position and size values of the segmented target object and obstacles to the STM, 

the information of which is used by the CEA.  

--Arm Control 

The arm control module is developed using Microsoft Visual C++ 6.0 in 

Microsoft Windows 2000. A closed-loop PID control method is implemented for ISAC to 

read the encoder value, and to send the control signal to control the air pressure of the air-
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muscles which drives the arms of ISAC. This module receives position values of the via 

points on a motion trajectory as the input, and sends out voltage values for controlling the 

air-muscles as the output. 

--Simulator 

A simulation environment is required for ISAC to internally evaluate the 

generated behaviors given some tasks. This environment is developed using Microsoft 

Visual C# 2010 in Microsoft Windows 7. An open source software package, OpenGL, is 

used as the basis of implementing such simulation environment. Three modules are 

implemented in the Simulator: Display Module, Kinematics Module, and Evaluation 

Module. Evaluation Module receives the motion trajectory to be evaluated from the CEA. 

The collision checking and working space checking are implemented for the evaluation 

module as discussed in Chapter III. The via points on the motion trajectories are sent to 

the Kinematics Module to compute the joint angles of ISAC and then sent to the Display 

Module for visualization. 

Simulator

Display

Module

Kinematics

Module

Evaluation 

Module

CEA

 

Figure 47 Simulator 

In the Evaluation Module, some rules are used to generate Boolean values for the 

CEA to use. Assume the current being evaluated via points is   . Two Boolean values are 
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defined for these rules. workingSpaceChecking is used to check whether    is within the 

working space of ISAC and collisionChecking is used to check whether the arm of ISAC 

collides with the obstacle given the position of the end-effector is   . 

if    is out of the working space of ISAC, then workingSpaceChecking is false; 

if the arm of ISAC collides with the obstacle given the position of the end-effector 

is  , then collisionChecking is false; 

if workingSpaceChecking and collisionChecking are true and      exists, then 

evaluation continues and start checking      

if workingSpaceChecking and collisionChecking are true and      does not exist, 

then evaluation stops and return a Boolean value representing “evaluation successes” 

if workingSpaceChecking or collisionChecking is false, then evaluation stops and 

returns a Boolean value representing “evaluation fails”. 

Communication 

Figure 48 displays the computers we used for these modules: 

Computer Octavia is used for the control Module, computer Sally is used for the 

vision module, and a laptop is used for the CEA and Memory parts. The communication 

among these computers is based on TCP/IP socket programming. The cameras are 

connected to Sally using USB cables and the computer used a PCI card to send the 

control signals to the regulars on ISAC. 
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TCP/IP

TCP/IP

Voice/Keyboard

USB

PCI

 

Figure 48 Computers 

The communication between the laptop and computer Octavia is based on TCP/IP 

sockets. The position values of the via points on a motion trajectory are sent to computer 

Octavia. The X, Y, and Z position values of these points are represented as short 

variables (2 bytes). Each data packet is composed of 1 operation code and 100 position 

values are sent from the labtop to computer Octavia. There are 602 bytes in each packet: 

Packet[0] = Operation Code 

Packet[1], Packet[2], Packet[3] = X,Y,Z coordinates of Point 1; 

Packet[4], Packet[5], Packet[6] = X,Y,Z coordinates of Point 2; 

… 

Packet[208], Packet[209], Packet[300] = X,Y,Zcoordinates of Point 100; 
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The communication between the labtop and computer Sally is based on TCP/IP 

sockets. In the learning stage, the position of the hand of the human teacher and the 

position and sizes of objects are sent to labtop. The X, Y, and Z position values of these 

points are represented as double variables (4 bytes). Each data packet is composed of 100 

position values of the hand of the human teacher, the position value of the target object at 

the beginning of the demonstration, and the position value of the target object at the end 

of the demonstration. There are 1224 bytes in each data packet: 

Packet[0], Packet[1], Packet[2] = X,Y,Z coordinates of Point 1 of the hand; 

Packet[3], Packet[4], Packet[5] = X,Y,Z coordinates of Point 2 of the hand; 

… 

Packet[297], Packet[298], Packet[299] = X,Y,Z coordinates of Point 100 of the 

hand; 

… 

Packet[300], Packet[301], Packet[302] = X,Y,Z coordinates of the object at the 

beginning of the demonstration; 

Packet[303], Packet[304], Packet[305] = X,Y,Z coordinates of the object at the 

beginning of the demonstration; 

Experiments designed were to demonstrate that the following requirements 

satisfied: 

1. Parse speech commands for ISAC to determine the requirements of a given 

task. 

2. Observe the demonstration from a human teacher, record the recorded motion 

trajectory of the hand of the human teacher. 
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3. Generalize demonstrated behaviors and store them in the LTM 

4. Construct behavior graphs for ISAC to use 

5. Generate behavior sequences by finding a path from the “Starting” behavior to 

the required behavior in the behavior graph 

6. Generate similar motion trajectories for behaviors when the common feature 

of the generated behavior is to keep similar dynamics  

7. Switch strategies or processes to achieve required goals 

Three types of experiments are designed and implemented to evaluate our 

designed system. Experiment 1 is used for ISAC to learn and apply “Reaching”, “Pushing 

Left”, and “Pushing Right” behaviors. ISAC needs to generalize the demonstrated 

“Reaching”, “Pushing Left”, and “Pushing Right” behaviors and store them in LTM. In 

Experiment 2, ISAC learns how to play a Yo-Yo. ISAC has learned the “Reaching” 

behavior in experiment 1, so it does not need to learn it again. It just needs to learn 

“Grasping” and “Yo-Yo Motion” behaviors and combine them with the already learned 

“Reaching” behavior to assemble a behavior sequence to play the Yo-Yo. Experiment 2 

validates the long-term memory part of the system and also generates motion trajectories 

which are similar to the demonstrations. Experiment 3 evaluates the performance of high-

level cognitive control processes on the basis of Experiment 1. A target object is placed 

on a table in front of ISAC. ISAC needs to determine whether the object can be pushed 

using either arms while avoiding obstacles in the environment. ISAC switches strategies 

to complete the task goals if necessary. 
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Experiment 1: Reaching and Pushing 

Experiment 1A: Unsupervised Reaching and Pushing 

--Objective 

 The objective of this experiment is to investigate how the system learns the 

observed behaviors. 

--Experimental Setup 

In this experiment, ISAC is asked to push an object which is placed on a table in 

front of it. In order to complete the task, ISAC needs to generate a behavior sequence, 

which is composed of the “Reaching” and “Pushing” behaviors. The generated “Reaching” 

and “Pushing” behavior should have the same feature of the demonstration which 

minimizes the distance between the end-effector and the target object.  

This experiment is to validate the following specifications 

1. Parse speech commands for ISAC to determine the requirements of given 

tasks. 

2. Observe the demonstration from a human teacher, record the recorded motion 

trajectory of the hand of the human teachers. 

3. Generalize demonstrated behaviors and store them in the LTM 

4. Construct behavior graphs for ISAC to use 

5. Generate behavior sequences to complete task 

The target object used in the experiments carried out on ISAC is a yellow box 

with the size: 18 cm (length), 18 cm (width), and 12 cm (height).  
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Figure 49 Environmental Setup of Experiment 1 

The box is placed on a table in front of ISAC. ISAC is asked to push the box to its 

left or right. The box is placed at 4 different locations for ISAC to push without grasping. 

Figure 49 displays the environmental setup. This experiment is to validate that our system 
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can enable ISAC to learn behaviors from human demonstrations and to generate behavior 

sequences to complete tasks, so all the objects are placed within the working space of 

ISAC. 

ISAC first checks the stored information in the LTM to find whether it has 

learned the required behaviors to learn. In order to demonstrate that ISAC could learn and 

generalize behaviors, initially, the behavior library is blank. Thus, ISAC requires 

demonstration from human teachers to learn “Reaching” and “Pushing”. 

--GUI Interface 

Figure 50 display the control interface implemented on computer Octavia, which 

is used to control the voltage of the regulators. 

Current 

Position and Orientation

Desired

Position and Orientation

 

Figure 50 ISAC Arm Control Interface 
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This program can receive the via points on a desired motion trajectory from 

another computer. The communication protocol is described in Chapter IV. After 

receiving the via points on the motion trajectory, this program convert it to a sequence of 

joint angles using inverse kinematics method. Then the joints of ISAC are driven by the 

air muscles by changing the voltage of the regulars on ISAC. The closed control loop 

incorporates a PID control method.  

The other method of controlling ISAC is to put the desired position and 

orientation values in the area of desired position and orientation of the dialog shown in 

Figure 50. By pressing the “Start” button, this program computes the required joint 

angles using inverse kinematics and sends the control command to the regulators. 

The first method is used in Experiment 1. 

Figure 51 displays the GUI interface of the IRS and the speech command 

communication. The stored basic behaviors are displayed on the top of the dialog. In the 

“System Status” area, it displays the current system status, e.g., parsing speech command, 

recording motion trajectory, generalization, generating behavior sequences, generated 

motion trajectories, etc. The learning status is displayed on the left side of the dialog. 

Constructed behavior graph and the generated behavior sequence are shown at the bottom 

of the dialog. Given speech commands described in Chapter IV, ISAC records the motion 

trajectories of the hand of the human teacher using Kinect, generalizes the learned 

behaviors, and generates motion trajectories which are sent to the computer Octavia to 

control the arms of ISAC.  
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The IRS simulation environment is displayed on the right side of the dialog. The 

kinematics module converts position values of the via points on the motion trajectory to 

the joint angles. These angles are sent to the displaying module to update the current joint 

angle of the simulation model of ISAC. Meanwhile, the position of the box and the 

obstacle are updated using the information received from the perception module. 

IRS Simulation 

Environment

Stored Basic Behaviors
System Status

Generated Behavior 

Sequence
Behavior Graph

Learning Status

 

Figure 51 GUI of the IRS and the Speech Command Communication 

--Learning 

Figure 52 displays the experimental setup for the learning stage. 
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Figure 52 Experimental Setup for the Learning Stage of Experiment 1 

In order to teach ISAC to learn the “Reaching” behavior, we put an object at two 

different locations on the table. A human teacher demonstrates how to reach the object: 

using the left arm or the right arm, starting from different locations, reaching with two 

different styles. Thus, there are 16 demonstrations in the learning stage. (8 

demonstrations are by using each arm respectively.) 

The left upper picture of Figure 53 displays the recorded motion trajectories of 

“Reaching” behavior demonstrated using the left arm. The starting positions are labeled 

with stars, and the target positions are labeled with circles. The common features for pre-

condition, internal constraints and post-results are predefined in Table 1, Table 2 and 
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Table 3 in Chapter III. The generalization scores of pre-condition, internal constraints and 

post-results of the “Reaching” behavior are displayed in the right upper picture, left lower 

picture, and right lower picture of Figure 53 respectively. 

 

Figure 53 Generalization Results of the “Reaching” Behavior Using the Left Arm 

Figure 54 displays the recorded motion trajectories of the “Reaching” behavior 

demonstrated using the right arm. The starting positions are labeled with stars, and the 

target positions are labeled with circles.  
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Although motion trajectories shown in Figure 53 and Figure 54 are different, the 

generalization results of the “Reaching” behavior using the right arm are the same as the 

one using the left arm.  

 

Figure 54 Generalization Results of the “Reaching” Behavior Using the Right Arm 

The generalized results reflect that the common feature of the “Reaching” 

behavior is: minimizing the distance between the hand and the destination position at the 

end of the motion trajectory. There is no requirement of pre-condition and internal 

constraint for the “Reaching” behavior.  
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Figure 55 displays the recorded motion trajectories of the “Pushing left” behavior. 

The starting positions are labeled with stars, and the target positions are labeled with 

circles. The generalization scores of pre-condition, internal constraints and post-results of 

the “Pushing to the left” behavior are displayed in the right upper picture, left lower 

picture, and right lower picture of Figure 55 respectively. 

 

Figure 55 Generalization Results of the “Pushing Left” Behavior 

Figure 56 displays the recorded motion trajectories of the “Pushing right” 

behavior. The starting positions are labeled with stars, and the target positions are labeled 

with circles. The generalization scores of pre-condition, internal constraints and post-
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results of the “Pushing to the right” behavior are displayed in the right upper picture, left 

lower picture, and right lower picture of Figure 56 respectively. 

 

Figure 56 Generalization Results of the “Pushing Right” Behavior 

The generalized results reflect that the common feature of the “Pushing Left/Right” 

behavior is: 1. minimizing the distance between the hand and the target object at the 

beginning of the motion trajectory; 2. minimizing the distance between the hand and the 

destination position at the end of the motion trajectory. There is no requirement for 

internal constraint for the “Pushing to the left/right” behavior.  
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--Generation 

Given a command: “Push the box to the left”, ISAC finds the required behavior is 

“Pushing left” and the parameters are “the box” and the “to the left”. ISAC then generates 

a behavior sequence by searching the behavior graph to find a shortest path from 

“Starting” to “Pushing left”. This behavior is composed of “Starting”, “Reaching”, and 

“Pushing left”.  

--Experimental Results of Experiment 1 

Figure 57 displays the generated motion trajectories in the Cartesian space for 

pushing the box to the left at 4 different locations labeled by circles. 2nd-Order attractor 

is used to generate motion trajectories for “Reaching”, and “Pushing left/right”.  

 

Figure 57 Generated Motion Trajectories for Experiment 1A (Pushing to the Left) 

In Figure 58, ISAC pushes the object placed at different locations to the left.  
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Figure 58 Experimental Results of Experiment I (Pushing to the Left) 
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When the box is placed at location 1, 2, and 3, ISAC can push it to the left. 

However, when the box is placed at location 4, ISAC can only push it to the left in a 

small distance. The reason is that location 4 is close to the edge of the working space of 

ISAC. 

Figure 59 displays the generated motion trajectories in the Cartesian space for 

pushing the box to the right at 4 different locations labeled by circles. 

 

Figure 59 Generated Motion Trajectories for Experiment I (Pushing to the Right) 

In Figure 60, ISAC pushes the object placed at different locations to the left.  
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Figure 60 Experimental Results of Experiment I (Pushing to the Right) 
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From the experimental results, ISAC pushes the box to the right when it is placed 

at four different locations. 

--Discussion 

According the experiment results, ISAC pushes the object to left, which is placed 

at 4 different locations and pushes the object to the right when it is placed at 4 different 

locatioins. The experiment results demonstrate that ISAC can use this system to parse the 

speech command, check the LTM, observe demonstrations, generalize behaviors, 

generate behavior sequences, and generate motion trajectories to complete tasks.  

Experiment 1B: Supervised Pushing by Physical Coaching 

--Objective 

The objective of this experiment is to investigate how the system learns behaviors 

from physical coaching. 

--Experimental Setup 

In this experiment, ISAC’s right arm is physically moved to the pushing point on 

an object placed on a table. A human teacher demonstrates then how to push the object 

on the table by manually moving the right arm of ISAC. This is called physical coaching 

or physical human-robot interaction [Lee et al., 2011], which is different from the 

demonstration method in Experiment 1A. During coaching, each successful and failed 

pushing is recorded. This is similar to reinforcement learning [Sutton and Barto, 1998]. 

Then ISAC generalizes the demonstrations and uses the most successful point to push the 

object. 

This experiment is to validate the following specifications: 
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1. Record success or failure of the locations of the pushing point which is 

demonstrated by physical coaching by a human teacher. 

2. Record the most successful point of pushing and store the corresponding 

behavior in the LTM 

3. Generate the desired motion trajectories for ISAC 

Figure 61 displays the experimental setup similar to Experiment 1A. However, in 

this experiment, ISAC learns the best pushing point on the object.  

 

Figure 61 Experimental Setup of the Generation Stage in Experiment 1B 

Figure 62 displays the experimental setup of the learning stage. A human teacher 

physically moves the arm to push the object at different points on the side of the object 
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and tells ISAC whether each push was successful or not. In this experiment, the height of 

the box is larger than the length and the width. 

 

Figure 62 Experimental Setup of the Learning Stage in Experiment 1B 

Learning 

In Experiment 1B, the center of the object is placed at {            }. Figure 

63 displays the pushing points on the side of the object during the demonstrations. The 

points labeled with circles are those ISAC can use to push the object, and the points 

labeled with stars are those ISAC cannot use to push the object. 
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Figure 63 Pushing Points of Experiment 1B 

In Figure 63, the points (o), which ISAC should use to push the object, are in the 

middle and at the bottom, and the points (*), which ISAC should not use to push the 

object, are at the top and on the sides. We used a Gaussian model to describe the group of 

the points that ISAC can use to push the object as shown in Figure 64. 
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Figure 64 The Gaussian Model of the pushing points in Experiment 1B 

The parameters of the Gaussian model shown in Figure 64 are: 

  {              } 

  [
               

               
] 

where   is the mean and   is the covariance matrix of this Gaussian Model. The meaning 

of this Gaussian model is that ISAC needs to choose points around 

{                 } as the pushing point to increase the probability of pushing the 

object to the required location. If the center of the box is {        }, the chosen pushing 

point is {                      } 
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Experimental Results 
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Figure 65 Experimental Results of Experiment 1B 

In Figure 65, ISAC reaches the pushing points which are described using 

Gaussian model learned from the physical coaching of the human teacher. 
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--Discussion 

In Experiment 1B, a human teacher teaches how to find the pushing points on the 

object using physical coaching method. A Gaussian model is used to describe the learned 

result and ISAC chose the mean of this model as the pushing point. The quantitative 

analysis of the generation results of Experiment 1B will be explained in Chapter V. 

Experiment 1C: Compensator for ISAC Arm Control 

--Objective 

The objective of the experiment is to how the system compensates the error 

generated by the hardware. 

--Experimental Setup 

In this experiment, ISAC is asked to reach the pushing point on an object which is 

placed on a table in front of it. ISAC first tries to use the pushing point without using the 

compensator. The error is measure by computing the distance between the end-effector 

and the pushing point on the object, which is used as the input of the compensator. Then 

ISAC uses the stored information of the compensator to change the target position to 

overcome the error generated by the hardware. 

This experiment is to validate the following specifications 

1. Store the error in the compensator 

2. Use the compensator to overcome the error generated by the hardware. 

The target object used in the experiments carried out on ISAC is a yellow box 

with the size: 18 cm (length), 18 cm (width), and 12 cm (height).  
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The box is placed on a table in front of ISAC. ISAC is asked to reach the pushing 

point on the box. The box is placed at 4 different locations. Figure 66 displays the 

environmental setup. This experiment is to validate that our system can enable ISAC to 

overcome the error generated by the hardware. 

 

Figure 66 Experimental Setup of Experiment 1C 

--Experimental Results 

Figure 67 displays the experimental results in Experiment 1C. 
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Figure 67 Experimental Results of Experiment 1C 

L means that ISAC needs to reach the pushing point on the box to push to its left 

and R means ISAC needs to reach the pushing point on the box to push to its Right. The 

box is placed at 4 different locations for pushing left and right. Thus there are 8 

experiments in Experiment 1C.  

In the figures for each experiment, the left picture displays the location of the box, 

the middle picture displays the location of the end-effector without using the compensator, 
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and the right picture displays the location of the end-effector using the compensator. The 

required pushing point is labeled using “ ” on the box. 

In Figure 67, the compensator improves the performance of the arm control, and 

the error becomes smaller. The quantitative analysis of the experimental results of 

Experiment 1C is explained in Chapter V. 

The next experiment is to investigate how ISAC can generate motion trajectories 

which are similar to demonstrated behaviors. This is popular in current imitation learning 

research. We want to investigate how this type of traditional imitation learning methods 

could be integrated within the system in this dissertation. 

 

Experiment 2: Yo-Yo Playing 

Objective 

 The objective of this experiment is to investigate how the system learns newly 

observed behaviors and generates similar motions. 

Simulation Experiment Description 

This experiment is to ask ISAC to play Yo-Yo, which is a very common game for 

children. The Yo-Yo is placed within the working space of the right arm of ISAC and 

ISAC needs to generate a Yo-Yo Playing behavior sequence, which is composed of the 

“Reaching”, “Grasping”, and “Yo-Yo Motion”, to complete the task. In order to generate 

this behavior sequence, ISAC needs to observe and generalize the “Yo-Yo Motion” 

behavior and add it to the behavior graph. In this experiment, the generated “Yo-Yo 

Motion” behavior should be similar to the demonstrated “Yo-Yo Motion” behavior. This 
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is different from generating the “Reaching” and the “pushing” behaviors in Experiment 1, 

which does not require the similarity between the demonstrated behavior and the 

generated behavior. 

The Yo-Yo playing requires ISAC to generate a behavior sequence which is 

composed of several behaviors in order to play Yo-Yo. In the learning stage, ISAC 

checks the LTM and founds it has not learned the “Yo-Yo Motion” behavior. So it asks a 

human teacher to demonstrate how to play Yo-Yo. The human teacher demonstrates a 

behavior sequence which is composed of “Reaching”, “Grasping”, and “Yo-Yo Motion”. 

ISAC checks the LTM and founds that it has already learned the “Reaching” behavior, so 

it does not need to generalize the “Reaching” behavior again. Because of the limitation of 

the hardware, ISAC cannot learn the “Grasping” through physical coaching and observe 

the grasping using Kinect, the “Grasping” behavior is added into the database by the 

human teacher. Then ISAC needs to learn and generalize “Yo-Yo Motion” behavior in 

this experiment, and to add them in the LTM. 

In the generation stage, based on our designed method, “Yo-Yo Motion” behavior 

has a pre-condition which requires that a Yo-Yo already be in hand. So ISAC needs to 

find a behavior which satisfies the pre-condition requirements of the “Yo-Yo Motion” 

behavior. I.e., ISAC need to find a behavior in the behavior graph, which has a transition 

edge going to the “Yo-Yo Motion” behavior. By searching the constructed behavior 

graph, ISAC should find a path from the “Starting” to the “Yo-Yo Motion” behavior to 

generate a behavior sequence to play Yo-Yo. This behavior sequence is composed of 

“Reaching”, “Grasping”, and “Yo-Yo Motion”. The requirement of the “Reaching” 

behavior is to minimize the distance between the end-effector and the target object and 
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the requirement of the “Yo-Yo Motion” behavior is to generate motion trajectories which 

are similar to the demonstrations.  

This experiment is to evaluate the following major requirements: 

1. Learn new behavior: “Yo-Yo Motion” from a demonstrated behavior 

sequence. 

2. Generalize demonstrated “Yo-Yo Motion” behavior, the internal constraint of 

which is to keep motion dynamics similar to a demonstrated motion; 

3. Use behaviors learned in the first experiment (Reaching) and learn necessary 

additional behavior in this experiment (Yo-Yo Motion); 

4. Construct a complex behavior graph from stored information in the LTM; 

5. Find a path from the “Starting” behavior to the required “Yo-Yo Motion” 

behavior and generate behavior sequence; 

6. Generate motion trajectories which are similar to the demonstrations of the 

“Yo-Yo Motion” behavior; 

7. Run the simulator. 

Learning 

The learning stage was implemented in the real environment with ISAC using a 

Kinect sensor to observe the demonstrations; the generation stage was implemented in a 

simulation environment. 

A Yo-Yo is placed at 5 different locations in front of ISAC, and a human teacher 

demonstrates how to play the Yo-Yo using the right hand as shown in Figure 68. The 

demonstration is composed of the “Reaching”, the “Grasping”, and the “Yo-Yo Motion” 

behaviors. 



134 

 

 

Figure 68 Experimental Setup of the Learning Stage of Experiment 2 

Figure 69 displays the recorded motion trajectories of the demonstrations in the 

Cartesian space. The starting positions are labeled with stars, and the target positions are 

labeled with circles. These demonstrations are composed the “Reaching”, “Grasping”, 

and “Yo-Yo Motion” behaviors. 

ISAC checks the LTM and finds that it has already learned the “Reaching” 

behavior. The “Grasping” behavior is manually added into the LTM for ISAC. Then 

ISAC needs to generalize the “Yo-Yo” motion behavior in this experiment. 
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Figure 69 Recorded Motion Trajectory of the “Yo-Yo Playing” Behavior Sequence 

Figure 70 displays the motion trajectories on X, Y, and Z axis. 

 

Figure 70 Recorded Motion Trajectories of “Yo-Yo Motion” Behavior 

Figure 71 displays the generalization results of “Yo-Yo Motion” behavior.  
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Figure 71 Generalization Results of the “Yo-Yo Motion” Behavior 

Based on these results, the pre-condition of the “Yo-Yo Motion” behavior is to 

minimize the distance between the hand and the Yo-Yo and close the hand, the internal 

constraint is to keep similar dynamics, and the Post-Result is to close the hand. 

Generation 

Given a command: “Play Yo-Yo”, ISAC finds that the required behavior is the 

“Yo-Yo Motion” behavior and the parameter is “Yo-Yo”. ISAC first constructed a 

behavior graph as shown in Figure 72 and generated a behavior sequence by searching 

the behavior graph to find a shortest path from “Starting” to “Yo-Yo Motion”.  

Feature 1Feature 2Feature 3Feature 4
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Pre-Condition

Feature 1 Feature 2
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Internal-Constraints

Feature 1Feature 2Feature 3Feature 4
0

0.2

0.4

0.6

0.8

1

Feature Index

F
e
a
tu

re
 S

c
o
re

Post-Results



137 

 

Start

 

Figure 72 Behavior Sequence Generation for Yo-Yo Playing 
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This behavior is composed of “Starting”, “Reaching”, “Grasping”, and “Yo-Yo 

Motion”. 2nd-Order attractor is used to generate motion trajectories for “Reaching”, 

“Closing End-Effector” is used for “Grasping”, and DMP is used for “Yo-Yo Motion”. 

The selection of these methods is based on Table 5 in Chapter III. 

Simulation Experimental Results 

In Figure 73, the Yo-Yo is placed at 3 different locations labeled by circles. 

Fig.10 displays the generated motion trajectories for ISAC to play Yo-Yo. 

Reaching

Reaching Reaching

Grasping

Grasping Grasping

Yo-Yo 

Motion
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Motion
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Figure 73 Generated Motion Trajectories for Experiment 2 
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The first behavior is “Reaching”, which is used by ISAC to minimize the distance 

between the end-effector and the target-object. It starts from timing step 0 to timing step 

100. The second behavior is “Grasping” which is used by ISAC to grasp the Yo-Yo. It 

starts from timing step 101 to timing step 200. The third behavior in the behavior 

sequence for playing Yo-Yo is the “Yo-Yo Motion” behavior and the generalization 

results of the “Yo-Yo Motion” behavior is to keep similar dynamics. It starts from timing 

step 201 to timing step 300. The generated motion trajectories of the “Yo-Yo Motion” 

behaviorsare similar to the demonstrated motion trajectories on X, Y, Z-Axis when 

comparing the right upper picture, the left lower picture, and right lower picture of Figure 

70 and Figure 73 (The third behavior starts from timing step 201).   

The quantitative evaluation of the similarity of the generated “Yo-Yo Motion” 

behavior will be explained in Chapter V. 

Discussion 

In Experiment 2, the demonstrated Yo-Yo Motion has been learned. The results 

show that the generated motion trajectories are similar to the demonstrations, which 

satisfies the requirements of traditional imitation learning research.  

From Experiment 1, ISAC already learned the “Reaching” behavior and stored it 

in the LTM. After ISAC checks the LTM, it puts it the learned “Reaching” behavior in 

the generated behavior sequence to satisfy the requirement of the pre-condition of the 

“Yo-Yo Motion” behavior.  

Using this method, the human teacher does not need to demonstrate all behavior 

sequences for ISAC. He/she only needs to demonstrate new basic behaviors and ISAC 



140 

 

will add it into the behavior graph and add the transitions among the new basic behaviors 

and other behaviors by matching the pre-conditions and the post-results. Given a required 

behavior, ISAC can find a path from the “Starting” to the required behavior to complete 

the task. 

 

Experiment 3: Cognitive Control 

Objective 

This objective of this experiment is to investigate how the system switches 

strategies to complete a task. 

Simulation Experiment Description 

In Experiments 1 and 2, ISAC generalized demonstrated behaviors, stored newly 

learned behaviors in the LTM, constructed behavior graph, generated behavior sequences, 

and generated motion trajectories to complete tasks. An important contribution of this 

dissertation is to integrate imitation learning with cognitive control for robot dynamically 

to perform tasks. Using the integrated system, ISAC should adaptively switch strategies 

to achieve a given task goal. In Experiment 3, the target object is placed in the 

environment at different locations, and ISAC is asked to push it using either of its arms. 

Using the decision making mechanism described in Chapter III, ISAC can adaptively 

switch strategies to push the target object to the right using one of its arms. If it considers 

it is impossible to complete this task, it will ask the human teacher to demonstrate it 

differently or tell why it cannot be done. In Experiment 3A, there is no obstacle in the 

environment; in Experiment 3B, an obstacle is placed on the table.  
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Experiment 3A: Integrated System without Obstacle 

--Objective 

This experiment is to evaluate the integrated system of behavior-based cognitive 

control when there is no obstacle. Since imitation learning has been described in detail 

earlier, we assume that ISAC already learned all needed behaviors. 

--Simulation Setup 

Figure 74 displays the simulation experimental setup of Experiment 3A. The 

target object, a yellow box, is placed in the environment at 10 locations, and ISAC is 

asked to push it to its right. The size of the box is: 18 cm (length), 18cm (width), and 12 

cm (height). The coordinates of the 10 locations on the table are: Location 1: 

{          } , Location 2: {        } , Location 3: {         } , Location 4: 

{         } , Location 5: {         } ,  Location 6: {          } , Location 7: 

{        } , Location 8: {         } , Location 9: {         } , Location 10: 

{         }. (-46 is the Z coordinates of the surface of the table) The units of all the 

coordinates are centimeters. 

The speech command is: “Push the box to the right”. ISAC parses the speech 

command and find the required behavior is “Pushing right”, the parameters are “the box” 

and “to the right”. It searches the behavior graph and generates a behavior sequence: 

{                               }. 

Location 1, 6, 7, and 8 are within the working space of the right arm of ISAC. 

Then ISAC determines to push the box to its left using its right arm. Location 2, 3, 4 and 

9 are within the working space of the left arm of ISAC. ISAC firstly tries to push the box 

to its left using its left arm. Using the evaluation results from the IRS, it determines that it 
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cannot push the box to its right using its right arm. Thus, it chooses to transfer the 

generated behavior sequences to its left arm and tries to push the cube to its right. The 

evaluation results from the IRS shows that it can push the cube to the left using the left 

arm. Location 5 and 10 are out of the working space of ISAC. After trying to use the left 

arm and the right arm, ISAC displays that the box is placed out of its working space and 

it cannot complete that. 
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Figure 74 Simulation Setup for Experiment 3A 
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In Figure 75, the box is placed at Location 1. ISAC pushes the box to the right 

using its right arm.  

Location 1
Location 1

 

Figure 75 Simulation Results of Experiment 3A-1 

Figure 76 displays the generated motion trajectory of pushing the box at location 

1 to the right using the right arm. 
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Figure 76 Generated Motion Trajectories for the Right Arm (Experiment 3A-1) 

In Figure 77, the object is placed at Location 2. ISAC first tries to push the object 

using its right arm and detected the collision with the object which is labeled using a 

black circle. Then ISAC switches the generated sequence to the left arm and pushes the 

box to the right.  

Location 2
Location 2 Location 2

 

Figure 77 Simulation Results of Experiment 3A-2 
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Figure 78 displays the generated motion trajectory of pushing the box at location 

2 to the right using the right arm of ISAC. 

 

Figure 78 Generated Motion Trajectories for the Right Arm (Experiment 3A-2) 

Figure 79 displays the generated motion trajectories for the left arm. 
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Figure 79 Generated Motion Trajectories for the Left Arm (Experiment 3A-2) 
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Figure 80 Simulation Results of Experiment 3A-10 

In Figure 80, the object is placed at Location 10. ISAC first tries to push the 

object using its right arm and finds that the object is out of the working space of the right 
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arm. Then ISAC switches the generated sequence to the left arm and finds that it is out of 

the working space of the left arm. Then ISAC returns to the home position and displays 

that the object is out of its working space and it cannot complete the task. 

--Simulation Results of Experiment 3A 

The simulation results are summarized in Table 6. 

Table 6 Simulation Results of Experiment 3A 

 Feasible/ 

Infeasible 

Left/Right Arm Failure Reason 

Location 1 Feasible Right Arm N/A 

Location 2 Feasible Left Arm N/A 

Location 3 Feasible Left Arm N/A 

Location 4 Feasible Left Arm N/A 

Location 5 Infeasible N/A Right Arm: Collision with the object 

Left Arm: Out of working Space 

Location 6 Feasible Right Arm N/A 

Location 7 Feasible Right Arm N/A 

Location 8 Feasible Left Arm Right Arm: Collision with the object 

Location 9 Feasible Left Arm N/A 

Location 10 Infeasible N/A Right Arm: Out of working space 

Left Arm: Out of working space 

 

The figures of simulation results and generated motion trajectories for both arms 

are included in Appendix C. 



149 

 

Experiment 3B: Integrated System with Obstacle 

--Objective 

This experiment is to evaluate the integrated system of behavior-based cognitive 

control when obstacle exists. Since imitation learning has been described in detail earlier, 

we assume that ISAC already learned all needed behaviors. 

Figure 81 illustrates key system components used in this experiment. 

Long Term Memory (LTM)

Central Executive Agent 

(CEA)

Internal Rehearsal System 

(IRS)

Actuator
Sensor

Motion i

Evaluation Results

Motion 

Trajectory

Cognitive 

Control

Environment

Motion j

Behavior 
Generation

Motion 
Trajectories of 

Basic Behaviors in a 
Behavior Sequence

Task 
Requirements

 

Figure 81 Key Software Components in Experiment 3B 

As mentioned earlier, simulation was implemented using Microsoft Visual C# 

with OpenGL. Major software components are: Central Executive Agent (CEA), Internal 

Rehearsal System, Long-Term Memory, and Behavior Generation. How they were 

implemented for this integrated experiment is describe here. 
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--Central Executive Agent (CEA) 

 The CEA is a rule based module which makes decisions to switch cognitive 

control processes.  

Given a task, the CEA parses the command and finds the required behavior and 

related parameters. Then the CEA searches the LTM to find whether the behavior has 

been learned. The input of the searching is the name of the required behavior, and the 

output is a returned Boolean value. Based on the Boolean value, the CEA uses the 

following rules: 

if searching result is true, then switches to behavior generation; 

if searching result is false, then switches to learning stage. 

The CEA finds a path from the “Starting” behavior to the required behavior in the 

constructed graph and generates a behavior sequence. The input of the behavior sequence 

generation is the name of the required behavior and the output is a behavior sequence.  

if behavior sequence generation is completed, then switches to behavior sequence 

generation 

For each behavior in this behavior sequence, a motion trajectory is generated. The 

generation method is selected from Table 5 in Chapter III. The input of motion trajectory 

generation is behavior sequence with related parameters and the output is a motion 

trajectory. 

if motion trajectory generation is completed, then switches to motion trajectory 

generation 
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The generated motion trajectory is sent to IRS for evaluation. The input of the 

IRS is the generated motion trajectory and the output is a returned Boolean value. Based 

on the returned Boolean value, the CEA switches the strategies using the following rules: 

if the evaluation of using the right arm is true, then switches to execution 

if the evaluation of using the right arm is false, then switches to evaluating the 

behavior sequence using the left arm 

if the evaluation of using the left arm is true, then switches to execution 

if the evaluation of using the left arm is false, then switches to displaying a 

message on the screen and waiting for commands   

--Internal Rehearsal System (IRS) 

 

Figure 82 Example of the IRS Environment 

Figure 82 displays an example of the environment in IRS, which is developed 

using Microsoft Visual C# with OpenGL. Two key modules are implemented: display 

module and evaluation module. In display module, the joint angles of ISAC, the position 

and sizes of the target object and the obstacle are updated continuously in order to display 



152 

 

the current situation of the evaluation process. In evaluation module, IRS detects the 

collision of the arms of ISAC with the target object and the obstacle, and tests whether 

the required via points on the motion trajectory are out of the working space of ISAC. 

The detailed description of the evaluation module is included in Chapter III. 

The input of the IRS is a motion trajectory and the environmental information 

including the positions and the sizes of the target object and the obstacle. The output of 

the IRS is a Boolean value describing whether the arms of ISAC collides with the target 

object and the obstacle and whether the via points on the motion trajectory is within the 

working space of ISAC, which is sent to the CEA.  

--Long Term Memory (LTM) 

The LTM stores the learned basic behaviors and pre-defined behavior generation 

methods. Microsoft Visual C# and Microsoft Access 2010 is used for the implementation 

of the database. The structure of the learned basic behavior is: 

Behavior Name 

{ 

Behavior ID 

Pre-Condition 

Post-Results 

Internal Condition 

Original Regression Model 

Latent Regression Model 

Projection Matrix 

} 

A sample of stored basic behaviors is: 

Reaching 

{ 

Behavior ID:     1 

Pre-Condition:   0 

Post-Results:    1 

Internal Condition:   1 

Original Regression Model:  null 

Latent Regression Model:  null 



153 

 

Projection Matrix:   null 

} 

 

--Behavior Generation 

In Behavior Generation, a behavior sequence and motion trajectories for all the 

behaviors in the behavior sequence are generated. The behavior sequence is generated by 

finding a shortest path in the constructed behavior graph using Dijkastra’s algorithm. The 

motion trajectories are generated using the behavior generation methods described in 

Table 5 of Chapter III. The generated motion trajectories are sent to the IRS for 

evaluation. The CEA decides whether the motion trajectories for the left arm or the right 

arm are sent to the IRS. 

--Simulation Setup 

The target object, a yellow box, is placed in the environment at 8 locations, and 

ISAC is asked to push it to its right. The size of the box is: 18 cm (length), 18cm (width), 

and 12 cm (height).  

The coordinates of the 8 locations on the table are: Location 1: {          }, 

Location 2: {        }, Location 3: {         }, Location 4: {         }, Location 

5: {          } , Location 6: {        } , Location 7: {         } , Location 8: 

{          } (-46 is the Z coordinates of the surface of the table) The units of all the 

coordinates are centimeters. 

Figure 83 displays the locations of the object. 
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Location 1 Location 2

Location 3
Location 4

Location 5
Location 6

Location 7
Location 8

 

Figure 83 Simulation Setup of Experiment 3B 
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In each experiment, an obstacle is placed on the table as the obstacle. When the 

object is placed at each location, the obstacle is placed at four different locations around 

the object. The positions of the obstacle are: 

(a) {                                                  },  

(b) {                                                  },  

(c) {                                                  },  

(d) {                                                 }  

All the units of the coordinates are centimeters. Figure 84 displays the simulation 

setup when the target object is placed at location 3. 

Location 3d

Location 3a Location 3b

Location 3c

 

Figure 84 Locations of the Obstacles in Experiment 3B-3 
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The obstacles used in the simulation are blue boxes with the sizes: (1) 1 cm 

(length), 1cm (width), and 20 cm (height); (2) 5 cm (length), 5cm (width), and 20 cm 

(height); (3) 10 cm (length), 10 cm (width), and 20 cm (height); (4) 20 cm (length), 20 

cm (width), and 20 cm (height). Figure 85 displays that when the target object is placed at 

location 3, and the obstacle is also placed at location 3c, the obstacles with different sizes 

are placed on the table. 

Location 3c-1 Location 3c-2

Location 3c-3
Location 3c-4

 

Figure 85 Different Sizes of Obstacles in Experiment 3B-3c 

Thus, there are 128 simulation experiments. When the object is placed at each 

location, there are 16 simulation experiments. 
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The indices of the experiments Experiment 3B are designed as: 3B-XY-Z. X is 

related to the index number of location of the target object, Y is related to the position of 

obstacle, Z is related to the size of the obstacle used. 

ISAC is asked to push the box to the right while avoiding the obstacle and 

avoiding hitting the box before the “Pushing Right” behavior. 

The given command is: “Push the box to the right”. ISAC parses the speech 

command and find the required behavior is “Pushing Right”, the parameters are “the box” 

and “to the right”. It searches the behavior graph and generates a behavior sequence: 

{                               } . Because the obstacle is detected in the 

environment, ISAC will generate motion trajectories to avoid this obstacle and switch 

strategies by using the right arm or the left arm to complete the required task. If ISAC 

finds that the target is out of its working space or it cannot push the object while avoiding 

the obstacle, it displays a message on the screen. 

Example: Experiment 3B-6 

The target object is placed at location 7: {        } , the obstacle is placed 

around the yellow box at four locations: {         }, {        }, and {          }, 

{        }. ISAC is asked to push the object to the right using one of its arms.  

In Figure 86, the obstacle is placed at {         } and the size of the obstacle is 

1 cm (length), 1cm (width), and 20 cm (height). ISAC pushes the object to the right using 

its right arm. In Figure 87, the size of the obstacle is increased to 5 cm (length), 5cm 

(width), and 20 cm (height), and ISAC pushes the object to the right using its right arm. 

Figure 88 displays the generated motion trajectory of the right arm.  
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Given a command, ISAC first checks the LTM to generate a behavior sequence 

which is composed of {                }. Then it generates motion trajectories for all 

the behaviors in this behavior sequence. 2
nd

-Order attractor is used according to the 

selection methods in Table 5 of Chapter III. The generated motion trajectories are sent to 

the IRS for evaluation. When size of the obstacles are 1 cm (length), 1cm (width), and 20 

cm (height) and 5 cm (length), 5cm (width), and 5 cm (height), the returned evaluation 

results demonstrate that ISAC can push the box using its right arm. Then the CEA 

switches the process to execution. 

Location 6a-1 Location 6a-1

 

Figure 86 Simulation Results of Experiment 3B-6a-1 

Location 6a-2 Location 6a-2

 

Figure 87 Simulation Results of Experiment 3B-6a-2 
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Figure 88 Generated Motion Trajectories for the Right Arm (Experiment 3B-6a-1/2) 

The size of the obstacle is increased to 10 cm (length), 10 cm (width), and 20 cm 

(height) in Figure 89. Given a command, ISAC first checks the LTM to generate a 

behavior sequence which is composed of {                } . Then it generates 

motion trajectories for all the behaviors in this behavior sequence. 2
nd

-Order attractor is 

used based according to the selection method in Table 5 of Chapter III. The generated 

motion trajectory for the right arm is sent to the IRS for evaluation. The returned 

evaluation results demonstrate that ISAC cannot push the box using its right arm because 

it has to avoid the obstacle. Then the CEA switches the strategy and transfer the 
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generated motion trajectories to the left arm. The evaluation result demonstrates that 

ISAC can push the box using its left arm. Then the CEA switches the process to 

execution. 

Location 6a-3 Location 6a-3 Location 6a-3

 

Figure 89 Simulation Results of Experiment 3B-6a-3 

Figure 90 and Figure 91 displays the generated motion trajectories for the left arm 

and the right arm in Experiment 3B-6a-3 respectively. 

 

Figure 90 Generated Motion Trajectories for the Right Arm (Experiment 3B-6a-3) 

400

600

800 -200
0

200
400

600
800

-600
-400
-200

0
200
400

Y Axis(mm)

Motion of Right Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Right Arm

0 50 100 150 200

-200

0

200

400

600

800

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Right Arm

0 50 100 150 200
-600

-400

-200

0

200

400

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Right Arm



161 

 

 

Figure 91 Generated Motion Trajectories for the Left Arm (Experiment 3B-6a-3) 

The size of the obstacle is increased to 20 cm (length), 20 cm (width), and 10 cm 

(height) in Figure 92. Given a command, ISAC first checks the LTM to generate a 

behavior sequence which is composed of {                } . Then it generates 

motion trajectories for all the behaviors in this behavior sequence. 2
nd

-Order attractor is 

used based according to the selection method in Table 5 of Chapter III. The generated 

motion trajectory for the right arm is sent to the IRS for evaluation. The returned 

evaluation results demonstrate that ISAC cannot push the box using its right arm because 

it has to avoid the obstacle. Then the CEA switches the strategy and transfer the 

generated motion trajectories to the left arm. The evaluation result demonstrates that 
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ISAC cannot push the box using its left arm because it has to avoid the obstacle. Then the 

CEA decide to return to the home position and display a message on the screen. 

Location 6a-4 Location 6a-4 Location 6a-4

 

Figure 92 Simulation Results of Experiment 3B-6a-4 

Figure 93 and Figure 94 display the generated motion trajectories for the right and 

left arm in Experiment 3B-6a-4 respectively.  

 

Figure 93 Generated Motion Trajectories for the Right Arm (Experiment 3B-6a-4) 
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Figure 94 Generated Motion Trajectories for the Left Arm (Experiment 3B-6a-4) 

In this example, ISAC switches strategies to complete the task when the obstacle 

with different sizes is placed at the same location. When the size increases, ISAC finds 

that it cannot push the box using its right arm and transfer the generated behavior 

sequence to the left arm. Based on the evaluation results from the IRS, ISAC makes 

decisions to choose switching strategies or displaying a message on the screen to tell 

human why it cannot complete the task. 

The pictures of simulation results and generated motion trajectories for 

Experiment 3B are included in Appendix D. 
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Table 7 Simulation Results of Experiment 3B-1 

 Feasible/ 

Infeasible 

Left/Right Failure Reason 

Experiment 3B-1a-1 Feasible Right Arm N/A 

Experiment 3B-1a-2 Feasible Right Arm N/A 

Experiment 3B-1a-3 Infeasible N/A Right Arm: Cannot Reach the Box 

Left Arm: Cannot Reach the Box 

Experiment 3B-1a-4 Infeasible N/A Right Arm: Cannot Reach the Box 

Left Arm: Cannot Reach the Box 

Experiment 3B-1b-1 Feasible Right Arm N/A 

Experiment 3B-1b-2 Feasible Right Arm N/A 

Experiment 3B-1b-3 Feasible Right Arm N/A 

Experiment 3B-1b-4 Infeasible Left Arm Right Arm: Cannot Reach the Box 

Left Arm: Cannot Reach the Box 

Experiment 3B-1c-1 Feasible Right Arm N/A 

Experiment 3B-1c-2 Feasible Right Arm N/A 

Experiment 3B-1c-3 Feasible Right Arm N/A 

Experiment 3B-1c-4 Feasible Right Arm N/A 

Experiment 3B-1d-1 Feasible Right Arm N/A 

Experiment 3B-1d-2 Feasible Right Arm N/A 

Experiment 3B-1d-3 Feasible Right Arm N/A 

Experiment 3B-1d-4 Infeasible N/A Right Arm: Collision with the obstacle 

Left Arm: Cannot Reach the Box 
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Table 8 Simulation Results of Experiment 3B-2 

 Feasible/ 

Infeasible 

Left/Right Failure Reason 

Experiment 3B-2a-1 Infeasible N/A Right Arm: Cannot Reach the Box 

Left Arm: Collision with the obstacle 

Experiment 3B-2a-2 Infeasible N/A Right Arm: Cannot Reach the Box 

Left Arm: Collision with the obstacle 

Experiment 3B-2a-3 Infeasible N/A Right Arm: Cannot Reach the Box 

Left Arm: Collision with the obstacle 

Experiment 3B-2a-4 Infeasible N/A Right Arm: Cannot Reach the Box 

Left Arm: Collision with the obstacle 

Experiment 3B-2b-1 Feasible Left Arm Right Arm: Cannot Reach the Box 

Experiment 3B-2b-2 Feasible Left Arm Right Arm: Cannot Reach the Box 

Experiment 3B-2b-3 Feasible Left Arm Right Arm: Cannot Reach the Box 

Experiment 3B-2b-4 Feasible Left Arm Right Arm: Cannot Reach the Box 

Experiment 3B-2c-1 Feasible Left Arm Right Arm: Cannot Reach the Box 

Experiment 3B-2c-2 Feasible Left Arm Right Arm: Cannot Reach the Box 

Experiment 3B-2c-3 Feasible Left Arm Right Arm: Cannot Reach the Box 

Experiment 3B-2c-4 Feasible Left Arm Right Arm: Cannot Reach the Box 

Experiment 3B-2d-1 Feasible Left Arm Right Arm: Cannot Reach the Box 

Experiment 3B-2d-2 Feasible Left Arm Right Arm: Cannot Reach the Box 

Experiment 3B-2d-3 Feasible Left Arm Right Arm: Cannot Reach the Box 

Experiment 3B-2d-4 Feasible Left Arm Right Arm: Cannot Reach the Box 
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Table 9 Simulation Results of Experiment 3B-3 

 Feasible/ 

Infeasible 

Left/Right  Failure Reason for the Left/Right Arm 

Experiment 3B-3a-1 Infeasible N/A Right Arm: Collision with the obstacle 

Left Arm: Collision with the obstacle 

Experiment 3B-3a-2 Infeasible N/A Right Arm: Collision with the obstacle 

Left Arm: Collision with the obstacle 

Experiment 3B-3a-3 Infeasible N/A Right Arm: Collision with the obstacle 

Left Arm: Collision with the obstacle 

Experiment 3B-3a-4 Infeasible N/A Right Arm: Collision with the obstacle 

Left Arm: Collision with the obstacle 

Experiment 3B-3b-1 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-3b-2 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-3b-3 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-3b-4 Infeasible N/A Right Arm: Collision with the object 

Left Arm: Cannot reach the box 

Experiment 3B-3c-1 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-3c-2 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-3c-3 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-3c-4 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-3d-1 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-3d-2 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-3d-3 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-3d-4 Feasible Left Arm Right Arm: Collision with the object 
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Table 10 Simulation Results of Experiment 3B-4 

 Feasible/ 

Infeasible 

Left/Right  Failure Reason for the Left/Right 

Arm 

Experiment 3B-4a-1 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-4a-2 Feasible Left Arm Right Arm: Collision with the object 

 

Experiment 3B-4a-3 Infeasible N/A Right Arm: Collision with the object 

Left Arm: Cannot reach the box 

Experiment 3B-4a-4 Infeasible N/A Right Arm: Collision with the object 

Left Arm: Collision with the obstacle 

Experiment 3B-4b-1 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-4b-2 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-4b-3 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-4b-4 Infeasible N/A Right Arm: Collision with the object 

Left Arm: Cannot reach the box 

Experiment 3B-4c-1 Feasible Left Arm Right Arm: Collision with the obstacle 

Experiment 3B-4c-2 Feasible Left Arm Right Arm: Collision with the obstacle 

Experiment 3B-4c-3 Feasible Left Arm Right Arm: Collision with the obstacle 

Experiment 3B-4c-4 Feasible Left Arm Right Arm: Collision with the obstacle 

Experiment 3B-4d-1 Feasible Left Arm Right Arm: Collision with the obstacle 

Experiment 3B-4d-2 Feasible Left Arm Right Arm: Collision with the obstacle 

Experiment 3B-4d-3 Feasible Left Arm Right Arm: Collision with the obstacle 

Experiment 3B-4d-4 Infeasible N/A Right Arm: Collision with the obstacle 

Left Arm: Collision with the obstacle 
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Table 11 Simulation Results of Experiment 3B-5 

 Feasible/ 

Infeasible 

Left/Right  Failure Reason for the Left/Right 

Arm 

Experiment 3B-5a-1 Feasible Right Arm N/A 

Experiment 3B-5a-2 Feasible Right Arm N/A 

Experiment 3B-5a-3 Infeasible N/A Right Arm: Cannot Reach the Box 

Left Arm: Cannot Reach the Box 

Experiment 3B-5a-4 Infeasible N/A Right Arm: Cannot Reach the Box 

Left Arm: Cannot Reach the Box 

Experiment 3B-5b-1 Feasible Right Arm N/A 

Experiment 3B-5b-2 Feasible Right Arm N/A 

Experiment 3B-5b-3 Feasible Right Arm N/A 

Experiment 3B-5b-4 Infeasible Left Arm Right Arm: Cannot Reach the Box 

Left Arm: Cannot Reach the Box 

Experiment 3B-5c-1 Feasible Right Arm N/A 

Experiment 3B-5c-2 Feasible Right Arm N/A 

Experiment 3B-5c-3 Feasible Right Arm N/A 

Experiment 3B-5c-4 Feasible Right Arm N/A 

Experiment 3B-5d-1 Feasible Right Arm N/A 

Experiment 3B-5d-2 Feasible Right Arm N/A 

Experiment 3B-5d-3 Feasible Right Arm N/A 

Experiment 3B-5d-4 Infeasible Right Arm Right Arm: Collision with the obstacle 

Left Arm: Cannot Reach the Box 
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Table 12 Simulation Results of Experiment 3B-6 

 Feasible/ 

Infeasible 

Left/Right  Failure Reason for the Left/Right 

Arm 

Experiment 3B-6a-1 Feasible Right Arm N/A 

Experiment 3B-6a-2 Feasible Right Arm N/A 

Experiment 3B-6a-3 Feasible Left Arm N/A 

Experiment 3B-6a-4 Infeasible N/A Right Arm: Cannot Reach the Box 

Left Arm: Cannot Reach the Box 

Experiment 3B-6b-1 Feasible Right Arm N/A 

Experiment 3B-6b-2 Feasible Right Arm N/A 

Experiment 3B-6b-3 Feasible Right Arm N/A 

Experiment 3B-6b-4 Feasible Left Arm Right Arm: Cannot Reach the Box 

Experiment 3B-6c-1 Feasible Right Arm N/A 

Experiment 3B-6c-2 Feasible Right Arm N/A 

Experiment 3B-6c-3 Feasible Right Arm N/A 

Experiment 3B-6c-4 Feasible Right Arm N/A 

Experiment 3B-6d-1 Feasible Right Arm N/A 

Experiment 3B-6d-2 Feasible Right Arm N/A 

Experiment 3B-6d-3 Feasible Left Arm Right Arm: Cannot reach the Box 

Experiment 3B-6d-4 Feasible Left Arm Right Arm: Cannot reach the Box 
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Table 13 Simulation Results of Experiment 3B-7 

 Feasible/ 

Infeasible 

Left/Right  Failure Reason for the Left/Right 

Arm 

Experiment 3B-7a-1 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-7a-2 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-7a-3 Infeasible N/A Right Arm: Cannot Reach the Box 

Left Arm: Cannot Reach the Box 

Experiment 3B-7a-4 Infeasible N/A Right Arm: Cannot Reach the Box 

Left Arm: Cannot Reach the Box 

Experiment 3B-7b-1 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-7b-2 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-7b-3 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-7b-4 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-7d-1 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-7d-2 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-7d-3 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-7d-4 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-7d-1 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-7d-2 Feasible Left Arm Right Arm: Collision with the obstacle 

Experiment 3B-7d-3 Feasible Left Arm Right Arm: Collision with the obstacle 

Experiment 3B-7d-4 Infeasible N/A Right Arm: Collision with the obstacle 

Left Arm: Collision with the object 
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Table 14 Simulation Results of Experiment 3B-8 

 Feasible/ 

Infeasible 

Left/Right  Failure Reason for the Left/Right 

Arm 

Experiment 3B-8a-1 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-8a-2 Feasible Left Arm Right Arm: Collision with the object 

 

Experiment 3B-8a-3 Infeasible N/A Right Arm: Collision with the object 

Left Arm: Cannot reach the box 

Experiment 3B-8a-4 Infeasible N/A Right Arm: Collision with the object 

Left Arm: Cannot reach the box 

Experiment 3B-8b-1 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-8b-2 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-8b-3 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-8b-4 Infeasible N/A Right Arm: Collision with the object 

Left Arm: Cannot reach the box 

Experiment 3B-8c-1 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-8c-2 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-8c-3 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-8c-4 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-8d-1 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-8d-2 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-8d-3 Feasible Left Arm Right Arm: Collision with the object 

Experiment 3B-8d-4 Infeasible N/A Right Arm: Collision with the object 

Left Arm: Collision with the obstacle 
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These tables display that ISAC is able to switch strategies according to the current 

situation. When the object is placed close to the right arm, the probability of using the 

right arm to complete the task is high; when the object is placed far away from the right 

arm, the probability of using the left arm to complete the task becomes high. The 

positions and the sizes of the obstacle also affect the selection of the arms. Quantitative 

evaluation will be explained in Chapter V. 

 

Summary 

Three experiments are designed to validate the designed system. One experiment 

is carried out on ISAC robot, and the other two are implemented in simulation. According 

to the simulation and experimental results, ISAC can complete the requirements of our 

designed system as described in the beginning of this chapter. 

In the next chapter, the system performance will be evaluated by analyzing the 

similarity of the generated motion trajectory and the demonstrations, the running time of 

key modules in this system, and the success rate of the cognitive control mechanism. 
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CHAPTER V 

 

EVALUATION OF SYSTEM PERFORMANCE 

 

The aim of this dissertation was to integrate imitation learning with cognitive 

control for a humanoid robot’s skill learning. In this chapter, we will evaluate the major 

results produced by the three experiments. 

 

Behavior Generation 

Experiment 1A and 1B 

In Experiment 1, ISAC was asked to push a box placed on a table in front of it 

without grasping. In this experiment, ISAC needed to learn the “Reaching”, “Pushing 

Left” and “Pushing Right” behavior, and generated new behavior sequences to complete 

the task.   

The most common feature of the “Reaching” behavior is to minimize the distance 

of the end-effector and the target position at the end of its motion trajectory. There is no 

requirement of internal constraint and pre-condition. The most common features of the 

“Pushing Left” and “Pushing Right” behaviors are to minimize the distance of the end-

effector and the target object at the beginning of its motion trajectory and to minimize the 

distance of the end-effector and the target position at the end of its motion trajectory. 
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There are no requirements for the internal constraint and the pre-condition for the 

“Pushing Left” and “Pushing Right” behaviors.  

For the “Reaching” behavior, the distances between the end-effector and the 

target position were measured to evaluate how accurate the generated results are. For the 

“Pushing” behavior, the DTW distances between the generated motion trajectories and 

the demonstrated motion trajectory was measured. There is no failure because human 

teacher shows the pushing points that ISAC can use to push the object. The Index of the 

Experiment 1 is represented as Experiment 1-XY. X includes L and R, which are related 

to the Pushing Left or Pushing Right experiment respectively. Y includes 1, 2, 3, and 4, 

which are related to the number of the location of the object. 

In Table 15, the average value of the distance between the end-effector and the 

target position of the “Reaching” behavior is 3.33cm and the average value of the DTW 

distance between the demonstrated motion trajectory and the generated motion 

trajectories for the “Pushing” behavior is 4.41 cm. The overall error, the average of which 

is 1.71cm, is measured by reading the encoder values and computing the distance 

between the end-effector and the target position at the end of “Reaching” and “Pushing” 

behaviors. The overall error, which is measured by reading the position value from the 

Kinect sensor and computing the distance between the end-effector and the target 

position at the end of “Reaching” and “Pushing” behaviors, is 3.09. The error from the 

Kinect sensor is larger than the error from the encoder value. The reason is that the box is 

not pushed straightly to its left or right. So the error comes from both the position of the 

end-effector and the orientation of the box. 
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Table 15 Evaluation Results of Behavior Errors of Experiment 1A and 1B 

 Reaching Pushing 

Overall 

(Encoder) 

Overall  

(Kinect Camera) 

Experiment 1-L1 4.91 4.00 1.66 3.04 

Experiment 1-L2 4.21 5.99 1.06 4.53 

Experiment 1-L3 1.57 1.13 0.91 5.17 

Experiment 1-L4 2.20 0.99 0.22 6.02 

Experiment 1-R1 1.73 11.05 1.05 3.62 

Experiment 1-R2 10.76 6.48 4.62 0.20 

Experiment 1-R3 0.82 0.47 2.73 1.19 

Experiment 1-R4 0.88 4.79 1.41 0.97 

Average 3.38 4.36 1.71 3.09 

STD 3.33 4.41 1.38 2.13 

Unit: Centimeter (cm) 

Comparing the size of the object used in Experiment, which is 18cm   18cm   

12 cm, and the error values after the reaching behavior are smaller than the threshold 

value: 12 cm, and within the manipulation area of the task. So according to the rules of 

the DMM described in Chapter III, the DMM considers that the error is acceptable. (If 
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the errors become larger than the threshold value: 12cm, ISAC cannot push the box. Then 

ISAC needs to use the compensator described in Chapter IV to overcome the error.) 

Experiment 1C 

Table 16 Experimental Results of Experiment 1C 

 

Error  

without Compensator 

Error  

with Compensator 

Ratio 

Experiment 1C-L1 3.33 0.09 2.70% 

Experiment 1C-L2 3.94 0.60 15.23% 

Experiment 1C-L3 4.91 0.53 10.79% 

Experiment 1C-L4 4.64 0.48 10.34% 

Experiment 1C-R1 3.00 1.72 57.33% 

Experiment 1C-R2 2.33 0.69 29.61% 

Experiment 1C-R3 3.97 0.81 20.40% 

Experiment 1C-R4 1.57 0.60 38.22% 

Average 3.46 0.69 19.93% 

STD 1.14 0.47 40.97% 

Unit: Centimeter (cm) 
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In this Experiment, ISAC uses the compensator to overcome the errors generated 

by the hardware. In Experiment 1A and 1B, the errors are smaller than the threshold 

value. According to the rules of the DMM, these errors are acceptable. In Experiment 1C, 

ISAC is asked to use the compensator to overcome the errors even the errors are 

acceptable. The target is to test how ISAC can overcome the errors using the 

compensator. 

Table 16 displays the experimental results of the Experiment 1C. The ratios are 

computed by dividing the “Error with Compensator” with “Error without Compensator”.  

In Table 16, the average error without using compensator is 3.46cm and the 

average error using compensator is 0.47cm. After using the compensator, the average 

error becomes 19.93% of the average error before using the compensator. From Table 16, 

we can conclude that the compensator improves the performance of the ISAC arm control.  

Experiment 2 

In Experiment 2, ISAC needs to learn the new behavior in a demonstrated 

behavior sequence. The behavior sequence is composed of the “Reaching”, “Grasping”, 

and the “Yo-Yo Motion” behaviors. The stored “Reaching” behavior is described with 

{     } in the LTM. The demonstrated behavior sequence is segmented into “Reaching”, 

“Grasping”, and the “Yo-Yo Motion” behaviors. ISAC searches the LTM to find whether 

it has learned these behaviors. It successfully finds that it has learned the “Reaching” 

behavior. The success rate of the searching is 100%. The “Grasping” behavior is added 

into the LTM by the human teacher. 

In Experiment 2, motion trajectories which are similar to the demonstrations are 

generated for the “Yo-Yo Motion” behavior. A typical evaluation method is to evaluate 
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the similarity between the generated motions and the demonstrations.  Dynamic Time 

Warping (DTW) [Berndt and Clifford, 1994] and the Cosine Similarity [Liu and 

Schneider, 2012] methods are used to quantitatively evaluate the similarity between the 

generated “Yo-Yo Motion” behavior and the generalized “Yo-Yo Motion” behavior.  

Dynamic time warping (DTW) is an algorithm for measuring similarity between 

two sequences (e.g., speech signals, motion trajectories, etc.) which may vary in time or 

speed. It finds an optimal match between two sequences of feature vectors which allows 

for stretched and compressed sections of the sequence. 

Using DTW method, the normalized distances between the generated “Yo-Yo 

Motion” behavior and the demonstrated “Yo-Yo Motion” behavior are computed and 

divided by the overall length of the motion trajectory. The distances computed by DTW 

are shown in the first column of Table 17. These distances are very small numbers 

compared to the overall length of the motion trajectory, which means the generated 

motion trajectories are similar to the demonstrations. 

Table 17 Evaluation of Similarity in Experiment 2 

 DTW Distance Ratio 

Generated Trajectory 1 1.98 cm 0.2% 

Generated Trajectory 2 1.70 cm 0.17% 

Generated Trajectory 3 2.16 cm 0.22% 
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The normalized overall length of the generalized motion trajectory is 990cm. We 

set the criterion of similarity is 2%. From the evaluation results using DTW in Table 17, 

we can conclude that the generated motion trajectories are similar to the demonstrations, 

which satisfies the requirement of imitation learning.  

The analysis above demonstrates that ISAC can learn the behaviors when the 

human teacher demonstrates the behaviors in several demonstrations. Another target is to 

teach ISAC to learn cyclic motions. The human teacher demonstrates how to play the Yo-

Yo five times consecutively in one demonstration. Figure 95 displays the recorded 

motion trajectories in one demonstration. 

 

Figure 95 Recorded Motion Trajectories of Cyclic “Yo-Yo Motion”  

The left picture and the right picture of Figure 95 are considered as oscillations. 

The right picture of Figure 95 displays five “Yo-Yo Motions”. These five “Yo-Yo 

Motions” are segmented manually by the human teacher and normalized. The normalized 

results are displayed in Figure 96. 
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Figure 96 Normalized “Yo-Yo Motion” Behaviors 

Table 18 Similarity between the Cyclic “Yo-Yo Motion” Behaviors and the Generalized 

“Yo-Yo” Motion Behavior 

 DTW Distance Ratio 

“Yo-Yo Motion” Trajectory 1 1.74 cm 0.18% 

“Yo-Yo Motion” Trajectory 2 0.26 cm 0.03% 

“Yo-Yo Motion” Trajectory 3 0.21 cm 0.02% 

“Yo-Yo Motion” Trajectory 4 1.34 cm 0.14% 

“Yo-Yo Motion” Trajectory 5 1.60 cm 0.16% 
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The DTW distances between these demonstrated “Yo-Yo Motion” behaviors and 

the generalized “Yo-Yo Motion” trajectory are displayed in Table 18. 

From Table 18, all the rations are smaller than 2%. Then we can conclude that 

these cyclic “Yo-Yo Motion” behaviors are similar to the generalized “Yo-Yo Motion” 

behavior, which means that these behaviors belong to the same type of behaviors and can 

be generalized. 

Figure 97 displays the generalized results from these cyclic “Yo-Yo Motion” 

behaviors.  

 

Figure 97 Generalization Results of Cyclic “Yo-Yo Motion” Behaviors 

From Figure 97, the generalized results of the cyclic “Yo-Yo Motion” Behaviors 

are to generated similar dynamics of the motion trajectories while keeping the Yo-Yo in 

hand. So we can conclude that ISAC can learn cyclic behaviors using the methods 

described in this dissertation. 
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Cognitive Control 

Experiment 3A 

In Experiment 3A, ISAC was asked to push the box to its right. The locations of 

the box lie within or out of the working space of the arms. ISAC first tried to use the right 

arm to push the box. And at some locations, before the end-effector on the right arm of 

ISAC reaches the pushing point, the arm or the end-effector may collide with the box. So 

ISAC uses the cognitive control mechanism to switch strategy to use the left arm to push 

the box. If ISAC found that it cannot complete the task using the left arm, it refuses to 

complete the task and display a message on the screen. 

Table 19 Simulation Results of Experiment 3A 

Location 

Number 

Selected Strategy Feasible/Infeasible IRS Correctness 

1 Right Arm Feasible Correct 

2 Left Arm Feasible Correct 

3 Left Arm Feasible Correct 

4 Left Arm Feasible Correct 

5 Refusal Infeasible Correct 

6 Right Arm Feasible Correct 

7 Right Arm Feasible Correct 

8 Left Arm Feasible Correct 

9 Left Arm Feasible Correct 

10 Refusal Infeasible Correct 
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In Experiment 3A, the object was placed at 10 different locations. ISAC first tried 

to push the object using its right arm. If the evaluation failed, ISAC switched to the left 

arm. If the evaluation still failed, ISAC refused to complete the task.  

Table 19 summarizes the evaluation results of Experiment 3A. 

At location 5 and 10, the object is out of the working space of ISAC. ISAC found 

that it cannot push the box using either of its arms. So it displayed a message on the 

screen and refused to do. The rate of feasibility in Experiment 3A is 80%.  

 

Figure 98 Successful Pushing Area in Experiment 3A 

When the box is placed in the black area, the size of which is approximately 20% 

of the table, ISAC cannot push it to the right 

At all locations, ISAC made a correct decision, and chose a suitable arm to push 

the cylinder. The success rate of the evaluation is 100%. When the obstacle is used in 

Experiment 3B, the success rate of the evaluation decreases.  

The actual time to run the key modules in our system was measured and displayed 

in Table 20. The abbreviations in the table are designed as: Behavior Sequence 
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Generation (BSG), Behavior Generation for the Right Arm (BGRA), Behavior 

Generation for the Right Arm (BGLA), IRS for the Right Arm (IRSRA), and IRS for the 

Left Arm (IRSLA), Standard Deviation (STD).  

Table 20 Running Time of Key Components in Experiment 3A 

 BSG BGRA BGLA IRSRA IRSLA 

Experiment 3A-1 0.0045 11.1654 11.2266 0.8325 0.0004 

Experiment 3A-2 0.0049 11.7184 11.4417 0.0849 1.2241 

Experiment 3A-3 0.0057 10.9466 11.5291 0.0903 1.2020 

Experiment 3A-4 0.0053 11.0135 11.1674 0.1289 0.1149 

Experiment 3A-5 0.0057 11.0057 10.9236 0.1691 0.1531 

Experiment 3A-6 0.0135 10.9445 11.0336 0.7955 0.0004 

Experiment 3A-7 0.0049 12.1034 10.8054 0.8189 0.0004 

Experiment 3A-8 0.0049 10.9573 10.9293 0.4039 1.1572 

Experiment 3A-9 0.0049 11.1231 10.7832 0.2339 1.0952 

Experiment 3A-

10 

0.0045 10.8374 11.0020 0.1777 0.3587 

Average 0.0059 11.1815 11.0842 0.3736 0.7579 

STD 0.0027 0.4057 0.2539 0.3182 0.5206 

Percentage 0.03% 48.25% 47.83% 1.61% 2.29% 

Unit: millisecond (ms) 

As shown in Table 20, the average running time for generating the behavior 

sequence is 0.0059ms. There is a large value in Experiment 3A-6 comparing to the values 

in other experiments. This is because that Windows is a time-sharing operating system. 

The operating system kernel may interrupt the current running threads to perform some 

kernel tasks, which increases the time needed to complete the running operation. The 
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average running time for generating behaviors for the right arm and the left arm is 

11.1815ms and 11.0842ms respectively.  

The average running time of evaluating the generated behaviors for the right arm 

and for the left arm is 0.3736ms and 0.7579ms respectively. In Experiment 3A-1, 3A-6, 

and 3A-7, ISAC only needed to evaluate the behaviors for the right arm and did not 

evaluate the behaviors for the left arm, so the running time for evaluating the left arm is 

very small: 0.0004 ms. In Experiment 3A-2, 3A-3, 3A-4, 3A-5, 3A-8, 3A-9, and 3A-10, 

ISAC found that it cannot complete the task using the right arm, so it switched the 

strategy to use the left arm. In these experiments, the running time of evaluating the 

behaviors for the left arm increases.  

In some experiments, ISAC did not need to evaluate the overall motion trajectory. 

It stops evaluation when it found that collision happens, the via point on the trajectory is 

out of the working space, or the behavior is not completed. In Experiment 3A-1, 3A-6, 

and 3A-7, ISAC used the right arm to complete the task that means ISAC evaluated the 

overall motion trajectory of the right arm, and the average time is 0.8156ms. In 

Experiment 3A-2, 3A-3, 3A-4, 3A-8, and 3A-9, ISAC used the left arm to complete the 

task that means ISAC evaluated the overall motion trajectory of the left arm, and the 

average time is 0.9587ms. 

The running time of generating behavior sequence is 0.03% of the overall running 

time of the key components. 48.25% and 47.83% of the overall running time is used to 

generate motion trajectories for the right arm and the left arm respectively. The 

evaluation time is 1.61% and 2.29% of the overall running time. 
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From the above quantitative evaluation results in Experiment 3A, the running 

time of each key components in our system is very small and can satisfy the requirements 

of generating behaviors and evaluating behaviors when there is no obstacle placed in the 

environment.  

Experiment 3B 

In Experiment 3B, ISAC was asked to push the box to the right and avoid the 

obstacle on the table. The locations of the box lie within or out of the working space of 

the arms. And at some locations, before the end-effector on the right arm of ISAC 

reaches the pushing point, the arm or the end-effector may collide with the box. So ISAC 

used the cognitive control mechanism to switch strategies to use the left arm to push the 

box. The evaluation results for all the experiments in Experiment 3B are included in 

Appendix C.  Table 21 summarizes the evaluation results. 

The average rate of feasibility is 77%. The highest rate of the feasibility is 93.75% 

for Experiment 3B-6. The reason is that the object is placed in front of the right arm of 

ISAC, which is close to the home position of the right arm. Additionally, the 

manipulation point is also within the working space of the left arm. So ISAC has more 

choices to complete the task. The lowest rate of feasibility is 68.75% in Experiment 3B-3. 

The reason is that the object is out of the working space of the right arm, and if the 

obstacle is placed at Location 3B-3a, ISAC cannot push the box using its left arm. 

The highest success rate of the IRS evaluation is 100% for Experiment 3B-6. In 

Experiment 3B-6, as stated in the last paragraph, ISAC has more choices to complete the 

task. Also, the obstacle avoidance module also did not generate wrong collision 

information for IRS to evaluate. The lowest success rate of IRS Evaluation is 81.25% in 
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Experiment 3B-8. The reason is that the obstacle avoidance module generates wrong 

information to prevent the end-effector moving to the manipulation point.  

Table 21 Evaluation Results of Experiment 3B 

 Feasibility Success Rate of the IRS 

Experiment 3B-1 75% 87.5% 

Experiment 3B-2 75% 87.5% 

Experiment 3B-3 68.75% 87.5% 

Experiment 3B-4 75% 87.5% 

Experiment 3B-5 75% 93.75% 

Experiment 3B-6 93.75% 100% 

Experiment 3B-7 81.25% 93.75% 

Experiment 3B-8 75% 81.25% 

Average 77% 90% 

Table 22 Success Rates of Experiment 3B with Different Obstacles 

 Rate of Feasibility Success Rate of the IRS 

Obstacle 1 (1cm   1cm   20cm) 93.75% 93.75% 

Obstacle 2 (5cm   5cm   20cm) 93.75% 93.75% 

Obstacle 3 (10cm   10cm   20cm) 78.125% 90.625% 

Obstacle 4 (20cm   20cm   20cm) 43.75% 87.5% 

Table 22 displays the rate of feasibility and the evaluation when different sizes of 

obstacles are placed on the table. 
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In Table 22, the rate of feasibility decreases when the size of the obstacle 

increases. When the obstacle size increases to 20cm   20cm   20cm, the success rate is 

the lowest. This is reasonable because large obstacle can greatly prevent ISAC from 

pushing the box. The success rate of the IRS evaluation decreases when the size of the 

obstacle increases. The reason is that when the size of the obstacle becomes larger, the 

obstacle avoidance requires the end-effector moves in a very small area. This makes the 

evaluation more difficult.  

Overall Analysis of Cognitive Control 

Table 23 displays the rate of feasibility and the success rate of the IRS evaluation. 

Table 23 Success Rates of Experiment 3A and 3B 

 Rate of Feasibility Success Rate of the IRS 

Experiment 3A 80% 100% 

Experiment 3B 77% 90% 

Average 77.64% 90.97% 

 

The average rate of feasibility is 77.64%. The average success rate of the IRS 

evaluation is 90.97%.  

Table 24 displays the average running time for Experiment 3A and 3B 
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Table 24 Running Time of Key Components in Experiment 3A and 3B 

 BSG BGRA BGLA IRSRA IRSLA 

Experiment 3A 0.0059 11.1815 11.0842 0.3736 0.5306 

Experiment 3B-1 0.0050 11.3215 10.9597 0.7758 0.4358 

Experiment 3B-2 0.0050 10.7149 13.6738 0.1618 0.9363 

Experiment 3B-3 0.0055 11.6473 11.0467 0.2115 0.8738 

Experiment 3B-4 0.0052 10.8341 11.4375 0.2401 0.9526 

Experiment 3B-5 0.0049 11.6536 10.7647 0.8069 0.2456 

Experiment 3B-6 0.0054 15.9670 11.9227 0.8134 1.0514 

Experiment 3B-7 0.0053 11.0320 11.9550 0.4772 1.1315 

Experiment 3B-8 0.0052 10.8341 11.4375 0.2401 0.9526 

Average 0.0053 11.6873 11.5869 0.4556 0.7900 

Standard Deviation 0.0003 1.6409 0.8847 0.2738 0.3073 

Percentage 0.02% 47.65% 47.24% 1.86% 3.22% 

 

In Table 24, the overall average running time for all the experiments is:  

Behavior Sequence Generation:   0.0053ms 

Behavior Generation for the Right Arm:  11.6873ms 

Behavior Generation for the Left Arm:  11.5869ms 

IRS evaluation for the Right Arm:   0.4556ms 

IRS evaluation for the Left Arm:   0.7900ms 

From the above quantitative evaluation results, the running time of each key 

components in our system is very small and can satisfy the requirements of generating 

behaviors and evaluating behaviors in dynamic environment. 
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The running time of generating behavior sequence is 0.02% of the overall running 

time of the key components. 47.65% and 47.24% of the overall running time is used to 

generate motion trajectories for the right arm and the left arm respectively. The 

evaluation time is 1.86% and 3.22% of the overall running time. 

Several conclusions can be obtained from the above analysis 

1. The success rate of the IRS evaluation is higher than 90%. 

2. If we want to increase the success rate of the task, we should limit the size of the 

obstacle. In order to keep the success rate of the task, the size of the obstacle 

should be smaller than 10cm   10cm   20cm 

3. If the size of the obstacle is fixed and larger than 10cm   10cm   20cm, we need 

to change the motion trajectory generation methods in this system, e.g., improve 

the potential field design of the obstacles. 

 

 

System Performance 

The input of the system is the behavior demonstrations. Given a task, the output is 

the generated motion trajectories. .  

 

Figure 99 Imitation Learning Framework 
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Performances of individual components can affect the overall system performance. 

In this section, unsupervised teaching and physical coaching are used to as the 

demonstration methods for ISAC to learn demonstrated behaviors. We will analyze how 

different demonstration methods affect  

(1) the output of the behavior generalization and  

(2) the overall output of the system.  

The output of the behavior generalization is:  

 Score of Feature 1 of Pre-Condition 

 Score of Feature 2 of Pre-Condition 

 Score of Feature 3 of Pre-Condition 

 Score of Feature 4 of Pre-Condition 

 Score of Feature 1 of Internal Constraint 

 Score of Feature 2 of Internal Constraint 

 Score of Feature 1 of Post-Result 

 Score of Feature 2 of Post-Result 

 Score of Feature 3 of Post-Result 

 Score of Feature 4 of Post-Result 

The output of the Generated Motion Trajectories (determined stored common 

features generalized behaviors). Because the generated motion trajectories are related to 

the behavior generation methods which are determined by the stored common features 

generalized behaviors in the LTM, we can analyze the stored common features of the 

learned behavior instead of analyzing the motion trajectories. 
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Two behaviors are demonstrated for ISAC to learn: the “Reaching” and 

“Pushing”. 

System Performance between the Input and the Output of the Behavior Generalization 

Module 

--“Reaching” 

Figure 100 displays the experimental setup of the learning stage. In the left figure, 

a human teacher demonstrates how to reach an object on the table and ISAC uses Kinect 

to observe the demonstration. In the right figure, the human teacher demonstrates how to 

reach an object by manually moving the arm of ISAC. 

 

Figure 100 Learning from Observation VS Learning from Physical Coaching for 

“Reaching” 

Figure 101 displays the generalization results of the “Reaching” behavior learned 

from the physical coaching.  
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Figure 101 Generalization Results of the “Reaching” Behavior from Physical Coaching 

In Figure 101, the most common feature is to minimize the distance between the 

end-effector and the target object at the end of the motion trajectory. Table 25 displays 

the comparison of the generalization results. 

In Table 25, the scores of Feature 1 of the Post-Results are 0.9559, 0.9476, and 

0.9989. The highest score comes from the generalization results of the learning from 

Physical coaching. This reflects that physical coaching has better performance to find the 

most common feature of the “Reaching” behavior. 
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Table 25 Comparison of Generalization Results of the “Reaching” Behavior 

 Unsupervised Unsupervised Physical 

Coaching Left Arm Right Arm 

Feature 1 of Pre-Condition 0.0442 0.0475 0.2477 

Feature 2 of Pre-Condition 0.0717 0.0807 0.0337 

Feature 3 of Pre-Condition 0 0 0 

Feature 4 of Pre-Condition 0 0 0 

Feature 1 of Internal Constraints 0.1250 0.1250 0.2498 

Feature 2 of Internal Constraints 0.0748 0.0520 0.0058 

Feature 1 of Post-Results 0.9559 0.9476 0.9989 

Feature 2 of Post-Results 0.0406 0.0360 0 

Feature 3 of Post-Results 0 0 0 

Feature 4 of Post-Results 0 0 0 

 

--“Pushing Left” and “Pushing Right” 

  

Figure 102 Learning from Observation VS Learning from Physical Reaching for 

“Pushing” 
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Figure 103 displays the generalization results of the “Pushing Left” behavior 

learned from the physical coaching.  

 

 

Figure 103 Generalization Results of the “Pushing Left” Behavior from Physical 

Coaching 

Figure 104 displays the generalization results of the “Pushing Right” behavior 

learned from the physical coaching. 
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Figure 104 Generalization Results of the “Reaching Right” Behavior from Physical 

Coaching 

In Figure 103 and Figure 104, the most common feature is to minimize the 

distance between the end-effector and the target object at the beginning of the motion 

trajectory and  to minimize the distance between the end-effector and the target position 

at the end of the motion trajectory. Table 25 displays the comparison of the 

generalization results. 
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Table 26 Comparison of Generalization Results of the “Pushing” Behavior 

 Unsupervised Teaching Physical Coaching 

PushingLeft PushingRight PushingLeft PushingRight 

Feature 1 of Pre-Conditions 0.8514 0.7450 0.9475 0.9444 

Feature 2 of Pre-Conditions 0 0 0 0 

Feature 3 of Pre-Conditions 0 0 0 0 

Feature 4 of Pre-Conditions 0 0 0 0 

Feature 1 of Internal Constraints 0.1111 0.1111 0.2496 0.2498 

Feature 2 of Internal Constraints 0.0238 0.1897 0.1372 0.1158 

Feature 1 of Post-Results 0.8965 0.9909 0.9984 0.9989 

Feature 2 of Post-Results 0 0 0 0 

Feature 3 of Post-Results 0 0 0 0 

Feature 4 of Post-Results 0 0 0 0 

 

Feature 1 of Pre-Conditions and Feature 1 of Post-Results are the common 

features of the “Pushing Left” and “Pushing Right” behaviors. In Table 26, the scores for 

these features from the physical coaching are higher than the scores from the 

observations. This means the physical coaching can improve the performance of finding 

the most common feature of the “Pushing Left” and “Pushing Right” Behaviors. 

Based on the above analysis, different behavior acquisition methods can affect the 

performance of the learning results of the system. In our testing, it is displayed that the 

methods of Physical Coaching can improve the behavior generalization results of the 

system. 
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System Performance between the Input and the Overall Output of the System 

Because the generated motion trajectory is related to the behavior generation 

methods which are determined by the stored common features generalized behaviors in 

the LTM, we can analyze the stored common features of the learned behavior instead of 

analyzing the motion trajectories. 

Table 27 Comparison of Stored Features of the “Reaching” and “Pushing” Behaviors 

 

Reaching Pushing 

Learning from 

Observation 

Physical 

Coaching 

Learning from 

Observation 

Physical 

Coaching 

Stored Common Feature 
{0,0,1} {0,0,1} {1,0,1} {1,0,1} 

 

The generated motion trajectory is related to the generalized behaviors stored in 

the LTM. In the above analysis, using different demonstration methods, the 

generalization results are the same. So the demonstration methods do not affect the 

overall output of the system. 

 

Summary 

The simulation and experimental results included in Chapter IV demonstrate that 

ISAC can use this integrated system to parse the speech command, check the LTM, 

switch tasks between learning and generation, observe demonstrations, generalize 

behaviors, generate behavior sequences, generate similar motion trajectories, and switch 

strategies to complete tasks.  
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In summary, we can conclude that the designed system satisfy the requirements of 

imitation learning and the cognitive control. It enables ISAC to generate similar motion 

trajectories and switch strategies to complete tasks.  
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CHAPTER VI 

 

CONCLUSION AND FUTURE WORK 

 

Conclusion 

This dissertation investigated how imitation learning and cognitive control can be 

integrated into a humanoid robot. Through simple behavior learning, the integrated 

system was shown to learn new behaviors and perform a new task using behavior graph 

and strategy switching.   The imitation learning framework was divided into: (i) Behavior 

Acquisition, (ii) Behavior Segmentation, (iii) Behavior Generalization, (iv) Behavior 

Representation, and (v) Behavior Generation. The cognitive control framework was 

designed based on the robotic cognitive architecture developed in our lab, which (i) uses 

sensors to collect environmental information, demonstrated information, and speech 

command, (ii) generalizes behaviors using the CEA, (iii) stores basic behaviors in the 

LTM, (iv) generates behavior sequences to complete tasks, (v) evaluates generated 

behavior sequences using IRS, and (vi) sends the generated motion trajectories to the 

actuators. The execution results will be monitored by human in case robots need more 

assistance or instructions. In our system, human can give instructions such as learning 

new behaviors, re-evaluating behavior sequences, etc., after ISAC searches the behavior 

library to find whether it has required behavior, executes the generated behavior sequence, 

and evaluates the behavior sequence in the IRS. After observing the response of ISAC 

and execution of evaluation results, human teachers can give ISAC a command to learn 

the required behavior, confirm the evaluation results, etc. For example, in Experiment 1, 
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ISAC was asked to push the object without grasping and found that it has not learned the 

required “Reaching” and “Pushing” behaviors. So the human teacher will tell ISAC that 

he/she will demonstrate ISAC these required behaviors as shown in Figure 105. 

Task 

Execution 

Results

I will show you how to use the 

pushing behavior for this task.

You evaluation is good!

…

 

Figure 105 Guidance from Human 

Three types of experiments were designed for ISAC to validate this system. One 

experiment was carried out on ISAC, and two other experiments were carried out in a 

simulation environment. The experimental results demonstrated that ISAC can use this 

system to complete simple graspless manipulation tasks according to the speech 

commands. Simulation-based cognitive control experiments demonstrate how the Central 

Executive Agent (CEA) switches strategies to adaptively complete tasks. The quantitative 

evaluation results in Chapter V demonstrated that the system satisfy the requirements for 

both imitation learning and cognitive control.  

 

Future Work 

The current designed system enables the robot to parse the speech command, 

check the LTM, switch tasks between learning and generation, observe demonstrations, 
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generalize behaviors, generate behavior sequences, generate similar motion trajectories, 

and switch strategies to complete tasks using one arm.  

There are several areas which will enhance the performance of this system. They 

are: 

1. Dual Arm Control and Behavior Generation 

In the experiments of this dissertation, ISAC only needs to use one arm to 

complete the required tasks. However, many tasks require ISAC to use both 

arms. For example, for graspless manipulation, a pivoting task [Aiyama et al., 

1993], in which two robot grippers maneuver an object as if making the object 

“walk” as shown in Figure 106. In an assembly task, a robot needs to hold one 

piece using one hand and insert/put the other piece to the correction position. 

If a robot can use two hands to complete tasks, that will make the robot more 

useful in working environments, living environments, etc. In Chapter IV, we 

have proposed a prototype method of evaluate the generated behavior 

sequence using two arms. This method must be expanded to more real-life 

situations. 

 

Figure 106 Pivoting [Aiyama et al., 1993] 
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However, in order to use two arms, the kinodynamics features should be 

considered in behavior generation of robots, e.g., force, torques, when 

generating behaviors to complete tasks. For example, in Experiment 1, ISAC 

is asked to push a box. The weight of the box, the required force on the end-

effector, and the required torques on the joints should be taken into 

consideration in order to increase the probability of pushing the box 

successfully to designated areas.  

2. Hierarchy Behavior Generation 

A major limitation of this behavior graph-based method is: the binary-

based preconditions, internal constraints, and post results-based behavior 

graph is too simplistic to be applied to some real-world applications. As 

robots keep learning, the number of the behaviors becomes larger and larger. 

It becomes more and more difficult for robots to handle the behavior graph 

when the behavior graph becomes more and more complex. In order to reduce 

the complexity of the behavior graph, we need to improve the simple binary-

based behavior graph-based methods in this dissertation.  

In our system, behaviors are treated equally in the behavior graph. All the 

behaviors are considered has same weights and the transitions among them are 

non-weighted. However, in some real-world applications, behaviors are often 

organized in a hierarchy way. This type of hierarchy methods simplifies the 

overall generation process and provides a robust method for solving the 

requirements of generating complex behavior sequences in complex task-
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relevant situations. A possible solution could be to divide behavior graphs into 

several levels. In the generation stage, robots generated behavior sequences by 

assembling behavior sequences from different levels of behavior graphs.  

Additionally, using this method, errors, which are generated by the 

hardware of ISAC, could be confined in the lower level behavior graphs. 

Probabilistic methods can be applied to lower level behavior graphs to 

overcome the errors. In higher level behavior graphs, error could not be taken 

into consideration. 
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APPENDIX 

 

A. Hand-Tracking and Object-Tracking Using Kinect 

Hand-Tracking 

We define the observed positions of a wrist, a related hand, and a related shoulder 

of a human are: 

             (                       )
    (1) 

            (                    )
    (2) 

                (                                )
   (3) 

The coordinates of a camera image is designed as displayed in Figure 107. 

 

Figure 107 Coordinates of the Image Pixels 

The relative positions of the wrist and the hand in the coordinates of a camera 

image are: 

                                         (4) 

                                       (5) 

After this transformation, the origin of the coordinates has been moved to the 

shoulder. 
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 Then we can convert the positions from the coordinates of a camera image to a 

human body.  

The transformation matrices are: 

      
    

 |

  
  

  
  

  
  

  
  

|    (6) 

 Therefore, the positions of the wrist and the hand in the coordinates of a human 

body are:  

             
    

                        (7) 

            
    

                        (8) 

The observed motion information in a task-space can be represented as 

                        (9) 

                                                            (10) 

   {    }, which is an     matrix, records the 3-dimensional position values, 

  , of the hand of a human teacher and the temporal information   on the sampling points. 

Object-Tracking 

The positions and sizes of a target object and obstacles are extracted from camera 

images in the color space. Obtained raw data of camera images are RGB-based and need 

to be converted to HSV-based to avoid the noises generated by light. In order to simplify 

our work, we used a yellow cube as a target object and blue cubes as obstacles. This is 

enough for our designed experiments. By extracting all yellow or blue pixels from the 

HSV images, the center of the target object and each obstacle can be computed as: 

      ( )  
∑   

 
   

 
     (11) 
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where    represents the position value of each pixel in the Cartesian space: 

   (              )
 
    (12) 

The edges of target object and cubes are recorded by finding the maximum values 

and minimum values on X, Y, and Z direction in the Cartesian space.  

    ( )     (    )    (13) 

    ( )     (    )    (14) 

    ( )     (    )    (15) 

    ( )     (    )    (16) 

    ( )     (    )    (17) 

    ( )     (    )    (18) 

Then the recorded states for  th
 demonstration are: 

   {      ( )       ( )         ( )     ( )     ( )     ( )     ( )     ( )     ( )} 

and each element is a vector with length of the sampling time. 

 

B. A Potential Field Method-Based Extension of the Dynamic Movement Primitive 

Algorithm for Imitation Learning with Obstacle Avoidance 

In Figure 108, Figure 109, and Figure 110, the black circle is the obstacle placed 

in the environment.  

In Figure 108, when  ⃗( ) is generated by the DMP method, it is in the impedance 

area (orange area outside black obstacle) around the obstacle and the obstacle is 

between  ⃗( ) and the goal state  ⃗. Then, the goal state   is moved to a virtual goal 

state  ⃗    (   ).  
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Figure 108 Calculation of the point  ⃗( ) in the impedance area around the obstacle using 

the improved DMP algorithm 

In Figure 109,   ⃗(   ) can be generated by using the DMP method with the 

new virtual goal state  ⃗    (   )  ⃗(   ) is still in the impedance area around the 

obstacle and the obstacle still locates between  ⃗(   )and the goal state  ⃗, then the goal 

state  ⃗ is modified into  ⃗    (   ). 
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Figure 109 Calculation of the point  ⃗(   ) in the impedance area around the obstacle 

using the improved DMP algorithm 
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Figure 110 Calculation of the points not in the impedance area around the obstacle using 

the improved DMP algorithm 

In Figure 110,   ⃗(   ) can be generated using the DMP method with the new 

virtual state  ⃗    (   ) . Now,  ⃗(   )  is not in the impedance area around the 

obstacle and the obstacle is not between  ⃗(   )  and the goal state  ⃗, then the goal 

state  ⃗ will not be moved. Other points { ⃗(   )  ⃗(   )  ⃗(   )    ⃗( )} will be 

generated using the original DMP method until  ⃗( )   ⃗ to achieve the initial goal state. 

The impedance factor  ⃗         (   ) is generated by the virtual impedance 

force in the impedance field as shown in Figure 109. The center of the obstacle is  ⃗, and 

the radius of the obstacle is  .   is the distance between  ⃗( ) and  ⃗, 

  ‖ ⃗( )   ⃗‖     (19) 

When  ⃗( ) is in the obstacle area and the obstacle is between  ⃗( ) and  ⃗, 

|   |                    (20) 

        ( ⃗ ( ⃗   ⃗( )))<                 (21) 

The virtual impedance force is calculated by the following equations.   and   are 

constants. 

  ⃗         ( )   ⃗         ( )   ⃗         ( )    (22) 
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 ⃗         ( )
   

 

(   ) 
    (23) 

 ⃗         ( )
   

 

(   ) 
     (24) 

The impedance factor  ⃗         (   )  is proportional to  ⃗         ( ) 

obtained from equation (25). 

 ⃗         (   )    ⃗         ( )    (25) 
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Figure 111 Calculation of  ⃗     

Intuitively, the smaller the distance between  ⃗( ) and the surface of the obstacle 

is, the larger the  ⃗         ( ) is. When  ⃗( ) is around the obstacle, the virtual goal 

state  ⃗    (   )  is moved proportionally to  ⃗         ( ) . This virtual goal state 

changes the trajectory around the obstacle, but still keeps the dynamics of the generated 

trajectory similar to the demonstration because the generated trajectory is calculated by 

the DMP method with the original demonstration. 

  ⃗( )̇    (  ( ⃗         (   )   ⃗⃗( ))   ⃗( ))   (26) 

  ⃗( )̇   ⃗( )   ( )     (27) 

 ⃗(   )   ⃗( )   ⃗( )̇     (28) 

 ⃗(   )   ⃗( )   ⃗( )̇     (29) 
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C. Simulation Results and Generated Motion Trajectories of Experiment 3 

Experiment 3A 

ISAC pushes the box to the right using its right arm in Experiment 3A-1. 

Experiment 3A-1 Experiment 3A-1

  

Figure 112 Simulation Results of Experiment 3A-1 

 

Figure 113 Generated Motion Trajectories of the Right Arm in Experiment 3A-1 
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ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3A-2. Then it switches the generated behavior sequence to the left arm and 

pushes the box to the right. 

Experiment 3A-2 Experiment 3A-2 Experiment 3A-2

 

Figure 114 Simulation Results of Experiment 3A-2 

 

 

Figure 115 Generated Motion Trajectories of the Right Arm in Experiment 3A-2 
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Figure 116 Generated Motion Trajectories of the Left Arm in Experiment 3A-2 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3A-3. Then it switches the generated behavior sequence to the left arm and 

pushes the box to the right. 

Experiment 3A-3 Experiment 3A-3 Experiment 3A-3

 

Figure 117 Simulation Results of Experiment 3A-3 
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Figure 118 Generated Motion Trajectories of the Right Arm in Experiment 3A-3 
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Figure 119 Generated Motion Trajectories of the Left Arm in Experiment 3A-3 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3A-4. Then it switches the generated behavior sequence to the left arm and 

pushes the box to the right. 

Experiment 3A-4 Experiment 3A-4 Experiment 3A-4

 

Figure 120 Simulation Results of Experiment 3A-4 
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Figure 121 Generated Motion Trajectories of the Right Arm in Experiment 3A-4 
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Figure 122 Generated Motion Trajectories of the Left Arm in Experiment 3A-4 

ISAC finds that it cannot push the box to the right using either of the arms in 

Experiment 3A-5.  

Experiment 3A-5 Experiment 3A-5 Experiment 3A-5

 

Figure 123 Simulation Results of Experiment 3A-5 
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Figure 124 Generated Motion Trajectories of the Right Arm in Experiment 3A-5 
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Figure 125 Generated Motion Trajectories of the Left Arm in Experiment 3A-5 

ISAC pushes the box to the right using its right arm Experiment 3A-6. 

Experiment 3A-6 Experiment 3A-6

 

Figure 126 Simulation Results of Experiment 3A-6 
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Figure 127 Generated Motion Trajectories of the Right Arm in Experiment 3A-6 

ISAC pushes the box to the right using its right arm Experiment 3A-7. 

Experiment 3A-7 Experiment 3A-7

 

Figure 128 Simulation Results of Experiment 3A-7 
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.  

Figure 129 Generated Motion Trajectories of the Right Arm in Experiment 3A-7 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3A-8. Then it switches the generated behavior sequence to the left arm and 

pushes the box to the right. 

Experiment 3A-8 Experiment 3A-8 Experiment 3A-8

  

Figure 130 Simulation Results of Experiment 3A-8 
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Figure 131 Generated Motion Trajectories of the Right Arm in Experiment 3A-8 
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Figure 132 Generated Motion Trajectories of the Left Arm in Experiment 3A-8 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3A-9. Then it switches the generated behavior sequence to the left arm and 

pushes the box to the right. 

Experiment 3A-9 Experiment 3A-9 Experiment 3A-9

 

Figure 133 Simulation Results of Experiment 3A-9 
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Figure 134 Generated Motion Trajectories of the Right Arm in Experiment 3A-9 
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Figure 135 Generated Motion Trajectories the Left Arm in Experiment 3A-9 

ISAC finds that it cannot push the box to the right using either of the arms in 

Experiment 3A-10.  

Experiment 3A-10 Experiment 3A-10 Experiment 3A-10

 

Figure 136 Simulation Results of Experiment 3A-10 
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Figure 137 Generated Motion Trajectories of the Right Arm in Experiment 3A-10 
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Figure 138 Generated Motion Trajectories of the Left Arm in Experiment 3A-10 

 

Experiment 3B 

ISAC pushes the box to the right using its right arm in Experiment 3B-1a-1. 

400

600

800 -1000

-500

0

500

-600

-400

-200

Y Axis(mm)

Motion of Left Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Left Arm

0 50 100 150 200
-1000

-500

0

500

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Left Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Left Arm



228 

 

Experiment 3B-1a-1 Experiment 3B-1a-1

 

Figure 139 Simulation Results of Experiment 3B-1a-1 

 

Figure 140 Generated Motion Trajectories of the Right Arm in Experiment 3B-1a-1  
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Figure 141 Generated Motion Trajectories of the Left Arm in Experiment 3B-1a-1 

ISAC pushes the box to the right using its right arm in Experiment 3B-1a-2. 

Experiment 3B-1a-2 Experiment 3B-1a-2

Figure 142 Simulation Results of Experiment 3B-1a-2 
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ISAC finds that it cannot push the box to the right using either of the arms in 

Experiment 3B-1a-3.  

Experiment 3B-1a-3 Experiment 3B-1a-3 Experiment 3B-1a-3

  

Figure 143 Simulation Results of Experiment 3B-1a-3 

ISAC finds that it cannot push the box to the right using either of the arms in 

Experiment 3B-1a-4.  

Experiment 3B-1a-4 Experiment 3B-1a-4

 

Figure 144 Simulation Results of Experiment 3B-1a-3 

ISAC pushes the box to the right using its right arm in Experiment 3B-1b-1. 
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Experiment 3B-1b-1 Experiment 3B-1b-1

 

Figure 145 Simulation Results of Experiment 3B-1b-1 

ISAC pushes the box to the right using its right arm in Experiment 3B-1b-2. 

Experiment 3B-1b-2 Experiment 3B-1b-2

 

Figure 146 Simulation Results of Experiment 3B-1b-2 

ISAC pushes the box to the right using its right arm in Experiment 3B-1b-3. 
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Experiment 3B-1b-3 Experiment 3B-1b-3

  

Figure 147 Simulation Results of Experiment 3B-1b-3 

ISAC finds that it cannot push the box to the right using its either of the arms in 

Experiment 3B-1b-4. 

Experiment 3B-1b-4 Experiment 3B-1b-4 Experiment 3B-1b-4

  

Figure 148 Simulation Results of Experiment 3B-1b-4 

ISAC pushes the box to the right using its right arm in Experiment 3B-1c-1. 
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Experiment 3B-1c-1
Experiment 3B-1c-1

 

Figure 149 Simulation Results of Experiment 3B-1c-1 

ISAC pushes the box to the right using its right arm in Experiment 3B-1c-2. 

Experiment 3B-1c-2 Experiment 3B-1c-2

  

Figure 150 Simulation Results of Experiment 3B-1c-2 

ISAC pushes the box to the right using its right arm in Experiment 3B-1c-3. 
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Experiment 3B-1c-3
Experiment 3B-1c-3

  

Figure 151 Simulation Results of Experiment 3B-1c-3 

ISAC pushes the box to the right using its right arm in Experiment 3B-1c-4. 

Experiment 3B-1c-4 Experiment 3B-1c-4

  

Figure 152 Simulation Results of Experiment 3B-1c-4 

ISAC pushes the box to the right using its right arm in Experiment 3B-1d-1. 
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Experiment 3B-1d-1 Experiment 3B-1d-1

  

Figure 153 Simulation Results of Experiment 3B-1d-1 

ISAC pushes the box to the right using its right arm in Experiment 3B-1d-2. 

Experiment 3B-1d-2 Experiment 3B-1d-2

  

Figure 154 Simulation Results of Experiment 3B-1d-2 

ISAC pushes the box to the right using its right arm in Experiment 3B-1d-3. 
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Experiment 3B-1d-3 Experiment 3B-1d-3

 

Figure 155 Simulation Results of Experiment 3B-1d-3 

ISAC finds that it cannot push the box to the right using both arms in Experiment 

3B-1d-4.  

Experiment 3B-1d-4 Experiment 3B-1d-4 Experiment 3B-1d-4

  

Figure 156 Simulation Results of Experiment 3B-1d-4 

ISAC finds that it cannot push the box to the right using either of arms in 

Experiment 3B-2a-1.  

Experiment 3B-2a-1 Experiment 3B-2a-1 Experiment 3B-2a-1

  

Figure 157 Simulation Results of Experiment 3B-2a-1 
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Figure 158 Generated Motion Trajectories of the Right Arm in Experiment 3B-2a-1 
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Figure 159 Generated Motion Trajectories of the Left Arm in Experiment 3B-2a-1 

ISAC finds that it cannot push the box to the right using either of the arms in 

Experiment 3B-2a-2. 

Experiment 3B-2a-2 Experiment 3B-2a-2 Experiment 3B-2a-2

  

Figure 160 Simulation Results of Experiment 3B-2a-2 
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ISAC finds that it cannot push the box to the right using either of the arms in 

Experiment 3B-2a-3. 

Experiment 3B-2a-3 Experiment 3B-2a-3 Experiment 3B-2a-3

  

Figure 161 Simulation Results of Experiment 3B-2a-3 

ISAC finds that it cannot push the box to the right using either of the arms in 

Experiment 3B-2a-4.  

Experiment 3B-2a-4 Experiment 3B-2a-4 Experiment 3B-2a-4

  

Figure 162 Simulation Results of Experiment 3B-2a-4 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-2b-1. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 
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Experiment 3B-2b-1 Experiment 3B-2b-1 Experiment 3B-2b-1

  

Figure 163 Simulation Results of Experiment 3B-2b-1 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-2b-2. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-2b-2 Experiment 3B-2b-2 Experiment 3B-2b-2

 

Figure 164 Simulation Results of Experiment 3B-2b-2 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-2b-3. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-2b-3 Experiment 3B-2b-3 Experiment 3B-2b-3

 

Figure 165 Simulation Results of Experiment 3B-2b-3 
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ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-2b-4. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-2b-4 Experiment 3B-2b-4 Experiment 3B-2b-4

  

Figure 166 Simulation Results of Experiment 3B-2b-4 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-2c-1. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-2c-1 Experiment 3B-2c-1 Experiment 3B-2c-1

  

Figure 167 Simulation Results of Experiment 3B-2c-1 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-2c-2. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 
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Experiment 3B-2c-2 Experiment 3B-2c-2 Experiment 3B-2c-2

 

Figure 168 Simulation Results of Experiment 3B-2c-2 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-2c-3. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-2c-3 Experiment 3B-2c-3 Experiment 3B-2c-3

  

Figure 169 Simulation Results of Experiment 3B-2c-3 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-2c-4. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-2c-4 Experiment 3B-2c-4 Experiment 3B-2c-4

 

Figure 170 Simulation Results of Experiment 3B-2c-4 
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ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-2d-1. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-2d-1 Experiment 3B-2d-1 Experiment 3B-2d-1

  

Figure 171 Simulation Results of Experiment 3B-2d-1 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-2d-2. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-2d-2 Experiment 3B-2d-2 Experiment 3B-2d-2

  

Figure 172 Simulation Results of Experiment 3B-2d-2 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-2d-3. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 
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Experiment 3B-2d-3 Experiment 3B-2d-3 Experiment 3B-2d-3

  

Figure 173 Simulation Results of Experiment 3B-2d-3 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-2d-4. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-2d-4 Experiment 3B-2d-4 Experiment 3B-2d-4

  

Figure 174 Simulation Results of Experiment 3B-2d-4 

ISAC finds that it cannot push the box using both arms. 

Experiment 3B-3a-1 Experiment 3B-3a-1 Experiment 3B-3a-1

  

Figure 175 Simulation Results of Experiment 3B-3a-1 
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Figure 176 Generated Motion Trajectories of the Right Arm in Experiment 3B-3a-1 
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Figure 177 Generated Motion Trajectories of the Left Arm in Experiment 3B-3a-1 

ISAC finds that it cannot push the box using both arms in Experiment 3B-3a-2. 

Experiment 3B-3a-2 Experiment 3B-3a-2 Experiment 3B-3a-2

  

Figure 178 Simulation Results of Experiment 3B-3a-2 

ISAC finds that it cannot push the box using both arms in Experiment 3B-3a-3. 
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Experiment 3B-3a-3 Experiment 3B-3a-3 Experiment 3B-3a-3

  

Figure 179 Simulation Results of Experiment 3B-3a-3 

ISAC finds that it cannot push the box using both arms in Experiment 3B-3a-4. 

Experiment 3B-3a-4 Experiment 3B-3a-4 Experiment 3B-3a-4

  

Figure 180 Simulation Results of Experiment 3B-3a-4 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-3b-1. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-3b-1 Experiment 3B-3b-1 Experiment 3B-3b-1

  

Figure 181 Simulation Results of Experiment 3B-3b-1 
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Figure 182 Generated Motion Trajectories of the Right Arm in Experiment 3B-3b-1 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-3b-2. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-3b-2 Experiment 3B-3b-2 Experiment 3B-2b-2

  

Figure 183 Simulation Results of Experiment 3B-3b-2 
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ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-3b-3. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-3b-3 Experiment 3B-3b-3 Experiment 3B-3b-3

  

Figure 184 Simulation Results of Experiment 3B-3b-3 

ISAC finds that it cannot push the box using either of the arms. 

Experiment 3B-3b-4 Experiment 3B-3b-4
Experiment 3B-3b-4

  

Figure 185 Simulation Results of Experiment 3B-3b-4 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-3c-1. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 
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Experiment 3B-3c-1 Experiment 3B-3c-1 Experiment 3B-3c-1

  

Figure 186 Simulation Results of Experiment 3B-3c-1 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-3c-2. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-3c-2 Experiment 3B-3c-2 Experiment 3B-3c-2

  

Figure 187 Simulation Results of Experiment 3B-3c-2 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-3c-3. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-3c-3 Experiment 3B-3c-3 Experiment 3B-3c-3

 

Figure 188 Simulation Results of Experiment 3B-3c-3 
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ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-3c-4. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-3c-4 Experiment 3B-3c-4 Experiment 3B-3c-4

  

Figure 189 Simulation Results of Experiment 3B-3c-4 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-3d-1. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-3d-1 Experiment 3B-3d-1 Experiment 3B-3d-1

  

Figure 190 Simulation Results of Experiment 3B-3d-1 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-3d-2. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 
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Experiment 3B-3d-2 Experiment 3B-3d-2 Experiment 3B-3d-2

 

Figure 191 Simulation Results of Experiment 3B-3d-2 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-3d-3. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-3d-3 Experiment 3B-3d-4 Experiment 3B-3d-3

 

Figure 192 Simulation Results of Experiment 3B-3d-3 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-3d-4. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-3d-4 Experiment 3B-3d-4
Experiment 3B-3d-4

  

Figure 193 Simulation Results of Experiment 3B-3d-4 
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ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-4a-1. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-4a-1 Experiment 3B-4a-1 Experiment 3B-4a-1

  

Figure 194 Simulation Results of Experiment 3B-4a-1 

 

Figure 195 Generated Motion Trajectories of the Right Arm in Experiment 3B-4a-1 
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Figure 196 Generated Motion Trajectories of the Left Arm in Experiment 3B-4a-1 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-4a-2. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-4a-2 Experiment 3B-4a-2 Experiment 3B-4a-2

  

Figure 197 Simulation Results of Experiment 3B-4a-2 
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ISAC finds that it cannot push the box to the right using either of the arms. 

Experiment 3B-4a-3 Experiment 3B-4a-3 Experiment 3B-4a-3

  

Figure 198 Simulation Results of Experiment 3B-4a-3 

ISAC finds that it cannot push the box to the right using either of the arms. 

Experiment 3B-4a-4 Experiment 3B-4a-4 Experiment 3B-4a-4

  

Figure 199 Simulation Results of Experiment 3B-4a-4 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-4b-1. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-4b-1 Experiment 3B-4b-1 Experiment 3B-4b-1

  

Figure 200 Simulation Results of Experiment 3B-4b-1 



256 

 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-4b-2. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-4b-2 Experiment 3B-4b-2 Experiment 3B-4b-2

  

Figure 201 Simulation Results of Experiment 3B-4b-2 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-4b-3. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-4b-3 Experiment 3B-4b-3 Experiment 3B-4b-3

  

Figure 202 Simulation Results of Experiment 3B-4b-3 

ISAC finds that it cannot push the box to the right either of the arms. 
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Experiment 3B-4b-4 Experiment 3B-4b-4 Experiment 3B-4b-4

  

Figure 203 Simulation Results of Experiment 3B-4b-4 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-4c-1. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

 

Experiment 3B-4c-1 Experiment 3B-4c-1 Experiment 3B-4c-1

  

Figure 204 Simulation Results of Experiment 3B-4c-1 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-4c-2. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 
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Experiment 3B-4c-2 Experiment 3B-4c-2 Experiment 3B-4c-2

  

Figure 205 Simulation Results of Experiment 3B-4c-2 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-4c-3. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-4c-3 Experiment 3B-4c-3 Experiment 3B-4c-3

  

Figure 206 Simulation Results of Experiment 3B-4c-3 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-4c-4. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-4c-4 Experiment 3B-4c-4 Experiment 3B-4c-4

  

Figure 207 Simulation Results of Experiment 3B-4c-4 
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ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-4d-1. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-4d-1 Experiment 3B-4d-1 Experiment 3B-4d-1

  

Figure 208 Simulation Results of Experiment 3B-4d-1 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-4d-2. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-4d-2 Experiment 3B-4d-2 Experiment 3B-4d-2

  

Figure 209 Simulation Results of Experiment 3B-4d-2 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-4d-3. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 



260 

 

Experiment 3B-4d-3 Experiment 3B-4d-3 Experiment 3B-4d-3

 

Figure 210 Simulation Results of Experiment 3B-4d-3 

ISAC finds that it cannot push the box to the right using its right arm in 

Experiment 3B-4d-4. Then it switches the generated behavior sequence to the left arm 

and pushes the box to the right. 

Experiment 3B-4d-4 Experiment 3B-4d-4 Experiment 3B-4d-4

  

Figure 211 Simulation Results of Experiment 3B-4d-4 

ISAC pushes the box to the right using its right arm in Experiment 3B-5a-1.  

Experiment 3B-5a-1 Experiment 3B-5a-1

  

Figure 212 Simulation Results of Experiment 3B-5a-1 
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Figure 213 Generated Motion Trajectories of the Right Arm in Experiment 3B-5a-1 
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Figure 214 Generated Motion Trajectories of the Left Arm in Experiment 3B-5a-1 

ISAC pushes the box to the right using its right arm in Experiment 3B-5a-2.  

Experiment 3B-5a-2 Experiment 3B-5a-2

 

Figure 215 Simulation Results of Experiment 3B-5a-2 
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ISAC finds that it cannot push the box to the right using either of the arms in 

Experiment 3B-5a-3.  

Experiment 3B-5a-3 Experiment 3B-5a-3 Experiment 3B-5a-3

  

Figure 216 Simulation Results of Experiment 3B-5a-3 

ISAC finds that it cannot push the box to the right using either of the arms in 

Experiment 3B-5a-3.  

Experiment 3B-5a-4 Experiment 3B-5a-4 Experiment 3B-5a-4

  

Figure 217 Simulation Results of Experiment 3B-5a-4 

ISAC pushes the box to the right using its right arm in Experiment 3B-5b-1.  
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Experiment 3B-5b-1 Experiment 3B-5b-1

  

Figure 218 Simulation Results of Experiment 3B-5b-1 

ISAC pushes the box to the right using its right arm in Experiment 3B-5b-2.  

Experiment 3B-5b-2 Experiment 3B-5b-2

  

Figure 219 Simulation Results of Experiment 3B-5b-2 

ISAC pushes the box to the right using its right arm in Experiment 3B-5b-3.  
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Experiment 3B-5b-3 Experiment 3B-5b-3

 

Figure 220 Simulation Results of Experiment 3B-5b-3 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-5b-4. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  

 

Experiment 3B-5b-4 Experiment 3B-5b-4 Experiment 3B-5b-4

  

Figure 221 Simulation Results of Experiment 3B-5b-4 

ISAC pushes the box to the right using its right arm in Experiment 3B-5c-1.  
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Experiment 3B-5c-1 Experiment 3B-5c-1

  

Figure 222 Simulation Results of Experiment 3B-5c-1 

ISAC pushes the box to the right using its right arm in Experiment 3B-5c-2.  

Experiment 3B-5c-2 Experiment 3B-5c-2

  

Figure 223 Simulation Results of Experiment 3B-5c-2 

ISAC pushes the box to the right using its right arm in Experiment 3B-5c-3.  
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Experiment 3B-5c-3 Experiment 3B-5c-3

  

Figure 224 Simulation Results of Experiment 3B-5c-3 

ISAC pushes the box to the right using its right arm in Experiment 3B-5c-4.  

Experiment 3B-5c-4 Experiment 3B-5c-4

  

Figure 225 Simulation Results of Experiment 3B-5c-4 

ISAC pushes the box to the right using its right arm in Experiment 3B-5d-1.  
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Experiment 3B-5d-1 Experiment 3B-5d-1

  

Figure 226 Simulation Results of Experiment 3B-5d-1 

ISAC pushes the box to the right using its right arm in Experiment 3B-5d-2.  

Experiment 3B-5d-2 Experiment 3B-5d-2

  

Figure 227 Simulation Results of Experiment 3B-5d-2 

ISAC pushes the box to the right using its right arm in Experiment 3B-5d-3.  
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Experiment 3B-5d-3 Experiment 3B-5d-3

  

Figure 228 Simulation Results of Experiment 3B-5d-3 

ISAC finds that it cannot push the box to the right using either of the arms in 

Experiment 3B-5d-4.  

Experiment 3B-5d-4 Experiment 3B-5d-4 Experiment 3B-5d-4

  

Figure 229 Simulation Results of Experiment 3B-5d-4 

ISAC pushes the box to the right using its right arm in Experiment 3B-6a-1.  
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Experiment 3B-6a-1 Experiment 3B-6a-1

  

Figure 230 Simulation Results of Experiment 3B-6a-1 

 

Figure 231 Generated Motion Trajectories of the Right Arm in Experiment 3B-6a-1 
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Figure 232 Generated Motion Trajectories of the Left Arm in Experiment 3B-6a-1. 

ISAC pushes the box to the right using its right arm in Experiment 3B-6a-2.  

Experiment 3B-6a-2 Experiment 3B-6a-2

  

Figure 233 Simulation Results of Experiment 3B-6a-2 
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ISAC finds that it cannot push the box to the right either of the arms in 

Experiment 3B-6a-3.  

Experiment 3B-6a-3 Experiment 3B-6a-3Experiment 3B-6a-3

  

Figure 234 Simulation Results of Experiment 3B-6a-3 

ISAC finds that it cannot push the box to the right using either of the arms in 

Experiment 3B-6a-4.  

Experiment 3B-6a-4 Experiment 3B-6a-4Experiment 3B-6a-4

  

Figure 235 Simulation Results of Experiment 3B-6a-4 

ISAC pushes the box to the right using its right arm in Experiment 3B-6b-1.  
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Experiment 3B-6b-1 Experiment 3B-6b-1

  

Figure 236 Simulation Results of Experiment 3B-6b-1 

ISAC pushes the box to the right using its right arm in Experiment 3B-6b-2.  

 

Experiment 3B-6b-2 Experiment 3B-6b-2

  

Figure 237 Simulation Results of Experiment 3B-6b-2 

ISAC pushes the box to the right using its right arm in Experiment 3B-6b-3.  
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Experiment 3B-6b-3 Experiment 3B-6b-3

  

Figure 238 Simulation Results of Experiment 3B-6b-3 

ISAC pushes the box to the right using its right arm in Experiment 3B-6b-4.  

Experiment 3B-6b-4 Experiment 3B-6b-4Experiment 3B-6b-4

  

Figure 239 Simulation Results of Experiment 3B-6b-4 

ISAC pushes the box to the right using its right arm in Experiment 3B-6c-1.  

Experiment 3B-6c-1 Experiment 3B-6c-1

 

Figure 240 Simulation Results of Experiment 3B-6c-1 
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ISAC pushes the box to the right using its right arm in Experiment 3B-6c-2.  

Experiment 3B-6c-2 Experiment 3B-6c-2

 

Figure 241 Simulation Results of Experiment 3B-6c-2 

ISAC pushes the box to the right using its right arm in Experiment 3B-6c-3.  

Experiment 3B-6c-3 Experiment 3B-6c-3

 

 Figure 242 Simulation Results of Experiment 3B-6c-3 

ISAC pushes the box to the right using its right arm in Experiment 3B-6c-4.  
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Experiment 3B-6c-4 Experiment 3B-6c-4

  

Figure 243 Simulation Results of Experiment 3B-6c-4 

ISAC pushes the box to the right using its right arm in Experiment 3B-6d-1.  

Experiment 3B-6d-1 Experiment 3B-6d-1

  

Figure 244 Simulation Results of Experiment 3B-6d-1 

ISAC pushes the box to the right using its right arm in Experiment 3B-6d-2.  

 



277 

 

Experiment 3B-6d-2 Experiment 3B-6d-2

 

Figure 245 Simulation Results of Experiment 3B-6d-2 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-6d-3. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  

Experiment 3B-6d-3 Experiment 3B-6d-3Experiment 3B-6d-3

  

Figure 246 Simulation Results of Experiment 3B-6d-3 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-6d-4. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  
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Experiment 3B-6d-4 Experiment 3B-6d-4Experiment 3B-6d-4

  

Figure 247 Simulation Results of Experiment 3B-6d-4 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-7a-1. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  

Experiment 3B-7a-1 Experiment 3B-7a-1 Experiment 3B-7a-1

  

Figure 248 Simulation Results of Experiment 3B-7a-1 
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Figure 249 Generated Motion Trajectories of the Right Arm in Experiment 3B-7a-1 
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Figure 250 Generated Motion Trajectories of the Left Arm in Experiment 3B-7a-1 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-7a-2. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  

Experiment 3B-7a-2 Experiment 3B-7a-2 Experiment 3B-7a-2

  

Figure 251 Simulation Results of Experiment 3B-7a-2 

400

600

800 -1000

-500

0

500

-600

-400

-200

Y Axis(mm)

Motion of Left Arm

X Axis(mm)

Z
 A

x
is

(m
m

)

0 50 100 150 200
300

400

500

600

700

800

Time(s)

P
o
s
it
io

n
 X

(m
m

)

PosX of Left Arm

0 50 100 150 200
-1000

-500

0

500

Time(s)

P
o
s
it
io

n
 Y

(m
m

)

PosY of Left Arm

0 50 100 150 200
-600

-500

-400

-300

-200

-100

Time(s)

P
o
s
it
io

n
 Z

(m
m

)

PosZ of Left Arm



281 

 

ISAC finds that it cannot push the box to the right using either of the arms in 

Experiment 3B-7a-3.  

Experiment 3B-7a-3 Experiment 3B-7a-3 Experiment 3B-7a-3

  

Figure 252 Simulation Results of Experiment 3B-7a-3 

ISAC finds that it cannot push the box to the right using either of the arms in 

Experiment 3B-7a-4.  

Experiment 3B-7a-4 Experiment 3B-7a-4 Experiment 3B-7a-4

  

Figure 253 Simulation Results of Experiment 3B-7a-4 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-7b-1. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  
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Experiment 3B-7b-1 Experiment 3B-7b-1 Experiment 3B-7b-1

 

Figure 254 Simulation Results of Experiment 3B-7b-1 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-7b-2. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  

Experiment 3B-7b-2 Experiment 3B-7b-2 Experiment 3B-7b-2

 

Figure 255 Simulation Results of Experiment 3B-7b-2 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-7b-3. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  

Experiment 3B-7b-3 Experiment 3B-7b-3 Experiment 3B-7b-3

  

Figure 256 Simulation Results of Experiment 3B-7b-3 
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ISAC finds that it cannot push the box to the right using either of arms in 

Experiment 3B-7b-4.  

Experiment 3B-7b-4 Experiment 3B-7b-4 Experiment 3B-7b-4

  

Figure 257 Simulation Results of Experiment 3B-7b-4 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-7c-1. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  

Experiment 3B-7c-1 Experiment 3B-7c-1 Experiment 3B-7c-1

 

Figure 258 Simulation Results of Experiment 3B-7c-1 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-7c-2. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  
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Experiment 3B-7c-2 Experiment 3B-7c-2 Experiment 3B-7c-2

 

Figure 259 Simulation Results of Experiment 3B-7c-2 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-7c-3. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  

Experiment 3B-7c-3 Experiment 3B-7c-3 Experiment 3B-7c-3

 

Figure 260 Simulation Results of Experiment 3B-7c-3 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-7c-4. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  

Experiment 3B-7c-4 Experiment 3B-7c-4 Experiment 3B-7c-4

 

Figure 261 Simulation Results of Experiment 3B-7c-4 
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ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-7d-1. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  

Experiment 3B-7d-1 Experiment 3B-7d-1 Experiment 3B-7d-1

  

Figure 262 Simulation Results of Experiment 3B-7d-1 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-7d-2. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  

 

Experiment 3B-7d-2 Experiment 3B-7d-2 Experiment 3B-7d-2

  

Figure 263 Simulation Results of Experiment 3B-7d-2 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-7d-3. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  
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Experiment 3B-7d-3 Experiment 3B-7d-3 Experiment 3B-7d-3

  

Figure 264 Simulation Results of Experiment 3B-7d-3 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-7d-4. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  

Experiment 3B-7d-4 Experiment 3B-7d-4 Experiment 3B-7d-4

  

Figure 265 Simulation Results of Experiment 3B-7d-4 

Experiment 3B-8a-1 Experiment 3B-8a-1 Experiment 3B-8a-1

  

Figure 266 Simulation Results of Experiment 3B-8a-1 
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Figure 267 Generated Motion Trajectories of the Right Arm in Experiment 3B-8a-1 
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Figure 268 Generated Motion Trajectories of the Left Arm in Experiment 3B-8a-1 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-8a-2. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  

Experiment 3B-8a-2 Experiment 3B-8a-2 Experiment 3B-8a-2

 

Figure 269 Simulation Results of Experiment 3B-8a-2 
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ISAC finds that it cannot push the box to the right using either of the arms in 

Experiment 3B-8a-3.  

Experiment 3B-8a-3 Experiment 3B-8a-3 Experiment 3B-8a-3

  

Figure 270 Simulation Results of Experiment 3B-8a-3 

ISAC finds that it cannot push the box to the right using either of the arms in 

Experiment 3B-8a-4.  

Experiment 3B-8a-4 Experiment 3B-8a-4 Experiment 3B-8a-4

  

Figure 271 Simulation Results of Experiment 3B-8a-4 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-8b-1. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  
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Experiment 3B-8b-1 Experiment 3B-8b-1 Experiment 3B-8b-1

 

Figure 272 Simulation Results of Experiment 3B-8b-1 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-8b-2. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  

Experiment 3B-8b-2 Experiment 3B-8b-2 Experiment 3B-8b-2

 

Figure 273 Simulation Results of Experiment 3B-8b-2 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-8b-3. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  

Experiment 3B-8b-3 Experiment 3B-8b-3 Experiment 3B-8b-3

 

Figure 274 Simulation Results of Experiment 3B-8b-3 
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ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-8b-4. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  

Experiment 3B-8b-4 Experiment 3B-8b-4 Experiment 3B-8b-4

 

Figure 275 Simulation Results of Experiment 3B-8b-4 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-8c-1. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  

Experiment 3B-8c-1 Experiment 3B-8c-1 Experiment 3B-8c-1

 

Figure 276 Simulation Results of Experiment 3B-8c-1 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-8c-2. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  
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Experiment 3B-8c-2 Experiment 3B-8c-2 Experiment 3B-8c-2

 

Figure 277 Simulation Results of Experiment 3B-8c-2 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-8c-3. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  

Experiment 3B-8c-3 Experiment 3B-8c-3 Experiment 3B-8c-3

  

Figure 278 Simulation Results of Experiment 3B-8c-3 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-8c-3. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  

Experiment 3B-8c-4 Experiment 3B-8c-4 Experiment 3B-8c-4

 

Figure 279 Simulation Results of Experiment 3B-8c-4 
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ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-8d-1. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  

Experiment 3B-8d-1 Experiment 3B-8d-1 Experiment 3B-8d-1

 

Figure 280 Simulation Results of Experiment 3B-8d-1 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-8d-2. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  

Experiment 3B-8d-2 Experiment 3B-8d-2 Experiment 3B-8d-2

 

Figure 281 Simulation Results of Experiment 3B-8d-2 

ISAC finds that it cannot push the box to the right using its right arms in 

Experiment 3B-8d-3. Then ISAC switches the generated behavior sequence to the left 

arm and pushes the box to the right.  
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Experiment 3B-8d-3 Experiment 3B-8d-3 Experiment 3B-8d-3

  

Figure 282 Simulation Results of Experiment 3B-8d-3 

ISAC finds that it cannot push the box to the right using either of the arms in 

Experiment 3B-8d-4.  

Experiment 3B-8d-4 Experiment 3B-8d-4 Experiment 3B-8d-4

  

Figure 283 Simulation Results of Experiment 3B-8d-4 

--Experiment 3B-1 

In experiment 3B-1, the object was placed at location 1 and the obstacle was 

placed around it at 4 different locations. ISAC first tried to push the object using its right 

arm. If the evaluation failed, ISAC switched to the left arm. If the evaluation still failed, 

ISAC refused to complete the task and displayed a message on the screen.  

The simulation results of 3B-1 are summarized in Table 28. 
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Table 28 Simulation Results of Experiment 3B-1 

 Feasible/ 

Infeasible 

Left/Right Failure Reason Evaluation 

Experiment 3B-1a-1 Feasible Right Arm N/A Correct 

Experiment 3B-1a-2 Feasible Right Arm N/A Correct 

Experiment 3B-1a-3 Infeasible N/A Right Arm: Cannot Reach the Box 

Left Arm: Cannot Reach the Box 

Wrong 

Experiment 3B-1a-4 Infeasible N/A Right Arm: Cannot Reach the Box 

Left Arm: Cannot Reach the Box 

Correct 

Experiment 3B-1b-1 Feasible Right Arm N/A Correct 

Experiment 3B-1b-2 Feasible Right Arm N/A Correct 

Experiment 3B-1b-3 Feasible Right Arm N/A Correct 

Experiment 3B-1b-4 Infeasible N/A Right Arm: Cannot Reach the Box 

Left Arm: Cannot Reach the Box 

Wrong 

Experiment 3B-1c-1 Feasible Right Arm N/A Correct 

Experiment 3B-1c-2 Feasible Right Arm N/A Correct 

Experiment 3B-1c-3 Feasible Right Arm N/A Correct 

Experiment 3B-1c-4 Feasible Right Arm N/A Correct 

Experiment 3B-1d-1 Feasible Right Arm N/A Correct 

Experiment 3B-1d-2 Feasible Right Arm N/A Correct 

Experiment 3B-1d-3 Feasible Right Arm N/A Correct 

Experiment 3B-1d-4 Infeasible N/A Right Arm: Collision with the obstacle 

Left Arm: Cannot Reach the Box 

Correct 

In Experiment 3B-1a-3, 3B-1a-4, 3B-1b-4, and 3B-1d-4, ISAC found that it 

cannot push the box using either of its arms if it wanted to avoid the obstacle. So it 

displayed a message on the screen and refused to do. The rate of feasibility in Experiment 

3B-1 is 75%.  
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In Experiment 3B-1a-3 and 3B-1b-4, ISAC made wrong decisions and refused to 

complete the task because it found that it cannot avoid the obstacle in order to push the 

box. The reason of causing the wrong decision comes from the obstacle avoidance 

module. A potential field-based method is used for ISAC to avoid the obstacle. As the 

size of the obstacle increases, the impedance potential field of the obstacle also increases. 

So ISAC cannot reach the box to push it because the larger impedance potential field of 

the obstacle. The success rate of the evaluation using the IRS in Experiment 3B-1 is 

87.5%. 

Table 29 displays the running time of the key components in Experiment 3B-1. 

As shown in Table 29, the average running time for generating the behavior 

sequence in Experiment 3B-1 is 0.0050ms. The average running time for generating 

behaviors for the right arm and the left arm is 11.3215ms and 10.9597ms respectively.  

The average running time of evaluating the generated behaviors for the right arm 

and for the left arm is 0.7758ms and 0.5004ms respectively. In Experiment 3B-1a-1, 3B-

1a-2, 3B-1b-1, 3B-1b-2, 3B-1b-3, 3B-1c-1, 3B-1c-2, 3B-1c-3, 3B-1c-4, 3B-1d-1, 3B-1d-

2, and 3B-1d-3, ISAC only needed to evaluate the behaviors for the right arm and did not 

evaluate the behaviors for the left arm, so the running time for evaluating the left arm is 

very small: 0.0004ms. That means ISAC evaluated the overall motion trajectory of the 

right arm The average running time for evaluating the behaviors for the right arm in these 

experiments is: 0.8227ms. 

The running time of generating behavior sequence is 0.02% of the overall running 

time of the key components. 48.18% and 46.64% of the overall running time is used to 
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generate motion trajectories for the right arm and the left arm respectively. The 

evaluation time is 3.30% and 1.85% of the overall running time. 

Table 29 Running Time of Key Components in Experiment 3B-1 

 BSG BGRA BGLA IRSRA IRSLA 

Experiment 3B-1a-1 0.0053 10.2442 10.7762 0.7960 0.0004 

Experiment 3B-1a-2 0.0049 10.6272 10.6334 0.7976 0.0000 

Experiment 3B-1a-3 0.0049 10.8399 10.4080 0.8653 0.1206 

Experiment 3B-1a-4 0.0053 10.6009 11.3017 0.0114 1.1170 

Experiment 3B-1b-1 0.0049 10.9897 10.6978 0.8276 0.0004 

Experiment 3B-1b-2 0.0049 10.7249 11.1289 0.8296 0.0000 

Experiment 3B-1b-3 0.0041 10.5398 10.5373 0.8362 0.0004 

Experiment 3B-1b-4 0.0049 10.8218 10.7861 0.8300 0.2635 

Experiment 3B-1c-1 0.0049 10.9179 10.4059 0.8288 0.0004 

Experiment 3B-1c-2 0.0053 10.7512 11.1691 0.8296 0.0000 

Experiment 3B-1c-3 0.0057 18.3274 11.0968 0.8337 0.0000 

Experiment 3B-1c-4 0.0049 10.9072 10.8969 0.8313 0.0004 

Experiment 3B-1d-1 0.0049 11.3284 11.5369 0.8292 0.0004 

Experiment 3B-1d-2 0.0049 10.8949 11.5558 0.8341 0.0004 

Experiment 3B-1d-3 0.0049 11.2077 11.1453 0.7992 0.0004 

Experiment 3B-1d-4 0.0049 11.4216 11.2787 0.8325 0.0004 

Average 0.0050 11.3215 10.9597 0.7758 0.5004 

STD 0.0003 1.8915 0.3711 0.2045 0.5388 

Percentage 0.02% 48.18% 46.64% 3.30% 1.85% 

Unit: millisecond (ms) 

--Experiment 3B-2 

The simulation results of 3B-2 are summarized in Table 30. 
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Table 30 Simulation Results of Experiment 3B-2 

 Feasible/ 

Infeasible 

Left/Right Failure Reason Evaluation 

Experiment 3B-2a-1 Infeasible N/A Right Arm: Cannot Reach the Box 

Left Arm: Collision with the obstacle 

Wrong 

Experiment 3B-2a-2 Infeasible N/A Right Arm: Cannot Reach the Box 

Left Arm: Collision with the obstacle 

Wrong 

Experiment 3B-2a-3 Infeasible N/A Right Arm: Cannot Reach the Box 

Left Arm: Collision with the obstacle 

Correct 

Experiment 3B-2a-4 Infeasible N/A Right Arm: Cannot Reach the Box 

Left Arm: Cannot Reach the Box 

Correct 

Experiment 3B-2b-1 Feasible Left Arm Right Arm: Cannot Reach the Box Correct 

Experiment 3B-2b-2 Feasible Left Arm Right Arm: Cannot Reach the Box Correct 

Experiment 3B-2b-3 Feasible Left Arm Right Arm: Cannot Reach the Box Correct 

Experiment 3B-2b-4 Feasible Left Arm Right Arm: Cannot Reach the Box Correct 

Experiment 3B-2c-1 Feasible Left Arm Right Arm: Cannot Reach the Box Correct 

Experiment 3B-2c-2 Feasible Left Arm Right Arm: Cannot Reach the Box Correct 

Experiment 3B-2c-3 Feasible Left Arm Right Arm: Cannot Reach the Box Correct 

Experiment 3B-2c-4 Feasible Left Arm Right Arm: Cannot Reach the Box Correct 

Experiment 3B-2d-1 Feasible Left Arm Right Arm: Cannot Reach the Box Correct 

Experiment 3B-2d-2 Feasible Left Arm Right Arm: Cannot Reach the Box Correct 

Experiment 3B-2d-3 Feasible Left Arm Right Arm: Cannot Reach the Box Correct 

Experiment 3B-2d-4 Feasible Left Arm Right Arm: Cannot Reach the Box Correct 

 

In Experiment 3B-2a-1, 3B-2a-2, 3B-2b-3, and 3B-2d-4, ISAC found that it 

cannot push the box using either of its arms if it wanted to avoid the obstacle. So it 
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displayed a message on the screen and refused to complete the task. The rate of feasibility 

in Experiment 3B-2 is 75%.  

In Experiment 3B-2a-1 and 3B-2a-2, ISAC made wrong decisions, and refused to 

complete the task because it finds that it cannot avoid the obstacle in order to push the 

box. The reason of causing the wrong decision still comes from the obstacle avoidance 

module. A potential field-based method is used for ISAC to avoid the obstacle. However, 

this method usually cannot find a global solution. ISAC can avoid the obstacle in these 

methods by moving in the front or the back of the obstacle. However, in these 

experiments, ISAC moved in the front of the obstacle, so the arm collided with the 

obstacle. The success rate of the evaluation using the IRS in Experiment 3B-2 is 87.5%. 

Table 31 displays the running time of key components in Experiment 3B-2. 

As shown in Table 31, the average running time for generating the behavior 

sequence in Experiment 3B-2 is 0.0050ms. The average running time for generating 

behaviors for the right arm and the left arm is 10.7149ms and 13.6738ms respectively.  

The average running time of evaluating the generated behaviors for the right arm 

and for the left arm is 0.1618ms and 0.9363ms respectively. In the Experiments except 

3B-2a-1, 3B-2a-2, 3B-2a-3, 3B-2a-4, ISAC needed to evaluate the overall motion 

trajectory of the left arm. The average time for evaluating the behaviors for the left arm in 

these experiments is: 1.1278ms. 

The running time of generating behavior sequence is 0.02% of the overall running 

time of the key components. 42.03% and 53.64% of the overall running time is used to 

generate motion trajectories for the right arm and the left arm respectively. The 

evaluation time is 0.63% and 3.67% of the overall running time. 
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Table 31 Running Time of Key Components in Experiment 3B-2 

 BSG BGRA BGLA IRSRA IRSLA 

Experiment 3B-2a-1 0.0049 10.5295 10.5554 0.0784 0.0977 

Experiment 3B-2a-2 0.0049 10.6506 10.7955 0.0784 0.0862 

Experiment 3B-2a-3 0.0049 10.6358 20.5574 0.0874 0.0825 

Experiment 3B-2a-4 0.0049 10.2434 10.2967 0.8805 1.1802 

Experiment 3B-2b-1 0.0053 10.4527 10.1432 0.0849 1.1523 

Experiment 3B-2b-2 0.0049 10.3411 49.4891 0.3830 1.0969 

Experiment 3B-2b-3 0.0049 11.2574 10.8534 0.4027 1.1002 

Experiment 3B-2b-4 0.0049 10.8813 10.8760 0.0233 1.1987 

Experiment 3B-2c-1 0.0053 10.5414 10.8230 0.0796 1.0997 

Experiment 3B-2c-2 0.0049 10.6769 10.6756 0.0788 1.0997 

Experiment 3B-2c-3 0.0049 10.3702 10.5981 0.0821 1.1034 

Experiment 3B-2c-4 0.0049 11.0722 10.5406 0.0127 1.1650 

Experiment 3B-2d-1 0.0049 11.3345 10.4355 0.0853 1.1248 

Experiment 3B-2d-2 0.0049 10.4745 10.6157 0.0841 1.1260 

Experiment 3B-2d-3 0.0053 10.7413 10.8390 0.0903 1.1125 

Experiment 3B-2d-4 0.0053 11.2352 10.6863 0.0570 1.1548 

Average 0.0050 10.7149 13.6738 0.1618 0.9363 

STD 0.0002 0.3453 9.8691 0.2218 0.4216 

Percentage 0.02% 42.03% 53.64% 0.63% 3.67% 

 

--Experiment 3B-3 

In Experiment 3B-3a-1, 3B-3a-2, 3B-3b-3, 3B-3d-4, and 3B-3b-4, ISAC found 

that it cannot push the box using either of its arms if it wanted to avoid the obstacle. So it 
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displayed a message on the screen and refused to complete the task. The rate of feasibility 

in Experiment 3B-2 is 68.75%.  

Table 32 Simulation Results of Experiment 3B-3 

 Feasible/ 

Infeasible 

Left/Right  Failure Reason Evaluation 

Experiment 3B-3a-1 Infeasible N/A Right Arm: Collision with the obstacle 

Left Arm: Collision with the obstacle 

Wrong 

Experiment 3B-3a-2 Infeasible N/A Right Arm: Collision with the obstacle 

Left Arm: Collision with the obstacle 

Wrong 

Experiment 3B-3a-3 Infeasible N/A Right Arm: Collision with the obstacle 

Left Arm: Collision with the obstacle 

Correct 

Experiment 3B-3a-4 Infeasible N/A Right Arm: Collision with the obstacle 

Left Arm: Collision with the obstacle 

Correct 

Experiment 3B-3b-1 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-3b-2 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-3b-3 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-3b-4 Infeasible N/A Right Arm: Collision with the object 

Left Arm: Cannot reach the box 

Correct 

Experiment 3B-3c-1 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-3c-2 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-3c-3 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-3c-4 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-3d-1 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-3d-2 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-3d-3 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-3d-4 Feasible Left Arm Right Arm: Collision with the object Correct 
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Table 33 Running Time of Key Components in Experiment 3B-3 

 BSG BGRA BGLA IRSRA IRSLA 

Experiment 3B-3a-1 0.0053 10.9540 11.3805 0.0849 1.1613 

Experiment 3B-3a-2 0.0049 21.0812 10.7795 0.0841 0.0242 

Experiment 3B-3a-3 0.0057 11.2931 10.9162 0.0853 0.0127 

Experiment 3B-3a-4 0.0057 10.9109 10.5114 0.8855 0.0119 

Experiment 3B-3b-1 0.0061 11.2274 10.9675 0.0845 1.1572 

Experiment 3B-3b-2 0.0049 11.0221 11.0028 0.3801 1.1556 

Experiment 3B-3b-3 0.0053 11.2077 10.9581 0.3891 1.1593 

Experiment 3B-3b-4 0.0053 10.9523 11.4322 0.8830 1.1761 

Experiment 3B-3c-1 0.0053 11.3666 11.0972 0.0837 1.1568 

Experiment 3B-3c-2 0.0049 11.0049 11.2134 0.0311 1.1593 

Experiment 3B-3c-3 0.0065 10.8702 10.8756 0.0311 1.1638 

Experiment 3B-3c-4 0.0061 10.4043 11.0303 0.0254 1.1630 

Experiment 3B-3d-1 0.0057 11.2073 11.1687 0.0833 1.1572 

Experiment 3B-3d-2 0.0053 11.1781 11.1728 0.0837 1.1556 

Experiment 3B-3d-3 0.0057 10.7097 11.1030 0.0845 1.1568 

Experiment 3B-3d-4 0.0053 10.9675 11.1383 0.0853 0.0106 

Average 0.0055 11.6473 11.0467 0.2115 0.8738 

STD 0.0005 2.5270 0.2241 0.2841 0.5122 

Percentage 0.02% 48.97% 46.44% 0.89% 3.67% 

Unit: millisecond (ms) 

In Experiment 3B-3a-1 and 3B-3a-2, ISAC made wrong decisions, and refused to 

complete the task because it finds that it cannot avoid the obstacle in order to push the 

box. The reason of causing the wrong decision is the same as in the Experiment 3B-2a-1 

and 3B-2a-2. In these experiments, ISAC moved in the front of the obstacle, so the arm 
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collided with the obstacle. The success rate of the evaluation using the IRS in Experiment 

3B-3 is 87.5%. 

As shown in Table 33, the average running time for generating the behavior 

sequence in Experiment 3B-3 is 0.0055ms. The average running time for generating 

behaviors for the right and the left arm is 11.6473ms and 11.0467ms respectively.  

The average running time of evaluating the generated behaviors for the right arm 

and for the left arm is 0.2115ms and 0.8738ms respectively. In the Experiments except 

3B-3a-1, 3B-3a-2, 3B-3a-3, 3B-3a-4, and Experiment 3B-3d-4, ISAC needed to evaluate 

the overall motion trajectory of the left arm. The average time for evaluating the 

behaviors for the left arm in these experiments is 1.1601ms. 

The running time of generating behavior sequence is 0.02% of the overall running 

time of the key components. 48.97% and 46.44% of the overall running time is used to 

generate motion trajectories for the right arm and the left arm respectively. The 

evaluation time is 0.89% and 3.67% of the overall running time. 

--Experiment 3B-4 

In Experiment 3B-4a-3, 3B-4a-4, 3B-4b-4, and 3B-4d-4, ISAC found that it 

cannot push the box using either of its arms if it wanted to avoid the obstacle. So it 

displayed a message on the screen and refused to complete the task. The rate of feasibility 

in Experiment 3B-4 is 75%.  

In Experiment 3B-4a-3 and 3B-4b-4, ISAC made wrong decisions, and refused to 

complete the task because it found that it cannot avoid the obstacle in order to push the 

box. The reason of causing the wrong decision is the same as in the Experiment 3B-1a-3 

and 3B-1a-4. In these experiments, ISAC cannot reach the box because the impedance 
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potential field of the obstacle increases. The success rate of the evaluation using the IRS 

in Experiment 3B-4 is 87.5%. 

Table 34 Simulation Results of Experiment 3B-4 

 Feasible/ 

Infeasible 

Left/Rig

ht  

Failure Reason  Evaluation 

Experiment 3B-4a-1 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-4a-2 Feasible Left Arm Right Arm: Collision with the object 

 

Correct 

Experiment 3B-4a-3 Infeasible N/A Right Arm: Collision with the object 

Left Arm: Cannot reach the box 

Wrong 

Experiment 3B-4a-4 Infeasible N/A Right Arm: Collision with the object 

Left Arm: Collision with the obstacle 

Correct 

Experiment 3B-4b-1 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-4b-2 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-4b-3 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-4b-4 Infeasible N/A Right Arm: Collision with the object 

Left Arm: Cannot reach the box 

Wrong 

Experiment 3B-4c-1 Feasible Left Arm Right Arm: Collision with the obstacle Correct 

Experiment 3B-4c-2 Feasible Left Arm Right Arm: Collision with the obstacle Correct 

Experiment 3B-4c-3 Feasible Left Arm Right Arm: Collision with the obstacle Correct 

Experiment 3B-4c-4 Feasible Left Arm Right Arm: Collision with the obstacle Correct 

Experiment 3B-4d-1 Feasible Left Arm Right Arm: Collision with the obstacle Correct 

Experiment 3B-4d-2 Feasible Left Arm Right Arm: Collision with the obstacle Correct 

Experiment 3B-4d-3 Feasible Left Arm Right Arm: Collision with the obstacle Correct 

Experiment 3B-4d-4 Infeasible N/A Right Arm: Collision with the obstacle 

Left Arm: Collision with the obstacle 

Correct 
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Table 35 Running Time of Key Components in Experiment 3B-4 

 BSG BGRA BGLA IRSRA IRSLA 

Experiment 3B-4a-1 0.0049 12.5287 10.8912 0.2159 1.0870 

Experiment 3B-4a-2 0.0049 11.0816 23.5251 0.2294 1.1634 

Experiment 3B-4a-3 0.0057 10.4700 10.8575 0.2290 1.1519 

Experiment 3B-4a-4 0.0049 10.5710 11.4142 0.2725 1.1507 

Experiment 3B-4b-1 0.0049 10.6403 10.5722 0.2298 1.2089 

Experiment 3B-4b-2 0.0049 10.7380 10.6789 0.2159 1.0883 

Experiment 3B-4b-3 0.0049 10.6543 10.6921 0.2315 1.1416 

Experiment 3B-4b-4 0.0057 10.8940 10.6325 0.2352 1.0899 

Experiment 3B-4c-1 0.0049 11.0320 10.5861 0.2303 1.1412 

Experiment 3B-4c-2 0.0057 10.3792 10.5295 0.2298 1.1416 

Experiment 3B-4c-3 0.0049 10.2836 10.3784 0.2298 1.1429 

Experiment 3B-4c-4 0.0049 11.1022 10.3682 0.2631 1.1429 

Experiment 3B-4d-1 0.0053 10.7491 10.4322 0.2315 1.1424 

Experiment 3B-4d-2 0.0049 10.6875 10.6149 0.2307 0.3431 

Experiment 3B-4d-3 0.0053 10.6543 10.4384 0.2906 0.0935 

Experiment 3B-4d-4 0.0061 10.8797 10.3887 0.2771 0.0127 

Average 0.0052 10.8341 11.4375 0.2401 0.9526 

Standard Deviation 0.0004 0.5100 3.2339 0.0225 0.4044 

Percentage 0.02% 46.16% 48.73% 1.02% 4.06% 

 

As shown in Table 35, the average generation time for generating behavior 

sequence in Experiment 3B-4 is 0.0052ms. The average running time for generating 

behaviors for the right and the left arm is 10.8341ms and 11.4375ms respectively.  
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The average running time of evaluating the generated behaviors for the right arm 

and for the left arm is 0.2401ms and 0.9526ms respectively. In the Experiments except 

3B-4a-3, 3B-4a-4, 3B-4b-4, and 3B-4d-44, ISAC needed to evaluate the overall motion 

trajectory of the left arm. The average time for evaluating the behaviors for the left arm in 

these experiments is: 0.9864ms. 

The running time of generating behavior sequence is 0.02% of the overall running 

time of the key components. 46.16% and 48.73% of the overall running time is used to 

generate motion trajectories for the right arm and the left arm respectively. The 

evaluation time is 1.02% and 4.06% of the overall running time. 

--Experiment 3B-5 

In Experiment 3B-5a-3, 3B-5a-4, 3B-5b-4, and 3B-5d-4, ISAC found that it 

cannot push the box using either of its arms if it wanted to avoid the obstacle. So it 

displayed a message on the screen and refused to complete the task. The rate of feasibility 

in Experiment 3B-5 is 75%.  

In Experiment 3B-5b-4, ISAC made wrong decisions, and refused to complete the 

task because it finds that it cannot avoid the obstacle to push the box. The reason of 

causing the wrong decision in Experiment 5b-4 is the same as in the Experiment 3B-1a-3 

and 3B-1a-4. The success rate of the evaluation using the IRS in Experiment 3B-5 is 

93.75%. 

 

 

 

 



307 

 

Table 36 Simulation Results of Experiment 3B-5 

 Feasible/ 

Infeasible 

Left/Right  Failure Reason Evaluation 

Experiment 3B-5a-1 Feasible Right Arm N/A Correct 

Experiment 3B-5a-2 Feasible Right Arm N/A Correct 

Experiment 3B-5a-3 Infeasible N/A Right Arm: Cannot Reach the Box 

Left Arm: Cannot Reach the Box 

Correct 

Experiment 3B-5a-4 Infeasible N/A Right Arm: Cannot Reach the Box 

Left Arm: Cannot Reach the Box 

Correct 

Experiment 3B-5b-1 Feasible Right Arm N/A Correct 

Experiment 3B-5b-2 Feasible Right Arm N/A Correct 

Experiment 3B-5b-3 Feasible Right Arm N/A Correct 

Experiment 3B-5b-4 Infeasible Left Arm Right Arm: Cannot Reach the Box 

Left Arm: Cannot Reach the Box 

Wrong 

Experiment 3B-5c-1 Feasible Right Arm N/A Correct 

Experiment 3B-5c-2 Feasible Right Arm N/A Correct 

Experiment 3B-5c-3 Feasible Right Arm N/A Correct 

Experiment 3B-5c-4 Feasible Right Arm N/A Correct 

Experiment 3B-5d-1 Feasible Right Arm N/A Correct 

Experiment 3B-5d-2 Feasible Right Arm N/A Correct 

Experiment 3B-5d-3 Feasible Right Arm N/A Correct 

Experiment 3B-5d-4 Infeasible Right Arm Right Arm: Collision with the obstacle 

Left Arm: Cannot Reach the Box 

Correct 

As shown in Table 37, the average running time for generating behavior sequence 

in Experiment 3B-5 is 0.0049ms. The average running time for generating behaviors for 

the right and the left arm is 11.6536ms and 10.7647ms respectively.  
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Table 37 Running Time of Key Components in Experiment 3B-5 

 BSG BGRA BGLA IRSRA IRSLA 

Experiment 3B-5a-1 0.0061 13.3260 10.8148 0.7997 0.0000 

Experiment 3B-5a-2 0.0045 10.7914 10.1132 0.7738 0.0004 

Experiment 3B-5a-3 0.0049 10.1916 10.2397 0.7964 0.2348 

Experiment 3B-5a-4 0.0049 10.4371 11.0381 0.7984 0.2672 

Experiment 3B-5b-1 0.0045 11.0533 10.7787 0.8300 0.0004 

Experiment 3B-5b-2 0.0045 10.8756 10.8197 0.8140 0.0000 

Experiment 3B-5b-3 0.0049 11.1030 10.6465 0.8046 0.0004 

Experiment 3B-5b-4 0.0049 10.8243 11.3046 0.7988 0.2348 

Experiment 3B-5c-1 0.0053 10.9215 10.8403 0.7951 0.0004 

Experiment 3B-5c-2 0.0045 22.1186 10.8321 0.7960 0.0004 

Experiment 3B-5c-3 0.0049 10.8649 11.1687 0.8321 0.0000 

Experiment 3B-5c-4 0.0049 10.9671 10.8132 0.7951 0.0000 

Experiment 3B-5d-1 0.0045 10.5143 10.8468 0.7726 0.0000 

Experiment 3B-5d-2 0.0049 11.1075 10.6440 0.8387 0.0000 

Experiment 3B-5d-3 0.0053 10.5123 10.8813 0.8300 0.0000 

Experiment 3B-5d-4 0.0049 10.8489 10.4540 0.8350 0.2422 

Average 0.0049 11.6536 10.7647 0.8069 0.0613 

STD 0.0004 2.8729 0.3048 0.0209 0.1096 

Percentage 0.02% 49.64% 45.85% 3.44% 1.05% 

Unit: millisecond (ms) 

The average running time of evaluating the generated behaviors for the right arm 

and for the left arm is 0.8069ms and 0.0613ms respectively. In Experiment 3B-1a-1, 3B-

1a-2, 3B-1b-1, 3B-1b-2, 3B-1b-3, 3B-1c-1, 3B-1c-2, 3B-1c-3, 3B-1c-4, 3B-1d-1, 3B-1d-

2, and 3B-1d-3, ISAC evaluated the overall motion trajectory of the right arm The 
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average time for evaluating the behaviors for the right arm in these experiments is: 

0.8068ms. 

The running time of generating behavior sequence is 0.02% of the overall running 

time of the key components. 49.64% and 45.85% of the overall running time is used to 

generate motion trajectories for the right arm and the left arm respectively. The 

evaluation time is 3.44% and 1.05% of the overall running time. 

--Experiment 3B-6 

In Experiment 3B-6a-4, ISAC found that it cannot push the box using either of its 

arms if it wanted to avoid the obstacle. So it displayed a message on the screen and 

refused to complete the task. The rate of the feasibility in Experiment 3B-6 is 93.75%.  

In all experiments of Experiment 3B-6, ISAC made correct decisions. The success 

rate of the IRS evaluation is 100%. 

As shown in Table 39, the average running time for generating the behavior 

sequence in Experiment 3B-6 is 0.0054ms. The average running time for generating 

behaviors for the right and left arm is 15.9670ms and 11.9227ms respectively. In 

Experiment 3B-3c-3, the running time for generating behaviors for the right arm is 

79.1158. This is due to the interrupt generated by the operating system kernel. 

The average running time of evaluating the generated behaviors for the right arm 

and for the left arm is 0.8134ms and 1.0514ms respectively. In Experiment 3B-6a-1, 3B-

6a-2, 3B-6b-1, 3B-6b-2, 3B-6b-3, 3B-6c-1, 3B-6c-2, 3B-6c-3, 3B-6c-4, 3B-6d-1, and 3B-

6d-2, ISAC evaluated the overall motion trajectory of the right arm The average time for 

evaluating the behaviors for the right arm in these experiments is: 0.9124ms. In 

Experiment 3B-6a-3, 3B-6b-4, 3B-6d-3, and 3B-6d-4, ISAC evaluated the overall motion 
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trajectory of the right arm. The average time for evaluating the behaviors for the right 

arm in these experiments is: 1.1295ms. 

Table 38 Simulation Results of Experiment 3B-6 

 Feasible/ 

Infeasible 

Left/Right  Failure Reason Evaluation 

Experiment 3B-6a-1 Feasible Right Arm N/A Correct 

Experiment 3B-6a-2 Feasible Right Arm N/A Correct 

Experiment 3B-6a-3 Feasible Left Arm N/A Correct 

Experiment 3B-6a-4 Infeasible N/A Right Arm: Cannot Reach the 

Box 

Left Arm: Cannot Reach the Box 

Correct 

Experiment 3B-6b-1 Feasible Right Arm N/A Correct 

Experiment 3B-6b-2 Feasible Right Arm N/A Correct 

Experiment 3B-6b-3 Feasible Right Arm N/A Correct 

Experiment 3B-6b-4 Feasible Left Arm Right Arm: Cannot Reach the 

Box 

Correct 

Experiment 3B-6c-1 Feasible Right Arm N/A Correct 

Experiment 3B-6c-2 Feasible Right Arm N/A Correct 

Experiment 3B-6c-3 Feasible Right Arm N/A Correct 

Experiment 3B-6c-4 Feasible Right Arm N/A Correct 

Experiment 3B-6d-1 Feasible Right Arm N/A Correct 

Experiment 3B-6d-2 Feasible Right Arm N/A Correct 

Experiment 3B-6d-3 Feasible Left Arm Right Arm: Cannot reach the Box Correct 

Experiment 3B-6d-4 Feasible Left Arm Right Arm: Cannot reach the Box Correct 

 

Table 39 Running Time of Key Components in Experiment 3B-6 
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 BSG BGRA BGLA IRSRA IRSLA 

Experiment 3B-6a-1 0.0049 11.1079 11.0504 0.8231 0.0004 

Experiment 3B-6a-2 0.0053 11.3571 11.0981 0.8616 0.0004 

Experiment 3B-6a-3 0.0057 11.2147 12.3863 0.9655 1.1970 

Experiment 3B-6a-4 0.0049 12.2537 12.1227 0.8941 1.1461 

Experiment 3B-6b-1 0.0053 13.4459 13.2205 0.9971 0.0004 

Experiment 3B-6b-2 0.0049 13.5325 11.4606 0.8555 0.0004 

Experiment 3B-6b-3 0.0053 11.1404 12.1285 1.3108 0.0004 

Experiment 3B-6b-4 0.0065 13.9360 12.9672 0.8670 1.1400 

Experiment 3B-6c-1 0.0057 11.0217 11.5845 0.8526 0.0000 

Experiment 3B-6c-2 0.0053 11.1941 11.5804 0.8543 0.0004 

Experiment 3B-6c-3 0.0049 79.1158 17.1488 1.0242 0.0004 

Experiment 3B-6c-4 0.0057 12.9738 11.0492 0.8009 0.0004 

Experiment 3B-6d-1 0.0053 10.8091 10.8616 0.8345 0.0000 

Experiment 3B-6d-2 0.0061 11.4084 10.8128 0.8214 0.0000 

Experiment 3B-6d-3 0.0049 10.4601 10.7758 0.1588 1.0969 

Experiment 3B-6d-4 0.0053 10.5012 10.5159 0.0931 0.6769 

Average 0.0054 15.9670 11.9227 0.8134 1.0514 

STD 0.0005 16.8770 1.6059 0.2959 0.2123 

Percentage 0.02% 53.65% 40.06% 2.73% 3.53% 

The running time of generating behavior sequence is 0.02% of the overall running 

time of the key components. 53.65% and 40.06% of the overall running time is used to 

generate motion trajectories for the right arm and the left arm respectively. The 

evaluation time is 2.73% and 3.53% of the overall running time. 

 

--Experiment 3B-7 
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Table 40 Simulation Results of Experiment 3B-7 

 Feasible/ 

Infeasible 

Left/Right  Failure Reason Evaluation 

Experiment 3B-7a-1 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-7a-2 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-7a-3 Infeasible N/A Right Arm: Cannot Reach the Box 

Left Arm: Cannot Reach the Box 

Wrong 

Experiment 3B-7a-4 Infeasible N/A Right Arm: Cannot Reach the Box 

Left Arm: Cannot Reach the Box 

Correct 

Experiment 3B-7b-1 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-7b-2 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-7b-3 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-7b-4 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-7d-1 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-7d-2 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-7d-3 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-7d-4 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-7d-1 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-7d-2 Feasible Left Arm Right Arm: Collision with the obstacle Correct 

Experiment 3B-7d-3 Feasible Left Arm Right Arm: Collision with the obstacle Correct 

Experiment 3B-7d-4 Infeasible N/A Right Arm: Collision with the obstacle 

Left Arm: Collision with the object 

Correct 

 

In Experiment 3B-7a-3, 3B-7a-4, and 3B-7d-4, ISAC found that it cannot push 

the box using either of its arms if it wanted to avoid the obstacle. So it displayed a 
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message on the screen and refused to complete the task. The rate of the feasibility in 

Experiment 3B-7 is 81.25%.  

In Experiment 3B-7a-3, ISAC made wrong decisions, and refused to complete the 

task because it finds that it cannot avoid the obstacle to push the box. The reason of 

causing the wrong decision in Experiment 3B-7a-3 is the same as in the Experiment 3B-

1a-3 and 3B-1a-4. The success rate of the evaluation using the IRS in Experiment 3B-7 is 

93.75%. 

As shown in Table 41, the average running time for generating the behavior 

sequence in Experiment 3B-7 is 0.0053ms. The average running time for generating 

behaviors for the right and the left arm is 11.0320 and 11.9550ms respectively.  

The average running time of evaluating the generated behaviors for the right arm 

and for the left arm is 0.8134ms and 1.0514ms respectively. In the experiments except 

Experiment 3B-7a-3, 3B-7a-4, and 3B-7d-4, ISAC evaluated the overall motion 

trajectory of the left arm The average time for evaluating the behaviors for the right arm 

in these experiments is: 1.1329ms.  

The running time of generating behavior sequence is 0.02% of the overall running 

time of the key components. 44.84% and 48.60% of the overall running time is used to 

generate motion trajectories for the right arm and the left arm respectively. The 

evaluation time is 1.94% and 4.60% of the overall running time. 
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Table 41 Running Time of Key Components in Experiment 3B-7 

 BSG BGRA BGLA IRSRA IRSLA 

Experiment 3B-7a-1 0.0049 10.8419 10.4819 0.4351 1.1383 

Experiment 3B-7a-2 0.0041 10.5935 10.7196 0.4384 1.1392 

Experiment 3B-7a-3 0.0053 11.1502 21.1058 0.8210 1.1047 

Experiment 3B-7a-4 0.0053 10.4798 11.2036 0.8834 1.1231 

Experiment 3B-7b-1 0.0057 10.8173 10.3977 0.4536 1.1757 

Experiment 3B-7b-2 0.0053 10.4150 10.5258 0.4273 1.1026 

Experiment 3B-7b-3 0.0053 10.6120 10.4843 0.4298 1.0850 

Experiment 3B-7b-4 0.0057 10.6440 10.8567 0.8284 1.0887 

Experiment 3B-7c-1 0.0053 10.7898 10.4889 0.4372 1.1227 

Experiment 3B-7c-2 0.0053 11.0217 12.5411 0.4367 1.1457 

Experiment 3B-7c-3 0.0053 13.2944 16.5819 0.4372 1.1396 

Experiment 3B-7c-4 0.0061 11.5082 11.1313 0.4515 1.1461 

Experiment 3B-7d-1 0.0049 11.2750 11.2496 0.4363 1.1445 

Experiment 3B-7d-2 0.0049 10.9150 11.4577 0.0989 1.1572 

Experiment 3B-7d-3 0.0053 10.9638 11.1843 0.1420 1.1420 

Experiment 3B-7d-4 0.0061 11.1904 10.8694 0.4782 1.1494 

Average 0.0053 11.0320 11.9550 0.4772 1.1315 

Standard Deviation 0.0005 0.6737 2.8628 0.2126 0.0252 

Percentage 0.02% 44.84% 48.60% 1.94% 4.60% 
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--Experiment 3B-8 

Table 42 Simulation Results of Experiment 3B-8 

 Feasible/ 

Infeasible 

Left/Right  Failure Reason Evaluation 

Experiment 3B-8a-1 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-8a-2 Feasible Left Arm Right Arm: Collision with the object 

 

Correct 

Experiment 3B-8a-3 Infeasible N/A Right Arm: Collision with the object 

Left Arm: Cannot reach the box 

Wrong 

Experiment 3B-8a-4 Infeasible N/A Right Arm: Collision with the object 

Left Arm: Cannot reach the box 

Wrong 

Experiment 3B-8b-1 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-8b-2 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-8b-3 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-8b-4 Infeasible N/A Right Arm: Collision with the object 

Left Arm: Cannot reach the box 

Wrong 

Experiment 3B-8c-1 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-8c-2 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-8c-3 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-8c-4 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-8d-1 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-8d-2 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-8d-3 Feasible Left Arm Right Arm: Collision with the object Correct 

Experiment 3B-8d-4 Infeasible N/A Right Arm: Collision with the object 

Left Arm: Collision with the obstacle 

Correct 

In Experiment 3B-8a-3, 3B-8a-4, 3B-8b-4, and 3B-8d-4, ISAC found that it 

cannot push the box using either of its arms if it wanted to avoid the obstacle. So it 
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displayed a message on the screen and refused to do. The rate of feasibility in Experiment 

3B-8 is 75%.  

In Experiment 3B-8a-3, 3B-8a-4, and 3B-8b-4, ISAC made wrong decisions, and 

refused to complete the task because it finds that it cannot avoid the obstacle to push the 

box. The reason of causing the wrong decision in Experiment 3B-7a-3 is the same as in 

the Experiment 3B-2 The success rate of the evaluation using the IRS in Experiment 3B-

7 is 81.25%. 

As shown in Table 43, the average running time for generating the behavior 

sequence in Experiment 3B-8 is 0.0053ms. The average running time for generating 

behaviors for the right and the left arm is 10.8341ms and 11.4375ms respectively.  

The average running time of evaluating the generated behaviors for the right arm 

and for the left arm is 0.2401ms and 0.9526ms respectively. In the experiments except 

Experiment 3B-8a-3, 3B-8a-4, 3B-8b-4, and 3B-8d-4, ISAC evaluated the overall motion 

trajectory of the left arm. The average time for evaluating the behaviors for the right arm 

in these experiments is: 0.9864ms.  

The running time of generating behavior sequence is 0.02% of the overall running 

time of the key components. 46.16% and 48.73% of the overall running time is used to 

generate motion trajectories for the right arm and the left arm respectively. The 

evaluation time is 1.02% and 4.06% of the overall running time. 
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Table 43 Running Time of Key Components in Experiment 3B-8 

 BSG BGRA BGLA IRSRA IRSLA 

Experiment 3B-8a-1 0.0049 12.5287 10.8912 0.2159 1.0870 

Experiment 3B-8a-2 0.0049 11.0816 23.5251 0.2294 1.1634 

Experiment 3B-8a-3 0.0057 10.4700 10.8575 0.2290 1.1519 

Experiment 3B-8a-4 0.0049 10.5710 11.4142 0.2725 1.1507 

Experiment 3B-8b-1 0.0049 10.6403 10.5722 0.2298 1.2089 

Experiment 3B-8b-2 0.0049 10.7380 10.6789 0.2159 1.0883 

Experiment 3B-8b-3 0.0049 10.6543 10.6921 0.2315 1.1416 

Experiment 3B-8b-4 0.0057 10.8940 10.6325 0.2352 1.0899 

Experiment 3B-8c-1 0.0049 11.0320 10.5861 0.2303 1.1412 

Experiment 3B-8c-2 0.0057 10.3792 10.5295 0.2298 1.1416 

Experiment 3B-8c-3 0.0049 10.2836 10.3784 0.2298 1.1429 

Experiment 3B-8c-4 0.0049 11.1022 10.3682 0.2631 1.1429 

Experiment 3B-8d-1 0.0053 10.7491 10.4322 0.2315 1.1424 

Experiment 3B-8d-2 0.0049 10.6875 10.6149 0.2307 0.3431 

Experiment 3B-8d-3 0.0053 10.6543 10.4384 0.2906 0.0935 

Experiment 3B-8d-4 0.0061 10.8797 10.3887 0.2771 0.0127 

Average 0.0052 10.8341 11.4375 0.2401 0.9526 

Standard Deviation 0.0004 0.5100 3.2339 0.0225 0.4044 

Percentage 0.02% 46.16% 48.73% 1.02% 4.06% 

 

 

D. Major Software Program Files and Functions 

Speech 

File:   DeliverationVoiceNov.cs 
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Function:   void rec_SpeechRecognized(object sender, SpeechRecognizedEventArgs e) 

This function is triggered by the event of recognized sentences which obey 

the rules of the grammar predefined. According to different grammars, this 

function chose different actions (e.g., learning, generalization, generation, etc.) for 

ISAC. 

 

Vision 

File:   Perception.cs 

Function: void myKinectSensor_AllFramesReady(object sender, 

AllFramesReadyEventArgs e) 

 

This Function is triggered by the event of all frames from the Kinect Sensor is 

ready for processing. Two types of information is generated and stored in two global 

shared arrays respectively:  

double [4] objectPosition 

double [3] handRightPosition 

objectPosition stores the position values of the detected target object:  

objectPosition [0] is the value on the X-Axis 

objectPosition [1] is the value on the Y-Axis 

objectPosition [2] is the value on the Z-Axis 

handRightPosition stores the position values of the detected right hand of the 

human body:  

handRightPosition [0] is the value on the X-Axis 
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handRightPosition [1] is the value on the Y-Axis 

handRightPosition [2] is the value on the Z-Axis 

 

Behavior Generalization 

File:   FeatureAnalysis.m 

Function: function [FeaturePreIndex,FeatureInternalIndex,FeaturePostIndex] = 

FeatureAnalysis( behaviorName,varargin ) 

This function generalizes the common features of a basic behavior. 

The input of this function is a behavior name and related parameters. The output 

is a 3-dimensional vector. The first element of the vector is the number related the most 

common feature of the Pre-Condition, the second element of the vector is the number 

related the most common feature of the Internal-Constraint, The third element of the 

vector is the number related the most common feature of the Post-Result. 

 

Behavior Sequence Generation 

File:   BehaviorGraph.cs 

Function: public ArrayList FindPath(string destination) 

This function finds a path in the behavior graph to generate a behavior sequence, 

the destination of which is the required behavior. 

The input parameter is the name of a required behavior. The output is a ArrayList 

which is a behavior sequence. Each element in this ArrayList is a behavior. 

 

Motion Trajectory Generation 
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File:   BasicBehaviors.cs 

Function: public void GenerateBehaviors(ArrayList behaviorList, ArrayList 

parameterList) 

This function generated via points of the motion trajectories of all the behaviors in 

a behavior sequence. 

The input is two ArrayList: the first is the behaviorList which stores the name of 

the behaviors in the behavior sequence; the second is parameterList which stores the 

task-related parameters. Three global shared ArrayList: generatedTrajectoryX, 

generatedTrajectoryY, and generatedTrajectoryZ store X, Y, and Z value of the generated 

via points for the behavior sequence. 

 

Internal Rehearsal 

File:  InternalRehearsalSystem.cs 

Function: public bool WorkspaceChecking(double px,double py,double pz) 

This function checks whether the via point (the input) is within the working space 

of ISAC. 

The input is three double values which are the X, Y, and Z values of the via point 

respectively. The output is a Boolean value. If it is true, the point is within the working 

space of ISAC; If it is false, the point is out of the working space of ISAC. 

Function:  public bool CollisionChecking(double px, double py, double pz) 

This Function whether the arm of ISAC collides with the obstacle given the via 

point (the input). 
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The input is three double values which are the X, Y, and Z values of the via point 

respectively. The output is a Boolean value. If it is true, collision does not happen; If it is 

false, collision Happens. 

Arm Control 

File:   ArmControl.cpp 

Function:  void InverseKinematicsRight() 

This function computes the joint angles of the right arm given the position and 

orientation of the right end-effector of ISAC. 

Function:  void InverseKinematicsLeft() 

This function computes the joint angles of the left arm given the position and 

orientation of the left end-effector of ISAC. 

Function:  void PIDRight() 

This function computes the required voltage of the regulators to control the right 

arm of ISAC. 

Function:  void PIDLeft() 

This function computes the required voltage of the regulators to control the left 

arm of ISAC. 

Function:  void PressureOutputRight() 

This function changes the voltages of the regulators which are used control the air 

muscles of the right arm of ISAC. 

Function:  void PressureOutputLeft() 

This function changes the voltages of the regulators which are used control the air 

muscles of the left arm of ISAC. 
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E. User Manual 

ISAC Initialization 

The following figure displays how to initialize ISAC. 

Start

Turn On Air-

Compressor for 

ISAC 

Start the Control 

Program

DAC Boards Work 

Normally?

Waiting for 

Commands

End

Close the Control 

Program

Turn Off Air-

Compressor for 

ISAC 

End

N

Y

 

Figure 284 ISAC Starting Up 

1. Turn on the Freezer 
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Figure 285 Freezer 

2. Turn on the air valve on the air-tank by rotating counter-clockwise. 

 

Figure 286 Air-Tank 
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3. Flip the switch on the left electrical control cabinet to turn on it 

4. Flip the switch on the right electrical control cabinet 

5. Press the Reset Button on the right electrical control cabinet to turn on it 

6. Rotate the key  on the right electrical control cabinet 90 degrees clockwise to turn 

on it 

 

Figure 287 Electrical Control Cabinet 

7. Turn on the regulators 
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Figure 288 Regulators 

8. Start Computer “Octavia” 

9. Login on “Octavia” using your own VUNetID and corresponding Password 

10. Open Visual C++ 6.0 by selecting “Microsoft Visual C++ 6.0” from the “Start” 

menu of Windows 

11. Press “File->Open Workspace…” 

12. Select the file “C:\Documents and 

Settings\User\Desktop\ArmControl\ArmControl.dsw” and open it by double 

clicking it. 
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13. Press Ctrl+F5 to run the program, program will check the DAC boards 

automatically. If it does not work normally, the program will terminate.  

14. If the DAC boards works normally, after 20 seconds, the control program moves 

the arms to the home position and waiting for the future commands from other 

programs and from the manual input 

 

Deliberation Program 

1. Double click DeliberationVoiceNov.sln to open it 

2. Press F5 to run the program 

 

Perception Program 

1. Connect the USB cable of the Kinect to the Computer Sally 

2. Insert the power cable of the Kinect to a power cord outlet 

3. Double click Perception.sln to open it 

4. Press F5 to run the program 

 

Usage 

Learning 

1. Give ISAC a speech command: “I will show you how to use the “  ” behavior.”  

   is the behavior the human teacher wants to demonstrate, e.g., Reaching the 

Object, Push the Object, etc. 

2. Give ISAC a speech command: “That’s the    demonstration.” 
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   is the index number of the demonstration, e.g., first, second, etc. 

3. Give ISAC the speech command: “I am ready”.  

ISAC starts to record the motion of the hand of the human teacher when hearing 

this command. (Before giving this command, make sure the skeleton of the 

human teacher is displayed on the dialog of the perception program.) 

4. Give ISAC the speech command: “Stop Recording”.  

ISAC stop recording the motion of the hand of the human teacher when hearing 

this command. 

5. Given ISAC the speech command: “That’s the end of the demonstrations”. 

ISAC start generalizing the demonstrations. 

The human teacher needs to repeat step 2-4 to give ISAC several 

demonstrations for it to generalize. 

Generation 

1. Put a box on the table in front of ISAC. 

Make sure the position values of the box are displayed on the dialog of the 

perception program. If there are no position values on the dialog, the box is 

outside of the working space of ISAC. 

2. Given ISAC a speech command: “Could you push the box to the right” or “Could 

you push the box to the left”. 

ISAC starts to push the box. 
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